text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
apiVersion: 1 datasources: - name: grafana-postgresql-datasource uid: be28nkzirtb0gd type: postgres url: $GRAFANA_POSTGRES_DATASOURCE_URL user: $GRAFANA_POSTGRES_DATASOURCE_USER secureJsonData: password: $GRAFANA_POSTGRES_DATASOURCE_PWD jsonData: database: metrics maxOpenConns: 100 maxIdleConns: 100 maxIdleConnsAuto: true connMaxLifetime: 14400 postgresVersion: 1000 timescaledb: false
transformers/benchmark/grafana_datasource.yaml/0
{ "file_path": "transformers/benchmark/grafana_datasource.yaml", "repo_id": "transformers", "token_count": 220 }
FROM python:3.9-slim ENV PYTHONDONTWRITEBYTECODE=1 ARG REF=main USER root RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ pkg-config openssh-client git RUN apt-get install -y cmake ENV UV_PYTHON=/usr/local/bin/python RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools RUN pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]" RUN uv pip install --no-cache-dir "protobuf==3.20.3" RUN pip uninstall -y transformers RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
transformers/docker/tf-light.dockerfile/0
{ "file_path": "transformers/docker/tf-light.dockerfile", "repo_id": "transformers", "token_count": 277 }
# إنشاء بنية مخصصة تحدد فئة [`AutoClass`](model_doc/auto) تلقائيًا بنية النموذج وتقوم بتنزيل تكوين وأوزان مسبقين للنموذج. بشكل عام، نوصي باستخدام `AutoClass` لإنتاج كود غير مرتبط بنسخة معينة. ولكن يمكن للمستخدمين الذين يريدون مزيدًا من التحكم في معلمات النموذج المحددة إنشاء نموذج مخصص من 🤗 Transformers من مجرد بضع فئات أساسية. قد يكون هذا مفيدًا بشكل خاص لأي شخص مهتم بدراسة نموذج 🤗 Transformers أو تدريبه أو إجراء تجارب عليه. في هذا الدليل، سنغوص بشكل أعمق في إنشاء نموذج مخصص بدون `AutoClass`. تعرف على كيفية: - تحميل تكوين النموذج وتخصيصه. - إنشاء بنية نموذج. - إنشاء مجزء لغوى سريع وبطيء للنص. - إنشاء معالج صور لمهام الرؤية. - إنشاء مستخرج ميزات لمهام الصوت. - إنشاء معالج للمهام متعددة الوسائط. ## التكوين يشير مصطلح [التكوين](main_classes/configuration) إلى الخصائص المحددة للنموذج. لكل تكوين نموذج خصائصه الخاصة؛ على سبيل المثال، تشترك جميع نماذج NLP في الخصائص `hidden_size` و`num_attention_heads` و`num_hidden_layers` و`vocab_size` المشتركة. تحدد هذه الخصائص عدد رؤوس الانتباه أو الطبقات المخفية لبناء نموذج بها. اطلع على [DistilBERT](model_doc/distilbert) من خلال [`DistilBertConfig`] لمعاينة خصائصه: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` يعرض [`DistilBertConfig`] جميع الخصائص الافتراضية المستخدمة لبناء نموذج [`DistilBertModel`] أساسي. جميع الخصائص قابلة للتعديل، مما ييتيح مجالاً للتجريب. على سبيل المثال، يمكنك تعديل نموذج افتراضي لـ: - تجربة دالة تنشيط مختلفة باستخدام معامل `activation`. - استخدام معدل إسقاط أعلى الاحتمالات الانتباه مع معامل `attention_dropout`. ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, ``` يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] : ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد: ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") ``` <Tip> يمكنك أيضًا حفظ ملف التكوين كقاموس أو حتى كفرق بين خصائص التكوين المُعدّلة والخصائص التكوين الافتراضية! راجع وثائق [التكوين](main_classes/configuration) لمزيد من التفاصيل. </Tip> ## النموذج الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها. <frameworkcontent> <pt> قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") >>> model = DistilBertModel(my_config) ``` هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب. قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~PreTrainedModel.from_pretrained`]: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` عند بتحميل الأوزان المُدربة مسبقًا، يتم تحميل تكوين النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - سإعدادات النموذج الافتراضية بإعداداتك الخاصة: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config) ``` </pt> <tf> قم بتحميل خصائص التكوين المُخصصة الخاصة بك في النموذج: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب. قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config) ``` </tf> </frameworkcontent> ### رؤوس النموذج في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة). <frameworkcontent> <pt> على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة. ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` أعد استخدام هذا نقطة التحقق هذه لمهمة أخرى بسهولة، وذلك بتغيير رأس النموذج.ففي مهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`DistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية فوق مخرجات الحالات الكامنة. ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </pt> <tf> على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة. ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية. ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </tf> </frameworkcontent> ## مجزئ النصوص الفئة الأساسية الأخيرة التي تحتاجها قبل استخدام نموذج للبيانات النصية هي [مجزئ النصوص](main_classes/tokenizer) لتحويل النص الخام إلى تنسورات (tensors). هناك نوعان من المحولات الرموز التي يمكنك استخدامها مع 🤗 Transformers: - [`PreTrainedTokenizer`]: تنفيذ Python لمجزئ النصوص. - [`PreTrainedTokenizerFast`]: مجزئ النصوص من مكتبة [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) المُبنية على لغة Rust. هذا النوع من المجزئات أسرع بكثير، خاصةً عند معالجة دفعات النصوص، وذلك بفضل تصميمه بلغة Rust. كما يوفر مجزئ النصوص السريع طرقًا إضافية مثل *مخطط الإزاحة* الذي يُطابق الرموز بكلماتها أو أحرفها الأصلية. يدعم كلا النوعين من المجزئات طرقًا شائعة مثل الترميز وفك الترميز، وإضافة رموز جديدة، وإدارة الرموز الخاصة. <Tip warning={true}> لا يدعم كل نموذج مجزئ النصوص سريع. الق نظرة على هذا [جدول](index#supported-frameworks) للتحقق مما إذا كان النموذج يحتوي على دعم مجزئ النصوص سريع. </Tip> إذا دربت مجزئ النصوص خاص بك، فيمكنك إنشاء واحد من *قاموسك*:``` ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt"، do_lower_case=False، padding_side="left") ``` من المهم أن تتذكر أن قاموس مجزئ النصوص المُخصص سيكون مختلفًا عن قاموس مجزئ النصوص نموذج مُدرّب مسبقًا. يجب عليك استخدام قاموس نموذج مُدرّب مسبقًا إذا كنت تستخدم نموذجًا مُدرّبًا مسبقًا، وإلا فلن تكون المدخلات ذات معنى. قم بإنشاء مجزئ النصوص باستخدام قاموس نموذج مُدرّب مسبقًا باستخدام فئة [`DistilBertTokenizer`]: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` قم بإنشاء مجزئ نصوص سريع باستخدام فئة [`DistilBertTokenizerFast`]: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased") ``` <Tip> افتراضيًا، سيحاول [`AutoTokenizer`] تحميل مجزئ نصوص سريع. يمكنك تعطيل هذا السلوك عن طريق تعيين `use_fast=False` في `from_pretrained`. </Tip> ## معالج الصور يعالج معالج الصور بيانات الرؤية. وهو يرث من الفئة الأساسية [`~image_processing_utils.ImageProcessingMixin`]. لبناء معالج صور خاص بالنموذج المستخدم، أنشئ مثلاً مُعالج [`ViTImageProcessor`] افتراضيًا إذا كنت تستخدم [ViT](model_doc/vit) لتصنيف الصور: ```py >>> from transformers import ViTImageProcessor >>> vit_extractor = ViTImageProcessor() >>> print(vit_extractor) ViTImageProcessor { "do_normalize": true, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> إذا كنت لا تبحث عن أي تخصيص، فما عليك سوى استخدام طريقة `from_pretrained` لتحميل معلمات معالج الصور الافتراضية للنموذج. </Tip> عدل أيًا من معلمات [`ViTImageProcessor`] لإنشاء معالج الصور المخصص الخاص بك: ```py >>> from transformers import ViTImageProcessor >>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTImageProcessor { "do_normalize": false, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` ## العمود الفقري <div style="text-align: center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png"> </div> تتكون نماذج رؤية الحاسب من جزء أساسي، وجزء وسيط، وجزء معالجة نهائي. يستخرج الجزء الأساسي الميزات من صورة الإدخال، ويجمع الجزء الوسيط هذه الميزات المستخرجة ويعززها، ويُستخدم الجزء النهائي للمهمة الرئيسية (مثل اكتشاف الأجسام). ابدأ عبتهيئة الجزء الأساسي في تكوين النموذج وحدد ما إذا كنت تريد تحميل أوزان مدربة مسبقًا أو أوزانًا عشوائية. بعد ذلك، يمكنك تمرير تكوين النموذج إلى جزء المعالجة النهائي. على سبيل المثال، لتحميل [ResNet](../model_doc/resnet) backbone في نموذج [MaskFormer](../model_doc/maskformer) مع رأس تجزئة مثيل: <hfoptions id="backbone"> <hfoption id="pretrained weights"> قم بتعيين `use_pretrained_backbone=True` لتحميل الأوزان المسبقة التدريب لـ ResNet للعمود الفقري. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي ``` </hfoption> <hfoption id="random weights"> قم بتعيين `use_pretrained_backbone=False` لتهيئة جزء ResNet الأساسي بشكل عشوائي. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=False) # تكوين الجزء الأساسي والجزء الوسيط model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي ``` يمكنك أيضًا تحميل تكوين الجزء الأساسي بشكل منفصل، ثم تمريره إلى تكوين النموذج.``` ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig backbone_config = ResNetConfig() config = MaskFormerConfig(backbone_config=backbone_config) model = MaskFormerForInstanceSegmentation(config) ``` </hfoption> <hfoption id="timm backbone"> يتم تحميل نماذج [timm](https://hf.co/docs/timm/index) داخل نموذج باستخدام `use_timm_backbone=True` أو باستخدام [`TimmBackbone`] و [`TimmBackboneConfig`]. استخدم `use_timm_backbone=True` و `use_pretrained_backbone=True` لتحميل أوزان timm المُدرّبة مسبقًا للجزء الأساسي. ```python from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=True, use_timm_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي ``` قم بتعيين `use_timm_backbone=True` و `use_pretrained_backbone=False` لتحميل عمود فقري timm مبدئي عشوائي. ```python from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=False, use_timm_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي ``` يمكنك أيضًا تحميل تكوين الجزء الأساسي واستخدامه لإنشاء `TimmBackbone` أو تمريره إلى تكوين النموذج. سيتم تحميلأوزان الجزء الأساسي لـ Timm المُدرّبة مسبقًا افتراضيًا. عيّن `use_pretrained_backbone=False` لتحميل الأوزان المبدئية العشوائية. ```python from transformers import TimmBackboneConfig, TimmBackbone backbone_config = TimmBackboneConfig("resnet50", use_pretrained_backbone=False) # قم بإنشاء مثيل من العمود الفقري backbone = TimmBackbone(config=backbone_config) # قم بإنشاء نموذج باستخدام عمود فقري timm from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone_config=backbone_config) model = MaskFormerForInstanceSegmentation(config) ``` ## مستخرج الميزات يقوم مُستخرج الميزات بمعالجة المدخلات الصوتية. يرث من فئة الأساس [`~feature_extraction_utils.FeatureExtractionMixin`]، وقد يرث أيضًا من فئة [`SequenceFeatureExtractor`] لمعالجة المدخلات الصوتية. للاستخدام، قم بإنشاء مستخرج ميزات مرتبط بالنموذج الذي تستخدمه. على سبيل المثال، قم بإنشاء مستخرج ميزات Wav2Vec2 الافتراضي إذا كنت تستخدم [Wav2Vec2](model_doc/wav2vec2) لتصنيف الصوت: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` <Tip> إذا لم تكن بحاجة لأي تخصيص، فاستخدم فقط طريقة `from_pretrained` لتحميل معلمات مستخرج الميزات الافتراضية للنموذج. </Tip> قم بتعديل أي من معلمات [`Wav2Vec2FeatureExtractor`] لإنشاء مستخرج ميزات مخصص: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000، do_normalize=False) >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor"، "feature_size": 1، "padding_side": "right"، "padding_value": 0.0، "return_attention_mask": false، "sampling_rate": 8000 } ``` ## المعالج بالنسبة للنماذج التي تدعم مهام الوسائط المتعددة، توفر مكتبة 🤗 Transformers فئة معالج تجمع بفاعلية فئات المعالجة مثل مستخرج الميزات ومقسّم الرموز في كائن واحد. على سبيل المثال، دعنا نستخدم [`Wav2Vec2Processor`] لمهمة التعرف الآلي على الكلام (ASR). تقوم مهمة ASR بتحويل الصوت إلى نص، لذلك ستحتاج إلى مستخرج ميزات ومقسّم رموز. قم بإنشاء مستخرج ميزات لمعالجة المدخلات الصوتية: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` قم بإنشاء مقسّم رموز لمعالجة المدخلات النصية: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` قم بدمج مستخرج الميزات ومقسّم الرموز في [`Wav2Vec2Processor`]: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` باستخدام فئتين أساسيتين - التكوين والنموذج - بالإضافة إلى فئة معالجة مسبق (مقسّم رموز أو معالج صورة أو مستخرج ميزات أو معالج)، يمكنك إنشاء أي من النماذج التي تدعمها مكتبة 🤗 Transformers. يمكن تكوين كل من هذه الفئات الأساسية، مما يسمح لك باستخدام السمات المطلوبة. يمكنك بسهولة تهيئة نموذج للتدريب أو تعديل نموذج مدرب مسبقاً لإجراء ضبط دقيق.
transformers/docs/source/ar/create_a_model.md/0
{ "file_path": "transformers/docs/source/ar/create_a_model.md", "repo_id": "transformers", "token_count": 12069 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Wie erstellt man eine benutzerdefinierte Pipeline? In dieser Anleitung sehen wir uns an, wie Sie eine benutzerdefinierte Pipeline erstellen und sie auf dem [Hub](https://hf.co/models) freigeben oder sie der 🤗 Transformers-Bibliothek hinzufügen. Zuallererst müssen Sie entscheiden, welche Roheingaben die Pipeline verarbeiten kann. Es kann sich um Strings, rohe Bytes, Dictionaries oder was auch immer die wahrscheinlichste gewünschte Eingabe ist. Versuchen Sie, diese Eingaben so rein wie möglich in Python zu halten denn das macht die Kompatibilität einfacher (auch mit anderen Sprachen über JSON). Dies werden die Eingaben der Pipeline (`Vorverarbeitung`). Definieren Sie dann die `Outputs`. Dieselbe Richtlinie wie für die Eingänge. Je einfacher, desto besser. Dies werden die Ausgaben der Methode `Postprocess`. Beginnen Sie damit, die Basisklasse `Pipeline` mit den 4 Methoden zu erben, die für die Implementierung von `preprocess` benötigt werden, Weiterleiten", "Nachbearbeitung" und "Parameter säubern". ```python from transformers import Pipeline class MyPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] return preprocess_kwargs, {}, {} def preprocess(self, inputs, maybe_arg=2): model_input = Tensor(inputs["input_ids"]) return {"model_input": model_input} def _forward(self, model_inputs): # model_inputs == {"model_input": model_input} outputs = self.model(**model_inputs) # Maybe {"logits": Tensor(...)} return outputs def postprocess(self, model_outputs): best_class = model_outputs["logits"].softmax(-1) return best_class ``` Die Struktur dieser Aufteilung soll eine relativ nahtlose Unterstützung für CPU/GPU ermöglichen und gleichzeitig die Durchführung von Vor-/Nachbearbeitung auf der CPU in verschiedenen Threads Preprocess" nimmt die ursprünglich definierten Eingaben und wandelt sie in etwas um, das in das Modell eingespeist werden kann. Es kann mehr Informationen enthalten und ist normalerweise ein `Dict`. `_forward` ist das Implementierungsdetail und ist nicht dafür gedacht, direkt aufgerufen zu werden. Weiterleiten" ist die bevorzugte aufgerufene Methode, da sie Sicherheitsvorkehrungen enthält, die sicherstellen, dass alles auf dem erwarteten Gerät funktioniert. Wenn etwas mit einem realen Modell verknüpft ist, gehört es in die Methode `_forward`, alles andere gehört in die Methoden preprocess/postprocess. Die Methode `Postprocess` nimmt die Ausgabe von `_forward` und verwandelt sie in die endgültige Ausgabe, die zuvor festgelegt wurde. zuvor entschieden wurde. Die Methode `_sanitize_parameters` ermöglicht es dem Benutzer, beliebige Parameter zu übergeben, wann immer er möchte, sei es bei der Initialisierung Zeit `pipeline(...., maybe_arg=4)` oder zur Aufrufzeit `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`. Die Rückgabe von `_sanitize_parameters` sind die 3 Dicts von kwargs, die direkt an `preprocess` übergeben werden, `_forward` und `postprocess` übergeben werden. Füllen Sie nichts aus, wenn der Aufrufer keinen zusätzlichen Parameter angegeben hat. Das erlaubt es, die Standardargumente in der Funktionsdefinition beizubehalten, was immer "natürlicher" ist. Ein klassisches Beispiel wäre das Argument `top_k` in der Nachbearbeitung bei Klassifizierungsaufgaben. ```python >>> pipe = pipeline("my-new-task") >>> pipe("This is a test") [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05} {"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}] >>> pipe("This is a test", top_k=2) [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}] ``` In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit `_sanitize_parameters` to allow this new parameter. ```python def postprocess(self, model_outputs, top_k=5): best_class = model_outputs["logits"].softmax(-1) # Add logic to handle top_k return best_class def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] postprocess_kwargs = {} if "top_k" in kwargs: postprocess_kwargs["top_k"] = kwargs["top_k"] return preprocess_kwargs, {}, postprocess_kwargs ``` Versuchen Sie, die Eingaben/Ausgaben sehr einfach und idealerweise JSON-serialisierbar zu halten, da dies die Verwendung der Pipeline sehr einfach macht ohne dass die Benutzer neue Arten von Objekten verstehen müssen. Es ist auch relativ üblich, viele verschiedene Arten von Argumenten zu unterstützen von Argumenten zu unterstützen (Audiodateien, die Dateinamen, URLs oder reine Bytes sein können). ## Hinzufügen zur Liste der unterstützten Aufgaben Um Ihre `neue Aufgabe` in die Liste der unterstützten Aufgaben aufzunehmen, müssen Sie sie zur `PIPELINE_REGISTRY` hinzufügen: ```python from transformers.pipelines import PIPELINE_REGISTRY PIPELINE_REGISTRY.register_pipeline( "new-task", pipeline_class=MyPipeline, pt_model=AutoModelForSequenceClassification, ) ``` Wenn Sie möchten, können Sie ein Standardmodell angeben. In diesem Fall sollte es mit einer bestimmten Revision (die der Name einer Verzweigung oder ein Commit-Hash sein kann, hier haben wir `"abcdef"` genommen) sowie mit dem Typ versehen sein: ```python PIPELINE_REGISTRY.register_pipeline( "new-task", pipeline_class=MyPipeline, pt_model=AutoModelForSequenceClassification, default={"pt": ("user/awesome_model", "abcdef")}, type="text", # current support type: text, audio, image, multimodal ) ``` ## Teilen Sie Ihre Pipeline auf dem Hub Um Ihre benutzerdefinierte Pipeline auf dem Hub freizugeben, müssen Sie lediglich den benutzerdefinierten Code Ihrer `Pipeline`-Unterklasse in einer Python-Datei speichern. Nehmen wir zum Beispiel an, Sie möchten eine benutzerdefinierte Pipeline für die Klassifizierung von Satzpaaren wie folgt verwenden: ```py import numpy as np from transformers import Pipeline def softmax(outputs): maxes = np.max(outputs, axis=-1, keepdims=True) shifted_exp = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class PairClassificationPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "second_text" in kwargs: preprocess_kwargs["second_text"] = kwargs["second_text"] return preprocess_kwargs, {}, {} def preprocess(self, text, second_text=None): return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework) def _forward(self, model_inputs): return self.model(**model_inputs) def postprocess(self, model_outputs): logits = model_outputs.logits[0].numpy() probabilities = softmax(logits) best_class = np.argmax(probabilities) label = self.model.config.id2label[best_class] score = probabilities[best_class].item() logits = logits.tolist() return {"label": label, "score": score, "logits": logits} ``` Die Implementierung ist Framework-unabhängig und funktioniert für PyTorch- und TensorFlow-Modelle. Wenn wir dies in einer Datei einer Datei namens `pair_classification.py` gespeichert haben, können wir sie importieren und wie folgt registrieren: ```py from pair_classification import PairClassificationPipeline from transformers.pipelines import PIPELINE_REGISTRY from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification PIPELINE_REGISTRY.register_pipeline( "pair-classification", pipeline_class=PairClassificationPipeline, pt_model=AutoModelForSequenceClassification, tf_model=TFAutoModelForSequenceClassification, ) ``` Sobald dies geschehen ist, können wir es mit einem vortrainierten Modell verwenden. Zum Beispiel wurde `sgugger/finetuned-bert-mrpc` auf den auf den MRPC-Datensatz abgestimmt, der Satzpaare als Paraphrasen oder nicht klassifiziert. ```py from transformers import pipeline classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc") ``` Dann können wir sie auf dem Hub mit der Methode `push_to_hub` freigeben: ```py classifier.push_to_hub("test-dynamic-pipeline") ``` Dadurch wird die Datei, in der Sie `PairClassificationPipeline` definiert haben, in den Ordner `"test-dynamic-pipeline"` kopiert, und speichert das Modell und den Tokenizer der Pipeline, bevor Sie alles in das Repository verschieben `{Ihr_Benutzername}/test-dynamic-pipeline`. Danach kann jeder die Pipeline verwenden, solange er die Option `trust_remote_code=True` angeben: ```py from transformers import pipeline classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True) ``` ## Hinzufügen der Pipeline zu 🤗 Transformers Wenn Sie Ihre Pipeline zu 🤗 Transformers beitragen möchten, müssen Sie ein neues Modul im Untermodul `pipelines` hinzufügen mit dem Code Ihrer Pipeline hinzufügen. Fügen Sie es dann der Liste der in `pipelines/__init__.py` definierten Aufgaben hinzu. Dann müssen Sie noch Tests hinzufügen. Erstellen Sie eine neue Datei `tests/test_pipelines_MY_PIPELINE.py` mit Beispielen für die anderen Tests. Die Funktion `run_pipeline_test` ist sehr allgemein gehalten und läuft auf kleinen Zufallsmodellen auf jeder möglichen Architektur, wie durch `model_mapping` und `tf_model_mapping` definiert. Dies ist sehr wichtig, um die zukünftige Kompatibilität zu testen, d.h. wenn jemand ein neues Modell für `XXXForQuestionAnswering` hinzufügt, wird der Pipeline-Test versuchen, mit diesem Modell zu arbeiten. Da die Modelle zufällig sind, ist es ist es unmöglich, die tatsächlichen Werte zu überprüfen. Deshalb gibt es eine Hilfsfunktion `ANY`, die einfach versucht, die Ausgabe der Pipeline TYPE. Außerdem *müssen* Sie 2 (idealerweise 4) Tests implementieren. - `test_small_model_pt` : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben) und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_tf`. - `test_small_model_tf` : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben) und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_pt`. - `test_large_model_pt` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt. - `test_large_model_tf` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.
transformers/docs/source/de/add_new_pipeline.md/0
{ "file_path": "transformers/docs/source/de/add_new_pipeline.md", "repo_id": "transformers", "token_count": 4535 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Create a custom architecture An [`AutoClass`](model_doc/auto) automatically infers the model architecture and downloads pretrained configuration and weights. Generally, we recommend using an `AutoClass` to produce checkpoint-agnostic code. But users who want more control over specific model parameters can create a custom 🤗 Transformers model from just a few base classes. This could be particularly useful for anyone who is interested in studying, training or experimenting with a 🤗 Transformers model. In this guide, dive deeper into creating a custom model without an `AutoClass`. Learn how to: - Load and customize a model configuration. - Create a model architecture. - Create a slow and fast tokenizer for text. - Create an image processor for vision tasks. - Create a feature extractor for audio tasks. - Create a processor for multimodal tasks. ## Configuration A [configuration](main_classes/configuration) refers to a model's specific attributes. Each model configuration has different attributes; for instance, all NLP models have the `hidden_size`, `num_attention_heads`, `num_hidden_layers` and `vocab_size` attributes in common. These attributes specify the number of attention heads or hidden layers to construct a model with. Get a closer look at [DistilBERT](model_doc/distilbert) by accessing [`DistilBertConfig`] to inspect it's attributes: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` [`DistilBertConfig`] displays all the default attributes used to build a base [`DistilBertModel`]. All attributes are customizable, creating space for experimentation. For example, you can customize a default model to: - Try a different activation function with the `activation` parameter. - Use a higher dropout ratio for the attention probabilities with the `attention_dropout` parameter. ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` Pretrained model attributes can be modified in the [`~PretrainedConfig.from_pretrained`] function: ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` Once you are satisfied with your model configuration, you can save it with [`~PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory: ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` To reuse the configuration file, load it with [`~PretrainedConfig.from_pretrained`]: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") ``` <Tip> You can also save your configuration file as a dictionary or even just the difference between your custom configuration attributes and the default configuration attributes! See the [configuration](main_classes/configuration) documentation for more details. </Tip> ## Model The next step is to create a [model](main_classes/models). The model - also loosely referred to as the architecture - defines what each layer is doing and what operations are happening. Attributes like `num_hidden_layers` from the configuration are used to define the architecture. Every model shares the base class [`PreTrainedModel`] and a few common methods like resizing input embeddings and pruning self-attention heads. In addition, all models are also either a [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) or [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. This means models are compatible with each of their respective framework's usage. <frameworkcontent> <pt> Load your custom configuration attributes into the model: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") >>> model = DistilBertModel(my_config) ``` This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training. Create a pretrained model with [`~PreTrainedModel.from_pretrained`]: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config) ``` </pt> <tf> Load your custom configuration attributes into the model: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training. Create a pretrained model with [`~TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config) ``` </tf> </frameworkcontent> ### Model heads At this point, you have a base DistilBERT model which outputs the *hidden states*. The hidden states are passed as inputs to a model head to produce the final output. 🤗 Transformers provides a different model head for each task as long as a model supports the task (i.e., you can't use DistilBERT for a sequence-to-sequence task like translation). <frameworkcontent> <pt> For example, [`DistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs. ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`DistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output. ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </pt> <tf> For example, [`TFDistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs. ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`TFDistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output. ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </tf> </frameworkcontent> ## Tokenizer The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers: - [`PreTrainedTokenizer`]: a Python implementation of a tokenizer. - [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to its Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters. Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens. <Tip warning={true}> Not every model supports a fast tokenizer. Take a look at this [table](index#supported-frameworks) to check if a model has fast tokenizer support. </Tip> If you trained your own tokenizer, you can create one from your *vocabulary* file: ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") ``` It is important to remember the vocabulary from a custom tokenizer will be different from the vocabulary generated by a pretrained model's tokenizer. You need to use a pretrained model's vocabulary if you are using a pretrained model, otherwise the inputs won't make sense. Create a tokenizer with a pretrained model's vocabulary with the [`DistilBertTokenizer`] class: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` Create a fast tokenizer with the [`DistilBertTokenizerFast`] class: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased") ``` <Tip> By default, [`AutoTokenizer`] will try to load a fast tokenizer. You can disable this behavior by setting `use_fast=False` in `from_pretrained`. </Tip> ## Image processor An image processor processes vision inputs. It inherits from the base [`~image_processing_utils.ImageProcessingMixin`] class. To use, create an image processor associated with the model you're using. For example, create a default [`ViTImageProcessor`] if you are using [ViT](model_doc/vit) for image classification: ```py >>> from transformers import ViTImageProcessor >>> vit_extractor = ViTImageProcessor() >>> print(vit_extractor) ViTImageProcessor { "do_normalize": true, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default image processor parameters. </Tip> Modify any of the [`ViTImageProcessor`] parameters to create your custom image processor: ```py >>> from transformers import ViTImageProcessor >>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTImageProcessor { "do_normalize": false, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` ## Backbone <div style="text-align: center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png"> </div> Computer vision models consist of a backbone, neck, and head. The backbone extracts features from an input image, the neck combines and enhances the extracted features, and the head is used for the main task (e.g., object detection). Start by initializing a backbone in the model config and specify whether you want to load pretrained weights or load randomly initialized weights. Then you can pass the model config to the model head. For example, to load a [ResNet](../model_doc/resnet) backbone into a [MaskFormer](../model_doc/maskformer) model with an instance segmentation head: <hfoptions id="backbone"> <hfoption id="pretrained weights"> Set `use_pretrained_backbone=True` to load pretrained ResNet weights for the backbone. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=True) # backbone and neck config model = MaskFormerForInstanceSegmentation(config) # head ``` </hfoption> <hfoption id="random weights"> Set `use_pretrained_backbone=False` to randomly initialize a ResNet backbone. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=False) # backbone and neck config model = MaskFormerForInstanceSegmentation(config) # head ``` You could also load the backbone config separately and then pass it to the model config. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig backbone_config = ResNetConfig() config = MaskFormerConfig(backbone_config=backbone_config) model = MaskFormerForInstanceSegmentation(config) ``` </hfoption> </hfoptions id="timm backbone"> [timm](https://hf.co/docs/timm/index) models are loaded within a model with `use_timm_backbone=True` or with [`TimmBackbone`] and [`TimmBackboneConfig`]. Use `use_timm_backbone=True` and `use_pretrained_backbone=True` to load pretrained timm weights for the backbone. ```python from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=True, use_timm_backbone=True) # backbone and neck config model = MaskFormerForInstanceSegmentation(config) # head ``` Set `use_timm_backbone=True` and `use_pretrained_backbone=False` to load a randomly initialized timm backbone. ```python from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=False, use_timm_backbone=True) # backbone and neck config model = MaskFormerForInstanceSegmentation(config) # head ``` You could also load the backbone config and use it to create a `TimmBackbone` or pass it to the model config. Timm backbones will load pretrained weights by default. Set `use_pretrained_backbone=False` to load randomly initialized weights. ```python from transformers import TimmBackboneConfig, TimmBackbone backbone_config = TimmBackboneConfig("resnet50", use_pretrained_backbone=False) # Create a backbone class backbone = TimmBackbone(config=backbone_config) # Create a model with a timm backbone from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation config = MaskFormerConfig(backbone_config=backbone_config) model = MaskFormerForInstanceSegmentation(config) ``` ## Feature extractor A feature extractor processes audio inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`SequenceFeatureExtractor`] class for processing audio inputs. To use, create a feature extractor associated with the model you're using. For example, create a default [`Wav2Vec2FeatureExtractor`] if you are using [Wav2Vec2](model_doc/wav2vec2) for audio classification: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` <Tip> If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters. </Tip> Modify any of the [`Wav2Vec2FeatureExtractor`] parameters to create your custom feature extractor: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 8000 } ``` ## Processor For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps processing classes such as a feature extractor and a tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer. Create a feature extractor to handle the audio inputs: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` Create a tokenizer to handle the text inputs: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` Combine the feature extractor and tokenizer in [`Wav2Vec2Processor`]: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, image processor, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.
transformers/docs/source/en/create_a_model.md/0
{ "file_path": "transformers/docs/source/en/create_a_model.md", "repo_id": "transformers", "token_count": 5804 }
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BigBird ## Overview The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it has been shown that applying sparse, global, and random attention approximates full attention, while being computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context, BigBird has shown improved performance on various long document NLP tasks, such as question answering and summarization, compared to BERT or RoBERTa. The abstract from the paper is the following: *Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.* This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found [here](https://github.com/google-research/bigbird). ## Usage tips - For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird). - BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using **original_full** is advised as there is no benefit in using **block_sparse** attention. - The code currently uses window size of 3 blocks and 2 global blocks. - Sequence length must be divisible by block size. - Current implementation supports only **ITC**. - Current implementation doesn't support **num_random_blocks = 0** - BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## BigBirdConfig [[autodoc]] BigBirdConfig ## BigBirdTokenizer [[autodoc]] BigBirdTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## BigBirdTokenizerFast [[autodoc]] BigBirdTokenizerFast ## BigBird specific outputs [[autodoc]] models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput <frameworkcontent> <pt> ## BigBirdModel [[autodoc]] BigBirdModel - forward ## BigBirdForPreTraining [[autodoc]] BigBirdForPreTraining - forward ## BigBirdForCausalLM [[autodoc]] BigBirdForCausalLM - forward ## BigBirdForMaskedLM [[autodoc]] BigBirdForMaskedLM - forward ## BigBirdForSequenceClassification [[autodoc]] BigBirdForSequenceClassification - forward ## BigBirdForMultipleChoice [[autodoc]] BigBirdForMultipleChoice - forward ## BigBirdForTokenClassification [[autodoc]] BigBirdForTokenClassification - forward ## BigBirdForQuestionAnswering [[autodoc]] BigBirdForQuestionAnswering - forward </pt> <jax> ## FlaxBigBirdModel [[autodoc]] FlaxBigBirdModel - __call__ ## FlaxBigBirdForPreTraining [[autodoc]] FlaxBigBirdForPreTraining - __call__ ## FlaxBigBirdForCausalLM [[autodoc]] FlaxBigBirdForCausalLM - __call__ ## FlaxBigBirdForMaskedLM [[autodoc]] FlaxBigBirdForMaskedLM - __call__ ## FlaxBigBirdForSequenceClassification [[autodoc]] FlaxBigBirdForSequenceClassification - __call__ ## FlaxBigBirdForMultipleChoice [[autodoc]] FlaxBigBirdForMultipleChoice - __call__ ## FlaxBigBirdForTokenClassification [[autodoc]] FlaxBigBirdForTokenClassification - __call__ ## FlaxBigBirdForQuestionAnswering [[autodoc]] FlaxBigBirdForQuestionAnswering - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/big_bird.md/0
{ "file_path": "transformers/docs/source/en/model_doc/big_bird.md", "repo_id": "transformers", "token_count": 1682 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CTRL <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=ctrl"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-ctrl-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/tiny-ctrl"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview CTRL model was proposed in [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.). The abstract from the paper is the following: *Large-scale language models show promising text generation capabilities, but users cannot easily control particular aspects of the generated text. We release CTRL, a 1.63 billion-parameter conditional transformer language model, trained to condition on control codes that govern style, content, and task-specific behavior. Control codes were derived from structure that naturally co-occurs with raw text, preserving the advantages of unsupervised learning while providing more explicit control over text generation. These codes also allow CTRL to predict which parts of the training data are most likely given a sequence. This provides a potential method for analyzing large amounts of data via model-based source attribution.* This model was contributed by [keskarnitishr](https://huggingface.co/keskarnitishr). The original code can be found [here](https://github.com/salesforce/ctrl). ## Usage tips - CTRL makes use of control codes to generate text: it requires generations to be started by certain words, sentences or links to generate coherent text. Refer to the [original implementation](https://github.com/salesforce/ctrl) for more information. - CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - CTRL was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows CTRL to generate syntactically coherent text as it can be observed in the *run_generation.py* example script. - The PyTorch models can take the `past_key_values` as input, which is the previously computed key/value attention pairs. TensorFlow models accepts `past` as input. Using the `past_key_values` value prevents the model from re-computing pre-computed values in the context of text generation. See the [`forward`](model_doc/ctrl#transformers.CTRLModel.forward) method for more information on the usage of this argument. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Causal language modeling task guide](../tasks/language_modeling) ## CTRLConfig [[autodoc]] CTRLConfig ## CTRLTokenizer [[autodoc]] CTRLTokenizer - save_vocabulary <frameworkcontent> <pt> ## CTRLModel [[autodoc]] CTRLModel - forward ## CTRLLMHeadModel [[autodoc]] CTRLLMHeadModel - forward ## CTRLForSequenceClassification [[autodoc]] CTRLForSequenceClassification - forward </pt> <tf> ## TFCTRLModel [[autodoc]] TFCTRLModel - call ## TFCTRLLMHeadModel [[autodoc]] TFCTRLLMHeadModel - call ## TFCTRLForSequenceClassification [[autodoc]] TFCTRLForSequenceClassification - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/ctrl.md/0
{ "file_path": "transformers/docs/source/en/model_doc/ctrl.md", "repo_id": "transformers", "token_count": 1209 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DialoGPT ## Overview DialoGPT was proposed in [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. It's a GPT2 Model trained on 147M conversation-like exchanges extracted from Reddit. The abstract from the paper is the following: *We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.* The original code can be found [here](https://github.com/microsoft/DialoGPT). ## Usage tips - DialoGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - DialoGPT was trained with a causal language modeling (CLM) objective on conversational data and is therefore powerful at response generation in open-domain dialogue systems. - DialoGPT enables the user to create a chat bot in just 10 lines of code as shown on [DialoGPT's model card](https://huggingface.co/microsoft/DialoGPT-medium). Training: In order to train or fine-tune DialoGPT, one can use causal language modeling training. To cite the official paper: *We follow the OpenAI GPT-2 to model a multiturn dialogue session as a long text and frame the generation task as language modeling. We first concatenate all dialog turns within a dialogue session into a long text x_1,..., x_N (N is the sequence length), ended by the end-of-text token.* For more information please confer to the original paper. <Tip> DialoGPT's architecture is based on the GPT2 model, refer to [GPT2's documentation page](gpt2) for API reference and examples. </Tip>
transformers/docs/source/en/model_doc/dialogpt.md/0
{ "file_path": "transformers/docs/source/en/model_doc/dialogpt.md", "repo_id": "transformers", "token_count": 789 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ERNIE ## Overview ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks, including [ERNIE1.0](https://arxiv.org/abs/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428), [ERNIE3.0](https://arxiv.org/abs/2107.02137), [ERNIE-Gram](https://arxiv.org/abs/2010.12148), [ERNIE-health](https://arxiv.org/abs/2110.07244), etc. These models are contributed by [nghuyong](https://huggingface.co/nghuyong) and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle). ### Usage example Take `ernie-1.0-base-zh` as an example: ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh") ``` ### Model checkpoints | Model Name | Language | Description | |:-------------------:|:--------:|:-------------------------------:| | ernie-1.0-base-zh | Chinese | Layer:12, Heads:12, Hidden:768 | | ernie-2.0-base-en | English | Layer:12, Heads:12, Hidden:768 | | ernie-2.0-large-en | English | Layer:24, Heads:16, Hidden:1024 | | ernie-3.0-base-zh | Chinese | Layer:12, Heads:12, Hidden:768 | | ernie-3.0-medium-zh | Chinese | Layer:6, Heads:12, Hidden:768 | | ernie-3.0-mini-zh | Chinese | Layer:6, Heads:12, Hidden:384 | | ernie-3.0-micro-zh | Chinese | Layer:4, Heads:12, Hidden:384 | | ernie-3.0-nano-zh | Chinese | Layer:4, Heads:12, Hidden:312 | | ernie-health-zh | Chinese | Layer:12, Heads:12, Hidden:768 | | ernie-gram-zh | Chinese | Layer:12, Heads:12, Hidden:768 | You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html) and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## ErnieConfig [[autodoc]] ErnieConfig - all ## Ernie specific outputs [[autodoc]] models.ernie.modeling_ernie.ErnieForPreTrainingOutput ## ErnieModel [[autodoc]] ErnieModel - forward ## ErnieForPreTraining [[autodoc]] ErnieForPreTraining - forward ## ErnieForCausalLM [[autodoc]] ErnieForCausalLM - forward ## ErnieForMaskedLM [[autodoc]] ErnieForMaskedLM - forward ## ErnieForNextSentencePrediction [[autodoc]] ErnieForNextSentencePrediction - forward ## ErnieForSequenceClassification [[autodoc]] ErnieForSequenceClassification - forward ## ErnieForMultipleChoice [[autodoc]] ErnieForMultipleChoice - forward ## ErnieForTokenClassification [[autodoc]] ErnieForTokenClassification - forward ## ErnieForQuestionAnswering [[autodoc]] ErnieForQuestionAnswering - forward
transformers/docs/source/en/model_doc/ernie.md/0
{ "file_path": "transformers/docs/source/en/model_doc/ernie.md", "repo_id": "transformers", "token_count": 1417 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Gemma ## Overview The Gemma model was proposed in [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by Gemma Team, Google. Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b. The abstract from the paper is the following: *This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations* Tips: - The original checkpoints can be converted using the conversion script `src/transformers/models/gemma/convert_gemma_weights_to_hf.py` This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), [Sanchit Gandhi](https://huggingface.co/sanchit-gandhi), [Pedro Cuenca](https://huggingface.co/pcuenq). ## GemmaConfig [[autodoc]] GemmaConfig ## GemmaTokenizer [[autodoc]] GemmaTokenizer ## GemmaTokenizerFast [[autodoc]] GemmaTokenizerFast ## GemmaModel [[autodoc]] GemmaModel - forward ## GemmaForCausalLM [[autodoc]] GemmaForCausalLM - forward ## GemmaForSequenceClassification [[autodoc]] GemmaForSequenceClassification - forward ## GemmaForTokenClassification [[autodoc]] GemmaForTokenClassification - forward ## FlaxGemmaModel [[autodoc]] FlaxGemmaModel - __call__ ## FlaxGemmaForCausalLM [[autodoc]] FlaxGemmaForCausalLM - __call__
transformers/docs/source/en/model_doc/gemma.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gemma.md", "repo_id": "transformers", "token_count": 764 }
<!--Copyright 2025 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Granite Vision ## Overview The Granite Vision model is a variant of [LLaVA-NeXT](llava_next), leveraging a [Granite](granite) language model alongside a [SigLIP](SigLIP) visual encoder. It utilizes multiple concatenated vision hidden states as its image features, similar to [VipLlava](vipllava). It also uses a larger set of image grid pinpoints than the original LlaVa-NeXT models to support additional aspect ratios. Tips: - This model is loaded into Transformers as an instance of LlaVA-Next. The usage and tips from [LLaVA-NeXT](llava_next) apply to this model as well. - You can apply the chat template on the tokenizer / processor in the same way as well. Example chat format: ```bash "<|user|>\nWhat’s shown in this image?\n<|assistant|>\nThis image shows a red stop sign.<|end_of_text|><|user|>\nDescribe the image in more details.\n<|assistant|>\n" ``` Sample inference: ```python from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration model_path = "ibm-granite/granite-vision-3.1-2b-preview" processor = LlavaNextProcessor.from_pretrained(model_path) model = LlavaNextForConditionalGeneration.from_pretrained(model_path).to("cuda") # prepare image and text prompt, using the appropriate prompt template url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" conversation = [ { "role": "user", "content": [ {"type": "image", "url": url}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to("cuda") # autoregressively complete prompt output = model.generate(**inputs, max_new_tokens=100) print(processor.decode(output[0], skip_special_tokens=True)) ``` This model was contributed by [Alexander Brooks](https://huggingface.co/abrooks9944). ## LlavaNextConfig [[autodoc]] LlavaNextConfig ## LlavaNextImageProcessor [[autodoc]] LlavaNextImageProcessor - preprocess ## LlavaNextProcessor [[autodoc]] LlavaNextProcessor ## LlavaNextForConditionalGeneration [[autodoc]] LlavaNextForConditionalGeneration - forward
transformers/docs/source/en/model_doc/granitevision.md/0
{ "file_path": "transformers/docs/source/en/model_doc/granitevision.md", "repo_id": "transformers", "token_count": 993 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LLaVA-NeXT ## Overview The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa](llava) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning. The introduction from the blog is the following: *In October 2023, we released LLaVA-1.5 with a simple and efficient design along with great performance on a benchmark suite of 12 datasets. It has since served as the foundation of many comprehensive studies of data, model, and capabilities of large multimodal models (LMM), and has enabled various new applications. Today, we are thrilled to present LLaVA-NeXT, with improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks. Compared with LLaVA-1.5, LLaVA-NeXT has several improvements: Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution. Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture. Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning. Efficient deployment and inference with SGLang. Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_overview.png" alt="drawing" width="600"/> <small> LLaVa-NeXT incorporates a higher input resolution by encoding various patches of the input image. Taken from the <a href="https://arxiv.org/abs/2310.03744">original paper.</a> </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main). ## Usage tips - We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating. <Tip warning={true}> - Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding". </Tip> > [!NOTE] > LLaVA models after release v4.46 will raise warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you. Adding these attributes means that LLaVA will try to infer the number of image tokens required per image and expand the text with as many `<image>` placeholders as there will be tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings. The attributes can be obtained from model config, as `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`. The `num_additional_image_tokens` should be `1` if the vision backbone adds a CLS token or `0` if nothing extra is added to the vision patches. - Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. You can use the processor's `apply_chat_template` to format your prompts correctly. For that you have to construct a conversation history, passing a plain string will not format your prompt. Each message in the conversation history for chat templates is a dictionary with keys "role" and "content". The "content" should be a list of dictionaries, for "text" and "image" modalities. Below is an example of how to do that and the list of formats accepted by each checkpoint. We will use [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and a conversation history of text and image. Each content field has to be a list of dicts, as follows: ```python from transformers import LlavaNextProcessor processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") conversation = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What’s shown in this image?"}, ], }, { "role": "assistant", "content": [{"type": "text", "text": "This image shows a red stop sign."},] }, { "role": "user", "content": [ {"type": "text", "text": "Describe the image in more details."}, ], }, ] text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) # Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images print(text_prompt) >>> "[INST] <image>\nWhat's shown in this image? [/INST] This image shows a red stop sign. [INST] Describe the image in more details. [/INST]" ``` - If you want to construct a chat prompt yourself, below is a list of possible formats . [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) requires the following format: ```bash "[INST] <image>\nWhat is shown in this image? [/INST]" ``` [llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) and [llava-v1.6-vicuna-13b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) require the following format: ```bash "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:" ``` [llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) requires the following format: ```bash "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n" ``` [llama3-llava-next-8b-hf](https://huggingface.co/llava-hf/llava-next-8b-hf) requires the following format: ```bash "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat is shown in this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" ``` [llava-next-72b-hf](https://huggingface.co/llava-hf/llava-next-72b-hf) and [llava-next-110b-hf](https://huggingface.co/llava-hf/llava-next-110b-hf) require the following format: ```bash "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n" ``` ## Usage example ### Single image inference Here's how to load the model and perform inference in half-precision (`torch.float16`): ```python from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration import torch from PIL import Image import requests processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) model.to("cuda:0") # prepare image and text prompt, using the appropriate prompt template url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) conversation = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) inputs = processor(image, prompt, return_tensors="pt").to("cuda:0") # autoregressively complete prompt output = model.generate(**inputs, max_new_tokens=100) print(processor.decode(output[0], skip_special_tokens=True)) ``` ### Multi image inference LLaVa-Next can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, AutoModelForImageTextToText # Load the model in half-precision model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, device_map="auto") processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") # Get three different images url = "https://www.ilankelman.org/stopsigns/australia.jpg" image_stop = Image.open(requests.get(url, stream=True).raw) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image_cats = Image.open(requests.get(url, stream=True).raw) url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg" image_snowman = Image.open(requests.get(url, stream=True).raw) # Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not conversation_1 = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, { "role": "assistant", "content": [ {"type": "text", "text": "There is a red stop sign in the image."}, ], }, { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What about this image? How many cats do you see?"}, ], }, ] conversation_2 = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True) prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True) prompts = [prompt_1, prompt_2] # We can simply feed images in the order they have to be used in the text prompt # Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(model.device) # Generate generate_ids = model.generate(**inputs, max_new_tokens=30) processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) ``` ## Model optimization ### Quantization using Bitsandbytes The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes`, and to have access to a GPU/accelerator that is supported by the library. <Tip> bitsandbytes is being refactored to support multiple backends beyond CUDA. Currently, ROCm (AMD GPU) and Intel CPU implementations are mature, with Intel XPU in progress and Apple Silicon support expected by Q4/Q1. For installation instructions and the latest backend updates, visit [this link](https://huggingface.co/docs/bitsandbytes/main/en/installation#multi-backend). We value your feedback to help identify bugs before the full release! Check out [these docs](https://huggingface.co/docs/bitsandbytes/main/en/non_cuda_backends) for more details and feedback links. </Tip> Simply change the snippet above with: ```python from transformers import AutoModelForImageTextToText, BitsAndBytesConfig # specify how to quantize the model quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto") ``` ### Use Flash-Attention 2 to further speed-up generation First make sure to install flash-attn. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: ```python from transformers import AutoModelForImageTextToText model = AutoModelForImageTextToText.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_flash_attention_2=True ).to(0) ``` ## LlavaNextConfig [[autodoc]] LlavaNextConfig ## LlavaNextImageProcessor [[autodoc]] LlavaNextImageProcessor - preprocess ## LlavaNextImageProcessorFast [[autodoc]] LlavaNextImageProcessorFast - preprocess ## LlavaNextProcessor [[autodoc]] LlavaNextProcessor ## LlavaNextForConditionalGeneration [[autodoc]] LlavaNextForConditionalGeneration - forward
transformers/docs/source/en/model_doc/llava_next.md/0
{ "file_path": "transformers/docs/source/en/model_doc/llava_next.md", "repo_id": "transformers", "token_count": 4759 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MBart and MBart-50 <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=mbart"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-mbart-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/mbart-large-50-one-to-many-mmt"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview of MBart The MBart model was presented in [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. This model was contributed by [valhalla](https://huggingface.co/valhalla). The Authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/mbart) ### Training of MBart MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the model is multilingual it expects the sequences in a different format. A special language id token is added in both the source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The target text format is `[tgt_lang_code] X [eos]`. `bos` is never used. The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text` keyword, and target text format passed with the `text_label` keyword argument. - Supervised training ```python >>> from transformers import MBartForConditionalGeneration, MBartTokenizer >>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO") >>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") >>> # forward pass >>> model(**inputs) ``` - Generation While generating the target text set the `decoder_start_token_id` to the target language id. The following example shows how to translate English to Romanian using the *facebook/mbart-large-en-ro* model. ```python >>> from transformers import MBartForConditionalGeneration, MBartTokenizer >>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX") >>> article = "UN Chief Says There Is No Military Solution in Syria" >>> inputs = tokenizer(article, return_tensors="pt") >>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"]) >>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] "Şeful ONU declară că nu există o soluţie militară în Siria" ``` ## Overview of MBart-50 MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extending its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50 languages. According to the abstract *Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while improving 9.3 BLEU on average over bilingual baselines from scratch.* ### Training of MBart-50 The text format for MBart-50 is slightly different from mBART. For MBart-50 the language id token is used as a prefix for both source and target text i.e the text format is `[lang_code] X [eos]`, where `lang_code` is source language id for source text and target language id for target text, with `X` being the source or target text respectively. MBart-50 has its own tokenizer [`MBart50Tokenizer`]. - Supervised training ```python from transformers import MBartForConditionalGeneration, MBart50TokenizerFast model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") src_text = " UN Chief Says There Is No Military Solution in Syria" tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") model(**model_inputs) # forward pass ``` - Generation To generate using the mBART-50 multilingual translation models, `eos_token_id` is used as the `decoder_start_token_id` and the target language id is forced as the first generated token. To force the target language id as the first generated token, pass the *forced_bos_token_id* parameter to the *generate* method. The following example shows how to translate between Hindi to French and Arabic to English using the *facebook/mbart-50-large-many-to-many* checkpoint. ```python from transformers import MBartForConditionalGeneration, MBart50TokenizerFast article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है" article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا." model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") # translate Hindi to French tokenizer.src_lang = "hi_IN" encoded_hi = tokenizer(article_hi, return_tensors="pt") generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"]) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria." # translate Arabic to English tokenizer.src_lang = "ar_AR" encoded_ar = tokenizer(article_ar, return_tensors="pt") generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "The Secretary-General of the United Nations says there is no military solution in Syria." ``` ## Documentation resources - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## MBartConfig [[autodoc]] MBartConfig ## MBartTokenizer [[autodoc]] MBartTokenizer - build_inputs_with_special_tokens ## MBartTokenizerFast [[autodoc]] MBartTokenizerFast ## MBart50Tokenizer [[autodoc]] MBart50Tokenizer ## MBart50TokenizerFast [[autodoc]] MBart50TokenizerFast <frameworkcontent> <pt> ## MBartModel [[autodoc]] MBartModel ## MBartForConditionalGeneration [[autodoc]] MBartForConditionalGeneration ## MBartForQuestionAnswering [[autodoc]] MBartForQuestionAnswering ## MBartForSequenceClassification [[autodoc]] MBartForSequenceClassification ## MBartForCausalLM [[autodoc]] MBartForCausalLM - forward </pt> <tf> ## TFMBartModel [[autodoc]] TFMBartModel - call ## TFMBartForConditionalGeneration [[autodoc]] TFMBartForConditionalGeneration - call </tf> <jax> ## FlaxMBartModel [[autodoc]] FlaxMBartModel - __call__ - encode - decode ## FlaxMBartForConditionalGeneration [[autodoc]] FlaxMBartForConditionalGeneration - __call__ - encode - decode ## FlaxMBartForSequenceClassification [[autodoc]] FlaxMBartForSequenceClassification - __call__ - encode - decode ## FlaxMBartForQuestionAnswering [[autodoc]] FlaxMBartForQuestionAnswering - __call__ - encode - decode </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/mbart.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mbart.md", "repo_id": "transformers", "token_count": 3129 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # NLLB ## Updated tokenizer behavior **DISCLAIMER:** The default behaviour for the tokenizer was fixed and thus changed in April 2023. The previous version adds `[self.eos_token_id, self.cur_lang_code]` at the end of the token sequence for both target and source tokenization. This is wrong as the NLLB paper mentions (page 48, 6.1.1. Model Architecture) : *Note that we prefix the source sequence with the source language, as opposed to the target language as previously done in several works (Arivazhagan et al., 2019; Johnson et al., 2017). This is primarily because we prioritize optimizing zero-shot performance of our model on any pair of 200 languages at a minor cost to supervised performance.* Previous behaviour: ```python >>> from transformers import NllbTokenizer >>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") >>> tokenizer("How was your day?").input_ids [13374, 1398, 4260, 4039, 248130, 2, 256047] >>> # 2: '</s>' >>> # 256047 : 'eng_Latn' ``` New behaviour ```python >>> from transformers import NllbTokenizer >>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") >>> tokenizer("How was your day?").input_ids [256047, 13374, 1398, 4260, 4039, 248130, 2] ``` Enabling the old behaviour can be done as follows: ```python >>> from transformers import NllbTokenizer >>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", legacy_behaviour=True) ``` For more details, feel free to check the linked [PR](https://github.com/huggingface/transformers/pull/22313) and [Issue](https://github.com/huggingface/transformers/issues/19943). ## Overview The NLLB model was presented in [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. The abstract of the paper is the following: *Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key focus of artificial intelligence research today. However, such efforts have coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource languages. What does it take to break the 200 language barrier while ensuring safe, high quality results, all while keeping ethical considerations in mind? In No Language Left Behind, we took on this challenge by first contextualizing the need for low-resource language translation support through exploratory interviews with native speakers. Then, we created datasets and models aimed at narrowing the performance gap between low and high-resource languages. More specifically, we developed a conditional compute model based on Sparsely Gated Mixture of Experts that is trained on data obtained with novel and effective data mining techniques tailored for low-resource languages. We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks. Critically, we evaluated the performance of over 40,000 different translation directions using a human-translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark covering all languages in Flores-200 to assess translation safety. Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a universal translation system.* This implementation contains the dense models available on release. **The sparse model NLLB-MoE (Mixture of Expert) is now available! More details [here](nllb-moe)** This model was contributed by [Lysandre](https://huggingface.co/lysandre). The authors' code can be found [here](https://github.com/facebookresearch/fairseq/tree/nllb). ## Generating with NLLB While generating the target text set the `forced_bos_token_id` to the target language id. The following example shows how to translate English to French using the *facebook/nllb-200-distilled-600M* model. Note that we're using the BCP-47 code for French `fra_Latn`. See [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200) for the list of all BCP-47 in the Flores 200 dataset. ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") >>> article = "UN Chief says there is no military solution in Syria" >>> inputs = tokenizer(article, return_tensors="pt") >>> translated_tokens = model.generate( ... **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("fra_Latn"), max_length=30 ... ) >>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie ``` ### Generating from any other language than English English (`eng_Latn`) is set as the default language from which to translate. In order to specify that you'd like to translate from a different language, you should specify the BCP-47 code in the `src_lang` keyword argument of the tokenizer initialization. See example below for a translation from romanian to german: ```py >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained( ... "facebook/nllb-200-distilled-600M", token=True, src_lang="ron_Latn" ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M", token=True) >>> article = "Şeful ONU spune că nu există o soluţie militară în Siria" >>> inputs = tokenizer(article, return_tensors="pt") >>> translated_tokens = model.generate( ... **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("deu_Latn"), max_length=30 ... ) >>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] UN-Chef sagt, es gibt keine militärische Lösung in Syrien ``` ## Resources - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## NllbTokenizer [[autodoc]] NllbTokenizer - build_inputs_with_special_tokens ## NllbTokenizerFast [[autodoc]] NllbTokenizerFast ## Using Flash Attention 2 Flash Attention 2 is a faster, optimized version of the attention scores computation which relies on `cuda` kernels. ### Installation First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` ### Usage To load a model using Flash Attention 2, we can pass the argument `attn_implementation="flash_attention_2"` to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). You can use either `torch.float16` or `torch.bfloat16` precision. ```python >>> import torch >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to("cuda").eval() >>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") >>> article = "Şeful ONU spune că nu există o soluţie militară în Siria" >>> inputs = tokenizer(article, return_tensors="pt").to("cuda") >>> translated_tokens = model.generate( ... **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("deu_Latn"), max_length=30 ... ) >>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] "UN-Chef sagt, es gibt keine militärische Lösung in Syrien" ``` ### Expected speedups Below is an expected speedup diagram that compares pure inference time between the native implementation and the Flash Attention 2. <div style="text-align: center"> <img src="https://huggingface.co/datasets/visheratin/documentation-images/resolve/main/nllb-speedup.webp"> </div> ## Using Scaled Dot Product Attention (SDPA) PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the [official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention) page for more information. SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used. ```python from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M", torch_dtype=torch.float16, attn_implementation="sdpa") ... ``` For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
transformers/docs/source/en/model_doc/nllb.md/0
{ "file_path": "transformers/docs/source/en/model_doc/nllb.md", "repo_id": "transformers", "token_count": 3165 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Pegasus <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=pegasus"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-pegasus-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/pegasus_paraphrase"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Pegasus model was proposed in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019. According to the abstract, - Pegasus' pretraining task is intentionally similar to summarization: important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. - Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and human eval. This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The Authors' code can be found [here](https://github.com/google-research/pegasus). ## Usage tips - Sequence-to-sequence model with the same encoder-decoder model architecture as BART. Pegasus is pre-trained jointly on two self-supervised objective functions: Masked Language Modeling (MLM) and a novel summarization specific pretraining objective, called Gap Sentence Generation (GSG). * MLM: encoder input tokens are randomly replaced by a mask tokens and have to be predicted by the encoder (like in BERT) * GSG: whole encoder input sentences are replaced by a second mask token and fed to the decoder, but which has a causal mask to hide the future words like a regular auto-regressive transformer decoder. - FP16 is not supported (help/ideas on this appreciated!). - The adafactor optimizer is recommended for pegasus fine-tuning. ## Checkpoints All the [checkpoints](https://huggingface.co/models?search=pegasus) are fine-tuned for summarization, besides *pegasus-large*, whence the other checkpoints are fine-tuned: - Each checkpoint is 2.2 GB on disk and 568M parameters. - FP16 is not supported (help/ideas on this appreciated!). - Summarizing xsum in fp32 takes about 400ms/sample, with default parameters on a v100 GPU. - Full replication results and correctly pre-processed data can be found in this [Issue](https://github.com/huggingface/transformers/issues/6844#issue-689259666). - [Distilled checkpoints](https://huggingface.co/models?search=distill-pegasus) are described in this [paper](https://arxiv.org/abs/2010.13002). ## Implementation Notes - All models are transformer encoder-decoders with 16 layers in each component. - The implementation is completely inherited from [`BartForConditionalGeneration`] - Some key configuration differences: - static, sinusoidal position embeddings - the model starts generating with pad_token_id (which has 0 token_embedding) as the prefix. - more beams are used (`num_beams=8`) - All pretrained pegasus checkpoints are the same besides three attributes: `tokenizer.model_max_length` (maximum input size), `max_length` (the maximum number of tokens to generate) and `length_penalty`. - The code to convert checkpoints trained in the author's [repo](https://github.com/google-research/pegasus) can be found in `convert_pegasus_tf_to_pytorch.py`. ## Usage Example ```python >>> from transformers import PegasusForConditionalGeneration, PegasusTokenizer >>> import torch >>> src_text = [ ... """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""" ... ] ... model_name = "google/pegasus-xsum" ... device = "cuda" if torch.cuda.is_available() else "cpu" ... tokenizer = PegasusTokenizer.from_pretrained(model_name) ... model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device) ... batch = tokenizer(src_text, truncation=True, padding="longest", return_tensors="pt").to(device) ... translated = model.generate(**batch) ... tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) ... assert ( ... tgt_text[0] ... == "California's largest electricity provider has turned off power to hundreds of thousands of customers." ... ) ``` ## Resources - [Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/seq2seq-distillation/finetune_pegasus_xsum.sh) to fine-tune pegasus on the XSUM dataset. Data download instructions at [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md). - [Causal language modeling task guide](../tasks/language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## PegasusConfig [[autodoc]] PegasusConfig ## PegasusTokenizer warning: `add_tokens` does not work at the moment. [[autodoc]] PegasusTokenizer ## PegasusTokenizerFast [[autodoc]] PegasusTokenizerFast <frameworkcontent> <pt> ## PegasusModel [[autodoc]] PegasusModel - forward ## PegasusForConditionalGeneration [[autodoc]] PegasusForConditionalGeneration - forward ## PegasusForCausalLM [[autodoc]] PegasusForCausalLM - forward </pt> <tf> ## TFPegasusModel [[autodoc]] TFPegasusModel - call ## TFPegasusForConditionalGeneration [[autodoc]] TFPegasusForConditionalGeneration - call </tf> <jax> ## FlaxPegasusModel [[autodoc]] FlaxPegasusModel - __call__ - encode - decode ## FlaxPegasusForConditionalGeneration [[autodoc]] FlaxPegasusForConditionalGeneration - __call__ - encode - decode </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/pegasus.md/0
{ "file_path": "transformers/docs/source/en/model_doc/pegasus.md", "repo_id": "transformers", "token_count": 1966 }
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # QDQBERT <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: `pip install -U transformers==4.40.2`. </Tip> ## Overview The QDQBERT model can be referenced in [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. The abstract from the paper is the following: *Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of quantization parameters and evaluate their choices on a wide range of neural network models for different application domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are more difficult to quantize, such as MobileNets and BERT-large.* This model was contributed by [shangz](https://huggingface.co/shangz). ## Usage tips - QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to (i) linear layer inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model. - QDQBERT requires the dependency of [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). To install `pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com` - QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example *google-bert/bert-base-uncased*), and perform Quantization Aware Training/Post Training Quantization. - A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for SQUAD task can be found at [transformers/examples/research_projects/quantization-qdqbert/](examples/research_projects/quantization-qdqbert/). ### Set default quantizers QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to BERT by `TensorQuantizer` in [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). `TensorQuantizer` is the module for quantizing tensors, with `QuantDescriptor` defining how the tensor should be quantized. Refer to [Pytorch Quantization Toolkit userguide](https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html) for more details. Before creating QDQBERT model, one has to set the default `QuantDescriptor` defining default tensor quantizers. Example: ```python >>> import pytorch_quantization.nn as quant_nn >>> from pytorch_quantization.tensor_quant import QuantDescriptor >>> # The default tensor quantizer is set to use Max calibration method >>> input_desc = QuantDescriptor(num_bits=8, calib_method="max") >>> # The default tensor quantizer is set to be per-channel quantization for weights >>> weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) >>> quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) >>> quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) ``` ### Calibration Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model: ```python >>> # Find the TensorQuantizer and enable calibration >>> for name, module in model.named_modules(): ... if name.endswith("_input_quantizer"): ... module.enable_calib() ... module.disable_quant() # Use full precision data to calibrate >>> # Feeding data samples >>> model(x) >>> # ... >>> # Finalize calibration >>> for name, module in model.named_modules(): ... if name.endswith("_input_quantizer"): ... module.load_calib_amax() ... module.enable_quant() >>> # If running on GPU, it needs to call .cuda() again because new tensors will be created by calibration process >>> model.cuda() >>> # Keep running the quantized model >>> # ... ``` ### Export to ONNX The goal of exporting to ONNX is to deploy inference by [TensorRT](https://developer.nvidia.com/tensorrt). Fake quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting static member of TensorQuantizer to use Pytorch’s own fake quantization functions, fake quantized model can be exported to ONNX, follow the instructions in [torch.onnx](https://pytorch.org/docs/stable/onnx.html). Example: ```python >>> from pytorch_quantization.nn import TensorQuantizer >>> TensorQuantizer.use_fb_fake_quant = True >>> # Load the calibrated model >>> ... >>> # ONNX export >>> torch.onnx.export(...) ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## QDQBertConfig [[autodoc]] QDQBertConfig ## QDQBertModel [[autodoc]] QDQBertModel - forward ## QDQBertLMHeadModel [[autodoc]] QDQBertLMHeadModel - forward ## QDQBertForMaskedLM [[autodoc]] QDQBertForMaskedLM - forward ## QDQBertForSequenceClassification [[autodoc]] QDQBertForSequenceClassification - forward ## QDQBertForNextSentencePrediction [[autodoc]] QDQBertForNextSentencePrediction - forward ## QDQBertForMultipleChoice [[autodoc]] QDQBertForMultipleChoice - forward ## QDQBertForTokenClassification [[autodoc]] QDQBertForTokenClassification - forward ## QDQBertForQuestionAnswering [[autodoc]] QDQBertForQuestionAnswering - forward
transformers/docs/source/en/model_doc/qdqbert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/qdqbert.md", "repo_id": "transformers", "token_count": 2073 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RoCBert ## Overview The RoCBert model was proposed in [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. It's a pretrained Chinese language model that is robust under various forms of adversarial attacks. The abstract from the paper is the following: *Large-scale pretrained language models have achieved SOTA results on NLP tasks. However, they have been shown vulnerable to adversarial attacks especially for logographic languages like Chinese. In this work, we propose ROCBERT: a pretrained Chinese Bert that is robust to various forms of adversarial attacks like word perturbation, synonyms, typos, etc. It is pretrained with the contrastive learning objective which maximizes the label consistency under different synthesized adversarial examples. The model takes as input multimodal information including the semantic, phonetic and visual features. We show all these features are important to the model robustness since the attack can be performed in all the three forms. Across 5 Chinese NLU tasks, ROCBERT outperforms strong baselines under three blackbox adversarial algorithms without sacrificing the performance on clean testset. It also performs the best in the toxic content detection task under human-made attacks.* This model was contributed by [weiweishi](https://huggingface.co/weiweishi). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## RoCBertConfig [[autodoc]] RoCBertConfig - all ## RoCBertTokenizer [[autodoc]] RoCBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## RoCBertModel [[autodoc]] RoCBertModel - forward ## RoCBertForPreTraining [[autodoc]] RoCBertForPreTraining - forward ## RoCBertForCausalLM [[autodoc]] RoCBertForCausalLM - forward ## RoCBertForMaskedLM [[autodoc]] RoCBertForMaskedLM - forward ## RoCBertForSequenceClassification [[autodoc]] transformers.RoCBertForSequenceClassification - forward ## RoCBertForMultipleChoice [[autodoc]] transformers.RoCBertForMultipleChoice - forward ## RoCBertForTokenClassification [[autodoc]] transformers.RoCBertForTokenClassification - forward ## RoCBertForQuestionAnswering [[autodoc]] RoCBertForQuestionAnswering - forward
transformers/docs/source/en/model_doc/roc_bert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/roc_bert.md", "repo_id": "transformers", "token_count": 999 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TAPEX <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: `pip install -U transformers==4.30.0`. </Tip> ## Overview The TAPEX model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. TAPEX pre-trains a BART model to solve synthetic SQL queries, after which it can be fine-tuned to answer natural language questions related to tabular data, as well as performing table fact checking. TAPEX has been fine-tuned on several datasets: - [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253) (Sequential Question Answering by Microsoft) - [WTQ](https://github.com/ppasupat/WikiTableQuestions) (Wiki Table Questions by Stanford University) - [WikiSQL](https://github.com/salesforce/WikiSQL) (by Salesforce) - [TabFact](https://tabfact.github.io/) (by USCB NLP Lab). The abstract from the paper is the following: *Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes improvements on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs and to achieve new state-of-the-art results on various downstream tasks.* ## Usage tips - TAPEX is a generative (seq2seq) model. One can directly plug in the weights of TAPEX into a BART model. - TAPEX has checkpoints on the hub that are either pre-trained only, or fine-tuned on WTQ, SQA, WikiSQL and TabFact. - Sentences + tables are presented to the model as `sentence + " " + linearized table`. The linearized table has the following format: `col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...`. - TAPEX has its own tokenizer, that allows to prepare all data for the model easily. One can pass Pandas DataFrames and strings to the tokenizer, and it will automatically create the `input_ids` and `attention_mask` (as shown in the usage examples below). ### Usage: inference Below, we illustrate how to use TAPEX for table question answering. As one can see, one can directly plug in the weights of TAPEX into a BART model. We use the [Auto API](auto), which will automatically instantiate the appropriate tokenizer ([`TapexTokenizer`]) and model ([`BartForConditionalGeneration`]) for us, based on the configuration file of the checkpoint on the hub. ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") >>> model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/tapex-large-finetuned-wtq") >>> # prepare table + question >>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} >>> table = pd.DataFrame.from_dict(data) >>> question = "how many movies does Leonardo Di Caprio have?" >>> encoding = tokenizer(table, question, return_tensors="pt") >>> # let the model generate an answer autoregressively >>> outputs = model.generate(**encoding) >>> # decode back to text >>> predicted_answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] >>> print(predicted_answer) 53 ``` Note that [`TapexTokenizer`] also supports batched inference. Hence, one can provide a batch of different tables/questions, or a batch of a single table and multiple questions, or a batch of a single query and multiple tables. Let's illustrate this: ```python >>> # prepare table + question >>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} >>> table = pd.DataFrame.from_dict(data) >>> questions = [ ... "how many movies does Leonardo Di Caprio have?", ... "which actor has 69 movies?", ... "what's the first name of the actor who has 87 movies?", ... ] >>> encoding = tokenizer(table, questions, padding=True, return_tensors="pt") >>> # let the model generate an answer autoregressively >>> outputs = model.generate(**encoding) >>> # decode back to text >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) [' 53', ' george clooney', ' brad pitt'] ``` In case one wants to do table verification (i.e. the task of determining whether a given sentence is supported or refuted by the contents of a table), one can instantiate a [`BartForSequenceClassification`] model. TAPEX has checkpoints on the hub fine-tuned on TabFact, an important benchmark for table fact checking (it achieves 84% accuracy). The code example below again leverages the [Auto API](auto). ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact") >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact") >>> # prepare table + sentence >>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} >>> table = pd.DataFrame.from_dict(data) >>> sentence = "George Clooney has 30 movies" >>> encoding = tokenizer(table, sentence, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> # print prediction >>> predicted_class_idx = outputs.logits[0].argmax(dim=0).item() >>> print(model.config.id2label[predicted_class_idx]) Refused ``` <Tip> TAPEX architecture is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on configuration classes and their parameters. TAPEX-specific tokenizer is documented below. </Tip> ## TapexTokenizer [[autodoc]] TapexTokenizer - __call__ - save_vocabulary
transformers/docs/source/en/model_doc/tapex.md/0
{ "file_path": "transformers/docs/source/en/model_doc/tapex.md", "repo_id": "transformers", "token_count": 2167 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # UPerNet ## Overview The UPerNet model was proposed in [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. UPerNet is a general framework to effectively segment a wide range of concepts from images, leveraging any vision backbone like [ConvNeXt](convnext) or [Swin](swin). The abstract from the paper is the following: *Humans recognize the visual world at multiple levels: we effortlessly categorize scenes and detect objects inside, while also identifying the textures and surfaces of the objects along with their different compositional parts. In this paper, we study a new task called Unified Perceptual Parsing, which requires the machine vision systems to recognize as many visual concepts as possible from a given image. A multi-task framework called UPerNet and a training strategy are developed to learn from heterogeneous image annotations. We benchmark our framework on Unified Perceptual Parsing and show that it is able to effectively segment a wide range of concepts from images. The trained networks are further applied to discover visual knowledge in natural scenes.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/upernet_architecture.jpg" alt="drawing" width="600"/> <small> UPerNet framework. Taken from the <a href="https://arxiv.org/abs/1807.10221">original paper</a>. </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code is based on OpenMMLab's mmsegmentation [here](https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/uper_head.py). ## Usage examples UPerNet is a general framework for semantic segmentation. It can be used with any vision backbone, like so: ```py from transformers import SwinConfig, UperNetConfig, UperNetForSemanticSegmentation backbone_config = SwinConfig(out_features=["stage1", "stage2", "stage3", "stage4"]) config = UperNetConfig(backbone_config=backbone_config) model = UperNetForSemanticSegmentation(config) ``` To use another vision backbone, like [ConvNeXt](convnext), simply instantiate the model with the appropriate backbone: ```py from transformers import ConvNextConfig, UperNetConfig, UperNetForSemanticSegmentation backbone_config = ConvNextConfig(out_features=["stage1", "stage2", "stage3", "stage4"]) config = UperNetConfig(backbone_config=backbone_config) model = UperNetForSemanticSegmentation(config) ``` Note that this will randomly initialize all the weights of the model. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with UPerNet. - Demo notebooks for UPerNet can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/UPerNet). - [`UperNetForSemanticSegmentation`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/semantic-segmentation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb). - See also: [Semantic segmentation task guide](../tasks/semantic_segmentation) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## UperNetConfig [[autodoc]] UperNetConfig ## UperNetForSemanticSegmentation [[autodoc]] UperNetForSemanticSegmentation - forward
transformers/docs/source/en/model_doc/upernet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/upernet.md", "repo_id": "transformers", "token_count": 1188 }
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLS-R ## Overview The XLS-R model was proposed in [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. The abstract from the paper is the following: *This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a million hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 14-34% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world.* Relevant checkpoints can be found under https://huggingface.co/models?other=xls_r. The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/fairseq/models/wav2vec). ## Usage tips - XLS-R is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. - XLS-R model was trained using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. <Tip> XLS-R's architecture is based on the Wav2Vec2 model, refer to [Wav2Vec2's documentation page](wav2vec2) for API reference. </Tip>
transformers/docs/source/en/model_doc/xls_r.md/0
{ "file_path": "transformers/docs/source/en/model_doc/xls_r.md", "repo_id": "transformers", "token_count": 782 }
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Custom hardware for training The hardware you use to run model training and inference can have a big effect on performance. For a deep dive into GPUs make sure to check out Tim Dettmer's excellent [blog post](https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/). Let's have a look at some practical advice for GPU setups. ## GPU When you train bigger models you have essentially three options: - bigger GPUs - more GPUs - more CPU and NVMe (offloaded to by [DeepSpeed-Infinity](main_classes/deepspeed#nvme-support)) Let's start at the case where you have a single GPU. ### Power and Cooling If you bought an expensive high end GPU make sure you give it the correct power and sufficient cooling. **Power**: Some high end consumer GPU cards have 2 and sometimes 3 PCI-E 8-Pin power sockets. Make sure you have as many independent 12V PCI-E 8-Pin cables plugged into the card as there are sockets. Do not use the 2 splits at one end of the same cable (also known as pigtail cable). That is if you have 2 sockets on the GPU, you want 2 PCI-E 8-Pin cables going from your PSU to the card and not one that has 2 PCI-E 8-Pin connectors at the end! You won't get the full performance out of your card otherwise. Each PCI-E 8-Pin power cable needs to be plugged into a 12V rail on the PSU side and can supply up to 150W of power. Some other cards may use a PCI-E 12-Pin connectors, and these can deliver up to 500-600W of power. Low end cards may use 6-Pin connectors, which supply up to 75W of power. Additionally you want the high-end PSU that has stable voltage. Some lower quality ones may not give the card the stable voltage it needs to function at its peak. And of course the PSU needs to have enough unused Watts to power the card. **Cooling**: When a GPU gets overheated it will start throttling down and will not deliver full performance and it can even shutdown if it gets too hot. It's hard to tell the exact best temperature to strive for when a GPU is heavily loaded, but probably anything under +80C is good, but lower is better - perhaps 70-75C is an excellent range to be in. The throttling down is likely to start at around 84-90C. But other than throttling performance a prolonged very high temperature is likely to reduce the lifespan of a GPU. Next let's have a look at one of the most important aspects when having multiple GPUs: connectivity. ### Multi-GPU Connectivity If you use multiple GPUs the way cards are inter-connected can have a huge impact on the total training time. If the GPUs are on the same physical node, you can run: ```bash nvidia-smi topo -m ``` and it will tell you how the GPUs are inter-connected. On a machine with dual-GPU and which are connected with NVLink, you will most likely see something like: ``` GPU0 GPU1 CPU Affinity NUMA Affinity GPU0 X NV2 0-23 N/A GPU1 NV2 X 0-23 N/A ``` on a different machine w/o NVLink we may see: ``` GPU0 GPU1 CPU Affinity NUMA Affinity GPU0 X PHB 0-11 N/A GPU1 PHB X 0-11 N/A ``` The report includes this legend: ``` X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks ``` So the first report `NV2` tells us the GPUs are interconnected with 2 NVLinks, and the second report `PHB` we have a typical consumer-level PCIe+Bridge setup. Check what type of connectivity you have on your setup. Some of these will make the communication between cards faster (e.g. NVLink), others slower (e.g. PHB). Depending on the type of scalability solution used, the connectivity speed could have a major or a minor impact. If the GPUs need to sync rarely, as in DDP, the impact of a slower connection will be less significant. If the GPUs need to send messages to each other often, as in ZeRO-DP, then faster connectivity becomes super important to achieve faster training. #### NVlink [NVLink](https://en.wikipedia.org/wiki/NVLink) is a wire-based serial multi-lane near-range communications link developed by Nvidia. Each new generation provides a faster bandwidth, e.g. here is a quote from [Nvidia Ampere GA102 GPU Architecture](https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf): > Third-Generation NVLink® > GA102 GPUs utilize NVIDIA’s third-generation NVLink interface, which includes four x4 links, > with each link providing 14.0625 GB/sec bandwidth in each direction between two GPUs. Four > links provide 56.25 GB/sec bandwidth in each direction, and 112.5 GB/sec total bandwidth > between two GPUs. Two RTX 3090 GPUs can be connected together for SLI using NVLink. > (Note that 3-Way and 4-Way SLI configurations are not supported.) So the higher `X` you get in the report of `NVX` in the output of `nvidia-smi topo -m` the better. The generation will depend on your GPU architecture. Let's compare the execution of an `openai-community/gpt2` language model training over a small sample of wikitext. The results are: | NVlink | Time | | ----- | ---: | | Y | 101s | | N | 131s | You can see that NVLink completes the training ~23% faster. In the second benchmark we use `NCCL_P2P_DISABLE=1` to tell the GPUs not to use NVLink. Here is the full benchmark code and outputs: ```bash # DDP w/ NVLink rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 torchrun \ --nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path openai-community/gpt2 \ --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train \ --output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200 {'train_runtime': 101.9003, 'train_samples_per_second': 1.963, 'epoch': 0.69} # DDP w/o NVLink rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 NCCL_P2P_DISABLE=1 torchrun \ --nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path openai-community/gpt2 \ --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train --output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200 {'train_runtime': 131.4367, 'train_samples_per_second': 1.522, 'epoch': 0.69} ``` Hardware: 2x TITAN RTX 24GB each + NVlink with 2 NVLinks (`NV2` in `nvidia-smi topo -m`) Software: `pytorch-1.8-to-be` + `cuda-11.0` / `transformers==4.3.0.dev0`
transformers/docs/source/en/perf_hardware.md/0
{ "file_path": "transformers/docs/source/en/perf_hardware.md", "repo_id": "transformers", "token_count": 2319 }
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Checks on a Pull Request When you open a pull request on 🤗 Transformers, a fair number of checks will be run to make sure the patch you are adding is not breaking anything existing. Those checks are of four types: - regular tests - documentation build - code and documentation style - general repository consistency In this document, we will take a stab at explaining what those various checks are and the reason behind them, as well as how to debug them locally if one of them fails on your PR. Note that, ideally, they require you to have a dev install: ```bash pip install transformers[dev] ``` or for an editable install: ```bash pip install -e .[dev] ``` inside the Transformers repo. Since the number of optional dependencies of Transformers has grown a lot, it's possible you don't manage to get all of them. If the dev install fails, make sure to install the Deep Learning framework you are working with (PyTorch, TensorFlow and/or Flax) then do ```bash pip install transformers[quality] ``` or for an editable install: ```bash pip install -e .[quality] ``` ## Tests All the jobs that begin with `ci/circleci: run_tests_` run parts of the Transformers testing suite. Each of those jobs focuses on a part of the library in a certain environment: for instance `ci/circleci: run_tests_pipelines_tf` runs the pipelines test in an environment where TensorFlow only is installed. Note that to avoid running tests when there is no real change in the modules they are testing, only part of the test suite is run each time: a utility is run to determine the differences in the library between before and after the PR (what GitHub shows you in the "Files changes" tab) and picks the tests impacted by that diff. That utility can be run locally with: ```bash python utils/tests_fetcher.py ``` from the root of the Transformers repo. It will: 1. Check for each file in the diff if the changes are in the code or only in comments or docstrings. Only the files with real code changes are kept. 2. Build an internal map that gives for each file of the source code of the library all the files it recursively impacts. Module A is said to impact module B if module B imports module A. For the recursive impact, we need a chain of modules going from module A to module B in which each module imports the previous one. 3. Apply this map on the files gathered in step 1, which gives us the list of model files impacted by the PR. 4. Map each of those files to their corresponding test file(s) and get the list of tests to run. When executing the script locally, you should get the results of step 1, 3 and 4 printed and thus know which tests are run. The script will also create a file named `test_list.txt` which contains the list of tests to run, and you can run them locally with the following command: ```bash python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt) ``` Just in case anything slipped through the cracks, the full test suite is also run daily. ## Documentation build The `build_pr_documentation` job builds and generates a preview of the documentation to make sure everything looks okay once your PR is merged. A bot will add a link to preview the documentation in your PR. Any changes you make to the PR are automatically updated in the preview. If the documentation fails to build, click on **Details** next to the failed job to see where things went wrong. Often, the error is as simple as a missing file in the `toctree`. If you're interested in building or previewing the documentation locally, take a look at the [`README.md`](https://github.com/huggingface/transformers/tree/main/docs) in the docs folder. ## Code and documentation style Code formatting is applied to all the source files, the examples and the tests using `black` and `ruff`. We also have a custom tool taking care of the formatting of docstrings and `rst` files (`utils/style_doc.py`), as well as the order of the lazy imports performed in the Transformers `__init__.py` files (`utils/custom_init_isort.py`). All of this can be launched by executing ```bash make style ``` The CI checks those have been applied inside the `ci/circleci: check_code_quality` check. It also runs `ruff`, that will have a basic look at your code and will complain if it finds an undefined variable, or one that is not used. To run that check locally, use ```bash make quality ``` This can take a lot of time, so to run the same thing on only the files you modified in the current branch, run ```bash make fixup ``` This last command will also run all the additional checks for the repository consistency. Let's have a look at them. ## Repository consistency This regroups all the tests to make sure your PR leaves the repository in a good state, and is performed by the `ci/circleci: check_repository_consistency` check. You can locally run that check by executing the following: ```bash make repo-consistency ``` This checks that: - All objects added to the init are documented (performed by `utils/check_repo.py`) - All `__init__.py` files have the same content in their two sections (performed by `utils/check_inits.py`) - All code identified as a copy from another module is consistent with the original (performed by `utils/check_copies.py`) - All configuration classes have at least one valid checkpoint mentioned in their docstrings (performed by `utils/check_config_docstrings.py`) - All configuration classes only contain attributes that are used in corresponding modeling files (performed by `utils/check_config_attributes.py`) - The translations of the READMEs and the index of the doc have the same model list as the main README (performed by `utils/check_copies.py`) - The auto-generated tables in the documentation are up to date (performed by `utils/check_table.py`) - The library has all objects available even if not all optional dependencies are installed (performed by `utils/check_dummies.py`) - All docstrings properly document the arguments in the signature of the object (performed by `utils/check_docstrings.py`) Should this check fail, the first two items require manual fixing, the last four can be fixed automatically for you by running the command ```bash make fix-copies ``` Additional checks concern PRs that add new models, mainly that: - All models added are in an Auto-mapping (performed by `utils/check_repo.py`) <!-- TODO Sylvain, add a check that makes sure the common tests are implemented.--> - All models are properly tested (performed by `utils/check_repo.py`) <!-- TODO Sylvain, add the following - All models are added to the main README, inside the main doc - All checkpoints used actually exist on the Hub --> ### Check copies Since the Transformers library is very opinionated with respect to model code, and each model should fully be implemented in a single file without relying on other models, we have added a mechanism that checks whether a copy of the code of a layer of a given model stays consistent with the original. This way, when there is a bug fix, we can see all other impacted models and choose to trickle down the modification or break the copy. <Tip> If a file is a full copy of another file, you should register it in the constant `FULL_COPIES` of `utils/check_copies.py`. </Tip> This mechanism relies on comments of the form `# Copied from xxx`. The `xxx` should contain the whole path to the class of function which is being copied below. For instance, `RobertaSelfOutput` is a direct copy of the `BertSelfOutput` class, so you can see [here](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289) it has a comment: ```py # Copied from transformers.models.bert.modeling_bert.BertSelfOutput ``` Note that instead of applying this to a whole class, you can apply it to the relevant methods that are copied from. For instance [here](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L598) you can see how `RobertaPreTrainedModel._init_weights` is copied from the same method in `BertPreTrainedModel` with the comment: ```py # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights ``` Sometimes the copy is exactly the same except for names: for instance in `RobertaAttention`, we use `RobertaSelfAttention` instead of `BertSelfAttention` but other than that, the code is exactly the same. This is why `# Copied from` supports simple string replacements with the following syntax: `Copied from xxx with foo->bar`. This means the code is copied with all instances of `foo` being replaced by `bar`. You can see how it used [here](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L304C1-L304C86) in `RobertaAttention` with the comment: ```py # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta ``` Note that there shouldn't be any spaces around the arrow (unless that space is part of the pattern to replace of course). You can add several patterns separated by a comma. For instance here `CamemberForMaskedLM` is a direct copy of `RobertaForMaskedLM` with two replacements: `Roberta` to `Camembert` and `ROBERTA` to `CAMEMBERT`. You can see [here](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/camembert/modeling_camembert.py#L929) this is done with the comment: ```py # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT ``` If the order matters (because one of the replacements might conflict with a previous one), the replacements are executed from left to right. <Tip> If the replacements change the formatting (if you replace a short name by a very long name for instance), the copy is checked after applying the auto-formatter. </Tip> Another way when the patterns are just different casings of the same replacement (with an uppercased and a lowercased variants) is just to add the option `all-casing`. [Here](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237) is an example in `MobileBertForSequenceClassification` with the comment: ```py # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing ``` In this case, the code is copied from `BertForSequenceClassification` by replacing: - `Bert` by `MobileBert` (for instance when using `MobileBertModel` in the init) - `bert` by `mobilebert` (for instance when defining `self.mobilebert`) - `BERT` by `MOBILEBERT` (in the constant `MOBILEBERT_INPUTS_DOCSTRING`)
transformers/docs/source/en/pr_checks.md/0
{ "file_path": "transformers/docs/source/en/pr_checks.md", "repo_id": "transformers", "token_count": 3179 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TorchAO [TorchAO](https://github.com/pytorch/ao) is an architecture optimization library for PyTorch, it provides high performance dtypes, optimization techniques and kernels for inference and training, featuring composability with native PyTorch features like `torch.compile`, FSDP etc.. Some benchmark numbers can be found [here](https://github.com/pytorch/ao/tree/main/torchao/quantization#benchmarks). Before you begin, make sure the following libraries are installed with their latest version: ```bash # Updating 🤗 Transformers to the latest version, as the example script below uses the new auto compilation pip install --upgrade torch torchao transformers ``` By default, the weights are loaded in full precision (torch.float32) regardless of the actual data type the weights are stored in such as torch.float16. Set `torch_dtype="auto"` to load the weights in the data type defined in a model's `config.json` file to automatically load the most memory-optimal data type. ```py import torch from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Meta-Llama-3-8B" # We support int4_weight_only, int8_weight_only and int8_dynamic_activation_int8_weight # More examples and documentations for arguments can be found in https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques quantization_config = TorchAoConfig("int4_weight_only", group_size=128) quantized_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "What are we having for dinner?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") # auto-compile the quantized model with `cache_implementation="static"` to get speedup output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static") print(tokenizer.decode(output[0], skip_special_tokens=True)) # benchmark the performance import torch.utils.benchmark as benchmark def benchmark_fn(f, *args, **kwargs): # Manual warmup for _ in range(5): f(*args, **kwargs) t0 = benchmark.Timer( stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}, num_threads=torch.get_num_threads(), ) return f"{(t0.blocked_autorange().mean):.3f}" MAX_NEW_TOKENS = 1000 print("int4wo-128 model:", benchmark_fn(quantized_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static")) bf16_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda", torch_dtype=torch.bfloat16) output = bf16_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static") # auto-compile print("bf16 model:", benchmark_fn(bf16_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static")) ``` ## Serialization and Deserialization torchao quantization is implemented with [tensor subclasses](https://pytorch.org/docs/stable/notes/extending.html#subclassing-torch-tensor), it only work with huggingface non-safetensor serialization and deserialization. It relies on `torch.load(..., weights_only=True)` to avoid arbitrary user code execution during load time and use [add_safe_globals](https://pytorch.org/docs/stable/notes/serialization.html#torch.serialization.add_safe_globals) to allowlist some known user functions. The reason why it does not support safe tensor serialization is that wrapper tensor subclass allows maximum flexibility so we want to make sure the effort of supporting new format of quantized Tensor is low, while safe tensor optimizes for maximum safety (no user code execution), it also means we have to make sure to manually support new quantization format. ```py # save quantized model locally output_dir = "llama3-8b-int4wo-128" quantized_model.save_pretrained(output_dir, safe_serialization=False) # push to huggingface hub # save_to = "{user_id}/llama3-8b-int4wo-128" # quantized_model.push_to_hub(save_to, safe_serialization=False) # load quantized model ckpt_id = "llama3-8b-int4wo-128" # or huggingface hub model id loaded_quantized_model = AutoModelForCausalLM.from_pretrained(ckpt_id, device_map="cuda") # confirm the speedup loaded_quantized_model = torch.compile(loaded_quantized_model, mode="max-autotune") print("loaded int4wo-128 model:", benchmark_fn(loaded_quantized_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS)) ```
transformers/docs/source/en/quantization/torchao.md/0
{ "file_path": "transformers/docs/source/en/quantization/torchao.md", "repo_id": "transformers", "token_count": 1627 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Keypoint Detection [[open-in-colab]] Keypoint detection identifies and locates specific points of interest within an image. These keypoints, also known as landmarks, represent meaningful features of objects, such as facial features or object parts. These models take an image input and return the following outputs: - **Keypoints and Scores**: Points of interest and their confidence scores. - **Descriptors**: A representation of the image region surrounding each keypoint, capturing its texture, gradient, orientation and other properties. In this guide, we will show how to extract keypoints from images. For this tutorial, we will use [SuperPoint](./model_doc/superpoint.md), a foundation model for keypoint detection. ```python from transformers import AutoImageProcessor, SuperPointForKeypointDetection processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") ``` Let's test the model on the images below. <div style="display: flex; align-items: center;"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg" alt="Bee" style="height: 200px; object-fit: contain; margin-right: 10px;"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png" alt="Cats" style="height: 200px; object-fit: contain;"> </div> ```python import torch from PIL import Image import requests import cv2 url_image_1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg" image_1 = Image.open(requests.get(url_image_1, stream=True).raw) url_image_2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png" image_2 = Image.open(requests.get(url_image_2, stream=True).raw) images = [image_1, image_2] ``` We can now process our inputs and infer. ```python inputs = processor(images,return_tensors="pt").to(model.device, model.dtype) outputs = model(**inputs) ``` The model output has relative keypoints, descriptors, masks and scores for each item in the batch. The mask highlights areas of the image where keypoints are present. ```python SuperPointKeypointDescriptionOutput(loss=None, keypoints=tensor([[[0.0437, 0.0167], [0.0688, 0.0167], [0.0172, 0.0188], ..., [0.5984, 0.9812], [0.6953, 0.9812]]]), scores=tensor([[0.0056, 0.0053, 0.0079, ..., 0.0125, 0.0539, 0.0377], [0.0206, 0.0058, 0.0065, ..., 0.0000, 0.0000, 0.0000]], grad_fn=<CopySlices>), descriptors=tensor([[[-0.0807, 0.0114, -0.1210, ..., -0.1122, 0.0899, 0.0357], [-0.0807, 0.0114, -0.1210, ..., -0.1122, 0.0899, 0.0357], [-0.0807, 0.0114, -0.1210, ..., -0.1122, 0.0899, 0.0357], ...], grad_fn=<CopySlices>), mask=tensor([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 0, 0, 0]], dtype=torch.int32), hidden_states=None) ``` To plot actual keypoints in the image, we need to postprocess the output. To do so, we have to pass the actual image sizes to `post_process_keypoint_detection` along with outputs. ```python image_sizes = [(image.size[1], image.size[0]) for image in images] outputs = processor.post_process_keypoint_detection(outputs, image_sizes) ``` The outputs are now a list of dictionaries where each dictionary is a processed output of keypoints, scores and descriptors. ```python [{'keypoints': tensor([[ 226, 57], [ 356, 57], [ 89, 64], ..., [3604, 3391]], dtype=torch.int32), 'scores': tensor([0.0056, 0.0053, ...], grad_fn=<IndexBackward0>), 'descriptors': tensor([[-0.0807, 0.0114, -0.1210, ..., -0.1122, 0.0899, 0.0357], [-0.0807, 0.0114, -0.1210, ..., -0.1122, 0.0899, 0.0357]], grad_fn=<IndexBackward0>)}, {'keypoints': tensor([[ 46, 6], [ 78, 6], [422, 6], [206, 404]], dtype=torch.int32), 'scores': tensor([0.0206, 0.0058, 0.0065, 0.0053, 0.0070, ...,grad_fn=<IndexBackward0>), 'descriptors': tensor([[-0.0525, 0.0726, 0.0270, ..., 0.0389, -0.0189, -0.0211], [-0.0525, 0.0726, 0.0270, ..., 0.0389, -0.0189, -0.0211]}] ``` We can use these to plot the keypoints. ```python import matplotlib.pyplot as plt import torch for i in range(len(images)): keypoints = outputs[i]["keypoints"] scores = outputs[i]["scores"] descriptors = outputs[i]["descriptors"] keypoints = outputs[i]["keypoints"].detach().numpy() scores = outputs[i]["scores"].detach().numpy() image = images[i] image_width, image_height = image.size plt.axis('off') plt.imshow(image) plt.scatter( keypoints[:, 0], keypoints[:, 1], s=scores * 100, c='cyan', alpha=0.4 ) plt.show() ``` Below you can see the outputs. <div style="display: flex; align-items: center;"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee_keypoint.png" alt="Bee" style="height: 200px; object-fit: contain; margin-right: 10px;"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats_keypoint.png" alt="Cats" style="height: 200px; object-fit: contain;"> </div>
transformers/docs/source/en/tasks/keypoint_detection.md/0
{ "file_path": "transformers/docs/source/en/tasks/keypoint_detection.md", "repo_id": "transformers", "token_count": 2400 }
- sections: - local: index title: 🤗 Transformers - local: quicktour title: Tour rápido - local: installation title: Instalación title: Empezar - sections: - local: pipeline_tutorial title: Pipelines para inferencia - local: autoclass_tutorial title: Carga instancias preentrenadas con un AutoClass - local: preprocessing title: Preprocesamiento - local: training title: Fine-tuning a un modelo pre-entrenado - local: accelerate title: Entrenamiento distribuido con 🤗 Accelerate - local: model_sharing title: Compartir un modelo title: Tutoriales - sections: - isExpanded: false sections: - local: tasks/question_answering title: Respuesta a preguntas - local: tasks/language_modeling title: Modelado de lenguaje - local: tasks/summarization title: Generación de resúmenes - local: tasks/multiple_choice title: Selección múltiple - local: tasks/image_captioning title: Subtítulos de imágenes title: Procesamiento del Lenguaje Natural - isExpanded: false sections: - local: tasks/asr title: Reconocimiento automático del habla title: Audio - isExpanded: false sections: - local: tasks/image_classification title: Clasificación de imágenes title: Visión Artificial title: Guías prácticas - sections: - local: fast_tokenizers title: Usa tokenizadores de 🤗 Tokenizers - local: multilingual title: Modelos multilingües para inferencia - local: create_a_model title: Crea una arquitectura personalizada - local: custom_models title: Compartir modelos personalizados - local: run_scripts title: Entrenamiento con scripts - local: chat_templating title: Plantillas para Modelos de Chat - local: trainer title: Entrenador - local: sagemaker title: Ejecutar el entrenamiento en Amazon SageMaker - local: converting_tensorflow_models title: Convertir checkpoints de TensorFlow - local: serialization title: Exportar a ONNX - local: torchscript title: Exportar a TorchScript - local: community title: Los recursos de la comunidad title: Guías para desarrolladores - sections: - local: performance title: Descripción general - local: debugging title: Debugging title: Rendimiento y escalabilidad - sections: - local: add_new_pipeline title: ¿Cómo puedo añadir un pipeline a 🤗 Transformers? - local: pr_checks title: Verificaciones en un Pull Request title: Contribuir - sections: - local: philosophy title: Filosofía - local: glossary title: Glosario - local: task_summary title: Lo que 🤗 Transformers puede hacer - local: tasks_explained title: Como los 🤗 Transformers resuelven tareas - local: tokenizer_summary title: Descripción general de los tokenizadores - local: attention title: Mecanismos de atención - local: pad_truncation title: Relleno y truncamiento - local: bertology title: BERTología - local: perplexity title: Perplejidad de los modelos de longitud fija - local: pipeline_webserver title: Flujo de trabajo para la inferencia de los servidores web - local: model_memory_anatomy title: Anatomía del entrenamiento de los modelos title: Guías conceptuales
transformers/docs/source/es/_toctree.yml/0
{ "file_path": "transformers/docs/source/es/_toctree.yml", "repo_id": "transformers", "token_count": 1202 }
<!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Anatomía del entrenamiento de los modelos Para entender las técnicas de optimización del rendimiento que se pueden aplicar para mejorar la eficiencia en la velocidad del entrenamiento de los modelos y la utilización de la memoria, es útil familiarizarse con cómo se utiliza la GPU durante el entrenamiento y cómo varía la intensidad de cálculo según la operación realizada. Empecemos explorando un ejemplo enfocado en la utilización de la GPU y la ejecución del entrenamiento de un modelo. Para la demostración, necesitaremos instalar algunas bibliotecas: ```bash pip install transformers datasets accelerate nvidia-ml-py3 ``` La biblioteca `nvidia-ml-py3` nos permite monitorear la utilización de memoria de los modelos desde Python. Es posible que estés familiarizado con el comando `nvidia-smi` en la terminal, esta biblioteca nos permite acceder a la misma información en Python directamente. Luego, creamos algunos datos ficticios: IDs de tokens aleatorios entre 100 y 30000 y etiquetas binarias para un clasificador. En total, obtenemos 512 secuencias cada una con longitud 512 y las almacenamos en un [`~datasets.Dataset`] con formato PyTorch. ```py >>> import numpy as np >>> from datasets import Dataset >>> seq_len, dataset_size = 512, 512 >>> dummy_data = { ... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)), ... "labels": np.random.randint(0, 1, (dataset_size)), ... } >>> ds = Dataset.from_dict(dummy_data) >>> ds.set_format("pt") ``` Para imprimir estadísticas resumidas para la utilización de la GPU y la ejecución del entrenamiento con [`Trainer`](https://huggingface.co/docs/transformers/en/main_classes/trainer#transformers.Trainer), definimos dos funciones auxiliares: ```py >>> from pynvml import * >>> def print_gpu_utilization(): ... nvmlInit() ... handle = nvmlDeviceGetHandleByIndex(0) ... info = nvmlDeviceGetMemoryInfo(handle) ... print(f"GPU memory occupied: {info.used//1024**2} MB.") >>> def print_summary(result): ... print(f"Time: {result.metrics['train_runtime']:.2f}") ... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}") ... print_gpu_utilization() ``` Comencemos comprobando que la memoria GPU este libre: ```py >>> print_gpu_utilization() GPU memory occupied: 0 MB. ``` Parece estar bien: la memoria de la GPU no está ocupada como esperaríamos antes de cargar cualquier modelo. Si no es el caso en tu máquina, asegúrate de detener todos los procesos que estén utilizando la memoria de la GPU. Sin embargo, no toda la memoria libre de la GPU puede ser utilizada por el usuario. Cuando se carga un modelo en la GPU, también se cargan los kernels, lo que puede ocupar 1-2GB de memoria. Para ver cuánta memoria será ocupada por defecto, cargemos un tensor diminuto en la GPU, lo que también desencadena la carga de los kernels. ```py >>> import torch >>> torch.ones((1, 1)).to("cuda") >>> print_gpu_utilization() GPU memory occupied: 1343 MB. ``` Vemos que los kernels solos ocupan 1,3GB de memoria de la GPU. Ahora, veamos cuánto espacio ocupa el modelo. ## Cargar el Modelo Primero, cargamos el modelo `google-bert/bert-large-uncased`. Los pesos del modelo son cargados directamente en la GPU para que podamos verificar cuánto espacio ocupan solo los pesos. ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-large-uncased").to("cuda") >>> print_gpu_utilization() GPU memory occupied: 2631 MB. ``` Podemos ver que los pesos del modelo solos ocupan 1,3 GB de memoria de la GPU. El número exacto depende de la GPU específica que estés utilizando. Ten en cuenta que en GPUs más modernas, un modelo puede ocupar más espacio ya que los pesos se cargan de manera optimizada lo cual acelera el uso del modelo. Ahora también podemos verificar rápidamente si obtenemos el mismo resultado que con la CLI de `nvidia-smi`: ```bash nvidia-smi ``` ```bash Tue Jan 11 08:58:05 2022 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 | | N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB | +-----------------------------------------------------------------------------+ ``` Obtenemos el mismo número que antes y también puedes ver que estamos utilizando una GPU V100 con 16GB de memoria. Ahora podemos empezar a entrenar el modelo y ver cómo cambia el consumo de memoria de la GPU. Primero, configuramos algunos argumentos de entrenamiento estándar: ```py default_args = { "output_dir": "tmp", "eval_strategy": "steps", "num_train_epochs": 1, "log_level": "error", "report_to": "none", } ``` <Tip> Si planeas ejecutar varias pruebas, reinicie el kernel de Python entre cada prueba para borrar correctamente la memoria. </Tip> ## Utilización de la memoria en el entrenamiento Vamos a utilizar el [`Trainer`](https://huggingface.co/docs/transformers/en/main_classes/trainer#transformers.Trainer) y entrenar el modelo sin utilizar ninguna técnica de optimización del rendimiento de la GPU y un tamaño de lote de 4: ```py >>> from transformers import TrainingArguments, Trainer, logging >>> logging.set_verbosity_error() >>> training_args = TrainingArguments(per_device_train_batch_size=4, **default_args) >>> trainer = Trainer(model=model, args=training_args, train_dataset=ds) >>> result = trainer.train() >>> print_summary(result) ``` ``` Time: 57.82 Samples/second: 8.86 GPU memory occupied: 14949 MB. ``` Vemos que incluso un tamaño de lote relativamente pequeño casi llena toda la memoria de nuestra GPU. Sin embargo, un tamaño de lote más grande a menudo puede resultar en una convergencia del modelo más rápida o un mejor rendimiento final. Así que idealmente queremos ajustar el tamaño del lote a las necesidades del modelo y no a las limitaciones de la GPU. Lo interesante es que utilizamos mucha más memoria que el tamaño del modelo. Para entender un poco mejor por qué es el caso, echemos un vistazo a las operaciones y necesidades de memoria de un modelo. ## Anatomía de las Operaciones del Modelo La arquitectura de los transformers incluye 3 grupos principales de operaciones agrupadas a continuación por intensidad de cálculo. 1. **Contracciones de Tensores** Las capas lineales y componentes de la Atención Multi-Head realizan **multiplicaciones matriciales por lotes**. Estas operaciones son la parte más intensiva en cálculo del entrenamiento de los transformers. 2. **Normalizaciones Estadísticas** Softmax y normalización de capas son menos intensivas en cálculo que las contracciones de tensores, e implican una o más **operaciones de reducción**, cuyo resultado se aplica luego mediante un mapa. 3. **Operadores por Elemento** Estos son los operadores restantes: **sesgos, dropout, activaciones y conexiones residuales**. Estas son las operaciones menos intensivas en cálculo. Este conocimiento puede ser útil al analizar cuellos de botella de rendimiento. Este resumen se deriva de [Data Movement Is All You Need: A Case Study on Optimizing Transformers 2020](https://arxiv.org/abs/2007.00072) ## Anatomía de la Memoria del Modelo Hemos visto que al entrenar un modelo se utiliza mucha más memoria que solo poner el modelo en la GPU. Esto se debe a que hay muchos componentes durante el entrenamiento que utilizan memoria de la GPU. Los componentes en memoria de la GPU son los siguientes: 1. pesos del modelo 2. estados del optimizador 3. gradientes 4. activaciones hacia adelante guardadas para el cálculo del gradiente 5. buffers temporales 6. memoria específica de funcionalidad Un modelo típico entrenado en precisión mixta con AdamW requiere 18 bytes por parámetro del modelo más memoria de activación. Para la inferencia no hay estados del optimizador ni gradientes, por lo que podemos restarlos. Y así terminamos con 6 bytes por parámetro del modelo para la inferencia en precisión mixta, más la memoria de activación. Veámoslo a detalle: **Pesos del Modelo:** - 4 bytes por número de parámetros para entrenamiento en fp32 - 6 bytes por número de parámetros para entrenamiento en precisión mixta (mantiene un modelo en fp32 y uno en fp16 en memoria) **Estados del Optimizador:** - 8 bytes por número de parámetros para un AdamW normal (mantiene 2 estados) - 2 bytes por número de parámetros para optimizadores de 8 bits como [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - 4 bytes por número de parámetros para optimizadores como SGD con momentum (mantiene solo 1 estado) **Gradientes** - 4 bytes por número de parámetros para entrenamiento en fp32 o precisión mixta (los gradientes siempre se mantienen en fp32) **Activaciones hacia Adelante** - El tamaño depende de muchos factores, los principales siendo la longitud de la secuencia, el tamaño oculto y el tamaño de lote. Hay entradas y salidas que se pasan y se devuelven por las funciones hacia adelante y hacia atrás, y las activaciones hacia adelante (*forward activations*) guardadas para el cálculo del gradiente. **Memoria Temporal** Además, hay todas clases de variables temporales que se liberan una vez que se completa el cálculo, pero en el momento podrían requerir memoria adicional y podrían provocar un error de memoria insuficiente. Por lo tanto, al codificar es crucial pensar estratégicamente sobre tales variables temporales y a veces liberarlas explícitamente tan pronto como ya no se necesitan. **Memoria Específica de Funcionalidad** Entonces, su software podría tener necesidades especiales de memoria. Por ejemplo, al generar texto mediante la búsqueda por haz, el software necesita mantener múltiples copias de las entradas y salidas. **Velocidad de Ejecución `forward` vs `backward`** Para convoluciones y capas lineales, hay 2x flops en la ejecución hacia atrás (`backward`) en comparación con la ejecución hacia adelante (`forward`), lo que generalmente se traduce en ~2x más lento (a veces más, porque los tamaños en la ejecución hacia atrás tienden a ser más complejos). Las activaciones suelen ser limitadas por ancho de banda, y es típico que una activación tenga que leer más datos en la ejecución hacia atrás que en la ejecución hacia adelante (por ejemplo, la activación hacia adelante lee una vez, escribe una vez, la activación hacia atrás lee dos veces, gradOutput y salida de la ejecución hacia adelante, y escribe una vez, gradInput). Como puedes ver, hay potencialmente unos pocos lugares donde podríamos ahorrar memoria de la GPU o acelerar operaciones. Ahora que entiendes qué afecta la utilización de la GPU y la velocidad de cálculo, consulta la página de documentación [Métodos y herramientas para entrenamiento eficiente en una sola GPU](https://huggingface.co/docs/transformers/perf_train_gpu_one) para aprender sobre técnicas de optimización del rendimiento.
transformers/docs/source/es/model_memory_anatomy.md/0
{ "file_path": "transformers/docs/source/es/model_memory_anatomy.md", "repo_id": "transformers", "token_count": 4604 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Reconocimiento automático del habla <Youtube id="TksaY_FDgnk"/> El reconocimiento automático del habla (ASR, por sus siglas en inglés) convierte una señal de habla en texto y mapea una secuencia de entradas de audio en salidas en forma de texto. Los asistentes virtuales como Siri y Alexa usan modelos de ASR para ayudar a sus usuarios todos los días. De igual forma, hay muchas otras aplicaciones, como la transcripción de contenidos en vivo y la toma automática de notas durante reuniones. En esta guía te mostraremos como: 1. Hacer fine-tuning al modelo [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) con el dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) para transcribir audio a texto. 2. Usar tu modelo ajustado para tareas de inferencia. <Tip> Revisa la [página de la tarea](https://huggingface.co/tasks/automatic-speech-recognition) de reconocimiento automático del habla para acceder a más información sobre los modelos, datasets y métricas asociados. </Tip> Antes de comenzar, asegúrate de haber instalado todas las librerías necesarias: ```bash pip install transformers datasets evaluate jiwer ``` Te aconsejamos iniciar sesión con tu cuenta de Hugging Face para que puedas subir tu modelo y comartirlo con la comunidad. Cuando te sea solicitado, ingresa tu token para iniciar sesión: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Cargar el dataset MInDS-14 Comencemos cargando un subconjunto más pequeño del dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) desde la biblioteca 🤗 Datasets. De esta forma, tendrás la oportunidad de experimentar y asegurarte de que todo funcione antes de invertir más tiempo entrenando con el dataset entero. ```py >>> from datasets import load_dataset, Audio >>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train[:100]") ``` Divide la partición `train` (entrenamiento) en una partición de entrenamiento y una de prueba usando el método [`~Dataset.train_test_split`]: ```py >>> minds = minds.train_test_split(test_size=0.2) ``` Ahora échale un vistazo al dataset: ```py >>> minds DatasetDict({ train: Dataset({ features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'], num_rows: 16 }) test: Dataset({ features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'], num_rows: 4 }) }) ``` Aunque el dataset contiene mucha información útil, como los campos `lang_id` (identificador del lenguaje) y `english_transcription` (transcripción al inglés), en esta guía nos enfocaremos en los campos `audio` y `transcription`. Puedes quitar las otras columnas con el método [`~datasets.Dataset.remove_columns`]: ```py >>> minds = minds.remove_columns(["english_transcription", "intent_class", "lang_id"]) ``` Vuelve a echarle un vistazo al ejemplo: ```py >>> minds["train"][0] {'audio': {'array': array([-0.00024414, 0. , 0. , ..., 0.00024414, 0.00024414, 0.00024414], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'sampling_rate': 8000}, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"} ``` Hay dos campos: - `audio`: un `array` (arreglo) unidimensional de la señal de habla que debe ser invocado para cargar y re-muestrear el archivo de audio. - `transcription`: el texto objetivo. ## Preprocesamiento El siguiente paso es cargar un procesador Wav2Vec2 para procesar la señal de audio: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base") ``` El dataset MInDS-14 tiene una tasa de muestreo de 8000kHz (puedes encontrar esta información en su [tarjeta de dataset](https://huggingface.co/datasets/PolyAI/minds14)), lo que significa que tendrás que re-muestrear el dataset a 16000kHz para poder usar el modelo Wav2Vec2 pre-entrenado: ```py >>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000)) >>> minds["train"][0] {'audio': {'array': array([-2.38064706e-04, -1.58618059e-04, -5.43987835e-06, ..., 2.78103951e-04, 2.38446111e-04, 1.18740834e-04], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'sampling_rate': 16000}, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"} ``` Como puedes ver en el campo `transcription`, el texto contiene una mezcla de carácteres en mayúsculas y en minúsculas. El tokenizer Wav2Vec2 fue entrenado únicamente con carácteres en mayúsculas, así que tendrás que asegurarte de que el texto se ajuste al vocabulario del tokenizer: ```py >>> def uppercase(example): ... return {"transcription": example["transcription"].upper()} >>> minds = minds.map(uppercase) ``` Ahora vamos a crear una función de preprocesamiento que: 1. Invoque la columna `audio` para cargar y re-muestrear el archivo de audio. 2. Extraiga el campo `input_values` (valores de entrada) del archivo de audio y haga la tokenización de la columna `transcription` con el procesador. ```py >>> def prepare_dataset(batch): ... audio = batch["audio"] ... batch = processor(audio["array"], sampling_rate=audio["sampling_rate"], text=batch["transcription"]) ... batch["input_length"] = len(batch["input_values"][0]) ... return batch ``` Para aplicar la función de preprocesamiento a todo el dataset, puedes usar la función [`~datasets.Dataset.map`] de 🤗 Datasets. Para acelerar la función `map` puedes incrementar el número de procesos con el parámetro `num_proc`. Quita las columnas que no necesites con el método [`~datasets.Dataset.remove_columns`]: ```py >>> encoded_minds = minds.map(prepare_dataset, remove_columns=minds.column_names["train"], num_proc=4) ``` 🤗 Transformers no tiene un collator de datos para la tarea de ASR, así que tendrás que adaptar el [`DataCollatorWithPadding`] para crear un lote de ejemplos. El collator también le aplicará padding dinámico a tu texto y etiquetas para que tengan la longitud del elemento más largo en su lote (en vez de la mayor longitud en el dataset entero), de forma que todas las muestras tengan una longitud uniforme. Aunque es posible hacerle padding a tu texto con el `tokenizer` haciendo `padding=True`, el padding dinámico es más eficiente. A diferencia de otros collators de datos, este tiene que aplicarle un método de padding distinto a los campos `input_values` (valores de entrada) y `labels` (etiquetas): ```py >>> import torch >>> from dataclasses import dataclass, field >>> from typing import Any, Dict, List, Optional, Union >>> @dataclass ... class DataCollatorCTCWithPadding: ... processor: AutoProcessor ... padding: Union[bool, str] = "longest" ... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: ... # particiona las entradas y las etiquetas ya que tienen que tener longitudes distintas y ... # requieren métodos de padding diferentes ... input_features = [{"input_values": feature["input_values"][0]} for feature in features] ... label_features = [{"input_ids": feature["labels"]} for feature in features] ... batch = self.processor.pad(input_features, padding=self.padding, return_tensors="pt") ... labels_batch = self.processor.pad(labels=label_features, padding=self.padding, return_tensors="pt") ... # remplaza el padding con -100 para ignorar la pérdida de forma correcta ... labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) ... batch["labels"] = labels ... return batch ``` Ahora puedes instanciar tu `DataCollatorForCTCWithPadding`: ```py >>> data_collator = DataCollatorCTCWithPadding(processor=processor, padding="longest") ``` ## Evaluación A menudo es útil incluir una métrica durante el entrenamiento para evaluar el rendimiento de tu modelo. Puedes cargar un método de evaluación rápidamente con la biblioteca 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index). Para esta tarea, puedes usar la métrica de [tasa de error por palabra](https://huggingface.co/spaces/evaluate-metric/wer) (WER, por sus siglas en inglés). Puedes ver la [guía rápida](https://huggingface.co/docs/evaluate/a_quick_tour) de 🤗 Evaluate para aprender más acerca de cómo cargar y computar una métrica. ```py >>> import evaluate >>> wer = evaluate.load("wer") ``` Ahora crea una función que le pase tus predicciones y etiquetas a [`~evaluate.EvaluationModule.compute`] para calcular la WER: ```py >>> import numpy as np >>> def compute_metrics(pred): ... pred_logits = pred.predictions ... pred_ids = np.argmax(pred_logits, axis=-1) ... pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id ... pred_str = processor.batch_decode(pred_ids) ... label_str = processor.batch_decode(pred.label_ids, group_tokens=False) ... wer = wer.compute(predictions=pred_str, references=label_str) ... return {"wer": wer} ``` Ahora tu función `compute_metrics` (computar métricas) está lista y podrás usarla cuando estés preparando tu entrenamiento. ## Entrenamiento <frameworkcontent> <pt> <Tip> Si no tienes experiencia haciéndole fine-tuning a un modelo con el [`Trainer`], ¡échale un vistazo al tutorial básico [aquí](../training#train-with-pytorch-trainer)! </Tip> ¡Ya puedes empezar a entrenar tu modelo! Para ello, carga Wav2Vec2 con [`AutoModelForCTC`]. Especifica la reducción que quieres aplicar con el parámetro `ctc_loss_reduction`. A menudo, es mejor usar el promedio en lugar de la sumatoria que se hace por defecto. ```py >>> from transformers import AutoModelForCTC, TrainingArguments, Trainer >>> model = AutoModelForCTC.from_pretrained( ... "facebook/wav2vec2-base", ... ctc_loss_reduction="mean", ... pad_token_id=processor.tokenizer.pad_token_id, ... ) ``` En este punto, solo quedan tres pasos: 1. Define tus hiperparámetros de entrenamiento en [`TrainingArguments`]. El único parámetro obligatorio es `output_dir` (carpeta de salida), el cual especifica dónde guardar tu modelo. Puedes subir este modelo al Hub haciendo `push_to_hub=True` (debes haber iniciado sesión en Hugging Face para subir tu modelo). Al final de cada época, el [`Trainer`] evaluará la WER y guardará el punto de control del entrenamiento. 2. Pásale los argumentos del entrenamiento al [`Trainer`] junto con el modelo, el dataset, el tokenizer, el collator de datos y la función `compute_metrics`. 3. Llama el método [`~Trainer.train`] para hacerle fine-tuning a tu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_asr_mind_model", ... per_device_train_batch_size=8, ... gradient_accumulation_steps=2, ... learning_rate=1e-5, ... warmup_steps=500, ... max_steps=2000, ... gradient_checkpointing=True, ... fp16=True, ... group_by_length=True, ... eval_strategy="steps", ... per_device_eval_batch_size=8, ... save_steps=1000, ... eval_steps=1000, ... logging_steps=25, ... load_best_model_at_end=True, ... metric_for_best_model="wer", ... greater_is_better=False, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=encoded_minds["train"], ... eval_dataset=encoded_minds["test"], ... processing_class=processor.feature_extractor, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` Una vez que el entrenamiento haya sido completado, comparte tu modelo en el Hub con el método [`~transformers.Trainer.push_to_hub`] para que todo el mundo pueda usar tu modelo: ```py >>> trainer.push_to_hub() ``` </pt> </frameworkcontent> <Tip> Para ver un ejemplo más detallado de cómo hacerle fine-tuning a un modelo para reconocimiento automático del habla, échale un vistazo a esta [entrada de blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) para ASR en inglés y a esta [entrada](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) para ASR multilingüe. </Tip> ## Inferencia ¡Genial, ahora que le has hecho fine-tuning a un modelo, puedes usarlo para inferencia! Carga el archivo de audio sobre el cual quieras correr la inferencia. ¡Recuerda re-muestrar la tasa de muestreo del archivo de audio para que sea la misma del modelo si es necesario! ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", "en-US", split="train") >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) >>> sampling_rate = dataset.features["audio"].sampling_rate >>> audio_file = dataset[0]["audio"]["path"] ``` La manera más simple de probar tu modelo para hacer inferencia es usarlo en un [`pipeline`]. Puedes instanciar un `pipeline` para reconocimiento automático del habla con tu modelo y pasarle tu archivo de audio: ```py >>> from transformers import pipeline >>> transcriber = pipeline("automatic-speech-recognition", model="stevhliu/my_awesome_asr_minds_model") >>> transcriber(audio_file) {'text': 'I WOUD LIKE O SET UP JOINT ACOUNT WTH Y PARTNER'} ``` <Tip> La transcripción es decente, pero podría ser mejor. ¡Intenta hacerle fine-tuning a tu modelo con más ejemplos para obtener resultados aún mejores! </Tip> También puedes replicar de forma manual los resultados del `pipeline` si lo deseas: <frameworkcontent> <pt> Carga un procesador para preprocesar el archivo de audio y la transcripción y devuelve el `input` como un tensor de PyTorch: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("stevhliu/my_awesome_asr_mind_model") >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") ``` Pásale tus entradas al modelo y devuelve los logits: ```py >>> from transformers import AutoModelForCTC >>> model = AutoModelForCTC.from_pretrained("stevhliu/my_awesome_asr_mind_model") >>> with torch.no_grad(): ... logits = model(**inputs).logits ``` Obtén los identificadores de los tokens con mayor probabilidad en las predicciones y usa el procesador para decodificarlos y transformarlos en texto: ```py >>> import torch >>> predicted_ids = torch.argmax(logits, dim=-1) >>> transcription = processor.batch_decode(predicted_ids) >>> transcription ['I WOUL LIKE O SET UP JOINT ACOUNT WTH Y PARTNER'] ``` </pt> </frameworkcontent>
transformers/docs/source/es/tasks/asr.md/0
{ "file_path": "transformers/docs/source/es/tasks/asr.md", "repo_id": "transformers", "token_count": 6033 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Carica istanze pre-allenate con AutoClass Con così tante architetture Transformer differenti, può essere sfidante crearne una per il tuo checkpoint. Come parte della filosofia centrale di 🤗 Transformers per rendere la libreria facile, semplice e flessibile da utilizzare, una `AutoClass` inferisce e carica automaticamente l'architettura corretta da un dato checkpoint. Il metodo `from_pretrained` ti permette di caricare velocemente un modello pre-allenato per qualsiasi architettura, così non devi utilizzare tempo e risorse per allenare un modello da zero. Produrre questo codice agnostico ai checkpoint significa che se il tuo codice funziona per un checkpoint, funzionerà anche per un altro checkpoint, purché sia stato allenato per un compito simile, anche se l'architettura è differente. <Tip> Ricorda, con architettura ci si riferisce allo scheletro del modello e con checkpoint ai pesi di una determinata architettura. Per esempio, [BERT](https://huggingface.co/google-bert/bert-base-uncased) è un'architettura, mentre `google-bert/bert-base-uncased` è un checkpoint. Modello è un termine generale che può significare sia architettura che checkpoint. </Tip> In questo tutorial, imparerai a: * Caricare un tokenizer pre-allenato. * Caricare un estrattore di caratteristiche (feature extractor, in inglese) pre-allenato. * Caricare un processore pre-allenato. * Caricare un modello pre-allenato. ## AutoTokenizer Quasi tutti i compiti di NLP iniziano con un tokenizer. Un tokenizer converte il tuo input in un formato che possa essere elaborato dal modello. Carica un tokenizer con [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base") ``` Poi tokenizza il tuo input come mostrato in seguito: ```py >>> sequenza = "In un buco nel terreno viveva uno Hobbit." >>> print(tokenizer(sequenza)) {'input_ids': [0, 360, 51, 373, 587, 1718, 54644, 22597, 330, 3269, 2291, 22155, 18, 5, 2], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` ## AutoFeatureExtractor Per compiti inerenti a audio e video, un feature extractor processa il segnale audio o l'immagine nel formato di input corretto. Carica un feature extractor con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained( ... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" ... ) ``` ## AutoProcessor Compiti multimodali richiedono un processore che combini i due tipi di strumenti di elaborazione. Per esempio, il modello [LayoutLMV2](model_doc/layoutlmv2) richiede un feature extractor per gestire le immagine e un tokenizer per gestire il testo; un processore li combina entrambi. Carica un processore con [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") ``` ## AutoModel <frameworkcontent> <pt> Infine, le classi `AutoModelFor` ti permettono di caricare un modello pre-allenato per un determinato compito (guarda [qui](model_doc/auto) per una lista completa di compiti presenti). Per esempio, carica un modello per la classificazione di sequenze con [`AutoModelForSequenceClassification.from_pretrained`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Semplicemente utilizza lo stesso checkpoint per caricare un'architettura per un task differente: ```py >>> from transformers import AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Generalmente, raccomandiamo di utilizzare la classe `AutoTokenizer` e la classe `AutoModelFor` per caricare istanze pre-allenate dei modelli. Questo ti assicurerà di aver caricato la corretta architettura ogni volta. Nel prossimo [tutorial](preprocessing), imparerai come utilizzare il tokenizer, il feature extractor e il processore per elaborare un dataset per il fine-tuning. </pt> <tf> Infine, le classi `TFAutoModelFor` ti permettono di caricare un modello pre-allenato per un determinato compito (guarda [qui](model_doc/auto) per una lista completa di compiti presenti). Per esempio, carica un modello per la classificazione di sequenze con [`TFAutoModelForSequenceClassification.from_pretrained`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Semplicemente utilizza lo stesso checkpoint per caricare un'architettura per un task differente: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Generalmente, raccomandiamo di utilizzare la classe `AutoTokenizer` e la classe `TFAutoModelFor` per caricare istanze pre-allenate dei modelli. Questo ti assicurerà di aver caricato la corretta architettura ogni volta. Nel prossimo [tutorial](preprocessing), imparerai come utilizzare il tokenizer, il feature extractor e il processore per elaborare un dataset per il fine-tuning. </tf> </frameworkcontent>
transformers/docs/source/it/autoclass_tutorial.md/0
{ "file_path": "transformers/docs/source/it/autoclass_tutorial.md", "repo_id": "transformers", "token_count": 1960 }
<!-- 著作権 2023 The HuggingFace Team。全著作権所有。 Apache License、Version 2.0(以下「ライセンス」と呼びます)に基づくライセンスで、 ライセンスに従わない限り、このファイルを使用できません。 ライセンスのコピーは以下から入手できます: http://www.apache.org/licenses/LICENSE-2.0 適用法に従うか、書面による同意がある限り、ライセンスの下でソフトウェアは配布されます。 ライセンスに基づく特定の言語での条件を確認するか、ライセンスを参照してください。 このファイルはMarkdown形式ですが、doc-builder(MDXに類似したもの)の特定の構文を含んでおり、 お使いのMarkdownビューアで正しくレンダリングされない場合があります。 --> # AutoClassを使用して事前学習済みインスタンスをロードする さまざまなTransformerアーキテクチャが存在するため、自分のタスクに合ったモデルを作成するのは難しいことがあります。 🤗 Transformersのコア哲学の一環として、ライブラリを使用しやすく、シンプルで柔軟にするために、 `AutoClass`は与えられたチェックポイントから正しいアーキテクチャを自動的に推論してロードします。 `from_pretrained()`メソッドを使用すると、事前学習済みモデルを素早くロードできるため、モデルをゼロからトレーニングするために時間とリソースを費やす必要がありません。 この種のチェックポイントに依存しないコードを生成することは、 コードが1つのチェックポイントで動作すれば、アーキテクチャが異なっていても、同じタスクに向けてトレーニングされた場合は別のチェックポイントでも動作することを意味します。 <Tip> アーキテクチャはモデルの骨格を指し、チェックポイントは特定のアーキテクチャの重みです。 たとえば、[BERT](https://huggingface.co/google-bert/bert-base-uncased)はアーキテクチャであり、`google-bert/bert-base-uncased`はチェックポイントです。 モデルはアーキテクチャまたはチェックポイントのどちらを指す一般的な用語です。 </Tip> このチュートリアルでは、以下を学習します: * 事前学習済みトークナイザをロードする。 * 事前学習済み画像プロセッサをロードする。 * 事前学習済み特徴量抽出器をロードする。 * 事前学習済みプロセッサをロードする。 * 事前学習済みモデルをロードする。 ## AutoTokenizer ほとんどのNLPタスクはトークナイザで始まります。トークナイザは入力をモデルで処理できる形式に変換します。 [`AutoTokenizer.from_pretrained`]を使用してトークナイザをロードします: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") ``` 次に、以下のように入力をトークナイズします: ```py >>> sequence = "In a hole in the ground there lived a hobbit." >>> print(tokenizer(sequence)) {'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` ## AutoImageProcessor ビジョンタスクの場合、画像プロセッサが画像を正しい入力形式に変換します。 ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") ``` ## AutoFeatureExtractor オーディオタスクの場合、特徴量抽出器がオーディオ信号を正しい入力形式に変換します。 [`AutoFeatureExtractor.from_pretrained`]を使用して特徴量抽出器をロードします. ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained( ... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" ... ) ``` ## AutoProcessor マルチモーダルタスクの場合、2つの前処理ツールを組み合わせるプロセッサが必要です。たとえば、 [LayoutLMV2](model_doc/layoutlmv2)モデルは画像を処理するための画像プロセッサとテキストを処理するためのトークナイザが必要です。 プロセッサはこれらの両方を組み合わせます。 [`AutoProcessor.from_pretrained`]を使用してプロセッサをロードします: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") ``` ## AutoModel <frameworkcontent> <pt> 最後に、`AutoModelFor`クラスは特定のタスクに対して事前学習済みモデルをロードできます(使用可能なタスクの完全な一覧については[こちら](model_doc/auto)を参照)。 たとえば、[`AutoModelForSequenceClassification.from_pretrained`]を使用してシーケンス分類用のモデルをロードできます: ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 同じチェックポイントを再利用して異なるタスクのアーキテクチャをロードできます: ```py >>> from transformers import AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` <Tip warning={true}> PyTorchモデルの場合、 `from_pretrained()`メソッドは内部で`torch.load()`を使用し、内部的には`pickle`を使用しており、セキュリティの問題が知られています。 一般的には、信頼性のないソースから取得した可能性があるモデルや改ざんされた可能性のあるモデルをロードしないでください。 このセキュリティリスクは、`Hugging Face Hub`でホストされている公開モデルに対して部分的に緩和されており、各コミットでマルウェアのスキャンが行われています。 GPGを使用した署名済みコミットの検証などのベストプラクティスについては、Hubのドキュメンテーションを参照してください。 TensorFlowおよびFlaxのチェックポイントには影響がなく、`from_pretrained`メソッドの`from_tf`および`from_flax`引数を使用してPyTorchアーキテクチャ内でロードできます。 </Tip> 一般的に、事前学習済みモデルのインスタンスをロードするために`AutoTokenizer`クラスと`AutoModelFor`クラスの使用をお勧めします。 これにより、常に正しいアーキテクチャをロードできます。 次の[tutorial](preprocessing)では、新しくロードしたトークナイザ、画像プロセッサ、特徴量抽出器、およびプロセッサを使用して、ファインチューニング用にデータセットを前処理する方法を学びます。 </pt> <tf> 最後に、`TFAutoModelFor`クラスは特定のタスクに対して事前学習済みモデルをロードできます(使用可能なタスクの完全な一覧についてはこちらを参照)。 たとえば、[`TFAutoModelForSequenceClassification.from_pretrained`]を使用してシーケンス分類用のモデルをロードできます: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 同じチェックポイントを再利用して異なるタスクのアーキテクチャをロードできます: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 一般的には、事前学習済みモデルのインスタンスをロードするために`AutoTokenizer`クラスと`TFAutoModelFor`クラスの使用をお勧めします。 これにより、常に正しいアーキテクチャをロードできます。 次の[tutorial](preproccesing)では、新しくロードしたトークナイザ、画像プロセッサ、特徴量抽出器、およびプロセッサを使用して、ファインチューニング用にデータセットを前処理する方法を学びます。 </tf> </frameworkcontent>
transformers/docs/source/ja/autoclass_tutorial.md/0
{ "file_path": "transformers/docs/source/ja/autoclass_tutorial.md", "repo_id": "transformers", "token_count": 3607 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 発電用ユーティリティ このページには、[`~generation.GenerationMixin.generate`] で使用されるすべてのユーティリティ関数がリストされています。 ## 出力を生成する [`~generation.GenerationMixin.generate`] の出力は、次のサブクラスのインスタンスです。 [`~utils.ModelOutput`]。この出力は、返されたすべての情報を含むデータ構造です。 [`~generation.GenerationMixin.generate`] によって作成されますが、タプルまたは辞書としても使用できます。 以下に例を示します。 ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt") generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True) ``` `generation_output` オブジェクトは、できる限り [`~generation.GenerateDecoderOnlyOutput`] です。 以下のそのクラスのドキュメントを参照してください。これは、次の属性があることを意味します。 - `sequences`: 生成されたトークンのシーケンス - `scores` (オプション): 各生成ステップの言語モデリング ヘッドの予測スコア - `hidden_​​states` (オプション): 生成ステップごとのモデルの隠れた状態 - `attentions` (オプション): 生成ステップごとのモデルのアテンションの重み ここでは、`output_scores=True`を渡したので `scores` がありますが、`hidden_​​states` はありません。 `attentions` は、`output_hidden_​​states=True`または`output_attentions=True`を渡さなかったためです。 通常と同じように各属性にアクセスできます。その属性がモデルから返されなかった場合は、 は「なし」を取得します。ここで、たとえば`generation_output.scores`は、生成されたすべての予測スコアです。 言語モデリングのヘッドであり、`generation_output.attentions`は`None`です。 `generation_output` オブジェクトをタプルとして使用する場合、`None` 値を持たない属性のみが保持されます。 たとえば、ここには 2 つの要素、`loss`、次に`logits`があります。 ```python generation_output[:2] ``` たとえば、タプル `(generation_output.sequences,generation_output.scores)` を返します。 `generation_output` オブジェクトを辞書として使用する場合、`None` を持たない属性のみが保持されます。 ここでは、たとえば、`sequences`と`scores`という 2 つのキーがあります。 ここではすべての出力タイプを文書化します。 ### PyTorch [[autodoc]] generation.GenerateDecoderOnlyOutput [[autodoc]] generation.GenerateEncoderDecoderOutput [[autodoc]] generation.GenerateBeamDecoderOnlyOutput [[autodoc]] generation.GenerateBeamEncoderDecoderOutput ### TensorFlow [[autodoc]] generation.TFGreedySearchEncoderDecoderOutput [[autodoc]] generation.TFGreedySearchDecoderOnlyOutput [[autodoc]] generation.TFSampleEncoderDecoderOutput [[autodoc]] generation.TFSampleDecoderOnlyOutput [[autodoc]] generation.TFBeamSearchEncoderDecoderOutput [[autodoc]] generation.TFBeamSearchDecoderOnlyOutput [[autodoc]] generation.TFBeamSampleEncoderDecoderOutput [[autodoc]] generation.TFBeamSampleDecoderOnlyOutput [[autodoc]] generation.TFContrastiveSearchEncoderDecoderOutput [[autodoc]] generation.TFContrastiveSearchDecoderOnlyOutput ### FLAX [[autodoc]] generation.FlaxSampleOutput [[autodoc]] generation.FlaxGreedySearchOutput [[autodoc]] generation.FlaxBeamSearchOutput ## LogitsProcessor [`LogitsProcessor`] を使用して、言語モデルのヘッドの予測スコアを変更できます。 世代。 ### PyTorch [[autodoc]] AlternatingCodebooksLogitsProcessor - __call__ [[autodoc]] ClassifierFreeGuidanceLogitsProcessor - __call__ [[autodoc]] EncoderNoRepeatNGramLogitsProcessor - __call__ [[autodoc]] EncoderRepetitionPenaltyLogitsProcessor - __call__ [[autodoc]] EpsilonLogitsWarper - __call__ [[autodoc]] EtaLogitsWarper - __call__ [[autodoc]] ExponentialDecayLengthPenalty - __call__ [[autodoc]] ForcedBOSTokenLogitsProcessor - __call__ [[autodoc]] ForcedEOSTokenLogitsProcessor - __call__ [[autodoc]] HammingDiversityLogitsProcessor - __call__ [[autodoc]] InfNanRemoveLogitsProcessor - __call__ [[autodoc]] LogitNormalization - __call__ [[autodoc]] LogitsProcessor - __call__ [[autodoc]] LogitsProcessorList - __call__ [[autodoc]] MinLengthLogitsProcessor - __call__ [[autodoc]] MinNewTokensLengthLogitsProcessor - __call__ [[autodoc]] NoBadWordsLogitsProcessor - __call__ [[autodoc]] NoRepeatNGramLogitsProcessor - __call__ [[autodoc]] PrefixConstrainedLogitsProcessor - __call__ [[autodoc]] RepetitionPenaltyLogitsProcessor - __call__ [[autodoc]] SequenceBiasLogitsProcessor - __call__ [[autodoc]] SuppressTokensAtBeginLogitsProcessor - __call__ [[autodoc]] SuppressTokensLogitsProcessor - __call__ [[autodoc]] TemperatureLogitsWarper - __call__ [[autodoc]] TopKLogitsWarper - __call__ [[autodoc]] TopPLogitsWarper - __call__ [[autodoc]] TypicalLogitsWarper - __call__ [[autodoc]] UnbatchedClassifierFreeGuidanceLogitsProcessor - __call__ [[autodoc]] WhisperTimeStampLogitsProcessor - __call__ ### TensorFlow [[autodoc]] TFForcedBOSTokenLogitsProcessor - __call__ [[autodoc]] TFForcedEOSTokenLogitsProcessor - __call__ [[autodoc]] TFForceTokensLogitsProcessor - __call__ [[autodoc]] TFLogitsProcessor - __call__ [[autodoc]] TFLogitsProcessorList - __call__ [[autodoc]] TFLogitsWarper - __call__ [[autodoc]] TFMinLengthLogitsProcessor - __call__ [[autodoc]] TFNoBadWordsLogitsProcessor - __call__ [[autodoc]] TFNoRepeatNGramLogitsProcessor - __call__ [[autodoc]] TFRepetitionPenaltyLogitsProcessor - __call__ [[autodoc]] TFSuppressTokensAtBeginLogitsProcessor - __call__ [[autodoc]] TFSuppressTokensLogitsProcessor - __call__ [[autodoc]] TFTemperatureLogitsWarper - __call__ [[autodoc]] TFTopKLogitsWarper - __call__ [[autodoc]] TFTopPLogitsWarper - __call__ ### FLAX [[autodoc]] FlaxForcedBOSTokenLogitsProcessor - __call__ [[autodoc]] FlaxForcedEOSTokenLogitsProcessor - __call__ [[autodoc]] FlaxForceTokensLogitsProcessor - __call__ [[autodoc]] FlaxLogitsProcessor - __call__ [[autodoc]] FlaxLogitsProcessorList - __call__ [[autodoc]] FlaxLogitsWarper - __call__ [[autodoc]] FlaxMinLengthLogitsProcessor - __call__ [[autodoc]] FlaxSuppressTokensAtBeginLogitsProcessor - __call__ [[autodoc]] FlaxSuppressTokensLogitsProcessor - __call__ [[autodoc]] FlaxTemperatureLogitsWarper - __call__ [[autodoc]] FlaxTopKLogitsWarper - __call__ [[autodoc]] FlaxTopPLogitsWarper - __call__ [[autodoc]] FlaxWhisperTimeStampLogitsProcessor - __call__ ## StoppingCriteria [`StoppingCriteria`] を使用して、(EOS トークン以外の) 生成を停止するタイミングを変更できます。これは PyTorch 実装でのみ利用可能であることに注意してください。 [[autodoc]] StoppingCriteria - __call__ [[autodoc]] StoppingCriteriaList - __call__ [[autodoc]] MaxLengthCriteria - __call__ [[autodoc]] MaxTimeCriteria - __call__ ## Constraints [`Constraint`] を使用すると、生成時に出力に特定のトークンまたはシーケンスが含まれるように強制できます。これは PyTorch 実装でのみ利用可能であることに注意してください。 [[autodoc]] Constraint [[autodoc]] PhrasalConstraint [[autodoc]] DisjunctiveConstraint [[autodoc]] ConstraintListState ## BeamSearch [[autodoc]] BeamScorer - process - finalize [[autodoc]] BeamSearchScorer - process - finalize [[autodoc]] ConstrainedBeamSearchScorer - process - finalize ## Streamers [[autodoc]] TextStreamer [[autodoc]] TextIteratorStreamer
transformers/docs/source/ja/internal/generation_utils.md/0
{ "file_path": "transformers/docs/source/ja/internal/generation_utils.md", "repo_id": "transformers", "token_count": 3478 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Logging 🤗 Transformersには、ライブラリの詳細度を簡単に設定できる中央集中型のロギングシステムがあります。 現在、ライブラリのデフォルトの詳細度は「WARNING」です。 詳細度を変更するには、直接設定メソッドの1つを使用するだけです。例えば、詳細度をINFOレベルに変更する方法は以下の通りです。 ```python import transformers transformers.logging.set_verbosity_info() ``` 環境変数 `TRANSFORMERS_VERBOSITY` を使用して、デフォルトの冗長性をオーバーライドすることもできます。設定できます `debug`、`info`、`warning`、`error`、`critical` のいずれかに変更します。例えば: ```bash TRANSFORMERS_VERBOSITY=error ./myprogram.py ``` さらに、一部の「警告」は環境変数を設定することで無効にできます。 `TRANSFORMERS_NO_ADVISORY_WARNINGS` を *1* などの true 値に設定します。これにより、次を使用してログに記録される警告が無効になります。 [`logger.warning_advice`]。例えば: ```bash TRANSFORMERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py ``` 以下は、独自のモジュールまたはスクリプトでライブラリと同じロガーを使用する方法の例です。 ```python from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger("transformers") logger.info("INFO") logger.warning("WARN") ``` このロギング モジュールのすべてのメソッドは以下に文書化されています。主なメソッドは次のとおりです。 [`logging.get_verbosity`] ロガーの現在の冗長レベルを取得します。 [`logging.set_verbosity`] を使用して、冗長性を選択したレベルに設定します。順番に(少ないものから) 冗長から最も冗長まで)、それらのレベル (括弧内は対応する int 値) は次のとおりです。 - `transformers.logging.CRITICAL` または `transformers.logging.FATAL` (int 値、50): 最も多いもののみをレポートします。 重大なエラー。 - `transformers.logging.ERROR` (int 値、40): エラーのみを報告します。 - `transformers.logging.WARNING` または `transformers.logging.WARN` (int 値、30): エラーと 警告。これはライブラリで使用されるデフォルトのレベルです。 - `transformers.logging.INFO` (int 値、20): エラー、警告、および基本情報をレポートします。 - `transformers.logging.DEBUG` (int 値、10): すべての情報をレポートします。 デフォルトでは、モデルのダウンロード中に「tqdm」進行状況バーが表示されます。 [`logging.disable_progress_bar`] および [`logging.enable_progress_bar`] を使用して、この動作を抑制または抑制解除できます。 ## `logging` vs `warnings` Python には、よく組み合わせて使用​​される 2 つのロギング システムがあります。上で説明した `logging` と `warnings` です。 これにより、特定のバケット内の警告をさらに分類できます (例: 機能またはパスの`FutureWarning`) これはすでに非推奨になっており、`DeprecationWarning`は今後の非推奨を示します。 両方とも`transformers`ライブラリで使用します。 `logging`の`captureWarning`メソッドを活用して適応させて、 これらの警告メッセージは、上記の冗長設定ツールによって管理されます。 それはライブラリの開発者にとって何を意味しますか?次のヒューリスティックを尊重する必要があります。 - `warnings`は、ライブラリおよび`transformers`に依存するライブラリの開発者に優先されるべきです。 - `logging`は、日常のプロジェクトでライブラリを使用するライブラリのエンドユーザーに使用する必要があります。 以下の`captureWarnings`メソッドのリファレンスを参照してください。 [[autodoc]] logging.captureWarnings ## Base setters [[autodoc]] logging.set_verbosity_error [[autodoc]] logging.set_verbosity_warning [[autodoc]] logging.set_verbosity_info [[autodoc]] logging.set_verbosity_debug ## Other functions [[autodoc]] logging.get_verbosity [[autodoc]] logging.set_verbosity [[autodoc]] logging.get_logger [[autodoc]] logging.enable_default_handler [[autodoc]] logging.disable_default_handler [[autodoc]] logging.enable_explicit_format [[autodoc]] logging.reset_format [[autodoc]] logging.enable_progress_bar [[autodoc]] logging.disable_progress_bar
transformers/docs/source/ja/main_classes/logging.md/0
{ "file_path": "transformers/docs/source/ja/main_classes/logging.md", "repo_id": "transformers", "token_count": 2182 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Autoformer ## 概要 Autoformerモデルは、「[Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008)」という論文でHaixu Wu、Jiehui Xu、Jianmin Wang、Mingsheng Longによって提案されました。 このモデルは、予測プロセス中にトレンドと季節性成分を逐次的に分解できる深層分解アーキテクチャとしてTransformerを増強します。 論文の要旨は以下の通りです: *例えば異常気象の早期警告や長期的なエネルギー消費計画といった実応用において、予測時間を延長することは重要な要求です。本論文では、時系列の長期予測問題を研究しています。以前のTransformerベースのモデルは、長距離依存関係を発見するために様々なセルフアテンション機構を採用しています。しかし、長期未来の複雑な時間的パターンによってモデルが信頼できる依存関係を見つけることを妨げられます。また、Transformerは、長い系列の効率化のためにポイントワイズなセルフアテンションのスパースバージョンを採用する必要があり、情報利用のボトルネックとなります。Transformerを超えて、我々は自己相関機構を持つ新しい分解アーキテクチャとしてAutoformerを設計しました。系列分解の事前処理の慣行を破り、それを深層モデルの基本的な内部ブロックとして革新します。この設計は、複雑な時系列に対するAutoformerの進行的な分解能力を強化します。さらに、確率過程理論に触発されて、系列の周期性に基づいた自己相関機構を設計し、サブ系列レベルでの依存関係の発見と表現の集約を行います。自己相関は効率と精度の両方でセルフアテンションを上回ります。長期予測において、Autoformerは、エネルギー、交通、経済、気象、疾病の5つの実用的な応用をカバーする6つのベンチマークで38%の相対的な改善をもたらし、最先端の精度を達成します。* このモデルは[elisim](https://huggingface.co/elisim)と[kashif](https://huggingface.co/kashif)より提供されました。 オリジナルのコードは[こちら](https://github.com/thuml/Autoformer)で見ることができます。 ## 参考資料 Autoformerの使用を開始するのに役立つ公式のHugging Faceおよびコミュニティ(🌎で示されている)の参考資料の一覧です。ここに参考資料を提出したい場合は、気兼ねなくPull Requestを開いてください。私たちはそれをレビューいたします!参考資料は、既存のものを複製するのではなく、何か新しいことを示すことが理想的です。 - HuggingFaceブログでAutoformerに関するブログ記事をチェックしてください:[はい、Transformersは時系列予測に効果的です(+ Autoformer)](https://huggingface.co/blog/autoformer) ## AutoformerConfig [[autodoc]] AutoformerConfig ## AutoformerModel [[autodoc]] AutoformerModel - forward ## AutoformerForPrediction [[autodoc]] AutoformerForPrediction - forward
transformers/docs/source/ja/model_doc/autoformer.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/autoformer.md", "repo_id": "transformers", "token_count": 1746 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BLIP-2 ## Overview BLIP-2 モデルは、[BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) で提案されました。 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.・サバレーゼ、スティーブン・ホイ。 BLIP-2 は、軽量の 12 層 Transformer をトレーニングすることで、フリーズされた事前トレーニング済み画像エンコーダーと大規模言語モデル (LLM) を活用します。 それらの間にエンコーダーを配置し、さまざまな視覚言語タスクで最先端のパフォーマンスを実現します。最も注目すべき点は、BLIP-2 が 800 億パラメータ モデルである [Flamingo](https://arxiv.org/abs/2204.14198) を 8.7% 改善していることです。 ゼロショット VQAv2 ではトレーニング可能なパラメーターが 54 分の 1 に減少します。 論文の要約は次のとおりです。 *大規模モデルのエンドツーエンドのトレーニングにより、視覚と言語の事前トレーニングのコストはますます法外なものになってきています。この論文では、市販の凍結済み事前トレーニング画像エンコーダと凍結された大規模言語モデルから視覚言語の事前トレーニングをブートストラップする、汎用的で効率的な事前トレーニング戦略である BLIP-2 を提案します。 BLIP-2 は、2 段階で事前トレーニングされた軽量の Querying Transformer でモダリティのギャップを橋渡しします。最初のステージでは、フリーズされた画像エンコーダーから学習する視覚言語表現をブートストラップします。第 2 段階では、凍結された言語モデルから視覚から言語への生成学習をブートストラップします。 BLIP-2 は、既存の方法よりもトレーニング可能なパラメーターが大幅に少ないにもかかわらず、さまざまな視覚言語タスクで最先端のパフォーマンスを実現します。たとえば、私たちのモデルは、トレーニング可能なパラメーターが 54 分の 1 少ないゼロショット VQAv2 で、Flamingo80B を 8.7% 上回っています。また、自然言語の命令に従うことができる、ゼロショット画像からテキストへの生成というモデルの新しい機能も実証します* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg" alt="drawing" width="600"/> <small> BLIP-2 アーキテクチャ。 <a href="https://arxiv.org/abs/2301.12597">元の論文から抜粋。</a> </small> このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。 元のコードは [ここ](https://github.com/salesforce/LAVIS/tree/5ee63d688ba4cebff63acee04adaef2dee9af207) にあります。 ## Usage tips - BLIP-2 は、画像とオプションのテキスト プロンプトを指定して条件付きテキストを生成するために使用できます。推論時には、 [`generate`] メソッドを使用することをお勧めします。 - [`Blip2Processor`] を使用してモデル用の画像を準備し、予測されたトークン ID をデコードしてテキストに戻すことができます。 ## Resources BLIP-2 の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。 - 画像キャプション、ビジュアル質問応答 (VQA)、およびチャットのような会話のための BLIP-2 のデモ ノートブックは、[こちら](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BLIP-2) にあります。 ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。 ## Blip2Config [[autodoc]] Blip2Config - from_vision_qformer_text_configs ## Blip2VisionConfig [[autodoc]] Blip2VisionConfig ## Blip2QFormerConfig [[autodoc]] Blip2QFormerConfig ## Blip2Processor [[autodoc]] Blip2Processor ## Blip2VisionModel [[autodoc]] Blip2VisionModel - forward ## Blip2QFormerModel [[autodoc]] Blip2QFormerModel - forward ## Blip2Model [[autodoc]] Blip2Model - forward - get_text_features - get_image_features - get_qformer_features ## Blip2ForConditionalGeneration [[autodoc]] Blip2ForConditionalGeneration - forward - generate
transformers/docs/source/ja/model_doc/blip-2.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/blip-2.md", "repo_id": "transformers", "token_count": 2258 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Conditional DETR ## Overview 条件付き DETR モデルは、[Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) で Depu Meng、Xiaokang Chen、Zejia Fan、Gang Zeng、Houqiang Li、Yuhui Yuan、Lei Sun, Jingdong Wang によって提案されました。王京東。条件付き DETR は、高速 DETR トレーニングのための条件付きクロスアテンション メカニズムを提供します。条件付き DETR は DETR よりも 6.7 倍から 10 倍速く収束します。 論文の要約は次のとおりです。 *最近開発された DETR アプローチは、トランスフォーマー エンコーダーおよびデコーダー アーキテクチャを物体検出に適用し、有望なパフォーマンスを実現します。この論文では、トレーニングの収束が遅いという重要な問題を扱い、高速 DETR トレーニングのための条件付きクロスアテンション メカニズムを紹介します。私たちのアプローチは、DETR におけるクロスアテンションが 4 つの四肢の位置特定とボックスの予測にコンテンツの埋め込みに大きく依存しているため、高品質のコンテンツの埋め込みの必要性が高まり、トレーニングの難易度が高くなるという点に動機づけられています。条件付き DETR と呼ばれる私たちのアプローチは、デコーダーのマルチヘッド クロスアテンションのためにデコーダーの埋め込みから条件付きの空間クエリを学習します。利点は、条件付き空間クエリを通じて、各クロスアテンション ヘッドが、個別の領域 (たとえば、1 つのオブジェクトの端またはオブジェクト ボックス内の領域) を含むバンドに注目できることです。これにより、オブジェクト分類とボックス回帰のための個別の領域をローカライズするための空間範囲が狭まり、コンテンツの埋め込みへの依存が緩和され、トレーニングが容易になります。実験結果は、条件付き DETR がバックボーン R50 および R101 で 6.7 倍速く収束し、より強力なバックボーン DC5-R50 および DC5-R101 で 10 倍速く収束することを示しています。コードは https://github.com/Atten4Vis/ConditionalDETR で入手できます。* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/conditional_detr_curve.jpg" alt="描画" width="600"/> <small> 条件付き DETR は、元の DETR に比べてはるかに速い収束を示します。 <a href="https://arxiv.org/abs/2108.06152">元の論文</a>から引用。</small> このモデルは [DepuMeng](https://huggingface.co/DepuMeng) によって寄稿されました。元のコードは [ここ](https://github.com/Atten4Vis/ConditionalDETR) にあります。 ## Resources - [オブジェクト検出タスクガイド](../tasks/object_detection) ## ConditionalDetrConfig [[autodoc]] ConditionalDetrConfig ## ConditionalDetrImageProcessor [[autodoc]] ConditionalDetrImageProcessor - preprocess - post_process_object_detection - post_process_instance_segmentation - post_process_semantic_segmentation - post_process_panoptic_segmentation ## ConditionalDetrFeatureExtractor [[autodoc]] ConditionalDetrFeatureExtractor - __call__ - post_process_object_detection - post_process_instance_segmentation - post_process_semantic_segmentation - post_process_panoptic_segmentation ## ConditionalDetrModel [[autodoc]] ConditionalDetrModel - forward ## ConditionalDetrForObjectDetection [[autodoc]] ConditionalDetrForObjectDetection - forward ## ConditionalDetrForSegmentation [[autodoc]] ConditionalDetrForSegmentation - forward
transformers/docs/source/ja/model_doc/conditional_detr.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/conditional_detr.md", "repo_id": "transformers", "token_count": 1847 }
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DETR ## Overview DETR モデルは、[Transformers を使用したエンドツーエンドのオブジェクト検出](https://arxiv.org/abs/2005.12872) で提案されました。 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko ルイコ。 DETR 畳み込みバックボーンと、その後にエンドツーエンドでトレーニングできるエンコーダー/デコーダー Transformer で構成されます。 物体の検出。 Faster-R-CNN や Mask-R-CNN などのモデルの複雑さの多くが大幅に簡素化されます。 領域提案、非最大抑制手順、アンカー生成などです。さらに、DETR は次のようにすることもできます。 デコーダ出力の上にマスク ヘッドを追加するだけで、パノプティック セグメンテーションを実行できるように自然に拡張されています。 論文の要約は次のとおりです。 *物体検出を直接集合予測問題として見る新しい方法を紹介します。私たちのアプローチは、 検出パイプラインにより、非最大抑制などの多くの手作業で設計されたコンポーネントの必要性が効果的に排除されます。 タスクに関する事前の知識を明示的にエンコードするプロシージャまたはアンカーの生成。の主な成分は、 DEtection TRansformer または DETR と呼ばれる新しいフレームワークは、セットベースのグローバル損失であり、 二部マッチング、およびトランスフォーマー エンコーダー/デコーダー アーキテクチャ。学習されたオブジェクト クエリの固定された小さなセットが与えられると、 DETR は、オブジェクトとグローバル イメージ コンテキストの関係について推論し、最終セットを直接出力します。 並行して予想も。新しいモデルは概念的にシンプルであり、多くのモデルとは異なり、特殊なライブラリを必要としません。 他の最新の検出器。 DETR は、確立された、および同等の精度と実行時のパフォーマンスを実証します。 困難な COCO 物体検出データセットに基づく、高度に最適化された Faster RCNN ベースライン。さらに、DETR は簡単に実行できます。 統一された方法でパノプティック セグメンテーションを生成するために一般化されました。競合他社を大幅に上回るパフォーマンスを示しています ベースライン* このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。元のコードは [こちら](https://github.com/facebookresearch/detr) にあります。 ## How DETR works [`~transformers.DetrForObjectDetection`] がどのように機能するかを説明する TLDR は次のとおりです。 まず、事前にトレーニングされた畳み込みバックボーンを通じて画像が送信されます (論文では、著者らは次のように使用しています)。 ResNet-50/ResNet-101)。バッチ ディメンションも追加すると仮定します。これは、バックボーンへの入力が 画像に 3 つのカラー チャネル (RGB) があると仮定した場合の、形状 `(batch_size, 3, height, width)` のテンソル。 CNNのバックボーン 通常は `(batch_size, 2048, height/32, width/32)` の形状の、新しい低解像度の特徴マップを出力します。これは 次に、DETR の Transformer の隠れ次元 (デフォルトでは `256`) に一致するように投影されます。 `nn.Conv2D` レイヤー。これで、形状 `(batch_size, 256, height/32, width/32)` のテンソルが完成しました。 特徴マップは平坦化および転置され、形状 `(batch_size, seq_len, d_model)` のテンソルを取得します = `(batch_size, width/32*height/32, 256)`。したがって、NLP モデルとの違いは、シーケンスの長さが実際には 通常よりも長くなりますが、「d_model」は小さくなります (NLP では通常 768 以上です)。 次に、これがエンコーダを介して送信され、同じ形状の `encoder_hidden_​​states` が出力されます (次のように考えることができます)。 これらは画像の特徴として)。次に、いわゆる **オブジェクト クエリ**がデコーダを通じて送信されます。これは形状のテンソルです `(batch_size, num_queries, d_model)`。通常、`num_queries` は 100 に設定され、ゼロで初期化されます。 これらの入力埋め込みは学習された位置エンコーディングであり、作成者はこれをオブジェクト クエリと呼び、同様に エンコーダでは、それらは各アテンション層の入力に追加されます。各オブジェクト クエリは特定のオブジェクトを検索します。 画像では。デコーダは、複数のセルフ アテンション レイヤとエンコーダ デコーダ アテンション レイヤを通じてこれらの埋め込みを更新します。 同じ形状の `decoder_hidden_​​states` を出力します: `(batch_size, num_queries, d_model)`。次に頭が2つ オブジェクト検出のために上部に追加されます。各オブジェクト クエリをオブジェクトの 1 つに分類するための線形レイヤー、または「いいえ」 オブジェクト」、および各クエリの境界ボックスを予測する MLP。 モデルは **2 部マッチング損失**を使用してトレーニングされます。つまり、実際に行うことは、予測されたクラスを比較することです + グラウンド トゥルース アノテーションに対する N = 100 個の各オブジェクト クエリの境界ボックス (同じ長さ N までパディング) (したがって、画像にオブジェクトが 4 つしか含まれていない場合、96 個の注釈にはクラスとして「オブジェクトなし」、およびクラスとして「境界ボックスなし」が含まれるだけになります。 境界ボックス)。 [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) は、検索に使用されます。 N 個のクエリのそれぞれから N 個の注釈のそれぞれへの最適な 1 対 1 のマッピング。次に、標準クロスエントロピー ( クラス)、および L1 と [generalized IoU loss](https://giou.stanford.edu/) の線形結合 ( 境界ボックス) は、モデルのパラメーターを最適化するために使用されます。 DETR は、パノプティック セグメンテーション (セマンティック セグメンテーションとインスタンスを統合する) を実行するように自然に拡張できます。 セグメンテーション)。 [`~transformers.DetrForSegmentation`] はセグメンテーション マスク ヘッドを上に追加します [`~transformers.DetrForObjectDetection`]。マスク ヘッドは、共同でトレーニングすることも、2 段階のプロセスでトレーニングすることもできます。 ここで、最初に [`~transformers.DetrForObjectDetection`] モデルをトレーニングして、両方の周囲の境界ボックスを検出します。 「もの」(インスタンス)と「もの」(木、道路、空などの背景のもの)をすべて凍結し、すべての重みをフリーズしてのみトレーニングします。 25 エポックのマスクヘッド。実験的には、これら 2 つのアプローチは同様の結果をもたらします。ボックスの予測は ハンガリー語のマッチングはボックス間の距離を使用して計算されるため、トレーニングを可能にするためにはこれが必要です。 ## Usage tips - DETR は、いわゆる **オブジェクト クエリ** を使用して、画像内のオブジェクトを検出します。クエリの数によって最大値が決まります 単一の画像内で検出できるオブジェクトの数。デフォルトでは 100 に設定されます (パラメーターを参照) [`~transformers.DetrConfig`] の `num_queries`)。ある程度の余裕があるのは良いことです (COCO では、 著者は 100 を使用しましたが、COCO イメージ内のオブジェクトの最大数は約 70 です)。 - DETR のデコーダーは、クエリの埋め込みを並行して更新します。これは GPT-2 のような言語モデルとは異なります。 並列ではなく自己回帰デコードを使用します。したがって、因果的注意マスクは使用されません。 - DETR は、投影前に各セルフアテンション層とクロスアテンション層の隠れ状態に位置埋め込みを追加します。 クエリとキーに。画像の位置埋め込みについては、固定正弦波または学習済みのどちらかを選択できます。 絶対位置埋め込み。デフォルトでは、パラメータ `position_embedding_type` は [`~transformers.DetrConfig`] は `"sine"` に設定されます。 - DETR の作成者は、トレーニング中に、特にデコーダで補助損失を使用すると役立つことに気づきました。 モデルは各クラスの正しい数のオブジェクトを出力します。パラメータ `auxiliary_loss` を設定すると、 [`~transformers.DetrConfig`] を`True`に設定し、フィードフォワード ニューラル ネットワークとハンガリー損失を予測します は各デコーダ層の後に追加されます (FFN がパラメータを共有する)。 - 複数のノードにわたる分散環境でモデルをトレーニングする場合は、 _modeling_detr.py_ の _DetrLoss_ クラスの _num_boxes_ 変数。複数のノードでトレーニングする場合、これは次のようにする必要があります 元の実装で見られるように、すべてのノードにわたるターゲット ボックスの平均数に設定されます [こちら](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232) 。 - [`~transformers.DetrForObjectDetection`] および [`~transformers.DetrForSegmentation`] は次のように初期化できます。 [timm ライブラリ](https://github.com/rwightman/pytorch-image-models) で利用可能な畳み込みバックボーン。 たとえば、MobileNet バックボーンを使用した初期化は、次の `backbone` 属性を設定することで実行できます。 [`~transformers.DetrConfig`] を `"tf_mobilenetv3_small_075"` に設定し、それを使用してモデルを初期化します。 構成。 - DETR は、最短辺が一定のピクセル数以上になり、最長辺が一定量以上になるように入力画像のサイズを変更します。 最大 1333 ピクセル。トレーニング時に、最短辺がランダムに に設定されるようにスケール拡張が使用されます。 最小 480、最大 800 ピクセル。推論時には、最短辺が 800 に設定されます。 使用できます [`~transformers.DetrImageProcessor`] 用の画像 (およびオプションの COCO 形式の注釈) を準備します。 モデル。このサイズ変更により、バッチ内の画像のサイズが異なる場合があります。 DETR は、画像を最大までパディングすることでこの問題を解決します。 どのピクセルが実数でどのピクセルがパディングであるかを示すピクセル マスクを作成することによって、バッチ内の最大サイズを決定します。 あるいは、画像をバッチ処理するためにカスタムの `collat​​e_fn` を定義することもできます。 [`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`]。 - 画像のサイズによって使用されるメモリの量が決まり、したがって「batch_size」も決まります。 GPU あたり 2 のバッチ サイズを使用することをお勧めします。詳細については、[この Github スレッド](https://github.com/facebookresearch/detr/issues/150) を参照してください。 DETR モデルをインスタンス化するには 3 つの方法があります (好みに応じて)。 オプション 1: モデル全体の事前トレーニングされた重みを使用して DETR をインスタンス化する ```py >>> from transformers import DetrForObjectDetection >>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") ``` オプション 2: Transformer についてはランダムに初期化された重みを使用して DETR をインスタンス化しますが、バックボーンについては事前にトレーニングされた重みを使用します ```py >>> from transformers import DetrConfig, DetrForObjectDetection >>> config = DetrConfig() >>> model = DetrForObjectDetection(config) ``` オプション 3: バックボーン + トランスフォーマーのランダムに初期化された重みを使用して DETR をインスタンス化します。 ```py >>> config = DetrConfig(use_pretrained_backbone=False) >>> model = DetrForObjectDetection(config) ``` | Task | Object detection | Instance segmentation | Panoptic segmentation | |------|------------------|-----------------------|-----------------------| | **Description** |画像内のオブジェクトの周囲の境界ボックスとクラス ラベルを予測する | 画像内のオブジェクト (つまりインスタンス) の周囲のマスクを予測する | 画像内のオブジェクト (インスタンス) と「もの」 (木や道路などの背景) の両方の周囲のマスクを予測します | | **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] | | **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | | | **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) | | **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] | | **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` | つまり、COCO 検出または COCO パノプティック形式でデータを準備してから、次を使用する必要があります。 [`~transformers.DetrImageProcessor`] `pixel_values`、`pixel_mask`、およびオプションを作成します。 「ラベル」。これを使用してモデルをトレーニング (または微調整) できます。評価するには、まず、 [`~transformers.DetrImageProcessor`] の後処理メソッドの 1 つを使用したモデルの出力。これらはできます `CocoEvaluator` または `PanopticEvaluator` のいずれかに提供され、次のようなメトリクスを計算できます。 平均平均精度 (mAP) とパノラマ品質 (PQ)。後者のオブジェクトは [元のリポジトリ](https://github.com/facebookresearch/detr) に実装されています。評価の詳細については、[サンプル ノートブック](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) を参照してください。 ## Resources DETR の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。 <PipelineTag pipeline="object-detection"/> - カスタム データセットの [`DetrForObjectDetection`] と [`DetrForSegmentation`] の微調整を説明するすべてのサンプル ノートブックは、[こちら](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) で見つけることができます。 。 - 参照: [オブジェクト検出タスク ガイド](../tasks/object_detection) ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。 ## DetrConfig [[autodoc]] DetrConfig ## DetrImageProcessor [[autodoc]] DetrImageProcessor - preprocess - post_process_object_detection - post_process_semantic_segmentation - post_process_instance_segmentation - post_process_panoptic_segmentation ## DetrImageProcessorFast [[autodoc]] DetrImageProcessorFast - preprocess - post_process_object_detection - post_process_semantic_segmentation - post_process_instance_segmentation - post_process_panoptic_segmentation ## DetrFeatureExtractor [[autodoc]] DetrFeatureExtractor - __call__ - post_process_object_detection - post_process_semantic_segmentation - post_process_instance_segmentation - post_process_panoptic_segmentation ## DETR specific outputs [[autodoc]] models.detr.modeling_detr.DetrModelOutput [[autodoc]] models.detr.modeling_detr.DetrObjectDetectionOutput [[autodoc]] models.detr.modeling_detr.DetrSegmentationOutput ## DetrModel [[autodoc]] DetrModel - forward ## DetrForObjectDetection [[autodoc]] DetrForObjectDetection - forward ## DetrForSegmentation [[autodoc]] DetrForSegmentation - forward
transformers/docs/source/ja/model_doc/detr.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/detr.md", "repo_id": "transformers", "token_count": 8070 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Efficient Training on Multiple CPUs 1つのCPUでのトレーニングが遅すぎる場合、複数のCPUを使用できます。このガイドは、PyTorchベースのDDPを使用した分散CPUトレーニングに焦点を当てています。 ## Intel® oneCCL Bindings for PyTorch [Intel® oneCCL](https://github.com/oneapi-src/oneCCL)(集合通信ライブラリ)は、allreduce、allgather、alltoallなどの収集通信を実装した効率的な分散ディープラーニングトレーニング用のライブラリです。oneCCLの詳細については、[oneCCLドキュメント](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html)と[oneCCL仕様](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html)を参照してください。 モジュール`oneccl_bindings_for_pytorch`(バージョン1.12以前は`torch_ccl`)は、PyTorch C10D ProcessGroup APIを実装し、外部のProcessGroupとして動的にロードでき、現在はLinuxプラットフォームでのみ動作します。 [torch-ccl](https://github.com/intel/torch-ccl)の詳細情報を確認してください。 ### Intel® oneCCL Bindings for PyTorch installation: Wheelファイルは、以下のPythonバージョン用に利用可能です: | Extension Version | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | | :---------------: | :--------: | :--------: | :--------: | :--------: | :---------: | | 1.13.0 | | √ | √ | √ | √ | | 1.12.100 | | √ | √ | √ | √ | | 1.12.0 | | √ | √ | √ | √ | | 1.11.0 | | √ | √ | √ | √ | | 1.10.0 | √ | √ | √ | √ | | ```bash pip install oneccl_bind_pt=={pytorch_version} -f https://developer.intel.com/ipex-whl-stable-cpu ``` where `{pytorch_version}` should be your PyTorch version, for instance 1.13.0. Check more approaches for [oneccl_bind_pt installation](https://github.com/intel/torch-ccl). Versions of oneCCL and PyTorch must match. <Tip warning={true}> oneccl_bindings_for_pytorch 1.12.0 prebuilt wheel does not work with PyTorch 1.12.1 (it is for PyTorch 1.12.0) PyTorch 1.12.1 should work with oneccl_bindings_for_pytorch 1.12.100 </Tip> `{pytorch_version}` は、あなたのPyTorchのバージョン(例:1.13.0)に置き換える必要があります。重要なのは、oneCCLとPyTorchのバージョンが一致していることです。[oneccl_bind_ptのインストール](https://github.com/intel/torch-ccl)に関するさらなるアプローチを確認できます。 <Tip warning={true}> `oneccl_bindings_for_pytorch`の1.12.0プリビルトホイールはPyTorch 1.12.1と互換性がありません(これはPyTorch 1.12.0用です)。PyTorch 1.12.1を使用する場合は、`oneccl_bindings_for_pytorch`バージョン1.12.100を使用する必要があります。 </Tip> ## Intel® MPI library この基準ベースのMPI実装を使用して、Intel®アーキテクチャ上で柔軟で効率的、スケーラブルなクラスタメッセージングを提供します。このコンポーネントは、Intel® oneAPI HPC Toolkitの一部です。 oneccl_bindings_for_pytorchはMPIツールセットと一緒にインストールされます。使用する前に環境をソース化する必要があります。 for Intel® oneCCL >= 1.12.0 ```bash oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh ``` for Intel® oneCCL whose version < 1.12.0 ```bash torch_ccl_path=$(python -c "import torch; import torch_ccl; import os; print(os.path.abspath(os.path.dirname(torch_ccl.__file__)))") source $torch_ccl_path/env/setvars.sh ``` #### IPEX installation: IPEXは、Float32およびBFloat16の両方でCPUトレーニングのパフォーマンス最適化を提供します。詳細は[こちらのシングルCPUセクション](./perf_train_cpu)をご参照ください。 以下の「トレーナーでの使用」は、Intel® MPIライブラリでmpirunを使用する例を示しています。 ## Usage in Trainer トレーナーでのマルチCPU分散トレーニングを有効にするために、ユーザーはコマンド引数に **`--ddp_backend ccl`** を追加する必要があります。 例を見てみましょう。[質問応答の例](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) 以下のコマンドは、1つのXeonノードで2つのプロセスを使用してトレーニングを有効にします。1つのプロセスが1つのソケットで実行されます。OMP_NUM_THREADS/CCL_WORKER_COUNT変数は、最適なパフォーマンスを調整するために調整できます。 ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=127.0.0.1 mpirun -n 2 -genv OMP_NUM_THREADS=23 \ python3 run_qa.py \ --model_name_or_path google-bert/bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex ``` 以下のコマンドは、2つのXeonプロセッサ(node0とnode1、node0をメインプロセスとして使用)で合計4つのプロセスを使用してトレーニングを有効にします。ppn(ノードごとのプロセス数)は2に設定され、1つのソケットごとに1つのプロセスが実行されます。最適なパフォーマンスを得るために、OMP_NUM_THREADS/CCL_WORKER_COUNT変数を調整できます。 node0では、各ノードのIPアドレスを含む構成ファイルを作成し、その構成ファイルのパスを引数として渡す必要があります。 ```shell script cat hostfile xxx.xxx.xxx.xxx #node0 ip xxx.xxx.xxx.xxx #node1 ip ``` ノード0で次のコマンドを実行すると、ノード0とノード1で**4DDP**がBF16自動混合精度で有効になります。 ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip mpirun -f hostfile -n 4 -ppn 2 \ -genv OMP_NUM_THREADS=23 \ python3 run_qa.py \ --model_name_or_path google-bert/bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex \ --bf16 ```
transformers/docs/source/ja/perf_train_cpu_many.md/0
{ "file_path": "transformers/docs/source/ja/perf_train_cpu_many.md", "repo_id": "transformers", "token_count": 3281 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # What 🤗 Transformers can do 🤗 Transformersは、自然言語処理(NLP)、コンピュータビジョン、音声処理などの最新の事前学習済みモデルのライブラリです。このライブラリには、Transformerモデルだけでなく、コンピュータビジョンタスク向けのモダンな畳み込みニューラルネットワークなど、Transformer以外のモデルも含まれています。現代のスマートフォン、アプリ、テレビなど、最も人気のある消費者製品の多くには、深層学習技術が使用されています。スマートフォンで撮影した写真から背景オブジェクトを削除したいですか?これはパノプティック・セグメンテーション(まだ何を意味するかわからなくても心配しないでください、以下のセクションで説明します!)のタスクの一例です。 このページでは、🤗 Transformersライブラリを使用して、たった3行のコードで解決できるさまざまな音声および音声、コンピュータビジョン、NLPタスクの概要を提供します! ## Audio 音声と音声処理のタスクは、他のモダリティとは少し異なります。なぜなら、入力としての生の音声波形は連続的な信号であるからです。テキストとは異なり、生の音声波形は文章を単語に分割できるようにきれいに分割できません。これを解決するために、通常、生の音声信号は定期的な間隔でサンプリングされます。間隔内でより多くのサンプルを取ると、サンプリングレートが高くなり、音声はより元の音声ソースに近づきます。 以前のアプローチでは、音声を前処理してそれから有用な特徴を抽出しました。しかし、現在では、生の音声波形を特徴エンコーダに直接フィードし、音声表現を抽出することから始めることが一般的です。これにより、前処理ステップが簡素化され、モデルは最も重要な特徴を学習できます。 ### Audio classification 音声分類は、事前に定義されたクラスのセットから音声データにラベルを付けるタスクです。これは多くの具体的なアプリケーションを含む広範なカテゴリであり、いくつかの例は次のとおりです: - 音響シーン分類:音声にシーンラベルを付ける(「オフィス」、「ビーチ」、「スタジアム」) - 音響イベント検出:音声に音声イベントラベルを付ける(「車のクラクション」、「クジラの呼び声」、「ガラスの破裂」) - タギング:複数の音を含む音声にラベルを付ける(鳥の鳴き声、会議でのスピーカー識別) - 音楽分類:音楽にジャンルラベルを付ける(「メタル」、「ヒップホップ」、「カントリー」) ```py >>> from transformers import pipeline >>> classifier = pipeline(task="audio-classification", model="superb/hubert-base-superb-er") >>> preds = classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac") >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> preds [{'score': 0.4532, 'label': 'hap'}, {'score': 0.3622, 'label': 'sad'}, {'score': 0.0943, 'label': 'neu'}, {'score': 0.0903, 'label': 'ang'}] ``` ### Automatic speech recognition 自動音声認識(ASR)は音声をテキストに変換します。これは、人間のコミュニケーションの自然な形式である音声の一部として、部分的にそのような一般的なオーディオタスクの一つです。今日、ASRシステムはスピーカー、スマートフォン、自動車などの「スマート」テクノロジープロダクトに組み込まれています。私たちは仮想アシスタントに音楽を再生してもらったり、リマインダーを設定してもらったり、天気を教えてもらったりできます。 しかし、Transformerアーキテクチャが助けた主要な課題の一つは、低リソース言語におけるものです。大量の音声データで事前トレーニングし、低リソース言語でラベル付き音声データをわずか1時間だけでファインチューニングすることでも、以前のASRシステムと比較して高品質な結果を得ることができます。以前のASRシステムは100倍以上のラベル付きデータでトレーニングされていましたが、Transformerアーキテクチャはこの問題に貢献しました。 ```py >>> from transformers import pipeline >>> transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-small") >>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac") {'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'} ``` ## Computer vision 最初で初めて成功したコンピュータビジョンのタスクの一つは、[畳み込みニューラルネットワーク(CNN)](glossary#convolution)を使用して郵便番号の画像を認識することでした。画像はピクセルから構成され、各ピクセルには数値があります。これにより、画像をピクセル値の行列として簡単に表現できます。特定のピクセル値の組み合わせは、画像の色を記述します。 コンピュータビジョンのタスクを解決する一般的な方法は次の2つです: 1. 畳み込みを使用して、低レベルの特徴から高レベルの抽象的な情報まで、画像の階層的な特徴を学習する。 2. 画像をパッチに分割し、各画像パッチが画像全体とどのように関連しているかを徐々に学習するためにTransformerを使用する。CNNが好むボトムアップアプローチとは異なり、これはぼんやりとした画像から始めて徐々に焦点を合わせるようなものです。 ### Image classification 画像分類は、事前に定義されたクラスのセットから画像全体にラベルを付けます。多くの分類タスクと同様に、画像分類には多くの実用的な用途があり、その一部は次のとおりです: * 医療:疾患の検出や患者の健康の監視に使用するために医療画像にラベルを付ける * 環境:森林伐採の監視、野生地の管理情報、または山火事の検出に使用するために衛星画像にラベルを付ける * 農業:作物の健康を監視するための作物の画像や、土地利用の監視のための衛星画像にラベルを付ける * 生態学:野生動物の個体数を監視したり、絶滅危惧種を追跡するために動植物の種の画像にラベルを付ける ```py >>> from transformers import pipeline >>> classifier = pipeline(task="image-classification") >>> preds = classifier( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") {'score': 0.4335, 'label': 'lynx, catamount'} {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'} {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'} {'score': 0.0239, 'label': 'Egyptian cat'} {'score': 0.0229, 'label': 'tiger cat'} ``` ### Object detection 画像分類とは異なり、オブジェクト検出は画像内の複数のオブジェクトを識別し、オブジェクトの位置を画像内で定義する境界ボックスによって特定します。オブジェクト検出の例には次のような用途があります: * 自動運転車:他の車両、歩行者、信号機などの日常の交通オブジェクトを検出 * リモートセンシング:災害モニタリング、都市計画、天候予測 * 欠陥検出:建物のクラックや構造上の損傷、製造上の欠陥を検出 ```py >>> from transformers import pipeline >>> detector = pipeline(task="object-detection") >>> preds = detector( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"], "box": pred["box"]} for pred in preds] >>> preds [{'score': 0.9865, 'label': 'cat', 'box': {'xmin': 178, 'ymin': 154, 'xmax': 882, 'ymax': 598}}] ``` ### Image segmentation 画像セグメンテーションは、画像内のすべてのピクセルをクラスに割り当てるピクセルレベルのタスクです。これはオブジェクト検出とは異なり、オブジェクトをラベル付けし、予測するために境界ボックスを使用する代わりに、セグメンテーションはより詳細になります。セグメンテーションはピクセルレベルでオブジェクトを検出できます。画像セグメンテーションにはいくつかのタイプがあります: * インスタンスセグメンテーション:オブジェクトのクラスをラベル付けするだけでなく、オブジェクトの個別のインスタンス("犬-1"、"犬-2")もラベル付けします。 * パノプティックセグメンテーション:セマンティックセグメンテーションとインスタンスセグメンテーションの組み合わせ。セマンティッククラスごとに各ピクセルにラベルを付け、オブジェクトの個別のインスタンスもラベル付けします。 セグメンテーションタスクは、自動運転車にとって、周囲の世界のピクセルレベルのマップを作成し、歩行者や他の車両を安全に回避できるようにするのに役立ちます。また、医療画像では、タスクの細かい粒度が異常な細胞や臓器の特徴を識別するのに役立ちます。画像セグメンテーションは、eコマースで衣類を仮想的に試着したり、カメラを通じて実世界にオブジェクトを重ねて拡張現実の体験を作成したりするためにも使用できます。 ```py >>> from transformers import pipeline >>> segmenter = pipeline(task="image-segmentation") >>> preds = segmenter( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") {'score': 0.9879, 'label': 'LABEL_184'} {'score': 0.9973, 'label': 'snow'} {'score': 0.9972, 'label': 'cat'} ``` ### Depth estimation 深度推定は、画像内の各ピクセルがカメラからの距離を予測します。このコンピュータビジョンタスクは、特にシーンの理解と再構築に重要です。たとえば、自動運転車では、歩行者、交通標識、他の車などの物体がどれだけ遠いかを理解し、障害物や衝突を回避するために必要です。深度情報はまた、2D画像から3D表現を構築し、生物学的構造や建物の高品質な3D表現を作成するのに役立ちます。 深度推定には次の2つのアプローチがあります: * ステレオ:深度は、わずかに異なる角度からの同じ画像の2つの画像を比較して推定されます。 * モノキュラー:深度は単一の画像から推定されます。 ```py >>> from transformers import pipeline >>> depth_estimator = pipeline(task="depth-estimation") >>> preds = depth_estimator( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) ``` ## Natural language processing NLPタスクは、テキストが私たちにとって自然なコミュニケーション手段であるため、最も一般的なタスクの一つです。モデルが認識するための形式にテキストを変換するには、トークン化が必要です。これは、テキストのシーケンスを単語やサブワード(トークン)に分割し、それらのトークンを数字に変換することを意味します。その結果、テキストのシーケンスを数字のシーケンスとして表現し、一度数字のシーケンスがあれば、さまざまなNLPタスクを解決するためにモデルに入力できます! ### Text classification どんなモダリティの分類タスクと同様に、テキスト分類は事前に定義されたクラスのセットからテキストのシーケンス(文レベル、段落、またはドキュメントであることがあります)にラベルを付けます。テキスト分類には多くの実用的な用途があり、その一部は次のとおりです: * 感情分析:`positive`や`negative`のような極性に従ってテキストにラベルを付け、政治、金融、マーケティングなどの分野での意思決定をサポートします。 * コンテンツ分類:テキストをトピックに従ってラベル付けし、ニュースやソーシャルメディアのフィード内の情報を整理し、フィルタリングするのに役立ちます(`天気`、`スポーツ`、`金融`など)。 ```py >>> from transformers import pipeline >>> classifier = pipeline(task="sentiment-analysis") >>> preds = classifier("Hugging Face is the best thing since sliced bread!") >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> preds [{'score': 0.9991, 'label': 'POSITIVE'}] ``` ### Token classification どんなNLPタスクでも、テキストはテキストのシーケンスを個々の単語やサブワードに分割して前処理されます。これらは[トークン](/glossary#token)として知られています。トークン分類は、事前に定義されたクラスのセットから各トークンにラベルを割り当てます。 トークン分類の一般的なタイプは次の2つです: * 固有表現認識(NER):組織、人物、場所、日付などのエンティティのカテゴリに従ってトークンにラベルを付けます。NERは特にバイオメディカル環境で人気であり、遺伝子、タンパク質、薬物名などをラベル付けできます。 * 品詞タグ付け(POS):名詞、動詞、形容詞などの品詞に従ってトークンにラベルを付けます。POSは、翻訳システムが同じ単語が文法的にどのように異なるかを理解するのに役立ちます(名詞としての「銀行」と動詞としての「銀行」など)。 ```py >>> from transformers import pipeline >>> classifier = pipeline(task="ner") >>> preds = classifier("Hugging Face is a French company based in New York City.") >>> preds = [ ... { ... "entity": pred["entity"], ... "score": round(pred["score"], 4), ... "index": pred["index"], ... "word": pred["word"], ... "start": pred["start"], ... "end": pred["end"], ... } ... for pred in preds ... ] >>> print(*preds, sep="\n") {'entity': 'I-ORG', 'score': 0.9968, 'index': 1, 'word': 'Hu', 'start': 0, 'end': 2} {'entity': 'I-ORG', 'score': 0.9293, 'index': 2, 'word': '##gging', 'start': 2, 'end': 7} {'entity': 'I-ORG', 'score': 0.9763, 'index': 3, 'word': 'Face', 'start': 8, 'end': 12} {'entity': 'I-MISC', 'score': 0.9983, 'index': 6, 'word': 'French', 'start': 18, 'end': 24} {'entity': 'I-LOC', 'score': 0.999, 'index': 10, 'word': 'New', 'start': 42, 'end': 45} {'entity': 'I-LOC', 'score': 0.9987, 'index': 11, 'word': 'York', 'start': 46, 'end': 50} {'entity': 'I-LOC', 'score': 0.9992, 'index': 12, 'word': 'City', 'start': 51, 'end': 55} ``` ### Question answering 質問応答は、コンテキスト(オープンドメイン)を含む場合と含まない場合(クローズドドメイン)がある場合もある、別のトークンレベルのタスクで、質問に対する回答を返します。このタスクは、仮想アシスタントにレストランが営業しているかどうかのような質問をするときに発生します。また、顧客や技術サポートを提供し、検索エンジンがあなたが求めている関連情報を取得するのにも役立ちます。 質問応答の一般的なタイプは次の2つです: * 抽出型:質問と一部のコンテキストが与えられた場合、モデルがコンテキストから抽出する必要のあるテキストのスパンが回答となります。 * 抽象的:質問と一部のコンテキストが与えられた場合、回答はコンテキストから生成されます。このアプローチは、[`QuestionAnsweringPipeline`]ではなく[`Text2TextGenerationPipeline`]で処理されます。 ```py >>> from transformers import pipeline >>> question_answerer = pipeline(task="question-answering") >>> preds = question_answerer( ... question="What is the name of the repository?", ... context="The name of the repository is huggingface/transformers", ... ) >>> print( ... f"score: {round(preds['score'], 4)}, start: {preds['start']}, end: {preds['end']}, answer: {preds['answer']}" ... ) score: 0.9327, start: 30, end: 54, answer: huggingface/transformers ``` ### Summarization 要約は、長いテキストから短いバージョンを作成し、元の文書の意味の大部分を保ちながら試みるタスクです。要約はシーケンスからシーケンスへのタスクであり、入力よりも短いテキストシーケンスを出力します。要約を行うことで、読者が主要なポイントを迅速に理解できるようにするのに役立つ長文書がたくさんあります。法案、法的および財務文書、特許、科学論文など、読者の時間を節約し読書の支援となる文書の例があります。 質問応答と同様に、要約には2つのタイプがあります: * 抽出的要約:元のテキストから最も重要な文を識別して抽出します。 * 抽象的要約:元のテキストからターゲットの要約(入力文書に含まれていない新しい単語を含むことがあります)を生成します。[`SummarizationPipeline`]は抽象的なアプローチを使用しています。 ```py >>> from transformers import pipeline >>> summarizer = pipeline(task="summarization") >>> summarizer( ... "In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles." ... ) [{'summary_text': ' The Transformer is the first sequence transduction model based entirely on attention . It replaces the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention . For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers .'}] ``` ### Translation 翻訳は、ある言語のテキストシーケンスを別の言語に変換する作業です。これは異なるバックグラウンドを持つ人々がコミュニケーションをとるのに役立ち、広範な観客にコンテンツを翻訳して伝えるのに役立ち、新しい言語を学ぶのを支援する学習ツールにもなります。要約と共に、翻訳はシーケンス間のタスクであり、モデルは入力シーケンスを受け取り、ターゲットの出力シーケンスを返します。 初期の翻訳モデルは主に単一言語でしたが、最近では多言語モデルに対する関心が高まり、多くの言語対で翻訳できるような多言語モデルに注目が集まっています。 ```py >>> from transformers import pipeline >>> text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning." >>> translator = pipeline(task="translation", model="google-t5/t5-small") >>> translator(text) [{'translation_text': "Hugging Face est une tribune communautaire de l'apprentissage des machines."}] ``` ### 言語モデリング 言語モデリングは、テキストのシーケンス内の単語を予測するタスクです。事前学習された言語モデルは、多くの他のダウンストリームタスクに対してファインチューニングできるため、非常に人気のあるNLPタスクとなっています。最近では、ゼロショットまたはフューショット学習を実証する大規模な言語モデル(LLM)に大きな関心が寄せられています。これは、モデルが明示的にトレーニングされていないタスクを解決できることを意味します!言語モデルは、流暢で説得力のあるテキストを生成するために使用できますが、テキストが常に正確であるわけではないため、注意が必要です。 言語モデリングには2つのタイプがあります: * 因果的:モデルの目標は、シーケンス内の次のトークンを予測することであり、将来のトークンはマスクされます。 ```py >>> from transformers import pipeline >>> prompt = "Hugging Face is a community-based open-source platform for machine learning." >>> generator = pipeline(task="text-generation") >>> generator(prompt) # doctest: +SKIP ``` * マスクされた:モデルの目的は、シーケンス内のトークン全体にアクセスしながら、シーケンス内のマスクされたトークンを予測することです。 ```py >>> text = "Hugging Face is a community-based open-source <mask> for machine learning." >>> fill_mask = pipeline(task="fill-mask") >>> preds = fill_mask(text, top_k=1) >>> preds = [ ... { ... "score": round(pred["score"], 4), ... "token": pred["token"], ... "token_str": pred["token_str"], ... "sequence": pred["sequence"], ... } ... for pred in preds ... ] >>> preds [{'score': 0.2236, 'token': 1761, 'token_str': ' platform', 'sequence': 'Hugging Face is a community-based open-source platform for machine learning.'}] ``` ## Multimodal マルチモーダルタスクは、特定の問題を解決するために複数のデータモダリティ(テキスト、画像、音声、ビデオ)を処理するためにモデルを必要とします。画像キャプショニングは、モデルが入力として画像を受け取り、画像を説明するテキストのシーケンスまたは画像のいくつかの特性を出力するマルチモーダルタスクの例です。 マルチモーダルモデルは異なるデータタイプまたはモダリティで作業しますが、内部的には前処理ステップがモデルにすべてのデータタイプを埋め込み(データに関する意味のある情報を保持するベクトルまたは数字のリスト)に変換するのを支援します。画像キャプショニングのようなタスクでは、モデルは画像の埋め込みとテキストの埋め込みの間の関係を学習します。 ### Document question answering ドキュメント質問応答は、ドキュメントからの自然言語の質問に答えるタスクです。テキストを入力とするトークンレベルの質問応答タスクとは異なり、ドキュメント質問応答はドキュメントの画像とそのドキュメントに関する質問を受け取り、答えを返します。ドキュメント質問応答は構造化されたドキュメントを解析し、それから重要な情報を抽出するために使用できます。以下の例では、レシートから合計金額とお釣りを抽出することができます。 ```py >>> from transformers import pipeline >>> from PIL import Image >>> import requests >>> url = "https://huggingface.co/datasets/hf-internal-testing/example-documents/resolve/main/jpeg_images/2.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> doc_question_answerer = pipeline("document-question-answering", model="magorshunov/layoutlm-invoices") >>> preds = doc_question_answerer( ... question="What is the total amount?", ... image=image, ... ) >>> preds [{'score': 0.8531, 'answer': '17,000', 'start': 4, 'end': 4}] ``` このページが各モダリティのタスクの種類とそれぞれの重要性についての追加の背景情報を提供できたことを願っています。次の [セクション](tasks_explained) では、🤗 トランスフォーマーがこれらのタスクを解決するために **どのように** 動作するかを学びます。
transformers/docs/source/ja/task_summary.md/0
{ "file_path": "transformers/docs/source/ja/task_summary.md", "repo_id": "transformers", "token_count": 11246 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Semantic segmentation [[open-in-colab]] <Youtube id="dKE8SIt9C-w"/> セマンティック セグメンテーションでは、画像の個々のピクセルにラベルまたはクラスを割り当てます。セグメンテーションにはいくつかのタイプがありますが、セマンティック セグメンテーションの場合、同じオブジェクトの一意のインスタンス間の区別は行われません。両方のオブジェクトに同じラベルが付けられます (たとえば、`car-1`と`car-2`の代わりに`car`)。セマンティック セグメンテーションの一般的な現実世界のアプリケーションには、歩行者や重要な交通情報を識別するための自動運転車のトレーニング、医療画像内の細胞と異常の識別、衛星画像からの環境変化の監視などが含まれます。 このガイドでは、次の方法を説明します。 1. [SceneParse150](https://huggingface.co/datasets/scene_parse_150) データセットの [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) を微調整します。 2. 微調整したモデルを推論に使用します。 <Tip> このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、[タスクページ](https://huggingface.co/tasks/image-segmentation) を確認することをお勧めします。 </Tip> 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install -q datasets transformers evaluate ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load SceneParse150 dataset まず、SceneParse150 データセットの小さいサブセットを 🤗 データセット ライブラリから読み込みます。これにより、完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が得られます。 ```py >>> from datasets import load_dataset >>> ds = load_dataset("scene_parse_150", split="train[:50]") ``` [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train` 分割をトレイン セットとテスト セットに分割します。 ```py >>> ds = ds.train_test_split(test_size=0.2) >>> train_ds = ds["train"] >>> test_ds = ds["test"] ``` 次に、例を見てみましょう。 ```py >>> train_ds[0] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>, 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>, 'scene_category': 368} ``` - `image`: シーンの PIL イメージ。 - `annotation`: セグメンテーション マップの PIL イメージ。モデルのターゲットでもあります。 - `scene_category`: "kitchen"や"office"などの画像シーンを説明するカテゴリ ID。このガイドでは、`image`と`annotation`のみが必要になります。どちらも PIL イメージです。 また、ラベル ID をラベル クラスにマップする辞書を作成することもできます。これは、後でモデルを設定するときに役立ちます。ハブからマッピングをダウンロードし、`id2label` および `label2id` ディクショナリを作成します。 ```py >>> import json >>> from pathlib import Path >>> from huggingface_hub import hf_hub_download >>> repo_id = "huggingface/label-files" >>> filename = "ade20k-id2label.json" >>> id2label = json.loads(Path(hf_hub_download(repo_id, filename, repo_type="dataset")).read_text()) >>> id2label = {int(k): v for k, v in id2label.items()} >>> label2id = {v: k for k, v in id2label.items()} >>> num_labels = len(id2label) ``` ## Preprocess 次のステップでは、SegFormer 画像プロセッサをロードして、モデルの画像と注釈を準備します。このデータセットのような一部のデータセットは、バックグラウンド クラスとしてゼロインデックスを使用します。ただし、実際には背景クラスは 150 個のクラスに含まれていないため、`do_reduce_labels=True`を設定してすべてのラベルから 1 つを引く必要があります。ゼロインデックスは `255` に置き換えられるため、SegFormer の損失関数によって無視されます。 ```py >>> from transformers import AutoImageProcessor >>> checkpoint = "nvidia/mit-b0" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, do_reduce_labels=True) ``` <frameworkcontent> <pt> モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。このガイドでは、[torchvision](https://pytorch.org/vision/stable/index.html) の [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) 関数を使用します。 ) を使用して画像の色のプロパティをランダムに変更しますが、任意の画像ライブラリを使用することもできます。 ```py >>> from torchvision.transforms import ColorJitter >>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) ``` 次に、モデルの画像と注釈を準備するための 2 つの前処理関数を作成します。これらの関数は、画像を`pixel_values`に変換し、注釈を`labels`に変換します。トレーニング セットの場合、画像を画像プロセッサに提供する前に `jitter` が適用されます。テスト セットの場合、テスト中にデータ拡張が適用されないため、画像プロセッサは`images`を切り取って正規化し、`ラベル`のみを切り取ります。 ```py >>> def train_transforms(example_batch): ... images = [jitter(x) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [x for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` データセット全体に`jitter`を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。 ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` </pt> </frameworkcontent> <frameworkcontent> <tf> モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。 このガイドでは、[`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) を使用して画像の色のプロパティをランダムに変更しますが、任意のプロパティを使用することもできます。画像 好きな図書館。 2 つの別々の変換関数を定義します。 - 画像拡張を含むトレーニング データ変換 - 🤗 Transformers のコンピューター ビジョン モデルはチャネル優先のレイアウトを想定しているため、画像を転置するだけの検証データ変換 ```py >>> import tensorflow as tf >>> def aug_transforms(image): ... image = tf.keras.utils.img_to_array(image) ... image = tf.image.random_brightness(image, 0.25) ... image = tf.image.random_contrast(image, 0.5, 2.0) ... image = tf.image.random_saturation(image, 0.75, 1.25) ... image = tf.image.random_hue(image, 0.1) ... image = tf.transpose(image, (2, 0, 1)) ... return image >>> def transforms(image): ... image = tf.keras.utils.img_to_array(image) ... image = tf.transpose(image, (2, 0, 1)) ... return image ``` 次に、モデルの画像と注釈のバッチを準備する 2 つの前処理関数を作成します。これらの機能が適用されます 画像変換を行い、以前にロードされた `image_processor` を使用して画像を `pixel_values` に変換し、 `labels`への注釈。 `ImageProcessor` は、画像のサイズ変更と正規化も処理します。 ```py >>> def train_transforms(example_batch): ... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [transforms(x.convert("RGB")) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` データセット全体に前処理変換を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。 変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。 ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` </tf> </frameworkcontent> ## Evaluate トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[Mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) メトリックをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co/docs/evaluate/a_quick_tour) を参照して、メトリクスをロードして計算する方法の詳細を確認してください)。 ```py >>> import evaluate >>> metric = evaluate.load("mean_iou") ``` 次に、メトリクスを [`~evaluate.EvaluationModule.compute`] する関数を作成します。予測を次のように変換する必要があります 最初にロジットを作成し、次に [`~evaluate.EvaluationModule.compute`] を呼び出す前にラベルのサイズに一致するように再形成します。 <frameworkcontent> <pt> ```py >>> import numpy as np >>> import torch >>> from torch import nn >>> def compute_metrics(eval_pred): ... with torch.no_grad(): ... logits, labels = eval_pred ... logits_tensor = torch.from_numpy(logits) ... logits_tensor = nn.functional.interpolate( ... logits_tensor, ... size=labels.shape[-2:], ... mode="bilinear", ... align_corners=False, ... ).argmax(dim=1) ... pred_labels = logits_tensor.detach().cpu().numpy() ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=255, ... reduce_labels=False, ... ) ... for key, value in metrics.items(): ... if type(value) is np.ndarray: ... metrics[key] = value.tolist() ... return metrics ``` </pt> </frameworkcontent> <frameworkcontent> <tf> ```py >>> def compute_metrics(eval_pred): ... logits, labels = eval_pred ... logits = tf.transpose(logits, perm=[0, 2, 3, 1]) ... logits_resized = tf.image.resize( ... logits, ... size=tf.shape(labels)[1:], ... method="bilinear", ... ) ... pred_labels = tf.argmax(logits_resized, axis=-1) ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=-1, ... reduce_labels=image_processor.do_reduce_labels, ... ) ... per_category_accuracy = metrics.pop("per_category_accuracy").tolist() ... per_category_iou = metrics.pop("per_category_iou").tolist() ... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) ... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) ... return {"val_" + k: v for k, v in metrics.items()} ``` </tf> </frameworkcontent> これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。 ## Train <frameworkcontent> <pt> <Tip> [`Trainer`] を使用したモデルの微調整に慣れていない場合は、[ここ](../training#finetune-with-trainer) の基本的なチュートリアルをご覧ください。 </Tip> これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、ラベル ID とラベル クラス間のマッピングをモデルに渡します。 ```py >>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer >>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id) ``` この時点で残っている手順は次の 3 つだけです。 1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。 `image` 列が削除されるため、未使用の列を削除しないことが重要です。 `image` 列がないと、`pixel_values` を作成できません。この動作を防ぐには、`remove_unused_columns=False`を設定してください。他に必要なパラメータは、モデルの保存場所を指定する `output_dir` だけです。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は IoU メトリックを評価し、トレーニング チェックポイントを保存します。 2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Trainer`] に渡します。 3. [`~Trainer.train`] を呼び出してモデルを微調整します。 ```py >>> training_args = TrainingArguments( ... output_dir="segformer-b0-scene-parse-150", ... learning_rate=6e-5, ... num_train_epochs=50, ... per_device_train_batch_size=2, ... per_device_eval_batch_size=2, ... save_total_limit=3, ... eval_strategy="steps", ... save_strategy="steps", ... save_steps=20, ... eval_steps=20, ... logging_steps=1, ... eval_accumulation_steps=5, ... remove_unused_columns=False, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=train_ds, ... eval_dataset=test_ds, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```py >>> trainer.push_to_hub() ``` </pt> </frameworkcontent> <frameworkcontent> <tf> <Tip> Keras を使用したモデルの微調整に慣れていない場合は、まず [基本チュートリアル](./training#train-a-tensorflow-model-with-keras) を確認してください。 </Tip> TensorFlow でモデルを微調整するには、次の手順に従います。 1. トレーニングのハイパーパラメータを定義し、オプティマイザーと学習率スケジュールを設定します。 2. 事前トレーニングされたモデルをインスタンス化します。 3. 🤗 データセットを `tf.data.Dataset` に変換します。 4. モデルをコンパイルします。 5. コールバックを追加してメトリクスを計算し、モデルを 🤗 Hub にアップロードします 6. `fit()` メソッドを使用してトレーニングを実行します。 まず、ハイパーパラメーター、オプティマイザー、学習率スケジュールを定義します。 ```py >>> from transformers import create_optimizer >>> batch_size = 2 >>> num_epochs = 50 >>> num_train_steps = len(train_ds) * num_epochs >>> learning_rate = 6e-5 >>> weight_decay_rate = 0.01 >>> optimizer, lr_schedule = create_optimizer( ... init_lr=learning_rate, ... num_train_steps=num_train_steps, ... weight_decay_rate=weight_decay_rate, ... num_warmup_steps=0, ... ) ``` 次に、ラベル マッピングとともに [`TFAutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、それをコンパイルします。 オプティマイザ。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。 ```py >>> from transformers import TFAutoModelForSemanticSegmentation >>> model = TFAutoModelForSemanticSegmentation.from_pretrained( ... checkpoint, ... id2label=id2label, ... label2id=label2id, ... ) >>> model.compile(optimizer=optimizer) # No loss argument! ``` [`~datasets.Dataset.to_tf_dataset`] と [`DefaultDataCollat​​or`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。 ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator(return_tensors="tf") >>> tf_train_dataset = train_ds.to_tf_dataset( ... columns=["pixel_values", "label"], ... shuffle=True, ... batch_size=batch_size, ... collate_fn=data_collator, ... ) >>> tf_eval_dataset = test_ds.to_tf_dataset( ... columns=["pixel_values", "label"], ... shuffle=True, ... batch_size=batch_size, ... collate_fn=data_collator, ... ) ``` 予測から精度を計算し、モデルを 🤗 ハブにプッシュするには、[Keras callbacks](../main_classes/keras_callbacks) を使用します。 `compute_metrics` 関数を [`KerasMetricCallback`] に渡します。 そして [`PushToHubCallback`] を使用してモデルをアップロードします。 ```py >>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback >>> metric_callback = KerasMetricCallback( ... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"] ... ) >>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor) >>> callbacks = [metric_callback, push_to_hub_callback] ``` ついに、モデルをトレーニングする準備が整いました。トレーニングおよび検証データセット、エポック数、 モデルを微調整するためのコールバック: ```py >>> model.fit( ... tf_train_dataset, ... validation_data=tf_eval_dataset, ... callbacks=callbacks, ... epochs=num_epochs, ... ) ``` おめでとう!モデルを微調整し、🤗 Hub で共有しました。これで推論に使用できるようになりました。 </tf> </frameworkcontent> ## Inference モデルを微調整したので、それを推論に使用できるようになりました。 推論のために画像をロードします。 ```py >>> image = ds[0]["image"] >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/> </div> <frameworkcontent> <pt> 推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して画像セグメンテーション用の `pipeline`をインスタンス化し、それに画像を渡します。 ```py >>> from transformers import pipeline >>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model") >>> segmenter(image) [{'score': None, 'label': 'wall', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062690>}, {'score': None, 'label': 'sky', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A50>}, {'score': None, 'label': 'floor', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062B50>}, {'score': None, 'label': 'ceiling', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A10>}, {'score': None, 'label': 'bed ', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E90>}, {'score': None, 'label': 'windowpane', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062390>}, {'score': None, 'label': 'cabinet', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062550>}, {'score': None, 'label': 'chair', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062D90>}, {'score': None, 'label': 'armchair', 'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E10>}] ``` 必要に応じて、`pipeline`の結果を手動で複製することもできます。画像を画像プロセッサで処理し、`pixel_values` を GPU に配置します。 ```py >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU >>> encoding = image_processor(image, return_tensors="pt") >>> pixel_values = encoding.pixel_values.to(device) ``` 入力をモデルに渡し、`logits`を返します。 ```py >>> outputs = model(pixel_values=pixel_values) >>> logits = outputs.logits.cpu() ``` 次に、ロジットを元の画像サイズに再スケールします。 ```py >>> upsampled_logits = nn.functional.interpolate( ... logits, ... size=image.size[::-1], ... mode="bilinear", ... align_corners=False, ... ) >>> pred_seg = upsampled_logits.argmax(dim=1)[0] ``` </pt> </frameworkcontent> <frameworkcontent> <tf> 画像プロセッサをロードして画像を前処理し、入力を TensorFlow テンソルとして返します。 ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation") >>> inputs = image_processor(image, return_tensors="tf") ``` 入力をモデルに渡し、`logits`を返します。 ```py >>> from transformers import TFAutoModelForSemanticSegmentation >>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation") >>> logits = model(**inputs).logits ``` 次に、ロジットを元の画像サイズに再スケールし、クラス次元に argmax を適用します。 ```py >>> logits = tf.transpose(logits, [0, 2, 3, 1]) >>> upsampled_logits = tf.image.resize( ... logits, ... # We reverse the shape of `image` because `image.size` returns width and height. ... image.size[::-1], ... ) >>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0] ``` </tf> </frameworkcontent> 結果を視覚化するには、[データセット カラー パレット](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) を、それぞれをマップする `ade_palette()` としてロードします。クラスを RGB 値に変換します。次に、画像と予測されたセグメンテーション マップを組み合わせてプロットできます。 ```py >>> import matplotlib.pyplot as plt >>> import numpy as np >>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) >>> palette = np.array(ade_palette()) >>> for label, color in enumerate(palette): ... color_seg[pred_seg == label, :] = color >>> color_seg = color_seg[..., ::-1] # convert to BGR >>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map >>> img = img.astype(np.uint8) >>> plt.figure(figsize=(15, 10)) >>> plt.imshow(img) >>> plt.show() ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/> </div>
transformers/docs/source/ja/tasks/semantic_segmentation.md/0
{ "file_path": "transformers/docs/source/ja/tasks/semantic_segmentation.md", "repo_id": "transformers", "token_count": 10521 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 맞춤형 아키텍처 만들기[[create-a-custom-architecture]] [`AutoClass`](model_doc/auto)는 모델 아키텍처를 자동으로 추론하고 미리 학습된 configuration과 가중치를 다운로드합니다. 일반적으로 체크포인트에 구애받지 않는 코드를 생성하려면 `AutoClass`를 사용하는 것이 좋습니다. 하지만 특정 모델 파라미터를 보다 세밀하게 제어하고자 하는 사용자는 몇 가지 기본 클래스만으로 커스텀 🤗 Transformers 모델을 생성할 수 있습니다. 이는 🤗 Transformers 모델을 연구, 교육 또는 실험하는 데 관심이 있는 모든 사용자에게 특히 유용할 수 있습니다. 이 가이드에서는 'AutoClass'를 사용하지 않고 커스텀 모델을 만드는 방법에 대해 알아보겠습니다: - 모델 configuration을 가져오고 사용자 지정합니다. - 모델 아키텍처를 생성합니다. - 텍스트에 사용할 느리거나 빠른 토큰화기를 만듭니다. - 비전 작업을 위한 이미지 프로세서를 생성합니다. - 오디오 작업을 위한 특성 추출기를 생성합니다. - 멀티모달 작업용 프로세서를 생성합니다. ## Configuration[[configuration]] [configuration](main_classes/configuration)은 모델의 특정 속성을 나타냅니다. 각 모델 구성에는 서로 다른 속성이 있습니다. 예를 들어, 모든 NLP 모델에는 `hidden_size`, `num_attention_heads`, `num_hidden_layers` 및 `vocab_size` 속성이 공통으로 있습니다. 이러한 속성은 모델을 구성할 attention heads 또는 hidden layers의 수를 지정합니다. [DistilBERT](model_doc/distilbert) 속성을 검사하기 위해 [`DistilBertConfig`]에 접근하여 자세히 살펴봅니다: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` [`DistilBertConfig`]는 기본 [`DistilBertModel`]을 빌드하는 데 사용되는 모든 기본 속성을 표시합니다. 모든 속성은 커스터마이징이 가능하므로 실험을 위한 공간을 만들 수 있습니다. 예를 들어 기본 모델을 다음과 같이 커스터마이즈할 수 있습니다: - `activation` 파라미터로 다른 활성화 함수를 사용해 보세요. - `attention_dropout` 파라미터를 사용하여 어텐션 확률에 더 높은 드롭아웃 비율을 사용하세요. ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` 사전 학습된 모델 속성은 [`~PretrainedConfig.from_pretrained`] 함수에서 수정할 수 있습니다: ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` 모델 구성이 만족스러우면 [`~PretrainedConfig.save_pretrained`]로 저장할 수 있습니다. 설정 파일은 지정된 작업 경로에 JSON 파일로 저장됩니다: ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` configuration 파일을 재사용하려면 [`~PretrainedConfig.from_pretrained`]를 사용하여 가져오세요: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") ``` <Tip> configuration 파일을 딕셔너리로 저장하거나 사용자 정의 configuration 속성과 기본 configuration 속성의 차이점만 저장할 수도 있습니다! 자세한 내용은 [configuration](main_classes/configuration) 문서를 참조하세요. </Tip> ## 모델[[model]] 다음 단계는 [모델(model)](main_classes/models)을 만드는 것입니다. 느슨하게 아키텍처라고도 불리는 모델은 각 계층이 수행하는 동작과 발생하는 작업을 정의합니다. configuration의 `num_hidden_layers`와 같은 속성은 아키텍처를 정의하는 데 사용됩니다. 모든 모델은 기본 클래스 [`PreTrainedModel`]과 입력 임베딩 크기 조정 및 셀프 어텐션 헤드 가지 치기와 같은 몇 가지 일반적인 메소드를 공유합니다. 또한 모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) 또는 [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)의 서브클래스이기도 합니다. 즉, 모델은 각 프레임워크의 사용법과 호환됩니다. <frameworkcontent> <pt> 사용자 지정 configuration 속성을 모델에 가져옵니다: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") >>> model = DistilBertModel(my_config) ``` 이제 사전 학습된 가중치 대신 임의의 값을 가진 모델이 생성됩니다. 이 모델을 훈련하기 전까지는 유용하게 사용할 수 없습니다. 훈련은 비용과 시간이 많이 소요되는 프로세스입니다. 일반적으로 훈련에 필요한 리소스의 일부만 사용하면서 더 나은 결과를 더 빨리 얻으려면 사전 훈련된 모델을 사용하는 것이 좋습니다. 사전 학습된 모델을 [`~PreTrainedModel.from_pretrained`]로 생성합니다: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` 🤗 Transformers에서 제공한 모델의 사전 학습된 가중치를 사용하는 경우 기본 모델 configuration을 자동으로 불러옵니다. 그러나 원하는 경우 기본 모델 configuration 속성의 일부 또는 전부를 사용자 지정으로 바꿀 수 있습니다: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config) ``` </pt> <tf> 사용자 지정 configuration 속성을 모델에 불러옵니다: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` 이제 사전 학습된 가중치 대신 임의의 값을 가진 모델이 생성됩니다. 이 모델을 훈련하기 전까지는 유용하게 사용할 수 없습니다. 훈련은 비용과 시간이 많이 소요되는 프로세스입니다. 일반적으로 훈련에 필요한 리소스의 일부만 사용하면서 더 나은 결과를 더 빨리 얻으려면 사전 훈련된 모델을 사용하는 것이 좋습니다. 사전 학습된 모델을 [`~TFPreTrainedModel.from_pretrained`]로 생성합니다: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` 🤗 Transformers에서 제공한 모델의 사전 학습된 가중치를 사용하는 경우 기본 모델 configuration을 자동으로 불러옵니다. 그러나 원하는 경우 기본 모델 configuration 속성의 일부 또는 전부를 사용자 지정으로 바꿀 수 있습니다: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config) ``` </tf> </frameworkcontent> ### 모델 헤드[[model-heads]] 이 시점에서 *은닉 상태(hidden state)*를 출력하는 기본 DistilBERT 모델을 갖게 됩니다. 은닉 상태는 최종 출력을 생성하기 위해 모델 헤드에 입력으로 전달됩니다. 🤗 Transformers는 모델이 해당 작업을 지원하는 한 각 작업마다 다른 모델 헤드를 제공합니다(즉, 번역과 같은 시퀀스 간 작업에는 DistilBERT를 사용할 수 없음). <frameworkcontent> <pt> 예를 들어, [`DistilBertForSequenceClassification`]은 시퀀스 분류 헤드가 있는 기본 DistilBERT 모델입니다. 시퀀스 분류 헤드는 풀링된 출력 위에 있는 선형 레이어입니다. ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 다른 모델 헤드로 전환하여 이 체크포인트를 다른 작업에 쉽게 재사용할 수 있습니다. 질의응답 작업의 경우, [`DistilBertForQuestionAnswering`] 모델 헤드를 사용할 수 있습니다. 질의응답 헤드는 숨겨진 상태 출력 위에 선형 레이어가 있다는 점을 제외하면 시퀀스 분류 헤드와 유사합니다. ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </pt> <tf> 예를 들어, [`TFDistilBertForSequenceClassification`]은 시퀀스 분류 헤드가 있는 기본 DistilBERT 모델입니다. 시퀀스 분류 헤드는 풀링된 출력 위에 있는 선형 레이어입니다. ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 다른 모델 헤드로 전환하여 이 체크포인트를 다른 작업에 쉽게 재사용할 수 있습니다. 질의응답 작업의 경우, [`TFDistilBertForQuestionAnswering`] 모델 헤드를 사용할 수 있습니다. 질의응답 헤드는 숨겨진 상태 출력 위에 선형 레이어가 있다는 점을 제외하면 시퀀스 분류 헤드와 유사합니다. ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </tf> </frameworkcontent> ## 토크나이저[[tokenizer]] 텍스트 데이터에 모델을 사용하기 전에 마지막으로 필요한 기본 클래스는 원시 텍스트를 텐서로 변환하는 [토크나이저](main_classes/tokenizer)입니다. 🤗 Transformers에 사용할 수 있는 토크나이저는 두 가지 유형이 있습니다: - [`PreTrainedTokenizer`]: 파이썬으로 구현된 토크나이저입니다. - [`PreTrainedTokenizerFast`]: Rust 기반 [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) 라이브러리로 만들어진 토크나이저입니다. 이 토크나이저는 Rust로 구현되어 배치 토큰화에서 특히 빠릅니다. 빠른 토크나이저는 토큰을 원래 단어나 문자에 매핑하는 *오프셋 매핑*과 같은 추가 메소드도 제공합니다. 두 토크나이저 모두 인코딩 및 디코딩, 새 토큰 추가, 특수 토큰 관리와 같은 일반적인 방법을 지원합니다. <Tip warning={true}> 모든 모델이 빠른 토크나이저를 지원하는 것은 아닙니다. 이 [표](index#supported-frameworks)에서 모델의 빠른 토크나이저 지원 여부를 확인하세요. </Tip> 토크나이저를 직접 학습한 경우, *어휘(vocabulary)* 파일에서 토크나이저를 만들 수 있습니다: ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") ``` 사용자 지정 토크나이저의 어휘는 사전 학습된 모델의 토크나이저에서 생성된 어휘와 다를 수 있다는 점을 기억하는 것이 중요합니다. 사전 학습된 모델을 사용하는 경우 사전 학습된 모델의 어휘를 사용해야 하며, 그렇지 않으면 입력이 의미를 갖지 못합니다. [`DistilBertTokenizer`] 클래스를 사용하여 사전 학습된 모델의 어휘로 토크나이저를 생성합니다: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` [`DistilBertTokenizerFast`] 클래스로 빠른 토크나이저를 생성합니다: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased") ``` <Tip> [`AutoTokenizer`]는 기본적으로 빠른 토크나이저를 가져오려고 합니다. 이 동작을 비활성화하려면 `from_pretrained`에서 `use_fast=False`를 설정하면 됩니다. </Tip> ## 이미지 프로세서[[image-processor]] 이미지 프로세서(image processor)는 비전 입력을 처리합니다. 기본 [`~image_processing_utils.ImageProcessingMixin`] 클래스에서 상속합니다. 사용하려면 사용 중인 모델과 연결된 이미지 프로세서를 생성합니다. 예를 들어, 이미지 분류에 [ViT](model_doc/vit)를 사용하는 경우 기본 [`ViTImageProcessor`]를 생성합니다: ```py >>> from transformers import ViTImageProcessor >>> vit_extractor = ViTImageProcessor() >>> print(vit_extractor) ViTImageProcessor { "do_normalize": true, "do_resize": true, "feature_extractor_type": "ViTImageProcessor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> 사용자 지정을 원하지 않는 경우 `from_pretrained` 메소드를 사용하여 모델의 기본 이미지 프로세서 매개변수를 불러오면 됩니다. </Tip> 사용자 지정 이미지 프로세서를 생성하려면 [`ViTImageProcessor`] 파라미터를 수정합니다: ```py >>> from transformers import ViTImageProcessor >>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTImageProcessor { "do_normalize": false, "do_resize": true, "feature_extractor_type": "ViTImageProcessor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` ## 특성 추출기[[feature-extractor]] 특성 추출기(feature extractor)는 오디오 입력을 처리합니다. 기본 [`~feature_extraction_utils.FeatureExtractionMixin`] 클래스에서 상속되며, 오디오 입력을 처리하기 위해 [`SequenceFeatureExtractor`] 클래스에서 상속할 수도 있습니다. 사용하려면 사용 중인 모델과 연결된 특성 추출기를 생성합니다. 예를 들어, 오디오 분류에 [Wav2Vec2](model_doc/wav2vec2)를 사용하는 경우 기본 [`Wav2Vec2FeatureExtractor`]를 생성합니다: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` <Tip> 사용자 지정이 필요하지 않은 경우 `from_pretrained` 메소드를 사용하여 모델의 기본 특성 추출기 ㅁ개변수를 불러 오면 됩니다. </Tip> 사용자 지정 특성 추출기를 만들려면 [`Wav2Vec2FeatureExtractor`] 매개변수를 수정합니다: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 8000 } ``` ## 프로세서[[processor]] 멀티모달 작업을 지원하는 모델의 경우, 🤗 Transformers는 특성 추출기 및 토크나이저와 같은 처리 클래스를 단일 객체로 편리하게 래핑하는 프로세서 클래스를 제공합니다. 예를 들어, 자동 음성 인식 작업(Automatic Speech Recognition task (ASR))에 [`Wav2Vec2Processor`]를 사용한다고 가정해 보겠습니다. 자동 음성 인식 작업은 오디오를 텍스트로 변환하므로 특성 추출기와 토크나이저가 필요합니다. 오디오 입력을 처리할 특성 추출기를 만듭니다: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` 텍스트 입력을 처리할 토크나이저를 만듭니다: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` [`Wav2Vec2Processor`]에서 특성 추출기와 토크나이저를 결합합니다: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` configuration과 모델이라는 두 가지 기본 클래스와 추가 전처리 클래스(토크나이저, 이미지 프로세서, 특성 추출기 또는 프로세서)를 사용하면 🤗 Transformers에서 지원하는 모든 모델을 만들 수 있습니다. 이러한 각 기본 클래스는 구성이 가능하므로 원하는 특정 속성을 사용할 수 있습니다. 학습을 위해 모델을 쉽게 설정하거나 기존의 사전 학습된 모델을 수정하여 미세 조정할 수 있습니다.
transformers/docs/source/ko/create_a_model.md/0
{ "file_path": "transformers/docs/source/ko/create_a_model.md", "repo_id": "transformers", "token_count": 11706 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 모델 기본 클래스 [`PreTrainedModel`], [`TFPreTrainedModel`], [`FlaxPreTrainedModel`]는 로컬 파일과 디렉토리로부터 모델을 로드하고 저장하거나 또는 (허깅페이스 AWS S3 리포지토리로부터 다운로드된) 라이브러리에서 제공하는 사전 훈련된 모델 설정을 로드하고 저장하는 것을 지원하는 기본 메소드를 구현하였습니다. [`PreTrainedModel`]과 [`TFPreTrainedModel`]은 또한 모든 모델들을 공통적으로 지원하는 메소드 여러개를 구현하였습니다: - 새 토큰이 단어장에 추가될 때, 입력 토큰 임베딩의 크기를 조정합니다. - 모델의 어텐션 헤드를 가지치기합니다. 각 모델에 공통인 다른 메소드들은 다음의 클래스에서 정의됩니다. - [`~modeling_utils.ModuleUtilsMixin`](파이토치 모델용) - 텍스트 생성을 위한 [`~modeling_tf_utils.TFModuleUtilsMixin`](텐서플로 모델용) - [`~generation.GenerationMixin`](파이토치 모델용) - [`~generation.FlaxGenerationMixin`](Flax/JAX 모델용) ## PreTrainedModel [[autodoc]] PreTrainedModel - push_to_hub - all 사용자 정의 모델은 초고속 초기화(superfast init)가 특정 모델에 적용될 수 있는지 여부를 결정하는 `_supports_assign_param_buffer`도 포함해야 합니다. `test_save_and_load_from_pretrained` 실패 시, 모델이 `_supports_assign_param_buffer`를 필요로 하는지 확인하세요. 필요로 한다면 `False`로 설정하세요. ## ModuleUtilsMixin [[autodoc]] modeling_utils.ModuleUtilsMixin ## TFPreTrainedModel [[autodoc]] TFPreTrainedModel - push_to_hub - all ## TFModelUtilsMixin [[autodoc]] modeling_tf_utils.TFModelUtilsMixin ## FlaxPreTrainedModel [[autodoc]] FlaxPreTrainedModel - push_to_hub - all ## 허브에 저장하기 [[autodoc]] utils.PushToHubMixin ## 공유된 체크포인트 [[autodoc]] modeling_utils.load_sharded_checkpoint
transformers/docs/source/ko/main_classes/model.md/0
{ "file_path": "transformers/docs/source/ko/main_classes/model.md", "repo_id": "transformers", "token_count": 1521 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BLIP-2[[blip-2]] ## 개요[[overview]] BLIP-2 모델은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) 논문에서 제안되었습니다. BLIP-2는 동결된 사전 학습 이미지 인코더와 대규모 언어 모델(LLM)을 연결하는 12층의 경량 Transformer 인코더를 학습시켜, 여러 비전-언어 작업에서 SOTA(현재 최고의 성능)을 달성했습니다. 특히, BLIP-2는 800억 개의 파라미터를 가진 Flamingo 모델보다 제로샷 VQAv2에서 8.7% 더 높은 성능을 기록했으며, 학습 가능한 파라미터 수는 Flamingo보다 54배 적습니다. 논문의 초록은 다음과 같습니다: *비전-언어 사전 학습의 비용은 대규모 모델의 엔드-투-엔드 학습으로 인해 점점 더 부담스러워지고 있습니다. 본 논문은 사전 학습된 이미지 인코더와 대규모 언어 모델을 활용하여 비전-언어 사전 학습을 부트스트래핑하는 일반적이고 효율적인 사전 학습 전략인 BLIP-2를 제안합니다. BLIP-2는 경량화된 Querying Transformer를 통해 모달리티 간의 차이를 연결하며, 두 단계로 사전 학습됩니다. 첫 번째 단계는 동결된 이미지 인코더로부터 비전-언어 표현 학습을 부트스트래핑하고, 두 번째 단계는 동결된 언어 모델로부터 비전-언어 생성 학습을 부트스트래핑합니다. BLIP-2는 기존 방법들에 비해 훨씬 적은 학습 가능한 파라미터로 다양한 비전-언어 작업에서 최첨단 성능을 달성합니다. 예를 들어, 우리 모델은 제로샷 VQAv2에서 Flamingo80B보다 8.7% 높은 성능을 기록하며, 학습 가능한 파라미터 수는 54배 적습니다. 우리는 또한 자연어 명령을 따를 수 있는 제로샷 이미지-텍스트 생성의 새로운 기능을 입증했습니다.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg" alt="drawing" width="600"/> <small> BLIP-2 구조. <a href="https://arxiv.org/abs/2301.12597">원본 논문</a> 에서 발췌. </small> 이 모델은 [nielsr](https://huggingface.co/nielsr)가 기여했습니다. 원본 코드는 [여기](https://github.com/salesforce/LAVIS/tree/5ee63d688ba4cebff63acee04adaef2dee9af207)에서 확인할 수 있습니다. ## 사용 팁[[usage-tips]] - BLIP-2는 이미지와 조건에 따라 텍스트 프롬프트를 입력받아 조건부 텍스트를 생성합니다. 추론 시 [`generate`] 메소드를 사용하는 것이 권장됩니다. - [`Blip2Processor`]를 사용하여 모델에 이미지를 준비하고, 예측된 토큰 ID를 텍스트로 디코딩할 수 있습니다. ## 자료[[resources]] BLIP-2를 시작하는 데 도움이 되는 공식 Hugging Face 및 커뮤니티(🌎 표시) 자료 목록입니다. - 이미지 캡셔닝, 시각 질문 응답(VQA), 채팅과 같은 대화형 작업을 위한 BLIP-2 데모 노트북은 [여기](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BLIP-2)에서 찾을 수 있습니다. 리소스를 제출하여 여기에 포함하고 싶다면 언제든지 풀 리퀘스트를 열어주세요! 리소스는 기존 리소스를 복제하지 않고 새로운 내용이어야 합니다. ## Blip2Config[[transformers.Blip2Config]] [[autodoc]] Blip2Config - from_vision_qformer_text_configs ## Blip2VisionConfig[[transformers.Blip2VisionConfig]] [[autodoc]] Blip2VisionConfig ## Blip2QFormerConfig[[transformers.Blip2QFormerConfig]] [[autodoc]] Blip2QFormerConfig ## Blip2Processor[[transformers.Blip2Processor]] [[autodoc]] Blip2Processor ## Blip2VisionModel[[transformers.Blip2VisionModel]] [[autodoc]] Blip2VisionModel - forward ## Blip2QFormerModel[[transformers.Blip2QFormerModel]] [[autodoc]] Blip2QFormerModel - forward ## Blip2Model[[transformers.Blip2Model]] [[autodoc]] Blip2Model - forward - get_text_features - get_image_features - get_qformer_features ## Blip2ForConditionalGeneration[[transformers.Blip2ForConditionalGeneration]] [[autodoc]] Blip2ForConditionalGeneration - forward - generate ## Blip2ForImageTextRetrieval[[transformers.Blip2ForImageTextRetrieval]] [[autodoc]] Blip2ForImageTextRetrieval - forward ## Blip2TextModelWithProjection[[transformers.Blip2TextModelWithProjection]] [[autodoc]] Blip2TextModelWithProjection ## Blip2VisionModelWithProjection[[transformers.Blip2VisionModelWithProjection]] [[autodoc]] Blip2VisionModelWithProjection
transformers/docs/source/ko/model_doc/blip-2.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/blip-2.md", "repo_id": "transformers", "token_count": 3215 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LLaMA [[llama]] ## 개요 [[overview]] LLaMA 모델은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample에 의해 제안된 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)에서 소개되었습니다. 이 모델은 7B에서 65B개의 파라미터까지 다양한 크기의 기초 언어 모델을 모아놓은 것입니다. 논문의 초록은 다음과 같습니다: *"LLaMA는 7B에서 65B개의 파라미터 수를 가진 기초 언어 모델의 모음입니다. 우리는 수조 개의 토큰으로 모델을 훈련시켰고, 공개적으로 이용 가능한 데이터셋만을 사용하여 최고 수준의 모델을 훈련시킬 수 있음을 보여줍니다. 특히, LLaMA-13B 모델은 대부분의 벤치마크에서 GPT-3 (175B)를 능가하며, LLaMA-65B는 최고 수준의 모델인 Chinchilla-70B와 PaLM-540B에 버금가는 성능을 보입니다. 우리는 모든 모델을 연구 커뮤니티에 공개합니다."* 팁: - LLaMA 모델의 가중치는 [이 양식](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form)을 작성하여 얻을 수 있습니다. - 가중치를 다운로드한 후에는 이를 [변환 스크립트](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)를 사용하여 Hugging Face Transformers 형식으로 변환해야합니다. 변환 스크립트를 실행하려면 아래의 예시 명령어를 참고하세요: ```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path ``` - 변환을 하였다면 모델과 토크나이저는 다음과 같이 로드할 수 있습니다: ```python from transformers import LlamaForCausalLM, LlamaTokenizer tokenizer = LlamaTokenizer.from_pretrained("/output/path") model = LlamaForCausalLM.from_pretrained("/output/path") ``` 스크립트를 실행하기 위해서는 모델을 float16 정밀도로 전부 로드할 수 있을 만큼의 충분한 CPU RAM이 필요합니다. (가장 큰 버전의 모델이 여러 체크포인트로 나뉘어 있더라도, 각 체크포인트는 모델의 각 가중치의 일부를 포함하고 있기 때문에 모든 체크포인트를 RAM에 로드해야 합니다) 65B 모델의 경우, 총 130GB의 RAM이 필요합니다. - LLaMA 토크나이저는 [sentencepiece](https://github.com/google/sentencepiece)를 기반으로 하는 BPE 모델입니다. sentencepiece의 특징 중 하나는 시퀀스를 디코딩할 때 첫 토큰이 단어의 시작이라면 (예를 들어 "Banana"), 토크나이저는 문자열 앞에 공백을 추가하지 않는다는 것입니다. 이 모델은 [BlackSamorez](https://huggingface.co/BlackSamorez)의 기여와 함께, [zphang](https://huggingface.co/zphang)에 의해 제공되었습니다. Hugging Face에서의 구현 코드는 GPT-NeoX를 기반으로 하며 [여기](https://github.com/EleutherAI/gpt-neox)에서 찾을 수 있고, 저자의 코드 원본은 [여기](https://github.com/facebookresearch/llama)에서 확인할 수 있습니다. 원래 LLaMA 모델을 기반으로 Meta AI에서 몇 가지 후속 작업을 발표했습니다: - **Llama2**: Llama2는 구조적인 몇 가지 수정(Grouped Query Attention)을 통해 개선된 버전이며, 2조 개의 토큰으로 사전 훈련이 되어 있습니다. Llama2에 대한 자세한 내용은 [이 문서](llama2)를 참고하세요. ## 리소스 [[resources]] LLaMA를 시작하는 데 도움이 될 Hugging Face 및 커뮤니티(🌎로 표시)의 공식 자료 목록입니다. 여기에 자료를 제출하고 싶다면 Pull Request를 올려주세요! 추가할 자료는 기존의 자료와 중복되지 않고 새로운 내용을 보여주는 것이 좋습니다. <PipelineTag pipeline="text-classification"/> - LLaMA 모델을 텍스트 분류 작업에 적용하기 위한 프롬프트 튜닝 방법에 대한 [노트북](https://colab.research.google.com/github/bigscience-workshop/petals/blob/main/examples/prompt-tuning-sst2.ipynb#scrollTo=f04ba4d2) 🌎 <PipelineTag pipeline="question-answering"/> - [Stack Exchange](https://stackexchange.com/)에서 질문에 답하는 LLaMA를 훈련하는 방법을 위한 [StackLLaMA: RLHF로 LLaMA를 훈련하는 실전 가이드](https://huggingface.co/blog/stackllama#stackllama-a-hands-on-guide-to-train-llama-with-rlhf) 🌎 ⚗️ 최적화 - 제한된 메모리를 가진 GPU에서 xturing 라이브러리를 사용하여 LLaMA 모델을 미세 조정하는 방법에 대한 [노트북](https://colab.research.google.com/drive/1SQUXq1AMZPSLD4mk3A3swUIc6Y2dclme?usp=sharing) 🌎 ⚡️ 추론 - 🤗 PEFT 라이브러리의 PeftModel을 사용하여 LLaMA 모델을 실행하는 방법에 대한 [노트북](https://colab.research.google.com/github/DominguesM/alpaca-lora-ptbr-7b/blob/main/notebooks/02%20-%20Evaluate.ipynb) 🌎 - LangChain을 사용하여 PEFT 어댑터 LLaMA 모델을 로드하는 방법에 대한 [노트북](https://colab.research.google.com/drive/1l2GiSSPbajVyp2Nk3CFT4t3uH6-5TiBe?usp=sharing) 🌎 🚀 배포 - 🤗 PEFT 라이브러리와 사용자 친화적인 UI로 LLaMA 모델을 미세 조정하는 방법에 대한 [노트북](https://colab.research.google.com/github/lxe/simple-llama-finetuner/blob/master/Simple_LLaMA_FineTuner.ipynb#scrollTo=3PM_DilAZD8T) 🌎 - Amazon SageMaker에서 텍스트 생성을 위해 Open-LLaMA 모델을 배포하는 방법에 대한 [노트북](https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-open-llama.ipynb) 🌎 ## LlamaConfig [[llamaconfig]] [[autodoc]] LlamaConfig ## LlamaTokenizer [[llamatokenizer]] [[autodoc]] LlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LlamaTokenizerFast [[llamatokenizerfast]] [[autodoc]] LlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary ## LlamaModel [[llamamodel]] [[autodoc]] LlamaModel - forward ## LlamaForCausalLM [[llamaforcausallm]] [[autodoc]] LlamaForCausalLM - forward ## LlamaForSequenceClassification [[llamaforsequenceclassification]] [[autodoc]] LlamaForSequenceClassification - forward
transformers/docs/source/ko/model_doc/llama.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/llama.md", "repo_id": "transformers", "token_count": 4406 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TimeSformer [[timesformer]] ## 개요 [[overview]] TimeSformer 모델은 Facebook Research에서 제안한 [TimeSformer: Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095)에서 소개되었습니다. 이 연구는 첫 번째 비디오 Transformer로서, 행동 인식 분야에서 중요한 이정표가 되었습니다. 또한 Transformer 기반의 비디오 이해 및 분류 논문에 많은 영감을 주었습니다. 논문의 초록은 다음과 같습니다. *우리는 공간과 시간에 걸쳐 셀프 어텐션만을 사용하는 합성곱이 없는(convolution-free) 비디오 분류 방법을 제안합니다. 이 방법은 “TimeSformer”라고 불리며, 표준 Transformer 아키텍처를 비디오에 적용하여 프레임 수준 패치 시퀀스로부터 직접 시공간적 특징을 학습할 수 있게 합니다. 우리의 실험적 연구는 다양한 셀프 어텐션 방식을 비교하며, 시간적 어텐션과 공간적 어텐션을 각각의 블록 내에서 별도로 적용하는 “분할 어텐션” 방식이 고려된 설계 선택 중 가장 우수한 비디오 분류 정확도를 제공한다는 것을 시사합니다. 이 혁신적인 설계에도 불구하고, TimeSformer는 Kinetics-400 및 Kinetics-600을 포함한 여러 행동 인식 벤치마크에서 최첨단 결과를 달성했으며, 현재까지 보고된 가장 높은 정확도를 기록했습니다. 마지막으로, 3D 합성곱 네트워크와 비교했을 때, TimeSformer는 더 빠르게 학습할 수 있으며, 약간의 정확도 저하를 감수하면 테스트 효율성이 크게 향상되고, 1분 이상의 긴 비디오 클립에도 적용할 수 있습니다. 코드와 모델은 다음 링크에서 확인할 수 있습니다: [https URL 링크](https://github.com/facebookresearch/TimeSformer).* 이 모델은 [fcakyon](https://huggingface.co/fcakyon)이 기여하였습니다. 원본 코드는 [여기](https://github.com/facebookresearch/TimeSformer)에서 확인할 수 있습니다. ## 사용 팁 [[usage-tips]] 다양한 사전 학습된 모델의 변형들이 있습니다. 사용하려는 데이터셋에 맞춰 사전 학습된 모델을 선택해야 합니다. 또한, 모델 크기에 따라 클립당 입력 프레임 수가 달라지므로, 사전 학습된 모델을 선택할 때 이 매개변수를 고려해야 합니다. ## 리소스 [[resources]] - [Video classification task guide](../tasks/video_classification) ## TimesformerConfig [[transformers.TimesformerConfig]] [[autodoc]] TimesformerConfig ## TimesformerModel [[transformers.TimesformerModel]] [[autodoc]] TimesformerModel - forward ## TimesformerForVideoClassification [[transformers.TimesformerForVideoClassification]] [[autodoc]] TimesformerForVideoClassification - forward
transformers/docs/source/ko/model_doc/timesformer.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/timesformer.md", "repo_id": "transformers", "token_count": 2136 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 다중 CPU에서 효율적으로 훈련하기 [[efficient-training-on-multiple-cpus]] 하나의 CPU에서 훈련하는 것이 너무 느릴 때는 다중 CPU를 사용할 수 있습니다. 이 가이드는 PyTorch 기반의 DDP를 사용하여 분산 CPU 훈련을 효율적으로 수행하는 방법에 대해 설명합니다. ## PyTorch용 Intel® oneCCL 바인딩 [[intel-oneccl-bindings-for-pytorch]] [Intel® oneCCL](https://github.com/oneapi-src/oneCCL) (collective communications library)은 allreduce, allgather, alltoall과 같은 집합 통신(collective communications)을 구현한 효율적인 분산 딥러닝 훈련을 위한 라이브러리입니다. oneCCL에 대한 자세한 정보는 [oneCCL 문서](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html)와 [oneCCL 사양](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html)을 참조하세요. `oneccl_bindings_for_pytorch` 모듈 (`torch_ccl`은 버전 1.12 이전에 사용)은 PyTorch C10D ProcessGroup API를 구현하며, 외부 ProcessGroup로 동적으로 가져올 수 있으며 현재 Linux 플랫폼에서만 작동합니다. [oneccl_bind_pt](https://github.com/intel/torch-ccl)에서 더 자세한 정보를 확인하세요. ### PyTorch용 Intel® oneCCL 바인딩 설치: [[intel-oneccl-bindings-for-pytorch-installation]] 다음 Python 버전에 대한 Wheel 파일을 사용할 수 있습니다. | Extension Version | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | | :---------------: | :--------: | :--------: | :--------: | :--------: | :---------: | | 1.13.0 | | √ | √ | √ | √ | | 1.12.100 | | √ | √ | √ | √ | | 1.12.0 | | √ | √ | √ | √ | | 1.11.0 | | √ | √ | √ | √ | | 1.10.0 | √ | √ | √ | √ | | ```bash pip install oneccl_bind_pt=={pytorch_version} -f https://developer.intel.com/ipex-whl-stable-cpu ``` `{pytorch_version}`은 1.13.0과 같이 PyTorch 버전을 나타냅니다. [oneccl_bind_pt 설치](https://github.com/intel/torch-ccl)에 대한 더 많은 접근 방법을 확인해 보세요. oneCCL과 PyTorch의 버전은 일치해야 합니다. <Tip warning={true}> oneccl_bindings_for_pytorch 1.12.0 버전의 미리 빌드된 Wheel 파일은 PyTorch 1.12.1과 호환되지 않습니다(PyTorch 1.12.0용입니다). PyTorch 1.12.1은 oneccl_bindings_for_pytorch 1.12.10 버전과 함께 사용해야 합니다. </Tip> ## Intel® MPI 라이브러리 [[intel-mpi-library]] 이 표준 기반 MPI 구현을 사용하여 Intel® 아키텍처에서 유연하고 효율적이며 확장 가능한 클러스터 메시징을 제공하세요. 이 구성 요소는 Intel® oneAPI HPC Toolkit의 일부입니다. oneccl_bindings_for_pytorch는 MPI 도구 세트와 함께 설치됩니다. 사용하기 전에 환경을 소스로 지정해야 합니다. Intel® oneCCL 버전 1.12.0 이상인 경우 ```bash oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh ``` Intel® oneCCL 버전이 1.12.0 미만인 경우 ```bash torch_ccl_path=$(python -c "import torch; import torch_ccl; import os; print(os.path.abspath(os.path.dirname(torch_ccl.__file__)))") source $torch_ccl_path/env/setvars.sh ``` #### IPEX 설치: [[ipex-installation]] IPEX는 Float32와 BFloat16을 모두 사용하는 CPU 훈련을 위한 성능 최적화를 제공합니다. [single CPU section](./perf_train_cpu)을 참조하세요. 이어서 나오는 "Trainer에서의 사용"은 Intel® MPI 라이브러리의 mpirun을 예로 들었습니다. ## Trainer에서의 사용 [[usage-in-trainer]] Trainer에서 ccl 백엔드를 사용하여 멀티 CPU 분산 훈련을 활성화하려면 명령 인수에 **`--ddp_backend ccl`**을 추가해야 합니다. [질의 응답 예제](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)를 사용한 예를 살펴보겠습니다. 다음 명령은 한 Xeon 노드에서 2개의 프로세스로 훈련을 활성화하며, 각 소켓당 하나의 프로세스가 실행됩니다. OMP_NUM_THREADS/CCL_WORKER_COUNT 변수는 최적의 성능을 위해 조정할 수 있습니다. ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=127.0.0.1 mpirun -n 2 -genv OMP_NUM_THREADS=23 \ python3 run_qa.py \ --model_name_or_path google-bert/bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex ``` 다음 명령은 두 개의 Xeon(노드0 및 노드1, 주 프로세스로 노드0을 사용)에서 총 4개의 프로세스로 훈련을 활성화하며, 각 소켓당 하나의 프로세스가 실행됩니다. OMP_NUM_THREADS/CCL_WORKER_COUNT 변수는 최적의 성능을 위해 조정할 수 있습니다. 노드0에서는 각 노드의 IP 주소를 포함하는 구성 파일(예: hostfile)을 생성하고 해당 구성 파일 경로를 인수로 전달해야 합니다. ```shell script cat hostfile xxx.xxx.xxx.xxx #node0 ip xxx.xxx.xxx.xxx #node1 ip ``` 이제 노드0에서 다음 명령을 실행하면 **4DDP**가 노드0 및 노드1에서 BF16 자동 혼합 정밀도로 활성화됩니다. ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip mpirun -f hostfile -n 4 -ppn 2 \ -genv OMP_NUM_THREADS=23 \ python3 run_qa.py \ --model_name_or_path google-bert/bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex \ --bf16 ```
transformers/docs/source/ko/perf_train_cpu_many.md/0
{ "file_path": "transformers/docs/source/ko/perf_train_cpu_many.md", "repo_id": "transformers", "token_count": 4052 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 둘러보기 [[quick-tour]] [[open-in-colab]] 🤗 Transformers를 시작해보세요! 개발해본 적이 없더라도 쉽게 읽을 수 있도록 쓰인 이 글은 [`pipeline`](./main_classes/pipelines)을 사용하여 추론하고, 사전학습된 모델과 전처리기를 [AutoClass](./model_doc/auto)로 로드하고, PyTorch 또는 TensorFlow로 모델을 빠르게 학습시키는 방법을 소개해 드릴 것입니다. 본 가이드에서 소개되는 개념을 (특히 초보자의 관점으로) 더 친절하게 접하고 싶다면, 튜토리얼이나 [코스](https://huggingface.co/course/chapter1/1)를 참조하기를 권장합니다. 시작하기 전에 필요한 라이브러리가 모두 설치되어 있는지 확인하세요: ```bash !pip install transformers datasets evaluate accelerate ``` 또한 선호하는 머신 러닝 프레임워크를 설치해야 합니다: <frameworkcontent> <pt> ```bash pip install torch ``` </pt> <tf> ```bash pip install tensorflow ``` </tf> </frameworkcontent> ## 파이프라인 [[pipeline]] <Youtube id="tiZFewofSLM"/> [`pipeline`](./main_classes/pipelines)은 사전 훈련된 모델로 추론하기에 가장 쉽고 빠른 방법입니다. [`pipeline`]은 여러 모달리티에서 다양한 과업을 쉽게 처리할 수 있으며, 아래 표에 표시된 몇 가지 과업을 기본적으로 지원합니다: <Tip> 사용 가능한 작업의 전체 목록은 [Pipelines API 참조](./main_classes/pipelines)를 확인하세요. </Tip> | **태스크** | **설명** | **모달리티** | **파이프라인 ID** | |-----------------|----------------------------------------------------------------------|------------------|-----------------------------------------------| | 텍스트 분류 | 텍스트에 알맞은 레이블 붙이기 | 자연어 처리(NLP) | pipeline(task="sentiment-analysis") | | 텍스트 생성 | 주어진 문자열 입력과 이어지는 텍스트 생성하기 | 자연어 처리(NLP) | pipeline(task="text-generation") | | 개체명 인식 | 문자열의 각 토큰마다 알맞은 레이블 붙이기 (인물, 조직, 장소 등등) | 자연어 처리(NLP) | pipeline(task="ner") | | 질의응답 | 주어진 문맥과 질문에 따라 올바른 대답하기 | 자연어 처리(NLP) | pipeline(task="question-answering") | | 빈칸 채우기 | 문자열의 빈칸에 알맞은 토큰 맞추기 | 자연어 처리(NLP) | pipeline(task="fill-mask") | | 요약 | 텍스트나 문서를 요약하기 | 자연어 처리(NLP) | pipeline(task="summarization") | | 번역 | 텍스트를 한 언어에서 다른 언어로 번역하기 | 자연어 처리(NLP) | pipeline(task="translation") | | 이미지 분류 | 이미지에 알맞은 레이블 붙이기 | 컴퓨터 비전(CV) | pipeline(task="image-classification") | | 이미지 분할 | 이미지의 픽셀마다 레이블 붙이기(시맨틱, 파놉틱 및 인스턴스 분할 포함) | 컴퓨터 비전(CV) | pipeline(task="image-segmentation") | | 객체 탐지 | 이미지 속 객체의 경계 상자를 그리고 클래스를 예측하기 | 컴퓨터 비전(CV) | pipeline(task="object-detection") | | 오디오 분류 | 오디오 파일에 알맞은 레이블 붙이기 | 오디오 | pipeline(task="audio-classification") | | 자동 음성 인식 | 오디오 파일 속 음성을 텍스트로 바꾸기 | 오디오 | pipeline(task="automatic-speech-recognition") | | 시각 질의응답 | 주어진 이미지와 질문에 대해 올바르게 대답하기 | 멀티모달 | pipeline(task="vqa") | | 문서 질의응답 | 주어진 문서와 질문에 대해 올바르게 대답하기 | 멀티모달 | pipeline(task="document-question-answering") | | 이미지 캡션 달기 | 주어진 이미지의 캡션 생성하기 | 멀티모달 | pipeline(task="image-to-text") | 먼저 [`pipeline`]의 인스턴스를 생성하고 사용할 작업을 지정합니다. 이 가이드에서는 감정 분석을 위해 [`pipeline`]을 사용하는 예제를 보여드리겠습니다: ```py >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis") ``` [`pipeline`]은 감정 분석을 위한 [사전 훈련된 모델](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english)과 토크나이저를 자동으로 다운로드하고 캐시합니다. 이제 `classifier`를 대상 텍스트에 사용할 수 있습니다: ```py >>> classifier("We are very happy to show you the 🤗 Transformers library.") [{'label': 'POSITIVE', 'score': 0.9998}] ``` 만약 입력이 여러 개 있는 경우, 입력을 리스트로 [`pipeline`]에 전달하여, 사전 훈련된 모델의 출력을 딕셔너리로 이루어진 리스트 형태로 받을 수 있습니다: ```py >>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."]) >>> for result in results: ... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") label: POSITIVE, with score: 0.9998 label: NEGATIVE, with score: 0.5309 ``` [`pipeline`]은 주어진 과업에 관계없이 데이터셋 전부를 순회할 수도 있습니다. 이 예제에서는 자동 음성 인식을 과업으로 선택해 보겠습니다: ```py >>> import torch >>> from transformers import pipeline >>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") ``` 데이터셋을 로드할 차례입니다. (자세한 내용은 🤗 Datasets [시작하기](https://huggingface.co/docs/datasets/quickstart#audio)을 참조하세요) 여기에서는 [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) 데이터셋을 로드하겠습니다: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT ``` 데이터셋의 샘플링 레이트가 기존 모델인 [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h)의 훈련 당시 샘플링 레이트와 일치하는지 확인해야 합니다: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) ``` `"audio"` 열을 호출하면 자동으로 오디오 파일을 가져와서 리샘플링합니다. 첫 4개 샘플에서 원시 웨이브폼 배열을 추출하고 파이프라인에 리스트로 전달하세요: ```py >>> result = speech_recognizer(dataset[:4]["audio"]) >>> print([d["text"] for d in result]) ['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FONDERING HOW I'D SET UP A JOIN TO HELL T WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE APSO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AN I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I FURN A JOINA COUT'] ``` 음성이나 비전과 같이 입력이 큰 대규모 데이터셋의 경우, 모든 입력을 메모리에 로드하려면 리스트 대신 제너레이터 형태로 전달해야 합니다. 자세한 내용은 [Pipelines API 참조](./main_classes/pipelines)를 확인하세요. ### 파이프라인에서 다른 모델과 토크나이저 사용하기 [[use-another-model-and-tokenizer-in-the-pipeline]] [`pipeline`]은 [Hub](https://huggingface.co/models)의 모든 모델을 사용할 수 있기 때문에, [`pipeline`]을 다른 용도에 맞게 쉽게 수정할 수 있습니다. 예를 들어, 프랑스어 텍스트를 처리할 수 있는 모델을 사용하기 위해선 Hub의 태그를 사용하여 적절한 모델을 필터링하면 됩니다. 필터링된 결과의 상위 항목으로는 프랑스어 텍스트에 사용할 수 있는 다국어 [BERT 모델](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment)이 반환됩니다: ```py >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" ``` <frameworkcontent> <pt> [`AutoModelForSequenceClassification`]과 [`AutoTokenizer`]를 사용하여 사전 훈련된 모델과 관련된 토크나이저를 로드하세요 (다음 섹션에서 [`AutoClass`]에 대해 더 자세히 알아보겠습니다): ```py >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </pt> <tf> [`TFAutoModelForSequenceClassification`]과 [`AutoTokenizer`]를 사용하여 사전 훈련된 모델과 관련된 토크나이저를 로드하세요 (다음 섹션에서 [`TFAutoClass`]에 대해 더 자세히 알아보겠습니다): ```py >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </tf> </frameworkcontent> [`pipeline`]에서 모델과 토크나이저를 지정하면, 이제 `classifier`를 프랑스어 텍스트에 적용할 수 있습니다: ```py >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") [{'label': '5 stars', 'score': 0.7273}] ``` 마땅한 모델을 찾을 수 없는 경우 데이터를 기반으로 사전 훈련된 모델을 미세조정해야 합니다. 미세조정 방법에 대한 자세한 내용은 [미세조정 튜토리얼](./training)을 참조하세요. 사전 훈련된 모델을 미세조정한 후에는 모델을 Hub의 커뮤니티와 공유하여 머신러닝 민주화에 기여해주세요! 🤗 ## AutoClass [[autoclass]] <Youtube id="AhChOFRegn4"/> [`AutoModelForSequenceClassification`]과 [`AutoTokenizer`] 클래스는 위에서 다룬 [`pipeline`]의 기능을 구현하는 데 사용됩니다. [AutoClass](./model_doc/auto)는 사전 훈련된 모델의 아키텍처를 이름이나 경로에서 자동으로 가져오는 '바로가기'입니다. 과업에 적합한 `AutoClass`를 선택하고 해당 전처리 클래스를 선택하기만 하면 됩니다. 이전 섹션의 예제로 돌아가서 [`pipeline`]의 결과를 `AutoClass`를 활용해 복제하는 방법을 살펴보겠습니다. ### AutoTokenizer [[autotokenizer]] 토크나이저는 텍스트를 모델의 입력으로 사용하기 위해 숫자 배열 형태로 전처리하는 역할을 담당합니다. 토큰화 과정에는 단어를 어디에서 끊을지, 어느 수준까지 나눌지와 같은 여러 규칙들이 있습니다 (토큰화에 대한 자세한 내용은 [토크나이저 요약](./tokenizer_summary)을 참조하세요). 가장 중요한 점은 모델이 사전 훈련된 모델과 동일한 토큰화 규칙을 사용하도록 동일한 모델 이름으로 토크나이저를 인스턴스화해야 한다는 것입니다. [`AutoTokenizer`]로 토크나이저를 로드하세요: ```py >>> from transformers import AutoTokenizer >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` 텍스트를 토크나이저에 전달하세요: ```py >>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.") >>> print(encoding) {'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` 토크나이저는 다음을 포함한 딕셔너리를 반환합니다: * [input_ids](./glossary#input-ids): 토큰의 숫자 표현. * [attention_mask](.glossary#attention-mask): 어떤 토큰에 주의를 기울여야 하는지를 나타냅니다. 토크나이저는 입력을 리스트 형태로도 받을 수 있으며, 텍스트를 패딩하고 잘라내어 일정한 길이의 묶음을 반환할 수도 있습니다: <frameworkcontent> <pt> ```py >>> pt_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt", ... ) ``` </pt> <tf> ```py >>> tf_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf", ... ) ``` </tf> </frameworkcontent> <Tip> [전처리](./preprocessing) 튜토리얼을 참조하시면 토큰화에 대한 자세한 설명과 함께 이미지, 오디오와 멀티모달 입력을 전처리하기 위한 [`AutoImageProcessor`]와 [`AutoFeatureExtractor`], [`AutoProcessor`]의 사용방법도 알 수 있습니다. </Tip> ### AutoModel [[automodel]] <frameworkcontent> <pt> 🤗 Transformers는 사전 훈련된 인스턴스를 간단하고 통합된 방법으로 로드할 수 있습니다. 즉, [`AutoTokenizer`]처럼 [`AutoModel`]을 로드할 수 있습니다. 유일한 차이점은 과업에 알맞은 [`AutoModel`]을 선택해야 한다는 점입니다. 텍스트 (또는 시퀀스) 분류의 경우 [`AutoModelForSequenceClassification`]을 로드해야 합니다: ```py >>> from transformers import AutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> [`AutoModel`] 클래스에서 지원하는 과업에 대해서는 [과업 요약](./task_summary)을 참조하세요. </Tip> 이제 전처리된 입력 묶음을 직접 모델에 전달해야 합니다. 아래처럼 `**`를 앞에 붙여 딕셔너리를 풀어주면 됩니다: ```py >>> pt_outputs = pt_model(**pt_batch) ``` 모델의 최종 활성화 함수 출력은 `logits` 속성에 담겨있습니다. `logits`에 softmax 함수를 적용하여 확률을 얻을 수 있습니다: ```py >>> from torch import nn >>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) >>> print(pt_predictions) tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>) ``` </pt> <tf> 🤗 Transformers는 사전 훈련된 인스턴스를 간단하고 통합된 방법으로 로드할 수 있습니다. 즉, [`AutoTokenizer`]처럼 [`TFAutoModel`]을 로드할 수 있습니다. 유일한 차이점은 과업에 알맞은 [`TFAutoModel`]을 선택해야 한다는 점입니다. 텍스트 (또는 시퀀스) 분류의 경우 [`TFAutoModelForSequenceClassification`]을 로드해야 합니다: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> [`AutoModel`] 클래스에서 지원하는 과업에 대해서는 [과업 요약](./task_summary)을 참조하세요. </Tip> 이제 전처리된 입력 묶음을 직접 모델에 전달해야 합니다. 아래처럼 그대로 텐서를 전달하면 됩니다: ```py >>> tf_outputs = tf_model(tf_batch) ``` 모델의 최종 활성화 함수 출력은 `logits` 속성에 담겨있습니다. `logits`에 softmax 함수를 적용하여 확률을 얻을 수 있습니다: ```py >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) >>> tf_predictions # doctest: +IGNORE_RESULT ``` </tf> </frameworkcontent> <Tip> 모든 🤗 Transformers 모델(PyTorch 또는 TensorFlow)은 (softmax와 같은) 최종 활성화 함수 *이전에* 텐서를 출력합니다. 왜냐하면 최종 활성화 함수의 출력은 종종 손실 함수 출력과 결합되기 때문입니다. 모델 출력은 특수한 데이터 클래스이므로 IDE에서 자동 완성됩니다. 모델 출력은 튜플이나 딕셔너리처럼 동작하며 (정수, 슬라이스 또는 문자열로 인덱싱 가능), None인 속성은 무시됩니다. </Tip> ### 모델 저장하기 [[save-a-model]] <frameworkcontent> <pt> 미세조정된 모델을 토크나이저와 함께 저장하려면 [`PreTrainedModel.save_pretrained`]를 사용하세요: ```py >>> pt_save_directory = "./pt_save_pretrained" >>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT >>> pt_model.save_pretrained(pt_save_directory) ``` 모델을 다시 사용하려면 [`PreTrainedModel.from_pretrained`]로 모델을 다시 로드하세요: ```py >>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") ``` </pt> <tf> 미세조정된 모델을 토크나이저와 함께 저장하려면 [`TFPreTrainedModel.save_pretrained`]를 사용하세요: ```py >>> tf_save_directory = "./tf_save_pretrained" >>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT >>> tf_model.save_pretrained(tf_save_directory) ``` 모델을 다시 사용하려면 [`TFPreTrainedModel.from_pretrained`]로 모델을 다시 로드하세요: ```py >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") ``` </tf> </frameworkcontent> 🤗 Transformers의 멋진 기능 중 하나는 모델을 PyTorch 또는 TensorFlow 모델로 저장해뒀다가 다른 프레임워크로 다시 로드할 수 있는 점입니다. `from_pt` 또는 `from_tf` 매개변수를 사용하여 모델을 한 프레임워크에서 다른 프레임워크로 변환할 수 있습니다: <frameworkcontent> <pt> ```py >>> from transformers import AutoModel >>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) >>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) ``` </pt> <tf> ```py >>> from transformers import TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) ``` </tf> </frameworkcontent> ## 커스텀 모델 구축하기 [[custom-model-builds]] 모델의 구성 클래스를 수정하여 모델의 구조를 바꿀 수 있습니다. (은닉층이나 어텐션 헤드의 수와 같은) 모델의 속성은 구성에서 지정되기 때문입니다. 커스텀 구성 클래스로 모델을 만들면 처음부터 시작해야 합니다. 모델 속성은 무작위로 초기화되므로 의미 있는 결과를 얻으려면 먼저 모델을 훈련시켜야 합니다. 먼저 [`AutoConfig`]를 가져오고 수정하고 싶은 사전학습된 모델을 로드하세요. [`AutoConfig.from_pretrained`] 내부에서 (어텐션 헤드 수와 같이) 변경하려는 속성를 지정할 수 있습니다: ```py >>> from transformers import AutoConfig >>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12) ``` <frameworkcontent> <pt> [`AutoModel.from_config`]를 사용하여 바꾼 구성대로 모델을 생성하세요: ```py >>> from transformers import AutoModel >>> my_model = AutoModel.from_config(my_config) ``` </pt> <tf> [`TFAutoModel.from_config`]를 사용하여 바꾼 구성대로 모델을 생성하세요: ```py >>> from transformers import TFAutoModel >>> my_model = TFAutoModel.from_config(my_config) ``` </tf> </frameworkcontent> 커스텀 구성에 대한 자세한 내용은 [커스텀 아키텍처 만들기](./create_a_model) 가이드를 확인하세요. ## Trainer - PyTorch에 최적화된 훈련 루프 [[trainer-a-pytorch-optimized-training-loop]] 모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)이므로 일반적인 훈련 루프에서 사용할 수 있습니다. 직접 훈련 루프를 작성할 수도 있지만, 🤗 Transformers는 PyTorch를 위한 [`Trainer`] 클래스를 제공합니다. 이 클래스에는 기본 훈련 루프가 포함되어 있으며 분산 훈련, 혼합 정밀도 등과 같은 기능을 추가로 제공합니다. 과업에 따라 다르지만 일반적으로 [`Trainer`]에 다음 매개변수를 전달합니다: 1. [`PreTrainedModel`] 또는 [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)로 시작합니다: ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 2. [`TrainingArguments`]는 학습률, 배치 크기, 훈련할 에포크 수와 같은 모델 하이퍼파라미터를 포함합니다. 훈련 인자를 지정하지 않으면 기본값이 사용됩니다: ```py >>> from transformers import TrainingArguments >>> training_args = TrainingArguments( ... output_dir="path/to/save/folder/", ... learning_rate=2e-5, ... per_device_train_batch_size=8, ... per_device_eval_batch_size=8, ... num_train_epochs=2, ... ) ``` 3. 토크나이저, 이미지 프로세서, 특징 추출기(feature extractor) 또는 프로세서와 전처리 클래스를 로드하세요: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` 4. 데이터셋을 로드하세요: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT ``` 5. 데이터셋을 토큰화하는 함수를 생성하세요: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) ``` 그리고 [`~datasets.Dataset.map`]로 데이터셋 전체에 적용하세요: ```py >>> dataset = dataset.map(tokenize_dataset, batched=True) ``` 6. [`DataCollatorWithPadding`]을 사용하여 데이터셋의 표본 묶음을 만드세요: ```py >>> from transformers import DataCollatorWithPadding >>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer) ``` 이제 위의 모든 클래스를 [`Trainer`]로 모으세요: ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=dataset["train"], ... eval_dataset=dataset["test"], ... processing_class=tokenizer, ... data_collator=data_collator, ... ) # doctest: +SKIP ``` 준비가 되었으면 [`~Trainer.train`]을 호출하여 훈련을 시작하세요: ```py >>> trainer.train() # doctest: +SKIP ``` <Tip> 번역이나 요약과 같이 시퀀스-시퀀스 모델을 사용하는 과업에는 [`Seq2SeqTrainer`] 및 [`Seq2SeqTrainingArguments`] 클래스를 사용하세요. </Tip> [`Trainer`] 내의 메서드를 서브클래스화하여 훈련 루프를 바꿀 수도 있습니다. 이러면 손실 함수, 옵티마이저, 스케줄러와 같은 기능 또한 바꿀 수 있게 됩니다. 변경 가능한 메소드에 대해서는 [`Trainer`] 문서를 참고하세요. 훈련 루프를 수정하는 다른 방법은 [Callbacks](./main_classes/callback)를 사용하는 것입니다. Callbacks로 다른 라이브러리와 통합하고, 훈련 루프를 체크하여 진행 상황을 보고받거나, 훈련을 조기에 중단할 수 있습니다. Callbacks은 훈련 루프 자체를 바꾸지는 않습니다. 손실 함수와 같은 것을 바꾸려면 [`Trainer`]를 서브클래스화해야 합니다. ## TensorFlow로 훈련시키기 [[train-with-tensorflow]] 모든 모델은 [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)이므로 [Keras](https://keras.io/) API를 통해 TensorFlow에서 훈련시킬 수 있습니다. 🤗 Transformers는 데이터셋을 쉽게 `tf.data.Dataset` 형태로 쉽게 로드할 수 있는 [`~TFPreTrainedModel.prepare_tf_dataset`] 메소드를 제공하기 때문에, Keras의 [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) 및 [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) 메소드로 바로 훈련을 시작할 수 있습니다. 1. [`TFPreTrainedModel`] 또는 [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)로 시작합니다: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 2. 토크나이저, 이미지 프로세서, 특징 추출기(feature extractor) 또는 프로세서와 같은 전처리 클래스를 로드하세요: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` 3. 데이터셋을 토큰화하는 함수를 생성하세요: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) # doctest: +SKIP ``` 4. [`~datasets.Dataset.map`]을 사용하여 전체 데이터셋에 토큰화 함수를 적용하고, 데이터셋과 토크나이저를 [`~TFPreTrainedModel.prepare_tf_dataset`]에 전달하세요. 배치 크기를 변경하거나 데이터셋을 섞을 수도 있습니다: ```py >>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP >>> tf_dataset = model.prepare_tf_dataset( ... dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer ... ) # doctest: +SKIP ``` 5. 준비되었으면 `compile` 및 `fit`를 호출하여 훈련을 시작하세요. 🤗 Transformers의 모든 모델은 과업과 관련된 기본 손실 함수를 가지고 있으므로 명시적으로 지정하지 않아도 됩니다: ```py >>> from tensorflow.keras.optimizers import Adam >>> model.compile(optimizer=Adam(3e-5)) # No loss argument! >>> model.fit(tf_dataset) # doctest: +SKIP ``` ## 다음 단계는 무엇인가요? [[whats-next]] 🤗 Transformers 둘러보기를 모두 읽으셨다면, 가이드를 살펴보고 더 구체적인 것을 수행하는 방법을 알아보세요. 이를테면 커스텀 모델 구축하는 방법, 과업에 알맞게 모델을 미세조정하는 방법, 스크립트로 모델 훈련하는 방법 등이 있습니다. 🤗 Transformers 핵심 개념에 대해 더 알아보려면 커피 한 잔 들고 개념 가이드를 살펴보세요!
transformers/docs/source/ko/quicktour.md/0
{ "file_path": "transformers/docs/source/ko/quicktour.md", "repo_id": "transformers", "token_count": 17532 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 마스킹된 언어 모델링(Masked language modeling)[[masked-language-modeling]] [[open-in-colab]] <Youtube id="mqElG5QJWUg"/> 마스킹된 언어 모델링은 시퀀스에서 마스킹된 토큰을 예측하며, 모델은 양방향으로 토큰에 액세스할 수 있습니다. 즉, 모델은 토큰의 왼쪽과 오른쪽 양쪽에서 접근할 수 있습니다. 마스킹된 언어 모델링은 전체 시퀀스에 대한 문맥적 이해가 필요한 작업에 적합하며, BERT가 그 예에 해당합니다. 이번 가이드에서 다룰 내용은 다음과 같습니다: 1. [ELI5](https://huggingface.co/datasets/eli5) 데이터 세트에서 [r/askscience](https://www.reddit.com/r/askscience/) 부분을 사용해 [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) 모델을 미세 조정합니다. 2. 추론 시에 직접 미세 조정한 모델을 사용합니다. <Tip> 이 작업과 호환되는 모든 아키텍처와 체크포인트를 보려면 [작업 페이지](https://huggingface.co/tasks/fill-mask)를 확인하는 것이 좋습니다. </Tip> 시작하기 전에 필요한 라이브러리가 모두 설치되어 있는지 확인하세요: ```bash pip install transformers datasets evaluate ``` Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티와의 공유를 권장합니다. 메시지가 표시되면(When prompted) 토큰을 입력하여 로그인합니다: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## ELI5 데이터 세트 가져오기[[load-eli5-dataset]] 먼저 🤗 Datasets 라이브러리에서 ELI5 데이터 세트의 r/askscience 중 일부만 가져옵니다. 이렇게 하면 전체 데이터 세트 학습에 더 많은 시간을 할애하기 전에 모든 것이 작동하는지 실험하고 확인할 수 있습니다. ```py >>> from datasets import load_dataset >>> eli5 = load_dataset("eli5", split="train_asks[:5000]") ``` 데이터 세트의 `train_asks`를 [`~datasets.Dataset.train_test_split`] 메소드를 사용해 훈련 데이터와 테스트 데이터로 분할합니다: ```py >>> eli5 = eli5.train_test_split(test_size=0.2) ``` 그리고 아래 예시를 살펴보세요: ```py >>> eli5["train"][0] {'answers': {'a_id': ['c3d1aib', 'c3d4lya'], 'score': [6, 3], 'text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"]}, 'answers_urls': {'url': []}, 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls': {'url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg']}, 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls': {'url': []}} ``` 많아 보일 수 있지만 실제로는 `text` 필드에만 집중하면 됩나다. 언어 모델링 작업의 멋진 점은 (비지도 학습으로) *다음 단어가 레이블*이기 때문에 레이블이 따로 필요하지 않습니다. ## 전처리[[preprocess]] <Youtube id="8PmhEIXhBvI"/> 마스킹된 언어 모델링을 위해, 다음 단계로 DistilRoBERTa 토크나이저를 가져와서 `text` 하위 필드를 처리합니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilroberta-base") ``` 위의 예제에서와 마찬가지로, `text` 필드는 `answers` 안에 중첩되어 있습니다. 따라서 중첩된 구조에서 [`flatten`](https://huggingface.co/docs/datasets/process#flatten) 메소드를 사용하여 `text` 하위 필드를 추출합니다: ```py >>> eli5 = eli5.flatten() >>> eli5["train"][0] {'answers.a_id': ['c3d1aib', 'c3d4lya'], 'answers.score': [6, 3], 'answers.text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"], 'answers_urls.url': [], 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls.url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg'], 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls.url': []} ``` 이제 각 하위 필드는 `answers` 접두사(prefix)로 표시된 대로 별도의 열이 되고, `text` 필드는 이제 리스트가 되었습니다. 각 문장을 개별적으로 토큰화하는 대신 리스트를 문자열로 변환하여 한번에 토큰화할 수 있습니다. 다음은 각 예제에 대해 문자열로 이루어진 리스트를 `join`하고 결과를 토큰화하는 첫 번째 전처리 함수입니다: ```py >>> def preprocess_function(examples): ... return tokenizer([" ".join(x) for x in examples["answers.text"]]) ``` 이 전처리 함수를 전체 데이터 세트에 적용하기 위해 🤗 Datasets [`~datasets.Dataset.map`] 메소드를 사용합니다. 데이터 세트의 여러 요소를 한 번에 처리하도록 `batched=True`를 설정하고 `num_proc`로 처리 횟수를 늘리면 `map` 함수의 속도를 높일 수 있습니다. 필요하지 않은 열은 제거합니다: ```py >>> tokenized_eli5 = eli5.map( ... preprocess_function, ... batched=True, ... num_proc=4, ... remove_columns=eli5["train"].column_names, ... ) ``` 이 데이터 세트에는 토큰 시퀀스가 포함되어 있지만 이 중 일부는 모델의 최대 입력 길이보다 깁니다. 이제 두 번째 전처리 함수를 사용해 - 모든 시퀀스를 연결하고 - 연결된 시퀀스를 정의한 `block_size` 보다 더 짧은 덩어리로 분할하는데, 이 덩어리는 모델의 최대 입력 길이보다 짧고 GPU RAM이 수용할 수 있는 길이여야 합니다. ```py >>> block_size = 128 >>> def group_texts(examples): ... # Concatenate all texts. ... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ... total_length = len(concatenated_examples[list(examples.keys())[0]]) ... # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can ... # customize this part to your needs. ... if total_length >= block_size: ... total_length = (total_length // block_size) * block_size ... # Split by chunks of block_size. ... result = { ... k: [t[i : i + block_size] for i in range(0, total_length, block_size)] ... for k, t in concatenated_examples.items() ... } ... result["labels"] = result["input_ids"].copy() ... return result ``` 전체 데이터 세트에 `group_texts` 함수를 적용합니다: ```py >>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4) ``` 이제 [`DataCollatorForLanguageModeling`]을 사용하여 데이터 예제의 배치를 생성합니다. 데이터 세트 전체를 최대 길이로 패딩하는 것보다 collation 단계에서 매 배치안에서의 최대 길이로 문장을 *동적으로 패딩*하는 것이 더 효율적입니다. <frameworkcontent> <pt> 시퀀스 끝 토큰을 패딩 토큰으로 사용하고 데이터를 반복할 때마다 토큰을 무작위로 마스킹하도록 `mlm_-probability`를 지정합니다: ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15) ``` </pt> <tf> 시퀀스 끝 토큰을 패딩 토큰으로 사용하고 데이터를 반복할 때마다 토큰을 무작위로 마스킹하도록 `mlm_-probability`를 지정합니다: ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15, return_tensors="tf") ``` </tf> </frameworkcontent> ## 훈련[[train]] <frameworkcontent> <pt> <Tip> [`Trainer`]로 모델을 미세 조정하는 데 익숙하지 않다면 기본 튜토리얼 [여기](../training#train-with-pytorch-trainer)를 살펴보세요! </Tip> 이제 모델 훈련을 시작할 준비가 되었습니다! [`AutoModelForMaskedLM`]를 사용해 DistilRoBERTa 모델을 가져옵니다: ```py >>> from transformers import AutoModelForMaskedLM >>> model = AutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base") ``` 이제 세 단계가 남았습니다: 1. [`TrainingArguments`]의 훈련 하이퍼파라미터를 정의합니다. 모델 저장 위치를 지정하는 `output_dir`은 유일한 필수 파라미터입니다. `push_to_hub=True`를 설정하여 이 모델을 Hub에 업로드합니다 (모델을 업로드하려면 Hugging Face에 로그인해야 합니다). 2. 모델, 데이터 세트 및 데이터 콜레이터(collator)와 함께 훈련 인수를 [`Trainer`]에 전달합니다. 3. [`~Trainer.train`]을 호출하여 모델을 미세 조정합니다. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_eli5_mlm_model", ... eval_strategy="epoch", ... learning_rate=2e-5, ... num_train_epochs=3, ... weight_decay=0.01, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` 훈련이 완료되면 [`~transformers.Trainer.evaluate`] 메소드를 사용하여 펄플렉서티(perplexity)를 계산하고 모델을 평가합니다: ```py >>> import math >>> eval_results = trainer.evaluate() >>> print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}") Perplexity: 8.76 ``` 그리고 [`~transformers.Trainer.push_to_hub`] 메소드를 사용해 다른 사람들이 사용할 수 있도록, Hub로 모델을 업로드합니다. ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> Keras로 모델을 미세 조정하는 데 익숙하지 않다면 기본 튜토리얼 [여기](../training#train-a-tensorflow-model-with-keras)를 살펴보세요! </Tip> TensorFlow로 모델을 미세 조정하기 위해서는 옵티마이저(optimizer) 함수 설정, 학습률(learning rate) 스케쥴링, 훈련 하이퍼파라미터 설정부터 시작하세요: ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` 다음으로 [`TFAutoModelForMaskedLM`]를 사용해 DistilRoBERTa 모델을 가져옵니다: ```py >>> from transformers import TFAutoModelForMaskedLM >>> model = TFAutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base") ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`] 메소드를 사용해 데이터 세트를 `tf.data.Dataset` 형식으로 변환하세요: ```py >>> tf_train_set = model.prepare_tf_dataset( ... lm_dataset["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... lm_dataset["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) 메소드를 통해 모델 훈련을 구성합니다: ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` 이는 업로드할 모델과 토크나이저의 위치를 [`~transformers.PushToHubCallback`]에 지정하여 수행할 수 있습니다: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> callback = PushToHubCallback( ... output_dir="my_awesome_eli5_mlm_model", ... tokenizer=tokenizer, ... ) ``` 드디어 모델을 훈련할 준비가 되었습니다! 모델을 미세 조정할 때 훈련 및 검증 데이터 세트, 에포크 수, 콜백이 포함된 [`fit`](https://keras.io/api/models/model_training_apis/#fit-method)을 호출합니다: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback]) ``` 훈련이 완료되면, 자동으로 Hub로 업로드되어 누구나 사용할 수 있습니다! </tf> </frameworkcontent> <Tip> 마스킹된 언어 모델링을 위해 모델을 미세 조정하는 방법에 대한 보다 심층적인 예제는 [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb) 또는 [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)을 참조하세요. </Tip> ## 추론[[inference]] 지금까지 모델 미세 조정을 잘 했으니, 추론에 사용할 수 있습니다! 모델이 빈칸을 채울 텍스트를 스페셜 토큰(special token)인 `<mask>` 토큰으로 표시합니다: ```py >>> text = "The Milky Way is a <mask> galaxy." ``` 추론을 위해 미세 조정한 모델을 테스트하는 가장 간단한 방법은 [`pipeline`]에서 사용하는 것입니다. `fill-mask`태스크로 `pipeline`을 인스턴스화하고 텍스트를 전달합니다. `top_k` 매개변수를 사용하여 반환하는 예측의 수를 지정할 수 있습니다: ```py >>> from transformers import pipeline >>> mask_filler = pipeline("fill-mask", "stevhliu/my_awesome_eli5_mlm_model") >>> mask_filler(text, top_k=3) [{'score': 0.5150994658470154, 'token': 21300, 'token_str': ' spiral', 'sequence': 'The Milky Way is a spiral galaxy.'}, {'score': 0.07087188959121704, 'token': 2232, 'token_str': ' massive', 'sequence': 'The Milky Way is a massive galaxy.'}, {'score': 0.06434620916843414, 'token': 650, 'token_str': ' small', 'sequence': 'The Milky Way is a small galaxy.'}] ``` <frameworkcontent> <pt> 텍스트를 토큰화하고 `input_ids`를 PyTorch 텐서 형태로 반환합니다. 또한, `<mask>` 토큰의 위치를 지정해야 합니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_mlm_model") >>> inputs = tokenizer(text, return_tensors="pt") >>> mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] ``` 모델에 `inputs`를 입력하고, 마스킹된 토큰의 `logits`를 반환합니다: ```py >>> from transformers import AutoModelForMaskedLM >>> model = AutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") >>> logits = model(**inputs).logits >>> mask_token_logits = logits[0, mask_token_index, :] ``` 그런 다음 가장 높은 확률은 가진 마스크 토큰 3개를 반환하고, 출력합니다: ```py >>> top_3_tokens = torch.topk(mask_token_logits, 3, dim=1).indices[0].tolist() >>> for token in top_3_tokens: ... print(text.replace(tokenizer.mask_token, tokenizer.decode([token]))) The Milky Way is a spiral galaxy. The Milky Way is a massive galaxy. The Milky Way is a small galaxy. ``` </pt> <tf> 텍스트를 토큰화하고 `input_ids`를 TensorFlow 텐서 형태로 반환합니다. 또한, `<mask>` 토큰의 위치를 지정해야 합니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_mlm_model") >>> inputs = tokenizer(text, return_tensors="tf") >>> mask_token_index = tf.where(inputs["input_ids"] == tokenizer.mask_token_id)[0, 1] ``` 모델에 `inputs`를 입력하고, 마스킹된 토큰의 `logits`를 반환합니다: ```py >>> from transformers import TFAutoModelForMaskedLM >>> model = TFAutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") >>> logits = model(**inputs).logits >>> mask_token_logits = logits[0, mask_token_index, :] ``` 그런 다음 가장 높은 확률은 가진 마스크 토큰 3개를 반환하고, 출력합니다: ```py >>> top_3_tokens = tf.math.top_k(mask_token_logits, 3).indices.numpy() >>> for token in top_3_tokens: ... print(text.replace(tokenizer.mask_token, tokenizer.decode([token]))) The Milky Way is a spiral galaxy. The Milky Way is a massive galaxy. The Milky Way is a small galaxy. ``` </tf> </frameworkcontent>
transformers/docs/source/ko/tasks/masked_language_modeling.md/0
{ "file_path": "transformers/docs/source/ko/tasks/masked_language_modeling.md", "repo_id": "transformers", "token_count": 10086 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 테스트[[testing]] 먼저 🤗 Transformers 모델이 어떻게 테스트되는지 살펴보고, 새로운 테스트를 작성 및 기존 테스트를 개선하는 방법을 알아봅시다. 이 저장소에는 2개의 테스트 스위트가 있습니다: 1. `tests` - 일반 API에 대한 테스트 2. `examples` - API의 일부가 아닌 다양한 응용 프로그램에 대한 테스트 ## Transformers 테스트 방법[[how-transformers-are-tested]] 1. PR이 제출되면 9개의 CircleCi 작업으로 테스트가 진행됩니다. 해당 PR에 대해 새로운 커밋이 생성될 때마다 테스트는 다시 진행됩니다. 이 작업들은 이 [config 파일](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml)에 정의되어 있으므로 필요하다면 사용자의 로컬 환경에서 동일하게 재현해 볼 수 있습니다. 이 CI 작업은 `@slow` 테스트를 실행하지 않습니다. 2. [github actions](https://github.com/huggingface/transformers/actions)에 의해 실행되는 작업은 3개입니다: - [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): torch hub integration이 작동하는지 확인합니다. - [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): `main` 브랜치에서 커밋이 업데이트된 경우에만 GPU를 이용한 빠른 테스트를 실행합니다. 이는 `src`, `tests`, `.github` 폴더 중 하나에 코드가 업데이트된 경우에만 실행됩니다. (model card, notebook, 기타 등등을 추가한 경우 실행되지 않도록 하기 위해서입니다) - [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): `tests` 및 `examples`에서 GPU를 이용한 일반 테스트, 느린 테스트를 실행합니다. ```bash RUN_SLOW=1 pytest tests/ RUN_SLOW=1 pytest examples/ ``` 결과는 [여기](https://github.com/huggingface/transformers/actions)에서 확인할 수 있습니다. ## 테스트 실행[[running-tests]] ### 실행할 테스트 선택[[choosing-which-tests-to-run]] 이 문서는 테스트를 실행하는 다양한 방법에 대해 자세히 설명합니다. 모든 내용을 읽은 후에도, 더 자세한 내용이 필요하다면 [여기](https://docs.pytest.org/en/latest/usage.html)에서 확인할 수 있습니다. 다음은 가장 유용한 테스트 실행 방법 몇 가지입니다. 모두 실행: ```console pytest ``` 또는: ```bash make test ``` 후자는 다음과 같이 정의됩니다: ```bash python -m pytest -n auto --dist=loadfile -s -v ./tests/ ``` 위의 명령어는 pytest에게 아래의 내용을 전달합니다: - 사용 가능한 CPU 코어 수만큼 테스트 프로세스를 실행합니다. (RAM이 충분하지 않다면, 테스트 프로세스 수가 너무 많을 수 있습니다!) - 동일한 파일의 모든 테스트는 동일한 테스트 프로세스에서 실행되어야 합니다. - 출력을 캡처하지 않습니다. - 자세한 모드로 실행합니다. ### 모든 테스트 목록 가져오기[[getting-the-list-of-all-tests]] 테스트 스위트의 모든 테스트: ```bash pytest --collect-only -q ``` 지정된 테스트 파일의 모든 테스트: ```bash pytest tests/test_optimization.py --collect-only -q ``` ### 특정 테스트 모듈 실행[[run-a-specific-test-module]] 개별 테스트 모듈 실행하기: ```bash pytest tests/utils/test_logging.py ``` ### 특정 테스트 실행[[run-specific-tests]] 대부분의 테스트 내부에서는 unittest가 사용됩니다. 따라서 특정 하위 테스트를 실행하려면 해당 테스트를 포함하는 unittest 클래스의 이름을 알아야 합니다. 예를 들어 다음과 같을 수 있습니다: ```bash pytest tests/test_optimization.py::OptimizationTest::test_adam_w ``` 위의 명령어의 의미는 다음과 같습니다: - `tests/test_optimization.py` - 테스트가 있는 파일 - `OptimizationTest` - 클래스의 이름 - `test_adam_w` - 특정 테스트 함수의 이름 파일에 여러 클래스가 포함된 경우, 특정 클래스의 테스트만 실행할 수도 있습니다. 예를 들어 다음과 같습니다: ```bash pytest tests/test_optimization.py::OptimizationTest ``` 이 명령어는 해당 클래스 내부의 모든 테스트를 실행합니다. 앞에서 언급한 것처럼 `OptimizationTest` 클래스에 포함된 테스트를 확인할 수 있습니다. ```bash pytest tests/test_optimization.py::OptimizationTest --collect-only -q ``` 키워드 표현식을 사용하여 테스트를 실행할 수도 있습니다. `adam`이라는 이름을 포함하는 테스트만 실행하려면 다음과 같습니다: ```bash pytest -k adam tests/test_optimization.py ``` 논리 연산자 `and`와 `or`를 사용하여 모든 키워드가 일치해야 하는지 또는 어느 하나가 일치해야 하는지를 나타낼 수 있습니다. `not`은 부정할 때 사용할 수 있습니다. `adam`이라는 이름을 포함하지 않는 모든 테스트를 실행하려면 다음과 같습니다: ```bash pytest -k "not adam" tests/test_optimization.py ``` 두 가지 패턴을 하나로 결합할 수도 있습니다: ```bash pytest -k "ada and not adam" tests/test_optimization.py ``` 예를 들어 `test_adafactor`와 `test_adam_w`를 모두 실행하려면 다음을 사용할 수 있습니다: ```bash pytest -k "test_adam_w or test_adam_w" tests/test_optimization.py ``` 여기서 `or`를 사용하는 것에 유의하세요. 두 키워드 중 하나가 일치하도록 하기 위한 목적으로 사용하기 때문입니다. 두 패턴이 모두 포함되어야 하는 테스트만 실행하려면, `and`를 사용해야 합니다: ```bash pytest -k "test and ada" tests/test_optimization.py ``` ### `accelerate` 테스트 실행[[run-`accelerate`-tests]] 모델에서 `accelerate` 테스트를 실행해야 할 때가 있습니다. 이를 위해서는 명령어에 `-m accelerate_tests`를 추가하면 됩니다. 예를 들어, `OPT`에서 이러한 테스트를 실행하려면 다음과 같습니다: ```bash RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py ``` ### 문서 테스트 실행[[run-documentation-tests]] 예시 문서가 올바른지 테스트하려면 `doctests`가 통과하는지 확인해야 합니다. 예를 들어, [`WhisperModel.forward`'s docstring](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035)를 사용해 봅시다: ```python r""" Returns: Example: ```python >>> import torch >>> from transformers import WhisperModel, WhisperFeatureExtractor >>> from datasets import load_dataset >>> model = WhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" ``` 원하는 파일의 모든 docstring 예제를 자동으로 테스트하려면 다음 명령을 실행하면 됩니다: ```bash pytest --doctest-modules <path_to_file_or_dir> ``` 파일의 확장자가 markdown인 경우 `--doctest-glob="*.md"` 인수를 추가해야 합니다. ### 수정된 테스트만 실행[[run-only-modified-tests]] 수정된 파일 또는 현재 브랜치 (Git 기준)와 관련된 테스트를 실행하려면 [pytest-picked](https://github.com/anapaulagomes/pytest-picked)을 사용할 수 있습니다. 이는 변경한 내용이 테스트에 영향을 주지 않았는지 빠르게 확인할 수 있는 좋은 방법입니다. ```bash pip install pytest-picked ``` ```bash pytest --picked ``` 수정되었지만, 아직 커밋되지 않은 모든 파일 및 폴더에서 테스트가 실행됩니다. ### 소스 수정 시 실패한 테스트 자동 재실행[[automatically-rerun-failed-tests-on-source-modification]] [pytest-xdist](https://github.com/pytest-dev/pytest-xdist)는 모든 실패한 테스트를 감지하고, 파일을 수정한 후에 파일을 계속 재실행하여 테스트가 성공할 때까지 기다리는 매우 유용한 기능을 제공합니다. 따라서 수정한 내용을 확인한 후 pytest를 다시 시작할 필요가 없습니다. 모든 테스트가 통과될 때까지 이 과정을 반복한 후 다시 전체 실행이 이루어집니다. ```bash pip install pytest-xdist ``` 재귀적 모드의 사용: `pytest -f` 또는 `pytest --looponfail` 파일의 변경 사항은 `looponfailroots` 루트 디렉터리와 해당 내용을 (재귀적으로) 확인하여 감지됩니다. 이 값의 기본값이 작동하지 않는 경우, `setup.cfg`의 설정 옵션을 변경하여 프로젝트에서 변경할 수 있습니다: ```ini [tool:pytest] looponfailroots = transformers tests ``` 또는 `pytest.ini`/`tox.ini`` 파일: ```ini [pytest] looponfailroots = transformers tests ``` 이렇게 하면 ini-file의 디렉터리를 기준으로 상대적으로 지정된 각 디렉터리에서 파일 변경 사항만 찾게 됩니다. 이 기능을 대체할 수 있는 구현 방법인 [pytest-watch](https://github.com/joeyespo/pytest-watch)도 있습니다. ### 특정 테스트 모듈 건너뛰기[[skip-a-test-module]] 모든 테스트 모듈을 실행하되 특정 모듈을 제외하려면, 실행할 테스트 목록을 명시적으로 지정할 수 있습니다. 예를 들어, `test_modeling_*.py` 테스트를 제외한 모든 테스트를 실행하려면 다음을 사용할 수 있습니다: ```bash pytest *ls -1 tests/*py | grep -v test_modeling* ``` ### 상태 초기화[[clearing state]] CI 빌드 및 (속도에 대한) 격리가 중요한 경우, 캐시를 지워야 합니다: ```bash pytest --cache-clear tests ``` ### 테스트를 병렬로 실행[[running-tests-in-parallel]] 이전에 언급한 것처럼 `make test`는 테스트를 병렬로 실행하기 위해 `pytest-xdist` 플러그인(`-n X` 인수, 예를 들어 `-n 2`를 사용하여 2개의 병렬 작업 실행)을 통해 실행됩니다. `pytest-xdist`의 `--dist=` 옵션을 사용하여 테스트를 어떻게 그룹화할지 제어할 수 있습니다. `--dist=loadfile`은 하나의 파일에 있는 테스트를 동일한 프로세스로 그룹화합니다. 실행된 테스트의 순서가 다르고 예측할 수 없기 때문에, `pytest-xdist`로 테스트 스위트를 실행하면 실패가 발생할 수 있습니다 (검출되지 않은 결합된 테스트가 있는 경우). 이 경우 [pytest-replay](https://github.com/ESSS/pytest-replay)를 사용하면 동일한 순서로 테스트를 다시 실행해서 실패하는 시퀀스를 최소화하는 데에 도움이 됩니다. ### 테스트 순서와 반복[[test-order-and-repetition]] 잠재적인 종속성 및 상태 관련 버그(tear down)를 감지하기 위해 테스트를 여러 번, 연속으로, 무작위로 또는 세트로 반복하는 것이 좋습니다. 그리고 직접적인 여러 번의 반복은 DL의 무작위성에 의해 발견되는 일부 문제를 감지하는 데에도 유용합니다. #### 테스트를 반복[[repeat-tests]] - [pytest-flakefinder](https://github.com/dropbox/pytest-flakefinder): ```bash pip install pytest-flakefinder ``` 모든 테스트를 여러 번 실행합니다(기본값은 50번): ```bash pytest --flake-finder --flake-runs=5 tests/test_failing_test.py ``` <Tip> 이 플러그인은 `pytest-xdist`의 `-n` 플래그와 함께 작동하지 않습니다. </Tip> <Tip> `pytest-repeat`라는 또 다른 플러그인도 있지만 `unittest`와 함께 작동하지 않습니다. </Tip> #### 테스트를 임의의 순서로 실행[[run-tests-in-a-random-order]] ```bash pip install pytest-random-order ``` 중요: `pytest-random-order`가 설치되면 테스트가 자동으로 임의의 순서로 섞입니다. 구성 변경이나 커맨드 라인 옵션이 필요하지 않습니다. 앞서 설명한 것처럼 이를 통해 한 테스트의 상태가 다른 테스트의 상태에 영향을 미치는 결합된 테스트를 감지할 수 있습니다. `pytest-random-order`가 설치되면 해당 세션에서 사용된 랜덤 시드가 출력되며 예를 들어 다음과 같습니다: ```bash pytest tests [...] Using --random-order-bucket=module Using --random-order-seed=573663 ``` 따라서 특정 시퀀스가 실패하는 경우에는 정확한 시드를 추가하여 재현할 수 있습니다. 예를 들어 다음과 같습니다: ```bash pytest --random-order-seed=573663 [...] Using --random-order-bucket=module Using --random-order-seed=573663 ``` 정확히 동일한 테스트 목록(또는 목록이 없음)을 사용하는 경우에만 정확한 순서를 재현합니다. 목록을 수동으로 좁히기 시작하면 더 이상 시드에 의존할 수 없고 실패했던 정확한 순서로 수동으로 목록을 나열해야합니다. 그리고 `--random-order-bucket=none`을 사용하여 pytest에게 순서를 임의로 설정하지 않도록 알려야 합니다. 예를 들어 다음과 같습니다: ```bash pytest --random-order-bucket=none tests/test_a.py tests/test_c.py tests/test_b.py ``` 모든 테스트에 대해 섞기를 비활성화하려면 다음과 같습니다: ```bash pytest --random-order-bucket=none ``` 기본적으로 `--random-order-bucket=module`이 내재되어 있으므로, 모듈 수준에서 파일을 섞습니다. 또한 `class`, `package`, `global` 및 `none` 수준에서도 섞을 수 있습니다. 자세한 내용은 해당 [문서](https://github.com/jbasko/pytest-random-order)를 참조하세요. 또 다른 무작위화의 대안은 [`pytest-randomly`](https://github.com/pytest-dev/pytest-randomly)입니다. 이 모듈은 매우 유사한 기능/인터페이스를 가지고 있지만, `pytest-random-order`에 있는 버킷 모드를 사용할 수는 없습니다. 설치 후에는 자동으로 적용되는 문제도 동일하게 가집니다. ### 외관과 느낌을 변경[[look-and-feel-variations] #### pytest-sugar 사용[[pytest-sugar]] [pytest-sugar](https://github.com/Frozenball/pytest-sugar)는 테스트가 보여지는 형태를 개선하고, 진행 상황 바를 추가하며, 실패한 테스트와 검증을 즉시 표시하는 플러그인입니다. 설치하면 자동으로 활성화됩니다. ```bash pip install pytest-sugar ``` pytest-sugar 없이 테스트를 실행하려면 다음과 같습니다: ```bash pytest -p no:sugar ``` 또는 제거하세요. #### 각 하위 테스트 이름과 진행 상황 보고[[report-each-sub-test-name-and-its-progress]] `pytest`를 통해 단일 또는 그룹의 테스트를 실행하는 경우(`pip install pytest-pspec` 이후): ```bash pytest --pspec tests/test_optimization.py ``` #### 실패한 테스트 즉시 표시[[instantly-shows-failed-tests]] [pytest-instafail](https://github.com/pytest-dev/pytest-instafail)은 테스트 세션의 끝까지 기다리지 않고 실패 및 오류를 즉시 표시합니다. ```bash pip install pytest-instafail ``` ```bash pytest --instafail ``` ### GPU 사용 여부[[to-GPU-or-not-to-GPU]] GPU가 활성화된 환경에서, CPU 전용 모드로 테스트하려면 `CUDA_VISIBLE_DEVICES=""`를 추가합니다: ```bash CUDA_VISIBLE_DEVICES="" pytest tests/utils/test_logging.py ``` 또는 다중 GPU가 있는 경우 `pytest`에서 사용할 GPU를 지정할 수도 있습니다. 예를 들어, GPU `0` 및 `1`이 있는 경우 다음을 실행할 수 있습니다: ```bash CUDA_VISIBLE_DEVICES="1" pytest tests/utils/test_logging.py ``` 이렇게 하면 다른 GPU에서 다른 작업을 실행하려는 경우 유용합니다. 일부 테스트는 반드시 CPU 전용으로 실행해야 하며, 일부는 CPU 또는 GPU 또는 TPU에서 실행해야 하고, 일부는 여러 GPU에서 실행해야 합니다. 다음 스킵 데코레이터는 테스트의 요구 사항을 CPU/GPU/TPU별로 설정하는 데 사용됩니다: - `require_torch` - 이 테스트는 torch에서만 실행됩니다. - `require_torch_gpu` - `require_torch`에 추가로 적어도 1개의 GPU가 필요합니다. - `require_torch_multi_gpu` - `require_torch`에 추가로 적어도 2개의 GPU가 필요합니다. - `require_torch_non_multi_gpu` - `require_torch`에 추가로 0개 또는 1개의 GPU가 필요합니다. - `require_torch_up_to_2_gpus` - `require_torch`에 추가로 0개, 1개 또는 2개의 GPU가 필요합니다. - `require_torch_xla` - `require_torch`에 추가로 적어도 1개의 TPU가 필요합니다. GPU 요구 사항을 표로 정리하면 아래와 같습니디ㅏ: | n gpus | decorator | |--------+--------------------------------| | `>= 0` | `@require_torch` | | `>= 1` | `@require_torch_gpu` | | `>= 2` | `@require_torch_multi_gpu` | | `< 2` | `@require_torch_non_multi_gpu` | | `< 3` | `@require_torch_up_to_2_gpus` | 예를 들어, 2개 이상의 GPU가 있고 pytorch가 설치되어 있을 때에만 실행되어야 하는 테스트는 다음과 같습니다: ```python no-style @require_torch_multi_gpu def test_example_with_multi_gpu(): ``` `tensorflow`가 필요한 경우 `require_tf` 데코레이터를 사용합니다. 예를 들어 다음과 같습니다: ```python no-style @require_tf def test_tf_thing_with_tensorflow(): ``` 이러한 데코레이터는 중첩될 수 있습니다. 예를 들어, 느린 테스트로 진행되고 pytorch에서 적어도 하나의 GPU가 필요한 경우 다음과 같이 설정할 수 있습니다: ```python no-style @require_torch_gpu @slow def test_example_slow_on_gpu(): ``` `@parametrized`와 같은 일부 데코레이터는 테스트 이름을 다시 작성하기 때문에 `@require_*` 스킵 데코레이터는 올바르게 작동하려면 항상 맨 마지막에 나열되어야 합니다. 다음은 올바른 사용 예입니다: ```python no-style @parameterized.expand(...) @require_torch_multi_gpu def test_integration_foo(): ``` `@pytest.mark.parametrize`에는 이러한 순서 문제는 없으므로 처음 혹은 마지막에 위치시킬 수 있고 이러한 경우에도 잘 작동할 것입니다. 하지만 unittest가 아닌 경우에만 작동합니다. 테스트 내부에서 다음을 사용할 수 있습니다: - 사용 가능한 GPU 수: ```python from transformers.testing_utils import get_gpu_count n_gpu = get_gpu_count() #torch와 tf와 함께 작동 ``` ### 분산 훈련[[distributed-training]] `pytest`는 분산 훈련을 직접적으로 다루지 못합니다. 이를 시도하면 하위 프로세스가 올바른 작업을 수행하지 않고 `pytest`라고 생각하기에 테스트 스위트를 반복해서 실행하게 됩니다. 그러나 일반 프로세스를 생성한 다음 여러 워커를 생성하고 IO 파이프를 관리하도록 하면 동작합니다. 다음은 사용 가능한 테스트입니다: - [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/trainer/test_trainer_distributed.py) - [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py) 실행 지점으로 바로 이동하려면, 해당 테스트에서 `execute_subprocess_async` 호출을 검색하세요. 이러한 테스트를 실행하려면 적어도 2개의 GPU가 필요합니다. ```bash CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/test_trainer_distributed.py ``` ### 출력 캡처[[output-capture]] 테스트 실행 중 `stdout` 및 `stderr`로 전송된 모든 출력이 캡처됩니다. 테스트나 설정 메소드가 실패하면 캡처된 출력은 일반적으로 실패 추적 정보와 함께 표시됩니다. 출력 캡처를 비활성화하고 `stdout` 및 `stderr`를 정상적으로 받으려면 `-s` 또는 `--capture=no`를 사용하세요: ```bash pytest -s tests/utils/test_logging.py ``` 테스트 결과를 JUnit 형식의 출력으로 보내려면 다음을 사용하세요: ```bash py.test tests --junitxml=result.xml ``` ### 색상 조절[[color-control]] 색상이 없게 하려면 다음과 같이 설정하세요(예를 들어 흰색 배경에 노란색 글씨는 가독성이 좋지 않습니다): ```bash pytest --color=no tests/utils/test_logging.py ``` ### online pastebin service에 테스트 보고서 전송[[sending test report to online pastebin service]] 각 테스트 실패에 대한 URL을 만듭니다: ```bash pytest --pastebin=failed tests/utils/test_logging.py ``` 이렇게 하면 각 실패에 대한 URL을 제공하는 remote Paste service에 테스트 실행 정보를 제출합니다. 일반적인 테스트를 선택할 수도 있고 혹은 특정 실패만 보내려면 `-x`와 같이 추가할 수도 있습니다. 전체 테스트 세션 로그에 대한 URL을 생성합니다: ```bash pytest --pastebin=all tests/utils/test_logging.py ``` ## 테스트 작성[[writing-tests]] 🤗 transformers 테스트는 대부분 `unittest`를 기반으로 하지만, `pytest`에서 실행되므로 대부분의 경우 두 시스템의 기능을 사용할 수 있습니다. 지원되는 기능에 대해 [여기](https://docs.pytest.org/en/stable/unittest.html)에서 확인할 수 있지만, 기억해야 할 중요한 점은 대부분의 `pytest` fixture가 작동하지 않는다는 것입니다. 파라미터화도 작동하지 않지만, 우리는 비슷한 방식으로 작동하는 `parameterized` 모듈을 사용합니다. ### 매개변수화[[parametrization]] 동일한 테스트를 다른 인수로 여러 번 실행해야 하는 경우가 종종 있습니다. 테스트 내에서 이 작업을 수행할 수 있지만, 그렇게 하면 하나의 인수 세트에 대해 테스트를 실행할 수 없습니다. ```python # test_this1.py import unittest from parameterized import parameterized class TestMathUnitTest(unittest.TestCase): @parameterized.expand( [ ("negative", -1.5, -2.0), ("integer", 1, 1.0), ("large fraction", 1.6, 1), ] ) def test_floor(self, name, input, expected): assert_equal(math.floor(input), expected) ``` 이제 기본적으로 이 테스트는 `test_floor`의 마지막 3개 인수가 매개변수 목록의 해당 인수에 할당되는 것으로 3번 실행될 것입니다. 그리고 `negative` 및 `integer` 매개변수 집합만 실행하려면 다음과 같이 실행할 수 있습니다: ```bash pytest -k "negative and integer" tests/test_mytest.py ``` 또는 `negative` 하위 테스트를 제외한 모든 서브 테스트를 다음과 같이 실행할 수 있습니다: ```bash pytest -k "not negative" tests/test_mytest.py ``` 앞에서 언급한 `-k` 필터를 사용하는 것 외에도, 각 서브 테스트의 정확한 이름을 확인한 후에 일부 혹은 전체 서브 테스트를 실행할 수 있습니다. ```bash pytest test_this1.py --collect-only -q ``` 그리고 다음의 내용을 확인할 수 있을 것입니다: ```bash test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer test_this1.py::TestMathUnitTest::test_floor_2_large_fraction ``` 2개의 특정한 서브 테스트만 실행할 수도 있습니다: ```bash pytest test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer ``` `transformers`의 개발자 종속성에 이미 있는 [parameterized](https://pypi.org/project/parameterized/) 모듈은 `unittests`와 `pytest` 테스트 모두에서 작동합니다. 그러나 테스트가 `unittest`가 아닌 경우 `pytest.mark.parametrize`를 사용할 수 있습니다(이미 있는 일부 테스트에서 사용되는 경우도 있습니다. 주로 `examples` 하위에 있습니다). 다음은 `pytest`의 `parametrize` 마커를 사용한 동일한 예입니다: ```python # test_this2.py import pytest @pytest.mark.parametrize( "name, input, expected", [ ("negative", -1.5, -2.0), ("integer", 1, 1.0), ("large fraction", 1.6, 1), ], ) def test_floor(name, input, expected): assert_equal(math.floor(input), expected) ``` `parameterized`와 마찬가지로 `pytest.mark.parametrize`를 사용하면 `-k` 필터가 작동하지 않는 경우에도 실행할 서브 테스트를 정확하게 지정할 수 있습니다. 단, 이 매개변수화 함수는 서브 테스트의 이름 집합을 약간 다르게 생성합니다. 다음과 같은 모습입니다: ```bash pytest test_this2.py --collect-only -q ``` 그리고 다음의 내용을 확인할 수 있을 것입니다: ```bash test_this2.py::test_floor[integer-1-1.0] test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[large fraction-1.6-1] ``` 특정한 테스트에 대해서만 실행할 수도 있습니다: ```bash pytest test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[integer-1-1.0] ``` 이전의 예시와 같이 실행할 수 있습니다. ### 파일 및 디렉터리[[files-and-directories]] 테스트에서 종종 현재 테스트 파일과 관련된 상대적인 위치를 알아야 하는 경우가 있습니다. 테스트가 여러 디렉터리에서 호출되거나 깊이가 다른 하위 디렉터리에 있을 수 있기 때문에 그 위치를 아는 것은 간단하지 않습니다. `transformers.test_utils.TestCasePlus`라는 헬퍼 클래스는 모든 기본 경로를 처리하고 간단한 액세서를 제공하여 이 문제를 해결합니다: - `pathlib` 객체(완전히 정해진 경로) - `test_file_path` - 현재 테스트 파일 경로 (예: `__file__`) - test_file_dir` - 현재 테스트 파일이 포함된 디렉터리 - tests_dir` - `tests` 테스트 스위트의 디렉터리 - examples_dir` - `examples` 테스트 스위트의 디렉터리 - repo_root_dir` - 저장소 디렉터리 - src_dir` - `src`의 디렉터리(예: `transformers` 하위 디렉터리가 있는 곳) - 문자열로 변환된 경로---위와 동일하지만, `pathlib` 객체가 아닌 문자열로 경로를 반환합니다: - `test_file_path_str` - `test_file_dir_str` - `tests_dir_str` - `examples_dir_str` - `repo_root_dir_str` - `src_dir_str` 위의 내용을 사용하려면 테스트가 'transformers.test_utils.TestCasePlus'의 서브클래스에 있는지 확인해야 합니다. 예를 들어 다음과 같습니다: ```python from transformers.testing_utils import TestCasePlus class PathExampleTest(TestCasePlus): def test_something_involving_local_locations(self): data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro" ``` 만약 `pathlib`를 통해 경로를 조작할 필요가 없거나 경로를 문자열로만 필요로 하는 경우에는 `pathlib` 객체에 `str()`을 호출하거나 `_str`로 끝나는 접근자를 사용할 수 있습니다. 예를 들어 다음과 같습니다: ```python from transformers.testing_utils import TestCasePlus class PathExampleTest(TestCasePlus): def test_something_involving_stringified_locations(self): examples_dir = self.examples_dir_str ``` ### 임시 파일 및 디렉터리[[temporary-files-and-directories]] 고유한 임시 파일 및 디렉터리를 사용하는 것은 병렬 테스트 실행에 있어 필수적입니다. 이렇게 함으로써 테스트들이 서로의 데이터를 덮어쓰지 않게 할 수 있습니다. 또한 우리는 생성된 테스트의 종료 단계에서 이러한 임시 파일 및 디렉터리를 제거하고 싶습니다. 따라서 이러한 요구 사항을 충족시켜주는 `tempfile`과 같은 패키지를 사용하는 것이 중요합니다. 그러나 테스트를 디버깅할 때는 임시 파일이나 디렉터리에 들어가는 내용을 확인할 수 있어야 하며, 재실행되는 각 테스트마다 임시 파일이나 디렉터리의 경로에 대해 무작위 값이 아닌 정확한 값을 알고 싶을 것입니다. `transformers.test_utils.TestCasePlus`라는 도우미 클래스는 이러한 목적에 가장 적합합니다. 이 클래스는 `unittest.TestCase`의 하위 클래스이므로, 우리는 이것을 테스트 모듈에서 쉽게 상속할 수 있습니다. 다음은 해당 클래스를 사용하는 예시입니다: ```python from transformers.testing_utils import TestCasePlus class ExamplesTests(TestCasePlus): def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir() ``` 이 코드는 고유한 임시 디렉터리를 생성하고 `tmp_dir`을 해당 위치로 설정합니다. - 고유한 임시 디렉터리를 생성합니다: ```python def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir() ``` `tmp_dir`에는 생성된 임시 디렉터리의 경로가 포함됩니다. 이는 테스트의 종료 단계에서 자동으로 제거됩니다. - 선택한 경로로 임시 디렉터리 생성 후에 테스트 시작 전에 비어 있는 상태인지 확인하고, 테스트 후에는 비우지 마세요. ```python def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir("./xxx") ``` 이것은 디버깅할 때 특정 디렉터리를 모니터링하고, 그 디렉터리에 이전에 실행된 테스트가 데이터를 남기지 않도록 하는 데에 유용합니다. - `before` 및 `after` 인수를 직접 오버라이딩하여 기본 동작을 변경할 수 있으며 다음 중 하나의 동작으로 이어집니다: - `before=True`: 테스트 시작 시 임시 디렉터리가 항상 지워집니다. - `before=False`: 임시 디렉터리가 이미 존재하는 경우 기존 파일은 그대로 남습니다. - `after=True`: 테스트 종료 시 임시 디렉터리가 항상 삭제됩니다. - `after=False`: 테스트 종료 시 임시 디렉터리가 항상 그대로 유지됩니다. <Tip> `rm -r`에 해당하는 명령을 안전하게 실행하기 위해, 명시적인 `tmp_dir`을 사용하는 경우 프로젝트 저장소 체크 아웃의 하위 디렉터리만 허용됩니다. 따라서 실수로 `/tmp`가 아닌 중요한 파일 시스템의 일부가 삭제되지 않도록 항상 `./`로 시작하는 경로를 전달해야 합니다. </Tip> <Tip> 각 테스트는 여러 개의 임시 디렉터리를 등록할 수 있으며, 별도로 요청하지 않는 한 모두 자동으로 제거됩니다. </Tip> ### 임시 sys.path 오버라이드[[temporary-sys.path-override]] `sys.path`를 다른 테스트로 임시로 오버라이드하기 위해 예를 들어 `ExtendSysPath` 컨텍스트 관리자를 사용할 수 있습니다. 예를 들어 다음과 같습니다: ```python import os from transformers.testing_utils import ExtendSysPath bindir = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/.."): from test_trainer import TrainerIntegrationCommon # noqa ``` ### 테스트 건너뛰기[[skipping-tests]] 이것은 버그가 발견되어 새로운 테스트가 작성되었지만 아직 그 버그가 수정되지 않은 경우에 유용합니다. 이 테스트를 주 저장소에 커밋하려면 `make test` 중에 건너뛰도록 해야 합니다. 방법: - **skip**은 테스트가 일부 조건이 충족될 경우에만 통과될 것으로 예상되고, 그렇지 않으면 pytest가 전체 테스트를 건너뛰어야 함을 의미합니다. 일반적인 예로는 Windows가 아닌 플랫폼에서 Windows 전용 테스트를 건너뛰거나 외부 리소스(예를 들어 데이터베이스)에 의존하는 테스트를 건너뛰는 것이 있습니다. - **xfail**은 테스트가 특정한 이유로 인해 실패할 것으로 예상하는 것을 의미합니다. 일반적인 예로는 아직 구현되지 않은 기능이나 아직 수정되지 않은 버그의 테스트가 있습니다. `xfail`로 표시된 테스트가 예상대로 실패하지 않고 통과된 경우, 이것은 xpass이며 테스트 결과 요약에 기록됩니다. 두 가지 중요한 차이점 중 하나는 `skip`은 테스트를 실행하지 않지만 `xfail`은 실행한다는 것입니다. 따라서 오류가 있는 코드가 일부 테스트에 영향을 미칠 수 있는 경우 `xfail`을 사용하지 마세요. #### 구현[[implementation]] - 전체 테스트를 무조건 건너뛰려면 다음과 같이 할 수 있습니다: ```python no-style @unittest.skip(reason="this bug needs to be fixed") def test_feature_x(): ``` 또는 pytest를 통해: ```python no-style @pytest.mark.skip(reason="this bug needs to be fixed") ``` 또는 `xfail` 방식으로: ```python no-style @pytest.mark.xfail def test_feature_x(): ``` - 테스트 내부에서 내부 확인에 따라 테스트를 건너뛰는 방법은 다음과 같습니다: ```python def test_feature_x(): if not has_something(): pytest.skip("unsupported configuration") ``` 또는 모듈 전체: ```python import pytest if not pytest.config.getoption("--custom-flag"): pytest.skip("--custom-flag is missing, skipping tests", allow_module_level=True) ``` 또는 `xfail` 방식으로: ```python def test_feature_x(): pytest.xfail("expected to fail until bug XYZ is fixed") ``` - import가 missing된 모듈이 있을 때 그 모듈의 모든 테스트를 건너뛰는 방법: ```python docutils = pytest.importorskip("docutils", minversion="0.3") ``` - 조건에 따라 테스트를 건너뛰는 방법: ```python no-style @pytest.mark.skipif(sys.version_info < (3,6), reason="requires python3.6 or higher") def test_feature_x(): ``` 또는: ```python no-style @unittest.skipIf(torch_device == "cpu", "Can't do half precision") def test_feature_x(): ``` 또는 모듈 전체를 건너뛰는 방법: ```python no-style @pytest.mark.skipif(sys.platform == 'win32', reason="does not run on windows") class TestClass(): def test_feature_x(self): ``` 보다 자세한 예제 및 방법은 [여기](https://docs.pytest.org/en/latest/skipping.html)에서 확인할 수 있습니다. ### 느린 테스트[[slow-tests]] 테스트 라이브러리는 지속적으로 확장되고 있으며, 일부 테스트는 실행하는 데 몇 분이 걸립니다. 그리고 우리에게는 테스트 스위트가 CI를 통해 완료되기까지 한 시간을 기다릴 여유가 없습니다. 따라서 필수 테스트를 위한 일부 예외를 제외하고 느린 테스트는 다음과 같이 표시해야 합니다. ```python no-style from transformers.testing_utils import slow @slow def test_integration_foo(): ``` `@slow`로 표시된 테스트를 실행하려면 `RUN_SLOW=1` 환경 변수를 설정하세요. 예를 들어 다음과 같습니다: ```bash RUN_SLOW=1 pytest tests ``` `@parameterized`와 같은 몇 가지 데코레이터는 테스트 이름을 다시 작성합니다. 그러므로 `@slow`와 나머지 건너뛰기 데코레이터 `@require_*`가 올바르게 작동되려면 마지막에 나열되어야 합니다. 다음은 올바른 사용 예입니다. ```python no-style @parameterized.expand(...) @slow def test_integration_foo(): ``` 이 문서의 초반부에 설명된 것처럼 느린 테스트는 PR의 CI 확인이 아닌 예약된 일정 기반으로 실행됩니다. 따라서 PR 제출 중에 일부 문제를 놓친 채로 병합될 수 있습니다. 이러한 문제들은 다음번의 예정된 CI 작업 중에 감지됩니다. 하지만 PR을 제출하기 전에 자신의 컴퓨터에서 느린 테스트를 실행하는 것 또한 중요합니다. 느린 테스트로 표시해야 하는지 여부를 결정하는 대략적인 결정 기준은 다음과 같습니다. 만약 테스트가 라이브러리의 내부 구성 요소 중 하나에 집중되어 있다면(예: 모델링 파일, 토큰화 파일, 파이프라인), 해당 테스트를 느린 테스트 스위트에서 실행해야 합니다. 만약 라이브러리의 다른 측면(예: 문서 또는 예제)에 집중되어 있다면, 해당 테스트를 느린 테스트 스위트에서 실행해야 합니다. 그리고 이 접근 방식을 보완하기 위해 예외를 만들어야 합니다. - 무거운 가중치 세트나 50MB보다 큰 데이터셋을 다운로드해야 하는 모든 테스트(예: 모델 통합 테스트, 토크나이저 통합 테스트, 파이프라인 통합 테스트)를 느린 테스트로 설정해야 합니다. 새로운 모델을 추가하는 경우 통합 테스트용으로 무작위 가중치로 작은 버전을 만들어 허브에 업로드해야 합니다. 이 내용은 아래 단락에서 설명됩니다. - 특별히 빠르게 실행되도록 최적화되지 않은 학습을 수행해야 하는 테스트는 느린 테스트로 설정해야 합니다. - 느리지 않아야 할 테스트 중 일부가 극도로 느린 경우 예외를 도입하고 이를 `@slow`로 설정할 수 있습니다. 대용량 파일을 디스크에 저장하고 불러오는 자동 모델링 테스트는 `@slow`으로 표시된 테스트의 좋은 예입니다. - CI에서 1초 이내에 테스트가 완료되는 경우(다운로드 포함)에는 느린 테스트가 아니어야 합니다. 느린 테스트가 아닌 경우에는 다양한 내부를 완전히 커버하면서 빠르게 유지되어야 합니다. 예를 들어, 무작위 가중치를 사용하여 특별히 생성된 작은 모델로 테스트하면 상당한 커버리지를 얻을 수 있습니다. 이러한 모델은 최소한의 레이어 수(예: 2), 어휘 크기(예: 1000) 등의 요소만 가집니다. 그런 다음 `@slow` 테스트는 대형 느린 모델을 사용하여 정성적인 테스트를 수행할 수 있습니다. 이러한 작은 모델을 사용하는 방법을 확인하려면 다음과 같이 *tiny* 모델을 찾아보세요. ```bash grep tiny tests examples ``` 다음은 작은 모델[stas/tiny-wmt19-en-de](https://huggingface.co/stas/tiny-wmt19-en-de)을 만든 [script](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py) 예시입니다. 특정 모델의 아키텍처에 맞게 쉽게 조정할 수 있습니다. 예를 들어 대용량 모델을 다운로드하는 경우 런타임을 잘못 측정하기 쉽지만, 로컬에서 테스트하면 다운로드한 파일이 캐시되어 다운로드 시간이 측정되지 않습니다. 대신 CI 로그의 실행 속도 보고서를 확인하세요(`pytest --durations=0 tests`의 출력). 이 보고서는 느린 이상값으로 표시되지 않거나 빠르게 다시 작성해야 하는 느린 이상값을 찾는 데도 유용합니다. CI에서 테스트 스위트가 느려지기 시작하면 이 보고서의 맨 위 목록에 가장 느린 테스트가 표시됩니다. ### stdout/stderr 출력 테스트[[testing-the-stdout/stderr-output]] `stdout` 및/또는 `stderr`로 쓰는 함수를 테스트하려면 `pytest`의 [capsys 시스템](https://docs.pytest.org/en/latest/capture.html)을 사용하여 해당 스트림에 액세스할 수 있습니다. 다음과 같이 수행할 수 있습니다. ```python import sys def print_to_stdout(s): print(s) def print_to_stderr(s): sys.stderr.write(s) def test_result_and_stdout(capsys): msg = "Hello" print_to_stdout(msg) print_to_stderr(msg) out, err = capsys.readouterr() # 캡처된 출력 스트림 사용 # 선택 사항: 캡처된 스트림 재생성 sys.stdout.write(out) sys.stderr.write(err) # 테스트: assert msg in out assert msg in err ``` 그리고, 물론 대부분의 경우에는 `stderr`는 예외의 일부로 제공됩니다. 그러므로 해당 경우에는 try/except를 사용해야 합니다. ```python def raise_exception(msg): raise ValueError(msg) def test_something_exception(): msg = "Not a good value" error = "" try: raise_exception(msg) except Exception as e: error = str(e) assert msg in error, f"{msg} is in the exception:\n{error}" ``` `stdout`를 캡처하는 또 다른 방법은 `contextlib.redirect_stdout`를 사용하는 것입니다. ```python from io import StringIO from contextlib import redirect_stdout def print_to_stdout(s): print(s) def test_result_and_stdout(): msg = "Hello" buffer = StringIO() with redirect_stdout(buffer): print_to_stdout(msg) out = buffer.getvalue() # 선택 사항: 캡처된 스트림 재생성 sys.stdout.write(out) # 테스트: assert msg in out ``` `stdout` 캡처에 관련된 중요한 문제 중 하나는 보통 `print`에서 이전에 인쇄된 내용을 재설정하는 `\r` 문자가 포함될 수 있다는 것입니다. `pytest`에서는 문제가 없지만 `pytest -s`에서는 이러한 문자가 버퍼에 포함되므로 `-s`가 있거나 없는 상태에서 태스트를 수행할 수 있으려면 캡처된 출력에 대해 추가적인 정리가 필요합니다. 이 경우에는 `re.sub(r'~.*\r', '', buf, 0, re.M)`을 사용할 수 있습니다. 하지만 도우미 컨텍스트 관리자 래퍼를 사용하면 출력에 `\r`이 포함되어 있는지의 여부에 관계없이 모든 것을 자동으로 처리하므로 편리합니다. ```python from transformers.testing_utils import CaptureStdout with CaptureStdout() as cs: function_that_writes_to_stdout() print(cs.out) ``` 다음은 전체 테스트 예제입니다. ```python from transformers.testing_utils import CaptureStdout msg = "Secret message\r" final = "Hello World" with CaptureStdout() as cs: print(msg + final) assert cs.out == final + "\n", f"captured: {cs.out}, expecting {final}" ``` `stderr`를 캡처하고 싶다면, 대신 `CaptureStderr` 클래스를 사용하세요. ```python from transformers.testing_utils import CaptureStderr with CaptureStderr() as cs: function_that_writes_to_stderr() print(cs.err) ``` 두 스트림을 동시에 캡처해야 한다면, 부모 `CaptureStd` 클래스를 사용하세요. ```python from transformers.testing_utils import CaptureStd with CaptureStd() as cs: function_that_writes_to_stdout_and_stderr() print(cs.err, cs.out) ``` 또한, 테스트의 디버깅을 지원하기 위해 이러한 컨텍스트 관리자는 기본적으로 컨텍스트에서 종료할 때 캡처된 스트림을 자동으로 다시 실행합니다. ### 로거 스트림 캡처[[capturing-logger-stream]] 로거 출력을 검증해야 하는 경우 `CaptureLogger`를 사용할 수 있습니다. ```python from transformers import logging from transformers.testing_utils import CaptureLogger msg = "Testing 1, 2, 3" logging.set_verbosity_info() logger = logging.get_logger("transformers.models.bart.tokenization_bart") with CaptureLogger(logger) as cl: logger.info(msg) assert cl.out, msg + "\n" ``` ### 환경 변수를 이용하여 테스트[[testing-with-environment-variables]] 특정 테스트의 환경 변수 영향을 검증하려면 `transformers.testing_utils.mockenv`라는 도우미 데코레이터를 사용할 수 있습니다. ```python from transformers.testing_utils import mockenv class HfArgumentParserTest(unittest.TestCase): @mockenv(TRANSFORMERS_VERBOSITY="error") def test_env_override(self): env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None) ``` 일부 경우에는 외부 프로그램을 호출해야할 수도 있는데, 이 때에는 여러 개의 로컬 경로를 포함하는 `os.environ`에서 `PYTHONPATH`의 설정이 필요합니다. 헬퍼 클래스 `transformers.test_utils.TestCasePlus`가 도움이 됩니다: ```python from transformers.testing_utils import TestCasePlus class EnvExampleTest(TestCasePlus): def test_external_prog(self): env = self.get_env() # 이제 `env`를 사용하여 외부 프로그램 호출 ``` 테스트 파일이 `tests` 테스트 스위트 또는 `examples`에 있는지에 따라 `env[PYTHONPATH]`가 두 디렉터리 중 하나를 포함하도록 설정되며, 현재 저장소에 대해 테스트가 수행되도록 `src` 디렉터리도 포함됩니다. 테스트 호출 이전에 설정된 경우에는 `env[PYTHONPATH]`를 그대로 사용합니다. 이 헬퍼 메소드는 `os.environ` 객체의 사본을 생성하므로 원본은 그대로 유지됩니다. ### 재현 가능한 결과 얻기[[getting-reproducible-results]] 일부 상황에서 테스트에서 임의성을 제거하여 동일하게 재현 가능한 결과를 얻고 싶을 수 있습니다. 이를 위해서는 다음과 같이 시드를 고정해야 합니다. ```python seed = 42 # 파이썬 RNG import random random.seed(seed) # 파이토치 RNG import torch torch.manual_seed(seed) torch.backends.cudnn.deterministic = True if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # 넘파이 RNG import numpy as np np.random.seed(seed) # 텐서플로 RNG tf.random.set_seed(seed) ``` ### 테스트 디버깅[[debugging tests]] 경고가 있는 곳에서 디버거를 시작하려면 다음을 수행하세요. ```bash pytest tests/utils/test_logging.py -W error::UserWarning --pdb ``` ## Github Actions 워크플로우 작업 처리[[working-with-github-actions-workflows]] 셀프 푸시 워크플로우 CI 작업을 트리거하려면, 다음을 수행해야 합니다. 1. `transformers` 원본에서 새 브랜치를 만듭니다(포크가 아닙니다!). 2. 브랜치 이름은 `ci_` 또는 `ci-`로 시작해야 합니다(`main`도 트리거하지만 `main`에서는 PR을 할 수 없습니다). 또한 특정 경로에 대해서만 트리거되므로 이 문서가 작성된 후에 변경된 내용은 [여기](https://github.com/huggingface/transformers/blob/main/.github/workflows/self-push.yml)의 *push:*에서 확인할 수 있습니다. 3. 이 브랜치에서 PR을 생성합니다 4. 그런 다음 [여기](https://github.com/huggingface/transformers/actions/workflows/self-push.yml)에서 작업이 나타나는지 확인할 수 있습니다. 백로그가 있는 경우, 바로 실행되지 않을 수도 있습니다. ## 실험적인 CI 기능 테스트[[testing-Experimental-CI-Features]] CI 기능을 테스트하는 것은 일반 CI 작동에 방해가 될 수 있기 때문에 잠재적으로 문제가 발생할 수 있습니다. 따라서 새로운 CI 기능을 추가하는 경우 다음과 같이 수행해야 합니다. 1. 테스트해야 할 내용을 테스트하는 새로운 전용 작업을 생성합니다. 2. 새로운 작업은 항상 성공해야만 녹색 ✓를 받을 수 있습니다(아래에 자세한 내용이 있습니다). 3. 다양한 PR 유형에 대한 확인을 위해 (사용자 포크 브랜치, 포크되지 않은 브랜치, github.com UI 직접 파일 편집에서 생성된 브랜치, 강제 푸시 등 PR의 유형은 아주 다양합니다.) 며칠 동안 실험 작업의 로그를 모니터링하면서 실행해봅니다. (의도적으로 항상 녹색을 표시하므로 작업 전체가 녹색은 아니라는 점에 유의합니다.) 4. 모든 것이 안정적인지 확인한 후, 새로운 변경 사항을 기존 작업에 병합합니다. 이렇게 하면 CI 기능 자체에 대한 실험이 일반 작업 흐름에 방해가 되지 않습니다. 그러나 새로운 CI 기능이 개발 중인 동안, 항상 성공하도록 할 수 있는 방법은 무엇일까요? TravisCI와 같은 일부 CI는 `ignore-step-failure`를 지원하며 전체 작업을 성공한 것으로 보고하지만, 현재 우리가 사용하는 CircleCI와 Github Actions는 이를 지원하지 않습니다. 따라서 다음과 같은 해결책을 사용할 수 있습니다. 1. bash 스크립트에서 가능한 많은 오류를 억제하기 위해 실행 명령의 시작 부분에 `set +euo pipefail`을 추가합니다. 2. 마지막 명령은 반드시 성공해야 합니다. `echo "done"` 또는 `true`를 사용하면 됩니다. 예시는 다음과 같습니다. ```yaml - run: name: run CI experiment command: | set +euo pipefail echo "setting run-all-despite-any-errors-mode" this_command_will_fail echo "but bash continues to run" # emulate another failure false # but the last command must be a success echo "during experiment do not remove: reporting success to CI, even if there were failures" ``` 간단한 명령의 경우 다음과 같이 수행할 수도 있습니다. ```bash cmd_that_may_fail || true ``` 결과에 만족한 후에는 물론, 실험적인 단계 또는 작업을 일반 작업의 나머지 부분과 통합하면서 `set +euo pipefail` 또는 기타 추가한 요소를 제거하여 실험 작업이 일반 CI 작동에 방해되지 않도록 해야 합니다. 이 전반적인 과정은 실험 단계가 PR의 전반적인 상태에 영향을 주지 않고 실패하도록 `allow-failure`와 같은 기능을 설정할 수 있다면 훨씬 더 쉬웠을 것입니다. 그러나 앞에서 언급한 바와 같이 CircleCI와 Github Actions는 현재 이러한 기능들 지원하지 않습니다. 이 기능의 지원을 위한 투표에 참여하고 CI 관련 스레드들에서 이러한 상황을 확인할 수도 있습니다. - [Github Actions:](https://github.com/actions/toolkit/issues/399) - [CircleCI:](https://ideas.circleci.com/ideas/CCI-I-344)
transformers/docs/source/ko/testing.md/0
{ "file_path": "transformers/docs/source/ko/testing.md", "repo_id": "transformers", "token_count": 35205 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Compartilhando modelos customizados A biblioteca 🤗 Transformers foi projetada para ser facilmente extensível. Cada modelo é totalmente codificado em uma determinada subpasta do repositório sem abstração, para que você possa copiar facilmente um arquivo de modelagem e ajustá-lo às suas necessidades. Se você estiver escrevendo um modelo totalmente novo, pode ser mais fácil começar do zero. Neste tutorial, mostraremos como escrever um modelo customizado e sua configuração para que possa ser usado com Transformers, e como você pode compartilhá-lo com a comunidade (com o código em que se baseia) para que qualquer pessoa possa usá-lo, mesmo se não estiver presente na biblioteca 🤗 Transformers. Ilustraremos tudo isso em um modelo ResNet, envolvendo a classe ResNet do [biblioteca timm](https://github.com/rwightman/pytorch-image-models) em um [`PreTrainedModel`]. ## Escrevendo uma configuração customizada Antes de mergulharmos no modelo, vamos primeiro escrever sua configuração. A configuração de um modelo é um objeto que terá todas as informações necessárias para construir o modelo. Como veremos na próxima seção, o modelo só pode ter um `config` para ser inicializado, então realmente precisamos que esse objeto seja o mais completo possível. Em nosso exemplo, pegaremos alguns argumentos da classe ResNet que podemos querer ajustar. Diferentes configurações nos dará os diferentes tipos de ResNets que são possíveis. Em seguida, apenas armazenamos esses argumentos, após verificar a validade de alguns deles. ```python from transformers import PretrainedConfig from typing import List class ResnetConfig(PretrainedConfig): model_type = "resnet" def __init__( self, block_type="bottleneck", layers: List[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs) ``` As três coisas importantes a serem lembradas ao escrever sua própria configuração são: - você tem que herdar de `PretrainedConfig`, - o `__init__` do seu `PretrainedConfig` deve aceitar quaisquer kwargs, - esses `kwargs` precisam ser passados para a superclasse `__init__`. A herança é para garantir que você obtenha todas as funcionalidades da biblioteca 🤗 Transformers, enquanto as outras duas restrições vêm do fato de um `PretrainedConfig` ter mais campos do que os que você está configurando. Ao recarregar um config com o método `from_pretrained`, esses campos precisam ser aceitos pelo seu config e então enviados para a superclasse. Definir um `model_type` para sua configuração (aqui `model_type="resnet"`) não é obrigatório, a menos que você queira registrar seu modelo com as classes automáticas (veja a última seção). Com isso feito, você pode facilmente criar e salvar sua configuração como faria com qualquer outra configuração de modelo da biblioteca. Aqui está como podemos criar uma configuração resnet50d e salvá-la: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d_config.save_pretrained("custom-resnet") ``` Isso salvará um arquivo chamado `config.json` dentro da pasta `custom-resnet`. Você pode então recarregar sua configuração com o método `from_pretrained`: ```py resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") ``` Você também pode usar qualquer outro método da classe [`PretrainedConfig`], como [`~PretrainedConfig.push_to_hub`] para carregar diretamente sua configuração para o Hub. ## Escrevendo um modelo customizado Agora que temos nossa configuração ResNet, podemos continuar escrevendo o modelo. Na verdade, escreveremos dois: um que extrai os recursos ocultos de um lote de imagens (como [`BertModel`]) e um que é adequado para classificação de imagem (como [`BertForSequenceClassification`]). Como mencionamos antes, escreveremos apenas um wrapper solto do modelo para mantê-lo simples para este exemplo. A única coisa que precisamos fazer antes de escrever esta classe é um mapa entre os tipos de bloco e as classes de bloco reais. Então o modelo é definido a partir da configuração passando tudo para a classe `ResNet`: ```py from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from .configuration_resnet import ResnetConfig BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor): return self.model.forward_features(tensor) ``` Para o modelo que irá classificar as imagens, vamos apenas alterar o método forward: ```py import torch class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.functional.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} ``` Em ambos os casos, observe como herdamos de `PreTrainedModel` e chamamos a inicialização da superclasse com o `config` (um pouco parecido quando você escreve um `torch.nn.Module`). A linha que define o `config_class` não é obrigatória, a menos que você deseje registrar seu modelo com as classes automáticas (consulte a última seção). <Tip> Se o seu modelo for muito semelhante a um modelo dentro da biblioteca, você poderá reutilizar a mesma configuração desse modelo. </Tip> Você pode fazer com que seu modelo retorne o que você quiser,porém retornando um dicionário como fizemos para `ResnetModelForImageClassification`, com a função de perda incluída quando os rótulos são passados, vai tornar seu modelo diretamente utilizável dentro da classe [`Trainer`]. Você pode usar outro formato de saída, desde que esteja planejando usar seu próprio laço de treinamento ou outra biblioteca para treinamento. Agora que temos nossa classe do modelo, vamos criar uma: ```py resnet50d = ResnetModelForImageClassification(resnet50d_config) ``` Novamente, você pode usar qualquer um dos métodos do [`PreTrainedModel`], como [`~PreTrainedModel.save_pretrained`] ou [`~PreTrainedModel.push_to_hub`]. Usaremos o segundo na próxima seção e veremos como enviar os pesos e o código do nosso modelo. Mas primeiro, vamos carregar alguns pesos pré-treinados dentro do nosso modelo. Em seu próprio caso de uso, você provavelmente estará treinando seu modelo customizado em seus próprios dados. Para este tutorial ser rápido, usaremos a versão pré-treinada do resnet50d. Como nosso modelo é apenas um wrapper em torno dele, será fácil de transferir esses pesos: ```py import timm pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Agora vamos ver como ter certeza de que quando fazemos [`~PreTrainedModel.save_pretrained`] ou [`~PreTrainedModel.push_to_hub`], o código do modelo é salvo. ## Enviando o código para o Hub <Tip warning={true}> Esta API é experimental e pode ter algumas pequenas alterações nas próximas versões. </Tip> Primeiro, certifique-se de que seu modelo esteja totalmente definido em um arquivo `.py`. Ele pode contar com importações relativas para alguns outros arquivos desde que todos os arquivos estejam no mesmo diretório (ainda não suportamos submódulos para este recurso). Para o nosso exemplo, vamos definir um arquivo `modeling_resnet.py` e um arquivo `configuration_resnet.py` em uma pasta no diretório de trabalho atual chamado `resnet_model`. O arquivo de configuração contém o código para `ResnetConfig` e o arquivo de modelagem contém o código do `ResnetModel` e `ResnetModelForImageClassification`. ``` . └── resnet_model ├── __init__.py ├── configuration_resnet.py └── modeling_resnet.py ``` O `__init__.py` pode estar vazio, apenas está lá para que o Python detecte que o `resnet_model` possa ser usado como um módulo. <Tip warning={true}> Se estiver copiando arquivos de modelagem da biblioteca, você precisará substituir todas as importações relativas na parte superior do arquivo para importar do pacote `transformers`. </Tip> Observe que você pode reutilizar (ou subclasse) uma configuração/modelo existente. Para compartilhar seu modelo com a comunidade, siga estas etapas: primeiro importe o modelo ResNet e a configuração do arquivos criados: ```py from resnet_model.configuration_resnet import ResnetConfig from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification ``` Então você tem que dizer à biblioteca que deseja copiar os arquivos de código desses objetos ao usar o `save_pretrained` e registrá-los corretamente com uma determinada classe automáticas (especialmente para modelos), basta executar: ```py ResnetConfig.register_for_auto_class() ResnetModel.register_for_auto_class("AutoModel") ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification") ``` Observe que não há necessidade de especificar uma classe automática para a configuração (há apenas uma classe automática, [`AutoConfig`]), mas é diferente para os modelos. Seu modelo customizado pode ser adequado para muitas tarefas diferentes, então você tem que especificar qual das classes automáticas é a correta para o seu modelo. Em seguida, vamos criar a configuração e os modelos como fizemos antes: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d = ResnetModelForImageClassification(resnet50d_config) pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Agora para enviar o modelo para o Hub, certifique-se de estar logado. Ou execute no seu terminal: ```bash huggingface-cli login ``` ou a partir do notebook: ```py from huggingface_hub import notebook_login notebook_login() ``` Você pode então enviar para seu próprio namespace (ou uma organização da qual você é membro) assim: ```py resnet50d.push_to_hub("custom-resnet50d") ``` Além dos pesos do modelo e da configuração no formato json, isso também copiou o modelo e configuração `.py` na pasta `custom-resnet50d` e carregou o resultado para o Hub. Você pode conferir o resultado neste [repositório de modelos](https://huggingface.co/sgugger/custom-resnet50d). Consulte o [tutorial de compartilhamento](model_sharing) para obter mais informações sobre o método push_to_hub. ## Usando um modelo com código customizado Você pode usar qualquer configuração, modelo ou tokenizador com arquivos de código customizados em seu repositório com as classes automáticas e o método `from_pretrained`. Todos os arquivos e códigos carregados no Hub são verificados quanto a malware (consulte a documentação de [Segurança do Hub](https://huggingface.co/docs/hub/security#malware-scanning) para obter mais informações), mas você ainda deve revisar o código do modelo e o autor para evitar a execução de código malicioso em sua máquina. Defina `trust_remote_code=True` para usar um modelo com código customizado: ```py from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True) ``` Também é fortemente recomendado passar um hash de confirmação como uma `revisão` para garantir que o autor dos modelos não atualize o código com novas linhas maliciosas (a menos que você confie totalmente nos autores dos modelos). ```py commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292" model = AutoModelForImageClassification.from_pretrained( "sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash ) ``` Observe que ao navegar no histórico de commits do repositório do modelo no Hub, há um botão para copiar facilmente o commit hash de qualquer commit. ## Registrando um modelo com código customizado para as classes automáticas Se você estiver escrevendo uma biblioteca que estende 🤗 Transformers, talvez queira estender as classes automáticas para incluir seus próprios modelos. Isso é diferente de enviar o código para o Hub no sentido de que os usuários precisarão importar sua biblioteca para obter os modelos customizados (ao contrário de baixar automaticamente o código do modelo do Hub). Desde que sua configuração tenha um atributo `model_type` diferente dos tipos de modelo existentes e que as classes do seu modelo tenha os atributos `config_class` corretos, você pode simplesmente adicioná-los às classes automáticas assim: ```py from transformers import AutoConfig, AutoModel, AutoModelForImageClassification AutoConfig.register("resnet", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification) ``` Observe que o primeiro argumento usado ao registrar sua configuração customizada para [`AutoConfig`] precisa corresponder ao `model_type` de sua configuração customizada. E o primeiro argumento usado ao registrar seus modelos customizados, para qualquer necessidade de classe de modelo automático deve corresponder ao `config_class` desses modelos.
transformers/docs/source/pt/custom_models.md/0
{ "file_path": "transformers/docs/source/pt/custom_models.md", "repo_id": "transformers", "token_count": 5917 }
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 使用 🤗 Tokenizers 中的分词器 [`PreTrainedTokenizerFast`] 依赖于 [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。 在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器: ```python >>> from tokenizers import Tokenizer >>> from tokenizers.models import BPE >>> from tokenizers.trainers import BpeTrainer >>> from tokenizers.pre_tokenizers import Whitespace >>> tokenizer = Tokenizer(BPE(unk_token="[UNK]")) >>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) >>> tokenizer.pre_tokenizer = Whitespace() >>> files = [...] >>> tokenizer.train(files, trainer) ``` 现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。 ## 直接从分词器对象加载 让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。[`PreTrainedTokenizerFast`] 类允许通过接受已实例化的 *tokenizer* 对象作为参数,进行轻松实例化: ```python >>> from transformers import PreTrainedTokenizerFast >>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) ``` 现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。 ## 从 JSON 文件加载 为了从 JSON 文件中加载分词器,让我们先保存我们的分词器: ```python >>> tokenizer.save("tokenizer.json") ``` 我们保存此文件的路径可以通过 `tokenizer_file` 参数传递给 [`PreTrainedTokenizerFast`] 初始化方法: ```python >>> from transformers import PreTrainedTokenizerFast >>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json") ``` 现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。
transformers/docs/source/zh/fast_tokenizers.md/0
{ "file_path": "transformers/docs/source/zh/fast_tokenizers.md", "repo_id": "transformers", "token_count": 1249 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 使用脚本进行训练 除了 🤗 Transformers [notebooks](./notebooks),还有示例脚本演示了如何使用[PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch)、[TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow)或[JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax)训练模型以解决特定任务。 您还可以在这些示例中找到我们在[研究项目](https://github.com/huggingface/transformers/tree/main/examples/research_projects)和[遗留示例](https://github.com/huggingface/transformers/tree/main/examples/legacy)中使用过的脚本,这些脚本主要是由社区贡献的。这些脚本已不再被积极维护,需要使用特定版本的🤗 Transformers, 可能与库的最新版本不兼容。 示例脚本可能无法在初始配置下直接解决每个问题,您可能需要根据要解决的问题调整脚本。为了帮助您,大多数脚本都完全暴露了数据预处理的方式,允许您根据需要对其进行编辑。 如果您想在示例脚本中实现任何功能,请在[论坛](https://discuss.huggingface.co/)或[issue](https://github.com/huggingface/transformers/issues)上讨论,然后再提交Pull Request。虽然我们欢迎修复错误,但不太可能合并添加更多功能的Pull Request,因为这会降低可读性。 本指南将向您展示如何在[PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization)和[TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization)中运行示例摘要训练脚本。除非另有说明,否则所有示例都可以在两个框架中工作。 ## 设置 要成功运行示例脚本的最新版本,您必须在新虚拟环境中**从源代码安装 🤗 Transformers**: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` 对于旧版本的示例脚本,请点击下面的切换按钮: <details> <summary>老版本🤗 Transformers示例 </summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> 然后切换您clone的 🤗 Transformers 仓到特定的版本,例如v3.5.1: ```bash git checkout tags/v3.5.1 ``` 在安装了正确的库版本后,进入您选择的版本的`example`文件夹并安装例子要求的环境: ```bash pip install -r requirements.txt ``` ## 运行脚本 <frameworkcontent> <pt> 示例脚本从🤗 [Datasets](https://huggingface.co/docs/datasets/)库下载并预处理数据集。然后,脚本通过[Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)使用支持摘要任务的架构对数据集进行微调。以下示例展示了如何在[CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail)数据集上微调[T5-small](https://huggingface.co/google-t5/t5-small)。由于T5模型的训练方式,它需要一个额外的`source_prefix`参数。这个提示让T5知道这是一个摘要任务。 ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> 示例脚本从 🤗 [Datasets](https://huggingface.co/docs/datasets/) 库下载并预处理数据集。然后,脚本使用 Keras 在支持摘要的架构上微调数据集。以下示例展示了如何在 [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) 数据集上微调 [T5-small](https://huggingface.co/google-t5/t5-small)。T5 模型由于训练方式需要额外的 `source_prefix` 参数。这个提示让 T5 知道这是一个摘要任务。 ```bash python examples/tensorflow/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## 分布式训练和混合精度 [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) 支持分布式训练和混合精度,这意味着你也可以在脚本中使用它。要启用这两个功能,可以做如下设置: - 添加 `fp16` 参数以启用混合精度。 - 使用 `nproc_per_node` 参数设置使用的GPU数量。 ```bash torchrun \ --nproc_per_node 8 pytorch/summarization/run_summarization.py \ --fp16 \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` TensorFlow脚本使用[`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy)进行分布式训练,您无需在训练脚本中添加任何其他参数。如果可用,TensorFlow脚本将默认使用多个GPU。 ## 在TPU上运行脚本 <frameworkcontent> <pt> 张量处理单元(TPUs)是专门设计用于加速性能的。PyTorch使用[XLA](https://www.tensorflow.org/xla)深度学习编译器支持TPU(更多细节请参见[这里](https://github.com/pytorch/xla/blob/master/README.md))。要使用TPU,请启动`xla_spawn.py`脚本并使用`num_cores`参数设置要使用的TPU核心数量。 ```bash python xla_spawn.py --num_cores 8 \ summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> 张量处理单元(TPUs)是专门设计用于加速性能的。TensorFlow脚本使用[`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy)在TPU上进行训练。要使用TPU,请将TPU资源的名称传递给`tpu`参数。 ```bash python run_summarization.py \ --tpu name_of_tpu_resource \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## 基于🤗 Accelerate运行脚本 🤗 [Accelerate](https://huggingface.co/docs/accelerate) 是一个仅支持 PyTorch 的库,它提供了一种统一的方法来在不同类型的设置(仅 CPU、多个 GPU、多个TPU)上训练模型,同时保持对 PyTorch 训练循环的完全可见性。如果你还没有安装 🤗 Accelerate,请确保你已经安装了它: > 注意:由于 Accelerate 正在快速发展,因此必须安装 git 版本的 accelerate 来运行脚本。 ```bash pip install git+https://github.com/huggingface/accelerate ``` 你需要使用`run_summarization_no_trainer.py`脚本,而不是`run_summarization.py`脚本。🤗 Accelerate支持的脚本需要在文件夹中有一个`task_no_trainer.py`文件。首先运行以下命令以创建并保存配置文件: ```bash accelerate config ``` 检测您的设置以确保配置正确: ```bash accelerate test ``` 现在您可以开始训练模型了: ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` ## 使用自定义数据集 摘要脚本支持自定义数据集,只要它们是CSV或JSON Line文件。当你使用自己的数据集时,需要指定一些额外的参数: - `train_file` 和 `validation_file` 分别指定您的训练和验证文件的路径。 - `text_column` 是输入要进行摘要的文本。 - `summary_column` 是目标输出的文本。 使用自定义数据集的摘要脚本看起来是这样的: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --text_column text_column_name \ --summary_column summary_column_name \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ``` ## 测试脚本 通常,在提交整个数据集之前,最好先在较少的数据集示例上运行脚本,以确保一切按预期工作,因为完整数据集的处理可能需要花费几个小时的时间。使用以下参数将数据集截断为最大样本数: - `max_train_samples` - `max_eval_samples` - `max_predict_samples` ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --max_train_samples 50 \ --max_eval_samples 50 \ --max_predict_samples 50 \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` 并非所有示例脚本都支持`max_predict_samples`参数。如果您不确定您的脚本是否支持此参数,请添加`-h`参数进行检查: ```bash examples/pytorch/summarization/run_summarization.py -h ``` ## 从checkpoint恢复训练 另一个有用的选项是从之前的checkpoint恢复训练。这将确保在训练中断时,您可以从之前停止的地方继续进行,而无需重新开始。有两种方法可以从checkpoint恢复训练。 第一种方法使用`output_dir previous_output_dir`参数从存储在`output_dir`中的最新的checkpoint恢复训练。在这种情况下,您应该删除`overwrite_output_dir`: ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --output_dir previous_output_dir \ --predict_with_generate ``` 第二种方法使用`resume_from_checkpoint path_to_specific_checkpoint`参数从特定的checkpoint文件夹恢复训练。 ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --resume_from_checkpoint path_to_specific_checkpoint \ --predict_with_generate ``` ## 分享模型 所有脚本都可以将您的最终模型上传到[Model Hub](https://huggingface.co/models)。在开始之前,请确保您已登录Hugging Face: ```bash huggingface-cli login ``` 然后,在脚本中添加`push_to_hub`参数。这个参数会创建一个带有您Hugging Face用户名和`output_dir`中指定的文件夹名称的仓库。 为了给您的仓库指定一个特定的名称,使用`push_to_hub_model_id`参数来添加它。该仓库将自动列出在您的命名空间下。 以下示例展示了如何上传具有特定仓库名称的模型: ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --push_to_hub \ --push_to_hub_model_id finetuned-t5-cnn_dailymail \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
transformers/docs/source/zh/run_scripts.md/0
{ "file_path": "transformers/docs/source/zh/run_scripts.md", "repo_id": "transformers", "token_count": 8301 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library vision-encoder-decoder models for image captioning. """ import json import logging import os import sys import time from dataclasses import asdict, dataclass, field from enum import Enum from functools import partial from pathlib import Path from typing import Callable, Optional import datasets import evaluate import jax import jax.numpy as jnp import nltk # Here to have a nice missing dependency error message early on import numpy as np import optax from datasets import Dataset, load_dataset from filelock import FileLock from flax import jax_utils, traverse_util from flax.jax_utils import unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import HfApi from PIL import Image from tqdm import tqdm import transformers from transformers import ( AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser, is_tensorboard_available, ) from transformers.utils import is_offline_mode, send_example_telemetry logger = logging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: np.ndarray, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros_like(input_ids) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id shifted_input_ids = np.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) _block_size_doc = """ The default value `0` will preprocess (tokenization + image processing) the whole dataset before training and cache the results. This uses more disk space, but avoids (repeated) processing time during training. This is a good option if your disk space is large enough to store the whole processed dataset. If a positive value is given, the captions in the dataset will be tokenized before training and the results are cached. During training, it iterates the dataset in chunks of size `block_size`. On each block, images are transformed by the image processor with the results being kept in memory (no cache), and batches of size `batch_size` are yielded before processing the next block. This could avoid the heavy disk usage when the dataset is large. """ block_size: int = field(default=0, metadata={"help": _block_size_doc}) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) label_smoothing_factor: float = field( default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} ) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: str = field( metadata={"help": "The model checkpoint for weights initialization."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether to trust the execution of code from datasets/models defined on the Hub." " This option should only be set to `True` for repositories you trust and in which you have read the" " code, as it will execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) data_dir: Optional[str] = field( default=None, metadata={"help": "The data directory of the dataset to use (via the datasets library)."} ) image_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the full image file paths."}, ) caption_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the image captions."}, ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. " "This argument is also used to override the `max_length` param of `model.generate`, which is used " "during evaluation." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) predict_with_generate: bool = field( default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " "which is used during evaluation." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json"]: raise ValueError(f"`train_file` should be a csv or a json file, got {extension}.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json"]: raise ValueError(f"`validation_file` should be a csv or a json file, got {extension}.") if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length image_captioning_name_mapping = { "image_caption_dataset.py": ("image_path", "caption"), } class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if `shuffle` is `True`. """ steps = len(dataset) // batch_size # Skip incomplete batch. # We use `numpy.ndarray` to interact with `datasets.Dataset`, since using `jax.numpy.array` to index into a # dataset is significantly slow. Using JAX array at the 1st place is only to keep JAX's PRNGs generation # mechanism, which works differently from NumPy/SciPy. if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) batch_idx = np.asarray(batch_idx) else: batch_idx = np.arange(len(dataset)) for idx in range(steps): start_idx = batch_size * idx end_idx = batch_size * (idx + 1) selected_indices = batch_idx[start_idx:end_idx] batch = dataset[selected_indices] batch = shard(batch) yield batch def write_metric(summary_writer, metrics, train_time, step, metric_key_prefix="train"): if train_time: summary_writer.scalar("train_time", train_time, step) metrics = get_metrics(metrics) for key, vals in metrics.items(): tag = f"{metric_key_prefix}_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) else: for metric_name, value in metrics.items(): summary_writer.scalar(f"{metric_key_prefix}_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.ndarray]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_captioning", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full image path and the second column for the # captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). # if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, data_dir=data_args.data_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer model = FlaxVisionEncoderDecoderModel.from_pretrained( model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) image_processor = AutoImageProcessor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer.pad_token = tokenizer.convert_ids_to_tokens(model.config.pad_token_id) # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = dataset["train"].column_names elif training_args.do_eval: column_names = dataset["validation"].column_names elif training_args.do_predict: column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Get the column names for input/target. dataset_columns = image_captioning_name_mapping.get(data_args.dataset_name, None) if data_args.image_column is None: if dataset_columns is None: raise ValueError( f"`--dataset_name` {data_args.dataset_name} not found in dataset '{data_args.dataset_name}'. Make sure" " to set `--dataset_name` to the correct dataset name, one of" f" {', '.join(image_captioning_name_mapping.keys())}." ) image_column = dataset_columns[0] else: image_column = data_args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.caption_column is None: if dataset_columns is None: raise ValueError( f"`--dataset_name` {data_args.dataset_name} not found in dataset '{data_args.dataset_name}'. Make sure" " to set `--dataset_name` to the correct dataset name, one of" f" {', '.join(image_captioning_name_mapping.keys())}." ) caption_column = dataset_columns[1] else: caption_column = data_args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # In Flax, for seq2seq models we need to pass `decoder_input_ids` # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here # for that dynamically import the `shift_tokens_right` function from the model file model_module = __import__(model.__module__, fromlist=["shift_tokens_right"]) shift_tokens_right_fn = getattr(model_module, "shift_tokens_right", shift_tokens_right) def filter_fn(examples): """remove problematic images""" bools = [] for image_file in examples[image_column]: try: image = Image.open(image_file) image_processor(images=image, return_tensors="np") bools.append(True) except Exception: bools.append(False) return bools # Setting padding="max_length" as we need fixed length inputs for jitted functions def tokenization_fn(examples, max_target_length): """Run tokenization on captions.""" captions = [] for caption in examples[caption_column]: captions.append(caption.lower() + " " + tokenizer.eos_token) targets = captions model_inputs = {} labels = tokenizer( text_target=targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np", ) model_inputs["labels"] = labels["input_ids"] decoder_input_ids = shift_tokens_right_fn( labels["input_ids"], model.config.pad_token_id, model.config.decoder_start_token_id ) model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) # We need decoder_attention_mask so we can ignore pad tokens from loss model_inputs["decoder_attention_mask"] = labels["attention_mask"] model_inputs[image_column] = examples[image_column] return model_inputs def image_processing_fn(examples, check_image=True): """ Run preprocessing on images If `check_image` is `True`, the examples that fails during `Image.open()` will be caught and discarded. Otherwise, an exception will be thrown. """ model_inputs = {} if check_image: images = [] to_keep = [] for image_file in examples[image_column]: try: img = Image.open(image_file) images.append(img) to_keep.append(True) except Exception: to_keep.append(False) for k, v in examples.items(): if k != image_column: model_inputs[k] = v[to_keep] else: images = [Image.open(image_file) for image_file in examples[image_column]] encoder_inputs = image_processor(images=images, return_tensors="np") model_inputs["pixel_values"] = encoder_inputs.pixel_values return model_inputs def preprocess_fn(examples, max_target_length, check_image=True): """Run tokenization + image processing""" model_inputs = {} # This contains image path column model_inputs.update(tokenization_fn(examples, max_target_length)) model_inputs.update(image_processing_fn(model_inputs, check_image=check_image)) # Remove image path column model_inputs.pop(image_column) return model_inputs features = datasets.Features( { "pixel_values": datasets.Array3D( shape=( getattr(model.config.encoder, "num_channels", 3), model.config.encoder.image_size, model.config.encoder.image_size, ), dtype="float32", ), "labels": datasets.Sequence(feature=datasets.Value(dtype="int32", id=None), length=-1, id=None), "decoder_input_ids": datasets.Sequence(feature=datasets.Value(dtype="int32", id=None), length=-1, id=None), "decoder_attention_mask": datasets.Sequence( feature=datasets.Value(dtype="int32", id=None), length=-1, id=None ), } ) # If `block_size` is `0`, tokenization & image processing is done at the beginning run_img_proc_at_beginning = training_args.block_size == 0 # Used in .map() below function_kwarg = preprocess_fn if run_img_proc_at_beginning else tokenization_fn # `features` is used only for the final preprocessed dataset (for the performance purpose). features_kwarg = features if run_img_proc_at_beginning else None # Keep `image_column` if the image processing is done during training remove_columns_kwarg = [x for x in column_names if x != image_column or run_img_proc_at_beginning] processor_names = "tokenizer and image processor" if run_img_proc_at_beginning else "tokenizer" # Store some constant train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() if training_args.block_size % train_batch_size > 0 or training_args.block_size % eval_batch_size > 0: raise ValueError( "`training_args.block_size` needs to be a multiple of the global train/eval batch size. " f"Got {training_args.block_size}, {train_batch_size} and {eval_batch_size} respectively instead." ) if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # remove problematic examples # (if image processing is performed at the beginning, the filtering is done during preprocessing below # instead here.) if not run_img_proc_at_beginning: train_dataset = train_dataset.filter(filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers) train_dataset = train_dataset.map( function=function_kwarg, batched=True, num_proc=data_args.preprocessing_num_workers, # kept image paths remove_columns=remove_columns_kwarg, load_from_cache_file=not data_args.overwrite_cache, desc=f"Running {processor_names} on train dataset", fn_kwargs={"max_target_length": data_args.max_target_length}, features=features_kwarg, ) if run_img_proc_at_beginning: # set format (for performance) since the dataset is ready to be used train_dataset = train_dataset.with_format("numpy") steps_per_epoch = len(train_dataset) // train_batch_size num_train_examples_per_epoch = steps_per_epoch * train_batch_size num_epochs = int(training_args.num_train_epochs) total_train_steps = steps_per_epoch * num_epochs else: num_train_examples_per_epoch = 0 if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) # remove problematic examples # (if image processing is performed at the beginning, the filtering is done during preprocessing below # instead here.) if not run_img_proc_at_beginning: eval_dataset = eval_dataset.filter(filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers) eval_dataset = eval_dataset.map( function=function_kwarg, batched=True, num_proc=data_args.preprocessing_num_workers, # kept image paths remove_columns=remove_columns_kwarg, load_from_cache_file=not data_args.overwrite_cache, desc=f"Running {processor_names} on validation dataset", fn_kwargs={"max_target_length": data_args.val_max_target_length}, features=features_kwarg, ) if run_img_proc_at_beginning: # set format (for performance) since the dataset is ready to be used eval_dataset = eval_dataset.with_format("numpy") num_eval_examples = len(eval_dataset) eval_steps = num_eval_examples // eval_batch_size if training_args.do_predict: if "test" not in dataset: raise ValueError("--do_predict requires a test dataset") predict_dataset = dataset["test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) # remove problematic examples # (if image processing is performed at the beginning, the filtering is done during preprocessing below # instead here.) if not run_img_proc_at_beginning: predict_dataset = predict_dataset.filter( filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers ) predict_dataset = predict_dataset.map( function=function_kwarg, batched=True, num_proc=data_args.preprocessing_num_workers, # kept image paths remove_columns=remove_columns_kwarg, load_from_cache_file=not data_args.overwrite_cache, desc=f"Running {processor_names} on prediction dataset", fn_kwargs={"max_target_length": data_args.val_max_target_length}, features=features_kwarg, ) if run_img_proc_at_beginning: # set format (for performance) since the dataset is ready to be used predict_dataset = predict_dataset.with_format("numpy") num_test_examples = len(predict_dataset) test_steps = num_test_examples // eval_batch_size def blockwise_data_loader( rng: jax.random.PRNGKey, ds: Dataset, block_size: int, batch_size: int, shuffle: bool = False, keep_in_memory: bool = False, split: str = "", ): """ Wrap the simple `data_loader` in a block-wise way if `block_size` > 0, else it's the same as `data_loader`. If `block_size` > 0, it requires `ds` to have a column that gives image paths in order to perform image processing (with the column name being specified by `image_column`). The tokenization should be done before training in this case. """ # We use `numpy.ndarray` to interact with `datasets.Dataset`, since using `jax.numpy.array` to index into a # dataset is significantly slow. Using JAX array at the 1st place is only to keep JAX's PRNGs generation # mechanism, which works differently from NumPy/SciPy. if shuffle: indices = jax.random.permutation(rng, len(ds)) indices = np.asarray(indices) else: indices = np.arange(len(ds)) _block_size = len(ds) if not block_size else block_size steps_per_block = _block_size // batch_size num_examples = len(ds) steps = num_examples // batch_size num_splits = steps // steps_per_block + int(steps % steps_per_block > 0) for idx in range(num_splits): if not block_size: _ds = ds else: start_idx = block_size * idx end_idx = block_size * (idx + 1) selected_indices = indices[start_idx:end_idx] _ds = ds.select(selected_indices) _ds = _ds.map( image_processing_fn, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[image_column], load_from_cache_file=not data_args.overwrite_cache, features=features, keep_in_memory=keep_in_memory, # The images are already checked either in `.filter()` or in `preprocess_fn()` fn_kwargs={"check_image": False}, desc=f"Running image processing on {split} dataset".replace(" ", " "), ) _ds = _ds.with_format("numpy") # No need to shuffle here loader = data_loader(rng, _ds, batch_size=batch_size, shuffle=False) for batch in loader: yield batch # Metric metric = evaluate.load("rouge", cache_dir=model_args.cache_dir) def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] # rougeLSum expects newline after each sentence preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] return preds, labels def compute_metrics(preds, labels): decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) # Extract a few results from ROUGE result = {key: value.mid.fmeasure * 100 for key, value in result.items()} prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 6) for k, v in result.items()} return result, decoded_preds, decoded_labels # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( num_train_examples_per_epoch, train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer adamw = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) # label smoothed cross entropy def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0): """ The label smoothing implementation is adapted from Flax's official example: https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 """ vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing_factor low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) ) soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) loss = optax.softmax_cross_entropy(logits, soft_labels) loss = loss - normalizing_constant # ignore padded tokens from loss loss = loss * padding_mask loss = loss.sum() num_labels = padding_mask.sum() return loss, num_labels # Define gradient update step fn def train_step(state, batch, label_smoothing_factor=0.0): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) return loss, num_labels grad_fn = jax.value_and_grad(compute_loss, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics # Define eval fn def eval_step(params, batch, label_smoothing_factor=0.0): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) metrics = {"loss": loss} return metrics # Define generation function max_length = ( data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length ) num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def generate_step(params, batch): model.params = params output_ids = model.generate(batch["pixel_values"], **gen_kwargs) return output_ids.sequences # Create parallel version of the train and eval step p_train_step = jax.pmap( partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) ) p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") p_generate_step = jax.pmap(generate_step, "batch") # Replicate the train state on each device state = state.replicate() if training_args.do_train: logger.info("***** Running training *****") logger.info(f" Num train examples = {num_train_examples_per_epoch}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous train batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Optimization steps per epoch = {steps_per_epoch}") logger.info(f" Total optimization steps = {total_train_steps}") if training_args.do_eval: logger.info(f" Num evaluation examples = {num_eval_examples}") logger.info(f" Instantaneous evaluation batch size per device = {training_args.per_device_eval_batch_size}") logger.info(f" Total evaluation batch size (w. parallel & distributed) = {eval_batch_size}") logger.info(f" Evaluation steps = {eval_steps}") if training_args.do_predict: logger.info(f" Num test examples = {num_test_examples}") logger.info(f" Instantaneous test batch size per device = {training_args.per_device_eval_batch_size}") logger.info(f" Total test batch size (w. parallel & distributed) = {eval_batch_size}") logger.info(f" Test steps = {test_steps}") # create output directory if not os.path.isdir(os.path.join(training_args.output_dir)): os.makedirs(os.path.join(training_args.output_dir), exist_ok=True) def save_ckpt(ckpt_dir: str, commit_msg: str = ""): """save checkpoints and push to Hugging Face Hub if specified""" # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(os.path.join(training_args.output_dir, ckpt_dir), params=params) tokenizer.save_pretrained(os.path.join(training_args.output_dir, ckpt_dir)) if training_args.push_to_hub: api.upload_folder( commit_message=commit_msg, folder_path=training_args.output_dir, repo_id=repo_id, repo_type="model", token=training_args.hub_token, ) def evaluation_loop( rng: jax.random.PRNGKey, dataset: Dataset, metric_key_prefix: str = "eval", ckpt_dir: str = "", is_prediction=False, ): logger.info(f"*** {'Predict' if is_prediction else 'Evaluate'} ***") metrics = [] preds = [] labels = [] batches = blockwise_data_loader( rng, dataset, block_size=training_args.block_size, batch_size=eval_batch_size, keep_in_memory=False, shuffle=False, split="prediction" if is_prediction else "validation", ) steps = len(dataset) // eval_batch_size for _ in tqdm( range(steps), desc=f"{'Predicting' if is_prediction else 'Evaluating'}...", position=2, leave=False ): # Model forward batch = next(batches) _labels = batch.get("labels", None) if not is_prediction and _labels is None: raise ValueError("Evaluation requires the validation dataset to have `labels`") if _labels is not None: _metrics = p_eval_step(state.params, batch) metrics.append(_metrics) # generation if data_args.predict_with_generate: generated_ids = p_generate_step(state.params, batch) preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) if _labels is not None: labels.extend(jax.device_get(_labels.reshape(-1, _labels.shape[-1]))) if metrics: # normalize metrics metrics = get_metrics(metrics) metrics = jax.tree_util.tree_map(jnp.mean, metrics) # compute ROUGE metrics generations = [] rouge_desc = "" if data_args.predict_with_generate: if labels: rouge_metrics, decoded_preds, decoded_labels = compute_metrics(preds, labels) metrics.update(rouge_metrics) rouge_desc = " ".join( [ f"{'Predict' if is_prediction else 'Eval'} {key}: {value} |" for key, value in rouge_metrics.items() ] ) for pred, label in zip(decoded_preds, decoded_labels): pred = pred.replace("\n", " ") label = label.replace("\n", " ") generations.append({"label": label, "pred": pred}) else: decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] # rougeLSum expects newline after each sentence decoded_preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in decoded_preds] for pred in decoded_preds: pred = pred.replace("\n", " ") generations.append({"pred": pred}) if metrics: # Print metrics and update progress bar desc = f"{'Predict' if is_prediction else 'Eval'} Loss: {metrics['loss']} | {rouge_desc})" if training_args.do_train and not is_prediction: desc = f"Epoch... ({epoch + 1}/{num_epochs} | Step: {cur_step} | " + desc epochs.write(desc) epochs.desc = desc logger.info(desc) if jax.process_index() == 0: if not os.path.isdir(os.path.join(training_args.output_dir, ckpt_dir)): os.makedirs(os.path.join(training_args.output_dir, ckpt_dir), exist_ok=True) if metrics: # Save metrics (only for the evaluation/prediction being done along with training) if has_tensorboard and training_args.do_train: write_metric( summary_writer, metrics, train_time=None, step=cur_step, metric_key_prefix=metric_key_prefix ) # save final metrics in json metrics = { f"{metric_key_prefix}_{metric_name}": round(value.item(), 6) for metric_name, value in metrics.items() } _path = os.path.join(training_args.output_dir, ckpt_dir, f"{metric_key_prefix}_results.json") with open(_path, "w") as f: json.dump(metrics, f, indent=4, sort_keys=True) # Update report with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: fp.write(desc + "\n") # Save generations if generations: output_file = os.path.join(training_args.output_dir, ckpt_dir, f"{metric_key_prefix}_generation.json") with open(output_file, "w", encoding="UTF-8") as fp: json.dump(generations, fp, ensure_ascii=False, indent=4) def evaluate(rng: jax.random.PRNGKey, dataset: Dataset, ckpt_dir: str = ""): evaluation_loop(rng, dataset, metric_key_prefix="eval", ckpt_dir=ckpt_dir) def predict(rng: jax.random.PRNGKey, dataset: Dataset): evaluation_loop(rng, dataset, metric_key_prefix="test", is_prediction=True) input_rng = None if training_args.do_train: cur_step = 0 train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ # Create sampling rng rng, input_rng = jax.random.split(rng) train_metrics = [] train_batches = blockwise_data_loader( input_rng, train_dataset, block_size=training_args.block_size, batch_size=train_batch_size, keep_in_memory=True, shuffle=True, split="train", ) # train for batch_idx, _ in enumerate(tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False)): cur_step += 1 batch = next(train_batches) batch_start = time.time() state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) train_time += time.time() - batch_start time_per_step = train_time / cur_step # log and save info if training_args.logging_steps > 0 and cur_step % training_args.logging_steps == 0: _train_metric = unreplicate(train_metric) desc = ( f"Epoch... ({epoch + 1}/{num_epochs} | Step: {cur_step} | Loss: {_train_metric['loss']} |" f" Learning Rate: {_train_metric['learning_rate']} | Time per step: {time_per_step})" ) epochs.desc = desc epochs.write(desc) logger.info(desc) with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: fp.write(desc + "\n") # Save metrics if has_tensorboard and jax.process_index() == 0: write_metric( summary_writer, train_metrics, train_time=train_time, step=cur_step, metric_key_prefix="train", ) # ======================== Evaluating (inside an epoch) ============================== if ( training_args.do_eval and (training_args.eval_steps is not None and training_args.eval_steps > 0) and cur_step % training_args.eval_steps == 0 ): ckpt_dir = f"ckpt_epoch_{epoch + 1}_step_{cur_step}" commit_msg = f"Saving weights and logs of epoch {epoch + 1} - step {cur_step}" evaluate(input_rng, eval_dataset, ckpt_dir) save_ckpt(ckpt_dir=ckpt_dir, commit_msg=commit_msg) # ======================== Epoch End ============================== # log and save info if training_args.logging_steps <= 0: logger.info(desc) with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: fp.write(desc + "\n") # Save metrics if has_tensorboard and jax.process_index() == 0: write_metric( summary_writer, train_metrics, train_time=train_time, step=cur_step, metric_key_prefix="train" ) # ======================== Evaluating (after each epoch) ============================== if training_args.do_eval and (training_args.eval_steps is None or training_args.eval_steps <= 0): ckpt_dir = f"ckpt_epoch_{epoch + 1}_step_{cur_step}" commit_msg = f"Saving weights and logs of epoch {epoch + 1} - step {cur_step}" evaluate(input_rng, eval_dataset, ckpt_dir) save_ckpt(ckpt_dir=ckpt_dir, commit_msg=commit_msg) # ======================== Evaluating | Predicting ============================== # Create sampling rng if input_rng is None: rng, input_rng = jax.random.split(rng) # run evaluation without training if training_args.do_eval and not training_args.do_train: evaluate(input_rng, eval_dataset) # run prediction after (or without) training if training_args.do_predict: predict(input_rng, predict_dataset) if __name__ == "__main__": main()
transformers/examples/flax/image-captioning/run_image_captioning_flax.py/0
{ "file_path": "transformers/examples/flax/image-captioning/run_image_captioning_flax.py", "repo_id": "transformers", "token_count": 24327 }
# Summarization (Seq2Seq model) training examples The following example showcases how to finetune a sequence-to-sequence model for summarization using the JAX/Flax backend. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. `run_summarization_flax.py` is a lightweight example of how to download and preprocess a dataset from the 🤗 Datasets library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets#json-files and you also will find examples of these below. ### Train the model Next we can run the example script to train the model: ```bash python run_summarization_flax.py \ --output_dir ./bart-base-xsum \ --model_name_or_path facebook/bart-base \ --tokenizer_name facebook/bart-base \ --dataset_name="xsum" \ --do_train --do_eval --do_predict --predict_with_generate \ --num_train_epochs 6 \ --learning_rate 5e-5 --warmup_steps 0 \ --per_device_train_batch_size 64 \ --per_device_eval_batch_size 64 \ --overwrite_output_dir \ --max_source_length 512 --max_target_length 64 \ --push_to_hub ``` This should finish in 37min, with validation loss and ROUGE2 score of 1.7785 and 17.01 respectively after 6 epochs. training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/OcPfOIgXRMSJqYB4RdK2tA/#scalars). > Note that here we used default `generate` arguments, using arguments specific for `xsum` dataset should give better ROUGE scores.
transformers/examples/flax/summarization/README.md/0
{ "file_path": "transformers/examples/flax/summarization/README.md", "repo_id": "transformers", "token_count": 544 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet). GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss. """ import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_data_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a text file)."} ) train_data_files: Optional[str] = field( default=None, metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) }, ) eval_data_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word mask in Chinese."}, ) eval_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."}, ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) mlm: bool = field( default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."}) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) plm_probability: float = field( default=1 / 6, metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) }, ) max_span_length: int = field( default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) block_size: int = field( default=-1, metadata={ "help": ( "Optional input sequence length after tokenization. " "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def get_dataset( args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate: bool = False, cache_dir: Optional[str] = None, ): def _dataset(file_path, ref_path=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask") return LineByLineWithRefDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, ref_path=ref_path, ) return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) else: return TextDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache, cache_dir=cache_dir, ) if evaluate: return _dataset(args.eval_data_file, args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file, args.train_ref_file) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: model = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch") model = AutoModelWithLMHead.from_config(config) model.resize_token_embeddings(len(tokenizer)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the " "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: data_args.block_size = tokenizer.max_len # Our input block size will be the max possible for the model else: data_args.block_size = min(data_args.block_size, tokenizer.max_len) # Get datasets train_dataset = ( get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None ) eval_dataset = ( get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": data_collator = DataCollatorForPermutationLanguageModeling( tokenizer=tokenizer, plm_probability=data_args.plm_probability, max_span_length=data_args.max_span_length, ) else: if data_args.mlm and data_args.whole_word_mask: data_collator = DataCollatorForWholeWordMask( tokenizer=tokenizer, mlm_probability=data_args.mlm_probability ) else: data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, prediction_loss_only=True, ) # Training if training_args.do_train: model_path = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=model_path) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") eval_output = trainer.evaluate() perplexity = math.exp(eval_output["eval_loss"]) result = {"perplexity": perplexity} output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) results.update(result) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/legacy/run_language_modeling.py/0
{ "file_path": "transformers/examples/legacy/run_language_modeling.py", "repo_id": "transformers", "token_count": 5667 }
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # as due to their complexity multi-gpu tests could impact other tests, and to aid debug we have those in a separate module. import os import sys from transformers.testing_utils import TestCasePlus, execute_subprocess_async, get_gpu_count, require_torch_gpu, slow from .utils import load_json class TestSummarizationDistillerMultiGPU(TestCasePlus): @classmethod def setUpClass(cls): return cls @slow @require_torch_gpu def test_distributed_eval(self): output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name Helsinki-NLP/opus-mt-en-ro --save_dir {output_dir} --data_dir {self.test_file_dir_str}/test_data/wmt_en_ro --num_beams 2 --task translation """.split() # we want this test to run even if there is only one GPU, but if there are more we use them all n_gpu = get_gpu_count() distributed_args = f""" -m torch.distributed.launch --nproc_per_node={n_gpu} {self.test_file_dir}/run_distributed_eval.py """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) metrics_save_path = os.path.join(output_dir, "test_bleu.json") metrics = load_json(metrics_save_path) # print(metrics) self.assertGreaterEqual(metrics["bleu"], 25)
transformers/examples/legacy/seq2seq/old_test_seq2seq_examples_multi_gpu.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/old_test_seq2seq_examples_multi_gpu.py", "repo_id": "transformers", "token_count": 771 }
if ! [ -f ./dev.txt ]; then echo "Downloading CONLL2003 dev dataset...." curl -L -o ./dev.txt 'https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/valid.txt' fi if ! [ -f ./test.txt ]; then echo "Downloading CONLL2003 test dataset...." curl -L -o ./test.txt 'https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/test.txt' fi if ! [ -f ./train.txt ]; then echo "Downloading CONLL2003 train dataset...." curl -L -o ./train.txt 'https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/train.txt' fi export MAX_LENGTH=200 export BERT_MODEL=bert-base-uncased export OUTPUT_DIR=chunker-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=750 export SEED=1 python3 run_ner.py \ --task_type Chunk \ --data_dir . \ --model_name_or_path $BERT_MODEL \ --output_dir $OUTPUT_DIR \ --max_seq_length $MAX_LENGTH \ --num_train_epochs $NUM_EPOCHS \ --per_gpu_train_batch_size $BATCH_SIZE \ --save_steps $SAVE_STEPS \ --seed $SEED \ --do_train \ --do_eval \ --do_predict
transformers/examples/legacy/token-classification/run_chunk.sh/0
{ "file_path": "transformers/examples/legacy/token-classification/run_chunk.sh", "repo_id": "transformers", "token_count": 414 }
from transformers.models.gemma.modeling_gemma import GemmaForSequenceClassification from transformers.models.llama.configuration_llama import LlamaConfig # Example where we only want to only modify the docstring class MyNewModel2Config(LlamaConfig): r""" This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma-7B. e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GemmaModel`] ```python >>> from transformers import GemmaModel, GemmaConfig >>> # Initializing a Gemma gemma-7b style configuration >>> configuration = GemmaConfig() >>> # Initializing a model from the gemma-7b style configuration >>> model = GemmaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" # Example where alllllll the dependencies are fetched to just copy the entire class class MyNewModel2ForSequenceClassification(GemmaForSequenceClassification): pass
transformers/examples/modular-transformers/modular_my_new_model2.py/0
{ "file_path": "transformers/examples/modular-transformers/modular_my_new_model2.py", "repo_id": "transformers", "token_count": 483 }
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Image classification examples This directory contains 2 scripts that showcase how to fine-tune any model supported by the [`AutoModelForImageClassification` API](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForImageClassification) (such as [ViT](https://huggingface.co/docs/transformers/main/en/model_doc/vit), [ConvNeXT](https://huggingface.co/docs/transformers/main/en/model_doc/convnext), [ResNet](https://huggingface.co/docs/transformers/main/en/model_doc/resnet), [Swin Transformer](https://huggingface.co/docs/transformers/main/en/model_doc/swin)...) using PyTorch. They can be used to fine-tune models on both [datasets from the hub](#using-datasets-from-hub) as well as on [your own custom data](#using-your-own-data). <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/image_classification_inference_widget.png" height="400" /> Try out the inference widget here: https://huggingface.co/google/vit-base-patch16-224 Content: - [PyTorch version, Trainer](#pytorch-version-trainer) - [PyTorch version, no Trainer](#pytorch-version-no-trainer) ## PyTorch version, Trainer Based on the script [`run_image_classification.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification.py). The script leverages the 🤗 [Trainer API](https://huggingface.co/docs/transformers/main_classes/trainer) to automatically take care of the training for you, running on distributed environments right away. ### Using datasets from Hub Here we show how to fine-tune a Vision Transformer (`ViT`) on the [beans](https://huggingface.co/datasets/beans) dataset, to classify the disease type of bean leaves. ```bash python run_image_classification.py \ --dataset_name beans \ --output_dir ./beans_outputs/ \ --remove_unused_columns False \ --label_column_name labels \ --do_train \ --do_eval \ --push_to_hub \ --push_to_hub_model_id vit-base-beans \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --logging_strategy steps \ --logging_steps 10 \ --eval_strategy epoch \ --save_strategy epoch \ --load_best_model_at_end True \ --save_total_limit 3 \ --seed 1337 ``` 👀 See the results here: [nateraw/vit-base-beans](https://huggingface.co/nateraw/vit-base-beans). Note that you can replace the model and dataset by simply setting the `model_name_or_path` and `dataset_name` arguments respectively, with any model or dataset from the [hub](https://huggingface.co/). For an overview of all possible arguments, we refer to the [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) of the `TrainingArguments`, which can be passed as flags. > If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it. ### Using your own data To use your own dataset, there are 2 ways: - you can either provide your own folders as `--train_dir` and/or `--validation_dir` arguments - you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument. Below, we explain both in more detail. #### Provide them as folders If you provide your own folders with images, the script expects the following directory structure: ```bash root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png ``` In other words, you need to organize your images in subfolders, based on their class. You can then run the script like this: ```bash python run_image_classification.py \ --train_dir <path-to-train-root> \ --output_dir ./outputs/ \ --remove_unused_columns False \ --do_train \ --do_eval ``` Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects. ##### 💡 The above will split the train dir into training and evaluation sets - To control the split amount, use the `--train_val_split` flag. - To provide your own validation split in its own directory, you can pass the `--validation_dir <path-to-val-root>` flag. #### Upload your data to the hub, as a (possibly private) repo It's very easy (and convenient) to upload your image dataset to the hub using the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following: ```python from datasets import load_dataset # example 1: local folder dataset = load_dataset("imagefolder", data_dir="path_to_your_folder") # example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd) dataset = load_dataset("imagefolder", data_files="path_to_zip_file") # example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd) dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip") # example 4: providing several splits dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}) ``` `ImageFolder` will create a `label` column, and the label name is based on the directory name. Next, push it to the hub! ```python # assuming you have ran the huggingface-cli login command in a terminal dataset.push_to_hub("name_of_your_dataset") # if you want to push to a private repo, simply pass private=True: dataset.push_to_hub("name_of_your_dataset", private=True) ``` and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub (as explained in [Using datasets from the 🤗 hub](#using-datasets-from-hub)). More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets). ### Sharing your model on 🤗 Hub 0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account 1. Make sure you have `git-lfs` installed and git set up. ```bash $ apt install git-lfs $ git config --global user.email "[email protected]" $ git config --global user.name "Your Name" ``` 2. Log in with your HuggingFace account credentials using `huggingface-cli`: ```bash $ huggingface-cli login # ...follow the prompts ``` 3. When running the script, pass the following arguments: ```bash python run_image_classification.py \ --push_to_hub \ --push_to_hub_model_id <name-your-model> \ ... ``` ## PyTorch version, no Trainer Based on the script [`run_image_classification_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification_no_trainer.py). Like `run_image_classification.py`, this script allows you to fine-tune any of the models on the [hub](https://huggingface.co/models) on an image classification task. The main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, and supports mixed precision by the means of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_image_classification_no_trainer.py --image_column_name img ``` This command is the same and will work for: - single/multiple CPUs - single/multiple GPUs - TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it. Regarding using custom data with this script, we refer to [using your own data](#using-your-own-data).
transformers/examples/pytorch/image-classification/README.md/0
{ "file_path": "transformers/examples/pytorch/image-classification/README.md", "repo_id": "transformers", "token_count": 2873 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset without using HuggingFace Trainer. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from itertools import chain from pathlib import Path import datasets import torch from accelerate import Accelerator, DistributedType from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import load_dataset from huggingface_hub import HfApi from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForCausalLM, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.49.0.dev0") logger = get_logger(__name__) require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv, txt or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv, txt or a json file containing the validation data." ) parser.add_argument( "--validation_split_percentage", default=5, help="The percentage of the train set used as validation set in case there's no validation split", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--block_size", type=int, default=None, help=( "Optional input sequence length after tokenization. The training dataset will be truncated in block of" " this size for training. Default to the model max input length for single sentence inputs (take into" " account special tokens)." ), ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", action="store_true", help=( "Whether to trust the execution of code from datasets/models defined on the Hub." " This option should only be set to `True` for repositories you trust and in which you have read the" " code, as it will execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument( "--low_cpu_mem_usage", action="store_true", help=( "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. " "If passed, LLM loading time and RAM consumption will be benefited." ), ) args = parser.parse_args() # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`train_file` should be a csv, json or txt file.") if args.validation_file is not None: extension = args.validation_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`validation_file` should be a csv, json or txt file.") if args.push_to_hub: if args.output_dir is None: raise ValueError("Need an `output_dir` to create a repo when `--push_to_hub` is passed.") return args def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_clm_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator_log_kwargs = {} if args.with_tracking: accelerator_log_kwargs["log_with"] = args.report_to accelerator_log_kwargs["project_dir"] = args.output_dir accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( args.dataset_name, args.dataset_config_name, trust_remote_code=args.trust_remote_code ) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[:{args.validation_split_percentage}%]", trust_remote_code=args.trust_remote_code, ) raw_datasets["train"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[{args.validation_split_percentage}%:]", trust_remote_code=args.trust_remote_code, ) else: data_files = {} dataset_args = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{args.validation_split_percentage}%]", **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{args.validation_split_percentage}%:]", **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained( args.config_name, trust_remote_code=args.trust_remote_code, ) elif args.model_name_or_path: config = AutoConfig.from_pretrained( args.model_name_or_path, trust_remote_code=args.trust_remote_code, ) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, low_cpu_mem_usage=args.low_cpu_mem_usage, trust_remote_code=args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = AutoModelForCausalLM.from_config(config, trust_remote_code=args.trust_remote_code) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) with accelerator.main_process_first(): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on dataset", ) if args.block_size is None: block_size = tokenizer.model_max_length if block_size > config.max_position_embeddings: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx." ) block_size = min(1024, config.max_position_embeddings) else: if args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({args.block_size}) is larger than the maximum length for the model " f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict. # We could add padding if the model supported it instead of this drop, you can customize this part to your needs. total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/process#map with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=args.preprocessing_num_workers, load_from_cache_file=not args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) train_dataset = lm_datasets["train"] eval_dataset = lm_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "layer_norm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps if overrode_max_train_steps else args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties. if accelerator.distributed_type == DistributedType.TPU: model.tie_weights() # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("clm_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0 and accelerator.sync_gradients: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size))) losses = torch.cat(losses) try: eval_loss = torch.mean(losses) perplexity = math.exp(eval_loss) except OverflowError: perplexity = float("inf") logger.info(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}") if args.with_tracking: accelerator.log( { "perplexity": perplexity, "eval_loss": eval_loss, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"perplexity": perplexity}, f) if __name__ == "__main__": main()
transformers/examples/pytorch/language-modeling/run_clm_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/language-modeling/run_clm_no_trainer.py", "repo_id": "transformers", "token_count": 12859 }
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Question answering This folder contains several scripts that showcase how to fine-tune a 🤗 Transformers model on a question answering dataset, like SQuAD. ## Trainer-based scripts The [`run_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py), [`run_qa_beam_search.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa_beam_search.py) and [`run_seq2seq_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_seq2seq_qa.py) leverage the 🤗 [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) for fine-tuning. ### Fine-tuning BERT on SQuAD1.0 The [`run_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py) script allows to fine-tune any model from our [hub](https://huggingface.co/models) (as long as its architecture has a `ForQuestionAnswering` version in the library) on a question-answering dataset (such as SQuAD, or any other QA dataset available in the `datasets` library, or your own csv/jsonlines files) as long as they are structured the same way as SQuAD. You might need to tweak the data processing inside the script if your data is structured differently. **Note:** This script only works with models that have a fast tokenizer (backed by the 🤗 Tokenizers library) as it uses special features of those tokenizers. You can check if your favorite model has a fast tokenizer in [this table](https://huggingface.co/transformers/index.html#supported-frameworks), if it doesn't you can still use the old version of the script which can be found [here](https://github.com/huggingface/transformers/tree/main/examples/legacy/question-answering). Note that if your dataset contains samples with no possible answers (like SQuAD version 2), you need to pass along the flag `--version_2_with_negative`. This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB. ```bash python run_qa.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ ``` Training with the previously defined hyper-parameters yields the following results: ```bash f1 = 88.52 exact_match = 81.22 ``` ### Fine-tuning XLNet with beam search on SQuAD The [`run_qa_beam_search.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa_beam_search.py) script is only meant to fine-tune XLNet, which is a special encoder-only Transformer model. The example code below fine-tunes XLNet on the SQuAD1.0 and SQuAD2.0 datasets. #### Command for SQuAD1.0: ```bash python run_qa_beam_search.py \ --model_name_or_path xlnet/xlnet-large-cased \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./wwm_cased_finetuned_squad/ \ --per_device_eval_batch_size=4 \ --per_device_train_batch_size=4 \ --save_steps 5000 ``` #### Command for SQuAD2.0: ```bash export SQUAD_DIR=/path/to/SQUAD python run_qa_beam_search.py \ --model_name_or_path xlnet/xlnet-large-cased \ --dataset_name squad_v2 \ --do_train \ --do_eval \ --version_2_with_negative \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./wwm_cased_finetuned_squad/ \ --per_device_eval_batch_size=2 \ --per_device_train_batch_size=2 \ --save_steps 5000 ``` ### Fine-tuning T5 on SQuAD2.0 The [`run_seq2seq_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_seq2seq_qa.py) script is meant for encoder-decoder (also called seq2seq) Transformer models, such as T5 or BART. These models are generative, rather than discriminative. This means that they learn to generate the correct answer, rather than predicting the start and end position of the tokens of the answer. This example code fine-tunes T5 on the SQuAD2.0 dataset. ```bash python run_seq2seq_qa.py \ --model_name_or_path google-t5/t5-small \ --dataset_name squad_v2 \ --context_column context \ --question_column question \ --answer_column answers \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_seq2seq_squad/ ``` ## Accelerate-based scripts Based on the scripts `run_qa_no_trainer.py` and `run_qa_beam_search_no_trainer.py`. Like `run_qa.py` and `run_qa_beam_search.py`, these scripts allow you to fine-tune any of the models supported on a SQuAD or a similar dataset, the main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script), but still run in a distributed setup, on TPU and supports mixed precision by leveraging the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash python run_qa_no_trainer.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ~/tmp/debug_squad ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_qa_no_trainer.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ~/tmp/debug_squad ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/pytorch/question-answering/README.md/0
{ "file_path": "transformers/examples/pytorch/question-answering/README.md", "repo_id": "transformers", "token_count": 2435 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """Pre-Training a 🤗 Wav2Vec2 model on unlabeled audio data""" import argparse import math import os from dataclasses import dataclass from pathlib import Path from typing import Dict, List, Optional, Union import datasets import torch from accelerate import Accelerator from accelerate.logging import get_logger from datasets import DatasetDict, concatenate_datasets, load_dataset from huggingface_hub import HfApi from torch.utils.data.dataloader import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( AdamW, SchedulerType, Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2ForPreTraining, get_scheduler, is_wandb_available, set_seed, ) from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices from transformers.utils import send_example_telemetry logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_names", nargs="+", type=str, required=True, help="The configuration names of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_split_names", nargs="+", type=str, required=True, help="The names of the training data set splits to use (via the datasets library).", ) parser.add_argument( "--trust_remote_code", action="store_true", help=( "Whether to trust the execution of code from datasets/models defined on the Hub." " This option should only be set to `True` for repositories you trust and in which you have read the" " code, as it will execute code present on the Hub on your local machine." ), ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--preprocessing_only", action="store_true", help="Only run the preprocessing script to be cached for future use", ) parser.add_argument( "--cache_dir", type=str, default=None, help="Where do you want to store the pretrained models downloaded from huggingface.co", ) parser.add_argument( "--validation_split_percentage", type=int, default=1, help="Percentage of training data that should be used for validation if no validation is present in dataset.", ) parser.add_argument( "--logging_steps", type=int, default=500, help="Number of steps between each logging", ) parser.add_argument( "--saving_steps", type=int, default=500, help="Number of steps between each logging", ) parser.add_argument( "--audio_column_name", type=str, default="audio", help="Column in the dataset that contains speech file path. Defaults to 'audio'", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--train_cache_file_name", type=str, default=None, help="Path to the train cached file name", ) parser.add_argument( "--validation_cache_file_name", type=str, default=None, help="Path to the validation cached file name", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="If True, use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") parser.add_argument( "--max_gumbel_temperature", type=float, default=2.0, help="Maximum temperature for gumbel softmax.", ) parser.add_argument( "--min_gumbel_temperature", type=float, default=0.5, help="Minimum temperature for gumbel softmax.", ) parser.add_argument( "--gumbel_temperature_decay", type=float, default=0.999995, help="Decay of gumbel temperature during training." ) parser.add_argument( "--max_duration_in_seconds", type=float, default=5.0, help="Filter out audio files that are longer than `max_duration_in_seconds` seconds", ) parser.add_argument( "--min_duration_in_seconds", type=float, default=3.0, help="Filter out audio files that are shorter than `min_duration_in_seconds` seconds", ) parser.add_argument( "--pad_to_multiple_of", type=int, default=None, help=( "If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the" " use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta)." ), ) parser.add_argument( "--adam_beta1", type=float, default=0.9, help="Beta1 for AdamW optimizer", ) parser.add_argument( "--adam_beta2", type=float, default=0.999, help="Beta2 for AdamW optimizer", ) parser.add_argument( "--adam_epsilon", type=float, default=1e-8, help="Epsilon for AdamW optimizer", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--mask_time_prob", type=float, default=None, help=( "Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked in the" " contrastive task. If omitted, will pull value from model config." ), ) parser.add_argument( "--mask_time_length", type=int, default=None, help=( "Length of each vector mask span to mask along the time axis in the contrastive task." " If omitted, will pull value from model config." ), ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) return args @dataclass class DataCollatorForWav2Vec2Pretraining: """ Data collator that will dynamically pad the inputs received and prepare masked indices for self-supervised pretraining. Args: model (:class:`~transformers.Wav2Vec2ForPreTraining`): The Wav2Vec2 model used for pretraining. The data collator needs to have access to config and ``_get_feat_extract_output_lengths`` function for correct padding. feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`): The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). mask_time_prob (:obj:`float`, `optional`, defaults to :obj:`0.65`): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked for the contrastive task. Note that overlap between masked sequences may decrease the actual percentage of masked vectors. The default value is taken from the original wav2vec 2.0 article (https://arxiv.org/abs/2006.11477), and results in about 49 percent of each sequence being masked on average. mask_time_length (:obj:`int`, `optional`, defaults to :obj:`10`): Length of each vector mask span to mask along the time axis in the contrastive task. The default value originates from the original wav2vec 2.0 article and corresponds to the ``M`` variable mentioned there. """ model: Wav2Vec2ForPreTraining feature_extractor: Wav2Vec2FeatureExtractor padding: Union[bool, str] = "longest" pad_to_multiple_of: Optional[int] = None mask_time_prob: Optional[float] = 0.65 mask_time_length: Optional[int] = 10 def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format batch = self.feature_extractor.pad( features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) device = batch["input_values"].device batch_size = batch["input_values"].shape[0] mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) # make sure masked sequence length is a Python scalar mask_indices_seq_length = int(mask_indices_seq_length) # make sure that no loss is computed on padded inputs if batch.get("attention_mask") is not None: # compute real output lengths according to convolution formula batch["sub_attention_mask"] = self.model._get_feature_vector_attention_mask( mask_indices_seq_length, batch["attention_mask"] ) features_shape = (batch_size, mask_indices_seq_length) # sample randomly masked indices mask_time_indices = _compute_mask_indices( features_shape, self.mask_time_prob, self.mask_time_length, attention_mask=batch.get("sub_attention_mask"), ) # sample negative indices sampled_negative_indices = _sample_negative_indices( features_shape, self.model.config.num_negatives, mask_time_indices=mask_time_indices, ) batch["mask_time_indices"] = torch.tensor(mask_time_indices, dtype=torch.long, device=device) batch["sampled_negative_indices"] = torch.tensor(sampled_negative_indices, dtype=torch.long, device=device) return batch def multiply_grads(params, c): """Multiplies grads by a constant *c*.""" for p in params: if p.grad is not None: if torch.is_tensor(c): c = c.to(p.grad.device) p.grad.data.mul_(c) def get_grad_norm(params, scale=1): """Compute grad norm given a gradient scale.""" total_norm = 0.0 for p in params: if p.grad is not None: param_norm = (p.grad.detach().data / scale).norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm**0.5 return total_norm def main(): # See all possible arguments in src/transformers/args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_wav2vec2_pretraining_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() # set up weights and biases if available if is_wandb_available(): import wandb wandb.init(project=args.output_dir.split("/")[-1]) else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub and not args.preprocessing_only: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # 1. Download and create train, validation dataset # We load all dataset configuration and datset split pairs passed in # ``args.dataset_config_names`` and ``args.dataset_split_names`` datasets_splits = [] for dataset_config_name, train_split_name in zip(args.dataset_config_names, args.dataset_split_names): # load dataset dataset_split = load_dataset( args.dataset_name, dataset_config_name, split=train_split_name, cache_dir=args.cache_dir, trust_remote_code=args.trust_remote_code, ) datasets_splits.append(dataset_split) # Next, we concatenate all configurations and splits into a single training dataset raw_datasets = DatasetDict() if len(datasets_splits) > 1: raw_datasets["train"] = concatenate_datasets(datasets_splits).shuffle(seed=args.seed) else: raw_datasets["train"] = datasets_splits[0] # Take ``args.validation_split_percentage`` from the training dataset for the validation_split_percentage num_validation_samples = raw_datasets["train"].num_rows * args.validation_split_percentage // 100 if num_validation_samples == 0: raise ValueError( "`args.validation_split_percentage` is less than a single sample " f"for {len(raw_datasets['train'])} training samples. Increase " "`args.num_validation_split_percentage`. " ) raw_datasets["validation"] = raw_datasets["train"].select(range(num_validation_samples)) raw_datasets["train"] = raw_datasets["train"].select(range(num_validation_samples, raw_datasets["train"].num_rows)) # 2. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(args.model_name_or_path) # make sure that dataset decodes audio with correct sampling rate raw_datasets = raw_datasets.cast_column( args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # only normalized-inputs-training is supported if not feature_extractor.do_normalize: raise ValueError( "Training is only supported for normalized inputs. Make sure ``feature_extractor.do_normalize == True``" ) # set max & min audio length in number of samples max_length = int(args.max_duration_in_seconds * feature_extractor.sampling_rate) min_length = int(args.min_duration_in_seconds * feature_extractor.sampling_rate) def prepare_dataset(batch): sample = batch[args.audio_column_name] inputs = feature_extractor( sample["array"], sampling_rate=sample["sampling_rate"], max_length=max_length, truncation=True ) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(inputs.input_values[0]) return batch # load via mapped files via path cache_file_names = None if args.train_cache_file_name is not None: cache_file_names = {"train": args.train_cache_file_name, "validation": args.validation_cache_file_name} # load audio files into numpy arrays with accelerator.main_process_first(): vectorized_datasets = raw_datasets.map( prepare_dataset, num_proc=args.preprocessing_num_workers, remove_columns=raw_datasets["train"].column_names, cache_file_names=cache_file_names, ) if min_length > 0.0: vectorized_datasets = vectorized_datasets.filter( lambda x: x > min_length, num_proc=args.preprocessing_num_workers, input_columns=["input_length"], ) vectorized_datasets = vectorized_datasets.remove_columns("input_length") # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if args.preprocessing_only: return # 3. Load model config = Wav2Vec2Config.from_pretrained(args.model_name_or_path) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) # initialize random model model = Wav2Vec2ForPreTraining(config) # Activate gradient checkpointing if needed if args.gradient_checkpointing: model.gradient_checkpointing_enable() # 4. Define data collator, optimizer and scheduler mask_time_prob = config.mask_time_prob if args.mask_time_prob is None else args.mask_time_prob mask_time_length = config.mask_time_length if args.mask_time_length is None else args.mask_time_length data_collator = DataCollatorForWav2Vec2Pretraining( model=model, feature_extractor=feature_extractor, pad_to_multiple_of=args.pad_to_multiple_of, mask_time_prob=mask_time_prob, mask_time_length=mask_time_length, ) train_dataloader = DataLoader( vectorized_datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size, ) eval_dataloader = DataLoader( vectorized_datasets["validation"], collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer optimizer = AdamW( list(model.parameters()), lr=args.learning_rate, betas=[args.adam_beta1, args.adam_beta2], eps=args.adam_epsilon, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # 5. Train total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(vectorized_datasets['train'])}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") completed_steps = 0 starting_epoch = 0 # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 for epoch in range(starting_epoch, args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): # compute num of losses num_losses = batch["mask_time_indices"].sum() sub_attention_mask = batch.pop("sub_attention_mask", None) sub_attention_mask = ( sub_attention_mask if sub_attention_mask is not None else torch.ones_like(batch["mask_time_indices"]) ) percent_masked = num_losses / sub_attention_mask.sum() # forward outputs = model(**batch) # divide loss by gradient accumulation steps since gradients # are accumulated for multiple backward passes in PyTorch loss = outputs.loss / args.gradient_accumulation_steps accelerator.backward(loss) # make sure that `num_losses` is summed for distributed training # and average gradients over losses of all devices if accelerator.state.num_processes > 1: num_losses = accelerator.gather_for_metrics(num_losses).sum() gradient_multiplier = accelerator.state.num_processes / num_losses multiply_grads(model.module.parameters(), gradient_multiplier) else: multiply_grads(model.parameters(), 1 / num_losses) # update step if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: # compute grad norm for monitoring scale = ( accelerator.scaler._scale.item() if hasattr(accelerator, "scaler") and accelerator.scaler is not None else 1 ) if accelerator.state.num_processes > 1: grad_norm = get_grad_norm(model.module.parameters(), scale) else: grad_norm = get_grad_norm(model.parameters(), scale) # update parameters optimizer.step() optimizer.zero_grad() if not accelerator.optimizer_step_was_skipped: lr_scheduler.step() elif accelerator.is_local_main_process: progress_bar.write( f"Gradients have overflown - skipping update step... Updating gradient scale to {scale}..." ) # update gumbel temperature gumbel_temperature = max( args.max_gumbel_temperature * args.gumbel_temperature_decay**completed_steps, args.min_gumbel_temperature, ) if hasattr(model, "module"): model.module.set_gumbel_temperature(gumbel_temperature) else: model.set_gumbel_temperature(gumbel_temperature) progress_bar.update(1) completed_steps += 1 # 6. Log all results if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0: loss.detach() outputs.contrastive_loss.detach() outputs.diversity_loss.detach() if accelerator.state.num_processes > 1: loss = accelerator.gather_for_metrics(loss).sum() outputs.contrastive_loss = accelerator.gather_for_metrics(outputs.contrastive_loss).sum() outputs.diversity_loss = accelerator.gather_for_metrics(outputs.diversity_loss).sum() percent_masked = accelerator.gather_for_metrics(percent_masked).sum() train_logs = { "loss": (loss * args.gradient_accumulation_steps) / num_losses, "constrast_loss": outputs.contrastive_loss / num_losses, "div_loss": outputs.diversity_loss / num_losses, "%_mask_idx": percent_masked / accelerator.num_processes, "ppl": outputs.codevector_perplexity, "lr": torch.tensor(optimizer.param_groups[0]["lr"]), "temp": torch.tensor(gumbel_temperature), "grad_norm": torch.tensor(grad_norm), } log_str = "" for k, v in train_logs.items(): log_str += "| {}: {:.3e}".format(k, v.item()) if accelerator.is_local_main_process: progress_bar.write(log_str) if is_wandb_available(): wandb.log(train_logs) # save model every `args.saving_steps` steps if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0: if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process: api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) # if completed steps > `args.max_train_steps` stop if completed_steps >= args.max_train_steps: break # 7. Validate! model.eval() # init logs val_logs = { "val_loss": 0, "val_contrastive_loss": 0, "val_diversity_loss": 0, "val_num_losses": 0, } for step, batch in enumerate(eval_dataloader): with torch.no_grad(): batch.pop("sub_attention_mask", None) outputs = model(**batch) val_logs["val_loss"] += outputs.loss val_logs["val_contrastive_loss"] += outputs.contrastive_loss val_logs["val_diversity_loss"] += outputs.diversity_loss val_logs["val_num_losses"] += batch["mask_time_indices"].sum() # sum over devices in multi-processing if accelerator.num_processes > 1: val_logs = {k: accelerator.gather_for_metrics(v).sum() for k, v in val_logs.items()} val_logs = {k: v / val_logs["val_num_losses"] for k, v in val_logs.items()} log_str = "" for k, v in val_logs.items(): log_str += "| {}: {:.3e}".format(k, v.item()) if accelerator.is_local_main_process: progress_bar.write(log_str) if is_wandb_available(): wandb.log(val_logs) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if __name__ == "__main__": main()
transformers/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py", "repo_id": "transformers", "token_count": 14055 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning a 🤗 Transformers model for sequence classification on GLUE.""" import argparse import json import logging import math import os import random from pathlib import Path import datasets import evaluate import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import load_dataset from huggingface_hub import HfApi from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, PretrainedConfig, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.49.0.dev0") logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--task_name", type=str, default=None, help="The name of the glue task to train on.", choices=list(task_to_keys.keys()), ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", type=bool, default=False, help=( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument( "--ignore_mismatched_sizes", action="store_true", help="Whether or not to enable to load a pretrained model whose head dimensions are different.", ) args = parser.parse_args() # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_glue_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator = ( Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator() ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.task_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset("nyu-mll/glue", args.task_name) else: # Loading the dataset from local csv or json file. data_files = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = (args.train_file if args.train_file is not None else args.validation_file).split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. # Labels if args.task_name is not None: is_regression = args.task_name == "stsb" if not is_regression: label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = raw_datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, trust_remote_code=args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token config.pad_token_id = tokenizer.pad_token_id model = AutoModelForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ignore_mismatched_sizes=args.ignore_mismatched_sizes, trust_remote_code=args.trust_remote_code, ) # Preprocessing the datasets if args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): logger.info( f"The configuration of the model provided the following label correspondence: {label_name_to_id}. " "Using it!" ) label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: " f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) elif args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if label_to_id is not None: model.config.label2id = label_to_id model.config.id2label = {id: label for label, id in config.label2id.items()} elif args.task_name is not None and not is_regression: model.config.label2id = {l: i for i, l in enumerate(label_list)} model.config.id2label = {id: label for label, id in config.label2id.items()} padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): # Tokenize the texts texts = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*texts, padding=padding, max_length=args.max_length, truncation=True) if "label" in examples: if label_to_id is not None: # Map labels to IDs (not necessary for GLUE tasks) result["labels"] = [label_to_id[l] for l in examples["label"]] else: # In all cases, rename the column to labels because the model will expect that. result["labels"] = examples["label"] return result with accelerator.main_process_first(): processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). # For fp8, we pad to multiple of 16. if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=pad_to_multiple_of) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("glue_no_trainer", experiment_config) # Get the metric function if args.task_name is not None: metric = evaluate.load("glue", args.task_name) else: metric = evaluate.load("accuracy") # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0 and accelerator.sync_gradients: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze() predictions, references = accelerator.gather((predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.num_processes > 1: if step == len(eval_dataloader) - 1: predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() logger.info(f"epoch {epoch}: {eval_metric}") if args.with_tracking: accelerator.log( { "accuracy" if args.task_name is not None else "glue": eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if args.task_name == "mnli": # Final evaluation on mismatched validation set eval_dataset = processed_datasets["validation_mismatched"] eval_dataloader = DataLoader( eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) eval_dataloader = accelerator.prepare(eval_dataloader) model.eval() for step, batch in enumerate(eval_dataloader): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) metric.add_batch( predictions=accelerator.gather(predictions), references=accelerator.gather(batch["labels"]), ) eval_metric = metric.compute() logger.info(f"mnli-mm: {eval_metric}") if args.output_dir is not None: all_results = {f"eval_{k}": v for k, v in eval_metric.items()} with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump(all_results, f) if __name__ == "__main__": main()
transformers/examples/pytorch/text-classification/run_glue_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/text-classification/run_glue_no_trainer.py", "repo_id": "transformers", "token_count": 12372 }
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BertExtAbs's checkpoints. The script looks like it is doing something trivial but it is not. The "weights" proposed by the authors are actually the entire model pickled. We need to load the model within the original codebase to be able to only save its `state_dict`. """ import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) SAMPLE_TEXT = "Hello world! cécé herlolip" BertAbsConfig = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def convert_bertabs_checkpoints(path_to_checkpoints, dump_path): """Copy/paste and tweak the pre-trained weights provided by the creators of BertAbs for the internal architecture. """ # Instantiate the authors' model with the pre-trained weights config = BertAbsConfig( temp_dir=".", finetune_bert=False, large=False, share_emb=True, use_bert_emb=False, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, ) checkpoints = torch.load(path_to_checkpoints, lambda storage, loc: storage) original = AbsSummarizer(config, torch.device("cpu"), checkpoints) original.eval() new_model = BertAbsSummarizer(config, torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") # prepare the model inputs encoder_input_ids = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(encoder_input_ids))) encoder_input_ids = torch.tensor(encoder_input_ids).unsqueeze(0) decoder_input_ids = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(decoder_input_ids))) decoder_input_ids = torch.tensor(decoder_input_ids).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass src = encoder_input_ids tgt = decoder_input_ids segs = token_type_ids = None clss = None mask_src = encoder_attention_mask = None mask_tgt = decoder_attention_mask = None mask_cls = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical output_original_model = original(src, tgt, segs, clss, mask_src, mask_tgt, mask_cls)[0] output_original_generator = original.generator(output_original_model) output_converted_model = new_model( encoder_input_ids, decoder_input_ids, token_type_ids, encoder_attention_mask, decoder_attention_mask )[0] output_converted_generator = new_model.generator(output_converted_model) maximum_absolute_difference = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference)) maximum_absolute_difference = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference)) are_identical = torch.allclose(output_converted_model, output_original_model, atol=1e-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) args = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
transformers/examples/research_projects/bertabs/convert_bertabs_original_pytorch_checkpoint.py/0
{ "file_path": "transformers/examples/research_projects/bertabs/convert_bertabs_original_pytorch_checkpoint.py", "repo_id": "transformers", "token_count": 2417 }
import logging import os import time from argparse import Namespace from pathlib import Path import datasets import torch from accelerate import Accelerator, DistributedType from accelerate.utils import ProjectConfiguration from arguments import TrainingArguments from datasets import load_dataset from huggingface_hub import Repository from torch.optim import AdamW from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, get_scheduler, set_seed class ConstantLengthDataset(IterableDataset): """ Iterable dataset that returns constant length chunks of tokens from stream of text files. Args: tokenizer (Tokenizer): The processor used for proccessing the data. dataset (dataset.Dataset): Dataset with text files. infinite (bool): If True the iterator is reset after dataset reaches end else stops. seq_length (int): Length of token sequences to return. num_of_sequences (int): Number of token sequences to keep in buffer. chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer. tokenized (bool): If true we use a pretokenized dataset. """ def __init__( self, tokenizer, dataset, infinite=False, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6, tokenized=False, ): self.tokenizer = tokenizer self.concat_token_id = tokenizer.bos_token_id self.dataset = dataset self.seq_length = seq_length self.epoch = 0 self.infinite = infinite self.current_size = 0 self.tokenized = tokenized if self.tokenized: self.max_buffer_size = seq_length * num_of_sequences self.content_field = "input_ids" else: self.max_buffer_size = seq_length * chars_per_token * num_of_sequences self.content_field = "content" def __iter__(self): iterator = iter(self.dataset) more_examples = True while more_examples: buffer, buffer_len = [], 0 while True: if buffer_len >= self.max_buffer_size: break try: buffer.append(next(iterator)[self.content_field]) buffer_len += len(buffer[-1]) except StopIteration: if self.infinite: iterator = iter(self.dataset) self.epoch += 1 logger.info(f"Dataset epoch: {self.epoch}") else: more_examples = False break if self.tokenized: tokenized_inputs = buffer else: tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"] all_token_ids = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id]) for i in range(0, len(all_token_ids), self.seq_length): input_ids = all_token_ids[i : i + self.seq_length] if len(input_ids) == self.seq_length: self.current_size += 1 yield torch.tensor(input_ids) def shuffle(self, buffer_size=1000): return ShufflerIterDataPipe(self, buffer_size=buffer_size) def setup_logging(args): project_name = args.model_ckpt.split("/")[-1] logger = logging.getLogger(__name__) log_dir = Path(args.save_dir) / "log/" log_dir.mkdir(exist_ok=True) filename = f"debug_{accelerator.process_index}.log" logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[logging.FileHandler(log_dir / filename), logging.StreamHandler()], ) if accelerator.is_main_process: # we only want to setup logging once accelerator.init_trackers(project_name, vars(args)) run_name = accelerator.trackers[0].run.name logger.setLevel(logging.INFO) datasets.utils.logging.set_verbosity_info() transformers.utils.logging.set_verbosity_info() else: run_name = "" logger.setLevel(logging.ERROR) datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() return logger, run_name def create_dataloaders(args): ds_kwargs = {"streaming": True} train_data = load_dataset(args.dataset_name_train, split="train", **ds_kwargs) train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed) valid_data = load_dataset(args.dataset_name_valid, split="train", **ds_kwargs) train_dataset = ConstantLengthDataset( tokenizer, train_data, infinite=True, seq_length=args.seq_length, tokenized=args.tokenized ) valid_dataset = ConstantLengthDataset( tokenizer, valid_data, infinite=False, seq_length=args.seq_length, tokenized=args.tokenized ) train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer) train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) eval_dataloader = DataLoader(valid_dataset, batch_size=args.valid_batch_size) return train_dataloader, eval_dataloader def get_grouped_params(model, args, no_decay=["bias", "ln_1.weight", "ln_2.weight", "ln_f.weight"]): params_with_wd, params_without_wd = [], [] for n, p in model.named_parameters(): if any(nd in n for nd in no_decay): params_without_wd.append(p) else: params_with_wd.append(p) return [ {"params": params_with_wd, "weight_decay": args.weight_decay}, {"params": params_without_wd, "weight_decay": 0.0}, ] def log_metrics(step, metrics): logger.info(f"Step {step}: {metrics}") if accelerator.is_main_process: accelerator.log(metrics, step) def compute_tflops(elapsed_time, accelerator, args): # TFLOPs formula (from Equation 3 in Section 5.1 of https://arxiv.org/pdf/2104.04473.pdf). config_model = accelerator.unwrap_model(model).config checkpoint_factor = 4 if args.gradient_checkpointing else 3 batch_size = args.train_batch_size * accelerator.state.num_processes * args.gradient_accumulation_steps factor = 24 * checkpoint_factor * batch_size * args.seq_length * config_model.n_layer * (config_model.n_embd**2) flops_per_iteration = factor * ( 1.0 + (args.seq_length / (6.0 * config_model.n_embd)) + (tokenizer.vocab_size / (16.0 * config_model.n_layer * config_model.n_embd)) ) tflops = flops_per_iteration / (elapsed_time * accelerator.state.num_processes * (10**12)) return tflops def evaluate(args): model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(batch, labels=batch) loss = outputs.loss.repeat(args.valid_batch_size) losses.append(accelerator.gather(loss)) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break losses = torch.cat(losses) loss = losses[: eval_dataloader.dataset.current_size].mean() try: perplexity = torch.exp(loss) except OverflowError: perplexity = float("inf") return loss.item(), perplexity.item() # Settings parser = HfArgumentParser(TrainingArguments) args = parser.parse_args() # Accelerator config = ProjectConfiguration(project_dir=args.save_dir, logging_dir="log") accelerator = Accelerator(log_with=["wandb", "tensorboard"], project_config=config) acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()} args = Namespace(**vars(args), **acc_state) samples_per_step = accelerator.state.num_processes * args.train_batch_size set_seed(args.seed) # Clone model repository if accelerator.is_main_process: hf_repo = Repository(args.save_dir, clone_from=args.model_ckpt) # Logging logger, run_name = setup_logging(args) logger.info(accelerator.state) # Checkout new branch on repo if accelerator.is_main_process: hf_repo.git_checkout(run_name, create_branch_ok=True) # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained(args.save_dir) if args.gradient_checkpointing: model.gradient_checkpointing_enable() tokenizer = AutoTokenizer.from_pretrained(args.save_dir) # Load dataset and dataloader train_dataloader, eval_dataloader = create_dataloaders(args) # Prepare the optimizer and learning rate scheduler optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) accelerator.register_for_checkpointing(lr_scheduler) def get_lr(): return optimizer.param_groups[0]["lr"] # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(args.save_dir) if f.is_dir() and "step" in str(f)] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract the step of the checkpoint to continue from there training_difference = os.path.splitext(path)[0] resume_step = int(training_difference.replace("step_", "")) # Train model model.train() completed_steps = 0 t_start = time.time() loss_tracking = 0 for step, batch in enumerate(train_dataloader, start=1): if args.resume_from_checkpoint and step < resume_step: continue # we need to skip steps until we reach the resumed step loss = model(batch, labels=batch, use_cache=False).loss avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() loss_tracking += avg_loss.item() / args.gradient_accumulation_steps log_metrics(step, {"samples": step * samples_per_step, "loss_per_step/train": loss.item()}) loss = loss / args.gradient_accumulation_steps if step % args.gradient_accumulation_steps != 0: # Prevent backward from doing gradient all_reduce in every step if accelerator.distributed_type == DistributedType.MULTI_GPU: with model.no_sync(): accelerator.backward(loss) else: accelerator.backward(loss) else: lr = get_lr() accelerator.backward(loss) accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() elapsed_time = time.time() - t_start tflops = compute_tflops(elapsed_time, accelerator, args) log_metrics( step, { "steps": completed_steps, "loss/train": loss_tracking, "lr": lr, "tflops": tflops, "time_per_iteration": elapsed_time, }, ) t_start = time.time() loss_tracking = 0 completed_steps += 1 if step % args.save_checkpoint_steps == 0: logger.info("Evaluating and saving model checkpoint") eval_loss, perplexity = evaluate(args) log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity}) accelerator.wait_for_everyone() save_dir = os.path.join(args.save_dir, f"step_{step}") accelerator.save_state(save_dir) if accelerator.is_main_process: hf_repo.push_to_hub(commit_message=f"step {step}") model.train() if completed_steps >= args.max_train_steps: break # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") eval_loss, perplexity = evaluate(args) log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity}) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save) save_dir = os.path.join(args.save_dir, f"step_{step}") accelerator.save_state(save_dir) if accelerator.is_main_process: hf_repo.push_to_hub(commit_message="final model")
transformers/examples/research_projects/codeparrot/scripts/codeparrot_training.py/0
{ "file_path": "transformers/examples/research_projects/codeparrot/scripts/codeparrot_training.py", "repo_id": "transformers", "token_count": 5418 }
{ "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "n_heads": 12, "n_layers": 6, "sinusoidal_pos_embds": true, "tie_weights_": true, "vocab_size": 28996 }
transformers/examples/research_projects/distillation/training_configs/distilbert-base-cased.json/0
{ "file_path": "transformers/examples/research_projects/distillation/training_configs/distilbert-base-cased.json", "repo_id": "transformers", "token_count": 134 }
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from configuration_hybrid_clip import HybridCLIPConfig from flax.core.frozen_dict import FrozenDict from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel from transformers.modeling_flax_utils import FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput from transformers.utils import logging logger = logging.get_logger(__name__) class FlaxHybridCLIPModule(nn.Module): config: HybridCLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): text_config = self.config.text_config vision_config = self.config.vision_config self.projection_dim = self.config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class self.text_model = text_module(text_config, dtype=self.dtype) self.vision_model = vision_module(vision_config, dtype=self.dtype) self.visual_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.text_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, []) def __call__( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, token_type_ids=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = jnp.exp(self.logit_scale) logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale logits_per_image = logits_per_text.T if not return_dict: return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return FlaxCLIPOutput( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class FlaxHybridCLIP(FlaxPreTrainedModel): config_class = HybridCLIPConfig module_class = FlaxHybridCLIPModule def __init__( self, config: HybridCLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs, ): if input_shape is None: input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3)) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape[0], dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]) token_type_ids = jnp.ones_like(input_ids) attention_mask = jnp.ones_like(input_ids) pixel_values = jax.random.normal(rng, input_shape[1]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"] def __call__( self, input_ids, pixel_values, attention_mask=None, position_ids=None, token_type_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(pixel_values, dtype=jnp.float32), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) def get_text_features( self, input_ids, attention_mask=None, position_ids=None, token_type_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False, ): r""" Args: input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ Returns: text_features (:obj:`jnp.ndarray` of shape :obj:`(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of text model. """ if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic): text_outputs = module.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, token_type_ids=token_type_ids, deterministic=deterministic, ) pooled_output = text_outputs[1] text_features = module.text_projection(pooled_output) return text_features return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), not train, method=_get_features, rngs=rngs, ) def get_image_features( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False ): r""" Args: pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using :class:`~transformers.ImageFeatureExtractionMixin`. See :meth:`transformers.ImageFeatureExtractionMixin.__call__` for details. Returns: image_features (:obj:`jnp.ndarray` of shape :obj:`(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of vision model. """ # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, pixel_values, deterministic): vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic) pooled_output = vision_outputs[1] # pooled_output image_features = module.visual_projection(pooled_output) return image_features return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, method=_get_features, rngs=rngs, ) @classmethod def from_text_vision_pretrained( cls, text_model_name_or_path: str = None, vision_model_name_or_path: str = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: """ Params: text_model_name_or_path (:obj: `str`, `optional`): Information necessary to initiate the text model. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. - A path to a `directory` containing model weights saved using :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided conversion scripts and loading the Flax model afterwards. vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`): Information necessary to initiate the vision model. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. - A path to a `directory` containing model weights saved using :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided conversion scripts and loading the Flax model afterwards. model_args (remaining positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). - To update the text configuration, use the prefix `text_` for each configuration parameter. - To update the vision configuration, use the prefix `vision_` for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a :obj:`config` is provided or automatically loaded. Example:: >>> from transformers import FlaxHybridCLIP >>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized. >>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights >>> model = FlaxHybridCLIP.from_text_vision_pretrained('google-bert/bert-base-uncased', 'openai/clip-vit-base-patch32') >>> # saving model after fine-tuning >>> model.save_pretrained("./bert-clip") >>> # load fine-tuned model >>> model = FlaxHybridCLIP.from_pretrained("./bert-clip") """ kwargs_text = { argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_") } kwargs_vision = { argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_") } # remove text, vision kwargs from kwargs for key in kwargs_text.keys(): del kwargs["text_" + key] for key in kwargs_vision.keys(): del kwargs["vision_" + key] # Load and initialize the text and vision model text_model = kwargs_text.pop("model", None) if text_model is None: assert ( text_model_name_or_path is not None ), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined" from transformers import FlaxAutoModel if "config" not in kwargs_text: from transformers import AutoConfig text_config = AutoConfig.from_pretrained(text_model_name_or_path) kwargs_text["config"] = text_config text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text) vision_model = kwargs_vision.pop("model", None) if vision_model is None: assert ( vision_model_name_or_path is not None ), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined" from transformers import FlaxAutoModel if "config" not in kwargs_vision: from transformers import AutoConfig vision_config = AutoConfig.from_pretrained(vision_model_name_or_path) kwargs_vision["config"] = vision_config vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs) # init model model = cls(config, *model_args, dtype=dtype, **kwargs) if vision_config.model_type == "clip": model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"] model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"] else: model.params["vision_model"] = vision_model.params model.params["text_model"] = text_model.params return model
transformers/examples/research_projects/jax-projects/hybrid_clip/modeling_hybrid_clip.py/0
{ "file_path": "transformers/examples/research_projects/jax-projects/hybrid_clip/modeling_hybrid_clip.py", "repo_id": "transformers", "token_count": 7791 }
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def padding_tensor(sequences, padding_value, padding_side, sequence_length): if isinstance(padding_value, tuple): out_tensor = np.full((len(sequences), sequence_length, 2), padding_value) else: out_tensor = np.full((len(sequences), sequence_length), padding_value) for i, tensor in enumerate(sequences): if padding_side == "right": if isinstance(padding_value, tuple): out_tensor[i, : len(tensor[:sequence_length]), :2] = tensor[:sequence_length] else: out_tensor[i, : len(tensor[:sequence_length])] = tensor[:sequence_length] else: if isinstance(padding_value, tuple): out_tensor[i, len(tensor[:sequence_length]) - 1 :, :2] = tensor[:sequence_length] else: out_tensor[i, len(tensor[:sequence_length]) - 1 :] = tensor[:sequence_length] return out_tensor.tolist() def is_punctuation(char): cp = ord(char) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False @dataclass class DataCollatorForLukeTokenClassification(DataCollatorMixin): """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). label_pad_token_id (`int`, *optional*, defaults to -100): The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). return_tensors (`str`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 return_tensors: str = "pt" def torch_call(self, features): import torch label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None batch = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, # Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="pt" if labels is None else None, ) if labels is None: return batch sequence_length = torch.tensor(batch["entity_ids"]).shape[1] padding_side = self.tokenizer.padding_side if padding_side == "right": batch[label_name] = [ list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels ] else: batch[label_name] = [ [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels ] ner_tags = [feature["ner_tags"] for feature in features] batch["ner_tags"] = padding_tensor(ner_tags, -1, padding_side, sequence_length) original_entity_spans = [feature["original_entity_spans"] for feature in features] batch["original_entity_spans"] = padding_tensor(original_entity_spans, (-1, -1), padding_side, sequence_length) batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()} return batch
transformers/examples/research_projects/luke/luke_utils.py/0
{ "file_path": "transformers/examples/research_projects/luke/luke_utils.py", "repo_id": "transformers", "token_count": 2049 }
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset POOLING_BREAKDOWN = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class ImageEncoder(nn.Module): def __init__(self, args): super().__init__() model = torchvision.models.resnet152(pretrained=True) modules = list(model.children())[:-2] self.model = nn.Sequential(*modules) self.pool = nn.AdaptiveAvgPool2d(POOLING_BREAKDOWN[args.num_image_embeds]) def forward(self, x): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 out = self.pool(self.model(x)) out = torch.flatten(out, start_dim=2) out = out.transpose(1, 2).contiguous() return out # BxNx2048 class JsonlDataset(Dataset): def __init__(self, data_path, tokenizer, transforms, labels, max_seq_length): self.data = [json.loads(l) for l in open(data_path)] self.data_dir = os.path.dirname(data_path) self.tokenizer = tokenizer self.labels = labels self.n_classes = len(labels) self.max_seq_length = max_seq_length self.transforms = transforms def __len__(self): return len(self.data) def __getitem__(self, index): sentence = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"], add_special_tokens=True)) start_token, sentence, end_token = sentence[0], sentence[1:-1], sentence[-1] sentence = sentence[: self.max_seq_length] label = torch.zeros(self.n_classes) label[[self.labels.index(tgt) for tgt in self.data[index]["label"]]] = 1 image = Image.open(os.path.join(self.data_dir, self.data[index]["img"])).convert("RGB") image = self.transforms(image) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def get_label_frequencies(self): label_freqs = Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def collate_fn(batch): lens = [len(row["sentence"]) for row in batch] bsz, max_seq_len = len(batch), max(lens) mask_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long) text_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(batch, lens)): text_tensor[i_batch, :length] = input_row["sentence"] mask_tensor[i_batch, :length] = 1 img_tensor = torch.stack([row["image"] for row in batch]) tgt_tensor = torch.stack([row["label"] for row in batch]) img_start_token = torch.stack([row["image_start_token"] for row in batch]) img_end_token = torch.stack([row["image_end_token"] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def get_mmimdb_labels(): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def get_image_transforms(): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017], std=[0.12221994, 0.12145835, 0.14380469], ), ] )
transformers/examples/research_projects/mm-imdb/utils_mmimdb.py/0
{ "file_path": "transformers/examples/research_projects/mm-imdb/utils_mmimdb.py", "repo_id": "transformers", "token_count": 2030 }
""" Code to remove duplicate initializers to reduce ONNX model size. """ import os import numpy import onnx def _is_equal_tensor_proto(a, b): name_a = a.name name_b = b.name a.name = "" b.name = "" res = a == b a.name = name_a b.name = name_b return res def _node_replace_input_with(node_proto, name, new_name): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(i, new_name) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, name, new_name) _graph_replace_input_with(node_proto.attribute[1].g, name, new_name) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, name, new_name) def _graph_replace_input_with(graph_proto, name, new_name): for n in graph_proto.node: _node_replace_input_with(n, name, new_name) def _remove_dup_initializers_from_model(model, model_without_ext, ind_to_replace): inits_with_data = list(model.graph.initializer) inits = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i name_i = inits[i].name name_ref = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, name_i, name_ref) def remove_dup_initializers(onnx_file_path): """ Removes duplicate initializers from the model to reduce its size. Writes a new file in the same directory as onnx_file_path and returns the path to that file. """ model_file_folder = os.path.dirname(onnx_file_path) model_file_name = os.path.basename(onnx_file_path) model = onnx.load(os.path.join(model_file_folder, model_file_name)) inits = list(model.graph.initializer) dup_set = set() dup_map = {} ind_to_replace = [] total_reduced_size = 0 for i in range(len(inits)): if i in dup_set: continue for j in range(i + 1, len(inits)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j]): dup_set.add(i) dup_set.add(j) dtype = inits[j].data_type mem_size = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: ", dtype) total_reduced_size += mem_size name_i = inits[i].name name_j = inits[j].name if name_i in dup_map: dup_map[name_i].append(name_j) else: dup_map[name_i] = [name_j] ind_to_replace.append((j, i)) print("total reduced size: ", total_reduced_size / 1024 / 1024 / 1024, "GB") ind_to_replace = sorted(ind_to_replace) _remove_dup_initializers_from_model(model, model, ind_to_replace) optimized_model_file_name = "optimized_" + model_file_name new_model = os.path.join(model_file_folder, optimized_model_file_name) onnx.save(model, new_model) return new_model
transformers/examples/research_projects/onnx/summarization/bart_onnx/reduce_onnx_size.py/0
{ "file_path": "transformers/examples/research_projects/onnx/summarization/bart_onnx/reduce_onnx_size.py", "repo_id": "transformers", "token_count": 1732 }
# coding=utf-8 # Copyright 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM nvcr.io/nvidia/pytorch:22.02-py3 LABEL maintainer="Hugging Face" LABEL repository="transformers" RUN apt-get update RUN apt-get install sudo RUN python3 -m pip install --no-cache-dir --upgrade pip RUN python3 -m pip install --no-cache-dir --ignore-installed pycuda RUN python3 -m pip install --no-cache-dir \ pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com RUN python3 -m pip install --no-cache-dir onnxruntime-gpu==1.11 WORKDIR /workspace COPY . transformers/ RUN cd transformers/ && \ python3 -m pip install --no-cache-dir . RUN python3 -m pip install --no-cache-dir datasets \ accelerate
transformers/examples/research_projects/quantization-qdqbert/Dockerfile/0
{ "file_path": "transformers/examples/research_projects/quantization-qdqbert/Dockerfile", "repo_id": "transformers", "token_count": 392 }
""" A script creating a RAG checkpoint from a generator and a question encoder checkpoints. """ import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def consolidate( model_type, generator_name_or_path: str, question_encoder_name_or_path: str, dest_dir: Path, config_name_or_path: str = None, generator_tokenizer_name_or_path: str = None, question_encoder_tokenizer_name_or_path: str = None, ): if config_name_or_path is None: config_name_or_path = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: generator_tokenizer_name_or_path = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: question_encoder_tokenizer_name_or_path = question_encoder_name_or_path model_class = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. rag_config = RagConfig.from_pretrained(config_name_or_path) gen_config = AutoConfig.from_pretrained(generator_name_or_path) question_encoder_config = AutoConfig.from_pretrained(question_encoder_name_or_path) rag_config.generator = gen_config rag_config.question_encoder = question_encoder_config rag_model = model_class.from_pretrained_question_encoder_generator( question_encoder_name_or_path, generator_name_or_path, config=rag_config ) rag_model.save_pretrained(dest_dir) # Sanity check. model_class.from_pretrained(dest_dir) # Save tokenizers. gen_tokenizer = AutoTokenizer.from_pretrained(generator_tokenizer_name_or_path) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/") question_encoder_tokenizer = AutoTokenizer.from_pretrained(question_encoder_tokenizer_name_or_path) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) args = parser.parse_args() dest_dir = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
transformers/examples/research_projects/rag/consolidate_rag_checkpoint.py/0
{ "file_path": "transformers/examples/research_projects/rag/consolidate_rag_checkpoint.py", "repo_id": "transformers", "token_count": 1425 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition""" import functools import json import logging import os import re import sys import warnings from dataclasses import dataclass, field from typing import Dict, List, Optional, Union import bitsandbytes as bnb import datasets import numpy as np import torch from datasets import DatasetDict, load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForCTC, AutoProcessor, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, Wav2Vec2Processor, set_seed, ) from transformers.trainer_pt_utils import get_parameter_names from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.16.0.dev0") require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") logger = logging.getLogger(__name__) def list_field(default=None, metadata=None): return field(default_factory=lambda: default, metadata=metadata) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) tokenizer_name_or_path: Optional[str] = field( default=None, metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) freeze_feature_encoder: bool = field( default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) attention_dropout: float = field( default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."} ) activation_dropout: float = field( default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."}) hidden_dropout: float = field( default=0.0, metadata={ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." }, ) final_dropout: float = field( default=0.0, metadata={"help": "The dropout probability for the final projection layer."}, ) mask_time_prob: float = field( default=0.05, metadata={ "help": ( "Probability of each feature vector along the time axis to be chosen as the start of the vector " "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature " "vectors will be masked along the time axis." ) }, ) mask_time_length: int = field( default=10, metadata={"help": "Length of vector span to mask along the time axis."}, ) mask_feature_prob: float = field( default=0.0, metadata={ "help": ( "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan" " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature" " bins will be masked along the time axis." ) }, ) mask_feature_length: int = field( default=10, metadata={"help": "Length of vector span to mask along the feature axis."}, ) layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."}) ctc_loss_reduction: Optional[str] = field( default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: str = field( metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) dataset_config_name: str = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_split_name: str = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="test", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) text_column_name: str = field( default="text", metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) chars_to_ignore: Optional[List[str]] = list_field( default=None, metadata={"help": "A list of characters to remove from the transcripts."}, ) eval_metrics: List[str] = list_field( default=["wer"], metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"}, ) max_duration_in_seconds: float = field( default=20.0, metadata={ "help": ( "Filter audio files that are longer than `max_duration_in_seconds` seconds to" " 'max_duration_in_seconds`" ) }, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} ) preprocessing_only: bool = field( default=False, metadata={ "help": ( "Whether to only do data preprocessing and skip training. This is especially useful when data" " preprocessing errors out in distributed training due to timeout. In this case, one should run the" " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" " can consequently be loaded in distributed training" ) }, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "If :obj:`True`, will use the token generated when running" ":obj:`huggingface-cli login` as HTTP bearer authorization for remote files." ) }, ) unk_token: str = field( default="[UNK]", metadata={"help": "The unk token for the tokenizer"}, ) pad_token: str = field( default="[PAD]", metadata={"help": "The padding token for the tokenizer"}, ) word_delimiter_token: str = field( default="|", metadata={"help": "The word delimiter token for the tokenizer"}, ) phoneme_language: Optional[str] = field( default=None, metadata={ "help": ( "The target language that should be used be" " passed to the tokenizer for tokenization. Note that" " this is only relevant if the model classifies the" " input audio to a sequence of phoneme sequences." ) }, ) @dataclass class DataCollatorCTCWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor (:class:`~transformers.AutoProcessor`) The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). max_length_labels (:obj:`int`, `optional`): Maximum length of the ``labels`` returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ processor: AutoProcessor padding: Union[bool, str] = "longest" pad_to_multiple_of: Optional[int] = None pad_to_multiple_of_labels: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) labels_batch = self.processor.pad( labels=label_features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) batch["labels"] = labels return batch def create_vocabulary_from_data( datasets: DatasetDict, word_delimiter_token: Optional[str] = None, unk_token: Optional[str] = None, pad_token: Optional[str] = None, ): # Given training and test labels create vocabulary def extract_all_chars(batch): all_text = " ".join(batch["target_text"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocabs = datasets.map( extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=datasets["train"].column_names, ) # take union of all unique characters in each dataset vocab_set = functools.reduce( lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values() ) vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))} # replace white space with delimiter token if word_delimiter_token is not None: vocab_dict[word_delimiter_token] = vocab_dict[" "] del vocab_dict[" "] # add unk and pad token if unk_token is not None: vocab_dict[unk_token] = len(vocab_dict) if pad_token is not None: vocab_dict[pad_token] = len(vocab_dict) return vocab_dict def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # 1. First, let's load the dataset raw_datasets = DatasetDict() if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, token=data_args.use_auth_token, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'." " Make sure to set `--audio_column_name` to the correct audio column - one of" f" {', '.join(raw_datasets['train'].column_names)}." ) if data_args.text_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--text_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names)}." ) if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, token=data_args.use_auth_token, ) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) # 2. We remove some special characters from the datasets # that make training complicated and do not help in transcribing the speech # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic # that could be easily picked up by the model chars_to_ignore_regex = ( f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None ) text_column_name = data_args.text_column_name def remove_special_characters(batch): if chars_to_ignore_regex is not None: batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " " else: batch["target_text"] = batch[text_column_name].lower() + " " return batch with training_args.main_process_first(desc="dataset map special characters removal"): raw_datasets = raw_datasets.map( remove_special_characters, remove_columns=[text_column_name], desc="remove special characters from datasets", ) # save special tokens for tokenizer word_delimiter_token = data_args.word_delimiter_token unk_token = data_args.unk_token pad_token = data_args.pad_token # 3. Next, let's load the config as we might need it to create # the tokenizer # load config config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token ) # 4. Next, if no tokenizer file is defined, # we create the vocabulary of the model by extracting all unique characters from # the training and evaluation datasets # We need to make sure that only first rank saves vocabulary # make sure all processes wait until vocab is created tokenizer_name_or_path = model_args.tokenizer_name_or_path tokenizer_kwargs = {} if tokenizer_name_or_path is None: # save vocab in training output dir tokenizer_name_or_path = training_args.output_dir vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json") with training_args.main_process_first(): if training_args.overwrite_output_dir and os.path.isfile(vocab_file): os.remove(vocab_file) with training_args.main_process_first(desc="dataset map vocabulary creation"): if not os.path.isfile(vocab_file): os.makedirs(tokenizer_name_or_path, exist_ok=True) vocab_dict = create_vocabulary_from_data( raw_datasets, word_delimiter_token=word_delimiter_token, unk_token=unk_token, pad_token=pad_token, ) # save vocab dict to be loaded into tokenizer with open(vocab_file, "w") as file: json.dump(vocab_dict, file) # if tokenizer has just been created # it is defined by `tokenizer_class` if present in config else by `model_type` tokenizer_kwargs = { "config": config if config.tokenizer_class is not None else None, "tokenizer_type": config.model_type if config.tokenizer_class is None else None, "unk_token": unk_token, "pad_token": pad_token, "word_delimiter_token": word_delimiter_token, } # 5. Now we can instantiate the feature extractor, tokenizer and model # Note for distributed training, the .from_pretrained methods guarantee that only # one local process can concurrently download model & vocab. # load feature_extractor and tokenizer tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, token=data_args.use_auth_token, **tokenizer_kwargs, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token ) # adapt config config.update( { "feat_proj_dropout": model_args.feat_proj_dropout, "attention_dropout": model_args.attention_dropout, "hidden_dropout": model_args.hidden_dropout, "final_dropout": model_args.final_dropout, "mask_time_prob": model_args.mask_time_prob, "mask_time_length": model_args.mask_time_length, "mask_feature_prob": model_args.mask_feature_prob, "mask_feature_length": model_args.mask_feature_length, "gradient_checkpointing": training_args.gradient_checkpointing, "layerdrop": model_args.layerdrop, "ctc_loss_reduction": model_args.ctc_loss_reduction, "pad_token_id": tokenizer.pad_token_id, "vocab_size": len(tokenizer), "activation_dropout": model_args.activation_dropout, } ) # create model model = AutoModelForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, token=data_args.use_auth_token, ) # freeze encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() # 6. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # derive max & min input length for sample rate & max duration max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate audio_column_name = data_args.audio_column_name num_workers = data_args.preprocessing_num_workers # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification phoneme_language = data_args.phoneme_language # Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. def prepare_dataset(batch): # load audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(batch["input_values"]) # encode targets additional_kwargs = {} if phoneme_language is not None: additional_kwargs["phonemizer_lang"] = phoneme_language batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids return batch with training_args.main_process_first(desc="dataset map preprocessing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=num_workers, desc="preprocess datasets", ) def is_audio_in_length_range(length): return length > min_input_length and length < max_input_length # filter data that is shorter than min_input_length vectorized_datasets = vectorized_datasets.filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["input_length"], ) # 7. Next, we can prepare the training. # Let's use word error rate (WER) as our evaluation metric, # instantiate a data collator and the trainer # Define evaluation metrics during training, *i.e.* word error rate, character error rate eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics} # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") return def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred_ids) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()} return metrics # Now save everything to be able to create a single processor later if is_main_process(training_args.local_rank): # save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) try: processor = AutoProcessor.from_pretrained(training_args.output_dir) except (OSError, KeyError): warnings.warn( "Loading a processor from a feature extractor config that does not" " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following " " attribute to your `preprocessor_config.json` file to suppress this warning: " " `'processor_class': 'Wav2Vec2Processor'`", FutureWarning, ) processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir) # Instantiate custom data collator data_collator = DataCollatorCTCWithPadding(processor=processor) decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm], ["bias", "layernorm", "rmsnorm"]) optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if n in decay_parameters], "weight_decay": training_args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer = bnb.optim.Adam8bit( params=optimizer_grouped_parameters, lr=training_args.learning_rate, betas=(training_args.adam_beta1, training_args.adam_beta2), eps=training_args.adam_epsilon, ) optimizers = (optimizer, None) # Initialize Trainer trainer = Trainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, optimizers=optimizers, ) # 8. Finally, we can start training # Training if training_args.do_train: # use last checkpoint if exist if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) ) metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na" kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "automatic-speech-recognition", "tags": ["automatic-speech-recognition", data_args.dataset_name], "dataset_args": ( f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" f" {data_args.eval_split_name}" ), "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", } if "common_voice" in data_args.dataset_name: kwargs["language"] = config_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results if __name__ == "__main__": main()
transformers/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py/0
{ "file_path": "transformers/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py", "repo_id": "transformers", "token_count": 12682 }
#!/usr/bin/env python import argparse import gc import os import sys from pathlib import Path from typing import List # noqa: F401 import pytorch_lightning as pl import torch from finetune import SummarizationModule, TranslationModule from finetune import main as ft_main from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise from torch import nn from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import generic_train # noqa class SummarizationDistiller(SummarizationModule): """Supports T5, Bart, Pegasus and other models that inherit from Bart.""" loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"] def __init__(self, hparams): assert Path(hparams.data_dir).exists() self.output_dir = Path(hparams.output_dir) self.output_dir.mkdir(exist_ok=True) save_dir = self.output_dir.joinpath("student") hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval() use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default if hparams.student is not None: student = AutoModelForSeq2SeqLM.from_pretrained(hparams.student) use_task_specific_params(student, hparams.task) e_layer_ids, d_layer_ids = None, None else: student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers( teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir ) if hparams.length_penalty != -1: student.config.length_penalty = hparams.length_penalty hparams.tokenizer_name = hparams.teacher # Use teacher's tokenizer super().__init__(hparams, model=student, config=student.config) assert student.config.model_type == teacher.config.model_type, ( f"teacher, student model types should be the same, got {student.config.model_type} !=" f" {teacher.config.model_type}" ) if student.config.model_type == "t5": student_encoder_layers = len(student.get_encoder().block) student_decoder_layers = len(student.get_decoder().block) teacher_encoder_layers = len(teacher.get_encoder().block) teacher_decoder_layers = len(teacher.get_decoder().block) else: student_encoder_layers = student.config.encoder_layers student_decoder_layers = student.config.decoder_layers teacher_encoder_layers = teacher.config.encoder_layers teacher_decoder_layers = teacher.config.decoder_layers self.different_base_models = not (hparams.student is None or hparams.teacher == hparams.student) self.do_calc_hidden_loss = (not self.different_base_models) and hparams.alpha_hid > 0 self.different_encoder = self.different_base_models or (student_encoder_layers != teacher_encoder_layers) # self.different_encoder determines whether we need to run the teacher encoder self.teacher = teacher freeze_params(self.teacher) if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder. try: del self.teacher.model.encoder except AttributeError: # T5 del self.teacher.encoder if e_layer_ids is None: e_layer_ids = list(range(student_encoder_layers)) if d_layer_ids is None: d_layer_ids = list(range(student_decoder_layers)) self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int] if self.do_calc_hidden_loss: # Intermediate supervision: Decide which layers to supervise if hparams.supervise_forward: self.e_matches = get_layers_to_supervise( n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers ) self.d_matches = get_layers_to_supervise( n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers ) else: # student layer should emulate hidden states of the teacher layer it was copied from self.e_matches = self.e_layer_ids self.d_matches = self.d_layer_ids else: self.e_matches = None self.d_matches = None self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean") self.temperature = 2.0 self.alpha_mlm = hparams.alpha_mlm self.alpha_ce = hparams.alpha_ce self.alpha_hid = hparams.alpha_hid gc.collect() torch.cuda.empty_cache() def calc_ce_loss(self, mask, s_logits, t_logits): """Copy pasted from distillbert (transformers/examples/distillation/)""" # mask has False at padding_idx sel_mask = mask[:, :, None].expand_as(s_logits) vocab_size = s_logits.size(-1) s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask assert t_logits_slct.size() == s_logits_slct.size() loss_ce = ( self.ce_loss_fct( nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1), nn.functional.softmax(t_logits_slct / self.temperature, dim=-1), ) * (self.temperature) ** 2 ) return loss_ce @staticmethod def add_model_specific_args(parser, root_dir): SummarizationModule.add_model_specific_args(parser, root_dir) add_distill_args(parser) return parser def _step(self, batch: dict) -> tuple: """Compute the loss for a batch""" pad_token_id = self.tokenizer.pad_token_id input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"] if isinstance(self.model, T5ForConditionalGeneration): decoder_input_ids = self.model._shift_right(labels) else: decoder_input_ids = shift_tokens_right(labels, pad_token_id) # noinspection PyCallingNonCallable student_outputs = self( input_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, output_hidden_states=self.do_calc_hidden_loss, output_attentions=False, use_cache=False, ) lm_logits = student_outputs["logits"] # Same cross entropy vs. label smoothing logic as finetune.py assert lm_logits.shape[-1] == self.model.config.vocab_size if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id) student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1)) else: lprobs = nn.functional.log_softmax(lm_logits, dim=-1) student_lm_loss, _ = label_smoothed_nll_loss( lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id ) def zero_tensor(): return torch.tensor(0.0).type_as(student_lm_loss) teacher_enc_outputs = student_outputs[ "encoder_last_hidden_state" ] # use this unless self.different_base_models hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor() if self.different_encoder: # compute encoder hidden state loss all_teacher_encoder_outputs = self.teacher.get_encoder()( input_ids, attention_mask=src_mask, output_hidden_states=self.do_calc_hidden_loss, ) if self.different_base_models: teacher_enc_outputs = all_teacher_encoder_outputs["last_hidden_state"] elif self.do_calc_hidden_loss: hid_loss_enc = self.calc_hidden_loss( src_mask, student_outputs["encoder_hidden_states"], all_teacher_encoder_outputs["hidden_states"], self.e_matches, normalize_hidden=self.hparams.normalize_hidden, ) teacher_outputs = self.teacher( input_ids, attention_mask=src_mask, encoder_outputs=(teacher_enc_outputs,), decoder_input_ids=decoder_input_ids, output_hidden_states=self.do_calc_hidden_loss, use_cache=False, # since we are not passing labels, never let this default to True ) dec_mask = decoder_input_ids.ne(pad_token_id) loss_ce = self.calc_ce_loss(dec_mask, lm_logits, teacher_outputs["logits"]) if self.do_calc_hidden_loss: # Intermediate supervision of decoder hidden states hid_loss_dec = self.calc_hidden_loss( dec_mask, student_outputs["decoder_hidden_states"], teacher_outputs["decoder_hidden_states"], self.d_matches, normalize_hidden=self.hparams.normalize_hidden, ) blended_loss = ( self.alpha_ce * loss_ce + self.alpha_mlm * student_lm_loss + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec) ) return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec @staticmethod def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden): """MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT.""" msg = "expected list or tuple for hidden_states, got tensor of shape: " assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}" assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}" mask = attention_mask.to(hidden_states[0]) valid_count = mask.sum() * hidden_states[0].size(-1) student_states = torch.stack([hidden_states[i] for i in range(len(matches))]) teacher_states = torch.stack([hidden_states_T[j] for j in matches]) assert student_states.shape == teacher_states.shape, f"{student_states.shape} != {teacher_states.shape}" if normalize_hidden: student_states = nn.functional.layer_norm(student_states, student_states.shape[1:]) teacher_states = nn.functional.layer_norm(teacher_states, teacher_states.shape[1:]) mse = nn.functional.mse_loss(student_states, teacher_states, reduction="none") masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count return masked_mse def add_distill_args(parser): # NOTE: if --student argument was specified and the teacher and student base models # are different, the models still have to have the same tokenizer, specified by # --tokenizer_name. So, for example, you can distill from t5_large to t5_small but not # from bart to t5. This s because if the tokenizers are different, the output space # for the two models is also different and their logits are not comparable. parser.add_argument("--teacher", type=str) parser.add_argument("--alpha_ce", default=0.8, type=float) parser.add_argument("--alpha_mlm", default=0.2, type=float) parser.add_argument("--alpha_hid", default=0.0, type=float, required=False) parser.add_argument("--student", type=str, required=False) parser.add_argument("--student_decoder_layers", default=12, type=int, required=False) parser.add_argument("--student_encoder_layers", default=12, type=int, required=False) parser.add_argument("--no_teacher", action="store_true", default=False) parser.add_argument("--length_penalty", type=float, default=-1) parser.add_argument("--supervise_forward", action="store_true", default=False) parser.add_argument("--normalize_hidden", action="store_true", default=False) class TranslationDistiller(SummarizationDistiller): """Supports T5, mBART, Marian, other models that inherit from Bart.""" mode = "translation" metric_names = ["bleu"] default_val_metric = "bleu" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) assert hparams.src_lang is not None assert hparams.tgt_lang is not None self.dataset_kwargs["src_lang"] = hparams.src_lang self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer): self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang] def calc_generative_metrics(self, preds, target) -> dict: return calculate_bleu(preds, target) @staticmethod def add_model_specific_args(parser, root_dir): TranslationModule.add_model_specific_args(parser, root_dir) add_distill_args(parser) return parser def create_module(args): if args.no_teacher: module_cls = TranslationModule if "translation" in args.task else SummarizationModule else: # DISTILL WITH TEACHER module_cls = TranslationDistiller if "translation" in args.task else SummarizationDistiller args.setup_cls: str = module_cls.__name__ print(f"using module {args.setup_cls}") model = module_cls(args) return model def distill_main(args): Path(args.output_dir).mkdir(exist_ok=True) check_output_dir(args, expected_items=3) model = create_module(args) return ft_main(args, model=model) if __name__ == "__main__": parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd()) args = parser.parse_args() distill_main(args)
transformers/examples/research_projects/seq2seq-distillation/distillation.py/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/distillation.py", "repo_id": "transformers", "token_count": 6315 }
""" coding=utf-8 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal Adapted From Facebook Inc, Detectron2 && Huggingface Co. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.import copy """ import itertools import math import os from abc import ABCMeta, abstractmethod from collections import OrderedDict, namedtuple from typing import Dict, List, Tuple import numpy as np import torch from torch import nn from torch.nn.modules.batchnorm import BatchNorm2d from torchvision.ops import RoIPool from torchvision.ops.boxes import batched_nms, nms from utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint # other: def norm_box(boxes, raw_sizes): if not isinstance(boxes, torch.Tensor): normalized_boxes = boxes.copy() else: normalized_boxes = boxes.clone() normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1] normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0] return normalized_boxes def pad_list_tensors( list_tensors, preds_per_image, max_detections=None, return_tensors=None, padding=None, pad_value=0, location=None, ): """ location will always be cpu for np tensors """ if location is None: location = "cpu" assert return_tensors in {"pt", "np", None} assert padding in {"max_detections", "max_batch", None} new = [] if padding is None: if return_tensors is None: return list_tensors elif return_tensors == "pt": if not isinstance(list_tensors, torch.Tensor): return torch.stack(list_tensors).to(location) else: return list_tensors.to(location) else: if not isinstance(list_tensors, list): return np.array(list_tensors.to(location)) else: return list_tensors.to(location) if padding == "max_detections": assert max_detections is not None, "specify max number of detections per batch" elif padding == "max_batch": max_detections = max(preds_per_image) for i in range(len(list_tensors)): too_small = False tensor_i = list_tensors.pop(0) if tensor_i.ndim < 2: too_small = True tensor_i = tensor_i.unsqueeze(-1) assert isinstance(tensor_i, torch.Tensor) tensor_i = nn.functional.pad( input=tensor_i, pad=(0, 0, 0, max_detections - preds_per_image[i]), mode="constant", value=pad_value, ) if too_small: tensor_i = tensor_i.squeeze(-1) if return_tensors is None: if location == "cpu": tensor_i = tensor_i.cpu() tensor_i = tensor_i.tolist() if return_tensors == "np": if location == "cpu": tensor_i = tensor_i.cpu() tensor_i = tensor_i.numpy() else: if location == "cpu": tensor_i = tensor_i.cpu() new.append(tensor_i) if return_tensors == "np": return np.stack(new, axis=0) elif return_tensors == "pt" and not isinstance(new, torch.Tensor): return torch.stack(new, dim=0) else: return list_tensors def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd): scores = scores[:, :-1] num_bbox_reg_classes = boxes.shape[1] // 4 # Convert to Boxes to use the `clip` function ... boxes = boxes.reshape(-1, 4) _clip_box(boxes, image_shape) boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4 # Select max scores max_scores, max_classes = scores.max(1) # R x C --> R num_objs = boxes.size(0) boxes = boxes.view(-1, 4) idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes max_boxes = boxes[idxs] # Select max boxes according to the max scores. # Apply NMS keep = nms(max_boxes, max_scores, nms_thresh) keep = keep[:maxd] if keep.shape[-1] >= mind and keep.shape[-1] <= maxd: max_boxes, max_scores = max_boxes[keep], max_scores[keep] classes = max_classes[keep] return max_boxes, max_scores, classes, keep else: return None # Helper Functions def _clip_box(tensor, box_size: Tuple[int, int]): assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!" h, w = box_size tensor[:, 0].clamp_(min=0, max=w) tensor[:, 1].clamp_(min=0, max=h) tensor[:, 2].clamp_(min=0, max=w) tensor[:, 3].clamp_(min=0, max=h) def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor: widths = box[:, 2] - box[:, 0] heights = box[:, 3] - box[:, 1] keep = (widths > threshold) & (heights > threshold) return keep def get_norm(norm, out_channels): if isinstance(norm, str): if len(norm) == 0: return None norm = { "BN": BatchNorm2d, "GN": lambda channels: nn.GroupNorm(32, channels), "nnSyncBN": nn.SyncBatchNorm, # keep for debugging "": lambda x: x, }[norm] return norm(out_channels) def _create_grid_offsets(size: List[int], stride: int, offset: float, device): grid_height, grid_width = size shifts_x = torch.arange( offset * stride, grid_width * stride, step=stride, dtype=torch.float32, device=device, ) shifts_y = torch.arange( offset * stride, grid_height * stride, step=stride, dtype=torch.float32, device=device, ) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) return shift_x, shift_y def build_backbone(cfg): input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)) norm = cfg.RESNETS.NORM stem = BasicStem( in_channels=input_shape.channels, out_channels=cfg.RESNETS.STEM_OUT_CHANNELS, norm=norm, caffe_maxpool=cfg.MODEL.MAX_POOL, ) freeze_at = cfg.BACKBONE.FREEZE_AT if freeze_at >= 1: for p in stem.parameters(): p.requires_grad = False out_features = cfg.RESNETS.OUT_FEATURES depth = cfg.RESNETS.DEPTH num_groups = cfg.RESNETS.NUM_GROUPS width_per_group = cfg.RESNETS.WIDTH_PER_GROUP bottleneck_channels = num_groups * width_per_group in_channels = cfg.RESNETS.STEM_OUT_CHANNELS out_channels = cfg.RESNETS.RES2_OUT_CHANNELS stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1 res5_dilation = cfg.RESNETS.RES5_DILATION assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation) num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth] stages = [] out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features] max_stage_idx = max(out_stage_idx) for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)): dilation = res5_dilation if stage_idx == 5 else 1 first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 stage_kargs = { "num_blocks": num_blocks_per_stage[idx], "first_stride": first_stride, "in_channels": in_channels, "bottleneck_channels": bottleneck_channels, "out_channels": out_channels, "num_groups": num_groups, "norm": norm, "stride_in_1x1": stride_in_1x1, "dilation": dilation, } stage_kargs["block_class"] = BottleneckBlock blocks = ResNet.make_stage(**stage_kargs) in_channels = out_channels out_channels *= 2 bottleneck_channels *= 2 if freeze_at >= stage_idx: for block in blocks: block.freeze() stages.append(blocks) return ResNet(stem, stages, out_features=out_features) def find_top_rpn_proposals( proposals, pred_objectness_logits, images, image_sizes, nms_thresh, pre_nms_topk, post_nms_topk, min_box_side_len, training, ): """Args: proposals (list[Tensor]): (L, N, Hi*Wi*A, 4). pred_objectness_logits: tensors of length L. nms_thresh (float): IoU threshold to use for NMS pre_nms_topk (int): before nms post_nms_topk (int): after nms min_box_side_len (float): minimum proposal box side training (bool): True if proposals are to be used in training, Returns: results (List[Dict]): stores post_nms_topk object proposals for image i. """ num_images = len(images) device = proposals[0].device # 1. Select top-k anchor for every level and every image topk_scores = [] # #lvl Tensor, each of shape N x topk topk_proposals = [] level_ids = [] # #lvl Tensor, each of shape (topk,) batch_idx = torch.arange(num_images, device=device) for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits): Hi_Wi_A = logits_i.shape[1] num_proposals_i = min(pre_nms_topk, Hi_Wi_A) # sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812) # topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) logits_i, idx = logits_i.sort(descending=True, dim=1) topk_scores_i = logits_i[batch_idx, :num_proposals_i] topk_idx = idx[batch_idx, :num_proposals_i] # each is N x topk topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 topk_proposals.append(topk_proposals_i) topk_scores.append(topk_scores_i) level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device)) # 2. Concat all levels together topk_scores = torch.cat(topk_scores, dim=1) topk_proposals = torch.cat(topk_proposals, dim=1) level_ids = torch.cat(level_ids, dim=0) # if I change to batched_nms, I wonder if this will make a difference # 3. For each image, run a per-level NMS, and choose topk results. results = [] for n, image_size in enumerate(image_sizes): boxes = topk_proposals[n] scores_per_img = topk_scores[n] # I will have to take a look at the boxes clip method _clip_box(boxes, image_size) # filter empty boxes keep = _nonempty_boxes(boxes, threshold=min_box_side_len) lvl = level_ids if keep.sum().item() != len(boxes): boxes, scores_per_img, lvl = ( boxes[keep], scores_per_img[keep], level_ids[keep], ) keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh) keep = keep[:post_nms_topk] res = (boxes[keep], scores_per_img[keep]) results.append(res) # I wonder if it would be possible for me to pad all these things. return results def subsample_labels(labels, num_samples, positive_fraction, bg_label): """ Returns: pos_idx, neg_idx (Tensor): 1D vector of indices. The total length of both is `num_samples` or fewer. """ positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1) negative = torch.nonzero(labels == bg_label).squeeze(1) num_pos = int(num_samples * positive_fraction) # protect against not enough positive examples num_pos = min(positive.numel(), num_pos) num_neg = num_samples - num_pos # protect against not enough negative examples num_neg = min(negative.numel(), num_neg) # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx = positive[perm1] neg_idx = negative[perm2] return pos_idx, neg_idx def add_ground_truth_to_proposals(gt_boxes, proposals): raise NotImplementedError() def add_ground_truth_to_proposals_single_image(gt_boxes, proposals): raise NotImplementedError() def _fmt_box_list(box_tensor, batch_index: int): repeated_index = torch.full( (len(box_tensor), 1), batch_index, dtype=box_tensor.dtype, device=box_tensor.device, ) return torch.cat((repeated_index, box_tensor), dim=1) def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]): pooler_fmt_boxes = torch.cat( [_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)], dim=0, ) return pooler_fmt_boxes def assign_boxes_to_levels( box_lists: List[torch.Tensor], min_level: int, max_level: int, canonical_box_size: int, canonical_level: int, ): box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists])) # Eqn.(1) in FPN paper level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8)) # clamp level to (min, max), in case the box size is too large or too small # for the available feature maps level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level) return level_assignments.to(torch.int64) - min_level # Helper Classes class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])): def __new__(cls, *, channels=None, height=None, width=None, stride=None): return super().__new__(cls, channels, height, width, stride) class Box2BoxTransform: """ This R-CNN transformation scales the box's width and height by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height). """ def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None): """ Args: weights (4-element tuple): Scaling factors that are applied to the (dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set such that the deltas have unit variance; now they are treated as hyperparameters of the system. scale_clamp (float): When predicting deltas, the predicted box scaling factors (dw and dh) are clamped such that they are <= scale_clamp. """ self.weights = weights if scale_clamp is not None: self.scale_clamp = scale_clamp else: """ Value for clamping large dw and dh predictions. The heuristic is that we clamp such that dw and dh are no larger than what would transform a 16px box into a 1000px box (based on a small anchor, 16px, and a typical image size, 1000px). """ self.scale_clamp = math.log(1000.0 / 16) def get_deltas(self, src_boxes, target_boxes): """ Get box regression transformation deltas (dx, dy, dw, dh) that can be used to transform the `src_boxes` into the `target_boxes`. That is, the relation ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless any delta is too large and is clamped). Args: src_boxes (Tensor): source boxes, e.g., object proposals target_boxes (Tensor): target of the transformation, e.g., ground-truth boxes. """ assert isinstance(src_boxes, torch.Tensor), type(src_boxes) assert isinstance(target_boxes, torch.Tensor), type(target_boxes) src_widths = src_boxes[:, 2] - src_boxes[:, 0] src_heights = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights target_widths = target_boxes[:, 2] - target_boxes[:, 0] target_heights = target_boxes[:, 3] - target_boxes[:, 1] target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights wx, wy, ww, wh = self.weights dx = wx * (target_ctr_x - src_ctr_x) / src_widths dy = wy * (target_ctr_y - src_ctr_y) / src_heights dw = ww * torch.log(target_widths / src_widths) dh = wh * torch.log(target_heights / src_heights) deltas = torch.stack((dx, dy, dw, dh), dim=1) assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!" return deltas def apply_deltas(self, deltas, boxes): """ Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`. Args: deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. deltas[i] represents k potentially different class-specific box transformations for the single box boxes[i]. boxes (Tensor): boxes to transform, of shape (N, 4) """ boxes = boxes.to(deltas.dtype) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = self.weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.scale_clamp) dh = torch.clamp(dh, max=self.scale_clamp) pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] pred_w = torch.exp(dw) * widths[:, None] pred_h = torch.exp(dh) * heights[:, None] pred_boxes = torch.zeros_like(deltas) pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1 pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2 pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2 return pred_boxes class Matcher: """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be matched to zero or more predicted elements. The matching is determined by the MxN match_quality_matrix, that characterizes how well each (ground-truth, prediction)-pair match each other. For example, if the elements are boxes, this matrix may contain box intersection-over-union overlap values. The matcher returns (a) a vector of length N containing the index of the ground-truth element m in [0, M) that matches to prediction n in [0, N). (b) a vector of length N containing the labels for each prediction. """ def __init__( self, thresholds: List[float], labels: List[int], allow_low_quality_matches: bool = False, ): """ Args: thresholds (list): a list of thresholds used to stratify predictions into levels. labels (list): a list of values to label predictions belonging at each level. A label can be one of {-1, 0, 1} signifying {ignore, negative class, positive class}, respectively. allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold. For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives. """ thresholds = thresholds[:] assert thresholds[0] > 0 thresholds.insert(0, -float("inf")) thresholds.append(float("inf")) assert all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])) assert all(label_i in [-1, 0, 1] for label_i in labels) assert len(labels) == len(thresholds) - 1 self.thresholds = thresholds self.labels = labels self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix): """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`). Returns: matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M) match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored """ assert match_quality_matrix.dim() == 2 if match_quality_matrix.numel() == 0: default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64) # When no gt boxes exist, we define IOU = 0 and therefore set labels # to `self.labels[0]`, which usually defaults to background class 0 # To choose to ignore instead, # can make labels=[-1,0,-1,1] + set appropriate thresholds default_match_labels = match_quality_matrix.new_full( (match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8 ) return default_matches, default_match_labels assert torch.all(match_quality_matrix >= 0) # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction matched_vals, matches = match_quality_matrix.max(dim=0) match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8) for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]): low_high = (matched_vals >= low) & (matched_vals < high) match_labels[low_high] = l if self.allow_low_quality_matches: self.set_low_quality_matches_(match_labels, match_quality_matrix) return matches, match_labels def set_low_quality_matches_(self, match_labels, match_quality_matrix): """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth G find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth G. This function implements the RPN assignment case (i) in Sec. 3.1.2 of Faster R-CNN. """ # For each gt, find the prediction with which it has highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find the highest quality match available, even if it is low, including ties. # Note that the matches qualities must be positive due to the use of # `torch.nonzero`. of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None] if of_quality_inds.dim() == 0: (_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1) else: (_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1) match_labels[pred_inds_with_highest_quality] = 1 class RPNOutputs: def __init__( self, box2box_transform, anchor_matcher, batch_size_per_image, positive_fraction, images, pred_objectness_logits, pred_anchor_deltas, anchors, boundary_threshold=0, gt_boxes=None, smooth_l1_beta=0.0, ): """ Args: box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations. anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels. batch_size_per_image (int): number of proposals to sample when training positive_fraction (float): target fraction of sampled proposals that should be positive images (ImageList): :class:`ImageList` instance representing N input images pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W) pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi) anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training. gt_boxes (list[Boxes], optional): A list of N elements. smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored """ self.box2box_transform = box2box_transform self.anchor_matcher = anchor_matcher self.batch_size_per_image = batch_size_per_image self.positive_fraction = positive_fraction self.pred_objectness_logits = pred_objectness_logits self.pred_anchor_deltas = pred_anchor_deltas self.anchors = anchors self.gt_boxes = gt_boxes self.num_feature_maps = len(pred_objectness_logits) self.num_images = len(images) self.boundary_threshold = boundary_threshold self.smooth_l1_beta = smooth_l1_beta def _get_ground_truth(self): raise NotImplementedError() def predict_proposals(self): # pred_anchor_deltas: (L, N, ? Hi, Wi) # anchors:(N, L, -1, B) # here we loop over specific feature map, NOT images proposals = [] anchors = self.anchors.transpose(0, 1) for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas): B = anchors_i.size(-1) N, _, Hi, Wi = pred_anchor_deltas_i.shape anchors_i = anchors_i.flatten(start_dim=0, end_dim=1) pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B) proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i) # Append feature map proposals with shape (N, Hi*Wi*A, B) proposals.append(proposals_i.view(N, -1, B)) proposals = torch.stack(proposals) return proposals def predict_objectness_logits(self): """ Returns: pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A). """ pred_objectness_logits = [ # Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) score.permute(0, 2, 3, 1).reshape(self.num_images, -1) for score in self.pred_objectness_logits ] return pred_objectness_logits # Main Classes class Conv2d(nn.Conv2d): def __init__(self, *args, **kwargs): norm = kwargs.pop("norm", None) activation = kwargs.pop("activation", None) super().__init__(*args, **kwargs) self.norm = norm self.activation = activation def forward(self, x): if x.numel() == 0 and self.training: assert not isinstance(self.norm, nn.SyncBatchNorm) if x.numel() == 0: assert not isinstance(self.norm, nn.GroupNorm) output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride, ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape empty = _NewEmptyTensorOp.apply(x, output_shape) if self.training: _dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + _dummy else: return empty x = super().forward(x) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x class LastLevelMaxPool(nn.Module): """ This module is used in the original FPN to generate a downsampled P6 feature from P5. """ def __init__(self): super().__init__() self.num_levels = 1 self.in_feature = "p5" def forward(self, x): return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)] class LastLevelP6P7(nn.Module): """ This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature. """ def __init__(self, in_channels, out_channels): super().__init__() self.num_levels = 2 self.in_feature = "res5" self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) def forward(self, c5): p6 = self.p6(c5) p7 = self.p7(nn.functional.relu(p6)) return [p6, p7] class BasicStem(nn.Module): def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False): super().__init__() self.conv1 = Conv2d( in_channels, out_channels, kernel_size=7, stride=2, padding=3, bias=False, norm=get_norm(norm, out_channels), ) self.caffe_maxpool = caffe_maxpool # use pad 1 instead of pad zero def forward(self, x): x = self.conv1(x) x = nn.functional.relu_(x) if self.caffe_maxpool: x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True) else: x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1) return x @property def out_channels(self): return self.conv1.out_channels @property def stride(self): return 4 # = stride 2 conv -> stride 2 max pool class ResNetBlockBase(nn.Module): def __init__(self, in_channels, out_channels, stride): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = stride def freeze(self): for p in self.parameters(): p.requires_grad = False return self class BottleneckBlock(ResNetBlockBase): def __init__( self, in_channels, out_channels, bottleneck_channels, stride=1, num_groups=1, norm="BN", stride_in_1x1=False, dilation=1, ): super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.shortcut = Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False, norm=get_norm(norm, out_channels), ) else: self.shortcut = None # The original MSRA ResNet models have stride in the first 1x1 conv # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have # stride in the 3x3 conv stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, norm=get_norm(norm, bottleneck_channels), ) self.conv2 = Conv2d( bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, norm=get_norm(norm, bottleneck_channels), ) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False, norm=get_norm(norm, out_channels), ) def forward(self, x): out = self.conv1(x) out = nn.functional.relu_(out) out = self.conv2(out) out = nn.functional.relu_(out) out = self.conv3(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = nn.functional.relu_(out) return out class Backbone(nn.Module, metaclass=ABCMeta): def __init__(self): super().__init__() @abstractmethod def forward(self): pass @property def size_divisibility(self): """ Some backbones require the input height and width to be divisible by a specific integer. This is typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required. """ return 0 def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name], ) for name in self._out_features } @property def out_features(self): """deprecated""" return self._out_features @property def out_feature_strides(self): """deprecated""" return {f: self._out_feature_strides[f] for f in self._out_features} @property def out_feature_channels(self): """deprecated""" return {f: self._out_feature_channels[f] for f in self._out_features} class ResNet(Backbone): def __init__(self, stem, stages, num_classes=None, out_features=None): """ Args: stem (nn.Module): a stem module stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`. num_classes (None or int): if None, will not perform classification. out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in: "stem", "linear", or "res2" ... If None, will return the output of the last layer. """ super(ResNet, self).__init__() self.stem = stem self.num_classes = num_classes current_stride = self.stem.stride self._out_feature_strides = {"stem": current_stride} self._out_feature_channels = {"stem": self.stem.out_channels} self.stages_and_names = [] for i, blocks in enumerate(stages): for block in blocks: assert isinstance(block, ResNetBlockBase), block curr_channels = block.out_channels stage = nn.Sequential(*blocks) name = "res" + str(i + 2) self.add_module(name, stage) self.stages_and_names.append((stage, name)) self._out_feature_strides[name] = current_stride = int( current_stride * np.prod([k.stride for k in blocks]) ) self._out_feature_channels[name] = blocks[-1].out_channels if num_classes is not None: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.linear = nn.Linear(curr_channels, num_classes) # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "The 1000-way fully-connected layer is initialized by # drawing weights from a zero-mean Gaussian with std of 0.01." nn.init.normal_(self.linear.weight, stddev=0.01) name = "linear" if out_features is None: out_features = [name] self._out_features = out_features assert len(self._out_features) children = [x[0] for x in self.named_children()] for out_feature in self._out_features: assert out_feature in children, "Available children: {}".format(", ".join(children)) def forward(self, x): outputs = {} x = self.stem(x) if "stem" in self._out_features: outputs["stem"] = x for stage, name in self.stages_and_names: x = stage(x) if name in self._out_features: outputs[name] = x if self.num_classes is not None: x = self.avgpool(x) x = self.linear(x) if "linear" in self._out_features: outputs["linear"] = x return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name], ) for name in self._out_features } @staticmethod def make_stage( block_class, num_blocks, first_stride=None, *, in_channels, out_channels, **kwargs, ): """ Usually, layers that produce the same feature map spatial size are defined as one "stage". Under such definition, stride_per_block[1:] should all be 1. """ if first_stride is not None: assert "stride" not in kwargs and "stride_per_block" not in kwargs kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1) blocks = [] for i in range(num_blocks): curr_kwargs = {} for k, v in kwargs.items(): if k.endswith("_per_block"): assert ( len(v) == num_blocks ), f"Argument '{k}' of make_stage should have the same length as num_blocks={num_blocks}." newk = k[: -len("_per_block")] assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!" curr_kwargs[newk] = v[i] else: curr_kwargs[k] = v blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)) in_channels = out_channels return blocks class ROIPooler(nn.Module): """ Region of interest feature map pooler that supports pooling from one or more feature maps. """ def __init__( self, output_size, scales, sampling_ratio, canonical_box_size=224, canonical_level=4, ): super().__init__() # assumption that stride is a power of 2. min_level = -math.log2(scales[0]) max_level = -math.log2(scales[-1]) # a bunch of testing assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level)) assert len(scales) == max_level - min_level + 1, "not pyramid" assert 0 < min_level and min_level <= max_level if isinstance(output_size, int): output_size = (output_size, output_size) assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int) if len(scales) > 1: assert min_level <= canonical_level and canonical_level <= max_level assert canonical_box_size > 0 self.output_size = output_size self.min_level = int(min_level) self.max_level = int(max_level) self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales) self.canonical_level = canonical_level self.canonical_box_size = canonical_box_size def forward(self, feature_maps, boxes): """ Args: feature_maps: List[torch.Tensor(N,C,W,H)] box_lists: list[torch.Tensor]) Returns: A tensor of shape(N*B, Channels, output_size, output_size) """ x = list(feature_maps.values()) num_level_assignments = len(self.level_poolers) assert len(x) == num_level_assignments and len(boxes) == x[0].size(0) pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes) if num_level_assignments == 1: return self.level_poolers[0](x[0], pooler_fmt_boxes) level_assignments = assign_boxes_to_levels( boxes, self.min_level, self.max_level, self.canonical_box_size, self.canonical_level, ) num_boxes = len(pooler_fmt_boxes) num_channels = x[0].shape[1] output_size = self.output_size[0] dtype, device = x[0].dtype, x[0].device output = torch.zeros( (num_boxes, num_channels, output_size, output_size), dtype=dtype, device=device, ) for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)): inds = torch.nonzero(level_assignments == level).squeeze(1) pooler_fmt_boxes_level = pooler_fmt_boxes[inds] output[inds] = pooler(x_level, pooler_fmt_boxes_level) return output class ROIOutputs: def __init__(self, cfg, training=False): self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS) self.training = training self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST self.min_detections = cfg.MIN_DETECTIONS self.max_detections = cfg.MAX_DETECTIONS nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST if not isinstance(nms_thresh, list): nms_thresh = [nms_thresh] self.nms_thresh = nms_thresh def _predict_boxes(self, proposals, box_deltas, preds_per_image): num_pred = box_deltas.size(0) B = proposals[0].size(-1) K = box_deltas.size(-1) // B box_deltas = box_deltas.view(num_pred * K, B) proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B) proposals = proposals.reshape(-1, B) boxes = self.box2box_transform.apply_deltas(box_deltas, proposals) return boxes.view(num_pred, K * B).split(preds_per_image, dim=0) def _predict_objs(self, obj_logits, preds_per_image): probs = nn.functional.softmax(obj_logits, dim=-1) probs = probs.split(preds_per_image, dim=0) return probs def _predict_attrs(self, attr_logits, preds_per_image): attr_logits = attr_logits[..., :-1].softmax(-1) attr_probs, attrs = attr_logits.max(-1) return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0) @torch.no_grad() def inference( self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes, scales=None, ): # only the pred boxes is the preds_per_image = [p.size(0) for p in pred_boxes] boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image) obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image) features = features.split(preds_per_image, dim=0) # fun for each image too, also I can experiment and do multiple images final_results = [] zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes) for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped): for nms_t in self.nms_thresh: outputs = do_nms( boxes, obj_scores, size, self.score_thresh, nms_t, self.min_detections, self.max_detections, ) if outputs is not None: max_boxes, max_scores, classes, ids = outputs break if scales is not None: scale_yx = scales[i] max_boxes[:, 0::2] *= scale_yx[1] max_boxes[:, 1::2] *= scale_yx[0] final_results.append( ( max_boxes, classes, max_scores, attrs[ids], attr_probs[ids], features[i][ids], ) ) boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results)) return boxes, classes, class_probs, attrs, attr_probs, roi_features def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes): pass def __call__( self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes, scales=None, ): if self.training: raise NotImplementedError() return self.inference( obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes, scales=scales, ) class Res5ROIHeads(nn.Module): """ ROIHeads perform all per-region computation in an R-CNN. It contains logic of cropping the regions, extract per-region features (by the res-5 block in this case), and make per-region predictions. """ def __init__(self, cfg, input_shape): super().__init__() self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION self.in_features = cfg.ROI_HEADS.IN_FEATURES self.num_classes = cfg.ROI_HEADS.NUM_CLASSES self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT self.feature_strides = {k: v.stride for k, v in input_shape.items()} self.feature_channels = {k: v.channels for k, v in input_shape.items()} self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG self.stage_channel_factor = 2**3 # res5 is 8x res2 self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor # self.proposal_matcher = Matcher( # cfg.ROI_HEADS.IOU_THRESHOLDS, # cfg.ROI_HEADS.IOU_LABELS, # allow_low_quality_matches=False, # ) pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],) sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE use_attr = cfg.ROI_BOX_HEAD.ATTR num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS self.pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, ) self.res5 = self._build_res5_block(cfg) if not res5_halve: """ Modifications for VG in RoI heads: 1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1 2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2) """ self.res5[0].conv1.stride = (1, 1) self.res5[0].shortcut.stride = (1, 1) for i in range(3): self.res5[i].conv2.padding = (2, 2) self.res5[i].conv2.dilation = (2, 2) self.box_predictor = FastRCNNOutputLayers( self.out_channels, self.num_classes, self.cls_agnostic_bbox_reg, use_attr=use_attr, num_attrs=num_attrs, ) def _build_res5_block(self, cfg): stage_channel_factor = self.stage_channel_factor # res5 is 8x res2 num_groups = cfg.RESNETS.NUM_GROUPS width_per_group = cfg.RESNETS.WIDTH_PER_GROUP bottleneck_channels = num_groups * width_per_group * stage_channel_factor out_channels = self.out_channels stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1 norm = cfg.RESNETS.NORM blocks = ResNet.make_stage( BottleneckBlock, 3, first_stride=2, in_channels=out_channels // 2, bottleneck_channels=bottleneck_channels, out_channels=out_channels, num_groups=num_groups, norm=norm, stride_in_1x1=stride_in_1x1, ) return nn.Sequential(*blocks) def _shared_roi_transform(self, features, boxes): x = self.pooler(features, boxes) return self.res5(x) def forward(self, features, proposal_boxes, gt_boxes=None): if self.training: """ see https://github.com/airsplay/py-bottom-up-attention/\ blob/master/detectron2/modeling/roi_heads/roi_heads.py """ raise NotImplementedError() assert not proposal_boxes[0].requires_grad box_features = self._shared_roi_transform(features, proposal_boxes) feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1 obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled) return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled class AnchorGenerator(nn.Module): """ For a set of image sizes and feature maps, computes a set of anchors. """ def __init__(self, cfg, input_shape: List[ShapeSpec]): super().__init__() sizes = cfg.ANCHOR_GENERATOR.SIZES aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS self.strides = [x.stride for x in input_shape] self.offset = cfg.ANCHOR_GENERATOR.OFFSET assert 0.0 <= self.offset < 1.0, self.offset """ sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i 1. given in absolute lengths in units of the input image; 2. they do not dynamically scale if the input image size changes. aspect_ratios (list[list[float]]) strides (list[int]): stride of each input feature. """ self.num_features = len(self.strides) self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios)) self._spacial_feat_dim = 4 def _calculate_anchors(self, sizes, aspect_ratios): # If one size (or aspect ratio) is specified and there are multiple feature # maps, then we "broadcast" anchors of that single size (or aspect ratio) if len(sizes) == 1: sizes *= self.num_features if len(aspect_ratios) == 1: aspect_ratios *= self.num_features assert self.num_features == len(sizes) assert self.num_features == len(aspect_ratios) cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)] return cell_anchors @property def box_dim(self): return self._spacial_feat_dim @property def num_cell_anchors(self): """ Returns: list[int]: Each int is the number of anchors at every pixel location, on that feature map. """ return [len(cell_anchors) for cell_anchors in self.cell_anchors] def grid_anchors(self, grid_sizes): anchors = [] for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors): shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device) shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) return anchors def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)): """ anchors are continuous geometric rectangles centered on one feature map point sample. We can later build the set of anchors for the entire feature map by tiling these tensors """ anchors = [] for size in sizes: area = size**2.0 for aspect_ratio in aspect_ratios: w = math.sqrt(area / aspect_ratio) h = aspect_ratio * w x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0 anchors.append([x0, y0, x1, y1]) return nn.Parameter(torch.tensor(anchors)) def forward(self, features): """ Args: features List[torch.Tensor]: list of feature maps on which to generate anchors. Returns: torch.Tensor: a list of #image elements. """ num_images = features[0].size(0) grid_sizes = [feature_map.shape[-2:] for feature_map in features] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps) return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0) class RPNHead(nn.Module): """ RPN classification and regression heads. Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas specifying how to deform each anchor into an object proposal. """ def __init__(self, cfg, input_shape: List[ShapeSpec]): super().__init__() # Standard RPN is shared across levels: in_channels = [s.channels for s in input_shape] assert len(set(in_channels)) == 1, "Each level must have the same channel!" in_channels = in_channels[0] anchor_generator = AnchorGenerator(cfg, input_shape) num_cell_anchors = anchor_generator.num_cell_anchors box_dim = anchor_generator.box_dim assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors" num_cell_anchors = num_cell_anchors[0] if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1: hid_channels = in_channels else: hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS # Modifications for VG in RPN (modeling/proposal_generator/rpn.py) # Use hidden dim instead fo the same dim as Res4 (in_channels) # 3x3 conv for the hidden representation self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1) # 1x1 conv for predicting objectness logits self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1) # 1x1 conv for predicting box2box transform deltas self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1) for layer in [self.conv, self.objectness_logits, self.anchor_deltas]: nn.init.normal_(layer.weight, std=0.01) nn.init.constant_(layer.bias, 0) def forward(self, features): """ Args: features (list[Tensor]): list of feature maps """ pred_objectness_logits = [] pred_anchor_deltas = [] for x in features: t = nn.functional.relu(self.conv(x)) pred_objectness_logits.append(self.objectness_logits(t)) pred_anchor_deltas.append(self.anchor_deltas(t)) return pred_objectness_logits, pred_anchor_deltas class RPN(nn.Module): """ Region Proposal Network, introduced by the Faster R-CNN paper. """ def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]): super().__init__() self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE self.in_features = cfg.RPN.IN_FEATURES self.nms_thresh = cfg.RPN.NMS_THRESH self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE self.positive_fraction = cfg.RPN.POSITIVE_FRACTION self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA self.loss_weight = cfg.RPN.LOSS_WEIGHT self.pre_nms_topk = { True: cfg.RPN.PRE_NMS_TOPK_TRAIN, False: cfg.RPN.PRE_NMS_TOPK_TEST, } self.post_nms_topk = { True: cfg.RPN.POST_NMS_TOPK_TRAIN, False: cfg.RPN.POST_NMS_TOPK_TEST, } self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features]) self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS) self.anchor_matcher = Matcher( cfg.RPN.IOU_THRESHOLDS, cfg.RPN.IOU_LABELS, allow_low_quality_matches=True, ) self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features]) def training(self, images, image_shapes, features, gt_boxes): pass def inference(self, outputs, images, image_shapes, features, gt_boxes=None): outputs = find_top_rpn_proposals( outputs.predict_proposals(), outputs.predict_objectness_logits(), images, image_shapes, self.nms_thresh, self.pre_nms_topk[self.training], self.post_nms_topk[self.training], self.min_box_side_len, self.training, ) results = [] for img in outputs: im_boxes, img_box_logits = img img_box_logits, inds = img_box_logits.sort(descending=True) im_boxes = im_boxes[inds] results.append((im_boxes, img_box_logits)) (proposal_boxes, logits) = tuple(map(list, zip(*results))) return proposal_boxes, logits def forward(self, images, image_shapes, features, gt_boxes=None): """ Args: images (torch.Tensor): input images of length `N` features (dict[str: Tensor]) gt_instances """ # features is dict, key = block level, v = feature_map features = [features[f] for f in self.in_features] pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) anchors = self.anchor_generator(features) outputs = RPNOutputs( self.box2box_transform, self.anchor_matcher, self.batch_size_per_image, self.positive_fraction, images, pred_objectness_logits, pred_anchor_deltas, anchors, self.boundary_threshold, gt_boxes, self.smooth_l1_beta, ) # For RPN-only models, the proposals are the final output if self.training: raise NotImplementedError() return self.training(outputs, images, image_shapes, features, gt_boxes) else: return self.inference(outputs, images, image_shapes, features, gt_boxes) class FastRCNNOutputLayers(nn.Module): """ Two linear layers for predicting Fast R-CNN outputs: (1) proposal-to-detection box regression deltas (2) classification scores """ def __init__( self, input_size, num_classes, cls_agnostic_bbox_reg, box_dim=4, use_attr=False, num_attrs=-1, ): """ Args: input_size (int): channels, or (channels, height, width) num_classes (int) cls_agnostic_bbox_reg (bool) box_dim (int) """ super().__init__() if not isinstance(input_size, int): input_size = np.prod(input_size) # (do + 1 for background class) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) self.use_attr = use_attr if use_attr: """ Modifications for VG in RoI heads Embedding: {num_classes + 1} --> {input_size // 8} Linear: {input_size + input_size // 8} --> {input_size // 4} Linear: {input_size // 4} --> {num_attrs + 1} """ self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8) self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4) self.attr_score = nn.Linear(input_size // 4, num_attrs + 1) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for item in [self.cls_score, self.bbox_pred]: nn.init.constant_(item.bias, 0) def forward(self, roi_features): if roi_features.dim() > 2: roi_features = torch.flatten(roi_features, start_dim=1) scores = self.cls_score(roi_features) proposal_deltas = self.bbox_pred(roi_features) if self.use_attr: _, max_class = scores.max(-1) # [b, c] --> [b] cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256] roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304] roi_features = self.fc_attr(roi_features) roi_features = nn.functional.relu(roi_features) attr_scores = self.attr_score(roi_features) return scores, attr_scores, proposal_deltas else: return scores, proposal_deltas class GeneralizedRCNN(nn.Module): def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.backbone = build_backbone(cfg) self.proposal_generator = RPN(cfg, self.backbone.output_shape()) self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape()) self.roi_outputs = ROIOutputs(cfg) self.to(self.device) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_cdn = kwargs.pop("use_cdn", True) # Load config if we don't provide a configuration if not isinstance(config, Config): config_path = config if config is not None else pretrained_model_name_or_path # try: config = Config.from_pretrained( config_path, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, ) # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} ".format( WEIGHTS_NAME, pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert from_tf, "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=WEIGHTS_NAME, use_cdn=use_cdn, ) try: # Load from URL or cache if already cached resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) if resolved_archive_file is None: raise EnvironmentError except EnvironmentError: msg = f"Can't load weights for '{pretrained_model_name_or_path}'." raise EnvironmentError(msg) if resolved_archive_file == archive_file: print("loading weights file {}".format(archive_file)) else: print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None # Instantiate model. model = cls(config) if state_dict is None: try: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: state_dict = load_checkpoint(resolved_archive_file) except Exception: raise OSError( "Unable to load weights from pytorch checkpoint file. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata model_to_load = model model_to_load.load_state_dict(state_dict) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) if len(unexpected_keys) > 0: print( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture (e.g. initializing a BertForSequenceClassification model from a" " BertForPreTraining model).\n- This IS NOT expected if you are initializing" f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: print( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: print( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) # Set model in evaluation mode to deactivate DropOut modules by default model.eval() return model def forward( self, images, image_shapes, gt_boxes=None, proposals=None, scales_yx=None, **kwargs, ): """ kwargs: max_detections (int), return_tensors {"np", "pt", None}, padding {None, "max_detections"}, pad_value (int), location = {"cuda", "cpu"} """ if self.training: raise NotImplementedError() return self.inference( images=images, image_shapes=image_shapes, gt_boxes=gt_boxes, proposals=proposals, scales_yx=scales_yx, **kwargs, ) @torch.no_grad() def inference( self, images, image_shapes, gt_boxes=None, proposals=None, scales_yx=None, **kwargs, ): # run images through backbone original_sizes = image_shapes * scales_yx features = self.backbone(images) # generate proposals if none are available if proposals is None: proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes) else: assert proposals is not None # pool object features from either gt_boxes, or from proposals obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes) # prepare FRCNN Outputs and select top proposals boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs( obj_logits=obj_logits, attr_logits=attr_logits, box_deltas=box_deltas, pred_boxes=proposal_boxes, features=feature_pooled, sizes=image_shapes, scales=scales_yx, ) # will we pad??? subset_kwargs = { "max_detections": kwargs.get("max_detections", None), "return_tensors": kwargs.get("return_tensors", None), "pad_value": kwargs.get("pad_value", 0), "padding": kwargs.get("padding", None), } preds_per_image = torch.tensor([p.size(0) for p in boxes]) boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs) classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs) class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs) attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs) attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs) roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs) subset_kwargs["padding"] = None preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs) sizes = pad_list_tensors(image_shapes, None, **subset_kwargs) normalized_boxes = norm_box(boxes, original_sizes) return OrderedDict( { "obj_ids": classes, "obj_probs": class_probs, "attr_ids": attrs, "attr_probs": attr_probs, "boxes": boxes, "sizes": sizes, "preds_per_image": preds_per_image, "roi_features": roi_features, "normalized_boxes": normalized_boxes, } )
transformers/examples/research_projects/visual_bert/modeling_frcnn.py/0
{ "file_path": "transformers/examples/research_projects/visual_bert/modeling_frcnn.py", "repo_id": "transformers", "token_count": 34766 }
#!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-base-100h" \ --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --eval_strategy="steps" \ --save_total_limit="3" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="facebook/wav2vec2-base" \ --fp16 \ --dataset_name="librispeech_asr" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --preprocessing_num_workers="32" \ --group_by_length \ --freeze_feature_extractor
transformers/examples/research_projects/wav2vec2/finetune_base_100.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_base_100.sh", "repo_id": "transformers", "token_count": 248 }
# Zero-shot classifier distillation Author: @joeddav This script provides a way to improve the speed and memory performance of a zero-shot classifier by training a more efficient student model from the zero-shot teacher's predictions over an unlabeled dataset. The zero-shot classification pipeline uses a model pre-trained on natural language inference (NLI) to determine the compatibility of a set of candidate class names with a given sequence. This serves as a convenient out-of-the-box classifier without the need for labeled training data. However, for a given sequence, the method requires each possible label to be fed through the large NLI model separately. Thus for `N` sequences and `K` classes, a total of `N*K` forward passes through the model are required. This requirement slows inference considerably, particularly as `K` grows. Given (1) an unlabeled corpus and (2) a set of candidate class names, the provided script trains a student model with a standard classification head with `K` output dimensions. The resulting student model can then be used for classifying novel text instances with a significant boost in speed and memory performance while retaining similar classification performance to the original zero-shot model ### Usage A teacher NLI model can be distilled to a more efficient student model by running [`distill_classifier.py`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/zero-shot-distillation/distill_classifier.py): ```bash python distill_classifier.py \ --data_file <unlabeled_data.txt> \ --class_names_file <class_names.txt> \ --output_dir <output_dir> ``` `<unlabeled_data.txt>` should be a text file with a single unlabeled example per line. `<class_names.txt>` is a text file with one class name per line. Other optional arguments include: - `--teacher_name_or_path` (default: `roberta-large-mnli`): The name or path of the NLI teacher model. - `--student_name_or_path` (default: `distillbert-base-uncased`): The name or path of the student model which will be fine-tuned to copy the teacher predictions. - `--hypothesis_template` (default `"This example is {}."`): The template used to turn each label into an NLI-style hypothesis when generating teacher predictions. This template must include a `{}` or similar syntax for the candidate label to be inserted into the template. For example, the default template is `"This example is {}."` With the candidate label `sports`, this would be fed into the model like `[CLS] sequence to classify [SEP] This example is sports . [SEP]`. - `--multi_class`: Whether or not multiple candidate labels can be true. By default, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If `--multi_class` is passed, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. This is sometimes called "multi-class multi-label" classification. - `--temperature` (default: `1.0`): The temperature applied to the softmax of the teacher model predictions. A higher temperature results in a student with smoother (lower confidence) predictions than the teacher while a value `<1` resultings in a higher-confidence, peaked distribution. The default `1.0` is equivalent to no smoothing. - `--teacher_batch_size` (default: `32`): The batch size used for generating a single set of teacher predictions. Does not affect training. Use `--per_device_train_batch_size` to change the training batch size. Any of the arguments in the 🤗 Trainer's [`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.html?#trainingarguments) can also be modified, such as `--learning_rate`, `--fp16`, `--no_cuda`, `--warmup_steps`, etc. Run `python distill_classifier.py -h` for a full list of available arguments or consult the [Trainer documentation](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments). > **Note**: Distributed and TPU training are not currently supported. Single-node multi-GPU is supported, however, and will run automatically if multiple GPUs are available. ### Example: Topic classification > A full colab demo notebook of this example can be found [here](https://colab.research.google.com/drive/1mjBjd0cR8G57ZpsnFCS3ngGyo5nCa9ya?usp=sharing). Let's say we're interested in classifying news articles into one of four topic categories: "the world", "sports", "business", or "science/tech". We have an unlabeled dataset, [AG's News](https://huggingface.co/datasets/ag_news), which corresponds to this problem (in reality AG's News is annotated, but we will pretend it is not for the sake of example). We can use an NLI model like `roberta-large-mnli` for zero-shot classification like so: ```python >>> class_names = ["the world", "sports", "business", "science/tech"] >>> hypothesis_template = "This text is about {}." >>> sequence = "A new moon has been discovered in Jupiter's orbit" >>> zero_shot_classifier = pipeline("zero-shot-classification", model="roberta-large-mnli") >>> zero_shot_classifier(sequence, class_names, hypothesis_template=hypothesis_template) {'sequence': "A new moon has been discovered in Jupiter's orbit", 'labels': ['science/tech', 'the world', 'business', 'sports'], 'scores': [0.7035840153694153, 0.18744826316833496, 0.06027870625257492, 0.04868902638554573]} ``` Unfortunately, inference is slow since each of our 4 class names must be fed through the large model for every sequence to be classified. But with our unlabeled data we can distill the model to a small distilbert classifier to make future inference much faster. To run the script, we will need to put each training example (text only) from AG's News on its own line in `agnews/train_unlabeled.txt`, and each of the four class names in the newline-separated `agnews/class_names.txt`. Then we can run distillation with the following command: ```bash python distill_classifier.py \ --data_file ./agnews/unlabeled.txt \ --class_names_files ./agnews/class_names.txt \ --teacher_name_or_path roberta-large-mnli \ --hypothesis_template "This text is about {}." \ --output_dir ./agnews/distilled ``` The script will generate a set of soft zero-shot predictions from `roberta-large-mnli` for each example in `agnews/unlabeled.txt`. It will then train a student distilbert classifier on the teacher predictions and save the resulting model in `./agnews/distilled`. The resulting model can then be loaded and used like any other pre-trained classifier: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("./agnews/distilled") tokenizer = AutoTokenizer.from_pretrained("./agnews/distilled") ``` and even used trivially with a `TextClassificationPipeline`: ```python >>> distilled_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) >>> distilled_classifier(sequence) [[{'label': 'the world', 'score': 0.14899294078350067}, {'label': 'sports', 'score': 0.03205857425928116}, {'label': 'business', 'score': 0.05943061783909798}, {'label': 'science/tech', 'score': 0.7595179080963135}]] ``` > Tip: pass `device=0` when constructing a pipeline to run on a GPU As we can see, the results of the student closely resemble that of the trainer despite never having seen this example during training. Now let's do a quick & dirty speed comparison simulating 16K examples with a batch size of 16: ```python for _ in range(1000): zero_shot_classifier([sequence] * 16, class_names) # runs in 1m 23s on a single V100 GPU ``` ```python %%time for _ in range(1000): distilled_classifier([sequence] * 16) # runs in 10.3s on a single V100 GPU ``` As we can see, the distilled student model runs an order of magnitude faster than its teacher NLI model. This is also a seeting where we only have `K=4` possible labels. The higher the number of classes for a given task, the more drastic the speedup will be, since the zero-shot teacher's complexity scales linearly with the number of classes. Since we secretly have access to ground truth labels for AG's news, we can evaluate the accuracy of each model. The original zero-shot model `roberta-large-mnli` gets an accuracy of 69.3% on the held-out test set. After training a student on the unlabeled training set, the distilled model gets a similar score of 70.4%. Lastly, you can share the distilled model with the community and/or use it with our inference API by [uploading it to the 🤗 Hub](https://huggingface.co/transformers/model_sharing.html). We've uploaded the distilled model from this example at [joeddav/distilbert-base-uncased-agnews-student](https://huggingface.co/joeddav/distilbert-base-uncased-agnews-student).
transformers/examples/research_projects/zero-shot-distillation/README.md/0
{ "file_path": "transformers/examples/research_projects/zero-shot-distillation/README.md", "repo_id": "transformers", "token_count": 2467 }
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Language modelling examples This folder contains some scripts showing examples of *language model pre-training* with the 🤗 Transformers library. For straightforward use-cases you may be able to use these scripts without modification, although we have also included comments in the code to indicate areas that you may need to adapt to your own projects. The two scripts have almost identical arguments, but they differ in the type of LM they train - a causal language model (like GPT) or a masked language model (like BERT). Masked language models generally train more quickly and perform better when fine-tuned on new tasks with a task-specific output head, like text classification. However, their ability to generate text is weaker than causal language models. ## Pre-training versus fine-tuning These scripts can be used to both *pre-train* a language model completely from scratch, as well as to *fine-tune* a language model on text from your domain of interest. To start with an existing pre-trained language model you can use the `--model_name_or_path` argument, or to train from scratch you can use the `--model_type` argument to indicate the class of model architecture to initialize. ### Multi-GPU and TPU usage By default, these scripts use a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs can also be used by passing the name of the TPU resource with the `--tpu` argument. ## run_mlm.py This script trains a masked language model. ### Example command ```bash python run_mlm.py \ --model_name_or_path distilbert/distilbert-base-cased \ --output_dir output \ --dataset_name wikitext \ --dataset_config_name wikitext-103-raw-v1 ``` When using a custom dataset, the validation file can be separately passed as an input argument. Otherwise some split (customizable) of training data is used as validation. ```bash python run_mlm.py \ --model_name_or_path distilbert/distilbert-base-cased \ --output_dir output \ --train_file train_file_path ``` ## run_clm.py This script trains a causal language model. ### Example command ```bash python run_clm.py \ --model_name_or_path distilbert/distilgpt2 \ --output_dir output \ --dataset_name wikitext \ --dataset_config_name wikitext-103-raw-v1 ``` When using a custom dataset, the validation file can be separately passed as an input argument. Otherwise some split (customizable) of training data is used as validation. ```bash python run_clm.py \ --model_name_or_path distilbert/distilgpt2 \ --output_dir output \ --train_file train_file_path ```
transformers/examples/tensorflow/language-modeling/README.md/0
{ "file_path": "transformers/examples/tensorflow/language-modeling/README.md", "repo_id": "transformers", "token_count": 858 }
#!/usr/bin/env bash # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script acquires data and converts it to fsmt model # it covers: # - allenai/wmt19-de-en-6-6-base # - allenai/wmt19-de-en-6-6-big # this script needs to be run from the top level of the transformers repo if [ ! -d "src/transformers" ]; then echo "Error: This script needs to be run from the top of the transformers repo" exit 1 fi mkdir data # get data (run once) cd data gdown 'https://drive.google.com/uc?id=1j6z9fYdlUyOYsh7KJoumRlr1yHczxR5T' gdown 'https://drive.google.com/uc?id=1yT7ZjqfvUYOBXvMjeY8uGRHQFWoSo8Q5' gdown 'https://drive.google.com/uc?id=15gAzHeRUCs-QV8vHeTReMPEh1j8excNE' tar -xvzf wmt19.de-en.tar.gz tar -xvzf wmt19_deen_base_dr0.1_1.tar.gz tar -xvzf wmt19_deen_big_dr0.1_2.tar.gz cp wmt19.de-en/data-bin/dict.*.txt wmt19_deen_base_dr0.1_1 cp wmt19.de-en/data-bin/dict.*.txt wmt19_deen_big_dr0.1_2 cd - # run conversions and uploads PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_base_dr0.1_1/checkpoint_last3_avg.pt --pytorch_dump_folder_path data/wmt19-de-en-6-6-base PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_big_dr0.1_2/checkpoint_last3_avg.pt --pytorch_dump_folder_path data/wmt19-de-en-6-6-big # upload cd data transformers-cli upload -y wmt19-de-en-6-6-base transformers-cli upload -y wmt19-de-en-6-6-big cd - # if updating just small files and not the large models, here is a script to generate the right commands: perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] for ("wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big")}' vocab-src.json vocab-tgt.json tokenizer_config.json config.json # add/remove files as needed
transformers/scripts/fsmt/convert-allenai-wmt19.sh/0
{ "file_path": "transformers/scripts/fsmt/convert-allenai-wmt19.sh", "repo_id": "transformers", "token_count": 950 }
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py To create the package for pypi. 1. Create the release branch named: v<RELEASE>-release, for example v4.19-release. For a patch release checkout the current release branch. If releasing on a special branch, copy the updated README.md on the main branch for the commit you will make for the post-release and run `make fix-copies` on the main branch as well. 2. Run `make pre-release` (or `make pre-patch` for a patch release) and commit these changes with the message: "Release: <VERSION>" and push. 3. Go back to the main branch and run `make post-release` then `make fix-copies`. Commit these changes with the message "v<NEXT_VERSION>.dev.0" and push to main. # If you were just cutting the branch in preparation for a release, you can stop here for now. 4. Wait for the tests on the release branch to be completed and be green (otherwise revert and fix bugs) 5. On the release branch, add a tag in git to mark the release: "git tag v<VERSION> -m 'Adds tag v<VERSION> for pypi' " Push the tag to git: git push --tags origin v<RELEASE>-release 6. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). Run `make build-release`. This will build the release and do some sanity checks for you. If this ends with an error message, you need to fix things before going further. You should now have a /dist directory with both .whl and .tar.gz source versions. 7. Check that everything looks correct by uploading the package to the pypi test server: twine upload dist/* -r testpypi (pypi suggest using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r testpypi --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi transformers Check you can run the following commands: python -c "from transformers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))" python -c "from transformers import *" python utils/check_build.py --check_lib If making a patch release, double check the bug you are patching is indeed resolved. 8. Upload the final version to actual pypi: twine upload dist/* -r pypi 9. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. """ import os import re import shutil from pathlib import Path from setuptools import Command, find_packages, setup # Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "transformers.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated transformers to 3.0 or later, this is expected,\n" "but it may prevent transformers from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) # IMPORTANT: # 1. all dependencies should be listed here with their version requirements if any # 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py _deps = [ "Pillow>=10.0.1,<=15.0", "accelerate>=0.26.0", "av", "beautifulsoup4", "blobfile", "codecarbon>=2.8.1", "cookiecutter==1.7.3", "dataclasses", "datasets!=2.5.0", "deepspeed>=0.9.3", "diffusers", "dill<0.3.5", "evaluate>=0.2.0", "faiss-cpu", "fastapi", "filelock", "flax>=0.4.1,<=0.7.0", "fsspec<2023.10.0", "ftfy", "fugashi>=1.0", "GitPython<3.1.19", "hf-doc-builder>=0.3.0", "huggingface-hub>=0.24.0,<1.0", "importlib_metadata", "ipadic>=1.0.0,<2.0", "isort>=5.5.4", "jax>=0.4.1,<=0.4.13", "jaxlib>=0.4.1,<=0.4.13", "jieba", "jinja2>=3.1.0", "kenlm", # Keras pin - this is to make sure Keras 3 doesn't destroy us. Remove or change when we have proper support. "keras>2.9,<2.16", "keras-nlp>=0.3.1,<0.14.0", # keras-nlp 0.14 doesn't support keras 2, see pin on keras. "librosa", "nltk<=3.8.1", "natten>=0.14.6,<0.15.0", "numpy>=1.17", "onnxconverter-common", "onnxruntime-tools>=1.4.2", "onnxruntime>=1.4.0", "opencv-python", "optimum-benchmark>=0.3.0", "optuna", "optax>=0.0.8,<=0.1.4", "packaging>=20.0", "parameterized", "phonemizer", "protobuf", "psutil", "pyyaml>=5.1", "pydantic", "pytest>=7.2.0,<8.0.0", "pytest-asyncio", "pytest-timeout", "pytest-xdist", "python>=3.9.0", "ray[tune]>=2.7.0", "regex!=2019.12.17", "requests", "rhoknp>=1.1.0,<1.3.1", "rjieba", "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff==0.5.1", "sacrebleu>=1.4.12,<2.0.0", "sacremoses", "safetensors>=0.4.1", "sagemaker>=2.31.0", "schedulefree>=1.2.6", "scikit-learn", "scipy<1.13.0", # SciPy >= 1.13.0 is not supported with the current jax pin (`jax>=0.4.1,<=0.4.13`) "sentencepiece>=0.1.91,!=0.1.92", "sigopt", "starlette", "sudachipy>=0.6.6", "sudachidict_core>=20220729", "tensorboard", # TensorFlow pin. When changing this value, update examples/tensorflow/_tests_requirements.txt accordingly "tensorflow-cpu>2.9,<2.16", "tensorflow>2.9,<2.16", "tensorflow-text<2.16", "tensorflow-probability<0.24", "tf2onnx", "timeout-decorator", "tiktoken", "timm<=1.0.11", "tokenizers>=0.21,<0.22", "torch>=2.0", "torchaudio", "torchvision", "pyctcdecode>=0.4.0", "tqdm>=4.27", "unidic>=1.0.2", "unidic_lite>=1.0.7", "urllib3<2.0.0", "uvicorn", "pytest-rich", "libcst", "rich", ] # this is a lookup table with items like: # # tokenizers: "tokenizers==0.9.4" # packaging: "packaging" # # some of the values are versioned whereas others aren't. deps = {b: a for a, b in (re.findall(r"^(([^!=<>~ ]+)(?:[!=<>~ ].*)?$)", x)[0] for x in _deps)} # since we save this data in src/transformers/dependency_versions_table.py it can be easily accessed from # anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with: # # python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets # # Just pass the desired package names to that script as it's shown with 2 packages above. # # If transformers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above # # You can then feed this for example to `pip`: # # pip install -U $(python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([deps[x] for x in sys.argv[1:]]))' tokenizers datasets) # def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] class DepsTableUpdateCommand(Command): """ A custom distutils command that updates the dependency table. usage: python setup.py deps_table_update """ description = "build runtime dependency table" user_options = [ # format: (long option, short option, description). ("dep-table-update", None, "updates src/transformers/dependency_versions_table.py"), ] def initialize_options(self): pass def finalize_options(self): pass def run(self): entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()]) content = [ "# THIS FILE HAS BEEN AUTOGENERATED. To update:", "# 1. modify the `_deps` dict in setup.py", "# 2. run `make deps_table_update``", "deps = {", entries, "}", "", ] target = "src/transformers/dependency_versions_table.py" print(f"updating {target}") with open(target, "w", encoding="utf-8", newline="\n") as f: f.write("\n".join(content)) extras = {} extras["ja"] = deps_list("fugashi", "ipadic", "unidic_lite", "unidic", "sudachipy", "sudachidict_core", "rhoknp") extras["sklearn"] = deps_list("scikit-learn") extras["tf"] = deps_list("tensorflow", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp") extras["tf-cpu"] = deps_list( "keras", "tensorflow-cpu", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp", "tensorflow-probability", ) extras["torch"] = deps_list("torch", "accelerate") extras["accelerate"] = deps_list("accelerate") if os.name == "nt": # windows extras["retrieval"] = deps_list("datasets") # faiss is not supported on windows extras["flax"] = [] # jax is not supported on windows else: extras["retrieval"] = deps_list("faiss-cpu", "datasets") extras["flax"] = deps_list("jax", "jaxlib", "flax", "optax", "scipy") extras["tokenizers"] = deps_list("tokenizers") extras["ftfy"] = deps_list("ftfy") extras["onnxruntime"] = deps_list("onnxruntime", "onnxruntime-tools") extras["onnx"] = deps_list("onnxconverter-common", "tf2onnx") + extras["onnxruntime"] extras["modelcreation"] = deps_list("cookiecutter") extras["sagemaker"] = deps_list("sagemaker") extras["deepspeed"] = deps_list("deepspeed") + extras["accelerate"] extras["optuna"] = deps_list("optuna") extras["ray"] = deps_list("ray[tune]") extras["sigopt"] = deps_list("sigopt") extras["integrations"] = extras["optuna"] + extras["ray"] + extras["sigopt"] extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette") extras["audio"] = deps_list("librosa", "pyctcdecode", "phonemizer", "kenlm") # `pip install ".[speech]"` is deprecated and `pip install ".[torch-speech]"` should be used instead extras["speech"] = deps_list("torchaudio") + extras["audio"] extras["torch-speech"] = deps_list("torchaudio") + extras["audio"] extras["tf-speech"] = extras["audio"] extras["flax-speech"] = extras["audio"] extras["vision"] = deps_list("Pillow") extras["timm"] = deps_list("timm") extras["torch-vision"] = deps_list("torchvision") + extras["vision"] extras["natten"] = deps_list("natten") extras["codecarbon"] = deps_list("codecarbon") extras["video"] = deps_list("av") extras["sentencepiece"] = deps_list("sentencepiece", "protobuf") extras["tiktoken"] = deps_list("tiktoken", "blobfile") extras["testing"] = ( deps_list( "pytest", "pytest-asyncio", "pytest-rich", "pytest-xdist", "timeout-decorator", "parameterized", "psutil", "datasets", "dill", "evaluate", "pytest-timeout", "ruff", "sacrebleu", "rouge-score", "nltk", "GitPython", "sacremoses", "rjieba", "beautifulsoup4", "tensorboard", "pydantic", "sentencepiece", ) + extras["retrieval"] + extras["modelcreation"] ) extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"] extras["ruff"] = deps_list("ruff") extras["quality"] = deps_list("datasets", "isort", "ruff", "GitPython", "urllib3", "libcst", "rich") extras["all"] = ( extras["tf"] + extras["torch"] + extras["flax"] + extras["sentencepiece"] + extras["tokenizers"] + extras["torch-speech"] + extras["vision"] + extras["integrations"] + extras["timm"] + extras["torch-vision"] + extras["codecarbon"] + extras["accelerate"] + extras["video"] ) extras["dev-torch"] = ( extras["testing"] + extras["torch"] + extras["sentencepiece"] + extras["tokenizers"] + extras["torch-speech"] + extras["vision"] + extras["integrations"] + extras["timm"] + extras["torch-vision"] + extras["codecarbon"] + extras["quality"] + extras["ja"] + extras["sklearn"] + extras["modelcreation"] + extras["onnxruntime"] ) extras["dev-tensorflow"] = ( extras["testing"] + extras["tf"] + extras["sentencepiece"] + extras["tokenizers"] + extras["vision"] + extras["quality"] + extras["sklearn"] + extras["modelcreation"] + extras["onnx"] + extras["tf-speech"] ) extras["dev"] = ( extras["all"] + extras["testing"] + extras["quality"] + extras["ja"] + extras["sklearn"] + extras["modelcreation"] ) extras["torchhub"] = deps_list( "filelock", "huggingface-hub", "importlib_metadata", "numpy", "packaging", "protobuf", "regex", "requests", "sentencepiece", "torch", "tokenizers", "tqdm", ) extras["agents"] = deps_list( "diffusers", "accelerate", "datasets", "torch", "sentencepiece", "opencv-python", "Pillow" ) extras["benchmark"] = deps_list("optimum-benchmark") # when modifying the following list, make sure to update src/transformers/dependency_versions_check.py install_requires = [ deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads deps["huggingface-hub"], deps["numpy"], deps["packaging"], # utilities from PyPA to e.g., compare versions deps["pyyaml"], # used for the model cards metadata deps["regex"], # for OpenAI GPT deps["requests"], # for downloading models over HTTPS deps["tokenizers"], deps["safetensors"], deps["tqdm"], # progress bars in model download and training scripts ] setup( name="transformers", version="4.49.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)", author_email="[email protected]", description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="NLP vision speech deep learning transformer pytorch tensorflow jax BERT GPT-2 Wav2Vec2 ViT", license="Apache 2.0 License", url="https://github.com/huggingface/transformers", package_dir={"": "src"}, packages=find_packages("src"), include_package_data=True, package_data={"": ["**/*.cu", "**/*.cpp", "**/*.cuh", "**/*.h", "**/*.pyx"]}, zip_safe=False, extras_require=extras, entry_points={"console_scripts": ["transformers-cli=transformers.commands.transformers_cli:main"]}, python_requires=">=3.9.0", install_requires=list(install_requires), classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], cmdclass={"deps_table_update": DepsTableUpdateCommand}, ) extras["tests_torch"] = deps_list() extras["tests_tf"] = deps_list() extras["tests_flax"] = deps_list() extras["tests_torch_and_tf"] = deps_list() extras["tests_torch_and_flax"] = deps_list() extras["tests_hub"] = deps_list() extras["tests_pipelines_torch"] = deps_list() extras["tests_pipelines_tf"] = deps_list() extras["tests_onnx"] = deps_list() extras["tests_examples_torch"] = deps_list() extras["tests_examples_tf"] = deps_list() extras["tests_custom_tokenizers"] = deps_list() extras["tests_exotic_models"] = deps_list() extras["consistency"] = deps_list()
transformers/setup.py/0
{ "file_path": "transformers/setup.py", "repo_id": "transformers", "token_count": 6793 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .tools import PipelineTool class SpeechToTextTool(PipelineTool): default_checkpoint = "distil-whisper/distil-large-v3" description = "This is a tool that transcribes an audio into text. It returns the transcribed text." name = "transcriber" pre_processor_class = WhisperProcessor model_class = WhisperForConditionalGeneration inputs = {"audio": {"type": "audio", "description": "The audio to transcribe"}} output_type = "string" def encode(self, audio): return self.pre_processor(audio, return_tensors="pt") def forward(self, inputs): return self.model.generate(inputs["input_features"]) def decode(self, outputs): return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0]
transformers/src/transformers/agents/speech_to_text.py/0
{ "file_path": "transformers/src/transformers/agents/speech_to_text.py", "repo_id": "transformers", "token_count": 462 }
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters USE_XLA = False USE_AMP = False def train_command_factory(args: Namespace): """ Factory function used to instantiate training command from provided command line arguments. Returns: TrainCommand """ return TrainCommand(args) class TrainCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.") train_parser.add_argument( "--train_data", type=str, required=True, help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.", ) train_parser.add_argument( "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.") train_parser.add_argument( "--validation_split", type=float, default=0.1, help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.", ) train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.") train_parser.add_argument( "--task", type=str, default="text_classification", help="Task to train the model on." ) train_parser.add_argument( "--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.") train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.") train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.") train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.") train_parser.set_defaults(func=train_command_factory) def __init__(self, args: Namespace): self.logger = logging.get_logger("transformers-cli/training") self.framework = "tf" if is_tf_available() else "torch" os.makedirs(args.output, exist_ok=True) self.output = args.output self.column_label = args.column_label self.column_text = args.column_text self.column_id = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": self.pipeline = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") self.train_dataset = Processor.create_from_csv( args.train_data, column_label=args.column_label, column_text=args.column_text, column_id=args.column_id, skip_first_row=args.skip_first_row, ) self.valid_dataset = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") self.valid_dataset = Processor.create_from_csv( args.validation_data, column_label=args.column_label, column_text=args.column_text, column_id=args.column_id, skip_first_row=args.skip_first_row, ) self.validation_split = args.validation_split self.train_batch_size = args.train_batch_size self.valid_batch_size = args.valid_batch_size self.learning_rate = args.learning_rate self.adam_epsilon = args.adam_epsilon def run(self): if self.framework == "tf": return self.run_tf() return self.run_torch() def run_torch(self): raise NotImplementedError def run_tf(self): self.pipeline.fit( self.train_dataset, validation_data=self.valid_dataset, validation_split=self.validation_split, learning_rate=self.learning_rate, adam_epsilon=self.adam_epsilon, train_batch_size=self.train_batch_size, valid_batch_size=self.valid_batch_size, ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
transformers/src/transformers/commands/train.py/0
{ "file_path": "transformers/src/transformers/commands/train.py", "repo_id": "transformers", "token_count": 2539 }
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0 In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted probability that a question is unanswerable. """ import collections import json import math import re import string from ...models.bert import BasicTokenizer from ...utils import logging logger = logging.get_logger(__name__) def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def get_raw_scores(examples, preds): """ Computes the exact and f1 scores from the examples and the model predictions """ exact_scores = {} f1_scores = {} for example in examples: qas_id = example.qas_id gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [""] if qas_id not in preds: print(f"Missing prediction for {qas_id}") continue prediction = preds[qas_id] exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers) f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(f1_scores.values()) / total), ("total", total), ] ) else: total = len(qid_list) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), ("total", total), ] ) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval[f"{prefix}_{k}"] = new_eval[k] def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] has_ans_score, has_ans_cnt = 0, 0 for qid in qid_list: if not qid_to_has_ans[qid]: continue has_ans_cnt += 1 if qid not in scores: continue has_ans_score += scores[qid] return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh main_eval["has_ans_exact"] = has_ans_exact main_eval["has_ans_f1"] = has_ans_f1 def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for _, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0): qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples} has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer] no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer] if no_answer_probs is None: no_answer_probs = {k: 0.0 for k in preds} exact, f1 = get_raw_scores(examples, preds) exact_threshold = apply_no_ans_threshold( exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold ) f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold) evaluation = make_eval_dict(exact_threshold, f1_threshold) if has_answer_qids: has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids) merge_eval(evaluation, has_ans_eval, "HasAns") if no_answer_qids: no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids) merge_eval(evaluation, no_ans_eval, "NoAns") if no_answer_probs: find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer) return evaluation def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for i, c in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'") return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'") return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for i, tok_index in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position : (orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions_logits( all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose_logging, version_2_with_negative, null_score_diff_threshold, tokenizer, ): """Write final predictions to the json file and log-odds of null if needed.""" if output_prediction_file: logger.info(f"Writing predictions to: {output_prediction_file}") if output_nbest_file: logger.info(f"Writing nbest to: {output_nbest_file}") if output_null_log_odds_file and version_2_with_negative: logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}") example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for example_index, example in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for feature_index, feature in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index], ) ) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, ) ) prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"] ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # tok_text = " ".join(tok_tokens) # # # De-tokenize WordPieces that have been split off. # tok_text = tok_text.replace(" ##", "") # tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest) == 1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) if len(nbest) < 1: raise ValueError("No valid predictions") total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for i, entry in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) if len(nbest_json) < 1: raise ValueError("No valid predictions") if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json if output_prediction_file: with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") if output_nbest_file: with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if output_null_log_odds_file and version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions def compute_predictions_log_probs( all_examples, all_features, all_results, n_best_size, max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, version_2_with_negative, tokenizer, verbose_logging, ): """ XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of null if needed. Requires utils_squad_evaluate.py """ _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"] ) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_log_prob", "end_log_prob"] ) logger.info(f"Writing predictions to: {output_prediction_file}") example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for example_index, example in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive for feature_index, feature in enumerate(features): result = unique_id_to_result[feature.unique_id] cur_null_score = result.cls_logits # if we could have irrelevant answers, get the min score of irrelevant score_null = min(score_null, cur_null_score) for i in range(start_n_top): for j in range(end_n_top): start_log_prob = result.start_logits[i] start_index = result.start_top_index[i] j_index = i * end_n_top + j end_log_prob = result.end_logits[j_index] end_index = result.end_top_index[j_index] # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= feature.paragraph_len - 1: continue if end_index >= feature.paragraph_len - 1: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_log_prob=start_log_prob, end_log_prob=end_log_prob, ) ) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] # XLNet un-tokenizer # Let's keep it simple for now and see if we need all this later. # # tok_start_to_orig_index = feature.tok_start_to_orig_index # tok_end_to_orig_index = feature.tok_end_to_orig_index # start_orig_pos = tok_start_to_orig_index[pred.start_index] # end_orig_pos = tok_end_to_orig_index[pred.end_index] # paragraph_text = example.paragraph_text # final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip() # Previously used Bert untokenizer tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) if hasattr(tokenizer, "do_lower_case"): do_lower_case = tokenizer.do_lower_case else: do_lower_case = tokenizer.do_lowercase_and_remove_accent final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob) ) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_log_prob + entry.end_log_prob) if not best_non_null_entry: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for i, entry in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_log_prob"] = entry.start_log_prob output["end_log_prob"] = entry.end_log_prob nbest_json.append(output) if len(nbest_json) < 1: raise ValueError("No valid predictions") if best_non_null_entry is None: raise ValueError("No valid predictions") score_diff = score_null scores_diff_json[example.qas_id] = score_diff # note(zhiliny): always predict best_non_null_entry # and the evaluation script will search for the best threshold all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions
transformers/src/transformers/data/metrics/squad_metrics.py/0
{ "file_path": "transformers/src/transformers/data/metrics/squad_metrics.py", "repo_id": "transformers", "token_count": 13819 }
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple import numpy as np import torch from ..utils import is_sklearn_available if is_sklearn_available(): from sklearn.metrics import roc_curve from ..cache_utils import DynamicCache from ..pytorch_utils import isin_mps_friendly from .logits_process import LogitsProcessorList, MinLengthLogitsProcessor if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..tokenization_utils_base import PreTrainedTokenizerBase from .configuration_utils import GenerationConfig class CandidateGenerator: """Abstract base class for all candidate generators that can be applied during assisted generation.""" def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]: """ Fetches the candidates to be tried for the current input. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) Return: `torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be assessed by the model and, optionally, a `torch.FloatTensor` of shape `(batch_size, candidate_length, vocabulary_size)` containing the logits associated to each candidate. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can call `get_candidates`." ) def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int): """ Updates the candidate generation strategy based on the outcomes. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search num_matches (`int`): The number of matches between the candidate sequences and the model predictions. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can call " "`update_candidate_strategy`." ) class AssistedCandidateGenerator(CandidateGenerator): """ `CandidateGenerator` class to be used for assisted generation and speculative decoding. This class generates candidates through the use of a smaller model. Read the following blog post for more information: https://huggingface.co/blog/assisted-generation Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) assistant_model (`PreTrainedModel`): The model to be used for generating candidates. This model should be smaller than the main model. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. model_kwargs (`Dict`): The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant model as well. inputs_tensor (`torch.Tensor`, *optional*): The model input tensor. In encoder-decoder models, this is the encoder input. """ def __init__( self, input_ids: torch.LongTensor, assistant_model: "PreTrainedModel", generation_config: "GenerationConfig", model_kwargs: Dict, inputs_tensor: Optional[torch.Tensor] = None, logits_processor: "LogitsProcessorList" = None, ): # Make sure all data at the same device as assistant model device = assistant_model.device input_ids = input_ids.to(device) if inputs_tensor is not None: inputs_tensor = inputs_tensor.to(device) # Prepare the assistant and the starting number of candidate tokens self.assistant_model = assistant_model self.num_assistant_tokens = assistant_model.generation_config.num_assistant_tokens self.assistant_confidence_threshold = assistant_model.generation_config.assistant_confidence_threshold # Set eos in assistant same as in target model self.assistant_model.generation_config.eos_token_id = generation_config.eos_token_id # Prepare the kwargs for the assistant model assistant_kwargs = {} for key, value in model_kwargs.items(): # deepcopy crashes if we attempt to copy encoder outputs with grads if key not in ("encoder_outputs", "assistant_encoder_outputs", "past_key_values"): assistant_kwargs[key] = ( value.detach().to(device) if isinstance(value, torch.Tensor) else copy.deepcopy(value) ) # Remove potential default "logits_to_keep" key if "logits_to_keep" in assistant_kwargs.keys() and not assistant_model._supports_logits_to_keep(): del assistant_kwargs["logits_to_keep"] if "assistant_encoder_outputs" in model_kwargs: assistant_kwargs["encoder_outputs"] = model_kwargs["assistant_encoder_outputs"] elif assistant_model.config.is_encoder_decoder: inputs_tensor, model_input_name, assistant_kwargs = assistant_model._prepare_model_inputs( inputs_tensor, assistant_model.generation_config.bos_token_id, assistant_kwargs ) assistant_kwargs = assistant_model._prepare_encoder_decoder_kwargs_for_generation( inputs_tensor, assistant_kwargs, model_input_name, assistant_model.generation_config ) elif "encoder_outputs" in model_kwargs: assistant_kwargs["encoder_outputs"] = model_kwargs["encoder_outputs"] self.assistant_kwargs = assistant_kwargs # Prepare assistant model's keys of inputs if assistant_model.config.is_encoder_decoder: # both are encoder-decoder self.input_ids_key = "decoder_input_ids" elif "encoder_outputs" in assistant_kwargs: # special case for encoder-decoder with decoder-only assistant (like DistilWhisper) self.input_ids_key = "input_ids" self.assistant_kwargs["attention_mask"] = self.assistant_kwargs.get( "decoder_attention_mask", torch.ones((input_ids.shape[0], 1), device=input_ids.device, dtype=torch.long), ) else: # both are decoder-only self.input_ids_key = "input_ids" # Prepare generation-related options. self.logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() self.generation_config = copy.deepcopy(generation_config) self.generation_config.return_dict_in_generate = True self.generation_config.output_scores = True self.generation_config.assistant_confidence_threshold = self.assistant_confidence_threshold # this flag allow us set the confidence stopping criteria for assistant model generation. self.generation_config.is_assistant = True # avoid unnecessary warnings that min_length is larger than max_new_tokens # remove the `MinLengthLogitsProcessor` if exists (NOTE: no need to check for `MinNewTokensLogitsProcessor`) self.main_model_min_length = self.generation_config.min_length self.generation_config.min_length = 0 self.generation_config.min_new_tokens = None for processor in self.logits_processor: if isinstance(processor, MinLengthLogitsProcessor): raise ValueError( "Passing `MinLengthLogitsProcessor` when using `assisted_generation is disabled. " "Please pass in `min_length` into `.generate()` instead" ) # We need to roll back the cache in assisted generation, only DynamicCache is supported self.generation_config.cache_implementation = None if ( is_sklearn_available() and self.assistant_model.generation_config.assistant_confidence_threshold and type(self) is AssistedCandidateGenerator ): self.probs = [] self.matches = [] def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]: """ Fetches the candidates to be tried for the current input. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) Return: `torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be assessed by the model and a `torch.FloatTensor` of shape `(batch_size, candidate_length, vocabulary_size)` containing the logits associated to each candidate. """ input_ids = input_ids.to(self.assistant_model.device) # Calculate new tokens to generate min_new_tokens, max_new_tokens = self._calculate_new_tokens(input_ids) if max_new_tokens == 0: return input_ids, None # Update past key values and masks self._update_past_and_masks(input_ids) # Generate candidates generation_args = self._prepare_generation_args(input_ids, min_new_tokens, max_new_tokens) candidate_ids, candidate_logits = self._generate_candidates(generation_args) return candidate_ids, candidate_logits def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int): """ Updates the candidate generation strategy based on the outcomes. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search num_matches (`int`): The number of matches between the candidate sequences and the model predictions. """ # Adjust the max number of assistant tokens to use in the next iteration. This is a simple heuristic, # probably can be improved -- we want to balance the benefits of getting assistant tokens correct with the # cost of forecasting incorrect assistant tokens. if self.assistant_model.generation_config.num_assistant_tokens_schedule in { "heuristic", "heuristic_transient", }: # len(scores[0])-1 is the number of candidates according to the target tokenizer. if num_matches == len(scores[0]) - 1: self.num_assistant_tokens += 2.0 else: self.num_assistant_tokens = max(1.0, self.num_assistant_tokens - 1.0) # The assistant's confidence threshold is adjusted throughout the speculative iterations to reduce the number of unnecessary draft and target forward passes. The costs are estimated based on the ROC curve, which considers the probability of the draft token and its match with the target. A cost of 25% is assigned to false positives and 75% to false negatives. # This adaptation is not compatible with UAG, as it relies on the number of matched tokens based on the draft vocabulary, which is unavailable in UAG. if ( is_sklearn_available() and self.assistant_model.generation_config.assistant_confidence_threshold and type(self) is AssistedCandidateGenerator ): # update self.matches self.matches.extend([1] * num_matches) if len(self.probs) > len(self.matches): self.matches.append(0) # update self.probs excess_length = len(self.probs) - len(self.matches) if excess_length > 0: del self.probs[-excess_length:] if ( len(self.probs) > 5 and {0, 1}.issubset(self.matches) ): # require at least 5 samples to calculate the ROC curve and at least one positive and one negative sample fpr, tpr, thresholds = roc_curve(self.matches, self.probs) fnr = 1 - tpr # Calculate the cost for each threshold costs = fpr + 3 * fnr # Find the threshold that minimizes the cost optimal_threshold_index = np.argmin(costs) best_threshold = thresholds[optimal_threshold_index] self.assistant_model.generation_config.assistant_confidence_threshold = best_threshold def _calculate_new_tokens(self, input_ids: torch.LongTensor) -> Tuple[int, int]: """Calculate the minimum and maximum number of new tokens to generate.""" new_cur_len = input_ids.shape[-1] max_new_tokens = min(int(self.num_assistant_tokens), self.generation_config.max_length - new_cur_len - 1) min_new_tokens = max(min(max_new_tokens, self.main_model_min_length - new_cur_len), 0) return min_new_tokens, max_new_tokens def _update_past_and_masks(self, input_ids: torch.LongTensor, remove_from_pkv: int = 0) -> bool: """Update past key values and attention masks for subsequent generation rounds.""" has_past_key_values = self.assistant_kwargs.get("past_key_values", None) is not None if has_past_key_values: new_cache_size = input_ids.shape[-1] - 1 - remove_from_pkv self.assistant_kwargs["past_key_values"] = _crop_past_key_values( self.assistant_model, self.assistant_kwargs["past_key_values"], new_cache_size - 1 ) self.assistant_kwargs = _prepare_attention_mask( self.assistant_kwargs, input_ids.shape[-1], self.assistant_model.config.is_encoder_decoder ) self.assistant_kwargs = _prepare_token_type_ids(self.assistant_kwargs, input_ids.shape[-1]) return has_past_key_values def _prepare_generation_args(self, input_ids: torch.LongTensor, min_new_tokens: int, max_new_tokens: int) -> Dict: """Prepare arguments for the generation call.""" return { self.input_ids_key: input_ids, "min_new_tokens": min_new_tokens, "max_new_tokens": max_new_tokens, "generation_config": self.generation_config, "logits_processor": self.logits_processor, } def _generate_candidates(self, generation_args: Dict) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]: """Generate candidate sequences using the assistant model.""" assistant_output = self.assistant_model.generate(**generation_args, **self.assistant_kwargs) self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values if ( is_sklearn_available() and self.assistant_model.generation_config.assistant_confidence_threshold and type(self) is AssistedCandidateGenerator ): scores_tensor = torch.cat(assistant_output.scores, dim=0) scores_softmax = torch.softmax(scores_tensor, dim=-1) ids = assistant_output.sequences[-1, -len(assistant_output.scores) :] p = scores_softmax[range(len(ids)), ids] self.probs.extend(p.tolist()) candidate_logits = torch.stack(assistant_output.scores, dim=1) candidate_ids = assistant_output.sequences return candidate_ids, candidate_logits class AssistedCandidateGeneratorDifferentTokenizers(AssistedCandidateGenerator): """ `CandidateGenerator` class to be used for Universal Assisted Generation (UAD): assisted generation with different tokenizers for the assistant and main models. This class generates candidates through the use of a smaller model. The main model input tokens are re-encoded into assistant model tokens, then candidate tokens are generated in the assistant encoding, which are in turn re-encoded into main model candidate tokens. Validation then proceeds as explained above. The re-encoding steps involve decoding token ids into text and then encoding the text using a different tokenizer. Since re-encoding the tokens may result in tokenization discrepancies, UAD finds the longest common subsequence between the source and target encodings, to ensure the new tokens include the correct prompt suffix. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) assistant_model (`PreTrainedModel`): The model to be used for generating candidates. This model should be smaller than the main model. target_tokenizer (`PreTrainedTokenizerBase`): The tokenizer used for the target model. assistant_tokenizer (`PreTrainedTokenizerBase`): The tokenizer used for the assistant model. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. model_kwargs (`Dict`): The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant model as well. inputs_tensor (`torch.Tensor`, *optional*): The model input tensor. In encoder-decoder models, this is the encoder input. """ def __init__( self, input_ids: torch.LongTensor, assistant_model: "PreTrainedModel", target_tokenizer: "PreTrainedTokenizerBase", assistant_tokenizer: "PreTrainedTokenizerBase", generation_config: "GenerationConfig", model_kwargs: Dict, inputs_tensor: Optional[torch.Tensor] = None, logits_processor: "LogitsProcessorList" = None, ): super().__init__(input_ids, assistant_model, generation_config, model_kwargs, inputs_tensor, logits_processor) self.target_tokenizer = target_tokenizer self.assistant_tokenizer = assistant_tokenizer self.prev_target_ids_len: Optional[int] = None self.prev_assistant_ids = None self.target_lookbehind = assistant_model.generation_config.target_lookbehind self.assistant_lookbehind = assistant_model.generation_config.assistant_lookbehind @staticmethod def _get_longest_diag_dict(input_matrix, nonzero_idx): """ Calculates the length of the longest diagonal sequence in a given matrix. Args: input_matrix (torch.Tensor): The input matrix. nonzero_idx (torch.Tensor): The indices of the non-zero elements in the matrix. Returns: dict: A dictionary where the keys are the indices of the non-zero elements and the values are the lengths of the longest diagonal sequences starting from those indices. """ visited = set() diags = {} for idx in nonzero_idx: start_idx = torch.clone(idx) tuple_start_idx = tuple(start_idx.tolist()) if tuple_start_idx in visited: continue visited.add(tuple_start_idx) cur_diag_len = 1 start_idx += 1 while start_idx[0] < input_matrix.shape[0] and start_idx[1] < input_matrix.shape[1]: tuple_start_idx = tuple(start_idx.tolist()) visited.add(tuple_start_idx) if input_matrix[start_idx[0], start_idx[1]] == 1: cur_diag_len += 1 start_idx += 1 else: break diags[idx] = cur_diag_len return diags @staticmethod def _get_longest_diag_index(input_matrix): """ Returns the start index and length of the longest diagonal in the given input. Args: input_matrix (numpy.ndarray): The input matrix. Returns: tuple: A tuple containing the start index and length of the longest diagonal. """ diags = AssistedCandidateGeneratorDifferentTokenizers._get_longest_diag_dict( input_matrix, input_matrix.nonzero() ) diags_values = list(diags.values()) diags_keys = list(diags.keys()) best_diag = np.argmax(diags_values) diag_start_index = diags_keys[best_diag] diag_start_length = diags_values[best_diag] return diag_start_index, diag_start_length @staticmethod def _get_tokens_diag(prompt, prompt_plus_new_tokens): """ Input: prompt: 2D array of shape (batch_size, prompt_length), represents the original prompt tokens prompt_plus_new_tokens: 2D array of shape (batch_size, prompt_length), represents the suffix of the original prompt, with additional new tokens. Output: discrepancy_length: int, represents the number of tokens that need to be replaced from prompt new_tokens_only: 2D array of shape (batch_size, new_token_length), represents the new tokens that are not in prompt discrepancy_only: 2D array of shape (batch_size, discrepancy_length), represents the new tokens that are in prompt but not in prompt_plus_new_tokens """ compare_mat = prompt_plus_new_tokens.T == prompt if not torch.is_tensor(compare_mat): compare_mat = torch.tensor(compare_mat) compare_mat_int = compare_mat.to(int) if not compare_mat_int.any().item(): # empty intersection between prompt and prompt_plus_new_tokens return None, None, None longest_location, longest_diag_length = AssistedCandidateGeneratorDifferentTokenizers._get_longest_diag_index( compare_mat_int ) new_token_start_index = longest_location[0] + longest_diag_length discrepancy_with_old = longest_location[1] + longest_diag_length discrepancy_length = (prompt.shape[1] - discrepancy_with_old).item() new_tokens_only = prompt_plus_new_tokens[:, new_token_start_index + discrepancy_length :] discrepancy_only = prompt_plus_new_tokens[ :, new_token_start_index : new_token_start_index + discrepancy_length ] return discrepancy_length, new_tokens_only, discrepancy_only def convert_source_tokens_to_target_tokens( self, input_ids, source_tokenizer, destination_tokenizer, ): """ Convert token IDs from one tokenizer to another. Args: input_ids: The input token IDs. source_tokenizer: The source tokenizer. destination_tokenizer: The destination tokenizer. Returns: The converted token IDs. """ text = source_tokenizer.batch_decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) dest_ids = destination_tokenizer(text, add_special_tokens=True, return_tensors="pt")["input_ids"] return dest_ids.to(input_ids.device) def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]: """ Fetches the candidates to be tried for the current input. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) Return: `torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be assessed by the model and a `torch.FloatTensor` of shape `(batch_size, candidate_length, vocabulary_size)` containing the logits associated to each candidate. """ max_new_tokens = int(self.num_assistant_tokens) if max_new_tokens == 0: return input_ids, None input_ids = input_ids.to(self.assistant_model.device) remove_from_pkv = 0 assistant_input_ids, remove_from_pkv = self._prepare_assistant_input_ids(input_ids) self.prev_assistant_ids = assistant_input_ids min_new_tokens = max(min(max_new_tokens, self.main_model_min_length - assistant_input_ids.shape[-1]), 0) self._update_past_and_masks(assistant_input_ids, remove_from_pkv) generation_args = self._prepare_generation_args(assistant_input_ids, min_new_tokens, max_new_tokens) self.assistant_kwargs.pop("attention_mask", None) assistant_output = self.assistant_model.generate(**generation_args, **self.assistant_kwargs) new_target_ids = self._process_assistant_outputs(input_ids, assistant_output.sequences, assistant_input_ids) # Update state self.prev_target_ids_len = input_ids.shape[1] self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values self.prev_assistant_ids = assistant_output.sequences if self.prev_target_ids_len >= new_target_ids.shape[1]: return input_ids, None return new_target_ids, None def _prepare_assistant_input_ids(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, int]: """Converts target input IDs to assistant input IDs, handling discrepancies.""" convert_kwargs = { "source_tokenizer": self.target_tokenizer, "destination_tokenizer": self.assistant_tokenizer, } remove_from_pkv = 0 if self.prev_assistant_ids is not None and self.prev_target_ids_len > self.target_lookbehind: # input_ids contains all target prompt input ids and some new target input ids start_index_in_target_window = self.prev_target_ids_len - self.target_lookbehind new_assistant_ids = self.convert_source_tokens_to_target_tokens( input_ids[:, start_index_in_target_window:], **convert_kwargs ) prompt_use_length = new_assistant_ids.shape[1] prompt_use = self.prev_assistant_ids[:, -prompt_use_length:] discrepancy_length, new_tokens_only, discrepancy_only = self._get_tokens_diag( prompt_use, new_assistant_ids ) assistant_input_ids = self.prev_assistant_ids if new_tokens_only is not None: if discrepancy_length > 0 and discrepancy_only.shape[1] > 0: if discrepancy_length == discrepancy_only.shape[1]: assistant_input_ids[:, -discrepancy_length:] = discrepancy_only elif discrepancy_length > discrepancy_only.shape[1]: discrepancy_length_diff = discrepancy_length - discrepancy_only.shape[1] assistant_input_ids = assistant_input_ids[:, :-discrepancy_length_diff] assistant_input_ids[:, -discrepancy_only.shape[1] :] = discrepancy_only remove_from_pkv = discrepancy_length if new_tokens_only.shape[1] > 0: assistant_input_ids = torch.cat([assistant_input_ids, new_tokens_only], dim=-1) else: # edge case: in case of no intersection between prompt and new_assistant_ids assistant_input_ids = torch.cat([assistant_input_ids, new_assistant_ids], dim=-1) else: assistant_input_ids = self.convert_source_tokens_to_target_tokens(input_ids, **convert_kwargs) self.prev_target_ids_len = input_ids.shape[1] return assistant_input_ids, remove_from_pkv def _process_assistant_outputs( self, input_ids: torch.LongTensor, assistant_sequences: torch.LongTensor, assistant_input_ids: torch.LongTensor ) -> torch.LongTensor: """Processes assistant outputs to obtain target input IDs.""" num_prev_assistant = self.prev_assistant_ids.shape[1] start_assistant_look_index = num_prev_assistant - self.assistant_lookbehind new_target_ids_from_window = self.convert_source_tokens_to_target_tokens( assistant_sequences[:, start_assistant_look_index:], source_tokenizer=self.assistant_tokenizer, destination_tokenizer=self.target_tokenizer, ) target_prompt_use_length = new_target_ids_from_window.shape[1] target_prompt_use = input_ids[:, -target_prompt_use_length:] _, target_new_tokens_only, _ = self._get_tokens_diag(target_prompt_use, new_target_ids_from_window) new_target_ids = input_ids if target_new_tokens_only is not None: if target_new_tokens_only.shape[1] > 0: new_target_ids = torch.cat([new_target_ids, target_new_tokens_only], dim=-1) else: # edge case: in case of no intersection between prompt and new_target_ids new_target_ids = torch.cat([new_target_ids, new_target_ids_from_window], dim=-1) if hasattr(self.generation_config, "max_length"): new_target_ids = new_target_ids[:, : self.generation_config.max_length] return new_target_ids class PromptLookupCandidateGenerator(CandidateGenerator): """ `CandidateGenerator` class to be used for prompt lookup generation. This class generates candidates by looking up likely continuations in the provided prompt (input_ids) itself. Read the following blog post for more information: https://github.com/apoorvumang/prompt-lookup-decoding Args: max_matching_ngram_size (`int`): The maximum ngram size to be considered for matching in the prompt num_output_tokens (`int`): The number of tokens to be output as candidate tokens. max_length (`int`): The number of total maximum tokens that can be generated. For decoder-only models that includes the prompt length. Defaults to 20, which is the max length used as default in generation config. """ def __init__( self, eos_token_id: torch.Tensor = None, num_output_tokens: int = 10, max_matching_ngram_size: int = None, max_length: int = 20, ): self.num_output_tokens = num_output_tokens self.max_matching_ngram_size = max_matching_ngram_size if max_matching_ngram_size else 2 self.max_length = max_length self.eos_token_id = eos_token_id if self.max_matching_ngram_size <= 0 or self.num_output_tokens <= 0: raise ValueError("Invalid max_matching_ngram_size or num_output_tokens") def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]: """ Fetches the candidates to be tried for the current input. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) Return: `torch.LongTensor` of shape `(num_candidates, candidate_length)`: The candidate sequences to be tried. """ input_length = input_ids.size(1) # Don't generate more than `max_length - 1` candidates since the target model generates one extra token. if self.max_length == input_length + 1: return input_ids, None chosen_ids = None match_found = False for ngram_size in range(min(self.max_matching_ngram_size, input_length - 1), 0, -1): # Create sliding windows of size ngram_size windows = input_ids.unfold(dimension=1, size=ngram_size, step=1) # Convert ngram to a tensor for comparison ngram_tensor = input_ids[0, -ngram_size:] # Find where the windows match the ngram matches = (windows == ngram_tensor).all(dim=2) # Get the indices of matches match_indices = matches.nonzero(as_tuple=True)[1] # Iterate through match indices to find a valid continuation for idx in match_indices: start_idx = idx + ngram_size end_idx = start_idx + self.num_output_tokens end_idx = min(end_idx, input_length, self.max_length) if start_idx < end_idx: chosen_ids = input_ids[0, start_idx:end_idx] match_found = True # remove remaining candidate ids if an "eos" token is found, otherwise the target model may # accept eos and the rest as valid, thus not stopping generation after "eos" # NOTE: below code is written based on the fact that assisted decoding supports only bs=1 mask = isin_mps_friendly(chosen_ids, self.eos_token_id) match_indices_eos = torch.nonzero(mask) if match_indices_eos.numel() > 0: first_eos_index = match_indices_eos[0].item() chosen_ids = chosen_ids[:first_eos_index] break if match_found: break if chosen_ids is None or len(chosen_ids) == 0: # In case we didn't find a match return the input sequence unchanged, reverts back to autoregressive decoding return input_ids, None # Now need extend input_ids with chosen_ids chosen_ids = chosen_ids.unsqueeze(0) candidate_input_ids = torch.cat((input_ids, chosen_ids), dim=1) # assisted_generation expects logits as well, but we don't have those here, so returning None return candidate_input_ids, None def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int): """ Updates the candidate generation strategy based on the outcomes. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search num_matches (`int`): The number of matches between the candidate sequences and the model predictions. """ # Currently does nothing return class EarlyExitCandidateGenerator(AssistedCandidateGenerator): """ `CandidateGenerator` class to be used for assisted generation and speculative decoding. This class generates candidates through the use of **the model itself**, exiting early. Can only be used with models that support early exit, e.g., `facebook/layerskip-llama3.2-1B`. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) assistant_model (`PreTrainedModel`): The original model. This model must support early exit (i.e. is trained to compute logits in earlier layers). generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. model_kwargs (`Dict`): The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant model as well. inputs_tensor (`torch.Tensor`, *optional*): The model input tensor. In encoder-decoder models, this is the encoder input. """ def __init__( self, input_ids: torch.LongTensor, assistant_model: "PreTrainedModel", generation_config: "GenerationConfig", model_kwargs: Dict, inputs_tensor: Optional[torch.Tensor] = None, logits_processor: "LogitsProcessorList" = None, ): super().__init__( input_ids=input_ids, assistant_model=assistant_model, generation_config=generation_config, model_kwargs=model_kwargs, inputs_tensor=inputs_tensor, logits_processor=logits_processor, ) # We have to move early exit out of the generation config, otherwise the assistant will also call `generate` # with early exit self.assistant_early_exit = self.generation_config.assistant_early_exit self.generation_config.assistant_early_exit = None def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]: # Temporarily sets the number of hidden layers to the early exit value base_model = getattr(self.assistant_model, self.assistant_model.base_model_prefix) original_num_hidden_layers = base_model.config.num_hidden_layers base_model.config.num_hidden_layers = self.assistant_early_exit candidate_ids, candidate_logits = super().get_candidates(input_ids) base_model.config.num_hidden_layers = original_num_hidden_layers return candidate_ids, candidate_logits def _crop_past_key_values(model, past_key_values, max_length): """Crops the past key values up to a certain maximum length.""" new_past = [] if model.config.is_encoder_decoder: for idx in range(len(past_key_values)): new_past.append( ( past_key_values[idx][0][:, :, :max_length, :], past_key_values[idx][1][:, :, :max_length, :], past_key_values[idx][2], past_key_values[idx][3], ) ) past_key_values = tuple(new_past) # gptbigcode is special and stores kv in shape (batch_size, seq_len, dim), if it's a multi_query model elif "gptbigcode" in model.__class__.__name__.lower() or ( model.config.architectures is not None and "gptbigcode" in model.config.architectures[0].lower() ): if model.config.multi_query: for idx in range(len(past_key_values)): past_key_values[idx] = past_key_values[idx][:, :max_length, :] else: for idx in range(len(past_key_values)): past_key_values[idx] = past_key_values[idx][:, :, :max_length, :] elif isinstance(past_key_values, DynamicCache): past_key_values.crop(max_length) elif past_key_values is not None: for idx in range(len(past_key_values)): if past_key_values[idx] != ([], []): new_past.append( ( past_key_values[idx][0][:, :, :max_length, :], past_key_values[idx][1][:, :, :max_length, :], ) ) else: new_past.append((past_key_values[idx][0], past_key_values[idx][1])) past_key_values = tuple(new_past) return past_key_values def _prepare_attention_mask(model_kwargs: Dict[str, Any], new_length: int, is_encoder_decoder: bool) -> Dict[str, Any]: """Expands or crops the model's mask for decoding purposes, to the defined length""" mask_key = "decoder_attention_mask" if is_encoder_decoder else "attention_mask" if mask_key not in model_kwargs: return model_kwargs mask = model_kwargs[mask_key] mask_length_diff = new_length - mask.shape[1] if mask_length_diff < 0: model_kwargs[mask_key] = mask[:, :mask_length_diff] elif mask_length_diff > 0: model_kwargs[mask_key] = torch.cat([mask, mask.new_ones((mask.shape[0], mask_length_diff))], dim=-1) # Handle cross attention models if "cross_attention_mask" in model_kwargs: # Mllama case cross_mask = model_kwargs["cross_attention_mask"] if mask_length_diff < 0: model_kwargs["cross_attention_mask"] = cross_mask[:, :mask_length_diff] elif mask_length_diff > 0: new_mask = cross_mask[:, -1:, :, :].repeat(1, mask_length_diff, 1, 1) model_kwargs["cross_attention_mask"] = torch.cat([cross_mask, new_mask], dim=1) elif "image_attention_mask" in model_kwargs: # IDEFICS case cross_mask = model_kwargs["image_attention_mask"] if mask_length_diff < 0: model_kwargs["image_attention_mask"] = cross_mask[:, :mask_length_diff] elif mask_length_diff > 0: new_mask = cross_mask[:, -1:, :].repeat(1, mask_length_diff, 1) model_kwargs["image_attention_mask"] = torch.cat([cross_mask, new_mask], dim=1) return model_kwargs def _prepare_token_type_ids(model_kwargs: Dict[str, Any], new_length: int) -> Dict[str, Any]: """Expands or crops the model's token_type_ids for decoding purposes, to the defined length""" if "token_type_ids" not in model_kwargs or model_kwargs["token_type_ids"] is None: return model_kwargs token_type_ids = model_kwargs["token_type_ids"] final_token_type = token_type_ids[:, -1].unsqueeze(-1) type_length_diff = new_length - token_type_ids.shape[1] if type_length_diff < 0: token_type_ids = token_type_ids[:, :type_length_diff] elif type_length_diff > 0: token_type_copies = final_token_type.repeat(1, type_length_diff) model_kwargs["token_type_ids"] = torch.cat([model_kwargs["token_type_ids"], token_type_copies], dim=-1) return model_kwargs
transformers/src/transformers/generation/candidate_generator.py/0
{ "file_path": "transformers/src/transformers/generation/candidate_generator.py", "repo_id": "transformers", "token_count": 17972 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from math import ceil from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Union import numpy as np from .image_utils import ( ChannelDimension, ImageInput, get_channel_dimension_axis, get_image_size, infer_channel_dimension_format, ) from .utils import ExplicitEnum, TensorType, is_jax_tensor, is_tf_tensor, is_torch_tensor from .utils.import_utils import ( is_flax_available, is_tf_available, is_torch_available, is_vision_available, requires_backends, ) if is_vision_available(): import PIL from .image_utils import PILImageResampling if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp def to_channel_dimension_format( image: np.ndarray, channel_dim: Union[ChannelDimension, str], input_channel_dim: Optional[Union[ChannelDimension, str]] = None, ) -> np.ndarray: """ Converts `image` to the channel dimension format specified by `channel_dim`. Args: image (`numpy.ndarray`): The image to have its channel dimension set. channel_dim (`ChannelDimension`): The channel dimension format to use. input_channel_dim (`ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. Returns: `np.ndarray`: The image with the channel dimension set to `channel_dim`. """ if not isinstance(image, np.ndarray): raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}") if input_channel_dim is None: input_channel_dim = infer_channel_dimension_format(image) target_channel_dim = ChannelDimension(channel_dim) if input_channel_dim == target_channel_dim: return image if target_channel_dim == ChannelDimension.FIRST: image = image.transpose((2, 0, 1)) elif target_channel_dim == ChannelDimension.LAST: image = image.transpose((1, 2, 0)) else: raise ValueError("Unsupported channel dimension format: {}".format(channel_dim)) return image def rescale( image: np.ndarray, scale: float, data_format: Optional[ChannelDimension] = None, dtype: np.dtype = np.float32, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescales `image` by `scale`. Args: image (`np.ndarray`): The image to rescale. scale (`float`): The scale to use for rescaling the image. data_format (`ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. dtype (`np.dtype`, *optional*, defaults to `np.float32`): The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature extractors. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. Returns: `np.ndarray`: The rescaled image. """ if not isinstance(image, np.ndarray): raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}") rescaled_image = image.astype(np.float64) * scale # Numpy type promotion has changed, so always upcast first if data_format is not None: rescaled_image = to_channel_dimension_format(rescaled_image, data_format, input_data_format) rescaled_image = rescaled_image.astype(dtype) # Finally downcast to the desired dtype at the end return rescaled_image def _rescale_for_pil_conversion(image): """ Detects whether or not the image needs to be rescaled before being converted to a PIL image. The assumption is that if the image is of type `np.float` and all values are between 0 and 1, it needs to be rescaled. """ if image.dtype == np.uint8: do_rescale = False elif np.allclose(image, image.astype(int)): if np.all(0 <= image) and np.all(image <= 255): do_rescale = False else: raise ValueError( "The image to be converted to a PIL image contains values outside the range [0, 255], " f"got [{image.min()}, {image.max()}] which cannot be converted to uint8." ) elif np.all(0 <= image) and np.all(image <= 1): do_rescale = True else: raise ValueError( "The image to be converted to a PIL image contains values outside the range [0, 1], " f"got [{image.min()}, {image.max()}] which cannot be converted to uint8." ) return do_rescale def to_pil_image( image: Union[np.ndarray, "PIL.Image.Image", "torch.Tensor", "tf.Tensor", "jnp.ndarray"], do_rescale: Optional[bool] = None, image_mode: Optional[str] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> "PIL.Image.Image": """ Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if needed. Args: image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`): The image to convert to the `PIL.Image` format. do_rescale (`bool`, *optional*): Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default to `True` if the image type is a floating type and casting to `int` would result in a loss of precision, and `False` otherwise. image_mode (`str`, *optional*): The mode to use for the PIL image. If unset, will use the default mode for the input image type. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `PIL.Image.Image`: The converted image. """ requires_backends(to_pil_image, ["vision"]) if isinstance(image, PIL.Image.Image): return image # Convert all tensors to numpy arrays before converting to PIL image if is_torch_tensor(image) or is_tf_tensor(image): image = image.numpy() elif is_jax_tensor(image): image = np.array(image) elif not isinstance(image, np.ndarray): raise ValueError("Input image type not supported: {}".format(type(image))) # If the channel has been moved to first dim, we put it back at the end. image = to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format) # If there is a single channel, we squeeze it, as otherwise PIL can't handle it. image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image # PIL.Image can only store uint8 values so we rescale the image to be between 0 and 255 if needed. do_rescale = _rescale_for_pil_conversion(image) if do_rescale is None else do_rescale if do_rescale: image = rescale(image, 255) image = image.astype(np.uint8) return PIL.Image.fromarray(image, mode=image_mode) def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. """ height, width = image_size raw_size = None if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: raw_size = max_size * min_original_size / max_original_size size = int(round(raw_size)) if (height <= width and height == size) or (width <= height and width == size): oh, ow = height, width elif width < height: ow = size if max_size is not None and raw_size is not None: oh = int(raw_size * height / width) else: oh = int(size * height / width) else: oh = size if max_size is not None and raw_size is not None: ow = int(raw_size * width / height) else: ow = int(size * width / height) return (oh, ow) # Logic adapted from torchvision resizing logic: https://github.com/pytorch/vision/blob/511924c1ced4ce0461197e5caa64ce5b9e558aab/torchvision/transforms/functional.py#L366 def get_resize_output_image_size( input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int], Tuple[int]], default_to_square: bool = True, max_size: Optional[int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> tuple: """ Find the target (height, width) dimension of the output image after resizing given the input image and the desired size. Args: input_image (`np.ndarray`): The image to resize. size (`int` or `Tuple[int, int]` or List[int] or `Tuple[int]`): The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to this. If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size). default_to_square (`bool`, *optional*, defaults to `True`): How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square (`size`,`size`). If set to `False`, will replicate [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize) with support for resizing only the smallest edge and providing an optional `max_size`. max_size (`int`, *optional*): The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater than `max_size` after being resized according to `size`, then the image is resized again so that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter than `size`. Only used if `default_to_square` is `False`. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `tuple`: The target (height, width) dimension of the output image after resizing. """ if isinstance(size, (tuple, list)): if len(size) == 2: return tuple(size) elif len(size) == 1: # Perform same logic as if size was an int size = size[0] else: raise ValueError("size must have 1 or 2 elements if it is a list or tuple") if default_to_square: return (size, size) height, width = get_image_size(input_image, input_data_format) short, long = (width, height) if width <= height else (height, width) requested_new_short = size new_short, new_long = requested_new_short, int(requested_new_short * long / short) if max_size is not None: if max_size <= requested_new_short: raise ValueError( f"max_size = {max_size} must be strictly greater than the requested " f"size for the smaller edge size = {size}" ) if new_long > max_size: new_short, new_long = int(max_size * new_short / new_long), max_size return (new_long, new_short) if width <= height else (new_short, new_long) def resize( image: np.ndarray, size: Tuple[int, int], resample: "PILImageResampling" = None, reducing_gap: Optional[int] = None, data_format: Optional[ChannelDimension] = None, return_numpy: bool = True, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Resizes `image` to `(height, width)` specified by `size` using the PIL library. Args: image (`np.ndarray`): The image to resize. size (`Tuple[int, int]`): The size to use for resizing the image. resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`): The filter to user for resampling. reducing_gap (`int`, *optional*): Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to the fair resampling. See corresponding Pillow documentation for more details. data_format (`ChannelDimension`, *optional*): The channel dimension format of the output image. If unset, will use the inferred format from the input. return_numpy (`bool`, *optional*, defaults to `True`): Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is returned. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `np.ndarray`: The resized image. """ requires_backends(resize, ["vision"]) resample = resample if resample is not None else PILImageResampling.BILINEAR if not len(size) == 2: raise ValueError("size must have 2 elements") # For all transformations, we want to keep the same data format as the input image unless otherwise specified. # The resized image from PIL will always have channels last, so find the input format first. if input_data_format is None: input_data_format = infer_channel_dimension_format(image) data_format = input_data_format if data_format is None else data_format # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use # the pillow library to resize the image and then convert back to numpy do_rescale = False if not isinstance(image, PIL.Image.Image): do_rescale = _rescale_for_pil_conversion(image) image = to_pil_image(image, do_rescale=do_rescale, input_data_format=input_data_format) height, width = size # PIL images are in the format (width, height) resized_image = image.resize((width, height), resample=resample, reducing_gap=reducing_gap) if return_numpy: resized_image = np.array(resized_image) # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image # so we need to add it back if necessary. resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image # The image is always in channels last format after converting from a PIL image resized_image = to_channel_dimension_format( resized_image, data_format, input_channel_dim=ChannelDimension.LAST ) # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to # rescale it back to the original range. resized_image = rescale(resized_image, 1 / 255) if do_rescale else resized_image return resized_image def normalize( image: np.ndarray, mean: Union[float, Sequence[float]], std: Union[float, Sequence[float]], data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Normalizes `image` using the mean and standard deviation specified by `mean` and `std`. image = (image - mean) / std Args: image (`np.ndarray`): The image to normalize. mean (`float` or `Sequence[float]`): The mean to use for normalization. std (`float` or `Sequence[float]`): The standard deviation to use for normalization. data_format (`ChannelDimension`, *optional*): The channel dimension format of the output image. If unset, will use the inferred format from the input. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. """ if not isinstance(image, np.ndarray): raise ValueError("image must be a numpy array") if input_data_format is None: input_data_format = infer_channel_dimension_format(image) channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format) num_channels = image.shape[channel_axis] # We cast to float32 to avoid errors that can occur when subtracting uint8 values. # We preserve the original dtype if it is a float type to prevent upcasting float16. if not np.issubdtype(image.dtype, np.floating): image = image.astype(np.float32) if isinstance(mean, Sequence): if len(mean) != num_channels: raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}") else: mean = [mean] * num_channels mean = np.array(mean, dtype=image.dtype) if isinstance(std, Sequence): if len(std) != num_channels: raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}") else: std = [std] * num_channels std = np.array(std, dtype=image.dtype) if input_data_format == ChannelDimension.LAST: image = (image - mean) / std else: image = ((image.T - mean) / std).T image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image return image def center_crop( image: np.ndarray, size: Tuple[int, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, return_numpy: Optional[bool] = None, ) -> np.ndarray: """ Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to the size given, it will be padded (so the returned result will always be of size `size`). Args: image (`np.ndarray`): The image to crop. size (`Tuple[int, int]`): The target size for the cropped image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. return_numpy (`bool`, *optional*): Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the previous ImageFeatureExtractionMixin method. - Unset: will return the same type as the input image. - `True`: will return a numpy array. - `False`: will return a `PIL.Image.Image` object. Returns: `np.ndarray`: The cropped image. """ requires_backends(center_crop, ["vision"]) if return_numpy is not None: warnings.warn("return_numpy is deprecated and will be removed in v.4.33", FutureWarning) return_numpy = True if return_numpy is None else return_numpy if not isinstance(image, np.ndarray): raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}") if not isinstance(size, Iterable) or len(size) != 2: raise ValueError("size must have 2 elements representing the height and width of the output image") if input_data_format is None: input_data_format = infer_channel_dimension_format(image) output_data_format = data_format if data_format is not None else input_data_format # We perform the crop in (C, H, W) format and then convert to the output format image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format) orig_height, orig_width = get_image_size(image, ChannelDimension.FIRST) crop_height, crop_width = size crop_height, crop_width = int(crop_height), int(crop_width) # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result. top = (orig_height - crop_height) // 2 bottom = top + crop_height # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result. left = (orig_width - crop_width) // 2 right = left + crop_width # Check if cropped area is within image boundaries if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width: image = image[..., top:bottom, left:right] image = to_channel_dimension_format(image, output_data_format, ChannelDimension.FIRST) return image # Otherwise, we may need to pad if the image is too small. Oh joy... new_height = max(crop_height, orig_height) new_width = max(crop_width, orig_width) new_shape = image.shape[:-2] + (new_height, new_width) new_image = np.zeros_like(image, shape=new_shape) # If the image is too small, pad it with zeros top_pad = ceil((new_height - orig_height) / 2) bottom_pad = top_pad + orig_height left_pad = ceil((new_width - orig_width) / 2) right_pad = left_pad + orig_width new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image top += top_pad bottom += top_pad left += left_pad right += left_pad new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)] new_image = to_channel_dimension_format(new_image, output_data_format, ChannelDimension.FIRST) if not return_numpy: new_image = to_pil_image(new_image) return new_image def _center_to_corners_format_torch(bboxes_center: "torch.Tensor") -> "torch.Tensor": center_x, center_y, width, height = bboxes_center.unbind(-1) bbox_corners = torch.stack( # top left x, top left y, bottom right x, bottom right y [(center_x - 0.5 * width), (center_y - 0.5 * height), (center_x + 0.5 * width), (center_y + 0.5 * height)], dim=-1, ) return bbox_corners def _center_to_corners_format_numpy(bboxes_center: np.ndarray) -> np.ndarray: center_x, center_y, width, height = bboxes_center.T bboxes_corners = np.stack( # top left x, top left y, bottom right x, bottom right y [center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height], axis=-1, ) return bboxes_corners def _center_to_corners_format_tf(bboxes_center: "tf.Tensor") -> "tf.Tensor": center_x, center_y, width, height = tf.unstack(bboxes_center, axis=-1) bboxes_corners = tf.stack( # top left x, top left y, bottom right x, bottom right y [center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height], axis=-1, ) return bboxes_corners # 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py def center_to_corners_format(bboxes_center: TensorType) -> TensorType: """ Converts bounding boxes from center format to corners format. center format: contains the coordinate for the center of the box and its width, height dimensions (center_x, center_y, width, height) corners format: contains the coodinates for the top-left and bottom-right corners of the box (top_left_x, top_left_y, bottom_right_x, bottom_right_y) """ # Function is used during model forward pass, so we use the input framework if possible, without # converting to numpy if is_torch_tensor(bboxes_center): return _center_to_corners_format_torch(bboxes_center) elif isinstance(bboxes_center, np.ndarray): return _center_to_corners_format_numpy(bboxes_center) elif is_tf_tensor(bboxes_center): return _center_to_corners_format_tf(bboxes_center) raise ValueError(f"Unsupported input type {type(bboxes_center)}") def _corners_to_center_format_torch(bboxes_corners: "torch.Tensor") -> "torch.Tensor": top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.unbind(-1) b = [ (top_left_x + bottom_right_x) / 2, # center x (top_left_y + bottom_right_y) / 2, # center y (bottom_right_x - top_left_x), # width (bottom_right_y - top_left_y), # height ] return torch.stack(b, dim=-1) def _corners_to_center_format_numpy(bboxes_corners: np.ndarray) -> np.ndarray: top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.T bboxes_center = np.stack( [ (top_left_x + bottom_right_x) / 2, # center x (top_left_y + bottom_right_y) / 2, # center y (bottom_right_x - top_left_x), # width (bottom_right_y - top_left_y), # height ], axis=-1, ) return bboxes_center def _corners_to_center_format_tf(bboxes_corners: "tf.Tensor") -> "tf.Tensor": top_left_x, top_left_y, bottom_right_x, bottom_right_y = tf.unstack(bboxes_corners, axis=-1) bboxes_center = tf.stack( [ (top_left_x + bottom_right_x) / 2, # center x (top_left_y + bottom_right_y) / 2, # center y (bottom_right_x - top_left_x), # width (bottom_right_y - top_left_y), # height ], axis=-1, ) return bboxes_center def corners_to_center_format(bboxes_corners: TensorType) -> TensorType: """ Converts bounding boxes from corners format to center format. corners format: contains the coordinates for the top-left and bottom-right corners of the box (top_left_x, top_left_y, bottom_right_x, bottom_right_y) center format: contains the coordinate for the center of the box and its the width, height dimensions (center_x, center_y, width, height) """ # Inverse function accepts different input types so implemented here too if is_torch_tensor(bboxes_corners): return _corners_to_center_format_torch(bboxes_corners) elif isinstance(bboxes_corners, np.ndarray): return _corners_to_center_format_numpy(bboxes_corners) elif is_tf_tensor(bboxes_corners): return _corners_to_center_format_tf(bboxes_corners) raise ValueError(f"Unsupported input type {type(bboxes_corners)}") # 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py # Copyright (c) 2018, Alexander Kirillov # All rights reserved. def rgb_to_id(color): """ Converts RGB color to unique ID. """ if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.int32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return int(color[0] + 256 * color[1] + 256 * 256 * color[2]) def id_to_rgb(id_map): """ Converts unique ID to RGB color. """ if isinstance(id_map, np.ndarray): id_map_copy = id_map.copy() rgb_shape = tuple(list(id_map.shape) + [3]) rgb_map = np.zeros(rgb_shape, dtype=np.uint8) for i in range(3): rgb_map[..., i] = id_map_copy % 256 id_map_copy //= 256 return rgb_map color = [] for _ in range(3): color.append(id_map % 256) id_map //= 256 return color class PaddingMode(ExplicitEnum): """ Enum class for the different padding modes to use when padding images. """ CONSTANT = "constant" REFLECT = "reflect" REPLICATE = "replicate" SYMMETRIC = "symmetric" def pad( image: np.ndarray, padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]], mode: PaddingMode = PaddingMode.CONSTANT, constant_values: Union[float, Iterable[float]] = 0.0, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pads the `image` with the specified (height, width) `padding` and `mode`. Args: image (`np.ndarray`): The image to pad. padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`): Padding to apply to the edges of the height, width axes. Can be one of three formats: - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis. - `((before, after),)` yields same before and after pad for height and width. - `(pad,)` or int is a shortcut for before = after = pad width for all axes. mode (`PaddingMode`): The padding mode to use. Can be one of: - `"constant"`: pads with a constant value. - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. Returns: `np.ndarray`: The padded image. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(image) def _expand_for_data_format(values): """ Convert values to be in the format expected by np.pad based on the data format. """ if isinstance(values, (int, float)): values = ((values, values), (values, values)) elif isinstance(values, tuple) and len(values) == 1: values = ((values[0], values[0]), (values[0], values[0])) elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], int): values = (values, values) elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], tuple): values = values else: raise ValueError(f"Unsupported format: {values}") # add 0 for channel dimension values = ((0, 0), *values) if input_data_format == ChannelDimension.FIRST else (*values, (0, 0)) # Add additional padding if there's a batch dimension values = (0, *values) if image.ndim == 4 else values return values padding = _expand_for_data_format(padding) if mode == PaddingMode.CONSTANT: constant_values = _expand_for_data_format(constant_values) image = np.pad(image, padding, mode="constant", constant_values=constant_values) elif mode == PaddingMode.REFLECT: image = np.pad(image, padding, mode="reflect") elif mode == PaddingMode.REPLICATE: image = np.pad(image, padding, mode="edge") elif mode == PaddingMode.SYMMETRIC: image = np.pad(image, padding, mode="symmetric") else: raise ValueError(f"Invalid padding mode: {mode}") image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image return image # TODO (Amy): Accept 1/3/4 channel numpy array as input and return np.array as default def convert_to_rgb(image: ImageInput) -> ImageInput: """ Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image as is. Args: image (Image): The image to convert. """ requires_backends(convert_to_rgb, ["vision"]) if not isinstance(image, PIL.Image.Image): return image if image.mode == "RGB": return image image = image.convert("RGB") return image def flip_channel_order( image: np.ndarray, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Flips the channel order of the image. If the image is in RGB format, it will be converted to BGR and vice versa. Args: image (`np.ndarray`): The image to flip. data_format (`ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. """ input_data_format = infer_channel_dimension_format(image) if input_data_format is None else input_data_format if input_data_format == ChannelDimension.LAST: image = image[..., ::-1] elif input_data_format == ChannelDimension.FIRST: image = image[::-1, ...] else: raise ValueError(f"Unsupported channel dimension: {input_data_format}") if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _cast_tensor_to_float(x): if x.is_floating_point(): return x return x.float() def group_images_by_shape( images: List["torch.Tensor"], ) -> Tuple[Dict[Tuple[int, int], List["torch.Tensor"]], Dict[int, Tuple[Tuple[int, int], int]]]: """ Groups images by shape. Returns a dictionary with the shape as key and a list of images with that shape as value, and a dictionary with the index of the image in the original list as key and the shape and index in the grouped list as value. """ grouped_images = {} grouped_images_index = {} for i, image in enumerate(images): shape = image.shape[1:] if shape not in grouped_images: grouped_images[shape] = [] grouped_images[shape].append(image) grouped_images_index[i] = (shape, len(grouped_images[shape]) - 1) # stack images with the same shape grouped_images = {shape: torch.stack(images, dim=0) for shape, images in grouped_images.items()} return grouped_images, grouped_images_index def reorder_images( processed_images: Dict[Tuple[int, int], "torch.Tensor"], grouped_images_index: Dict[int, Tuple[int, int]] ) -> List["torch.Tensor"]: """ Reconstructs a list of images in the original order. """ return [ processed_images[grouped_images_index[i][0]][grouped_images_index[i][1]] for i in range(len(grouped_images_index)) ] class NumpyToTensor: """ Convert a numpy array to a PyTorch tensor. """ def __call__(self, image: np.ndarray): # Same as in PyTorch, we assume incoming numpy images are in HWC format # c.f. https://github.com/pytorch/vision/blob/61d97f41bc209e1407dcfbd685d2ee2da9c1cdad/torchvision/transforms/functional.py#L154 return torch.from_numpy(image.transpose(2, 0, 1)).contiguous()
transformers/src/transformers/image_transforms.py/0
{ "file_path": "transformers/src/transformers/image_transforms.py", "repo_id": "transformers", "token_count": 14687 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "HQQ (Half-Quadratic Quantization) integration file" from ..utils import is_hqq_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) # Name all modules inside the model def autoname_modules(model): for name, module in model.named_modules(): module.name = name # Get the linear_tag from a modul name. For example: model.layers.31.self_attn.k_proj -> self_attn.k_proj def name_to_linear_tag(name): return ".".join([n for n in name.split(".") if ((n not in ["model", "layers"]) and (not n.isnumeric()))]) # Get all linear tags available def get_linear_tags(model): if is_hqq_available(): from hqq.core.quantize import HQQLinear linear_tags = set() for name, module in model.named_modules(): if isinstance(module, (torch.nn.Linear, HQQLinear)): linear_tags.add(name_to_linear_tag(name)) return list(linear_tags) def _prepare_for_hqq_linear(model, patch_params, has_been_replaced, current_key_name=None): for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, torch.nn.Linear): # Get linear tag linear_tag = name_to_linear_tag(module.name) # We put the module quant_config into the nn.Linear layer so we can access it later in quantizer_hqq.create_quantized_param() if linear_tag in patch_params: if patch_params[linear_tag] is not None: model._modules[name].quant_config = patch_params[linear_tag] # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) has_been_replaced = True # Add these fake parameters to avoid loading fail for att in ["W_q", "meta"]: setattr(module, att, None) if len(list(module.children())) > 0: _, has_been_replaced = _prepare_for_hqq_linear( module, patch_params=patch_params, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def prepare_for_hqq_linear(model, quantization_config=None, modules_to_not_convert=None, has_been_replaced=False): """ Prepares nn.Linear layers for HQQ quantization. Since each layer type can have separate quantization parameters, we need to do the following: 1- tag each module with its neme via autoname_modules() 2- Extract linear_tags (e.g. ['self_attn.q_proj', ...]) 3- Map quantization parameters as a dictionary linear_tag -> quant_params as HQQLinear exepects it, this is referred to as patch_params """ modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert # Add name to module autoname_modules(model) # Get linear tags. This allows us to use different quant params to different layer types linear_tags = get_linear_tags(model) # Convert quantization_config to layer-wise config skip_modules = quantization_config.skip_modules quant_config = quantization_config.quant_config linear_tags = list(set(linear_tags) - set(skip_modules) - set(modules_to_not_convert)) if any(key in linear_tags for key in quant_config.keys()): # If the user doesn't specify a key from get_linear_tags, the layer is not quantized via (key, None) patch_params = {key: None for key in linear_tags} patch_params.update(quant_config) else: # Same quant_config for all layers patch_params = {k: quant_config for k in linear_tags} model, has_been_replaced = _prepare_for_hqq_linear( model, patch_params=patch_params, has_been_replaced=has_been_replaced ) # We store quantization config as linear_tag -> hqq quant config model.config.quantization_config = { "quant_config": quant_config, "quant_method": quantization_config.quant_method, "skip_modules": skip_modules, } if not has_been_replaced: logger.warning("No linear modules were found in your model for quantization.") return model
transformers/src/transformers/integrations/hqq.py/0
{ "file_path": "transformers/src/transformers/integrations/hqq.py", "repo_id": "transformers", "token_count": 1920 }
#include <torch/extension.h> #include <ATen/ATen.h> #include <vector> #define min(a, b) ((a)<(b)?(a):(b)) #define max(a, b) ((a)>(b)?(a):(b)) std::vector<at::Tensor> index_max_kernel( at::Tensor index_vals, at::Tensor indices, int A_num_block, int B_num_block ); at::Tensor mm_to_sparse_kernel( at::Tensor dense_A, at::Tensor dense_B, at::Tensor indices ); at::Tensor sparse_dense_mm_kernel( at::Tensor sparse_A, at::Tensor indices, at::Tensor dense_B, int A_num_block ); at::Tensor reduce_sum_kernel( at::Tensor sparse_A, at::Tensor indices, int A_num_block, int B_num_block ); at::Tensor scatter_kernel( at::Tensor dense_A, at::Tensor indices, int B_num_block );
transformers/src/transformers/kernels/mra/cuda_launch.h/0
{ "file_path": "transformers/src/transformers/kernels/mra/cuda_launch.h", "repo_id": "transformers", "token_count": 312 }
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from ..utils import is_scipy_available, is_vision_available, requires_backends from .loss_for_object_detection import ( box_iou, dice_loss, generalized_box_iou, nested_tensor_from_tensor_list, sigmoid_focal_loss, ) if is_scipy_available(): from scipy.optimize import linear_sum_assignment if is_vision_available(): from transformers.image_transforms import center_to_corners_format # different for RT-DETR: not slicing the last element like in DETR one @torch.jit.unused def _set_aux_loss(outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class, outputs_coord)] class RTDetrHungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Args: config: RTDetrConfig """ def __init__(self, config): super().__init__() requires_backends(self, ["scipy"]) self.class_cost = config.matcher_class_cost self.bbox_cost = config.matcher_bbox_cost self.giou_cost = config.matcher_giou_cost self.use_focal_loss = config.use_focal_loss self.alpha = config.matcher_alpha self.gamma = config.matcher_gamma if self.class_cost == self.bbox_cost == self.giou_cost == 0: raise ValueError("All costs of the Matcher can't be 0") @torch.no_grad() def forward(self, outputs, targets): """Performs the matching Params: outputs: This is a dict that contains at least these entries: "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ batch_size, num_queries = outputs["logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes target_ids = torch.cat([v["class_labels"] for v in targets]) target_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. if self.use_focal_loss: out_prob = F.sigmoid(outputs["logits"].flatten(0, 1)) out_prob = out_prob[:, target_ids] neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = self.alpha * ((1 - out_prob) ** self.gamma) * (-(out_prob + 1e-8).log()) class_cost = pos_cost_class - neg_cost_class else: out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] class_cost = -out_prob[:, target_ids] # Compute the L1 cost between boxes bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) # Compute the giou cost betwen boxes giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) # Compute the final cost matrix cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] class RTDetrLoss(nn.Module): """ This class computes the losses for RTDetr. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box). Args: matcher (`DetrHungarianMatcher`): Module able to compute a matching between targets and proposals. weight_dict (`Dict`): Dictionary relating each loss with its weights. These losses are configured in RTDetrConf as `weight_loss_vfl`, `weight_loss_bbox`, `weight_loss_giou` losses (`List[str]`): List of all the losses to be applied. See `get_loss` for a list of all available losses. alpha (`float`): Parameter alpha used to compute the focal loss. gamma (`float`): Parameter gamma used to compute the focal loss. eos_coef (`float`): Relative classification weight applied to the no-object category. num_classes (`int`): Number of object categories, omitting the special no-object category. """ def __init__(self, config): super().__init__() self.matcher = RTDetrHungarianMatcher(config) self.num_classes = config.num_labels self.weight_dict = { "loss_vfl": config.weight_loss_vfl, "loss_bbox": config.weight_loss_bbox, "loss_giou": config.weight_loss_giou, } self.losses = ["vfl", "boxes"] self.eos_coef = config.eos_coefficient empty_weight = torch.ones(config.num_labels + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) self.alpha = config.focal_loss_alpha self.gamma = config.focal_loss_gamma def loss_labels_vfl(self, outputs, targets, indices, num_boxes, log=True): if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") if "logits" not in outputs: raise KeyError("No predicted logits found in outputs") idx = self._get_source_permutation_idx(indices) src_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([_target["boxes"][i] for _target, (_, i) in zip(targets, indices)], dim=0) ious, _ = box_iou(center_to_corners_format(src_boxes), center_to_corners_format(target_boxes)) ious = torch.diag(ious).detach() src_logits = outputs["logits"] target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_original target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1] target_score_original = torch.zeros_like(target_classes, dtype=src_logits.dtype) target_score_original[idx] = ious.to(target_score_original.dtype) target_score = target_score_original.unsqueeze(-1) * target pred_score = F.sigmoid(src_logits).detach() weight = self.alpha * pred_score.pow(self.gamma) * (1 - target) + target_score loss = F.binary_cross_entropy_with_logits(src_logits, target_score, weight=weight, reduction="none") loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes return {"loss_vfl": loss} def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ if "logits" not in outputs: raise KeyError("No logits were found in the outputs") src_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_original loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.class_weight) losses = {"loss_ce": loss_ce} return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. """ logits = outputs["logits"] device = logits.device target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) losses = {"cardinality_error": card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") idx = self._get_source_permutation_idx(indices) src_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) losses = {} loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none") losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(center_to_corners_format(src_boxes), center_to_corners_format(target_boxes)) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the masks: the focal loss and the dice loss. Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. """ if "pred_masks" not in outputs: raise KeyError("No predicted masks found in outputs") source_idx = self._get_source_permutation_idx(indices) target_idx = self._get_target_permutation_idx(indices) source_masks = outputs["pred_masks"] source_masks = source_masks[source_idx] masks = [t["masks"] for t in targets] target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(source_masks) target_masks = target_masks[target_idx] # upsample predictions to the target size source_masks = nn.functional.interpolate( source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False ) source_masks = source_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) target_masks = target_masks.view(source_masks.shape) losses = { "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), "loss_dice": dice_loss(source_masks, target_masks, num_boxes), } return losses def loss_labels_bce(self, outputs, targets, indices, num_boxes, log=True): src_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_original target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1] loss = F.binary_cross_entropy_with_logits(src_logits, target * 1.0, reduction="none") loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes return {"loss_bce": loss} def _get_source_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) source_idx = torch.cat([source for (source, _) in indices]) return batch_idx, source_idx def _get_target_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) target_idx = torch.cat([target for (_, target) in indices]) return batch_idx, target_idx def loss_labels_focal(self, outputs, targets, indices, num_boxes, log=True): if "logits" not in outputs: raise KeyError("No logits found in outputs") src_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_original target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1] loss = sigmoid_focal_loss(src_logits, target, self.alpha, self.gamma) loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes return {"loss_focal": loss} def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, "masks": self.loss_masks, "bce": self.loss_labels_bce, "focal": self.loss_labels_focal, "vfl": self.loss_labels_vfl, } if loss not in loss_map: raise ValueError(f"Loss {loss} not supported") return loss_map[loss](outputs, targets, indices, num_boxes) @staticmethod def get_cdn_matched_indices(dn_meta, targets): dn_positive_idx, dn_num_group = dn_meta["dn_positive_idx"], dn_meta["dn_num_group"] num_gts = [len(t["class_labels"]) for t in targets] device = targets[0]["class_labels"].device dn_match_indices = [] for i, num_gt in enumerate(num_gts): if num_gt > 0: gt_idx = torch.arange(num_gt, dtype=torch.int64, device=device) gt_idx = gt_idx.tile(dn_num_group) assert len(dn_positive_idx[i]) == len(gt_idx) dn_match_indices.append((dn_positive_idx[i], gt_idx)) else: dn_match_indices.append( ( torch.zeros(0, dtype=torch.int64, device=device), torch.zeros(0, dtype=torch.int64, device=device), ) ) return dn_match_indices def forward(self, outputs, targets): """ This performs the loss computation. Args: outputs (`dict`, *optional*): Dictionary of tensors, see the output specification of the model for the format. targets (`List[dict]`, *optional*): List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the losses applied, see each loss' doc. """ outputs_without_aux = {k: v for k, v in outputs.items() if "auxiliary_outputs" not in k} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes across all nodes, for normalization purposes num_boxes = sum(len(t["class_labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) num_boxes = torch.clamp(num_boxes, min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes) l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} losses.update(l_dict) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "auxiliary_outputs" in outputs: for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} l_dict = {k + f"_aux_{i}": v for k, v in l_dict.items()} losses.update(l_dict) # In case of cdn auxiliary losses. For rtdetr if "dn_auxiliary_outputs" in outputs: if "denoising_meta_values" not in outputs: raise ValueError( "The output must have the 'denoising_meta_values` key. Please, ensure that 'outputs' includes a 'denoising_meta_values' entry." ) indices = self.get_cdn_matched_indices(outputs["denoising_meta_values"], targets) num_boxes = num_boxes * outputs["denoising_meta_values"]["dn_num_group"] for i, auxiliary_outputs in enumerate(outputs["dn_auxiliary_outputs"]): # indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} l_dict = {k + f"_dn_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses def RTDetrForObjectDetectionLoss( logits, labels, device, pred_boxes, config, outputs_class=None, outputs_coord=None, enc_topk_logits=None, enc_topk_bboxes=None, denoising_meta_values=None, **kwargs, ): criterion = RTDetrLoss(config) criterion.to(device) # Second: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes if config.auxiliary_loss: if denoising_meta_values is not None: dn_out_coord, outputs_coord = torch.split(outputs_coord, denoising_meta_values["dn_num_split"], dim=2) dn_out_class, outputs_class = torch.split(outputs_class, denoising_meta_values["dn_num_split"], dim=2) auxiliary_outputs = _set_aux_loss(outputs_class[:, :-1].transpose(0, 1), outputs_coord[:, :-1].transpose(0, 1)) outputs_loss["auxiliary_outputs"] = auxiliary_outputs outputs_loss["auxiliary_outputs"].extend(_set_aux_loss([enc_topk_logits], [enc_topk_bboxes])) if denoising_meta_values is not None: outputs_loss["dn_auxiliary_outputs"] = _set_aux_loss( dn_out_class.transpose(0, 1), dn_out_coord.transpose(0, 1) ) outputs_loss["denoising_meta_values"] = denoising_meta_values loss_dict = criterion(outputs_loss, labels) loss = sum(loss_dict.values()) return loss, loss_dict, auxiliary_outputs
transformers/src/transformers/loss/loss_rt_detr.py/0
{ "file_path": "transformers/src/transformers/loss/loss_rt_detr.py", "repo_id": "transformers", "token_count": 9478 }
# coding=utf-8 # Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for AltCLIP """ from typing import List, Union from ...image_utils import ImageInput from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput from ...utils.deprecation import deprecate_kwarg class AltClipProcessorKwargs(ProcessingKwargs, total=False): _defaults = {} class AltCLIPProcessor(ProcessorMixin): r""" Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single processor. [`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`XLMRobertaTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") @deprecate_kwarg(old_name="feature_extractor", version="5.0.0", new_name="image_processor") def __init__(self, image_processor=None, tokenizer=None): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[AltClipProcessorKwargs], ) -> BatchEncoding: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`ImageInput`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You must specify either text or images.") if text is None and images is None: raise ValueError("You must specify either text or images.") output_kwargs = self._merge_kwargs( AltClipProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if text is not None: encoding = self.tokenizer(text, **output_kwargs["text_kwargs"]) if images is not None: image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) # BC for explicit return_tensors if "return_tensors" in output_kwargs["common_kwargs"]: return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["AltCLIPProcessor"]
transformers/src/transformers/models/altclip/processing_altclip.py/0
{ "file_path": "transformers/src/transformers/models/altclip/processing_altclip.py", "repo_id": "transformers", "token_count": 2643 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoFeatureExtractor class.""" import importlib import json import os import warnings from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) logger = logging.get_logger(__name__) FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("clvp", "ClvpFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("dac", "DacFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mimi", "EncodecFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("moonshine", "Wav2Vec2FeatureExtractor"), ("moshi", "EncodecFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("pop2piano", "Pop2PianoFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("seamless_m4t", "SeamlessM4TFeatureExtractor"), ("seamless_m4t_v2", "SeamlessM4TFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("univnet", "UnivNetFeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-bert", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) FEATURE_EXTRACTOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def feature_extractor_class_from_name(class_name: str): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(extractor, "__name__", None) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None def get_feature_extractor_config( pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, **kwargs, ): """ Loads the tokenizer configuration from a pretrained model tokenizer configuration. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Dict`: The configuration of the tokenizer. Examples: ```python # Download configuration from huggingface.co and cache. tokenizer_config = get_tokenizer_config("google-bert/bert-base-uncased") # This model does not have a tokenizer config so the result will be an empty dict. tokenizer_config = get_tokenizer_config("FacebookAI/xlm-roberta-base") # Save a pretrained tokenizer locally and you can reload its config from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") tokenizer.save_pretrained("tokenizer-test") tokenizer_config = get_tokenizer_config("tokenizer-test") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token resolved_config_file = get_file_from_repo( pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(resolved_config_file, encoding="utf-8") as reader: return json.load(reader) class AutoFeatureExtractor: r""" This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the library when created with the [`AutoFeatureExtractor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(FEATURE_EXTRACTOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary. The feature extractor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final feature extractor object. If `True`, then this functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the `return_unused_kwargs` keyword parameter. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python >>> from transformers import AutoFeatureExtractor >>> # Download feature extractor from huggingface.co and cache. >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*) >>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) feature_extractor_class = config_dict.get("feature_extractor_type", None) feature_extractor_auto_map = None if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # It could be in `config.feature_extractor_type`` feature_extractor_class = getattr(config, "feature_extractor_type", None) if hasattr(config, "auto_map") and "AutoFeatureExtractor" in config.auto_map: feature_extractor_auto_map = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class) has_remote_code = feature_extractor_auto_map is not None has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: feature_extractor_class = get_class_from_dynamic_module( feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs ) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(config_dict, **kwargs) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(config_dict, **kwargs) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(config) in FEATURE_EXTRACTOR_MAPPING: feature_extractor_class = FEATURE_EXTRACTOR_MAPPING[type(config)] return feature_extractor_class.from_dict(config_dict, **kwargs) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}" ) @staticmethod def register(config_class, feature_extractor_class, exist_ok=False): """ Register a new feature extractor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register. """ FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok)
transformers/src/transformers/models/auto/feature_extraction_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/feature_extraction_auto.py", "repo_id": "transformers", "token_count": 7831 }
# coding=utf-8 # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BARK model configuration""" from typing import Dict from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings, logging from ..auto import CONFIG_MAPPING, AutoConfig logger = logging.get_logger(__name__) BARK_SUBMODELCONFIG_START_DOCSTRING = """ This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: block_size (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). input_vocab_size (`int`, *optional*, defaults to 10_048): Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with regards to the chosen sub-model. output_vocab_size (`int`, *optional*, defaults to 10_048): Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought with regards to the chosen sub-model. num_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the given sub-model. num_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer architecture. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the linear layers and layer norm layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ class BarkSubModelConfig(PretrainedConfig): keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", "vocab_size": "input_vocab_size", "window_size": "block_size", } def __init__( self, block_size=1024, input_vocab_size=10_048, output_vocab_size=10_048, num_layers=12, num_heads=12, hidden_size=768, dropout=0.0, bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster initializer_range=0.02, use_cache=True, **kwargs, ): self.block_size = block_size self.input_vocab_size = input_vocab_size self.output_vocab_size = output_vocab_size self.num_layers = num_layers self.num_heads = num_heads self.hidden_size = hidden_size self.dropout = dropout self.bias = bias self.use_cache = use_cache self.initializer_range = initializer_range super().__init__(**kwargs) @add_start_docstrings( BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkSemanticConfig", model="BarkSemanticModel"), """ Example: ```python >>> from transformers import BarkSemanticConfig, BarkSemanticModel >>> # Initializing a Bark sub-module style configuration >>> configuration = BarkSemanticConfig() >>> # Initializing a model (with random weights) from the suno/bark style configuration >>> model = BarkSemanticModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""", ) class BarkSemanticConfig(BarkSubModelConfig): model_type = "semantic" base_config_key = "semantic_config" @add_start_docstrings( BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkCoarseConfig", model="BarkCoarseModel"), """ Example: ```python >>> from transformers import BarkCoarseConfig, BarkCoarseModel >>> # Initializing a Bark sub-module style configuration >>> configuration = BarkCoarseConfig() >>> # Initializing a model (with random weights) from the suno/bark style configuration >>> model = BarkCoarseModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""", ) class BarkCoarseConfig(BarkSubModelConfig): model_type = "coarse_acoustics" base_config_key = "coarse_acoustics_config" @add_start_docstrings( BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkFineConfig", model="BarkFineModel"), """ n_codes_total (`int`, *optional*, defaults to 8): The total number of audio codebooks predicted. Used in the fine acoustics sub-model. n_codes_given (`int`, *optional*, defaults to 1): The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics sub-models. Example: ```python >>> from transformers import BarkFineConfig, BarkFineModel >>> # Initializing a Bark sub-module style configuration >>> configuration = BarkFineConfig() >>> # Initializing a model (with random weights) from the suno/bark style configuration >>> model = BarkFineModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""", ) class BarkFineConfig(BarkSubModelConfig): model_type = "fine_acoustics" base_config_key = "fine_acoustics_config" def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs): self.n_codes_total = n_codes_total self.n_codes_given = n_codes_given super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) class BarkConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark model according to the specified sub-models configurations, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: semantic_config ([`BarkSemanticConfig`], *optional*): Configuration of the underlying semantic sub-model. coarse_acoustics_config ([`BarkCoarseConfig`], *optional*): Configuration of the underlying coarse acoustics sub-model. fine_acoustics_config ([`BarkFineConfig`], *optional*): Configuration of the underlying fine acoustics sub-model. codec_config ([`AutoConfig`], *optional*): Configuration of the underlying codec sub-model. Example: ```python >>> from transformers import ( ... BarkSemanticConfig, ... BarkCoarseConfig, ... BarkFineConfig, ... BarkModel, ... BarkConfig, ... AutoConfig, ... ) >>> # Initializing Bark sub-modules configurations. >>> semantic_config = BarkSemanticConfig() >>> coarse_acoustics_config = BarkCoarseConfig() >>> fine_acoustics_config = BarkFineConfig() >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz") >>> # Initializing a Bark module style configuration >>> configuration = BarkConfig.from_sub_model_configs( ... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config ... ) >>> # Initializing a model (with random weights) >>> model = BarkModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "bark" sub_configs = { "semantic_config": BarkSemanticConfig, "coarse_acoustics_config": BarkCoarseConfig, "fine_acoustics_config": BarkFineConfig, "codec_config": AutoConfig, } def __init__( self, semantic_config: Dict = None, coarse_acoustics_config: Dict = None, fine_acoustics_config: Dict = None, codec_config: Dict = None, initializer_range=0.02, **kwargs, ): if semantic_config is None: semantic_config = {} logger.info("semantic_config is None. initializing the semantic model with default values.") if coarse_acoustics_config is None: coarse_acoustics_config = {} logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") if fine_acoustics_config is None: fine_acoustics_config = {} logger.info("fine_acoustics_config is None. initializing the fine model with default values.") if codec_config is None: codec_config = {} logger.info("codec_config is None. initializing the codec model with default values.") self.semantic_config = BarkSemanticConfig(**semantic_config) self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config) self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config) codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec" self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config) self.initializer_range = initializer_range super().__init__(**kwargs) @classmethod def from_sub_model_configs( cls, semantic_config: BarkSemanticConfig, coarse_acoustics_config: BarkCoarseConfig, fine_acoustics_config: BarkFineConfig, codec_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration. Returns: [`BarkConfig`]: An instance of a configuration object """ return cls( semantic_config=semantic_config.to_dict(), coarse_acoustics_config=coarse_acoustics_config.to_dict(), fine_acoustics_config=fine_acoustics_config.to_dict(), codec_config=codec_config.to_dict(), **kwargs, ) __all__ = ["BarkCoarseConfig", "BarkConfig", "BarkFineConfig", "BarkSemanticConfig"]
transformers/src/transformers/models/bark/configuration_bark.py/0
{ "file_path": "transformers/src/transformers/models/bark/configuration_bark.py", "repo_id": "transformers", "token_count": 4331 }
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BigBird model.""" import math import os from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_big_bird import BigBirdConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" _CONFIG_FOR_DOC = "BigBirdConfig" _TRIVIA_QA_MAPPING = { "big_bird_attention": "attention/self", "output_layer_norm": "output/LayerNorm", "attention_output": "attention/output/dense", "output": "output/dense", "self_attention_layer_norm": "attention/output/LayerNorm", "intermediate": "intermediate/dense", "word_embeddings": "bert/embeddings/word_embeddings", "position_embedding": "bert/embeddings/position_embeddings", "type_embeddings": "bert/embeddings/token_type_embeddings", "embeddings": "bert/embeddings", "layer_normalization": "output/LayerNorm", "layer_norm": "LayerNorm", "trivia_qa_head": "qa_classifier", "dense": "intermediate/dense", "dense_1": "qa_outputs", } def load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=False): """Load tf checkpoints in a pytorch model.""" def load_tf_weights_bert(init_vars, tf_path): names = [] tf_weights = {} for name, shape in init_vars: array = tf.train.load_variable(tf_path, name) name = name.replace("bert/encoder/LayerNorm", "bert/embeddings/LayerNorm") logger.info(f"Loading TF weight {name} with shape {shape}") names.append(name) tf_weights[name] = array return names, tf_weights def load_tf_weights_trivia_qa(init_vars): names = [] tf_weights = {} for i, var in enumerate(init_vars): name_items = var.name.split("/") if "transformer_scaffold" in name_items[0]: layer_name_items = name_items[0].split("_") if len(layer_name_items) < 3: layer_name_items += [0] name_items[0] = f"bert/encoder/layer_{layer_name_items[2]}" name = "/".join([_TRIVIA_QA_MAPPING[x] if x in _TRIVIA_QA_MAPPING else x for x in name_items])[ :-2 ] # remove last :0 in variable if "self/attention/output" in name: name = name.replace("self/attention/output", "output") if i >= len(init_vars) - 2: name = name.replace("intermediate", "output") logger.info(f"Loading TF weight {name} with shape {var.shape}") array = var.value().numpy() names.append(name) tf_weights[name] = array return names, tf_weights try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.saved_model.load(tf_path).variables if is_trivia_qa else tf.train.list_variables(tf_path) if len(init_vars) <= 0: raise ValueError("Loaded trained variables cannot be empty.") pt_names = list(model.state_dict().keys()) if is_trivia_qa: names, tf_weights = load_tf_weights_trivia_qa(init_vars) else: names, tf_weights = load_tf_weights_bert(init_vars, tf_path) for txt_name in names: array = tf_weights[txt_name] name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model pt_name = [] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") pt_name.append("weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") pt_name.append("bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") pt_name.append("weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") pt_name.append("classifier") elif scope_names[0] == "transform": pointer = getattr(pointer, "transform") pt_name.append("transform") if ("bias" in name) or ("kernel" in name): pointer = getattr(pointer, "dense") pt_name.append("dense") elif ("beta" in name) or ("gamma" in name): pointer = getattr(pointer, "LayerNorm") pt_name.append("LayerNorm") else: try: pointer = getattr(pointer, scope_names[0]) pt_name.append(f"{scope_names[0]}") except AttributeError: logger.info(f"Skipping {m_name}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] pt_name.append(f"{num}") if m_name[-11:] == "_embeddings" or m_name == "embeddings": pointer = getattr(pointer, "weight") pt_name.append("weight") elif m_name == "kernel": array = np.transpose(array) try: if len(array.shape) > len(pointer.shape) and math.prod(array.shape) == math.prod(pointer.shape): # print(txt_name, array.shape) if ( txt_name.endswith("attention/self/key/kernel") or txt_name.endswith("attention/self/query/kernel") or txt_name.endswith("attention/self/value/kernel") ): array = array.transpose(1, 0, 2).reshape(pointer.shape) elif txt_name.endswith("attention/output/dense/kernel"): array = array.transpose(0, 2, 1).reshape(pointer.shape) else: array = array.reshape(pointer.shape) if pointer.shape != array.shape: raise ValueError( f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched of {txt_name}." ) except ValueError as e: e.args += (pointer.shape, array.shape) raise pt_weight_name = ".".join(pt_name) logger.info(f"Initialize PyTorch weight {pt_weight_name} from {txt_name}.") pointer.data = torch.from_numpy(array) tf_weights.pop(txt_name, None) pt_names.remove(pt_weight_name) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") logger.info(f"Weights not initialized in PyTorch model: {', '.join(pt_names)}.") return model class BigBirdEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.rescale_embeddings = config.rescale_embeddings self.hidden_size = config.hidden_size def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.rescale_embeddings: inputs_embeds = inputs_embeds * (self.hidden_size**0.5) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.dropout(embeddings) embeddings = self.LayerNorm(embeddings) return embeddings class BigBirdSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BigBirdModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BigBirdBlockSparseAttention(nn.Module): def __init__(self, config, seed=None): super().__init__() self.max_seqlen = config.max_position_embeddings self.seed = seed if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.num_random_blocks = config.num_random_blocks self.block_size = config.block_size self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, band_mask=None, from_mask=None, to_mask=None, from_blocked_mask=None, to_blocked_mask=None, output_attentions=None, ): # Currently this `class` can't be used in decoder. batch_size, seqlen, _ = hidden_states.size() to_seq_length = from_seq_length = seqlen from_block_size = to_block_size = self.block_size if from_seq_length % from_block_size != 0: raise ValueError("Query sided sequence length must be multiple of block size") if to_seq_length % to_block_size != 0: raise ValueError("Key/Value sided sequence length must be multiple of block size") query_layer = self.transpose_for_scores(self.query(hidden_states)) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) context_layer, attention_probs = self.bigbird_block_sparse_attention( query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, self.num_attention_heads, self.num_random_blocks, self.attention_head_size, from_block_size, to_block_size, batch_size, from_seq_length, to_seq_length, seed=self.seed, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=output_attentions, ) context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs @staticmethod def torch_bmm_nd(inp_1, inp_2, ndim=None): """Fast nd matrix multiplication""" # faster replacement of torch.einsum ("bhqk,bhkd->bhqd") return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view( inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1]) ) @staticmethod def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None): """Fast nd matrix multiplication with transpose""" # faster replacement of torch.einsum (bhqd,bhkd->bhqk) return torch.bmm( inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2) ).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2])) def bigbird_block_sparse_attention( self, query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, n_heads, n_rand_blocks, attention_head_size, from_block_size, to_block_size, batch_size, from_seq_len, to_seq_len, seed, plan_from_length, plan_num_rand_blocks, output_attentions, ): # BigBird block-sparse attention as suggested in paper # ITC: # global tokens: 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # ETC: # global tokens: extra_globals_tokens + 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # Note: # 1) Currently, ETC is not supported. # 2) Window size is fixed to 3 blocks & it can be changed only by # changing `block_size`. # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be # controlled only by `block_size`. # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention) # hence following code can be divided into 5 parts. if from_seq_len // from_block_size != to_seq_len // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rsqrt_d = 1 / math.sqrt(attention_head_size) bsz = batch_size attn_mask_penalty = -10000.0 # generate random attention and corresponding masks np.random.seed(seed) if from_seq_len in [1024, 3072, 4096]: # old plans used in paper rand_attn = [ self._bigbird_block_rand_mask( self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024 )[: (from_seq_len // from_block_size - 2)] for _ in range(n_heads) ] else: if plan_from_length is None: plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( from_seq_len, from_block_size, n_rand_blocks ) rand_attn = self._bigbird_block_rand_mask_with_head( from_seq_length=from_seq_len, to_seq_length=to_seq_len, from_block_size=from_block_size, to_block_size=to_block_size, num_heads=n_heads, plan_from_length=plan_from_length, plan_num_rand_blocks=plan_num_rand_blocks, ) rand_attn = np.stack(rand_attn, axis=0) rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long) rand_attn.unsqueeze_(0) rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0) rand_mask = self._create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size ) blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) # preparing block for randn attn gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn) gathered_key = gathered_key.view( bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn) gathered_value = gathered_value.view( bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] # 1st PART # 1st block (global block) attention scores # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4) first_product = first_product * rsqrt_d first_product += (1.0 - to_mask) * attn_mask_penalty first_attn_weights = nn.functional.softmax( first_product, dim=-1 ) # [bsz, n_heads, from_block_size, to_seq_len] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4) first_context_layer.unsqueeze_(2) # 2nd PART # 2nd block attention scores # q[1] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> 2nd, 3rd blocks # global key blocks -> 1st block second_key_mat = torch.cat( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, 1], blocked_key_matrix[:, :, 2], blocked_key_matrix[:, :, -1], gathered_key[:, :, 0], ], dim=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] second_value_mat = torch.cat( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, 1], blocked_value_matrix[:, :, 2], blocked_value_matrix[:, :, -1], gathered_value[:, :, 0], ], dim=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4) second_seq_pad = torch.cat( [ to_mask[:, :, :, : 3 * to_block_size], to_mask[:, :, :, -to_block_size:], to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), ], dim=3, ) second_rand_pad = torch.cat( [ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), rand_mask[:, :, 0], ], dim=3, ) second_product = second_product * rsqrt_d second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty second_attn_weights = nn.functional.softmax( second_product, dim=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4) second_context_layer.unsqueeze_(2) # 3rd PART # Middle blocks attention scores # q[-2:2] x (sliding_keys, random_keys, global_keys) # sliding attn is calculated using special trick of shifting tokens as discussed in paper # random keys are generated by taking random indices as per `rand_attn` # global keys -> 1st & last block exp_blocked_key_matrix = torch.cat( [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3 ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] exp_blocked_value_matrix = torch.cat( [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], dim=3, ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] middle_query_matrix = blocked_query_matrix[:, :, 2:-2] # sliding attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] inner_band_product = inner_band_product * rsqrt_d # randn attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] rand_band_product = rand_band_product * rsqrt_d # Including 1st block (since it's global) first_band_product = torch.einsum( "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] first_band_product = first_band_product * rsqrt_d # Including last block (since it's global) last_band_product = torch.einsum( "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] last_band_product = last_band_product * rsqrt_d # masking padded tokens inner_band_product += (1.0 - band_mask) * attn_mask_penalty first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty # completing attention scores matrix for all q[-2:2] band_product = torch.cat( [first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # safely doing softmax since attention matrix is completed attn_weights = nn.functional.softmax( band_product, dim=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # contribution of sliding keys # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] context_layer = self.torch_bmm_nd( attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5 ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of random keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] context_layer += self.torch_bmm_nd( attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5 ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of global keys context_layer += torch.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += torch.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # 4th PART # last 2nd token attention scores # q[-2] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> last 3 blocks # global key block -> 1st block # random key block -> based on indices stored in `randn_attn` second_last_key_mat = torch.cat( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, -3], blocked_key_matrix[:, :, -2], blocked_key_matrix[:, :, -1], gathered_key[:, :, -1], ], dim=2, ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] second_last_value_mat = torch.cat( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, -3], blocked_value_matrix[:, :, -2], blocked_value_matrix[:, :, -1], gathered_value[:, :, -1], ], dim=2, ) # [bsz, n_heads, (4+r)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4) second_last_seq_pad = torch.cat( [ to_mask[:, :, :, :to_block_size], to_mask[:, :, :, -3 * to_block_size :], to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), ], dim=3, ) second_last_rand_pad = torch.cat( [ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), rand_mask[:, :, -1], ], dim=3, ) second_last_product = second_last_product * rsqrt_d second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty second_last_attn_weights = nn.functional.softmax( second_last_product, dim=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4) second_last_context_layer.unsqueeze_(2) # 5th PART # last block (global) attention scores # q[-1] x (k[0], k[1], k[2], k[3], .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4) last_product = last_product * rsqrt_d last_product += (1.0 - to_mask) * attn_mask_penalty last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4) last_context_layer.unsqueeze_(2) # combining representations of all tokens context_layer = torch.cat( [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], dim=2, ) context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask context_layer = torch.transpose(context_layer, 1, 2) # this is just for visualizing; forward pass doesn't depend on following code if output_attentions: # TODO(PVP): need to verify if below code is correct attention_probs = torch.zeros( bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device ) # 1st query block # corresponding to `first_context_layer` attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global # 2nd query block # corresponding to `second_context_layer` attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[ :, :, :, : 3 * to_block_size ] # 1st three key blocks (global + sliding) attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[ :, :, :, 3 * to_block_size : 4 * to_block_size ] # last key block (global) # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[:, 4 * to_block_size :] attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # Middle query blocks # corresponding to `context_layer` # sliding keys for q_idx in range(from_seq_len // from_block_size - 4): attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, )[:, :, 2:-2, :, 1:-1, :] right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size] attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view( bsz, n_heads, from_block_size, 3, to_block_size ) # inner_band_product # global keys (corresponding to 1st key block) attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[ :, :, :, :, :to_block_size ].view(bsz, n_heads, -1, to_block_size) # first_band_product # global keys (corresponding to last key block) attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[ :, :, :, :, -to_block_size: ].view(bsz, n_heads, -1, to_block_size) # last_band_product # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads for q_idx in range(1, len(i2) - 1): attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size] attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # Second-last query block # corresponding to `second_last_context_layer` attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[ :, :, :, :to_block_size ] # 1st key block (global) attention_probs[:, :, -2 * from_block_size : -from_block_size, -3 * to_block_size :] = ( second_last_attn_weights[:, :, :, to_block_size : 4 * to_block_size] ) # last three blocks (global + sliding) # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[:, 4 * to_block_size :] attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # last query block # corresponding to `last_context_layer` attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global else: attention_probs = None return context_layer, attention_probs @staticmethod def torch_gather_b2(params, indices): # this operation is equivalent to tf.gather when batch_dims=2 if params.shape[:2] != indices.shape[:2]: raise ValueError( "Make sure that the first two dimensions of params and indices are identical, but" f" they are params: {params.shape[:2]} vs. indices: {indices.shape[:2]}" ) num_indices_to_gather = indices.shape[-2] * indices.shape[-1] num_indices_to_pick_from = params.shape[2] shift = torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device) indices_shift = torch.div(shift, num_indices_to_gather, rounding_mode="floor") * num_indices_to_pick_from flattened_indices = indices.view(-1) + indices_shift flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1]) out_flattened = flattened_params.index_select(0, flattened_indices) out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:]) return out @staticmethod def _create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, num_attention_heads, num_rand_blocks, batch_size, from_seq_length, from_block_size, ): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. rand_attn: [batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks] num_attention_heads: int. Number of attention heads. num_rand_blocks: int. Number of random chunks per row. batch_size: int. Batch size for computation. from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. Returns: float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, from_block_size, num_rand_blocks*to_block_size]. """ num_windows = from_seq_length // from_block_size - 2 rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)]) rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size) rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask) return rand_mask @staticmethod def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): """ Gives the plan of where to put random attention. Args: from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. num_rand_blocks: int. Number of random chunks per row. Returns: plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for each block """ plan_from_length = [] plan_num_rand_blocks = [] if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(0) elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks // 2) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) else: plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks) return plan_from_length, plan_num_rand_blocks def _bigbird_block_rand_mask( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1 ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_rand_blocks: int. Number of random chunks per row. last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, if positive then num_rand_blocks blocks chosen only up to last_idx. Returns: adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32) # During inference (eval) no randomness if not self.training: return rand_attn middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32) last = to_seq_length // to_block_size - 1 if last_idx > (2 * to_block_size): last = (last_idx // to_block_size) - 1 r = num_rand_blocks # shorthand for i in range(1, from_seq_length // from_block_size - 1): start = i - 2 end = i if i == 1: rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r] elif i == 2: rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r] elif i == from_seq_length // from_block_size - 3: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] # Missing -3: should have been sliced till last-3 elif i == from_seq_length // from_block_size - 2: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] # Missing -4: should have been sliced till last-4 else: if start > last: start = last rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] elif (end + 1) == last: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] else: rand_attn[i - 1, :] = np.random.permutation( np.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) )[:r] return rand_attn def _bigbird_block_rand_mask_with_head( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_heads, plan_from_length, plan_num_rand_blocks, window_block_left=1, window_block_right=1, global_block_top=1, global_block_bottom=1, global_block_left=1, global_block_right=1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_heads: int. total number of heads. plan_from_length: list. plan from length where num_random_blocks are chosen from. plan_num_rand_blocks: list. number of rand blocks within the plan. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_top: int. number of blocks at the top. global_block_bottom: int. number of blocks at the bottom. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length not in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") if from_seq_length not in plan_from_length: raise ValueError("Error from sequence length not in plan!") # Total number of blocks in the mmask num_blocks = from_seq_length // from_block_size # Number of blocks per plan plan_block_length = np.array(plan_from_length) // from_block_size # till when to follow plan max_plan_idx = plan_from_length.index(from_seq_length) # Random Attention adjacency list rand_attn = [ np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32) for i in range(num_heads) ] # During inference (eval) no randomness if not self.training: for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn # We will go iteratively over the plan blocks and pick random number of # Attention blocks from the legally allowed blocks for plan_idx in range(max_plan_idx + 1): rnd_r_cnt = 0 if plan_idx > 0: # set the row for all from_blocks starting from 0 to # plan_block_length[plan_idx-1] # column indx start fromm plan_block_length[plan_idx-1] and ends at # plan_block_length[plan_idx] if plan_num_rand_blocks[plan_idx] > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=plan_block_length[plan_idx - 1], to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) for pl_id in range(plan_idx): if plan_num_rand_blocks[pl_id] == 0: continue for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): rnd_r_cnt = 0 to_start_block_id = 0 if pl_id > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id])) to_start_block_id = plan_block_length[pl_id - 1] curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1])) for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[pl_id], num_rand_blocks=plan_num_rand_blocks[pl_id], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) if plan_num_rand_blocks[plan_idx] == 0: continue curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) from_start_block_id = global_block_top to_start_block_id = 0 if plan_idx > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) from_start_block_id = plan_block_length[plan_idx - 1] to_start_block_id = plan_block_length[plan_idx - 1] for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn @staticmethod def _get_single_block_row_attention( block_id, to_start_block_id, to_end_block_id, num_rand_blocks, window_block_left=1, window_block_right=1, global_block_left=1, global_block_right=1, ): """ For a single row block get random row attention. Args: block_id: int. block id of row. to_start_block_id: int. random attention column start id. to_end_block_id: int. random attention column end id. num_rand_blocks: int. number of random blocks to be selected. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: row containing the random attention vector of size num_rand_blocks. """ # list of to_blocks from which to choose random attention to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32) # permute the blocks perm_block = np.random.permutation(to_block_list) # illegal blocks for the current block id, using window illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) # Add blocks at the start and at the end illegal_blocks.extend(list(range(global_block_left))) illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) # The second from_block cannot choose random attention on second last to_block if block_id == 1: illegal_blocks.append(to_end_block_id - 2) # The second last from_block cannot choose random attention on second to_block if block_id == to_end_block_id - 2: illegal_blocks.append(1) selected_random_blokcs = [] for i in range(to_end_block_id - to_start_block_id): if perm_block[i] not in illegal_blocks: selected_random_blokcs.append(perm_block[i]) if len(selected_random_blokcs) == num_rand_blocks: break return np.array(selected_random_blokcs, dtype=np.int32) # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BigBird class BigBirdSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BigBirdAttention(nn.Module): def __init__(self, config, seed=None): super().__init__() self.attention_type = config.attention_type self.config = config self.seed = seed if self.config.attention_type == "original_full": self.self = BigBirdSelfAttention(config) elif self.config.attention_type == "block_sparse": self.self = BigBirdBlockSparseAttention(config, seed) else: raise ValueError( f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}" ) self.output = BigBirdSelfOutput(config) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value if value == "original_full": # copy all weights to new full attention class attn_weights = BigBirdSelfAttention(self.config) else: # copy all weights to new sparse attention class attn_weights = BigBirdBlockSparseAttention(self.config, self.seed) attn_weights.query = self.self.query attn_weights.value = self.self.value attn_weights.key = self.self.key self.self = attn_weights self.attention_type = value if not self.training: self.self.eval() def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, # block_sparse config band_mask=None, from_mask=None, to_mask=None, from_blocked_mask=None, to_blocked_mask=None, ): # fp16 compatibility if band_mask is not None: band_mask = band_mask.to(hidden_states.dtype) if from_mask is not None: from_mask = from_mask.to(hidden_states.dtype) if to_mask is not None: to_mask = to_mask.to(hidden_states.dtype) if self.attention_type == "original_full": self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: if encoder_hidden_states is not None: raise ValueError("BigBird cannot be used as a decoder when config.attention_type != 'original_full'") self_outputs = self.self( hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BigBird class BigBirdIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BigBird class BigBirdOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BigBirdLayer(nn.Module): def __init__(self, config, seed=None): super().__init__() self.config = config self.attention_type = config.attention_type self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BigBirdAttention(config, seed=seed) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise TypeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BigBirdAttention(config) self.intermediate = BigBirdIntermediate(config) self.output = BigBirdOutput(config) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value self.attention.set_attention_type(value) if self.add_cross_attention: self.crossattention.set_attention_type(value) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, band_mask=None, from_mask=None, to_mask=None, blocked_encoder_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, band_mask=band_mask, from_mask=from_mask, to_mask=to_mask, from_blocked_mask=blocked_encoder_mask, to_blocked_mask=blocked_encoder_mask, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " " cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BigBirdEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.attention_type = config.attention_type self.layer = nn.ModuleList( [BigBirdLayer(config, seed=layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value for layer in self.layer: layer.set_attention_type(value) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, band_mask=None, from_mask=None, to_mask=None, blocked_encoder_mask=None, return_dict=True, ) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, band_mask, from_mask, to_mask, blocked_encoder_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, band_mask, from_mask, to_mask, blocked_encoder_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BigBird class BigBirdPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BigBird class BigBirdLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BigBirdPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BigBird class BigBirdOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BigBirdLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->BigBird class BigBirdOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->BigBird class BigBirdPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BigBirdLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BigBirdPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BigBirdConfig load_tf_weights = load_tf_weights_in_big_bird base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) BIG_BIRD_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BIG_BIRD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @dataclass class BigBirdForPreTrainingOutput(ModelOutput): """ Output type of [`BigBirdForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BigBirdForQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Span-end scores (before SoftMax). pooler_output (`torch.FloatTensor` of shape `(batch_size, 1)`): pooler output from BigBigModel hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", BIG_BIRD_START_DOCSTRING, ) class BigBirdModel(BigBirdPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.attention_type = self.config.attention_type self.config = config self.block_size = self.config.block_size self.embeddings = BigBirdEmbeddings(config) self.encoder = BigBirdEncoder(config) if add_pooling_layer: self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() else: self.pooler = None self.activation = None if self.attention_type != "original_full" and config.add_cross_attention: logger.warning( "When using `BigBirdForCausalLM` as decoder, then `attention_type` must be `original_full`. Setting" " `attention_type=original_full`" ) self.set_attention_type("original_full") # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value self.encoder.set_attention_type(value) @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # NOOP kwargs, for now ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.FloatTensor]]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # in order to use block_sparse attention, sequence_length has to be at least # bigger than all global attentions: 2 * block_size # + sliding tokens: 3 * block_size # + random tokens: 2 * num_random_blocks * block_size max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size if self.attention_type == "block_sparse" and seq_length <= max_tokens_to_attend: # change attention_type from block_sparse to original_full sequence_length = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) logger.warning( "Attention type 'block_sparse' is not possible if sequence_length: " f"{sequence_length} <= num global tokens: 2 * config.block_size " "+ min. num sliding tokens: 3 * config.block_size " "+ config.num_random_blocks * config.block_size " "+ additional buffer: config.num_random_blocks * config.block_size " f"= {max_tokens_to_attend} with config.block_size " f"= {self.config.block_size}, config.num_random_blocks " f"= {self.config.num_random_blocks}. " "Changing attention type to 'original_full'..." ) self.set_attention_type("original_full") if self.attention_type == "block_sparse": ( padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, ) = self._pad_to_block_size( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, pad_token_id=self.config.pad_token_id, ) else: padding_len = 0 if self.attention_type == "block_sparse": blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( attention_mask, self.block_size ) extended_attention_mask = None elif self.attention_type == "original_full": blocked_encoder_mask = None band_mask = None from_mask = None to_mask = None # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) else: raise ValueError( f"attention_type can either be original_full or block_sparse, but is {self.attention_type}" ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, band_mask=band_mask, from_mask=from_mask, to_mask=to_mask, blocked_encoder_mask=blocked_encoder_mask, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooler_output = self.activation(self.pooler(sequence_output[:, 0, :])) if (self.pooler is not None) else None # undo padding if padding_len > 0: # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) sequence_output = sequence_output[:, :-padding_len] if not return_dict: return (sequence_output, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooler_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @staticmethod def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int): batch_size, seq_length = attention_mask.size() if seq_length % block_size != 0: raise ValueError( f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block" f" size is {block_size}." ) def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. Returns: float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, 3*to_block_size]. """ exp_blocked_to_pad = torch.cat( [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2 ) band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) band_mask.unsqueeze_(1) return band_mask blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size) band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) from_mask = attention_mask.view(batch_size, 1, seq_length, 1) to_mask = attention_mask.view(batch_size, 1, 1, seq_length) return blocked_encoder_mask, band_mask, from_mask, to_mask def _pad_to_block_size( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor, position_ids: torch.Tensor, inputs_embeds: torch.Tensor, pad_token_id: int, ): """A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention.""" # padding block_size = self.config.block_size input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape batch_size, seq_len = input_shape[:2] padding_len = (block_size - seq_len % block_size) % block_size if padding_len > 0: logger.warning_once( f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " f"`config.block_size`: {block_size}" ) if input_ids is not None: input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) if position_ids is not None: # pad with position_id = pad_token_id as in modeling_bigbird.BigBirdEmbeddings position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id) if inputs_embeds is not None: input_ids_padding = inputs_embeds.new_full( (batch_size, padding_len), self.config.pad_token_id, dtype=torch.long, ) inputs_embeds_padding = self.embeddings(input_ids_padding) inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) attention_mask = nn.functional.pad( attention_mask, (0, padding_len), value=False ) # no attention on the padding tokens token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds class BigBirdForPreTraining(BigBirdPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.bert = BigBirdModel(config, add_pooling_layer=True) self.cls = BigBirdPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BigBirdForPreTrainingOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be added to masked_lm loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, BigBirdForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None: loss_fct = CrossEntropyLoss() total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if next_sentence_label is not None and total_loss is not None: next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = total_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BigBirdForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING) class BigBirdForMaskedLM(BigBirdPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BigBirdForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BigBirdModel(config) self.cls = BigBirdOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, BigBirdForMaskedLM >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base") >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT >>> # select random long article >>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"] >>> # select random sentence >>> LONG_ARTICLE_TARGET[332:398] 'the highest values are very close to the theoretical maximum value' >>> # add mask_token >>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]") >>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt") >>> # long article input >>> list(inputs["input_ids"].shape) [1, 919] >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) 'maximum' ``` ```python >>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"] >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) 1.99 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """BigBird Model with a `language modeling` head on top for CLM fine-tuning.""", BIG_BIRD_START_DOCSTRING ) class BigBirdForCausalLM(BigBirdPreTrainedModel, GenerationMixin): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BigBirdForCausalLM` as a standalone, add `is_decoder=True.`") self.bert = BigBirdModel(config) self.cls = BigBirdOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.FloatTensor]]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: lm_loss = self.loss_function( prediction_scores, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past class BigBirdClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForSequenceClassification(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BigBirdModel(config) self.classifier = BigBirdClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, BigBirdForSequenceClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli") >>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli") >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT >>> LONG_ARTICLE = squad_ds[81514]["context"] >>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt") >>> # long input article >>> list(inputs["input_ids"].shape) [1, 919] >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'LABEL_0' ``` ```python >>> num_labels = len(model.config.id2label) >>> model = BigBirdForSequenceClassification.from_pretrained( ... "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels ... ) >>> labels = torch.tensor(1) >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) 1.13 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForMultipleChoice(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BigBirdModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MultipleChoiceModelOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForTokenClassification(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BigBirdModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BigBirdForQuestionAnsweringHead(nn.Module): """Head for question answering tasks.""" def __init__(self, config): super().__init__() self.dropout = nn.Dropout(config.hidden_dropout_prob) self.intermediate = BigBirdIntermediate(config) self.output = BigBirdOutput(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) def forward(self, encoder_output): hidden_states = self.dropout(encoder_output) hidden_states = self.intermediate(hidden_states) hidden_states = self.output(hidden_states, encoder_output) hidden_states = self.qa_outputs(hidden_states) return hidden_states @add_start_docstrings( """ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForQuestionAnswering(BigBirdPreTrainedModel): def __init__(self, config, add_pooling_layer=False): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.sep_token_id = config.sep_token_id self.bert = BigBirdModel(config, add_pooling_layer=add_pooling_layer) self.qa_classifier = BigBirdForQuestionAnsweringHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, question_lengths: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BigBirdForQuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base") >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT >>> # select random article and question >>> LONG_ARTICLE = squad_ds[81514]["context"] >>> QUESTION = squad_ds[81514]["question"] >>> QUESTION 'During daytime how high can the temperatures reach?' >>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt") >>> # long article and question input >>> list(inputs["input_ids"].shape) [1, 929] >>> with torch.no_grad(): ... outputs = model(**inputs) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> predict_answer_token = tokenizer.decode(predict_answer_token_ids) ``` ```python >>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = outputs.loss ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict seqlen = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) if question_lengths is None and input_ids is not None: # assuming input_ids format: <cls> <question> <sep> context <sep> question_lengths = torch.argmax(input_ids.eq(self.sep_token_id).int(), dim=-1) + 1 question_lengths.unsqueeze_(1) logits_mask = None if question_lengths is not None: # setting lengths logits to `-inf` logits_mask = self.prepare_question_mask(question_lengths, seqlen) if token_type_ids is None: token_type_ids = torch.ones(logits_mask.size(), dtype=int, device=logits_mask.device) - logits_mask logits_mask = logits_mask logits_mask[:, 0] = False logits_mask.unsqueeze_(2) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_classifier(sequence_output) if logits_mask is not None: # removing question tokens from the competition logits = logits - logits_mask * 1e6 start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BigBirdForQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @staticmethod def prepare_question_mask(q_lengths: torch.Tensor, maxlen: int): # q_lengths -> (bz, 1) mask = torch.arange(0, maxlen).to(q_lengths.device) mask.unsqueeze_(0) # -> (1, maxlen) mask = torch.where(mask < q_lengths, 1, 0) return mask __all__ = [ "BigBirdForCausalLM", "BigBirdForMaskedLM", "BigBirdForMultipleChoice", "BigBirdForPreTraining", "BigBirdForQuestionAnswering", "BigBirdForSequenceClassification", "BigBirdForTokenClassification", "BigBirdLayer", "BigBirdModel", "BigBirdPreTrainedModel", "load_tf_weights_in_big_bird", ]
transformers/src/transformers/models/big_bird/modeling_big_bird.py/0
{ "file_path": "transformers/src/transformers/models/big_bird/modeling_big_bird.py", "repo_id": "transformers", "token_count": 64712 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for BiT.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( convert_to_rgb, get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL class BitImageProcessor(BaseImageProcessor): r""" Constructs a BiT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) all_images = [] for image in images: if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) all_images.append(image) images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in all_images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) __all__ = ["BitImageProcessor"]
transformers/src/transformers/models/bit/image_processing_bit.py/0
{ "file_path": "transformers/src/transformers/models/bit/image_processing_bit.py", "repo_id": "transformers", "token_count": 6696 }
# coding=utf-8 # Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast tokenization class for BlenderbotSmall.""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library). Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = BlenderbotSmallTokenizer def __init__( self, vocab_file=None, merges_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, trim_offsets=True, **kwargs, ): super().__init__( ByteLevelBPETokenizer( vocab=vocab_file, merges=merges_file, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, ), bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs, ) self.add_prefix_space = add_prefix_space def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] __all__ = ["BlenderbotSmallTokenizerFast"]
transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py/0
{ "file_path": "transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py", "repo_id": "transformers", "token_count": 1422 }
# Copyright 2024 Meta Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import os import requests import torch import yaml from accelerate import init_empty_weights from PIL import Image from transformers import ( ChameleonConfig, ChameleonForConditionalGeneration, ChameleonImageProcessor, ChameleonProcessor, ) try: from transformers import LlamaTokenizerFast except ImportError: raise ValueError( "Chameleon conversion supports only FastTokenizer and LlamaTokenizerFast can't be imported! " "Update your `tokenizers` library and re-run the tokenizer conversion." ) """ Sample usage: ``` python src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py \ --input_dir /path/to/downloaded/chameleon/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import ChameleonForConditionalGeneration, LlamaTokenizerFast model = ChameleonForConditionalGeneration.from_pretrained("/output/path") tokenizer = LlamaTokenizerFast.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ NUM_SHARDS = { "7B": 1, "30B": 4, } VOCAB_SIZE = 65536 def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model(model_path, input_base_path, model_size, chameleon_version=1): os.makedirs(model_path, exist_ok=True) input_model_path = os.path.join(input_base_path, "models", model_size.lower()) params_path = os.path.join(input_model_path, "params.json") consolidate_params_path = os.path.join(input_model_path, "consolidate_params.json") params = read_json(params_path) if os.path.isfile(consolidate_params_path): params = {**params, **read_json(consolidate_params_path)} num_shards = NUM_SHARDS[model_size] model_parallel_size = params["model_parallel_size"] params = params.get("model", params) n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads base = params.get("rope_theta", 10000.0) swin_norm = params["swin_norm"] if base > 10000.0: max_position_embeddings = 16384 else: # Depending on the Chameleon version, the default max_position_embeddings has different values. if chameleon_version == 1: max_position_embeddings = 4096 else: raise NotImplementedError( f"Version {chameleon_version} of chameleon is not supported yet. " "Current supported versions of chameleon are [1]." ) if params.get("n_kv_heads", None) is not None: num_key_value_heads = params["n_kv_heads"] # for GQA / MQA num_local_key_value_heads = n_heads_per_shard // num_key_value_heads key_value_dim = dim // num_key_value_heads else: # compatibility with other checkpoints num_key_value_heads = n_heads num_local_key_value_heads = n_heads_per_shard key_value_dim = dim print(f"Fetching all parameters from the checkpoint at {input_model_path}.") # Load weights if num_shards == 1: # Not sharded # (The sharded implementation would also work, but this is simpler.) loaded = None for possible_name in ["consolidated.pth", "consolidated.00.pth"]: possible_path = os.path.join(input_model_path, possible_name) if os.path.exists(possible_path): loaded = torch.load(possible_path, map_location="cpu") break assert loaded is not None else: # Sharded loaded = [ torch.load(os.path.join(input_model_path, f"consolidated.{i:02d}.pth"), map_location="cpu") for i in range(num_shards) ] # permute for sliced rotary def permute(w, n_heads, dim1=dim, dim2=dim): return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) # Load weights to the state dict state_dict = {} for layer_i in range(n_layers): if num_shards == 1: # Unsharded state_dict.update( { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"], n_heads=num_key_value_heads, dim1=key_value_dim, ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[ f"layers.{layer_i}.attention_norm.weight" ], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[ f"layers.{layer_i}.ffn_norm.weight" ], } ) # qk_layernorm (see https://github.com/huggingface/transformers/pull/31534#issuecomment-2207354677) state_dict[f"model.layers.{layer_i}.self_attn.q_norm.weight"] = ( loaded[f"layers.{layer_i}.attention.q_normalization.weight"] .view(dims_per_head // 2, 2) .t() .reshape(1, -1) .repeat_interleave(n_heads, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.q_norm.bias"] = ( loaded[f"layers.{layer_i}.attention.q_normalization.bias"] .view(dims_per_head // 2, 2) .t() .reshape(1, -1) .repeat_interleave(n_heads, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.k_norm.weight"] = ( loaded[f"layers.{layer_i}.attention.k_normalization.weight"] .view(dims_per_head // 2, 2) .t() .reshape(1, -1) .repeat_interleave(num_key_value_heads, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.k_norm.bias"] = ( loaded[f"layers.{layer_i}.attention.k_normalization.bias"] .view(dims_per_head // 2, 2) .t() .reshape(1, -1) .repeat_interleave(num_key_value_heads, 0) ) else: # Sharded state_dict.update( { f"model.layers.{layer_i}.input_layernorm.weight": torch.stack( [l[f"layers.{layer_i}.attention_norm.weight"] for l in loaded] ).mean(dim=0), f"model.layers.{layer_i}.post_attention_layernorm.weight": torch.stack( [l[f"layers.{layer_i}.ffn_norm.weight"] for l in loaded] ).mean(dim=0), } ) state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim), n_heads=n_heads, ) state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( num_local_key_value_heads, dims_per_head, dim ) for i in range(num_shards) ], dim=0, ).reshape(key_value_dim, dim), n_heads=num_key_value_heads, dim1=key_value_dim, ) # qk_layernorm (see https://github.com/huggingface/transformers/pull/31534#issuecomment-2207354677) state_dict[f"model.layers.{layer_i}.self_attn.q_norm.weight"] = ( torch.cat([l[f"layers.{layer_i}.attention.q_normalization.weight"].unsqueeze(0) for l in loaded]) .view(num_shards, dims_per_head // 2, 2) .transpose(1, 2) .reshape(num_shards, -1) .repeat_interleave(n_heads // num_shards, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.q_norm.bias"] = ( torch.cat([l[f"layers.{layer_i}.attention.q_normalization.bias"].unsqueeze(0) for l in loaded]) .view(num_shards, dims_per_head // 2, 2) .transpose(1, 2) .reshape(num_shards, -1) .repeat_interleave(n_heads // num_shards, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.k_norm.weight"] = ( torch.cat([l[f"layers.{layer_i}.attention.k_normalization.weight"].unsqueeze(0) for l in loaded]) .view(num_shards, dims_per_head // 2, 2) .transpose(1, 2) .reshape(num_shards, -1) .repeat_interleave(num_key_value_heads // num_shards, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.k_norm.bias"] = ( torch.cat([l[f"layers.{layer_i}.attention.k_normalization.bias"].unsqueeze(0) for l in loaded]) .view(num_shards, dims_per_head // 2, 2) .transpose(1, 2) .reshape(num_shards, -1) .repeat_interleave(num_key_value_heads // num_shards, 0) ) state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( num_local_key_value_heads, dims_per_head, dim ) for i in range(num_shards) ], dim=0, ).reshape(key_value_dim, dim) state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 ) if num_shards == 1: # Unsharded state_dict.update( { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } ) else: state_dict.update( { "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 ), "model.norm.weight": torch.stack([loaded[i]["norm.weight"] for i in range(num_shards)]).mean(dim=0), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), } ) # Load VQGAN weights vqgan_path = os.path.join(input_base_path, "tokenizer/vqgan.ckpt") vqgan_state_dict = torch.load(vqgan_path, map_location="cpu")["state_dict"] for k, v in vqgan_state_dict.items(): if "decoder" in k: continue # we dont do image generation yet state_dict[f"model.vqmodel.{k}"] = v # Write configs ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 multiple_of = params["multiple_of"] if "multiple_of" in params else 256 with open(os.path.join(input_base_path, "tokenizer/text_tokenizer.json")) as tokenizer_file: tokenizer_config = json.load(tokenizer_file) vocabulary_map = tokenizer_config["model"]["vocab"] vocabulary_map["<image>"] = vocabulary_map[ "<reserved08707>" ] # use a reserved token instead of adding a new one del vocabulary_map["<reserved08707>"] for token in tokenizer_config["added_tokens"]: if token["content"] == "<reserved08707>": token["content"] = "<image>" with open(os.path.join(input_base_path, "tokenizer/text_tokenizer_modified.json"), "w") as f: json.dump(tokenizer_config, f) # save the new file to init tokenizer later vq_keys_to_replace = [ ("ch", "base_channels"), ("out_ch", "out_channels"), ("n_embed", "num_embeddings"), ("ch_mult", "channel_multiplier"), ("double_z", "double_latent"), ("z_channels", "latent_channels"), ] with open(os.path.join(input_base_path, "tokenizer/vqgan.yaml")) as vqgan_cfg_file: vq_config = yaml.safe_load(vqgan_cfg_file)["model"]["params"] vq_config.update(**vq_config["ddconfig"]) for old, new in vq_keys_to_replace: vq_config[new] = vq_config[old] del vq_config["ddconfig"] del vq_config["ckpt_path"] del vq_config["lossconfig"] config = ChameleonConfig( hidden_size=dim, intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=num_key_value_heads, vocab_size=VOCAB_SIZE, rope_theta=base, max_position_embeddings=max_position_embeddings, model_parallel_size=model_parallel_size, swin_norm=swin_norm, vq_config=vq_config, vocabulary_map=vocabulary_map, ) with init_empty_weights(): model = ChameleonForConditionalGeneration(config) model.load_state_dict(state_dict, assign=True, strict=False) model.save_pretrained(model_path, safe_serialization=True) # Load and save the processor tokenizer = LlamaTokenizerFast( tokenizer_file=os.path.join(input_base_path, "tokenizer/text_tokenizer_modified.json"), legacy=False ) tokenizer.sep_token_id = 8710 # assign <reserved08706> to sep so that we can append it after input text tokenizer.pad_token_id = 1 # assing <pad> to special pad_token image_processor = ChameleonImageProcessor() processor = ChameleonProcessor(image_processor=image_processor, tokenizer=tokenizer) processor.save_pretrained(model_path) # Make space so we can load the model properly now. del state_dict del loaded del vqgan_state_dict gc.collect() # Short inference on a few examples to check if generation makes sense # taken from https://github.com/facebookresearch/chameleon/blob/7a72f40aa5f462965c8374f25257f55b65b25ff4/data/prompts_for_human_evaluations.jsonl print("Loading the checkpoint in a Chameleon model...") print("*" * 100) model = ChameleonForConditionalGeneration.from_pretrained( model_path, attn_implementation="eager", torch_dtype=torch.bfloat16, device_map="auto" ) processor = ChameleonProcessor.from_pretrained(model_path) prompt = "I'm very intrigued by this work of art:<image>Please tell me about the artist." image = Image.open( requests.get( "https://uploads4.wikiart.org/images/paul-klee/death-for-the-idea-1915.jpg!Large.jpg", stream=True ).raw ) inputs = processor(prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16) length = inputs.input_ids.shape[1] out = model.generate(**inputs, max_new_tokens=40, do_sample=False) generated_text = processor.batch_decode(out[:, length:], skip_special_tokens=True)[0] print(f"Generation for single-image: {generated_text}") print("*" * 100) # Multi-image example prompt = "I used to know a lot about constellations when I was younger, but as I grew older, I forgot most of what I knew. These are the only two constellations that I really remember now.<image><image>I would like for you to tell me about 3 more constellations and give me a little bit of history about the constellation." image = Image.open( requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw ) image_2 = Image.open( requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw ) inputs = processor(prompt, images=[image, image_2], return_tensors="pt").to(model.device, dtype=torch.bfloat16) length = inputs.input_ids.shape[1] out = model.generate(**inputs, max_new_tokens=50, do_sample=False) generated_text = processor.batch_decode(out[:, length:], skip_special_tokens=True)[0] print(f"Generation for multi-image: {generated_text}") def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of Chameleon weights", ) parser.add_argument( "--model_size", choices=["7B", "30B"], help="" " models correspond to the finetuned versions, and are specific to the Chameleon official release. For more details on Chameleon, checkout the original repo: https://github.com/facebookresearch/chameleon", ) parser.add_argument( "--output_dir", help="Location to write HF model", ) parser.add_argument( "--test_inference", action="store_true", help="Whether to load the model for generation to test it's converted correctly.", ) # Different Chameleon versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used. parser.add_argument( "--chameleon_version", choices=[1], default=1, type=int, help="Version of the Chameleon model to convert", ) args = parser.parse_args() write_model( model_path=args.output_dir, input_base_path=args.input_dir, model_size=args.model_size, chameleon_version=args.chameleon_version, ) if __name__ == "__main__": main()
transformers/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py", "repo_id": "transformers", "token_count": 9652 }
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Audio/Text processor class for CLAP """ from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class ClapProcessor(ProcessorMixin): r""" Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. Args: feature_extractor ([`ClapFeatureExtractor`]): The audio processor is a required input. tokenizer ([`RobertaTokenizerFast`]): The tokenizer is a required input. """ feature_extractor_class = "ClapFeatureExtractor" tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. """ sampling_rate = kwargs.pop("sampling_rate", None) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if audios is not None: audio_features = self.feature_extractor( audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs ) if text is not None and audios is not None: encoding.update(audio_features) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) __all__ = ["ClapProcessor"]
transformers/src/transformers/models/clap/processing_clap.py/0
{ "file_path": "transformers/src/transformers/models/clap/processing_clap.py", "repo_id": "transformers", "token_count": 2183 }
# coding=utf-8 # Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch CLIPSeg model.""" import copy import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, torch_int, ) from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined" # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg class CLIPSegOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`CLIPSegTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @dataclass class CLIPSegDecoderOutput(ModelOutput): """ Args: logits (`torch.FloatTensor` of shape `(batch_size, height, width)`): Classification scores for each pixel. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CLIPSegImageSegmentationOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. ... vision_model_output (`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None conditional_embeddings: torch.FloatTensor = None pooled_output: torch.FloatTensor = None vision_model_output: BaseModelOutputWithPooling = None decoder_output: CLIPSegDecoderOutput = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class CLIPSegVisionEmbeddings(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 position_embedding = self.position_embedding.weight.unsqueeze(0) num_positions = position_embedding.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embedding(self.position_ids) class_pos_embed = position_embedding[:, :1] patch_pos_embed = position_embedding[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=True) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})." ) patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg class CLIPSegTextEmbeddings(nn.Module): def __init__(self, config: CLIPSegTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] max_position_embedding = self.position_embedding.weight.shape[0] if seq_length > max_position_embedding: raise ValueError( f"Sequence length must be less than max_position_embeddings (got `sequence length`: " f"{seq_length} and max_position_embeddings: {max_position_embedding}" ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg class CLIPSegAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg class CLIPSegMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->CLIPSeg class CLIPSegEncoderLayer(nn.Module): def __init__(self, config: CLIPSegConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPSegAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPSegMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPSegPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPSegConfig base_model_prefix = "clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, CLIPSegTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, CLIPSegVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, CLIPSegAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, CLIPSegMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, CLIPSegModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() CLIPSEG_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLIPSEG_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIPSEG_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `True`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIPSEG_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `True`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->CLIPSeg class CLIPSegEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPSegEncoderLayer`]. Args: config: CLIPSegConfig """ def __init__(self, config: CLIPSegConfig): super().__init__() self.config = config self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class CLIPSegTextTransformer(nn.Module): def __init__(self, config: CLIPSegTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPSegTextEmbeddings(config) self.encoder = CLIPSegEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) # Adapted from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIPSeg's text model uses causal mask, prepare it here. # https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) # Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer) (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) .int() .argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class CLIPSegTextModel(CLIPSegPreTrainedModel): config_class = CLIPSegTextConfig _no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"] def __init__(self, config: CLIPSegTextConfig): super().__init__(config) self.text_model = CLIPSegTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPSegTextModel >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class CLIPSegVisionTransformer(nn.Module): # Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIP->CLIPSeg def __init__(self, config: CLIPSegVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPSegVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPSegEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor], output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class CLIPSegVisionModel(CLIPSegPreTrainedModel): config_class = CLIPSegVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPSegVisionConfig): super().__init__(config) self.vision_model = CLIPSegVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = True, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegVisionModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) @add_start_docstrings(CLIPSEG_START_DOCSTRING) class CLIPSegModel(CLIPSegPreTrainedModel): config_class = CLIPSegConfig def __init__(self, config: CLIPSegConfig): super().__init__(config) if not isinstance(config.text_config, CLIPSegTextConfig): raise TypeError( "config.text_config is expected to be of type CLIPSegTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPSegVisionConfig): raise TypeError( "config.vision_config is expected to be of type CLIPSegVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPSegTextTransformer(text_config) self.vision_model = CLIPSegVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, CLIPSegModel >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = True, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = True, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPSegOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = clipseg_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return CLIPSegOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class CLIPSegDecoderLayer(nn.Module): """ CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after self-attention/MLP, rather than before. """ # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer.__init__ with AltCLIP->CLIPSeg def __init__(self, config: CLIPSegConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPSegAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPSegMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = self.layer_norm1(hidden_states) residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states hidden_states = self.layer_norm2(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPSegDecoder(CLIPSegPreTrainedModel): def __init__(self, config: CLIPSegConfig): super().__init__(config) self.conditional_layer = config.conditional_layer self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim) self.film_add = nn.Linear(config.projection_dim, config.reduce_dim) if config.use_complex_transposed_convolution: transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4) self.transposed_convolution = nn.Sequential( nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1), nn.ReLU(), nn.ConvTranspose2d( config.reduce_dim, config.reduce_dim // 2, kernel_size=transposed_kernels[0], stride=transposed_kernels[0], ), nn.ReLU(), nn.ConvTranspose2d( config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1] ), ) else: self.transposed_convolution = nn.ConvTranspose2d( config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size ) depth = len(config.extract_layers) self.reduces = nn.ModuleList( [nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)] ) decoder_config = copy.deepcopy(config.vision_config) decoder_config.hidden_size = config.reduce_dim decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size decoder_config.hidden_act = "relu" self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))]) def forward( self, hidden_states: Tuple[torch.Tensor], conditional_embeddings: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None activations = hidden_states[::-1] output = None for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)): if output is not None: output = reduce(activation) + output else: output = reduce(activation) if i == self.conditional_layer: output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add( conditional_embeddings ) output = output.permute(1, 0, 2) layer_outputs = layer( output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions ) output = layer_outputs[0] if output_hidden_states: all_hidden_states += (output,) if output_attentions: all_attentions += (layer_outputs[1],) output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len] size = int(math.sqrt(output.shape[2])) batch_size = conditional_embeddings.shape[0] output = output.view(batch_size, output.shape[1], size, size) logits = self.transposed_convolution(output).squeeze(1) if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None) return CLIPSegDecoderOutput( logits=logits, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation. """, CLIPSEG_START_DOCSTRING, ) class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel): config_class = CLIPSegConfig def __init__(self, config: CLIPSegConfig): super().__init__(config) self.config = config self.clip = CLIPSegModel(config) self.extract_layers = config.extract_layers self.decoder = CLIPSegDecoder(config) # Initialize weights and apply final processing self.post_init() def get_conditional_embeddings( self, batch_size: int = None, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, conditional_pixel_values: Optional[torch.Tensor] = None, ): if input_ids is not None: # compute conditional embeddings from texts if len(input_ids) != batch_size: raise ValueError("Make sure to pass as many prompt texts as there are query images") with torch.no_grad(): conditional_embeddings = self.clip.get_text_features( input_ids, attention_mask=attention_mask, position_ids=position_ids ) elif conditional_pixel_values is not None: # compute conditional embeddings from images if len(conditional_pixel_values) != batch_size: raise ValueError("Make sure to pass as many prompt images as there are query images") with torch.no_grad(): conditional_embeddings = self.clip.get_image_features(conditional_pixel_values) else: raise ValueError( "Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`" ) return conditional_embeddings @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig) def forward( self, input_ids: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, conditional_pixel_values: Optional[torch.FloatTensor] = None, conditional_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = True, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPSegOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoProcessor, CLIPSegForImageSegmentation >>> from PIL import Image >>> import requests >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["a cat", "a remote", "a blanket"] >>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> print(logits.shape) torch.Size([3, 352, 352]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the query images through the frozen CLIP vision encoder with torch.no_grad(): vision_outputs = self.clip.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) pooled_output = self.clip.visual_projection(vision_outputs[1]) hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2] # we add +1 here as the hidden states also include the initial embeddings activations = [hidden_states[i + 1] for i in self.extract_layers] # update vision_outputs if return_dict: vision_outputs = BaseModelOutputWithPooling( last_hidden_state=vision_outputs.last_hidden_state, pooler_output=vision_outputs.pooler_output, hidden_states=vision_outputs.hidden_states if output_hidden_states else None, attentions=vision_outputs.attentions, ) else: vision_outputs = ( vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs ) # step 2: compute conditional embeddings, either from text, images or an own provided embedding if conditional_embeddings is None: conditional_embeddings = self.get_conditional_embeddings( batch_size=pixel_values.shape[0], input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, conditional_pixel_values=conditional_pixel_values, ) else: if conditional_embeddings.shape[0] != pixel_values.shape[0]: raise ValueError( "Make sure to pass as many conditional embeddings as there are query images in the batch" ) if conditional_embeddings.shape[1] != self.config.projection_dim: raise ValueError( "Make sure that the feature dimension of the conditional embeddings matches" " `config.projection_dim`." ) # step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks decoder_outputs = self.decoder( activations, conditional_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss = None if labels is not None: # move labels to the correct device to enable PP labels = labels.to(logits.device) loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels) if not return_dict: output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs) return ((loss,) + output) if loss is not None else output return CLIPSegImageSegmentationOutput( loss=loss, logits=logits, conditional_embeddings=conditional_embeddings, pooled_output=pooled_output, vision_model_output=vision_outputs, decoder_output=decoder_outputs, ) __all__ = [ "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ]
transformers/src/transformers/models/clipseg/modeling_clipseg.py/0
{ "file_path": "transformers/src/transformers/models/clipseg/modeling_clipseg.py", "repo_id": "transformers", "token_count": 28557 }
# coding=utf-8 # Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CodeGen""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np import regex as re from ...utils import is_tf_available, is_torch_available, logging, to_py_obj if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from ...tokenization_utils import AddedToken, PreTrainedTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class CodeGenTokenizer(PreTrainedTokenizer): """ Construct a CodeGen tokenizer. Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import CodeGenTokenizer >>> tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*): The token used for padding, for example when batching sequences of different lengths. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space). add_bos_token (`bool`, *optional*, defaults to `False`): Whether to add a beginning of sequence token at the start of sequences. return_token_type_ids (`bool`, *optional*, defaults to `False`): Whether to return token type IDs. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, add_bos_token=False, return_token_type_ids=False, **kwargs, ): bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token self.add_bos_token = add_bos_token self.return_token_type_ids = return_token_type_ids if self.return_token_type_ids: self.model_input_names.append("token_type_ids") with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, add_bos_token=add_bos_token, return_token_type_ids=return_token_type_ids, **kwargs, ) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] if self.sep_token_id is not None else [] cls = [self.cls_token_id] if self.sep_token_id is not None else [] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, truncate_before_pattern: Optional[List[str]] = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ token_ids = to_py_obj(token_ids) decoded_text = super()._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: decoded_text = self.truncate(decoded_text, truncate_before_pattern) return decoded_text def truncate(self, completion, truncate_before_pattern): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] prints = list(re.finditer("^print", completion, re.MULTILINE)) if len(prints) > 1: completion = completion[: prints[1].start()] defs = list(re.finditer("^def", completion, re.MULTILINE)) if len(defs) > 1: completion = completion[: defs[1].start()] start_pos = 0 terminals_pos = [ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 ] if len(terminals_pos) > 0: return completion[: min(terminals_pos)] else: return completion __all__ = ["CodeGenTokenizer"]
transformers/src/transformers/models/codegen/tokenization_codegen.py/0
{ "file_path": "transformers/src/transformers/models/codegen/tokenization_codegen.py", "repo_id": "transformers", "token_count": 7191 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ConvNext checkpoints from the original repository. URL: https://github.com/facebookresearch/ConvNeXt""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, ConvNextForImageClassification, ConvNextImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_convnext_config(checkpoint_url): config = ConvNextConfig() if "tiny" in checkpoint_url: depths = [3, 3, 9, 3] hidden_sizes = [96, 192, 384, 768] if "small" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [96, 192, 384, 768] if "base" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [128, 256, 512, 1024] if "large" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [192, 384, 768, 1536] if "xlarge" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [256, 512, 1024, 2048] if "1k" in checkpoint_url: num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) else: num_labels = 21841 filename = "imagenet-22k-id2label.json" expected_shape = (1, 21841) repo_id = "huggingface/label-files" config.num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} if "1k" not in checkpoint_url: # this dataset contains 21843 labels but the model only has 21841 # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18 del id2label[9205] del id2label[15027] config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.hidden_sizes = hidden_sizes config.depths = depths return config, expected_shape def rename_key(name): if "downsample_layers.0.0" in name: name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings") if "downsample_layers.0.1" in name: name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on if "downsample_layers.1.0" in name: name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0") if "downsample_layers.1.1" in name: name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1") if "downsample_layers.2.0" in name: name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0") if "downsample_layers.2.1" in name: name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1") if "downsample_layers.3.0" in name: name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0") if "downsample_layers.3.1" in name: name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1") if "stages" in name and "downsampling_layer" not in name: # stages.0.0. for instance should be renamed to stages.0.layers.0. name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :] if "stages" in name: name = name.replace("stages", "encoder.stages") if "norm" in name: name = name.replace("norm", "layernorm") if "gamma" in name: name = name.replace("gamma", "layer_scale_parameter") if "head" in name: name = name.replace("head", "classifier") return name # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ConvNext structure. """ # define ConvNext configuration based on URL config, expected_shape = get_convnext_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # add prefix to all keys expect classifier head for key in state_dict.copy().keys(): val = state_dict.pop(key) if not key.startswith("classifier"): key = "convnext." + key state_dict[key] = val # load HuggingFace model model = ConvNextForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image, prepared by ConvNextImageProcessor size = 224 if "224" in checkpoint_url else 384 image_processor = ConvNextImageProcessor(size=size) pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values logits = model(pixel_values).logits # note: the logits below were obtained without center cropping if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth": expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth": expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth": expected_logits = torch.tensor([0.4525, 0.7539, 0.0308]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth": expected_logits = torch.tensor([0.3561, 0.6350, -0.0384]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth": expected_logits = torch.tensor([0.4174, -0.0989, 0.1489]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth": expected_logits = torch.tensor([0.2513, -0.1349, -0.1613]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth": expected_logits = torch.tensor([1.2980, 0.3631, -0.1198]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth": expected_logits = torch.tensor([1.2963, 0.1227, 0.1723]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth": expected_logits = torch.tensor([1.7956, 0.8390, 0.2820]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth": expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth": expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth": expected_logits = torch.tensor([0.2681, 0.2365, 0.6246]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth": expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth": expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth": expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444]) else: raise ValueError(f"Unknown URL: {checkpoint_url}") assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3) assert logits.shape == expected_shape Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) print("Pushing model to the hub...") model_name = "convnext" if "tiny" in checkpoint_url: model_name += "-tiny" elif "small" in checkpoint_url: model_name += "-small" elif "base" in checkpoint_url: model_name += "-base" elif "xlarge" in checkpoint_url: model_name += "-xlarge" elif "large" in checkpoint_url: model_name += "-large" if "224" in checkpoint_url: model_name += "-224" elif "384" in checkpoint_url: model_name += "-384" if "22k" in checkpoint_url and "1k" not in checkpoint_url: model_name += "-22k" if "22k" in checkpoint_url and "1k" in checkpoint_url: model_name += "-22k-1k" model.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add model", ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", type=str, help="URL of the original ConvNeXT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) args = parser.parse_args() convert_convnext_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py", "repo_id": "transformers", "token_count": 4224 }
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch CPMAnt""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_cpmant import CpmAntConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openbmb/cpm-ant-10b" _CONFIG_FOR_DOC = "CpmAntConfig" class CpmAntLayerNorm(nn.Module): """ We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details." """ def __init__(self, config: CpmAntConfig): super().__init__() self.eps = config.eps self.dim_norm = config.hidden_size self.weight = nn.Parameter(torch.empty(config.hidden_size)) def forward(self, hidden_states: torch.Tensor): """ Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ if hidden_states.size(-1) != self.dim_norm: raise AssertionError("hidden_states.size(-1) != self.dim_norm") old_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight return hidden_states class CpmAntAttention(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.dim_model = config.hidden_size self.num_heads = config.num_attention_heads self.dim_head = config.dim_head self.project_q = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.project_k = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.project_v = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.attention_out = nn.Linear(self.num_heads * self.dim_head, self.dim_model, bias=False) self.softmax = torch.nn.Softmax(dim=-1) if config.dropout_p is not None: self.dropout = torch.nn.Dropout(p=config.dropout_p) else: self.dropout = None def forward( self, hidden_q: torch.Tensor, hidden_kv: torch.Tensor, attention_mask: torch.BoolTensor, position_bias: torch.Tensor, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_q (`torch.Tensor`): Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)): Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)` attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Avoid invalid areas to participate in the calculation of self-attention. position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Provide positional information to self-attention block. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*): Cached past key and value projection states. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ batch_size = hidden_q.size(0) len_q = hidden_q.size(1) len_k = hidden_kv.size(1) query = self.project_q(hidden_q) key = self.project_k(hidden_kv) value = self.project_v(hidden_kv) query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3) key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) if past_key_values is not None: key = torch.cat([past_key_values[0], key], dim=-2) value = torch.cat([past_key_values[1], value], dim=-2) len_k = key.size(-2) # (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k) score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head) score = score + position_bias score = torch.masked_fill( score, attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype), ) score = self.softmax(score) score = torch.masked_fill( score, attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), torch.scalar_tensor(0, device=score.device, dtype=score.dtype), ) if output_attentions: attn_weights = score else: attn_weights = None if self.dropout is not None: score = self.dropout(score) # (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head) score = torch.matmul(score, value) score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3) score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head) score = self.attention_out(score) past_key_values = None if use_cache: past_key_values = (key, value) return score, attn_weights, past_key_values class CpmAntSelfAttentionBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.layernorm_before_attention = CpmAntLayerNorm(config) self.self_attention = CpmAntAttention(config) if config.dropout_p: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Avoid invalid areas to participate in the calculation of self-attention. position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Provide positional information to self-attention block. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple(torch.FloatTensor)`, *optional*): Cached past key and value projection states. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ outputs = self.layernorm_before_attention(hidden_states) outputs = self.self_attention( outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache ) outputs, attn_weights, current_key_value = outputs if self.dropout is not None: outputs = self.dropout(outputs) hidden_states = hidden_states + outputs return hidden_states, attn_weights, current_key_value class CpmAntDenseGatedACT(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.w_0 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) self.w_1 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) self.act = torch.nn.GELU() def forward(self, hidden_states: torch.Tensor): """Transform an input tensor from one feature space to another via a nonlinear operation Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ gate_score = self.act(self.w_0(hidden_states)) hidden_states = self.w_1(hidden_states) hidden_states = gate_score * hidden_states return hidden_states class CpmAntFeedForward(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.w_in = CpmAntDenseGatedACT(config) if config.dropout_p is not None: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None self.w_out = nn.Linear(config.dim_ff, config.hidden_size, bias=False) def forward(self, hidden_states: torch.Tensor): """ Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ hidden_states = self.w_in(hidden_states) if self.dropout is not None: hidden_states = self.dropout(hidden_states) hidden_states = self.w_out(hidden_states) return hidden_states class CpmAntFFNBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.layernorm_before_ffn = CpmAntLayerNorm(config) self.ffn = CpmAntFeedForward(config) if config.dropout_p: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None def forward( self, hidden_states: torch.Tensor, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): Hidden states before feed forward layer. """ ln_outputs = self.layernorm_before_ffn(hidden_states) outputs = self.ffn(ln_outputs) if self.dropout is not None: outputs = self.dropout(outputs) hidden_states = hidden_states + outputs return hidden_states class CpmAntTransformerBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.self_att = CpmAntSelfAttentionBlock(config) self.ffn = CpmAntFFNBlock(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor`): Input to the layer of shape `(batch, seq_len, dim_model)` attention_mask (`torch.Tensor`): Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` position_bias (`torch.Tensor`): Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): Cached past key and value projection states use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ hidden_states = self.self_att( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, past_key_values=past_key_values, use_cache=use_cache, ) hidden_states, attn_weights, current_key_value = hidden_states hidden_states = self.ffn(hidden_states) return hidden_states, attn_weights, current_key_value class CpmAntEncoder(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.num_layers = config.num_hidden_layers self.layers = nn.ModuleList([CpmAntTransformerBlock(config) for ith in range(self.num_layers)]) self.output_layernorm = CpmAntLayerNorm(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor`): Input to the layer of shape `(batch, seq_len, dim_model)` attention_mask (`torch.Tensor`): Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` position_bias (`torch.Tensor`): Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): Cached past key and value projection states use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None current_key_values = () if use_cache else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, position_bias, output_attentions=output_attentions, past_key_values=past_key_values[i] if past_key_values else None, use_cache=use_cache, ) hidden_states, attn_weights, current_key_value = layer_outputs if output_attentions: all_self_attns += (attn_weights,) if current_key_value is not None: current_key_values = current_key_values + (current_key_value,) hidden_states = self.output_layernorm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) return hidden_states, current_key_values, all_hidden_states, all_self_attns # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->CPMAnt class CpmAntIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class CpmAntSegmentPositionEmbedding(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.num_heads = config.num_attention_heads self.num_buckets = config.position_bias_num_buckets self.max_distance = config.position_bias_max_distance self.num_segments = config.segment_types self.relative_attention_bias = nn.Parameter( torch.empty( config.segment_types * config.segment_types + config.position_bias_num_buckets, config.num_attention_heads, ) ) def forward( self, key_pos: torch.Tensor, query_pos: torch.Tensor, key_segment: torch.Tensor, query_segment: torch.Tensor, ): with torch.no_grad(): batch = key_pos.size(0) keylen = key_pos.size(1) querylen = query_pos.size(1) if key_pos.size(0) != query_pos.size(0): raise AssertionError( f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!" ) if keylen != key_segment.size(1) or querylen != query_segment.size(1): raise AssertionError( f"keylen should be equal to key_segment.size(1), but got {keylen} and {key_segment.size(1)}!" ) if querylen != query_segment.size(1): raise AssertionError( f"querylen should be equal to query_segment.size(1), but got {querylen} and {query_segment.szie(1)}!" ) key_pos = key_pos.view(batch, -1, keylen) query_pos = query_pos.view(batch, querylen, -1) key_segment = key_segment.view(batch, -1, keylen) query_segment = query_segment.view(batch, querylen, -1) relative_position_bucket = self._segment_relative_position_bucket(query_segment, key_segment) relative_position_bucket = relative_position_bucket + self.num_buckets # (batch, len_q, len_k) absolute_position_bucket = self._position_bucket( torch.arange(keylen, dtype=torch.int32, device=relative_position_bucket.device)[None, :] - torch.arange(querylen, dtype=torch.int32, device=relative_position_bucket.device)[:, None], num_buckets=self.num_buckets, max_distance=self.max_distance, ) relative_position_bucket = torch.where( (key_segment == query_segment), absolute_position_bucket[None, :, :], relative_position_bucket, ) # (batch, len_q, len_k, num_heads) embeds = F.embedding(relative_position_bucket, self.relative_attention_bias) # (batch, num_heads, len_q, len_k) embeds = embeds.permute(0, 3, 1, 2).contiguous() return embeds def _segment_relative_position_bucket(self, query_segment, key_segment): return query_segment * self.num_segments + key_segment def _position_bucket(self, relative_position, num_buckets=32, max_distance=128): relative_buckets = 0 # always bidirectional in CPMAnt num_buckets //= 2 relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets relative_position = torch.abs(relative_position) max_exact = num_buckets // 2 is_small = relative_position < max_exact relative_postion_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.int32) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1), ) relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large) return relative_buckets # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMAnt class CpmAntOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class CpmAntPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CpmAntConfig base_model_prefix = "cpmant" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, CpmAntLayerNorm): module.weight.data.fill_(1.0) elif isinstance(module, CpmAntSegmentPositionEmbedding): module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std) CPMANT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CPMANT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare CPMAnt Model outputting raw hidden-states without any specific head on top.", CPMANT_START_DOCSTRING, ) class CpmAntModel(CpmAntPreTrainedModel): def __init__(self, config: CpmAntConfig): super().__init__(config) self.encoder = CpmAntEncoder(config) self.segment_embedding = nn.Embedding(config.segment_types, config.hidden_size) self.input_embedding = nn.Embedding( config.vocab_size + config.prompt_types * config.prompt_length, config.hidden_size ) self.position_bias = CpmAntSegmentPositionEmbedding(config) self.prompt_length = config.prompt_length self.vocab_size = config.vocab_size self.post_init() def get_input_embeddings(self): return self.input_embedding def set_input_embeddings(self, embeddings, **kwargs): self.input_embedding = embeddings def _prepare_attention_mask(self, input_ids, span, context, length): batch = input_ids.size(0) seqlen = input_ids.size(1) device = input_ids.device directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(seqlen, device=device).view(-1, 1) attention_mask = context[:, None, :] | ( context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen) ) attention_mask = attention_mask & (span[:, None, :] == span[:, :, None]) # mask for left padding mask_1d = ( torch.tensor(list(range(seqlen - self.prompt_length))[::-1], device=device)[None, :].repeat(batch, 1) < length[:, None] ) mask_1d = torch.cat((torch.ones(batch, self.prompt_length, device=device).bool(), mask_1d), dim=1) attention_mask = mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask return attention_mask @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache # add prompts ahead if input_ids.dtype != torch.int32: input_ids = input_ids.to(torch.int32) dtype, device = input_ids.dtype, input_ids.device segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device) length = (segment != 0).sum(-1).to(dtype=dtype, device=device) input_ids = torch.cat( ( torch.arange( self.prompt_length * 2 + self.vocab_size, self.prompt_length * 3 + self.vocab_size, dtype=dtype, device=device, ).repeat(input_ids.size(0), 1), input_ids, ), dim=1, ) batch, seq_length = input_ids.size() segment = torch.cat((torch.zeros(batch, self.prompt_length, dtype=dtype, device=device), segment), dim=1) context = torch.full((batch, seq_length), 1, dtype=dtype, device=device) position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) span = torch.full((batch, seq_length), 0, dtype=dtype, device=device) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.encoder.num_layers) input_ids = input_ids.contiguous() hidden_states = self.input_embedding(input_ids) segment_states = self.segment_embedding(segment) hidden_states = hidden_states + segment_states else: past_length = past_key_values[0][0].size(-2) segment_states = self.segment_embedding(segment) hidden_states = self.input_embedding(input_ids) + segment_states[:, -1:, :] attention_mask = self._prepare_attention_mask(input_ids, span, context, length) position_bias = self.position_bias(position, position, segment, segment) attention_mask = attention_mask[:, past_length:, :] position_bias = position_bias[:, :, past_length:, :] hidden_states = hidden_states[:, past_length:, :] hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder( hidden_states, attention_mask, position_bias, output_attentions, output_hidden_states, past_key_values, use_cache, ) if past_length == 0: hidden_states = hidden_states[:, self.prompt_length :, :] # drop the prompt if all_attentions is not None: new_attentions = () for attention in all_attentions: new_attentions += (attention[:, :, self.prompt_length :, self.prompt_length :],) all_attentions = new_attentions if all_hidden_states is not None: new_hidden_states = () for hidden_state in all_hidden_states: new_hidden_states += (hidden_state[:, self.prompt_length :, :],) all_hidden_states = new_hidden_states if not return_dict: return tuple( v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, CPMANT_START_DOCSTRING, ) class CpmAntForCausalLM(CpmAntPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: CpmAntConfig): super().__init__(config) self.cpmant = CpmAntModel(config) # lm_head.weight is tied to cpmant.input_embedding.weight self.lm_head = nn.Linear( config.hidden_size, config.vocab_size + config.prompt_types * config.prompt_length, bias=False ) self.post_init() @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, # dummy parameter for text-generation pipeline **kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): CPMAnt will process attention mask automatically, this parameter is a dummy parameter for text-generation pipeline. Example: Text Generation with CpmAntForCausalLM. ```python >>> from transformers import CPMAntTokenizer, CpmAntForCausalLM >>> texts = "今天天气不错," >>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b") >>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") >>> input_ids = tokenizer(texts, return_tensors="pt") >>> outputs = model.generate(**input_ids) >>> output_texts = tokenizer.batch_decode(outputs) >>> print(output_texts) ['今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的'] ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.cpmant( input_ids, output_attentions, output_hidden_states, past_key_values, use_cache, return_dict ) hidden_states = model_output.last_hidden_state if return_dict else model_output[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss_func = CrossEntropyLoss() loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1)) if not return_dict: output = (logits,) + model_output[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=model_output.past_key_values, hidden_states=model_output.hidden_states, attentions=model_output.attentions, ) def get_input_embeddings(self): return self.cpmant.input_embedding def set_input_embeddings(self, embeddings): self.cpmant.input_embedding = embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _reorder_cache(self, past_key_values, beam_idx): past_key_values = [list(each) if each is not None else each for each in past_key_values] for key_value_layer in past_key_values: key_value_layer[0] = key_value_layer[0][beam_idx] key_value_layer[1] = key_value_layer[1][beam_idx] return past_key_values __all__ = ["CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel"]
transformers/src/transformers/models/cpmant/modeling_cpmant.py/0
{ "file_path": "transformers/src/transformers/models/cpmant/modeling_cpmant.py", "repo_id": "transformers", "token_count": 16530 }
# coding=utf-8 # Copyright 2022 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decision Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class DecisionTransformerConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`DecisionTransformerModel`]. It is used to instantiate a Decision Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the standard DecisionTransformer architecture. Many of the config options are used to instatiate the GPT2 model that is used as part of the architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: state_dim (`int`, *optional*, defaults to 17): The state size for the RL environment act_dim (`int`, *optional*, defaults to 4): The size of the output action space hidden_size (`int`, *optional*, defaults to 128): The size of the hidden layers max_ep_len (`int`, *optional*, defaults to 4096): The maximum length of an episode in the environment action_tanh (`bool`, *optional*, defaults to True): Whether to use a tanh activation on action prediction vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DecisionTransformerModel`]. n_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_layer (`int`, *optional*, defaults to 3): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 1): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*): Dimensionality of the inner feed-forward layers. If unset, will default to 4 times `n_embd`. activation_function (`str`, *optional*, defaults to `"gelu"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): Whether to additionally scale attention weights by `1 / layer_idx + 1`. reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. Example: ```python >>> from transformers import DecisionTransformerConfig, DecisionTransformerModel >>> # Initializing a DecisionTransformer configuration >>> configuration = DecisionTransformerConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = DecisionTransformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "decision_transformer" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, state_dim=17, act_dim=4, hidden_size=128, max_ep_len=4096, action_tanh=True, vocab_size=1, n_positions=1024, n_layer=3, n_head=1, n_inner=None, activation_function="relu", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False, **kwargs, ): self.state_dim = state_dim self.act_dim = act_dim self.hidden_size = hidden_size self.max_ep_len = max_ep_len self.action_tanh = action_tanh self.vocab_size = vocab_size self.n_positions = n_positions self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx self.reorder_and_upcast_attn = reorder_and_upcast_attn self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) __all__ = ["DecisionTransformerConfig"]
transformers/src/transformers/models/decision_transformer/configuration_decision_transformer.py/0
{ "file_path": "transformers/src/transformers/models/decision_transformer/configuration_decision_transformer.py", "repo_id": "transformers", "token_count": 2676 }
# coding=utf-8 # Copyright 2022 Snapchat Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch EfficientFormer model.""" import itertools from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ....activations import ACT2FN from ....modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ....modeling_utils import PreTrainedModel from ....utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientformer import EfficientFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300" _EXPECTED_OUTPUT_SHAPE = [1, 49, 448] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300" _IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" class EfficientFormerPatchEmbeddings(nn.Module): """ This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels, height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride] """ def __init__(self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True): super().__init__() self.num_channels = num_channels self.projection = nn.Conv2d( num_channels, embed_dim, kernel_size=config.downsample_patch_size, stride=config.downsample_stride, padding=config.downsample_pad, ) self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) if apply_norm else nn.Identity() def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) embeddings = self.norm(embeddings) return embeddings class EfficientFormerSelfAttention(nn.Module): def __init__(self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int): super().__init__() self.num_heads = num_heads self.key_dim = key_dim self.attention_ratio = attention_ratio self.scale = key_dim**-0.5 self.total_key_dim = key_dim * num_heads self.expanded_key_dim = int(attention_ratio * key_dim) self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads) hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2 self.qkv = nn.Linear(dim, hidden_size) self.projection = nn.Linear(self.total_expanded_key_dim, dim) points = list(itertools.product(range(resolution), range(resolution))) num_points = len(points) attention_offsets = {} idxs = [] for point_1 in points: for point_2 in points: offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(num_points, num_points)) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and hasattr(self, "ab"): del self.ab else: self.ab = self.attention_biases[:, self.attention_bias_idxs] def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: batch_size, sequence_length, num_channels = hidden_states.shape qkv = self.qkv(hidden_states) query_layer, key_layer, value_layer = qkv.reshape(batch_size, sequence_length, self.num_heads, -1).split( [self.key_dim, self.key_dim, self.expanded_key_dim], dim=3 ) query_layer = query_layer.permute(0, 2, 1, 3) key_layer = key_layer.permute(0, 2, 1, 3) value_layer = value_layer.permute(0, 2, 1, 3) # set `model.to(torch_device)` won't change `self.ab.device`, if there is no follow-up `train` or `eval` call. # Let's do it manually here, so users won't have to do this everytime. if not self.training: self.ab = self.ab.to(self.attention_biases.device) attention_probs = (torch.matmul(query_layer, key_layer.transpose(-2, -1))) * self.scale + ( self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab ) attention_probs = attention_probs.softmax(dim=-1) context_layer = torch.matmul(attention_probs, value_layer).transpose(1, 2) context_layer = context_layer.reshape(batch_size, sequence_length, self.total_expanded_key_dim) context_layer = self.projection(context_layer) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class EfficientFormerConvStem(nn.Module): def __init__(self, config: EfficientFormerConfig, out_channels: int): super().__init__() self.convolution1 = nn.Conv2d(config.num_channels, out_channels // 2, kernel_size=3, stride=2, padding=1) self.batchnorm_before = nn.BatchNorm2d(out_channels // 2, eps=config.batch_norm_eps) self.convolution2 = nn.Conv2d(out_channels // 2, out_channels, kernel_size=3, stride=2, padding=1) self.batchnorm_after = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps) self.activation = nn.ReLU() def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: features = self.batchnorm_before(self.convolution1(pixel_values)) features = self.activation(features) features = self.batchnorm_after(self.convolution2(features)) features = self.activation(features) return features class EfficientFormerPooling(nn.Module): def __init__(self, pool_size: int): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: output = self.pool(hidden_states) - hidden_states return output class EfficientFormerDenseMlp(nn.Module): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.linear_in = nn.Linear(in_features, hidden_features) self.activation = ACT2FN[config.hidden_act] self.dropout = nn.Dropout(config.hidden_dropout_prob) self.linear_out = nn.Linear(hidden_features, out_features) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.linear_in(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.linear_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class EfficientFormerConvMlp(nn.Module): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, drop: float = 0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.convolution1 = nn.Conv2d(in_features, hidden_features, 1) self.activation = ACT2FN[config.hidden_act] self.convolution2 = nn.Conv2d(hidden_features, out_features, 1) self.dropout = nn.Dropout(drop) self.batchnorm_before = nn.BatchNorm2d(hidden_features, eps=config.batch_norm_eps) self.batchnorm_after = nn.BatchNorm2d(out_features, eps=config.batch_norm_eps) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.convolution1(hidden_state) hidden_state = self.batchnorm_before(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.dropout(hidden_state) hidden_state = self.convolution2(hidden_state) hidden_state = self.batchnorm_after(hidden_state) hidden_state = self.dropout(hidden_state) return hidden_state def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output class EfficientFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class EfficientFormerFlat(nn.Module): def __init__(self): super().__init__() def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: hidden_states = hidden_states.flatten(2).transpose(1, 2) return hidden_states class EfficientFormerMeta3D(nn.Module): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0): super().__init__() self.token_mixer = EfficientFormerSelfAttention( dim=config.dim, key_dim=config.key_dim, num_heads=config.num_attention_heads, attention_ratio=config.attention_ratio, resolution=config.resolution, ) self.layernorm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.layernorm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = EfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim) self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: self_attention_outputs = self.token_mixer(self.layernorm1(hidden_states), output_attentions) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.use_layer_scale: layer_output = hidden_states + self.drop_path( self.layer_scale_1.unsqueeze(0).unsqueeze(0) * attention_output ) layer_output = layer_output + self.drop_path( self.layer_scale_2.unsqueeze(0).unsqueeze(0) * self.mlp(self.layernorm2(layer_output)) ) else: layer_output = hidden_states + self.drop_path(attention_output) layer_output = layer_output + self.drop_path(self.mlp(self.layernorm2(layer_output))) outputs = (layer_output,) + outputs return outputs class EfficientFormerMeta3DLayers(nn.Module): def __init__(self, config: EfficientFormerConfig): super().__init__() drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:-1])) for block_idx in range(config.num_meta3d_blocks) ] self.blocks = nn.ModuleList( [EfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path) for drop_path in drop_paths] ) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: all_attention_outputs = () if output_attentions else None for layer_module in self.blocks: if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] hidden_states = layer_module(hidden_states, output_attentions) if output_attentions: all_attention_outputs = all_attention_outputs + (hidden_states[1],) if output_attentions: outputs = (hidden_states[0],) + all_attention_outputs return outputs return hidden_states class EfficientFormerMeta4D(nn.Module): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0): super().__init__() pool_size = config.pool_size if config.pool_size is not None else 3 self.token_mixer = EfficientFormerPooling(pool_size=pool_size) mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = EfficientFormerConvMlp( config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob ) self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: outputs = self.token_mixer(hidden_states) if self.use_layer_scale: layer_output = hidden_states + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * outputs) layer_output = layer_output + self.drop_path( self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(layer_output) ) else: layer_output = hidden_states + self.drop_path(outputs) layer_output = layer_output + self.drop_path(self.mlp(layer_output)) return layer_output class EfficientFormerMeta4DLayers(nn.Module): def __init__(self, config: EfficientFormerConfig, stage_idx: int): super().__init__() num_layers = ( config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks ) drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers) ] self.blocks = nn.ModuleList( [ EfficientFormerMeta4D(config, config.hidden_sizes[stage_idx], drop_path=drop_path) for drop_path in drop_paths ] ) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: for layer_module in self.blocks: hidden_states = layer_module(hidden_states) return hidden_states class EfficientFormerIntermediateStage(nn.Module): def __init__(self, config: EfficientFormerConfig, index: int): super().__init__() self.meta4D_layers = EfficientFormerMeta4DLayers(config, index) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: hidden_states = self.meta4D_layers(hidden_states) return hidden_states class EfficientFormerLastStage(nn.Module): def __init__(self, config: EfficientFormerConfig): super().__init__() self.meta4D_layers = EfficientFormerMeta4DLayers(config, -1) self.flat = EfficientFormerFlat() self.meta3D_layers = EfficientFormerMeta3DLayers(config) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: hidden_states = self.meta4D_layers(hidden_states) hidden_states = self.flat(hidden_states) hidden_states = self.meta3D_layers(hidden_states, output_attentions) return hidden_states class EfficientFormerEncoder(nn.Module): def __init__(self, config: EfficientFormerConfig): super().__init__() self.config = config num_intermediate_stages = len(config.depths) - 1 downsamples = [ config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1] for i in range(num_intermediate_stages) ] intermediate_stages = [] for i in range(num_intermediate_stages): intermediate_stages.append(EfficientFormerIntermediateStage(config, i)) if downsamples[i]: intermediate_stages.append( EfficientFormerPatchEmbeddings(config, config.hidden_sizes[i], config.hidden_sizes[i + 1]) ) self.intermediate_stages = nn.ModuleList(intermediate_stages) self.last_stage = EfficientFormerLastStage(config) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, output_attentions: bool = False, return_dict: bool = True, ) -> BaseModelOutput: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for layer_module in self.intermediate_stages: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_output = self.last_stage(hidden_states, output_attentions=output_attentions) if output_attentions: all_self_attentions = all_self_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (layer_output[0],) if not return_dict: return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=layer_output[0], hidden_states=all_hidden_states, attentions=all_self_attentions, ) class EfficientFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientFormerConfig base_model_prefix = "efficientformer" main_input_name = "pixel_values" supports_gradient_checkpointing = False def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) EFFICIENTFORMER_START_DOCSTRING = r""" This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`ViTImageProcessor`]. See [`ViTImageProcessor.preprocess`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.", EFFICIENTFORMER_START_DOCSTRING, ) class EfficientFormerModel(EfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.config = config _no_split_modules = ["EfficientFormerMeta4D"] self.patch_embed = EfficientFormerConvStem(config, config.hidden_sizes[0]) self.encoder = EfficientFormerEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.patch_embed(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ EfficientFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, EFFICIENTFORMER_START_DOCSTRING, ) class EfficientFormerForImageClassification(EfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.num_labels = config.num_labels self.efficientformer = EfficientFormerModel(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output.mean(-2)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @dataclass class EfficientFormerForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of [`EfficientFormerForImageClassificationWithTeacher`]. Args: logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None cls_logits: torch.FloatTensor = None distillation_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( """ EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. <Tip warning={true}> This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. </Tip> """, EFFICIENTFORMER_START_DOCSTRING, ) class EfficientFormerForImageClassificationWithTeacher(EfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.num_labels = config.num_labels self.efficientformer = EfficientFormerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Distillation head self.distillation_classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=EfficientFormerForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, EfficientFormerForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] cls_logits = self.classifier(sequence_output.mean(-2)) distillation_logits = self.distillation_classifier(sequence_output.mean(-2)) # during inference, return the average of both classifier predictions logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return EfficientFormerForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py", "repo_id": "transformers", "token_count": 13806 }