text
stringlengths 96
319k
| id
stringlengths 14
178
| metadata
dict |
---|---|---|
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original implementation: https://github.com/pytorch/fairseq/tree/master/examples/wmt19
# Authors:
# - @alexeib Alexei Baevski
# - @edunov Sergey Edunov
# - @michaelauli Michael Auli
# - @myleott Myle Ott
# - @nng555 Nathan Ng
# - David Grangier
# - Kyra Yee
#
# Paper: Facebook FAIR's WMT19 News Translation Task Submission https://arxiv.org/abs/1907.06616
#
"""PyTorch Fairseq model, ported from https://github.com/pytorch/fairseq/tree/master/examples/wmt19"""
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss, LayerNorm
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_fsmt import FSMTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/wmt19-ru-en"
_CONFIG_FOR_DOC = "FSMTConfig"
# See all FSMT models at https://huggingface.co/models?filter=fsmt
# Porting notes:
# this one is modeled after BartModel*
#
# Currently only translation (fairseq also has weights for LM)
#
# fairseq provides weights for ru-en, en-ru and de-en, en-de pairs. All have been ported.
# - ru-en, en-ru use asymmetric vocab
# - de-en, en-de use a merged single vocab (but the code works as if they are separate)
#
# Differences with Bart:
# - not using bos token
# - 2 separate vocabs (src and target)
# - embed weights aren't tied
# - uses a model Ensemble (but that part isn't ported/implemented yet) - so we
# aren't getting as good of a BLEU score
# - uses a projection layer at the end of the decoder
# - doesn't use final_logits_bias
# - beam search: stops as soon as num_beams == len(hypos) (whereas transformers
# is not satisfied there and will continue searching until the next cycles
# aren't promising something better), comparing BLEU scores - the transformers
# algorithm is slightly superior, therefore using the latter. But if you want
# to match fairseq outputs, you need to pass ``early_stopping=True`` to ``generate()``.
#
# SinusoidalPositionalEmbedding is slightly different from Bart's - generates
# different embeddings. This implementation is copied verbatim from fairseq with
# some small changes to make it work here.
#
# Other changes:
# - doesn't support use_cache as Bart's version does
#
#
# FSMTConfig changes with BartConfig
#
# Differences with BART:
# - src/tgt vocabs aren't shared
# - token embeddings aren't shared
# - needs a language pair
# - scale_embedding are True
#
# some unused args were removed too
#
#
# TODO:
# - port model ensemble (fs uses 4 model checkpoints)
# - solve beam search discrepancies
# docstyle-ignore
"""
Here is how to compare BLEU scores against fairseq implementation:
# en-ru
export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605)
# ru-en
export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937)
# de-en
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750)
# en-de
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862)
"""
FSMT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FSMTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FSMT_GENERATION_EXAMPLE = r"""
Translation example::
```python
>>> from transformers import AutoTokenizer, FSMTForConditionalGeneration
>>> mname = "facebook/wmt19-ru-en"
>>> model = FSMTForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> src_text = "Машинное обучение - это здорово, не так ли?"
>>> input_ids = tokenizer(src_text, return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
"Machine learning is great, isn't it?"
```
"""
FSMT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`FSTMTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
FSMT uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`Tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden-states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`Tuple(torch.FloatTensor)` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def invert_mask(attention_mask):
"""Turns 1->0, 0->1, False->True, True-> False"""
assert attention_mask.dim() == 2
return attention_mask.eq(0)
def triu_onnx(x, diagonal=0):
l = x.shape[0]
arange = torch.arange(l, device=x.device)
mask = arange.expand(l, l)
arange = arange.unsqueeze(-1)
if diagonal:
arange = arange + diagonal
mask = mask >= arange
return x.masked_fill(mask == 0, 0)
def _prepare_fsmt_decoder_inputs(
config,
input_ids,
decoder_input_ids=None,
decoder_padding_mask=None,
causal_mask_dtype=torch.float32,
):
"""
Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided.
This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during
generation
"""
pad_token_id = config.pad_token_id
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
bsz, tgt_len = decoder_input_ids.size()
if decoder_padding_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
else:
decoder_padding_mask = invert_mask(decoder_padding_mask)
causal_mask = triu_onnx(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len, dtype=causal_mask_dtype)), 1).to(
device=decoder_input_ids.device
)
return decoder_input_ids, decoder_padding_mask, causal_mask
class PretrainedFSMTModel(PreTrainedModel):
config_class = FSMTConfig
base_model_prefix = "model"
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, SinusoidalPositionalEmbedding):
pass
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
def _make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
if shape_1 != shape2:
raise AssertionError(f"shape mismatch: {shape_1} != {shape2}")
def shift_tokens_right(input_ids, pad_token_id):
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
# replace possible -100 values in labels by `pad_token_id`
input_ids.masked_fill_(input_ids == -100, pad_token_id)
prev_output_tokens = input_ids.clone()
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = input_ids[:, :-1]
return prev_output_tokens
def make_padding_mask(input_ids, padding_idx=1):
"""True for pad tokens"""
padding_mask = input_ids.eq(padding_idx)
if not padding_mask.any():
padding_mask = None
return padding_mask
# Helper Modules
class EncoderLayer(nn.Module):
def __init__(self, config: FSMTConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Attention(self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout)
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(self, x, encoder_padding_mask, layer_head_mask, output_attentions=False):
"""
Args:
x (`torch.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_padding_mask (`torch.ByteTensor`): binary ByteTensor of shape
*(batch, src_len)* where padding elements are indicated by `1`.
for t_tgt, t_src is excluded (or masked out), =0 means it is
included in attention
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(config.encoder_attention_heads,)*.
Returns:
encoded output of shape *(seq_len, batch, embed_dim)*
"""
residual = x
x, attn_weights = self.self_attn(
query=x,
key=x,
key_padding_mask=encoder_padding_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return x, attn_weights
class FSMTEncoder(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`EncoderLayer`].
Args:
config: FSMTConfig
"""
def __init__(self, config: FSMTConfig, embed_tokens):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.embed_tokens = embed_tokens
embed_dim = embed_tokens.embedding_dim
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
)
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)]) # type: List[EncoderLayer]
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: torch.Tensor = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
"""
Args:
input_ids (`torch.LongTensor`): tokens in the source language of shape
*(batch, src_len)*
attention_mask (`torch.LongTensor`): indicating which indices are padding tokens
inputs_embeds (`torch.FloatTensor`):
embedding vectors of shape *(batch, src_len, embed_dim)*
head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Returns:
BaseModelOutput or Tuple comprised of:
- **x** (`torch.Tensor`): the last encoder layer's output of shape *(src_len, batch, embed_dim)*
- **encoder_states** (`Tuple(torch.FloatTensor)`): all intermediate hidden states of shape *(src_len,
batch, embed_dim)*. Only populated if *output_hidden_states:* is True.
- **all_attentions** (`Tuple(torch.FloatTensor)`): Attention weights for each layer.
During training might not be of length n_layers because of layer dropout.
"""
# check attention mask and invert
if attention_mask is not None:
attention_mask = invert_mask(attention_mask)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_ids)
elif inputs_embeds is not None:
inputs_embeds = inputs_embeds * self.embed_scale
# We assume zeros hidden states correspond to padding tokens
# and create `position_ids` where inputs_embeds[:, :, 0] == 0
position_ids = inputs_embeds[:, :, 0].masked_fill(
inputs_embeds[:, :, 0].eq(0), self.embed_positions.padding_idx
)
embed_pos = self.embed_positions(position_ids)
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
x = inputs_embeds + embed_pos
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
x = x.transpose(0, 1) # T x B x C -> B x T x C
encoder_states += (x,)
x = x.transpose(0, 1) # B x T x C -> T x B x C
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
x, attn = encoder_layer(
x,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (attn,)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if output_hidden_states:
encoder_states += (x,)
if not return_dict:
return tuple(v for v in [x, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions)
class DecoderLayer(nn.Module):
def __init__(self, config: FSMTConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.encoder_attn = Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
encoder_decoder_attention=True,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(
self,
x,
encoder_hidden_states,
encoder_attn_mask=None,
layer_state=None,
causal_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
decoder_padding_mask=None,
output_attentions=False,
):
residual = x
if layer_state is None:
layer_state = {}
# Self Attention
x, self_attn_weights = self.self_attn(
query=x,
key=x,
layer_state=layer_state, # adds keys to layer state
key_padding_mask=decoder_padding_mask,
attn_mask=causal_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
# Cross attention
residual = x
assert self.encoder_attn.cache_key != self.self_attn.cache_key
x, cross_attn_weights = self.encoder_attn(
query=x,
key=encoder_hidden_states,
key_padding_mask=encoder_attn_mask,
layer_state=layer_state, # mutates layer state
layer_head_mask=cross_attn_layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.encoder_attn_layer_norm(x)
# Fully Connected
residual = x
x = self.activation_fn(self.fc1(x))
x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return (
x,
self_attn_weights,
layer_state,
cross_attn_weights,
) # layer_state = cache for decoding
class FSMTDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DecoderLayer`]
Args:
config: FSMTConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: FSMTConfig, embed_tokens: nn.Embedding):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
embed_dim = embed_tokens.embedding_dim
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.decoder_layers)]) # type: List[DecoderLayer]
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.embed_tokens.weight, modifier_rank=None):
embed_tokens_weight_shape = self.embed_tokens.weight.shape
else:
embed_tokens_weight_shape = self.embed_tokens.weight.shape
self.output_projection = nn.Linear(embed_tokens_weight_shape[1], embed_tokens_weight_shape[0], bias=False)
self.output_projection.weight = self.embed_tokens.weight
def _tie_weights(self):
self.embed_tokens.weight = self.output_projection.weight
def forward(
self,
input_ids: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_padding_mask: torch.Tensor,
decoder_padding_mask: torch.Tensor,
decoder_causal_mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
"""
Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al.,
EMNLP 2019).
Args:
input_ids (`torch.LongTensor` of shape `(batch, tgt_len)`):
previous decoder outputs for teacher forcing
encoder_hidden_states: output from the encoder, used for
encoder-side attention
encoder_padding_mask: for ignoring pad tokens
past_key_values (dict or None): dictionary used for storing state during generation
head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Returns:
BaseModelOutputWithPast or tuple:
- the decoder's features of shape *(batch, tgt_len, embed_dim)*
- the cache
- hidden states
- attentions
"""
# check attention mask and invert
if encoder_padding_mask is not None:
encoder_padding_mask = invert_mask(encoder_padding_mask)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
# embed positions
positions = self.embed_positions(input_ids)
if use_cache:
input_ids = input_ids[:, -1:]
positions = positions[:, -1:] # happens after we embed them
x = self.embed_tokens(input_ids) * self.embed_scale
elif inputs_embeds is not None:
# We assume zeros hidden states correspond to padding tokens
# and create `position_ids` where inputs_embeds[:, :, 0] == 0
position_ids = inputs_embeds[:, :, 0].masked_fill(
inputs_embeds[:, :, 0].eq(0), self.embed_positions.padding_idx
)
positions = self.embed_positions(position_ids)
x = inputs_embeds * self.embed_scale
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
x += positions
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
# Convert to FSMT output format: (BS, seq_len, model_dim) -> (seq_len, BS, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if output_attentions else None
next_decoder_cache = []
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
layer_state = past_key_values[idx] if past_key_values is not None else None
x, layer_self_attn, layer_past, layer_cross_attn = decoder_layer(
x,
encoder_hidden_states,
encoder_attn_mask=encoder_padding_mask,
decoder_padding_mask=decoder_padding_mask,
layer_state=layer_state,
causal_mask=decoder_causal_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
output_attentions=output_attentions,
)
if use_cache:
next_decoder_cache.append(layer_past.copy())
if output_attentions:
all_self_attns += (layer_self_attn,)
all_cross_attns += (layer_cross_attn,)
# add hidden states from the last decoder layer
if output_hidden_states:
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
# Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
x = self.output_projection(x)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in [x, next_cache, all_hidden_states, all_self_attns, all_cross_attns] if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=x,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def _reorder_buffer(attn_cache, new_order):
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = input_buffer_k.index_select(0, new_order)
return attn_cache
class Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
encoder_decoder_attention=False, # otherwise self_attention
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.encoder_decoder_attention = encoder_decoder_attention
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"
def _shape(self, tensor, seq_len, bsz):
return tensor.contiguous().view(seq_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
def forward(
self,
query,
key: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
attn_mask: Optional[Tensor] = None,
layer_head_mask: Optional[Tensor] = None,
output_attentions=False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel"""
static_kv: bool = self.encoder_decoder_attention
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
# get here for encoder decoder cause of static_kv
if layer_state is not None: # reuse k,v and encoder_padding_mask
saved_state = layer_state.get(self.cache_key, {})
if "prev_key" in saved_state and static_kv:
# previous time steps are cached - no need to recompute key and value if they are static
key = None
else:
saved_state = None
layer_state = {}
q = self.q_proj(query) * self.scaling
if static_kv:
if key is None:
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
k = self.k_proj(query)
v = self.v_proj(query)
q = self._shape(q, tgt_len, bsz)
if k is not None:
k = self._shape(k, -1, bsz)
if v is not None:
v = self._shape(v, -1, bsz)
if saved_state is not None:
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)
# Update cache
layer_state[self.cache_key] = {
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
"prev_key_padding_mask": key_padding_mask if not static_kv else None,
}
assert k is not None
src_len = k.size(1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
assert key_padding_mask is None or key_padding_mask.size()[:2] == (
bsz,
src_len,
)
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2)
attn_weights = attn_weights.masked_fill(reshaped, torch.finfo(attn_weights.dtype).min)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# make sure that attn_weights are included in graph
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights,
p=self.dropout,
training=self.training,
)
assert v is not None
attn_output = torch.bmm(attn_probs, v)
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
assert k is not None and v is not None
prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
if prev_key_padding_mask is not None:
if static_kv:
new_key_padding_mask = prev_key_padding_mask
else:
new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
else:
new_key_padding_mask = key_padding_mask
return k, v, new_key_padding_mask
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a input_ids with -inf."""
return t.float().fill_(torch.finfo(t.dtype).min).type_as(t)
# Public API
def _get_shape(t):
return getattr(t, "shape", None)
@add_start_docstrings(
"The bare FSMT Model outputting raw hidden-states without any specific head on top.",
FSMT_START_DOCSTRING,
)
class FSMTModel(PretrainedFSMTModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"]
def __init__(self, config: FSMTConfig):
super().__init__(config)
padding_idx = config.pad_token_id
encoder_embed_tokens = nn.Embedding(config.src_vocab_size, config.d_model, padding_idx)
decoder_embed_tokens = nn.Embedding(config.tgt_vocab_size, config.d_model, padding_idx)
self.encoder = FSMTEncoder(config, encoder_embed_tokens)
self.decoder = FSMTDecoder(config, decoder_embed_tokens)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings())
self._tie_or_clone_weights(self.decoder.output_projection, self.get_input_embeddings())
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
if decoder_input_ids is None:
use_cache = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# make masks if user doesn't supply
if not use_cache and input_ids is not None:
decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_fsmt_decoder_inputs(
self.config,
input_ids,
decoder_input_ids=decoder_input_ids,
decoder_padding_mask=decoder_attention_mask,
causal_mask_dtype=self.decoder.embed_tokens.weight.dtype,
)
else:
decoder_padding_mask, causal_mask = None, None
if decoder_input_ids is None and decoder_inputs_embeds is None:
raise ValueError("Make sure that `decoder_input_ids` or `decoder_inputs_embeds` are passed.")
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
decoder_input_ids,
encoder_outputs[0],
attention_mask,
decoder_padding_mask,
decoder_causal_mask=causal_mask,
inputs_embeds=decoder_inputs_embeds,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, value):
self.encoder.embed_tokens = value
def get_output_embeddings(self):
return self.decoder.embed_tokens
def set_output_embeddings(self, value):
self.decoder.embed_tokens = value
@add_start_docstrings(
"The FSMT Model with a language modeling head. Can be used for summarization.", FSMT_START_DOCSTRING
)
class FSMTForConditionalGeneration(PretrainedFSMTModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"]
def __init__(self, config: FSMTConfig):
super().__init__(config)
base_model = FSMTModel(config)
self.model = base_model
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(FSMT_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.model(
input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_inputs_embeds=decoder_inputs_embeds,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = outputs[0]
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# TODO(SS): do we need to ignore pad tokens in labels?
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.tgt_vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = []
for layer_past in past_key_values:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
reordered_past.append(layer_past_new)
return reordered_past
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def get_output_embeddings(self):
return self.model.decoder.embed_tokens
def set_output_embeddings(self, value):
self.model.decoder.embed_tokens = value
class SinusoidalPositionalEmbedding(nn.Embedding):
"""
This module produces sinusoidal positional embeddings of any length.
We don't want to save the weight of this embedding since it's not trained (deterministic) and it can be huge.
Padding symbols are ignored.
These embeddings get automatically extended in forward if more positions is needed.
"""
def __init__(self, num_positions, embedding_dim, padding_idx):
self.make_weight(num_positions, embedding_dim, padding_idx)
def make_weight(self, num_positions, embedding_dim, padding_idx):
weight = self.get_embedding(num_positions, embedding_dim, padding_idx)
if not hasattr(self, "weight"):
# in ___init__
super().__init__(num_positions, embedding_dim, padding_idx, _weight=weight)
else:
# in forward put the weights on the correct dtype and device of the param
weight = weight.to(dtype=self.weight.dtype, device=self.weight.device)
self.weight = nn.Parameter(weight)
self.weight.detach_()
self.weight.requires_grad = False
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
@staticmethod
def make_positions(tensor, padding_idx: int):
"""
Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def forward(
self,
input,
incremental_state: Optional[Any] = None,
timestep: Optional[Tensor] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if max_pos > self.weight.size(0):
# expand embeddings if needed
self.make_weight(max_pos, self.embedding_dim, self.padding_idx)
positions = self.make_positions(input, self.padding_idx)
return super().forward(positions)
__all__ = ["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]
| transformers/src/transformers/models/fsmt/modeling_fsmt.py/0 | {
"file_path": "transformers/src/transformers/models/fsmt/modeling_fsmt.py",
"repo_id": "transformers",
"token_count": 25321
} |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma/modular_gemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
class GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GemmaModel`]
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
hidden_activation (`str` or `function`, *optional*):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu_pytorch_tanh",
hidden_activation=None,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.hidden_activation = hidden_activation
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["GemmaConfig"]
| transformers/src/transformers/models/gemma/configuration_gemma.py/0 | {
"file_path": "transformers/src/transformers/models/gemma/configuration_gemma.py",
"repo_id": "transformers",
"token_count": 3346
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for GIT
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
class GitProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {}
logger = logging.get_logger(__name__)
class GitProcessor(ProcessorMixin):
r"""
Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.
[`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
[`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`]):
The image processor is a required input.
tokenizer ([`AutoTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[GitProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
legacy = kwargs.pop("legacy", True)
if legacy:
logger.warning_once(
"Legacy behavior is being used. The current behavior will be deprecated in version 5.0.0. "
"In the new behavior, if both images and text are provided, the last token (EOS token) "
"of the input_ids and attention_mask tensors will be removed. "
"To test the new behavior, set `legacy=False`as a processor call argument."
)
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
GitProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
data = {}
if text is not None:
text_features = self.tokenizer(text, **output_kwargs["text_kwargs"])
data.update(text_features)
if images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
data.update(image_features)
if not legacy:
data["input_ids"] = data["input_ids"][:, :-1]
data["attention_mask"] = data["attention_mask"][:, :-1]
return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"].get("return_tensors"))
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["input_ids", "attention_mask", "pixel_values"]
__all__ = ["GitProcessor"]
| transformers/src/transformers/models/git/processing_git.py/0 | {
"file_path": "transformers/src/transformers/models/git/processing_git.py",
"repo_id": "transformers",
"token_count": 2649
} |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/got_ocr2/modular_got_ocr2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_got_ocr2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ..auto import AutoModelForCausalLM
from .configuration_got_ocr2 import GotOcr2Config, GotOcr2VisionConfig
_CONFIG_FOR_DOC = "GotOcr2Config"
class GotOcr2MLPBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.lin1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.lin2(hidden_states)
return hidden_states
class GotOcr2VisionAttention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(self, config, window_size):
super().__init__()
input_size = (
(config.image_size // config.patch_size, config.image_size // config.patch_size)
if window_size == 0
else (window_size, window_size)
)
self.num_attention_heads = config.num_attention_heads
head_dim = config.hidden_size // config.num_attention_heads
self.scale = head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
self.use_rel_pos = config.use_rel_pos
if self.use_rel_pos:
if input_size is None:
raise ValueError("Input size must be provided if using relative positional encoding.")
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int):
size of the query.
k_size (int):
size of key k.
rel_pos (`torch.Tensor`):
relative position embeddings (L, channel).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
self,
attn: torch.Tensor,
query: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
Args:
attn (`torch.Tensor`):
attention map.
query (`torch.Tensor`):
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
rel_pos_h (`torch.Tensor`):
relative position embeddings (Lh, channel) for height axis.
rel_pos_w (`torch.Tensor`):
relative position embeddings (Lw, channel) for width axis.
q_size (tuple):
spatial sequence size of query q with (query_height, query_width).
k_size (tuple):
spatial sequence size of key k with (key_height, key_width).
Returns:
attn (`torch.Tensor`):
attention map with added relative positional embeddings.
"""
query_height, query_width = q_size
key_height, key_width = k_size
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
batch_size, _, dim = query.shape
reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width)
attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width)
return attn
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
batch_size, height, width, _ = hidden_states.shape
# qkv with shape (3, batch_size, nHead, height * width, channel)
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
.permute(2, 0, 3, 1, 4)
)
# q, k, v with shape (batch_size * nHead, height * width, channel)
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
class GotOcr2VisionLayer(nn.Module):
def __init__(self, config, window_size):
super().__init__()
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attn = GotOcr2VisionAttention(config, window_size)
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = GotOcr2MLPBlock(config)
self.window_size = window_size
def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Args:
Partition into non-overlapping windows with padding if needed.
hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
size.
Returns:
windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
(pad_height, pad_width): padded height and width before partition
"""
batch_size, height, width, channel = hidden_states.shape
pad_h = (window_size - height % window_size) % window_size
pad_w = (window_size - width % window_size) % window_size
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
pad_height, pad_width = height + pad_h, width + pad_w
hidden_states = hidden_states.reshape(
batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
)
windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel)
return windows, (pad_height, pad_width)
def window_unpartition(
self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
) -> torch.Tensor:
"""
Args:
Window unpartition into original sequences and removing padding.
hidden_states (tensor):
input tokens with [batch_size * num_windows, window_size, window_size, channel].
window_size (int):
window size.
padding_shape (Tuple):
padded height and width (pad_height, pad_width).
original_shape (Tuple): original height and width (height, width) before padding.
Returns:
hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
"""
pad_height, pad_width = padding_shape
height, width = original_shape
batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
hidden_states = windows.reshape(
batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
)
hidden_states = (
hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1)
)
hidden_states = hidden_states[:, :height, :width, :].contiguous()
return hidden_states
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
# Window partition
if self.window_size > 0:
height, width = hidden_states.shape[1], hidden_states.shape[2]
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
hidden_states, attn_weights = self.attn(
hidden_states=hidden_states,
output_attentions=output_attentions,
)
# Reverse window partition
if self.window_size > 0:
hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
hidden_states = residual + hidden_states
layernorm_output = self.layer_norm2(hidden_states)
hidden_states = hidden_states + self.mlp(layernorm_output)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
@dataclass
class GotOcr2VisionEncoderOutput(ModelOutput):
"""
Base class for got_ocr2 vision model's outputs that also contains image embeddings obtained by applying the projection
layer to the pooler_output.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class GotOcr2PatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
return embeddings
class GotOcr2LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
input_dtype = x.dtype
x = x.float()
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = x.to(dtype=input_dtype)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GotOcr2VisionNeck(nn.Module):
def __init__(self, config: GotOcr2VisionConfig):
super().__init__()
self.config = config
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
self.layer_norm1 = GotOcr2LayerNorm(config.output_channels, data_format="channels_first")
self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False)
self.layer_norm2 = GotOcr2LayerNorm(config.output_channels, data_format="channels_first")
def forward(self, hidden_states):
hidden_states = hidden_states.permute(0, 3, 1, 2)
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
return hidden_states
class GotOcr2VisionEncoder(nn.Module):
def __init__(self, config: GotOcr2VisionConfig):
super().__init__()
self.config = config
self.image_size = config.image_size
self.patch_embed = GotOcr2PatchEmbeddings(config)
self.pos_embed = None
if config.use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(
1,
config.image_size // config.patch_size,
config.image_size // config.patch_size,
config.hidden_size,
)
)
self.layers = nn.ModuleList()
for i in range(config.num_hidden_layers):
layer = GotOcr2VisionLayer(
config,
window_size=config.window_size if i not in config.global_attn_indexes else 0,
)
self.layers.append(layer)
self.neck = GotOcr2VisionNeck(config)
self.gradient_checkpointing = False
def get_input_embeddings(self):
return self.patch_embed
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, GotOcr2VisionEncoderOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.patch_embed(pixel_values)
if self.pos_embed is not None:
hidden_states = hidden_states + self.pos_embed
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.neck(hidden_states)
if not return_dict:
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_self_attentions,)
return outputs
return GotOcr2VisionEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GotOcr2MultiModalProjector(nn.Module):
def __init__(self, config: GotOcr2Config):
super().__init__()
vision_output_channels = config.vision_config.output_channels
language_hidden_size = config.text_config.hidden_size
self.conv_upsampler1 = nn.Conv2d(
vision_output_channels, vision_output_channels * 2, kernel_size=3, stride=2, padding=1, bias=False
)
self.conv_upsampler2 = nn.Conv2d(
vision_output_channels * 2, language_hidden_size, kernel_size=3, stride=2, padding=1, bias=False
)
self.multimodal_projector = nn.Linear(language_hidden_size, language_hidden_size)
def forward(self, vision_embeddings: torch.Tensor) -> torch.Tensor:
hidden_state = self.conv_upsampler1(vision_embeddings)
hidden_state = self.conv_upsampler2(hidden_state)
hidden_state = hidden_state.flatten(2).permute(0, 2, 1)
hidden_state = self.multimodal_projector(hidden_state)
return hidden_state
@dataclass
class GotOcr2CausalLMOutputWithPast(ModelOutput):
"""
Base class for GotOcr2 causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
GOT_OCR2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GotOcr2Config`] or [`GotOcr2VisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
GOT_OCR2_START_DOCSTRING,
)
class GotOcr2PreTrainedModel(PreTrainedModel):
config_class = GotOcr2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GotOcr2VisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
# important: this ported version of GotOcr2 isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/GotOcr2/tree/main/got_ocr2 should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GOT_OCR2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`GotOcr2Processor`] uses
[`CLIPImageProcessor`] for processing images).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The GOT_OCR2 model which consists of a vision backbone and a language model.""",
GOT_OCR2_START_DOCSTRING,
)
class GotOcr2ForConditionalGeneration(GotOcr2PreTrainedModel, GenerationMixin):
def __init__(self, config: GotOcr2Config):
super().__init__(config)
self.vision_tower = GotOcr2VisionEncoder(config.vision_config)
self.multi_modal_projector = GotOcr2MultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.pad_token_id = config.pad_token_id
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
image_outputs = self.vision_tower(pixel_values).last_hidden_state
return self.multi_modal_projector(image_outputs)
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
if labels is not None:
final_labels = torch.full(
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
image_to_overwrite = torch.full(
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
)
image_to_overwrite[batch_indices, text_to_overwrite] = False
if left_padding:
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
else:
mask = torch.ones_like(image_to_overwrite, dtype=torch.bool).cumsum(-1) - 1
padding_mask = mask <= new_token_positions[:, -1:].to(target_device)
image_to_overwrite &= padding_mask
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
indices_to_mask = new_token_positions[batch_indices, pad_indices]
final_embedding[batch_indices, indices_to_mask] = 0
if labels is None:
final_labels = None
return final_embedding, final_attention_mask, final_labels, position_ids
@add_start_docstrings_to_model_forward(GOT_OCR2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GotOcr2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[Tuple, GotOcr2CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GotOcr2ForConditionalGeneration, TextStreamer
>>> model = GotOcr2ForConditionalGeneration.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf").to("cuda")
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
>>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(image, return_tensors="pt", color="green").to("cuda")
>>> # Generate
>>> streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
>>> generate_ids = model.generate(
... **inputs,
... do_sample=False,
... tokenizer = processor.tokenizer,
... stop_strings='<|im_end|>',
... streamer=streamer,
... max_new_tokens=4096,
... )
"You should keep in mind what features from the module should be used, especially
when you're planning to sell a template."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_features = self.get_image_features(pixel_values=pixel_values.to(inputs_embeds.dtype))
n_image_tokens = (input_ids == self.config.image_token_index).sum()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return GotOcr2CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
return model_inputs
__all__ = ["GotOcr2PreTrainedModel", "GotOcr2ForConditionalGeneration"]
| transformers/src/transformers/models/got_ocr2/modeling_got_ocr2.py/0 | {
"file_path": "transformers/src/transformers/models/got_ocr2/modeling_got_ocr2.py",
"repo_id": "transformers",
"token_count": 20383
} |
"""The tokenizer used by the GPT-SW3 models."""
import os
import re
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
class GPTSw3Tokenizer(PreTrainedTokenizer):
"""
Construct an GPTSw3 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Example usage:
```python
>>> from transformers import GPTSw3Tokenizer
>>> tokenizer = GPTSw3Tokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-126m")
>>> tokenizer("Svenska är kul!")["input_ids"]
[1814, 377, 3617, 63504]
```
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `False`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `False`):
Whether or not to keep accents when tokenizing.
pad_token (`str`, *optional*):
The token used for padding, for example when batching sequences of different lengths. If not provided, will
default to '<pad>' or '<unk>' depending on model size.
unk_token (`str`, *optional*):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. If not provided, will default to '<unk>'.
eos_token (`str`, *optional*):
The end of sequence token seen during pretraining. If not provided, will default to '<|endoftext|>'
bos_token (`str`, *optional*):
The beginning of sequence token that can be used for downstream task, was not seen during pretraining. If
not provided, will default to '<s>' or '<|endoftext|>', depending on model size.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
whitespaces (`set`):
The whitespaces that are replaced in the whitespace normalization in preprocessing.
non_printing_characters_re (`Pattern`):
The compiled regular expression to remove non-printing characters in preprocessing.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=False,
keep_accents=False,
pad_token=None,
unk_token=None,
eos_token=None,
bos_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
name_or_path = kwargs.get("name_or_path")
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored"
)
name_or_path = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
eos_token = "<|endoftext|>" if eos_token is None else eos_token
unk_token = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
pad_token = unk_token if pad_token is None else pad_token
bos_token = eos_token if bos_token is None else bos_token
else:
pad_token = "<pad>" if pad_token is None else pad_token
bos_token = "<s>" if bos_token is None else bos_token
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
# Used for whitespace normalization in input texts
# fmt : off
self.whitespaces = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
self.non_printing_characters_re = re.compile(
f"[{''.join(map(chr, list(range(0, 9)) + list(range(11, 32)) + list(range(127, 160)) + [160, 173, 8203]))}]"
)
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def vocab_size(self) -> int:
return len(self.sp_model)
def preprocess_text(self, text: str) -> str:
"""
Returns the preprocessed text. This procedure is identical to what was used when training the tokenizer.
"""
# Remove non-printing characters
text = self.non_printing_characters_re.sub("", text)
# Normalize whitespaces
text = "".join([char if char not in self.whitespaces else " " for char in text])
# NFC Unicode normalization
text = unicodedata.normalize("NFC", text)
return text
def _tokenize(self, text: str, **kwargs) -> List[str]:
text = self.preprocess_text(text)
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) to an id (int) using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (int) to a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
@staticmethod
def clean_up_tokenization(out_string: str) -> str:
"""Returns the input string, this function is overridden to remove the default clean up."""
return out_string
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Converts a sequence of tokens (strings) to a single string. Special tokens remain intact."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.get_vocab
def get_vocab(self) -> Dict[str, int]:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def encode_fast(
self, text: Union[str, List[str]], return_tensors: Union[str, bool] = False
) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""
Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced
functionality but is often much faster.
Does NOT handle special tokens correctly, these can manually be added as ids afterwards.
Does NOT support padding, these can manually be added as ids afterwards.
Use default HuggingFace tokenization methods for full functionality.
Args:
text (`str` or `List[str]`): One or several text(s) to convert to token ids.
return_tensors (`str` or `bool`): Returns PyTorch tensors if set to True or "pt"
Returns:
`List[int]`, `List[List[int]]`, or `torch.Tensor`: The encoded text(s) as token ids.
"""
if isinstance(text, str):
text = self.preprocess_text(text)
token_ids = self.sp_model.encode(text)
else:
text = [self.preprocess_text(t) for t in text]
token_ids = self.sp_model.encode(text)
if return_tensors is True or return_tensors == "pt":
token_ids = torch.tensor(token_ids)
return token_ids
def decode_fast(self, token_ids: Union[int, List[int]]) -> str:
"""
Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced
functionality but is often much faster.
Args:
token_ids (`int` or `List[int]`): Encoded token or text as token id(s).
Returns:
`str`: Decoded text
"""
return self.sp_model.decode(token_ids)
__all__ = ["GPTSw3Tokenizer"]
| transformers/src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py",
"repo_id": "transformers",
"token_count": 5232
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hiera model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class HieraConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate a Hiera
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Hiera
[facebook/hiera-base-224](https://huggingface.co/facebook/hiera-base-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
image_size (`list(int)`, *optional*, defaults to `[224, 224]`):
The size (resolution) of input in the format (height, width) for images
and (frames, height, width) for videos.
patch_size (`list(int)`, *optional*, defaults to `[7, 7]`):
The size (resolution) of each patch.
patch_stride (`list(int)`, *optional*, defaults to `[4, 4]`):
The stride of the patch.
patch_padding (`list(int)`, *optional*, defaults to `[3, 3]`):
The padding of the patch.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of mlp hidden dim to embedding dim.
depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
Depth of each layer in the Transformer encoder.
num_heads (`list(int)`, *optional*, defaults to `[1, 2, 4, 8]`):
Number of attention heads in each layer of the Transformer encoder.
embed_dim_multiplier (`float`, *optional*, defaults to 2.0):
The multiplier to the dimensionality of patch embedding in each layer of the Transformer encoder.
num_query_pool (`int`, *optional*, defaults to 3):
The number of query pool stages.
query_stride (`list(int)`, *optional*, defaults to `[2, 2]`):
The stride of the query pool.
masked_unit_size (`list(int)`, *optional*, defaults to `[8, 8]`):
The size of the masked unit.
masked_unit_attention (`list(bool)`, *optional*, defaults to `[True, True, False, False]`):
Whether to use masked unit attention in each layer of the Transformer encoder.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The drop path rate.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices and
the zero_initializer for initializing all bias vectors.
layer_norm_init (`float`, *optional*, defaults to 1.0):
The initial weight value for layer normalization layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
decoder_hidden_size (`int`, *optional*):
Dimensionality of decoder embeddings for MAE pretraining.
decoder_depth (`int`, *optional*):
Depth of the decoder for MAE pretraining.
decoder_num_heads (`int`, *optional*):
Number of attention heads in each layer of the decoder for MAE pretraining.
normalize_pixel_loss (`bool`, *optional*, defaults to `True`):
Whether to normalize the pixel loss by the number of pixels.
mask_ratio (`float`, *optional*, defaults to 0.6):
The ratio of masked tokens in the input.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import HieraConfig, HieraModel
>>> # Initializing a Hiera hiera-base-patch16-224 style configuration
>>> configuration = HieraConfig()
>>> # Initializing a model (with random weights) from the hiera-base-patch16-224 style configuration
>>> model = HieraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hiera"
attribute_map = {"num_hidden_layers": "num_layers"}
def __init__(
self,
embed_dim=96,
image_size=[224, 224],
patch_size=[7, 7],
patch_stride=[4, 4],
patch_padding=[3, 3],
mlp_ratio=4.0,
depths=[2, 3, 16, 3],
num_heads=[1, 2, 4, 8],
embed_dim_multiplier=2.0,
num_query_pool=3,
query_stride=[2, 2],
masked_unit_size=[8, 8],
masked_unit_attention=[True, True, False, False],
drop_path_rate=0.0,
num_channels=3,
hidden_act="gelu",
initializer_range=0.02,
layer_norm_init=1.0,
layer_norm_eps=1e-6,
decoder_hidden_size=None,
decoder_depth=None,
decoder_num_heads=None,
normalize_pixel_loss=True,
mask_ratio=0.6,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
if masked_unit_size[0] % query_stride[0] ** (len(depths) - 1) != 0:
raise ValueError(
f"masked_unit_size[0] ({masked_unit_size[0]}) must be divisible by query_stride[0] ({query_stride[0]}) "
f"raised to the power of the number of layers ({len(depths) - 1})"
)
if num_query_pool >= len(depths):
raise ValueError(
f"num_query_pool ({num_query_pool}) must be less than the number of layers ({len(depths)})"
)
self.embed_dim = embed_dim
self.image_size = image_size
self.patch_size = patch_size
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.mlp_ratio = mlp_ratio
self.depths = depths
self.num_heads = num_heads
self.num_layers = len(depths)
self.embed_dim_multiplier = embed_dim_multiplier
self.num_query_pool = num_query_pool
self.query_stride = query_stride
self.masked_unit_size = masked_unit_size
self.masked_unit_attention = masked_unit_attention
self.drop_path_rate = drop_path_rate
self.num_channels = num_channels
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_init = layer_norm_init
self.layer_norm_eps = layer_norm_eps
self.decoder_hidden_size = decoder_hidden_size
self.decoder_depth = decoder_depth
self.decoder_num_heads = decoder_num_heads
self.normalize_pixel_loss = normalize_pixel_loss
self.mask_ratio = mask_ratio
# we set the hidden_size attribute in order to make Hiera work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * embed_dim_multiplier ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["HieraConfig"]
| transformers/src/transformers/models/hiera/configuration_hiera.py/0 | {
"file_path": "transformers/src/transformers/models/hiera/configuration_hiera.py",
"repo_id": "transformers",
"token_count": 3701
} |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Idefics3Config,
Idefics3ForConditionalGeneration,
Idefics3ImageProcessor,
Idefics3Processor,
LlamaConfig,
)
EPILOG_TXT = """Example:
python transformers/src/transformers/models/idefics3/convert_idefics3_weights_to_hf.py --original_model_id HuggingFaceM4/Idefics3-8B-Llama3 --output_hub_path org/idefics3
"""
KEYS_TO_MODIFY_MAPPING = {
"lm_head.weight": "lm_head.linear.weight",
"model.layers": "model.text_model.layers",
"model.norm": "model.text_model.norm",
"model.modality_projection": "model.connector.modality_projection",
}
WEIGHTS_TO_MERGE_MAPPING = (
# (weights to merge in merging order), (new weight name)
(
("model.embed_tokens.weight", "model.embed_tokens.additional_embedding.weight"),
"model.text_model.embed_tokens.weight",
),
(("lm_head.linear.weight", "additional_fc.weight"), "lm_head.weight"),
)
WEIGHTS_TO_DROP = (
# The original model had a vision head, but this is never used
"model.vision_model.head",
)
def convert_state_dict_to_hf(state_dict):
new_state_dict = {}
old_state_dict_keys = set(state_dict.keys())
# Flattened list of weights to merge. We keep these in the original state dict to merge them later
original_weights_to_merge = [w for weights in WEIGHTS_TO_MERGE_MAPPING for w in weights[0]]
# for key, value in state_dict.items():
for old_key in old_state_dict_keys:
if old_key.endswith(".inv_freq") or any(w in old_key for w in WEIGHTS_TO_DROP):
state_dict.pop(old_key)
continue
key = old_key
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
weight = state_dict.pop(old_key)
if key in original_weights_to_merge:
new_state_dict[key] = weight
# Bit of a hack - we need to keep the original weights to merge them later
state_dict[key] = weight
else:
new_state_dict[key] = weight
return new_state_dict
def merge_weights(state_dict, new_state_dict):
old_weight_names = set(state_dict.keys())
# Merge the weights
for weights_to_merge, new_weight_name in WEIGHTS_TO_MERGE_MAPPING:
for weight_to_merge in weights_to_merge:
print(weight_to_merge)
assert weight_to_merge in state_dict, f"Weight {weight_to_merge} is missing in the state dict"
weight = state_dict.pop(weight_to_merge)
if new_weight_name not in new_state_dict:
new_state_dict[new_weight_name] = [weight]
else:
new_state_dict[new_weight_name].append(weight)
old_weight_names.remove(weight_to_merge)
new_state_dict[new_weight_name] = torch.cat(new_state_dict[new_weight_name], dim=0)
# Remove the weights that were merged
for weights_to_merge, new_weight_name in WEIGHTS_TO_MERGE_MAPPING:
for weight in weights_to_merge:
if weight in new_state_dict and weight != new_weight_name:
new_state_dict.pop(weight)
return new_state_dict
def get_config(checkpoint):
# We load the config then recreate to use the text_config
# download the config file
filepath = hf_hub_download(repo_id=checkpoint, filename="config.json")
with open(filepath, "r") as f:
config_json = json.load(f)
# Setup the vision config
vision_config = config_json.pop("vision_config")
vision_config.pop("vision_model_name", None)
if "embed_dim" in vision_config:
vision_config["hidden_size"] = vision_config.pop("embed_dim")
config_json["vocab_size"] = config_json.pop("vocab_size") + config_json.pop("additional_vocab_size")
image_token_id = config_json.pop("image_token_id", config_json["vocab_size"] - 2)
use_cache = config_json.pop("use_cache", True)
tie_word_embeddings = config_json.pop("tie_word_embeddings", True)
scale_factor = config_json.pop("scale_factor", 2)
vocab_size = config_json.pop("vocab_size", 100000)
# Remove "freeze" params from the config
config_json = {k: v for k, v in config_json.items() if not k.startswith("freeze_")}
text_config = LlamaConfig(**config_json)
config = Idefics3Config(
text_config=text_config,
vision_config=vision_config,
use_cache=use_cache,
image_token_id=image_token_id,
tie_word_embeddings=tie_word_embeddings,
scale_factor=scale_factor,
vocab_size=vocab_size,
)
return config
def convert_idefics3_hub_to_hf(original_model_id, output_hub_path, push_to_hub):
# The original model maps to AutoModelForCausalLM, converted we map to Idefics3ForConditionalGeneration
original_model = AutoModelForCausalLM.from_pretrained(
original_model_id, trust_remote_code=True, torch_dtype=torch.bfloat16
)
# The original model doesn't use the Idefics3 processing objects
image_processor = Idefics3ImageProcessor()
tokenizer = AutoTokenizer.from_pretrained(original_model_id)
processor = Idefics3Processor(
image_processor=image_processor,
tokenizer=tokenizer,
)
state_dict = original_model.state_dict()
new_state_dict = convert_state_dict_to_hf(state_dict)
# Merge weights
new_state_dict = merge_weights(state_dict, new_state_dict)
del state_dict
config = get_config(original_model_id)
print(config)
with init_empty_weights():
model = Idefics3ForConditionalGeneration(config)
model.load_state_dict(new_state_dict, strict=True, assign=True)
model.save_pretrained(output_hub_path)
processor.save_pretrained(output_hub_path)
if push_to_hub:
model.push_to_hub(output_hub_path, private=True)
processor.push_to_hub(output_hub_path, private=True)
def main():
parser = argparse.ArgumentParser(
epilog=EPILOG_TXT,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--original_model_id",
help="Hub location of the text model",
)
parser.add_argument(
"--output_hub_path",
help="Location on the hub of the converted model",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="If set, the model will be pushed to the hub after conversion.",
)
args = parser.parse_args()
convert_idefics3_hub_to_hf(args.original_model_id, args.output_hub_path, args.push_to_hub)
if __name__ == "__main__":
main()
| transformers/src/transformers/models/idefics3/convert_idefics3_weights_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/idefics3/convert_idefics3_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 2958
} |
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Jamba model."""
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache # we need __iter__ and __len__ of pkv
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import (
is_causal_conv1d_available,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
is_mamba_ssm_available,
)
from .configuration_jamba import JambaConfig
if is_flash_attn_2_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
if is_mamba_ssm_available():
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
else:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "JambaConfig"
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
def load_balancing_loss_func(
router_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
router_logits:
Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if router_logits is None or not isinstance(router_logits, tuple):
return 0
if isinstance(router_logits, tuple):
compute_device = router_logits[0].device
concatenated_router_logits = torch.cat(
[layer_router.to(compute_device) for layer_router in router_logits], dim=0
)
routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba
class JambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
JambaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class HybridMambaAttentionDynamicCache(DynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
super().__init__()
self.dtype = dtype
self.layers_block_type = config.layers_block_type
self.has_previous_state = False # only used by mamba
intermediate_size = config.mamba_expand * config.hidden_size
ssm_state_size = config.mamba_d_state
conv_kernel_size = config.mamba_d_conv
self.conv_states = []
self.ssm_states = []
self.transformer_layers = []
for i in range(config.num_hidden_layers):
if self.layers_block_type[i] == "mamba":
self.conv_states += [
torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
]
self.ssm_states += [
torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
]
else:
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
self.transformer_layers.append(i)
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Update the cache
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.conv_states[layer_idx].device
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
device = self.ssm_states[layer_idx].device
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# take any layer that contains cache and not empty tensor
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
class JambaAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
class JambaFlashAttention2(JambaAttention):
"""
Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
sliding_window=getattr(self.config, "sliding_window", None),
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
class JambaSdpaAttention(JambaAttention):
"""
Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from JambaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
JAMBA_ATTENTION_CLASSES = {
"eager": JambaAttention,
"flash_attention_2": JambaFlashAttention2,
"sdpa": JambaSdpaAttention,
}
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
class JambaMambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config: JambaConfig, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.intermediate_size = config.mamba_expand * config.hidden_size
self.time_step_rank = config.mamba_dt_rank
self.use_conv_bias = config.mamba_conv_bias
self.use_bias = config.mamba_proj_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=self.use_conv_bias,
kernel_size=self.conv_kernel_size,
groups=self.intermediate_size,
padding=self.conv_kernel_size - 1,
)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.use_fast_kernels = config.use_mamba_kernels
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
# selective projection used to make dt, B and C input dependant
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
# time step projection (discretization)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.intermediate_size))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
)
def cuda_kernels_forward(
self,
hidden_states: torch.Tensor,
cache_params: HybridMambaAttentionDynamicCache = None,
attention_mask: Optional[torch.LongTensor] = None,
):
batch_size, seq_len, _ = hidden_states.shape
use_precomputed_states = (
cache_params is not None
and cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0]
== cache_params.ssm_states[self.layer_idx].shape[0]
== batch_size
)
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
# We can't use `mamba_inner_fn` even if in training and without cache params because we have the
# inner layernorms which isn't supported by this fused kernel
hidden_states, gate = projected_states.chunk(2, dim=1)
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if use_precomputed_states:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if cache_params is not None:
conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
time_step = self.dt_layernorm(time_step)
B = self.b_layernorm(B)
C = self.c_layernorm(C)
# Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
# This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
# in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
# linear layers, and requires to call the forward pass directly.
# Quantized model can't work with the original code:
# ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
time_proj_bias = self.dt_proj.bias.data
with torch.no_grad():
self.dt_proj.bias.data = torch.zeros_like(self.dt_proj.bias.data)
discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
with torch.no_grad():
self.dt_proj.bias.data = time_proj_bias
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
if use_precomputed_states:
scan_outputs = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states[..., 0],
discrete_time_step[..., 0],
A,
B[:, 0],
C[:, 0],
self.D,
gate[..., 0],
time_proj_bias,
dt_softplus=True,
).unsqueeze(-1)
else:
scan_outputs, ssm_state = selective_scan_fn(
hidden_states,
discrete_time_step,
A,
B.transpose(1, 2),
C.transpose(1, 2),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
return_last_state=True,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
# fmt: off
def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask: Optional[torch.LongTensor] = None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
hidden_states, gate = projected_states.chunk(2, dim=1)
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
use_cache = isinstance(cache_params, HybridMambaAttentionDynamicCache)
# 2. Convolution sequence transformation
if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
if self.training:
# In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
else:
ssm_state = cache_params.ssm_states[self.layer_idx]
ssm_state = ssm_state.to(hidden_states.device)
if cache_params.has_previous_state and seq_len == 1 and \
cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
conv_state[:, :, -1] = hidden_states[:, :, 0]
cache_params.conv_states[self.layer_idx] = conv_state
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
else:
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx] = conv_state
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
else:
ssm_state = torch.zeros(
(batch_size, self.intermediate_size, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
time_step = self.dt_layernorm(time_step)
B = self.b_layernorm(B)
C = self.c_layernorm(C)
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediate_size, seq_len, ssm_state_size]
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
scan_outputs = []
for i in range(seq_len):
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediate_size, ssm_state]
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediate_size, 1]
scan_outputs.append(scan_output[:, :, 0])
scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediate_size, seq_len]
scan_output = scan_output + (hidden_states * self.D[None, :, None])
scan_output = (scan_output * self.act(gate))
if use_cache:
cache_params.ssm_states[self.layer_idx] = ssm_state
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(
self,
hidden_states,
cache_params: HybridMambaAttentionDynamicCache = None,
attention_mask: Optional[torch.LongTensor] = None,
):
if self.use_fast_kernels:
if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
raise ValueError(
"Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
)
return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask)
return self.slow_forward(hidden_states, cache_params, attention_mask)
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
class JambaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba
class JambaSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config: JambaConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.router(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class JambaAttentionDecoderLayer(nn.Module):
def __init__(self, config: JambaConfig, layer_idx: int):
super().__init__()
num_experts = config.layers_num_experts[layer_idx]
self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
self.feed_forward = ffn_layer_class(config)
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
# residual connection after attention
hidden_states = residual + hidden_states
# feed-forward (experts/MLP)
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
ff_outputs = self.feed_forward(hidden_states)
if isinstance(ff_outputs, tuple):
hidden_states, router_logits = ff_outputs
else:
hidden_states, router_logits = ff_outputs, None
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class JambaMambaDecoderLayer(nn.Module):
def __init__(self, config: JambaConfig, layer_idx: int):
super().__init__()
num_experts = config.layers_num_experts[layer_idx]
self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
self.feed_forward = ffn_layer_class(config)
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_params=past_key_value,
attention_mask=attention_mask,
)
self_attn_weights = None
# residual connection after mamba
hidden_states = residual + hidden_states
# feed-forward (experts/MLP)
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
ff_outputs = self.feed_forward(hidden_states)
if isinstance(ff_outputs, tuple):
hidden_states, router_logits = ff_outputs
else:
hidden_states, router_logits = ff_outputs, None
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (past_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
JAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`JambaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
JAMBA_START_DOCSTRING,
)
class JambaPreTrainedModel(PreTrainedModel):
config_class = JambaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True # Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
JAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
`(batch_size, d_inner, d_state)` respectively.
See the `HybridMambaAttentionDynamicCache` class for more details.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}
@add_start_docstrings(
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
JAMBA_START_DOCSTRING,
)
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba
class JambaModel(JambaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`]
Args:
config: JambaConfig
"""
def __init__(self, config: JambaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
for i in range(config.num_hidden_layers):
layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
decoder_layers.append(layer_class(config, layer_idx=i))
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config._attn_implementation
self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and past_key_values is None:
logger.warning_once(
"Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
"provided, so no cache will be returned."
)
if cache_position is None:
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
# Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
layer_mask = mamba_mask if isinstance(decoder_layer, JambaMambaDecoderLayer) else causal_mask
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
layer_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=layer_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
if output_router_logits:
if layer_outputs[-1] is not None:
# append router logits only of expert layers. Regular MLP layers return `None` as the router logits
all_router_logits += (layer_outputs[-1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if past_key_values and not past_key_values.has_previous_state:
past_key_values.has_previous_state = True
next_cache = None if not use_cache else past_key_values
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
target_length = cache_position[-1] + 1
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def _update_mamba_mask(self, attention_mask, cache_position):
"""
No need for zeroing states when
1. Cached forward
2. Attending to all inputs
"""
mamba_mask = attention_mask
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
mamba_mask = None
return mamba_mask
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
class JambaForCausalLM(JambaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: JambaConfig):
super().__init__(config)
self.model = JambaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, JambaForCausalLM
>>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
cache_position=cache_position,
return_dict=return_dict,
)
hidden_states = outputs[0]
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
output_router_logits=False,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# Overwitten -- has a unique cache type, `HybridMambaAttentionDynamicCache`
empty_past_kv = past_key_values is None
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if not empty_past_kv:
if (
inputs_embeds is not None # Exception 1
or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
else:
past_key_values = HybridMambaAttentionDynamicCache(
self.config, input_ids.shape[0], self.dtype, device=self.device
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"output_router_logits": output_router_logits,
"logits_to_keep": self.config.num_logits_to_keep,
"cache_position": cache_position,
}
)
return model_inputs
@add_start_docstrings(
"""
The Jamba Model with a sequence classification head on top (linear layer).
[`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
JAMBA_START_DOCSTRING,
)
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA
class JambaForSequenceClassification(JambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = JambaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = ["JambaForCausalLM", "JambaForSequenceClassification", "JambaModel", "JambaPreTrainedModel"]
| transformers/src/transformers/models/jamba/modeling_jamba.py/0 | {
"file_path": "transformers/src/transformers/models/jamba/modeling_jamba.py",
"repo_id": "transformers",
"token_count": 34687
} |
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LayoutLMv2 model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import is_detectron2_available, logging
logger = logging.get_logger(__name__)
# soft dependency
if is_detectron2_available():
import detectron2
class LayoutLMv2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
[microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
[`TFLayoutLMv2Model`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the 2D position embedding might ever be used with. Typically set this to something
large just in case (e.g., 1024).
max_rel_pos (`int`, *optional*, defaults to 128):
The maximum number of relative positions to be used in the self-attention mechanism.
rel_pos_bins (`int`, *optional*, defaults to 32):
The number of relative position bins to be used in the self-attention mechanism.
fast_qkv (`bool`, *optional*, defaults to `True`):
Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
max_rel_2d_pos (`int`, *optional*, defaults to 256):
The maximum number of relative 2D positions in the self-attention mechanism.
rel_2d_pos_bins (`int`, *optional*, defaults to 64):
The number of 2D relative position bins in the self-attention mechanism.
image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
The shape of the average-pooled feature map.
coordinate_size (`int`, *optional*, defaults to 128):
Dimension of the coordinate embeddings.
shape_size (`int`, *optional*, defaults to 128):
Dimension of the width and height embeddings.
has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use a relative attention bias in the self-attention mechanism.
has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use a spatial attention bias in the self-attention mechanism.
has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
Whether or not to add visual segment embeddings.
detectron2_config_args (`dict`, *optional*):
Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
for details regarding default values.
Example:
```python
>>> from transformers import LayoutLMv2Config, LayoutLMv2Model
>>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
>>> configuration = LayoutLMv2Config()
>>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
>>> model = LayoutLMv2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "layoutlmv2"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
max_2d_position_embeddings=1024,
max_rel_pos=128,
rel_pos_bins=32,
fast_qkv=True,
max_rel_2d_pos=256,
rel_2d_pos_bins=64,
convert_sync_batchnorm=True,
image_feature_pool_shape=[7, 7, 256],
coordinate_size=128,
shape_size=128,
has_relative_attention_bias=True,
has_spatial_attention_bias=True,
has_visual_segment_embedding=False,
detectron2_config_args=None,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
hidden_dropout_prob=hidden_dropout_prob,
attention_probs_dropout_prob=attention_probs_dropout_prob,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
pad_token_id=pad_token_id,
**kwargs,
)
self.max_2d_position_embeddings = max_2d_position_embeddings
self.max_rel_pos = max_rel_pos
self.rel_pos_bins = rel_pos_bins
self.fast_qkv = fast_qkv
self.max_rel_2d_pos = max_rel_2d_pos
self.rel_2d_pos_bins = rel_2d_pos_bins
self.convert_sync_batchnorm = convert_sync_batchnorm
self.image_feature_pool_shape = image_feature_pool_shape
self.coordinate_size = coordinate_size
self.shape_size = shape_size
self.has_relative_attention_bias = has_relative_attention_bias
self.has_spatial_attention_bias = has_spatial_attention_bias
self.has_visual_segment_embedding = has_visual_segment_embedding
self.detectron2_config_args = (
detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config()
)
@classmethod
def get_default_detectron2_config(cls):
return {
"MODEL.MASK_ON": True,
"MODEL.PIXEL_STD": [57.375, 57.120, 58.395],
"MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone",
"MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"],
"MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]],
"MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"],
"MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000,
"MODEL.RPN.PRE_NMS_TOPK_TEST": 1000,
"MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000,
"MODEL.POST_NMS_TOPK_TEST": 1000,
"MODEL.ROI_HEADS.NAME": "StandardROIHeads",
"MODEL.ROI_HEADS.NUM_CLASSES": 5,
"MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"],
"MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead",
"MODEL.ROI_BOX_HEAD.NUM_FC": 2,
"MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14,
"MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead",
"MODEL.ROI_MASK_HEAD.NUM_CONV": 4,
"MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7,
"MODEL.RESNETS.DEPTH": 101,
"MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]],
"MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]],
"MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"],
"MODEL.RESNETS.NUM_GROUPS": 32,
"MODEL.RESNETS.WIDTH_PER_GROUP": 8,
"MODEL.RESNETS.STRIDE_IN_1X1": False,
}
def get_detectron2_config(self):
detectron2_config = detectron2.config.get_cfg()
for k, v in self.detectron2_config_args.items():
attributes = k.split(".")
to_set = detectron2_config
for attribute in attributes[:-1]:
to_set = getattr(to_set, attribute)
setattr(to_set, attributes[-1], v)
return detectron2_config
__all__ = ["LayoutLMv2Config"]
| transformers/src/transformers/models/layoutlmv2/configuration_layoutlmv2.py/0 | {
"file_path": "transformers/src/transformers/models/layoutlmv2/configuration_layoutlmv2.py",
"repo_id": "transformers",
"token_count": 4627
} |
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...utils import (
logging,
)
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class LlavaOnevisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LlavaOnevisionForConditionalGeneration`]. It is used to instantiate an
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [llava-hf/llava-onevision-qwen2-7b-ov-hf](https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf)
model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `SiglipVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `Qwen2Config`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 151646):
The image token index to encode the image prompt.
video_token_index (`int`, *optional*, defaults to 151647):
The video token index to encode the video prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"full"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
vision_feature_layer (`Union[int, List[int]]`, *optional*, defaults to -1):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_aspect_ratio (`str`, *optional*, defaults to `"anyres_max_9"`):
Aspect ratio used when processong image features. The default value is "anyres_max_9".
image_grid_pinpoints (`List`, *optional*):
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
of the form `(height, width)`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
multimodal_projector_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the multimodal projector.
Example:
```python
>>> from transformers import LlavaOnevisionForConditionalGeneration, LlavaOnevisionConfig, SiglipVisionConfig, Qwen2Config
>>> # Initializing a CLIP-vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a Llama config
>>> text_config = Qwen2Config()
>>> # Initializing a Llava-Next llava-hf/llava-onevision-qwen2-7b-ov-hf style configuration
>>> configuration = LlavaOnevisionConfig(vision_config, text_config)
>>> # Initializing a model from the llava-hf/llava-onevision-qwen2-7b-ov-hf style configuration
>>> model = LlavaOnevisionForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llava_onevision"
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_index=151646,
video_token_index=151647,
projector_hidden_act="gelu",
vision_feature_select_strategy="full",
vision_feature_layer=-1,
vision_aspect_ratio="anyres_max_9",
image_grid_pinpoints=None,
tie_word_embeddings=False,
multimodal_projector_bias=True,
**kwargs,
):
self.image_token_index = image_token_index
self.video_token_index = video_token_index
self.projector_hidden_act = projector_hidden_act
self.multimodal_projector_bias = multimodal_projector_bias
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.vision_aspect_ratio = vision_aspect_ratio
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [
[384, 384],
[384, 768],
[384, 1152],
[384, 1536],
[384, 1920],
[384, 2304],
[768, 384],
[768, 768],
[768, 1152],
[768, 1536],
[768, 1920],
[768, 2304],
[1152, 384],
[1152, 768],
[1152, 1152],
[1152, 1536],
[1152, 1920],
[1152, 2304],
[1536, 384],
[1536, 768],
[1536, 1152],
[1536, 1536],
[1536, 1920],
[1536, 2304],
[1920, 384],
[1920, 768],
[1920, 1152],
[1920, 1536],
[1920, 1920],
[1920, 2304],
[2304, 384],
[2304, 768],
[2304, 1152],
[2304, 1536],
[2304, 1920],
[2304, 2304],
]
)
self.image_grid_pinpoints = image_grid_pinpoints
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["siglip_vision_model"](
hidden_size=1152,
intermediate_size=4304,
patch_size=14,
image_size=384,
num_hidden_layers=26,
num_attention_heads=14,
vision_use_head=False,
)
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["qwen2"]()
self.text_config = text_config
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
__all__ = ["LlavaOnevisionConfig"]
| transformers/src/transformers/models/llava_onevision/configuration_llava_onevision.py/0 | {
"file_path": "transformers/src/transformers/models/llava_onevision/configuration_llava_onevision.py",
"repo_id": "transformers",
"token_count": 3470
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import socket
import time
import warnings
from pathlib import Path
from typing import Dict, List, Union
from zipfile import ZipFile
import numpy as np
import torch
from huggingface_hub.hf_api import list_models
from torch import nn
from tqdm import tqdm
from transformers import MarianConfig, MarianMTModel, MarianTokenizer
def remove_suffix(text: str, suffix: str):
if text.endswith(suffix):
return text[: -len(suffix)]
return text # or whatever
def remove_prefix(text: str, prefix: str):
if text.startswith(prefix):
return text[len(prefix) :]
return text # or whatever
def convert_encoder_layer(opus_dict, layer_prefix: str, converter: dict):
sd = {}
for k in opus_dict:
if not k.startswith(layer_prefix):
continue
stripped = remove_prefix(k, layer_prefix)
v = opus_dict[k].T # besides embeddings, everything must be transposed.
sd[converter[stripped]] = torch.tensor(v).squeeze()
return sd
def load_layers_(layer_lst: nn.ModuleList, opus_state: dict, converter, is_decoder=False):
for i, layer in enumerate(layer_lst):
layer_tag = f"decoder_l{i + 1}_" if is_decoder else f"encoder_l{i + 1}_"
sd = convert_encoder_layer(opus_state, layer_tag, converter)
layer.load_state_dict(sd, strict=False)
def find_pretrained_model(src_lang: str, tgt_lang: str) -> List[str]:
"""Find models that can accept src_lang as input and return tgt_lang as output."""
prefix = "Helsinki-NLP/opus-mt-"
model_list = list_models()
model_ids = [x.id for x in model_list if x.id.startswith("Helsinki-NLP")]
src_and_targ = [
remove_prefix(m, prefix).lower().split("-") for m in model_ids if "+" not in m
] # + cant be loaded.
matching = [f"{prefix}{a}-{b}" for (a, b) in src_and_targ if src_lang in a and tgt_lang in b]
return matching
def add_emb_entries(wemb, final_bias, n_special_tokens=1):
vsize, d_model = wemb.shape
embs_to_add = np.zeros((n_special_tokens, d_model))
new_embs = np.concatenate([wemb, embs_to_add])
bias_to_add = np.zeros((n_special_tokens, 1))
new_bias = np.concatenate((final_bias, bias_to_add), axis=1)
return new_embs, new_bias
def _cast_yaml_str(v):
bool_dct = {"true": True, "false": False}
if not isinstance(v, str):
return v
elif v in bool_dct:
return bool_dct[v]
try:
return int(v)
except (TypeError, ValueError):
return v
def cast_marian_config(raw_cfg: Dict[str, str]) -> Dict:
return {k: _cast_yaml_str(v) for k, v in raw_cfg.items()}
CONFIG_KEY = "special:model.yml"
def load_config_from_state_dict(opus_dict):
import yaml
cfg_str = "".join([chr(x) for x in opus_dict[CONFIG_KEY]])
yaml_cfg = yaml.load(cfg_str[:-1], Loader=yaml.BaseLoader)
return cast_marian_config(yaml_cfg)
def find_model_file(dest_dir): # this one better
model_files = list(Path(dest_dir).glob("*.npz"))
if len(model_files) != 1:
raise ValueError(f"Found more than one model file: {model_files}")
model_file = model_files[0]
return model_file
# Group Names Logic: change long opus model names to something shorter, like opus-mt-en-ROMANCE
ROM_GROUP = (
"fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT"
"+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co"
"+nap+scn+vec+sc+ro+la"
)
GROUPS = [
("cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh", "ZH"),
(ROM_GROUP, "ROMANCE"),
("de+nl+fy+af+da+fo+is+no+nb+nn+sv", "NORTH_EU"),
("da+fo+is+no+nb+nn+sv", "SCANDINAVIA"),
("se+sma+smj+smn+sms", "SAMI"),
("nb_NO+nb+nn_NO+nn+nog+no_nb+no", "NORWAY"),
("ga+cy+br+gd+kw+gv", "CELTIC"), # https://en.wikipedia.org/wiki/Insular_Celtic_languages
]
GROUP_TO_OPUS_NAME = {
"opus-mt-ZH-de": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-de",
"opus-mt-ZH-fi": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
"opus-mt-ZH-sv": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-sv",
"opus-mt-SCANDINAVIA-SCANDINAVIA": "da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv",
"opus-mt-NORTH_EU-NORTH_EU": "de+nl+fy+af+da+fo+is+no+nb+nn+sv-de+nl+fy+af+da+fo+is+no+nb+nn+sv",
"opus-mt-de-ZH": "de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh",
"opus-mt-en_el_es_fi-en_el_es_fi": "en+el+es+fi-en+el+es+fi",
"opus-mt-en-ROMANCE": (
"en-fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO"
"+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR"
"+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la"
),
"opus-mt-en-CELTIC": "en-ga+cy+br+gd+kw+gv",
"opus-mt-es-NORWAY": "es-nb_NO+nb+nn_NO+nn+nog+no_nb+no",
"opus-mt-fi_nb_no_nn_ru_sv_en-SAMI": "fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms",
"opus-mt-fi-ZH": "fi-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh",
"opus-mt-fi-NORWAY": "fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no",
"opus-mt-ROMANCE-en": (
"fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO"
"+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR"
"+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en"
),
"opus-mt-CELTIC-en": "ga+cy+br+gd+kw+gv-en",
"opus-mt-sv-ZH": "sv-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh",
"opus-mt-sv-NORWAY": "sv-nb_NO+nb+nn_NO+nn+nog+no_nb+no",
}
OPUS_GITHUB_URL = "https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/"
ORG_NAME = "Helsinki-NLP/"
def convert_opus_name_to_hf_name(x):
"""For OPUS-MT-Train/ DEPRECATED"""
for substr, grp_name in GROUPS:
x = x.replace(substr, grp_name)
return x.replace("+", "_")
def convert_hf_name_to_opus_name(hf_model_name):
"""
Relies on the assumption that there are no language codes like pt_br in models that are not in GROUP_TO_OPUS_NAME.
"""
hf_model_name = remove_prefix(hf_model_name, ORG_NAME)
if hf_model_name in GROUP_TO_OPUS_NAME:
opus_w_prefix = GROUP_TO_OPUS_NAME[hf_model_name]
else:
opus_w_prefix = hf_model_name.replace("_", "+")
return remove_prefix(opus_w_prefix, "opus-mt-")
def get_system_metadata(repo_root):
import git
return {
"helsinki_git_sha": git.Repo(path=repo_root, search_parent_directories=True).head.object.hexsha,
"transformers_git_sha": git.Repo(path=".", search_parent_directories=True).head.object.hexsha,
"port_machine": socket.gethostname(),
"port_time": time.strftime("%Y-%m-%d-%H:%M"),
}
# docstyle-ignore
FRONT_MATTER_TEMPLATE = """---
language:
{}
tags:
- translation
license: apache-2.0
---
"""
DEFAULT_REPO = "Tatoeba-Challenge"
DEFAULT_MODEL_DIR = os.path.join(DEFAULT_REPO, "models")
def write_model_card(
hf_model_name: str,
repo_root=DEFAULT_REPO,
save_dir=Path("marian_converted"),
dry_run=False,
extra_metadata={},
) -> str:
"""
Copy the most recent model's readme section from opus, and add metadata. upload command: aws s3 sync model_card_dir
s3://models.huggingface.co/bert/Helsinki-NLP/ --dryrun
"""
import pandas as pd
hf_model_name = remove_prefix(hf_model_name, ORG_NAME)
opus_name: str = convert_hf_name_to_opus_name(hf_model_name)
if repo_root not in ("OPUS-MT-train", "Tatoeba-Challenge"):
raise ValueError(f"Repos root is {repo_root}. Expected either OPUS-MT-train or Tatoeba-Challenge")
opus_readme_path = Path(repo_root).joinpath("models", opus_name, "README.md")
if not (opus_readme_path.exists()):
raise ValueError(f"Readme file {opus_readme_path} not found")
opus_src, opus_tgt = [x.split("+") for x in opus_name.split("-")]
readme_url = f"https://github.com/Helsinki-NLP/{repo_root}/tree/master/models/{opus_name}/README.md"
s, t = ",".join(opus_src), ",".join(opus_tgt)
metadata = {
"hf_name": hf_model_name,
"source_languages": s,
"target_languages": t,
"opus_readme_url": readme_url,
"original_repo": repo_root,
"tags": ["translation"],
}
metadata.update(extra_metadata)
metadata.update(get_system_metadata(repo_root))
# combine with opus markdown
extra_markdown = (
f"### {hf_model_name}\n\n* source group: {metadata['src_name']} \n* target group: "
f"{metadata['tgt_name']} \n* OPUS readme: [{opus_name}]({readme_url})\n"
)
content = opus_readme_path.open().read()
content = content.split("\n# ")[-1] # Get the lowest level 1 header in the README -- the most recent model.
splat = content.split("*")[2:]
print(splat[3])
content = "*".join(splat)
content = (
FRONT_MATTER_TEMPLATE.format(metadata["src_alpha2"])
+ extra_markdown
+ "\n* "
+ content.replace("download", "download original weights")
)
items = "\n\n".join([f"- {k}: {v}" for k, v in metadata.items()])
sec3 = "\n### System Info: \n" + items
content += sec3
if dry_run:
return content, metadata
sub_dir = save_dir / f"opus-mt-{hf_model_name}"
sub_dir.mkdir(exist_ok=True)
dest = sub_dir / "README.md"
dest.open("w").write(content)
pd.Series(metadata).to_json(sub_dir / "metadata.json")
# if dry_run:
return content, metadata
def make_registry(repo_path="Opus-MT-train/models"):
if not (Path(repo_path) / "fr-en" / "README.md").exists():
raise ValueError(
f"repo_path:{repo_path} does not exist: "
"You must run: git clone [email protected]:Helsinki-NLP/Opus-MT-train.git before calling."
)
results = {}
for p in Path(repo_path).iterdir():
n_dash = p.name.count("-")
if n_dash == 0:
continue
else:
lns = list(open(p / "README.md").readlines())
results[p.name] = _parse_readme(lns)
return [(k, v["pre-processing"], v["download"], v["download"][:-4] + ".test.txt") for k, v in results.items()]
def convert_all_sentencepiece_models(model_list=None, repo_path=None, dest_dir=Path("marian_converted")):
"""Requires 300GB"""
save_dir = Path("marian_ckpt")
dest_dir = Path(dest_dir)
dest_dir.mkdir(exist_ok=True)
save_paths = []
if model_list is None:
model_list: list = make_registry(repo_path=repo_path)
for k, prepro, download, test_set_url in tqdm(model_list):
if "SentencePiece" not in prepro: # dont convert BPE models.
continue
if not os.path.exists(save_dir / k):
download_and_unzip(download, save_dir / k)
pair_name = convert_opus_name_to_hf_name(k)
convert(save_dir / k, dest_dir / f"opus-mt-{pair_name}")
save_paths.append(dest_dir / f"opus-mt-{pair_name}")
return save_paths
def lmap(f, x) -> List:
return list(map(f, x))
def fetch_test_set(test_set_url):
import wget
fname = wget.download(test_set_url, "opus_test.txt")
lns = Path(fname).open().readlines()
src = lmap(str.strip, lns[::4])
gold = lmap(str.strip, lns[1::4])
mar_model = lmap(str.strip, lns[2::4])
if not (len(gold) == len(mar_model) == len(src)):
raise ValueError(f"Gold, marian and source lengths {len(gold)}, {len(mar_model)}, {len(src)} mismatched")
os.remove(fname)
return src, mar_model, gold
def convert_whole_dir(path=Path("marian_ckpt/")):
for subdir in tqdm(list(path.ls())):
dest_dir = f"marian_converted/{subdir.name}"
if (dest_dir / "pytorch_model.bin").exists():
continue
convert(source_dir, dest_dir)
def _parse_readme(lns):
"""Get link and metadata from opus model card equivalent."""
subres = {}
for ln in [x.strip() for x in lns]:
if not ln.startswith("*"):
continue
ln = ln[1:].strip()
for k in ["download", "dataset", "models", "model", "pre-processing"]:
if ln.startswith(k):
break
else:
continue
if k in ["dataset", "model", "pre-processing"]:
splat = ln.split(":")
_, v = splat
subres[k] = v
elif k == "download":
v = ln.split("(")[-1][:-1]
subres[k] = v
return subres
def save_tokenizer_config(dest_dir: Path, separate_vocabs=False):
dname = dest_dir.name.split("-")
dct = {"target_lang": dname[-1], "source_lang": "-".join(dname[:-1]), "separate_vocabs": separate_vocabs}
save_json(dct, dest_dir / "tokenizer_config.json")
def add_to_vocab_(vocab: Dict[str, int], special_tokens: List[str]):
start = max(vocab.values()) + 1
added = 0
for tok in special_tokens:
if tok in vocab:
continue
vocab[tok] = start + added
added += 1
return added
def find_vocab_file(model_dir):
return list(model_dir.glob("*vocab.yml"))[0]
def find_src_vocab_file(model_dir):
return list(model_dir.glob("*src.vocab.yml"))[0]
def find_tgt_vocab_file(model_dir):
return list(model_dir.glob("*trg.vocab.yml"))[0]
def add_special_tokens_to_vocab(model_dir: Path, separate_vocab=False) -> None:
if separate_vocab:
vocab = load_yaml(find_src_vocab_file(model_dir))
vocab = {k: int(v) for k, v in vocab.items()}
num_added = add_to_vocab_(vocab, ["<pad>"])
save_json(vocab, model_dir / "vocab.json")
vocab = load_yaml(find_tgt_vocab_file(model_dir))
vocab = {k: int(v) for k, v in vocab.items()}
num_added = add_to_vocab_(vocab, ["<pad>"])
save_json(vocab, model_dir / "target_vocab.json")
save_tokenizer_config(model_dir, separate_vocabs=separate_vocab)
else:
vocab = load_yaml(find_vocab_file(model_dir))
vocab = {k: int(v) for k, v in vocab.items()}
num_added = add_to_vocab_(vocab, ["<pad>"])
print(f"added {num_added} tokens to vocab")
save_json(vocab, model_dir / "vocab.json")
save_tokenizer_config(model_dir)
def check_equal(marian_cfg, k1, k2):
v1, v2 = marian_cfg[k1], marian_cfg[k2]
if v1 != v2:
raise ValueError(f"hparams {k1},{k2} differ: {v1} != {v2}")
def check_marian_cfg_assumptions(marian_cfg):
assumed_settings = {
"layer-normalization": False,
"right-left": False,
"transformer-ffn-depth": 2,
"transformer-aan-depth": 2,
"transformer-no-projection": False,
"transformer-postprocess-emb": "d",
"transformer-postprocess": "dan", # Dropout, add, normalize
"transformer-preprocess": "",
"type": "transformer",
"ulr-dim-emb": 0,
"dec-cell-base-depth": 2,
"dec-cell-high-depth": 1,
"transformer-aan-nogate": False,
}
for k, v in assumed_settings.items():
actual = marian_cfg[k]
if actual != v:
raise ValueError(f"Unexpected config value for {k} expected {v} got {actual}")
BIAS_KEY = "decoder_ff_logit_out_b"
BART_CONVERTER = { # for each encoder and decoder layer
"self_Wq": "self_attn.q_proj.weight",
"self_Wk": "self_attn.k_proj.weight",
"self_Wv": "self_attn.v_proj.weight",
"self_Wo": "self_attn.out_proj.weight",
"self_bq": "self_attn.q_proj.bias",
"self_bk": "self_attn.k_proj.bias",
"self_bv": "self_attn.v_proj.bias",
"self_bo": "self_attn.out_proj.bias",
"self_Wo_ln_scale": "self_attn_layer_norm.weight",
"self_Wo_ln_bias": "self_attn_layer_norm.bias",
"ffn_W1": "fc1.weight",
"ffn_b1": "fc1.bias",
"ffn_W2": "fc2.weight",
"ffn_b2": "fc2.bias",
"ffn_ffn_ln_scale": "final_layer_norm.weight",
"ffn_ffn_ln_bias": "final_layer_norm.bias",
# Decoder Cross Attention
"context_Wk": "encoder_attn.k_proj.weight",
"context_Wo": "encoder_attn.out_proj.weight",
"context_Wq": "encoder_attn.q_proj.weight",
"context_Wv": "encoder_attn.v_proj.weight",
"context_bk": "encoder_attn.k_proj.bias",
"context_bo": "encoder_attn.out_proj.bias",
"context_bq": "encoder_attn.q_proj.bias",
"context_bv": "encoder_attn.v_proj.bias",
"context_Wo_ln_scale": "encoder_attn_layer_norm.weight",
"context_Wo_ln_bias": "encoder_attn_layer_norm.bias",
}
class OpusState:
def __init__(self, source_dir, eos_token_id=0):
npz_path = find_model_file(source_dir)
self.state_dict = np.load(npz_path)
cfg = load_config_from_state_dict(self.state_dict)
if cfg["dim-vocabs"][0] != cfg["dim-vocabs"][1]:
raise ValueError
if "Wpos" in self.state_dict:
raise ValueError("Wpos key in state dictionary")
self.state_dict = dict(self.state_dict)
if cfg["tied-embeddings-all"]:
cfg["tied-embeddings-src"] = True
cfg["tied-embeddings"] = True
self.share_encoder_decoder_embeddings = cfg["tied-embeddings-src"]
# create the tokenizer here because we need to know the eos_token_id
self.source_dir = source_dir
self.tokenizer = self.load_tokenizer()
# retrieve EOS token and set correctly
tokenizer_has_eos_token_id = (
hasattr(self.tokenizer, "eos_token_id") and self.tokenizer.eos_token_id is not None
)
eos_token_id = self.tokenizer.eos_token_id if tokenizer_has_eos_token_id else 0
if cfg["tied-embeddings-src"]:
self.wemb, self.final_bias = add_emb_entries(self.state_dict["Wemb"], self.state_dict[BIAS_KEY], 1)
self.pad_token_id = self.wemb.shape[0] - 1
cfg["vocab_size"] = self.pad_token_id + 1
else:
self.wemb, _ = add_emb_entries(self.state_dict["encoder_Wemb"], self.state_dict[BIAS_KEY], 1)
self.dec_wemb, self.final_bias = add_emb_entries(
self.state_dict["decoder_Wemb"], self.state_dict[BIAS_KEY], 1
)
# still assuming that vocab size is same for encoder and decoder
self.pad_token_id = self.wemb.shape[0] - 1
cfg["vocab_size"] = self.pad_token_id + 1
cfg["decoder_vocab_size"] = self.pad_token_id + 1
if cfg["vocab_size"] != self.tokenizer.vocab_size:
raise ValueError(
f"Original vocab size {cfg['vocab_size']} and new vocab size {len(self.tokenizer.encoder)} mismatched."
)
# self.state_dict['Wemb'].sha
self.state_keys = list(self.state_dict.keys())
if "Wtype" in self.state_dict:
raise ValueError("Wtype key in state dictionary")
self._check_layer_entries()
self.cfg = cfg
hidden_size, intermediate_shape = self.state_dict["encoder_l1_ffn_W1"].shape
if hidden_size != cfg["dim-emb"]:
raise ValueError(f"Hidden size {hidden_size} and configured size {cfg['dim_emb']} mismatched")
# Process decoder.yml
decoder_yml = cast_marian_config(load_yaml(source_dir / "decoder.yml"))
check_marian_cfg_assumptions(cfg)
self.hf_config = MarianConfig(
vocab_size=cfg["vocab_size"],
decoder_vocab_size=cfg.get("decoder_vocab_size", cfg["vocab_size"]),
share_encoder_decoder_embeddings=cfg["tied-embeddings-src"],
decoder_layers=cfg["dec-depth"],
encoder_layers=cfg["enc-depth"],
decoder_attention_heads=cfg["transformer-heads"],
encoder_attention_heads=cfg["transformer-heads"],
decoder_ffn_dim=cfg["transformer-dim-ffn"],
encoder_ffn_dim=cfg["transformer-dim-ffn"],
d_model=cfg["dim-emb"],
activation_function=cfg["transformer-ffn-activation"],
pad_token_id=self.pad_token_id,
eos_token_id=eos_token_id,
forced_eos_token_id=eos_token_id,
bos_token_id=0,
max_position_embeddings=cfg["dim-emb"],
scale_embedding=True,
normalize_embedding="n" in cfg["transformer-preprocess"],
static_position_embeddings=not cfg["transformer-train-position-embeddings"],
tie_word_embeddings=cfg["tied-embeddings"],
dropout=0.1, # see opus-mt-train repo/transformer-dropout param.
# default: add_final_layer_norm=False,
num_beams=decoder_yml["beam-size"],
decoder_start_token_id=self.pad_token_id,
bad_words_ids=[[self.pad_token_id]],
max_length=512,
)
def _check_layer_entries(self):
self.encoder_l1 = self.sub_keys("encoder_l1")
self.decoder_l1 = self.sub_keys("decoder_l1")
self.decoder_l2 = self.sub_keys("decoder_l2")
if len(self.encoder_l1) != 16:
warnings.warn(f"Expected 16 keys for each encoder layer, got {len(self.encoder_l1)}")
if len(self.decoder_l1) != 26:
warnings.warn(f"Expected 26 keys for each decoder layer, got {len(self.decoder_l1)}")
if len(self.decoder_l2) != 26:
warnings.warn(f"Expected 26 keys for each decoder layer, got {len(self.decoder_l1)}")
@property
def extra_keys(self):
extra = []
for k in self.state_keys:
if (
k.startswith("encoder_l")
or k.startswith("decoder_l")
or k in [CONFIG_KEY, "Wemb", "encoder_Wemb", "decoder_Wemb", "Wpos", "decoder_ff_logit_out_b"]
):
continue
else:
extra.append(k)
return extra
def sub_keys(self, layer_prefix):
return [remove_prefix(k, layer_prefix) for k in self.state_dict if k.startswith(layer_prefix)]
def load_tokenizer(self):
# save tokenizer
add_special_tokens_to_vocab(self.source_dir, not self.share_encoder_decoder_embeddings)
return MarianTokenizer.from_pretrained(str(self.source_dir))
def load_marian_model(self) -> MarianMTModel:
state_dict, cfg = self.state_dict, self.hf_config
if not cfg.static_position_embeddings:
raise ValueError("config.static_position_embeddings should be True")
model = MarianMTModel(cfg)
if "hidden_size" in cfg.to_dict():
raise ValueError("hidden_size is in config")
load_layers_(
model.model.encoder.layers,
state_dict,
BART_CONVERTER,
)
load_layers_(model.model.decoder.layers, state_dict, BART_CONVERTER, is_decoder=True)
# handle tensors not associated with layers
if self.cfg["tied-embeddings-src"]:
wemb_tensor = nn.Parameter(torch.FloatTensor(self.wemb))
bias_tensor = nn.Parameter(torch.FloatTensor(self.final_bias))
model.model.shared.weight = wemb_tensor
model.model.encoder.embed_tokens = model.model.decoder.embed_tokens = model.model.shared
else:
wemb_tensor = nn.Parameter(torch.FloatTensor(self.wemb))
model.model.encoder.embed_tokens.weight = wemb_tensor
decoder_wemb_tensor = nn.Parameter(torch.FloatTensor(self.dec_wemb))
bias_tensor = nn.Parameter(torch.FloatTensor(self.final_bias))
model.model.decoder.embed_tokens.weight = decoder_wemb_tensor
# handle tied embeddings, otherwise "from_pretrained" loads them incorrectly
if self.cfg["tied-embeddings"]:
model.lm_head.weight.data = model.model.decoder.embed_tokens.weight.data.clone()
model.final_logits_bias = bias_tensor
if "Wpos" in state_dict:
print("Unexpected: got Wpos")
wpos_tensor = torch.tensor(state_dict["Wpos"])
model.model.encoder.embed_positions.weight = wpos_tensor
model.model.decoder.embed_positions.weight = wpos_tensor
if cfg.normalize_embedding:
if "encoder_emb_ln_scale_pre" not in state_dict:
raise ValueError("encoder_emb_ln_scale_pre is not in state dictionary")
raise NotImplementedError("Need to convert layernorm_embedding")
if self.extra_keys:
raise ValueError(f"Failed to convert {self.extra_keys}")
if model.get_input_embeddings().padding_idx != self.pad_token_id:
raise ValueError(
f"Padding tokens {model.get_input_embeddings().padding_idx} and {self.pad_token_id} mismatched"
)
return model
def download_and_unzip(url, dest_dir):
try:
import wget
except ImportError:
raise ImportError("you must pip install wget")
filename = wget.download(url)
unzip(filename, dest_dir)
os.remove(filename)
def convert(source_dir: Path, dest_dir):
dest_dir = Path(dest_dir)
dest_dir.mkdir(exist_ok=True)
opus_state = OpusState(source_dir)
# save tokenizer
opus_state.tokenizer.save_pretrained(dest_dir)
# save_json(opus_state.cfg, dest_dir / "marian_original_config.json")
# ^^ Uncomment to save human readable marian config for debugging
model = opus_state.load_marian_model()
model = model.half()
model.save_pretrained(dest_dir)
model.from_pretrained(dest_dir) # sanity check
def load_yaml(path):
import yaml
with open(path, encoding="utf-8") as f:
return yaml.load(f, Loader=yaml.BaseLoader)
def save_json(content: Union[Dict, List], path: str) -> None:
with open(path, "w") as f:
json.dump(content, f)
def unzip(zip_path: str, dest_dir: str) -> None:
with ZipFile(zip_path, "r") as zipObj:
zipObj.extractall(dest_dir)
if __name__ == "__main__":
"""
Tatoeba conversion instructions in scripts/tatoeba/README.md
"""
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--src",
type=str,
help="path to marian model sub dir. yaml.load will be used to load the configuration file, please be wary of which file you're loading.",
default="en-de",
)
parser.add_argument("--dest", type=str, default=None, help="Path to the output PyTorch model.")
args = parser.parse_args()
source_dir = Path(args.src)
if not source_dir.exists():
raise ValueError(f"Source directory {source_dir} not found")
dest_dir = f"converted-{source_dir.name}" if args.dest is None else args.dest
convert(source_dir, dest_dir)
| transformers/src/transformers/models/marian/convert_marian_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/marian/convert_marian_to_pytorch.py",
"repo_id": "transformers",
"token_count": 12784
} |
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mask2Former model."""
import math
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor, nn
from ...activations import ACT2FN
from ...file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_scipy_available,
replace_return_docstrings,
requires_backends,
)
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import is_torch_greater_or_equal_than_2_1
from ...utils import is_accelerate_available, logging
from ...utils.backbone_utils import load_backbone
from ...utils.import_utils import is_torchdynamo_compiling
from .configuration_mask2former import Mask2FormerConfig
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
if is_accelerate_available():
from accelerate import PartialState
from accelerate.utils import reduce
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Mask2FormerConfig"
_CHECKPOINT_FOR_DOC = "facebook/mask2former-swin-small-coco-instance"
_IMAGE_PROCESSOR_FOR_DOC = "Mask2FormerImageProcessor"
@dataclass
class Mask2FormerPixelDecoderOutput(ModelOutput):
"""
Mask2Former's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns
the mask features and the multiscale features.
Args:
multi_scale_features (`tuple(torch.FloatTensor)`):
Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height,
width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder.
mask_features (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder
Layer.
attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed
or when `config.output_attentions=True`
"""
multi_scale_features: Tuple[torch.FloatTensor] = None
mask_features: torch.FloatTensor = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
Base class for outputs of the Transformer decoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions for mask predictions logits and a tuple of intermediate decoder activations,
i.e. the output of each decoder layer, each of them gone through a layernorm.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs. Returned when `output_hidden_states=True`.
attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads. Returned when `output_attentions=True`.
masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`):
Tuple of mask predictions from all layers of the transformer decoder.
intermediate_hidden_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[torch.FloatTensor] = None
masks_queries_logits: Tuple[torch.FloatTensor] = None
intermediate_hidden_states: Tuple[torch.FloatTensor] = None
@dataclass
class Mask2FormerPixelLevelModuleOutput(ModelOutput):
"""
Mask2Former's pixel level module output. It returns the output of the encoder (optional) and all hidden states
(multi-scale features) from the `decoder`. By default, the `encoder` is a Swin Backbone and the `decoder` is a
Multi-Scale Deformable Attention based decoder.
The `decoder_last_hidden_state` are the **per-pixel embeddings** while `decoder_hidden_states` refer to multi-scale
feature maps produced using **multi-scaling strategy** defined in the paper.
Args:
encoder_last_hidden_state (`torch.FloatTensor`):
Last hidden states (final feature map of shape `(batch_size, num_channels, height, width)`) of the last
stage of the encoder.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also
called feature maps) of the model at the output of each stage. Returned if output_hidden_states is set to
True.
decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)):
1/4 scale features from the last Pixel Decoder Layer.
decoder_hidden_states (`tuple(torch.FloatTensor)`):
Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also
called feature maps) of the model at the output of each stage.
"""
encoder_last_hidden_state: torch.FloatTensor = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_last_hidden_state: torch.FloatTensor = None
decoder_hidden_states: Tuple[torch.FloatTensor] = None
@dataclass
class Mask2FormerModelOutput(ModelOutput):
"""
Class for outputs of [`Mask2FormerModel`]. This class returns all the needed hidden states to compute the logits.
Args:
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the encoder model (backbone). Returned when
`output_hidden_states=True` is passed.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage. Returned when `output_hidden_states=True` is passed.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, , *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage. Returned when `output_hidden_states=True` is passed.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage. Returned when `output_hidden_states=True` is passed.
transformer_decoder_intermediate_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`)
Mask Predictions from each layer in the transformer decoder.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self attentions weights from transformer decoder.
"""
encoder_last_hidden_state: torch.FloatTensor = None
pixel_decoder_last_hidden_state: torch.FloatTensor = None
transformer_decoder_last_hidden_state: torch.FloatTensor = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_intermediate_states: Tuple[torch.FloatTensor] = None
masks_queries_logits: Tuple[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Mask2FormerForUniversalSegmentationOutput(ModelOutput):
"""
Class for outputs of [`Mask2FormerForUniversalSegmentationOutput`].
This output can be directly passed to [`~Mask2FormerImageProcessor.post_process_semantic_segmentation`] or
[`~Mask2FormerImageProcessor.post_process_instance_segmentation`] or
[`~Mask2FormerImageProcessor.post_process_panoptic_segmentation`] to compute final segmentation maps. Please, see
[`~Mask2FormerImageProcessor] for details regarding usage.
Args:
loss (`torch.Tensor`, *optional*):
The computed loss, returned when labels are present.
class_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each
query. Note the `+ 1` is needed because we incorporate the null class.
masks_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each
query.
auxiliary_logits (`List[Dict(str, torch.FloatTensor)]`, *optional*):
List of class and mask predictions from each layer of the transformer decoder.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the encoder model (backbone).
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self and Cross Attentions weights from transformer decoder.
"""
loss: Optional[torch.FloatTensor] = None
class_queries_logits: torch.FloatTensor = None
masks_queries_logits: torch.FloatTensor = None
auxiliary_logits: Optional[List[Dict[str, torch.FloatTensor]]] = None
encoder_last_hidden_state: torch.FloatTensor = None
pixel_decoder_last_hidden_state: torch.FloatTensor = None
transformer_decoder_last_hidden_state: torch.FloatTensor = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Adapted from https://github.com/facebookresearch/detectron2/blob/main/projects/PointRend/point_rend/point_features.py
def sample_point(
input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs
) -> torch.Tensor:
"""
A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors.
Args:
input_features (`torch.Tensor` of shape (batch_size, channels, height, width)):
A tensor that contains features map on a height * width grid
point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,:
2)):
A tensor that contains [0, 1] * [0, 1] normalized point coordinates
add_dim (`bool`):
boolean value to keep track of added dimension
Returns:
point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels,
height_grid, width_grid):
A tensor that contains features for points in `point_coordinates`.
"""
if point_coordinates.dim() == 3:
add_dim = True
point_coordinates = point_coordinates.unsqueeze(2)
# use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation
point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs)
if add_dim:
point_features = point_features.squeeze(3)
return point_features
# Copied from transformers.models.maskformer.modeling_maskformer.dice_loss
def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor:
r"""
Compute the DICE loss, similar to generalized IOU for masks as follows:
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$
In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
num_masks (`int`):
The number of masks present in the current batch, used for normalization.
Returns:
`torch.Tensor`: The computed loss.
"""
probs = inputs.sigmoid().flatten(1)
numerator = 2 * (probs * labels).sum(-1)
denominator = probs.sum(-1) + labels.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
loss = loss.sum() / num_masks
return loss
def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor:
r"""
Args:
inputs (`torch.Tensor`):
A float tensor of arbitrary shape.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss.
"""
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss = criterion(inputs, labels)
loss = cross_entropy_loss.mean(1).sum() / num_masks
return loss
# Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss
def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor:
"""
A pair wise version of the dice loss, see `dice_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
`torch.Tensor`: The computed loss between each pairs.
"""
inputs = inputs.sigmoid().flatten(1)
numerator = 2 * torch.matmul(inputs, labels.T)
# using broadcasting to get a [num_queries, NUM_CLASSES] matrix
denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :]
loss = 1 - (numerator + 1) / (denominator + 1)
return loss
def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
r"""
A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss between each pairs.
"""
height_and_width = inputs.shape[1]
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs))
cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs))
loss_pos = torch.matmul(cross_entropy_loss_pos / height_and_width, labels.T)
loss_neg = torch.matmul(cross_entropy_loss_neg / height_and_width, (1 - labels).T)
loss = loss_pos + loss_neg
return loss
# Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/matcher.py
class Mask2FormerHungarianMatcher(nn.Module):
"""This class computes an assignment between the labels and the predictions of the network.
For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more
predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
"""
def __init__(
self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544
):
"""Creates the matcher
Params:
cost_class (`float`, *optional*, defaults to 1.0):
Relative weight of the classification error in the matching cost.
cost_mask (`float`, *optional*, defaults to 1.0):
This is the relative weight of the focal loss of the binary mask in the matching cost.
cost_dice (`float`, *optional*, defaults to 1.0):
This is the relative weight of the dice loss of the binary mask in the matching cost.
num_points (`int`, *optional*, defaults to 12544):
No. of points to sample on which the mask loss will be calculated. The same set of K points are
uniformly sampled for all prediction and ground truth masks to construct the cost matrix for bipartite
matching.
"""
super().__init__()
if cost_class == 0 and cost_mask == 0 and cost_dice == 0:
raise ValueError("All costs cant be 0")
self.num_points = num_points
self.cost_class = cost_class
self.cost_mask = cost_mask
self.cost_dice = cost_dice
@torch.no_grad()
def forward(
self,
masks_queries_logits: torch.Tensor,
class_queries_logits: torch.Tensor,
mask_labels: torch.Tensor,
class_labels: torch.Tensor,
) -> List[Tuple[Tensor]]:
"""
Params:
masks_queries_logits (`torch.Tensor`):
A tensor of dim `batch_size, num_queries, num_labels` with the classification logits.
class_queries_logits (`torch.Tensor`):
A tensor of dim `batch_size, num_queries, height, width` with the predicted masks.
class_labels (`torch.Tensor`):
A tensor of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the
target) containing the class labels.
mask_labels (`torch.Tensor`):
A tensor of dim `num_target_boxes, height, width` containing the target masks.
Returns:
matched_indices (`List[Tuple[Tensor]]`): A list of size batch_size, containing tuples of (index_i, index_j)
where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected labels (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes).
"""
indices: List[Tuple[np.array]] = []
# iterate through batch size
batch_size = masks_queries_logits.shape[0]
for i in range(batch_size):
pred_probs = class_queries_logits[i].softmax(-1)
pred_mask = masks_queries_logits[i]
# Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted.
cost_class = -pred_probs[:, class_labels[i]]
target_mask = mask_labels[i].to(pred_mask)
target_mask = target_mask[:, None]
pred_mask = pred_mask[:, None]
# Sample ground truth and predicted masks
point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device)
target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1)
target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1)
pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1)
pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1)
# compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels)
cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
# Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels)
cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
# final cost matrix
cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
# eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible``
cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10))
cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10))
cost_matrix = torch.nan_to_num(cost_matrix, 0)
# do the assigmented using the hungarian algorithm in scipy
assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu())
indices.append(assigned_indices)
# It could be stacked in one tensor
matched_indices = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
]
return matched_indices
# Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py
class Mask2FormerLoss(nn.Module):
def __init__(self, config: Mask2FormerConfig, weight_dict: Dict[str, float]):
"""
The Mask2Former Loss. The loss is computed very similar to DETR. The process happens in two steps: 1) we
compute hungarian assignment between ground truth masks and the outputs of the model 2) we supervise each pair
of matched ground-truth / prediction (supervise class and mask)
Args:
config (`Mask2FormerConfig`):
The configuration for Mask2Former model also containing loss calculation specific parameters.
weight_dict (`Dict[str, float]`):
A dictionary of weights to be applied to the different losses.
"""
super().__init__()
requires_backends(self, ["scipy"])
self.num_labels = config.num_labels
self.weight_dict = weight_dict
# Weight to apply to the null class
self.eos_coef = config.no_object_weight
empty_weight = torch.ones(self.num_labels + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = config.train_num_points
self.oversample_ratio = config.oversample_ratio
self.importance_sample_ratio = config.importance_sample_ratio
self.matcher = Mask2FormerHungarianMatcher(
cost_class=1.0,
cost_dice=config.dice_weight,
cost_mask=config.mask_weight,
num_points=self.num_points,
)
def _max_by_axis(self, sizes: List[List[int]]) -> List[int]:
maxes = sizes[0]
for sublist in sizes[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
# Adapted from nested_tensor_from_tensor_list() in original implementation
def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]:
# get the maximum size in the batch
max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors])
# compute final size
batch_shape = [len(tensors)] + max_size
batch_size, _, height, width = batch_shape
dtype = tensors[0].dtype
device = tensors[0].device
padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device)
padding_masks = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
# pad the tensors to the size of the biggest one
for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks):
padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor)
padding_mask[: tensor.shape[1], : tensor.shape[2]] = False
return padded_tensors, padding_masks
def loss_labels(
self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
) -> Dict[str, Tensor]:
"""Compute the losses related to the labels using cross entropy.
Args:
class_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, num_labels`
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
"""
pred_logits = class_queries_logits
batch_size, num_queries, _ = pred_logits.shape
criterion = nn.CrossEntropyLoss(weight=self.empty_weight)
idx = self._get_predictions_permutation_indices(indices) # shape of (batch_size, num_queries)
target_classes_o = torch.cat(
[target[j] for target, (_, j) in zip(class_labels, indices)]
) # shape of (batch_size, num_queries)
target_classes = torch.full(
(batch_size, num_queries), fill_value=self.num_labels, dtype=torch.int64, device=pred_logits.device
)
target_classes[idx] = target_classes_o
# Permute target_classes (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries)
pred_logits_transposed = pred_logits.transpose(1, 2)
loss_ce = criterion(pred_logits_transposed, target_classes)
losses = {"loss_cross_entropy": loss_ce}
return losses
def loss_masks(
self,
masks_queries_logits: torch.Tensor,
mask_labels: List[torch.Tensor],
indices: Tuple[np.array],
num_masks: int,
) -> Dict[str, torch.Tensor]:
"""Compute the losses related to the masks using sigmoid_cross_entropy_loss and dice loss.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `(batch_size, num_queries, height, width)`.
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
num_masks (`int)`:
The number of masks, used for normalization.
Returns:
losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing two keys:
- **loss_mask** -- The loss computed using sigmoid cross entropy loss on the predicted and ground truth.
masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth,
masks.
"""
src_idx = self._get_predictions_permutation_indices(indices)
tgt_idx = self._get_targets_permutation_indices(indices)
# shape (batch_size * num_queries, height, width)
pred_masks = masks_queries_logits[src_idx]
# shape (batch_size, num_queries, height, width)
# pad all and stack the targets to the num_labels dimension
target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates
pred_masks = pred_masks[:, None]
target_masks = target_masks[:, None]
# Sample point coordinates
with torch.no_grad():
point_coordinates = self.sample_points_using_uncertainty(
pred_masks,
lambda logits: self.calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
point_labels = sample_point(target_masks, point_coordinates, align_corners=False).squeeze(1)
point_logits = sample_point(pred_masks, point_coordinates, align_corners=False).squeeze(1)
losses = {
"loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
"loss_dice": dice_loss(point_logits, point_labels, num_masks),
}
del pred_masks
del target_masks
return losses
def _get_predictions_permutation_indices(self, indices):
# Permute predictions following indices
batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
predictions_indices = torch.cat([src for (src, _) in indices])
return batch_indices, predictions_indices
def _get_targets_permutation_indices(self, indices):
# Permute labels following indices
batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
target_indices = torch.cat([tgt for (_, tgt) in indices])
return batch_indices, target_indices
def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor:
"""
In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits'
for the foreground class in `classes`.
Args:
logits (`torch.Tensor`):
A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is:
the number of foreground classes. The values are logits.
Returns:
scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most
uncertain locations having the highest uncertainty score.
"""
uncertainty_scores = -(torch.abs(logits))
return uncertainty_scores
def sample_points_using_uncertainty(
self,
logits: torch.Tensor,
uncertainty_function,
num_points: int,
oversample_ratio: int,
importance_sample_ratio: float,
) -> torch.Tensor:
"""
This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The
uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit
prediction as input.
Args:
logits (`float`):
Logit predictions for P points.
uncertainty_function:
A function that takes logit predictions for P points and returns their uncertainties.
num_points (`int`):
The number of points P to sample.
oversample_ratio (`int`):
Oversampling parameter.
importance_sample_ratio (`float`):
Ratio of points that are sampled via importance sampling.
Returns:
point_coordinates (`torch.Tensor`):
Coordinates for P sampled points.
"""
num_boxes = logits.shape[0]
num_points_sampled = int(num_points * oversample_ratio)
# Get random point coordinates
point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
# Get sampled prediction value for the point coordinates
point_logits = sample_point(logits, point_coordinates, align_corners=False)
# Calculate the uncertainties based on the sampled prediction values of the points
point_uncertainties = uncertainty_function(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
idx += shift[:, None]
point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
if num_random_points > 0:
point_coordinates = torch.cat(
[point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
dim=1,
)
return point_coordinates
def forward(
self,
masks_queries_logits: torch.Tensor,
class_queries_logits: torch.Tensor,
mask_labels: List[torch.Tensor],
class_labels: List[torch.Tensor],
auxiliary_predictions: Optional[Dict[str, torch.Tensor]] = None,
) -> Dict[str, torch.Tensor]:
"""
This performs the loss computation.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `(batch_size, num_queries, height, width)`.
class_queries_logits (`torch.Tensor`):
A tensor of shape `(batch_size, num_queries, num_labels)`.
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*):
if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], then it contains the logits from
the inner layers of the Mask2FormerMaskedAttentionDecoder.
Returns:
losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing three keys:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
- **loss_mask** -- The loss computed using sigmoid cross_entropy loss on the predicted and ground truth
masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
masks.
if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], the dictionary contains additional
losses for each auxiliary predictions.
"""
# retrieve the matching between the outputs of the last layer and the labels
indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
# compute the average number of target masks for normalization purposes
num_masks = self.get_num_masks(class_labels, device=class_labels[0].device)
# get all the losses
losses: Dict[str, Tensor] = {
**self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks),
**self.loss_labels(class_queries_logits, class_labels, indices),
}
# in case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if auxiliary_predictions is not None:
for idx, aux_outputs in enumerate(auxiliary_predictions):
masks_queries_logits = aux_outputs["masks_queries_logits"]
class_queries_logits = aux_outputs["class_queries_logits"]
loss_dict = self.forward(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()}
losses.update(loss_dict)
return losses
def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor:
"""
Computes the average number of target masks across the batch, for normalization purposes.
"""
num_masks = sum([len(classes) for classes in class_labels])
num_masks = torch.as_tensor(num_masks, dtype=torch.float, device=device)
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_masks = reduce(num_masks)
world_size = PartialState().num_processes
num_masks = torch.clamp(num_masks / world_size, min=1)
return num_masks
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
value: Tensor,
value_spatial_shapes: Union[Tensor, List[Tuple]],
sampling_locations: Tensor,
attention_weights: Tensor,
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height * width for height, width in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with MaskFormer->Mask2Former
class Mask2FormerSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(
self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None
):
super().__init__()
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
self.scale = 2 * math.pi if scale is None else scale
def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
not_mask = (~mask).to(x.dtype)
y_embed = not_mask.cumsum(1)
x_embed = not_mask.cumsum(2)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
# Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention
class Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int):
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}"
)
dim_per_head = embed_dim // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 128
self.d_model = embed_dim
self.n_levels = n_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2)
self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes_list=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
total_elements = sum(height * width for height, width in spatial_shapes_list)
if total_elements != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = nn.functional.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
if reference_points.shape[-1] == 2:
offset_normalizer = torch.tensor(
[[shape[1], shape[0]] for shape in spatial_shapes_list],
dtype=torch.long,
device=reference_points.device,
)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
output = multi_scale_deformable_attention(value, spatial_shapes_list, sampling_locations, attention_weights)
output = self.output_proj(output)
return output, attention_weights
class Mask2FormerPixelDecoderEncoderLayer(nn.Module):
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.embed_dim = config.feature_size
self.self_attn = Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
n_levels=3,
n_points=4,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = nn.functional.relu
self.activation_dropout = config.dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim)
self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
reference_points=None,
spatial_shapes_list=None,
level_start_index=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes_list (`list` of `tuple`):
Spatial shapes of the backbone feature maps as a list of tuples.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes_list=spatial_shapes_list,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights.transpose(1, 0),)
return outputs
# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->Mask2FormerPixelDecoderEncoderOnly
class Mask2FormerPixelDecoderEncoderOnly(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
[`Mask2FormerPixelDecoderEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through
multiple deformable attention layers.
Args:
config: Mask2FormerConfig
"""
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layers = nn.ModuleList(
[Mask2FormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)]
)
@staticmethod
def get_reference_points(spatial_shapes_list, valid_ratios, device):
"""
Get reference points for each feature map. Used in decoder.
Args:
spatial_shapes_list (`list` of `tuple`):
Spatial shapes of the backbone feature maps as a list of tuples.
valid_ratios (`torch.FloatTensor`):
Valid ratios of each feature map, has shape of `(batch_size, num_feature_levels, 2)`.
device (`torch.device`):
Device on which to create the tensors.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
"""
reference_points_list = []
for lvl, (height, width) in enumerate(spatial_shapes_list):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
indexing="ij",
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
inputs_embeds=None,
attention_mask=None,
position_embeddings=None,
spatial_shapes_list=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes_list (`list` of `tuple`):
Spatial shapes of each feature map as a list of tuples.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
reference_points = self.get_reference_points(spatial_shapes_list, valid_ratios, device=inputs_embeds.device)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states.transpose(1, 0),)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes_list=spatial_shapes_list,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states.transpose(1, 0),)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrModel with DeformableDetrModel->Mask2FormerPixelDecoder
class Mask2FormerPixelDecoder(nn.Module):
def __init__(self, config: Mask2FormerConfig, feature_channels):
super().__init__()
self.config = config
feature_dim = config.feature_size
mask_dim = config.mask_feature_size
num_pos_features = feature_dim // 2
self.position_embedding = Mask2FormerSinePositionEmbedding(num_pos_feats=num_pos_features, normalize=True)
self.num_feature_levels = 3
transformer_in_channels = feature_channels[-self.num_feature_levels :]
self.transformer_feature_strides = config.feature_strides[-self.num_feature_levels :]
self.feature_channels = feature_channels
self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, feature_dim))
# Create input projection layers
if self.num_feature_levels > 1:
input_projections_list = []
for in_channels in transformer_in_channels[::-1]:
input_projections_list.append(
nn.Sequential(
nn.Conv2d(in_channels, feature_dim, kernel_size=1),
nn.GroupNorm(32, feature_dim),
)
)
self.input_projections = nn.ModuleList(input_projections_list)
else:
self.input_projections = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(transformer_in_channels[-1], feature_dim, kernel_size=1),
nn.GroupNorm(32, feature_dim),
)
]
)
self.encoder = Mask2FormerPixelDecoderEncoderOnly(config)
self.mask_projection = nn.Conv2d(feature_dim, mask_dim, kernel_size=1, stride=1, padding=0)
# Extra FPN levels
stride = min(self.transformer_feature_strides)
self.common_stride = config.common_stride
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
lateral_convs = []
output_convs = []
for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]):
lateral_conv = nn.Sequential(
nn.Conv2d(in_channels, feature_dim, kernel_size=1, bias=False),
nn.GroupNorm(32, feature_dim),
)
output_conv = nn.Sequential(
nn.Conv2d(feature_dim, feature_dim, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(32, feature_dim),
nn.ReLU(),
)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Order convolutional layers from low to high resolution
self.lateral_convolutions = lateral_convs[::-1]
self.output_convolutions = output_convs[::-1]
def get_valid_ratio(self, mask, dtype=torch.float32):
"""Get the valid ratio of all feature maps."""
_, height, width = mask.shape
valid_height = torch.sum(~mask[:, :, 0], 1)
valid_width = torch.sum(~mask[:, 0, :], 1)
valid_ratio_heigth = valid_height.to(dtype) / height
valid_ratio_width = valid_width.to(dtype) / width
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
return valid_ratio
def forward(
self,
features,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# Apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
input_embeds = []
position_embeddings = []
for level, x in enumerate(features[::-1][: self.num_feature_levels]):
input_embeds.append(self.input_projections[level](x))
position_embeddings.append(self.position_embedding(x))
masks = [
torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in input_embeds
]
# Prepare encoder inputs (by flattening)
spatial_shapes_list = [(embed.shape[2], embed.shape[3]) for embed in input_embeds]
input_embeds_flat = torch.cat([embed.flatten(2).transpose(1, 2) for embed in input_embeds], 1)
spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=input_embeds_flat.device)
masks_flat = torch.cat([mask.flatten(1) for mask in masks], 1)
position_embeddings = [embed.flatten(2).transpose(1, 2) for embed in position_embeddings]
level_pos_embed_flat = [x + self.level_embed[i].view(1, 1, -1) for i, x in enumerate(position_embeddings)]
level_pos_embed_flat = torch.cat(level_pos_embed_flat, 1)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(mask, dtype=input_embeds_flat.dtype) for mask in masks], 1)
# Send input_embeds_flat + masks_flat + level_pos_embed_flat (backbone + proj layer output) through encoder
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=input_embeds_flat,
attention_mask=masks_flat,
position_embeddings=level_pos_embed_flat,
spatial_shapes_list=spatial_shapes_list,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state
batch_size = last_hidden_state.shape[0]
# We compute level_start_index_list separately from the tensor version level_start_index
# to avoid iterating over a tensor which breaks torch.compile/export.
level_start_index_list = [0]
for height, width in spatial_shapes_list[:-1]:
level_start_index_list.append(level_start_index_list[-1] + height * width)
split_sizes = [None] * self.num_feature_levels
for i in range(self.num_feature_levels):
if i < self.num_feature_levels - 1:
split_sizes[i] = level_start_index_list[i + 1] - level_start_index_list[i]
else:
split_sizes[i] = last_hidden_state.shape[1] - level_start_index_list[i]
encoder_output = torch.split(last_hidden_state, split_sizes, dim=1)
# Compute final features
outputs = [
x.transpose(1, 2).view(batch_size, -1, spatial_shapes_list[i][0], spatial_shapes_list[i][1])
for i, x in enumerate(encoder_output)
]
# Append extra FPN levels to outputs, ordered from low to high resolution
for idx, feature in enumerate(features[: self.num_fpn_levels][::-1]):
lateral_conv = self.lateral_convolutions[idx]
output_conv = self.output_convolutions[idx]
current_fpn = lateral_conv(feature)
# Following FPN implementation, we use nearest upsampling here
out = current_fpn + nn.functional.interpolate(
outputs[-1], size=current_fpn.shape[-2:], mode="bilinear", align_corners=False
)
out = output_conv(out)
outputs.append(out)
num_cur_levels = 0
multi_scale_features = []
for out in outputs:
if num_cur_levels < self.num_feature_levels:
multi_scale_features.append(out)
num_cur_levels += 1
return Mask2FormerPixelDecoderOutput(
mask_features=self.mask_projection(outputs[-1]),
multi_scale_features=tuple(multi_scale_features),
attentions=encoder_outputs.attentions,
)
class Mask2FormerPixelLevelModule(nn.Module):
def __init__(self, config: Mask2FormerConfig):
"""
Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image
Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel
decoder, generating multi-scale feature maps and pixel embeddings.
Args:
config ([`Mask2FormerConfig`]):
The configuration used to instantiate this model.
"""
super().__init__()
self.encoder = load_backbone(config)
self.decoder = Mask2FormerPixelDecoder(config, feature_channels=self.encoder.channels)
def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> Mask2FormerPixelLevelModuleOutput:
backbone_features = self.encoder(pixel_values).feature_maps
decoder_output = self.decoder(backbone_features, output_hidden_states=output_hidden_states)
return Mask2FormerPixelLevelModuleOutput(
encoder_last_hidden_state=backbone_features[-1],
encoder_hidden_states=tuple(backbone_features) if output_hidden_states else None,
decoder_last_hidden_state=decoder_output.mask_features,
decoder_hidden_states=decoder_output.multi_scale_features,
)
# Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->Mask2Former
class Mask2FormerAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and
keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
key_value_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None
position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None
key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None
key_value_position_embeddings = (
key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
# add key-value position embeddings to the key value states
if key_value_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights += attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output).permute(1, 0, 2)
return attn_output, attn_weights_reshaped
class Mask2FormerMaskedAttentionDecoderLayer(nn.Module):
"""
The Mask2FormerMaskedAttentionDecoderLayer is made up of self-attention, cross (masked) attention as well as FFN
blocks. The cross attention block used as part of `Mask2FormerMaskedAttentionDecoderLayer` is actually a `masked
attention` block that restricts the attention to localized features centered around predicted segments which leads
to faster convergence and improved performance. The order of self and cross (i.e. masked) attention blocks have
also been swapped in Mask2FormerMaskedAttentionDecoder compared to a standard DetrDecoder as an optimization
improvement.
Args:
config (`Mask2FormerConfig`):
The configuration used to initialize the Mask2FormerMaskedAttentionDecoder.
"""
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.config = config
self.embed_dim = self.config.hidden_dim
self.pre_norm = self.config.pre_norm
self.self_attn = Mask2FormerAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.dropout,
is_decoder=True,
)
self.dropout = self.config.dropout
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout = self.config.dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attn = nn.MultiheadAttention(self.embed_dim, self.config.num_attention_heads, self.config.dropout)
self.cross_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, self.config.dim_feedforward)
self.fc2 = nn.Linear(self.config.dim_feedforward, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
hidden_states: torch.Tensor,
level_index: int = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
# Masked(Cross)-Attention Block
cross_attn_weights = None
self_attn_weights = None
residual = hidden_states
hidden_states, cross_attn_weights = self.cross_attn(
query=self.with_pos_embed(hidden_states, query_position_embeddings),
key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]),
value=encoder_hidden_states[level_index],
attn_mask=encoder_attention_mask,
key_padding_mask=None,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.cross_attn_layer_norm(hidden_states)
# Self Attention Block
residual = hidden_states
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=query_position_embeddings,
attention_mask=None,
output_attentions=True,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
def forward_pre(
self,
hidden_states: torch.Tensor,
level_index: int = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
# Masked(Cross)-Attention Block
cross_attn_weights = None
self_attn_weights = None
residual = hidden_states
hidden_states = self.cross_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.cross_attn(
query=self.with_pos_embed(hidden_states, query_position_embeddings),
key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]),
value=encoder_hidden_states[level_index],
attn_mask=encoder_attention_mask,
key_padding_mask=None,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Self Attention Block
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=query_position_embeddings,
attention_mask=None,
output_attentions=True,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
def forward(
self,
hidden_states: torch.Tensor,
level_index: int = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(seq_len, batch, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(1, seq_len, tgt_len, src_len)`.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the keys in the masked-attention layer.
query_position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the queries and keys in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`):
Cross attention input to the layer of shape `(seq_len, batch, embed_dim)`.
encoder_attention_mask (`torch.FloatTensor`):
Encoder attention mask of size`(1, seq_len, tgt_len, src_len)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
if self.pre_norm:
outputs = self.forward_pre(
hidden_states=hidden_states,
level_index=level_index,
position_embeddings=position_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
else:
outputs = self.forward_post(
hidden_states=hidden_states,
level_index=level_index,
position_embeddings=position_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
return outputs
class Mask2FormerMaskedAttentionDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a
[`Mask2FormerMaskedAttentionDecoderLayer`]. The decoder updates the query embeddings through multiple cross
(masked) and self-attention layers. The decoder uses a new **masked attention** mechanism instead of the standard
cross-attention, which extracts localized features by constraining cross-attention to within the foreground region
of the predicted mask for each query, instead of attending to the full feature map.
Args:
config (`Mask2FormerConfig`):
Configuration used to instantiate Mask2FormerMaskedAttentionDecoder.
"""
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.config = config
self.mask_feature_size = config.mask_feature_size
self.dropout = config.dropout
self.layerdrop = config.dropout
self.num_feature_levels = 3 # level embedding (3 scales)
self.decoder_layers = config.decoder_layers - 1
self.layers = nn.ModuleList(
[Mask2FormerMaskedAttentionDecoderLayer(self.config) for _ in range(self.decoder_layers)]
)
self.layernorm = nn.LayerNorm(config.hidden_dim)
self.mask_predictor = Mask2FormerMaskPredictor(
hidden_size=config.hidden_dim,
num_heads=config.num_attention_heads,
mask_feature_size=self.mask_feature_size,
)
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds: torch.Tensor = None,
multi_stage_positional_embeddings: torch.Tensor = None,
pixel_embeddings: torch.Tensor = None,
encoder_hidden_states: torch.Tensor = None,
query_position_embeddings: torch.Tensor = None,
feature_size_list: List = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
The query embeddings that are passed into the decoder.
multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
Position embeddings that are added to the keys in each cross(masked)-attention layer.
pixel_embeddings (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
Decoder.
query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross(masked)-attention of the decoder.
feature_size_list (`List[torch.Size]`):
This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# intermediate hidden states with layernorm applied - required for predicting class logits
intermediate = ()
# decoder layers
all_hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
# intermediate mask predictions from transformer decoder layers
intermediate_mask_predictions = ()
intermediate_hidden_states = self.layernorm(inputs_embeds)
intermediate += (intermediate_hidden_states,)
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
)
intermediate_mask_predictions += (predicted_mask,)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
None,
None,
output_attentions,
)
else:
level_index = idx % self.num_feature_levels
where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
# Multiply the attention mask instead of indexing to avoid issue in torch.export.
attention_mask = attention_mask * where.unsqueeze(-1)
layer_outputs = decoder_layer(
hidden_states,
level_index=level_index,
position_embeddings=multi_stage_positional_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
)
intermediate_hidden_states = self.layernorm(layer_outputs[0])
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states,
pixel_embeddings,
feature_size_list[(idx + 1) % self.num_feature_levels],
)
intermediate_mask_predictions += (predicted_mask,)
# add intermediate hidden states with layer norm applied which will be used for predicting class logits
intermediate += (intermediate_hidden_states,)
hidden_states = layer_outputs[0]
if output_attentions:
attentions += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = hidden_states.transpose(1, 0)
if not return_dict:
outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
return tuple(v for v in outputs if v is not None)
return Mask2FormerMaskedAttentionDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=attentions,
intermediate_hidden_states=intermediate,
masks_queries_logits=intermediate_mask_predictions,
)
# Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock with MaskFormer->Mask2Former
class Mask2FormerPredictionBlock(nn.Module):
def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None:
super().__init__()
self.layers = [nn.Linear(in_dim, out_dim), activation]
# Maintain submodule indexing as if part of a Sequential block
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class Mask2FormerMLPPredictionHead(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3):
"""
A classic Multi Layer Perceptron (MLP).
Args:
input_dim (`int`):
The input dimensions.
hidden_dim (`int`):
The hidden dimensions.
output_dim (`int`):
The output dimensions.
num_layers (int, *optional*, defaults to 3):
The number of layers.
"""
super().__init__()
in_dims = [input_dim] + [hidden_dim] * (num_layers - 1)
out_dims = [hidden_dim] * (num_layers - 1) + [output_dim]
self.layers = []
for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)):
activation = nn.ReLU() if i < num_layers - 1 else nn.Identity()
layer = Mask2FormerPredictionBlock(in_dim, out_dim, activation=activation)
self.layers.append(layer)
# Provide backwards compatibility from when the class inherited from nn.Sequential
# In nn.Sequential subclasses, the name given to the layer is its index in the sequence.
# In nn.Module subclasses they derived from the instance attribute they are assigned to e.g.
# self.my_layer_name = Layer()
# We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register
# explicitly
self.add_module(str(i), layer)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class Mask2FormerMaskPredictor(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mask_feature_size: torch.Tensor):
"""
This class is used to get the predicted mask for a given Mask2FormerMaskedAttentionDecoder layer. It also
generates the binarized attention mask associated with the given predicted mask. The attention mask obtained
using predicted mask of the (l-1)th decoder layer is fed to the cross(masked)-attention block of the next
decoder layer as input.
Args:
hidden_size (`int`):
The feature dimension of the Mask2FormerMaskedAttentionDecoder
num_heads (`int`):
The number of heads used in the Mask2FormerMaskedAttentionDecoder
mask_feature_size (`torch.Tensor`):
one of the output dimensions of the predicted masks for each query
"""
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.mask_embedder = Mask2FormerMLPPredictionHead(self.hidden_size, self.hidden_size, mask_feature_size)
def forward(self, outputs: torch.Tensor, pixel_embeddings: torch.Tensor, attention_mask_target_size: int = None):
mask_embeddings = self.mask_embedder(outputs.transpose(0, 1))
is_tracing = torch.jit.is_tracing() or isinstance(outputs, torch.fx.Proxy) or is_torchdynamo_compiling()
# Sum up over the channels
if is_tracing and not is_torch_greater_or_equal_than_2_1:
# Equivalent to einsum('bqc, bchw -> bqhw') but jit friendly
batch_size, num_queries, num_channels = mask_embeddings.shape
_, _, height, width = pixel_embeddings.shape
outputs_mask = torch.zeros((batch_size, num_queries, height, width), device=mask_embeddings.device)
for c in range(num_channels):
outputs_mask += mask_embeddings[..., c][..., None, None] * pixel_embeddings[:, None, c]
else:
outputs_mask = torch.einsum("bqc, bchw -> bqhw", mask_embeddings, pixel_embeddings)
attention_mask = nn.functional.interpolate(
outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False
)
attention_mask = attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1)
attention_mask = (attention_mask.flatten(0, 1) < 0.5).bool()
attention_mask = attention_mask.detach()
return outputs_mask, attention_mask
class Mask2FormerTransformerModule(nn.Module):
"""
The Mask2Former's transformer module.
"""
def __init__(self, in_features: int, config: Mask2FormerConfig):
super().__init__()
hidden_dim = config.hidden_dim
self.num_feature_levels = 3
self.position_embedder = Mask2FormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True)
self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim)
self.queries_features = nn.Embedding(config.num_queries, hidden_dim)
self.input_projections = []
for _ in range(self.num_feature_levels):
if in_features != hidden_dim or config.enforce_input_projection:
self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1))
else:
self.input_projections.append(nn.Sequential())
self.decoder = Mask2FormerMaskedAttentionDecoder(config=config)
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
def forward(
self,
multi_scale_features: List[Tensor],
mask_features: Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
) -> Mask2FormerMaskedAttentionDecoderOutput:
multi_stage_features = []
multi_stage_positional_embeddings = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(multi_scale_features[i].shape[-2:])
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
multi_stage_features.append(
self.input_projections[i](multi_scale_features[i]).flatten(2)
+ self.level_embed.weight[i][None, :, None]
)
# Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
_, batch_size, _ = multi_stage_features[0].shape
# [num_queries, batch_size, num_channels]
query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)
decoder_output = self.decoder(
inputs_embeds=query_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
pixel_embeddings=mask_features,
encoder_hidden_states=multi_stage_features,
query_position_embeddings=query_embeddings,
feature_size_list=size_list,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
return decoder_output
MASK2FORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Mask2FormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MASK2FORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.preprocess`] for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of Detr's decoder attention layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~Mask2FormerModelOutput`] instead of a plain tuple.
"""
class Mask2FormerPreTrainedModel(PreTrainedModel):
config_class = Mask2FormerConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
def _init_weights(self, module: nn.Module):
xavier_std = self.config.init_xavier_std
std = self.config.init_std
if isinstance(module, Mask2FormerTransformerModule):
if module.input_projections is not None:
for input_projection in module.input_projections:
if not isinstance(input_projection, nn.Sequential):
nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std)
nn.init.constant_(input_projection.bias, 0)
elif isinstance(module, Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention):
nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(module.n_heads, 1, 1, 2)
.repeat(1, module.n_levels, module.n_points, 1)
)
for i in range(module.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(module.attention_weights.weight.data, 0.0)
nn.init.constant_(module.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(module.value_proj.weight.data)
nn.init.constant_(module.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
elif isinstance(module, Mask2FormerMaskedAttentionDecoderLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, Mask2FormerPixelLevelModule):
for submodule in module.modules():
if isinstance(submodule, (nn.Conv2d, nn.Linear)):
submodule.weight.data.normal_(mean=0.0, std=std)
if submodule.bias is not None:
submodule.bias.data.zero_()
elif isinstance(module, Mask2FormerPixelDecoder):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
nn.init.normal_(module.level_embed, std=0)
elif isinstance(module, Mask2FormerPixelDecoderEncoderOnly):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if hasattr(module, "reference_points"):
nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
nn.init.constant_(module.reference_points.bias.data, 0.0)
@add_start_docstrings(
"The bare Mask2Former Model outputting raw hidden-states without any specific head on top.",
MASK2FORMER_START_DOCSTRING,
)
class Mask2FormerModel(Mask2FormerPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: Mask2FormerConfig):
super().__init__(config)
self.pixel_level_module = Mask2FormerPixelLevelModule(config)
self.transformer_module = Mask2FormerTransformerModule(in_features=config.feature_size, config=config)
self.post_init()
@add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Mask2FormerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerModelOutput:
r"""
Returns:
`Mask2FormerModelOutput`
Examples:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, Mask2FormerModel
>>> # load image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> inputs = image_processor(image, return_tensors="pt")
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
>>> print(outputs.transformer_decoder_last_hidden_state.shape)
torch.Size([1, 100, 256])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, _, height, width = pixel_values.shape
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
pixel_level_module_output = self.pixel_level_module(
pixel_values=pixel_values, output_hidden_states=output_hidden_states
)
transformer_module_output = self.transformer_module(
multi_scale_features=pixel_level_module_output.decoder_hidden_states,
mask_features=pixel_level_module_output.decoder_last_hidden_state,
output_hidden_states=True,
output_attentions=output_attentions,
)
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
transformer_decoder_intermediate_states = None
if output_hidden_states:
encoder_hidden_states = pixel_level_module_output.encoder_hidden_states
pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states
transformer_decoder_hidden_states = transformer_module_output.hidden_states
transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states
output = Mask2FormerModelOutput(
encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state,
pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state,
transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state,
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
transformer_decoder_intermediate_states=transformer_decoder_intermediate_states,
attentions=transformer_module_output.attentions,
masks_queries_logits=transformer_module_output.masks_queries_logits,
)
if not return_dict:
output = tuple(v for v in output.values() if v is not None)
return output
@add_start_docstrings(
"The Mask2Former Model with heads on top for instance/semantic/panoptic segmentation.",
MASK2FORMER_START_DOCSTRING,
)
class Mask2FormerForUniversalSegmentation(Mask2FormerPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: Mask2FormerConfig):
super().__init__(config)
self.model = Mask2FormerModel(config)
self.weight_dict: Dict[str, float] = {
"loss_cross_entropy": config.class_weight,
"loss_mask": config.mask_weight,
"loss_dice": config.dice_weight,
}
self.class_predictor = nn.Linear(config.hidden_dim, config.num_labels + 1)
self.criterion = Mask2FormerLoss(config=config, weight_dict=self.weight_dict)
self.post_init()
def get_loss_dict(
self,
masks_queries_logits: Tensor,
class_queries_logits: Tensor,
mask_labels: Tensor,
class_labels: Tensor,
auxiliary_predictions: Dict[str, Tensor],
) -> Dict[str, Tensor]:
loss_dict: Dict[str, Tensor] = self.criterion(
masks_queries_logits=masks_queries_logits,
class_queries_logits=class_queries_logits,
mask_labels=mask_labels,
class_labels=class_labels,
auxiliary_predictions=auxiliary_predictions,
)
# weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses
for key, weight in self.weight_dict.items():
for loss_key, loss in loss_dict.items():
if key in loss_key:
loss *= weight
return loss_dict
def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor:
return sum(loss_dict.values())
def get_auxiliary_logits(self, classes: torch.Tensor, output_masks: torch.Tensor):
auxiliary_logits: List[Dict(str, Tensor)] = []
for aux_binary_masks, aux_classes in zip(output_masks[:-1], classes[:-1]):
auxiliary_logits.append({"masks_queries_logits": aux_binary_masks, "class_queries_logits": aux_classes})
return auxiliary_logits
@add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Mask2FormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
mask_labels: Optional[List[Tensor]] = None,
class_labels: Optional[List[Tensor]] = None,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_auxiliary_logits: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerForUniversalSegmentationOutput:
r"""
mask_labels (`List[torch.Tensor]`, *optional*):
List of mask labels of shape `(num_labels, height, width)` to be fed to a model
class_labels (`List[torch.LongTensor]`, *optional*):
list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the
labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`.
Returns:
`Mask2FormerUniversalSegmentationOutput`
Examples:
Instance segmentation example:
```python
>>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # Load Mask2Former trained on COCO instance segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> model = Mask2FormerForUniversalSegmentation.from_pretrained(
... "facebook/mask2former-swin-small-coco-instance"
... )
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # Perform post-processing to get instance segmentation map
>>> pred_instance_map = image_processor.post_process_instance_segmentation(
... outputs, target_sizes=[(image.height, image.width)]
... )[0]
>>> print(pred_instance_map.shape)
torch.Size([480, 640])
```
Semantic segmentation example:
```python
>>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # Load Mask2Former trained on ADE20k semantic segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-ade-semantic")
>>> model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-ade-semantic")
>>> url = (
... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
... )
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # Perform post-processing to get semantic segmentation map
>>> pred_semantic_map = image_processor.post_process_semantic_segmentation(
... outputs, target_sizes=[(image.height, image.width)]
... )[0]
>>> print(pred_semantic_map.shape)
torch.Size([512, 683])
```
Panoptic segmentation example:
```python
>>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # Load Mask2Former trained on CityScapes panoptic segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-cityscapes-panoptic")
>>> model = Mask2FormerForUniversalSegmentation.from_pretrained(
... "facebook/mask2former-swin-small-cityscapes-panoptic"
... )
>>> url = "https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # Perform post-processing to get panoptic segmentation map
>>> pred_panoptic_map = image_processor.post_process_panoptic_segmentation(
... outputs, target_sizes=[(image.height, image.width)]
... )[0]["segmentation"]
>>> print(pred_panoptic_map.shape)
torch.Size([338, 676])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
output_attentions=output_attentions,
return_dict=True,
)
loss, loss_dict, auxiliary_logits = None, None, None
class_queries_logits = ()
for decoder_output in outputs.transformer_decoder_intermediate_states:
class_prediction = self.class_predictor(decoder_output.transpose(0, 1))
class_queries_logits += (class_prediction,)
masks_queries_logits = outputs.masks_queries_logits
auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits)
if mask_labels is not None and class_labels is not None:
loss_dict = self.get_loss_dict(
masks_queries_logits=masks_queries_logits[-1],
class_queries_logits=class_queries_logits[-1],
mask_labels=mask_labels,
class_labels=class_labels,
auxiliary_predictions=auxiliary_logits,
)
loss = self.get_loss(loss_dict)
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
if output_hidden_states:
encoder_hidden_states = outputs.encoder_hidden_states
pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states
transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states
output_auxiliary_logits = (
self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
)
if not output_auxiliary_logits:
auxiliary_logits = None
output = Mask2FormerForUniversalSegmentationOutput(
loss=loss,
class_queries_logits=class_queries_logits[-1],
masks_queries_logits=masks_queries_logits[-1],
auxiliary_logits=auxiliary_logits,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state,
transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state,
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
attentions=outputs.attentions,
)
if not return_dict:
output = tuple(v for v in output.values() if v is not None)
if loss is not None:
output = (loss) + output
return output
__all__ = ["Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel"]
| transformers/src/transformers/models/mask2former/modeling_mask2former.py/0 | {
"file_path": "transformers/src/transformers/models/mask2former/modeling_mask2former.py",
"repo_id": "transformers",
"token_count": 51394
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for MGP-STR."""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class DecodeType(ExplicitEnum):
CHARACTER = "char"
BPE = "bpe"
WORDPIECE = "wp"
SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class MgpstrProcessor(ProcessorMixin):
r"""
Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single
[`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the
[`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information.
Args:
image_processor (`ViTImageProcessor`, *optional*):
An instance of `ViTImageProcessor`. The image processor is a required input.
tokenizer ([`MgpstrTokenizer`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "char_tokenizer"]
image_processor_class = "ViTImageProcessor"
char_tokenizer_class = "MgpstrTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
self.char_tokenizer = tokenizer
self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to ViTImageProcessor's
[`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs`
arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please
refer to the doctsring of the above methods for more information.
"""
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None:
encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, sequences):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`Dict[str, any]`: Dictionary of all the outputs of the decoded results.
generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores
(`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list
of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds
(`List[str]`): The list of wp decoded sentences.
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
char_preds, bpe_preds, wp_preds = sequences
batch_size = char_preds.size(0)
char_strs, char_scores = self._decode_helper(char_preds, "char")
bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe")
wp_strs, wp_scores = self._decode_helper(wp_preds, "wp")
final_strs = []
final_scores = []
for i in range(batch_size):
scores = [char_scores[i], bpe_scores[i], wp_scores[i]]
strs = [char_strs[i], bpe_strs[i], wp_strs[i]]
max_score_index = scores.index(max(scores))
final_strs.append(strs[max_score_index])
final_scores.append(scores[max_score_index])
out = {}
out["generated_text"] = final_strs
out["scores"] = final_scores
out["char_preds"] = char_strs
out["bpe_preds"] = bpe_strs
out["wp_preds"] = wp_strs
return out
def _decode_helper(self, pred_logits, format):
"""
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
Args:
pred_logits (`torch.Tensor`):
List of model prediction logits.
format (`Union[DecoderType, str]`):
Type of model prediction. Must be one of ['char', 'bpe', 'wp'].
Returns:
`tuple`:
dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence
score of model prediction.
"""
if format == DecodeType.CHARACTER:
decoder = self.char_decode
eos_token = 1
eos_str = "[s]"
elif format == DecodeType.BPE:
decoder = self.bpe_decode
eos_token = 2
eos_str = "#"
elif format == DecodeType.WORDPIECE:
decoder = self.wp_decode
eos_token = 102
eos_str = "[SEP]"
else:
raise ValueError(f"Format {format} is not supported.")
dec_strs, conf_scores = [], []
batch_size = pred_logits.size(0)
batch_max_length = pred_logits.size(1)
_, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True)
preds_index = preds_index.view(-1, batch_max_length)[:, 1:]
preds_str = decoder(preds_index)
preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2)
preds_max_prob = preds_max_prob[:, 1:]
for index in range(batch_size):
pred_eos = preds_str[index].find(eos_str)
pred = preds_str[index][:pred_eos]
pred_index = preds_index[index].cpu().tolist()
pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1
pred_max_prob = preds_max_prob[index][: pred_eos_index + 1]
confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(pred)
conf_scores.append(confidence_score)
return dec_strs, conf_scores
def char_decode(self, sequences):
"""
Convert a list of lists of char token ids into a list of strings by calling char tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of char decoded sentences.
"""
decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)]
return decode_strs
def bpe_decode(self, sequences):
"""
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of bpe decoded sentences.
"""
return self.bpe_tokenizer.batch_decode(sequences)
def wp_decode(self, sequences):
"""
Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of wp decoded sentences.
"""
decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)]
return decode_strs
__all__ = ["MgpstrProcessor"]
| transformers/src/transformers/models/mgp_str/processing_mgp_str.py/0 | {
"file_path": "transformers/src/transformers/models/mgp_str/processing_mgp_str.py",
"repo_id": "transformers",
"token_count": 4041
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MobileViT checkpoints from the ml-cvnets library."""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_mobilevit_config(mobilevit_name):
config = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
config.hidden_sizes = [144, 192, 240]
config.neck_hidden_sizes = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
config.hidden_sizes = [96, 120, 144]
config.neck_hidden_sizes = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
config.hidden_sizes = [64, 80, 96]
config.neck_hidden_sizes = [16, 16, 24, 48, 64, 80, 320]
config.hidden_dropout_prob = 0.05
config.expand_ratio = 2.0
if mobilevit_name.startswith("deeplabv3_"):
config.image_size = 512
config.output_stride = 16
config.num_labels = 21
filename = "pascal-voc-id2label.json"
else:
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
repo_id = "huggingface/label-files"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
def rename_key(name, base_model=False):
for i in range(1, 6):
if f"layer_{i}." in name:
name = name.replace(f"layer_{i}.", f"encoder.layer.{i - 1}.")
if "conv_1." in name:
name = name.replace("conv_1.", "conv_stem.")
if ".block." in name:
name = name.replace(".block.", ".")
if "exp_1x1" in name:
name = name.replace("exp_1x1", "expand_1x1")
if "red_1x1" in name:
name = name.replace("red_1x1", "reduce_1x1")
if ".local_rep.conv_3x3." in name:
name = name.replace(".local_rep.conv_3x3.", ".conv_kxk.")
if ".local_rep.conv_1x1." in name:
name = name.replace(".local_rep.conv_1x1.", ".conv_1x1.")
if ".norm." in name:
name = name.replace(".norm.", ".normalization.")
if ".conv." in name:
name = name.replace(".conv.", ".convolution.")
if ".conv_proj." in name:
name = name.replace(".conv_proj.", ".conv_projection.")
for i in range(0, 2):
for j in range(0, 4):
if f".{i}.{j}." in name:
name = name.replace(f".{i}.{j}.", f".{i}.layer.{j}.")
for i in range(2, 6):
for j in range(0, 4):
if f".{i}.{j}." in name:
name = name.replace(f".{i}.{j}.", f".{i}.")
if "expand_1x1" in name:
name = name.replace("expand_1x1", "downsampling_layer.expand_1x1")
if "conv_3x3" in name:
name = name.replace("conv_3x3", "downsampling_layer.conv_3x3")
if "reduce_1x1" in name:
name = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1")
for i in range(2, 5):
if f".global_rep.{i}.weight" in name:
name = name.replace(f".global_rep.{i}.weight", ".layernorm.weight")
if f".global_rep.{i}.bias" in name:
name = name.replace(f".global_rep.{i}.bias", ".layernorm.bias")
if ".global_rep." in name:
name = name.replace(".global_rep.", ".transformer.")
if ".pre_norm_mha.0." in name:
name = name.replace(".pre_norm_mha.0.", ".layernorm_before.")
if ".pre_norm_mha.1.out_proj." in name:
name = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense.")
if ".pre_norm_ffn.0." in name:
name = name.replace(".pre_norm_ffn.0.", ".layernorm_after.")
if ".pre_norm_ffn.1." in name:
name = name.replace(".pre_norm_ffn.1.", ".intermediate.dense.")
if ".pre_norm_ffn.4." in name:
name = name.replace(".pre_norm_ffn.4.", ".output.dense.")
if ".transformer." in name:
name = name.replace(".transformer.", ".transformer.layer.")
if ".aspp_layer." in name:
name = name.replace(".aspp_layer.", ".")
if ".aspp_pool." in name:
name = name.replace(".aspp_pool.", ".")
if "seg_head." in name:
name = name.replace("seg_head.", "segmentation_head.")
if "segmentation_head.classifier.classifier." in name:
name = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier.")
if "classifier.fc." in name:
name = name.replace("classifier.fc.", "classifier.")
elif (not base_model) and ("segmentation_head." not in name):
name = "mobilevit." + name
return name
def convert_state_dict(orig_state_dict, model, base_model=False):
if base_model:
model_prefix = ""
else:
model_prefix = "mobilevit."
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if key[:8] == "encoder.":
key = key[8:]
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[0][6:]) - 1
transformer_num = int(key_split[3])
layer = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}")
dim = layer.transformer.layer[transformer_num].attention.attention.all_head_size
prefix = (
f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."
)
if "weight" in key:
orig_state_dict[prefix + "query.weight"] = val[:dim, :]
orig_state_dict[prefix + "key.weight"] = val[dim : dim * 2, :]
orig_state_dict[prefix + "value.weight"] = val[-dim:, :]
else:
orig_state_dict[prefix + "query.bias"] = val[:dim]
orig_state_dict[prefix + "key.bias"] = val[dim : dim * 2]
orig_state_dict[prefix + "value.bias"] = val[-dim:]
else:
orig_state_dict[rename_key(key, base_model)] = val
return orig_state_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_movilevit_checkpoint(mobilevit_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our MobileViT structure.
"""
config = get_mobilevit_config(mobilevit_name)
# load original state_dict
state_dict = torch.load(checkpoint_path, map_location="cpu")
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_"):
model = MobileViTForSemanticSegmentation(config).eval()
else:
model = MobileViTForImageClassification(config).eval()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# Check outputs on an image, prepared by MobileViTImageProcessor
image_processor = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32)
encoding = image_processor(images=prepare_img(), return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
if mobilevit_name.startswith("deeplabv3_"):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
expected_logits = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
]
)
elif mobilevit_name == "deeplabv3_mobilevit_xs":
expected_logits = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
]
)
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
expected_logits = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
]
)
else:
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
expected_logits = torch.tensor([-0.9866, 0.2392, -1.1241])
elif mobilevit_name == "mobilevit_xs":
expected_logits = torch.tensor([-2.4761, -0.9399, -1.9587])
elif mobilevit_name == "mobilevit_xxs":
expected_logits = torch.tensor([-1.9364, -1.2327, -0.4653])
else:
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model_mapping = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub...")
model_name = model_mapping[mobilevit_name]
image_processor.push_to_hub(model_name, organization="apple")
model.push_to_hub(model_name, organization="apple")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| transformers/src/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5868
} |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/moonshine/modular_moonshine.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_moonshine.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
)
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_moonshine import MoonshineConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MoonshineConfig"
class MoonshineEncoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MoonshineDecoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation_fn(gate) * hidden_states
hidden_states = self.fc2(hidden_states)
return hidden_states
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class MoonshineAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: MoonshineConfig,
layer_idx: int,
is_causal: bool,
num_attention_heads: int,
num_key_value_heads: int,
):
super().__init__()
config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads})
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = is_causal
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
# Pad head dimension to the next specified multiple.
if self.config.pad_head_dim_to_multiple_of is not None:
target_multiple = self.config.pad_head_dim_to_multiple_of
target_head_dim = target_multiple * ((self.head_dim + target_multiple - 1) // target_multiple)
self.head_dim_padding = target_head_dim - self.head_dim
else:
self.head_dim_padding = 0
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
key_value_states: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:-1]
query_states = (
self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2)
)
is_cross_attention = key_value_states is not None
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache
# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
key_states = past_key_value.key_cache[self.layer_idx]
value_states = past_key_value.value_cache[self.layer_idx]
else:
key_states = (
self.k_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
if is_cross_attention and past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
if not is_cross_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False
if self.head_dim_padding > 0:
query_states = torch.nn.functional.pad(query_states, (0, self.head_dim_padding))
key_states = torch.nn.functional.pad(key_states, (0, self.head_dim_padding))
value_states = torch.nn.functional.pad(value_states, (0, self.head_dim_padding))
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
is_causal=is_causal,
**kwargs,
)
if self.head_dim_padding > 0:
attn_output = attn_output[..., : -self.head_dim_padding]
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MoonshineRotaryEmbedding(nn.Module):
def __init__(self, config: MoonshineConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class MoonshineEncoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.encoder_num_attention_heads,
num_key_value_heads=config.encoder_num_key_value_heads,
)
self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class MoonshineDecoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: int = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=True,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.encoder_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
encoder_position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
MOONSHINE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MoonshineConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshinePreTrainedModel(PreTrainedModel):
config_class = MoonshineConfig
base_model_prefix = "model"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
output_conv1_length = int((input_lengths - 127) / 64 + 1)
output_conv2_length = int((output_conv1_length - 7) / 3 + 1)
output_conv3_length = int((output_conv2_length - 3) / 2 + 1)
return output_conv3_length
class MoonshineEncoder(MoonshinePreTrainedModel):
"""
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_values"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False)
self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3)
self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2)
self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.layers = nn.ModuleList(
[MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)]
)
self.layer_norm = nn.LayerNorm(embed_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_values is None:
raise ValueError("You must specify input_values.")
# conv downsampling
input_values = input_values.unsqueeze(1)
hidden_states = nn.functional.tanh(self.conv1(input_values))
hidden_states = self.groupnorm(hidden_states)
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
hidden_states = nn.functional.gelu(self.conv3(hidden_states))
hidden_states = hidden_states.permute(0, 2, 1)
# attention mask downsampling
if attention_mask is not None:
mask_len = self._get_feat_extract_output_lengths(attention_mask.shape[-1])
downsample_stride = 64 * 3 * 2 # conv strides
attention_mask = attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask == 0.0).any() else None
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, hidden_states.dtype)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# encoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
False,
None,
position_embeddings,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last encoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
MOONSHINE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineDecoder(MoonshinePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineDecoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_ids"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, bias=False)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MOONSHINE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `encoder_hidden_states`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# attention mask downsampling
if encoder_attention_mask is not None:
mask_len = encoder_hidden_states.shape[-2]
downsample_stride = 64 * 3 * 2 # conv strides
encoder_attention_mask = encoder_attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
encoder_attention_mask = encoder_attention_mask if (encoder_attention_mask == 0.0).any() else None
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
encoder_hidden_states,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
MOONSHINE_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
decoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids`
of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `decoder_position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineModel(MoonshinePreTrainedModel):
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.encoder = MoonshineEncoder(config)
self.decoder = MoonshineDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Moonshine encoder so that its parameters will
not be updated during training.
"""
self.encoder._freeze_parameters()
def _mask_input_features(
self,
input_features: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return input_features
# generate indices & apply SpecAugment along time axis
batch_size, hidden_size, sequence_length = input_features.size()
if self.config.mask_time_prob > 0 and self.training:
# generate indices & apply SpecAugment along time axis
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool)
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1)
input_features[mask_time_indices] = 0
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool)
input_features[mask_feature_indices] = 0
return input_features
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineModel
>>> from datasets import load_dataset
>>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_outputs[0],
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
@add_start_docstrings(
"The Moonshine Model with a language modeling head. Can be used for automatic speech recognition.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["proj_out.weight"]
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.model = MoonshineModel(config)
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def get_input_embeddings(self) -> nn.Module:
return self.model.get_input_embeddings()
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, MoonshineForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
logits = self.proj_out(outputs[0])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
__all__ = ["MoonshineModel", "MoonshinePreTrainedModel", "MoonshineForConditionalGeneration"]
| transformers/src/transformers/models/moonshine/modeling_moonshine.py/0 | {
"file_path": "transformers/src/transformers/models/moonshine/modeling_moonshine.py",
"repo_id": "transformers",
"token_count": 32606
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MRA model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Mra
[uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MraModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 1):
The vocabulary size of the `token_type_ids` passed when calling [`MraModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
block_per_row (`int`, *optional*, defaults to 4):
Used to set the budget for the high resolution scale.
approx_mode (`str`, *optional*, defaults to `"full"`):
Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and
high resolution and `"sparse"` for only low resolution.
initial_prior_first_n_blocks (`int`, *optional*, defaults to 0):
The initial number of blocks for which high resolution is used.
initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0):
The number of diagonal blocks for which high resolution is used.
Example:
```python
>>> from transformers import MraConfig, MraModel
>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()
>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mra"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-5,
position_embedding_type="absolute",
block_per_row=4,
approx_mode="full",
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.block_per_row = block_per_row
self.approx_mode = approx_mode
self.initial_prior_first_n_blocks = initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
__all__ = ["MraConfig"]
| transformers/src/transformers/models/mra/configuration_mra.py/0 | {
"file_path": "transformers/src/transformers/models/mra/configuration_mra.py",
"repo_id": "transformers",
"token_count": 2462
} |
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Musicgen Melody model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
class MusicgenMelodyDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MusicgenMelodyDecoder`]. It is used to instantiate a
Musicgen Melody decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Musicgen Melody
[facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the MusicgenMelodyDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MusicgenMelodyDecoder`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of decoder layers.
ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer block.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models)
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
initializer_factor (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(hidden_size).
num_codebooks (`int`, *optional*, defaults to 4):
The number of parallel codebooks forwarded to the model.
audio_channels (`int`, *optional*, defaults to 1):
Number of audio channels used by the model (either mono or stereo). Stereo models generate a separate
audio stream for the left/right output channels. Mono models generate a single audio stream output.
pad_token_id (`int`, *optional*, defaults to 2048): The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 2048): The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*): The id of the *end-of-sequence* token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie word embeddings with the text encoder.
"""
model_type = "musicgen_melody_decoder"
base_config_key = "decoder_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2048,
max_position_embeddings=2048,
num_hidden_layers=24,
ffn_dim=4096,
num_attention_heads=16,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
initializer_factor=0.02,
scale_embedding=False,
num_codebooks=4,
audio_channels=1,
pad_token_id=2048,
bos_token_id=2048,
eos_token_id=None,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.initializer_factor = initializer_factor
self.layerdrop = layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_codebooks = num_codebooks
if audio_channels not in [1, 2]:
raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
self.audio_channels = audio_channels
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MusicgenMelodyConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MusicgenMelodyModel`]. It is used to instantiate a
Musicgen Melody model according to the specified arguments, defining the text encoder, audio encoder and Musicgen Melody decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Musicgen Melody
[facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_chroma (`int`, *optional*, defaults to 12): Number of chroma bins to use.
chroma_length (`int`, *optional*, defaults to 235):
Maximum chroma duration if audio is used to condition the model. Corresponds to the maximum duration used during training.
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the text encoder config.
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the decoder config.
Example:
```python
>>> from transformers import (
... MusicgenMelodyConfig,
... MusicgenMelodyDecoderConfig,
... T5Config,
... EncodecConfig,
... MusicgenMelodyForConditionalGeneration,
... )
>>> # Initializing text encoder, audio encoder, and decoder model configurations
>>> text_encoder_config = T5Config()
>>> audio_encoder_config = EncodecConfig()
>>> decoder_config = MusicgenMelodyDecoderConfig()
>>> configuration = MusicgenMelodyConfig.from_sub_models_config(
... text_encoder_config, audio_encoder_config, decoder_config
... )
>>> # Initializing a MusicgenMelodyForConditionalGeneration (with random weights) from the facebook/musicgen-melody style configuration
>>> model = MusicgenMelodyForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> config_text_encoder = model.config.text_encoder
>>> config_audio_encoder = model.config.audio_encoder
>>> config_decoder = model.config.decoder
>>> # Saving the model, including its configuration
>>> model.save_pretrained("musicgen_melody-model")
>>> # loading model and config from pretrained folder
>>> musicgen_melody_config = MusicgenMelodyConfig.from_pretrained("musicgen_melody-model")
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("musicgen_melody-model", config=musicgen_melody_config)
```"""
model_type = "musicgen_melody"
sub_configs = {
"text_encoder": AutoConfig,
"audio_encoder": AutoConfig,
"decoder": MusicgenMelodyDecoderConfig,
}
is_composition = True
def __init__(
self,
num_chroma=12,
chroma_length=235,
**kwargs,
):
super().__init__(**kwargs)
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
text_encoder_config = kwargs.pop("text_encoder")
text_encoder_model_type = text_encoder_config.pop("model_type")
audio_encoder_config = kwargs.pop("audio_encoder")
audio_encoder_model_type = audio_encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
self.decoder = MusicgenMelodyDecoderConfig(**decoder_config)
self.is_encoder_decoder = False
self.num_chroma = num_chroma
self.chroma_length = chroma_length
@classmethod
def from_sub_models_config(
cls,
text_encoder_config: PretrainedConfig,
audio_encoder_config: PretrainedConfig,
decoder_config: MusicgenMelodyDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`MusicgenMelodyConfig`] (or a derived class) from text encoder, audio encoder and decoder
configurations.
Returns:
[`MusicgenMelodyConfig`]: An instance of a configuration object
"""
return cls(
text_encoder=text_encoder_config.to_dict(),
audio_encoder=audio_encoder_config.to_dict(),
decoder=decoder_config.to_dict(),
**kwargs,
)
@property
# This is a property because you might want to change the codec model on the fly
def sampling_rate(self):
return self.audio_encoder.sampling_rate
| transformers/src/transformers/models/musicgen_melody/configuration_musicgen_melody.py/0 | {
"file_path": "transformers/src/transformers/models/musicgen_melody/configuration_musicgen_melody.py",
"repo_id": "transformers",
"token_count": 4451
} |
# coding=utf-8
# Copyright 2022 UW-Madison The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Nystromformer model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_nystromformer import NystromformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/nystromformer-512"
_CONFIG_FOR_DOC = "NystromformerConfig"
class NystromformerEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class NystromformerSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.num_landmarks = config.num_landmarks
self.seq_len = config.segment_means_seq_len
self.conv_kernel_size = config.conv_kernel_size
if config.inv_coeff_init_option:
self.init_option = config["inv_init_coeff_option"]
else:
self.init_option = "original"
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.conv_kernel_size is not None:
self.conv = nn.Conv2d(
in_channels=self.num_attention_heads,
out_channels=self.num_attention_heads,
kernel_size=(self.conv_kernel_size, 1),
padding=(self.conv_kernel_size // 2, 0),
bias=False,
groups=self.num_attention_heads,
)
# Function to approximate Moore-Penrose inverse via the iterative method
def iterative_inv(self, mat, n_iter=6):
identity = torch.eye(mat.size(-1), device=mat.device)
key = mat
# The entries of key are positive and ||key||_{\infty} = 1 due to softmax
if self.init_option == "original":
# This original implementation is more conservative to compute coefficient of Z_0.
value = 1 / torch.max(torch.sum(key, dim=-2)) * key.transpose(-1, -2)
else:
# This is the exact coefficient computation, 1 / ||key||_1, of initialization of Z_0, leading to faster convergence.
value = 1 / torch.max(torch.sum(key, dim=-2), dim=-1).values[:, :, None, None] * key.transpose(-1, -2)
for _ in range(n_iter):
key_value = torch.matmul(key, value)
value = torch.matmul(
0.25 * value,
13 * identity
- torch.matmul(key_value, 15 * identity - torch.matmul(key_value, 7 * identity - key_value)),
)
return value
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
query_layer = query_layer / math.sqrt(math.sqrt(self.attention_head_size))
key_layer = key_layer / math.sqrt(math.sqrt(self.attention_head_size))
if self.num_landmarks == self.seq_len:
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function)
attention_scores = attention_scores + attention_mask
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value_layer)
else:
q_landmarks = query_layer.reshape(
-1,
self.num_attention_heads,
self.num_landmarks,
self.seq_len // self.num_landmarks,
self.attention_head_size,
).mean(dim=-2)
k_landmarks = key_layer.reshape(
-1,
self.num_attention_heads,
self.num_landmarks,
self.seq_len // self.num_landmarks,
self.attention_head_size,
).mean(dim=-2)
kernel_1 = torch.nn.functional.softmax(torch.matmul(query_layer, k_landmarks.transpose(-1, -2)), dim=-1)
kernel_2 = torch.nn.functional.softmax(torch.matmul(q_landmarks, k_landmarks.transpose(-1, -2)), dim=-1)
attention_scores = torch.matmul(q_landmarks, key_layer.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function)
attention_scores = attention_scores + attention_mask
kernel_3 = nn.functional.softmax(attention_scores, dim=-1)
attention_probs = torch.matmul(kernel_1, self.iterative_inv(kernel_2))
new_value_layer = torch.matmul(kernel_3, value_layer)
context_layer = torch.matmul(attention_probs, new_value_layer)
if self.conv_kernel_size is not None:
context_layer += self.conv(value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class NystromformerSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class NystromformerAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = NystromformerSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = NystromformerSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_outputs = self.self(hidden_states, attention_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nystromformer
class NystromformerIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nystromformer
class NystromformerOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class NystromformerLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = NystromformerAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = NystromformerIntermediate(config)
self.output = NystromformerOutput(config)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class NystromformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([NystromformerLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nystromformer
class NystromformerPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nystromformer
class NystromformerLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = NystromformerPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nystromformer
class NystromformerOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = NystromformerLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class NystromformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = NystromformerConfig
base_model_prefix = "nystromformer"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
NYSTROMFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`NystromformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
NYSTROMFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top.",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerModel(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = NystromformerEmbeddings(config)
self.encoder = NystromformerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""Nyströmformer Model with a `language modeling` head on top.""", NYSTROMFORMER_START_DOCSTRING)
class NystromformerForMaskedLM(NystromformerPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder"]
def __init__(self, config):
super().__init__(config)
self.nystromformer = NystromformerModel(config)
self.cls = NystromformerOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NystromformerClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
Nyströmformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForSequenceClassification(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.classifier = NystromformerClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output
and a softmax) e.g. for RocStories/SWAG tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForMultipleChoice(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.nystromformer = NystromformerModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a token classification head on top (a linear layer on top of the hidden-states output)
e.g. for Named-Entity-Recognition (NER) tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForTokenClassification(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForQuestionAnswering(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"NystromformerForMaskedLM",
"NystromformerForMultipleChoice",
"NystromformerForQuestionAnswering",
"NystromformerForSequenceClassification",
"NystromformerForTokenClassification",
"NystromformerLayer",
"NystromformerModel",
"NystromformerPreTrainedModel",
]
| transformers/src/transformers/models/nystromformer/modeling_nystromformer.py/0 | {
"file_path": "transformers/src/transformers/models/nystromformer/modeling_nystromformer.py",
"repo_id": "transformers",
"token_count": 20685
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OmDet-Turbo model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class OmDetTurboConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OmDetTurboForObjectDetection`].
It is used to instantiate a OmDet-Turbo model according to the specified arguments, defining the model architecture
Instantiating a configuration with the defaults will yield a similar configuration to that of the OmDet-Turbo
[omlab/omdet-turbo-swin-tiny-hf](https://huggingface.co/omlab/omdet-turbo-swin-tiny-hf) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`PretrainedConfig`, *optional*):
The configuration of the text backbone.
backbone_config (`PretrainedConfig`, *optional*):
The configuration of the vision backbone.
use_timm_backbone (`bool`, *optional*, defaults to `True`):
Whether to use the timm for the vision backbone.
backbone (`str`, *optional*, defaults to `"swin_tiny_patch4_window7_224"`):
The name of the pretrained vision backbone to use. If `use_pretrained_backbone=False` a randomly initialized
backbone with the same architecture `backbone` is used.
backbone_kwargs (`dict`, *optional*):
Additional kwargs for the vision backbone.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use a pretrained vision backbone.
apply_layernorm_after_vision_backbone (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization on the feature maps of the vision backbone output.
image_size (`int`, *optional*, defaults to 640):
The size (resolution) of each image.
disable_custom_kernels (`bool`, *optional*, defaults to `False`):
Whether to disable custom kernels.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for layer normalization.
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for batch normalization.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
text_projection_in_dim (`int`, *optional*, defaults to 512):
The input dimension for the text projection.
text_projection_out_dim (`int`, *optional*, defaults to 512):
The output dimension for the text projection.
task_encoder_hidden_dim (`int`, *optional*, defaults to 1024):
The feedforward dimension for the task encoder.
class_embed_dim (`int`, *optional*, defaults to 512):
The dimension of the classes embeddings.
class_distance_type (`str`, *optional*, defaults to `"cosine"`):
The type of of distance to compare predicted classes to projected classes embeddings.
Can be `"cosine"` or `"dot"`.
num_queries (`int`, *optional*, defaults to 900):
The number of queries.
csp_activation (`str`, *optional*, defaults to `"silu"`):
The activation function of the Cross Stage Partial (CSP) networks of the encoder.
conv_norm_activation (`str`, *optional*, defaults to `"gelu"`):
The activation function of the ConvNormLayer layers of the encoder.
encoder_feedforward_activation (`str`, *optional*, defaults to `"relu"`):
The activation function for the feedforward network of the encoder.
encoder_feedforward_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate following the activation of the encoder feedforward network.
encoder_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate of the encoder multi-head attention module.
hidden_expansion (`int`, *optional*, defaults to 1):
The hidden expansion of the CSP networks in the encoder.
vision_features_channels (`tuple(int)`, *optional*, defaults to `[256, 256, 256]`):
The projected vision features channels used as inputs for the decoder.
encoder_hidden_dim (`int`, *optional*, defaults to 256):
The hidden dimension of the encoder.
encoder_in_channels (`List(int)`, *optional*, defaults to `[192, 384, 768]`):
The input channels for the encoder.
encoder_projection_indices (`List(int)`, *optional*, defaults to `[2]`):
The indices of the input features projected by each layers.
encoder_attention_heads (`int`, *optional*, defaults to 8):
The number of attention heads for the encoder.
encoder_dim_feedforward (`int`, *optional*, defaults to 2048):
The feedforward dimension for the encoder.
encoder_layers (`int`, *optional*, defaults to 1):
The number of layers in the encoder.
positional_encoding_temperature (`int`, *optional*, defaults to 10000):
The positional encoding temperature in the encoder.
num_feature_levels (`int`, *optional*, defaults to 3):
The number of feature levels for the multi-scale deformable attention module of the decoder.
decoder_hidden_dim (`int`, *optional*, defaults to 256):
The hidden dimension of the decoder.
decoder_num_heads (`int`, *optional*, defaults to 8):
The number of heads for the decoder.
decoder_num_layers (`int`, *optional*, defaults to 6):
The number of layers for the decoder.
decoder_activation (`str`, *optional*, defaults to `"relu"`):
The activation function for the decoder.
decoder_dim_feedforward (`int`, *optional*, defaults to 2048):
The feedforward dimension for the decoder.
decoder_num_points (`int`, *optional*, defaults to 4):
The number of points sampled in the decoder multi-scale deformable attention module.
decoder_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate for the decoder.
eval_size (`Tuple[int, int]`, *optional*):
Height and width used to computes the effective height and width of the position embeddings after taking
into account the stride (see RTDetr).
learn_initial_query (`bool`, *optional*, defaults to `False`):
Whether to learn the initial query.
cache_size (`int`, *optional*, defaults to 100):
The cache size for the classes and prompts caches.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder-decoder model or not.
kwargs (`Dict[str, Any]`, *optional*):
Additional parameters from the architecture. The values in kwargs will be saved as part of the configuration
and can be used to control the model outputs.
Examples:
```python
>>> from transformers import OmDetTurboConfig, OmDetTurboForObjectDetection
>>> # Initializing a OmDet-Turbo omlab/omdet-turbo-swin-tiny-hf style configuration
>>> configuration = OmDetTurboConfig()
>>> # Initializing a model (with random weights) from the omlab/omdet-turbo-swin-tiny-hf style configuration
>>> model = OmDetTurboForObjectDetection(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "omdet-turbo"
attribute_map = {
"encoder_hidden_dim": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__(
self,
text_config=None,
backbone_config=None,
use_timm_backbone=True,
backbone="swin_tiny_patch4_window7_224",
backbone_kwargs=None,
use_pretrained_backbone=False,
apply_layernorm_after_vision_backbone=True,
image_size=640,
disable_custom_kernels=False,
layer_norm_eps=1e-5,
batch_norm_eps=1e-5,
init_std=0.02,
text_projection_in_dim=512,
text_projection_out_dim=512,
task_encoder_hidden_dim=1024,
class_embed_dim=512,
class_distance_type="cosine",
num_queries=900,
csp_activation="silu",
conv_norm_activation="gelu",
encoder_feedforward_activation="relu",
encoder_feedforward_dropout=0.0,
encoder_dropout=0.0,
hidden_expansion=1,
vision_features_channels=[256, 256, 256],
encoder_hidden_dim=256,
encoder_in_channels=[192, 384, 768],
encoder_projection_indices=[2],
encoder_attention_heads=8,
encoder_dim_feedforward=2048,
encoder_layers=1,
positional_encoding_temperature=10000,
num_feature_levels=3,
decoder_hidden_dim=256,
decoder_num_heads=8,
decoder_num_layers=6,
decoder_activation="relu",
decoder_dim_feedforward=2048,
decoder_num_points=4,
decoder_dropout=0.0,
eval_size=None,
learn_initial_query=False,
cache_size=100,
is_encoder_decoder=True,
**kwargs,
):
if use_timm_backbone:
if backbone_config is None:
backbone_kwargs = {
"out_indices": [1, 2, 3],
"img_size": image_size,
"always_partition": True,
}
elif backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `swin` vision config.")
backbone_config = CONFIG_MAPPING["swin"](
window_size=7,
image_size=image_size,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
out_indices=[2, 3, 4],
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
if text_config is None:
logger.info(
"`text_config` is `None`. Initializing the config with the default `clip_text_model` text config."
)
text_config = CONFIG_MAPPING["clip_text_model"]()
elif isinstance(text_config, dict):
text_model_type = text_config.get("model_type")
text_config = CONFIG_MAPPING[text_model_type](**text_config)
if class_distance_type not in ["cosine", "dot"]:
raise ValueError(
f"Invalid `class_distance_type`. It should be either `cosine` or `dot`, but got {class_distance_type}."
)
self.text_config = text_config
self.backbone_config = backbone_config
self.use_timm_backbone = use_timm_backbone
self.backbone = backbone
self.backbone_kwargs = backbone_kwargs
self.use_pretrained_backbone = use_pretrained_backbone
self.apply_layernorm_after_vision_backbone = apply_layernorm_after_vision_backbone
self.image_size = image_size
self.disable_custom_kernels = disable_custom_kernels
self.layer_norm_eps = layer_norm_eps
self.batch_norm_eps = batch_norm_eps
self.init_std = init_std
self.text_projection_in_dim = text_projection_in_dim
self.text_projection_out_dim = text_projection_out_dim
self.task_encoder_hidden_dim = task_encoder_hidden_dim
self.class_embed_dim = class_embed_dim
self.class_distance_type = class_distance_type
self.num_queries = num_queries
self.csp_activation = csp_activation
self.conv_norm_activation = conv_norm_activation
self.encoder_feedforward_activation = encoder_feedforward_activation
self.encoder_feedforward_dropout = encoder_feedforward_dropout
self.encoder_dropout = encoder_dropout
self.hidden_expansion = hidden_expansion
self.vision_features_channels = vision_features_channels
self.encoder_hidden_dim = encoder_hidden_dim
self.encoder_in_channels = encoder_in_channels
self.encoder_projection_indices = encoder_projection_indices
self.encoder_attention_heads = encoder_attention_heads
self.encoder_dim_feedforward = encoder_dim_feedforward
self.encoder_layers = encoder_layers
self.positional_encoding_temperature = positional_encoding_temperature
self.num_feature_levels = num_feature_levels
self.decoder_hidden_dim = decoder_hidden_dim
self.decoder_num_heads = decoder_num_heads
self.decoder_num_layers = decoder_num_layers
self.decoder_activation = decoder_activation
self.decoder_dim_feedforward = decoder_dim_feedforward
self.decoder_num_points = decoder_num_points
self.decoder_dropout = decoder_dropout
self.eval_size = eval_size
self.learn_initial_query = learn_initial_query
self.cache_size = cache_size
self.is_encoder_decoder = is_encoder_decoder
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
__all__ = ["OmDetTurboConfig"]
| transformers/src/transformers/models/omdet_turbo/configuration_omdet_turbo.py/0 | {
"file_path": "transformers/src/transformers/models/omdet_turbo/configuration_omdet_turbo.py",
"repo_id": "transformers",
"token_count": 5835
} |
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Tokenization classes for OpenAI GPT."""
from typing import Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_openai import OpenAIGPTTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with
the following peculiarities:
- lower case all inputs
- uses BERT's BasicTokenizer for pre-BPE tokenization
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = OpenAIGPTTokenizer
def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs):
super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs)
@property
def do_lower_case(self):
return True
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["OpenAIGPTTokenizerFast"]
| transformers/src/transformers/models/openai/tokenization_openai_fast.py/0 | {
"file_path": "transformers/src/transformers/models/openai/tokenization_openai_fast.py",
"repo_id": "transformers",
"token_count": 866
} |
# coding=utf-8
# Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Perceiver model."""
import abc
import math
from dataclasses import dataclass
from functools import reduce
from operator import __add__
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_perceiver import PerceiverConfig
ModalitySizeType = Mapping[str, int]
PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]
PreprocessorType = Callable[..., PreprocessorOutputType]
PostprocessorType = Callable[..., Any]
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "deepmind/language-perceiver"
_CONFIG_FOR_DOC = "PerceiverConfig"
@dataclass
class PerceiverModelOutput(ModelOutput):
"""
Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
logits: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverDecoderOutput(ModelOutput):
"""
Base class for Perceiver decoder outputs, with potential cross-attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Output of the basic decoder.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
logits: torch.FloatTensor = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverMaskedLMOutput(ModelOutput):
"""
Base class for Perceiver's masked language model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents,
num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverClassifierOutput(ModelOutput):
"""
Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal
autoencoding.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class PerceiverEmbeddings(nn.Module):
"""Construct the latent embeddings."""
def __init__(self, config):
super().__init__()
self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))
def forward(self, batch_size: int):
return self.latents.expand(batch_size, -1, -1) # Thanks, Phil Wang
class PerceiverSelfAttention(nn.Module):
"""Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder."""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
):
super().__init__()
self.num_heads = num_heads
# Q and K must have the same number of channels.
# Default to preserving Q's input's shape.
if qk_channels is None:
qk_channels = q_dim
# V's num_channels determines the shape of the output of QKV-attention.
# Default to the same number of channels used in the key-query operation.
if v_channels is None:
v_channels = qk_channels
if qk_channels % num_heads != 0:
raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
if v_channels % num_heads != 0:
raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")
self.qk_channels = qk_channels
self.v_channels = v_channels
self.qk_channels_per_head = self.qk_channels // num_heads
self.v_channels_per_head = self.v_channels // num_heads
# Layer normalization
self.layernorm1 = nn.LayerNorm(q_dim)
self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()
# Projection matrices
self.query = nn.Linear(q_dim, qk_channels)
self.key = nn.Linear(kv_dim, qk_channels)
self.value = nn.Linear(kv_dim, v_channels)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x, channels_per_head):
new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
hidden_states = self.layernorm1(hidden_states)
inputs = self.layernorm2(inputs)
# Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
# the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
is_cross_attention = inputs is not None
queries = self.query(hidden_states)
if is_cross_attention:
keys = self.key(inputs)
values = self.value(inputs)
attention_mask = inputs_mask
else:
keys = self.key(hidden_states)
values = self.value(hidden_states)
# Reshape channels for multi-head attention.
# We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
values = self.transpose_for_scores(values, self.v_channels_per_head)
# Take the dot product between the queries and keys to get the raw attention scores.
attention_scores = torch.matmul(queries, keys.transpose(-1, -2))
batch_size, num_heads, seq_len, q_head_dim = queries.shape
_, _, _, v_head_dim = values.shape
hiddens = self.num_heads * v_head_dim
attention_scores = attention_scores / math.sqrt(q_head_dim)
if attention_mask is not None:
# Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, values)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class PerceiverSelfOutput(nn.Module):
def __init__(self, config, input_channels, output_channels):
super().__init__()
self.dense = nn.Linear(input_channels, output_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
return hidden_states
class PerceiverAttention(nn.Module):
"""Attention module, including a dense block."""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
use_query_residual=True,
):
super().__init__()
# MultiHead attention
if is_cross_attention and qk_channels is None:
if config.cross_attention_shape_for_attention == "q":
qk_channels = q_dim
elif config.cross_attention_shape_for_attention == "kv":
qk_channels = kv_dim
else:
raise ValueError(
f"Unknown value {config.cross_attention_shape_for_attention} for "
"cross_attention_shape_for_attention."
)
else:
if qk_channels is None:
qk_channels = q_dim
if v_channels is None:
v_channels = qk_channels
self.self = PerceiverSelfAttention(
config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
)
# dense block
output_channels = None
if is_cross_attention:
output_channels = q_dim
else:
if output_channels is None:
output_channels = v_channels
self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
self.use_query_residual = use_query_residual
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
# Output projection
attention_output = self.output(self_outputs[0])
# Optionally include a residual to the original queries.
# Consider omitting the residual if the semantics of query and output
# are different, e.g. if queries are positions and outputs are pixels.
if self.use_query_residual:
attention_output = attention_output + hidden_states
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class PerceiverMLP(nn.Module):
"""A Transformer-style dense module to follow attention."""
def __init__(self, config, input_size, widening_factor):
super().__init__()
self.dense1 = nn.Linear(input_size, widening_factor * input_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(widening_factor * input_size, input_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dense2(hidden_states)
return hidden_states
class PerceiverLayer(nn.Module):
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
widening_factor=4,
use_query_residual=True,
):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = PerceiverAttention(
config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
use_query_residual=use_query_residual,
)
self.layernorm = nn.LayerNorm(q_dim)
self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
attention_output = attention_outputs[0]
outputs = attention_outputs[1:] # add attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
layer_output = layer_output + attention_output # residual connection
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
layer_output = self.layernorm(attention_output)
layer_output = self.mlp(layer_output)
return layer_output
class PerceiverEncoder(nn.Module):
"""The Perceiver Encoder: a scalable, fully attentional encoder."""
def __init__(self, config, kv_dim=None):
super().__init__()
self.config = config
# Check that we can use multihead-attention with these shapes.
if config.d_latents % config.num_self_attention_heads != 0:
raise ValueError(
f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_self_attend_heads ({config.num_self_attention_heads})."
)
if config.d_latents % config.num_cross_attention_heads != 0:
raise ValueError(
f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_cross_attend_heads ({config.num_cross_attention_heads})."
)
# Construct the cross attention layer.
self.cross_attention = PerceiverLayer(
config,
is_cross_attention=True,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_cross_attention_heads,
q_dim=config.d_latents,
kv_dim=kv_dim,
widening_factor=config.cross_attention_widening_factor,
use_query_residual=config.use_query_residual,
)
# Construct a single block of self-attention layers.
# We get deeper architectures by applying this block more than once.
self_attention_layers = []
for _ in range(config.num_self_attends_per_block):
layer = PerceiverLayer(
config,
is_cross_attention=False,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_self_attention_heads,
q_dim=config.d_latents,
kv_dim=config.d_latents,
widening_factor=config.self_attention_widening_factor,
)
self_attention_layers.append(layer)
self.self_attends = nn.ModuleList(self_attention_layers)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
# Apply the cross-attention between the latents (hidden_states) and inputs:
layer_outputs = self.cross_attention(
hidden_states,
attention_mask=attention_mask,
head_mask=None,
inputs=inputs,
inputs_mask=inputs_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_cross_attentions = all_cross_attentions + (layer_outputs[1],)
# Apply the block of self-attention layers more than once:
for _ in range(self.config.num_blocks):
for i, layer_module in enumerate(self.self_attends):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask=attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class PerceiverPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PerceiverConfig
base_model_prefix = "perceiver"
main_input_name = "inputs"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif hasattr(module, "latents"):
module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding):
module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.ParameterDict):
for modality in module.keys():
module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
PERCEIVER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PERCEIVER_MODEL_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
decoder (*DecoderType*, *optional*):
Optional decoder to use to decode the latent representation of the encoder. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*,
*transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*.
input_preprocessor (*PreprocessorType*, *optional*):
Optional input preprocessor to use. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*.
output_postprocessor (*PostprocessorType*, *optional*):
Optional output postprocessor to use. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*.
Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case.
"""
PERCEIVER_INPUTS_DOCSTRING = r"""
Args:
inputs (`torch.FloatTensor`):
Inputs to the perceiver. Can be anything: images, text, audio, video, etc.
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The Perceiver: a scalable, fully attentional architecture.
<Tip>
Note that it's possible to fine-tune Perceiver on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
PERCEIVER_MODEL_START_DOCSTRING,
)
class PerceiverModel(PerceiverPreTrainedModel):
def __init__(
self,
config,
decoder=None,
input_preprocessor: PreprocessorType = None,
output_postprocessor: PostprocessorType = None,
):
super().__init__(config)
self.config = config
self.input_preprocessor = input_preprocessor
self.output_postprocessor = output_postprocessor
self.embeddings = PerceiverEmbeddings(config)
self.encoder = PerceiverEncoder(
config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model
)
self.decoder = decoder
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.latents
def set_input_embeddings(self, value):
self.embeddings.latents = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel
>>> from transformers.models.perceiver.modeling_perceiver import (
... PerceiverTextPreprocessor,
... PerceiverImagePreprocessor,
... PerceiverClassificationDecoder,
... )
>>> import torch
>>> import requests
>>> from PIL import Image
>>> # EXAMPLE 1: using the Perceiver to classify texts
>>> # - we define a TextPreprocessor, which can be used to embed tokens
>>> # - we define a ClassificationDecoder, which can be used to decode the
>>> # final hidden states of the latents to classification logits
>>> # using trainable position embeddings
>>> config = PerceiverConfig()
>>> preprocessor = PerceiverTextPreprocessor(config)
>>> decoder = PerceiverClassificationDecoder(
... config,
... num_channels=config.d_latents,
... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
... use_query_residual=True,
... )
>>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder)
>>> # you can then do a forward pass as follows:
>>> tokenizer = PerceiverTokenizer()
>>> text = "hello world"
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
>>> with torch.no_grad():
... outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
>>> # to train, one can train the model using standard cross-entropy:
>>> criterion = torch.nn.CrossEntropyLoss()
>>> labels = torch.tensor([1])
>>> loss = criterion(logits, labels)
>>> # EXAMPLE 2: using the Perceiver to classify images
>>> # - we define an ImagePreprocessor, which can be used to embed images
>>> config = PerceiverConfig(image_size=224)
>>> preprocessor = PerceiverImagePreprocessor(
... config,
... prep_type="conv1x1",
... spatial_downsample=1,
... out_channels=256,
... position_encoding_type="trainable",
... concat_or_add_pos="concat",
... project_pos_dim=256,
... trainable_position_encoding_kwargs=dict(
... num_channels=256,
... index_dims=config.image_size**2,
... ),
... )
>>> model = PerceiverModel(
... config,
... input_preprocessor=preprocessor,
... decoder=PerceiverClassificationDecoder(
... config,
... num_channels=config.d_latents,
... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
... use_query_residual=True,
... ),
... )
>>> # you can then do a forward pass as follows:
>>> image_processor = PerceiverImageProcessor()
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt").pixel_values
>>> with torch.no_grad():
... outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
>>> # to train, one can train the model using standard cross-entropy:
>>> criterion = torch.nn.CrossEntropyLoss()
>>> labels = torch.tensor([1])
>>> loss = criterion(logits, labels)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.input_preprocessor is not None:
inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(
inputs, interpolate_pos_encoding=interpolate_pos_encoding
)
else:
modality_sizes = None
inputs_without_pos = None
if inputs.size()[-1] != self.config.d_model:
raise ValueError(
f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:"
f" {self.config.d_model}. Make sure to set config.d_model appropriately."
)
batch_size, seq_length, _ = inputs.size()
device = inputs.device
# If no attention mask is provided, make them all ones
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=device)
# Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
extended_attention_mask = self.invert_attention_mask(attention_mask)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_blocks x num_heads]
# and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block)
embedding_output = self.embeddings(batch_size=batch_size)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=None,
head_mask=head_mask,
inputs=inputs,
inputs_mask=extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
logits = None
if self.decoder:
if subsampled_output_points is not None:
output_modality_sizes = {
"audio": subsampled_output_points["audio"].shape[0],
"image": subsampled_output_points["image"].shape[0],
"label": 1,
}
else:
output_modality_sizes = modality_sizes
decoder_query = self.decoder.decoder_query(
inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points
)
decoder_outputs = self.decoder(
decoder_query,
z=sequence_output,
query_mask=extended_attention_mask,
output_attentions=output_attentions,
)
logits = decoder_outputs.logits
# add cross-attentions of decoder
if output_attentions and decoder_outputs.cross_attentions is not None:
if return_dict:
encoder_outputs.cross_attentions = (
encoder_outputs.cross_attentions + decoder_outputs.cross_attentions
)
else:
encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions
if self.output_postprocessor:
logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes)
if not return_dict:
if logits is not None:
return (logits, sequence_output) + encoder_outputs[1:]
else:
return (sequence_output,) + encoder_outputs[1:]
return PerceiverModelOutput(
logits=logits,
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING)
class PerceiverForMaskedLM(PerceiverPreTrainedModel):
def __init__(self, config: PerceiverConfig):
super().__init__(config)
text_preprocessor = PerceiverTextPreprocessor(config)
trainable_position_encoding_kwargs_decoder = {
"num_channels": text_preprocessor.num_channels,
"index_dims": config.max_position_embeddings,
}
self.perceiver = PerceiverModel(
config,
input_preprocessor=text_preprocessor,
decoder=PerceiverBasicDecoder(
config,
output_num_channels=config.d_latents,
output_index_dims=config.max_position_embeddings, # we need to define the seq_len of the inputs beforehand
num_channels=text_preprocessor.num_channels,
qk_channels=8 * 32,
v_channels=text_preprocessor.num_channels,
num_heads=8,
use_query_residual=False,
final_project=False,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
),
)
self.embedding_decoder = PerceiverEmbeddingDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
input_ids: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, PerceiverForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
>>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
>>> # training
>>> text = "This is an incomplete sentence where some words are missing."
>>> inputs = tokenizer(text, padding="max_length", return_tensors="pt")
>>> # mask " missing."
>>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id
>>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
19.87
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2048, 262]
>>> # inference
>>> text = "This is an incomplete sentence where some words are missing."
>>> encoding = tokenizer(text, padding="max_length", return_tensors="pt")
>>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space.
>>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**encoding)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2048, 262]
>>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
>>> tokenizer.decode(masked_tokens_predictions)
' missing.'
```"""
if inputs is not None and input_ids is not None:
raise ValueError("You cannot use both `inputs` and `input_ids`")
elif inputs is None and input_ids is not None:
inputs = input_ids
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.embedding_decoder(
outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings
)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return PerceiverMaskedLMOutput(
loss=masked_lm_loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING)
class PerceiverForSequenceClassification(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverTextPreprocessor(config),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
input_ids: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels -
1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels >
1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, PerceiverForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
>>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver")
>>> text = "hello world"
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
```"""
if inputs is not None and input_ids is not None:
raise ValueError("You cannot use both `inputs` and `input_ids`")
elif inputs is None and input_ids is not None:
inputs = input_ids
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses learned position embeddings. In other words, this model is not given any privileged information about
the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet.
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv1x1"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="conv1x1",
spatial_downsample=1,
out_channels=256,
position_encoding_type="trainable",
concat_or_add_pos="concat",
project_pos_dim=256,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned")
>>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of
79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT).
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="pixels"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"concat_pos": True,
"max_resolution": (224, 224),
"num_bands": 64,
"sine_only": False,
}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="pixels",
spatial_downsample=1,
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier")
>>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy
of 82.1 on ImageNet.
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"concat_pos": True,
"max_resolution": (56, 56),
"num_bands": 64,
"sine_only": False,
}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="conv",
spatial_downsample=1,
position_encoding_type="fourier",
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv")
>>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses
[`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the
input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent
representation of [`PerceiverModel`].
As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel
(leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position
of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation
using the same encoding used for the input.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForOpticalFlow(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"num_bands": 64,
"max_resolution": config.train_size,
"sine_only": False,
"concat_pos": True,
}
fourier_position_encoding_kwargs_decoder = {
"concat_pos": True,
"max_resolution": config.train_size,
"num_bands": 64,
"sine_only": False,
}
image_preprocessor = PerceiverImagePreprocessor(
config,
prep_type="patches",
spatial_downsample=1,
conv_after_patching=True,
conv_after_patching_in_channels=54,
temporal_downsample=2,
position_encoding_type="fourier",
# position_encoding_kwargs
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
)
self.perceiver = PerceiverModel(
config,
input_preprocessor=image_preprocessor,
decoder=PerceiverOpticalFlowDecoder(
config,
num_channels=image_preprocessor.num_channels,
output_image_shape=config.train_size,
rescale_factor=100.0,
# decoder kwargs
use_query_residual=False,
output_num_channels=2,
# We query the decoder using the first frame features
# rather than a standard decoder position encoding.
position_encoding_type="fourier",
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Examples:
```python
>>> from transformers import PerceiverForOpticalFlow
>>> import torch
>>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
>>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel,
>>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels)
>>> # patches have shape (batch_size, num_frames, num_channels, height, width)
>>> # the authors train on resolutions of 368 x 496
>>> patches = torch.randn(1, 2, 27, 368, 496)
>>> outputs = model(inputs=patches)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 368, 496, 2]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError("Optical flow training is not yet supported")
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700.
[`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to
preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to
preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad
each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies
the Perceiver encoder.
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of
[`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are
created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is
computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent
representation. This is determined by the subsampled indices for each modality, which can be provided as additional
input to the forward pass of [`PerceiverForMultimodalAutoencoding`].
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different
modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention
is performed with the latent representation of [`PerceiverModel`].
Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an
actual video. It first splits up the output into the different modalities, and then applies the respective
postprocessor for each modality.
Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the
"label" modality), this auto-encoding model becomes a Kinetics 700 video classifier.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel):
def __init__(self, config: PerceiverConfig):
super().__init__(config)
n_audio_samples = config.num_frames * config.audio_samples_per_frame
input_preprocessor = PerceiverMultimodalPreprocessor(
min_padding_size=4,
modalities={
"audio": PerceiverAudioPreprocessor(
config,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 192,
"max_resolution": (n_audio_samples,),
"sine_only": False,
"concat_pos": True,
},
prep_type="patches",
samples_per_patch=config.samples_per_patch,
),
"image": PerceiverImagePreprocessor(
config,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 32,
"max_resolution": (config.num_frames, config.image_size, config.image_size),
"sine_only": False,
"concat_pos": True,
},
prep_type="patches",
spatial_downsample=4,
temporal_downsample=1,
),
"label": PerceiverOneHotPreprocessor(config),
},
mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0},
)
image_decoder = PerceiverBasicVideoAutoencodingDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
output_shape=config.output_shape,
output_num_channels=config.output_num_channels,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 32,
"max_resolution": (config.num_frames, config.image_size, config.image_size),
"sine_only": False,
"concat_pos": True,
},
)
decoder = PerceiverMultimodalDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
# Modality specific decoders are used ONLY to generate queries.
# All modalties are decoded together using a unified decoder.
modalities={
"audio": PerceiverBasicDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
output_index_dims=(n_audio_samples // config.samples_per_patch,),
output_num_channels=config.output_num_channels,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 192,
"max_resolution": (n_audio_samples,),
"sine_only": False,
"concat_pos": True,
},
),
"image": image_decoder,
"label": PerceiverClassificationDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="trainable",
trainable_position_encoding_kwargs={
"num_channels": config._label_trainable_num_channels,
"index_dims": 1,
},
),
},
num_outputs=None,
output_num_channels=config.output_num_channels,
use_query_residual=False,
)
output_postprocessor = PerceiverMultimodalPostprocessor(
modalities={
"audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels),
"image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3),
"label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels),
}
)
self.perceiver = PerceiverModel(
config,
input_preprocessor=input_preprocessor,
decoder=decoder,
output_postprocessor=output_postprocessor,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import PerceiverForMultimodalAutoencoding
>>> import torch
>>> import numpy as np
>>> # create multimodal inputs
>>> images = torch.randn((1, 16, 3, 224, 224))
>>> audio = torch.randn((1, 30720, 1))
>>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700)))
>>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver")
>>> # in the Perceiver IO paper, videos are auto-encoded in chunks
>>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries
>>> nchunks = 128
>>> image_chunk_size = np.prod((16, 224, 224)) // nchunks
>>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks
>>> # process the first chunk
>>> chunk_idx = 0
>>> subsampling = {
... "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)),
... "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)),
... "label": None,
... }
>>> outputs = model(inputs=inputs, subsampled_output_points=subsampling)
>>> logits = outputs.logits
>>> list(logits["audio"].shape)
[1, 240]
>>> list(logits["image"].shape)
[1, 6272, 3]
>>> list(logits["label"].shape)
[1, 700]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError("Multimodal autoencoding training is not yet supported")
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
subsampled_output_points=subsampled_output_points,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Below: position encodings
def build_position_encoding(
position_encoding_type,
out_channels=None,
project_pos_dim=-1,
trainable_position_encoding_kwargs=None,
fourier_position_encoding_kwargs=None,
):
"""
Builds the position encoding.
Args:
- out_channels: refers to the number of channels of the position encodings.
- project_pos_dim: if specified, will project the position encodings to this dimension.
"""
if position_encoding_type == "trainable":
if not trainable_position_encoding_kwargs:
raise ValueError("Make sure to pass trainable_position_encoding_kwargs")
output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs)
elif position_encoding_type == "fourier":
# We don't use the index_dims argument, as this is only known during the forward pass
if not fourier_position_encoding_kwargs:
raise ValueError("Make sure to pass fourier_position_encoding_kwargs")
output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs)
else:
raise ValueError(f"Unknown position encoding type: {position_encoding_type}.")
# Optionally, project the position encoding to a target dimension:
positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity()
return output_pos_enc, positions_projection
# Below: Perceiver decoders
class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta):
"""Perceiver abstract decoder."""
@abc.abstractmethod
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
raise NotImplementedError
@property
@abc.abstractmethod
def num_query_channels(self):
raise NotImplementedError
@abc.abstractmethod
def forward(self, query, z, query_mask=None):
raise NotImplementedError
class PerceiverProjectionDecoder(PerceiverAbstractDecoder):
"""
Baseline projection decoder (no cross-attention).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config):
super().__init__()
self.classifier = nn.Linear(config.d_latents, config.num_labels)
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return None
def forward(
self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
# (batch_size, num_latents, d_latents) -> (batch_size, d_latents)
z = torch.mean(z, dim=1)
# (batch_size, d_latents) -> (batch_size, config.num_labels)
logits = self.classifier(z)
return logits
class PerceiverBasicDecoder(PerceiverAbstractDecoder):
"""
Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a
cross-attention operation, in which the latents produce keys and values.
The shape of the output of this class depends on how one defines the output queries (also called decoder queries).
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_num_channels (`int`, *optional*):
The number of channels in the output. Will only be used in case *final_project* is set to `True`.
position_encoding_type (`str`, *optional*, defaults to "trainable"):
The type of position encoding to use. Can be either "trainable", "fourier", or "none".
output_index_dims (`int`, *optional*):
The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'.
num_channels (`int`, *optional*, defaults to 128):
The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'.
qk_channels (`int`, *optional*):
The number of channels of the queries and keys in the cross-attention layer.
v_channels (`int`, *optional*):
The number of channels of the values in the cross-attention layer.
num_heads (`int`, *optional*, defaults to 1):
The number of attention heads in the cross-attention layer.
widening_factor (`int`, *optional*, defaults to 1):
The widening factor of the cross-attention layer.
use_query_residual (`bool`, *optional*, defaults to `False`):
Whether to use a residual connection between the query and the output of the cross-attention layer.
concat_preprocessed_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the preprocessed input to the query.
final_project (`bool`, *optional*, defaults to `True`):
Whether to project the output of the cross-attention layer to a target dimension.
position_encoding_only (`bool`, *optional*, defaults to `False`):
Whether to only use this class to define output queries.
"""
def __init__(
self,
config: PerceiverConfig,
output_num_channels: int,
position_encoding_type: Optional[str] = "trainable",
# The following 2 arguments are ignored if position_encoding_type == 'none':
output_index_dims: Optional[int] = None,
num_channels: Optional[int] = 128,
subsampled_index_dims: Optional[int] = None,
qk_channels: Optional[int] = None,
v_channels: Optional[int] = None,
num_heads: Optional[int] = 1,
widening_factor: Optional[int] = 1,
use_query_residual: Optional[bool] = False,
concat_preprocessed_input: Optional[bool] = False,
final_project: Optional[bool] = True,
position_encoding_only: Optional[bool] = False,
**position_encoding_kwargs,
) -> None:
super().__init__()
self.output_num_channels = output_num_channels
# If `none`, the decoder will not construct any position encodings.
# You should construct your own when querying the decoder.
self.output_position_encodings = None
self.position_encoding_type = position_encoding_type
self.position_encoding_kwargs = position_encoding_kwargs
if position_encoding_type != "none":
self.output_position_encodings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type, **position_encoding_kwargs
)
self.output_index_dims = output_index_dims
self.num_channels = num_channels
if subsampled_index_dims is None:
subsampled_index_dims = output_index_dims
self.subsampled_index_dims = subsampled_index_dims
self.concat_preprocessed_input = concat_preprocessed_input
self.final_project = final_project
self.position_encoding_only = position_encoding_only
# for multimodal autoencoding, we don't need the decoder cross-attention and final layer
# so then we will set position_encoding_only to True
if not self.position_encoding_only:
self.decoding_cross_attention = PerceiverLayer(
config,
is_cross_attention=True,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=num_channels,
kv_dim=config.d_latents,
widening_factor=widening_factor,
use_query_residual=use_query_residual,
)
self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity()
@property
def num_query_channels(self) -> int:
if self.position_encoding_type == "none": # Queries come from elsewhere
raise ValueError(
"You cannot calculate number of decoder query channels when position_encoding_type is set to none"
)
if self.position_encoding_only:
if "project_pos_dim" in self.position_encoding_kwargs:
return self.position_encoding_kwargs["project_pos_dim"]
return self.output_position_encodings.output_size()
if self.final_project:
return self.output_num_channels
return self.num_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
if self.position_encoding_type == "none": # Queries come from elsewhere
raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none")
if subsampled_points is not None:
# subsampled_points are the indices if the inputs would be flattened
# however, the inputs aren't flattened, that's why we use unravel_index
# to get the indices for the unflattened array
# unravel_index returns a tuple (x_idx, y_idx, ...)
# stack to get the [n, d] tensor of coordinates
indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)]
pos = torch.stack(indices, dim=1)
batch_size = inputs.shape[0]
# Map these coordinates to [-1, 1]
pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :]
pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]])
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_emb = self.output_position_encodings(batch_size)
elif self.position_encoding_type == "fourier":
pos_emb = self.output_position_encodings(
self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos
)
# Optionally project them to a target dimension.
pos_emb = self.positions_projection(pos_emb)
pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]])
else:
batch_size = inputs.shape[0]
index_dims = inputs.shape[2:]
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_emb = self.output_position_encodings(batch_size)
elif self.position_encoding_type == "fourier":
pos_emb = self.output_position_encodings(
index_dims, batch_size, device=inputs.device, dtype=inputs.dtype
)
# Optionally project them to a target dimension.
pos_emb = self.positions_projection(pos_emb)
if self.concat_preprocessed_input:
if inputs_without_pos is None:
raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True")
pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1)
return pos_emb
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
# Cross-attention decoding.
# key, value: B x N x K; query: B x M x K
# Attention maps -> B x N x M
# Output -> B x M x K
cross_attentions = () if output_attentions else None
layer_outputs = self.decoding_cross_attention(
query,
attention_mask=query_mask,
head_mask=None,
inputs=z,
inputs_mask=None,
output_attentions=output_attentions,
)
output = layer_outputs[0]
if output_attentions:
cross_attentions = cross_attentions + (layer_outputs[1],)
logits = self.final_layer(output)
return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions)
class PerceiverClassificationDecoder(PerceiverAbstractDecoder):
"""
Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output.
Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of
shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config, **decoder_kwargs):
super().__init__()
self.num_labels = config.num_labels
self.decoder = PerceiverBasicDecoder(
config,
output_num_channels=self.num_labels,
output_index_dims=1, # Predict a single logit array.
**decoder_kwargs,
)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(
inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points
)
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
# B x 1 x num_classes -> B x num_classes
logits = decoder_outputs.logits[:, 0, :]
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder):
"""Cross-attention based optical flow decoder."""
def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs):
super().__init__()
self.output_image_shape = output_image_shape
self.output_num_channels = output_num_channels
self.rescale_factor = rescale_factor
self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
if subsampled_points is not None:
raise ValueError("FlowDecoder doesn't support subsampling yet.")
return inputs
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
preds = decoder_outputs.logits
# Output flow and rescale.
preds /= self.rescale_factor
preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]])
return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions)
class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder):
"""
Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video
reshaping logic.
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_shape (`List[int]`):
Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension.
position_encoding_type (`str`):
The type of position encoding to use. Can be either "trainable", "fourier", or "none".
"""
def __init__(
self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs
) -> None:
super().__init__()
if len(output_shape) != 4: # B, T, H, W
raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.")
# Build the decoder components:
self.output_shape = output_shape
self.output_num_channels = decoder_kwargs["output_num_channels"]
self.decoder = PerceiverBasicDecoder(
config,
output_index_dims=self.output_shape[1:4], # T*H*W
position_encoding_type=position_encoding_type,
**decoder_kwargs,
)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(
inputs,
modality_sizes=modality_sizes,
inputs_without_pos=inputs_without_pos,
subsampled_points=subsampled_points,
)
def forward(
self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z)
logits = decoder_outputs.logits
logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]])
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]:
"""
Partitions a [B, N, C] tensor into tensors for each modality.
Args:
modality_sizes
dict specifying the size of the modality
inputs:
input tensor
Returns:
dict mapping name of modality to its associated tensor.
"""
outputs = {}
index = 0
# Apply a predictable ordering to the modalities
for modality in sorted(modality_sizes.keys()):
size = modality_sizes[modality]
inp = inputs[:, index : index + size]
index += size
outputs[modality] = inp
return outputs
class PerceiverMultimodalDecoder(PerceiverAbstractDecoder):
"""
Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary
mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that
modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are
concatenated along the time dimension.
Next, there is a shared cross attention operation across all modalities.
Args:
config ([*PerceiverConfig*]):
Model configuration.
modalities (`Dict[str, PerceiverAbstractDecoder]`):
Dictionary mapping modality name to the decoder of that modality.
num_outputs (`int`):
The number of outputs of the decoder.
output_num_channels (`int`):
The number of channels in the output.
min_padding_size (`int`, *optional*, defaults to 2):
The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
channels across all modalities plus min_padding_size.
subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*):
Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that
modality.
"""
def __init__(
self,
config: PerceiverConfig,
modalities: Dict[str, PerceiverAbstractDecoder],
num_outputs: int,
output_num_channels: int,
min_padding_size: Optional[int] = 2,
subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None,
**decoder_kwargs,
) -> None:
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.subsampled_index_dims = subsampled_index_dims
self.min_padding_size = min_padding_size
self.output_num_channels = output_num_channels
self.num_outputs = num_outputs
self.decoder = PerceiverBasicDecoder(
config,
output_index_dims=(num_outputs,),
output_num_channels=output_num_channels,
position_encoding_type="none",
num_channels=self.num_query_channels,
**decoder_kwargs,
)
self.padding = nn.ParameterDict(
{
modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels))
for modality, decoder in modalities.items()
}
)
@property
def num_query_channels(self) -> int:
max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items())
common_channel_size = max_channel_size + self.min_padding_size
return common_channel_size
def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None):
# Partition the flat inputs among the different modalities
inputs = restructure(modality_sizes, inputs)
# Obtain modality-specific decoders' queries
subsampled_points = subsampled_points or {}
decoder_queries = {}
for modality, decoder in self.modalities.items():
# Get input_without_pos for this modality if it exists.
input_without_pos = None
if inputs_without_pos is not None:
input_without_pos = inputs_without_pos.get(modality, None)
query = decoder.decoder_query(
inputs=inputs[modality],
modality_sizes=None,
inputs_without_pos=input_without_pos,
subsampled_points=subsampled_points.get(modality, None),
)
decoder_queries[modality] = query
# Pad all queries with trainable position encodings to make them have the same channels
def embed(modality, x):
x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]])
pos = self.padding[modality]
pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]])
return torch.cat([x, pos], dim=2)
# Apply a predictable ordering to the modalities
return torch.cat(
[embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1
)
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> torch.Tensor:
# B x 1 x num_classes -> B x num_classes
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
return decoder_outputs
# Below: IO pre- and post-processor classes for Perceiver.
def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor:
"""
Space to depth transform. Rearranges blocks of spatial data, into depth.
This function assumes the channels to be first, but will place the channels last after transformation.
Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15.
"""
if len(frames.shape) == 4:
batch_size, num_channels, height, width = frames.shape
# split up dimensions (height by spatial_block_size, width by spatial_block_size)
frames = frames.view(
batch_size,
num_channels,
height // spatial_block_size,
spatial_block_size,
width // spatial_block_size,
spatial_block_size,
)
# move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C)
frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous()
# concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C)
frames = frames.view(
batch_size,
height // spatial_block_size,
width // spatial_block_size,
(spatial_block_size**2) * num_channels,
)
return frames
elif len(frames.shape) == 5:
batch_size, time, num_channels, height, width = frames.shape
# split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size)
frames = frames.view(
batch_size,
time // temporal_block_size,
temporal_block_size,
num_channels,
height // spatial_block_size,
spatial_block_size,
width // spatial_block_size,
spatial_block_size,
)
# move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C)
frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
# concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C)
frames = frames.view(
batch_size,
time // temporal_block_size,
height // spatial_block_size,
width // spatial_block_size,
temporal_block_size * (spatial_block_size**2) * num_channels,
)
return frames
else:
raise ValueError(
"Frames should be of rank 4 (batch, channels, height, width)"
" or rank 5 (batch, time, channels, height, width)"
)
class Conv2dSamePadding(nn.Conv2d):
"""
Conv2d layer with padding="same" support. Source:
https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6
"""
def __init__(self, *args, **kwargs):
super(Conv2dSamePadding, self).__init__(*args, **kwargs)
self.zero_pad_2d = nn.ZeroPad2d(
reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]])
)
def forward(self, input):
return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias)
class Conv2DDownsample(nn.Module):
"""Downsamples 4x by applying a 2D convolution and doing max pooling."""
def __init__(
self,
num_layers: int = 1,
in_channels: int = 3,
out_channels: int = 64,
use_batchnorm: bool = True,
):
"""
Constructs a Conv2DDownsample model.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 64):
The number of conv output channels.
use_batchnorm (`bool`, *optional*, defaults to `True`):
Whether to use batchnorm.
"""
super().__init__()
self.conv = Conv2dSamePadding(
in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False
)
self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity()
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
out = self.conv(inputs)
out = self.batchnorm(out)
out = self.relu(out)
out = self.max_pool(out)
return out
def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False):
"""
Generate a Fourier frequency position encoding with linear spacing.
Args:
pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`):
The Tensor containing the position of n points in d dimensional space.
num_bands (`int`):
The number of frequency bands (K) to use.
max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)):
The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension.
concat_pos (`bool`, *optional*, defaults to `True`):
Whether to concatenate the input position encoding to the Fourier features.
sine_only (`bool`, *optional*, defaults to `False`):
Whether to use a single phase (sin) or two (sin/cos) for each frequency band.
Returns:
`torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If
`concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d,
sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1),
..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the
kth frequency band.
"""
batch_size = pos.shape[0]
min_freq = 1.0
# Nyquist frequency at the target resolution:
freq_bands = torch.stack(
[torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0
)
# Get frequency bands for each spatial dimension.
# Output is size [n, d * num_bands]
per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :]
per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])])
if sine_only:
# Output is size [n, d * num_bands]
per_pos_features = torch.sin(np.pi * (per_pos_features))
else:
# Output is size [n, 2 * d * num_bands]
per_pos_features = torch.cat(
[torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1
)
# Concatenate the raw input positions.
if concat_pos:
# Adds d bands to the encoding.
per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1)
return per_pos_features
def build_linear_positions(index_dims, output_range=(-1.0, 1.0)):
"""
Generate an array of position indices for an N-D input array.
Args:
index_dims (`List[int]`):
The shape of the index dimensions of the input array.
output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`):
The min and max values taken by each input index dimension.
Returns:
`torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`.
"""
def _linspace(n_xels_per_dim):
return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32)
dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims]
array_index_grid = meshgrid(*dim_ranges, indexing="ij")
return torch.stack(array_index_grid, dim=-1)
class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta):
"""Perceiver abstract position encoding."""
@property
@abc.abstractmethod
def num_dimensions(self) -> int:
raise NotImplementedError
@abc.abstractmethod
def output_size(self, *args, **kwargs) -> int:
raise NotImplementedError
@abc.abstractmethod
def forward(self, batch_size, pos):
raise NotImplementedError
class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding):
"""Trainable position encoding."""
def __init__(self, index_dims, num_channels=128):
super().__init__()
self._num_channels = num_channels
self._index_dims = index_dims
index_dim = np.prod(index_dims)
self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels))
@property
def num_dimensions(self) -> int:
if isinstance(self._index_dims, int):
return 1
return len(self._index_dims)
def output_size(self, *args, **kwargs) -> int:
return self._num_channels
def interpolate_pos_encoding(self, position_embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
num_positions = position_embeddings.shape[0]
new_height = new_width = torch_int(num_positions**0.5)
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and height == new_height and width == new_width:
return position_embeddings
position_embeddings = position_embeddings.reshape(1, new_height, new_width, self._num_channels).permute(
0, 3, 1, 2
)
position_embeddings = nn.functional.interpolate(
position_embeddings,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
position_embeddings = position_embeddings.reshape(1, self._num_channels, -1).permute(0, 2, 1).squeeze(0)
return position_embeddings
def forward(
self, batch_size: int, interpolate_pos_encoding: bool = False, input_size: torch.Size = None
) -> torch.Tensor:
position_embeddings = self.position_embeddings
if interpolate_pos_encoding:
height, width = input_size
position_embeddings = self.interpolate_pos_encoding(position_embeddings, height, width)
if batch_size is not None:
position_embeddings = position_embeddings.expand(batch_size, -1, -1)
return position_embeddings
def _check_or_build_spatial_positions(pos, index_dims, batch_size):
"""
Checks or builds spatial position features (x, y, ...).
Args:
pos (`torch.FloatTensor`):
None, or an array of position features. If None, position features are built. Otherwise, their size is checked.
index_dims (`List[int]`):
An iterable giving the spatial/index size of the data to be featurized.
batch_size (`int`):
The batch size of the data to be featurized.
Returns:
`torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features.
"""
if pos is None:
pos = build_linear_positions(index_dims)
# equivalent to `torch.broadcast_to(pos[None], (batch_size,) + pos.shape)`
# but `torch.broadcast_to` cannot be converted to ONNX
pos = pos[None].expand((batch_size,) + pos.shape)
pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1])
else:
# Just a warning label: you probably don't want your spatial features to
# have a different spatial layout than your pos coordinate system.
# But feel free to override if you think it'll work!
if pos.shape[-1] != len(index_dims):
raise ValueError("Spatial features have the wrong number of dimensions.")
return pos
class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding):
"""Fourier (Sinusoidal) position encoding."""
def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False):
super().__init__()
self.num_bands = num_bands
self.max_resolution = max_resolution
self.concat_pos = concat_pos
self.sine_only = sine_only
@property
def num_dimensions(self) -> int:
return len(self.max_resolution)
def output_size(self):
"""Returns size of positional encodings last dimension."""
num_dims = len(self.max_resolution)
encoding_size = self.num_bands * num_dims
if not self.sine_only:
encoding_size *= 2
if self.concat_pos:
encoding_size += self.num_dimensions
return encoding_size
def forward(
self,
index_dims: List[int],
batch_size: int,
device: torch.device,
dtype: torch.dtype,
pos: torch.FloatTensor = None,
) -> torch.FloatTensor:
pos = _check_or_build_spatial_positions(pos, index_dims, batch_size)
fourier_pos_enc = generate_fourier_features(
pos,
num_bands=self.num_bands,
max_resolution=self.max_resolution,
concat_pos=self.concat_pos,
sine_only=self.sine_only,
).to(device=device, dtype=dtype)
return fourier_pos_enc
class AbstractPreprocessor(nn.Module):
@property
def num_channels(self) -> int:
"""Returns size of preprocessor output."""
raise NotImplementedError()
class PerceiverTextPreprocessor(AbstractPreprocessor):
"""
Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings.
The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration.
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config = config
self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)
@property
def num_channels(self) -> int:
return self.config.d_model
def forward(
self,
inputs: torch.LongTensor,
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
):
embeddings_without_pos = self.embeddings(inputs)
seq_length = inputs.shape[1]
position_ids = torch.arange(0, seq_length, device=inputs.device)
embeddings = embeddings_without_pos + self.position_embeddings(position_ids)
return embeddings, None, embeddings_without_pos
class PerceiverEmbeddingDecoder(nn.Module):
"""
Module to decode embeddings (for masked language modeling).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.bias = nn.Parameter(torch.zeros(self.vocab_size))
def forward(self, hidden_states: torch.Tensor, embedding_layer: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, d_model = hidden_states.shape
# Flatten batch dim
output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.transpose(0, 1))
output = output + self.bias
return output.reshape([batch_size, seq_len, self.vocab_size])
class PerceiverMultimodalPostprocessor(nn.Module):
"""
Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single
postprocessor.
Args:
modalities (`Mapping[str, PostprocessorType]`):
Dictionary mapping modality name to postprocessor class for that modality.
input_is_dict (`bool`, *optional*, defaults to `False`):
If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If
False, input is a tensor which is sliced up during postprocessing by *modality_sizes*.
"""
def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False):
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.input_is_dict = input_is_dict
def forward(
self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None
) -> Mapping[str, torch.Tensor]:
if not self.input_is_dict:
# Slice up modalities by their sizes.
if modality_sizes is None:
raise ValueError("Modality sizes should be specified if input is not a dictionary.")
inputs = restructure(modality_sizes=modality_sizes, inputs=inputs)
outputs = {
modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None)
for modality, postprocessor in self.modalities.items()
}
return outputs
class PerceiverClassificationPostprocessor(nn.Module):
"""
Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits.
Args:
config ([*PerceiverConfig*]):
Model configuration.
in_channels (`int`):
Number of channels in the input.
"""
def __init__(self, config: PerceiverConfig, in_channels: int) -> None:
super().__init__()
self.classifier = nn.Linear(in_channels, config.num_labels)
def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return logits[:, 0, :]
class PerceiverAudioPostprocessor(nn.Module):
"""
Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features.
Args:
config ([*PerceiverConfig*]):
Model configuration.
in_channels (`int`):
Number of channels in the input.
postproc_type (`str`, *optional*, defaults to `"patches"`):
Postprocessor type to use. Currently, only "patches" is supported.
"""
def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None:
super().__init__()
if postproc_type not in ("patches",): # to be supported: 'conv', 'patches', 'pixels'
raise ValueError("Invalid postproc_type!")
# Architecture parameters:
self.classifier = nn.Linear(in_channels, config.samples_per_patch)
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return torch.reshape(logits, [inputs.shape[0], -1])
class PerceiverProjectionPostprocessor(nn.Module):
"""
Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower
dimension.
Args:
in_channels (`int`):
Number of channels in the input.
out_channels (`int`):
Number of channels in the output.
"""
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__()
self.classifier = nn.Linear(in_channels, out_channels)
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return logits
class PerceiverImagePreprocessor(AbstractPreprocessor):
"""
Image preprocessing for Perceiver Encoder.
Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to
"conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the
position encoding kwargs are set equal to the *out_channels*.
Args:
config ([*PerceiverConfig*]):
Model configuration.
prep_type (`str`, *optional*, defaults to `"conv"`):
Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels".
spatial_downsample (`int`, *optional*, defaults to 4):
Spatial downsampling factor.
temporal_downsample (`int`, *optional*, defaults to 1):
Temporal downsampling factor (only relevant in case a time dimension is present).
position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
Position encoding type. Can be "fourier" or "trainable".
in_channels (`int`, *optional*, defaults to 3):
Number of channels in the input.
out_channels (`int`, *optional*, defaults to 64):
Number of channels in the output.
conv_after_patching (`bool`, *optional*, defaults to `False`):
Whether to apply a convolutional layer after patching.
conv_after_patching_in_channels (`int`, *optional*, defaults to 54):
Number of channels in the input of the convolutional layer after patching.
conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`):
Whether to use batch normalization in the convolutional layer.
concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
How to concatenate the position encoding to the input. Can be "concat" or "add".
project_pos_dim (`int`, *optional*, defaults to -1):
Dimension of the position encoding to project to. If -1, no projection is applied.
**position_encoding_kwargs (`Dict`, *optional*):
Keyword arguments for the position encoding.
"""
def __init__(
self,
config,
prep_type="conv",
spatial_downsample: int = 4,
temporal_downsample: int = 1,
position_encoding_type: str = "fourier",
in_channels: int = 3,
out_channels: int = 64,
conv_after_patching: bool = False,
conv_after_patching_in_channels: int = 54, # only relevant when conv_after_patching = True
conv2d_use_batchnorm: bool = True,
concat_or_add_pos: str = "concat",
project_pos_dim: int = -1,
**position_encoding_kwargs,
):
super().__init__()
self.config = config
if prep_type not in ("conv", "patches", "pixels", "conv1x1"):
raise ValueError(f"Prep_type {prep_type} is invalid")
if concat_or_add_pos not in ["concat", "add"]:
raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.")
self.in_channels = in_channels
self.prep_type = prep_type
self.spatial_downsample = spatial_downsample
self.temporal_downsample = temporal_downsample
self.position_encoding_type = position_encoding_type
self.concat_or_add_pos = concat_or_add_pos
self.conv_after_patching = conv_after_patching
self.out_channels = out_channels
if self.prep_type == "conv":
# Downsampling with conv is currently restricted
convnet_num_layers = math.log(spatial_downsample, 4)
convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers)
if not convnet_num_layers_is_int or temporal_downsample != 1:
raise ValueError(
"Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv."
)
self.convnet = Conv2DDownsample(
in_channels=in_channels,
num_layers=int(convnet_num_layers),
out_channels=out_channels,
use_batchnorm=conv2d_use_batchnorm,
)
elif self.prep_type == "conv1x1":
if temporal_downsample != 1:
raise ValueError("Conv1x1 does not downsample in time.")
self.convnet_1x1 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(1, 1),
# spatial_downsample is unconstrained for 1x1 convolutions.
stride=(spatial_downsample, spatial_downsample),
)
# Position embeddings
self.project_pos_dim = project_pos_dim
self.position_embeddings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type,
out_channels=out_channels,
project_pos_dim=project_pos_dim,
**position_encoding_kwargs,
)
# Optional convolutional layer after patches.
self.conv_after_patches = (
nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity()
)
@property
def num_channels(self) -> int:
# Let's assume that the number of resolutions (in the context of image preprocessing)
# of the input data is 2 or 3 depending on whether we are processing image or video respectively.
# In this case, for convenience, we will declare is_temporal variable,
# which will show whether the data has a temporal dimension or not.
is_temporal = self.position_embeddings.num_dimensions > 2
# position embedding
if self.project_pos_dim > 0:
pos_dim = self.project_pos_dim
else:
pos_dim = self.position_embeddings.output_size()
if self.concat_or_add_pos == "add":
return pos_dim
# inputs
if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"):
inp_dim = self.out_channels
elif self.prep_type == "pixels":
inp_dim = self.in_channels
if not is_temporal:
inp_dim = math.ceil(inp_dim / self.spatial_downsample)
elif self.prep_type == "patches":
if self.conv_after_patching:
inp_dim = self.out_channels
else:
inp_dim = self.in_channels * self.spatial_downsample**2
if is_temporal:
inp_dim *= self.temporal_downsample
return inp_dim + pos_dim
def _build_network_inputs(
self, inputs: torch.Tensor, network_input_is_1d: bool = True, interpolate_pos_encoding: bool = False
):
"""
Construct the final input, including position encoding.
This method expects the inputs to always have channels as last dimension.
"""
batch_size = inputs.shape[0]
input_size = inputs.shape[1:3]
index_dims = inputs.shape[1:-1]
indices = np.prod(index_dims)
# Flatten input features to a 1D index dimension if necessary.
if len(inputs.shape) > 3 and network_input_is_1d:
inputs = torch.reshape(inputs, [batch_size, indices, -1])
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_enc = self.position_embeddings(batch_size, interpolate_pos_encoding, input_size)
elif self.position_encoding_type == "fourier":
pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)
# Optionally project them to a target dimension.
pos_enc = self.positions_projection(pos_enc)
if not network_input_is_1d:
# Reshape pos to match the input feature shape
# if the network takes non-1D inputs
sh = inputs.shape
pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1])
if self.concat_or_add_pos == "concat":
inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
elif self.concat_or_add_pos == "add":
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def forward(
self,
inputs: torch.Tensor,
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
):
if self.prep_type == "conv":
# Convnet image featurization.
# Downsamples spatially by a factor of 4
inputs = self.convnet(inputs)
elif self.prep_type == "conv1x1":
# map inputs to self.out_channels
inputs = self.convnet_1x1(inputs)
elif self.prep_type == "pixels":
# if requested, downsamples in the crudest way
if inputs.ndim == 4:
inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample]
elif inputs.ndim == 5:
inputs = inputs[
:, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample
]
else:
raise ValueError("Unsupported data format for pixels.")
elif self.prep_type == "patches":
# Space2depth featurization.
# Video: B x T x C x H x W
inputs = space_to_depth(
inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample
)
if inputs.ndim == 5 and inputs.shape[1] == 1:
# for flow
inputs = inputs.squeeze(dim=1)
# Optionally apply conv layer.
inputs = self.conv_after_patches(inputs)
if self.prep_type != "patches":
# move channels to last dimension, as the _build_network_inputs method below expects this
if inputs.ndim == 4:
inputs = inputs.permute(0, 2, 3, 1)
elif inputs.ndim == 5:
inputs = inputs.permute(0, 1, 3, 4, 2)
else:
raise ValueError("Unsupported data format for conv1x1.")
inputs, inputs_without_pos = self._build_network_inputs(inputs, network_input_is_1d, interpolate_pos_encoding)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class PerceiverOneHotPreprocessor(AbstractPreprocessor):
"""
One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input.
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config: PerceiverConfig = config
@property
def num_channels(self) -> int:
return self.config.num_labels
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
# Add a dummy index dimension.
inputs = inputs[:, None, :]
# No position encodings, so the 1st (input) and 3rd (inputs_without_pos)
# outputs are identical.
return inputs, None, inputs
class PerceiverAudioPreprocessor(AbstractPreprocessor):
"""
Audio preprocessing for Perceiver Encoder.
Args:
config ([*PerceiverConfig*]):
Model configuration.
prep_type (`str`, *optional*, defaults to `"patches"`):
Preprocessor type to use. Only "patches" is supported.
samples_per_patch (`int`, *optional*, defaults to 96):
Number of samples per patch.
position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
Type of position encoding to use. Can be "trainable" or "fourier".
concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
How to concatenate the position encoding to the input. Can be "concat" or "add".
out_channels (`int`, *optional*, defaults to 64):
Number of channels in the output.
project_pos_dim (`int`, *optional*, defaults to -1):
Dimension of the position encoding to project to. If -1, no projection is applied.
**position_encoding_kwargs (`Dict`, *optional*):
Keyword arguments for the position encoding.
"""
def __init__(
self,
config,
prep_type: str = "patches",
samples_per_patch: int = 96,
position_encoding_type: str = "fourier",
concat_or_add_pos: str = "concat",
out_channels=64,
project_pos_dim=-1,
**position_encoding_kwargs,
):
super().__init__()
self.config = config
if prep_type not in ("patches",):
raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.")
if concat_or_add_pos not in ["concat", "add"]:
raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.")
self.samples_per_patch = samples_per_patch
self.position_encoding_type = position_encoding_type
self.concat_or_add_pos = concat_or_add_pos
self.project_pos_dim = project_pos_dim
# Position embeddings
self.position_embeddings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type,
out_channels=out_channels,
project_pos_dim=project_pos_dim,
**position_encoding_kwargs,
)
@property
def num_channels(self) -> int:
# position embedding
if self.project_pos_dim > 0:
pos_dim = self.project_pos_dim
else:
pos_dim = self.position_embeddings.output_size()
if self.concat_or_add_pos == "add":
return pos_dim
return self.samples_per_patch + pos_dim
def _build_network_inputs(self, inputs):
"""Construct the final input, including position encoding."""
batch_size = inputs.shape[0]
index_dims = inputs.shape[1:-1]
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_enc = self.position_embeddings(batch_size)
elif self.position_encoding_type == "fourier":
pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)
# Optionally project them to a target dimension.
pos_enc = self.positions_projection(pos_enc)
if self.concat_or_add_pos == "concat":
inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
elif self.concat_or_add_pos == "add":
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def forward(
self,
inputs: torch.Tensor,
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
):
inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch])
inputs, inputs_without_pos = self._build_network_inputs(inputs)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class PerceiverMultimodalPreprocessor(AbstractPreprocessor):
"""
Multimodal preprocessing for Perceiver Encoder.
Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number
of channels.
Args:
modalities (`Mapping[str, PreprocessorType]`):
Dict mapping modality name to preprocessor.
mask_probs (`Dict[str, float]`):
Dict mapping modality name to masking probability of that modality.
min_padding_size (`int`, *optional*, defaults to 2):
The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
channels across all modalities plus min_padding_size.
"""
def __init__(
self,
modalities: Mapping[str, PreprocessorType],
mask_probs: Optional[Mapping[str, float]] = None,
min_padding_size: int = 2,
):
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.min_padding_size = min_padding_size
self.mask_probs = mask_probs if mask_probs is not None else {}
self.padding = nn.ParameterDict(
{
modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels))
for modality, preprocessor in modalities.items()
}
)
self.mask = nn.ParameterDict(
{modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()}
)
@property
def num_channels(self) -> int:
max_channel_size = max(processor.num_channels for _, processor in self.modalities.items())
common_channel_size = max_channel_size + self.min_padding_size
return common_channel_size
def forward(
self,
inputs: Mapping[str, torch.Tensor],
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
) -> PreprocessorOutputType:
padded = {}
modality_sizes = {}
inputs_without_pos = {}
for modality, preprocessor in self.modalities.items():
# preprocess each modality using the respective preprocessor.
output, _, inputs_without_pos[modality] = preprocessor(
inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d
)
# pad to the same common_channel_size.
batch_size, num_samples, num_channels = output.shape
pos_enc = self.padding[modality].expand(batch_size, -1, -1)
padding = torch.broadcast_to(
pos_enc,
[batch_size, num_samples, self.num_channels - num_channels],
)
output_padded = torch.cat([output, padding], dim=2)
# mask if required
if modality in self.mask_probs:
mask_token = self.mask[modality].expand(batch_size, -1, -1)
mask_prob = self.mask_probs[modality]
mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob))
mask = torch.unsqueeze(mask, dim=2).to(mask_token.device)
output_padded = (1 - mask) * output_padded + mask * mask_token
padded[modality] = output_padded
modality_sizes[modality] = output_padded.shape[1]
# Apply a predictable ordering to the modalities
padded_ls = [padded[k] for k in sorted(padded.keys())]
# Finally, concatenate along the time dimension
final_inputs = torch.cat(padded_ls, dim=1)
return final_inputs, modality_sizes, inputs_without_pos
__all__ = [
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
| transformers/src/transformers/models/perceiver/modeling_perceiver.py/0 | {
"file_path": "transformers/src/transformers/models/perceiver/modeling_perceiver.py",
"repo_id": "transformers",
"token_count": 63901
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Pixtral.
"""
from typing import List, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, is_valid_image, load_image
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
logger = logging.get_logger(__name__)
class PixtralProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {},
"common_kwargs": {
"return_tensors": "pt",
},
}
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
class PixtralProcessor(ProcessorMixin):
r"""
Constructs a Pixtral processor which wraps a Pixtral image processor and a Pixtral tokenizer into a single processor.
[`PixtralProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~PixtralProcessor.__call__`] and [`~PixtralProcessor.decode`] for more information.
Args:
image_processor ([`PixtralImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*, defaults to 16):
Patch size from the vision tower.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"[IMG]"`):
Special token used to denote image location.
image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`):
Special token used to denote the end of a line of pixels in an image.
image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`):
Special token used to denote the end of an image input.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"patch_size",
"image_token",
"image_break_token",
"image_end_token",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size: int = 16,
chat_template=None,
image_token="[IMG]", # set the default and let users change if they have peculiar special tokens in rare cases
image_break_token="[IMG_BREAK]",
image_end_token="[IMG_END]",
**kwargs,
):
self.patch_size = patch_size
self.image_token = image_token
self.image_break_token = image_break_token
self.image_end_token = image_end_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[PixtralProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
PixtralProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
if is_image_or_image_url(images):
images = [images]
elif isinstance(images, list) and is_image_or_image_url(images[0]):
pass
elif isinstance(images, list) and isinstance(images[0], list) and is_image_or_image_url(images[0][0]):
images = [image for sublist in images for image in sublist]
else:
raise ValueError(
"Invalid input images. Please provide a single image, a list of images, or a list of lists of images."
)
images = [load_image(im) if isinstance(im, str) else im for im in images]
image_inputs = self.image_processor(images, patch_size=self.patch_size, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# try to expand inputs in processing if we have the necessary parts
prompt_strings = text
if image_inputs.get("pixel_values") is not None:
# Replace the image token with the expanded image token sequence
image_sizes = iter(image_inputs["image_sizes"])
prompt_strings = []
replace_strings = []
for sample in text:
while self.image_token in sample:
height, width = next(image_sizes)
num_height_tokens = height // self.patch_size
num_width_tokens = width // self.patch_size
replace_tokens = [
[self.image_token] * num_width_tokens + [self.image_break_token]
] * num_height_tokens
# Flatten list
replace_tokens = [item for sublist in replace_tokens for item in sublist]
replace_tokens[-1] = self.image_end_token
replace_str = "".join(replace_tokens)
replace_strings.append(replace_str)
sample = sample.replace(self.image_token, "<placeholder>", 1)
while "<placeholder>" in sample:
replace_str = replace_strings.pop(0)
sample = sample.replace("<placeholder>", replace_str, 1)
prompt_strings.append(sample)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
return BatchFeature(
data={**text_inputs, **image_inputs}, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]
)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["PixtralProcessor"]
| transformers/src/transformers/models/pixtral/processing_pixtral.py/0 | {
"file_path": "transformers/src/transformers/models/pixtral/processing_pixtral.py",
"repo_id": "transformers",
"token_count": 4395
} |
# coding=utf-8
# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Pop2Piano model."""
import copy
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.generation import GenerationConfig
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from .configuration_pop2piano import Pop2PianoConfig
logger = logging.get_logger(__name__)
_load_pop2piano_layer_norm = True
try:
from apex.normalization import FusedRMSNorm
_load_pop2piano_layer_norm = False
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pop2PianoLayerNorm")
except ImportError:
# using the normal Pop2PianoLayerNorm
pass
except Exception:
logger.warning("Discovered apex but it failed to load, falling back to Pop2PianoLayerNorm")
pass
_CONFIG_FOR_DOC = "Pop2PianoConfig"
_CHECKPOINT_FOR_DOC = "sweetcocoa/pop2piano"
POP2PIANO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Pop2Piano is a model with relative position embeddings
so you should be able to pad the inputs on both the right and the left. Indices can be obtained using
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining
take a look a [Pop2Piano Training](./Pop2Piano#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids) Pop2Piano uses the `pad_token_id` as the
starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last
`decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Does the same task as `inputs_embeds`. If `inputs_embeds` is not present but `input_features` is present
then `input_features` will be considered as `inputs_embeds`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If
`decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of
`inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the
cache in the correct position and to infer the complete sequence length.
"""
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pop2Piano
class Pop2PianoLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the Pop2Piano style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# Pop2Piano uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
if not _load_pop2piano_layer_norm:
Pop2PianoLayerNorm = FusedRMSNorm # noqa
ALL_LAYERNORM_LAYERS.append(Pop2PianoLayerNorm)
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->Pop2Piano,t5->pop2piano
class Pop2PianoDenseActDense(nn.Module):
def __init__(self, config: Pop2PianoConfig):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pop2Piano
class Pop2PianoDenseGatedActDense(nn.Module):
def __init__(self, config: Pop2PianoConfig):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->Pop2Piano
class Pop2PianoLayerFF(nn.Module):
def __init__(self, config: Pop2PianoConfig):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = Pop2PianoDenseGatedActDense(config)
else:
self.DenseReluDense = Pop2PianoDenseActDense(config)
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->Pop2Piano,t5->pop2piano
class Pop2PianoAttention(nn.Module):
def __init__(
self,
config: Pop2PianoConfig,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->Pop2Piano,t5->pop2piano
class Pop2PianoLayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = Pop2PianoAttention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->Pop2Piano,t5->pop2piano
class Pop2PianoLayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = Pop2PianoAttention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5Block with T5->Pop2Piano,t5->pop2piano
class Pop2PianoBlock(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
Pop2PianoLayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
)
if self.is_decoder:
self.layer.append(Pop2PianoLayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(Pop2PianoLayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class Pop2PianoPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Pop2PianoConfig
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_supports_cache_class = True
_supports_static_cache = False
_no_split_modules = ["Pop2PianoBlock"]
_keep_in_fp32_modules = ["wo"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, Pop2PianoLayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, Pop2PianoConcatEmbeddingToMel):
module.embedding.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, Pop2PianoForConditionalGeneration):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, Pop2PianoDenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pop2PianoDenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pop2PianoAttention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In Pop2Piano it is usually set to the pad_token_id."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class Pop2PianoStack(Pop2PianoPreTrainedModel):
# Copied from transformers.models.t5.modeling_t5.T5Stack.__init__ with T5->Pop2Piano,t5->pop2piano
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[
Pop2PianoBlock(config, has_relative_attention_bias=bool(i == 0), layer_idx=i)
for i in range(config.num_layers)
]
)
self.final_layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if self.is_decoder and (use_cache or past_key_values is not None):
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past cache
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
else:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Pop2PianoConcatEmbeddingToMel(nn.Module):
"""Embedding Matrix for `composer` tokens."""
def __init__(self, config):
super().__init__()
self.embedding = nn.Embedding(num_embeddings=config.composer_vocab_size, embedding_dim=config.d_model)
def forward(self, feature, index_value, embedding_offset):
index_shifted = index_value - embedding_offset
composer_embedding = self.embedding(index_shifted).unsqueeze(1)
inputs_embeds = torch.cat([composer_embedding, feature], dim=1)
return inputs_embeds
Pop2Piano_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Pop2PianoConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings("""Pop2Piano Model with a `language modeling` head on top.""", Pop2Piano_START_DOCSTRING)
class Pop2PianoForConditionalGeneration(Pop2PianoPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: Pop2PianoConfig):
super().__init__(config)
self.config = config
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
self.mel_conditioner = Pop2PianoConcatEmbeddingToMel(config)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = Pop2PianoStack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = Pop2PianoStack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_mel_conditioner_outputs(
self,
input_features: torch.FloatTensor,
composer: str,
generation_config: GenerationConfig,
attention_mask: torch.FloatTensor = None,
):
"""
This method is used to concatenate mel conditioner tokens at the front of the input_features in order to
control the type of MIDI token generated by the model.
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
input features extracted from the feature extractor.
composer (`str`):
composer token which determines the type of MIDI tokens to be generated.
generation_config (`~generation.GenerationConfig`):
The generation is used to get the composer-feature_token pair.
attention_mask (``, *optional*):
For batched generation `input_features` are padded to have the same shape across all examples.
`attention_mask` helps to determine which areas were padded and which were not.
- 1 for tokens that are **not padded**,
- 0 for tokens that are **padded**.
"""
composer_to_feature_token = generation_config.composer_to_feature_token
if composer not in composer_to_feature_token.keys():
raise ValueError(
f"Please choose a composer from {list(composer_to_feature_token.keys())}. Composer received - {composer}"
)
composer_value = composer_to_feature_token[composer]
composer_value = torch.tensor(composer_value, device=self.device)
composer_value = composer_value.repeat(input_features.shape[0])
embedding_offset = min(composer_to_feature_token.values())
input_features = self.mel_conditioner(
feature=input_features,
index_value=composer_value,
embedding_offset=embedding_offset,
)
if attention_mask is not None:
input_features[~attention_mask[:, 0].bool()] = 0.0
# since self.mel_conditioner adds a new array at the front of inputs_embeds we need to do the same for attention_mask to keep the shapes same
attention_mask = torch.concatenate([attention_mask[:, 0].view(-1, 1), attention_mask], axis=1)
return input_features, attention_mask
return input_features, None
@add_start_docstrings_to_model_forward(POP2PIANO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None and input_features is not None:
raise ValueError("Both `inputs_embeds` and `input_features` received! Please provide only one of them")
elif input_features is not None and inputs_embeds is None:
inputs_embeds = input_features
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_features,
attention_mask=None,
composer="composer1",
generation_config=None,
**kwargs,
):
"""
Generates token ids for midi outputs.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation
strategies and code examples, check out the [following guide](./generation_strategies).
</Tip>
Parameters:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
This is the featurized version of audio generated by `Pop2PianoFeatureExtractor`.
attention_mask:
For batched generation `input_features` are padded to have the same shape across all examples.
`attention_mask` helps to determine which areas were padded and which were not.
- 1 for tokens that are **not padded**,
- 0 for tokens that are **padded**.
composer (`str`, *optional*, defaults to `"composer1"`):
This value is passed to `Pop2PianoConcatEmbeddingToMel` to generate different embeddings for each
`"composer"`. Please make sure that the composet value is present in `composer_to_feature_token` in
`generation_config`. For an example please see
https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json .
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
kwargs:
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
Since Pop2Piano is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
if generation_config is None:
generation_config = self.generation_config
generation_config.update(**kwargs)
# check for composer_to_feature_token
if not hasattr(generation_config, "composer_to_feature_token"):
raise ValueError(
"`composer_to_feature_token` was not found! Please refer to "
"https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json"
"and parse a dict like that."
)
if len(generation_config.composer_to_feature_token) != self.config.composer_vocab_size:
raise ValueError(
"config.composer_vocab_size must be same as the number of keys in "
f"generation_config.composer_to_feature_token! "
f"Found {self.config.composer_vocab_size} vs {len(generation_config.composer_to_feature_token)}."
)
# to control the variation of generated MIDI tokens we concatenate mel-conditioner tokens(which depends on composer_token)
# at the front of input_features.
input_features, attention_mask = self.get_mel_conditioner_outputs(
input_features=input_features,
attention_mask=attention_mask,
composer=composer,
generation_config=generation_config,
)
return super().generate(
inputs=None,
inputs_embeds=input_features,
attention_mask=attention_mask,
generation_config=generation_config,
**kwargs,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
__all__ = ["Pop2PianoForConditionalGeneration", "Pop2PianoPreTrainedModel"]
| transformers/src/transformers/models/pop2piano/modeling_pop2piano.py/0 | {
"file_path": "transformers/src/transformers/models/pop2piano/modeling_pop2piano.py",
"repo_id": "transformers",
"token_count": 31403
} |
# coding=utf-8
# Copyright 2024 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PVTv2 model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput, BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_pvt_v2 import PvtV2Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PvtV2Config"
_CHECKPOINT_FOR_DOC = "OpenGVLab/pvt_v2_b0"
_EXPECTED_OUTPUT_SHAPE = [1, 256, 7, 7]
_IMAGE_CLASS_CHECKPOINT = "OpenGVLab/pvt_v2_b0"
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281" # ImageNet ID for "tabby, tabby cat"
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt
class PvtV2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class PvtV2OverlapPatchEmbeddings(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, config: PvtV2Config, layer_idx: int):
super().__init__()
patch_size = config.patch_sizes[layer_idx]
patch_size = (patch_size, patch_size) if isinstance(patch_size, int) else patch_size
stride = config.strides[layer_idx]
num_channels = config.num_channels if layer_idx == 0 else config.hidden_sizes[layer_idx - 1]
hidden_size = config.hidden_sizes[layer_idx]
self.patch_size = patch_size
self.proj = nn.Conv2d(
num_channels,
hidden_size,
kernel_size=patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2),
)
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
def forward(self, pixel_values):
embeddings = self.proj(pixel_values)
_, _, height, width = embeddings.shape
embeddings = embeddings.flatten(2).transpose(1, 2)
embeddings = self.layer_norm(embeddings)
return embeddings, height, width
class PvtV2DepthWiseConv(nn.Module):
"""
Depth-wise (DW) convolution to infuse positional information using zero-padding. Depth-wise convolutions
have an equal number of groups to the number of input channels, meaning one filter per input channel. This
reduces the overall parameters and compute costs since the key purpose of this layer is position encoding.
"""
def __init__(self, config: PvtV2Config, dim: int = 768):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, hidden_states, height, width):
batch_size, seq_len, num_channels = hidden_states.shape
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
hidden_states = self.dwconv(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
class PvtV2SelfAttention(nn.Module):
"""Efficient self-attention mechanism."""
def __init__(self, config: PvtV2Config, hidden_size: int, num_attention_heads: int, spatial_reduction_ratio: int):
super().__init__()
self.linear_attention = config.linear_attention
self.pruned_heads = set()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_probs_dropout_prob)
self.proj = nn.Linear(self.hidden_size, self.hidden_size)
self.proj_drop = nn.Dropout(config.hidden_dropout_prob)
self.spatial_reduction_ratio = spatial_reduction_ratio
if self.linear_attention:
self.pool = nn.AdaptiveAvgPool2d(7)
self.spatial_reduction = nn.Conv2d(self.hidden_size, self.hidden_size, kernel_size=1, stride=1)
self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
self.act = nn.GELU()
elif spatial_reduction_ratio > 1:
self.spatial_reduction = nn.Conv2d(
self.hidden_size, self.hidden_size, kernel_size=spatial_reduction_ratio, stride=spatial_reduction_ratio
)
self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
def transpose_for_scores(self, hidden_states) -> torch.Tensor:
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
hidden_states = hidden_states.view(new_shape)
return hidden_states.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
height: int,
width: int,
output_attentions: bool = False,
) -> Tuple[torch.Tensor]:
batch_size, seq_len, num_channels = hidden_states.shape
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.linear_attention:
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
hidden_states = (
self.spatial_reduction(self.pool(hidden_states)).reshape(batch_size, num_channels, -1).permute(0, 2, 1)
)
hidden_states = self.act(self.layer_norm(hidden_states))
elif self.spatial_reduction_ratio > 1:
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
hidden_states = (
self.spatial_reduction(hidden_states).reshape(batch_size, num_channels, -1).permute(0, 2, 1)
)
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value_layer).transpose(1, 2).reshape(batch_size, seq_len, num_channels)
context_layer = self.proj(context_layer)
context_layer = self.proj_drop(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.proj = prune_linear_layer(self.proj, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
class PvtV2ConvFeedForwardNetwork(nn.Module):
def __init__(
self,
config: PvtV2Config,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
):
super().__init__()
out_features = out_features if out_features is not None else in_features
self.dense1 = nn.Linear(in_features, hidden_features)
self.dwconv = PvtV2DepthWiseConv(config, hidden_features)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relu = nn.ReLU() if config.linear_attention else nn.Identity()
def forward(self, hidden_states: torch.Tensor, height, width) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.relu(hidden_states)
hidden_states = self.dwconv(hidden_states, height, width)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class PvtV2BlockLayer(nn.Module):
def __init__(self, config: PvtV2Config, layer_idx: int, drop_path: float = 0.0):
super().__init__()
hidden_size: int = config.hidden_sizes[layer_idx]
num_attention_heads: int = config.num_attention_heads[layer_idx]
spatial_reduction_ratio: int = config.sr_ratios[layer_idx]
mlp_ratio: float = config.mlp_ratios[layer_idx]
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.attention = PvtV2SelfAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
spatial_reduction_ratio=spatial_reduction_ratio,
)
self.drop_path = PvtV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = PvtV2ConvFeedForwardNetwork(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size)
def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False):
self_attention_outputs = self.attention(
hidden_states=self.layer_norm_1(hidden_states),
height=height,
width=width,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:]
attention_output = self.drop_path(attention_output)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
mlp_output = self.drop_path(mlp_output)
layer_output = hidden_states + mlp_output
outputs = (layer_output,) + outputs
return outputs
class PvtV2EncoderLayer(nn.Module):
def __init__(self, config: PvtV2Config, layer_idx: int):
super().__init__()
self.patch_embedding = PvtV2OverlapPatchEmbeddings(
config=config,
layer_idx=layer_idx,
)
# Transformer block
# stochastic depth decay rule
drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist()
block_layers = []
for block_idx in range(config.depths[layer_idx]):
block_layers.append(
PvtV2BlockLayer(
config=config,
layer_idx=layer_idx,
drop_path=drop_path_decays[sum(config.depths[:layer_idx]) + block_idx],
)
)
self.blocks = nn.ModuleList(block_layers)
# Layer norm
self.layer_norm = nn.LayerNorm(config.hidden_sizes[layer_idx], eps=config.layer_norm_eps)
def forward(self, hidden_states, output_attentions):
all_self_attentions = () if output_attentions else None
# first, obtain patch embeddings
hidden_states, height, width = self.patch_embedding(hidden_states)
# second, send embeddings through blocks
for block in self.blocks:
layer_outputs = block(hidden_states, height, width, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions += (layer_outputs[1],)
# third, apply layer norm
hidden_states = self.layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (all_self_attentions,)
return outputs, height, width
class PvtV2Encoder(nn.Module):
def __init__(self, config: PvtV2Config):
super().__init__()
self.config = config
self.gradient_checkpointing = False
# encoder layers
self.layers = nn.ModuleList([PvtV2EncoderLayer(config, i) for i in range(config.num_encoder_blocks)])
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = pixel_values.shape[0]
hidden_states = pixel_values
for idx, layer in enumerate(self.layers):
if self.gradient_checkpointing and self.training:
layer_output = self._gradient_checkpointing_func(layer.__call__, hidden_states, output_attentions)
else:
layer_output = layer(hidden_states, output_attentions)
outputs, height, width = layer_output
hidden_states = outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[1],)
# reshape back to (batch_size, num_channels, height, width)
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class PvtV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PvtV2Config
base_model_prefix = "pvt_v2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
module.bias.data.zero_()
PVT_V2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~PvtV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PVT_V2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PvtImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Pvt-v2 encoder outputting raw hidden-states without any specific head on top.",
PVT_V2_START_DOCSTRING,
)
class PvtV2Model(PvtV2PreTrainedModel):
def __init__(self, config: PvtV2Config):
super().__init__(config)
self.config = config
# hierarchical Transformer encoder
self.encoder = PvtV2Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
Pvt-v2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
PVT_V2_START_DOCSTRING,
)
class PvtV2ForImageClassification(PvtV2PreTrainedModel):
def __init__(self, config: PvtV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.pvt_v2 = PvtV2Model(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor],
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.pvt_v2(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# convert last hidden states to (batch_size, height*width, hidden_size)
batch_size = sequence_output.shape[0]
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
sequence_output = sequence_output.permute(0, 2, 3, 1)
sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1])
# global average pooling
sequence_output = sequence_output.mean(dim=1)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
PVTv2 backbone, to be used with frameworks like DETR and MaskFormer.
""",
PVT_V2_START_DOCSTRING,
)
class PvtV2Backbone(PvtV2Model, BackboneMixin):
def __init__(self, config: PvtV2Config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = config.hidden_sizes
@add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("OpenGVLab/pvt_v2_b0")
>>> model = AutoBackbone.from_pretrained(
... "OpenGVLab/pvt_v2_b0", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 256, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.encoder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = ["PvtV2ForImageClassification", "PvtV2Model", "PvtV2PreTrainedModel", "PvtV2Backbone"]
| transformers/src/transformers/models/pvt_v2/modeling_pvt_v2.py/0 | {
"file_path": "transformers/src/transformers/models/pvt_v2/modeling_pvt_v2.py",
"repo_id": "transformers",
"token_count": 12594
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Qwen2Audio.
"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput
class Qwen2AudioProcessor(ProcessorMixin):
r"""
Constructs a Qwen2Audio processor which wraps a Qwen2Audio feature extractor and a Qwen2Audio tokenizer into a single processor.
[`Qwen2AudioProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`Qwen2TokenizerFast`]. See the
[`~Qwen2AudioProcessor.__call__`] and [`~Qwen2AudioProcessor.decode`] for more information.
Args:
feature_extractor ([`WhisperFeatureExtractor`], *optional*):
The feature extractor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`Optional[str]`, *optional*):
The Jinja template to use for formatting the conversation. If not provided, the default chat template
is used.
audio_token (`str`, *optional*, defaults to `"<|AUDIO|>"`):
The token to use for audio tokens.
audio_bos_token (`str`, *optional*, defaults to `"<|audio_bos|>"`):
The token to use for audio bos tokens.
audio_eos_token (`str`, *optional*, defaults to `"<|audio_eos|>"`):
The token to use for audio eos tokens.
"""
attributes = ["feature_extractor", "tokenizer"]
feature_extractor_class = "WhisperFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
feature_extractor=None,
tokenizer=None,
chat_template=None,
audio_token="<|AUDIO|>",
audio_bos_token="<|audio_bos|>",
audio_eos_token="<|audio_eos|>",
):
if chat_template is None:
chat_template = self.default_chat_template
self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
self.audio_bos_token = tokenizer.audio_bos_token if hasattr(tokenizer, "audio_bos_token") else audio_bos_token
self.audio_eos_token = tokenizer.audio_eos_token if hasattr(tokenizer, "audio_eos_token") else audio_eos_token
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audios: Union[np.ndarray, List[np.ndarray]] = None,
padding: Union[bool, str, PaddingStrategy] = False,
sampling_rate: Optional[int] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
audios (`np.ndarray`, `List[np.ndarray]`):
The audio or batch of audios to be prepared. Each audio can be a NumPy array.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
"""
if text is None:
raise ValueError("You need to specify either a `text` input to process.")
elif isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# ensure we have as much audios as audio tokens
num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
num_audios = 1 if type(audios) == np.ndarray else len(audios)
if num_audio_tokens != num_audios:
raise ValueError(
f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
)
if audios is not None:
audio_inputs = self.feature_extractor(
audios, sampling_rate=sampling_rate, return_attention_mask=True, padding="max_length", **kwargs
)
audio_inputs["feature_attention_mask"] = audio_inputs.pop(
"attention_mask"
) # rename attention_mask to prevent conflicts later on
expanded_text = []
audio_lengths = audio_inputs["feature_attention_mask"].sum(-1).tolist()
for sample in text:
replace_str = []
while self.audio_token in sample:
audio_length = audio_lengths.pop(0)
input_length = (audio_length - 1) // 2 + 1
num_audio_tokens = (input_length - 2) // 2 + 1
expanded_audio_token = self.audio_token * num_audio_tokens
audio_token_start_idx = sample.find(self.audio_token)
audio_token_end_idx = audio_token_start_idx + len(self.audio_token)
has_bos = (
sample[audio_token_start_idx - len(self.audio_bos_token) : audio_token_start_idx]
== self.audio_bos_token
)
has_eos = (
sample[audio_token_end_idx : audio_token_end_idx + len(self.audio_eos_token)]
== self.audio_eos_token
)
# Check if this audio token is surrounded by bos/eos tokens
if not has_bos and not has_eos:
expanded_audio_token = self.audio_bos_token + expanded_audio_token + self.audio_eos_token
replace_str.append(expanded_audio_token)
sample = sample.replace(self.audio_token, "<placeholder>", 1)
while "<placeholder>" in sample:
sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
expanded_text.append(sample)
text = expanded_text
inputs = self.tokenizer(text, padding=padding, **kwargs)
if audios is not None:
inputs.update(audio_inputs)
return BatchFeature(data={**inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names + ["feature_attention_mask"]))
@property
def default_chat_template(self):
"""
This default vicuna template formats inputs in the form of a chat history. For each message in the chat history:
* the template will output the role of the speaker followed by the content of the message.
* content is a list of strings and audios.
* If the content element is an audio, the template will output a sequence of <|AUDIO|> tokens
Example:
```python
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
{"type": "text", "text": "What's that sound?"},
]},
{"role": "assistant", "content": "It is the sound of glass shattering."},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"},
{"type": "text", "text": "How about this one?"},
]},
]
result = template.render(messages=messages, add_generation_prompt=True)
```
"""
# fmt: off
return (
"{% set audio_count = namespace(value=0) %}"
"{% for message in messages %}"
"{% if loop.first and message['role'] != 'system' %}"
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"{% endif %}"
"<|im_start|>{{ message['role'] }}\n"
"{% if message['content'] is string %}"
"{{ message['content'] }}<|im_end|>\n"
"{% else %}"
"{% for content in message['content'] %}"
"{% if 'audio' in content or 'audio_url' in content %}"
"{% set audio_count.value = audio_count.value + 1 %}"
"Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n"
"{% elif 'text' in content %}"
"{{ content['text'] }}"
"{% endif %}"
"{% endfor %}"
"<|im_end|>\n"
"{% endif %}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"<|im_start|>assistant\n"
"{% endif %}"
)
# fmt: on
__all__ = ["Qwen2AudioProcessor"]
| transformers/src/transformers/models/qwen2_audio/processing_qwen2_audio.py/0 | {
"file_path": "transformers/src/transformers/models/qwen2_audio/processing_qwen2_audio.py",
"repo_id": "transformers",
"token_count": 5210
} |
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow RegNet model."""
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import (
TFPreTrainedModel,
TFSequenceClassificationLoss,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "RegNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/regnet-y-040"
_EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
class TFRegNetConvLayer(keras.layers.Layer):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
groups: int = 1,
activation: Optional[str] = "relu",
**kwargs,
):
super().__init__(**kwargs)
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
self.padding = keras.layers.ZeroPadding2D(padding=kernel_size // 2)
self.convolution = keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
padding="VALID",
groups=groups,
use_bias=False,
name="convolution",
)
self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.activation = ACT2FN[activation] if activation is not None else tf.identity
self.in_channels = in_channels
self.out_channels = out_channels
def call(self, hidden_state):
hidden_state = self.convolution(self.padding(hidden_state))
hidden_state = self.normalization(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.in_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.out_channels])
class TFRegNetEmbeddings(keras.layers.Layer):
"""
RegNet Embeddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: RegNetConfig, **kwargs):
super().__init__(**kwargs)
self.num_channels = config.num_channels
self.embedder = TFRegNetConvLayer(
in_channels=config.num_channels,
out_channels=config.embedding_size,
kernel_size=3,
stride=2,
activation=config.hidden_act,
name="embedder",
)
def call(self, pixel_values):
num_channels = shape_list(pixel_values)[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
hidden_state = self.embedder(pixel_values)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedder", None) is not None:
with tf.name_scope(self.embedder.name):
self.embedder.build(None)
class TFRegNetShortCut(keras.layers.Layer):
"""
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 2, **kwargs):
super().__init__(**kwargs)
self.convolution = keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=stride, use_bias=False, name="convolution"
)
self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.in_channels = in_channels
self.out_channels = out_channels
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
return self.normalization(self.convolution(inputs), training=training)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.in_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.out_channels])
class TFRegNetSELayer(keras.layers.Layer):
"""
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507).
"""
def __init__(self, in_channels: int, reduced_channels: int, **kwargs):
super().__init__(**kwargs)
self.pooler = keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler")
self.attention = [
keras.layers.Conv2D(filters=reduced_channels, kernel_size=1, activation="relu", name="attention.0"),
keras.layers.Conv2D(filters=in_channels, kernel_size=1, activation="sigmoid", name="attention.2"),
]
self.in_channels = in_channels
self.reduced_channels = reduced_channels
def call(self, hidden_state):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
pooled = self.pooler(hidden_state)
for layer_module in self.attention:
pooled = layer_module(pooled)
hidden_state = hidden_state * pooled
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build((None, None, None, None))
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention[0].name):
self.attention[0].build([None, None, None, self.in_channels])
with tf.name_scope(self.attention[1].name):
self.attention[1].build([None, None, None, self.reduced_channels])
class TFRegNetXLayer(keras.layers.Layer):
"""
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs):
super().__init__(**kwargs)
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
TFRegNetShortCut(in_channels, out_channels, stride=stride, name="shortcut")
if should_apply_shortcut
else keras.layers.Activation("linear", name="shortcut")
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
self.layers = [
TFRegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"),
TFRegNetConvLayer(
out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1"
),
TFRegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None, name="layer.2"),
]
self.activation = ACT2FN[config.hidden_act]
def call(self, hidden_state):
residual = hidden_state
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shortcut", None) is not None:
with tf.name_scope(self.shortcut.name):
self.shortcut.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetYLayer(keras.layers.Layer):
"""
RegNet's Y layer: an X layer with Squeeze and Excitation.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs):
super().__init__(**kwargs)
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
TFRegNetShortCut(in_channels, out_channels, stride=stride, name="shortcut")
if should_apply_shortcut
else keras.layers.Activation("linear", name="shortcut")
)
self.layers = [
TFRegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"),
TFRegNetConvLayer(
out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1"
),
TFRegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4)), name="layer.2"),
TFRegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None, name="layer.3"),
]
self.activation = ACT2FN[config.hidden_act]
def call(self, hidden_state):
residual = hidden_state
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shortcut", None) is not None:
with tf.name_scope(self.shortcut.name):
self.shortcut.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetStage(keras.layers.Layer):
"""
A RegNet stage composed by stacked layers.
"""
def __init__(
self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, **kwargs
):
super().__init__(**kwargs)
layer = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
self.layers = [
# downsampling is done in the first layer with stride of 2
layer(config, in_channels, out_channels, stride=stride, name="layers.0"),
*[layer(config, out_channels, out_channels, name=f"layers.{i+1}") for i in range(depth - 1)],
]
def call(self, hidden_state):
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetEncoder(keras.layers.Layer):
def __init__(self, config: RegNetConfig, **kwargs):
super().__init__(**kwargs)
self.stages = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
config,
config.embedding_size,
config.hidden_sizes[0],
stride=2 if config.downsample_in_first_stage else 1,
depth=config.depths[0],
name="stages.0",
)
)
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, config.depths[1:])):
self.stages.append(TFRegNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i+1}"))
def call(
self, hidden_state: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> TFBaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
for stage in self.stages:
with tf.name_scope(stage.name):
stage.build(None)
@keras_serializable
class TFRegNetMainLayer(keras.layers.Layer):
config_class = RegNetConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedder = TFRegNetEmbeddings(config, name="embedder")
self.encoder = TFRegNetEncoder(config, name="encoder")
self.pooler = keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler")
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> TFBaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Change to NCHW output format have uniformity in the modules
pooled_output = tf.transpose(pooled_output, perm=(0, 3, 1, 2))
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedder", None) is not None:
with tf.name_scope(self.embedder.name):
self.embedder.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build((None, None, None, None))
class TFRegNetPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RegNetConfig
base_model_prefix = "regnet"
main_input_name = "pixel_values"
@property
def input_signature(self):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)}
REGNET_START_DOCSTRING = r"""
This model is a Tensorflow
[keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
REGNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.",
REGNET_START_DOCSTRING,
)
class TFRegNetModel(TFRegNetPreTrainedModel):
def __init__(self, config: RegNetConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.regnet = TFRegNetMainLayer(config, name="regnet")
@unpack_inputs
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regnet", None) is not None:
with tf.name_scope(self.regnet.name):
self.regnet.build(None)
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
REGNET_START_DOCSTRING,
)
class TFRegNetForImageClassification(TFRegNetPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: RegNetConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.regnet = TFRegNetMainLayer(config, name="regnet")
# classification head
self.classifier = [
keras.layers.Flatten(),
keras.layers.Dense(config.num_labels, name="classifier.1") if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
labels: Optional[tf.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
flattened_output = self.classifier[0](pooled_output)
logits = self.classifier[1](flattened_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regnet", None) is not None:
with tf.name_scope(self.regnet.name):
self.regnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier[1].name):
self.classifier[1].build([None, None, None, self.config.hidden_sizes[-1]])
__all__ = ["TFRegNetForImageClassification", "TFRegNetModel", "TFRegNetPreTrainedModel"]
| transformers/src/transformers/models/regnet/modeling_tf_regnet.py/0 | {
"file_path": "transformers/src/transformers/models/regnet/modeling_tf_regnet.py",
"repo_id": "transformers",
"token_count": 10452
} |
# coding=utf-8
# Copyright 2024 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch RTDetr specific ResNet model. The main difference between hugginface ResNet model is that this RTDetrResNet model forces to use shortcut at the first layer in the resnet-18/34 models.
See https://github.com/lyuwenyu/RT-DETR/blob/5b628eaa0a2fc25bdafec7e6148d5296b144af85/rtdetr_pytorch/src/nn/backbone/presnet.py#L126 for details.
"""
import math
from typing import Optional
from torch import Tensor, nn
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_rt_detr_resnet import RTDetrResNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "RTDetrResNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/resnet-50"
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
# Copied from transformers.models.resnet.modeling_resnet.ResNetConvLayer -> RTDetrResNetConvLayer
class RTDetrResNetConvLayer(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu"
):
super().__init__()
self.convolution = nn.Conv2d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False
)
self.normalization = nn.BatchNorm2d(out_channels)
self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
def forward(self, input: Tensor) -> Tensor:
hidden_state = self.convolution(input)
hidden_state = self.normalization(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class RTDetrResNetEmbeddings(nn.Module):
"""
ResNet Embeddings (stem) composed of a deep aggressive convolution.
"""
def __init__(self, config: RTDetrResNetConfig):
super().__init__()
self.embedder = nn.Sequential(
*[
RTDetrResNetConvLayer(
config.num_channels,
config.embedding_size // 2,
kernel_size=3,
stride=2,
activation=config.hidden_act,
),
RTDetrResNetConvLayer(
config.embedding_size // 2,
config.embedding_size // 2,
kernel_size=3,
stride=1,
activation=config.hidden_act,
),
RTDetrResNetConvLayer(
config.embedding_size // 2,
config.embedding_size,
kernel_size=3,
stride=1,
activation=config.hidden_act,
),
]
)
self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.num_channels = config.num_channels
def forward(self, pixel_values: Tensor) -> Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embedding = self.embedder(pixel_values)
embedding = self.pooler(embedding)
return embedding
# Copied from transformers.models.resnet.modeling_resnet.ResNetShortCut -> RTDetrResNetChortCut
class RTDetrResNetShortCut(nn.Module):
"""
ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 2):
super().__init__()
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
self.normalization = nn.BatchNorm2d(out_channels)
def forward(self, input: Tensor) -> Tensor:
hidden_state = self.convolution(input)
hidden_state = self.normalization(hidden_state)
return hidden_state
class RTDetrResNetBasicLayer(nn.Module):
"""
A classic ResNet's residual layer composed by two `3x3` convolutions.
See https://github.com/lyuwenyu/RT-DETR/blob/5b628eaa0a2fc25bdafec7e6148d5296b144af85/rtdetr_pytorch/src/nn/backbone/presnet.py#L34.
"""
def __init__(
self,
config: RTDetrResNetConfig,
in_channels: int,
out_channels: int,
stride: int = 1,
should_apply_shortcut: bool = False,
):
super().__init__()
if in_channels != out_channels:
self.shortcut = (
nn.Sequential(
*[nn.AvgPool2d(2, 2, 0, ceil_mode=True), RTDetrResNetShortCut(in_channels, out_channels, stride=1)]
)
if should_apply_shortcut
else nn.Identity()
)
else:
self.shortcut = (
RTDetrResNetShortCut(in_channels, out_channels, stride=stride)
if should_apply_shortcut
else nn.Identity()
)
self.layer = nn.Sequential(
RTDetrResNetConvLayer(in_channels, out_channels, stride=stride),
RTDetrResNetConvLayer(out_channels, out_channels, activation=None),
)
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
class RTDetrResNetBottleNeckLayer(nn.Module):
"""
A classic RTDetrResNet's bottleneck layer composed by three `3x3` convolutions.
The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3`
convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. If
`downsample_in_bottleneck` is true, downsample will be in the first layer instead of the second layer.
"""
def __init__(
self,
config: RTDetrResNetConfig,
in_channels: int,
out_channels: int,
stride: int = 1,
):
super().__init__()
reduction = 4
should_apply_shortcut = in_channels != out_channels or stride != 1
reduces_channels = out_channels // reduction
if stride == 2:
self.shortcut = nn.Sequential(
*[
nn.AvgPool2d(2, 2, 0, ceil_mode=True),
RTDetrResNetShortCut(in_channels, out_channels, stride=1)
if should_apply_shortcut
else nn.Identity(),
]
)
else:
self.shortcut = (
RTDetrResNetShortCut(in_channels, out_channels, stride=stride)
if should_apply_shortcut
else nn.Identity()
)
self.layer = nn.Sequential(
RTDetrResNetConvLayer(
in_channels, reduces_channels, kernel_size=1, stride=stride if config.downsample_in_bottleneck else 1
),
RTDetrResNetConvLayer(
reduces_channels, reduces_channels, stride=stride if not config.downsample_in_bottleneck else 1
),
RTDetrResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None),
)
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
class RTDetrResNetStage(nn.Module):
"""
A RTDetrResNet stage composed by stacked layers.
"""
def __init__(
self,
config: RTDetrResNetConfig,
in_channels: int,
out_channels: int,
stride: int = 2,
depth: int = 2,
):
super().__init__()
layer = RTDetrResNetBottleNeckLayer if config.layer_type == "bottleneck" else RTDetrResNetBasicLayer
if config.layer_type == "bottleneck":
first_layer = layer(
config,
in_channels,
out_channels,
stride=stride,
)
else:
first_layer = layer(config, in_channels, out_channels, stride=stride, should_apply_shortcut=True)
self.layers = nn.Sequential(
first_layer, *[layer(config, out_channels, out_channels) for _ in range(depth - 1)]
)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
# Copied from transformers.models.resnet.modeling_resnet.ResNetEncoder with ResNet->RTDetrResNet
class RTDetrResNetEncoder(nn.Module):
def __init__(self, config: RTDetrResNetConfig):
super().__init__()
self.stages = nn.ModuleList([])
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
RTDetrResNetStage(
config,
config.embedding_size,
config.hidden_sizes[0],
stride=2 if config.downsample_in_first_stage else 1,
depth=config.depths[0],
)
)
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]):
self.stages.append(RTDetrResNetStage(config, in_channels, out_channels, depth=depth))
def forward(
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> BaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
)
# Copied from transformers.models.resnet.modeling_resnet.ResNetPreTrainedModel with ResNet->RTDetrResNet
class RTDetrResNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RTDetrResNetConfig
base_model_prefix = "resnet"
main_input_name = "pixel_values"
_no_split_modules = ["RTDetrResNetConvLayer", "RTDetrResNetShortCut"]
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
RTDETR_RESNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RTDetrResNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
RTDETR_RESNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`RTDetrImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""
ResNet backbone, to be used with frameworks like RTDETR.
""",
RTDETR_RESNET_START_DOCSTRING,
)
class RTDetrResNetBackbone(RTDetrResNetPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embedding_size] + config.hidden_sizes
self.embedder = RTDetrResNetEmbeddings(config)
self.encoder = RTDetrResNetEncoder(config)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(RTDETR_RESNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import RTDetrResNetConfig, RTDetrResNetBackbone
>>> import torch
>>> config = RTDetrResNetConfig()
>>> model = RTDetrResNetBackbone(config)
>>> pixel_values = torch.randn(1, 3, 224, 224)
>>> with torch.no_grad():
... outputs = model(pixel_values)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 2048, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
embedding_output = self.embedder(pixel_values)
outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True)
hidden_states = outputs.hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = [
"RTDetrResNetBackbone",
"RTDetrResNetPreTrainedModel",
]
| transformers/src/transformers/models/rt_detr/modeling_rt_detr_resnet.py/0 | {
"file_path": "transformers/src/transformers/models/rt_detr/modeling_rt_detr_resnet.py",
"repo_id": "transformers",
"token_count": 7236
} |
# coding=utf-8
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a
discrepancy, the original file should be regarded as the 'reference' version.
"""
from __future__ import annotations
import collections
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...modeling_tf_outputs import TFBaseModelOutput
from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs
from ...tf_utils import flatten, functional_layernorm
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "SamConfig"
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
@dataclass
class TFSamVisionEncoderOutput(ModelOutput):
"""
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
layer to the pooler_output.
Args:
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: tf.Tensor | None = None
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFSamImageSegmentationOutput(ModelOutput):
"""
Base class for Segment-Anything model's output
Args:
iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`):
The iou scores of the predicted masks.
pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`):
The predicted low resolutions masks. Needs to be post-processed by the processor
vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
iou_scores: tf.Tensor = None
pred_masks: tf.Tensor = None
vision_hidden_states: Tuple[tf.Tensor, ...] | None = None
vision_attentions: Tuple[tf.Tensor, ...] | None = None
mask_decoder_attentions: Tuple[tf.Tensor, ...] | None = None
class TFSamPatchEmbeddings(keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = keras.layers.Conv2D(
hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
)
def call(self, pixel_values):
batch_size, num_channels, height, width = shape_list(pixel_values)
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1]))
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
class TFSamMLPBlock(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.lin1 = keras.layers.Dense(config.mlp_dim, name="lin1")
self.lin2 = keras.layers.Dense(config.hidden_size, name="lin2")
self.act = ACT2FN[config.hidden_act]
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.lin1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.lin2(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "lin1", None) is not None:
with tf.name_scope(self.lin1.name):
self.lin1.build([None, None, self.config.hidden_size])
if getattr(self, "lin2", None) is not None:
with tf.name_scope(self.lin2.name):
self.lin2.build([None, None, self.config.mlp_dim])
class TFSamLayerNorm(keras.layers.Layer):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.data_format = data_format
self.normalized_shape = normalized_shape
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
def build(self, input_shape):
self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight")
self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias")
super().build(input_shape)
def call(self, x: tf.Tensor) -> tf.Tensor:
if self.data_format == "channels_last":
x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1)
elif self.data_format == "channels_first":
x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1)
return x
class TFSamAttention(keras.layers.Layer):
"""
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
values.
"""
def __init__(self, config, downsample_rate=None, **kwargs):
super().__init__(**kwargs)
self.hidden_size = config.hidden_size
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
self.internal_dim = config.hidden_size // downsample_rate
self.num_attention_heads = config.num_attention_heads
if self.internal_dim % config.num_attention_heads != 0:
raise ValueError("num_attention_heads must divide hidden_size.")
self.q_proj = keras.layers.Dense(self.internal_dim, name="q_proj")
self.k_proj = keras.layers.Dense(self.internal_dim, name="k_proj")
self.v_proj = keras.layers.Dense(self.internal_dim, name="v_proj")
self.out_proj = keras.layers.Dense(self.hidden_size, name="out_proj")
def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor:
batch, point_batch_size, n_tokens, channel = shape_list(hidden_states)
c_per_head = channel // num_attention_heads
hidden_states = tf.reshape(
hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head)
)
return tf.transpose(hidden_states, perm=[0, 2, 1, 3])
def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor:
batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states)
hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3])
return tf.reshape(
hidden_states,
(batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head),
)
def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor:
# Input projections
query = self.q_proj(query)
key = self.k_proj(key)
value = self.v_proj(value)
point_batch_size = shape_list(query)[1]
# Separate into heads
query = self._separate_heads(query, self.num_attention_heads)
key = self._separate_heads(key, self.num_attention_heads)
value = self._separate_heads(value, self.num_attention_heads)
# SamAttention
_, _, _, c_per_head = shape_list(query)
attn = tf.matmul(
query, tf.transpose(key, perm=[0, 1, 3, 2])
) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
attn = attn / tf.math.sqrt(float(c_per_head))
attn = tf.nn.softmax(attn, axis=-1)
# Get output
out = tf.matmul(attn, value)
out = self._recombine_heads(out, point_batch_size)
out = self.out_proj(out)
return out
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.hidden_size])
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.hidden_size])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.internal_dim])
class TFSamTwoWayAttentionBlock(keras.layers.Layer):
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs):
"""
A transformer block with four layers:
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
sparse inputs (4) cross attention of dense inputs -> sparse inputs
Arguments:
config (`SamMaskDecoderConfig`):
The configuration file used to instantiate the block
attention_downsample_rate (*optionalk*, int, defaults to 2):
The downsample ratio of the block used to reduce the inner dim of the attention.
skip_first_layer_pe (*optional*, bool, defaults to `False`):
Whether or not to skip the addition of the query_point_embedding on the first layer.
"""
super().__init__(**kwargs)
self.hidden_size = config.hidden_size
self.layer_norm_eps = config.layer_norm_eps
self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn")
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1")
self.cross_attn_token_to_image = TFSamAttention(
config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image"
)
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2")
self.mlp = TFSamMLPBlock(config, name="mlp")
self.layer_norm3 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3")
self.layer_norm4 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4")
self.cross_attn_image_to_token = TFSamAttention(
config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token"
)
self.skip_first_layer_pe = skip_first_layer_pe
def call(
self,
queries: tf.Tensor,
keys: tf.Tensor,
query_point_embedding: tf.Tensor,
key_point_embedding: tf.Tensor,
output_attentions: bool = False,
):
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(query=queries, key=queries, value=queries)
else:
query = queries + query_point_embedding
attn_out = self.self_attn(query=query, key=query, value=queries)
queries = queries + attn_out
queries = self.layer_norm1(queries)
# Cross attention block, tokens attending to image embedding
query = queries + query_point_embedding
key = keys + key_point_embedding
attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys)
queries = queries + attn_out
queries = self.layer_norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.layer_norm3(queries)
# Cross attention block, image embedding attending to tokens
query = queries + query_point_embedding
key = keys + key_point_embedding
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
keys = keys + attn_out
keys = self.layer_norm4(keys)
outputs = (queries, keys)
if output_attentions:
outputs = outputs + (attn_out,)
else:
outputs = outputs + (None,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, None, self.hidden_size])
if getattr(self, "cross_attn_token_to_image", None) is not None:
with tf.name_scope(self.cross_attn_token_to_image.name):
self.cross_attn_token_to_image.build(None)
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, None, self.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "layer_norm3", None) is not None:
with tf.name_scope(self.layer_norm3.name):
self.layer_norm3.build([None, None, None, self.hidden_size])
if getattr(self, "layer_norm4", None) is not None:
with tf.name_scope(self.layer_norm4.name):
self.layer_norm4.build([None, None, None, self.hidden_size])
if getattr(self, "cross_attn_image_to_token", None) is not None:
with tf.name_scope(self.cross_attn_image_to_token.name):
self.cross_attn_image_to_token.build(None)
class TFSamTwoWayTransformer(keras.layers.Layer):
def __init__(self, config: SamMaskDecoderConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.layers = []
for i in range(self.num_hidden_layers):
self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}"))
self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image")
self.layer_norm_final_attn = keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layer_norm_final_attn"
)
def call(
self,
point_embeddings: tf.Tensor,
image_embeddings: tf.Tensor,
image_positional_embeddings: tf.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TFBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
all_attentions = ()
if image_embeddings is None:
raise ValueError("You have to specify an image_embedding")
image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None]
image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None]
# Prepare queries
queries = point_embeddings
keys = image_embeddings
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys, attention_outputs = layer(
queries=queries,
keys=keys,
query_point_embedding=point_embeddings,
key_point_embedding=image_positional_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (attention_outputs,)
# Apply the final attenion layer from the points to the image
query = queries + point_embeddings
key = keys + image_positional_embeddings
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
queries = queries + attn_out
queries = self.layer_norm_final_attn(queries)
return queries, keys, all_attentions
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "final_attn_token_to_image", None) is not None:
with tf.name_scope(self.final_attn_token_to_image.name):
self.final_attn_token_to_image.build(None)
if getattr(self, "layer_norm_final_attn", None) is not None:
with tf.name_scope(self.layer_norm_final_attn.name):
self.layer_norm_final_attn.build([None, None, None, self.config.hidden_size])
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFSamFeedForward(keras.layers.Layer):
def __init__(
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs
):
super().__init__(**kwargs)
self.num_layers = num_layers
self.activation = keras.layers.ReLU()
self.proj_in = keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in")
self.proj_out = keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out")
self.layers = [
keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}")
for i in range(num_layers - 2)
]
self.sigmoid_output = sigmoid_output
self.hidden_dim = hidden_dim
self.input_dim = input_dim
def call(self, hidden_states):
hidden_states = self.proj_in(hidden_states)
hidden_states = self.activation(hidden_states)
for layer in self.layers:
hidden_states = self.activation(layer(hidden_states))
hidden_states = self.proj_out(hidden_states)
if self.sigmoid_output:
hidden_states = tf.sigmoid(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "proj_in", None) is not None:
with tf.name_scope(self.proj_in.name):
self.proj_in.build([None, None, self.input_dim])
if getattr(self, "proj_out", None) is not None:
with tf.name_scope(self.proj_out.name):
self.proj_out.build([None, None, self.hidden_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build([None, None, self.hidden_dim])
class TFSamMaskDecoder(keras.layers.Layer):
def __init__(self, config: SamMaskDecoderConfig, **kwargs):
super().__init__(**kwargs)
self.hidden_size = config.hidden_size
self.num_multimask_outputs = config.num_multimask_outputs
self.num_mask_tokens = config.num_multimask_outputs + 1
self.transformer = TFSamTwoWayTransformer(config, name="transformer")
self.upscale_conv1 = keras.layers.Conv2DTranspose(
self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first"
)
self.upscale_conv2 = keras.layers.Conv2DTranspose(
self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first"
)
self.upscale_layer_norm = TFSamLayerNorm(
self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm"
)
self.activation = tf.nn.gelu
mlps_list = []
for i in range(self.num_mask_tokens):
mlps_list += [
TFSamFeedForward(
self.hidden_size,
self.hidden_size,
self.hidden_size // 8,
3,
name=f"output_hypernetworks_mlps_._{i}",
)
]
self.output_hypernetworks_mlps = mlps_list
self.iou_prediction_head = TFSamFeedForward(
self.hidden_size,
config.iou_head_hidden_dim,
self.num_mask_tokens,
config.iou_head_depth,
name="iou_prediction_head",
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True)
self.mask_tokens = self.add_weight(
shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True
)
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "upscale_conv1", None) is not None:
with tf.name_scope(self.upscale_conv1.name):
self.upscale_conv1.build([None, self.hidden_size, None, None])
if getattr(self, "upscale_conv2", None) is not None:
with tf.name_scope(self.upscale_conv2.name):
self.upscale_conv2.build([None, self.hidden_size // 4, None, None])
if getattr(self, "upscale_layer_norm", None) is not None:
with tf.name_scope(self.upscale_layer_norm.name):
self.upscale_layer_norm.build(None)
if getattr(self, "iou_prediction_head", None) is not None:
with tf.name_scope(self.iou_prediction_head.name):
self.iou_prediction_head.build(None)
for mlp in self.output_hypernetworks_mlps:
with tf.name_scope(mlp.name):
mlp.build(None)
def call(
self,
image_embeddings: tf.Tensor,
image_positional_embeddings: tf.Tensor,
sparse_prompt_embeddings: tf.Tensor,
dense_prompt_embeddings: tf.Tensor,
multimask_output: bool,
output_attentions: Optional[bool] = None,
) -> Tuple[tf.Tensor, tf.Tensor]:
batch_size, num_channels, height, width = shape_list(image_embeddings)
point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1])
output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32)
output_tokens = tf.tile(
output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1]
) # Should be (batch_size, point_size, 5, 32)
# Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only
# happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced
# it with an explicit shape check to avoid data-dependent control flow which breaks XLA.
if shape_list(sparse_prompt_embeddings)[1] != 0:
tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2)
else:
tokens = output_tokens
point_embeddings = tf.cast(tokens, self.iou_token.dtype)
image_embeddings = image_embeddings + dense_prompt_embeddings
image_embeddings = tf.repeat(image_embeddings, point_batch_size, axis=0)
image_positional_embeddings = tf.repeat(image_positional_embeddings, point_batch_size, axis=0)
point_embedding, image_embeddings, attentions = self.transformer(
point_embeddings=point_embeddings,
image_embeddings=image_embeddings,
image_positional_embeddings=image_positional_embeddings,
output_attentions=output_attentions,
)
iou_token_out = point_embedding[:, :, 0, :]
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2))
image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width])
upscaled_embedding = self.upscale_conv1(image_embeddings)
upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding))
upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding))
hyper_in_list = []
for i in range(self.num_mask_tokens):
current_mlp = self.output_hypernetworks_mlps[i]
hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])]
hyper_in = tf.stack(hyper_in_list, axis=2)
_, num_channels, height, width = shape_list(upscaled_embedding)
upscaled_embedding = tf.reshape(
upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width]
)
masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width])
iou_pred = self.iou_prediction_head(iou_token_out)
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, :, mask_slice, :, :]
iou_pred = iou_pred[:, :, mask_slice]
outputs = (masks, iou_pred)
if output_attentions:
outputs = outputs + (attentions,)
else:
outputs = outputs + (None,)
return outputs
class TFSamPositionalEmbedding(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.scale = config.hidden_size // 2
self.config = config
def build(self, input_shape):
# TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized?
self.positional_embedding = self.add_weight(
name="positional_embedding",
shape=(2, self.config.num_pos_feats),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=self.scale),
trainable=False,
)
super().build(input_shape)
def call(self, input_coords, input_shape=None):
"""Positionally encode points that are normalized to [0,1]."""
coordinates = tf.identity(input_coords)
if input_shape is not None:
coordinates = tf.stack(
[
tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1],
tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0],
],
axis=-1,
)
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coordinates = 2 * coordinates - 1
coordinates = tf.cast(coordinates, self.positional_embedding.dtype)
coordinates = tf.matmul(coordinates, self.positional_embedding)
coordinates = 2 * np.pi * coordinates
# outputs d_1 x ... x d_n x channel shape
return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1)
class TFSamMaskEmbedding(keras.layers.Layer):
def __init__(self, config: SamPromptEncoderConfig, **kwargs):
super().__init__(**kwargs)
self.mask_input_channels = config.mask_input_channels // 4
self.activation = ACT2FN[config.hidden_act]
self.conv1 = keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1")
self.conv2 = keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2")
self.conv3 = keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3")
self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1")
self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2")
self.config = config
def call(self, masks):
masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last
hidden_states = self.conv1(masks)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.activation(hidden_states)
dense_embeddings = self.conv3(hidden_states)
dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first
return dense_embeddings
def build(self, input_shape=None):
# This class needs an explicit build method because it isn't called with the standard dummy inputs
if self.built:
return
self.built = True
with tf.name_scope("conv1"):
self.conv1.build([None, None, None, 1])
with tf.name_scope("conv2"):
self.conv2.build([None, None, None, self.mask_input_channels])
with tf.name_scope("conv3"):
self.conv3.build([None, None, None, self.mask_input_channels * 4])
with tf.name_scope("layer_norm1"):
self.layer_norm1.build([None, None, None, self.mask_input_channels])
with tf.name_scope("layer_norm2"):
self.layer_norm2.build([None, None, None, self.mask_input_channels * 4])
class TFSamPromptEncoder(keras.layers.Layer):
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs):
super().__init__(**kwargs)
self.shared_embedding = shared_patch_embedding
self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed")
self.no_mask_embed = None
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
self.input_image_size = config.image_size
self.point_embed = []
self.hidden_size = config.hidden_size
self.not_a_point_embed = None
self.config = config
def build(self, input_shape=None):
self.no_mask_embed = self.add_weight(
name="no_mask_embed.weight",
shape=(1, self.hidden_size),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
trainable=True,
)
self.point_embed = [
self.add_weight(
name=f"point_embed_._{i}.weight",
shape=(1, self.hidden_size),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
trainable=True,
)
for i in range(self.config.num_point_embeddings)
]
self.not_a_point_embed = self.add_weight(
name="not_a_point_embed.weight",
shape=(1, self.hidden_size),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
trainable=True,
)
with tf.name_scope("mask_embed"):
# We must explicitly build the mask embed because it isn't touched by the standard dummy inputs
self.mask_embed.build(
(None, self.config.mask_input_channels, self.config.image_size, self.config.image_size)
)
if self.built:
return
self.built = True
if getattr(self, "mask_embed", None) is not None:
with tf.name_scope(self.mask_embed.name):
self.mask_embed.build(None)
def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1])
target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1)
padding_point = tf.zeros(target_point_shape, dtype=points.dtype)
padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype)
points = tf.concat([points, padding_point], axis=2)
labels = tf.concat([labels, padding_label], axis=2)
input_shape = (self.input_image_size, self.input_image_size)
point_embedding = self.shared_embedding(points, input_shape)
point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding)
point_embedding = tf.where(
labels[..., None] != -10,
point_embedding,
tf.zeros_like(point_embedding),
)
point_embedding = tf.where(
(labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding
)
point_embedding = tf.where(
(labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding
)
return point_embedding
def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
batch_size, nb_boxes = shape_list(boxes)[:2]
coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2))
input_shape = (self.input_image_size, self.input_image_size)
corner_embedding = self.shared_embedding(coords, input_shape)
corner_embedding += tf.where(
tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0,
self.point_embed[2][0],
self.point_embed[3][0],
)
return corner_embedding
def call(
self,
batch_size: Optional[int],
input_points: Optional[Tuple[tf.Tensor, tf.Tensor]],
input_labels: tf.Tensor | None,
input_boxes: tf.Tensor | None,
input_masks: tf.Tensor | None,
) -> Tuple[tf.Tensor, tf.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense embeddings.
Args:
points (`tf.Tensor`, *optional*):
point coordinates and labels to embed.
boxes (`tf.Tensor`, *optional*):
boxes to embed
masks (`tf.Tensor`, *optional*):
masks to embed
"""
sparse_embeddings = None
if input_points is not None:
batch_size, point_batch_size = shape_list(input_points)[:2]
if input_labels is None:
raise ValueError("If points are provided, labels must also be provided.")
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
sparse_embeddings = tf.zeros(
(batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype
)
sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2)
if input_boxes is not None:
batch_size = shape_list(input_boxes)[0]
box_embeddings = self._embed_boxes(input_boxes)
if sparse_embeddings is None:
sparse_embeddings = box_embeddings
else:
sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2)
if input_masks is not None:
dense_embeddings = self.mask_embed(input_masks)
else:
dense_embeddings = self.no_mask_embed[0]
dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1))
dense_embeddings = tf.tile(
dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1])
)
if sparse_embeddings is None:
sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype)
return sparse_embeddings, dense_embeddings
class TFSamVisionAttention(keras.layers.Layer):
"""Multi-head Attention block with relative position embeddings."""
def __init__(self, config, window_size, **kwargs):
super().__init__(**kwargs)
input_size = (
(config.image_size // config.patch_size, config.image_size // config.patch_size)
if window_size == 0
else (window_size, window_size)
)
self.input_size = input_size
self.num_attention_heads = config.num_attention_heads
head_dim = config.hidden_size // config.num_attention_heads
self.head_dim = head_dim
self.scale = head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv = keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv")
self.proj = keras.layers.Dense(config.hidden_size, name="proj")
self.use_rel_pos = config.use_rel_pos
if self.use_rel_pos:
if input_size is None:
raise ValueError("Input size must be provided if using relative positional encoding.")
self.config = config
def build(self, input_shape=None):
if self.input_size is not None:
# initialize relative positional embeddings
self.rel_pos_h = self.add_weight(
shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h"
)
self.rel_pos_w = self.add_weight(
shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w"
)
if self.built:
return
self.built = True
if getattr(self, "qkv", None) is not None:
with tf.name_scope(self.qkv.name):
self.qkv.build([None, None, self.config.hidden_size])
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build([None, None, self.config.hidden_size])
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int):
size of the query.
k_size (int):
size of key k.
rel_pos (`tf.Tensor`):
relative position embeddings (L, channel).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = tf.image.resize(
tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)),
size=(max_rel_dist, rel_pos.shape[1]),
method="bilinear",
)
rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist))
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0)
k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32))
def add_decomposed_rel_pos(
self,
attn: tf.Tensor,
query: tf.Tensor,
rel_pos_h: tf.Tensor,
rel_pos_w: tf.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> tf.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
Args:
attn (`tf.Tensor`):
attention map.
query (`tf.Tensor`):
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
rel_pos_h (`tf.Tensor`):
relative position embeddings (Lh, channel) for height axis.
rel_pos_w (`tf.Tensor`):
relative position embeddings (Lw, channel) for width axis.
q_size (tuple):
spatial sequence size of query q with (query_height, query_width).
k_size (tuple):
spatial sequence size of key k with (key_height, key_width).
Returns:
attn (`tf.Tensor`):
attention map with added relative positional embeddings.
"""
query_height, query_width = q_size
key_height, key_width = k_size
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
batch_size, _, dim = shape_list(query)
reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim))
rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width))
attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2)
attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width))
return attn
def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor:
batch_size, height, width, _ = shape_list(hidden_states)
# qkv with shape (3, batch_size, nHead, height * width, channel)
qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1))
qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4))
# q, k, v with shape (batch_size * nHead, height * width, channel)
query, key, value = tf.unstack(
tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0
)
attn_weights = tf.matmul(query * self.scale, key, transpose_b=True)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
if training:
attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout)
else:
attn_probs = attn_weights
attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1))
attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4))
attn_output = tf.reshape(attn_output, (batch_size, height, width, self.config.hidden_size))
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
class TFSamVisionLayer(keras.layers.Layer):
def __init__(self, config, window_size, **kwargs):
super().__init__(**kwargs)
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
self.attn = TFSamVisionAttention(config, window_size, name="attn")
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
self.mlp = TFSamMLPBlock(config, name="mlp")
self.window_size = window_size
self.config = config
def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]:
batch_size, height, width, channel = shape_list(hidden_states)
pad_h = (window_size - height % window_size) % window_size
pad_w = (window_size - width % window_size) % window_size
if pad_h > 0 or pad_w > 0:
hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]])
pad_height, pad_width = height + pad_h, width + pad_w
hidden_states = tf.reshape(
hidden_states,
[batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel],
)
windows = tf.reshape(
tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel]
)
return windows, (pad_height, pad_width)
def window_unpartition(
self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
) -> tf.Tensor:
pad_height, pad_width = padding_shape
height, width = original_shape
batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size)
hidden_states = tf.reshape(
windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1]
)
hidden_states = tf.reshape(
tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1]
)
if pad_height > height or pad_width > width:
hidden_states = hidden_states[:, :height, :width, :]
return hidden_states
def call(
self,
hidden_states: tf.Tensor,
output_attentions: Optional[bool] = False,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
if self.window_size > 0:
height, width = hidden_states.shape[1], hidden_states.shape[2]
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
hidden_states, attn_weights = self.attn(
hidden_states=hidden_states,
output_attentions=output_attentions,
training=training,
)
if self.window_size > 0:
hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
hidden_states = residual + hidden_states
layernorm_output = self.layer_norm2(hidden_states)
hidden_states = hidden_states + self.mlp(layernorm_output)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, None, self.config.hidden_size])
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, None, self.config.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
class TFSamVisionNeck(keras.layers.Layer):
def __init__(self, config: SamVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.conv1 = keras.layers.Conv2D(
config.output_channels,
kernel_size=1,
use_bias=False,
name="conv1",
)
self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1")
self.conv2 = keras.layers.Conv2D(
config.output_channels,
kernel_size=3,
padding="same",
use_bias=False,
name="conv2",
)
self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2")
def call(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2])
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv1", None) is not None:
with tf.name_scope(self.conv1.name):
self.conv1.build([None, None, None, self.config.hidden_size])
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build(None)
if getattr(self, "conv2", None) is not None:
with tf.name_scope(self.conv2.name):
self.conv2.build([None, None, None, self.config.output_channels])
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build(None)
class TFSamVisionEncoder(keras.layers.Layer):
def __init__(self, config: SamVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.image_size = config.image_size
self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed")
self.pos_embed = None
self.layers = []
for i in range(config.num_hidden_layers):
layer = TFSamVisionLayer(
config,
window_size=config.window_size if i not in config.global_attn_indexes else 0,
name=f"layers_._{i}",
)
self.layers.append(layer)
self.neck = TFSamVisionNeck(config, name="neck")
def build(self, input_shape=None):
if self.built:
return
self.built = True
if self.config.use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = self.add_weight(
shape=[
1,
self.config.image_size // self.config.patch_size,
self.config.image_size // self.config.patch_size,
self.config.hidden_size,
],
initializer="zeros",
trainable=True,
name="pos_embed",
)
if getattr(self, "patch_embed", None) is not None:
with tf.name_scope(self.patch_embed.name):
self.patch_embed.build(None)
if getattr(self, "neck", None) is not None:
with tf.name_scope(self.neck.name):
self.neck.build(None)
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
def get_input_embeddings(self):
return self.patch_embed
def call(
self,
pixel_values: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFSamVisionEncoderOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.patch_embed(pixel_values)
if self.pos_embed is not None:
hidden_states = hidden_states + self.pos_embed
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.neck(hidden_states)
if not return_dict:
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_self_attentions,)
return outputs
return TFSamVisionEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class TFSamPreTrainedModel(TFPreTrainedModel):
config_class = SamConfig
base_model_prefix = "sam"
main_input_name = "pixel_values"
SAM_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a TensorFlow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to
general usage and behavior.
Parameters:
config ([`SamConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
SAM_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
details.
input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`):
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
better results. The points can be obtained by passing a list of list of list to the processor that will
create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second
dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per
input point), the third dimension is the number of points per segmentation mask (it is possible to pass
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
coordinates of the point. If a different number of points is passed either for each image, or for each
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
computation of the embedding will be skipped for these points using the labels.
input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`):
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
official implementation, there are 3 types of labels
- `1`: the point is a point that contains the object of interest
- `0`: the point is a point that does not contain the object of interest
- `-1`: the point corresponds to the background
We added the label:
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder
The padding labels should be automatically done by the processor.
input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`):
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size,
the number of boxes per image and the coordinates of the top left and botton right point of the box. In the
order (`x1`, `y1`, `x2`, `y2`):
- `x1`: the x coordinate of the top left point of the input box
- `y1`: the y coordinate of the top left point of the input box
- `x2`: the x coordinate of the bottom right point of the input box
- `y2`: the y coordinate of the bottom right point of the input box
input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`):
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
method, and then feed them to the `call` method instead of feeding the `pixel_values`.
multimask_output (`bool`, *optional*):
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
"best" mask, by specifying `multimask_output=False`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
" optional 2D location and bounding boxes.",
SAM_START_DOCSTRING,
)
class TFSamModel(TFSamPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding")
self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder")
self.prompt_encoder = TFSamPromptEncoder(
config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder"
)
self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder")
self.config = config
def get_input_embeddings(self):
return self.vision_encoder.get_input_embeddings()
def get_image_wide_positional_embeddings(self):
size = self.config.prompt_encoder_config.image_embedding_size
grid = tf.ones((size, size))
y_embed = tf.math.cumsum(grid, axis=0) - 0.5
x_embed = tf.math.cumsum(grid, axis=1) - 0.5
y_embed = y_embed / size
x_embed = x_embed / size
positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1))
return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width
def get_image_embeddings(
self,
pixel_values,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns the image embeddings by passing the pixel values through the vision encoder.
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Input pixel values
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple.
"""
vision_output = self.vision_encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeddings = vision_output[0]
return image_embeddings
def get_prompt_embeddings(
self,
input_points: tf.Tensor | None = None,
input_labels: tf.Tensor | None = None,
input_boxes: tf.Tensor | None = None,
input_masks: tf.Tensor | None = None,
):
r"""
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
Args:
input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
Optional input points for the prompt encoder. The padding of the point is automatically done by the
processor. `point_batch_size` refers to the number of masks that we want the model to predict per
point. The model will output `point_batch_size` times 3 masks in total.
input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
processor, or can be fed by the user.
input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`):
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
processor. users can also pass manually the input boxes.
input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
Optional input masks for the prompt encoder.
"""
prompt_output = self.prompt_encoder(
input_points=input_points,
input_labels=input_labels,
input_boxes=input_boxes,
input_masks=input_masks,
)
return prompt_output
@unpack_inputs
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
def call(
self,
pixel_values: TFModelInputType | None = None,
input_points: tf.Tensor | None = None,
input_labels: tf.Tensor | None = None,
input_boxes: tf.Tensor | None = None,
input_masks: tf.Tensor | None = None,
image_embeddings: tf.Tensor | None = None,
multimask_output: bool = True,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
) -> TFSamImageSegmentationOutput | Tuple[tf.Tensor]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and image_embeddings is None:
raise ValueError("Either pixel_values or image_embeddings must be provided.")
if pixel_values is not None and image_embeddings is not None:
raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
if input_points is not None and len(input_points.shape) != 4:
raise ValueError(
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
" got {}.".format(input_points.shape),
)
if input_boxes is not None and len(input_boxes.shape) != 3:
raise ValueError(
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
" got {}.".format(input_boxes.shape),
)
if input_points is not None and input_boxes is not None:
point_batch_size = shape_list(input_points)[1]
box_batch_size = shape_list(input_boxes)[1]
if point_batch_size != box_batch_size:
raise ValueError(
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
point_batch_size, box_batch_size
)
)
if pixel_values is not None:
# Ensures that later checks pass even with an all-None shape from the serving signature
pixel_values = tf.ensure_shape(
pixel_values,
[
None,
self.config.vision_config.num_channels,
self.config.vision_config.image_size,
self.config.vision_config.image_size,
],
)
image_positional_embeddings = self.get_image_wide_positional_embeddings()
# repeat with batch size
batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0]
image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0)
vision_attentions = None
vision_hidden_states = None
if pixel_values is not None:
vision_outputs = self.vision_encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
training=training,
)
image_embeddings = vision_outputs["last_hidden_state"]
if output_hidden_states:
vision_hidden_states = vision_outputs["hidden_states"]
if output_attentions:
vision_attentions = vision_outputs["attentions"]
if input_points is not None and input_labels is None:
input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32)
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
raise ValueError(
"The batch size of the image embeddings and the input points must be the same. ",
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
" if you want to pass multiple points for the same image, make sure that you passed ",
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
batch_size=shape_list(image_embeddings)[0],
input_points=input_points,
input_labels=input_labels,
input_boxes=input_boxes,
input_masks=input_masks,
)
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
image_embeddings=image_embeddings,
image_positional_embeddings=image_positional_embeddings,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
output_attentions=output_attentions,
)
if not return_dict:
output = (iou_predictions, low_res_masks)
if output_hidden_states:
output = output + (vision_hidden_states,)
if output_attentions:
output = output + (vision_attentions, mask_decoder_attentions)
return output
return TFSamImageSegmentationOutput(
iou_scores=iou_predictions,
pred_masks=low_res_masks,
vision_hidden_states=vision_hidden_states,
vision_attentions=vision_attentions,
mask_decoder_attentions=mask_decoder_attentions,
)
def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput:
hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None
return TFSamImageSegmentationOutput(
iou_scores=output.iou_scores,
pred_masks=output.pred_masks,
vision_hidden_states=hs if self.config.output_hidden_states else None,
vision_attentions=attns if self.config.output_attentions else None,
mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shared_image_embedding", None) is not None:
with tf.name_scope(self.shared_image_embedding.name):
self.shared_image_embedding.build(None)
if getattr(self, "vision_encoder", None) is not None:
with tf.name_scope(self.vision_encoder.name):
self.vision_encoder.build(None)
if getattr(self, "prompt_encoder", None) is not None:
with tf.name_scope(self.prompt_encoder.name):
self.prompt_encoder.build(None)
if getattr(self, "mask_decoder", None) is not None:
with tf.name_scope(self.mask_decoder.name):
self.mask_decoder.build(None)
__all__ = ["TFSamModel", "TFSamPreTrainedModel"]
| transformers/src/transformers/models/sam/modeling_tf_sam.py/0 | {
"file_path": "transformers/src/transformers/models/sam/modeling_tf_sam.py",
"repo_id": "transformers",
"token_count": 33301
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SegFormer checkpoints."""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def rename_keys(state_dict, encoder_only=False):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head"):
key = "segformer.encoder." + key
if key.startswith("backbone"):
key = key.replace("backbone", "segformer.encoder")
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
idx = key[key.find("patch_embed") + len("patch_embed")]
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
if "norm" in key:
key = key.replace("norm", "layer_norm")
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
idx = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")]
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
if "layer_norm1" in key:
key = key.replace("layer_norm1", "layer_norm_1")
if "layer_norm2" in key:
key = key.replace("layer_norm2", "layer_norm_2")
if "block" in key:
# replace for example block1 by block.0
idx = key[key.find("block") + len("block")]
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
if "attn.q" in key:
key = key.replace("attn.q", "attention.self.query")
if "attn.proj" in key:
key = key.replace("attn.proj", "attention.output.dense")
if "attn" in key:
key = key.replace("attn", "attention.self")
if "fc1" in key:
key = key.replace("fc1", "dense1")
if "fc2" in key:
key = key.replace("fc2", "dense2")
if "linear_pred" in key:
key = key.replace("linear_pred", "classifier")
if "linear_fuse" in key:
key = key.replace("linear_fuse.conv", "linear_fuse")
key = key.replace("linear_fuse.bn", "batch_norm")
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
idx = key[key.find("linear_c") + len("linear_c")]
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
if key.startswith("head"):
key = key.replace("head", "classifier")
new_state_dict[key] = value
return new_state_dict
def read_in_k_v(state_dict, config):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
kv_weight = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight")
kv_bias = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias")
# next, add keys and values (in that order) to the state dict
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
: config.hidden_sizes[i], :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
config.hidden_sizes[i] :, :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[
config.hidden_sizes[i] :
]
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our SegFormer structure.
"""
# load default SegFormer configuration
config = SegformerConfig()
encoder_only = False
# set attributes based on model_name
repo_id = "huggingface/label-files"
if "segformer" in model_name:
size = model_name[len("segformer.") : len("segformer.") + 2]
if "ade" in model_name:
config.num_labels = 150
filename = "ade20k-id2label.json"
expected_shape = (1, 150, 128, 128)
elif "city" in model_name:
config.num_labels = 19
filename = "cityscapes-id2label.json"
expected_shape = (1, 19, 128, 128)
else:
raise ValueError(f"Model {model_name} not supported")
elif "mit" in model_name:
encoder_only = True
size = model_name[4:6]
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
expected_shape = (1, 1000)
else:
raise ValueError(f"Model {model_name} not supported")
# set config attributes
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if size == "b0":
pass
elif size == "b1":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 256
elif size == "b2":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 6, 3]
elif size == "b3":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 18, 3]
elif size == "b4":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 8, 27, 3]
elif size == "b5":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 6, 40, 3]
else:
raise ValueError(f"Size {size} not supported")
# load image processor (only resize + normalize)
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
# prepare image
image = prepare_img()
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
logger.info(f"Converting model {model_name}...")
# load original state dict
if encoder_only:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
else:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
# rename keys
state_dict = rename_keys(state_dict, encoder_only=encoder_only)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(state_dict, config)
# create HuggingFace model and load state dict
if encoder_only:
config.reshape_last_stage = False
model = SegformerForImageClassification(config)
else:
model = SegformerForSemanticSegmentation(config)
model.load_state_dict(state_dict)
model.eval()
# forward pass
outputs = model(pixel_values)
logits = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
]
)
elif model_name == "segformer.b1.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
]
)
elif model_name == "segformer.b2.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
]
)
elif model_name == "segformer.b3.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
]
)
elif model_name == "segformer.b4.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
]
)
elif model_name == "segformer.b5.640x640.ade.160k":
expected_slice = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
]
)
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
]
)
elif model_name == "segformer.b0.512x1024.city.160k":
expected_slice = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
]
)
elif model_name == "segformer.b0.640x1280.city.160k":
expected_slice = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
]
)
elif model_name == "segformer.b0.768x768.city.160k":
expected_slice = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
]
)
elif model_name == "segformer.b1.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
]
)
elif model_name == "segformer.b2.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
]
)
elif model_name == "segformer.b3.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
]
)
elif model_name == "segformer.b4.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
]
)
elif model_name == "segformer.b5.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
]
)
else:
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-2)
# finally, save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/segformer/convert_segformer_original_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/segformer/convert_segformer_original_to_pytorch.py",
"repo_id": "transformers",
"token_count": 8906
} |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_speech_to_text import *
from .feature_extraction_speech_to_text import *
from .modeling_speech_to_text import *
from .modeling_tf_speech_to_text import *
from .processing_speech_to_text import *
from .tokenization_speech_to_text import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
| transformers/src/transformers/models/speech_to_text/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/speech_to_text/__init__.py",
"repo_id": "transformers",
"token_count": 362
} |
# coding=utf-8
# Copyright 2023 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for SpeechT5."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from .number_normalizer import EnglishNumberNormalizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spm_char.model"}
class SpeechT5Tokenizer(PreTrainedTokenizer):
"""
Construct a SpeechT5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The begin of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
normalize (`bool`, *optional*, defaults to `False`):
Whether to convert numeric quantities in the text to their spelt-out english counterparts.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
normalize=False,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.normalize = normalize
self._normalizer = None
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
normalize=normalize,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
normalize = kwargs.pop("normalize", self.normalize)
if is_split_into_words:
text = " " + text
if normalize:
text = self.normalizer(text)
return (text, kwargs)
@property
def vocab_size(self):
return self.sp_model.get_piece_size()
@property
def normalizer(self):
if self._normalizer is None:
self._normalizer = EnglishNumberNormalizer()
return self._normalizer
@normalizer.setter
def normalizer(self, value):
self._normalizer = value
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
suffix_ones = [1]
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + suffix_ones
return ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["SpeechT5Tokenizer"]
| transformers/src/transformers/models/speecht5/tokenization_speecht5.py/0 | {
"file_path": "transformers/src/transformers/models/speecht5/tokenization_speecht5.py",
"repo_id": "transformers",
"token_count": 3780
} |
# coding=utf-8
# Copyright 2024 MBZUAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow SwiftFormer model."""
import collections.abc
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFImageClassifierOutputWithNoAttention,
)
from ...modeling_tf_utils import TFPreTrainedModel, keras, keras_serializable, unpack_inputs
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_swiftformer import SwiftFormerConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "SwiftFormerConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "MBZUAI/swiftformer-xs"
_EXPECTED_OUTPUT_SHAPE = [1, 220, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "MBZUAI/swiftformer-xs"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
class TFSwiftFormerPatchEmbeddingSequential(keras.layers.Layer):
"""
The sequential component of the patch embedding layer.
Input: tensor of shape `[batch_size, in_channels, height, width]`
Output: tensor of shape `[batch_size, out_channels, height/4, width/4]`
"""
def __init__(self, config: SwiftFormerConfig, **kwargs):
super().__init__(**kwargs)
self.out_chs = config.embed_dims[0]
self.zero_padding = keras.layers.ZeroPadding2D(padding=(1, 1))
self.conv1 = keras.layers.Conv2D(self.out_chs // 2, kernel_size=3, strides=2, name="0")
self.batch_norm1 = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="1")
self.conv2 = keras.layers.Conv2D(self.out_chs, kernel_size=3, strides=2, name="3")
self.batch_norm2 = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="4")
self.config = config
def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor:
x = self.zero_padding(x)
x = self.conv1(x)
x = self.batch_norm1(x, training=training)
x = get_tf_activation("relu")(x)
x = self.zero_padding(x)
x = self.conv2(x)
x = self.batch_norm2(x, training=training)
x = get_tf_activation("relu")(x)
return x
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "conv1", None) is not None:
with tf.name_scope(self.conv1.name):
self.conv1.build(self.config.num_channels)
if getattr(self, "batch_norm1", None) is not None:
with tf.name_scope(self.batch_norm1.name):
self.batch_norm1.build((None, None, None, self.out_chs // 2))
if getattr(self, "conv2", None) is not None:
with tf.name_scope(self.conv2.name):
self.conv2.build((None, None, None, self.out_chs // 2))
if getattr(self, "batch_norm2", None) is not None:
with tf.name_scope(self.batch_norm2.name):
self.batch_norm2.build((None, None, None, self.out_chs))
self.built = True
class TFSwiftFormerPatchEmbedding(keras.layers.Layer):
"""
Patch Embedding Layer constructed of two 2D convolutional layers.
Input: tensor of shape `[batch_size, in_channels, height, width]`
Output: tensor of shape `[batch_size, out_channels, height/4, width/4]`
"""
def __init__(self, config: SwiftFormerConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embedding = TFSwiftFormerPatchEmbeddingSequential(config, name="patch_embedding")
def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor:
return self.patch_embedding(x, training=training)
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "patch_embedding", None) is not None:
with tf.name_scope(self.patch_embedding.name):
self.patch_embedding.build(None)
self.built = True
class TFSwiftFormerDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, config: SwiftFormerConfig, **kwargs) -> None:
super().__init__(**kwargs)
raise NotImplementedError("Drop path is not implemented in TF port")
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
raise NotImplementedError("Drop path is not implemented in TF port")
class TFSwiftFormerEmbeddings(keras.layers.Layer):
"""
Embeddings layer consisting of a single 2D convolutional and batch normalization layer.
Input: tensor of shape `[batch_size, channels, height, width]`
Output: tensor of shape `[batch_size, channels, height/stride, width/stride]`
"""
def __init__(self, config: SwiftFormerConfig, index: int, **kwargs):
super().__init__(**kwargs)
patch_size = config.down_patch_size
stride = config.down_stride
padding = config.down_pad
embed_dims = config.embed_dims
self.in_chans = embed_dims[index]
self.embed_dim = embed_dims[index + 1]
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding)
self.pad = keras.layers.ZeroPadding2D(padding=padding)
self.proj = keras.layers.Conv2D(self.embed_dim, kernel_size=patch_size, strides=stride, name="proj")
self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor:
x = self.pad(x)
x = self.proj(x)
x = self.norm(x, training=training)
return x
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build(self.in_chans)
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build((None, None, None, self.embed_dim))
self.built = True
class TFSwiftFormerConvEncoder(keras.layers.Layer):
"""
`SwiftFormerConvEncoder` with 3*3 and 1*1 convolutions.
Input: tensor of shape `[batch_size, channels, height, width]`
Output: tensor of shape `[batch_size, channels, height, width]`
"""
def __init__(self, config: SwiftFormerConfig, dim: int, **kwargs):
super().__init__(**kwargs)
hidden_dim = int(config.mlp_ratio * dim)
self.dim = dim
self.pad = keras.layers.ZeroPadding2D(padding=(1, 1))
self.depth_wise_conv = keras.layers.Conv2D(dim, kernel_size=3, groups=dim, name="depth_wise_conv")
self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
self.point_wise_conv1 = keras.layers.Conv2D(hidden_dim, kernel_size=1, name="point_wise_conv1")
self.act = get_tf_activation("gelu")
self.point_wise_conv2 = keras.layers.Conv2D(dim, kernel_size=1, name="point_wise_conv2")
self.drop_path = keras.layers.Dropout(name="drop_path", rate=config.drop_conv_encoder_rate)
self.hidden_dim = int(config.mlp_ratio * self.dim)
def build(self, input_shape=None):
if self.built:
return
self.layer_scale = self.add_weight(
name="layer_scale",
shape=self.dim,
initializer="ones",
trainable=True,
)
if getattr(self, "depth_wise_conv", None) is not None:
with tf.name_scope(self.depth_wise_conv.name):
self.depth_wise_conv.build(self.dim)
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build((None, None, None, self.dim))
if getattr(self, "point_wise_conv1", None) is not None:
with tf.name_scope(self.point_wise_conv1.name):
self.point_wise_conv1.build(self.dim)
if getattr(self, "point_wise_conv2", None) is not None:
with tf.name_scope(self.point_wise_conv2.name):
self.point_wise_conv2.build(self.hidden_dim)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
self.built = True
def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor:
input = x
x = self.pad(x)
x = self.depth_wise_conv(x)
x = self.norm(x, training=training)
x = self.point_wise_conv1(x)
x = self.act(x)
x = self.point_wise_conv2(x)
x = input + self.drop_path(self.layer_scale * x)
return x
class TFSwiftFormerMlp(keras.layers.Layer):
"""
MLP layer with 1*1 convolutions.
Input: tensor of shape `[batch_size, channels, height, width]`
Output: tensor of shape `[batch_size, channels, height, width]`
"""
def __init__(self, config: SwiftFormerConfig, in_features: int, **kwargs):
super().__init__(**kwargs)
hidden_features = int(in_features * config.mlp_ratio)
self.norm1 = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm1")
self.fc1 = keras.layers.Conv2D(hidden_features, 1, name="fc1")
act_layer = get_tf_activation(config.hidden_act)
self.act = act_layer
self.fc2 = keras.layers.Conv2D(in_features, 1, name="fc2")
self.drop = keras.layers.Dropout(rate=config.drop_mlp_rate)
self.hidden_features = hidden_features
self.in_features = in_features
def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor:
x = self.norm1(x, training=training)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x, training=training)
x = self.fc2(x)
x = self.drop(x, training=training)
return x
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "norm1", None) is not None:
with tf.name_scope(self.norm1.name):
self.norm1.build((None, None, None, self.in_features))
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build((None, None, None, self.in_features))
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build((None, None, None, self.hidden_features))
self.built = True
class TFSwiftFormerEfficientAdditiveAttention(keras.layers.Layer):
"""
Efficient Additive Attention module for SwiftFormer.
Input: tensor of shape `[batch_size, channels, height, width]`
Output: tensor of shape `[batch_size, channels, height, width]`
"""
def __init__(self, config: SwiftFormerConfig, dim: int = 512, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.to_query = keras.layers.Dense(dim, name="to_query")
self.to_key = keras.layers.Dense(dim, name="to_key")
self.scale_factor = dim**-0.5
self.proj = keras.layers.Dense(dim, name="proj")
self.final = keras.layers.Dense(dim, name="final")
def build(self, input_shape=None):
if self.built:
return
self.w_g = self.add_weight(
name="w_g",
shape=(self.dim, 1),
initializer=keras.initializers.RandomNormal(mean=0, stddev=1),
trainable=True,
)
if getattr(self, "to_query", None) is not None:
with tf.name_scope(self.to_query.name):
self.to_query.build(self.dim)
if getattr(self, "to_key", None) is not None:
with tf.name_scope(self.to_key.name):
self.to_key.build(self.dim)
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build(self.dim)
if getattr(self, "final", None) is not None:
with tf.name_scope(self.final.name):
self.final.build(self.dim)
self.built = True
def call(self, x: tf.Tensor) -> tf.Tensor:
query = self.to_query(x)
key = self.to_key(x)
query = tf.math.l2_normalize(query, dim=-1)
key = tf.math.l2_normalize(key, dim=-1)
query_weight = query @ self.w_g
scaled_query_weight = query_weight * self.scale_factor
scaled_query_weight = tf.nn.softmax(scaled_query_weight, axis=-1)
global_queries = tf.math.reduce_sum(scaled_query_weight * query, axis=1)
global_queries = tf.tile(tf.expand_dims(global_queries, 1), (1, key.shape[1], 1))
out = self.proj(global_queries * key) + query
out = self.final(out)
return out
class TFSwiftFormerLocalRepresentation(keras.layers.Layer):
"""
Local Representation module for SwiftFormer that is implemented by 3*3 depth-wise and point-wise convolutions.
Input: tensor of shape `[batch_size, channels, height, width]`
Output: tensor of shape `[batch_size, channels, height, width]`
"""
def __init__(self, config: SwiftFormerConfig, dim: int, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.pad = keras.layers.ZeroPadding2D(padding=(1, 1))
self.depth_wise_conv = keras.layers.Conv2D(dim, kernel_size=3, groups=dim, name="depth_wise_conv")
self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
self.point_wise_conv1 = keras.layers.Conv2D(dim, kernel_size=1, name="point_wise_conv1")
self.act = get_tf_activation("gelu")
self.point_wise_conv2 = keras.layers.Conv2D(dim, kernel_size=1, name="point_wise_conv2")
self.drop_path = keras.layers.Identity(name="drop_path")
def build(self, input_shape=None):
if self.built:
return
self.layer_scale = self.add_weight(
name="layer_scale",
shape=(self.dim),
initializer="ones",
trainable=True,
)
if getattr(self, "depth_wise_conv", None) is not None:
with tf.name_scope(self.depth_wise_conv.name):
self.depth_wise_conv.build((None, None, None, self.dim))
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build((None, None, None, self.dim))
if getattr(self, "point_wise_conv1", None) is not None:
with tf.name_scope(self.point_wise_conv1.name):
self.point_wise_conv1.build(self.dim)
if getattr(self, "point_wise_conv2", None) is not None:
with tf.name_scope(self.point_wise_conv2.name):
self.point_wise_conv2.build(self.dim)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
self.built = True
def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor:
input = x
x = self.pad(x)
x = self.depth_wise_conv(x)
x = self.norm(x, training=training)
x = self.point_wise_conv1(x)
x = self.act(x)
x = self.point_wise_conv2(x)
x = input + self.drop_path(self.layer_scale * x, training=training)
return x
class TFSwiftFormerEncoderBlock(keras.layers.Layer):
"""
SwiftFormer Encoder Block for SwiftFormer. It consists of (1) Local representation module, (2)
SwiftFormerEfficientAdditiveAttention, and (3) MLP block.
Input: tensor of shape `[batch_size, channels, height, width]`
Output: tensor of shape `[batch_size, channels,height, width]`
"""
def __init__(self, config: SwiftFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
super().__init__(**kwargs)
layer_scale_init_value = config.layer_scale_init_value
use_layer_scale = config.use_layer_scale
self.local_representation = TFSwiftFormerLocalRepresentation(config, dim=dim, name="local_representation")
self.attn = TFSwiftFormerEfficientAdditiveAttention(config, dim=dim, name="attn")
self.linear = TFSwiftFormerMlp(config, in_features=dim, name="linear")
self.drop_path = TFSwiftFormerDropPath(config) if drop_path > 0.0 else keras.layers.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.dim = dim
self.layer_scale_init_value = layer_scale_init_value
def build(self, input_shape=None):
if self.built:
return
self.layer_scale_1 = self.add_weight(
name="layer_scale_1",
shape=self.dim,
initializer=keras.initializers.constant(self.layer_scale_init_value),
trainable=True,
)
self.layer_scale_2 = self.add_weight(
name="layer_scale_2",
shape=self.dim,
initializer=keras.initializers.constant(self.layer_scale_init_value),
trainable=True,
)
if getattr(self, "local_representation", None) is not None:
with tf.name_scope(self.local_representation.name):
self.local_representation.build(None)
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "linear", None) is not None:
with tf.name_scope(self.linear.name):
self.linear.build(None)
self.built = True
def call(self, x: tf.Tensor, training: bool = False):
x = self.local_representation(x, training=training)
batch_size, height, width, channels = x.shape
res = tf.reshape(x, [-1, height * width, channels])
res = self.attn(res)
res = tf.reshape(res, [-1, height, width, channels])
if self.use_layer_scale:
x = x + self.drop_path(self.layer_scale_1 * res, training=training)
x = x + self.drop_path(self.layer_scale_2 * self.linear(x), training=training)
else:
x = x + self.drop_path(res, training=training)
x = x + self.drop_path(self.linear(x), training=training)
return x
class TFSwiftFormerStage(keras.layers.Layer):
"""
A Swiftformer stage consisting of a series of `SwiftFormerConvEncoder` blocks and a final
`SwiftFormerEncoderBlock`.
Input: tensor in shape `[batch_size, channels, height, width]`
Output: tensor in shape `[batch_size, channels, height, width]`
"""
def __init__(self, config: SwiftFormerConfig, index: int, **kwargs) -> None:
super().__init__(**kwargs)
layer_depths = config.depths
dim = config.embed_dims[index]
depth = layer_depths[index]
self.blocks = []
for block_idx in range(depth):
block_dpr = config.drop_path_rate * (block_idx + sum(layer_depths[:index])) / (sum(layer_depths) - 1)
if depth - block_idx <= 1:
self.blocks.append(
TFSwiftFormerEncoderBlock(config, dim=dim, drop_path=block_dpr, name=f"blocks_._{block_idx}")
)
else:
self.blocks.append(TFSwiftFormerConvEncoder(config, dim=dim, name=f"blocks_._{block_idx}"))
def call(self, input: tf.Tensor, training: bool = False) -> tf.Tensor:
for i, block in enumerate(self.blocks):
input = block(input, training=training)
return input
def build(self, input_shape=None):
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
class TFSwiftFormerEncoder(keras.layers.Layer):
def __init__(self, config: SwiftFormerConfig, **kwargs) -> None:
super().__init__(**kwargs)
self.config = config
embed_dims = config.embed_dims
downsamples = config.downsamples
layer_depths = config.depths
# Transformer model
self.network = []
name_i = 0
for i in range(len(layer_depths)):
stage = TFSwiftFormerStage(config, index=i, name=f"network_._{name_i}")
self.network.append(stage)
name_i += 1
if i >= len(layer_depths) - 1:
break
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
# downsampling between two stages
self.network.append(TFSwiftFormerEmbeddings(config, index=i, name=f"network_._{name_i}"))
name_i += 1
self.gradient_checkpointing = False
def call(
self,
hidden_states: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[tuple, TFBaseModelOutputWithNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
all_hidden_states = (hidden_states,) if output_hidden_states else None
for i, block in enumerate(self.network):
hidden_states = block(hidden_states, training=training)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2])
if all_hidden_states:
all_hidden_states = tuple(tf.transpose(s, perm=[0, 3, 1, 2]) for s in all_hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return TFBaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
def build(self, input_shape=None):
for layer in self.network:
with tf.name_scope(layer.name):
layer.build(None)
class TFSwiftFormerPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SwiftFormerConfig
base_model_prefix = "swiftformer"
main_input_name = "pixel_values"
TFSWIFTFORMER_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using [`keras.Model.fit`] method which currently requires having all the
tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the
first positional argument :
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
</Tip>
Parameters:
config ([`SwiftFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TFSWIFTFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
training (`bool`, *optional*, defaults to `False`):
Whether or not to run the model in training mode.
"""
@keras_serializable
class TFSwiftFormerMainLayer(keras.layers.Layer):
config_class = SwiftFormerConfig
def __init__(self, config: SwiftFormerConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.patch_embed = TFSwiftFormerPatchEmbedding(config, name="patch_embed")
self.encoder = TFSwiftFormerEncoder(config, name="encoder")
@unpack_inputs
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutputWithNoAttention]:
r""" """
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TF 2.0 image layers can't use NCHW format when running on CPU.
# We transpose to NHWC format and then transpose back after the full forward pass.
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
pixel_values = tf.transpose(pixel_values, perm=[0, 2, 3, 1])
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.patch_embed(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return tuple(v for v in encoder_outputs if v is not None)
return TFBaseModelOutputWithNoAttention(
last_hidden_state=encoder_outputs.last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "patch_embed", None) is not None:
with tf.name_scope(self.patch_embed.name):
self.patch_embed.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
self.built = True
@add_start_docstrings(
"The bare TFSwiftFormer Model transformer outputting raw hidden-states without any specific head on top.",
TFSWIFTFORMER_START_DOCSTRING,
)
class TFSwiftFormerModel(TFSwiftFormerPreTrainedModel):
def __init__(self, config: SwiftFormerConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.swiftformer = TFSwiftFormerMainLayer(config, name="swiftformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(TFSWIFTFORMER_INPUTS_DOCSTRING)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithNoAttention, Tuple[tf.Tensor]]:
outputs = self.swiftformer(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "swiftformer", None) is not None:
with tf.name_scope(self.swiftformer.name):
self.swiftformer.build(None)
self.built = True
@add_start_docstrings(
"""
TFSwiftFormer Model transformer with an image classification head on top (e.g. for ImageNet).
""",
TFSWIFTFORMER_START_DOCSTRING,
)
class TFSwiftFormerForImageClassification(TFSwiftFormerPreTrainedModel):
def __init__(self, config: SwiftFormerConfig, **kwargs) -> None:
super().__init__(config, **kwargs)
self.num_labels = config.num_labels
self.swiftformer = TFSwiftFormerMainLayer(config, name="swiftformer")
# Classifier head
self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
self.head = (
keras.layers.Dense(self.num_labels, name="head")
if self.num_labels > 0
else keras.layers.Identity(name="head")
)
self.dist_head = (
keras.layers.Dense(self.num_labels, name="dist_head")
if self.num_labels > 0
else keras.layers.Identity(name="dist_head")
)
def hf_compute_loss(self, labels, logits):
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == tf.int64 or labels.dtype == tf.int32):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = keras.losses.MSE
if self.num_labels == 1:
loss = loss_fct(labels.squeeze(), logits.squeeze())
else:
loss = loss_fct(labels, logits)
elif self.config.problem_type == "single_label_classification":
loss_fct = keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=keras.losses.Reduction.NONE
)
loss = loss_fct(labels, logits)
elif self.config.problem_type == "multi_label_classification":
loss_fct = keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=keras.losses.Reduction.NONE,
)
loss = loss_fct(labels, logits)
else:
loss = None
return loss
@unpack_inputs
@add_start_docstrings_to_model_forward(TFSWIFTFORMER_INPUTS_DOCSTRING)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
labels: Optional[tf.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[tuple, TFImageClassifierOutputWithNoAttention]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# run base model
outputs = self.swiftformer(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs.last_hidden_state if return_dict else outputs[0]
sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1])
# run classification head
sequence_output = self.norm(sequence_output, training=training)
sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2])
_, num_channels, height, width = sequence_output.shape
sequence_output = tf.reshape(sequence_output, [-1, num_channels, height * width])
sequence_output = tf.reduce_mean(sequence_output, axis=-1)
cls_out = self.head(sequence_output)
distillation_out = self.dist_head(sequence_output)
logits = (cls_out + distillation_out) / 2
# calculate loss
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
if getattr(self, "swiftformer", None) is not None:
with tf.name_scope(self.swiftformer.name):
self.swiftformer.build(None)
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build((None, None, None, self.config.embed_dims[-1]))
if getattr(self, "head", None) is not None:
with tf.name_scope(self.head.name):
self.head.build(self.config.embed_dims[-1])
if getattr(self, "dist_head", None) is not None:
with tf.name_scope(self.dist_head.name):
self.dist_head.build(self.config.embed_dims[-1])
self.built = True
__all__ = ["TFSwiftFormerForImageClassification", "TFSwiftFormerModel", "TFSwiftFormerPreTrainedModel"]
| transformers/src/transformers/models/swiftformer/modeling_tf_swiftformer.py/0 | {
"file_path": "transformers/src/transformers/models/swiftformer/modeling_tf_swiftformer.py",
"repo_id": "transformers",
"token_count": 15161
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert TrOCR checkpoints from the unilm repository."""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(encoder_config, decoder_config):
rename_keys = []
for i in range(encoder_config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight")
)
rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append(
(f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight")
)
rename_keys.append(
(f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias")
)
rename_keys.append(
(f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight")
)
rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append(
(f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight")
)
rename_keys.append(
(f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias")
)
rename_keys.append(
(f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight")
)
rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias"))
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("encoder.deit.cls_token", "encoder.embeddings.cls_token"),
("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"),
("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"),
("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"),
("encoder.deit.norm.weight", "encoder.layernorm.weight"),
("encoder.deit.norm.bias", "encoder.layernorm.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, encoder_config):
for i in range(encoder_config.num_hidden_layers):
# queries, keys and values (only weights, no biases)
in_proj_weight = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight")
state_dict[f"encoder.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: encoder_config.hidden_size, :
]
state_dict[f"encoder.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
state_dict[f"encoder.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-encoder_config.hidden_size :, :
]
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of the IAM Handwriting Database
def prepare_img(checkpoint_url):
if "handwritten" in checkpoint_url:
url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
url = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"
im = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return im
@torch.no_grad()
def convert_tr_ocr_checkpoint(checkpoint_url, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our VisionEncoderDecoderModel structure.
"""
# define encoder and decoder configs based on checkpoint_url
encoder_config = ViTConfig(image_size=384, qkv_bias=False)
decoder_config = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
decoder_config.encoder_hidden_size = 768
elif "large" in checkpoint_url:
# use ViT-large encoder
encoder_config.hidden_size = 1024
encoder_config.intermediate_size = 4096
encoder_config.num_hidden_layers = 24
encoder_config.num_attention_heads = 16
decoder_config.encoder_hidden_size = 1024
else:
raise ValueError("Should either find 'base' or 'large' in checkpoint URL")
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
decoder_config.tie_word_embeddings = False
decoder_config.activation_function = "relu"
decoder_config.max_position_embeddings = 1024
decoder_config.scale_embedding = True
decoder_config.use_learned_position_embeddings = False
decoder_config.layernorm_embedding = False
# load HuggingFace model
encoder = ViTModel(encoder_config, add_pooling_layer=False)
decoder = TrOCRForCausalLM(decoder_config)
model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
model.eval()
# load state_dict of original model, rename some keys
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)["model"]
rename_keys = create_rename_keys(encoder_config, decoder_config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, encoder_config)
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
val = state_dict.pop(key)
if key.startswith("decoder") and "output_projection" not in key:
state_dict["decoder.model." + key] = val
else:
state_dict[key] = val
# load state dict
model.load_state_dict(state_dict)
# Check outputs on an image
image_processor = ViTImageProcessor(size=encoder_config.image_size)
tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-large")
processor = TrOCRProcessor(image_processor, tokenizer)
pixel_values = processor(images=prepare_img(checkpoint_url), return_tensors="pt").pixel_values
# verify logits
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]])
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
expected_shape = torch.Size([1, 1, 50265])
if "trocr-base-handwritten" in checkpoint_url:
expected_slice = torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]
)
elif "trocr-large-handwritten" in checkpoint_url:
expected_slice = torch.tensor(
[-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170]
)
elif "trocr-base-printed" in checkpoint_url:
expected_slice = torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210]
)
elif "trocr-large-printed" in checkpoint_url:
expected_slice = torch.tensor(
[-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535]
)
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-3), "First elements of logits not as expected"
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving processor to {pytorch_dump_folder_path}")
processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4298
} |
# coding=utf-8
# Copyright 2023, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UMT5 model configuration"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeq2SeqConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
class UMT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UMT5Model`]. It is used to instantiate a UMT5
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the UMT5
[google/umt5-small](https://huggingface.co/google/umt5-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 250112):
Vocabulary size of the UMT5 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`UMT5Model`] or [`TFUMT5Model`].
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
num_heads`.
d_ff (`int`, *optional*, defaults to 1024):
Size of the intermediate feed forward layer in each `UMT5Block`.
num_layers (`int`, *optional*, defaults to 8):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "umt5"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"head_dim": "d_kv",
}
def __init__(
self,
vocab_size=250112,
d_model=512,
d_kv=64,
d_ff=1024,
num_layers=8,
num_decoder_layers=None,
num_heads=6,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu",
is_encoder_decoder=True,
use_cache=True,
tokenizer_class="T5Tokenizer",
tie_word_embeddings=True,
pad_token_id=0,
eos_token_id=1,
decoder_start_token_id=0,
classifier_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.classifier_dropout = classifier_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
if feed_forward_proj == "gated-gelu":
self.dense_act_fn = "gelu_new"
super().__init__(
is_encoder_decoder=is_encoder_decoder,
tokenizer_class=tokenizer_class,
tie_word_embeddings=tie_word_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class UMT5OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def default_onnx_opset(self) -> int:
return 13
@property
def atol_for_validation(self) -> float:
return 5e-4
__all__ = ["UMT5Config", "UMT5OnnxConfig"]
| transformers/src/transformers/models/umt5/configuration_umt5.py/0 | {
"file_path": "transformers/src/transformers/models/umt5/configuration_umt5.py",
"repo_id": "transformers",
"token_count": 3270
} |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch UnivNetModel model."""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...modeling_utils import ModelOutput, PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_univnet import UnivNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "UnivNetConfig"
_CHECKPOINT_FOR_DOC = "dg845/univnet-dev"
@dataclass
class UnivNetModelOutput(ModelOutput):
"""
Output class for the [`UnivNetModel`], which includes the generated audio waveforms and the original unpadded
lengths of those waveforms (so that the padding can be removed by [`UnivNetModel.batch_decode`]).
Args:
waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Batched 1D (mono-channel) output audio waveforms.
waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
The batched length in samples of each unpadded waveform in `waveforms`.
"""
waveforms: torch.FloatTensor = None
waveform_lengths: torch.FloatTensor = None
class UnivNetKernelPredictorResidualBlock(nn.Module):
"""
Implementation of the residual block for the kernel predictor network inside each location variable convolution
block (LVCBlock).
Parameters:
config: (`UnivNetConfig`):
Config for the `UnivNetModel` model.
"""
def __init__(
self,
config: UnivNetConfig,
):
super().__init__()
self.channels = config.model_in_channels
self.kernel_size = config.kernel_predictor_conv_size
self.dropout_prob = config.kernel_predictor_dropout
self.leaky_relu_slope = config.leaky_relu_slope
padding = (self.kernel_size - 1) // 2
self.dropout = nn.Dropout(self.dropout_prob)
self.conv1 = nn.Conv1d(self.channels, self.channels, self.kernel_size, padding=padding, bias=True)
self.conv2 = nn.Conv1d(self.channels, self.channels, self.kernel_size, padding=padding, bias=True)
def forward(self, hidden_states: torch.FloatTensor):
# hidden_states should have shape (batch_size, channels, seq_length)
residual = hidden_states
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.conv2(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
return hidden_states + residual
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv1)
weight_norm(self.conv2)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv1)
nn.utils.remove_weight_norm(self.conv2)
class UnivNetKernelPredictor(nn.Module):
"""
Implementation of the kernel predictor network which supplies the kernel and bias for the location variable
convolutional layers (LVCs) in each UnivNet LVCBlock.
Based on the KernelPredictor implementation in
[maum-ai/univnet](https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L7).
Parameters:
config: (`UnivNetConfig`):
Config for the `UnivNetModel` model.
conv_kernel_size (`int`, *optional*, defaults to 3):
The kernel size for the location variable convolutional layer kernels (convolutional weight tensor).
conv_layers (`int`, *optional*, defaults to 4):
The number of location variable convolutional layers to output kernels and biases for.
"""
def __init__(
self,
config: UnivNetConfig,
conv_kernel_size: int = 3,
conv_layers: int = 4,
):
super().__init__()
self.conv_in_channels = config.model_hidden_channels
self.conv_out_channels = 2 * config.model_hidden_channels
self.conv_kernel_size = conv_kernel_size
self.conv_layers = conv_layers
self.kernel_channels = (
self.conv_in_channels * self.conv_out_channels * self.conv_kernel_size * self.conv_layers
)
self.bias_channels = self.conv_out_channels * self.conv_layers
self.resnet_in_channels = config.num_mel_bins
self.resnet_hidden_channels = config.kernel_predictor_hidden_channels
self.resnet_kernel_size = config.kernel_predictor_conv_size
self.num_blocks = config.kernel_predictor_num_blocks
self.leaky_relu_slope = config.leaky_relu_slope
padding = (self.resnet_kernel_size - 1) // 2
self.input_conv = nn.Conv1d(self.resnet_in_channels, self.resnet_hidden_channels, 5, padding=2, bias=True)
self.resblocks = nn.ModuleList([UnivNetKernelPredictorResidualBlock(config) for _ in range(self.num_blocks)])
self.kernel_conv = nn.Conv1d(
self.resnet_hidden_channels, self.kernel_channels, self.resnet_kernel_size, padding=padding, bias=True
)
self.bias_conv = nn.Conv1d(
self.resnet_hidden_channels, self.bias_channels, self.resnet_kernel_size, padding=padding, bias=True
)
def forward(self, spectrogram: torch.FloatTensor):
"""
Maps a conditioning log-mel spectrogram to a tensor of convolutional kernels and biases, for use in location
variable convolutional layers. Note that the input spectrogram should have shape (batch_size, input_channels,
seq_length).
Args:
spectrogram (`torch.FloatTensor` of shape `(batch_size, input_channels, seq_length)`):
Tensor containing the log-mel spectrograms.
Returns:
Tuple[`torch.FloatTensor, `torch.FloatTensor`]: tuple of tensors where the first element is the tensor of
location variable convolution kernels of shape `(batch_size, self.conv_layers, self.conv_in_channels,
self.conv_out_channels, self.conv_kernel_size, seq_length)` and the second element is the tensor of
location variable convolution biases of shape `(batch_size, self.conv_layers. self.conv_out_channels,
seq_length)`.
"""
batch_size, _, seq_length = spectrogram.shape
hidden_states = self.input_conv(spectrogram)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
for resblock in self.resblocks:
hidden_states = resblock(hidden_states)
kernel_hidden_states = self.kernel_conv(hidden_states)
bias_hidden_states = self.bias_conv(hidden_states)
# Reshape kernels and biases to appropriate shape
kernels = kernel_hidden_states.view(
batch_size,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
seq_length,
).contiguous()
biases = bias_hidden_states.view(
batch_size,
self.conv_layers,
self.conv_out_channels,
seq_length,
).contiguous()
return kernels, biases
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.input_conv)
for layer in self.resblocks:
layer.apply_weight_norm()
weight_norm(self.kernel_conv)
weight_norm(self.bias_conv)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input_conv)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.kernel_conv)
nn.utils.remove_weight_norm(self.bias_conv)
class UnivNetLvcResidualBlock(nn.Module):
"""
Implementation of the location variable convolution (LVC) residual block for the UnivNet residual network.
Parameters:
config: (`UnivNetConfig`):
Config for the `UnivNetModel` model.
kernel_size (`int`):
The kernel size for the dilated 1D convolutional layer.
dilation (`int`):
The dilation for the dilated 1D convolutional layer.
"""
def __init__(
self,
config: UnivNetConfig,
kernel_size: int,
dilation: int,
):
super().__init__()
self.hidden_channels = config.model_hidden_channels
self.kernel_size = kernel_size
self.dilation = dilation
self.leaky_relu_slope = config.leaky_relu_slope
padding = self.dilation * (self.kernel_size - 1) // 2
self.conv = nn.Conv1d(
self.hidden_channels,
self.hidden_channels,
self.kernel_size,
padding=padding,
dilation=self.dilation,
)
def forward(self, hidden_states, kernel, bias, hop_size=256):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.conv(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.location_variable_convolution(hidden_states, kernel, bias, hop_size=hop_size)
# Gated activation unit
hidden_states = torch.sigmoid(hidden_states[:, : self.hidden_channels, :]) * torch.tanh(
hidden_states[:, self.hidden_channels :, :]
)
# Skip connection
hidden_states = residual + hidden_states
return hidden_states
# Based on https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L171
def location_variable_convolution(
self,
hidden_states: torch.FloatTensor,
kernel: torch.FloatTensor,
bias: torch.FloatTensor,
dilation: int = 1,
hop_size: int = 256,
):
"""
Performs location-variable convolution operation on the input sequence (hidden_states) using the local
convolution kernel. This was introduced in [LVCNet: Efficient Condition-Dependent Modeling Network for Waveform
Generation](https://arxiv.org/abs/2102.10815) by Zhen Zheng, Jianzong Wang, Ning Cheng, and Jing Xiao.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, in_channels, in_length)`):
The input sequence of shape (batch, in_channels, in_length).
kernel (`torch.FloatTensor` of shape `(batch_size, in_channels, out_channels, kernel_size, kernel_length)`):
The local convolution kernel of shape (batch, in_channels, out_channels, kernel_size, kernel_length).
bias (`torch.FloatTensor` of shape `(batch_size, out_channels, kernel_length)`):
The bias for the local convolution of shape (batch, out_channels, kernel_length).
dilation (`int`, *optional*, defaults to 1):
The dilation of convolution.
hop_size (`int`, *optional*, defaults to 256):
The hop_size of the conditioning sequence.
Returns:
`torch.FloatTensor`: the output sequence after performing local convolution with shape (batch_size,
out_channels, in_length).
"""
batch, _, in_length = hidden_states.shape
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
if in_length != (kernel_length * hop_size):
raise ValueError(
f"Dim 2 of `hidden_states` should be {kernel_length * hop_size}) but got {in_length}. Please check"
" `hidden_states` or `kernel` and `hop_size` to make sure they are correct."
)
padding = dilation * int((kernel_size - 1) / 2)
# (batch, in_channels, in_length + 2*padding)
hidden_states = nn.functional.pad(hidden_states, (padding, padding), "constant", 0)
# (batch, in_channels, kernel_length, hop_size + 2*padding)
hidden_states = hidden_states.unfold(2, hop_size + 2 * padding, hop_size)
if hop_size < dilation:
hidden_states = nn.functional.pad(hidden_states, (0, dilation), "constant", 0)
# (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
hidden_states = hidden_states.unfold(3, dilation, dilation)
hidden_states = hidden_states[:, :, :, :, :hop_size]
# (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
hidden_states = hidden_states.transpose(3, 4)
# (batch, in_channels, kernel_length, dilation, _, kernel_size)
hidden_states = hidden_states.unfold(4, kernel_size, 1)
# Apply local convolution kernel to hidden_states.
output_hidden_states = torch.einsum("bildsk,biokl->bolsd", hidden_states, kernel)
output_hidden_states = output_hidden_states.to(memory_format=torch.channels_last_3d)
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
output_hidden_states = output_hidden_states + bias
output_hidden_states = output_hidden_states.contiguous().view(batch, out_channels, -1)
return output_hidden_states
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv)
class UnivNetLvcBlock(nn.Module):
"""
Implementation of the location variable convolution (LVC) residual block of the UnivNet residual block. Includes a
`UnivNetKernelPredictor` inside to predict the kernels and biases of the LVC layers.
Based on LVCBlock in
[maum-ai/univnet](https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L98)
Parameters:
config (`UnivNetConfig`):
Config for the `UnivNetModel` model.
layer_id (`int`):
An integer corresponding to the index of the current LVC resnet block layer. This should be between 0 and
`len(config.resblock_stride_sizes) - 1)` inclusive.
lvc_hop_size (`int`, *optional*, defaults to 256):
The hop size for the location variable convolutional layers.
"""
def __init__(
self,
config: UnivNetConfig,
layer_id: int,
lvc_hop_size: int = 256,
):
super().__init__()
self.hidden_channels = config.model_hidden_channels
self.kernel_size = config.resblock_kernel_sizes[layer_id]
self.stride = config.resblock_stride_sizes[layer_id]
self.dilations = config.resblock_dilation_sizes[layer_id]
self.cond_hop_length = lvc_hop_size
self.leaky_relu_slope = config.leaky_relu_slope
self.num_blocks = len(self.dilations)
self.convt_pre = nn.ConvTranspose1d(
self.hidden_channels,
self.hidden_channels,
2 * self.stride,
stride=self.stride,
padding=self.stride // 2 + self.stride % 2,
output_padding=self.stride % 2,
)
self.kernel_predictor = UnivNetKernelPredictor(config, self.kernel_size, self.num_blocks)
self.resblocks = nn.ModuleList(
[UnivNetLvcResidualBlock(config, self.kernel_size, self.dilations[i]) for i in range(self.num_blocks)]
)
def forward(self, hidden_states: torch.FloatTensor, spectrogram: torch.FloatTensor):
# hidden_states: (batch_size, hidden_channels, seq_length)
# spectrogram: (batch_size, cond_channels, cond_length)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.convt_pre(hidden_states)
kernels, biases = self.kernel_predictor(spectrogram)
for i, resblock in enumerate(self.resblocks):
kernel = kernels[:, i, :, :, :, :]
bias = biases[:, i, :, :]
hidden_states = resblock(hidden_states, kernel, bias, hop_size=self.cond_hop_length)
return hidden_states
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.convt_pre)
self.kernel_predictor.apply_weight_norm()
for layer in self.resblocks:
layer.apply_weight_norm()
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.convt_pre)
self.kernel_predictor.remove_weight_norm()
for layer in self.resblocks:
layer.remove_weight_norm()
UNIVNET_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`UnivNetConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UNIVNET_INPUTS_DOCSTRING = r"""
Converts a noise waveform and a conditioning spectrogram to a speech waveform. Passing a batch of log-mel
spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a
single, un-batched speech waveform.
Args:
input_features (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
config.num_mel_channels)`, or un-batched and of shape `(sequence_length, config.num_mel_channels)`.
noise_sequence (`torch.FloatTensor`, *optional*):
Tensor containing a noise sequence of standard Gaussian noise. Can be batched and of shape `(batch_size,
sequence_length, config.model_in_channels)`, or un-batched and of shape (sequence_length,
config.model_in_channels)`. If not supplied, will be randomly generated.
padding_mask (`torch.BoolTensor`, *optional*):
Mask indicating which parts of each sequence are padded. Mask values are selected in `[0, 1]`:
- 1 for tokens that are **not masked**
- 0 for tokens that are **masked**
The mask can be batched and of shape `(batch_size, sequence_length)` or un-batched and of shape
`(sequence_length,)`.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
return_dict:
Whether to return a [`~utils.ModelOutput`] subclass instead of a plain tuple.
"""
@add_start_docstrings(
"""UnivNet GAN vocoder.""",
UNIVNET_START_DOCSTRING,
)
class UnivNetModel(PreTrainedModel):
config_class = UnivNetConfig
main_input_name = "input_features"
def __init__(self, config: UnivNetConfig):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.leaky_relu_slope = config.leaky_relu_slope
self.conv_pre = nn.Conv1d(
config.model_in_channels,
config.model_hidden_channels,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
)
# Initialize location-variable convolution ResNet Blocks.
num_layers = len(config.resblock_stride_sizes)
hop_length = 1
hop_lengths = []
for stride in config.resblock_stride_sizes:
hop_length = hop_length * stride
hop_lengths.append(hop_length)
self.resblocks = nn.ModuleList(
[
UnivNetLvcBlock(
config,
layer_id=i,
lvc_hop_size=hop_lengths[i],
)
for i in range(num_layers)
]
)
self.conv_post = nn.Conv1d(config.model_hidden_channels, 1, 7, padding=3, padding_mode="reflect")
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UNIVNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=UnivNetModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: torch.FloatTensor,
noise_sequence: Optional[torch.FloatTensor] = None,
padding_mask: Optional[torch.FloatTensor] = None,
generator: Optional[torch.Generator] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], UnivNetModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import UnivNetFeatureExtractor, UnivNetModel
>>> from datasets import load_dataset, Audio
>>> model = UnivNetModel.from_pretrained("dg845/univnet-dev")
>>> feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> # Resample the audio to the feature extractor's sampling rate.
>>> ds = ds.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
>>> inputs = feature_extractor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> audio = model(**inputs).waveforms
>>> list(audio.shape)
[1, 140288]
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Resolve batch sizes for noise_sequence and spectrogram
spectrogram_batched = input_features.dim() == 3
if not spectrogram_batched:
input_features = input_features.unsqueeze(0)
spectrogram_batch_size, spectrogram_length, _ = input_features.shape
if noise_sequence is not None:
noise_sequence_batched = noise_sequence.dim() == 3
if not noise_sequence_batched:
noise_sequence = noise_sequence.unsqueeze(0)
else:
# Randomly generate noise_sequence
noise_sequence_shape = (spectrogram_batch_size, spectrogram_length, self.config.model_in_channels)
noise_sequence = torch.randn(
noise_sequence_shape, generator=generator, dtype=input_features.dtype, device=input_features.device
)
noise_sequence_batch_size = noise_sequence.shape[0]
if spectrogram_batch_size > 1 and noise_sequence_batch_size == 1:
# Repeat noise_sequence spectrogram_batch_size times
noise_sequence = noise_sequence.repeat(spectrogram_batch_size, 1, 1)
elif noise_sequence_batch_size > 1 and spectrogram_batch_size == 1:
# Repeat spectrogram noise_sequence_batch_size times
input_features = input_features.repeat(noise_sequence_batch_size, 1, 1)
if noise_sequence_batch_size != spectrogram_batch_size:
raise ValueError(
f"The batch size of `noise_sequence` is {noise_sequence_batch_size} and the batch size of"
f" `input_features` is {spectrogram_batch_size}, but the two are expected to be equal."
)
if padding_mask is not None:
if padding_mask.dim() == 1:
padding_mask = padding_mask.unsqueeze(0)
padding_mask_batch_size = padding_mask.shape[0]
if padding_mask_batch_size != spectrogram_batch_size:
raise ValueError(
f"The batch size of `padding_mask` is {padding_mask_batch_size} and the batch size of"
f" `input_features` is {spectrogram_batch_size}, but the two are expected to be equal."
)
# Change shapes to have channels before sequence lengths
hidden_states = noise_sequence.transpose(2, 1)
input_features = input_features.transpose(2, 1)
hidden_states = self.conv_pre(hidden_states)
for resblock in self.resblocks:
hidden_states = resblock(hidden_states, input_features)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
# Remove sequence length dimension since this collapses to 1
# NOTE: keep waveforms batched even if there's only one
waveform = hidden_states.squeeze(1)
# Get sequence lengths for UnivNetFeatureExtractor.batch_decode.
waveform_lengths = None
if padding_mask is not None:
# Padding is always contiguous and added on the right
waveform_lengths = torch.sum(padding_mask, dim=1)
if not return_dict:
outputs = (waveform, waveform_lengths)
return outputs
return UnivNetModelOutput(
waveforms=waveform,
waveform_lengths=waveform_lengths,
)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv_pre)
for layer in self.resblocks:
layer.apply_weight_norm()
weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
__all__ = ["UnivNetModel"]
| transformers/src/transformers/models/univnet/modeling_univnet.py/0 | {
"file_path": "transformers/src/transformers/models/univnet/modeling_univnet.py",
"repo_id": "transformers",
"token_count": 11540
} |
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classes to support TF Vision-Encoder-Text-Decoder architectures"""
from __future__ import annotations
import re
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, keras, unpack_inputs
from ...tf_utils import shape_list
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VisionEncoderDecoderConfig"
DEPRECATION_WARNING = (
"Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
" fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the"
" labels, no need to pass them yourself anymore."
)
VISION_ENCODER_DECODER_START_DOCSTRING = r"""
This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model
as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via
[`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`]
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
generative task, like image captioning.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
Zhou, Wei Li, Peter J. Liu.
Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical
character recognition (OCR) yields a significant performance improvement.
After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any
other models (see the examples for more information).
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
Parameters:
config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using the vision's model's image processor. For example, using
[`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details.
decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
Provide for sequence to sequence training to the decoder. Indices can be obtained using
[`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output
of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `({0})`.
decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""
# Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
@add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING)
class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
r"""
[`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture
with one of the base vision model classes of the library as encoder and another one of the base model classes as
decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and
[`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder.
"""
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
load_weight_prefix = "tf_vision_encoder_decoder_model"
main_input_name = "pixel_values"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[TFPreTrainedModel] = None,
decoder: Optional[TFPreTrainedModel] = None,
):
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
" `config.encoder.hidden_size`."
)
# initialize with config
super().__init__(config)
if encoder is None:
encoder = TFAutoModel.from_config(config.encoder, name="encoder")
if decoder is None:
decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder")
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
# encoder outputs might need to be projected to different dimension for decoder
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = keras.layers.Dense(
units=self.decoder.config.hidden_size,
kernel_initializer=get_initializer(config.encoder.initializer_range),
name="enc_to_dec_proj",
)
if self.encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
)
@property
def input_signature(self):
vision_config = self.config.encoder
if hasattr(vision_config, "vision_config"):
vision_config = vision_config.vision_config
if hasattr(vision_config, "image_size"):
image_size = vision_config.image_size
else:
image_size = vision_config.input_size
return {
"pixel_values": tf.TensorSpec(
shape=(
None,
vision_config.num_channels,
image_size,
image_size,
),
dtype=tf.float32,
),
"decoder_input_ids": tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="decoder_input_ids"),
}
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
def tf_to_pt_weight_rename(self, tf_weight):
# Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models
# (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal.
# However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption
# here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's
# not the case, and I wasn't sure how else to go from the config to the correct MainLayer name!
# This override is only needed in the case where we're crossloading weights from PT. However, since weights are
# often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file.
# Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it
# or not.
encoder_model_type = self.config.encoder.model_type
if "encoder" in tf_weight and "decoder" not in tf_weight:
return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),)
else:
return (tf_weight,)
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> TFPreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
Params:
encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
example is `google/vit-base-patch16-224-in21k`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
`encoder_from_pt` should be set to `True`.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
`decoder_from_pt` should be set to `True`.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import TFVisionEncoderDecoderModel
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
>>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
kwargs_encoder["name"] = "encoder"
kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix
encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
kwargs_decoder["name"] = "decoder"
kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix
decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly.
if encoder.name != "encoder":
raise ValueError("encoder model must be created with the name `encoder`.")
if decoder.name != "decoder":
raise ValueError("decoder model must be created with the name `decoder`.")
# instantiate config with corresponding kwargs
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward(
VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoTokenizer, TFVisionEncoderDecoderModel
>>> from PIL import Image
>>> import requests
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> decoder_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
... "google/vit-base-patch16-224-in21k", "openai-community/gpt2"
... )
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> img = Image.open(requests.get(url, stream=True).raw)
>>> # forward
>>> pixel_values = image_processor(images=img, return_tensors="tf").pixel_values # Batch size 1
>>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1
>>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
>>> # training
>>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
>>> loss, logits = outputs.loss, outputs.logits
>>> # save and load from pretrained
>>> model.save_pretrained("vit-gpt2")
>>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2")
>>> # generation
>>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# Let the user be responsible for the expected format.
if encoder_outputs is not None:
if return_dict and not isinstance(encoder_outputs, ModelOutput):
raise ValueError(
"If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of "
f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`."
)
if encoder_outputs is None:
encoder_inputs = {
"input_ids": pixel_values,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"return_dict": return_dict,
"training": training,
}
# Add arguments to encoder from `kwargs_encoder`
encoder_inputs.update(kwargs_encoder)
if "input_ids" in encoder_inputs:
encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids")
if encoder_inputs["pixel_values"] is None:
raise ValueError("You have to specify pixel_values")
# Handle the case where the inputs are passed as a single dict which contains `labels`.
# The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this
# parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`).
if "labels" in encoder_inputs:
labels = encoder_inputs.pop("labels")
# handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
if "decoder_input_ids" in encoder_inputs:
decoder_input_ids = encoder_inputs.pop("decoder_input_ids")
# handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
if "decoder_attention_mask" in encoder_inputs:
decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask")
encoder_outputs = self.encoder(**encoder_inputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
batch_size, sequence_length = shape_list(encoder_hidden_states)[:2]
encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32)
decoder_inputs = {
"input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"inputs_embeds": decoder_inputs_embeds,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"use_cache": use_cache,
"past_key_values": past_key_values,
"return_dict": return_dict,
"training": training,
}
# Add arguments to decoder from `kwargs_decoder`
decoder_inputs.update(kwargs_decoder)
decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0]
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
warnings.warn(DEPRECATION_WARNING, FutureWarning)
loss = self.hf_compute_loss(labels, logits)
if not return_dict:
past_key_values = None
if use_cache:
past_key_values = decoder_outputs[1]
# The starting index of the remaining elements in `decoder_outputs`
start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)])
if not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs
output = tuple([x for x in output if x is not None])
return output
return TFSeq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.decoder.use_cache else None
dec_hs = (
tf.convert_to_tensor(output.decoder_hidden_states) if self.config.decoder.output_hidden_states else None
)
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.decoder.output_attentions else None
enc_hs = (
tf.convert_to_tensor(output.encoder_hidden_states) if self.config.encoder.output_hidden_states else None
)
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.encoder.output_attentions else None
cross_attns = (
tf.convert_to_tensor(output.cross_attentions)
if self.config.decoder.output_attentions and output.cross_attentions is not None
else None
)
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
cross_attentions=cross_attns,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
):
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
past_key_values = decoder_inputs.get("past_key_values")
input_dict = {
"pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_input_ids": decoder_inputs["input_ids"],
# TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete
"encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]),
"past_key_values": past_key_values,
"use_cache": use_cache,
}
return input_dict
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported. "
"Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))"
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "enc_to_dec_proj", None) is not None:
with tf.name_scope(self.enc_to_dec_proj.name):
self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size])
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
__all__ = ["TFVisionEncoderDecoderModel"]
| transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py/0 | {
"file_path": "transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py",
"repo_id": "transformers",
"token_count": 14896
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VitDet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class VitDetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an
VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the VitDet
[google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of mlp hidden dim to embedding dim.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
pretrain_image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image during pretraining.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Stochastic depth rate.
window_block_indices (`List[int]`, *optional*, defaults to `[]`):
List of indices of blocks that should have window attention instead of regular global self-attention.
residual_block_indices (`List[int]`, *optional*, defaults to `[]`):
List of indices of blocks that should have an extra residual block after the MLP.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether to add absolute position embeddings to the patch embeddings.
use_relative_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to add relative position embeddings to the attention maps.
window_size (`int`, *optional*, defaults to 0):
The size of the attention window.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import VitDetConfig, VitDetModel
>>> # Initializing a VitDet configuration
>>> configuration = VitDetConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = VitDetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vitdet"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4,
hidden_act="gelu",
dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=224,
pretrain_image_size=224,
patch_size=16,
num_channels=3,
qkv_bias=True,
drop_path_rate=0.0,
window_block_indices=[],
residual_block_indices=[],
use_absolute_position_embeddings=True,
use_relative_position_embeddings=False,
window_size=0,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.hidden_act = hidden_act
self.dropout_prob = dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.pretrain_image_size = pretrain_image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.drop_path_rate = drop_path_rate
self.window_block_indices = window_block_indices
self.residual_block_indices = residual_block_indices
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_embeddings = use_relative_position_embeddings
self.window_size = window_size
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["VitDetConfig"]
| transformers/src/transformers/models/vitdet/configuration_vitdet.py/0 | {
"file_path": "transformers/src/transformers/models/vitdet/configuration_vitdet.py",
"repo_id": "transformers",
"token_count": 2839
} |
# coding=utf-8
# Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VITS model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class VitsConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VitsModel`]. It is used to instantiate a VITS
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the VITS
[facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 38):
Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed to the forward method of [`VitsModel`].
hidden_size (`int`, *optional*, defaults to 192):
Dimensionality of the text encoder layers.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer encoder.
window_size (`int`, *optional*, defaults to 4):
Window size for the relative positional embeddings in the attention layers of the Transformer encoder.
use_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the key, query, value projection layers in the Transformer encoder.
ffn_dim (`int`, *optional*, defaults to 768):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
ffn_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder.
flow_size (`int`, *optional*, defaults to 192):
Dimensionality of the flow layers.
spectrogram_bins (`int`, *optional*, defaults to 513):
Number of frequency bins in the target spectrogram.
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`):
Whether to use the stochastic duration prediction module or the regular duration predictor.
num_speakers (`int`, *optional*, defaults to 1):
Number of speakers if this is a multi-speaker model.
speaker_embedding_size (`int`, *optional*, defaults to 0):
Number of channels used by the speaker embeddings. Is zero for single-speaker models.
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the HiFi-GAN upsampling network.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`):
A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network.
The length of `upsample_rates` defines the number of convolutional layers and has to match the length of
`upsample_kernel_sizes`.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling
network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match
the length of `upsample_rates`.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN
multi-receptive field fusion (MRF) module.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
HiFi-GAN multi-receptive field fusion (MRF) module.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation.
depth_separable_channels (`int`, *optional*, defaults to 2):
Number of channels to use in each depth-separable block.
depth_separable_num_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers to use in each depth-separable block.
duration_predictor_flow_bins (`int`, *optional*, defaults to 10):
Number of channels to map using the unonstrained rational spline in the duration predictor model.
duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0):
Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor
model.
duration_predictor_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the 1D convolution layers used in the duration predictor model.
duration_predictor_dropout (`float`, *optional*, defaults to 0.5):
The dropout ratio for the duration predictor model.
duration_predictor_num_flows (`int`, *optional*, defaults to 4):
Number of flow stages used by the duration predictor model.
duration_predictor_filter_channels (`int`, *optional*, defaults to 256):
Number of channels for the convolution layers used in the duration predictor model.
prior_encoder_num_flows (`int`, *optional*, defaults to 4):
Number of flow stages used by the prior encoder flow model.
prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4):
Number of WaveNet layers used by the prior encoder flow model.
posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16):
Number of WaveNet layers used by the posterior encoder model.
wavenet_kernel_size (`int`, *optional*, defaults to 5):
Kernel size of the 1D convolution layers used in the WaveNet model.
wavenet_dilation_rate (`int`, *optional*, defaults to 1):
Dilation rates of the dilated 1D convolutional layers used in the WaveNet model.
wavenet_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the WaveNet layers.
speaking_rate (`float`, *optional*, defaults to 1.0):
Speaking rate. Larger values give faster synthesised speech.
noise_scale (`float`, *optional*, defaults to 0.667):
How random the speech prediction is. Larger values create more variation in the predicted speech.
noise_scale_duration (`float`, *optional*, defaults to 0.8):
How random the duration prediction is. Larger values create more variation in the predicted durations.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz).
Example:
```python
>>> from transformers import VitsModel, VitsConfig
>>> # Initializing a "facebook/mms-tts-eng" style configuration
>>> configuration = VitsConfig()
>>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration
>>> model = VitsModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vits"
def __init__(
self,
vocab_size=38,
hidden_size=192,
num_hidden_layers=6,
num_attention_heads=2,
window_size=4,
use_bias=True,
ffn_dim=768,
layerdrop=0.1,
ffn_kernel_size=3,
flow_size=192,
spectrogram_bins=513,
hidden_act="relu",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_stochastic_duration_prediction=True,
num_speakers=1,
speaker_embedding_size=0,
upsample_initial_channel=512,
upsample_rates=[8, 8, 2, 2],
upsample_kernel_sizes=[16, 16, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
leaky_relu_slope=0.1,
depth_separable_channels=2,
depth_separable_num_layers=3,
duration_predictor_flow_bins=10,
duration_predictor_tail_bound=5.0,
duration_predictor_kernel_size=3,
duration_predictor_dropout=0.5,
duration_predictor_num_flows=4,
duration_predictor_filter_channels=256,
prior_encoder_num_flows=4,
prior_encoder_num_wavenet_layers=4,
posterior_encoder_num_wavenet_layers=16,
wavenet_kernel_size=5,
wavenet_dilation_rate=1,
wavenet_dropout=0.0,
speaking_rate=1.0,
noise_scale=0.667,
noise_scale_duration=0.8,
sampling_rate=16_000,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.window_size = window_size
self.use_bias = use_bias
self.ffn_dim = ffn_dim
self.layerdrop = layerdrop
self.ffn_kernel_size = ffn_kernel_size
self.flow_size = flow_size
self.spectrogram_bins = spectrogram_bins
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_stochastic_duration_prediction = use_stochastic_duration_prediction
self.num_speakers = num_speakers
self.speaker_embedding_size = speaker_embedding_size
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.leaky_relu_slope = leaky_relu_slope
self.depth_separable_channels = depth_separable_channels
self.depth_separable_num_layers = depth_separable_num_layers
self.duration_predictor_flow_bins = duration_predictor_flow_bins
self.duration_predictor_tail_bound = duration_predictor_tail_bound
self.duration_predictor_kernel_size = duration_predictor_kernel_size
self.duration_predictor_dropout = duration_predictor_dropout
self.duration_predictor_num_flows = duration_predictor_num_flows
self.duration_predictor_filter_channels = duration_predictor_filter_channels
self.prior_encoder_num_flows = prior_encoder_num_flows
self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers
self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers
self.wavenet_kernel_size = wavenet_kernel_size
self.wavenet_dilation_rate = wavenet_dilation_rate
self.wavenet_dropout = wavenet_dropout
self.speaking_rate = speaking_rate
self.noise_scale = noise_scale
self.noise_scale_duration = noise_scale_duration
self.sampling_rate = sampling_rate
if len(upsample_kernel_sizes) != len(upsample_rates):
raise ValueError(
f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of "
f"`upsample_rates` ({len(upsample_rates)})"
)
super().__init__(**kwargs)
__all__ = ["VitsConfig"]
| transformers/src/transformers/models/vits/configuration_vits.py/0 | {
"file_path": "transformers/src/transformers/models/vits/configuration_vits.py",
"repo_id": "transformers",
"token_count": 5376
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Whisper."""
import json
import os
import re
import warnings
from functools import lru_cache
from typing import List, Optional, Tuple
import numpy as np
from tokenizers import AddedToken, processors
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
from .tokenization_whisper import LANGUAGES, TASK_IDS, TO_LANGUAGE_CODE, WhisperTokenizer, _decode_asr
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"tokenizer_file": "tokenizer.json",
"merges_file": "merges.txt",
"normalizer_file": "normalizer.json",
}
class WhisperTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
normalizer_file (`str`, *optional*):
Path to the normalizer_file file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as
`"<|startoftranscript|>"` when generating.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Whisper tokenizer detect beginning of words by the preceding space).
language (`str`, *optional*):
The language of the transcription text. The corresponding language id token is appended to the start of the
sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token
`"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only.
task (`str`, *optional*):
Task identifier to append at the start of sequence (if any). This should be used for mulitlingual
fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation.
predict_timestamps (`bool`, *optional*, defaults to `False`):
Whether to omit the `<|notimestamps|>` token at the start of the sequence.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = WhisperTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
normalizer_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
language=None,
task=None,
predict_timestamps=False,
**kwargs,
):
bos_token = (
AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True)
if isinstance(bos_token, str)
else bos_token
)
eos_token = (
AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True)
if isinstance(eos_token, str)
else eos_token
)
unk_token = (
AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True)
if isinstance(unk_token, str)
else unk_token
)
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
if normalizer_file is not None:
with open(normalizer_file, encoding="utf-8") as vocab_handle:
self.english_spelling_normalizer = json.load(vocab_handle)
else:
self.english_spelling_normalizer = None
self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>")
self.language = language
self.task = task
self.predict_timestamps = predict_timestamps
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps
def _decode_with_timestamps(
self, token_ids, skip_special_tokens=False, time_precision=0.02, segment_size=1500
) -> str:
"""
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes
given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
"""
timestamp_begin = self.all_special_ids[-1] + 1
outputs = [[]]
cur_max_timestamp = 0.0
prev_segments_len = 0.0
penultimate_timestamp = 0.0
for i, token in enumerate(token_ids):
if token >= timestamp_begin:
timestamp = float((token - timestamp_begin) * time_precision)
if timestamp < cur_max_timestamp:
# next segment has started
last_was_single_ending = i >= 2 and not (
token_ids[i - 1] >= timestamp_begin and token_ids[i - 2] >= timestamp_begin
)
if last_was_single_ending:
prev_segments_len += time_precision * segment_size
else:
cur_max_timestamp = penultimate_timestamp
prev_segments_len += penultimate_timestamp
outputs = outputs[:-2]
penultimate_timestamp = cur_max_timestamp
cur_max_timestamp = timestamp
outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>")
outputs.append([])
else:
outputs[-1].append(token)
outputs = [
s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs
]
return "".join(outputs)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets
def _compute_offsets(self, token_ids, time_precision=0.02, segment_size=1500):
"""
Compute offsets for a given tokenized input
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
time_precision (`float`, *optional*, defaults to 0.02):
The time ratio to convert from token to time.
segment_size (`int`, *optional*, defaults to 1500):
The number of features in the input mel spectrogram.
"""
offsets = []
# ensure torch tensor of token ids is placed on cpu
if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)):
token_ids = token_ids.cpu()
token_ids = np.array(token_ids)
if token_ids.shape[0] > 1 and len(token_ids.shape) > 1:
raise ValueError("Can only process a single input at a time")
timestamp_begin = self.all_special_ids[-1] + 1
timestamp_tokens = token_ids >= timestamp_begin
consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1
if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1:
# either there are no timestamps or there are no consecutive ones
return []
elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive:
# we add the final timestamp if it is not already in the list
consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1)
last_slice = np.where(timestamp_tokens)[0][0]
cur_max_timestamp = 0
prev_segments_len = 0
for current_slice in consecutive:
sliced_tokens = token_ids[last_slice:current_slice]
if len(sliced_tokens) > 1:
start_timestamp_position = sliced_tokens[0].item() - timestamp_begin
end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin
if start_timestamp_position < cur_max_timestamp:
# next segment has started
is_single_ending = last_slice >= 2 and not (
token_ids[last_slice - 2] >= timestamp_begin and token_ids[last_slice - 1] >= timestamp_begin
)
if is_single_ending:
prev_segments_len += segment_size
else:
prev_segments_len += cur_max_timestamp
cur_max_timestamp = end_timestamp_position
# strip timestamp tokens from the text output
sliced_tokens = self._preprocess_token_ids(sliced_tokens)
text = self._decode(sliced_tokens)
text = self._filter_timestamp_ids(text)
offsets.append(
{
"text": text,
"timestamp": (
start_timestamp_position * time_precision + prev_segments_len * time_precision,
end_timestamp_position * time_precision + prev_segments_len * time_precision,
),
}
)
last_slice = current_slice
return offsets
@lru_cache
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.timestamp_ids
def timestamp_ids(self, time_precision=0.02):
"""
Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache.
Args:
time_precision (`float`, *optional*, defaults to 0.02):
The time ratio to convert from token to time.
"""
return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)])
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._preprocess_token_ids
def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False):
"""
Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be
removed.
"""
if skip_special_tokens:
prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>")
decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id)
return token_ids
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._filter_timestamp_ids
def _filter_timestamp_ids(self, token_ids):
return re.sub(self.timestamp_pat, "", token_ids)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode
def decode(
self,
token_ids,
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
output_offsets: bool = False,
time_precision: float = 0.02,
decode_with_timestamps: bool = False,
normalize: bool = False,
basic_normalize: bool = False,
remove_diacritics: bool = False,
**kwargs,
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding. Will remove the previous tokens (pre-prompt)
if present.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces. If `None`, will default to
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
output_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output the offsets of the tokens. This should only be set if the model predicted
timestamps. If there are previous tokens (pre-prompt) to decode, they will only appear in the decoded
text if they contain timestamp tokens.
time_precision (`float`, *optional*, defaults to 0.02):
The time ratio to convert from token to time.
decode_with_timestamps (`bool`, *optional*, defaults to `False`):
Whether or not to decode with timestamps included in the raw text.
normalize (`bool`, *optional*, defaults to `False`):
Whether or not to apply the English text normalizer to the decoded text. Only applicable when the
target text is in English. Otherwise, the basic text normalizer should be applied.
basic_normalize (`bool`, *optional*, defaults to `False`):
Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual
target text.
remove_diacritics (`bool`, *optional*, defaults to `False`):
Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may
destroy information in the decoded text, hence it should be used with caution.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
filtered_ids = self._preprocess_token_ids(
token_ids,
skip_special_tokens=skip_special_tokens,
)
text = super().decode(
filtered_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
normalize=normalize,
basic_normalize=basic_normalize,
remove_diacritics=remove_diacritics,
**kwargs,
)
if decode_with_timestamps:
# legacy method to decode timestamps when not included in the tokenizer vocabulary
text = self._decode_with_timestamps(
filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens
)
else:
text = self._filter_timestamp_ids(text)
# retrieve offsets
if output_offsets:
offsets = self._compute_offsets(token_ids, time_precision=time_precision)
return {"text": text, "offsets": offsets}
return text
def _decode(
self, *args, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs
) -> str:
text = super()._decode(*args, **kwargs)
if normalize:
clean_text = self._normalize(text)
return clean_text
elif basic_normalize:
clean_text = self._basic_normalize(text, remove_diacritics=remove_diacritics)
return clean_text
else:
return text
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize
def _normalize(self, text):
warnings.warn(
"The private method `_normalize` is deprecated and will be removed in v5 of Transformers."
"You can normalize an input string using the Whisper English normalizer using the `normalize` method."
)
return self.normalize(text)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._basic_normalize
def _basic_normalize(self, text, remove_diacritics=False):
warnings.warn(
"The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers."
"You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method."
)
return self.basic_normalize(text, remove_diacritics=remove_diacritics)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.normalize
def normalize(self, text):
"""
Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on
english text.
"""
normalizer = EnglishTextNormalizer(self.english_spelling_normalizer)
return normalizer(text)
@staticmethod
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.basic_normalize
def basic_normalize(text, remove_diacritics=False):
"""
Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on
multilingual text.
"""
normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics)
return normalizer(text)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
normalizer_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"]
)
if self.english_spelling_normalizer is not None:
with open(normalizer_file, "w", encoding="utf-8") as f:
f.write(
json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
)
return tuple(files) + (normalizer_file,)
def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None):
"""
Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to
update the prefix tokens as required when fine-tuning. Example:
```python
>>> # instantiate the tokenizer and set the prefix token to Spanish
>>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish")
>>> # now switch the prefix token from Spanish to French
>>> tokenizer.set_prefix_tokens(language="french")
```
Args:
language (`str`, *optional*, defaults to `None`):
The language of the transcription text.
task (`str`, *optional*, defaults to `None`):
Task identifier to append at the start of sequence (if any).
predict_timestamps (`bool`, *optional*, defaults to `None`):
Whether to omit the `<|notimestamps|>` token at the start of the sequence.
"""
self.language = language if language is not None else self.language
self.task = task if task is not None else self.task
self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps
prefix_token_ids = self.prefix_tokens
prefixes = self.convert_ids_to_tokens(prefix_token_ids)
eos = self.eos_token
eos_token_id = self.eos_token_id
prefix_template = " ".join([f"{token}:0" for token in prefixes])
self.backend_tokenizer.post_processor = processors.TemplateProcessing(
single=f"{prefix_template} $A:0 {eos}:0",
pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
special_tokens=[
(eos, eos_token_id),
*zip(prefixes, prefix_token_ids),
],
)
@property
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens
def prefix_tokens(self) -> List[int]:
bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
translate_token_id = self.convert_tokens_to_ids("<|translate|>")
transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>")
notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>")
langs = tuple(LANGUAGES.keys())
if self.language is not None:
self.language = self.language.lower()
if self.language in TO_LANGUAGE_CODE:
language_id = TO_LANGUAGE_CODE[self.language]
elif self.language in TO_LANGUAGE_CODE.values():
language_id = self.language
else:
is_language_code = len(self.language) == 2
raise ValueError(
f"Unsupported language: {self.language}. Language should be one of:"
f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
)
if self.task is not None:
if self.task not in TASK_IDS:
raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}")
bos_sequence = [bos_token_id]
if self.language is not None:
bos_sequence.append(bos_token_id + 1 + langs.index(language_id))
if self.task is not None:
bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id)
if not self.predict_timestamps:
bos_sequence.append(notimestamps_token_id)
return bos_sequence
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id]
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1]
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps)
# prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|>
# we don't want to force the bos token at position 1, as this is the starting token
# when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|>
# to get the forced tokens
forced_tokens = self.prefix_tokens[1:]
forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)]
return forced_decoder_ids
def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision):
return _decode_asr(
self,
model_outputs,
return_timestamps=return_timestamps,
return_language=return_language,
time_precision=time_precision,
)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids
def get_prompt_ids(self, text: str, return_tensors="np"):
"""Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`]."""
batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False)
# Check for special tokens
prompt_text_ids = batch_encoding["input_ids"][1:]
special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None)
if special_token_id is not None:
token = self.convert_ids_to_tokens(special_token_id)
raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.")
batch_encoding.convert_to_tensors(tensor_type=return_tensors)
return batch_encoding["input_ids"]
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt
def _strip_prompt(self, token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int):
if not isinstance(token_ids, list):
token_ids = self._convert_to_list(token_ids)
# handle case of empty token_ids for decoding with timestamps.
# at this point token_ids is a list, so it is safe to use if not check.
if not token_ids:
return token_ids
has_prompt = token_ids[0] == prompt_token_id
if has_prompt:
if decoder_start_token_id in token_ids:
return token_ids[token_ids.index(decoder_start_token_id) :]
else:
return []
return token_ids
@staticmethod
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._convert_to_list
def _convert_to_list(token_ids):
# convert type to ndarray if necessary
if hasattr(token_ids, "numpy"):
if "torch" in str(type(token_ids)):
token_ids = token_ids.cpu().numpy()
elif "tensorflow" in str(type(token_ids)):
token_ids = token_ids.numpy()
elif "jaxlib" in str(type(token_ids)):
token_ids = token_ids.tolist()
# now the token ids are either a numpy array, or a list of lists
if isinstance(token_ids, np.ndarray):
token_ids = token_ids.tolist()
return token_ids
__all__ = ["WhisperTokenizerFast"]
| transformers/src/transformers/models/whisper/tokenization_whisper_fast.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/tokenization_whisper_fast.py",
"repo_id": "transformers",
"token_count": 13010
} |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path):
# Load checkpoint
chkpt = torch.load(xlm_checkpoint_path, map_location="cpu")
state_dict = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
two_levels_state_dict = {}
for k, v in state_dict.items():
if "pred_layer" in k:
two_levels_state_dict[k] = v
else:
two_levels_state_dict["transformer." + k] = v
config = chkpt["params"]
config = {n: v for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))}
vocab = chkpt["dico_word2id"]
vocab = {s + "</w>" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""): i for s, i in vocab.items()}
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(two_levels_state_dict, pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(json.dumps(config, indent=2) + "\n")
print(f"Save vocab file to {pytorch_config_dump_path}")
with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f:
f.write(json.dumps(vocab, indent=2) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1106
} |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XLNet configuration"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class XLNetConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to
instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
n_layer (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
d_inner (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and
`"gelu_new"` are supported.
untie_r (`bool`, *optional*, defaults to `True`):
Whether or not to untie relative position biases
attn_type (`str`, *optional*, defaults to `"bi"`):
The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
mem_len (`int` or `None`, *optional*):
The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous
forward pass won't be re-computed. See the
[quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information.
reuse_len (`int`, *optional*):
The number of tokens in the current batch to be cached and reused in the future.
bi_data (`bool`, *optional*, defaults to `False`):
Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False`
during finetuning.
clamp_len (`int`, *optional*, defaults to -1):
Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping.
same_length (`bool`, *optional*, defaults to `False`):
Whether or not to use the same attention length for each token.
summary_type (`str`, *optional*, defaults to "last"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`boo`, *optional*, defaults to `True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_last_dropout (`float`, *optional*, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
use_mems_eval (`bool`, *optional*, defaults to `True`):
Whether or not the model should make use of the recurrent memory mechanism in evaluation mode.
use_mems_train (`bool`, *optional*, defaults to `False`):
Whether or not the model should make use of the recurrent memory mechanism in train mode.
<Tip>
For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to
set `use_mems_train` to `False` as discussed
[here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to
`True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This
line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of
equal size.
</Tip>
Examples:
```python
>>> from transformers import XLNetConfig, XLNetModel
>>> # Initializing a XLNet configuration
>>> configuration = XLNetConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = XLNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xlnet"
keys_to_ignore_at_inference = ["mems"]
attribute_map = {
"n_token": "vocab_size", # Backward compatibility
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=32000,
d_model=1024,
n_layer=24,
n_head=16,
d_inner=4096,
ff_activation="gelu",
untie_r=True,
attn_type="bi",
initializer_range=0.02,
layer_norm_eps=1e-12,
dropout=0.1,
mem_len=512,
reuse_len=None,
use_mems_eval=True,
use_mems_train=False,
bi_data=False,
clamp_len=-1,
same_length=False,
summary_type="last",
summary_use_proj=True,
summary_activation="tanh",
summary_last_dropout=0.1,
start_n_top=5,
end_n_top=5,
pad_token_id=5,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
"""Constructs XLNetConfig."""
self.vocab_size = vocab_size
self.d_model = d_model
self.n_layer = n_layer
self.n_head = n_head
if d_model % n_head != 0:
raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0")
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})"
)
self.d_head = d_model // n_head
self.ff_activation = ff_activation
self.d_inner = d_inner
self.untie_r = untie_r
self.attn_type = attn_type
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.dropout = dropout
self.mem_len = mem_len
self.reuse_len = reuse_len
self.bi_data = bi_data
self.clamp_len = clamp_len
self.same_length = same_length
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_last_dropout = summary_last_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.eos_token_id = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead.",
FutureWarning,
)
use_mems_eval = kwargs["use_cache"]
self.use_mems_eval = use_mems_eval
self.use_mems_train = use_mems_train
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@property
def max_position_embeddings(self):
logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.")
return -1
@max_position_embeddings.setter
def max_position_embeddings(self, value):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"The model {self.model_type} is one of the few models that has no sequence length limit."
)
__all__ = ["XLNetConfig"]
| transformers/src/transformers/models/xlnet/configuration_xlnet.py/0 | {
"file_path": "transformers/src/transformers/models/xlnet/configuration_xlnet.py",
"repo_id": "transformers",
"token_count": 4350
} |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import GenericTensor, Pipeline, PipelineException, build_pipeline_init_args
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
@add_end_docstrings(
build_pipeline_init_args(has_tokenizer=True),
r"""
top_k (`int`, *optional*, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
tokenizer_kwargs (`dict`, *optional*):
Additional dictionary of keyword arguments passed along to the tokenizer.""",
)
class FillMaskPipeline(Pipeline):
"""
Masked language modeling prediction pipeline using any `ModelWithLMHead`. See the [masked language modeling
examples](../task_summary#masked-language-modeling) for more information.
Example:
```python
>>> from transformers import pipeline
>>> fill_masker = pipeline(model="google-bert/bert-base-uncased")
>>> fill_masker("This is a simple [MASK].")
[{'score': 0.042, 'token': 3291, 'token_str': 'problem', 'sequence': 'this is a simple problem.'}, {'score': 0.031, 'token': 3160, 'token_str': 'question', 'sequence': 'this is a simple question.'}, {'score': 0.03, 'token': 8522, 'token_str': 'equation', 'sequence': 'this is a simple equation.'}, {'score': 0.027, 'token': 2028, 'token_str': 'one', 'sequence': 'this is a simple one.'}, {'score': 0.024, 'token': 3627, 'token_str': 'rule', 'sequence': 'this is a simple rule.'}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This mask filling pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"fill-mask"`.
The models that this pipeline can use are models that have been trained with a masked language modeling objective,
which includes the bi-directional models in the library. See the up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=fill-mask).
<Tip>
This pipeline only works for inputs with exactly one token masked. Experimental: We added support for multiple
masks. The returned values are raw model output, and correspond to disjoint probabilities where one might expect
joint probabilities (See [discussion](https://github.com/huggingface/transformers/pull/10222)).
</Tip>
<Tip>
This pipeline now supports tokenizer_kwargs. For example try:
```python
>>> from transformers import pipeline
>>> fill_masker = pipeline(model="google-bert/bert-base-uncased")
>>> tokenizer_kwargs = {"truncation": True}
>>> fill_masker(
... "This is a simple [MASK]. " + "...with a large amount of repeated text appended. " * 100,
... tokenizer_kwargs=tokenizer_kwargs,
... )
```
</Tip>
"""
def get_masked_index(self, input_ids: GenericTensor) -> np.ndarray:
if self.framework == "tf":
masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()
elif self.framework == "pt":
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False)
else:
raise ValueError("Unsupported framework")
return masked_index
def _ensure_exactly_one_mask_token(self, input_ids: GenericTensor) -> np.ndarray:
masked_index = self.get_masked_index(input_ids)
numel = np.prod(masked_index.shape)
if numel < 1:
raise PipelineException(
"fill-mask",
self.model.base_model_prefix,
f"No mask_token ({self.tokenizer.mask_token}) found on the input",
)
def ensure_exactly_one_mask_token(self, model_inputs: GenericTensor):
if isinstance(model_inputs, list):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0])
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(input_ids)
def preprocess(
self, inputs, return_tensors=None, tokenizer_kwargs=None, **preprocess_parameters
) -> Dict[str, GenericTensor]:
if return_tensors is None:
return_tensors = self.framework
if tokenizer_kwargs is None:
tokenizer_kwargs = {}
model_inputs = self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs)
self.ensure_exactly_one_mask_token(model_inputs)
return model_inputs
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
model_outputs["input_ids"] = model_inputs["input_ids"]
return model_outputs
def postprocess(self, model_outputs, top_k=5, target_ids=None):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
top_k = target_ids.shape[0]
input_ids = model_outputs["input_ids"][0]
outputs = model_outputs["logits"]
if self.framework == "tf":
masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0]
outputs = outputs.numpy()
logits = outputs[0, masked_index, :]
probs = stable_softmax(logits, axis=-1)
if target_ids is not None:
probs = tf.gather_nd(tf.squeeze(probs, 0), target_ids.reshape(-1, 1))
probs = tf.expand_dims(probs, 0)
topk = tf.math.top_k(probs, k=top_k)
values, predictions = topk.values.numpy(), topk.indices.numpy()
else:
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
# Fill mask pipeline supports only one ${mask_token} per sample
logits = outputs[0, masked_index, :]
probs = logits.softmax(dim=-1)
if target_ids is not None:
probs = probs[..., target_ids]
values, predictions = probs.topk(top_k)
result = []
single_mask = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())):
row = []
for v, p in zip(_values, _predictions):
# Copy is important since we're going to modify this array in place
tokens = input_ids.numpy().copy()
if target_ids is not None:
p = target_ids[p].tolist()
tokens[masked_index[i]] = p
# Filter padding out:
tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
row.append(proposition)
result.append(row)
if single_mask:
return result[0]
return result
def get_target_ids(self, targets, top_k=None):
if isinstance(targets, str):
targets = [targets]
try:
vocab = self.tokenizer.get_vocab()
except Exception:
vocab = {}
target_ids = []
for target in targets:
id_ = vocab.get(target, None)
if id_ is None:
input_ids = self.tokenizer(
target,
add_special_tokens=False,
return_attention_mask=False,
return_token_type_ids=False,
max_length=1,
truncation=True,
)["input_ids"]
if len(input_ids) == 0:
logger.warning(
f"The specified target token `{target}` does not exist in the model vocabulary. "
"We cannot replace it with anything meaningful, ignoring it"
)
continue
id_ = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f"The specified target token `{target}` does not exist in the model vocabulary. "
f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`."
)
target_ids.append(id_)
target_ids = list(set(target_ids))
if len(target_ids) == 0:
raise ValueError("At least one target must be provided when passed.")
target_ids = np.array(target_ids)
return target_ids
def _sanitize_parameters(self, top_k=None, targets=None, tokenizer_kwargs=None):
preprocess_params = {}
if tokenizer_kwargs is not None:
preprocess_params["tokenizer_kwargs"] = tokenizer_kwargs
postprocess_params = {}
if targets is not None:
target_ids = self.get_target_ids(targets, top_k)
postprocess_params["target_ids"] = target_ids
if top_k is not None:
postprocess_params["top_k"] = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask", self.model.base_model_prefix, "The tokenizer does not define a `mask_token`."
)
return preprocess_params, {}, postprocess_params
def __call__(self, inputs, **kwargs):
"""
Fill the masked token in the text(s) given as inputs.
Args:
inputs (`str` or `List[str]`):
One or several texts (or one list of prompts) with masked tokens.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first
resulting token will be used (with a warning, and that might be slower).
top_k (`int`, *optional*):
When passed, overrides the number of predictions to return.
Return:
A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys:
- **sequence** (`str`) -- The corresponding input with the mask token prediction.
- **score** (`float`) -- The corresponding probability.
- **token** (`int`) -- The predicted token id (to replace the masked one).
- **token_str** (`str`) -- The predicted token (to replace the masked one).
"""
outputs = super().__call__(inputs, **kwargs)
if isinstance(inputs, list) and len(inputs) == 1:
return outputs[0]
return outputs
| transformers/src/transformers/pipelines/fill_mask.py/0 | {
"file_path": "transformers/src/transformers/pipelines/fill_mask.py",
"repo_id": "transformers",
"token_count": 5000
} |
import types
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
from ..models.bert.tokenization_bert import BasicTokenizer
from ..utils import (
ExplicitEnum,
add_end_docstrings,
is_tf_available,
is_torch_available,
)
from .base import ArgumentHandler, ChunkPipeline, Dataset, build_pipeline_init_args
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
class TokenClassificationArgumentHandler(ArgumentHandler):
"""
Handles arguments for token classification.
"""
def __call__(self, inputs: Union[str, List[str]], **kwargs):
if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0:
inputs = list(inputs)
batch_size = len(inputs)
elif isinstance(inputs, str):
inputs = [inputs]
batch_size = 1
elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType):
return inputs, None
else:
raise ValueError("At least one input is required.")
offset_mapping = kwargs.get("offset_mapping")
if offset_mapping:
if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple):
offset_mapping = [offset_mapping]
if len(offset_mapping) != batch_size:
raise ValueError("offset_mapping should have the same batch size as the input")
return inputs, offset_mapping
class AggregationStrategy(ExplicitEnum):
"""All the valid aggregation strategies for TokenClassificationPipeline"""
NONE = "none"
SIMPLE = "simple"
FIRST = "first"
AVERAGE = "average"
MAX = "max"
@add_end_docstrings(
build_pipeline_init_args(has_tokenizer=True),
r"""
ignore_labels (`List[str]`, defaults to `["O"]`):
A list of labels to ignore.
grouped_entities (`bool`, *optional*, defaults to `False`):
DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the
same entity together in the predictions or not.
stride (`int`, *optional*):
If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size
model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The
value of this argument defines the number of overlapping tokens between chunks. In other words, the model
will shift forward by `tokenizer.model_max_length - stride` tokens each step.
aggregation_strategy (`str`, *optional*, defaults to `"none"`):
The strategy to fuse (or not) tokens based on the model prediction.
- "none" : Will simply not do any aggregation and simply return raw results from the model
- "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C,
I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D",
"entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as
different entities. On word based languages, we might end up splitting words undesirably : Imagine
Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity":
"NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages
that support that meaning, which is basically tokens separated by a space). These mitigations will
only work on real words, "New york" might still be tagged with two different entities.
- "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
end up with different tags. Words will simply use the tag of the first token of the word when there
is ambiguity.
- "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words,
cannot end up with different tags. scores will be averaged first across tokens, and then the maximum
label is applied.
- "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
end up with different tags. Word entity will simply be the token with the maximum score.""",
)
class TokenClassificationPipeline(ChunkPipeline):
"""
Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition
examples](../task_summary#named-entity-recognition) for more information.
Example:
```python
>>> from transformers import pipeline
>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
>>> tokens = token_classifier(sentence)
>>> tokens
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]
>>> token = tokens[0]
>>> # Start and end provide an easy way to highlight words in the original text.
>>> sentence[token["start"] : token["end"]]
' jean-baptiste'
>>> # Some models use the same idea to do part of speech.
>>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple")
>>> syntaxer("My name is Sarah and I live in London")
[{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous).
The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the
up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=token-classification).
"""
default_input_names = "sequences"
def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
if self.framework == "tf"
else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
self._basic_tokenizer = BasicTokenizer(do_lower_case=False)
self._args_parser = args_parser
def _sanitize_parameters(
self,
ignore_labels=None,
grouped_entities: Optional[bool] = None,
ignore_subwords: Optional[bool] = None,
aggregation_strategy: Optional[AggregationStrategy] = None,
offset_mapping: Optional[List[Tuple[int, int]]] = None,
stride: Optional[int] = None,
):
preprocess_params = {}
if offset_mapping is not None:
preprocess_params["offset_mapping"] = offset_mapping
postprocess_params = {}
if grouped_entities is not None or ignore_subwords is not None:
if grouped_entities and ignore_subwords:
aggregation_strategy = AggregationStrategy.FIRST
elif grouped_entities and not ignore_subwords:
aggregation_strategy = AggregationStrategy.SIMPLE
else:
aggregation_strategy = AggregationStrategy.NONE
if grouped_entities is not None:
warnings.warn(
"`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to"
f' `aggregation_strategy="{aggregation_strategy}"` instead.'
)
if ignore_subwords is not None:
warnings.warn(
"`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to"
f' `aggregation_strategy="{aggregation_strategy}"` instead.'
)
if aggregation_strategy is not None:
if isinstance(aggregation_strategy, str):
aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()]
if (
aggregation_strategy
in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE}
and not self.tokenizer.is_fast
):
raise ValueError(
"Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option"
' to `"simple"` or use a fast tokenizer.'
)
postprocess_params["aggregation_strategy"] = aggregation_strategy
if ignore_labels is not None:
postprocess_params["ignore_labels"] = ignore_labels
if stride is not None:
if stride >= self.tokenizer.model_max_length:
raise ValueError(
"`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)"
)
if aggregation_strategy == AggregationStrategy.NONE:
raise ValueError(
"`stride` was provided to process all the text but `aggregation_strategy="
f'"{aggregation_strategy}"`, please select another one instead.'
)
else:
if self.tokenizer.is_fast:
tokenizer_params = {
"return_overflowing_tokens": True,
"padding": True,
"stride": stride,
}
preprocess_params["tokenizer_params"] = tokenizer_params
else:
raise ValueError(
"`stride` was provided to process all the text but you're using a slow tokenizer."
" Please use a fast tokenizer."
)
return preprocess_params, {}, postprocess_params
def __call__(self, inputs: Union[str, List[str]], **kwargs):
"""
Classify each token of the text(s) given as inputs.
Args:
inputs (`str` or `List[str]`):
One or several texts (or one list of texts) for token classification.
Return:
A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the
corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with
the following keys:
- **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you
want to have the exact string in the original sentence, use `start` and `end`.
- **score** (`float`) -- The corresponding probability for `entity`.
- **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when
*aggregation_strategy* is not `"none"`.
- **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding
token in the sentence.
- **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only
exists if the offsets are available within the tokenizer
- **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only
exists if the offsets are available within the tokenizer
"""
_inputs, offset_mapping = self._args_parser(inputs, **kwargs)
if offset_mapping:
kwargs["offset_mapping"] = offset_mapping
return super().__call__(inputs, **kwargs)
def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
tokenizer_params = preprocess_params.pop("tokenizer_params", {})
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
inputs = self.tokenizer(
sentence,
return_tensors=self.framework,
truncation=truncation,
return_special_tokens_mask=True,
return_offsets_mapping=self.tokenizer.is_fast,
**tokenizer_params,
)
inputs.pop("overflow_to_sample_mapping", None)
num_chunks = len(inputs["input_ids"])
for i in range(num_chunks):
if self.framework == "tf":
model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
else:
model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
if offset_mapping is not None:
model_inputs["offset_mapping"] = offset_mapping
model_inputs["sentence"] = sentence if i == 0 else None
model_inputs["is_last"] = i == num_chunks - 1
yield model_inputs
def _forward(self, model_inputs):
# Forward
special_tokens_mask = model_inputs.pop("special_tokens_mask")
offset_mapping = model_inputs.pop("offset_mapping", None)
sentence = model_inputs.pop("sentence")
is_last = model_inputs.pop("is_last")
if self.framework == "tf":
logits = self.model(**model_inputs)[0]
else:
output = self.model(**model_inputs)
logits = output["logits"] if isinstance(output, dict) else output[0]
return {
"logits": logits,
"special_tokens_mask": special_tokens_mask,
"offset_mapping": offset_mapping,
"sentence": sentence,
"is_last": is_last,
**model_inputs,
}
def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None):
if ignore_labels is None:
ignore_labels = ["O"]
all_entities = []
for model_outputs in all_outputs:
if self.framework == "pt" and model_outputs["logits"][0].dtype in (torch.bfloat16, torch.float16):
logits = model_outputs["logits"][0].to(torch.float32).numpy()
else:
logits = model_outputs["logits"][0].numpy()
sentence = all_outputs[0]["sentence"]
input_ids = model_outputs["input_ids"][0]
offset_mapping = (
model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None
)
special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy()
maxes = np.max(logits, axis=-1, keepdims=True)
shifted_exp = np.exp(logits - maxes)
scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
if self.framework == "tf":
input_ids = input_ids.numpy()
offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None
pre_entities = self.gather_pre_entities(
sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy
)
grouped_entities = self.aggregate(pre_entities, aggregation_strategy)
# Filter anything that is in self.ignore_labels
entities = [
entity
for entity in grouped_entities
if entity.get("entity", None) not in ignore_labels
and entity.get("entity_group", None) not in ignore_labels
]
all_entities.extend(entities)
num_chunks = len(all_outputs)
if num_chunks > 1:
all_entities = self.aggregate_overlapping_entities(all_entities)
return all_entities
def aggregate_overlapping_entities(self, entities):
if len(entities) == 0:
return entities
entities = sorted(entities, key=lambda x: x["start"])
aggregated_entities = []
previous_entity = entities[0]
for entity in entities:
if previous_entity["start"] <= entity["start"] < previous_entity["end"]:
current_length = entity["end"] - entity["start"]
previous_length = previous_entity["end"] - previous_entity["start"]
if current_length > previous_length:
previous_entity = entity
elif current_length == previous_length and entity["score"] > previous_entity["score"]:
previous_entity = entity
else:
aggregated_entities.append(previous_entity)
previous_entity = entity
aggregated_entities.append(previous_entity)
return aggregated_entities
def gather_pre_entities(
self,
sentence: str,
input_ids: np.ndarray,
scores: np.ndarray,
offset_mapping: Optional[List[Tuple[int, int]]],
special_tokens_mask: np.ndarray,
aggregation_strategy: AggregationStrategy,
) -> List[dict]:
"""Fuse various numpy arrays into dicts with all the information needed for aggregation"""
pre_entities = []
for idx, token_scores in enumerate(scores):
# Filter special_tokens
if special_tokens_mask[idx]:
continue
word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx]))
if offset_mapping is not None:
start_ind, end_ind = offset_mapping[idx]
if not isinstance(start_ind, int):
if self.framework == "pt":
start_ind = start_ind.item()
end_ind = end_ind.item()
word_ref = sentence[start_ind:end_ind]
if getattr(self.tokenizer, "_tokenizer", None) and getattr(
self.tokenizer._tokenizer.model, "continuing_subword_prefix", None
):
# This is a BPE, word aware tokenizer, there is a correct way
# to fuse tokens
is_subword = len(word) != len(word_ref)
else:
# This is a fallback heuristic. This will fail most likely on any kind of text + punctuation mixtures that will be considered "words". Non word aware models cannot do better than this unfortunately.
if aggregation_strategy in {
AggregationStrategy.FIRST,
AggregationStrategy.AVERAGE,
AggregationStrategy.MAX,
}:
warnings.warn(
"Tokenizer does not support real words, using fallback heuristic",
UserWarning,
)
is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1]
if int(input_ids[idx]) == self.tokenizer.unk_token_id:
word = word_ref
is_subword = False
else:
start_ind = None
end_ind = None
is_subword = False
pre_entity = {
"word": word,
"scores": token_scores,
"start": start_ind,
"end": end_ind,
"index": idx,
"is_subword": is_subword,
}
pre_entities.append(pre_entity)
return pre_entities
def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]:
if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}:
entities = []
for pre_entity in pre_entities:
entity_idx = pre_entity["scores"].argmax()
score = pre_entity["scores"][entity_idx]
entity = {
"entity": self.model.config.id2label[entity_idx],
"score": score,
"index": pre_entity["index"],
"word": pre_entity["word"],
"start": pre_entity["start"],
"end": pre_entity["end"],
}
entities.append(entity)
else:
entities = self.aggregate_words(pre_entities, aggregation_strategy)
if aggregation_strategy == AggregationStrategy.NONE:
return entities
return self.group_entities(entities)
def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict:
word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities])
if aggregation_strategy == AggregationStrategy.FIRST:
scores = entities[0]["scores"]
idx = scores.argmax()
score = scores[idx]
entity = self.model.config.id2label[idx]
elif aggregation_strategy == AggregationStrategy.MAX:
max_entity = max(entities, key=lambda entity: entity["scores"].max())
scores = max_entity["scores"]
idx = scores.argmax()
score = scores[idx]
entity = self.model.config.id2label[idx]
elif aggregation_strategy == AggregationStrategy.AVERAGE:
scores = np.stack([entity["scores"] for entity in entities])
average_scores = np.nanmean(scores, axis=0)
entity_idx = average_scores.argmax()
entity = self.model.config.id2label[entity_idx]
score = average_scores[entity_idx]
else:
raise ValueError("Invalid aggregation_strategy")
new_entity = {
"entity": entity,
"score": score,
"word": word,
"start": entities[0]["start"],
"end": entities[-1]["end"],
}
return new_entity
def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]:
"""
Override tokens from a given word that disagree to force agreement on word boundaries.
Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
company| B-ENT I-ENT
"""
if aggregation_strategy in {
AggregationStrategy.NONE,
AggregationStrategy.SIMPLE,
}:
raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation")
word_entities = []
word_group = None
for entity in entities:
if word_group is None:
word_group = [entity]
elif entity["is_subword"]:
word_group.append(entity)
else:
word_entities.append(self.aggregate_word(word_group, aggregation_strategy))
word_group = [entity]
# Last item
if word_group is not None:
word_entities.append(self.aggregate_word(word_group, aggregation_strategy))
return word_entities
def group_sub_entities(self, entities: List[dict]) -> dict:
"""
Group together the adjacent tokens with the same entity predicted.
Args:
entities (`dict`): The entities predicted by the pipeline.
"""
# Get the first entity in the entity group
entity = entities[0]["entity"].split("-", 1)[-1]
scores = np.nanmean([entity["score"] for entity in entities])
tokens = [entity["word"] for entity in entities]
entity_group = {
"entity_group": entity,
"score": np.mean(scores),
"word": self.tokenizer.convert_tokens_to_string(tokens),
"start": entities[0]["start"],
"end": entities[-1]["end"],
}
return entity_group
def get_tag(self, entity_name: str) -> Tuple[str, str]:
if entity_name.startswith("B-"):
bi = "B"
tag = entity_name[2:]
elif entity_name.startswith("I-"):
bi = "I"
tag = entity_name[2:]
else:
# It's not in B-, I- format
# Default to I- for continuation.
bi = "I"
tag = entity_name
return bi, tag
def group_entities(self, entities: List[dict]) -> List[dict]:
"""
Find and group together the adjacent tokens with the same entity predicted.
Args:
entities (`dict`): The entities predicted by the pipeline.
"""
entity_groups = []
entity_group_disagg = []
for entity in entities:
if not entity_group_disagg:
entity_group_disagg.append(entity)
continue
# If the current entity is similar and adjacent to the previous entity,
# append it to the disaggregated entity group
# The split is meant to account for the "B" and "I" prefixes
# Shouldn't merge if both entities are B-type
bi, tag = self.get_tag(entity["entity"])
last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"])
if tag == last_tag and bi != "B":
# Modify subword type to be previous_type
entity_group_disagg.append(entity)
else:
# If the current entity is different from the previous entity
# aggregate the disaggregated entity group
entity_groups.append(self.group_sub_entities(entity_group_disagg))
entity_group_disagg = [entity]
if entity_group_disagg:
# it's the last entity, add it to the entity groups
entity_groups.append(self.group_sub_entities(entity_group_disagg))
return entity_groups
NerPipeline = TokenClassificationPipeline
| transformers/src/transformers/pipelines/token_classification.py/0 | {
"file_path": "transformers/src/transformers/pipelines/token_classification.py",
"repo_id": "transformers",
"token_count": 11952
} |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from packaging import version
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import (
ACCELERATE_MIN_VERSION,
is_accelerate_available,
is_bitsandbytes_available,
is_torch_available,
is_torch_xpu_available,
logging,
)
from .quantizers_utils import get_module_from_name
if is_torch_available():
import torch
from ..pytorch_utils import Conv1D
logger = logging.get_logger(__name__)
class Bnb8BitHfQuantizer(HfQuantizer):
"""
8-bit quantization from bitsandbytes quantization method:
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call
saving:
from state dict, as usual; saves weights and 'SCB' component
loading:
need to locate SCB component and pass to the Linear8bitLt object
"""
use_keep_in_fp32_modules = True
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["bitsandbytes", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError(
f"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`"
)
if not is_bitsandbytes_available():
raise ImportError(
"Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
from ..integrations import validate_bnb_backend_availability
from ..utils import is_bitsandbytes_multi_backend_available
bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available()
validate_bnb_backend_availability(raise_exception=True)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_lm_head = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled:
pass
elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to "
"`from_pretrained`. Check "
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
)
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"):
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 8bit inference and training"
" make sure you have the latest version of `bitsandbytes` installed"
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype
def update_device_map(self, device_map):
if device_map is None:
if torch.cuda.is_available():
device_map = {"": torch.cuda.current_device()}
elif is_torch_xpu_available():
device_map = {"": f"xpu:{torch.xpu.current_device()}"}
else:
device_map = {"": "cpu"}
logger.info(
"The device_map was not initialized. "
f"Setting device_map to {device_map}. "
"If you want to use the model for inference, please set device_map ='auto' "
)
return device_map
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization")
return torch.int8
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params):
if self.pre_quantized:
if param_name.replace("weight", "SCB") not in state_dict.keys():
raise ValueError("Missing quantization component `SCB`")
if param_value.dtype != torch.int8:
raise ValueError(
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`."
)
return True
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
needs aux items from state dicts, if found - removes them from unexpected_keys
"""
import bitsandbytes as bnb
fp16_statistics_key = param_name.replace("weight", "SCB")
fp16_weights_format_key = param_name.replace("weight", "weight_format")
fp16_statistics = state_dict.get(fp16_statistics_key, None)
fp16_weights_format = state_dict.get(fp16_weights_format_key, None)
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
new_value = param_value.to("cpu")
if self.pre_quantized and not self.is_serializable():
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, Conv1D):
if fp16_statistics is None:
new_value = new_value.T
kwargs = old_value.__dict__
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value
if fp16_statistics is not None:
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
if unexpected_keys is not None:
unexpected_keys.remove(fp16_statistics_key)
# We just need to pop the `weight_format` keys from the state dict to remove unneeded
# messages. The correct format is correctly retrieved during the first forward pass.
if fp16_weights_format is not None and unexpected_keys is not None:
unexpected_keys.remove(fp16_weights_format_key)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_loaded_in_8bit = True
model.is_8bit_serializable = self.is_serializable()
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.llm_int8_skip_modules is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
model.config.quantization_config = self.quantization_config
def is_serializable(self, safe_serialization=None):
_bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
"0.37.2"
)
if not _bnb_supports_8bit_serialization:
logger.warning(
"You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
"If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or"
" unexpected behaviours."
)
return False
return True
@property
def is_trainable(self) -> bool:
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0")
def _dequantize(self, model):
from ..integrations import dequantize_and_replace
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
return model
| transformers/src/transformers/quantizers/quantizer_bnb_8bit.py/0 | {
"file_path": "transformers/src/transformers/quantizers/quantizer_bnb_8bit.py",
"repo_id": "transformers",
"token_count": 5867
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .feature_extraction_utils import BatchFeature
from .tokenization_utils_base import BatchEncoding
from .utils import logging
logger = logging.get_logger(__name__)
def shape_list(tensor: Union[tf.Tensor, np.ndarray]) -> List[int]:
"""
Deal with dynamic shape in tensorflow cleanly.
Args:
tensor (`tf.Tensor` or `np.ndarray`): The tensor we want the shape of.
Returns:
`List[int]`: The shape of the tensor as a list.
"""
if isinstance(tensor, np.ndarray):
return list(tensor.shape)
dynamic = tf.shape(tensor)
if tensor.shape == tf.TensorShape(None):
return dynamic
static = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(static)]
def stable_softmax(logits: tf.Tensor, axis: Optional[int] = None, name: Optional[str] = None) -> tf.Tensor:
"""
Stable wrapper that returns the same output as `tf.nn.softmax`, but that works reliably with XLA on CPU. It is
meant as a workaround for the [following issue](https://github.com/tensorflow/tensorflow/issues/55682), and will be
removed after it gets fixed. The arguments and outputs are the same as `tf.nn.softmax`, and relies on the fact that
`softmax(x) = softmax(x + c)` (see https://ogunlao.github.io/2020/04/26/you_dont_really_know_softmax.html).
Args:
logits (`tf.Tensor`):
Must be one of the following types: half, float32, float64.
axis (`int`, *optional*):
The dimension softmax would be performed on. The default is -1 which indicates the last dimension.
name (`str`, *optional*):
A name for the operation.
Returns:
`tf.Tensor`:
A Tensor. Has the same type and shape as logits.
"""
# TODO: When the issue linked above gets sorted, add a check on TF version here and use the original function if
# it has the fix. After we drop the support for unfixed versions, remove this function.
return tf.nn.softmax(logits=logits + 1e-9, axis=axis, name=name)
def functional_layernorm(inputs, weight, bias, epsilon=1e-5, axis=-1):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(axis, int):
raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis.")
# Get mean and variance on the axis to be normalized
mean, variance = tf.nn.moments(inputs, axes=[axis], keepdims=True)
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
shape = [1] * inputs.shape.rank
shape[axis] = shape_list(inputs)[axis]
weight = tf.reshape(weight, shape)
bias = tf.reshape(bias, shape)
# Compute layer normalization using the batch_normalization
# function.
outputs = tf.nn.batch_normalization(
inputs,
mean,
variance,
offset=bias,
scale=weight,
variance_epsilon=epsilon,
)
return outputs
def scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale: float = None
):
"""TF equivalent for torch's nn.functional.scaled_dot_product_attention"""
if dropout_p != 0.0:
raise ValueError(
"Dropout is not supported in this implementation - file an issue "
"with Transformers and ping @Rocketknight1 if you need it for a port!"
)
if is_causal and attn_mask is not None:
raise ValueError("You cannot specify an attn_mask and is_causal at the same time!")
if is_causal:
attn_mask = tf.ones((tf.shape(query)[-2], tf.shape(key)[-2]), dtype=tf.int32)
attn_mask = tf.experimental.numpy.tril(attn_mask, k=0)
if attn_mask is not None and (attn_mask.dtype.is_integer or attn_mask.dtype.is_bool):
# Convert boolean mask to a negative logit bias
attn_mask = tf.where(attn_mask > 0, tf.cast(0.0, query.dtype), tf.cast(-1000.0, query.dtype))
logits = tf.einsum("...qd, ...kd -> ...qk", query, key)
if scale is None:
scale = tf.cast(tf.shape(key)[-1], logits.dtype) ** -0.5
logits *= scale # scale by 1/sqrt(key_dim)
if attn_mask is not None:
logits += attn_mask
probs = tf.nn.softmax(logits)
return probs @ value
def flatten(input, start_dim=0, end_dim=-1):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
in_shape = tf.shape(input)
flattened_dim = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1])
out_shape = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0)
return tf.reshape(input, out_shape)
def invert_attention_mask(encoder_attention_mask: tf.Tensor) -> tf.Tensor:
"""
Invert an attention mask (e.g., switches 0. and 1.).
Args:
encoder_attention_mask (`torch.Tensor`): An attention mask.
Returns:
`tf.Tensor`: The inverted attention mask.
"""
if not isinstance(encoder_attention_mask, tf.Tensor):
encoder_attention_mask = tf.convert_to_tensor(encoder_attention_mask) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
encoder_extended_attention_mask = (
tf.cast(1, encoder_attention_mask.dtype) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def check_embeddings_within_bounds(tensor: tf.Tensor, embed_dim: int, tensor_name: str = "input_ids") -> None:
"""
`tf.gather`, on which TF embedding layers are based, won't check positive out of bound indices on GPU, returning
zeros instead. This function adds a check against that dangerous silent behavior.
Args:
tensor (`tf.Tensor`): The tensor of indices to check.
embed_dim (`int`): The embedding dimension.
tensor_name (`str`, *optional*): The name of the tensor to use in the error message.
"""
tf.debugging.assert_less(
tensor,
tf.cast(embed_dim, dtype=tensor.dtype),
message=(
f"The maximum value of {tensor_name} ({tf.math.reduce_max(tensor)}) must be smaller than the embedding "
f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."
),
)
def save_attributes_to_hdf5_group(group, name, data):
"""Saves attributes (data) of the specified name into the HDF5 group.
This method deals with an inherent problem of HDF5 file which is not able to store data larger than
HDF5_OBJECT_HEADER_LIMIT bytes.
Args:
group: A pointer to a HDF5 group.
name: A name of the attributes to save.
data: Attributes data to store.
Raises:
RuntimeError: If any single attribute is too large to be saved.
Copied from Keras to Transformers to avoid versioning issues.
"""
HDF5_OBJECT_HEADER_LIMIT = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"The following attributes cannot be saved to HDF5 file because "
f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} "
f"bytes: {bad_attributes}"
)
data_npy = np.asarray(data)
num_chunks = 1
chunked_data = np.array_split(data_npy, num_chunks)
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data):
num_chunks += 1
chunked_data = np.array_split(data_npy, num_chunks)
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(chunked_data):
group.attrs["%s%d" % (name, chunk_id)] = chunk_data
else:
group.attrs[name] = data
def load_attributes_from_hdf5_group(group, name):
"""Loads attributes of the specified name from the HDF5 group.
This method deals with an inherent problem of HDF5 file which is not able to store data larger than
HDF5_OBJECT_HEADER_LIMIT bytes.
Args:
group: A pointer to a HDF5 group.
name: A name of the attributes to load.
Returns:
data: Attributes data.
Copied from Keras to Transformers to avoid versioning issues.
"""
if name in group.attrs:
data = [n.decode("utf8") if hasattr(n, "decode") else n for n in group.attrs[name]]
else:
data = []
chunk_id = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("utf8") if hasattr(n, "decode") else n for n in group.attrs["%s%d" % (name, chunk_id)]]
)
chunk_id += 1
return data
def expand_1d(data):
"""Expands 1-dimensional `Tensor`s into 2-dimensional `Tensor`s.
Copied from Keras to here to avoid versioning issues."""
def _expand_single_1d_tensor(t):
if isinstance(t, tf.Tensor) and t.shape.rank == 1:
return tf.expand_dims(t, axis=-1)
return t
return tf.nest.map_structure(_expand_single_1d_tensor, data)
def convert_batch_encoding(*args, **kwargs):
# Convert HF BatchEncoding/BatchFeature objects in the inputs to dicts that Keras understands
if args and isinstance(args[0], (BatchEncoding, BatchFeature)):
args = list(args)
args[0] = dict(args[0])
elif "x" in kwargs and isinstance(kwargs["x"], (BatchEncoding, BatchFeature)):
kwargs["x"] = dict(kwargs["x"])
return args, kwargs
| transformers/src/transformers/tf_utils.py/0 | {
"file_path": "transformers/src/transformers/tf_utils.py",
"repo_id": "transformers",
"token_count": 4451
} |
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
class AlbertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BartTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BarthezTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BigBirdTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BlenderbotTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BlenderbotSmallTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class BloomTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class CamembertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class CLIPTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class CodeLlamaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class CodeGenTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class CohereTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class ConvBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class CpmTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class DebertaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class DebertaV2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class RealmTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class RetriBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class DistilBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class DPRContextEncoderTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class DPRQuestionEncoderTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class DPRReaderTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class ElectraTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class FNetTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class FunnelTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class GemmaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class GPT2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class GPTNeoXTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class GPTNeoXJapaneseTokenizer(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class HerbertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LayoutLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LayoutLMv2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LayoutLMv3TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LayoutXLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LEDTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LlamaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LongformerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class LxmertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MarkupLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MBartTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MBart50TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MobileBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MPNetTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MT5TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MvpTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class NllbTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class NougatTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class OpenAIGPTTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class PegasusTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class Qwen2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class ReformerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class RemBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class RobertaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class RoFormerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class SeamlessM4TTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class SplinterTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class SqueezeBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class T5TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class UdopTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class WhisperTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class XGLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class XLMRobertaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class XLNetTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class PreTrainedTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
| transformers/src/transformers/utils/dummy_tokenizers_objects.py/0 | {
"file_path": "transformers/src/transformers/utils/dummy_tokenizers_objects.py",
"repo_id": "transformers",
"token_count": 4439
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import re
import sys
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
backend_device_count,
execute_subprocess_async,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_non_xpu,
require_torch,
require_torch_gpu,
require_torch_multi_accelerator,
require_torch_non_multi_accelerator,
slow,
torch_device,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
bindir = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"):
from run_translation import main # noqa
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
MBART_TINY = "sshleifer/tiny-mbart"
@require_torch
class TestTrainerExt(TestCasePlus):
def run_seq2seq_quick(
self,
distributed=False,
extra_args_str=None,
predict_with_generate=True,
do_train=True,
do_eval=True,
do_predict=True,
n_gpus_to_use=None,
):
output_dir = self.run_trainer(
eval_steps=1,
max_len=12,
model_name=MBART_TINY,
num_train_epochs=1,
distributed=distributed,
extra_args_str=extra_args_str,
predict_with_generate=predict_with_generate,
do_train=do_train,
do_eval=do_eval,
do_predict=do_predict,
n_gpus_to_use=n_gpus_to_use,
)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
if not do_eval:
self.skipTest(reason="do_eval is False")
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
last_step_stats = eval_metrics[-1]
assert isinstance(last_step_stats["eval_bleu"], float)
assert not math.isnan(float(last_step_stats["eval_loss"])), "eval_loss must not be `nan`"
@require_torch_non_multi_accelerator
def test_run_seq2seq_no_dist(self):
self.run_seq2seq_quick()
# verify that the trainer can handle non-distributed with n_gpu > 1
@require_torch_multi_accelerator
def test_run_seq2seq_dp(self):
self.run_seq2seq_quick(distributed=False)
# verify that the trainer can handle distributed with n_gpu > 1
@require_torch_multi_accelerator
def test_run_seq2seq_ddp(self):
self.run_seq2seq_quick(distributed=True)
@require_non_xpu
@require_apex
@require_torch_gpu
def test_run_seq2seq_apex(self):
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex")
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex")
@parameterized.expand(["base", "low", "high", "mixed"])
@require_torch_multi_accelerator
def test_trainer_log_level_replica(self, experiment_id):
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
experiments = {
# test with the default log_level - should be info and thus log info once
"base": {"extra_args_str": "", "n_matches": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0},
}
data = experiments[experiment_id]
kwargs = {
"distributed": True,
"predict_with_generate": False,
"do_eval": False,
"do_predict": False,
"n_gpus_to_use": 2,
}
log_info_string = "Running training"
with CaptureStderr() as cl:
self.run_seq2seq_quick(**kwargs, extra_args_str=data["extra_args_str"])
n_matches = len(re.findall(log_info_string, cl.err))
self.assertEqual(n_matches, data["n_matches"])
@slow
def test_run_seq2seq(self):
output_dir = self.run_trainer(
eval_steps=2,
max_len=128,
model_name=MARIAN_MODEL,
learning_rate=3e-4,
num_train_epochs=10,
distributed=False,
)
# Check metrics
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
last_step_stats = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["eval_bleu"], float)
# test if do_predict saves generations and metrics
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def test_run_seq2seq_bnb(self):
from transformers.training_args import OptimizerNames
def train_and_return_metrics(optim: str) -> Tuple[int, float]:
extra_args = "--skip_memory_metrics 0"
output_dir = self.run_trainer(
max_len=128,
model_name=MARIAN_MODEL,
learning_rate=3e-4,
num_train_epochs=1,
optim=optim,
distributed=True, # force run in a new process
extra_args_str=extra_args,
do_eval=False,
do_predict=False,
n_gpus_to_use=1, # to allow deterministic fixed memory usage
)
# Check metrics
logs = TrainerState.load_from_json(Path(output_dir, "trainer_state.json")).log_history
gpu_peak_mem_mb = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20)
gpu_alloc_mem_mb = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20)
loss = logs[0]["train_loss"]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
gpu_peak_mem_orig, gpu_alloc_mem_orig, loss_orig = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value)
gpu_peak_mem_bnb, gpu_alloc_mem_bnb, loss_bnb = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value)
gpu_alloc_mem_diff = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
gpu_total_mem_orig = gpu_peak_mem_orig + gpu_alloc_mem_orig
gpu_total_mem_bnb = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
gpu_total_mem_diff = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
expected_savings = 120
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
gpu_alloc_mem_diff,
expected_savings,
"should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"
f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and"
f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB",
)
self.assertGreater(
gpu_total_mem_diff,
expected_savings,
"should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"
f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and"
f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB",
)
self.assertEqual(
loss_orig, loss_bnb, f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}"
)
def run_trainer(
self,
max_len: int,
model_name: str,
num_train_epochs: int,
learning_rate: float = 3e-3,
optim: str = "adafactor",
distributed: bool = False,
extra_args_str: str = None,
eval_steps: int = 0,
predict_with_generate: bool = True,
do_train: bool = True,
do_eval: bool = True,
do_predict: bool = True,
n_gpus_to_use: int = None,
):
data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
output_dir = self.get_auto_remove_tmp_dir()
args_train = f"""
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(eval_steps)}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
--report_to none
""".split()
args_eval = f"""
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--eval_strategy steps
--eval_steps {str(eval_steps)}
""".split()
args_predict = """
--do_predict
""".split()
args = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f"--optim {optim}".split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
n_gpus_to_use = backend_device_count(torch_device)
master_port = get_torch_dist_unique_port()
distributed_args = f"""
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
""".split()
cmd = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
else:
testargs = ["run_translation.py"] + args
with patch.object(sys, "argv", testargs):
main()
return output_dir
| transformers/tests/extended/test_trainer_ext.py/0 | {
"file_path": "transformers/tests/extended/test_trainer_ext.py",
"repo_id": "transformers",
"token_count": 6542
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import tempfile
import unittest
import warnings
from huggingface_hub import HfFolder, create_pull_request
from parameterized import parameterized
from transformers import AutoConfig, GenerationConfig, WatermarkingConfig, is_torch_available
if is_torch_available():
import torch
from transformers.generation import (
ClassifierFreeGuidanceLogitsProcessor,
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
GenerationMode,
HammingDiversityLogitsProcessor,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
MinPLogitsWarper,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
SuppressTokensAtBeginLogitsProcessor,
SuppressTokensLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
WatermarkLogitsProcessor,
)
from transformers.testing_utils import TOKEN, TemporaryHubRepo, is_staging_test, torch_device
class GenerationConfigTest(unittest.TestCase):
@parameterized.expand([(None,), ("foo.json",)])
def test_save_load_config(self, config_name):
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
bad_words_ids=[[1, 2, 3], [4, 5]],
)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, config_name=config_name)
loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample, True)
self.assertEqual(loaded_config.temperature, 0.7)
self.assertEqual(loaded_config.length_penalty, 1.0)
self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k, 50)
self.assertEqual(loaded_config.max_length, 20)
self.assertEqual(loaded_config.max_time, None)
def test_from_model_config(self):
model_config = AutoConfig.from_pretrained("openai-community/gpt2")
generation_config_from_model = GenerationConfig.from_model_config(model_config)
default_generation_config = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(generation_config_from_model, default_generation_config)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id)
def test_update(self):
generation_config = GenerationConfig()
update_kwargs = {
"max_new_tokens": 1024,
"foo": "bar",
}
update_kwargs_copy = copy.deepcopy(update_kwargs)
unused_kwargs = generation_config.update(**update_kwargs)
# update_kwargs was not modified (no side effects)
self.assertEqual(update_kwargs, update_kwargs_copy)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens, 1024)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(unused_kwargs, {"foo": "bar"})
# TODO: @Arthur and/or @Joao
# FAILED tests/generation/test_configuration_utils.py::GenerationConfigTest::test_initialize_new_kwargs - AttributeError: 'GenerationConfig' object has no attribute 'get_text_config'
# See: https://app.circleci.com/pipelines/github/huggingface/transformers/104831/workflows/e5e61514-51b7-4c8c-bba7-3c4d2986956e/jobs/1394252
@unittest.skip("failed with `'GenerationConfig' object has no attribute 'get_text_config'`")
def test_initialize_new_kwargs(self):
generation_config = GenerationConfig()
generation_config.foo = "bar"
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo, "bar")
generation_config = GenerationConfig.from_model_config(new_config)
assert not hasattr(generation_config, "foo") # no new kwargs should be initialized if from config
def test_kwarg_init(self):
"""Tests that we can overwrite attributes at `from_pretrained` time."""
default_config = GenerationConfig()
self.assertEqual(default_config.temperature, 1.0)
self.assertEqual(default_config.do_sample, False)
self.assertEqual(default_config.num_beams, 1)
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
bad_words_ids=[[1, 2, 3], [4, 5]],
)
self.assertEqual(config.temperature, 0.7)
self.assertEqual(config.do_sample, True)
self.assertEqual(config.num_beams, 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir)
loaded_config = GenerationConfig.from_pretrained(tmp_dir, temperature=1.0)
self.assertEqual(loaded_config.temperature, 1.0)
self.assertEqual(loaded_config.do_sample, True)
self.assertEqual(loaded_config.num_beams, 1) # default value
def test_validate(self):
"""
Tests that the `validate` method is working as expected. Note that `validate` is called at initialization time
"""
# A correct configuration will not throw any warning
with warnings.catch_warnings(record=True) as captured_warnings:
GenerationConfig()
self.assertEqual(len(captured_warnings), 0)
# Inconsequent but technically wrong configuration will throw a warning (e.g. setting sampling
# parameters with `do_sample=False`). May be escalated to an error in the future.
with warnings.catch_warnings(record=True) as captured_warnings:
GenerationConfig(do_sample=False, temperature=0.5)
self.assertEqual(len(captured_warnings), 1)
with warnings.catch_warnings(record=True) as captured_warnings:
GenerationConfig(return_dict_in_generate=False, output_scores=True)
self.assertEqual(len(captured_warnings), 1)
# Expanding on the case above, we can update a bad configuration to get rid of the warning. Ideally,
# that is done by unsetting the parameter (i.e. setting it to None)
generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5)
with warnings.catch_warnings(record=True) as captured_warnings:
# BAD - 0.9 means it is still set, we should warn
generation_config_bad_temperature.update(temperature=0.9)
self.assertEqual(len(captured_warnings), 1)
generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5)
with warnings.catch_warnings(record=True) as captured_warnings:
# CORNER CASE - 1.0 is the default, we can't detect whether it is set by the user or not, we shouldn't warn
generation_config_bad_temperature.update(temperature=1.0)
self.assertEqual(len(captured_warnings), 0)
generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5)
with warnings.catch_warnings(record=True) as captured_warnings:
# OK - None means it is unset, nothing to warn about
generation_config_bad_temperature.update(temperature=None)
self.assertEqual(len(captured_warnings), 0)
# Impossible sets of contraints/parameters will raise an exception
with self.assertRaises(ValueError):
GenerationConfig(do_sample=False, num_beams=1, num_return_sequences=2)
with self.assertRaises(ValueError):
# dummy constraint
GenerationConfig(do_sample=True, num_beams=2, constraints=["dummy"])
with self.assertRaises(ValueError):
GenerationConfig(do_sample=True, num_beams=2, force_words_ids=[[[1, 2, 3]]])
# Passing `generate()`-only flags to `validate` will raise an exception
with self.assertRaises(ValueError):
GenerationConfig(logits_processor="foo")
# Model-specific parameters will NOT raise an exception or a warning
with warnings.catch_warnings(record=True) as captured_warnings:
GenerationConfig(foo="bar")
self.assertEqual(len(captured_warnings), 0)
def test_refuse_to_save(self):
"""Tests that we refuse to save a generation config that fails validation."""
# setting the temperature alone is invalid, as we also need to set do_sample to True -> throws a warning that
# is caught, doesn't save, and raises an exception
config = GenerationConfig()
config.temperature = 0.5
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(ValueError) as exc:
config.save_pretrained(tmp_dir)
self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
self.assertTrue(len(os.listdir(tmp_dir)) == 0)
# greedy decoding throws an exception if we try to return multiple sequences -> throws an exception that is
# caught, doesn't save, and raises a warning
config = GenerationConfig()
config.num_return_sequences = 2
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(ValueError) as exc:
config.save_pretrained(tmp_dir)
self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
self.assertTrue(len(os.listdir(tmp_dir)) == 0)
# final check: no warnings/exceptions thrown if it is correct, and file is saved
config = GenerationConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
with warnings.catch_warnings(record=True) as captured_warnings:
config.save_pretrained(tmp_dir)
self.assertEqual(len(captured_warnings), 0)
self.assertTrue(len(os.listdir(tmp_dir)) == 1)
def test_generation_mode(self):
"""Tests that the `get_generation_mode` method is working as expected."""
config = GenerationConfig()
self.assertEqual(config.get_generation_mode(), GenerationMode.GREEDY_SEARCH)
config = GenerationConfig(do_sample=True)
self.assertEqual(config.get_generation_mode(), GenerationMode.SAMPLE)
config = GenerationConfig(num_beams=2)
self.assertEqual(config.get_generation_mode(), GenerationMode.BEAM_SEARCH)
config = GenerationConfig(top_k=10, do_sample=False, penalty_alpha=0.6)
self.assertEqual(config.get_generation_mode(), GenerationMode.CONTRASTIVE_SEARCH)
config = GenerationConfig()
self.assertEqual(config.get_generation_mode(assistant_model="foo"), GenerationMode.ASSISTED_GENERATION)
def test_static_cache_without_cache_config(self):
"""Regression test for #35026 -- static cache should work without a cache config."""
config = GenerationConfig(cache_implementation="static")
self.assertEqual(config.cache_implementation, "static")
self.assertEqual(config.cache_config, None)
class GenerationConfigSerializationTest(unittest.TestCase):
def test_serialize_generation_sequence_bias(self):
"""Tests that GenerationConfig is serialized and SequenceBiasLogitsProcessor is initialized with sequence_bias parameter"""
generation_config = GenerationConfig()
sequence_bias = [[[45, 67], -0.6], [[89], 1.2]]
generation_config.sequence_bias = sequence_bias
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.sequence_bias, sequence_bias)
expected_sequence_bias = {(45, 67): -0.6, (89,): 1.2}
bias_logits_processor = SequenceBiasLogitsProcessor(new_config.sequence_bias)
self.assertDictEqual(bias_logits_processor.sequence_bias, expected_sequence_bias)
def test_serialize_generation_min_length_eos_token(self):
"""Tests that GenerationConfig is serialized and MinLengthLogitsProcessor is initialized with min_length and eos_token_id"""
eos_token_id = 0
min_length = 10
generation_config = GenerationConfig(min_length=min_length, eos_token_id=eos_token_id)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.min_length, min_length)
self.assertEqual(new_config.eos_token_id, eos_token_id)
min_dist_processor = MinLengthLogitsProcessor(
min_length=new_config.min_length, eos_token_id=new_config.eos_token_id
)
self.assertEqual(min_dist_processor.min_length, min_length)
self.assertEqual(min_dist_processor.eos_token_id, eos_token_id)
def test_serialize_generation_min_new_tokens(self):
"""Tests that GenerationConfig is serialized and MinNewTokensLengthLogitsProcessor is initialized with min_new_tokens"""
eos_token_id = 0
min_new_tokens = 5
prompt_length_to_skip = 2
generation_config = GenerationConfig(min_new_tokens=min_new_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.min_new_tokens, min_new_tokens)
min_new_tokens_processor = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=prompt_length_to_skip,
min_new_tokens=new_config.min_new_tokens,
eos_token_id=eos_token_id,
)
self.assertEqual(min_new_tokens_processor.min_new_tokens, min_new_tokens)
def test_serialize_generation_temperature(self):
"""Tests that GenerationConfig is serialized and TemperatureLogitsWarper is initialized with temperature"""
temperature = 2.0
generation_config = GenerationConfig(temperature=temperature, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.temperature, temperature)
temperature_logits_warper = TemperatureLogitsWarper(temperature=new_config.temperature)
self.assertEqual(temperature_logits_warper.temperature, temperature)
def test_serialize_generation_repetition_penalty(self):
"""Tests that GenerationConfig is serialized and RepetitionPenaltyLogitsProcessor is initialized with repetition_penalty"""
penalty = 2.0
generation_config = GenerationConfig(repetition_penalty=penalty)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.repetition_penalty, penalty)
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=new_config.repetition_penalty)
self.assertEqual(rep_penalty_proc.penalty, penalty)
def test_serialize_generation_encoder_repetition_penalty(self):
"""Tests that GenerationConfig is serialized and EncoderRepetitionPenaltyLogitsProcessor is initialized with penalty and input_ids"""
penalty = 2.0
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
generation_config = GenerationConfig(encoder_repetition_penalty=penalty)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.encoder_repetition_penalty, penalty)
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(
penalty=new_config.encoder_repetition_penalty, encoder_input_ids=input_ids
)
self.assertEqual(rep_penalty_proc.penalty, 1 / penalty)
torch.testing.assert_close(rep_penalty_proc.encoder_input_ids, input_ids)
def test_serialize_generation_top_p(self):
"""Tests that GenerationConfig is serialized and TopPLogitsWarper is initialized with top_p"""
top_p = 0.8
generation_config = GenerationConfig(top_p=top_p, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.top_p, top_p)
rep_penalty_proc = TopPLogitsWarper(top_p=new_config.top_p)
self.assertEqual(rep_penalty_proc.top_p, top_p)
def test_serialize_generation_top_k(self):
"""Tests that GenerationConfig is serialized and TopKLogitsWarper is initialized with top_k"""
top_k = 2
generation_config = GenerationConfig(top_k=top_k, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.top_k, top_k)
top_k_logits_wrap = TopKLogitsWarper(top_k=new_config.top_k)
self.assertEqual(top_k_logits_wrap.top_k, top_k)
def test_serialize_generation_min_p(self):
"""Tests that GenerationConfig is serialized and MinPLogitsWarper is initialized with min_p"""
min_p = 0.8
generation_config = GenerationConfig(min_p=min_p, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.min_p, min_p)
min_k_logits_wrap = MinPLogitsWarper(min_p=new_config.min_p)
self.assertEqual(min_k_logits_wrap.min_p, min_p)
def test_serialize_generation_typical_p(self):
"""Tests that GenerationConfig is serialized and TypicalLogitsWarper is initialized with mass"""
mass = 0.8
generation_config = GenerationConfig(typical_p=mass, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.typical_p, mass)
typical_p_logits_wrap = TypicalLogitsWarper(mass=new_config.typical_p)
self.assertEqual(typical_p_logits_wrap.mass, mass)
def test_serialize_generation_epsilon_cutoff(self):
"""Tests that GenerationConfig is serialized and EpsilonLogitsWarper is initialized with epsilon"""
epsilon = 0.8
generation_config = GenerationConfig(epsilon_cutoff=epsilon, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.epsilon_cutoff, epsilon)
epsilon_logits_wrap = EpsilonLogitsWarper(epsilon=new_config.epsilon_cutoff)
self.assertEqual(epsilon_logits_wrap.epsilon, epsilon)
def test_serialize_generation_eta_cutoff(self):
"""Tests that GenerationConfig is serialized and EtaLogitsWarper is initialized with epsilon"""
epsilon = 0.8
generation_config = GenerationConfig(eta_cutoff=epsilon, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.eta_cutoff, epsilon)
eta_logits_wrap = EtaLogitsWarper(epsilon=new_config.eta_cutoff)
self.assertEqual(eta_logits_wrap.epsilon, epsilon)
def test_serialize_generation_ngram_size(self):
"""Tests that GenerationConfig is serialized and NoRepeatNGramLogitsProcessor is initialized with ngram_size"""
ngram_size = 2
generation_config = GenerationConfig(no_repeat_ngram_size=ngram_size, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.no_repeat_ngram_size, ngram_size)
no_repeat_ngram_proc = NoRepeatNGramLogitsProcessor(ngram_size=new_config.no_repeat_ngram_size)
self.assertEqual(no_repeat_ngram_proc.ngram_size, ngram_size)
def test_serialize_generation_encoder_ngram_size(self):
"""Tests that GenerationConfig is serialized and EncoderNoRepeatNGramLogitsProcessor is initialized with ngram_size"""
ngram_size = 2
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
generation_config = GenerationConfig(encoder_no_repeat_ngram_size=ngram_size, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.encoder_no_repeat_ngram_size, ngram_size)
encoder_no_repeat_ngram_proc = EncoderNoRepeatNGramLogitsProcessor(
encoder_ngram_size=new_config.encoder_no_repeat_ngram_size, encoder_input_ids=input_ids
)
self.assertEqual(encoder_no_repeat_ngram_proc.ngram_size, ngram_size)
def test_serialize_generation_bad_words_ids(self):
"""Tests that GenerationConfig is serialized and NoBadWordsLogitsProcessor is initialized with bad_words_ids"""
bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
generation_config = GenerationConfig(bad_words_ids=bad_word_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.bad_words_ids, bad_word_tokens)
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=new_config.bad_words_ids)
self.assertSequenceEqual(no_bad_words_dist_proc.bad_word_ids, bad_word_tokens)
def test_serialize_generation_num_beams(self):
"""Tests that GenerationConfig is serialized and PrefixConstrainedLogitsProcessor is initialized with num_beams"""
num_beams = 1
def prefix_allowed_tokens_fn(batch_id, inputs_ids):
return [[0, 1], [2, 3]][batch_id]
generation_config = GenerationConfig(num_beams=num_beams)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.num_beams, num_beams)
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(
prefix_allowed_tokens_fn, num_beams=new_config.num_beams
)
self.assertEqual(prefix_constrained_logits_proc._num_beams, num_beams)
def test_serialize_generation_diversity_penalty_and_num_bean_groups(self):
"""Tests that GenerationConfig is serialized and HammingDiversityLogitsProcessor is initialized with diversity_penalty_and_num_bean_groups"""
num_beams = 2
num_beam_groups = 2
diversity_penalty = 1.0
generation_config = GenerationConfig(
num_beams=num_beams, diversity_penalty=diversity_penalty, num_beam_groups=num_beam_groups
)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.num_beams, num_beams)
self.assertEqual(new_config.diversity_penalty, diversity_penalty)
self.assertEqual(new_config.num_beam_groups, num_beam_groups)
diversity_logits_processor = HammingDiversityLogitsProcessor(
diversity_penalty=new_config.diversity_penalty,
num_beams=new_config.num_beams,
num_beam_groups=new_config.num_beam_groups,
)
self.assertEqual(diversity_logits_processor._num_beams, num_beams)
self.assertEqual(diversity_logits_processor._diversity_penalty, diversity_penalty)
self.assertEqual(diversity_logits_processor._num_sub_beams, num_beams // num_beam_groups)
def test_serialize_generation_bos_token_id(self):
"""Tests that GenerationConfig is serialized and ForcedBOSTokenLogitsProcessor is initialized with bos_token_id"""
bos_token_id = 0
generation_config = GenerationConfig(bos_token_id=bos_token_id)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.bos_token_id, bos_token_id)
logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=new_config.bos_token_id)
self.assertEqual(logits_processor.bos_token_id, bos_token_id)
def test_serialize_generation_eos_token_id(self):
"""Tests that GenerationConfig is serialized and ForcedEOSTokenLogitsProcessor is initialized with eos_token_id"""
eos_token_id = 0
max_length = 5
generation_config = GenerationConfig(eos_token_id=eos_token_id)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.eos_token_id, eos_token_id)
logits_processor = ForcedEOSTokenLogitsProcessor(
max_length=max_length, eos_token_id=new_config.eos_token_id, device=torch_device
)
self.assertEqual(logits_processor.eos_token_id, eos_token_id)
def test_serialize_generation_exponential_decay_length_penalty(self):
"""Tests that GenerationConfig is serialized and ExponentialDecayLengthPenalty is initialized with regulation_start and regulation_factor"""
eos_token_id = 0
penalty_start = 5
penalty_factor = 1.1
input_ids_seq_length = 10
exponential_decay_length_penalty = (penalty_start, penalty_factor)
generation_config = GenerationConfig(exponential_decay_length_penalty=exponential_decay_length_penalty)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.exponential_decay_length_penalty, [penalty_start, penalty_factor])
exponential_decay_processor = ExponentialDecayLengthPenalty(
exponential_decay_length_penalty=new_config.exponential_decay_length_penalty,
eos_token_id=eos_token_id,
input_ids_seq_length=input_ids_seq_length,
)
self.assertEqual(
exponential_decay_processor.regulation_start, exponential_decay_length_penalty[0] + input_ids_seq_length
)
self.assertEqual(exponential_decay_processor.regulation_factor, exponential_decay_length_penalty[1])
def test_serialize_generation_begin_suppress_tokens(self):
"""Tests that GenerationConfig is serialized and SuppressTokensAtBeginLogitsProcessor is initialized with begin_suppress_token and begin_index"""
begin_suppress_tokens = [220, 50256]
begin_index = 0
generation_config = GenerationConfig(begin_suppress_tokens=begin_suppress_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.begin_suppress_tokens, begin_suppress_tokens)
suppress_processor = SuppressTokensAtBeginLogitsProcessor(
begin_suppress_tokens=new_config.begin_suppress_tokens, begin_index=begin_index
)
self.assertSequenceEqual(suppress_processor.begin_suppress_tokens, begin_suppress_tokens)
self.assertEqual(suppress_processor.begin_index, begin_index)
def test_serialize_generation_suppress_tokens(self):
"""Tests that GenerationConfig is serialized and SuppressTokensLogitsProcessor is initialized with suppress_token"""
suppress_tokens = [220, 50256]
generation_config = GenerationConfig(suppress_tokens=suppress_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.suppress_tokens, suppress_tokens)
suppress_processor = SuppressTokensLogitsProcessor(suppress_tokens=new_config.suppress_tokens)
self.assertSequenceEqual(suppress_processor.suppress_tokens, suppress_tokens)
def test_serialize_generation_guidance_scale(self):
"""Tests that GenerationConfig is serialized and ClassifierFreeGuidanceLogitsProcessor is initialized with guidance_scale"""
guidance_scale = 2.0
generation_config = GenerationConfig(guidance_scale=guidance_scale)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.guidance_scale, guidance_scale)
classifier_processor = ClassifierFreeGuidanceLogitsProcessor(guidance_scale=new_config.guidance_scale)
self.assertEqual(classifier_processor.guidance_scale, guidance_scale)
def test_serialize_generation_guidance_scale_unbatched(self):
"""Tests that GenerationConfig is serialized and UnbatchedClassifierFreeGuidanceLogitsProcessor is initialized with guidance_scale"""
guidance_scale = 2.0
input_ids = torch.LongTensor([[0]])
generation_config = GenerationConfig(guidance_scale=guidance_scale)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.guidance_scale, guidance_scale)
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(new_config.guidance_scale, {}, input_ids)
self.assertEqual(cfg.guidance_scale, guidance_scale)
def test_serialize_generation_watermarking_config(self):
"""Tests that GenerationConfig is serialized and WatermarkLogitsProcessor is initialized with WatermarkingConfig parameters"""
vocab_size = 20
bias = 2.0
greenlist_ratio = 0.5
hashing_key = 10
seeding_scheme = "lefthash"
context_width = 10
watermarking_config = WatermarkingConfig(
bias=bias,
greenlist_ratio=greenlist_ratio,
hashing_key=hashing_key,
seeding_scheme=seeding_scheme,
context_width=context_width,
)
generation_config = GenerationConfig(watermarking_config=watermarking_config)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.watermarking_config.bias, bias)
self.assertEqual(new_config.watermarking_config.greenlist_ratio, greenlist_ratio)
self.assertEqual(new_config.watermarking_config.hashing_key, hashing_key)
self.assertEqual(new_config.watermarking_config.seeding_scheme, seeding_scheme)
self.assertEqual(new_config.watermarking_config.context_width, context_width)
watermark = WatermarkLogitsProcessor(
vocab_size=vocab_size,
device=torch_device,
greenlist_ratio=new_config.watermarking_config.greenlist_ratio,
bias=new_config.watermarking_config.bias,
hashing_key=new_config.watermarking_config.hashing_key,
seeding_scheme=new_config.watermarking_config.seeding_scheme,
context_width=new_config.watermarking_config.context_width,
)
self.assertEqual(watermark.bias, bias)
self.assertEqual(watermark.greenlist_size, int(vocab_size * greenlist_ratio))
self.assertEqual(watermark.hash_key, hashing_key)
self.assertEqual(watermark.seeding_scheme, seeding_scheme)
self.assertEqual(watermark.context_width, context_width)
@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
def test_push_to_hub(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub(tmp_repo.repo_id, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_via_save_pretrained(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization(self):
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub(tmp_repo.repo_id, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization_via_save_pretrained(self):
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_on_pr_revision(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
# create a PR
pr = create_pull_request(repo_id=tmp_repo.repo_id, title="Test PR", token=self._token)
revision = f"refs/pr/{pr.num}"
# push to PR ref
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub(tmp_repo.repo_id, token=self._token, revision=revision)
# load from PR ref
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id, revision=revision)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
| transformers/tests/generation/test_configuration_utils.py/0 | {
"file_path": "transformers/tests/generation/test_configuration_utils.py",
"repo_id": "transformers",
"token_count": 15519
} |
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
SAMPLE_FEATURE_EXTRACTION_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_CONFIG = get_tests_dir("fixtures/dummy-config.json")
class AutoFeatureExtractorTest(unittest.TestCase):
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_feature_extractor_from_model_shortcut(self):
config = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_feature_extractor_from_local_directory_from_key(self):
config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_feature_extractor_from_local_directory_from_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = Wav2Vec2Config()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
config_dict = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR).to_dict()
config_dict.pop("feature_extractor_type")
config = Wav2Vec2FeatureExtractor(**config_dict)
# save in new folder
model_config.save_pretrained(tmpdirname)
config.save_pretrained(tmpdirname)
config = AutoFeatureExtractor.from_pretrained(tmpdirname)
# make sure private variable is not incorrectly saved
dict_as_saved = json.loads(config.to_json_string())
self.assertTrue("_processor_class" not in dict_as_saved)
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_feature_extractor_from_local_file(self):
config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG)
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_repo_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
):
_ = AutoFeatureExtractor.from_pretrained("bert-base")
def test_revision_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
):
_ = AutoFeatureExtractor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
def test_feature_extractor_not_found(self):
with self.assertRaisesRegex(
EnvironmentError,
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
):
_ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model")
def test_from_pretrained_dynamic_feature_extractor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor"
)
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
# Test the dynamic module is loaded only once.
reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True
)
self.assertIs(feature_extractor.__class__, reloaded_feature_extractor.__class__)
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(tmp_dir)
reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir, trust_remote_code=True)
self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor")
# The feature extractor file is cached in the snapshot directory. So the module file is not changed after dumping
# to a temp dir. Because the revision of the module file is not changed.
# Test the dynamic module is loaded only once if the module file is not changed.
self.assertIs(feature_extractor.__class__, reloaded_feature_extractor.__class__)
# Test the dynamic module is reloaded if we force it.
reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True, force_download=True
)
self.assertIsNot(feature_extractor.__class__, reloaded_feature_extractor.__class__)
def test_new_feature_extractor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor)
# Now that the config is registered, it can be used as any other config with the auto-API
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(tmp_dir)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir)
self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_feature_extractor_conflict(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
is_local = True
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
# If remote code is not set, the default is to use local
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor"
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
self.assertTrue(feature_extractor.is_local)
# If remote code is disabled, we load the local one.
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
self.assertTrue(feature_extractor.is_local)
# If remote is enabled, we load from the Hub
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
self.assertTrue(not hasattr(feature_extractor, "is_local"))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| transformers/tests/models/auto/test_feature_extraction_auto.py/0 | {
"file_path": "transformers/tests/models/auto/test_feature_extraction_auto.py",
"repo_id": "transformers",
"token_count": 3647
} |
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BART model."""
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import BartConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_fp16,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoModelForSequenceClassification,
BartForCausalLM,
BartForConditionalGeneration,
BartForQuestionAnswering,
BartForSequenceClassification,
BartModel,
BartTokenizer,
pipeline,
)
from transformers.models.bart.modeling_bart import BartDecoder, BartEncoder, shift_tokens_right
def prepare_bart_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class BartModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_bart_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return BartConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = BartModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = BartModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = BartEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = BartDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class BartHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
input_ids = torch.tensor(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=torch.long,
device=torch_device,
)
batch_size = input_ids.shape[0]
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
def test_sequence_classification_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
labels = _long_tensor([2] * batch_size).to(torch_device)
model = BartForSequenceClassification(config)
model.to(torch_device)
outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=labels)
expected_shape = torch.Size((batch_size, config.num_labels))
self.assertEqual(outputs["logits"].shape, expected_shape)
self.assertIsInstance(outputs["loss"].item(), float)
def test_question_answering_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
sequence_labels = ids_tensor([batch_size], 2).to(torch_device)
model = BartForQuestionAnswering(config)
model.to(torch_device)
outputs = model(
input_ids=input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.assertEqual(outputs["start_logits"].shape, input_ids.shape)
self.assertEqual(outputs["end_logits"].shape, input_ids.shape)
self.assertIsInstance(outputs["loss"].item(), float)
@timeout_decorator.timeout(1)
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size).to(torch_device)
lm_model = BartForConditionalGeneration(config)
lm_model.to(torch_device)
outputs = lm_model(input_ids=input_ids, labels=lm_labels)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
self.assertIsInstance(outputs["loss"].item(), float)
def test_lm_uneven_forward(self):
config = BartConfig(
vocab_size=self.vocab_size,
d_model=14,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=8,
decoder_ffn_dim=8,
max_position_embeddings=48,
)
lm_model = BartForConditionalGeneration(config).to(torch_device)
context = torch.tensor(
[[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long
)
summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long)
outputs = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_generate_beam_search(self):
input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], device=torch_device, dtype=torch.long)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
lm_model = BartForConditionalGeneration(config).to(torch_device)
lm_model.eval()
max_length = 5
generated_ids = lm_model.generate(
input_ids.clone(),
do_sample=True,
num_return_sequences=1,
num_beams=2,
no_repeat_ngram_size=3,
max_length=max_length,
)
self.assertEqual(generated_ids.shape, (input_ids.shape[0], max_length))
def test_shift_tokens_right(self):
input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
shifted = shift_tokens_right(input_ids, 1, 2)
n_pad_before = input_ids.eq(1).float().sum()
n_pad_after = shifted.eq(1).float().sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(torch.eq(shifted[:, 0], 2).all())
@slow
def test_tokenization(self):
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
examples = [" Hello world", " DomDramg"] # need leading spaces for equality
fairseq_results = [
torch.tensor([0, 20920, 232, 2]),
torch.tensor([0, 11349, 495, 4040, 571, 2]),
]
for ex, desired_result in zip(examples, fairseq_results):
bart_toks = tokenizer.encode(ex, return_tensors="pt").squeeze()
assert_tensors_close(desired_result.long(), bart_toks, prefix=ex)
@require_torch_fp16
def test_generate_fp16(self):
config, input_ids, batch_size = self._get_config_and_data()
attention_mask = input_ids.ne(1).to(torch_device)
model = BartForConditionalGeneration(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_dummy_inputs(self):
config, *_ = self._get_config_and_data()
model = BartForConditionalGeneration(config).eval().to(torch_device)
model(**model.dummy_inputs)
def test_resize_tokens_embeddings_more(self):
config, input_ids, _ = self._get_config_and_data()
def _get_embs(m):
return (m.get_input_embeddings().weight.data.clone(), m.get_output_embeddings().weight.data.clone())
model = BartForConditionalGeneration(config).eval().to(torch_device)
input, output = _get_embs(model)
self.assertTrue(torch.eq(input, output).all())
new_vocab_size = 45
model.resize_token_embeddings(new_vocab_size)
input_new, output_new = _get_embs(model)
self.assertEqual(input_new.shape, (new_vocab_size, config.d_model))
self.assertEqual(output_new.shape, (new_vocab_size, config.d_model))
self.assertTrue(torch.eq(input_new, output_new).all())
@require_torch
class BartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(BartModel, BartForConditionalGeneration, BartForSequenceClassification, BartForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (BartForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": BartModel,
"fill-mask": BartForConditionalGeneration,
"question-answering": BartForQuestionAnswering,
"summarization": BartForConditionalGeneration,
"text-classification": BartForSequenceClassification,
"text-generation": BartForCausalLM,
"text2text-generation": BartForConditionalGeneration,
"translation": BartForConditionalGeneration,
"zero-shot": BartForSequenceClassification,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = False # Fix me Michael
test_pruning = False
def setUp(self):
self.model_tester = BartModelTester(self)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
# BartForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (BartModel, BartForConditionalGeneration, BartForQuestionAnswering):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = BartForConditionalGeneration(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
@unittest.skip(
reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
)
def test_load_save_without_tied_weights(self):
pass
def test_resize_embeddings_persists_embeddings_type(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.scale_embedding = True
model = BartForConditionalGeneration(config)
old_type = type(model.model.decoder.embed_tokens)
model.resize_token_embeddings(new_num_tokens=config.vocab_size)
new_type = type(model.model.decoder.embed_tokens)
self.assertIs(old_type, new_type)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
@slow
class FastIntegrationTests(unittest.TestCase):
"""These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer."""
@cached_property
def tok(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def xsum_1_1_model(self):
return BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1")
def test_xsum_1_1_generation(self):
hf = self.xsum_1_1_model
tok = self.tok
ARTICLE = (
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes."
)
EXPECTED = (
" The International Criminal Court (ICC) has announced that it has been announced by the International"
" Criminal court."
)
dct = tok(ARTICLE, return_tensors="pt")
generated_ids = hf.generate(**dct, num_beams=4)
result = tok.batch_decode(generated_ids, skip_special_tokens=True)[0]
assert EXPECTED == result
def test_xsum_1_1_batch_generation(self):
# test batch
batch = self.tok(
[
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories."
" The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is"
" based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted"
' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including'
' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination'
" into the situation in Palestinian territories, paving the way for possible war crimes investigations"
" against Israelis. As members of the court, Palestinians may be subject to counter-charges as well."
" Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts"
" to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony,"
' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome'
' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he'
' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of'
' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was'
' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State'
" of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a"
' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she'
' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize'
" Palestine for joining the ICC should immediately end their pressure, and countries that support"
" universal acceptance of the court's treaty should speak out to welcome its membership,\" said"
" Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts"
" to undermine international justice, not Palestine's decision to join a treaty to which over 100"
' countries around the world are members." In January, when the preliminary ICC examination was'
" opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was"
' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s'
' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we'
' do not believe that it is eligible to join the ICC," the State Department said in a statement. It'
' urged the warring sides to resolve their differences through direct negotiations. "We will continue'
' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.'
" But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows'
" the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor"
' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."'
" The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The"
" inquiry will include alleged war crimes committed since June. The International Criminal Court was"
" set up in 2002 to prosecute genocide, crimes against humanity and war crimes.",
"The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted"
" Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor"
' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A'
" person who has such a video needs to immediately give it to the investigators.\" Robin's comments"
" follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the"
" French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was"
" recovered from a phone at the wreckage site. The two publications described the supposed video, but"
" did not post it on their websites. The publications said that they watched the video, which was"
" found by a source close to the investigation. \"One can hear cries of 'My God' in several"
' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps'
" of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy"
' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing'
" scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident"
" investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc"
" Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the"
' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell'
' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."'
" Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute"
" in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working"
" hand-in-hand with investigators. But none of the cell phones found so far have been sent to the"
" institute, Menichini said. Asked whether staff involved in the search could have leaked a memory"
' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:'
' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are'
' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is'
" something we did not know before. ... Overall we can say many things of the investigation weren't"
' revealed by the investigation at the beginning," he said. What was mental state of Germanwings'
" co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled"
" depression years before he took the controls of Germanwings Flight 9525, which he's accused of"
" deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school"
' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email'
" correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa"
" said, included medical documents he submitted in connection with resuming his flight training. The"
" announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle"
" with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa,"
" whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday"
' as a "swift and seamless clarification" and said it was sharing the information and documents --'
" including training and medical records -- with public prosecutors. Spohr traveled to the crash site"
" Wednesday, where recovery teams have been working for the past week to recover human remains and"
" plane debris scattered across a steep mountainside. He saw the crisis center set up in"
" Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving"
" families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no"
" visible human remains were left at the site but recovery teams would keep searching. French"
" President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the"
" victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini"
" said. Among those personal belongings could be more cell phones belonging to the 144 passengers and"
" six crew on board. Check out the latest from our correspondents . The details about Lubitz's"
" correspondence with the flight school during his training were among several developments as"
" investigators continued to delve into what caused the crash and Lubitz's possible motive for"
" downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical"
' certificate, had passed all his examinations and "held all the licenses required." Earlier, a'
" spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal"
" Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent"
" psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting"
" Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether"
" Lubitz feared his medical condition would cause him to lose his pilot's license, a European"
' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part'
" of his life,\" the source said, it's only one theory being considered. Another source, a law"
" enforcement official briefed on the investigation, also told CNN that authorities believe the"
" primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly"
" because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor"
" and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had"
" psychological issues, the European government official said. But no matter what details emerge about"
" his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the'
" fact that maybe they weren't going to keep doing their job and they're upset about that and so"
' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels'
" entitled to also take that rage and turn it outward on 149 other people who had nothing to do with"
" the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of"
" Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from"
" Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff,"
" Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.",
],
return_tensors="pt",
padding="longest",
truncation=True,
)
generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4)
result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)
assert (
result[0]
== " The International Criminal Court (ICC) has announced that it has been announced by the International"
" Criminal court."
)
assert (
result[1]
== " An investigation into the crash that killed at least 10 people in the French capital has been"
" released by the French police investigating the crash."
)
def test_encoder_equiv(self):
# test batch
batch = self.tok(
[
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories."
" The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is"
" based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted"
' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including'
' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination'
" into the situation in Palestinian territories, paving the way for possible war crimes investigations"
" against Israelis. As members of the court, Palestinians may be subject to counter-charges as well."
" Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts"
" to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony,"
' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome'
' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he'
' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of'
' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was'
' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State'
" of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a"
' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she'
' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize'
" Palestine for joining the ICC should immediately end their pressure, and countries that support"
" universal acceptance of the court's treaty should speak out to welcome its membership,\" said"
" Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts"
" to undermine international justice, not Palestine's decision to join a treaty to which over 100"
' countries around the world are members." In January, when the preliminary ICC examination was'
" opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was"
' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s'
' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we'
' do not believe that it is eligible to join the ICC," the State Department said in a statement. It'
' urged the warring sides to resolve their differences through direct negotiations. "We will continue'
' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.'
" But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows'
" the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor"
' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."'
" The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The"
" inquiry will include alleged war crimes committed since June. The International Criminal Court was"
" set up in 2002 to prosecute genocide, crimes against humanity and war crimes.",
"The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted"
" Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor"
' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A'
" person who has such a video needs to immediately give it to the investigators.\" Robin's comments"
" follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the"
" French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was"
" recovered from a phone at the wreckage site. The two publications described the supposed video, but"
" did not post it on their websites. The publications said that they watched the video, which was"
" found by a source close to the investigation. \"One can hear cries of 'My God' in several"
' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps'
" of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy"
' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing'
" scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident"
" investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc"
" Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the"
' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell'
' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."'
" Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute"
" in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working"
" hand-in-hand with investigators. But none of the cell phones found so far have been sent to the"
" institute, Menichini said. Asked whether staff involved in the search could have leaked a memory"
' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:'
' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are'
' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is'
" something we did not know before. ... Overall we can say many things of the investigation weren't"
' revealed by the investigation at the beginning," he said. What was mental state of Germanwings'
" co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled"
" depression years before he took the controls of Germanwings Flight 9525, which he's accused of"
" deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school"
' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email'
" correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa"
" said, included medical documents he submitted in connection with resuming his flight training. The"
" announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle"
" with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa,"
" whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday"
' as a "swift and seamless clarification" and said it was sharing the information and documents --'
" including training and medical records -- with public prosecutors. Spohr traveled to the crash site"
" Wednesday, where recovery teams have been working for the past week to recover human remains and"
" plane debris scattered across a steep mountainside. He saw the crisis center set up in"
" Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving"
" families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no"
" visible human remains were left at the site but recovery teams would keep searching. French"
" President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the"
" victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini"
" said. Among those personal belongings could be more cell phones belonging to the 144 passengers and"
" six crew on board. Check out the latest from our correspondents . The details about Lubitz's"
" correspondence with the flight school during his training were among several developments as"
" investigators continued to delve into what caused the crash and Lubitz's possible motive for"
" downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical"
' certificate, had passed all his examinations and "held all the licenses required." Earlier, a'
" spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal"
" Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent"
" psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting"
" Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether"
" Lubitz feared his medical condition would cause him to lose his pilot's license, a European"
' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part'
" of his life,\" the source said, it's only one theory being considered. Another source, a law"
" enforcement official briefed on the investigation, also told CNN that authorities believe the"
" primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly"
" because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor"
" and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had"
" psychological issues, the European government official said. But no matter what details emerge about"
" his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the'
" fact that maybe they weren't going to keep doing their job and they're upset about that and so"
' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels'
" entitled to also take that rage and turn it outward on 149 other people who had nothing to do with"
" the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of"
" Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from"
" Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff,"
" Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.",
],
return_tensors="pt",
padding="longest",
truncation=True,
)
features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state
expected = [[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]]
assert_tensors_close(features[0, :3, :3], torch.tensor(expected), atol=1e-3)
@require_torch
@require_sentencepiece
@require_tokenizers
class BartModelIntegrationTests(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@slow
def test_inference_no_head(self):
model = BartModel.from_pretrained("facebook/bart-large").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
attention_mask = input_ids.ne(model.config.pad_token_id)
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
expected_shape = torch.Size((1, 11, 1024))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]]], device=torch_device
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-3, atol=1e-3)
@slow
def test_base_mask_filling(self):
pbase = pipeline(task="fill-mask", model="facebook/bart-base")
src_text = [" I went to the <mask>."]
results = [x["token_str"] for x in pbase(src_text)]
assert " bathroom" in results
@slow
def test_large_mask_filling(self):
plarge = pipeline(task="fill-mask", model="facebook/bart-large")
src_text = [" I went to the <mask>."]
results = [x["token_str"] for x in plarge(src_text)]
expected_results = [" bathroom", " gym", " wrong", " movies", " hospital"]
self.assertListEqual(results, expected_results)
@slow
def test_mnli_inference(self):
example_b = [0, 31414, 232, 328, 740, 1140, 69, 46078, 1588, 2, 1]
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], example_b])
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli").to(
torch_device
) # eval called in from_pre
attention_mask = input_ids.ne(model.config.pad_token_id)
# Test that model hasn't changed
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
batched_logits = outputs.logits
expected_shape = torch.Size((2, 3))
self.assertEqual(batched_logits.shape, expected_shape)
expected_slice = torch.tensor([[0.1907, 1.4342, -1.0289]], device=torch_device)
logits_arr = batched_logits[0].detach()
# Test that padding does not change results
input_ids_no_pad = _long_tensor([example_b[:-1]])
attention_mask_no_pad = input_ids_no_pad.ne(model.config.pad_token_id)
with torch.no_grad():
logits2 = model(input_ids=input_ids_no_pad, attention_mask=attention_mask_no_pad).logits.squeeze()
assert_tensors_close(batched_logits[1], logits2, atol=1e-3)
assert_tensors_close(expected_slice, logits_arr, atol=1e-3)
@slow
def test_xsum_summarization_same_as_fairseq(self):
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-xsum").to(torch_device)
tok = self.default_tokenizer
PGE_ARTICLE = """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
EXPECTED_SUMMARY = (
"California's largest power company has begun shutting off electricity to thousands of customers in the"
" state."
)
dct = tok.batch_encode_plus(
[PGE_ARTICLE],
max_length=1024,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(torch_device)
hypotheses_batch = model.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
max_length=62,
min_length=11,
length_penalty=1.0,
no_repeat_ngram_size=3,
early_stopping=True,
decoder_start_token_id=model.config.eos_token_id,
)
decoded = tok.batch_decode(
hypotheses_batch,
skip_special_tokens=True,
)
self.assertEqual(EXPECTED_SUMMARY, decoded[0])
def test_xsum_config_generation_params(self):
config = BartConfig.from_pretrained("facebook/bart-large-xsum")
expected_params = {"num_beams": 6, "do_sample": False, "early_stopping": True, "length_penalty": 1.0}
config_params = {k: getattr(config, k, "MISSING") for k, v in expected_params.items()}
self.assertDictEqual(expected_params, config_params)
@slow
def test_cnn_summarization_same_as_fairseq(self):
hf = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
FRANCE_ARTICLE = ( # @noq
" Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
" Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
" comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
" Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
" phone at the wreckage site. The two publications described the supposed video, but did not post it on"
" their websites. The publications said that they watched the video, which was found by a source close to"
" the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
" cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the"
' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
" editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
" the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
" in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
" sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
" specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
" far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
" we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
" Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
" controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
" discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
" connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
" company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
" ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
" sharing the information and documents -- including training and medical records -- with public"
" prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
" past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
" crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
" site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
" Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
" French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
" the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
" Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
" on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
" the flight school during his training were among several developments as investigators continued to"
" delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
" spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
" Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
" some point before his aviation career and underwent psychotherapy before he got his pilot's license."
" Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
" crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
" lose his pilot's license, a European government official briefed on the investigation told CNN on"
' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
" considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
" authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
" not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
" seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
" he had psychological issues, the European government official said. But no matter what details emerge"
" about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
" that maybe they weren't going to keep doing their job and they're upset about that and so they're"
' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
" also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
" 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
" Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
" Amiel and Anna-Maja Rappard contributed to this report."
)
SHORTER_ARTICLE = (
" (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
" and Faith Karimi contributed to this report."
)
# The below article tests that we don't add any hypotheses outside of the top n_beams
IRAN_ARTICLE = (
" (CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
" in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
" block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
" Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
" Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
" letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
" the announcement of the new framework will likely result in more heat than light. It will not be helped"
" by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
" The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
" objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
" of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
" had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
" always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
" nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
" expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
" two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
" dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
" sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
" U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
" continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
" point, and we'll know even more about Iran's program in the coming months and years because of the deal."
" In fact, the inspections provisions that are part of this agreement are designed to protect against any"
" covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
" the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
" warning that a deal might be killed by Congress or a future president). This of course is not the case."
" The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
" United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
" played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
" reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
" and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
" contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
" case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
" or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
" Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
" sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
" forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
" a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
" suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
" START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
" with Iran will not be so balanced. The restrictions and obligations in the final framework agreement"
" will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
" most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
" some insist that any agreement must address Iranian missile programs, human rights violations or support"
" for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are"
" unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in"
" the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
" affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
" fact-based, not based on questionable assertions or dubious assumptions."
)
ARTICLE_SUBWAY = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
dct = tok.batch_encode_plus(
[FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY],
max_length=1024,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="pt",
)
self.assertEqual(1024, dct["input_ids"].shape[1])
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=2,
)
assert hypotheses_batch[:, 1].eq(0).all().item()
EXPECTED = [
"A French prosecutor says he is not aware of any video footage from on board the plane. Two German "
"magazines claim to have found a cell phone video showing the crash. The publications say they watched "
"the video, which was found by a source close to the investigation. All 150 on board Germanwings Flight "
"9525 were killed.",
"Palestinian Authority becomes 123rd member of the International Criminal Court. The move gives the court "
"jurisdiction over alleged crimes in Palestinian territories. Israel and the United States opposed the "
"Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki said it was a "
"move toward greater justice.",
"U.S. and its negotiating partners reached a strong framework agreement with Iran. Peter Bergen: The "
"debate that has already begun will likely result in more heat than light. He says critics have made "
"dubious assumptions and doubtful assertions. Bergen says the goal was to block Iran from building a "
"nuclear weapon.",
"Liana Barrientos, 39, has been married 10 times, sometimes within two weeks of each other. Prosecutors "
"say the marriages were part of an immigration scam. She pleaded not guilty at State Supreme Court in the "
"Bronx on Friday. If convicted, she faces up to four years in prison.",
]
generated_summaries = tok.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated_summaries == EXPECTED
@slow
def test_contrastive_search_bart(self):
article = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
input_ids = bart_tokenizer(
article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
).input_ids.to(torch_device)
outputs = bart_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64, num_beams=1)
generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. "
"Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is "
"accused of being part of an immigration scam to get permanent residency. If convicted, she faces up "
"to four years in"
],
)
@slow
def test_decoder_attention_mask(self):
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0).to(
torch_device
)
tokenizer = self.default_tokenizer
sentence = "UN Chief Says There Is No <mask> in Syria"
input_ids = tokenizer(sentence, return_tensors="pt").input_ids.to(torch_device)
padding_size = 3
decoder_input_ids = torch.tensor(
[
[model.config.decoder_start_token_id]
+ padding_size * [model.config.pad_token_id]
+ [model.config.bos_token_id]
],
dtype=torch.long,
device=torch_device,
)
decoder_attention_mask = torch.where(decoder_input_ids == model.config.pad_token_id, 0, 1).to(torch_device)
generated_ids = model.generate(
input_ids=input_ids,
use_cache=False,
max_new_tokens=20,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
generated_sentence = tokenizer.batch_decode(generated_ids)[0]
expected_sentence = "</s><pad><pad><pad><s>UN Chief Says There Is No Plan B for Peace in Syria</s>"
self.assertEqual(generated_sentence, expected_sentence)
class BartStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
encoder_layers=self.decoder_layers,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.decoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = BartDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = BartDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class BartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (BartDecoder, BartForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (BartForCausalLM,) if is_torch_available() else ()
fx_comptatible = True
test_pruning = False
is_encoder_decoder = False
test_missing_keys = False
def setUp(
self,
):
self.model_tester = BartStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
@unittest.skip(reason="Decoder cannot keep gradients")
def test_retain_grad_hidden_states_attentions(self):
return
@unittest.skip
def test_save_load_fast_init_from_base(self):
pass
| transformers/tests/models/bart/test_modeling_bart.py/0 | {
"file_path": "transformers/tests/models/bart/test_modeling_bart.py",
"repo_id": "transformers",
"token_count": 35972
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "google-bert/bert-base-uncased"
tokenizer_class = BertTokenizer
rust_tokenizer_class = BertTokenizerFast
test_rust_tokenizer = True
space_between_special_tokens = True
from_pretrained_filter = filter_non_english
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00e9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00e9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
self.skipTest(reason="test_rust_tokenizer is set to False")
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "UNwant\u00e9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# With lower casing
tokenizer = self.get_tokenizer(do_lower_case=True)
rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)
sequence = "UNwant\u00e9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535a\u63a8zz"), ["ah", "\u535a", "\u63a8", "zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["h\u00e9llo"])
def test_basic_tokenizer_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_default(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = BasicTokenizer(do_lower_case=False)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_respects_never_split_tokens(self):
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
)
def test_basic_tokenizer_splits_on_punctuation(self):
tokenizer = BasicTokenizer()
text = "a\n'll !!to?'d of, can't."
expected = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."]
self.assertListEqual(tokenizer.tokenize(text), expected)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00a0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def test_is_control(self):
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def test_clean_text(self):
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]])
self.assertListEqual(
[rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("google-bert/bert-base-uncased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_2 + [102]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
tokens = tokenizer_r.encode_plus(
sentence,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
expected_results = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
def test_change_tokenize_chinese_chars(self):
list_of_commun_chinese_char = ["的", "人", "有"]
text_with_chinese_char = "".join(list_of_commun_chinese_char)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
kwargs["tokenize_chinese_chars"] = True
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False)
ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False)
tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r)
tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char)
self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char)
kwargs["tokenize_chinese_chars"] = False
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False)
ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False)
tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r)
tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p)
# it is expected that only the first Chinese character is not preceded by "##".
expected_tokens = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char)
]
self.assertListEqual(tokens_without_spe_char_p, expected_tokens)
self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
| transformers/tests/models/bert/test_tokenization_bert.py/0 | {
"file_path": "transformers/tests/models/bert/test_tokenization_bert.py",
"repo_id": "transformers",
"token_count": 6925
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BioGPT model."""
import math
import unittest
from transformers import BioGptConfig, is_sacremoses_available, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
class BioGptModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return BioGptConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = BioGptModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = BioGptForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_biogpt_model_attention_mask_past(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = BioGptModel(config=config)
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = self.seq_length // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_biogpt_model_past_large_inputs(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = BioGptModel(config=config).to(torch_device).eval()
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_forward_and_backwards(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
):
model = BioGptForCausalLM(config)
model.to(torch_device)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def create_and_check_biogpt_weight_initialization(self, config, *args):
model = BioGptModel(config)
model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)
def create_and_check_biogpt_for_token_classification(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
config.num_labels = self.num_labels
model = BioGptForTokenClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class BioGptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
all_generative_model_classes = (BioGptForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available() and is_sacremoses_available()
else {}
)
test_pruning = False
def setUp(self):
self.model_tester = BioGptModelTester(self)
self.config_tester = ConfigTester(self, config_class=BioGptConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_biogpt_model_att_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*config_and_inputs)
def test_biogpt_gradient_checkpointing(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
def test_biogpt_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*config_and_inputs)
def test_biogpt_weight_initialization(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*config_and_inputs)
def test_biogpt_token_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*config_and_inputs)
@slow
def test_batch_generation(self):
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
model.to(torch_device)
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
tokenizer.padding_side = "left"
# Define PAD Token = EOS Token = 50256
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model.generate(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit bigger than a little bit.",
"Today, I have a good idea of how to use the information",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
@slow
def test_model_from_pretrained(self):
model_name = "microsoft/biogpt"
model = BioGptModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# Copied from tests.models.opt.test_modeling_opt.OPTModelTest.test_opt_sequence_classification_model with OPT->BioGpt,opt->biogpt,prepare_config_and_inputs->prepare_config_and_inputs_for_common
def test_biogpt_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = BioGptForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.opt.test_modeling_opt.OPTModelTest.test_opt_sequence_classification_model_for_multi_label with OPT->BioGpt,opt->biogpt,prepare_config_and_inputs->prepare_config_and_inputs_for_common
def test_biogpt_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = BioGptForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@require_torch
class BioGptModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_lm_head_model(self):
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
input_ids = torch.tensor([[2, 4805, 9, 656, 21]])
output = model(input_ids)[0]
vocab_size = 42384
expected_shape = torch.Size((1, 5, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
@slow
def test_biogpt_generation(self):
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
model.to(torch_device)
torch.manual_seed(0)
tokenized = tokenizer("COVID-19 is", return_tensors="pt").to(torch_device)
output_ids = model.generate(
**tokenized,
min_length=100,
max_length=1024,
num_beams=5,
early_stopping=True,
)
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
EXPECTED_OUTPUT_STR = (
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"
" more than 800,000 deaths."
)
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
| transformers/tests/models/biogpt/test_modeling_biogpt.py/0 | {
"file_path": "transformers/tests/models/biogpt/test_modeling_biogpt.py",
"repo_id": "transformers",
"token_count": 8694
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Blip model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import BlipConfig, BlipTextConfig, BlipVisionConfig
from transformers.testing_utils import (
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipTextModel,
BlipVisionModel,
)
if is_vision_available():
from PIL import Image
from transformers import BlipProcessor
class BlipVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return BlipVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = BlipVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class BlipVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Blip does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (BlipVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = BlipVisionModelTester(self)
self.config_tester = ConfigTester(self, config_class=BlipVisionConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Blip does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip-vqa-base"
model = BlipVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class BlipTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return BlipTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = BlipTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class BlipTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (BlipTextModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = BlipTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Blip does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip-vqa-base"
model = BlipTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_pt_tf_model_equivalence(self):
super().test_pt_tf_model_equivalence(allow_missing_keys=True)
class BlipModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs)
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return BlipConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = BlipModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class BlipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (BlipModel,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": BlipModel,
"image-to-text": BlipForConditionalGeneration,
"visual-question-answering": BlipForQuestionAnswering,
"image-text-to-text": BlipForConditionalGeneration,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
def setUp(self):
self.model_tester = BlipModelTester(self)
common_properties = ["logit_scale_init_value", "image_text_hidden_size", "projection_dim", "label_smoothing"]
self.config_tester = ConfigTester(
self, config_class=BlipConfig, has_text_modality=False, common_properties=common_properties
)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="BlipModel does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
# override as the `logit_scale` parameter initilization is different for Blip
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save BlipConfig and check if we can load BlipVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save BlipConfig and check if we can load BlipTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = BlipTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip-vqa-base"
model = BlipModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_get_image_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "return_loss"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = BlipModel(config).to(torch_device)
model.eval()
image_features = model.get_image_features(**inputs_dict)
self.assertEqual(
image_features.shape,
(
self.model_tester.batch_size,
model.projection_dim,
),
)
def test_get_text_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["pixel_values", "return_loss"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = BlipModel(config).to(torch_device)
model.eval()
text_features = model.get_text_features(**inputs_dict)
self.assertEqual(
text_features.shape,
(
self.model_tester.batch_size,
model.projection_dim,
),
)
def test_get_multimodal_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["return_loss"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = BlipModel(config).to(torch_device)
model.eval()
multimodal_features = model.get_multimodal_features(**inputs_dict)
self.assertEqual(
multimodal_features.shape,
(
self.model_tester.batch_size,
model.projection_dim,
),
)
def test_pt_tf_model_equivalence(self):
super().test_pt_tf_model_equivalence(allow_missing_keys=True)
class BlipTextRetrievalModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs)
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return BlipConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = BlipModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
class BlipTextImageModelsModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs)
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for pt-tf equivalence test
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return BlipConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = BlipModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
class BlipVQAModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs)
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return BlipConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = BlipModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"decoder_input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"labels": input_ids,
}
return config, inputs_dict
@require_torch
@require_vision
class BlipVQAModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (BlipForQuestionAnswering,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = BlipVQAModelTester(self)
def _prepare_inputs_for_vqa(self):
_, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
inputs_dict.pop("return_loss")
return inputs_dict
def test_class_name_consistency(self):
"""
Tests that all VQA models have a class name that ends with "ForQuestionAnswering"
"""
for model_class in self.all_model_classes:
model = model_class(self.model_tester.get_config())
self.assertTrue(
model.__class__.__name__.endswith("ForQuestionAnswering"),
f"Class name should end with 'ForVisualQuestionAnswering' got {model.__class__.__name__}",
)
def test_training(self):
"""
Tests that all VQA models can be trained on a single batch
"""
for model_class in self.all_model_classes:
model = model_class(self.model_tester.get_config()).to(torch_device)
model.train()
loss = model(**self.model_tester.prepare_config_and_inputs_for_common()[1]).loss
loss.backward()
# verify the gradients are not None
for name, param in model.named_parameters():
self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}")
def test_forward_signature(self):
"""
Test if the forward function has the expected arguments.
"""
for model_class in self.all_model_classes:
model = model_class(self.model_tester.get_config())
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so args are the first n entries
args = list(signature.parameters.keys())
expected_args = [
"input_ids",
"attention_mask",
"labels",
"decoder_input_ids",
"decoder_attention_mask",
]
for arg in expected_args:
self.assertTrue(
arg in args,
f"Argument {arg} of forward function signature should include {arg}. Found {args}.",
)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="BlipModel does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@require_torch
class BlipTextRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (BlipForImageTextRetrieval,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = BlipTextRetrievalModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="BlipModel does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = [
"input_ids",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_training(self):
if not self.model_tester.is_training:
self.skipTest(reason="ModelTester is not setup for training")
for model_class in self.all_model_classes[:-1]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
# hardcode labels to be the same as input_ids
inputs["labels"] = inputs["input_ids"]
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
self.skipTest(reason="ModelTester is not setup for training")
for model_class in self.all_model_classes[:-1]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
# hardcode labels to be the same as input_ids
inputs["labels"] = inputs["input_ids"]
loss = model(**inputs).loss
loss.backward()
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# override as the `logit_scale` parameter initilization is different for Blip
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save BlipConfig and check if we can load BlipVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save BlipConfig and check if we can load BlipTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = BlipTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip-vqa-base"
model = BlipModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class BlipTextImageModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (BlipForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = BlipTextImageModelsModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="BlipModel does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = [
"input_ids",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_training(self):
if not self.model_tester.is_training:
self.skipTest(reason="ModelTester is not setup for training")
for model_class in self.all_model_classes[:-1]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
# hardcode labels to be the same as input_ids
inputs["labels"] = inputs["input_ids"]
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
self.skipTest(reason="ModelTester is not setup for training")
for model_class in self.all_model_classes[:-1]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
# hardcode labels to be the same as input_ids
inputs["labels"] = inputs["input_ids"]
loss = model(**inputs).loss
loss.backward()
# override as the `logit_scale` parameter initilization is different for Blip
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save BlipConfig and check if we can load BlipVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save BlipConfig and check if we can load BlipTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = BlipTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip-vqa-base"
model = BlipModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
@slow
class BlipModelIntegrationTest(unittest.TestCase):
def test_inference_image_captioning(self):
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(torch_device)
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
image = prepare_img()
# image only
inputs = processor(images=image, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs)
# Test output
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102])
# image and context
context = ["a picture of"]
inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs)
# Test output
self.assertEqual(
predictions[0].tolist(),
[30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102],
)
@require_torch_accelerator
@require_torch_fp16
def test_inference_image_captioning_fp16(self):
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=torch.float16
).to(torch_device)
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
image = prepare_img()
# image only
inputs = processor(images=image, return_tensors="pt").to(torch_device, torch.float16)
predictions = model.generate(**inputs)
# Test output
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102])
# image and context
context = ["a picture of"]
inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device, torch.float16)
predictions = model.generate(**inputs)
# Test output
self.assertEqual(
predictions[0].tolist(),
[30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102],
)
def test_inference_interpolate_pos_encoding(self):
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(torch_device)
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
processor.image_processor.size = {"height": 500, "width": 500}
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 1037, 3899, 102])
self.assertEqual(generated_text, "a woman sitting on the beach with a dog")
def test_inference_vqa(self):
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(torch_device)
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
image = prepare_img()
text = "how many dogs are in the picture?"
inputs = processor(image, text=text, return_tensors="pt").to(torch_device)
out = model.generate(**inputs)
# Test output
self.assertEqual(out[0].tolist(), [30522, 1015, 102])
def test_inference_itm(self):
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco").to(torch_device)
processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(image, text, return_tensors="pt").to(torch_device)
out_itm = model(**inputs)
out = model(**inputs, use_itm_head=False)
expected_scores = torch.Tensor([[0.0029, 0.9971]])
torch.testing.assert_close(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(out[0].cpu(), torch.Tensor([[0.5162]]), rtol=1e-3, atol=1e-3)
| transformers/tests/models/blip/test_modeling_blip.py/0 | {
"file_path": "transformers/tests/models/blip/test_modeling_blip.py",
"repo_id": "transformers",
"token_count": 25585
} |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import ChineseCLIPImageProcessor
class ChineseCLIPImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
size = size if size is not None else {"height": 224, "width": 224}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_image_shape(self, images):
return 3, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class ChineseCLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = ChineseCLIPImageProcessingTester(self, do_center_crop=True)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 224, "width": 224})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
@unittest.skip(
reason="ChineseCLIPImageProcessor doesn't treat 4 channel PIL and numpy consistently yet"
) # FIXME Amy
def test_call_numpy_4_channels(self):
pass
@require_torch
@require_vision
class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=True)
self.expected_encoded_image_num_channels = 3
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
@unittest.skip(reason="ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy
def test_call_numpy(self):
return super().test_call_numpy()
@unittest.skip(reason="ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy
def test_call_pytorch(self):
return super().test_call_torch()
@unittest.skip(
reason="ChineseCLIPImageProcessor doesn't treat 4 channel PIL and numpy consistently yet"
) # FIXME Amy
def test_call_numpy_4_channels(self):
pass
| transformers/tests/models/chinese_clip/test_image_processing_chinese_clip.py/0 | {
"file_path": "transformers/tests/models/chinese_clip/test_image_processing_chinese_clip.py",
"repo_id": "transformers",
"token_count": 2665
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Dac model."""
import inspect
import os
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
from datasets import Audio, load_dataset
from transformers import AutoProcessor, DacConfig, DacModel
from transformers.testing_utils import is_torch_available, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
@require_torch
# Copied from transformers.tests.encodec.test_modeling_encodec.EncodecModelTester with Encodec->Dac
class DacModelTester:
# Ignore copy
def __init__(
self,
parent,
batch_size=3,
num_channels=1,
is_training=False,
intermediate_size=1024,
encoder_hidden_size=16,
downsampling_ratios=[2, 4, 4],
decoder_hidden_size=16,
n_codebooks=6,
codebook_size=512,
codebook_dim=4,
quantizer_dropout=0.0,
commitment_loss_weight=0.25,
codebook_loss_weight=1.0,
sample_rate=16000,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.sample_rate = sample_rate
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_hidden_size = decoder_hidden_size
self.n_codebooks = n_codebooks
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.quantizer_dropout = quantizer_dropout
self.commitment_loss_weight = commitment_loss_weight
self.codebook_loss_weight = codebook_loss_weight
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
# Ignore copy
def get_config(self):
return DacConfig(
encoder_hidden_size=self.encoder_hidden_size,
downsampling_ratios=self.downsampling_ratios,
decoder_hidden_size=self.decoder_hidden_size,
n_codebooks=self.n_codebooks,
codebook_size=self.codebook_size,
codebook_dim=self.codebook_dim,
quantizer_dropout=self.quantizer_dropout,
commitment_loss_weight=self.commitment_loss_weight,
codebook_loss_weight=self.codebook_loss_weight,
)
# Ignore copy
def create_and_check_model_forward(self, config, inputs_dict):
model = DacModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(result.audio_values.shape, (self.batch_size, self.intermediate_size))
@require_torch
# Copied from transformers.tests.encodec.test_modeling_encodec.EncodecModelTest with Encodec->Dac
class DacModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DacModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
pipeline_model_mapping = {"feature-extraction": DacModel} if is_torch_available() else {}
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does not have attention and does not support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = DacModelTester(self)
self.config_tester = ConfigTester(
self, config_class=DacConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
# TODO (ydshieh): Although we have a potential cause, it's still strange that this test fails all the time with large differences
@unittest.skip(reason="Might be caused by `indices` computed with `max()` in `decode_latents`")
def test_batching_equivalence(self):
super().test_batching_equivalence()
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
# Ignore copy
expected_arg_names = ["input_values", "n_quantizers", "return_dict"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip("The DacModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_model_get_set_embeddings(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
@unittest.skip("No support for low_cpu_mem_usage=True.")
def test_save_load_low_cpu_mem_usage(self):
pass
@unittest.skip("No support for low_cpu_mem_usage=True.")
def test_save_load_low_cpu_mem_usage_checkpoints(self):
pass
@unittest.skip("No support for low_cpu_mem_usage=True.")
def test_save_load_low_cpu_mem_usage_no_safetensors(self):
pass
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
# Ignore copy
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv", "in_proj", "out_proj", "codebook"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class DacIntegrationTest(unittest.TestCase):
def test_integration_16khz(self):
expected_rmse = 0.004
expected_encoder_sums_dict = {
"loss": 24.8596,
"quantized_representation": -0.0745,
"audio_codes": 504.0948,
"projected_latents": 0.0682,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_16khz"
model_id = "descript/{}".format(model_name)
model = DacModel.from_pretrained(model_id, force_download=True).to(torch_device).eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[0]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_24khz(self):
expected_rmse = 0.0039
expected_encoder_output_dict = {
"quantized_representation": torch.tensor([0.6257, 3.1245, 5.2514, 2.3160, 1.5774]),
"audio_codes": torch.tensor([919, 919, 234, 777, 234]),
"projected_latents": torch.tensor([-4.7841, -5.0063, -4.5595, -5.0372, -5.4280]),
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_24khz"
model_id = "descript/{}".format(model_name)
model = DacModel.from_pretrained(model_id, force_download=True).to(torch_device).eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[0]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_quantized_representation = encoder_outputs["quantized_representation"][0, 0, :5].cpu()
expected_audio_codes = encoder_outputs["audio_codes"][0, 0, :5].cpu()
expected_projected_latents = encoder_outputs["projected_latents"][0, 0, :5].cpu()
# make sure values are correct for audios slices
self.assertTrue(
torch.allclose(
expected_quantized_representation,
expected_encoder_output_dict["quantized_representation"],
atol=1e-3,
)
)
self.assertTrue(
torch.allclose(expected_audio_codes, expected_encoder_output_dict["audio_codes"], atol=1e-3)
)
self.assertTrue(
torch.allclose(
expected_projected_latents, expected_encoder_output_dict["projected_latents"], atol=1e-3
)
)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
input_values_from_codes = model.decode(audio_codes=encoder_outputs.audio_codes)[0]
# make sure decode from audio codes and quantized values give more or less the same results
torch.testing.assert_close(input_values_from_codes, input_values_dec, rtol=1e-5, atol=1e-5)
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_44khz(self):
expected_rmse = 0.002
expected_encoder_sums_dict = {
"loss": 34.3612,
"quantized_representation": 0.0078,
"audio_codes": 509.6812,
"projected_latents": -0.1054,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_44khz"
model_id = "descript/{}".format(model_name)
model = DacModel.from_pretrained(model_id).to(torch_device).eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[0]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_batch_16khz(self):
expected_rmse = 0.002
expected_encoder_sums_dict = {
"loss": 20.3913,
"quantized_representation": -0.0538,
"audio_codes": 487.8470,
"projected_latents": 0.0237,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_16khz"
model_id = "descript/{}".format(model_name)
model = DacModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [np.array([audio_sample["array"]])[0] for audio_sample in librispeech_dummy[-2:]["audio"]]
inputs = processor(
raw_audio=audio_samples,
sampling_rate=processor.sampling_rate,
truncation=False,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"].cpu().numpy()
arr_enc_dec = input_values_enc_dec.cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[:, 0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:, :max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_batch_24khz(self):
expected_rmse = 0.002
expected_encoder_sums_dict = {
"loss": 24.2309,
"quantized_representation": 0.0520,
"audio_codes": 510.2700,
"projected_latents": -0.0076,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_24khz"
model_id = "descript/{}".format(model_name)
model = DacModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [np.array([audio_sample["array"]])[0] for audio_sample in librispeech_dummy[-2:]["audio"]]
inputs = processor(
raw_audio=audio_samples,
sampling_rate=processor.sampling_rate,
truncation=False,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"].cpu().numpy()
arr_enc_dec = input_values_enc_dec.cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[:, 0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:, :max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_batch_44khz(self):
expected_rmse = 0.001
expected_encoder_sums_dict = {
"loss": 25.9233,
"quantized_representation": 0.0013,
"audio_codes": 528.5620,
"projected_latents": -0.1194,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_44khz"
model_id = "descript/{}".format(model_name)
model = DacModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [np.array([audio_sample["array"]])[0] for audio_sample in librispeech_dummy[-2:]["audio"]]
inputs = processor(
raw_audio=audio_samples,
sampling_rate=processor.sampling_rate,
truncation=False,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"].cpu().numpy()
arr_enc_dec = input_values_enc_dec.cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[:, 0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:, :max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
| transformers/tests/models/dac/test_modeling_dac.py/0 | {
"file_path": "transformers/tests/models/dac/test_modeling_dac.py",
"repo_id": "transformers",
"token_count": 14762
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Donut Swin model."""
import collections
import unittest
from transformers import DonutSwinConfig
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import is_torch_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import DonutSwinModel
class DonutSwinModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
embed_dim=16,
depths=[1, 2, 1],
num_heads=[2, 2, 4],
window_size=2,
mlp_ratio=2.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
patch_norm=True,
initializer_range=0.02,
layer_norm_eps=1e-5,
is_training=True,
scope=None,
use_labels=True,
type_sequence_label_size=10,
encoder_stride=8,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.patch_norm = patch_norm
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.is_training = is_training
self.scope = scope
self.use_labels = use_labels
self.type_sequence_label_size = type_sequence_label_size
self.encoder_stride = encoder_stride
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DonutSwinConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
embed_dim=self.embed_dim,
depths=self.depths,
num_heads=self.num_heads,
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
drop_path_rate=self.drop_path_rate,
hidden_act=self.hidden_act,
use_absolute_embeddings=self.use_absolute_embeddings,
path_norm=self.patch_norm,
layer_norm_eps=self.layer_norm_eps,
initializer_range=self.initializer_range,
encoder_stride=self.encoder_stride,
)
def create_and_check_model(self, config, pixel_values, labels):
model = DonutSwinModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DonutSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DonutSwinModel,) if is_torch_available() else ()
pipeline_model_mapping = {"image-feature-extraction": DonutSwinModel} if is_torch_available() else {}
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DonutSwinModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=DonutSwinConfig,
has_text_modality=False,
embed_dim=37,
common_properties=["image_size", "patch_size", "num_channels"],
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="DonutSwin does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
expected_num_attentions = len(self.model_tester.depths)
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
window_size_squared = config.window_size**2
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_heads[0], window_size_squared, window_size_squared],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
added_hidden_states = 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_heads[0], window_size_squared, window_size_squared],
)
def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# DonutSwin has a different seq_length
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
reshaped_hidden_states = outputs.reshaped_hidden_states
self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
reshaped_hidden_states = (
reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
def test_hidden_states_output_with_padding(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.patch_size = 3
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
@slow
def test_model_from_pretrained(self):
model_name = "naver-clova-ix/donut-base"
model = DonutSwinModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
| transformers/tests/models/donut/test_modeling_donut_swin.py/0 | {
"file_path": "transformers/tests/models/donut/test_modeling_donut_swin.py",
"repo_id": "transformers",
"token_count": 6167
} |
import unittest
import numpy as np
from transformers import ElectraConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.electra.modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
)
class FlaxElectraModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_attention_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=24,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.embedding_size = embedding_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_choices = num_choices
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
config = ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
embedding_size=self.embedding_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class FlaxElectraModelTest(FlaxModelTesterMixin, unittest.TestCase):
test_head_masking = True
all_model_classes = (
(
FlaxElectraModel,
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForPreTraining,
FlaxElectraForTokenClassification,
FlaxElectraForQuestionAnswering,
FlaxElectraForMultipleChoice,
FlaxElectraForSequenceClassification,
)
if is_flax_available()
else ()
)
def setUp(self):
self.model_tester = FlaxElectraModelTester(self)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
if model_class_name == FlaxElectraForMaskedLM:
model = model_class_name.from_pretrained("google/electra-small-generator")
else:
model = model_class_name.from_pretrained("google/electra-small-discriminator")
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
| transformers/tests/models/electra/test_modeling_flax_electra.py/0 | {
"file_path": "transformers/tests/models/electra/test_modeling_flax_electra.py",
"repo_id": "transformers",
"token_count": 2270
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch ESM model."""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_bitsandbytes, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
EsmEmbeddings,
create_position_ids_from_input_ids,
)
# copied from tests.test_modeling_roberta
class EsmModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=33,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return EsmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
pad_token_id=1,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = EsmModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = EsmForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = EsmForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_forward_and_backwards(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
gradient_checkpointing=False,
):
model = EsmForMaskedLM(config)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
model.to(torch_device)
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
test_mismatched_shapes = False
all_model_classes = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = ()
pipeline_model_mapping = (
{
"feature-extraction": EsmModel,
"fill-mask": EsmForMaskedLM,
"text-classification": EsmForSequenceClassification,
"token-classification": EsmForTokenClassification,
"zero-shot": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
test_sequence_classification_problem_types = True
model_split_percents = [0.5, 0.8, 0.9]
def setUp(self):
self.model_tester = EsmModelTester(self)
self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_esm_gradient_checkpointing(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
@slow
def test_model_from_pretrained(self):
model_name = "facebook/esm2_t6_8M_UR50D"
model = EsmModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_create_position_ids_respects_padding_index(self):
"""This is a regression test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is EsmEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = EsmEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""This is a regression test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is EsmEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = EsmEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
@unittest.skip(reason="Esm does not support embedding resizing")
def test_resize_embeddings_untied(self):
pass
@unittest.skip(reason="Esm does not support embedding resizing")
def test_resize_tokens_embeddings(self):
pass
@slow
@require_torch
class EsmModelIntegrationTest(TestCasePlus):
def test_inference_masked_lm(self):
with torch.no_grad():
model = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D")
model.eval()
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
vocab_size = 33
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]]
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
def test_inference_no_head(self):
with torch.no_grad():
model = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D")
model.eval()
input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
output = model(input_ids)[0]
# compare the actual values for a slice.
expected_slice = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
@require_bitsandbytes
def test_inference_bitsandbytes(self):
model = EsmForMaskedLM.from_pretrained("facebook/esm2_t36_3B_UR50D", load_in_8bit=True)
input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
# Just test if inference works
with torch.no_grad():
_ = model(input_ids)[0]
model = EsmForMaskedLM.from_pretrained("facebook/esm2_t36_3B_UR50D", load_in_4bit=True)
input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
# Just test if inference works
_ = model(input_ids)[0]
| transformers/tests/models/esm/test_modeling_esm.py/0 | {
"file_path": "transformers/tests/models/esm/test_modeling_esm.py",
"repo_id": "transformers",
"token_count": 6181
} |
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
import PIL
from transformers import FlavaImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.models.flava.image_processing_flava import (
FLAVA_CODEBOOK_MEAN,
FLAVA_CODEBOOK_STD,
FLAVA_IMAGE_MEAN,
FLAVA_IMAGE_STD,
)
else:
FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None
class FlavaImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
resample=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=FLAVA_IMAGE_MEAN,
image_std=FLAVA_IMAGE_STD,
input_size_patches=14,
total_mask_patches=75,
mask_group_max_patches=None,
mask_group_min_patches=16,
mask_group_min_aspect_ratio=0.3,
mask_group_max_aspect_ratio=None,
codebook_do_resize=True,
codebook_size=None,
codebook_resample=None,
codebook_do_center_crop=True,
codebook_crop_size=None,
codebook_do_map_pixels=True,
codebook_do_normalize=True,
codebook_image_mean=FLAVA_CODEBOOK_MEAN,
codebook_image_std=FLAVA_CODEBOOK_STD,
):
size = size if size is not None else {"height": 224, "width": 224}
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.do_resize = do_resize
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.size = size
self.resample = resample if resample is not None else PILImageResampling.BICUBIC
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_std = codebook_image_std
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"resample": self.resample,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"input_size_patches": self.input_size_patches,
"total_mask_patches": self.total_mask_patches,
"mask_group_max_patches": self.mask_group_max_patches,
"mask_group_min_patches": self.mask_group_min_patches,
"mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
"mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
"codebook_do_resize": self.codebook_do_resize,
"codebook_size": self.codebook_size,
"codebook_resample": self.codebook_resample,
"codebook_do_center_crop": self.codebook_do_center_crop,
"codebook_crop_size": self.codebook_crop_size,
"codebook_do_map_pixels": self.codebook_do_map_pixels,
"codebook_do_normalize": self.codebook_do_normalize,
"codebook_image_mean": self.codebook_image_mean,
"codebook_image_std": self.codebook_image_std,
}
def get_expected_image_size(self):
return (self.size["height"], self.size["width"])
def get_expected_mask_size(self):
return (
(self.input_size_patches, self.input_size_patches)
if not isinstance(self.input_size_patches, tuple)
else self.input_size_patches
)
def get_expected_codebook_image_size(self):
return (self.codebook_size["height"], self.codebook_size["width"])
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = FlavaImageProcessor if is_vision_available() else None
maxDiff = None
def setUp(self):
super().setUp()
self.image_processor_tester = FlavaImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "resample"))
self.assertTrue(hasattr(image_processing, "crop_size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "masking_generator"))
self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
self.assertTrue(hasattr(image_processing, "codebook_size"))
self.assertTrue(hasattr(image_processing, "codebook_resample"))
self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
self.assertTrue(hasattr(image_processing, "codebook_image_std"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 224, "width": 224})
self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})
image_processor = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, PIL.Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt")
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt")
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def _test_call_framework(self, instance_class, prepare_kwargs):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs)
for image in image_inputs:
self.assertIsInstance(image, instance_class)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt")
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
)
encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.image_processor_tester.batch_size,
expected_height,
expected_width,
),
)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
self.assertEqual(
encoded_images.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test masking
encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.image_processor_tester.batch_size,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
def test_call_numpy_4_channels(self):
self.image_processing_class.num_channels = 4
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
self.image_processing_class.num_channels = 3
def test_call_pytorch(self):
self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})
def test_masking(self):
# Initialize image_processing
random.seed(1234)
image_processing = self.image_processing_class(**self.image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)
def test_codebook_pixels(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, PIL.Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
| transformers/tests/models/flava/test_image_processing_flava.py/0 | {
"file_path": "transformers/tests/models/flava/test_image_processing_flava.py",
"repo_id": "transformers",
"token_count": 7094
} |
import unittest
import numpy as np
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import (
require_torch,
require_torchvision,
require_vision,
)
if is_torch_available() and is_vision_available():
import torch
from transformers import FuyuImageProcessor
if is_vision_available():
from PIL import Image
@require_torch
@require_vision
@require_torchvision
class TestFuyuImageProcessor(unittest.TestCase):
def setUp(self):
self.size = {"height": 160, "width": 320}
self.processor = FuyuImageProcessor(size=self.size, padding_value=1.0)
self.batch_size = 3
self.channels = 3
self.height = 300
self.width = 300
self.image_input = torch.rand(self.batch_size, self.channels, self.height, self.width)
self.image_patch_dim_h = 30
self.image_patch_dim_w = 30
self.sample_image = np.zeros((450, 210, 3), dtype=np.uint8)
self.sample_image_pil = Image.fromarray(self.sample_image)
def test_patches(self):
expected_num_patches = self.processor.get_num_patches(image_height=self.height, image_width=self.width)
patches_final = self.processor.patchify_image(image=self.image_input)
assert (
patches_final.shape[1] == expected_num_patches
), f"Expected {expected_num_patches} patches, got {patches_final.shape[1]}."
def test_scale_to_target_aspect_ratio(self):
# (h:450, w:210) fitting (160, 320) -> (160, 210*160/450)
scaled_image = self.processor.resize(self.sample_image, size=self.size)
self.assertEqual(scaled_image.shape[0], 160)
self.assertEqual(scaled_image.shape[1], 74)
def test_apply_transformation_numpy(self):
transformed_image = self.processor.preprocess(self.sample_image).images[0][0]
self.assertEqual(transformed_image.shape[1], 160)
self.assertEqual(transformed_image.shape[2], 320)
def test_apply_transformation_pil(self):
transformed_image = self.processor.preprocess(self.sample_image_pil).images[0][0]
self.assertEqual(transformed_image.shape[1], 160)
self.assertEqual(transformed_image.shape[2], 320)
| transformers/tests/models/fuyu/test_image_processing_fuyu.py/0 | {
"file_path": "transformers/tests/models/fuyu/test_image_processing_fuyu.py",
"repo_id": "transformers",
"token_count": 906
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch GLPN model."""
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNModel
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class GLPNConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))
class GLPNModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
num_channels=3,
num_encoder_blocks=4,
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[16, 32, 64, 128],
downsampling_rates=[1, 4, 8, 16],
num_attention_heads=[1, 2, 4, 8],
is_training=True,
use_labels=True,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
decoder_hidden_size=16,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.sr_ratios = sr_ratios
self.depths = depths
self.hidden_sizes = hidden_sizes
self.downsampling_rates = downsampling_rates
self.num_attention_heads = num_attention_heads
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.decoder_hidden_size = decoder_hidden_size
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return GLPNConfig(
image_size=self.image_size,
num_channels=self.num_channels,
num_encoder_blocks=self.num_encoder_blocks,
depths=self.depths,
hidden_sizes=self.hidden_sizes,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
decoder_hidden_size=self.decoder_hidden_size,
)
def create_and_check_model(self, config, pixel_values, labels):
model = GLPNModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
)
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = GLPNForDepthEstimation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class GLPNModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GLPNModel, GLPNForDepthEstimation) if is_torch_available() else ()
pipeline_model_mapping = (
{"depth-estimation": GLPNForDepthEstimation, "image-feature-extraction": GLPNModel}
if is_torch_available()
else {}
)
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
def setUp(self):
self.model_tester = GLPNModelTester(self)
self.config_tester = GLPNConfigTester(self, config_class=GLPNConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
@unittest.skip(reason="GLPN does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="GLPN does not have get_input_embeddings method and get_output_embeddings methods")
def test_model_get_set_embeddings(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
expected_num_attentions = sum(self.model_tester.depths)
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
# verify the first attentions (first block, first layer)
expected_seq_len = (self.model_tester.image_size // 4) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
)
# verify the last attentions (last block, last layer)
expected_seq_len = (self.model_tester.image_size // 32) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:]),
[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
# verify the first attentions (first block, first layer)
expected_seq_len = (self.model_tester.image_size // 4) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_encoder_blocks
self.assertEqual(len(hidden_states), expected_num_layers)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]),
[
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_training(self):
if not self.model_tester.is_training:
self.skipTest(reason="model_tester.is_training is set to False")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
if model_class.__name__ in MODEL_MAPPING_NAMES.values():
continue
# TODO: remove the following 3 lines once we have a MODEL_FOR_DEPTH_ESTIMATION_MAPPING
# this can then be incorporated into _prepare_for_class in test_modeling_common.py
if model_class.__name__ == "GLPNForDepthEstimation":
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = torch.zeros(
[self.model_tester.batch_size, height, width], device=torch_device
).long()
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
@slow
def test_model_from_pretrained(self):
model_name = "vinvino02/glpn-kitti"
model = GLPNModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class GLPNModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_depth_estimation(self):
image_processor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-kitti")
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the predicted depth
expected_shape = torch.Size([1, 480, 640])
self.assertEqual(outputs.predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]]
).to(torch_device)
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
| transformers/tests/models/glpn/test_modeling_glpn.py/0 | {
"file_path": "transformers/tests/models/glpn/test_modeling_glpn.py",
"repo_id": "transformers",
"token_count": 6132
} |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.models.grounding_dino.modeling_grounding_dino import GroundingDinoObjectDetectionOutput
if is_vision_available():
from PIL import Image
from transformers import GroundingDinoImageProcessor
class GroundingDinoImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_rescale=True,
rescale_factor=1 / 255,
do_pad=True,
):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.num_queries = 5
self.embed_dim = 5
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.prepare_image_processor_dict with DeformableDetr->GroundingDino
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.get_expected_values with DeformableDetr->GroundingDino
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to GroundingDinoImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
elif isinstance(image, np.ndarray):
h, w = image.shape[0], image.shape[1]
else:
h, w = image.shape[1], image.shape[2]
if w < h:
expected_height = int(self.size["shortest_edge"] * h / w)
expected_width = self.size["shortest_edge"]
elif w > h:
expected_height = self.size["shortest_edge"]
expected_width = int(self.size["shortest_edge"] * w / h)
else:
expected_height = self.size["shortest_edge"]
expected_width = self.size["shortest_edge"]
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.expected_output_image_shape with DeformableDetr->GroundingDino
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
return self.num_channels, height, width
def get_fake_grounding_dino_output(self):
torch.manual_seed(42)
return GroundingDinoObjectDetectionOutput(
pred_boxes=torch.rand(self.batch_size, self.num_queries, 4),
logits=torch.rand(self.batch_size, self.num_queries, self.embed_dim),
)
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.prepare_image_inputs with DeformableDetr->GroundingDino
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class GroundingDinoImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = GroundingDinoImageProcessor if is_vision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = GroundingDinoImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_image_processor_properties with DeformableDetr->GroundingDino
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size"))
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_image_processor_from_dict_with_kwargs with DeformableDetr->GroundingDino
def test_image_processor_from_dict_with_kwargs(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
self.assertEqual(image_processor.do_pad, True)
image_processor = image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
)
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
self.assertEqual(image_processor.do_pad, False)
def test_post_process_object_detection(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
outputs = self.image_processor_tester.get_fake_grounding_dino_output()
results = image_processor.post_process_object_detection(outputs, threshold=0.0)
self.assertEqual(len(results), self.image_processor_tester.batch_size)
self.assertEqual(list(results[0].keys()), ["scores", "labels", "boxes"])
self.assertEqual(results[0]["boxes"].shape, (self.image_processor_tester.num_queries, 4))
self.assertEqual(results[0]["scores"].shape, (self.image_processor_tester.num_queries,))
expected_scores = torch.tensor([0.7050, 0.7222, 0.7222, 0.6829, 0.7220])
torch.testing.assert_close(results[0]["scores"], expected_scores, rtol=1e-4, atol=1e-4)
expected_box_slice = torch.tensor([0.6908, 0.4354, 1.0737, 1.3947])
torch.testing.assert_close(results[0]["boxes"][0], expected_box_slice, rtol=1e-4, atol=1e-4)
@slow
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_call_pytorch_with_coco_detection_annotations with DeformableDetr->GroundingDino
def test_call_pytorch_with_coco_detection_annotations(self):
# prepare image and target
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"image_id": 39769, "annotations": target}
for image_processing_class in self.image_processor_list:
# encode them
image_processing = image_processing_class()
encoding = image_processing(images=image, annotations=target, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
torch.testing.assert_close(encoding["pixel_values"][0, 0, 0, :3], expected_slice, rtol=1e-4, atol=1e-4)
# verify area
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
torch.testing.assert_close(encoding["labels"][0]["area"], expected_area)
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
torch.testing.assert_close(encoding["labels"][0]["boxes"][0], expected_boxes_slice, rtol=1e-3, atol=1e-3)
# verify image_id
expected_image_id = torch.tensor([39769])
torch.testing.assert_close(encoding["labels"][0]["image_id"], expected_image_id)
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
torch.testing.assert_close(encoding["labels"][0]["iscrowd"], expected_is_crowd)
# verify class_labels
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
torch.testing.assert_close(encoding["labels"][0]["class_labels"], expected_class_labels)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
torch.testing.assert_close(encoding["labels"][0]["orig_size"], expected_orig_size)
# verify size
expected_size = torch.tensor([800, 1066])
torch.testing.assert_close(encoding["labels"][0]["size"], expected_size)
@slow
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_detection_annotations with Detr->GroundingDino
def test_batched_coco_detection_annotations(self):
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
annotations_0 = {"image_id": 39769, "annotations": target}
annotations_1 = {"image_id": 39769, "annotations": target}
# Adjust the bounding boxes for the resized image
w_0, h_0 = image_0.size
w_1, h_1 = image_1.size
for i in range(len(annotations_1["annotations"])):
coords = annotations_1["annotations"][i]["bbox"]
new_bbox = [
coords[0] * w_1 / w_0,
coords[1] * h_1 / h_0,
coords[2] * w_1 / w_0,
coords[3] * h_1 / h_0,
]
annotations_1["annotations"][i]["bbox"] = new_bbox
images = [image_0, image_1]
annotations = [annotations_0, annotations_1]
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class()
encoding = image_processing(
images=images,
annotations=annotations,
return_segmentation_masks=True,
return_tensors="pt", # do_convert_annotations=True
)
# Check the pixel values have been padded
postprocessed_height, postprocessed_width = 800, 1066
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
# Check the bounding boxes have been adjusted for padded images
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
expected_boxes_0 = torch.tensor(
[
[0.6879, 0.4609, 0.0755, 0.3691],
[0.2118, 0.3359, 0.2601, 0.1566],
[0.5011, 0.5000, 0.9979, 1.0000],
[0.5010, 0.5020, 0.9979, 0.9959],
[0.3284, 0.5944, 0.5884, 0.8112],
[0.8394, 0.5445, 0.3213, 0.9110],
]
)
expected_boxes_1 = torch.tensor(
[
[0.4130, 0.2765, 0.0453, 0.2215],
[0.1272, 0.2016, 0.1561, 0.0940],
[0.3757, 0.4933, 0.7488, 0.9865],
[0.3759, 0.5002, 0.7492, 0.9955],
[0.1971, 0.5456, 0.3532, 0.8646],
[0.5790, 0.4115, 0.3430, 0.7161],
]
)
torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3, rtol=1e-3)
torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3, rtol=1e-3)
# Check the masks have also been padded
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
# format and not in the range [0, 1]
encoding = image_processing(
images=images,
annotations=annotations,
return_segmentation_masks=True,
do_convert_annotations=False,
return_tensors="pt",
)
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
# Convert to absolute coordinates
unnormalized_boxes_0 = torch.vstack(
[
expected_boxes_0[:, 0] * postprocessed_width,
expected_boxes_0[:, 1] * postprocessed_height,
expected_boxes_0[:, 2] * postprocessed_width,
expected_boxes_0[:, 3] * postprocessed_height,
]
).T
unnormalized_boxes_1 = torch.vstack(
[
expected_boxes_1[:, 0] * postprocessed_width,
expected_boxes_1[:, 1] * postprocessed_height,
expected_boxes_1[:, 2] * postprocessed_width,
expected_boxes_1[:, 3] * postprocessed_height,
]
).T
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
expected_boxes_0 = torch.vstack(
[
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
]
).T
expected_boxes_1 = torch.vstack(
[
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
]
).T
torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1, rtol=1)
torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1, rtol=1)
@slow
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_call_pytorch_with_coco_panoptic_annotations with DeformableDetr->GroundingDino
def test_call_pytorch_with_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
for image_processing_class in self.image_processor_list:
# encode them
image_processing = image_processing_class(format="coco_panoptic")
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
torch.testing.assert_close(encoding["pixel_values"][0, 0, 0, :3], expected_slice, rtol=1e-4, atol=1e-4)
# verify area
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
torch.testing.assert_close(encoding["labels"][0]["area"], expected_area)
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
torch.testing.assert_close(encoding["labels"][0]["boxes"][0], expected_boxes_slice, rtol=1e-3, atol=1e-3)
# verify image_id
expected_image_id = torch.tensor([39769])
torch.testing.assert_close(encoding["labels"][0]["image_id"], expected_image_id)
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
torch.testing.assert_close(encoding["labels"][0]["iscrowd"], expected_is_crowd)
# verify class_labels
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
torch.testing.assert_close(encoding["labels"][0]["class_labels"], expected_class_labels)
# verify masks
expected_masks_sum = 822873
relative_error = torch.abs(encoding["labels"][0]["masks"].sum() - expected_masks_sum) / expected_masks_sum
self.assertTrue(relative_error < 1e-3)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
torch.testing.assert_close(encoding["labels"][0]["orig_size"], expected_orig_size)
# verify size
expected_size = torch.tensor([800, 1066])
torch.testing.assert_close(encoding["labels"][0]["size"], expected_size)
@slow
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_panoptic_annotations with Detr->GroundingDino
def test_batched_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
w_0, h_0 = image_0.size
w_1, h_1 = image_1.size
for i in range(len(annotation_1["segments_info"])):
coords = annotation_1["segments_info"][i]["bbox"]
new_bbox = [
coords[0] * w_1 / w_0,
coords[1] * h_1 / h_0,
coords[2] * w_1 / w_0,
coords[3] * h_1 / h_0,
]
annotation_1["segments_info"][i]["bbox"] = new_bbox
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
images = [image_0, image_1]
annotations = [annotation_0, annotation_1]
for image_processing_class in self.image_processor_list:
# encode them
image_processing = image_processing_class(format="coco_panoptic")
encoding = image_processing(
images=images,
annotations=annotations,
masks_path=masks_path,
return_tensors="pt",
return_segmentation_masks=True,
)
# Check the pixel values have been padded
postprocessed_height, postprocessed_width = 800, 1066
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
# Check the bounding boxes have been adjusted for padded images
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
expected_boxes_0 = torch.tensor(
[
[0.2625, 0.5437, 0.4688, 0.8625],
[0.7719, 0.4104, 0.4531, 0.7125],
[0.5000, 0.4927, 0.9969, 0.9854],
[0.1688, 0.2000, 0.2063, 0.0917],
[0.5492, 0.2760, 0.0578, 0.2187],
[0.4992, 0.4990, 0.9984, 0.9979],
]
)
expected_boxes_1 = torch.tensor(
[
[0.1576, 0.3262, 0.2814, 0.5175],
[0.4634, 0.2463, 0.2720, 0.4275],
[0.3002, 0.2956, 0.5985, 0.5913],
[0.1013, 0.1200, 0.1238, 0.0550],
[0.3297, 0.1656, 0.0347, 0.1312],
[0.2997, 0.2994, 0.5994, 0.5987],
]
)
torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3, rtol=1e-3)
torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3, rtol=1e-3)
# Check the masks have also been padded
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
# format and not in the range [0, 1]
encoding = image_processing(
images=images,
annotations=annotations,
masks_path=masks_path,
return_segmentation_masks=True,
do_convert_annotations=False,
return_tensors="pt",
)
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
# Convert to absolute coordinates
unnormalized_boxes_0 = torch.vstack(
[
expected_boxes_0[:, 0] * postprocessed_width,
expected_boxes_0[:, 1] * postprocessed_height,
expected_boxes_0[:, 2] * postprocessed_width,
expected_boxes_0[:, 3] * postprocessed_height,
]
).T
unnormalized_boxes_1 = torch.vstack(
[
expected_boxes_1[:, 0] * postprocessed_width,
expected_boxes_1[:, 1] * postprocessed_height,
expected_boxes_1[:, 2] * postprocessed_width,
expected_boxes_1[:, 3] * postprocessed_height,
]
).T
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
expected_boxes_0 = torch.vstack(
[
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
]
).T
expected_boxes_1 = torch.vstack(
[
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
]
).T
torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1, rtol=1)
torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1, rtol=1)
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_max_width_max_height_resizing_and_pad_strategy with Detr->GroundingDino
def test_max_width_max_height_resizing_and_pad_strategy(self):
for image_processing_class in self.image_processor_list:
image_1 = torch.ones([200, 100, 3], dtype=torch.uint8)
# do_pad=False, max_height=100, max_width=100, image=200x100 -> 100x50
image_processor = image_processing_class(
size={"max_height": 100, "max_width": 100},
do_pad=False,
)
inputs = image_processor(images=[image_1], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 50]))
# do_pad=False, max_height=300, max_width=100, image=200x100 -> 200x100
image_processor = image_processing_class(
size={"max_height": 300, "max_width": 100},
do_pad=False,
)
inputs = image_processor(images=[image_1], return_tensors="pt")
# do_pad=True, max_height=100, max_width=100, image=200x100 -> 100x100
image_processor = image_processing_class(
size={"max_height": 100, "max_width": 100}, do_pad=True, pad_size={"height": 100, "width": 100}
)
inputs = image_processor(images=[image_1], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 100]))
# do_pad=True, max_height=300, max_width=100, image=200x100 -> 300x100
image_processor = image_processing_class(
size={"max_height": 300, "max_width": 100},
do_pad=True,
pad_size={"height": 301, "width": 101},
)
inputs = image_processor(images=[image_1], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 301, 101]))
### Check for batch
image_2 = torch.ones([100, 150, 3], dtype=torch.uint8)
# do_pad=True, max_height=150, max_width=100, images=[200x100, 100x150] -> 150x100
image_processor = image_processing_class(
size={"max_height": 150, "max_width": 100},
do_pad=True,
pad_size={"height": 150, "width": 100},
)
inputs = image_processor(images=[image_1, image_2], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([2, 3, 150, 100]))
def test_longest_edge_shortest_edge_resizing_strategy(self):
image_1 = torch.ones([958, 653, 3], dtype=torch.uint8)
# max size is set; width < height;
# do_pad=False, longest_edge=640, shortest_edge=640, image=958x653 -> 640x436
image_processor = GroundingDinoImageProcessor(
size={"longest_edge": 640, "shortest_edge": 640},
do_pad=False,
)
inputs = image_processor(images=[image_1], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 640, 436]))
image_2 = torch.ones([653, 958, 3], dtype=torch.uint8)
# max size is set; height < width;
# do_pad=False, longest_edge=640, shortest_edge=640, image=653x958 -> 436x640
image_processor = GroundingDinoImageProcessor(
size={"longest_edge": 640, "shortest_edge": 640},
do_pad=False,
)
inputs = image_processor(images=[image_2], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 436, 640]))
image_3 = torch.ones([100, 120, 3], dtype=torch.uint8)
# max size is set; width == size; height > max_size;
# do_pad=False, longest_edge=118, shortest_edge=100, image=120x100 -> 118x98
image_processor = GroundingDinoImageProcessor(
size={"longest_edge": 118, "shortest_edge": 100},
do_pad=False,
)
inputs = image_processor(images=[image_3], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 98, 118]))
image_4 = torch.ones([128, 50, 3], dtype=torch.uint8)
# max size is set; height == size; width < max_size;
# do_pad=False, longest_edge=256, shortest_edge=50, image=50x128 -> 50x128
image_processor = GroundingDinoImageProcessor(
size={"longest_edge": 256, "shortest_edge": 50},
do_pad=False,
)
inputs = image_processor(images=[image_4], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 128, 50]))
image_5 = torch.ones([50, 50, 3], dtype=torch.uint8)
# max size is set; height == width; width < max_size;
# do_pad=False, longest_edge=117, shortest_edge=50, image=50x50 -> 50x50
image_processor = GroundingDinoImageProcessor(
size={"longest_edge": 117, "shortest_edge": 50},
do_pad=False,
)
inputs = image_processor(images=[image_5], return_tensors="pt")
self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 50, 50]))
| transformers/tests/models/grounding_dino/test_image_processing_grounding_dino.py/0 | {
"file_path": "transformers/tests/models/grounding_dino/test_image_processing_grounding_dino.py",
"repo_id": "transformers",
"token_count": 15521
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
from transformers import IBertConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
)
from transformers.models.ibert.modeling_ibert import (
IBertEmbeddings,
IntGELU,
IntLayerNorm,
IntSoftmax,
QuantAct,
QuantEmbedding,
QuantLinear,
create_position_ids_from_input_ids,
)
class IBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return IBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
quant_mode=True,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = IBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = IBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = IBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = IBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = IBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class IBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
test_pruning = False
test_torchscript = False
test_head_masking = False
test_resize_embeddings = False
all_model_classes = (
(
IBertForMaskedLM,
IBertModel,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertForMultipleChoice,
IBertForQuestionAnswering,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": IBertModel,
"fill-mask": IBertForMaskedLM,
"question-answering": IBertForQuestionAnswering,
"text-classification": IBertForSequenceClassification,
"token-classification": IBertForTokenClassification,
"zero-shot": IBertForSequenceClassification,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = IBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=IBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# I-BERT only supports absolute embedding
for type in ["absolute"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "kssteven/ibert-roberta-base"
model = IBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_create_position_ids_respects_padding_index(self):
"""This is a regression test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is IBertEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = IBertEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""This is a regression test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is IBertEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = IBertEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
# Override
def test_model_get_set_embeddings(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), QuantEmbedding)
model.set_input_embeddings(nn.Embedding(10, 10))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
# Override
def test_feed_forward_chunking(self):
pass # I-BERT does not support chunking
# Override
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
embed, embed_scaling_factor = wte(input_ids)
inputs["inputs_embeds"] = embed
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@unittest.skip(reason="ibert overrides scaling to None if inputs_embeds")
def test_inputs_embeds_matches_input_ids(self):
pass
@require_torch
class IBertModelIntegrationTest(unittest.TestCase):
def test_quant_embedding(self):
weight_bit = 8
embedding = QuantEmbedding(2, 4, quant_mode=True, weight_bit=weight_bit)
embedding_weight = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]])
embedding.weight = nn.Parameter(embedding_weight)
expected_scaling_factor = embedding_weight.abs().max() / (2 ** (weight_bit - 1) - 1)
x, x_scaling_factor = embedding(torch.tensor(0))
y, y_scaling_factor = embedding(torch.tensor(1))
# scaling factor should follow the symmetric quantization rule
self.assertTrue(torch.allclose(x_scaling_factor, expected_scaling_factor, atol=1e-4))
self.assertTrue(torch.allclose(x_scaling_factor, expected_scaling_factor, atol=1e-4))
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
# quantization error should not exceed the scaling factor
self.assertTrue(torch.allclose(x, embedding_weight[0], atol=expected_scaling_factor))
self.assertTrue(torch.allclose(y, embedding_weight[1], atol=expected_scaling_factor))
def test_quant_act(self):
def _test_range():
act = QuantAct(activation_bit, act_range_momentum, quant_mode=True)
# First pass
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]])
x_scaling_factor = torch.tensor(1.0)
y, y_scaling_factor = act(x, x_scaling_factor)
y_int = y / y_scaling_factor
# After the first pass, x_min and x_max should be initialized with x.min() and x.max()
expected_x_min, expected_x_max = x.min(), x.max()
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4))
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4))
# scaling factor should follow the symmetric quantization rule
expected_range = torch.max(expected_x_min.abs(), expected_x_max.abs())
expected_scaling_factor = expected_range / (2 ** (activation_bit - 1) - 1)
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
# quantization error should not exceed the scaling factor
self.assertTrue(torch.allclose(x, y, atol=expected_scaling_factor))
# output should be integer
self.assertTrue(torch.allclose(y_int, y_int.round(), atol=1e-4))
# Second Pass
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) * 2
x_scaling_factor = torch.tensor(1.0)
y, y_scaling_factor = act(x, x_scaling_factor)
y_int = y / y_scaling_factor
# From the second pass, x_min and x_max should be updated with moving average
expected_x_min = expected_x_min * act_range_momentum + x.min() * (1 - act_range_momentum)
expected_x_max = expected_x_max * act_range_momentum + x.max() * (1 - act_range_momentum)
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4))
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4))
# scaling factor should follow the symmetric quantization rule
expected_range = torch.max(expected_x_min.abs(), expected_x_max.abs())
expected_scaling_factor = expected_range / (2 ** (activation_bit - 1) - 1)
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
# quantization error should not exceed the scaling factor
x = x.clamp(min=-expected_range, max=expected_range)
self.assertTrue(torch.allclose(x, y, atol=expected_scaling_factor))
# output should be integer
self.assertTrue(torch.allclose(y_int, y_int.round(), atol=1e-4))
# Third pass, with eval()
act.eval()
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) * 3
# In eval mode, min/max and scaling factor must be fixed
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4))
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4))
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
def _test_identity():
# test if identity and identity_scaling_factor are given
# should add the input values
act = QuantAct(activation_bit, act_range_momentum, quant_mode=True)
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]])
y = torch.tensor([[6.0, -7.0, 1.0, -2.0], [3.0, -4.0, -8.0, 5.0]])
x_scaling_factor = torch.tensor(1.0)
y_scaling_factor = torch.tensor(0.5)
z, z_scaling_factor = act(x, x_scaling_factor, y, y_scaling_factor)
z_int = z / z_scaling_factor
self.assertTrue(torch.allclose(x + y, z, atol=0.1))
self.assertTrue(torch.allclose(z_int, z_int.round(), atol=1e-4))
activation_bit = 8
act_range_momentum = 0.95
_test_range()
_test_identity()
def test_quant_linear(self):
def _test(per_channel):
linear_q = QuantLinear(2, 4, quant_mode=True, per_channel=per_channel, weight_bit=weight_bit)
linear_dq = QuantLinear(2, 4, quant_mode=False, per_channel=per_channel, weight_bit=weight_bit)
linear_weight = torch.tensor([[-1.0, 2.0, 3.0, -4.0], [5.0, -6.0, -7.0, 8.0]]).T
linear_q.weight = nn.Parameter(linear_weight)
linear_dq.weight = nn.Parameter(linear_weight)
q, q_scaling_factor = linear_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq, dq_scaling_factor = linear_dq(x, x_scaling_factor)
if per_channel:
q_max = linear_weight.abs().max(dim=1).values
else:
q_max = linear_weight.abs().max()
expected_scaling_factor = q_max / (2 ** (weight_bit - 1) - 1)
# scaling factor should follow the symmetric quantization rule
self.assertTrue(torch.allclose(linear_q.fc_scaling_factor, expected_scaling_factor, atol=1e-4))
# output of the normal linear layer and the quantized linear layer should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized linear layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
weight_bit = 8
x = torch.tensor([[2.0, -5.0], [-3.0, 4.0]])
x_scaling_factor = torch.tensor([1.0])
_test(True)
_test(False)
def test_int_gelu(self):
gelu_q = IntGELU(quant_mode=True)
gelu_dq = nn.GELU()
x_int = torch.arange(-10000, 10001, 1)
x_scaling_factor = torch.tensor(0.001)
x = x_int * x_scaling_factor
q, q_scaling_factor = gelu_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq = gelu_dq(x)
# output of the normal GELU and the quantized GELU should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized GELU layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
def test_force_dequant_gelu(self):
x_int = torch.arange(-10000, 10001, 1)
x_scaling_factor = torch.tensor(0.001)
x = x_int * x_scaling_factor
gelu_dq = IntGELU(quant_mode=False)
gelu_fdqs_dict = {
True: [
IntGELU(quant_mode=True, force_dequant="nonlinear"),
IntGELU(quant_mode=True, force_dequant="gelu"),
],
False: [
IntGELU(quant_mode=True, force_dequant="none"),
IntGELU(quant_mode=True, force_dequant="softmax"),
IntGELU(quant_mode=True, force_dequant="layernorm"),
],
}
dq, dq_scaling_factor = gelu_dq(x, x_scaling_factor)
for label, gelu_fdqs in gelu_fdqs_dict.items():
for gelu_fdq in gelu_fdqs:
q, q_scaling_factor = gelu_fdq(x, x_scaling_factor)
if label:
self.assertTrue(torch.allclose(q, dq, atol=1e-4))
else:
self.assertFalse(torch.allclose(q, dq, atol=1e-4))
def test_int_softmax(self):
output_bit = 8
softmax_q = IntSoftmax(output_bit, quant_mode=True)
softmax_dq = nn.Softmax()
def _test(array):
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
q, q_scaling_factor = softmax_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq = softmax_dq(x)
# output of the normal Softmax and the quantized Softmax should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized GELU layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
# Output of the quantize Softmax should not exceed the output_bit
self.assertTrue(q.abs().max() < 2**output_bit)
array = [[i + j for j in range(10)] for i in range(-10, 10)]
_test(array)
array = [[i + j for j in range(50)] for i in range(-10, 10)]
_test(array)
array = [[i + 100 * j for j in range(2)] for i in range(-10, 10)]
_test(array)
def test_force_dequant_softmax(self):
output_bit = 8
array = [[i + j for j in range(10)] for i in range(-10, 10)]
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
softmax_dq = IntSoftmax(output_bit, quant_mode=False)
softmax_fdqs_dict = {
True: [
IntSoftmax(output_bit, quant_mode=True, force_dequant="nonlinear"),
IntSoftmax(output_bit, quant_mode=True, force_dequant="softmax"),
],
False: [
IntSoftmax(output_bit, quant_mode=True, force_dequant="none"),
IntSoftmax(output_bit, quant_mode=True, force_dequant="gelu"),
IntSoftmax(output_bit, quant_mode=True, force_dequant="layernorm"),
],
}
dq, dq_scaling_factor = softmax_dq(x, x_scaling_factor)
for label, softmax_fdqs in softmax_fdqs_dict.items():
for softmax_fdq in softmax_fdqs:
q, q_scaling_factor = softmax_fdq(x, x_scaling_factor)
if label:
self.assertTrue(torch.allclose(q, dq, atol=1e-4))
else:
self.assertFalse(torch.allclose(q, dq, atol=1e-4))
def test_int_layernorm(self):
output_bit = 8
# some random matrix
array = [[[i * j * j + j for j in range(5, 15)]] for i in range(-10, 10)]
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
ln_q = IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit)
ln_dq = nn.LayerNorm(x.shape[1:], 1e-5)
ln_q.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_q.bias = nn.Parameter(torch.ones(x.shape[1:]))
ln_dq.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_dq.bias = nn.Parameter(torch.ones(x.shape[1:]))
q, q_scaling_factor = ln_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq = ln_dq(x)
# output of the normal LN and the quantized LN should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized GELU layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
def test_force_dequant_layernorm(self):
output_bit = 8
array = [[[i * j * j + j for j in range(5, 15)]] for i in range(-10, 10)]
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
ln_dq = IntLayerNorm(x.shape[1:], 1e-5, quant_mode=False, output_bit=output_bit)
ln_fdqs_dict = {
True: [
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="nonlinear"),
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="layernorm"),
],
False: [
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="none"),
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="gelu"),
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="softmax"),
],
}
ln_dq.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_dq.bias = nn.Parameter(torch.ones(x.shape[1:]))
dq, dq_scaling_factor = ln_dq(x, x_scaling_factor)
for label, ln_fdqs in ln_fdqs_dict.items():
for ln_fdq in ln_fdqs:
ln_fdq.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_fdq.bias = nn.Parameter(torch.ones(x.shape[1:]))
q, q_scaling_factor = ln_fdq(x, x_scaling_factor)
if label:
self.assertTrue(torch.allclose(q, dq, atol=1e-4))
else:
self.assertFalse(torch.allclose(q, dq, atol=1e-4))
def quantize(self, model):
# Helper function that quantizes the given model
# Recursively convert all the `quant_mode` attributes as `True`
if hasattr(model, "quant_mode"):
model.quant_mode = True
elif isinstance(model, nn.Sequential):
for n, m in model.named_children():
self.quantize(m)
elif isinstance(model, nn.ModuleList):
for n in model:
self.quantize(n)
else:
for attr in dir(model):
mod = getattr(model, attr)
if isinstance(mod, nn.Module) and mod != model:
self.quantize(mod)
@slow
def test_inference_masked_lm(self):
# I-BERT should be "equivalent" to RoBERTa if not quantized
# Test coped from `test_modeling_roberta.py`
model = IBertForMaskedLM.from_pretrained("kssteven/ibert-roberta-base")
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, 11, 50265))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
# I-BERT should be "similar" to RoBERTa if quantized
self.quantize(model)
output = model(input_ids)[0]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=0.1))
@slow
def test_inference_classification_head(self):
# I-BERT should be "equivalent" to RoBERTa if not quantized
# Test coped from `test_modeling_roberta.py`
model = IBertForSequenceClassification.from_pretrained("kssteven/ibert-roberta-large-mnli")
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, 3))
self.assertEqual(output.shape, expected_shape)
expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
# I-BERT should be "similar" to RoBERTa if quantized
self.quantize(model)
output = model(input_ids)[0]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output, expected_tensor, atol=0.1))
| transformers/tests/models/ibert/test_modeling_ibert.py/0 | {
"file_path": "transformers/tests/models/ibert/test_modeling_ibert.py",
"repo_id": "transformers",
"token_count": 14908
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch LLaMA model."""
import unittest
from packaging import version
from parameterized import parameterized
from transformers import AutoTokenizer, LlamaConfig, StaticCache, is_torch_available, set_seed
from transformers.generation.configuration_utils import GenerationConfig
from transformers.testing_utils import (
cleanup,
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LlamaForCausalLM,
LlamaForQuestionAnswering,
LlamaForSequenceClassification,
LlamaForTokenClassification,
LlamaModel,
LlamaTokenizer,
)
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
class LlamaModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return LlamaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LlamaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = LlamaModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = LlamaForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = LlamaForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
LlamaModel,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaForQuestionAnswering,
LlamaForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (LlamaForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
"question-answering": LlamaForQuestionAnswering,
"token-classification": LlamaForTokenClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
# used in `test_torch_compile_for_training`
_torch_compile_train_cls = LlamaForCausalLM if is_torch_available() else None
def setUp(self):
self.model_tester = LlamaModelTester(self)
self.config_tester = ConfigTester(self, config_class=LlamaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_llama_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = LlamaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_llama_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = LlamaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_llama_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = LlamaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_llama_token_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
model = LlamaForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
self.assertEqual(
result.logits.shape,
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
)
@unittest.skip(reason="Llama buffers include complex numbers, which breaks this test")
def test_save_load_fast_init_from_base(self):
pass
@parameterized.expand([("linear",), ("dynamic",), ("yarn",)])
def test_model_rope_scaling_from_config(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = LlamaModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = LlamaModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
def test_model_rope_scaling(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
scaling_factor = 10
short_input_length = 10
long_input_length = int(config.max_position_embeddings * 1.5)
# Inputs
x = torch.randn(1, dtype=torch.float32, device=torch_device) # used exlusively to get the dtype and the device
position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
position_ids_short = position_ids_short.unsqueeze(0)
position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
position_ids_long = position_ids_long.unsqueeze(0)
# Sanity check original RoPE
original_rope = LlamaRotaryEmbedding(config=config).to(torch_device)
original_cos_short, original_sin_short = original_rope(x, position_ids_short)
original_cos_long, original_sin_long = original_rope(x, position_ids_long)
torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])
# Sanity check linear RoPE scaling
# New position "x" should match original position with index "x/scaling_factor"
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
linear_scaling_rope = LlamaRotaryEmbedding(config=config).to(torch_device)
linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
for new_position in range(0, long_input_length, scaling_factor):
original_position = int(new_position // scaling_factor)
torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])
# Sanity check Dynamic NTK RoPE scaling
# Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
# with scaling_factor (or that `inv_freq` decreases)
config.rope_scaling = {"type": "dynamic", "factor": scaling_factor}
ntk_scaling_rope = LlamaRotaryEmbedding(config=config).to(torch_device)
ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
torch.testing.assert_close(ntk_cos_short, original_cos_short)
torch.testing.assert_close(ntk_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_sin_long, original_sin_long)
self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())
# Sanity check Yarn RoPE scaling
# Scaling should be over the entire input
config.rope_scaling = {"type": "yarn", "factor": scaling_factor}
yarn_scaling_rope = LlamaRotaryEmbedding(config=config).to(torch_device)
yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short)
yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long)
torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :])
torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :])
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_cos_short, original_cos_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_sin_long, original_sin_long)
def test_model_loading_old_rope_configs(self):
def _reinitialize_config(base_config, new_kwargs):
# Reinitialize the config with the new kwargs, forcing the config to go through its __init__ validation
# steps.
base_config_dict = base_config.to_dict()
new_config = LlamaConfig.from_dict(config_dict={**base_config_dict, **new_kwargs})
return new_config
# from untouched config -> ✅
base_config, model_inputs = self.model_tester.prepare_config_and_inputs_for_common()
original_model = LlamaForCausalLM(base_config).to(torch_device)
original_model(**model_inputs)
# from a config with the expected rope configuration -> ✅
config = _reinitialize_config(base_config, {"rope_scaling": {"rope_type": "linear", "factor": 10.0}})
original_model = LlamaForCausalLM(config).to(torch_device)
original_model(**model_inputs)
# from a config with the old rope configuration ('type' instead of 'rope_type') -> ✅ we gracefully handle BC
config = _reinitialize_config(base_config, {"rope_scaling": {"type": "linear", "factor": 10.0}})
original_model = LlamaForCausalLM(config).to(torch_device)
original_model(**model_inputs)
# from a config with both 'type' and 'rope_type' -> ✅ they can coexist (and both are present in the config)
config = _reinitialize_config(
base_config, {"rope_scaling": {"type": "linear", "rope_type": "linear", "factor": 10.0}}
)
self.assertTrue(config.rope_scaling["type"] == "linear")
self.assertTrue(config.rope_scaling["rope_type"] == "linear")
original_model = LlamaForCausalLM(config).to(torch_device)
original_model(**model_inputs)
# from a config with parameters in a bad range ('factor' should be >= 1.0) -> ⚠️ throws a warning
with self.assertLogs("transformers.modeling_rope_utils", level="WARNING") as logs:
config = _reinitialize_config(base_config, {"rope_scaling": {"rope_type": "linear", "factor": -999.0}})
original_model = LlamaForCausalLM(config).to(torch_device)
original_model(**model_inputs)
self.assertEqual(len(logs.output), 1)
self.assertIn("factor field", logs.output[0])
# from a config with unknown parameters ('foo' isn't a rope option) -> ⚠️ throws a warning
with self.assertLogs("transformers.modeling_rope_utils", level="WARNING") as logs:
config = _reinitialize_config(
base_config, {"rope_scaling": {"rope_type": "linear", "factor": 10.0, "foo": "bar"}}
)
original_model = LlamaForCausalLM(config).to(torch_device)
original_model(**model_inputs)
self.assertEqual(len(logs.output), 1)
self.assertIn("Unrecognized keys", logs.output[0])
# from a config with specific rope type but missing one of its mandatory parameters -> ❌ throws exception
with self.assertRaises(KeyError):
config = _reinitialize_config(base_config, {"rope_scaling": {"rope_type": "linear"}}) # missing "factor"
@require_torch_accelerator
class LlamaIntegrationTest(unittest.TestCase):
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
cuda_compute_capability_major_version = None
@classmethod
def setUpClass(cls):
if is_torch_available() and torch.cuda.is_available():
# 8 is for A100 / A10 and 7 for T4
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
@slow
@require_read_token
def test_llama_3_1_hard(self):
"""
An integration test for llama 3.1. It tests against a long output to ensure the subtle numerical differences
from llama 3.1.'s RoPE can be detected
"""
# diff on `EXPECTED_TEXT`:
# 2024-08-26: updating from torch 2.3.1 to 2.4.0 slightly changes the results.
EXPECTED_TEXT = (
"Tell me about the french revolution. The french revolution was a period of radical political and social "
"upheaval in France that lasted from 1789 until 1799. It was a time of great change and upheaval, marked "
"by the overthrow of the monarchy, the rise of the middle class, and the eventual establishment of the "
"First French Republic.\nThe revolution began in 1789 with the Estates-General, a representative "
"assembly that had not met since 1614. The Third Estate, which represented the common people, "
"demanded greater representation and eventually broke away to form the National Assembly. This marked "
"the beginning of the end of the absolute monarchy and the rise of the middle class.\n"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
model = LlamaForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3.1-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16
)
input_text = ["Tell me about the french revolution."]
model_inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=128, do_sample=False)
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(generated_text, EXPECTED_TEXT)
@slow
@require_read_token
def test_model_7b_logits_bf16(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
with torch.no_grad():
out = model(torch.tensor([input_ids]).to(torch_device))
# Expected mean on dim = -1
# fmt: off
EXPECTED_MEAN = {
7: torch.tensor([[-6.5061, -4.1147, -4.9669, -3.2038, 0.8069, -2.9694, 1.2864, -3.3786]]),
8: torch.tensor([[-6.5208, -4.1218, -4.9377, -3.2536, 0.8127, -2.9811, 1.2918, -3.3848]])
}
self.assertTrue(
torch.allclose(
EXPECTED_MEAN[self.cuda_compute_capability_major_version].to(torch_device),
out.logits.float().mean(-1),
atol=1e-2,
rtol=1e-2
)
)
# slicing logits[0, 0, 0:15]
EXPECTED_SLICE = {
7: torch.tensor([[-12.5000, -7.0625, -0.6289, -7.8750, -6.9688, -7.8125, -6.4688, -7.4375, -7.6875, -6.9375, -6.0312, -7.0000, -1.8594, 1.8438, -8.5000]]),
8: torch.tensor([[-12.5625, -7.1250, -0.6289, -7.8750, -6.9688, -7.8125, -6.5000, -7.4375, -7.6562, -6.9688, -6.0312, -7.0312, -1.8203, 1.8750, -8.5000]])
}
# fmt: on
self.assertTrue(
torch.allclose(
EXPECTED_SLICE[self.cuda_compute_capability_major_version].to(torch_device),
out.logits[0, 0, :15].float(),
atol=1e-2,
rtol=1e-2,
)
)
@slow
@require_read_token
def test_model_7b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
with torch.no_grad():
out = model(torch.tensor([input_ids]).to(torch_device))
# fmt: off
# Expected mean on dim = -1
EXPECTED_MEAN = {
7: torch.tensor([[-6.6420, -4.1227, -4.9809, -3.2041, 0.8261, -3.0052, 1.2957, -3.3648]]),
8: torch.tensor([[-6.6544, -4.1259, -4.9840, -3.2456, 0.8261, -3.0124, 1.2971, -3.3641]])
}
self.assertTrue(
torch.allclose(
EXPECTED_MEAN[self.cuda_compute_capability_major_version].to(torch_device),
out.logits.float().mean(-1),
atol=1e-2,
rtol=1e-2
)
)
# slicing logits[0, 0, 0:15]
EXPECTED_SLICE = {
7: torch.tensor([-12.8125, -7.3359, -0.4846, -8.0234, -7.2383, -7.9922, -6.4805, -7.7344, -7.8125, -7.0078, -6.1797, -7.1094, -1.8633, 1.9736, -8.6016]),
8: torch.tensor([-12.8281, -7.4609, -0.4668, -8.0703, -7.2539, -8.0078, -6.4961, -7.7734, -7.8516, -7.0352, -6.2188, -7.1367, -1.8564, 1.9922, -8.6328])
}
# fmt: on
self.assertTrue(
torch.allclose(
EXPECTED_SLICE[self.cuda_compute_capability_major_version].to(torch_device),
out.logits[0, 0, :15].float(),
atol=1e-2,
rtol=1e-2,
)
)
@slow
def test_model_7b_dola_generation(self):
# ground truth text generated with dola_layers="low", repetition_penalty=1.2
EXPECTED_TEXT_COMPLETION = (
"Simply put, the theory of relativity states that 1) time and space are relative, and 2) the laws of "
"physics are the same for all observers in uniform motion relative to one another.\n\nThe theory of "
"relativity was developed by Albert Einstein in the early 20th century, and it revolutionized our "
"understanding of space and time."
)
prompt = "Simply put, the theory of relativity states that "
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-chat-hf", device_map="sequential", torch_dtype=torch.float16
)
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# greedy generation outputs
generated_ids = model.generate(
**model_inputs, max_new_tokens=64, top_p=None, temperature=1, do_sample=False, dola_layers="low"
)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_torch_accelerator
@require_read_token
def test_compile_static_cache(self):
# `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
# work as intended. See https://github.com/pytorch/pytorch/issues/121943
if version.parse(torch.__version__) < version.parse("2.3.0"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
NUM_TOKENS_TO_GENERATE = 40
# Note on `EXPECTED_TEXT_COMPLETION`'s diff: the current value matches the original test if the original test
# was changed to have a cache of 53 tokens (as opposed to 4096), on Ampere GPUs.
EXPECTED_TEXT_COMPLETION = [
"Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial "
"reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe "
"theory of relativ",
"My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, "
"my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
]
prompts = [
"Simply put, the theory of relativity states that ",
"My favorite all time favorite condiment is ketchup.",
]
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="right")
model = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map=torch_device, torch_dtype=torch.float16
)
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
# Dynamic Cache
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text)
# Static Cache + compile (`generate()` internally compiles each decoding step when static cache is used)
generated_ids = model.generate(
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
)
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
@slow
@require_read_token
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
llama_models = {
"meta-llama/Llama-3.2-1B": [
"Simply put, the theory of relativity states that 1) the speed of light is the same for all "
"observers, regardless of their location, and 2) the laws of physics are the same for all observers"
],
"meta-llama/Llama-3.2-3B": [
"Simply put, the theory of relativity states that 1. the speed of light is constant, and 2. "
"the speed of light is the fastest speed possible"
],
"meta-llama/Llama-2-7b-hf": [
"Simply put, the theory of relativity states that 1) the speed of light is a constant, and 2) "
"the laws of physics are the same for all",
],
}
for llama_model_ckp, EXPECTED_TEXT_COMPLETION in llama_models.items():
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(llama_model_ckp, pad_token="</s>", padding_side="right")
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
"input_ids"
].shape[-1]
# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
model = LlamaForCausalLM.from_pretrained(
llama_model_ckp,
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_generation_length,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_generation_length,
"device": device,
},
),
)
prompts = ["Simply put, the theory of relativity states that "]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
@slow
@require_torch_accelerator
class Mask4DTestHard(unittest.TestCase):
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def setUp(self):
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
self.model_dtype = torch.float32
self.tokenizer = LlamaTokenizer.from_pretrained(model_name)
self.model = LlamaForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device)
def get_test_data(self):
template = "my favorite {}"
items = ("pet is a", "artist plays a", "name is L") # same number of tokens in each item
batch_separate = [template.format(x) for x in items] # 3 separate lines
batch_shared_prefix = template.format(" ".join(items)) # 1 line with options concatenated
input_ids = self.tokenizer(batch_separate, return_tensors="pt").input_ids.to(torch_device)
input_ids_shared_prefix = self.tokenizer(batch_shared_prefix, return_tensors="pt").input_ids.to(torch_device)
mask_shared_prefix = torch.tensor(
[
[
[
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
]
]
],
device=torch_device,
)
position_ids = torch.arange(input_ids.shape[1]).tile(input_ids.shape[0], 1).to(torch_device)
# building custom positions ids based on custom mask
position_ids_shared_prefix = (mask_shared_prefix.sum(dim=-1) - 1).reshape(1, -1)
# effectively: position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5]]).to(device)
# inverting the mask
min_dtype = torch.finfo(self.model_dtype).min
mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=self.model_dtype) * min_dtype
return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix
def test_stacked_causal_mask(self):
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# single forward run with 4D custom mask
logits_shared_prefix = self.model.forward(
input_ids_shared_prefix, attention_mask=mask_shared_prefix, position_ids=position_ids_shared_prefix
).logits
logits_shared_prefix_last = logits_shared_prefix[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
] # last three tokens
decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]
self.assertEqual(decoded, decoded_shared_prefix)
def test_partial_stacked_causal_mask(self):
# Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# 2 forward runs with custom 4D masks
part_a = 3 # split point
input_1a = input_ids_shared_prefix[:, :part_a]
position_ids_1a = position_ids_shared_prefix[:, :part_a]
mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]
outs_1a = self.model.forward(input_1a, attention_mask=mask_1a, position_ids=position_ids_1a)
past_key_values_a = outs_1a["past_key_values"]
# Case 1: we pass a 4D attention mask regarding the current sequence length (i.e. [..., seq_len, full_len])
input_1b = input_ids_shared_prefix[:, part_a:]
position_ids_1b = position_ids_shared_prefix[:, part_a:]
mask_1b = mask_shared_prefix[:, :, part_a:, :]
outs_1b = self.model.forward(
input_1b,
attention_mask=mask_1b,
position_ids=position_ids_1b,
past_key_values=past_key_values_a,
)
decoded_1b = [
self.tokenizer.decode(t)
for t in outs_1b.logits.argmax(-1)[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
]
]
self.assertEqual(decoded, decoded_1b)
def test_stacked_causal_mask_static_cache(self):
"""same as above but with StaticCache"""
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# upgrade the model with StaticCache
max_cache_len = 16 # note that max_cache_len is greater than the attention_mask.shape[-1]
past_key_values = StaticCache(
config=self.model.config,
batch_size=1,
max_cache_len=max_cache_len,
device=torch_device,
dtype=self.model.dtype,
)
padded_attention_mask = torch.nn.functional.pad(
input=mask_shared_prefix,
pad=(0, max_cache_len - mask_shared_prefix.shape[-1]),
mode="constant",
value=torch.finfo(self.model_dtype).min,
)
# single forward run with 4D custom mask
logits_shared_prefix = self.model.forward(
input_ids_shared_prefix,
attention_mask=padded_attention_mask,
position_ids=position_ids_shared_prefix,
cache_position=torch.arange(input_ids_shared_prefix.shape[-1], device=torch_device),
past_key_values=past_key_values,
).logits
logits_shared_prefix_last = logits_shared_prefix[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
] # last three tokens
decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]
self.assertEqual(decoded, decoded_shared_prefix)
def test_partial_stacked_causal_mask_static_cache(self):
# Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
# we pass a 4D attention mask shaped [..., seq_len, full_static_cache_len])
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# upgrade the model with StaticCache
max_cache_len = 16 # note that max_cache_len is greater than the attention_mask.shape[-1]
past_key_values = StaticCache(
config=self.model.config,
batch_size=1,
max_cache_len=max_cache_len,
device=torch_device,
dtype=self.model.dtype,
)
# forward run for the first part of input
part_a = 3 # split point
input_1a = input_ids_shared_prefix[:, :part_a]
position_ids_1a = position_ids_shared_prefix[:, :part_a]
mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]
padded_mask_1a = torch.nn.functional.pad(
input=mask_1a,
pad=(0, max_cache_len - mask_1a.shape[-1]),
mode="constant",
value=torch.finfo(self.model_dtype).min,
)
_ = self.model.forward(
input_1a,
attention_mask=padded_mask_1a,
position_ids=position_ids_1a,
cache_position=torch.arange(part_a, device=torch_device),
past_key_values=past_key_values,
)
# forward run for the second part of input
input_1b = input_ids_shared_prefix[:, part_a:]
position_ids_1b = position_ids_shared_prefix[:, part_a:]
mask_1b = mask_shared_prefix[:, :, part_a:, :]
padded_mask_1b = torch.nn.functional.pad(
input=mask_1b, pad=(0, max_cache_len - mask_1b.shape[-1]), mode="constant", value=0
)
outs_1b = self.model.forward(
input_1b,
attention_mask=padded_mask_1b,
position_ids=position_ids_1b,
cache_position=torch.arange(
part_a,
input_ids_shared_prefix.shape[-1],
device=torch_device,
),
past_key_values=past_key_values,
)
decoded_1b = [
self.tokenizer.decode(t)
for t in outs_1b.logits.argmax(-1)[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
]
]
self.assertEqual(decoded, decoded_1b)
| transformers/tests/models/llama/test_modeling_llama.py/0 | {
"file_path": "transformers/tests/models/llama/test_modeling_llama.py",
"repo_id": "transformers",
"token_count": 21656
} |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import shutil
import tempfile
import unittest
from transformers.testing_utils import require_av, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import (
AutoProcessor,
LlavaOnevisionImageProcessor,
LlavaOnevisionProcessor,
LlavaOnevisionVideoProcessor,
Qwen2TokenizerFast,
)
if is_torch_available:
import torch
@require_vision
class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = LlavaOnevisionProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = LlavaOnevisionImageProcessor()
video_processor = LlavaOnevisionVideoProcessor()
tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
processor_kwargs = self.prepare_processor_dict()
processor = LlavaOnevisionProcessor(
video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs
)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def get_video_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
def prepare_processor_dict(self):
return {"chat_template": "dummy_template", "num_image_tokens": 6, "vision_feature_select_strategy": "default"}
def test_processor_to_json_string(self):
processor = self.get_processor()
obj = json.loads(processor.to_json_string())
for key, value in self.prepare_processor_dict().items():
# chat_tempalate are tested as a separate test because they are saved in separate files
if key != "chat_template":
self.assertEqual(obj[key], value)
self.assertEqual(getattr(processor, key, None), value)
# Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved
def test_chat_template_is_saved(self):
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
# chat templates aren't serialized to json in processors
self.assertFalse("chat_template" in processor_dict_loaded.keys())
# they have to be saved as separate file and loaded back from that file
# so we check if the same template is loaded
processor_dict = self.prepare_processor_dict()
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_chat_template(self):
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
expected_prompt = "<|im_start|>user <image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
self.assertEqual(expected_prompt, formatted_prompt)
@require_av
def test_chat_template_dict(self):
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
messages = [
{
"role": "user",
"content": [
{"type": "video"},
{"type": "text", "text": "What is shown in this video?"},
],
},
]
formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
expected_output = [[151644, 872, 220, 151647, 198, 3838, 374, 6839, 304, 419, 2766, 30, 151645, 151644, 77091, 198]] # fmt: skip
self.assertListEqual(expected_output, formatted_prompt_tokenized)
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
# add image URL for return dict
messages[0]["content"][0] = {
"type": "video",
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
}
out_dict_with_video = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True
)
self.assertListEqual(list(out_dict_with_video.keys()), ["input_ids", "attention_mask", "pixel_values_videos"])
@require_torch
@require_av
def test_chat_template_dict_torch(self):
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
},
{"type": "text", "text": "What is shown in this video?"},
],
},
]
out_dict_tensors = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
self.assertListEqual(list(out_dict_tensors.keys()), ["input_ids", "attention_mask", "pixel_values_videos"])
self.assertTrue(isinstance(out_dict_tensors["input_ids"], torch.Tensor))
| transformers/tests/models/llava_onevision/test_processor_llava_onevision.py/0 | {
"file_path": "transformers/tests/models/llava_onevision/test_processor_llava_onevision.py",
"repo_id": "transformers",
"token_count": 2859
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch M2M100 model."""
import copy
import tempfile
import unittest
import pytest
from transformers import M2M100Config, is_torch_available
from transformers.testing_utils import (
require_flash_attn,
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_fp16,
require_torch_gpu,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import M2M100ForConditionalGeneration, M2M100Model, M2M100Tokenizer
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Decoder, M2M100Encoder
def prepare_m2m_100_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class M2M100ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="relu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
input_ids = input_ids.clamp(self.pad_token_id + 1)
decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1)
config = self.get_config()
inputs_dict = prepare_m2m_100_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return M2M100Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
encoder_layerdrop=self.encoder_layerdrop,
decoder_layerdrop=self.decoder_layerdrop,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = M2M100Model(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = M2M100Model(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = M2M100Encoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = M2M100Decoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class M2M100ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
M2M100Model,
M2M100ForConditionalGeneration,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (M2M100ForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": M2M100Model,
"summarization": M2M100ForConditionalGeneration,
"text2text-generation": M2M100ForConditionalGeneration,
"translation": M2M100ForConditionalGeneration,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
test_missing_keys = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
if pipeline_test_case_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def setUp(self):
self.model_tester = M2M100ModelTester(self)
self.config_tester = ConfigTester(self, config_class=M2M100Config)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (M2M100Model, M2M100ForConditionalGeneration):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = M2M100ForConditionalGeneration(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
@unittest.skip(
reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
)
def test_load_save_without_tied_weights(self):
pass
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
TOLERANCE = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class M2M100ModelIntegrationTests(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
def test_inference_no_head(self):
model = M2M100Model.from_pretrained("facebook/m2m100_418M").to(torch_device)
input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]])
decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]])
inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids)
with torch.no_grad():
output = model(**inputs_dict)[0]
expected_shape = torch.Size((1, 11, 1024))
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = torch.tensor(
[[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=torch_device
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)
def test_inference_head(self):
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device)
# change to intended input
input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]])
decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]])
inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids)
with torch.no_grad():
output = model(**inputs_dict)[0]
expected_shape = torch.Size((1, 11, model.config.vocab_size))
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = torch.tensor(
[[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=torch_device
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)
def test_seq_to_seq_generation(self):
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device)
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en")
src_fr = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
dct = tokenizer(src_fr, padding=True, return_tensors="pt")
hypotheses_batch = model.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=5,
forced_bos_token_id=tokenizer.get_lang_id("en"),
)
expected_en = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
generated = tokenizer.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated == expected_en
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_seq_to_seq_generation(self):
"""
Overwritting the common test as the test is flaky on tiny models
"""
model = M2M100ForConditionalGeneration.from_pretrained(
"facebook/m2m100_418M", attn_implementation="flash_attention_2"
).to(torch_device)
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en")
src_fr = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
dct = tokenizer(src_fr, padding=True, return_tensors="pt")
hypotheses_batch = model.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=5,
forced_bos_token_id=tokenizer.get_lang_id("en"),
)
expected_en = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
generated = tokenizer.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated == expected_en
| transformers/tests/models/m2m_100/test_modeling_m2m_100.py/0 | {
"file_path": "transformers/tests/models/m2m_100/test_modeling_m2m_100.py",
"repo_id": "transformers",
"token_count": 8789
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Mllama model."""
import unittest
import pytest
import requests
from parameterized import parameterized
from transformers import (
AutoProcessor,
BitsAndBytesConfig,
MllamaConfig,
MllamaForCausalLM,
MllamaForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.models.mllama.configuration_mllama import MllamaTextConfig
from transformers.testing_utils import (
cleanup,
require_bitsandbytes,
require_read_token,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
class MllamaText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
seq_length=7,
is_training=True,
text_config={
"model_type": "mllama",
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"num_key_value_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"max_position_embeddings": 512,
"initializer_range": 0.02,
"rope_scaling": {"rope_type": "default"},
"pad_token_id": 0,
"bos_token_id": 1,
"eos_token_id": 2,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.text_config = text_config
self.seq_length = seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.pad_token_id = self.text_config["pad_token_id"]
self.batch_size = 3
def get_config(self):
return MllamaTextConfig(**self.text_config)
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config, input_ids, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def create_and_check_mllama_model_fp16_forward(self, config, input_ids, attention_mask):
model = MllamaForCausalLM(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class MllamaForCausalLMModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `MllamaForConditionalGeneration`.
"""
all_model_classes = (MllamaForCausalLM,) if is_torch_available() else ()
all_generative_model_classes = (MllamaForCausalLM,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = MllamaText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=MllamaTextConfig, has_text_modality=True)
class MllamaVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=4,
seq_length=7,
is_training=True,
text_config={
"model_type": "mllama",
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 4,
"num_attention_heads": 4,
"num_key_value_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"max_position_embeddings": 512,
"initializer_range": 0.02,
"rope_scaling": {"rope_type": "default"},
"pad_token_id": 0,
"bos_token_id": 1,
"eos_token_id": 2,
"cross_attention_layers": [1],
},
vision_config={
"image_size": 30,
"patch_size": 2,
"num_channels": 3,
"hidden_size": 16,
"intermediate_layers_indices": [0],
"vision_output_dim": 32,
"projection_dim": 32,
"num_hidden_layers": 6,
"num_global_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"initializer_range": 0.02,
"supported_aspect_ratios": [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]],
},
):
self.parent = parent
self.is_training = is_training
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.pad_token_id = self.text_config["pad_token_id"]
self.batch_size = 3
self.num_channels = 3
self.image_size = 224
self.max_num_images = 1
self.max_image_tiles = 4
self.image_length = 904
def get_config(self):
return MllamaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
image_token_index=self.image_token_index,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.max_num_images,
self.max_image_tiles,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
aspect_ratio_ids = torch.tensor([[6] * self.batch_size], device=torch_device).transpose(0, 1)
aspect_ratio_mask = torch.ones(self.batch_size, self.max_num_images, self.max_image_tiles)
config = self.get_config()
return config, pixel_values, aspect_ratio_ids, aspect_ratio_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, aspect_ratio_ids, aspect_ratio_mask = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
aspect_ratio_mask = aspect_ratio_mask.to(torch_device)
cross_attention_mask = torch.ones(
(self.batch_size, self.seq_length, self.max_num_images, self.max_image_tiles), device=torch_device
)
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, 1] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"aspect_ratio_ids": aspect_ratio_ids,
"input_ids": input_ids,
"attention_mask": attention_mask,
"aspect_ratio_mask": aspect_ratio_mask,
"cross_attention_mask": cross_attention_mask,
"use_cache": True,
}
return config, inputs_dict
def create_and_check_mllama_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
model = MllamaForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class MllamaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `MllamaForConditionalGeneration`.
"""
all_model_classes = (MllamaForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (MllamaForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-text-to-text": MllamaForConditionalGeneration} if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_torchscript = False
_is_composite = True
def setUp(self):
self.model_tester = MllamaVisionText2TextModelTester(self)
self.config_tester = ConfigTester(
self, config_class=MllamaConfig, has_text_modality=False, common_properties=["image_token_index"]
)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
def _check_attentions_for_generate(
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
):
# Mllama has cross attention layers and those have a different shape than normal attention layers
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
)
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
cross_attention_layers = self.model_tester.text_config["cross_attention_layers"]
for idx, iter_attentions in enumerate(attentions):
tgt_len = min_length + idx if not use_cache else 1
src_len = min_length + idx
expected_shape = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
expected_shape_cross = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
self.model_tester.image_length,
)
expected_shapes = [
expected_shape if layer_idx not in cross_attention_layers else expected_shape_cross
for layer_idx in range(len(iter_attentions))
]
self.assertListEqual([layer_attention.shape for layer_attention in iter_attentions], expected_shapes)
@unittest.skip("For some unknown reasons the tests fails in CrossAttention layer when doing torch.sdpa(). ")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="AssertionError: Items in the second set but not the first: might be a setting issue")
def test_model_parallelism(self):
pass
@parameterized.expand([("offloaded",)])
@pytest.mark.generate
@unittest.skip(reason="Offloaded cache seems to not work with mllama's kv cache type")
def test_offloaded_cache_implementation(self, cache_implementation):
pass
def test_generate_text_only_with_cache(self):
"""
Tests that our cached generation with text-only inputs works. When mllama was introduced, this feature
required cache modifications (because layers are skipped in practice). This test should prevent regressions.
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
model.generate(input_ids, use_cache=True)
@require_torch
class MllamaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.base_model_checkpoint = "meta-llama/Llama-3.2-11B-Vision"
self.instruct_model_checkpoint = "meta-llama/Llama-3.2-11B-Vision-Instruct"
def tearDown(self):
cleanup(torch_device, gc_collect=True)
@slow
@require_torch_gpu
@require_bitsandbytes
@require_read_token
def test_11b_model_integration_generate(self):
# Prepare inputs
processor = AutoProcessor.from_pretrained(self.base_model_checkpoint)
prompt = "<|image|>If I had to write a haiku for this one"
url = "https://llava-vl.github.io/static/images/view.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch_device)
# Check inputs ids
expected_input_ids = torch.tensor([[128256, 128000, 2746, 358, 1047, 311, 3350, 264, 6520, 39342, 369, 420, 832]], device=torch_device) # fmt: skip
self.assertTrue(torch.equal(inputs["input_ids"], expected_input_ids))
# Load model in 4 bit
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = MllamaForConditionalGeneration.from_pretrained(
self.base_model_checkpoint, quantization_config=quantization_config
)
# Generate
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
decoded_output = processor.decode(output[0], skip_special_tokens=True)
expected_output = "If I had to write a haiku for this one, it would be:.\\nI'm not a poet.\\nBut I'm a photographer.\\nAnd I'm a" # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@slow
@require_torch_gpu
@require_bitsandbytes
@require_read_token
def test_11b_model_integration_generate_text_only(self):
# Prepare inputs
processor = AutoProcessor.from_pretrained(self.base_model_checkpoint)
prompt = "If I had to write a haiku"
inputs = processor(text=prompt, return_tensors="pt").to(torch_device)
# Check inputs ids
expected_input_ids = [128000, 2746, 358, 1047, 311, 3350, 264, 6520, 39342]
self.assertEqual(inputs["input_ids"].cpu().squeeze().tolist(), expected_input_ids)
# Load model in 4 bit
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = MllamaForConditionalGeneration.from_pretrained(
self.base_model_checkpoint, quantization_config=quantization_config
)
# Generate
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
decoded_output = processor.decode(output[0], skip_special_tokens=True)
expected_output = "If I had to write a haiku about my life, I think it would be something like:\n\"Life is a messy stream\nTwists and turns, ups" # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@slow
@require_torch_gpu
@require_bitsandbytes
@require_read_token
def test_11b_model_integration_forward(self):
# Prepare inputs
processor = AutoProcessor.from_pretrained(self.base_model_checkpoint)
prompt = "<|image|>If I had to write a haiku for this one"
url = "https://llava-vl.github.io/static/images/view.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch_device)
# Load model in 4 bit
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = MllamaForConditionalGeneration.from_pretrained(
self.base_model_checkpoint, quantization_config=quantization_config
)
# Forward
with torch.inference_mode():
output = model(**inputs)
actual_logits = output.logits[0, -1, :5].cpu()
expected_logits = torch.tensor([8.3594, 7.7148, 4.7266, 0.7803, 3.1504])
self.assertTrue(
torch.allclose(actual_logits, expected_logits, atol=0.1),
f"Actual logits: {actual_logits}"
f"\nExpected logits: {expected_logits}"
f"\nDifference: {torch.abs(actual_logits - expected_logits)}",
)
@slow
@require_torch_gpu
@require_bitsandbytes
@require_read_token
def test_11b_model_integration_batched_generate(self):
processor = AutoProcessor.from_pretrained(self.base_model_checkpoint)
# Prepare inputs
prompt = [
"<|image|>If I had to write a haiku for this one",
"<|image|>This image shows",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
inputs = processor(text=prompt, images=[[image1], [image2]], padding=True, return_tensors="pt").to(
torch_device
)
# Load model in 4 bit
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = MllamaForConditionalGeneration.from_pretrained(
self.base_model_checkpoint, quantization_config=quantization_config
)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0], skip_special_tokens=True)
expected_output = "If I had to write a haiku for this one, it would be:.\\nI'm not a poet.\\nBut I'm a photographer.\\nAnd I'm a" # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_output = "This image shows is a photograph of a stop sign in front of a Chinese archway. The stop sign is red with white letters and is" # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@slow
@require_torch_gpu
@require_bitsandbytes
@require_read_token
def test_11b_model_integration_multi_image_generate(self):
processor = AutoProcessor.from_pretrained(self.instruct_model_checkpoint)
# Prepare inputs
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What’s shown in this image?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "This image shows a long wooden dock extending out into a lake."}
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What about this one, what do you see here? Can you describe in detail?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=prompt, images=[[image1, image2]], return_tensors="pt").to(torch_device)
prompt_len = inputs["input_ids"].shape[-1]
# Load model in 4 bit
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = MllamaForConditionalGeneration.from_pretrained(
self.instruct_model_checkpoint, quantization_config=quantization_config
)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
generated_output = output[0][prompt_len:]
decoded_output = processor.decode(generated_output, skip_special_tokens=False)
# model should response about "stop sign", however it responses about "dock"
# this happens only in quantized version, bfloat16 works fine
expected_output = "This image shows a long wooden dock extending out into a lake. The dock is made of wooden planks and has a railing"
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
| transformers/tests/models/mllama/test_modeling_mllama.py/0 | {
"file_path": "transformers/tests/models/mllama/test_modeling_mllama.py",
"repo_id": "transformers",
"token_count": 10539
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch MobileViT model."""
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class MobileViTConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "neck_hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
class MobileViTModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
last_hidden_size=32,
num_attention_heads=4,
hidden_act="silu",
conv_kernel_size=3,
output_stride=32,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.last_hidden_size = last_hidden_size
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileViTConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
conv_kernel_size=self.conv_kernel_size,
output_stride=self.output_stride,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
hidden_sizes=[12, 16, 20],
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileViTModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"image-feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileViTModelTester(self)
self.config_tester = MobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileViT does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="MobileViT does not output attentions")
def test_attention_outputs(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 5
self.assertEqual(len(hidden_states), expected_num_stages)
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
divisor = 2
for i in range(len(hidden_states)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]),
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
)
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "apple/mobilevit-small"
model = MobileViTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileViTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.9364, -1.2327, -0.4653]).to(torch_device)
torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4)
@slow
def test_inference_semantic_segmentation(self):
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21, 32, 32))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
],
device=torch_device,
)
torch.testing.assert_close(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
@slow
def test_post_processing_semantic_segmentation(self):
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)])
expected_shape = torch.Size((50, 60))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((32, 32))
self.assertEqual(segmentation[0].shape, expected_shape)
| transformers/tests/models/mobilevit/test_modeling_mobilevit.py/0 | {
"file_path": "transformers/tests/models/mobilevit/test_modeling_mobilevit.py",
"repo_id": "transformers",
"token_count": 5987
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
import unittest
from transformers import MptConfig, is_torch_available
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
MptForCausalLM,
MptForQuestionAnswering,
MptForSequenceClassification,
MptForTokenClassification,
MptModel,
)
@require_torch
class MptModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=False,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=48,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_dropout_prob = attention_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = None
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
def get_large_model_config(self):
return MptConfig.from_pretrained("mosaicml/mpt-7b")
def prepare_config_and_inputs(self, gradient_checkpointing=False):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config(gradient_checkpointing=gradient_checkpointing)
return (config, input_ids, input_mask, sequence_labels)
def get_config(self, gradient_checkpointing=False):
return MptConfig(
vocab_size=self.vocab_size,
seq_length=self.seq_length,
hidden_size=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_dropout_prob,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
num_labels=self.num_labels,
gradient_checkpointing=gradient_checkpointing,
dtype="float32",
)
def create_and_check_mpt_model(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.past_key_values), config.n_layers)
def create_and_check_mpt_model_past(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True)
outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids))
outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids))
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_mpt_model_attention_mask_past(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = self.seq_length // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_mpt_model_past_large_inputs(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
)
hidden_states_from_no_past = output_from_no_past["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)
hidden_states_from_past = output_from_past["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), hidden_states_from_past.shape[-1]).item()
output_from_no_past_slice = hidden_states_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = hidden_states_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args):
model = MptForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args):
config.num_labels = self.num_labels
model = MptForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args):
model = MptForTokenClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args):
model = MptForQuestionAnswering(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_forward_and_backwards(
self, config, input_ids, input_mask, *args, gradient_checkpointing=False
):
model = MptForCausalLM(config)
model.to(torch_device)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def create_and_check_mpt_weight_initialization(self, config, *args):
model = MptModel(config)
model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask, sequence_labels = config_and_inputs
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
class MptConfigTester(ConfigTester):
def __init__(self, parent, config_class=None, has_text_modality=True, common_properties=None, **kwargs):
super().__init__(parent, config_class, has_text_modality, common_properties, **kwargs)
def test_attn_config_as_dict(self):
config = self.config_class(**self.inputs_dict, attn_config={"attn_impl": "flash", "softmax_scale": None})
self.parent.assertTrue(config.attn_config.attn_impl == "flash")
self.parent.assertTrue(config.attn_config.softmax_scale is None)
def run_common_tests(self):
self.test_attn_config_as_dict()
return super().run_common_tests()
@require_torch
class MptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
MptModel,
MptForCausalLM,
MptForSequenceClassification,
MptForTokenClassification,
MptForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (MptForCausalLM,) if is_torch_available() else ()
fx_compatible = False
test_missing_keys = False
test_pruning = False
test_torchscript = False
test_head_masking = False
pipeline_model_mapping = (
{
"feature-extraction": MptModel,
"question-answering": MptForQuestionAnswering,
"text-classification": MptForSequenceClassification,
"text-generation": MptForCausalLM,
"token-classification": MptForTokenClassification,
"zero-shot": MptForSequenceClassification,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = MptModelTester(self)
self.config_tester = MptConfigTester(self, config_class=MptConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_mpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model(*config_and_inputs)
def test_mpt_model_alibi_tensor(self):
# test creation of alibi tensor when num heads is not a power of two
config_and_inputs = self.model_tester.prepare_config_and_inputs()
config_and_inputs[0].n_heads = 6
self.model_tester.create_and_check_mpt_model(*config_and_inputs)
def test_mpt_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model_past(*config_and_inputs)
def test_mpt_model_att_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model_attention_mask_past(*config_and_inputs)
def test_mpt_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model_past_large_inputs(*config_and_inputs)
def test_mpt_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
def test_mpt_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs)
def test_mpt_token_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_token_classification_model(*config_and_inputs)
def test_mpt_gradient_checkpointing(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
def test_mpt_weight_initialization(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_weight_initialization(*config_and_inputs)
@unittest.skip(reason="For backward compatibility the lm_head is not in the model's state dict on the Hub.")
def test_model_weights_reload_no_missing_tied_weights(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "mosaicml/mpt-7b"
model = MptModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
@require_torch_gpu
@require_bitsandbytes
class MptIntegrationTests(unittest.TestCase):
def test_generation_8k(self):
model_id = "mosaicml/mpt-7b-8k"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
input_text = "Hello"
expected_output = "Hello, I'm a new user of the forum. I have a question about the \"Solaris"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
self.assertEqual(decoded_output, expected_output)
def test_generation(self):
model_id = "mosaicml/mpt-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
input_text = "Hello"
expected_output = "Hello and welcome to the first episode of the new podcast, The Frugal Feminist.\n"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
self.assertEqual(decoded_output, expected_output)
def test_generation_batched(self):
model_id = "mosaicml/mpt-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
input_texts = ["Hello my name is", "Today I am going at the gym and"]
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(torch_device)
expected_output = [
"Hello my name is Tiffany and I am a mother of two beautiful children. I have been a nanny for the",
"Today I am going at the gym and then I am going to go to the grocery store. I am going to buy some food and some",
]
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
for i, predicted_output in enumerate(decoded_outputs):
self.assertEqual(predicted_output, expected_output[i])
def test_model_logits(self):
model_id = "mosaicml/mpt-7b"
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device)
outputs = model(dummy_input, output_hidden_states=True)
expected_slice = torch.Tensor([-0.2520, -0.2178, -0.1953]).to(torch_device, torch.bfloat16)
predicted_slice = outputs.hidden_states[-1][0, 0, :3]
torch.testing.assert_close(expected_slice, predicted_slice, rtol=1e-3, atol=1e-3)
| transformers/tests/models/mpt/test_modeling_mpt.py/0 | {
"file_path": "transformers/tests/models/mpt/test_modeling_mpt.py",
"repo_id": "transformers",
"token_count": 9192
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import OPTConfig, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
from transformers import FlaxOPTForCausalLM, FlaxOPTModel, GPT2Tokenizer
def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None):
if attention_mask is None:
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
@require_flax
class FlaxOPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
word_embed_proj_dim=16,
initializer_range=0.02,
attn_implemetation="eager",
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.word_embed_proj_dim = word_embed_proj_dim
self.initializer_range = initializer_range
self.is_encoder_decoder = False
self.attn_implementation = attn_implemetation
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
config = OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
initializer_range=self.initializer_range,
use_cache=False,
attn_implementation=self.attn_implementation,
)
inputs_dict = prepare_opt_inputs_dict(config, input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
max_length = 20
model = model_class_name(config)
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
past_key_values = model.init_cache(input_ids.shape[0], max_length)
attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4")
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :],
(input_ids.shape[0], input_ids.shape[-1] - 1),
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
position_ids=position_ids,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
max_length = 20
model = model_class_name(config)
input_ids, attention_mask = (
inputs_dict["input_ids"],
inputs_dict["attention_mask"],
)
attention_mask_cache = jnp.concatenate(
[
attention_mask,
jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_length)
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :],
(input_ids.shape[0], input_ids.shape[-1] - 1),
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
position_ids=position_ids,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class FlaxOPTModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
all_model_classes = (FlaxOPTModel, FlaxOPTForCausalLM) if is_flax_available() else ()
all_generative_model_classes = () if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxOPTModelTester(self)
def test_use_cache_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
def test_use_cache_forward_with_attn_mask(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/opt-125m")
input_ids = np.ones((1, 1)) * model.config.eos_token_id
outputs = model(input_ids)
self.assertIsNotNone(outputs)
@require_sentencepiece
@require_flax
class FlaxOPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = FlaxOPTModel.from_pretrained("facebook/opt-350m")
input_ids = jnp.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids=input_ids).last_hidden_state
expected_shape = (1, 11, 512)
self.assertEqual(output.shape, expected_shape)
expected_slice = jnp.array(
[[-0.2867, -1.9256, -0.3062], [-1.2711, -0.1337, -0.1897], [0.4109, 0.1187, -1.3142]]
)
self.assertTrue(jnp.allclose(output[:, :3, :3], expected_slice, atol=4e-2))
@require_flax
@slow
class FlaxOPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_logits(self):
model = FlaxOPTForCausalLM.from_pretrained(self.path_model)
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="jax", padding=True, add_special_tokens=False)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1)
logits_meta = jnp.array(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2))
model = jax.jit(model)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1)
self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2))
@require_flax
@slow
class FlaxOPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="jax").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_ids = generated_ids[0]
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="jax").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_ids = generated_ids[0]
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_jitted_batch_generation(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to thank",
"In the city of Rome Canaver Canaver Canaver Canaver",
]
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
inputs = tokenizer(
[
"Today is a beautiful day and I want to",
"In the city of",
],
return_tensors="jax",
padding=True,
)
jit_generate = jax.jit(model.generate)
output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences
output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
self.assertIsNotNone(output_string, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="jax", padding=True)
input_ids = inputs["input_ids"]
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], trace=False)
inputs_non_padded = tokenizer(sentences[0], return_tensors="jax").input_ids
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].sum()
inputs_padded = tokenizer(sentences[1], return_tensors="jax").input_ids
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0][0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0][0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
| transformers/tests/models/opt/test_modeling_flax_opt.py/0 | {
"file_path": "transformers/tests/models/opt/test_modeling_flax_opt.py",
"repo_id": "transformers",
"token_count": 7249
} |
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PatchTSMixer model."""
import inspect
import itertools
import random
import tempfile
import unittest
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from huggingface_hub import hf_hub_download
from parameterized import parameterized
from transformers import is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
TOLERANCE = 1e-4
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
PatchTSMixerConfig,
PatchTSMixerForPrediction,
PatchTSMixerForPretraining,
PatchTSMixerForRegression,
PatchTSMixerForTimeSeriesClassification,
PatchTSMixerModel,
)
from transformers.models.patchtsmixer.modeling_patchtsmixer import (
PatchTSMixerEncoder,
PatchTSMixerForPredictionHead,
PatchTSMixerForPredictionOutput,
PatchTSMixerForRegressionOutput,
PatchTSMixerForTimeSeriesClassificationOutput,
PatchTSMixerLinearHead,
PatchTSMixerPretrainHead,
)
@require_torch
class PatchTSMixerModelTester:
def __init__(
self,
context_length: int = 32,
patch_length: int = 8,
num_input_channels: int = 3,
patch_stride: int = 8,
# d_model: int = 128,
hidden_size: int = 8,
# num_layers: int = 8,
num_hidden_layers: int = 2,
expansion_factor: int = 2,
dropout: float = 0.5,
mode: str = "common_channel",
gated_attn: bool = True,
norm_mlp="LayerNorm",
swin_hier: int = 0,
# masking related
mask_type: str = "forecast",
random_mask_ratio=0.5,
mask_patches: list = [2, 3],
forecast_mask_ratios: list = [1, 1],
mask_value=0,
masked_loss: bool = False,
mask_mode: str = "mask_before_encoder",
channel_consistent_masking: bool = True,
scaling: Optional[Union[str, bool]] = "std",
# Head related
head_dropout: float = 0.2,
# forecast related
prediction_length: int = 16,
out_channels: int = None,
# Classification/regression related
# num_labels: int = 3,
num_targets: int = 3,
output_range: list = None,
head_aggregation: str = None,
# Trainer related
batch_size=13,
is_training=True,
seed_number=42,
post_init=True,
num_parallel_samples=4,
):
self.num_input_channels = num_input_channels
self.context_length = context_length
self.patch_length = patch_length
self.patch_stride = patch_stride
# self.d_model = d_model
self.hidden_size = hidden_size
self.expansion_factor = expansion_factor
# self.num_layers = num_layers
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.mode = mode
self.gated_attn = gated_attn
self.norm_mlp = norm_mlp
self.swin_hier = swin_hier
self.scaling = scaling
self.head_dropout = head_dropout
# masking related
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio
self.mask_patches = mask_patches
self.forecast_mask_ratios = forecast_mask_ratios
self.mask_value = mask_value
self.channel_consistent_masking = channel_consistent_masking
self.mask_mode = mask_mode
self.masked_loss = masked_loss
# patching related
self.patch_last = True
# forecast related
self.prediction_length = prediction_length
self.out_channels = out_channels
# classification/regression related
# self.num_labels = num_labels
self.num_targets = num_targets
self.output_range = output_range
self.head_aggregation = head_aggregation
# Trainer related
self.batch_size = batch_size
self.is_training = is_training
self.seed_number = seed_number
self.post_init = post_init
self.num_parallel_samples = num_parallel_samples
def get_config(self):
config_ = PatchTSMixerConfig(
num_input_channels=self.num_input_channels,
context_length=self.context_length,
patch_length=self.patch_length,
patch_stride=self.patch_stride,
# d_model = self.d_model,
d_model=self.hidden_size,
expansion_factor=self.expansion_factor,
# num_layers = self.num_layers,
num_layers=self.num_hidden_layers,
dropout=self.dropout,
mode=self.mode,
gated_attn=self.gated_attn,
norm_mlp=self.norm_mlp,
swin_hier=self.swin_hier,
scaling=self.scaling,
head_dropout=self.head_dropout,
mask_type=self.mask_type,
random_mask_ratio=self.random_mask_ratio,
mask_patches=self.mask_patches,
forecast_mask_ratios=self.forecast_mask_ratios,
mask_value=self.mask_value,
channel_consistent_masking=self.channel_consistent_masking,
mask_mode=self.mask_mode,
masked_loss=self.masked_loss,
prediction_length=self.prediction_length,
out_channels=self.out_channels,
# num_labels=self.num_labels,
num_targets=self.num_targets,
output_range=self.output_range,
head_aggregation=self.head_aggregation,
post_init=self.post_init,
)
self.num_patches = config_.num_patches
return config_
def prepare_patchtsmixer_inputs_dict(self, config):
_past_length = config.context_length
# bs, n_vars, num_patch, patch_length
# [bs x context_length x n_vars]
past_values = floats_tensor([self.batch_size, _past_length, self.num_input_channels])
inputs_dict = {
"past_values": past_values,
}
return inputs_dict
def prepare_config_and_inputs(self):
config = self.get_config()
inputs_dict = self.prepare_patchtsmixer_inputs_dict(config)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
@require_torch
class PatchTSMixerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
PatchTSMixerModel,
PatchTSMixerForPrediction,
PatchTSMixerForPretraining,
PatchTSMixerForTimeSeriesClassification,
PatchTSMixerForRegression,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (
(PatchTSMixerForPrediction, PatchTSMixerForPretraining) if is_torch_available() else ()
)
pipeline_model_mapping = {"feature-extraction": PatchTSMixerModel} if is_torch_available() else {}
is_encoder_decoder = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
test_torchscript = False
test_inputs_embeds = False
test_resize_embeddings = True
test_resize_position_embeddings = False
test_mismatched_shapes = True
test_model_parallel = False
has_attentions = False
def setUp(self):
self.model_tester = PatchTSMixerModelTester()
self.config_tester = ConfigTester(
self,
config_class=PatchTSMixerConfig,
has_text_modality=False,
prediction_length=self.model_tester.prediction_length,
common_properties=["hidden_size", "expansion_factor", "num_hidden_layers"],
)
def test_config(self):
self.config_tester.run_common_tests()
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if model_class == PatchTSMixerForPrediction:
rng = random.Random(self.model_tester.seed_number)
labels = floats_tensor(
[
self.model_tester.batch_size,
self.model_tester.prediction_length,
self.model_tester.num_input_channels,
],
rng=rng,
)
inputs_dict["future_values"] = labels
elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING):
rng = random.Random(self.model_tester.seed_number)
labels = ids_tensor([self.model_tester.batch_size], self.model_tester.num_targets, rng=rng)
inputs_dict["target_values"] = labels
elif model_class in get_values(MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING):
rng = random.Random(self.model_tester.seed_number)
labels = floats_tensor([self.model_tester.batch_size, self.model_tester.num_targets], rng=rng)
inputs_dict["target_values"] = labels
inputs_dict["output_hidden_states"] = True
return inputs_dict
def test_save_load_strict(self):
config, _ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester,
"expected_num_hidden_layers",
self.model_tester.num_hidden_layers,
)
self.assertEqual(len(hidden_states), expected_num_layers)
expected_hidden_size = self.model_tester.hidden_size
self.assertEqual(hidden_states[0].shape[-1], expected_hidden_size)
num_patch = self.model_tester.num_patches
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[num_patch, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="No tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
output_ = model(**dict_inputs, return_dict=True, **additional_kwargs)
attributes_ = vars(output_)
dict_output = tuple(attributes_.values())
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object),
set_nan_tensor_to_zero(dict_object),
atol=1e-5,
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
print(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
tuple_inputs.update({"output_hidden_states": False})
dict_inputs.update({"output_hidden_states": False})
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
tuple_inputs.update({"output_hidden_states": False})
dict_inputs.update({"output_hidden_states": False})
check_equivalence(
model,
tuple_inputs,
dict_inputs,
)
def test_model_main_input_name(self):
model_signature = inspect.signature(getattr(PatchTSMixerModel, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(PatchTSMixerModel.main_input_name, observed_main_input_name)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model_class == PatchTSMixerForPretraining:
expected_arg_names = [
"past_values",
"observed_mask",
"output_hidden_states",
"return_loss",
]
elif model_class == PatchTSMixerModel:
expected_arg_names = [
"past_values",
"observed_mask",
"output_hidden_states",
]
elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING) or model_class in get_values(
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING
):
expected_arg_names = [
"past_values",
"target_values",
"output_hidden_states",
"return_loss",
]
else:
# PatchTSMixerForPrediction
expected_arg_names = [
"past_values",
"observed_mask",
"future_values",
"output_hidden_states",
"return_loss",
]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@is_flaky()
def test_retain_grad_hidden_states_attentions(self):
super().test_retain_grad_hidden_states_attentions()
@unittest.skip(reason="Model does not have input embeddings")
def test_model_get_set_embeddings(self):
pass
def prepare_batch(repo_id="ibm/patchtsmixer-etth1-test-data", file="pretrain_batch.pt"):
# TODO: Make repo public
file = hf_hub_download(repo_id=repo_id, filename=file, repo_type="dataset")
batch = torch.load(file, map_location=torch_device)
return batch
@require_torch
@slow
class PatchTSMixerModelIntegrationTests(unittest.TestCase):
def test_pretrain_head(self):
model = PatchTSMixerForPretraining.from_pretrained("ibm/patchtsmixer-etth1-pretrain").to(torch_device)
batch = prepare_batch()
torch.manual_seed(0)
with torch.no_grad():
output = model(past_values=batch["past_values"].to(torch_device)).prediction_outputs
num_patch = (
max(model.config.context_length, model.config.patch_length) - model.config.patch_length
) // model.config.patch_stride + 1
expected_shape = torch.Size(
[
64,
model.config.num_input_channels,
num_patch,
model.config.patch_length,
]
)
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[[[-0.9106]],[[1.5326]],[[-0.8245]],[[0.7439]],[[-0.7830]],[[2.6256]],[[-0.6485]],]],device=torch_device) # fmt: skip
torch.testing.assert_close(output[0, :7, :1, :1], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)
def test_forecasting_head(self):
model = PatchTSMixerForPrediction.from_pretrained("ibm/patchtsmixer-etth1-forecasting").to(torch_device)
batch = prepare_batch(file="forecast_batch.pt")
model.eval()
torch.manual_seed(0)
with torch.no_grad():
output = model(
past_values=batch["past_values"].to(torch_device),
future_values=batch["future_values"].to(torch_device),
).prediction_outputs
expected_shape = torch.Size([64, model.config.prediction_length, model.config.num_input_channels])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[0.2471, 0.5036, 0.3596, 0.5401, -0.0985, 0.3423, -0.8439]],
device=torch_device,
)
torch.testing.assert_close(output[0, :1, :7], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)
def test_prediction_generation(self):
model = PatchTSMixerForPrediction.from_pretrained("ibm/patchtsmixer-etth1-generate").to(torch_device)
batch = prepare_batch(file="forecast_batch.pt")
print(batch["past_values"])
torch.manual_seed(0)
model.eval()
with torch.no_grad():
outputs = model.generate(past_values=batch["past_values"].to(torch_device))
expected_shape = torch.Size((64, 1, model.config.prediction_length, model.config.num_input_channels))
self.assertEqual(outputs.sequences.shape, expected_shape)
expected_slice = torch.tensor(
[[0.4308, -0.4731, 1.3512, -0.1038, -0.4655, 1.1279, -0.7179]],
device=torch_device,
)
mean_prediction = outputs.sequences.mean(dim=1)
torch.testing.assert_close(mean_prediction[0, -1:], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)
@require_torch
class PatchTSMixerFunctionalTests(unittest.TestCase):
@classmethod
def setUpClass(cls):
"""Setup method: Called once before test-cases execution"""
cls.params = {}
cls.params.update(
context_length=32,
patch_length=8,
num_input_channels=3,
patch_stride=8,
d_model=4,
expansion_factor=2,
num_layers=3,
dropout=0.2,
mode="common_channel", # common_channel, mix_channel
gated_attn=True,
norm_mlp="LayerNorm",
mask_type="random",
random_mask_ratio=0.5,
mask_patches=[2, 3],
forecast_mask_ratios=[1, 1],
mask_value=0,
masked_loss=True,
channel_consistent_masking=True,
head_dropout=0.2,
prediction_length=64,
out_channels=None,
# num_labels=3,
num_targets=3,
output_range=None,
head_aggregation=None,
scaling="std",
use_positional_encoding=False,
positional_encoding="sincos",
self_attn=False,
self_attn_heads=1,
num_parallel_samples=4,
)
cls.num_patches = (
max(cls.params["context_length"], cls.params["patch_length"]) - cls.params["patch_length"]
) // cls.params["patch_stride"] + 1
# batch_size = 32
batch_size = 2
int(cls.params["prediction_length"] / cls.params["patch_length"])
cls.data = torch.rand(
batch_size,
cls.params["context_length"],
cls.params["num_input_channels"],
)
cls.enc_data = torch.rand(
batch_size,
cls.params["num_input_channels"],
cls.num_patches,
cls.params["patch_length"],
)
cls.enc_output = torch.rand(
batch_size,
cls.params["num_input_channels"],
cls.num_patches,
cls.params["d_model"],
)
cls.flat_enc_output = torch.rand(
batch_size,
cls.num_patches,
cls.params["d_model"],
)
cls.correct_pred_output = torch.rand(
batch_size,
cls.params["prediction_length"],
cls.params["num_input_channels"],
)
cls.correct_regression_output = torch.rand(batch_size, cls.params["num_targets"])
cls.correct_pretrain_output = torch.rand(
batch_size,
cls.params["num_input_channels"],
cls.num_patches,
cls.params["patch_length"],
)
cls.correct_forecast_output = torch.rand(
batch_size,
cls.params["prediction_length"],
cls.params["num_input_channels"],
)
cls.correct_sel_forecast_output = torch.rand(batch_size, cls.params["prediction_length"], 2)
cls.correct_classification_output = torch.rand(
batch_size,
cls.params["num_targets"],
)
cls.correct_classification_classes = torch.randint(0, cls.params["num_targets"], (batch_size,))
def test_patchtsmixer_encoder(self):
config = PatchTSMixerConfig(**self.__class__.params)
enc = PatchTSMixerEncoder(config)
output = enc(self.__class__.enc_data)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
def test_patchmodel(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerModel(config)
output = mdl(self.__class__.data)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.patch_input.shape, self.__class__.enc_data.shape)
def test_pretrainhead(self):
config = PatchTSMixerConfig(**self.__class__.params)
head = PatchTSMixerPretrainHead(
config=config,
)
output = head(self.__class__.enc_output)
self.assertEqual(output.shape, self.__class__.correct_pretrain_output.shape)
def test_pretrain_full(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerForPretraining(config)
output = mdl(self.__class__.data)
self.assertEqual(
output.prediction_outputs.shape,
self.__class__.correct_pretrain_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
def test_pretrain_full_with_return_dict(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerForPretraining(config)
output = mdl(self.__class__.data, return_dict=False)
self.assertEqual(output[1].shape, self.__class__.correct_pretrain_output.shape)
self.assertEqual(output[2].shape, self.__class__.enc_output.shape)
self.assertEqual(output[0].item() < np.inf, True)
def test_forecast_head(self):
config = PatchTSMixerConfig(**self.__class__.params)
head = PatchTSMixerForPredictionHead(
config=config,
)
# output = head(self.__class__.enc_output, raw_data = self.__class__.correct_pretrain_output)
output = head(self.__class__.enc_output)
self.assertEqual(output.shape, self.__class__.correct_forecast_output.shape)
def check_module(
self,
task,
params=None,
output_hidden_states=True,
):
config = PatchTSMixerConfig(**params)
if task == "forecast":
mdl = PatchTSMixerForPrediction(config)
target_input = self.__class__.correct_forecast_output
if config.prediction_channel_indices is not None:
target_output = self.__class__.correct_sel_forecast_output
else:
target_output = target_input
ref_samples = target_output.unsqueeze(1).expand(-1, config.num_parallel_samples, -1, -1)
ground_truth_arg = "future_values"
output_predictions_arg = "prediction_outputs"
elif task == "classification":
mdl = PatchTSMixerForTimeSeriesClassification(config)
target_input = self.__class__.correct_classification_classes
target_output = self.__class__.correct_classification_output
ground_truth_arg = "target_values"
output_predictions_arg = "prediction_outputs"
elif task == "regression":
mdl = PatchTSMixerForRegression(config)
target_input = self.__class__.correct_regression_output
target_output = self.__class__.correct_regression_output
ref_samples = target_output.unsqueeze(1).expand(-1, config.num_parallel_samples, -1)
ground_truth_arg = "target_values"
output_predictions_arg = "regression_outputs"
elif task == "pretrain":
mdl = PatchTSMixerForPretraining(config)
target_input = None
target_output = self.__class__.correct_pretrain_output
ground_truth_arg = None
output_predictions_arg = "prediction_outputs"
else:
print("invalid task")
enc_output = self.__class__.enc_output
if target_input is None:
output = mdl(self.__class__.data, output_hidden_states=output_hidden_states)
else:
output = mdl(
self.__class__.data,
**{
ground_truth_arg: target_input,
"output_hidden_states": output_hidden_states,
},
)
prediction_outputs = getattr(output, output_predictions_arg)
if isinstance(prediction_outputs, tuple):
for t in prediction_outputs:
self.assertEqual(t.shape, target_output.shape)
else:
self.assertEqual(prediction_outputs.shape, target_output.shape)
self.assertEqual(output.last_hidden_state.shape, enc_output.shape)
if output_hidden_states is True:
self.assertEqual(len(output.hidden_states), params["num_layers"])
else:
self.assertEqual(output.hidden_states, None)
self.assertEqual(output.loss.item() < np.inf, True)
if config.loss == "nll" and task in ["forecast", "regression"]:
samples = mdl.generate(self.__class__.data)
self.assertEqual(samples.sequences.shape, ref_samples.shape)
@parameterized.expand(
list(
itertools.product(
["common_channel", "mix_channel"],
[True, False],
[True, False, "mean", "std"],
[True, False],
[None, [0, 2]],
["mse", "nll"],
)
)
)
def test_forecast(self, mode, self_attn, scaling, gated_attn, prediction_channel_indices, loss):
params = self.__class__.params.copy()
params.update(
mode=mode,
self_attn=self_attn,
scaling=scaling,
prediction_channel_indices=prediction_channel_indices,
gated_attn=gated_attn,
loss=loss,
)
self.check_module(task="forecast", params=params)
@parameterized.expand(
list(
itertools.product(
["common_channel", "mix_channel"],
[True, False],
[True, False, "mean", "std"],
[True, False],
["max_pool", "avg_pool"],
)
)
)
def test_classification(self, mode, self_attn, scaling, gated_attn, head_aggregation):
params = self.__class__.params.copy()
params.update(
mode=mode,
self_attn=self_attn,
scaling=scaling,
head_aggregation=head_aggregation,
gated_attn=gated_attn,
)
self.check_module(task="classification", params=params)
@parameterized.expand(
list(
itertools.product(
["common_channel", "mix_channel"],
[True, False],
[True, False, "mean", "std"],
[True, False],
["max_pool", "avg_pool"],
["mse", "nll"],
)
)
)
def test_regression(self, mode, self_attn, scaling, gated_attn, head_aggregation, loss):
params = self.__class__.params.copy()
params.update(
mode=mode,
self_attn=self_attn,
scaling=scaling,
head_aggregation=head_aggregation,
gated_attn=gated_attn,
loss=loss,
)
self.check_module(task="regression", params=params)
@parameterized.expand(
list(
itertools.product(
["common_channel", "mix_channel"],
[True, False],
[True, False, "mean", "std"],
[True, False],
["random", "forecast"],
[True, False],
[True, False],
)
)
)
def test_pretrain(
self,
mode,
self_attn,
scaling,
gated_attn,
mask_type,
masked_loss,
channel_consistent_masking,
):
params = self.__class__.params.copy()
params.update(
mode=mode,
self_attn=self_attn,
scaling=scaling,
gated_attn=gated_attn,
mask_type=mask_type,
masked_loss=masked_loss,
channel_consistent_masking=channel_consistent_masking,
)
self.check_module(task="pretrain", params=params)
def forecast_full_module(self, params=None, output_hidden_states=False, return_dict=None):
config = PatchTSMixerConfig(**params)
mdl = PatchTSMixerForPrediction(config)
target_val = self.__class__.correct_forecast_output
if config.prediction_channel_indices is not None:
target_val = self.__class__.correct_sel_forecast_output
enc_output = self.__class__.enc_output
output = mdl(
self.__class__.data,
future_values=self.__class__.correct_forecast_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if isinstance(output, tuple):
output = PatchTSMixerForPredictionOutput(*output)
if config.loss == "mse":
self.assertEqual(output.prediction_outputs.shape, target_val.shape)
self.assertEqual(output.last_hidden_state.shape, enc_output.shape)
if output_hidden_states is True:
self.assertEqual(len(output.hidden_states), params["num_layers"])
else:
self.assertEqual(output.hidden_states, None)
self.assertEqual(output.loss.item() < np.inf, True)
if config.loss == "nll":
samples = mdl.generate(self.__class__.data)
ref_samples = target_val.unsqueeze(1).expand(-1, params["num_parallel_samples"], -1, -1)
self.assertEqual(samples.sequences.shape, ref_samples.shape)
def test_forecast_full(self):
self.check_module(task="forecast", params=self.__class__.params, output_hidden_states=True)
# self.forecast_full_module(self.__class__.params, output_hidden_states = True)
def test_forecast_full_2(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
)
self.forecast_full_module(params, output_hidden_states=True)
def test_forecast_full_2_with_return_dict(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
)
self.forecast_full_module(params, output_hidden_states=True, return_dict=False)
def test_forecast_full_3(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
)
self.forecast_full_module(params, output_hidden_states=True)
def test_forecast_full_5(self):
params = self.__class__.params.copy()
params.update(
self_attn=True,
use_positional_encoding=True,
positional_encoding="sincos",
)
self.forecast_full_module(params, output_hidden_states=True)
def test_forecast_full_4(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
prediction_channel_indices=[0, 2],
)
self.forecast_full_module(params)
def test_forecast_full_distributional(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
prediction_channel_indices=[0, 2],
loss="nll",
distribution_output="normal",
)
self.forecast_full_module(params)
def test_forecast_full_distributional_2(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
prediction_channel_indices=[0, 2],
loss="nll",
# distribution_output = "normal",
)
self.forecast_full_module(params)
def test_forecast_full_distributional_3(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
# prediction_channel_indices=[0, 2],
loss="nll",
distribution_output="normal",
)
self.forecast_full_module(params)
def test_forecast_full_distributional_4(self):
params = self.__class__.params.copy()
params.update(
mode="mix_channel",
# prediction_channel_indices=[0, 2],
loss="nll",
distribution_output="normal",
)
self.forecast_full_module(params)
def test_classification_head(self):
config = PatchTSMixerConfig(**self.__class__.params)
head = PatchTSMixerLinearHead(
config=config,
)
# output = head(self.__class__.enc_output, raw_data = self.__class__.correct_pretrain_output)
output = head(self.__class__.enc_output)
self.assertEqual(output.shape, self.__class__.correct_classification_output.shape)
def test_classification_full(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerForTimeSeriesClassification(config)
output = mdl(
self.__class__.data,
target_values=self.__class__.correct_classification_classes,
)
self.assertEqual(
output.prediction_outputs.shape,
self.__class__.correct_classification_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
def test_classification_full_with_return_dict(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerForTimeSeriesClassification(config)
output = mdl(
self.__class__.data,
target_values=self.__class__.correct_classification_classes,
return_dict=False,
)
if isinstance(output, tuple):
output = PatchTSMixerForTimeSeriesClassificationOutput(*output)
self.assertEqual(
output.prediction_outputs.shape,
self.__class__.correct_classification_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
def test_regression_head(self):
config = PatchTSMixerConfig(**self.__class__.params)
head = PatchTSMixerLinearHead(
config=config,
)
output = head(self.__class__.enc_output)
self.assertEqual(output.shape, self.__class__.correct_regression_output.shape)
def test_regression_full(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerForRegression(config)
output = mdl(self.__class__.data, target_values=self.__class__.correct_regression_output)
self.assertEqual(
output.regression_outputs.shape,
self.__class__.correct_regression_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
def test_regression_full_with_return_dict(self):
config = PatchTSMixerConfig(**self.__class__.params)
mdl = PatchTSMixerForRegression(config)
output = mdl(
self.__class__.data,
target_values=self.__class__.correct_regression_output,
return_dict=False,
)
if isinstance(output, tuple):
output = PatchTSMixerForRegressionOutput(*output)
self.assertEqual(
output.regression_outputs.shape,
self.__class__.correct_regression_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
def test_regression_full_distribute(self):
params = self.__class__.params.copy()
params.update(loss="nll", distribution_output="normal")
config = PatchTSMixerConfig(**params)
mdl = PatchTSMixerForRegression(config)
output = mdl(self.__class__.data, target_values=self.__class__.correct_regression_output)
self.assertEqual(
output.regression_outputs[0].shape,
self.__class__.correct_regression_output.shape,
)
self.assertEqual(
output.regression_outputs[1].shape,
self.__class__.correct_regression_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
if config.loss == "nll":
samples = mdl.generate(self.__class__.data)
ref_samples = self.__class__.correct_regression_output.unsqueeze(1).expand(
-1, params["num_parallel_samples"], -1
)
self.assertEqual(samples.sequences.shape, ref_samples.shape)
def test_regression_full_distribute_2(self):
params = self.__class__.params.copy()
params.update(loss="nll", distribution_output="student_t")
config = PatchTSMixerConfig(**params)
mdl = PatchTSMixerForRegression(config)
output = mdl(self.__class__.data, target_values=self.__class__.correct_regression_output)
self.assertEqual(
output.regression_outputs[0].shape,
self.__class__.correct_regression_output.shape,
)
self.assertEqual(
output.regression_outputs[1].shape,
self.__class__.correct_regression_output.shape,
)
self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape)
self.assertEqual(output.loss.item() < np.inf, True)
if config.loss == "nll":
samples = mdl.generate(self.__class__.data)
ref_samples = self.__class__.correct_regression_output.unsqueeze(1).expand(
-1, params["num_parallel_samples"], -1
)
self.assertEqual(samples.sequences.shape, ref_samples.shape)
| transformers/tests/models/patchtsmixer/test_modeling_patchtsmixer.py/0 | {
"file_path": "transformers/tests/models/patchtsmixer/test_modeling_patchtsmixer.py",
"repo_id": "transformers",
"token_count": 20510
} |
# coding=utf-8
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Phi model."""
import unittest
from parameterized import parameterized
from transformers import PhiConfig, is_torch_available, set_seed
from transformers.testing_utils import (
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
PhiForCausalLM,
PhiForSequenceClassification,
PhiForTokenClassification,
PhiModel,
)
from transformers.models.phi.modeling_phi import PhiRotaryEmbedding
class PhiModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return PhiConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = PhiModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = PhiModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = PhiForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = PhiForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class PhiModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(PhiModel, PhiForCausalLM, PhiForSequenceClassification, PhiForTokenClassification)
if is_torch_available()
else ()
)
all_generative_model_classes = (PhiForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": PhiModel,
"text-classification": PhiForSequenceClassification,
"text-generation": PhiForCausalLM,
"token-classification": PhiForTokenClassification,
"zero-shot": PhiForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79292/workflows/fa2ba644-8953-44a6-8f67-ccd69ca6a476/jobs/1012905
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
return True
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.setUp with Llama->Phi
def setUp(self):
self.model_tester = PhiModelTester(self)
self.config_tester = ConfigTester(self, config_class=PhiConfig, hidden_size=37)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_config
def test_config(self):
self.config_tester.run_common_tests()
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model with Llama->Phi,llama->phi
def test_phi_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = PhiForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_single_label with Llama->Phi,llama->phi
def test_phi_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = PhiForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_multi_label with Llama->Phi,llama->phi
def test_phi_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = PhiForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@parameterized.expand([("linear",), ("dynamic",)])
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_rope_scaling_from_config with Llama->Phi
def test_model_rope_scaling_from_config(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = PhiModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = PhiModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
# Copied from tests.models.gpt_neox.test_modeling_gpt_neox.GPTNeoXModelTest.test_model_rope_scaling with GPTNeoX->Phi
def test_model_rope_scaling(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
scaling_factor = 10
short_input_length = 10
long_input_length = int(config.max_position_embeddings * 1.5)
# Inputs
x = torch.randn(1, dtype=torch.float32, device=torch_device) # used exlusively to get the dtype and the device
position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
position_ids_short = position_ids_short.unsqueeze(0)
position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
position_ids_long = position_ids_long.unsqueeze(0)
# Sanity check original RoPE
original_rope = PhiRotaryEmbedding(config).to(torch_device)
original_cos_short, original_sin_short = original_rope(x, position_ids_short)
original_cos_long, original_sin_long = original_rope(x, position_ids_long)
torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])
# Sanity check linear RoPE scaling
# New position "x" should match original position with index "x/scaling_factor"
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
linear_scaling_rope = PhiRotaryEmbedding(config).to(torch_device)
linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
for new_position in range(0, long_input_length, scaling_factor):
original_position = int(new_position // scaling_factor)
torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])
# Sanity check Dynamic NTK RoPE scaling
# Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
# with scaling_factor (or that `inv_freq` decreases)
config.rope_scaling = {"type": "dynamic", "factor": scaling_factor}
ntk_scaling_rope = PhiRotaryEmbedding(config).to(torch_device)
ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
torch.testing.assert_close(ntk_cos_short, original_cos_short)
torch.testing.assert_close(ntk_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_sin_long, original_sin_long)
self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())
@slow
@require_torch
class PhiIntegrationTest(unittest.TestCase):
def test_model_phi_1_logits(self):
input_ids = {
"input_ids": torch.tensor(
[[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device
)
}
model = PhiForCausalLM.from_pretrained("microsoft/phi-1").to(torch_device)
model.eval()
output = model(**input_ids).logits
EXPECTED_OUTPUT = torch.tensor([[2.2671, 6.7684, -2.0107, -1.2440, -1.5335, -2.3828, 6.9186, 6.4245, 3.1548, 0.9998, 0.0760, 4.4653, 4.9857, 4.2956, 1.2308, -1.4178, 0.1361, 0.5191, -0.5699, -2.2201, -3.0750, -3.9600, -4.5936, -3.7394, -2.7777, 6.1874, -0.4148, -1.5684, -0.5967, 0.2395], [1.7004, 4.0383, 0.0546, 0.4530, -0.3619, -0.9021, 1.8355, 1.3587, 1.2406, 2.5775, -0.8834, 5.1910, 4.2565, 4.1406, 3.0752, -0.9099, 1.1595, 0.0264, 0.3243, -1.1803, -1.3945, -2.1406, -3.9939, -1.4438, -2.9546, 3.9204, 1.0851, -1.0598, -1.7819, -0.4827]]).to(torch_device) # fmt: skip
torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-4, atol=1e-4)
def test_model_phi_1_5_logits(self):
input_ids = {
"input_ids": torch.tensor(
[[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device
)
}
model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5").to(torch_device)
model.eval()
output = model(**input_ids).logits
EXPECTED_OUTPUT = torch.tensor([[12.2922, 13.3507, 8.6963, 9.1355, 9.3502, 9.2667, 14.2027, 13.1363, 13.5446, 11.1337, 9.9279, 16.7195, 13.0768, 14.9141, 11.9965, 8.0233, 10.3129, 10.6118, 10.0204, 9.3827, 8.8344, 8.2806, 8.0153, 8.0540, 7.0964, 16.5743, 11.1256, 9.6987, 11.4770, 10.5440], [12.3323, 14.6050, 8.9986, 8.1580, 9.5654, 6.6728, 12.5966, 12.6662, 12.2784, 11.7522, 8.2039, 16.3102, 11.2203, 13.6088, 12.0125, 9.1021, 9.8216, 10.0987, 9.0926, 8.4260, 8.8009, 7.6547, 6.8075, 7.7881, 7.4501, 15.7451, 10.5053, 8.3129, 10.0027, 9.2612]]).to(torch_device) # fmt: skip
torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-4, atol=1e-4)
def test_model_phi_2_logits(self):
input_ids = {
"input_ids": torch.tensor(
[[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device
)
}
model = PhiForCausalLM.from_pretrained("microsoft/phi-2").to(torch_device)
model.eval()
output = model(**input_ids).logits
EXPECTED_OUTPUT = torch.tensor([[6.4830, 6.1644, 3.4055, 2.2848, 5.4654, 2.8360, 5.5975, 5.5391, 7.3101, 4.2498, 2.5913, 10.3885, 6.4359, 8.7982, 5.6534, 0.5150, 2.7498, 3.1930, 2.4334, 1.7781, 1.5613, 1.3067, 0.8291, 0.5633, 0.6522, 9.8191, 5.5771, 2.7987, 4.2845, 3.7030], [6.0642, 7.8242, 3.4634, 1.9259, 4.3169, 2.0913, 6.0446, 3.6804, 6.6736, 4.0727, 2.1791, 11.4139, 5.6795, 7.5652, 6.2039, 2.7174, 4.3266, 3.6930, 2.8058, 2.6721, 2.3047, 2.0848, 2.0972, 2.0441, 1.3160, 9.2085, 4.5557, 3.0296, 2.6045, 2.4059]]).to(torch_device) # fmt: skip
torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-3, atol=1e-3)
def test_phi_2_generation(self):
model = PhiForCausalLM.from_pretrained("microsoft/phi-2")
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
inputs = tokenizer(
"Can you help me write a formal email to a potential business partner proposing a joint venture?",
return_tensors="pt",
return_attention_mask=False,
)
outputs = model.generate(**inputs, max_new_tokens=30)
output_text = tokenizer.batch_decode(outputs)
EXPECTED_OUTPUT = [
"Can you help me write a formal email to a potential business partner proposing a joint venture?\nInput: Company A: ABC Inc.\nCompany B: XYZ Ltd.\nJoint Venture: A new online platform for e-commerce"
]
self.assertListEqual(output_text, EXPECTED_OUTPUT)
| transformers/tests/models/phi/test_modeling_phi.py/0 | {
"file_path": "transformers/tests/models/phi/test_modeling_phi.py",
"repo_id": "transformers",
"token_count": 10656
} |
# coding=utf-8
# Copyright 2022, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PLBART model."""
import copy
import tempfile
import unittest
from transformers import PLBartConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_fp16,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
)
from transformers.models.plbart.modeling_plbart import PLBartDecoder, PLBartEncoder
def prepare_plbart_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class PLBartModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=100,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = input_ids.clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_plbart_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return PLBartConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = PLBartModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_with_past_key_values = model(
next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values
)
output_from_past = output_with_past_key_values["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = PLBartModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = PLBartEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = PLBartDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class PLBartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(PLBartModel, PLBartForConditionalGeneration, PLBartForSequenceClassification) if is_torch_available() else ()
)
all_generative_model_classes = (PLBartForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": PLBartModel,
"summarization": PLBartForConditionalGeneration,
"text-classification": PLBartForSequenceClassification,
"text-generation": PLBartForCausalLM,
"text2text-generation": PLBartForConditionalGeneration,
"translation": PLBartForConditionalGeneration,
"zero-shot": PLBartForSequenceClassification,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = False # Fix me Michael
test_pruning = False
test_missing_keys = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
if pipeline_test_case_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `PLBartConfig` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def setUp(self):
self.model_tester = PLBartModelTester(self)
self.config_tester = ConfigTester(self, config_class=PLBartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
# PLBartForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (PLBartModel, PLBartForConditionalGeneration):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = PLBartForConditionalGeneration(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
@unittest.skip(reason="Failing since #26752")
def test_sample_generate(self):
pass
@unittest.skip(
reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
)
def test_load_save_without_tied_weights(self):
pass
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
@require_sentencepiece
@require_tokenizers
class AbstractSeq2SeqIntegrationTest(unittest.TestCase):
maxDiff = 1000 # longer string compare tracebacks
checkpoint_name = None
@classmethod
def setUpClass(cls):
cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False)
return cls
@cached_property
def model(self):
"""Only load the model if needed."""
model = PLBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device)
if "cuda" in torch_device:
model = model.half()
return model
@require_torch
@require_sentencepiece
@require_tokenizers
class PLBartJavaCsIntegrationTest(AbstractSeq2SeqIntegrationTest):
checkpoint_name = "uclanlp/plbart-java-cs"
src_text = [
"public int maximum(int a, int b, int c){return Math.max(a, Math.max(b, c));}",
"public int product(int a, int b, int c){return a*b*c;}",
]
tgt_text = [
"public int maximum(int a, int b, int c){return Math.Max(",
"public int Product(int a, int b, int c){return a * b *",
]
@slow
def test_java_cs_generate_one(self):
batch = self.tokenizer(
["public int maximum(int a, int b, int c){return Math.max(a, Math.max(b, c));}"], return_tensors="pt"
)
batch = batch.to(torch_device)
translated_tokens = self.model.generate(**batch)
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
self.assertEqual(self.tgt_text[0], decoded[0])
# self.assertEqual(self.tgt_text[1], decoded[1])
@slow
def test_java_cs_generate_batch(self):
batch = self.tokenizer(self.src_text, return_tensors="pt", padding=True, truncation=True)
batch = batch.to(torch_device)
translated_tokens = self.model.generate(**batch)
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
assert self.tgt_text == decoded
def test_plbart_java_cs_config(self):
plbart_models = ["uclanlp/plbart-java-cs"]
expected = {"scale_embedding": True}
for name in plbart_models:
config = PLBartConfig.from_pretrained(name)
for k, v in expected.items():
try:
self.assertEqual(v, getattr(config, k))
except AssertionError as e:
e.args += (name, k)
raise
def test_plbart_fast_forward(self):
config = PLBartConfig(
vocab_size=99,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
add_final_layer_norm=True,
)
lm_model = PLBartForConditionalGeneration(config).to(torch_device)
context = torch.tensor(
[[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long
)
summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long)
result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(result.logits.shape, expected_shape)
@require_torch
@require_sentencepiece
@require_tokenizers
class PLBartBaseIntegrationTest(AbstractSeq2SeqIntegrationTest):
checkpoint_name = "uclanlp/plbart-base"
src_text = ["Is 0 the first Fibonacci number ?", "Find the sum of all prime numbers ."]
tgt_text = ["0 the first Fibonacci number?", "the sum of all prime numbers.......... the the"]
def test_base_generate(self):
inputs = self.tokenizer([self.src_text[0]], return_tensors="pt").to(torch_device)
src_lan = self.tokenizer._convert_lang_code_special_format("en_XX")
translated_tokens = self.model.generate(
input_ids=inputs["input_ids"].to(torch_device),
decoder_start_token_id=self.tokenizer.lang_code_to_id[src_lan],
)
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
self.assertEqual(self.tgt_text[0], decoded[0])
@slow
def test_fill_mask(self):
inputs = self.tokenizer(["Is 0 the <mask> Fibonacci <mask> ?"], return_tensors="pt").to(torch_device)
src_lan = self.tokenizer._convert_lang_code_special_format("en_XX")
outputs = self.model.generate(
inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id[src_lan], num_beams=1
)
prediction: str = self.tokenizer.batch_decode(
outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True
)[0]
self.assertEqual(prediction, "0 0 the 0 the 0 the 0 the 0 the 0 the 0 the 0 the")
class PLBartStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = PLBartConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (config, input_ids, attention_mask, lm_labels)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = PLBartDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = PLBartDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, attention_mask, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class PLBartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (PLBartDecoder, PLBartForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (PLBartForCausalLM,) if is_torch_available() else ()
test_pruning = False
is_encoder_decoder = False
def setUp(self):
self.model_tester = PLBartStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=PLBartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
@unittest.skip(reason="Decoder cannot keep gradients")
def test_retain_grad_hidden_states_attentions(self):
return
| transformers/tests/models/plbart/test_modeling_plbart.py/0 | {
"file_path": "transformers/tests/models/plbart/test_modeling_plbart.py",
"repo_id": "transformers",
"token_count": 12189
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Qwen2-VL model."""
import gc
import unittest
import requests
from transformers import (
AutoProcessor,
Qwen2VLConfig,
Qwen2VLForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
)
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
class Qwen2VLVisionText2TextModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
num_channels=3,
ignore_index=-100,
image_size=14,
bos_token_id=0,
eos_token_id=1,
pad_token_id=2,
vision_start_token_id=3,
image_token_id=4,
video_token_id=5,
hidden_act="silu",
hidden_size=32,
vocab_size=99,
intermediate_size=37,
max_position_embeddings=512,
max_window_layers=3,
model_type="qwen2_vl",
num_attention_heads=4,
num_hidden_layers=4,
num_key_value_heads=2,
rope_theta=10000,
tie_word_embeddings=True,
is_training=True,
vision_config={
"depth": 2,
"embed_dim": 32,
"hidden_act": "quick_gelu",
"hidden_size": 32,
"mlp_ratio": 4,
"num_heads": 4,
"patch_size": 14,
"spatial_merge_size": 1,
"temporal_patch_size": 2,
},
rope_scaling={"type": "mrope", "mrope_section": [2, 1, 1]},
):
self.parent = parent
self.ignore_index = ignore_index
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.vision_start_token_id = vision_start_token_id
self.image_token_id = image_token_id
self.video_token_id = video_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.max_window_layers = max_window_layers
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.rope_theta = rope_theta
self.tie_word_embeddings = tie_word_embeddings
self.vision_config = vision_config
self.rope_scaling = rope_scaling
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.is_training = is_training
self.vocab_size = vocab_size
self.num_image_tokens = 32
self.seq_length = seq_length + self.num_image_tokens
def get_config(self):
return Qwen2VLConfig(
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
hidden_act=self.hidden_act,
max_position_embeddings=self.max_position_embeddings,
vision_config=self.vision_config,
model_type=self.model_type,
max_window_layers=self.max_window_layers,
rope_scaling=self.rope_scaling,
tie_word_embeddings=self.tie_word_embeddings,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
vision_start_token_id=self.vision_start_token_id,
image_token_id=self.image_token_id,
video_token_id=self.video_token_id,
vocab_size=self.vocab_size,
)
def prepare_config_and_inputs(self):
config = self.get_config()
patch_size = config.vision_config.patch_size
temporal_patch_size = config.vision_config.temporal_patch_size
pixel_values = floats_tensor(
[
self.batch_size * (self.image_size**2) // (patch_size**2),
self.num_channels * (patch_size**2) * temporal_patch_size,
]
)
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
input_ids[:, -1] = self.pad_token_id
input_ids[input_ids == self.video_token_id] = self.pad_token_id
input_ids[input_ids == self.image_token_id] = self.pad_token_id
input_ids[:, self.num_image_tokens] = self.image_token_id
labels = torch.zeros(
(self.batch_size, self.seq_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict = {
"pixel_values": pixel_values,
"image_grid_thw": torch.tensor([[1, 1, 1]] * self.batch_size),
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
}
return config, inputs_dict
def create_and_check_qwen2_vl_model_fp16_forward(
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
):
model = Qwen2VLForConditionalGeneration(config=config)
model.to(torch_device)
model.half()
model.eval()
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=image_grid_thw,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
def create_and_check_qwen2_vl_model_fp16_autocast_forward(
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
):
config.torch_dtype = torch.float16
model = Qwen2VLForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=image_grid_thw,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class Qwen2VLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `Qwen2VLForConditionalGeneration`.
"""
all_model_classes = (Qwen2VLForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (Qwen2VLForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-text-to-text": Qwen2VLForConditionalGeneration}
test_pruning = False
test_head_masking = False
_is_composite = True
def setUp(self):
self.model_tester = Qwen2VLVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Qwen2VLConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_mismatching_num_image_tokens(self):
"""
Tests that VLMs through an error with explicit message saying what is wrong
when number of images don't match number of image tokens in the text.
Also we need to test multi-image cases when one prompt has multiple image tokens.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
_ = model(**input_dict) # successfull forward with no modifications
# remove one image but leave the image token in text
patch_size = config.vision_config.patch_size
one_img_length = (self.model_tester.image_size**2) // (patch_size**2)
input_dict["pixel_values"] = input_dict["pixel_values"][-one_img_length:, ...]
input_dict["image_grid_thw"] = input_dict["image_grid_thw"][-1:, ...]
with self.assertRaises(ValueError):
_ = model(**input_dict)
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
input_ids = input_dict["input_ids"][:1]
pixel_values = input_dict["pixel_values"][:one_img_length]
image_grid_thw = input_dict["image_grid_thw"][:1]
input_ids = torch.cat([input_ids, input_ids], dim=0)
# one image and two image tokens raise an error
with self.assertRaises(ValueError):
_ = model(input_ids=input_ids, pixel_values=pixel_values, image_grid_thw=image_grid_thw)
# two images and two image tokens don't raise an error
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
image_grid_thw = torch.cat([image_grid_thw, image_grid_thw], dim=0)
_ = model(input_ids=input_ids, pixel_values=pixel_values, image_grid_thw=image_grid_thw)
def test_forward_with_rope_deltas_cached(self):
"""
Tests that Qwen2-VL computes new rope deltas every forward pass with new set of inputs.
Rope deltas are cached when we generate and re-used for decoding phase, byt are not reset
automatically after generation ends. See https://github.com/huggingface/transformers/pull/36013 for more
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_generative_model_classes:
model = model_class(config).to(torch_device)
# Generate and make sure rope_deltas are not `None`
self.assertTrue(model.rope_deltas is None)
generation_output = model.generate(
**input_dict, max_new_tokens=4, return_dict_in_generate=True, output_logits=True
)
self.assertTrue(model.rope_deltas is not None)
# Now if we try to do forward pass, we should get new rope logits, because cache is not passed
forward_output = model(**input_dict)
torch.testing.assert_close(
generation_output.logits[0], forward_output.logits[:, -1, :], rtol=1e-4, atol=1e-4
)
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="CPU offload is not yet supported")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_bin(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_safetensors(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_model_parallelism(self):
pass
@unittest.skip(reason="Compile not yet supported because in Qwen2VL models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in Qwen2VL models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="We cannot configure to output a smaller model.")
def test_model_is_small(self):
pass
@unittest.skip(
reason="Qwen2-VL can't do low-memory generation because position IDs have extra dimension and split function doesn't work for that"
)
def test_beam_search_low_memory(self):
pass
@unittest.skip(
reason="VLMs can't generate from inputs embeds and pixels. This can be tested as part of bacbone LM, no need to run the test for VLMs"
)
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@require_torch
class Qwen2VLIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
self.messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What kind of dog is this?"},
],
}
]
url = "https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/demo_small.jpg"
self.image = Image.open(requests.get(url, stream=True).raw)
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
def test_small_model_integration_test(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text], images=[self.image], return_tensors="pt")
expected_input_ids = [151644, 8948, 198, 2610, 525, 264, 10950, 17847, 13, 151645, 198, 151644, 872, 198, 151652, 151655, 151655] # fmt: skip
assert expected_input_ids == inputs.input_ids[0].tolist()[:17]
expected_pixel_slice = torch.tensor(
[
[0.8792, 0.8792, 0.9084],
[1.1858, 1.1858, 1.2296],
[1.2004, 1.2004, 1.2150],
[1.4340, 1.4340, 1.4194],
[1.3902, 1.4048, 1.4194],
[1.5216, 1.5362, 1.5362],
],
dtype=torch.float32,
device="cpu",
)
assert torch.allclose(expected_pixel_slice, inputs.pixel_values[:6, :3], atol=3e-3)
# verify generation
inputs = inputs.to(torch_device)
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = "system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices"
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch_wo_image(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am a large language model created by Alibaba Cloud. I am called Qwen.'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch_different_resolutions(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
text2 = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
image2 = self.image.resize((224, 224))
inputs = self.processor(text=[text, text2], images=[self.image, image2], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_flashatt2(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_wo_image_flashatt2(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am a large language model created by Alibaba Cloud. I am called Qwen.'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
| transformers/tests/models/qwen2_vl/test_modeling_qwen2_vl.py/0 | {
"file_path": "transformers/tests/models/qwen2_vl/test_modeling_qwen2_vl.py",
"repo_id": "transformers",
"token_count": 10367
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import RobertaPreLayerNormConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.roberta_prelayernorm.modeling_tf_roberta_prelayernorm import (
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormModel,
)
# Copied from tests.models.roberta.test_modeling_tf_roberta.TFRobertaModelTester with Roberta->RobertaPreLayerNorm
class TFRobertaPreLayerNormModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 2
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaPreLayerNormModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_base_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRobertaPreLayerNormModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRobertaPreLayerNormModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
# Also check the case where encoder outputs are not passed
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRobertaPreLayerNormForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRobertaPreLayerNormForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
prediction_scores = result["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_past(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRobertaPreLayerNormForCausalLM(config=config)
# special to `RobertaPreLayerNormEmbeddings` in `RobertaPreLayerNorm`:
# - its `padding_idx` and its effect on `position_ids`
# (TFRobertaPreLayerNormEmbeddings.create_position_ids_from_input_ids)
# - `1` here is `TFRobertaPreLayerNormEmbeddings.padding_idx`
input_ids = tf.where(input_ids == 1, 2, input_ids)
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_with_attn_mask(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRobertaPreLayerNormForCausalLM(config=config)
# special to `RobertaPreLayerNormEmbeddings` in `RobertaPreLayerNorm`:
# - its `padding_idx` and its effect on `position_ids`
# (TFRobertaPreLayerNormEmbeddings.create_position_ids_from_input_ids)
# - `1` here is `TFRobertaPreLayerNormEmbeddings.padding_idx`
# avoid `padding_idx` in the past
input_ids = tf.where(input_ids == 1, 2, input_ids)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
past_key_values = outputs.past_key_values
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# avoid `padding_idx` in the past
input_ids = tf.where(input_ids == 1, 2, input_ids)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat(
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
axis=1,
)
output_from_no_past = model(
next_input_ids,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRobertaPreLayerNormForCausalLM(config=config)
# special to `RobertaPreLayerNormEmbeddings` in `RobertaPreLayerNorm`:
# - its `padding_idx` and its effect on `position_ids`
# (TFRobertaPreLayerNormEmbeddings.create_position_ids_from_input_ids)
# - `1` here is `TFRobertaPreLayerNormEmbeddings.padding_idx`
# avoid `padding_idx` in the past
input_ids = tf.where(input_ids == 1, 2, input_ids)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRobertaPreLayerNormForCausalLM(config=config)
# special to `RobertaPreLayerNormEmbeddings` in `RobertaPreLayerNorm`:
# - its `padding_idx` and its effect on `position_ids`
# (TFRobertaPreLayerNormEmbeddings.create_position_ids_from_input_ids)
# - `1` here is `TFRobertaPreLayerNormEmbeddings.padding_idx`
# avoid `padding_idx` in the past
input_ids = tf.where(input_ids == 1, 2, input_ids)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
encoder_hidden_states = encoder_hidden_states[:1, :, :]
encoder_attention_mask = encoder_attention_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaPreLayerNormForMaskedLM(config=config)
result = model([input_ids, input_mask, token_type_ids])
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRobertaPreLayerNormForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaPreLayerNormForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFRobertaPreLayerNormForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
# Copied from tests.models.roberta.test_modeling_tf_roberta.TFRobertaModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,FacebookAI/roberta-base->andreasmadsen/efficient_mlm_m0.15
class TFRobertaPreLayerNormModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormForQuestionAnswering,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFRobertaPreLayerNormModel,
"fill-mask": TFRobertaPreLayerNormForMaskedLM,
"question-answering": TFRobertaPreLayerNormForQuestionAnswering,
"text-classification": TFRobertaPreLayerNormForSequenceClassification,
"text-generation": TFRobertaPreLayerNormForCausalLM,
"token-classification": TFRobertaPreLayerNormForTokenClassification,
"zero-shot": TFRobertaPreLayerNormForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFRobertaPreLayerNormModelTester(self)
self.config_tester = ConfigTester(self, config_class=RobertaPreLayerNormConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
"""Test the base model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_causal_lm_base_model(self):
"""Test the base model of the causal LM model
is_deocder=True, no cross_attention, no encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)
def test_model_as_decoder(self):
"""Test the base model as a decoder (of an encoder-decoder architecture)
is_deocder=True + cross_attention + pass encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_causal_lm(self):
"""Test the causal LM model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model(*config_and_inputs)
def test_causal_lm_model_as_decoder(self):
"""Test the causal LM model as a decoder"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs)
def test_causal_lm_model_past(self):
"""Test causal LM model with `past_key_values`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs)
def test_causal_lm_model_past_with_attn_mask(self):
"""Test the causal LM model with `past_key_values` and `attention_mask`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)
def test_causal_lm_model_past_with_large_inputs(self):
"""Test the causal LM model with `past_key_values` and a longer decoder sequence length"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
"""Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "andreasmadsen/efficient_mlm_m0.15"
model = TFRobertaPreLayerNormModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_tf
@require_sentencepiece
@require_tokenizers
class TFRobertaPreLayerNormModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TFRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = [1, 11, 50265]
self.assertEqual(list(output.numpy().shape), expected_shape)
# compare the actual values for a slice.
EXPECTED_SLICE = tf.constant(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]]
)
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), EXPECTED_SLICE.numpy(), atol=1e-4))
@slow
def test_inference_no_head(self):
model = TFRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
# compare the actual values for a slice.
EXPECTED_SLICE = tf.constant(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]]
)
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), EXPECTED_SLICE.numpy(), atol=1e-4))
| transformers/tests/models/roberta_prelayernorm/test_modeling_tf_roberta_prelayernorm.py/0 | {
"file_path": "transformers/tests/models/roberta_prelayernorm/test_modeling_tf_roberta_prelayernorm.py",
"repo_id": "transformers",
"token_count": 12770
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from unittest.util import safe_repr
from transformers import AutoTokenizer, RwkvConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
RwkvForCausalLM,
RwkvModel,
)
class RwkvModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=False,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
def get_large_model_config(self):
return RwkvConfig.from_pretrained("sgugger/rwkv-4-pile-7b")
def prepare_config_and_inputs(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config(
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
return (
config,
input_ids,
input_mask,
None,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
return RwkvConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=self.intermediate_size,
activation_function=self.hidden_act,
resid_pdrop=self.hidden_dropout_prob,
attn_pdrop=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def create_and_check_rwkv_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
config.output_hidden_states = True
model = RwkvModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1)
def create_and_check_causl_lm(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = RwkvForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_state_equivalency(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = RwkvModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
output_whole = outputs.last_hidden_state
outputs = model(input_ids[:, :2])
output_one = outputs.last_hidden_state
# Using the state computed on the first inputs, we will get the same output
outputs = model(input_ids[:, 2:], state=outputs.state)
output_two = outputs.last_hidden_state
self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))
def create_and_check_forward_and_backwards(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
):
model = RwkvForCausalLM(config)
model.to(torch_device)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
@require_torch
class RwkvModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (RwkvModel, RwkvForCausalLM) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": RwkvModel, "text-generation": RwkvForCausalLM} if is_torch_available() else {}
)
all_generative_model_classes = (RwkvForCausalLM,) if is_torch_available() else ()
fx_compatible = False
test_missing_keys = False
test_model_parallel = False
test_pruning = False
test_head_masking = False # Rwkv does not support head masking
def setUp(self):
self.model_tester = RwkvModelTester(self)
self.config_tester = ConfigTester(
self, config_class=RwkvConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
)
def assertInterval(self, member, container, msg=None):
r"""
Simple utility function to check if a member is inside an interval.
"""
if isinstance(member, torch.Tensor):
max_value, min_value = member.max().item(), member.min().item()
elif isinstance(member, list) or isinstance(member, tuple):
max_value, min_value = max(member), min(member)
if not isinstance(container, list):
raise TypeError("container should be a list or tuple")
elif len(container) != 2:
raise ValueError("container should have 2 elements")
expected_min, expected_max = container
is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max)
if not is_inside_interval:
standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container))
self.fail(self._formatMessage(msg, standardMsg))
def test_config(self):
self.config_tester.run_common_tests()
def test_rwkv_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_rwkv_model(*config_and_inputs)
def test_rwkv_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causl_lm(*config_and_inputs)
def test_state_equivalency(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_state_equivalency(*config_and_inputs)
def test_initialization(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, param in model.named_parameters():
if "time_decay" in name:
if param.requires_grad:
self.assertTrue(param.data.max().item() == 3.0)
self.assertTrue(param.data.min().item() == -5.0)
elif "time_first" in name:
if param.requires_grad:
# check if it's a ones like
torch.testing.assert_close(param.data, torch.ones_like(param.data), rtol=1e-5, atol=1e-5)
elif any(x in name for x in ["time_mix_key", "time_mix_receptance"]):
if param.requires_grad:
self.assertInterval(
param.data,
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif "time_mix_value" in name:
if param.requires_grad:
self.assertInterval(
param.data,
[0.0, 1.3],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_attention_outputs(self):
r"""
Overriding the test_attention_outputs test as the attention outputs of Rwkv are different from other models
it has a shape `batch_size, seq_len, hidden_size`.
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
batch_size = inputs["input_ids"].shape[0]
with torch.no_grad():
outputs = model(**inputs)
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
batch_size = inputs["input_ids"].shape[0]
with torch.no_grad():
outputs = model(**inputs)
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[batch_size, seq_len, config.hidden_size],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
batch_size = inputs["input_ids"].shape[0]
with torch.no_grad():
outputs = model(**inputs)
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[batch_size, seq_len, config.hidden_size],
)
@slow
def test_model_from_pretrained(self):
model_name = "RWKV/rwkv-4-169m-pile"
model = RwkvModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_beam_sample_generate_dict_output(self):
# This model has a custom attention output shape AND config flags, let's skip those checks
old_has_attentions = self.has_attentions
self.has_attentions = False
super().test_beam_sample_generate_dict_output()
self.has_attentions = old_has_attentions
def test_beam_search_generate_dict_output(self):
# This model has a custom attention output shape AND config flags, let's skip those checks
old_has_attentions = self.has_attentions
self.has_attentions = False
super().test_beam_search_generate_dict_output()
self.has_attentions = old_has_attentions
def test_constrained_beam_search_generate_dict_output(self):
# This model has a custom attention output shape AND config flags, let's skip those checks
old_has_attentions = self.has_attentions
self.has_attentions = False
super().test_constrained_beam_search_generate_dict_output()
self.has_attentions = old_has_attentions
def test_greedy_generate_dict_outputs(self):
# This model has a custom attention output shape AND config flags, let's skip those checks
old_has_attentions = self.has_attentions
self.has_attentions = False
super().test_greedy_generate_dict_outputs()
self.has_attentions = old_has_attentions
def test_group_beam_search_generate_dict_output(self):
# This model has a custom attention output shape AND config flags, let's skip those checks
old_has_attentions = self.has_attentions
self.has_attentions = False
super().test_group_beam_search_generate_dict_output()
self.has_attentions = old_has_attentions
def test_sample_generate_dict_output(self):
# This model has a custom attention output shape AND config flags, let's skip those checks
old_has_attentions = self.has_attentions
self.has_attentions = False
super().test_sample_generate_dict_output()
self.has_attentions = old_has_attentions
@unittest.skip("This model doesn't support padding")
def test_left_padding_compatibility(self):
pass
@slow
class RWKVIntegrationTests(unittest.TestCase):
def setUp(self):
self.model_id = "RWKV/rwkv-4-169m-pile"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
def test_simple_generate(self):
expected_output = "Hello my name is Jasmine and I am a newbie to the"
model = RwkvForCausalLM.from_pretrained(self.model_id).to(torch_device)
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
output = model.generate(input_ids, max_new_tokens=10)
output_sentence = self.tokenizer.decode(output[0].tolist())
self.assertEqual(output_sentence, expected_output)
def test_simple_generate_bf16(self):
expected_output = "Hello my name is Jasmine and I am a newbie to the"
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
model = RwkvForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device)
output = model.generate(input_ids, max_new_tokens=10)
output_sentence = self.tokenizer.decode(output[0].tolist())
self.assertEqual(output_sentence, expected_output)
| transformers/tests/models/rwkv/test_modeling_rwkv.py/0 | {
"file_path": "transformers/tests/models/rwkv/test_modeling_rwkv.py",
"repo_id": "transformers",
"token_count": 8411
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Speech2Text model."""
import copy
import inspect
import os
import tempfile
import unittest
from transformers import Speech2TextConfig
from transformers.testing_utils import (
is_torch_available,
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_fp16,
require_torchaudio,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import Speech2TextForConditionalGeneration, Speech2TextModel, Speech2TextProcessor
from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextDecoder, Speech2TextEncoder
def prepare_speech_to_text_inputs_dict(
config,
input_features,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_features.ne(0)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
# "input_ids": input_features,
"input_features": input_features,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_torch
class Speech2TextModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
num_conv_layers=2,
conv_kernel_sizes=(5, 5),
conv_channels=32,
input_feat_per_channel=24,
input_channels=1,
hidden_act="relu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
max_source_positions=20,
max_target_positions=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.num_conv_layers = num_conv_layers
self.conv_kernel_sizes = conv_kernel_sizes
self.conv_channels = conv_channels
self.input_feat_per_channel = input_feat_per_channel
self.input_channels = input_channels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.max_source_positions = max_source_positions
self.max_target_positions = max_target_positions
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_features = floats_tensor(
[self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size
)
attention_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.long, device=torch_device)
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2)
config = self.get_config()
inputs_dict = prepare_speech_to_text_inputs_dict(
config,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
)
return config, inputs_dict
def get_config(self):
return Speech2TextConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
num_conv_layers=self.num_conv_layers,
conv_kernel_sizes=self.conv_kernel_sizes,
conv_channels=self.conv_channels,
input_feat_per_channel=self.input_feat_per_channel,
input_channels=self.input_channels,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
max_source_positions=self.max_source_positions,
max_target_positions=self.max_target_positions,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_subsampled_output_lengths(self, input_lengths):
"""
Computes the output length of the convolutional layers
"""
for i in range(self.num_conv_layers):
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
def create_and_check_model_forward(self, config, inputs_dict):
model = Speech2TextModel(config=config).to(torch_device).eval()
input_features = inputs_dict["input_features"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
# first forward pass
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
self.parent.assertTrue(last_hidden_state.shape, (13, 7, 16))
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = Speech2TextModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["decoder_input_ids"]
attention_mask = inputs_dict["decoder_attention_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = Speech2TextModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = Speech2TextEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(
inputs_dict["input_features"], attention_mask=inputs_dict["attention_mask"]
)[0]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = Speech2TextDecoder.from_pretrained(tmpdirname).to(torch_device)
encoder_attention_mask = encoder._get_feature_vector_attention_mask(
encoder_last_hidden_state.shape[1], inputs_dict["attention_mask"]
)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=encoder_attention_mask,
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Speech2TextModel, Speech2TextForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (Speech2TextForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{"automatic-speech-recognition": Speech2TextForConditionalGeneration, "feature-extraction": Speech2TextModel}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = Speech2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Speech2TextConfig)
self.maxDiff = 3000
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
@unittest.skip(reason="Not implemented currently")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Training is not supported yet")
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_features = input_dict["input_features"]
attention_mask = input_dict["attention_mask"]
model = Speech2TextForConditionalGeneration(config).eval().to(torch_device)
input_features = input_features.half()
model.half()
model.generate(input_features, attention_mask=attention_mask)
model.generate(input_features, num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_features",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
else:
seq_length = self.model_tester.seq_length
subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[subsampled_seq_length, self.model_tester.hidden_size],
)
if config.is_encoder_decoder:
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length)
subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
out_len = len(outputs)
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
subsampled_encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is set to False")
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# make sure that decoder_input_ids are resized
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is set to False")
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
self.skipTest(reason="Model cannot untie embeddings")
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
@unittest.skip
def test_generate_without_input_ids(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
try:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
input_features = inputs["input_features"]
attention_mask = inputs["attention_mask"]
decoder_input_ids = inputs["decoder_input_ids"]
decoder_attention_mask = inputs["decoder_attention_mask"]
traced_model = torch.jit.trace(
model, (input_features, attention_mask, decoder_input_ids, decoder_attention_mask)
)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_pt_tf_model_equivalence(self, allow_missing_keys=True):
# Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute
super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys)
@unittest.skip(reason="Test failing, @RocketNight is looking into it")
def test_tf_from_pt_safetensors(self):
pass
@require_torch
@require_torchaudio
@require_sentencepiece
@require_tokenizers
@slow
class Speech2TextModelIntegrationTests(unittest.TestCase):
@cached_property
def default_processor(self):
return Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_generation_librispeech(self):
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
model.to(torch_device)
processor = self.default_processor
input_speech = self._load_datasamples(1)
input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device)
generated_ids = model.generate(input_features)
generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
EXPECTED_TRANSCRIPTIONS = [
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel"
]
self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS)
def test_generation_librispeech_batched(self):
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
model.to(torch_device)
processor = self.default_processor
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_features = inputs.input_features.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
generated_ids = model.generate(input_features, attention_mask=attention_mask)
generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True)
EXPECTED_TRANSCRIPTIONS = [
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel",
"nor is mister cultar's manner less interesting than his matter",
"he tells us that at this festive season of the year with christmas and roast beef looming before us"
" similes drawn from eating and its results occur most readily to the mind",
"he has grave doubts whether sir frederick leyton's work is really greek after all and can discover in it"
" but little of rocky ithaca",
]
self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
| transformers/tests/models/speech_to_text/test_modeling_speech_to_text.py/0 | {
"file_path": "transformers/tests/models/speech_to_text/test_modeling_speech_to_text.py",
"repo_id": "transformers",
"token_count": 14717
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch StableLm model."""
import unittest
import pytest
from parameterized import parameterized
from transformers import StableLmConfig, is_torch_available, set_seed
from transformers.testing_utils import (
require_bitsandbytes,
require_flash_attn,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
StableLmForCausalLM,
StableLmForSequenceClassification,
StableLmForTokenClassification,
StableLmModel,
)
from transformers.models.stablelm.modeling_stablelm import StableLmRotaryEmbedding
# Copied from transformers.tests.models.persimmon.test_modeling_persimmon.PersimmonModelTester with Persimmon -> StableLm
class StableLmModelTester:
# Ignore copy
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return StableLmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = StableLmModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = StableLmModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = StableLmForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = StableLmForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
# Copied from transformers.tests.persimmon.test_modeling_persimmon.PersimmonModelTest with Persimmon -> StableLm
class StableLmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(StableLmModel, StableLmForCausalLM, StableLmForSequenceClassification, StableLmForTokenClassification)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": StableLmModel,
"text-classification": StableLmForSequenceClassification,
"token-classification": StableLmForTokenClassification,
# TODO (ydshieh): check why these two fail. Fix them or skip them in a better way.
# "text-generation": StableLmForCausalLM,
# "zero-shot": StableLmForSequenceClassification,
}
if is_torch_available()
else {}
)
all_generative_model_classes = (StableLmForCausalLM,) if is_torch_available() else ()
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = StableLmModelTester(self)
self.config_tester = ConfigTester(self, config_class=StableLmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_stablelm_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = StableLmForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_stablelm_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = StableLmForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_stablelm_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = StableLmForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_token_classification_model with Llama->StableLm,llama->stablelm
def test_stablelm_token_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
model = StableLmForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
self.assertEqual(
result.logits.shape,
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
)
@parameterized.expand([("linear",), ("dynamic",)])
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_rope_scaling_from_config with Llama->StableLm
def test_model_rope_scaling_from_config(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = StableLmModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = StableLmModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
# Copied from tests.models.gpt_neox.test_modeling_gpt_neox.GPTNeoXModelTest.test_model_rope_scaling with GPTNeoX->StableLm
def test_model_rope_scaling(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
scaling_factor = 10
short_input_length = 10
long_input_length = int(config.max_position_embeddings * 1.5)
# Inputs
x = torch.randn(1, dtype=torch.float32, device=torch_device) # used exlusively to get the dtype and the device
position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
position_ids_short = position_ids_short.unsqueeze(0)
position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
position_ids_long = position_ids_long.unsqueeze(0)
# Sanity check original RoPE
original_rope = StableLmRotaryEmbedding(config).to(torch_device)
original_cos_short, original_sin_short = original_rope(x, position_ids_short)
original_cos_long, original_sin_long = original_rope(x, position_ids_long)
torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])
# Sanity check linear RoPE scaling
# New position "x" should match original position with index "x/scaling_factor"
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
linear_scaling_rope = StableLmRotaryEmbedding(config).to(torch_device)
linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
for new_position in range(0, long_input_length, scaling_factor):
original_position = int(new_position // scaling_factor)
torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])
# Sanity check Dynamic NTK RoPE scaling
# Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
# with scaling_factor (or that `inv_freq` decreases)
config.rope_scaling = {"type": "dynamic", "factor": scaling_factor}
ntk_scaling_rope = StableLmRotaryEmbedding(config).to(torch_device)
ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
torch.testing.assert_close(ntk_cos_short, original_cos_short)
torch.testing.assert_close(ntk_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_sin_long, original_sin_long)
self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())
@require_torch
class StableLmModelIntegrationTest(unittest.TestCase):
@slow
def test_model_stablelm_3b_4e1t_logits(self):
input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)}
model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t").to(torch_device)
model.eval()
output = model(**input_ids).logits.float()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[2.7146, 2.4245, 1.5616, 1.4424, 2.6790]]).to(torch_device)
torch.testing.assert_close(output.mean(dim=-1), EXPECTED_MEAN, rtol=1e-4, atol=1e-4)
# Expected logits sliced from [0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([7.1030, -1.4195, 9.9206, 7.7008, 4.9891, 4.2169, 5.5426, 3.7878, 6.7593, 5.7360, 8.4691, 5.5448, 5.0544, 10.4129, 8.5573, 13.0405, 7.3265, 3.5868, 6.1106, 5.9406, 5.6376, 5.7490, 5.4850, 4.8124, 5.1991, 4.6419, 4.5719, 9.9588, 6.7222, 4.5070]).to(torch_device) # fmt: skip
torch.testing.assert_close(output[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
@slow
def test_model_stablelm_3b_4e1t_generation(self):
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
input_ids = tokenizer.encode(
"My favorite food has always been pizza, but lately",
return_tensors="pt",
)
outputs = model.generate(input_ids, max_new_tokens=20, temperature=0)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
EXPECTED_TEXT_COMPLETION = """My favorite food has always been pizza, but lately I’ve been craving something different. I’ve been trying to eat healthier and I’ve"""
self.assertEqual(text, EXPECTED_TEXT_COMPLETION)
@slow
def test_model_tiny_random_stablelm_2_logits(self):
# Check parallel residual and qk layernorm forward pass
input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)}
model = StableLmForCausalLM.from_pretrained("stabilityai/tiny-random-stablelm-2").to(torch_device)
model.eval()
output = model(**input_ids).logits.float()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[-2.7196, -3.6099, -2.6877, -3.1973, -3.9344]]).to(torch_device)
torch.testing.assert_close(output.mean(dim=-1), EXPECTED_MEAN, rtol=1e-4, atol=1e-4)
# Expected logits sliced from [0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([2.8364, 5.3811, 5.1659, 7.5485, 4.3219, 6.3315, 1.3967, 6.9147, 3.9679, 6.4786, 5.9176, 3.3067, 5.2917, 0.1485, 3.9630, 7.9947,10.6727, 9.6757, 8.8772, 8.3527, 7.8445, 6.6025, 5.5786, 7.0985,6.1369, 3.4259, 1.9397, 4.6157, 4.8105, 3.1768]).to(torch_device) # fmt: skip
torch.testing.assert_close(output[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
@slow
def test_model_tiny_random_stablelm_2_generation(self):
# Check parallel residual and qk layernorm generation
tokenizer = AutoTokenizer.from_pretrained("stabilityai/tiny-random-stablelm-2")
model = StableLmForCausalLM.from_pretrained("stabilityai/tiny-random-stablelm-2")
input_ids = tokenizer.encode(
"My favorite ride at the amusement park",
return_tensors="pt",
)
outputs = model.generate(input_ids, max_new_tokens=20, temperature=0)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
EXPECTED_TEXT_COMPLETION = """My favorite ride at the amusement park is the 2000-mile roller coaster. It's a thrilling ride filled with roller coast"""
self.assertEqual(text, EXPECTED_TEXT_COMPLETION)
@require_bitsandbytes
@slow
@require_flash_attn
@pytest.mark.flash_attn_test
def test_model_3b_long_prompt(self):
EXPECTED_OUTPUT_TOKEN_IDS = [3, 3, 3]
input_ids = [306, 338] * 2047
model = StableLmForCausalLM.from_pretrained(
"stabilityai/stablelm-3b-4e1t",
device_map="auto",
torch_dtype="auto",
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-3:].tolist())
| transformers/tests/models/stablelm/test_modeling_stablelm.py/0 | {
"file_path": "transformers/tests/models/stablelm/test_modeling_stablelm.py",
"repo_id": "transformers",
"token_count": 10809
} |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import Swin2SRImageProcessor
from transformers.image_transforms import get_image_size
class Swin2SRImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_rescale=True,
rescale_factor=1 / 255,
do_pad=True,
pad_size=8,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.pad_size = pad_size
def prepare_image_processor_dict(self):
return {
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
"pad_size": self.pad_size,
}
def expected_output_image_shape(self, images):
img = images[0]
if isinstance(img, Image.Image):
input_width, input_height = img.size
elif isinstance(img, np.ndarray):
input_height, input_width = img.shape[-3:-1]
else:
input_height, input_width = img.shape[-2:]
pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height
pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width
return self.num_channels, input_height + pad_height, input_width + pad_width
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = Swin2SRImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processor, "do_rescale"))
self.assertTrue(hasattr(image_processor, "rescale_factor"))
self.assertTrue(hasattr(image_processor, "do_pad"))
self.assertTrue(hasattr(image_processor, "pad_size"))
def calculate_expected_size(self, image):
old_height, old_width = get_image_size(image)
size = self.image_processor_tester.pad_size
pad_height = (old_height // size + 1) * size - old_height
pad_width = (old_width // size + 1) * size - old_width
return old_height + pad_height, old_width + pad_width
# Swin2SRImageProcessor does not support batched input
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Swin2SRImageProcessor does not support batched input
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Swin2SRImageProcessor does not support batched input
def test_call_numpy_4_channels(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(
image_inputs[0], return_tensors="pt", input_data_format="channels_last"
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
self.image_processor_tester.num_channels = 3
# Swin2SRImageProcessor does not support batched input
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
| transformers/tests/models/swin2sr/test_image_processing_swin2sr.py/0 | {
"file_path": "transformers/tests/models/swin2sr/test_image_processing_swin2sr.py",
"repo_id": "transformers",
"token_count": 2958
} |
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the TensorFlow VisionEncoderDecoder model."""
from __future__ import annotations
import copy
import os
import tempfile
import unittest
import numpy as np
from transformers import is_tf_available, is_torch_available, is_vision_available
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils.generic import ModelOutput
from ...test_modeling_tf_common import floats_tensor, ids_tensor
from ..gpt2.test_modeling_tf_gpt2 import TFGPT2ModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoTokenizer,
TFAutoModel,
TFAutoModelForCausalLM,
TFGPT2LMHeadModel,
TFVisionEncoderDecoderModel,
TFViTModel,
VisionEncoderDecoderConfig,
)
from transformers.modeling_tf_outputs import TFBaseModelOutput
if is_torch_available():
import torch
from transformers import GPT2LMHeadModel, VisionEncoderDecoderModel, ViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
@require_tf
class TFVisionEncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
raise NotImplementedError
def prepare_config_and_inputs(self):
raise NotImplementedError
def get_pretrained_model(self):
raise NotImplementedError
def check_encoder_decoder_model_from_pretrained_configs(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_hidden_states)
outputs_encoder_decoder = enc_dec_model(
pixel_values=None,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_from_pretrained(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
return_dict=True,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_save_and_load(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_labels(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=labels,
kwargs=kwargs,
)
# Make sure `loss` exist
self.assertIn("loss", outputs_encoder_decoder)
batch_size, seq_len = decoder_input_ids.shape
expected_shape = (batch_size, seq_len, decoder_config.vocab_size)
self.assertEqual(outputs_encoder_decoder["logits"].shape, expected_shape)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_output_attentions(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
kwargs=kwargs,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
)
self.assertEqual(
cross_attentions[0].shape[-3:-1],
(decoder_config.num_attention_heads, cross_attention_input_seq_len),
)
def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
# Generate until max length
if hasattr(enc_dec_model.config, "eos_token_id"):
enc_dec_model.config.eos_token_id = None
if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"):
enc_dec_model.config.decoder.eos_token_id = None
if hasattr(enc_dec_model.generation_config, "eos_token_id"):
enc_dec_model.generation_config.eos_token_id = None
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
pixel_values, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(
tuple(generated_output.shape.as_list()), (pixel_values.shape[0],) + (decoder_config.max_length,)
)
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
Args:
model_class: The class of the model that is currently testing. For example, `TFBertModel`,
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
error messages.
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
being a named field in the output.
"""
self.assertEqual(type(name), str)
if attributes is not None:
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
if isinstance(tf_outputs, ModelOutput):
self.assertTrue(
isinstance(pt_outputs, ModelOutput),
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
)
tf_keys = [k for k, v in tf_outputs.items() if v is not None]
pt_keys = [k for k, v in pt_outputs.items() if v is not None]
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
# convert to the case of `tuple`
# appending each key to the current (string) `names`
attributes = tuple([f"{name}.{k}" for k in tf_keys])
self.check_pt_tf_outputs(
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
)
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
elif type(tf_outputs) in [tuple, list]:
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")
if attributes is not None:
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
self.assertEqual(
len(attributes),
len(tf_outputs),
f"{name}: The tuple `names` should have the same length as `tf_outputs`",
)
else:
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
elif isinstance(tf_outputs, tf.Tensor):
self.assertTrue(
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
)
tf_outputs = tf_outputs.numpy()
pt_outputs = pt_outputs.detach().to("cpu").numpy()
self.assertEqual(
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
)
# deal with NumPy's scalars to make replacing nan values by 0 work.
if np.isscalar(tf_outputs):
tf_outputs = np.array([tf_outputs])
pt_outputs = np.array([pt_outputs])
tf_nans = np.isnan(tf_outputs)
pt_nans = np.isnan(pt_outputs)
pt_outputs[tf_nans] = 0
tf_outputs[tf_nans] = 0
pt_outputs[pt_nans] = 0
tf_outputs[pt_nans] = 0
max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
else:
raise ValueError(
"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
f" {type(tf_outputs)} instead."
)
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):
pt_inputs_dict = {}
for name, key in tf_inputs_dict.items():
if isinstance(key, bool):
pt_inputs_dict[name] = key
elif name == "input_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "pixel_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "input_features":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
# other general float inputs
elif tf_inputs_dict[name].dtype.is_floating:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
else:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
return pt_inputs_dict
def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):
pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
# send pytorch inputs to the correct device
pt_inputs_dict = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
}
# send pytorch model to the correct device
pt_model.to(torch_device)
# Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
pt_model.eval()
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs_dict)
tf_outputs = tf_model(tf_inputs_dict)
# tf models returned loss is usually a tensor rather than a scalar.
# (see `hf_compute_loss`: it uses `keras.losses.Reduction.NONE`)
# Change it here to a scalar to match PyTorch models' loss
tf_loss = getattr(tf_outputs, "loss", None)
if tf_loss is not None:
tf_outputs.loss = tf.math.reduce_mean(tf_loss)
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))
def check_pt_tf_equivalence(self, tf_model, pt_model, tf_inputs_dict):
"""Wrap `check_pt_tf_models` to further check PT -> TF again"""
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# PT -> TF
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
tf_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
def check_pt_to_tf_equivalence(self, config, decoder_config, tf_inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
# Output all for aggressive testing
encoder_decoder_config.output_hidden_states = True
# All models tested in this file have attentions
encoder_decoder_config.output_attentions = True
pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
tf_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
self.check_pt_tf_equivalence(tf_model, pt_model, tf_inputs_dict)
def check_tf_to_pt_equivalence(self, config, decoder_config, tf_inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
# Output all for aggressive testing
encoder_decoder_config.output_hidden_states = True
# TODO: A generalizable way to determine this attribute
encoder_decoder_config.output_attentions = True
tf_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
# Make sure model is built before saving
tf_model(**tf_inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
tf_model.save_pretrained(tmpdirname, safe_serialization=False)
pt_model = VisionEncoderDecoderModel.from_pretrained(
tmpdirname, from_tf=True, attn_implementation=tf_model.config._attn_implementation
)
self.check_pt_tf_equivalence(tf_model, pt_model, tf_inputs_dict)
def test_encoder_decoder_model(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**config_inputs_dict)
def test_encoder_decoder_model_labels(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_labels(**config_inputs_dict)
def test_encoder_decoder_model_output_attentions(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**config_inputs_dict)
def test_encoder_decoder_model_generate(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**config_inputs_dict)
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
diff = np.abs((a - b)).max()
self.assertLessEqual(diff, tol, f"Difference between torch and tf is {diff} (>= {tol}).")
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self):
config_inputs_dict = self.prepare_config_and_inputs()
labels = config_inputs_dict.pop("decoder_token_labels")
# Keep only common arguments
arg_names = [
"config",
"pixel_values",
"decoder_config",
"decoder_input_ids",
"decoder_attention_mask",
"encoder_hidden_states",
]
config_inputs_dict = {k: v for k, v in config_inputs_dict.items() if k in arg_names}
config = config_inputs_dict.pop("config")
decoder_config = config_inputs_dict.pop("decoder_config")
# Output all for aggressive testing
config.output_hidden_states = True
decoder_config.output_hidden_states = True
# All models tested in this file have attentions
config.output_attentions = True
decoder_config.output_attentions = True
tf_inputs_dict = config_inputs_dict
# `encoder_hidden_states` is not used in model call/forward
del tf_inputs_dict["encoder_hidden_states"]
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
for k in ["decoder_attention_mask"]:
attention_mask = tf_inputs_dict[k]
# Make sure no all 0s attention masks - to avoid failure at this moment.
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
# TODO: remove this line once a fix regarding large negative values for attention mask is done.
attention_mask = tf.concat(
[tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
)
tf_inputs_dict[k] = attention_mask
tf_inputs_dict_with_labels = copy.copy(tf_inputs_dict)
tf_inputs_dict_with_labels["labels"] = labels
self.assertTrue(decoder_config.cross_attention_hidden_size is None)
# Original test: check without `labels` and without `enc_to_dec_proj` projection
self.assertTrue(config.hidden_size == decoder_config.hidden_size)
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict)
# check with `labels`
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict_with_labels)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict_with_labels)
# check `enc_to_dec_proj` work as expected
decoder_config.hidden_size = decoder_config.hidden_size * 2
self.assertTrue(config.hidden_size != decoder_config.hidden_size)
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict)
@slow
def test_real_model_save_load_from_pretrained(self):
model_2 = self.get_pretrained_model()
pixel_values = floats_tensor(
[
13,
model_2.config.encoder.num_channels,
model_2.config.encoder.image_size,
model_2.config.encoder.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)
outputs = model_2(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
after_outputs = model_1(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_tf
class TFViT2GPT2EncoderDecoderModelTest(TFVisionEncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model(self):
return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"google/vit-base-patch16-224-in21k", "openai-community/gpt2"
)
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = TFViTModel(config, name="encoder")
decoder_model = TFGPT2LMHeadModel(decoder_config, name="decoder")
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = TFViTModelTester(self, batch_size=13)
model_tester_decoder = TFGPT2ModelTester(self)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
(config, pixel_values, labels) = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_attention_mask,
decoder_head_mask,
decoder_token_type_ids,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"decoder_token_labels": decoder_token_labels,
"encoder_hidden_states": encoder_hidden_states, # This is not used in the tests.
"labels": decoder_token_labels,
}
@require_tf
class TFVisionEncoderDecoderModelTest(unittest.TestCase):
def get_from_encoderdecoder_pretrained_model(self):
return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"google/vit-base-patch16-224-in21k", "openai-community/gpt2"
)
def get_decoder_config(self):
config = AutoConfig.from_pretrained("openai-community/gpt2")
config.is_decoder = True
config.add_cross_attention = True
return config
def get_encoderdecoder_model(self):
return TFVisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")
def get_encoder_decoder_models(self):
encoder_model = TFViTModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
decoder_model = TFGPT2LMHeadModel.from_pretrained(
"openai-community/gpt2", config=self.get_decoder_config(), name="decoder"
)
return {"encoder": encoder_model, "decoder": decoder_model}
def _check_configuration_tie(self, model):
assert id(model.decoder.config) == id(model.config.decoder)
assert id(model.encoder.config) == id(model.config.encoder)
@slow
def test_configuration_tie(self):
model = self.get_from_encoderdecoder_pretrained_model()
self._check_configuration_tie(model)
model = TFVisionEncoderDecoderModel(**self.get_encoder_decoder_models())
self._check_configuration_tie(model)
model = self.get_encoderdecoder_model()
self._check_configuration_tie(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
class TFVisionEncoderDecoderModelSaveLoadTests(unittest.TestCase):
def get_encoder_decoder_config(self):
encoder_config = AutoConfig.from_pretrained("google/vit-base-patch16-224-in21k")
decoder_config = AutoConfig.from_pretrained("openai-community/gpt2", is_decoder=True, add_cross_attention=True)
return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
def get_encoder_decoder_config_small(self):
encoder_config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-vit")
decoder_config = AutoConfig.from_pretrained(
"hf-internal-testing/tiny-random-gpt2", is_decoder=True, add_cross_attention=True
)
return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
def test_encoder_decoder_save_load_from_encoder_decoder(self):
config = self.get_encoder_decoder_config_small()
# create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
encoder = TFViTModel(config.encoder)
encoder.build_in_name_scope()
decoder = TFGPT2LMHeadModel(config.decoder)
decoder.build_in_name_scope()
encoder_decoder_orig = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
pixel_values = floats_tensor(
[
13,
encoder.config.num_channels,
encoder.config.image_size,
encoder.config.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], decoder.config.vocab_size)
logits_orig = encoder_decoder_orig(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_path = os.path.join(tmp_dirname, "encoder")
decoder_path = os.path.join(tmp_dirname, "decoder")
encoder.save_pretrained(encoder_path)
decoder.save_pretrained(decoder_path)
encoder_decoder = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_path, decoder_path)
logits_1 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
self.assertTrue(logits_orig.numpy().sum() - logits_1.numpy().sum() < 1e-3)
max_diff = np.max(np.abs(logits_1.numpy() - logits_orig.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=4)
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_decoder.save_pretrained(tmp_dirname)
encoder_decoder = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
logits_2 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_2.numpy() - logits_orig.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=4)
@require_torch
@is_pt_tf_cross_test
def test_encoder_decoder_save_load_from_encoder_decoder_from_pt(self):
config = self.get_encoder_decoder_config_small()
# create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
encoder_pt = ViTModel(config.encoder).to(torch_device).eval()
decoder_pt = GPT2LMHeadModel(config.decoder).to(torch_device).eval()
encoder_decoder_pt = VisionEncoderDecoderModel(encoder=encoder_pt, decoder=decoder_pt).to(torch_device).eval()
pixel_values = floats_tensor(
[
13,
encoder_pt.config.num_channels,
encoder_pt.config.image_size,
encoder_pt.config.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], decoder_pt.config.vocab_size)
pt_pixel_values = torch.tensor(pixel_values.numpy(), device=torch_device, dtype=torch.float)
pt_decoder_input_ids = torch.tensor(decoder_input_ids.numpy(), device=torch_device, dtype=torch.long)
logits_pt = encoder_decoder_pt(pixel_values=pt_pixel_values, decoder_input_ids=pt_decoder_input_ids).logits
# PyTorch => TensorFlow
with tempfile.TemporaryDirectory() as tmp_dirname_1, tempfile.TemporaryDirectory() as tmp_dirname_2:
encoder_decoder_pt.encoder.save_pretrained(tmp_dirname_1)
encoder_decoder_pt.decoder.save_pretrained(tmp_dirname_2)
encoder_decoder_tf = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
tmp_dirname_1, tmp_dirname_2
)
logits_tf = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=3)
# Make sure `from_pretrained` following `save_pretrained` work and give the same result
# (See https://github.com/huggingface/transformers/pull/14016)
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_decoder_tf.save_pretrained(tmp_dirname, safe_serialization=False)
encoder_decoder_tf = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
logits_tf_2 = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_tf_2.numpy() - logits_tf.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=3)
@require_vision
@slow
def test_encoder_decoder_from_pretrained(self):
load_weight_prefix = TFVisionEncoderDecoderModel.load_weight_prefix
config = self.get_encoder_decoder_config()
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
decoder_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
img = prepare_img()
pixel_values = image_processor(images=img, return_tensors="tf").pixel_values
decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids
with tempfile.TemporaryDirectory() as tmp_dirname:
# Since most of HF's models don't have pretrained cross-attention layers, they are randomly
# initialized even if we create models using `from_pretrained` method.
# For the tests, the decoder need to be a model with pretrained cross-attention layers.
# So we create pretrained models (without `load_weight_prefix`), save them, and later,
# we load them using `from_pretrained`.
# (we don't need to do this for encoder, but let's make the code more similar between encoder/decoder)
encoder = TFAutoModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
# It's necessary to specify `add_cross_attention=True` here.
decoder = TFAutoModelForCausalLM.from_pretrained(
"openai-community/gpt2", is_decoder=True, add_cross_attention=True, name="decoder"
)
pretrained_encoder_dir = os.path.join(tmp_dirname, "pretrained_encoder")
pretrained_decoder_dir = os.path.join(tmp_dirname, "pretrained_decoder")
encoder.save_pretrained(pretrained_encoder_dir)
decoder.save_pretrained(pretrained_decoder_dir)
del encoder
del decoder
enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
pretrained_encoder_dir,
pretrained_decoder_dir,
)
enc_dec_model.build_in_name_scope()
# check that the from pretrained methods work
enc_dec_model.save_pretrained(tmp_dirname)
enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
loss_pretrained = output.loss
del enc_dec_model
# Create the model using `__init__` with loaded ``pretrained`` encoder / decoder
encoder = TFAutoModel.from_pretrained(
pretrained_encoder_dir, load_weight_prefix=load_weight_prefix, name="encoder"
)
decoder = TFAutoModelForCausalLM.from_pretrained(
pretrained_decoder_dir, load_weight_prefix=load_weight_prefix, name="decoder"
)
enc_dec_model = TFVisionEncoderDecoderModel(config=config, encoder=encoder, decoder=decoder)
output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
loss_init = output.loss
max_diff = np.max(np.abs(loss_pretrained - loss_init))
expected_diff = 0.0
self.assertAlmostEqual(max_diff, expected_diff, places=4)
@require_vision
@require_tf
class TFViT2GPT2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_coco_en(self):
loc = "ydshieh/vit-gpt2-coco-en"
image_processor = ViTImageProcessor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = TFVisionEncoderDecoderModel.from_pretrained(loc)
# We will verify our results on an image of cute cats
img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
pixel_values = image_processor(images=img, return_tensors="tf").pixel_values
decoder_input_ids = tf.constant([[model.config.decoder_start_token_id]])
logits = model(pixel_values, decoder_input_ids)[0].numpy()
# verify the logits
expected_shape = (1, 1, model.config.decoder.vocab_size)
self.assertEqual(logits.shape, expected_shape)
EXPECTED_LOGIT_SLICE = np.array(
[
-38.705807,
-30.639929,
-31.41903,
-39.012012,
-38.38696,
-34.887207,
-33.290855,
-35.68447,
-38.508484,
-36.124645,
]
)
max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
self.assertLessEqual(max_diff, 1e-4)
def generate_step(pixel_values):
outputs = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
output_ids = outputs.sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
preds = generate_step(pixel_values)
# should produce
# ["a cat laying on top of a couch next to another cat"]
self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])
| transformers/tests/models/vision_encoder_decoder/test_modeling_tf_vision_encoder_decoder.py/0 | {
"file_path": "transformers/tests/models/vision_encoder_decoder/test_modeling_tf_vision_encoder_decoder.py",
"repo_id": "transformers",
"token_count": 18578
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch ViTMAE model."""
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class ViTMAEModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
mask_ratio=0.5,
attn_implementation="eager",
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.mask_ratio = mask_ratio
self.scope = scope
self.attn_implementation = attn_implementation
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
self.mask_ratio = mask_ratio
self.num_masks = int(mask_ratio * self.seq_length)
self.mask_length = num_patches
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return ViTMAEConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
mask_ratio=self.mask_ratio,
decoder_hidden_size=self.hidden_size,
decoder_intermediate_size=self.intermediate_size,
decoder_num_attention_heads=self.num_attention_heads,
decoder_num_hidden_layers=self.num_hidden_layers,
attn_implementation=self.attn_implementation,
)
def create_and_check_model(self, config, pixel_values, labels):
model = ViTMAEModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_pretraining(self, config, pixel_values, labels):
model = ViTMAEForPreTraining(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
num_patches = (self.image_size // self.patch_size) ** 2
expected_num_channels = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
# test greyscale images
config.num_channels = 1
model = ViTMAEForPreTraining(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
expected_num_channels = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ViTMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
pipeline_model_mapping = {"image-feature-extraction": ViTMAEModel} if is_torch_available() else {}
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ViTMAEModelTester(self)
self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
# overwrite from common since ViTMAEForPretraining has random masking, we need to fix the noise
# to generate masks during test
def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
# make masks reproducible
np.random.seed(2)
num_patches = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2)
noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
pt_noise = torch.from_numpy(noise)
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
pt_inputs_dict["noise"] = pt_noise
super().check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# Make sure we don't have nans
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results."""
)
def test_determinism(self):
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results."""
)
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results."""
)
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""")
def test_model_outputs_equivalence(self):
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass")
def test_batching_equivalence(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "google/vit-base-patch16-224"
model = ViTMAEModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ViTMAEModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base")
@cached_property
def default_model(self):
return ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device)
@slow
def test_inference_for_pretraining(self):
# make random mask reproducible across the PT and TF model
np.random.seed(2)
model = self.default_model
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
vit_mae_config = ViTMAEConfig()
num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
noise = torch.from_numpy(np.random.uniform(size=(1, num_patches))).to(device=torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs, noise=noise)
# verify the logits
expected_shape = torch.Size((1, 196, 768))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]
)
torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice.to(torch_device), rtol=1e-4, atol=1e-4)
@slow
def test_inference_interpolate_pos_encoding(self):
# ViTMAE models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
# make random mask reproducible across the PT and TF model
np.random.seed(2)
model = self.default_model
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt", do_resize=False).to(torch_device)
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
vit_mae_config = ViTMAEConfig()
num_patches = (image.height // vit_mae_config.patch_size) * (image.width // vit_mae_config.patch_size)
noise = torch.from_numpy(np.random.uniform(size=(1, num_patches))).to(device=torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs, noise=noise, interpolate_pos_encoding=True)
# verify the logits
expected_shape = torch.Size((1, 1200, 768))
self.assertEqual(outputs.logits.shape, expected_shape)
@slow
def test_inference_interpolate_pos_encoding_custom_sizes(self):
# Ensure custom sizes are correctly handled when interpolating the position embeddings
# make random mask reproducible across the PT and TF model
np.random.seed(2)
model = self.default_model
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt", size={"height": 256, "width": 256}).to(
torch_device
)
# forward pass
with torch.no_grad():
outputs = model(
**inputs,
interpolate_pos_encoding=True,
)
# verify the logits
expected_shape = torch.Size((1, 256, 768))
self.assertEqual(outputs.logits.shape, expected_shape)
| transformers/tests/models/vit_mae/test_modeling_vit_mae.py/0 | {
"file_path": "transformers/tests/models/vit_mae/test_modeling_vit_mae.py",
"repo_id": "transformers",
"token_count": 6396
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Wav2Vec2Phoneme tokenizer."""
import json
import os
import unittest
from typing import Tuple
from transformers import Wav2Vec2PhonemeCTCTokenizer
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
from transformers.models.wav2vec2_phoneme.tokenization_wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class Wav2Vec2PhonemeCTCTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "facebook/wav2vec2-lv-60-espeak-cv-ft"
tokenizer_class = Wav2Vec2PhonemeCTCTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
vocab = (
"<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː "
"ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː "
"ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 "
"oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ "
"pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ "
"yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ "
'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '
"ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ "
"ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ "
"uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ "
"ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ "
"ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ "
"ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4"
).split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
# overwrite since phonemes require specific creation
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], do_phonemize=False), toks))
if max_length is not None and len(toks) > max_length:
toks = toks[:max_length]
if min_length is not None and len(toks) < min_length and len(toks) > 0:
while len(toks) < min_length:
toks = toks + toks
# toks_str = [t[1] for t in toks]
toks_ids = [t[0] for t in toks]
# Ensure consistency
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
if " " not in output_txt and len(toks_ids) > 1:
output_txt = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
)
if with_prefix_space:
output_txt = " " + output_txt
output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
return output_txt, output_ids
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return Wav2Vec2PhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def test_tokenizer_add_new_tokens(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
# check adding a single token
tokenizer.add_tokens("xxx")
token_ids = tokenizer("m xxx ɪ", do_phonemize=False).input_ids
self.assertEqual(token_ids, [13, 392, 17]) # xxx should be last token
tokenizer.add_tokens(["aaa", "bbb", "ccc"])
token_ids = tokenizer("m aaa ɪ ccc", do_phonemize=False).input_ids
self.assertEqual(token_ids, [13, 393, 17, 395]) # aaa and ccc should be after xxx and 2 after aaa
token_ids = tokenizer("maɪ c", do_phonemize=False).input_ids
self.assertEqual(token_ids, [3, 200]) # mai should be <unk> (=3)
def test_phonemize(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
self.assertEqual(phonemes, "h ə l oʊ h aʊ ɑːɹ j uː")
def test_encode(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids)
def test_encode_decode(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids)
self.assertEqual(phonemes, phonemes_enc_dec)
def test_decode(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
tokens = tokenizer.decode(sample_ids[0])
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(tokens, batch_tokens[0])
self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"])
def test_phonemize_with_word_del(self):
tokenizer = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
)
tokenizer.add_tokens("|")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
self.assertEqual(phonemes, "h ə l oʊ | h aʊ | ɑːɹ | j uː |")
def test_encode_with_del(self):
tokenizer = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
)
tokenizer.add_tokens("|")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids)
def test_decode_with_del(self):
tokenizer = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
)
tokenizer.add_tokens("|")
# fmt: off
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
tokens = tokenizer.decode(sample_ids[0])
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(tokens, batch_tokens[0])
self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"])
# decode with no word_del_token filter
tokens = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=False)
batch_tokens = tokenizer.batch_decode(sample_ids, filter_word_delimiter_token=False)
self.assertEqual(tokens, batch_tokens[0])
self.assertEqual(batch_tokens, ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"])
def test_encode_decode_with_del(self):
tokenizer = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
)
tokenizer.add_tokens("|")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=False)
self.assertEqual(phonemes, phonemes_enc_dec)
def test_encode_decode_with_del_filter(self):
tokenizer = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
)
tokenizer.add_tokens("|")
input_text = "Hello how are you"
phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=True)
self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip(), phonemes_enc_dec)
def test_change_phonemizer_lang(self):
tokenizer = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token=None
)
input_text = "Hello how are you"
input_ids_en = tokenizer(input_text, phonemizer_lang="en-us").input_ids
input_ids_fr = tokenizer(input_text, phonemizer_lang="fr-fr").input_ids
self.assertNotEqual(input_ids_en, input_ids_fr)
text_en = tokenizer.decode(input_ids_en)
text_fr = tokenizer.decode(input_ids_fr)
self.assertEqual(text_en, "h ə l oʊ h aʊ ɑːɹ j uː")
self.assertEqual(text_fr, "ɛ l o h aʊ a ʁ j u")
def test_case_insensitive(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
input_text_up = "Hello how Are you"
input_text_low = "hello how are you"
input_ids_up = tokenizer(input_text_up).input_ids
input_ids_low = tokenizer(input_text_low).input_ids
self.assertEqual(input_ids_up, input_ids_low)
def test_tokenizer_decode_added_tokens(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
tokenizer.add_tokens(["!", "?"])
tokenizer.add_special_tokens({"cls_token": "$$$"})
# fmt: off
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394],
]
# fmt: on
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ ! ? ! ? $$$", "j ð s j ð s oːɹ $$$"])
@staticmethod
def get_from_offsets(offsets, key):
retrieved_list = [d[key] for d in offsets]
return retrieved_list
def test_offsets(self):
tokenizer = self.get_tokenizer(word_delimiter_token="|")
tokenizer.add_tokens("|")
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
sample_ids = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
outputs = tokenizer.decode(sample_ids, output_char_offsets=True, filter_word_delimiter_token=False)
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys()), 2)
self.assertTrue("text" in outputs)
self.assertTrue("char_offsets" in outputs)
self.assertTrue(isinstance(outputs, Wav2Vec2PhonemeCTCTokenizerOutput))
# check that order of chars is correct and identical for both outputs
self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"], "char")), outputs.text)
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"], "char"), ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"]
)
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"], "start_offset"), [0, 1, 4, 7, 9, 11, 12, 15, 16]
)
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"], "end_offset"), [1, 4, 6, 9, 10, 12, 15, 16, 17]
)
def test_offsets_batch(self):
tokenizer = self.get_tokenizer(word_delimiter_token="|")
def check_list_tuples_equal(outputs_batch, outputs_list):
self.assertTrue(isinstance(outputs_batch, Wav2Vec2PhonemeCTCTokenizerOutput))
self.assertTrue(isinstance(outputs_list[0], Wav2Vec2PhonemeCTCTokenizerOutput))
# transform list to ModelOutput
outputs_batch_2 = Wav2Vec2PhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]}
)
self.assertListEqual(outputs_batch["text"], outputs_batch_2["text"])
def recursive_check(list_or_dict_1, list_or_dict_2):
if isinstance(list_or_dict_1, list):
[recursive_check(l1, l2) for l1, l2 in zip(list_or_dict_1, list_or_dict_2)]
self.assertEqual(list_or_dict_1, list_or_dict_2)
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch["char_offsets"], outputs_batch_2["char_offsets"])
# fmt: off
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
outputs_char_batch = tokenizer.batch_decode(sample_ids, output_char_offsets=True)
outputs_char = [tokenizer.decode(ids, output_char_offsets=True) for ids in sample_ids]
check_list_tuples_equal(outputs_char_batch, outputs_char)
@unittest.skip(reason="Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes")
def test_added_tokens_do_lower_case(self):
pass
@unittest.skip(reason="Wav2Vec2PhonemeTokenizer always puts spaces between phonemes")
def test_encode_decode_with_spaces(self):
pass
@unittest.skip(
reason="encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency"
)
def test_internal_consistency(self):
pass
@unittest.skip(reason="Wav2Vec2PhonemeModel has no max model length => no testing")
def test_add_tokens_tokenizer(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
tokens = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-3], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3], tokens[-4])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-3], tokenizer.pad_token_id)
@unittest.skip(reason="The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.")
def test_tf_encode_plus_sent_to_model(self):
pass
@unittest.skip(reason="The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.")
def test_torch_encode_plus_sent_to_model(self):
pass
def test_convert_tokens_to_string_format(self):
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2Vec2PhonemeCTCTokenizer.
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokens = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"]
output = tokenizer.convert_tokens_to_string(tokens)
self.assertIsInstance(output["text"], str)
| transformers/tests/models/wav2vec2_phoneme/test_tokenization_wav2vec2_phoneme.py/0 | {
"file_path": "transformers/tests/models/wav2vec2_phoneme/test_tokenization_wav2vec2_phoneme.py",
"repo_id": "transformers",
"token_count": 9988
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class TFXGLMModelTester:
config_cls = XGLMConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
d_model=32,
num_hidden_layers=2,
num_attention_heads=4,
ffn_dim=37,
activation_function="gelu",
activation_dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = d_model
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.ffn_dim = ffn_dim
self.activation_function = activation_function
self.activation_dropout = activation_dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = None
self.bos_token_id = 0
self.eos_token_id = 2
self.pad_token_id = 1
def get_large_model_config(self):
return XGLMConfig.from_pretrained("facebook/xglm-564M")
def prepare_config_and_inputs(self):
input_ids = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3
)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
)
def get_config(self):
return XGLMConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
num_layers=self.num_hidden_layers,
attention_heads=self.num_attention_heads,
ffn_dim=self.ffn_dim,
activation_function=self.activation_function,
activation_dropout=self.activation_dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
return_dict=True,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
test_onnx = False
test_missing_keys = False
test_pruning = False
def setUp(self):
self.model_tester = TFXGLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
@slow
def test_model_from_pretrained(self):
model_name = "facebook/xglm-564M"
model = TFXGLMModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
def test_resize_token_embeddings(self):
super().test_resize_token_embeddings()
@require_tf
class TFXGLMModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_xglm(self, verify_outputs=True):
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: skip
output_ids = model.generate(input_ids, do_sample=False, num_beams=1)
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
@slow
def test_xglm_sample(self):
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
tf.random.set_seed(0)
tokenized = tokenizer("Today is a nice day and", return_tensors="tf")
input_ids = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0"):
output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0])
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
EXPECTED_OUTPUT_STR = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
@slow
def test_batch_generation(self):
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
inputs = tokenizer(sentences, return_tensors="tf", padding=True)
input_ids = inputs["input_ids"]
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], max_new_tokens=12)
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12)
inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
| transformers/tests/models/xglm/test_modeling_tf_xglm.py/0 | {
"file_path": "transformers/tests/models/xglm/test_modeling_tf_xglm.py",
"repo_id": "transformers",
"token_count": 3984
} |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING,
AutoImageProcessor,
AutoModelForImageToImage,
ImageToImagePipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_torch
@require_vision
class ImageToImagePipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_IMAGE_TO_IMAGE_MAPPING
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
@require_torch
@require_vision
@slow
def test_pipeline(self, torch_dtype="float32"):
model_id = "caidas/swin2SR-classical-sr-x2-64"
upscaler = pipeline("image-to-image", model=model_id, torch_dtype=torch_dtype)
upscaled_list = upscaler(self.examples)
self.assertEqual(len(upscaled_list), len(self.examples))
for output in upscaled_list:
self.assertIsInstance(output, Image.Image)
self.assertEqual(upscaled_list[0].size, (1296, 976))
self.assertEqual(upscaled_list[1].size, (1296, 976))
@require_torch
@require_vision
@slow
def test_pipeline_fp16(self):
self.test_pipeline(torch_dtype="float16")
@require_torch
@require_vision
@slow
def test_pipeline_model_processor(self):
model_id = "caidas/swin2SR-classical-sr-x2-64"
model = AutoModelForImageToImage.from_pretrained(model_id)
image_processor = AutoImageProcessor.from_pretrained(model_id)
upscaler = ImageToImagePipeline(model=model, image_processor=image_processor)
upscaled_list = upscaler(self.examples)
self.assertEqual(len(upscaled_list), len(self.examples))
for output in upscaled_list:
self.assertIsInstance(output, Image.Image)
self.assertEqual(upscaled_list[0].size, (1296, 976))
self.assertEqual(upscaled_list[1].size, (1296, 976))
| transformers/tests/pipelines/test_pipelines_image_to_image.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_image_to_image.py",
"repo_id": "transformers",
"token_count": 1141
} |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class ZeroShotAudioClassificationPipelineTests(unittest.TestCase):
# Deactivating auto tests since we don't have a good MODEL_FOR_XX mapping,
# and only CLAP would be there for now.
# model_mapping = {CLAPConfig: CLAPModel}
@require_torch
def test_small_model_pt(self, torch_dtype="float32"):
audio_classifier = pipeline(
task="zero-shot-audio-classification",
model="hf-internal-testing/tiny-clap-htsat-unfused",
torch_dtype=torch_dtype,
)
dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
audio = dataset["train"]["audio"][-1]["array"]
output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
self.assertEqual(
nested_simplify(output),
[{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}],
)
@require_torch
def test_small_model_pt_fp16(self):
self.test_small_model_pt(torch_dtype="float16")
@unittest.skip(reason="No models are available in TF")
def test_small_model_tf(self):
pass
@slow
@require_torch
def test_large_model_pt(self):
audio_classifier = pipeline(
task="zero-shot-audio-classification",
model="laion/clap-htsat-unfused",
)
# This is an audio of a dog
dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
audio = dataset["train"]["audio"][-1]["array"]
output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
self.assertEqual(
nested_simplify(output),
[
{"score": 1.0, "label": "Sound of a dog"},
{"score": 0.0, "label": "Sound of vaccum cleaner"},
],
)
output = audio_classifier([audio] * 5, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
self.assertEqual(
nested_simplify(output),
[
[
{"score": 1.0, "label": "Sound of a dog"},
{"score": 0.0, "label": "Sound of vaccum cleaner"},
],
]
* 5,
)
output = audio_classifier(
[audio] * 5, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"], batch_size=5
)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 1.0, "label": "Sound of a dog"},
{"score": 0.0, "label": "Sound of vaccum cleaner"},
],
]
* 5,
)
@unittest.skip(reason="No models are available in TF")
def test_large_model_tf(self):
pass
| transformers/tests/pipelines/test_pipelines_zero_shot_audio_classification.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_zero_shot_audio_classification.py",
"repo_id": "transformers",
"token_count": 1610
} |
import gc
import unittest
from transformers import AutoModelForCausalLM
from transformers.testing_utils import require_compressed_tensors, require_torch
from transformers.utils import is_torch_available
if is_torch_available():
import torch
@require_compressed_tensors
@require_torch
class CompressedTensorsTest(unittest.TestCase):
tinyllama_w4a16 = "nm-testing/tinyllama-w4a16-compressed-hf-quantizer"
tinyllama_w8a8 = "nm-testing/tinyllama-w8a8-compressed-hf-quantizer"
prompt = "Paris is the capital of which country?"
stubs = [tinyllama_w4a16, tinyllama_w8a8]
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
gc.collect()
def test_default_run_compressed__True(self):
from compressed_tensors.linear.compressed_linear import CompressedLinear
from compressed_tensors.quantization.utils import iter_named_leaf_modules
for stub in self.stubs:
model = AutoModelForCausalLM.from_pretrained(
stub,
)
compressed_linear_counts = 0
for _, submodule in iter_named_leaf_modules(
model,
):
if isinstance(submodule, CompressedLinear):
compressed_linear_counts += 1
# some linear models are not compressed - ex. lm_head
assert compressed_linear_counts > 0
def test_default_run_compressed__False(self):
from compressed_tensors.linear.compressed_linear import CompressedLinear
from compressed_tensors.quantization.utils import iter_named_leaf_modules
from transformers.utils.quantization_config import CompressedTensorsConfig
quantization_config = CompressedTensorsConfig(run_compressed=False)
for stub in self.stubs:
model = AutoModelForCausalLM.from_pretrained(
stub,
quantization_config=quantization_config,
)
compressed_linear_counts = 0
for _, submodule in iter_named_leaf_modules(
model,
):
if isinstance(submodule, CompressedLinear):
compressed_linear_counts += 1
# No modules should be CompressedLinear
assert compressed_linear_counts == 0
def test_run_compressed_outputs_match(self):
"""Check that run_compressed=True/False output are the same"""
from transformers import AutoTokenizer
from transformers.utils.quantization_config import CompressedTensorsConfig
quantization_config = CompressedTensorsConfig(run_compressed=False)
for stub in self.stubs:
tokenizer = AutoTokenizer.from_pretrained(stub)
input_ids = tokenizer(self.prompt, return_tensors="pt").input_ids
model_run_compressed__True = AutoModelForCausalLM.from_pretrained(
stub,
)
output_rc_true = model_run_compressed__True.generate(input_ids, max_new_tokens=100)
model_run_compressed__False = AutoModelForCausalLM.from_pretrained(
stub,
quantization_config=quantization_config,
)
output_rc_false = model_run_compressed__False.generate(input_ids, max_new_tokens=100)
assert tokenizer.decode(output_rc_true[0]) == tokenizer.decode(output_rc_false[0])
| transformers/tests/quantization/compressed_tensor/test_run_compressed_model.py/0 | {
"file_path": "transformers/tests/quantization/compressed_tensor/test_run_compressed_model.py",
"repo_id": "transformers",
"token_count": 1464
} |
import argparse
import logging
import os
import sys
import time
import tensorflow as tf
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
from transformers.modeling_tf_utils import keras
from transformers.utils import is_sagemaker_dp_enabled
if os.environ.get("SDP_ENABLED") or is_sagemaker_dp_enabled():
SDP_ENABLED = True
os.environ["SAGEMAKER_INSTANCE_TYPE"] = "p3dn.24xlarge"
import smdistributed.dataparallel.tensorflow as sdp
else:
SDP_ENABLED = False
def fit(model, loss, opt, train_dataset, epochs, train_batch_size, max_steps=None):
pbar = tqdm(train_dataset)
for i, batch in enumerate(pbar):
with tf.GradientTape() as tape:
inputs, targets = batch
outputs = model(batch)
loss_value = loss(targets, outputs.logits)
if SDP_ENABLED:
tape = sdp.DistributedGradientTape(tape, sparse_as_dense=True)
grads = tape.gradient(loss_value, model.trainable_variables)
opt.apply_gradients(zip(grads, model.trainable_variables))
pbar.set_description(f"Loss: {loss_value:.4f}")
if SDP_ENABLED and i == 0:
sdp.broadcast_variables(model.variables, root_rank=0)
sdp.broadcast_variables(opt.variables(), root_rank=0)
if max_steps and i >= max_steps:
break
train_results = {"loss": loss_value.numpy()}
return train_results
def get_datasets(tokenizer, train_batch_size, eval_batch_size):
# Load dataset
train_dataset, test_dataset = load_dataset("stanfordnlp/imdb", split=["train", "test"])
# Preprocess train dataset
train_dataset = train_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
train_features = {
x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"]))
# Preprocess test dataset
test_dataset = test_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
test_features = {
x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"]))
if SDP_ENABLED:
tf_train_dataset = tf_train_dataset.shard(sdp.size(), sdp.rank())
tf_test_dataset = tf_test_dataset.shard(sdp.size(), sdp.rank())
tf_train_dataset = tf_train_dataset.batch(train_batch_size, drop_remainder=True)
tf_test_dataset = tf_test_dataset.batch(eval_batch_size, drop_remainder=True)
return tf_train_dataset, tf_test_dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--per_device_train_batch_size", type=int, default=16)
parser.add_argument("--per_device_eval_batch_size", type=int, default=8)
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--learning_rate", type=str, default=5e-5)
parser.add_argument("--do_train", type=bool, default=True)
parser.add_argument("--do_eval", type=bool, default=True)
parser.add_argument("--output_dir", type=str)
parser.add_argument("--max_steps", type=int, default=None)
# Data, model, and output directories
parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])
args, _ = parser.parse_known_args()
# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.getLevelName("INFO"),
handlers=[logging.StreamHandler(sys.stdout)],
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
if SDP_ENABLED:
sdp.init()
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], "GPU")
# Load model and tokenizer
model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
# get datasets
tf_train_dataset, tf_test_dataset = get_datasets(
tokenizer=tokenizer,
train_batch_size=args.per_device_train_batch_size,
eval_batch_size=args.per_device_eval_batch_size,
)
# fine optimizer and loss
optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metrics = [keras.metrics.SparseCategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
# Training
if args.do_train:
# train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.train_batch_size)
start_train_time = time.time()
train_results = fit(
model,
loss,
optimizer,
tf_train_dataset,
args.epochs,
args.per_device_train_batch_size,
max_steps=args.max_steps,
)
end_train_time = time.time() - start_train_time
logger.info("*** Train ***")
logger.info(f"train_runtime = {end_train_time}")
output_eval_file = os.path.join(args.output_dir, "train_results.txt")
if not SDP_ENABLED or sdp.rank() == 0:
with open(output_eval_file, "w") as writer:
logger.info("***** Train results *****")
logger.info(train_results)
for key, value in train_results.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Evaluation
if args.do_eval and (not SDP_ENABLED or sdp.rank() == 0):
result = model.evaluate(tf_test_dataset, batch_size=args.per_device_eval_batch_size, return_dict=True)
logger.info("*** Evaluate ***")
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
logger.info(result)
for key, value in result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Save result
if SDP_ENABLED:
if sdp.rank() == 0:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
else:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
| transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py/0 | {
"file_path": "transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py",
"repo_id": "transformers",
"token_count": 3196
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
MODEL_ID = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
REVISION_ID_DEFAULT = "main"
# Default branch name
REVISION_ID_ONE_SPECIFIC_COMMIT = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2"
# One particular commit (not the top of `main`)
REVISION_ID_INVALID = "aaaaaaa"
# This commit does not exist, so we should 404.
PINNED_SHA1 = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684"
# Sha-1 of config.json on the top of `main`, for checking purposes
PINNED_SHA256 = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3"
# Sha-256 of pytorch_model.bin on the top of `main`, for checking purposes
# Dummy contexts to test `ContextManagers`
@contextlib.contextmanager
def context_en():
print("Welcome!")
yield
print("Bye!")
@contextlib.contextmanager
def context_fr():
print("Bonjour!")
yield
print("Au revoir!")
class TestImportMechanisms(unittest.TestCase):
def test_module_spec_available(self):
# If the spec is missing, importlib would not be able to import the module dynamically.
assert transformers.__spec__ is not None
assert importlib.util.find_spec("transformers") is not None
class GenericUtilTests(unittest.TestCase):
@unittest.mock.patch("sys.stdout", new_callable=io.StringIO)
def test_context_managers_no_context(self, mock_stdout):
with ContextManagers([]):
print("Transformers are awesome!")
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue(), "Transformers are awesome!\n")
@unittest.mock.patch("sys.stdout", new_callable=io.StringIO)
def test_context_managers_one_context(self, mock_stdout):
with ContextManagers([context_en()]):
print("Transformers are awesome!")
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue(), "Welcome!\nTransformers are awesome!\nBye!\n")
@unittest.mock.patch("sys.stdout", new_callable=io.StringIO)
def test_context_managers_two_context(self, mock_stdout):
with ContextManagers([context_fr(), context_en()]):
print("Transformers are awesome!")
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue(), "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n")
@require_torch
def test_find_labels_pt(self):
self.assertEqual(find_labels(BertForSequenceClassification), ["labels"])
self.assertEqual(find_labels(BertForPreTraining), ["labels", "next_sentence_label"])
self.assertEqual(find_labels(BertForQuestionAnswering), ["start_positions", "end_positions"])
# find_labels works regardless of the class name (it detects the framework through inheritance)
class DummyModel(BertForSequenceClassification):
pass
self.assertEqual(find_labels(DummyModel), ["labels"])
@require_tf
def test_find_labels_tf(self):
self.assertEqual(find_labels(TFBertForSequenceClassification), ["labels"])
self.assertEqual(find_labels(TFBertForPreTraining), ["labels", "next_sentence_label"])
self.assertEqual(find_labels(TFBertForQuestionAnswering), ["start_positions", "end_positions"])
# find_labels works regardless of the class name (it detects the framework through inheritance)
class DummyModel(TFBertForSequenceClassification):
pass
self.assertEqual(find_labels(DummyModel), ["labels"])
@require_flax
def test_find_labels_flax(self):
# Flax models don't have labels
self.assertEqual(find_labels(FlaxBertForSequenceClassification), [])
self.assertEqual(find_labels(FlaxBertForPreTraining), [])
self.assertEqual(find_labels(FlaxBertForQuestionAnswering), [])
# find_labels works regardless of the class name (it detects the framework through inheritance)
class DummyModel(FlaxBertForSequenceClassification):
pass
self.assertEqual(find_labels(DummyModel), [])
| transformers/tests/utils/test_file_utils.py/0 | {
"file_path": "transformers/tests/utils/test_file_utils.py",
"repo_id": "transformers",
"token_count": 2005
} |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import is_torch_available, is_vision_available
from transformers.processing_utils import _validate_images_text_input_order
from transformers.testing_utils import require_torch, require_vision
if is_vision_available():
import PIL
if is_torch_available():
import torch
@require_vision
class ProcessingUtilTester(unittest.TestCase):
def test_validate_images_text_input_order(self):
# text string and PIL images inputs
images = PIL.Image.new("RGB", (224, 224))
text = "text"
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# text list of string and numpy images inputs
images = np.random.rand(224, 224, 3)
text = ["text1", "text2"]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertTrue(np.array_equal(valid_images, images))
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertTrue(np.array_equal(valid_images, images))
self.assertEqual(valid_text, text)
# text nested list of string and list of pil images inputs
images = [PIL.Image.new("RGB", (224, 224)), PIL.Image.new("RGB", (224, 224))]
text = [["text1", "text2, text3"], ["text3", "text4"]]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# list of strings and list of numpy images inputs
images = [np.random.rand(224, 224, 3), np.random.rand(224, 224, 3)]
text = ["text1", "text2"]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertTrue(np.array_equal(valid_images[0], images[0]))
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertTrue(np.array_equal(valid_images[0], images[0]))
self.assertEqual(valid_text, text)
# list of strings and list of url images inputs
images = ["https://url1", "https://url2"]
text = ["text1", "text2"]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# list of strings and nested list of numpy images inputs
images = [[np.random.rand(224, 224, 3), np.random.rand(224, 224, 3)], [np.random.rand(224, 224, 3)]]
text = ["text1", "text2"]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertTrue(np.array_equal(valid_images[0][0], images[0][0]))
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertTrue(np.array_equal(valid_images[0][0], images[0][0]))
self.assertEqual(valid_text, text)
# nested list of strings and nested list of PIL images inputs
images = [
[PIL.Image.new("RGB", (224, 224)), PIL.Image.new("RGB", (224, 224))],
[PIL.Image.new("RGB", (224, 224))],
]
text = [["text1", "text2, text3"], ["text3", "text4"]]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertEqual(valid_images, images)
self.assertEqual(valid_text, text)
# None images
images = None
text = "text"
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertEqual(images, None)
self.assertEqual(text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertEqual(images, None)
self.assertEqual(text, text)
# None text
images = PIL.Image.new("RGB", (224, 224))
text = None
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertEqual(images, images)
self.assertEqual(text, None)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertEqual(images, images)
self.assertEqual(text, None)
# incorrect inputs
images = "text"
text = "text"
with self.assertRaises(ValueError):
_validate_images_text_input_order(images=images, text=text)
@require_torch
def test_validate_images_text_input_order_torch(self):
# text string and torch images inputs
images = torch.rand(224, 224, 3)
text = "text"
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertTrue(torch.equal(valid_images, images))
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertTrue(torch.equal(valid_images, images))
self.assertEqual(valid_text, text)
# text list of string and list of torch images inputs
images = [torch.rand(224, 224, 3), torch.rand(224, 224, 3)]
text = ["text1", "text2"]
# test correct text and images order
valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
self.assertTrue(torch.equal(valid_images[0], images[0]))
self.assertEqual(valid_text, text)
# test incorrect text and images order
valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
self.assertTrue(torch.equal(valid_images[0], images[0]))
self.assertEqual(valid_text, text)
| transformers/tests/utils/test_processing_utils.py/0 | {
"file_path": "transformers/tests/utils/test_processing_utils.py",
"repo_id": "transformers",
"token_count": 3248
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
from get_test_info import get_tester_classes
if __name__ == "__main__":
failures = []
pattern = os.path.join("tests", "models", "**", "test_modeling_*.py")
test_files = glob.glob(pattern)
# TODO: deal with TF/Flax too
test_files = [
x for x in test_files if not (x.startswith("test_modeling_tf_") or x.startswith("test_modeling_flax_"))
]
for test_file in test_files:
tester_classes = get_tester_classes(test_file)
for tester_class in tester_classes:
# A few tester classes don't have `parent` parameter in `__init__`.
# TODO: deal this better
try:
tester = tester_class(parent=None)
except Exception:
continue
if hasattr(tester, "get_config"):
config = tester.get_config()
for k, v in config.to_dict().items():
if isinstance(v, int):
target = None
if k in ["vocab_size"]:
target = 100
elif k in ["max_position_embeddings"]:
target = 128
elif k in ["hidden_size", "d_model"]:
target = 40
elif k == ["num_layers", "num_hidden_layers", "num_encoder_layers", "num_decoder_layers"]:
target = 5
if target is not None and v > target:
failures.append(
f"{tester_class.__name__} will produce a `config` of type `{config.__class__.__name__}`"
f' with config["{k}"] = {v} which is too large for testing! Set its value to be smaller'
f" than {target}."
)
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
| transformers/utils/check_model_tester.py/0 | {
"file_path": "transformers/utils/check_model_tester.py",
"repo_id": "transformers",
"token_count": 1240
} |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def get_daily_ci_runs(token, num_runs=7):
"""Get the workflow runs of the scheduled (daily) CI.
This only selects the runs triggered by the `schedule` event on the `main` branch.
"""
headers = None
if token is not None:
headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"}
# The id of a workflow (not of a workflow run).
# From a given workflow run (where we have workflow run id), we can get the workflow id by going to
# https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}
# and check the `workflow_id` key.
workflow_id = "90575235"
url = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"
result = requests.get(url, headers=headers).json()
return result["workflow_runs"]
def get_last_daily_ci_runs(token):
"""Get the last completed workflow run id of the scheduled (daily) CI."""
workflow_runs = get_daily_ci_runs(token)
workflow_run_id = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
workflow_run_id = workflow_run["id"]
break
return workflow_run_id
def get_last_daily_ci_run_commit(token):
"""Get the commit sha of the last completed scheduled daily CI workflow run."""
workflow_runs = get_daily_ci_runs(token)
head_sha = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
head_sha = workflow_run["head_sha"]
break
return head_sha
def get_last_daily_ci_artifacts(artifact_names, output_dir, token):
"""Get the artifacts of last completed workflow run id of the scheduled (daily) CI."""
workflow_run_id = get_last_daily_ci_runs(token)
if workflow_run_id is not None:
artifacts_links = get_artifacts_links(worflow_run_id=workflow_run_id, token=token)
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
artifact_url = artifacts_links[artifact_name]
download_artifact(
artifact_name=artifact_name, artifact_url=artifact_url, output_dir=output_dir, token=token
)
def get_last_daily_ci_reports(artifact_names, output_dir, token):
"""Get the artifacts' content of the last completed workflow run id of the scheduled (daily) CI."""
get_last_daily_ci_artifacts(artifact_names, output_dir, token)
results = {}
for artifact_name in artifact_names:
artifact_zip_path = os.path.join(output_dir, f"{artifact_name}.zip")
if os.path.isfile(artifact_zip_path):
results[artifact_name] = {}
with zipfile.ZipFile(artifact_zip_path) as z:
for filename in z.namelist():
if not os.path.isdir(filename):
# read the file
with z.open(filename) as f:
results[artifact_name][filename] = f.read().decode("UTF-8")
return results
| transformers/utils/get_previous_daily_ci.py/0 | {
"file_path": "transformers/utils/get_previous_daily_ci.py",
"repo_id": "transformers",
"token_count": 1331
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that prepares the repository for releases (or patches) by updating all versions in the relevant places. It
also performs some post-release cleanup, by updating the links in the main README to respective model doc pages (from
main to stable).
To prepare for a release, use from the root of the repo on the release branch with:
```bash
python release.py
```
or use `make pre-release`.
To prepare for a patch release, use from the root of the repo on the release branch with:
```bash
python release.py --patch
```
or use `make pre-patch`.
To do the post-release cleanup, use from the root of the repo on the main branch with:
```bash
python release.py --post_release
```
or use `make post-release`.
"""
import argparse
import os
import re
from pathlib import Path
import packaging.version
# All paths are defined with the intent that this script should be run from the root of the repo.
PATH_TO_EXAMPLES = "examples/"
PATH_TO_MODELS = "src/transformers/models"
# This maps a type of file to the pattern to look for when searching where the version is defined, as well as the
# template to follow when replacing it with the new version.
REPLACE_PATTERNS = {
"examples": (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
"init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
"setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
}
# This maps a type of file to its path in Transformers
REPLACE_FILES = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
README_FILE = "README.md"
def update_version_in_file(fname: str, version: str, file_type: str):
"""
Update the version of Transformers in one file.
Args:
fname (`str`): The path to the file where we want to update the version.
version (`str`): The new version to set in the file.
file_type (`str`): The type of the file (should be a key in `REPLACE_PATTERNS`).
"""
with open(fname, "r", encoding="utf-8", newline="\n") as f:
code = f.read()
re_pattern, replace = REPLACE_PATTERNS[file_type]
replace = replace.replace("VERSION", version)
code = re_pattern.sub(replace, code)
with open(fname, "w", encoding="utf-8", newline="\n") as f:
f.write(code)
def update_version_in_examples(version: str):
"""
Update the version in all examples files.
Args:
version (`str`): The new version to set in the examples.
"""
for folder, directories, fnames in os.walk(PATH_TO_EXAMPLES):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("research_projects")
if "legacy" in directories:
directories.remove("legacy")
for fname in fnames:
if fname.endswith(".py"):
update_version_in_file(os.path.join(folder, fname), version, file_type="examples")
def global_version_update(version: str, patch: bool = False):
"""
Update the version in all needed files.
Args:
version (`str`): The new version to set everywhere.
patch (`bool`, *optional*, defaults to `False`): Whether or not this is a patch release.
"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(fname, version, pattern)
if not patch:
# We don't update the version in the examples for patch releases.
update_version_in_examples(version)
def remove_conversion_scripts():
"""
Delete the scripts that convert models from older, unsupported formats. We don't want to include these
in release wheels because they often have to open insecure file types (pickle, Torch .bin models). This results in
vulnerability scanners flagging us and can cause compliance issues for users with strict security policies.
"""
model_dir = Path(PATH_TO_MODELS)
for conversion_script in list(model_dir.glob("**/convert*.py")):
conversion_script.unlink()
def get_version() -> packaging.version.Version:
"""
Reads the current version in the main __init__.
"""
with open(REPLACE_FILES["init"], "r") as f:
code = f.read()
default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0]
return packaging.version.parse(default_version)
def pre_release_work(patch: bool = False):
"""
Do all the necessary pre-release steps:
- figure out the next minor release version and ask confirmation
- update the version everywhere
- clean-up the model list in the main README
Args:
patch (`bool`, *optional*, defaults to `False`): Whether or not this is a patch release.
"""
# First let's get the default version: base version if we are in dev, bump minor otherwise.
default_version = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!")
if default_version.is_devrelease:
default_version = default_version.base_version
elif patch:
default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}"
else:
default_version = f"{default_version.major}.{default_version.minor + 1}.0"
# Now let's ask nicely if we have found the right version.
version = input(f"Which version are you releasing? [{default_version}]")
if len(version) == 0:
version = default_version
print(f"Updating version to {version}.")
global_version_update(version, patch=patch)
print("Deleting conversion scripts.")
remove_conversion_scripts()
def post_release_work():
"""
Do all the necessary post-release steps:
- figure out the next dev version and ask confirmation
- update the version everywhere
- clean-up the model list in the main README
"""
# First let's get the current version
current_version = get_version()
dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0"
current_version = current_version.base_version
# Check with the user we got that right.
version = input(f"Which version are we developing now? [{dev_version}]")
if len(version) == 0:
version = dev_version
print(f"Updating version to {version}.")
global_version_update(version)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
args = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| transformers/utils/release.py/0 | {
"file_path": "transformers/utils/release.py",
"repo_id": "transformers",
"token_count": 2577
} |
{
"opsets": {
"1": [
"Abs",
"Add",
"AddV2",
"ArgMax",
"ArgMin",
"AvgPool",
"AvgPool3D",
"BatchMatMul",
"BatchMatMulV2",
"BatchToSpaceND",
"BiasAdd",
"BiasAddV1",
"Cast",
"Ceil",
"CheckNumerics",
"ComplexAbs",
"Concat",
"ConcatV2",
"Const",
"ConstV2",
"Conv1D",
"Conv2D",
"Conv2DBackpropInput",
"Conv3D",
"Conv3DBackpropInputV2",
"DepthToSpace",
"DepthwiseConv2d",
"DepthwiseConv2dNative",
"Div",
"Dropout",
"Elu",
"Equal",
"Erf",
"Exp",
"ExpandDims",
"Flatten",
"Floor",
"Gather",
"GatherNd",
"GatherV2",
"Greater",
"Identity",
"IdentityN",
"If",
"LRN",
"LSTMBlockCell",
"LeakyRelu",
"Less",
"Log",
"LogSoftmax",
"LogicalAnd",
"LogicalNot",
"LogicalOr",
"LookupTableSizeV2",
"MatMul",
"Max",
"MaxPool",
"MaxPool3D",
"MaxPoolV2",
"Maximum",
"Mean",
"Min",
"Minimum",
"MirrorPad",
"Mul",
"Neg",
"NoOp",
"NotEqual",
"OneHot",
"Pack",
"Pad",
"PadV2",
"Placeholder",
"PlaceholderV2",
"PlaceholderWithDefault",
"Pow",
"Prod",
"RFFT",
"RandomNormal",
"RandomNormalLike",
"RandomUniform",
"RandomUniformLike",
"RealDiv",
"Reciprocal",
"Relu",
"Relu6",
"Reshape",
"Rsqrt",
"Selu",
"Shape",
"Sigmoid",
"Sign",
"Size",
"Slice",
"Softmax",
"Softplus",
"Softsign",
"SpaceToBatchND",
"SpaceToDepth",
"Split",
"SplitV",
"Sqrt",
"Square",
"SquaredDifference",
"Squeeze",
"StatelessIf",
"StopGradient",
"StridedSlice",
"StringJoin",
"Sub",
"Sum",
"Tanh",
"Tile",
"TopKV2",
"Transpose",
"TruncateDiv",
"Unpack",
"ZerosLike"
],
"2": [],
"3": [],
"4": [],
"5": [],
"6": [
"AddN",
"All",
"Any",
"FloorDiv",
"FusedBatchNorm",
"FusedBatchNormV2",
"FusedBatchNormV3"
],
"7": [
"Acos",
"Asin",
"Atan",
"Cos",
"Fill",
"FloorMod",
"GreaterEqual",
"LessEqual",
"Loop",
"MatrixBandPart",
"Multinomial",
"Range",
"ResizeBilinear",
"ResizeNearestNeighbor",
"Scan",
"Select",
"SelectV2",
"Sin",
"SoftmaxCrossEntropyWithLogits",
"SparseSoftmaxCrossEntropyWithLogits",
"StatelessWhile",
"Tan",
"TensorListFromTensor",
"TensorListGetItem",
"TensorListLength",
"TensorListReserve",
"TensorListResize",
"TensorListSetItem",
"TensorListStack",
"While"
],
"8": [
"BroadcastTo",
"ClipByValue",
"FIFOQueueV2",
"HashTableV2",
"IteratorGetNext",
"IteratorV2",
"LookupTableFindV2",
"MaxPoolWithArgmax",
"QueueDequeueManyV2",
"QueueDequeueUpToV2",
"QueueDequeueV2",
"ReverseSequence"
],
"9": [
"SegmentMax",
"SegmentMean",
"SegmentMin",
"SegmentProd",
"SegmentSum",
"Sinh",
"SparseSegmentMean",
"SparseSegmentMeanWithNumSegments",
"SparseSegmentSqrtN",
"SparseSegmentSqrtNWithNumSegments",
"SparseSegmentSum",
"SparseSegmentSumWithNumSegments",
"UnsortedSegmentMax",
"UnsortedSegmentMin",
"UnsortedSegmentProd",
"UnsortedSegmentSum",
"Where"
],
"10": [
"CropAndResize",
"CudnnRNN",
"DynamicStitch",
"FakeQuantWithMinMaxArgs",
"IsFinite",
"IsInf",
"NonMaxSuppressionV2",
"NonMaxSuppressionV3",
"NonMaxSuppressionV4",
"NonMaxSuppressionV5",
"ParallelDynamicStitch",
"ReverseV2",
"Roll"
],
"11": [
"Bincount",
"Cumsum",
"InvertPermutation",
"LeftShift",
"MatrixDeterminant",
"MatrixDiagPart",
"MatrixDiagPartV2",
"MatrixDiagPartV3",
"RaggedRange",
"RightShift",
"Round",
"ScatterNd",
"SparseFillEmptyRows",
"SparseReshape",
"SparseToDense",
"TensorScatterUpdate",
"Unique"
],
"12": [
"Einsum",
"MatrixDiag",
"MatrixDiagV2",
"MatrixDiagV3",
"MatrixSetDiagV3",
"SquaredDistance"
],
"13": []
}
} | transformers/utils/tf_ops/onnx.json/0 | {
"file_path": "transformers/utils/tf_ops/onnx.json",
"repo_id": "transformers",
"token_count": 4081
} |
# How to contribute to TRL?
Everyone is welcome to contribute, and we value everybody's contribution. Code
contributions are not the only way to help the community. Answering questions, helping
others, and improving the documentation are also immensely valuable.
It also helps us if you spread the word! Reference the library in blog posts
about the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply ⭐️ the repository to say thank you.
However you choose to contribute, please be mindful and respect our
[code of conduct](https://github.com/huggingface/trl/blob/main/CODE_OF_CONDUCT.md).
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
## Ways to contribute
There are several ways you can contribute to TRL:
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Implement trainers for new post-training algorithms.
* Contribute to the examples or the documentation.
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/trl/labels/%F0%9F%91%B6%20good%20first%20issue) listing. It will give you a list of
open issues that are beginner-friendly and help you start contributing to open-source. The best way to do that is to open a Pull Request and link it to the issue that you'd like to work on. We try to give priority to opened PRs as we can easily track the progress of the fix, and if the contributor does not have time anymore, someone else can take the PR over.
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/trl/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
> All contributions are equally valuable to the community. 🥰
Before you start contributing make sure you have installed all the dev tools:
```bash
pip install -e .[dev]
```
## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](#submitting-a-pull-request-pr) and open a Pull Request!
## Submitting a bug-related issue or feature request
Do your best to follow these guidelines when submitting a bug-related issue or a feature request. It will make it easier for us to come back to you quickly and with good feedback.
### Did you find a bug?
The TRL library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code.
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
* Your **OS type and version**, **Python**, **PyTorch**, **TRL** and **Transformers** versions.
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s.
* The *full* traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
To get the OS and software versions automatically, run the following command:
```bash
trl env
```
### Do you want a new feature?
If there is a new feature you'd like to see in TRL, please open an issue and describe:
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community?
Whatever it is, we'd love to hear about it!
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
3. Provide a *code snippet* that demonstrates the feature's usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
## Do you want to implement a new trainer?
New post-training methods are published frequently and those that satisfy the following criteria are good candidates to be integrated into TRL:
* **Simplicity:** Does the new method achieve similar performance as prior methods, but with less complexity? A good example is Direct Preference Optimization (DPO) [[Rafailov et al, 2023]](https://huggingface.co/papers/2305.18290), which provided a simpler and compelling alternative to RLHF methods.
* **Efficiency:** Does the new method provide a significant improvement in training efficiency? A good example is Odds Ratio Preference Optimization (ORPO) [[Hong et al, 2023]](https://huggingface.co/papers/2403.07691), which utilizes a similar objective as DPO but requires half the GPU VRAM.
Methods that only provide incremental improvements at the expense of added complexity or compute costs are unlikely to be included in TRL.
If you want to implement a trainer for a new post-training method, first open an issue and provide the following information:
* A short description of the method and a link to the paper.
* Link to the implementation if it is open-sourced.
* Link to model weights trained with the method if they are available.
Based on the community and maintainer feedback, the next step will be to implement the trainer and config classes. See the following examples for inspiration:
* Paired preference optimisation: [`dpo_trainer.py`](./trl/trainer/dpo_trainer.py) and [`dpo_config.py`](./trl/trainer/dpo_config.py)
* RL-based optimisation: [`rloo_trainer.py](./trl/trainer/rloo_trainer.py) and [`rloo_config.py](./trl/trainer/rloo_config.py)
* Online optimisation: [`online_dpo_trainer.py`](./trl/trainer/online_dpo_trainer.py) and [`online_dpo_config.py`](./trl/trainer/online_dpo_config.py)
## Do you want to add documentation?
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved, such as typos, dead links, and any missing, unclear, or inaccurate content... We'll be happy to make the changes or help you contribute if you're interested!
## Submitting a pull request (PR)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
TRL. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
1. Fork the [repository](https://github.com/huggingface/trl) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote. The following command
assumes you have your public SSH key uploaded to GitHub. See the following guide for more
[information](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
```bash
$ git clone [email protected]:<your Github handle>/trl.git
$ cd trl
$ git remote add upstream https://github.com/huggingface/trl.git
```
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
Start by synchronizing your `main` branch with the `upstream/main` branch (more details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
```bash
$ git checkout main
$ git fetch upstream
$ git merge upstream/main
```
Once your `main` branch is synchronized, create a new branch from it:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
```bash
$ pip install -e .[dev]
```
(If TRL was already installed in the virtual environment, remove
it with `pip uninstall trl` before reinstalling it.)
Alternatively, if you are using [Visual Studio Code](https://code.visualstudio.com/Download), the fastest way to get set up is by using
the provided Dev Container. Documentation on how to get started with dev containers is available [here](https://code.visualstudio.com/docs/remote/containers).
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this (see
below an explanation regarding the environment variable):
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
> For the following commands leveraging the `make` utility, we recommend using the WSL system when running on
> Windows. More information [here](https://docs.microsoft.com/en-us/windows/wsl/about).
You can also run the full suite with the following command.
```bash
$ make test
```
TRL relies on `ruff` for maintaining consistent code formatting across its source files. Before submitting any PR, you should apply automatic style corrections and run code verification checks.
We provide a `precommit` target in the `Makefile` that simplifies this process by running all required checks and optimizations on only the files modified by your PR.
To apply these checks and corrections in one step, use:
```bash
$ make precommit
```
This command runs the following:
- Executes `pre-commit` hooks to automatically fix style issues with `ruff` and other tools.
- Runs additional scripts such as adding copyright information.
If you prefer to apply the style corrections separately or review them individually, the `pre-commit` hook will handle the formatting for the files in question.
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit
```
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
$ git fetch upstream
$ git rebase upstream/main
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors too! To ensure everyone can review your changes in the pull request, work on your local branch and push the updates to your fork. They will automatically appear in the pull request.
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`, or mark
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
it from PRs ready to be merged;
4. Make sure existing tests pass;
5. Add high-coverage tests. No quality testing = no merge.
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/trl/tree/main/tests).
We use `pytest` to run the tests. From the root of the
repository here's how to run tests with `pytest` for the library:
```bash
$ python -m pytest -sv ./tests
```
That's how `make test` is implemented (without the `pip install` line)!
You can specify a smaller set of tests to test only the feature
you're working on.
### Default values guidelines
1. **Use defaults when appropriate**:
Provide default values unless the parameter's value varies significantly by use case. For example, datasets or models should not have defaults, but parameters like `learning_rate` should.
2. **Prioritize proven defaults**:
Default values should align with those recommended in the original paper or method. Alternatives require strong evidence of superior performance in most cases.
3. **Ensure safety and predictability**:
Defaults must be safe, expected and reliable. Avoid settings that could lead to surprising outcomes, such as excessive memory usage or poor performance in edge cases.
4. **Balance consistency and flexibility**:
Aim for consistent defaults across similar functions or methods. However, consistency should not be preferred to point 2 or 3.
5. **Opt-in for new features**:
Do not enable new features or improvements (e.g., novel loss functions) by default. Users should explicitly opt-in to use these.
### Writing documentation
High-quality documentation is crucial for maintaining a project that is easy to use, understand, and extend. When adding new features, ensure they are thoroughly documented to maintain consistency and clarity throughout the project.
To illustrate what good documentation looks like, here’s an example of a well-documented function:
````python
def replicate_str(string: str, n: int, sep: str = " ") -> str:
r"""
Replicate a string `n` times with a separator.
Args:
string (`str`):
String to replicate.
n (`int`):
Number of times to replicate the string.
sep (`str`, *optional*, defaults to `" "`):
Separator to use between each replication.
Returns:
`str`: The replicated string.
Examples:
```python
>>> replicate_str("hello", 3)
"hello hello hello"
>>> replicate_str("hello", 3, sep=", ")
"hello, hello, hello"
```
"""
return sep.join([string] * n)
````
* **Line Wrapping:** Applied a consistent line wrap at column 120 to improve readability.
* **Definite Articles:** Removed definite articles where possible to streamline language. (Eg: Changed "The string to replicate" to "String to replicate")
* **Type Annotations:**
* Always include type definitions, indicating if a parameter is optional and specifying the default value.
* Note that `Optional` means that the value can be `None`, and `*optional*` means that it is not required for the user to pass a value.
E.g., for arguments that can't be `None` and aren't required:
```python
foo (`int`, *optional*, defaults to `4`):
```
For arguments that can be `None` and are required:
```python
foo (`Optional[int]`):
```
for arguments that can be `None` and aren't required:
```python
foo (`Optional[int]`, *optional*, defaults to `None`):
```
* **String Defaults:**
* Ensured that default string values are wrapped in double quotes:
```python
defaults to `"foo"`
```
* **Dictionary Typing:**
* Replaced generic `dict` type hints with more explicit `dict[str, Any]` to clarify expected key-value pairs.
* **Default Value Formatting:**
* Consistently surrounded default values with backticks for improved formatting:
```python
defaults to `4`
```
* **Sub-sectioning:** When the number of arguments is large, consider breaking them into sub-sections for better readability.
```python
def calculate_statistics(data: list[float], precision: int = 2, include_variance: bool = False) -> dict[str, float]:
r"""
Calculates basic statistics for a given dataset.
Args:
> Data inputs
data (`list[float]`):
A list of numerical values to analyze.
> Configuration parameters
precision (`int`, *optional*, defaults to `2`):
Number of decimal places to round the results.
include_variance (`bool`, *optional*, defaults to `False`):
Whether to include the variance of the dataset in the results.
Returns:
`dict[str, float]`:
A dictionary containing calculated statistics such as mean, median, and optionally variance.
"""
...
```
### Deprecation and backward compatibility
Our approach to deprecation and backward compatibility is flexible and based on the feature’s usage and impact. Each deprecation is carefully evaluated, aiming to balance innovation with user needs.
When a feature or component is marked for deprecation, its use will emit a warning message. This warning will include:
- **Transition Guidance**: Instructions on how to migrate to the alternative solution or replacement.
- **Removal Version**: The target version when the feature will be removed, providing users with a clear timeframe to transition.
Example:
```python
warnings.warn(
"The `Trainer.foo` method is deprecated and will be removed in version 0.14.0. "
"Please use the `Trainer.bar` class instead.",
FutureWarning,
)
```
The deprecation and removal schedule is based on each feature's usage and impact, with examples at two extremes:
- **Experimental or Low-Use Features**: For a feature that is experimental or has limited usage, backward compatibility may not be maintained between releases. Users should therefore anticipate potential breaking changes from one version to the next.
- **Widely-Used Components**: For a feature with high usage, we aim for a more gradual transition period of approximately **5 months**, generally scheduling deprecation around **5 minor releases** after the initial warning.
These examples represent the two ends of a continuum. The specific timeline for each feature will be determined individually, balancing innovation with user stability needs.
### Working with warnings
Warnings play a critical role in guiding users toward resolving potential issues, but they should be used thoughtfully to avoid unnecessary noise. Unlike logging, which provides informational context or operational details, warnings signal conditions that require attention and action. Overusing warnings can dilute their importance, leading users to ignore them entirely.
#### Definitions
- **Correct**: An operation is correct if it is valid, follows the intended approach, and aligns with the current best practices or guidelines within the codebase. This is the recommended or intended way to perform the operation.
- **Supported**: An operation is supported if it is technically valid and works within the current codebase, but it may not be the most efficient, optimal, or recommended way to perform the task. This includes deprecated features or legacy approaches that still work but may be phased out in the future.
#### Choosing the right message
- **Correct → No warning**:
If the operation is fully valid and expected, no message should be issued. The system is working as intended, so no warning is necessary.
- **Correct but deserves attention → No warning, possibly a log message**:
When an operation is correct but uncommon or requires special attention, providing an informational message can be helpful. This keeps users informed without implying any issue. If available, use the logger to output this message. Example:
```python
logger.info("This is an informational message about a rare but correct operation.")
```
- **Correct but very likely a mistake → Warning with option to disable**:
In rare cases, you may want to issue a warning for a correct operation that’s very likely a mistake. In such cases, you must provide an option to suppress the warning. This can be done with a flag in the function. Example:
```python
def my_function(foo, bar, _warn=True):
if foo == bar:
if _warn:
warnings.warn("foo and bar are the same, this is likely a mistake. Ignore this warning by setting `_warn=False`.")
# Do something
```
- **Supported but not correct → Warning**:
If the operation is technically supported but is deprecated, suboptimal, or could cause future issues (e.g., conflicting arguments), a warning should be raised. This message should be actionable, meaning it must explain how to resolve the issue. Example:
```python
def my_function(foo, bar):
if foo and bar:
warnings.warn("Both `foo` and `bar` were provided, but only one is allowed. Ignoring `foo`. Please pass only one of these arguments.")
# Do something
```
- **Not supported → Exception**:
If the operation is invalid or unsupported, raise an exception. This indicates that the operation cannot be performed and requires immediate attention. Example:
```python
def my_function(foo, bar):
if foo and bar:
raise ValueError("Both `foo` and `bar` were provided, but only one is allowed. Please pass only one of these arguments.")
```
By following this classification, you ensure that warnings, information, and exceptions are used appropriately, providing clear guidance to the user without cluttering the system with unnecessary messages.
| trl/CONTRIBUTING.md/0 | {
"file_path": "trl/CONTRIBUTING.md",
"repo_id": "trl",
"token_count": 5965
} |
# Scripts Utilities
## ScriptArguments
[[autodoc]] ScriptArguments
## TrlParser
[[autodoc]] TrlParser
- parse_args_and_config
- parse_args_into_dataclasses
- set_defaults_with_config
| trl/docs/source/script_utils.md/0 | {
"file_path": "trl/docs/source/script_utils.md",
"repo_id": "trl",
"token_count": 76
} |
# This is an example configuration file of TRL CLI, you can use it for
# SFT like that: `trl sft --config config.yaml --output_dir test-sft`
# The YAML file supports environment variables by adding an `env` field
# as below
# env:
# CUDA_VISIBLE_DEVICES: 0
model_name_or_path:
Qwen/Qwen2.5-0.5B
dataset_name:
stanfordnlp/imdb
report_to:
none
learning_rate:
0.0001
lr_scheduler_type:
cosine
| trl/examples/cli_configs/example_config.yaml/0 | {
"file_path": "trl/examples/cli_configs/example_config.yaml",
"repo_id": "trl",
"token_count": 158
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run the BCO training script with the commands below. In general, the optimal configuration for BCO will be similar to that of KTO.
# Full training:
python examples/scripts/bco.py \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--trust_remote_code \
--dataset_name trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 32 \
--num_train_epochs 1 \
--learning_rate 1e-6 \
--gradient_checkpointing \
--gradient_accumulation_steps 1 \
--logging_steps 0.01 \
--eval_steps 0.2 \
--save_strategy no \
--output_dir=bco-aligned-model \
--logging_first_step \
--max_length 2048 \
--max_prompt_length 1536 \
--max_completion_length 1024 \
--no_remove_unused_columns \
--warmup_ratio 0.1 \
--bf16 \
--report_to wandb
# QLoRA:
python examples/scripts/bco.py \
--model_name_or_path=nnheui/stablelm-2-1_6b-sft-full \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 32 \
--num_train_epochs 1 \
--learning_rate 1e-6 \
--gradient_checkpointing \
--gradient_accumulation_steps 1 \
--logging_steps 0.01 \
--eval_steps 0.2 \
--save_strategy no \
--output_dir=bco-aligned-model-lora \
--logging_first_step \
--warmup_ratio 0.1 \
--report_to wandb \
--max_length 2048 \
--max_prompt_length 1536 \
--max_completion_length 1024 \
--no_remove_unused_columns \
--warmup_ratio 0.1 \
--bf16 \
--use_peft \
--load_in_4bit \
--lora_target_modules=all-linear \
--lora_r=16 \
--lora_alpha=16
"""
from functools import partial
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from datasets import load_dataset
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, PreTrainedModel
from trl import BCOConfig, BCOTrainer, ModelConfig, ScriptArguments, get_peft_config, setup_chat_format
def embed_prompt(input_ids: torch.LongTensor, attention_mask: torch.LongTensor, model: PreTrainedModel):
"""
Borrowed from https://huggingface.co/nomic-ai/nomic-embed-text-v1.5#transformers
"""
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
with torch.no_grad():
model_output = model(input_ids=input_ids, attention_mask=attention_mask)
embeddings = mean_pooling(model_output, attention_mask)
matryoshka_dim = 512
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
embeddings = embeddings[:, :matryoshka_dim]
return embeddings
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, BCOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
ref_model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# If we are aligning a base model, we use ChatML as the default template
if tokenizer.chat_template is None:
model, tokenizer = setup_chat_format(model, tokenizer)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
accelerator = Accelerator()
embedding_model = AutoModel.from_pretrained(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=model_args.trust_remote_code,
safe_serialization=True,
torch_dtype=torch.bfloat16,
device_map="auto",
)
embedding_model = accelerator.prepare_model(embedding_model)
embedding_tokenizer = AutoTokenizer.from_pretrained(
"bert-base-uncased", trust_remote_code=model_args.trust_remote_code
)
embedding_func = partial(
embed_prompt,
model=embedding_model,
)
# Initialize the BCO trainer
trainer = BCOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
embedding_func=embedding_func,
embedding_tokenizer=embedding_tokenizer,
)
# Train and push the model to the Hub
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
| trl/examples/scripts/bco.py/0 | {
"file_path": "trl/examples/scripts/bco.py",
"repo_id": "trl",
"token_count": 2323
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from accelerate import PartialState
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
)
from trl import ModelConfig, RLOOConfig, RLOOTrainer, ScriptArguments
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
"""
python -i examples/scripts/rloo/rloo.py \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--dataset_train_split descriptiveness \
--learning_rate 3e-6 \
--num_ppo_epochs 1 \
--num_mini_batches 1 \
--output_dir models/minimal/ppo \
--per_device_train_batch_size 64 \
--gradient_accumulation_steps 1 \
--total_episodes 10000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--missing_eos_penalty 1.0
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/rloo/rloo.py \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--dataset_train_split descriptiveness \
--output_dir models/minimal/rloo \
--rloo_k 2 \
--num_ppo_epochs 1 \
--num_mini_batches 1 \
--learning_rate 3e-6 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--total_episodes 10000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--sft_model_path EleutherAI/pythia-1b-deduped \
--reward_model_path EleutherAI/pythia-1b-deduped \
--local_rollout_forward_batch_size 1 \
--missing_eos_penalty 1.0
"""
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, RLOOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
# remove output_dir if exists
shutil.rmtree(training_args.output_dir, ignore_errors=True)
################
# Model & Tokenizer
################
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained(
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
)
policy = AutoModelForCausalLM.from_pretrained(
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
)
################
# Dataset
################
dataset = load_dataset(
script_args.dataset_name, name=script_args.dataset_config, split=script_args.dataset_train_split
)
eval_samples = 100
train_dataset = dataset.select(range(len(dataset) - eval_samples))
eval_dataset = dataset.select(range(len(dataset) - eval_samples, len(dataset)))
dataset_text_field = "prompt"
def prepare_dataset(dataset, tokenizer):
"""pre-tokenize the dataset before training; only collate during training"""
def tokenize(element):
outputs = tokenizer(
element[dataset_text_field],
padding=False,
)
return {"input_ids": outputs["input_ids"]}
return dataset.map(
tokenize,
batched=True,
remove_columns=dataset.column_names,
num_proc=training_args.dataset_num_proc,
)
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
train_dataset = prepare_dataset(train_dataset, tokenizer)
eval_dataset = prepare_dataset(eval_dataset, tokenizer)
################
# Training
################
trainer = RLOOTrainer(
config=training_args,
processing_class=tokenizer,
policy=policy,
ref_policy=ref_policy,
reward_model=reward_model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
trainer.generate_completions()
| trl/examples/scripts/rloo/rloo.py/0 | {
"file_path": "trl/examples/scripts/rloo/rloo.py",
"repo_id": "trl",
"token_count": 2007
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Callable
from datasets import Dataset, load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl.extras.dataset_formatting import get_formatting_func_from_dataset
from trl.models.utils import ChatMlSpecialTokens, setup_chat_format
class DatasetFormattingTestCase(unittest.TestCase):
def setUp(self):
self.llama_tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-MistralForCausalLM-0.1")
self.chatml_tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
def test_get_formatting_func_from_dataset_with_chatml_messages(self):
dataset = Dataset.from_dict(
{
"messages": [
[
{"role": "system", "content": "You are helpful"},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi, how can I help you?"},
]
]
}
)
# Llama tokenizer
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer)
self.assertIsInstance(formatting_func, Callable)
formatted_text = formatting_func(dataset[0])
expected = "<s> [INST] You are helpful\n\nHello [/INST] Hi, how can I help you?</s>"
self.assertEqual(formatted_text, expected)
formatted_text = formatting_func(dataset[0:1])
self.assertListEqual(formatted_text, [expected])
# ChatML tokenizer
formatting_func = get_formatting_func_from_dataset(dataset, self.chatml_tokenizer)
formatted_text = formatting_func(dataset[0])
expected = "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n"
self.assertEqual(formatted_text, expected)
formatted_text = formatting_func(dataset[0:1])
self.assertListEqual(formatted_text, [expected])
def test_get_formatting_func_from_dataset_with_chatml_conversations(self):
dataset = Dataset.from_dict(
{
"conversations": [
[
{"role": "system", "content": "You are helpful"},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi, how can I help you?"},
]
]
}
)
# Llama tokenizer
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer)
self.assertIsInstance(formatting_func, Callable)
formatted_text = formatting_func(dataset[0])
expected = "<s> [INST] You are helpful\n\nHello [/INST] Hi, how can I help you?</s>"
self.assertEqual(formatted_text, expected)
formatted_text = formatting_func(dataset[0:1])
self.assertListEqual(formatted_text, [expected])
# ChatML tokenizer
formatting_func = get_formatting_func_from_dataset(dataset, self.chatml_tokenizer)
formatted_text = formatting_func(dataset[0])
expected = "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n"
self.assertEqual(formatted_text, expected)
formatted_text = formatting_func(dataset[0:1])
self.assertListEqual(formatted_text, [expected])
def test_get_formatting_func_from_dataset_with_instruction(self):
dataset = Dataset.from_list(
[{"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}]
)
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer)
self.assertIsNotNone(formatting_func)
self.assertIsInstance(formatting_func, Callable)
formatted_text = formatting_func(dataset[0])
self.assertEqual(formatted_text, "<s> [INST] What is 2+2? [/INST] 4</s>")
formatted_text = formatting_func(dataset[0:1])
self.assertListEqual(formatted_text, ["<s> [INST] What is 2+2? [/INST] 4</s>"])
def test_get_formatting_func_from_dataset_from_hub(self):
ds_1 = load_dataset("philschmid/trl-test-instruction", split="train")
ds_2 = load_dataset("philschmid/dolly-15k-oai-style", split="train")
for ds in [ds_1, ds_2]:
formatting_func = get_formatting_func_from_dataset(ds, self.llama_tokenizer)
self.assertIsNotNone(formatting_func)
self.assertIsInstance(formatting_func, Callable)
ds_3 = load_dataset("philschmid/guanaco-sharegpt-style", split="train")
formatting_func = get_formatting_func_from_dataset(ds_3, self.llama_tokenizer)
self.assertIsNone(formatting_func)
def test_get_formatting_func_from_dataset_with_unknown_format(self):
dataset = Dataset.from_dict({"text": "test"})
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer)
self.assertIsNone(formatting_func)
class SetupChatFormatTestCase(unittest.TestCase):
def setUp(self):
self.tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
self.model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
# remove built-in chat_template to simulate a model having no chat_template
self.tokenizer.chat_template = None
def test_setup_chat_format(self):
modified_model, modified_tokenizer = setup_chat_format(
self.model, self.tokenizer, format="chatml", resize_to_multiple_of=64
)
_chatml = ChatMlSpecialTokens()
# Check if special tokens are correctly set
self.assertEqual(modified_tokenizer.eos_token, "<|im_end|>")
self.assertEqual(modified_tokenizer.pad_token, "<|im_end|>")
self.assertEqual(modified_tokenizer.bos_token, "<|im_start|>")
self.assertEqual(modified_tokenizer.eos_token, _chatml.eos_token)
self.assertEqual(modified_tokenizer.pad_token, _chatml.pad_token)
self.assertEqual(modified_tokenizer.bos_token, _chatml.bos_token)
self.assertEqual((self.model.get_input_embeddings().weight.shape[0] % 64), 0)
def test_example_with_setup_model(self):
modified_model, modified_tokenizer = setup_chat_format(
self.model,
self.tokenizer,
)
messages = [
{"role": "system", "content": "You are helpful"},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi, how can I help you?"},
]
prompt = modified_tokenizer.apply_chat_template(messages, tokenize=False)
self.assertEqual(
prompt,
"<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n",
)
| trl/tests/test_dataset_formatting.py/0 | {
"file_path": "trl/tests/test_dataset_formatting.py",
"repo_id": "trl",
"token_count": 3322
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from unittest.mock import MagicMock
import torch
from datasets import Dataset, load_dataset
from parameterized import parameterized
from transformers import AutoModelForTokenClassification, AutoTokenizer, PreTrainedTokenizerBase
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import PRMConfig, PRMTrainer
if is_peft_available():
from peft import LoraConfig, TaskType
class TestTokenizeRow(unittest.TestCase):
def setUp(self):
# Set up the mock tokenizer with specific behaviors
self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase)
self.tokenizer.bos_token_id = 0
self.tokenizer.eos_token_id = 2
def mock_encode(text, add_special_tokens):
token_map = {
"Which number is larger, 9.8 or 9.11?": [465, 6766, 318, 298],
"11 is greater than 8.": [4, 322, 12],
"Hence, 9.11 > 9.8.": [4995, 11, 22],
"\n": [1030],
"\n\n": [1030, 1030],
}
return token_map[text]
def mock_tokenizer_call(text, add_special_tokens):
return {"input_ids": mock_encode(text, add_special_tokens)}
self.tokenizer.encode.side_effect = mock_encode
self.tokenizer.side_effect = mock_tokenizer_call
def test_tokenize_row_no_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with no truncation
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
},
)
def test_tokenize_row_train_on_last_step_only(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=True,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
},
)
def test_tokenize_row_prompt_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=3,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
},
)
def test_tokenize_row_completion_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=6,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100],
},
)
def test_tokenize_row_prompt_completion_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the prompt and completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=9,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1],
},
)
def test_tokenize_row_multi_token_separator(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method using multiple tokens as step_separator
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 1030, 4995, 11, 22, 1030, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, 0],
},
)
class PRMTrainerTester(unittest.TestCase):
def setUp(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForTokenClassification.from_pretrained(model_id)
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
@parameterized.expand([True, False])
def test_train_full(self, train_on_last_step_only):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(
output_dir=tmp_dir,
report_to="none",
train_on_last_step_only=train_on_last_step_only,
)
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_train_full_pretokenized(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = Dataset.from_dict(
{
"labels": [
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, 0, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
],
"input_ids": [
[46518, 374, 2664, 1091, 11, 1077, 752, 1744, 1112, 198, 27261, 13, 198],
[98923, 374, 2664, 1091, 11, 315, 3308, 11, 198, 17995, 13, 198, 1576, 31273, 12850, 13, 198],
[16374, 374, 2664, 1091, 1112, 1077, 594, 2506, 432, 6770, 11, 198, 6351, 13, 198],
[31137, 374, 2664, 1091, 979, 4362, 11, 198, 16965, 13, 198],
[31019, 374, 2664, 1091, 304, 3793, 315, 5944, 11, 198, 24034, 13, 198],
[98491, 374, 2664, 1091, 1112, 5310, 369, 91494, 13, 198],
[4418, 2897, 14579, 5310, 979, 3800, 1349, 432, 13, 198],
[20366, 5048, 7629, 944, 3281, 3322, 11, 7241, 1112, 198, 807, 1795, 279, 5601, 13, 198],
[15802, 14976, 487, 33327, 1045, 31787, 63443, 11, 198, 52400, 13, 198],
[13877, 1265, 2581, 1494, 49394, 11, 198, 7241, 20975, 91681, 13, 198],
[641, 279, 3579, 315, 71768, 11, 25066, 279, 61361, 311, 7942, 13, 198],
[7039, 374, 2664, 1091, 2937, 13, 198],
[26155, 374, 3545, 2664, 1091, 34933, 26537, 13, 198],
[2679, 279, 8129, 374, 4135, 311, 10339, 11, 432, 2578, 387, 264, 1661, 2884, 13, 198],
],
}
)
training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@require_peft
def test_train_lora(self):
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = PRMTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
def test_tags(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
self.assertEqual(trainer.model.model_tags, trainer._tag_names)
| trl/tests/test_prm_trainer.py/0 | {
"file_path": "trl/tests/test_prm_trainer.py",
"repo_id": "trl",
"token_count": 7912
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.