text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
<jupyter_start><jupyter_code>import argparse import json import logging import math import os import random from pathlib import Path from tqdm import tqdm import datasets from datasets import load_dataset, DatasetDict import evaluate import torch from torch import nn from torch.utils.data import DataLoader import transformers from transformers import AutoTokenizer, AutoModel, default_data_collator, SchedulerType, get_scheduler from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry from transformers.utils.versions import require_version from huggingface_hub import Repository, create_repo from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from peft import PeftModel import hnswlib class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) # , quantizaton_config=BitsAndBytesConfig(load_in_8bit=True), device_map={"":0}) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_cosing_embeddings(query_embs, product_embs): return torch.sum(query_embs * product_embs, axis=1) model_name_or_path = "intfloat/e5-large-v2" peft_model_id = "smangrul/peft_lora_e5_semantic_search" dataset_name = "smangrul/amazon_esci" max_length = 70 batch_size = 256 import pandas as pd tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) dataset = load_dataset(dataset_name, revision="main") train_product_dataset = dataset["train"].to_pandas()[["product_title"]] val_product_dataset = dataset["validation"].to_pandas()[["product_title"]] product_dataset_for_indexing = pd.concat([train_product_dataset, val_product_dataset]) product_dataset_for_indexing = product_dataset_for_indexing.drop_duplicates() product_dataset_for_indexing.reset_index(drop=True, inplace=True) product_dataset_for_indexing.reset_index(inplace=True) product_dataset_for_indexing pd.set_option("max_colwidth", 300) product_dataset_for_indexing.sample(10) from datasets import Dataset dataset = Dataset.from_pandas(product_dataset_for_indexing) def preprocess_function(examples): products = examples["product_title"] result = tokenizer(products, padding="max_length", max_length=70, truncation=True) return result processed_dataset = dataset.map( preprocess_function, batched=True, remove_columns=dataset.column_names, desc="Running tokenizer on dataset", ) processed_dataset # base model model = AutoModelForSentenceEmbedding(model_name_or_path, tokenizer) # peft config and wrapping model = PeftModel.from_pretrained(model, peft_model_id) print(model) dataloader = DataLoader( processed_dataset, shuffle=False, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True, ) next(iter(dataloader)) ids_to_products_dict = {i: p for i, p in zip(dataset["index"], dataset["product_title"])} ids_to_products_dict device = "cuda" model.to(device) model.eval() model = model.merge_and_unload() import numpy as np num_products = len(dataset) d = 1024 product_embeddings_array = np.zeros((num_products, d)) for step, batch in enumerate(tqdm(dataloader)): with torch.no_grad(): with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"): product_embs = model(**{k: v.to(device) for k, v in batch.items()}).detach().float().cpu() start_index = step * batch_size end_index = start_index + batch_size if (start_index + batch_size) < num_products else num_products product_embeddings_array[start_index:end_index] = product_embs del product_embs, batch def construct_search_index(dim, num_elements, data): # Declaring index search_index = hnswlib.Index(space="ip", dim=dim) # possible options are l2, cosine or ip # Initializing index - the maximum number of elements should be known beforehand search_index.init_index(max_elements=num_elements, ef_construction=200, M=100) # Element insertion (can be called several times): ids = np.arange(num_elements) search_index.add_items(data, ids) return search_index product_search_index = construct_search_index(d, num_products, product_embeddings_array) def get_query_embeddings(query, model, tokenizer, device): inputs = tokenizer(query, padding="max_length", max_length=70, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): query_embs = model(**{k: v.to(device) for k, v in inputs.items()}).detach().cpu() return query_embs[0] def get_nearest_neighbours(k, search_index, query_embeddings, ids_to_products_dict, threshold=0.7): # Controlling the recall by setting ef: search_index.set_ef(100) # ef should always be > k # Query dataset, k - number of the closest elements (returns 2 numpy arrays) labels, distances = search_index.knn_query(query_embeddings, k=k) return [ (ids_to_products_dict[label], (1 - distance)) for label, distance in zip(labels[0], distances[0]) if (1 - distance) >= threshold ] query = "NLP and ML books" k = 10 query_embeddings = get_query_embeddings(query, model, tokenizer, device) search_results = get_nearest_neighbours(k, product_search_index, query_embeddings, ids_to_products_dict, threshold=0.7) print(f"{query=}") for product, cosine_sim_score in search_results: print(f"cosine_sim_score={round(cosine_sim_score,2)} {product=}")<jupyter_output>query='NLP and ML books' cosine_sim_score=0.92 product='Machine Learning: A Journey from Beginner to Advanced Including Deep Learning, Scikit-learn and Tensorflow' cosine_sim_score=0.91 product='Mastering Machine Learning with scikit-learn' cosine_sim_score=0.91 product='Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems' cosine_sim_score=0.91 product='Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems' cosine_sim_score=0.91 product='Practical Deep Learning: A Python-Based Introduction' cosine_sim_score=0.9 product='Machine Learning: A Hands-On, Project-Based Introduction to Machine Learning for Absolute Beginners: Mastering Engineering ML Systems using Scikit-Learn and TensorFlow' cosine_sim_score=0.9 product='Mastering Machine Learning with scikit-learn - Second Edition: Apply effective learning algorithms to real-world problems using sci[...]
peft/examples/feature_extraction/peft_lora_embedding_semantic_similarity_inference.ipynb/0
{ "file_path": "peft/examples/feature_extraction/peft_lora_embedding_semantic_similarity_inference.ipynb", "repo_id": "peft", "token_count": 2679 }
<jupyter_start><jupyter_text>Fine-tune FLAN-T5 using `bitsandbytes`, `peft` & `transformers` 🤗 In this notebook we will see how to properly use `peft` , `transformers` & `bitsandbytes` to fine-tune `flan-t5-large` in a google colab!We will finetune the model on [`financial_phrasebank`](https://huggingface.co/datasets/financial_phrasebank) dataset, that consists of pairs of text-labels to classify financial-related sentences, if they are either `positive`, `neutral` or `negative`.Note that you could use the same notebook to fine-tune `flan-t5-xl` as well, but you would need to shard the models first to avoid CPU RAM issues on Google Colab, check [these weights](https://huggingface.co/ybelkada/flan-t5-xl-sharded-bf16). Install requirements<jupyter_code>!pip install -q bitsandbytes datasets accelerate !pip install -q git+https://github.com/huggingface/transformers.git@main git+https://github.com/huggingface/peft.git@main<jupyter_output> ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 76.3/76.3 MB 10.6 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 462.8/462.8 KB 45.6 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 199.7/199.7 KB 26.9 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.0/132.0 KB 20.1 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 190.3/190.3 KB 26.8 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 213.0/213.0 KB 26.5 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 140.6/140.6 KB 20.2 MB/s eta 0:00:00 [?25h Installing build dependencies ... [?25l[?25hdone Getting requirements to build wheel ... [?25l[?25hdone Preparing metadata (pyproject.tom[...]<jupyter_text>Import model and tokenizer<jupyter_code># Select CUDA device index import os import torch os.environ["CUDA_VISIBLE_DEVICES"] = "0" from datasets import load_dataset from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig model_name = "google/flan-t5-large" model = AutoModelForSeq2SeqLM.from_pretrained(model_name, quantization_config=BitsAndBytesConfig(load_in_8bit=True)) tokenizer = AutoTokenizer.from_pretrained(model_name)<jupyter_output><empty_output><jupyter_text>Prepare model for training Some pre-processing needs to be done before training such an int8 model using `peft`, therefore let's import an utiliy function `prepare_model_for_kbit_training` that will: - Casts all the non `int8` modules to full precision (`fp32`) for stability- Add a `forward_hook` to the input embedding layer to enable gradient computation of the input hidden states- Enable gradient checkpointing for more memory-efficient training<jupyter_code>from peft import prepare_model_for_kbit_training model = prepare_model_for_kbit_training(model)<jupyter_output><empty_output><jupyter_text>Load your `PeftModel` Here we will use LoRA (Low-Rank Adaptators) to train our model<jupyter_code>from peft import LoraConfig, get_peft_model, TaskType def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) model = get_peft_model(model, lora_config) print_trainable_parameters(model)<jupyter_output>trainable params: 4718592 || all params: 787868672 || trainable%: 0.5989059049678777<jupyter_text>As you can see, here we are only training 0.6% of the parameters of the model! This is a huge memory gain that will enable us to fine-tune the model without any memory issue. Load and process dataHere we will use [`financial_phrasebank`](https://huggingface.co/datasets/financial_phrasebank) dataset to fine-tune our model on sentiment classification on financial sentences. We will load the split `sentences_allagree`, which corresponds according to the model card to the split where there is a 100% annotator agreement.<jupyter_code># loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, )<jupyter_output><empty_output><jupyter_text>Let's also apply some pre-processing of the input data, the labels needs to be pre-processed, the tokens corresponding to `pad_token_id` needs to be set to `-100` so that the `CrossEntropy` loss associated with the model will correctly ignore these tokens.<jupyter_code># data preprocessing text_column = "sentence" label_column = "text_label" max_length = 128 def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"]<jupyter_output><empty_output><jupyter_text>Train our model! Let's now train our model, run the cells below.Note that for T5 since some layers are kept in `float32` for stability purposes there is no need to call autocast on the trainer.<jupyter_code>from transformers import TrainingArguments, Trainer training_args = TrainingArguments( "temp", eval_strategy="epoch", learning_rate=1e-3, gradient_accumulation_steps=1, auto_find_batch_size=True, num_train_epochs=1, save_steps=100, save_total_limit=8, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train()<jupyter_output>/usr/local/lib/python3.8/dist-packages/transformers/optimization.py:346: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( ***** Running training ***** Num examples = 2037 Num Epochs = 1 Instantaneous batch size per device = 8 Total train batch size (w. parallel, distributed & accumulation) = 8 Gradient Accumulation steps = 1 Total optimization steps = 255 Number of trainable parameters = 4718592 /usr/local/lib/python3.8/dist-packages/bitsandbytes/autograd/_functions.py:298: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")<jupyter_text>Qualitatively test our model Let's have a quick qualitative evaluation of the model, by taking a sample from the dataset that corresponds to a positive label. Run your generation similarly as you were running your model from `transformers`:<jupyter_code>model.eval() input_text = "In January-September 2009 , the Group 's net interest income increased to EUR 112.4 mn from EUR 74.3 mn in January-September 2008 ." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print("input sentence: ", input_text) print(" output prediction: ", tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))<jupyter_output>Generate config GenerationConfig { "_from_model_config": true, "decoder_start_token_id": 0, "eos_token_id": 1, "pad_token_id": 0, "transformers_version": "4.27.0.dev0", "use_cache": false } /usr/local/lib/python3.8/dist-packages/bitsandbytes/autograd/_functions.py:298: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") /usr/local/lib/python3.8/dist-packages/transformers/generation/utils.py:1374: UserWarning: You are calling .generate() with the `input_ids` being on a device type different than your model's device. `input_ids` is on cpu, whereas the model is on cuda. You may experience unexpected behaviors or slower generation. Please make sure that you have put `input_ids` to the correct device by calling for example input_ids = input_ids.to('cuda') before running `.generate()`. warnings.warn(<jupyter_text>Share your adapters on 🤗 Hub Once you have trained your adapter, you can easily share it on the Hub using the method `push_to_hub` . Note that only the adapter weights and config will be pushed<jupyter_code>from huggingface_hub import notebook_login notebook_login() model.push_to_hub("ybelkada/flan-t5-large-financial-phrasebank-lora", use_auth_token=True)<jupyter_output>Uploading the following files to ybelkada/flan-t5-large-lora: adapter_model.bin,adapter_config.json<jupyter_text>Load your adapter from the Hub You can load the model together with the adapter with few lines of code! Check the snippet below to load the adapter from the Hub and run the example evaluation!<jupyter_code>import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer peft_model_id = "ybelkada/flan-t5-large-financial-phrasebank-lora" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) model.eval() input_text = "In January-September 2009 , the Group 's net interest income increased to EUR 112.4 mn from EUR 74.3 mn in January-September 2008 ." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print("input sentence: ", input_text) print(" output prediction: ", tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))<jupyter_output>Generate config GenerationConfig { "_from_model_config": true, "decoder_start_token_id": 0, "eos_token_id": 1, "pad_token_id": 0, "transformers_version": "4.27.0.dev0" } /usr/local/lib/python3.8/dist-packages/transformers/generation/utils.py:1374: UserWarning: You are calling .generate() with the `input_ids` being on a device type different than your model's device. `input_ids` is on cpu, whereas the model is on cuda. You may experience unexpected behaviors or slower generation. Please make sure that you have put `input_ids` to the correct device by calling for example input_ids = input_ids.to('cuda') before running `.generate()`. warnings.warn(
peft/examples/int8_training/Finetune_flan_t5_large_bnb_peft.ipynb/0
{ "file_path": "peft/examples/int8_training/Finetune_flan_t5_large_bnb_peft.ipynb", "repo_id": "peft", "token_count": 4290 }
<jupyter_start><jupyter_code>import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" from peft import PeftConfig, PeftModel from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer from datasets import load_dataset import torch import random peft_model_id = "smangrul/tinyllama_lora_norobots" device = "cuda" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_4bit=True, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(peft_model_id) model.resize_token_embeddings(len(tokenizer)) model = PeftModel.from_pretrained(model, peft_model_id, adapter_name="norobots") _ = model.load_adapter("smangrul/tinyllama_lora_sql", adapter_name="sql") _ = model.load_adapter("smangrul/tinyllama_lora_adcopy", adapter_name="adcopy") %%time # [0.8, 0.1, 0.1] linear #[1.0, 0.2] 0.7 density dare_linear #[1.5, 0.3] 0.5 density ties #[0.8, 0.5] cat adapters = ["norobots", "adcopy", "sql"] weights = [2.0, 0.3, 0.7] adapter_name = "merge" density = 0.2 combination_type = "ties" if adapter_name in model.peft_config: model.delete_adapter(adapter_name) model.add_weighted_adapter(adapters, weights, adapter_name, combination_type=combination_type, density=density) model.eval() model.set_adapter("merge") messages = [ {"role": "user", "content": "Write an essay about Generative AI."}, ] text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = tokenizer(text, return_tensors="pt") # , add_special_tokens=False) inputs = {k: v.to("cuda") for k, v in inputs.items()} outputs = model.generate( **inputs, max_new_tokens=256, do_sample=True, top_p=0.95, temperature=0.2, repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0])) messages = [ {"role": "system", "content": "Create a text ad given the following product and description."}, { "role": "user", "content": "Product: Sony PS5 PlayStation Console\nDescription: The PS5™ console unleashes new gaming possibilities that you never anticipated.", }, ] text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = tokenizer(text, return_tensors="pt") # , add_special_tokens=False) inputs = {k: v.to("cuda") for k, v in inputs.items()} outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, top_p=0.95, temperature=0.2, repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0])) text = """Table: 2-11365528-2 Columns: ['Team', 'Head Coach', 'President', 'Home Ground', 'Location'] Natural Query: Who is the Head Coach of the team whose President is Mario Volarevic? SQL Query:""" inputs = tokenizer(text, return_tensors="pt") # , add_special_tokens=False) inputs = {k: v.to("cuda") for k, v in inputs.items()} outputs = model.generate( **inputs, max_new_tokens=64, repetition_penalty=1.1, eos_token_id=tokenizer("</s>").input_ids[-1] ) print(tokenizer.decode(outputs[0]))<jupyter_output><s> Table: 2-11365528-2 Columns: ['Team', 'Head Coach', 'President', 'Home Ground', 'Location'] Natural Query: Who is the Head Coach of the team whose President is Mario Volarevic? SQL Query: SELECT Head Coach FROM 2-11365528-2 WHERE President = Mario Volarevic</s>
peft/examples/multi_adapter_examples/Lora_Merging.ipynb/0
{ "file_path": "peft/examples/multi_adapter_examples/Lora_Merging.ipynb", "repo_id": "peft", "token_count": 1305 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os from contextlib import contextmanager from typing import Any, Optional, Union import torch from accelerate.hooks import remove_hook_from_submodules from torch import nn from transformers.utils import PushToHubMixin from peft.utils.constants import DUMMY_MODEL_CONFIG from .config import PeftConfig from .peft_model import PeftModel from .tuners import MixedModel from .utils import _set_adapter, _set_trainable def _prepare_model_for_gradient_checkpointing(model: nn.Module) -> None: r""" Prepares the model for gradient checkpointing if necessary """ # Note: same as PeftModel._prepare_model_for_gradient_checkpointing if not getattr(model, "is_gradient_checkpointing", True): return model if not ( getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_quantized", False) ): if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() elif hasattr(model, "get_input_embeddings"): def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) def _check_config_compatible(peft_config: PeftConfig) -> None: from .tuners.mixed import COMPATIBLE_TUNER_TYPES if peft_config.peft_type not in COMPATIBLE_TUNER_TYPES: raise ValueError( f"The provided `peft_type` '{peft_config.peft_type.value}' is not compatible with the `PeftMixedModel`. " f"Compatible types are: {COMPATIBLE_TUNER_TYPES}" ) class PeftMixedModel(PushToHubMixin, torch.nn.Module): """ PeftMixedModel for loading mixing different types of adapters for inference. This class does not support loading/saving, and it shouldn't usually be initialized directly. Instead, use `get_peft_model` with the argument `mixed=True`. <Tip> Read the [Mixed adapter types](https://huggingface.co/docs/peft/en/developer_guides/mixed_models) guide to learn more about using different adapter types. </Tip> Example: ```py >>> base_model = ... # load the base model, e.g. from transformers >>> peft_model = PeftMixedModel.from_pretrained(base_model, path_to_adapter1, "adapter1").eval() >>> peft_model.load_adapter(path_to_adapter2, "adapter2") >>> peft_model.set_adapter(["adapter1", "adapter2"]) # activate both adapters >>> peft_model(data) # forward pass using both adapters ``` Args: model (`torch.nn.Module`): The model to be tuned. config (`PeftConfig`): The config of the model to be tuned. The adapter type must be compatible. adapter_name (`str`, `optional`, defaults to `"default"`): The name of the first adapter. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device. Useful to speed up the loading process. """ def __init__(self, model: nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None: super().__init__() _check_config_compatible(peft_config) _prepare_model_for_gradient_checkpointing(model) self.modules_to_save = None self.base_model = MixedModel(model, {adapter_name: peft_config}, adapter_name) self.set_modules_to_save(peft_config, adapter_name) self.config = getattr(model, "config", DUMMY_MODEL_CONFIG) # the `pretraining_tp` is set for some models to simulate Tensor Parallelism during inference to avoid # numerical differences, https://github.com/pytorch/pytorch/issues/76232 - to avoid any unexpected # behavior we disable that in this line. if hasattr(self.base_model, "config") and hasattr(self.base_model.config, "pretraining_tp"): self.base_model.config.pretraining_tp = 1 @property def peft_config(self) -> dict[str, PeftConfig]: return self.base_model.peft_config @property def active_adapter(self) -> str: return self.base_model.active_adapter @property def active_adapters(self) -> list[str]: return self.base_model.active_adapters def get_nb_trainable_parameters(self): r""" Returns the number of trainable parameters and number of all parameters in the model. """ # note: same as PeftModel.get_nb_trainable_parameters trainable_params = 0 all_param = 0 for _, param in self.named_parameters(): num_params = param.numel() # if using DS Zero 3 and the weights are initialized empty if num_params == 0 and hasattr(param, "ds_numel"): num_params = param.ds_numel # Due to the design of 4bit linear layers from bitsandbytes # one needs to multiply the number of parameters by 2 to get # the correct number of parameters if param.__class__.__name__ == "Params4bit": num_params = num_params * 2 all_param += num_params if param.requires_grad: trainable_params += num_params return trainable_params, all_param def print_trainable_parameters(self): """ Prints the number of trainable parameters in the model. Note: print_trainable_parameters() uses get_nb_trainable_parameters() which is different from num_parameters(only_trainable=True) from huggingface/transformers. get_nb_trainable_parameters() returns (trainable parameters, all parameters) of the Peft Model which includes modified backbone transformer model. For techniques like LoRA, the backbone transformer model is modified in place with LoRA modules. However, for prompt tuning, the backbone transformer model is unmodified. num_parameters(only_trainable=True) returns number of trainable parameters of the backbone transformer model which can be different. """ # note: same as PeftModel.print_trainable_parameters trainable_params, all_param = self.get_nb_trainable_parameters() print( f"trainable params: {trainable_params:,d} || " f"all params: {all_param:,d} || " f"trainable%: {100 * trainable_params / all_param:.4f}" ) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: if name == "base_model": # see #1892: prevent infinite recursion if class is not initialized raise return getattr(self.base_model, name) def forward(self, *args: Any, **kwargs: Any): """ Forward pass of the model. """ return self.base_model(*args, **kwargs) def generate(self, *args: Any, **kwargs: Any): """ Generate output. """ return self.base_model.generate(*args, **kwargs) @contextmanager def disable_adapter(self): """ Disables the adapter module. """ try: self.base_model.disable_adapter_layers() yield finally: self.base_model.enable_adapter_layers() def add_adapter(self, adapter_name: str, peft_config: PeftConfig, low_cpu_mem_usage: bool = False) -> None: """ Add an adapter to the model based on the passed configuration. This adapter is not trained. To load a trained adapter, check out [`PeftModel.load_adapter`]. The name for the new adapter should be unique. The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active adapter. Args: adapter_name (`str`): The name of the adapter to be added. peft_config ([`PeftConfig`]): The configuration of the adapter to be added. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device. Useful to speed up the process when loading saved adapters. <Tip> Don't use `low_cpu_mem_usage=True` when creating a new PEFT adapter for training (training is untested and discouraged for PeftMixedModel in general). </Tip> """ _check_config_compatible(peft_config) try: self.peft_config[adapter_name] = peft_config self.base_model.inject_adapter(self, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) except Exception: # something went wrong, roll back if adapter_name in self.peft_config: del self.peft_config[adapter_name] raise self.set_modules_to_save(peft_config, adapter_name) def set_modules_to_save(self, peft_config: PeftConfig, adapter_name: str) -> None: if (modules_to_save := getattr(peft_config, "modules_to_save", None)) is None: return if self.modules_to_save is None: self.modules_to_save = set(modules_to_save) else: self.modules_to_save.update(modules_to_save) _set_trainable(self, adapter_name, modules_to_save=peft_config.modules_to_save) def set_adapter(self, adapter_name: Union[str, list[str]]) -> None: """ Sets the active adapter(s) for the model. Note that the order in which the adapters are applied during the forward pass may not be the same as the order in which they are passed to this function. Instead, the order during the forward pass is determined by the order in which the adapters were loaded into the model. The active adapters only determine which adapters are active during the forward pass, but not the order in which they are applied. Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is not desired, use the following code. ```py >>> for name, param in model_peft.named_parameters(): ... if ...: # some check on name (ex. if 'lora' in name) ... param.requires_grad = False ``` Args: adapter_name (`str` or `List[str]`): The name of the adapter(s) to be activated. """ if isinstance(adapter_name, str): adapter_name = [adapter_name] mismatched = set(adapter_name) - set(self.peft_config.keys()) if mismatched: raise ValueError( f"Adapter(s) {sorted(mismatched)} not found, available adapters: {sorted(self.peft_config.keys())}" ) self.base_model.set_adapter(adapter_name) _set_adapter(self, adapter_name) def delete_adapter(self, adapter_name: Union[str, list[str]]) -> None: if isinstance(adapter_name, str): adapter_name = [adapter_name] mismatched = set(adapter_name) - set(self.peft_config.keys()) if mismatched: raise ValueError( f"Adapter(s) {sorted(mismatched)} not found, available adapters: {sorted(self.peft_config.keys())}" ) self.base_model.delete_adapter(adapter_name) def merge_and_unload(self, *args: Any, **kwargs: Any): r""" This method merges the adapter layers into the base model. This is needed if someone wants to use the base model as a standalone model. Args: progressbar (`bool`): whether to show a progressbar indicating the unload and merge process safe_merge (`bool`): whether to activate the safe merging check to check if there is any potential Nan in the adapter weights adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ return self.base_model.merge_and_unload(*args, **kwargs) def unload(self, *args: Any, **kwargs: Any): """ Gets back the base model by removing all the adapter modules without merging. This gives back the original base model. """ return self.base_model.unload(*args, **kwargs) def get_layer_status(self): raise TypeError(f"get_layer_status is not supported for {self.__class__.__name__}.") def get_model_status(self): raise TypeError(f"get_model_status is not supported for {self.__class__.__name__}.") @classmethod def _split_kwargs(cls, kwargs: dict[str, Any]): return PeftModel._split_kwargs(kwargs) def _check_new_adapter_config(self, peft_config: PeftConfig, is_trainable: bool) -> None: return PeftModel._check_new_adapter_config(self, peft_config, is_trainable=is_trainable) def load_adapter(self, model_id: str, adapter_name: str, *args: Any, **kwargs: Any): """ Load a trained adapter into the model. The name for the new adapter should be unique. The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active adapter. Args: adapter_name (`str`): The name of the adapter to be added. peft_config ([`PeftConfig`]): The configuration of the adapter to be added. is_trainable (`bool`, *optional*, defaults to `False`): Whether the adapter should be trainable or not. If `False`, the adapter will be frozen and can only be used for inference. torch_device (`str`, *optional*, defaults to None): The device to load the adapter on. If `None`, the device will be inferred. autocast_adapter_dtype (`bool`, *optional*, defaults to `True`): Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect select PEFT tuners. ephemeral_gpu_offload (`bool`, *optional*, defaults to `False`): Whether to use ephemeral GPU offloading for partially loaded modules. Defaults to `False`. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device before loading the saved weights. Useful to speed up the process. kwargs: (`optional`): Additional arguments to modify the way the adapter is loaded, e.g. the token for Hugging Face Hub. """ # the low_cpu_mem_usage option is handled through kwargs output = PeftModel.load_adapter(self, model_id, adapter_name, *args, **kwargs) # TODO: not quite clear why this is necessary but tests fail without it self.set_adapter(self.active_adapters) return output def create_or_update_model_card(self, output_dir: str): raise NotImplementedError(f"Model card creation is not supported for {self.__class__.__name__} (yet).") def save_pretrained( self, save_directory: str, safe_serialization: bool = False, selected_adapters: Optional[list[str]] = None, **kwargs: Any, ): raise NotImplementedError(f"Saving is not supported for {self.__class__.__name__} (yet).") @classmethod def from_pretrained( cls, model: nn.Module, model_id: str | os.PathLike, adapter_name: str = "default", is_trainable: bool = False, config: Optional[PeftConfig] = None, **kwargs: Any, ): r""" Instantiate a PEFT mixed model from a pretrained model and loaded PEFT weights. Note that the passed `model` may be modified inplace. Args: model (`nn.Module`): The model to be adapted. model_id (`str` or `os.PathLike`): The name of the PEFT configuration to use. Can be either: - A string, the `model id` of a PEFT configuration hosted inside a model repo on the Hugging Face Hub. - A path to a directory containing a PEFT configuration file saved using the `save_pretrained` method (`./my_peft_config_directory/`). adapter_name (`str`, *optional*, defaults to `"default"`): The name of the adapter to be loaded. This is useful for loading multiple adapters. is_trainable (`bool`, *optional*, defaults to `False`): Whether the adapter should be trainable or not. If `False`, the adapter will be frozen and use for inference config ([`~peft.PeftConfig`], *optional*): The configuration object to use instead of an automatically loaded configuration. This configuration object is mutually exclusive with `model_id` and `kwargs`. This is useful when configuration is already loaded before calling `from_pretrained`. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device before loading the saved weights. Useful to speed up the process. kwargs: (`optional`): Additional keyword arguments passed along to the specific PEFT configuration class. """ # note: adapted from PeftModel.from_pretrained from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING, PEFT_TYPE_TO_MIXED_MODEL_MAPPING # load the config if config is None: config = PEFT_TYPE_TO_CONFIG_MAPPING[ PeftConfig._get_peft_type( model_id, subfolder=kwargs.get("subfolder", None), revision=kwargs.get("revision", None), cache_dir=kwargs.get("cache_dir", None), use_auth_token=kwargs.get("use_auth_token", None), ) ].from_pretrained(model_id, **kwargs) elif isinstance(config, PeftConfig): config.inference_mode = not is_trainable else: raise ValueError(f"The input config must be a PeftConfig, got {config.__class__}") # note: this is different from PeftModel.from_pretrained if config.peft_type not in PEFT_TYPE_TO_MIXED_MODEL_MAPPING: raise ValueError(f"Adapter of type {config.peft_type} is not supported for mixed models.") if (getattr(model, "hf_device_map", None) is not None) and len( set(model.hf_device_map.values()).intersection({"cpu", "disk"}) ) > 0: remove_hook_from_submodules(model) if config.is_prompt_learning and is_trainable: # note: should not be possible to reach, but just in case raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.") else: config.inference_mode = not is_trainable # note: this is different from PeftModel.from_pretrained, we always return a PeftMixedModel model = cls(model, config, adapter_name) # the low_cpu_mem_usage option is handled through kwargs model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs) return model
peft/src/peft/mixed_model.py/0
{ "file_path": "peft/src/peft/mixed_model.py", "repo_id": "peft", "token_count": 8243 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List import torch.nn as nn from peft.utils import _freeze_adapter, _get_submodules from .config import AdaptionPromptConfig, prepare_config from .layer import AdaptedAttention from .utils import is_adaption_prompt_trainable class AdaptionPromptModel(nn.Module): """ Implements adaption prompts as described in https://arxiv.org/pdf/2303.16199.pdf. The top L attention modules are replaced with AdaptedAttention modules that wrap the original ones, but insert trainable prompts with gates (for zero init). Notes on the multi-adapter pattern: - We store the states of different adapters by keeping a dictionary of AdaptedAttention modules indexed by adapter name. - Every time we switch adapters, we remove the modules of the currently active adapter from the model, store them in the dictionary, and replace them with the modules of the new adapter. - To avoid duplicated and potentially inconsistent state, the currently active adapter is always removed from the dictionary. - Disabling the adapter would also result in the modules being removed from the model. """ def __init__(self, model, configs: Dict, adapter_name: str): super().__init__() self.model = model # Store adapter configs by name. self.peft_config: Dict[str, AdaptionPromptConfig] = {} # Store lists of the parents of the affected attention modules by adapter name. # We keep references to the parents so we can swap the adapters in-and-out of the model. self._parents: Dict[str, List[nn.Module]] = {} # Store lists of cached AdaptedAttention modules by name. self._cached_adapters: Dict[str, List] = {} # The name of the currently active adapter. self._active_adapter = None # Whether the adapter is enabled. self._enabled = True self.forward = self.model.forward self.add_adapter(adapter_name, configs[adapter_name]) self._mark_only_adaption_prompts_as_trainable(self.model) def add_adapter(self, adapter_name: str, config: AdaptionPromptConfig) -> None: """Add an adapter with the given name and config.""" config = prepare_config(config, self.model) if adapter_name in self.peft_config: raise ValueError(f"Adapter with name '{adapter_name}' already exists.") parents = [] for name, _ in self.model.named_modules(): if name.endswith(config.target_modules): par, _, _ = _get_submodules(self.model, name) parents.append(par) if len(parents) < config.adapter_layers: raise ValueError( f"Config specifies more adapter layers '{config.adapter_layers}' than the model has '{len(parents)}'." ) # Note that if the target modules are not in Sequential, ModuleList, or # some other PyTorch ordered container, the behavior is undefined as we # assume here that the order of the modules is the same as the order of # the transformer decoder layers. parents = parents[-config.adapter_layers :] self._parents[adapter_name] = parents # It is only None during initialization. # If it is disabled, we don't have to remove the modules. if self._active_adapter is not None and self._enabled: self._remove_adapted_attentions(self._active_adapter) self._active_adapter = adapter_name self.peft_config[adapter_name] = config self._create_adapted_attentions(config, parents) if not self._enabled: self._remove_adapted_attentions(self._active_adapter) if config.inference_mode: _freeze_adapter(self.model, adapter_name) def set_adapter(self, adapter_name: str) -> None: """Set the model to use the adapter with the given name.""" if self._active_adapter == adapter_name: return if adapter_name not in self.peft_config: raise ValueError(f"Adapter with name '{adapter_name}' does not exist.") if self._enabled: self._remove_adapted_attentions(self._active_adapter) self._set_adapted_attentions(adapter_name) self._active_adapter = adapter_name def enable_adapter_layers(self): """Enable adapter layers by swapping in cached AdaptedAttention modules.""" self._enabled = True self._set_adapted_attentions(self._active_adapter) def disable_adapter_layers(self): """Disable adapter layers by swapping out AdaptedAttention modules.""" self._enabled = False self._remove_adapted_attentions(self._active_adapter) def _create_adapted_attentions(self, config: AdaptionPromptConfig, parents: List[nn.Module]) -> None: """Wrap LlamaAttention modules with newly created AdaptedAttention modules.""" for par in parents: attn = AdaptedAttention( model_type=self.model.config.model_type, adapter_len=config.adapter_len, model=getattr(par, config.target_modules), ) setattr(par, config.target_modules, attn) def _set_adapted_attentions(self, adapter_name: str) -> None: """Replace LlamaAttention modules with cached AdaptedAttention modules.""" cached = self._cached_adapters[adapter_name] del self._cached_adapters[adapter_name] config = self.peft_config[adapter_name] for i, par in enumerate(self._parents[adapter_name]): setattr(par, config.target_modules, cached[i]) def _remove_adapted_attentions(self, adapter_name: str) -> None: """Remove AdaptedAttention modules from the model and store them in the cache.""" config = self.peft_config[adapter_name] adapted_attentions = [] for par in self._parents[adapter_name]: attn = getattr(par, config.target_modules) adapted_attentions.append(attn) setattr(par, config.target_modules, attn.model) self._cached_adapters[adapter_name] = adapted_attentions def _mark_only_adaption_prompts_as_trainable(self, model: nn.Module) -> None: """Freeze all parameters of the model except the adaption prompts.""" for n, p in model.named_parameters(): if not is_adaption_prompt_trainable(n): p.requires_grad = False def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: # This is necessary as e.g. causal models have various methods that we # don't want to re-implement here. if name == "model": # see #1892: prevent infinite recursion if class is not initialized raise return getattr(self.model, name)
peft/src/peft/tuners/adaption_prompt/model.py/0
{ "file_path": "peft/src/peft/tuners/adaption_prompt/model.py", "repo_id": "peft", "token_count": 2846 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import warnings from typing import Optional from torch import nn from torch.nn.modules import Module from tqdm import tqdm from peft.config import PeftConfig from peft.tuners.tuners_utils import BaseTuner, _get_submodules, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING, ModulesToSaveWrapper from .layer import LNTuningLayer class LNTuningModel(BaseTuner): """ Creates LayerNorm tuning from a pretrained transformer model. The method is described in detail in https://arxiv.org/abs/2312.11420. Args: model ([`torch.nn.Module`]): The model to be adapted. config ([`LNTuningConfig`]): The configuration of the Lora model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): This option has no effect on LN tuning but exists for consistency with other PEFT methods. Returns: 'torch.nn.Module': The adapted model with LayerNorm tuned on. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import get_peft_model, TaskType, LNTuningConfig >>> peft_config = LNTuningConfig( ... task_type=TaskType.CAUSAL_LM, ... ) >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") >>> model = get_peft_model(model, peft_config) >>> model.print_trainable_parameters() ``` **Attributes**: - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`LNTuningConfig`]): The configuration of the Lora model. """ prefix: str = "ln_tuning_" def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False) -> None: # self.adapter_name = adapter_name super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: if name == "model": # see #1892: prevent infinite recursion if class is not initialized raise return getattr(self.model, name) # TODO: here need to handle the modules_to_save rather than the target_modules @staticmethod def _prepare_adapter_config(peft_config: PeftConfig, model_config: dict) -> PeftConfig: if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = set( TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING[model_config["model_type"]] ) return peft_config def _create_and_replace( self, peft_config: PeftConfig, adapter_name: str, target: Module, target_name: str, parent: Module, current_key: str, ) -> None: # replace the original module with a same new module new_module = self._create_new_module(peft_config, target, adapter_name) if adapter_name != self.active_adapter: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) def _create_new_module( self, peft_config: PeftConfig, target: Module, adapter_name: str, ) -> Module: if not isinstance(target, LNTuningLayer): new_module = LNTuningLayer(target, adapter_name) else: new_module = target new_module.update_layer(target.base_layer, adapter_name) return new_module def _replace_module(self, parent: Module, child_name: str, new_module: Module, child: Module) -> None: setattr(parent, child_name, new_module) if hasattr(child, "base_layer"): child = child.base_layer if getattr(child, "state", None) is not None: if hasattr(new_module, "base_layer"): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for name, module in new_module.named_modules(): weight = child.qweight if hasattr(child, "qweight") else child.weight module.to(weight.device) def _mark_only_adapters_as_trainable(self, model: Module): for n, p in model.named_parameters(): if self.prefix not in n: p.requires_grad = False else: p.requires_grad = True def _check_target_module_exists(self, peft_config: PeftConfig, key: str) -> bool: return check_target_module_exists(peft_config, key) def _set_adapter_layers(self, enabled: bool) -> None: for module in self.model.modules(): if isinstance(module, (LNTuningLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: """Enable all adapters. Call this if you have previously disabled all adapters and want to re-enable them. """ self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: """Disable all adapters. When disabling all adapters, the model output corresponds to the output of the base model. """ self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str) -> None: for module in self.model.modules(): if isinstance(module, LNTuningLayer): if module.merged: warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name def _unload_and_optionally_merge( self, merge=True, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, ): self._unloading_checks(adapter_names) key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] desc = "Unloading adapters " + ("and merging " if merge else "") + "model" for key in tqdm(key_list, disable=not progressbar, desc=desc): try: parent, target, target_name = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, "base_layer"): if merge: target.merge(adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) return self.model def unload(self): return self._unload_and_optionally_merge(merge=False) def merge_and_unload( self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None ) -> nn.Module: return self._unload_and_optionally_merge(merge=True)
peft/src/peft/tuners/ln_tuning/model.py/0
{ "file_path": "peft/src/peft/tuners/ln_tuning/model.py", "repo_id": "peft", "token_count": 3267 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Optional import torch from peft.import_utils import is_eetq_available from peft.tuners.lora.layer import LoraLayer from peft.tuners.tuners_utils import BaseTunerLayer if is_eetq_available(): from eetq import EetqLinear class EetqLoraLinear(torch.nn.Module, LoraLayer): def __init__( self, base_layer, adapter_name, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: bool = True, use_rslora: bool = False, use_dora: bool = False, lora_bias: bool = False, **kwargs, ): if use_dora: raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") super().__init__() LoraLayer.__init__(self, base_layer) # self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter # for backwards compatibility self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, lora_bias=lora_bias, ) def forward(self, x: torch.Tensor): result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = self._cast_input_dtype(x, lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result = result + output return result def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: raise AttributeError("Merging LoRA layers is not supported for Eetq layers.") def unmerge(self) -> None: raise AttributeError("Unmerging LoRA layers is not supported for Eetq layers.") def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep def dispatch_eetq( target: torch.nn.Module, adapter_name: str, **kwargs: Any, ) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_eetq_available() and isinstance(target_base_layer, EetqLinear): new_module = EetqLoraLinear(target, adapter_name, **kwargs) target.weight = target_base_layer.weight if hasattr(target, "bias"): target.bias = target_base_layer.bias return new_module
peft/src/peft/tuners/lora/eetq.py/0
{ "file_path": "peft/src/peft/tuners/lora/eetq.py", "repo_id": "peft", "token_count": 1928 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import math import warnings from typing import Any, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge class MultiplicativeDropoutLayer(nn.Module): """ Implements the multiplicative dropout layer for OFT. """ def __init__(self, p=0.0): """ Initializes the multiplicative dropout layer. Parameters: p (float): The probability of dropping out a block. Defaults to 0.0. """ super().__init__() self.p = p def forward(self, x): """ Applies multiplicative dropout to the input tensor. Parameters: x (Tensor): The input tensor of shape (D, H, H), where `D` represents the number of OFT blocks, and `H` is the size of the square blocks along the last two dimensions, the block size in OFT. """ if self.training: # Ensure the last two dimensions are the same if x.shape[-1] != x.shape[-2]: raise ValueError("The last two dimensions of input should be the same!") D, H, _ = x.shape # If block share, skip the multiplicative dropout if D == 1: return x num_to_replace = int(self.p * D) num_zeros = D - num_to_replace mask = torch.cat([torch.ones(num_to_replace, device=x.device), torch.zeros(num_zeros, device=x.device)]) mask = mask[torch.randperm(D)].view(D, 1, 1) eye_matrix = torch.eye(H, device=x.device).repeat(D, 1, 1) x = (1 - mask) * x + mask * eye_matrix return x class OFTLayer(BaseTunerLayer): """ Implements the OFT layer. """ # All names of layers that may contain adapter weights adapter_layer_names = ("oft_r", "oft_s") # other_param_names is defined on parent class other_param_names = ("r", "oft_block_size", "oft_dropout") def __init__(self, base_layer: nn.Module, **kwargs) -> None: """ Initializes the OFT layer. Note, currently only support linear layer and convolutional layer, with further support for other layers to be added soon. Parameters: base_layer: the pretrained model layer """ self.base_layer = base_layer # OFT info self.oft_r = nn.ParameterDict({}) self.oft_s = nn.ParameterDict({}) self.r = {} self.oft_block_size = {} self.oft_dropout = nn.ModuleDict({}) self.coft = {} self.eps = {} self.block_share = {} # Mark the weight as unmerged self._disable_adapters = False self.merged_adapters = [] self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): in_features, out_features = base_layer.in_features, base_layer.out_features elif isinstance(base_layer, nn.Conv2d): in_features, out_features = base_layer.in_channels, base_layer.out_channels else: raise ValueError(f"Unsupported layer type {type(base_layer)}") self.in_features = in_features self.out_features = out_features @property def _available_adapters(self) -> set[str]: return {*self.oft_r} def set_scale(self, adapter, scale): if adapter not in self.scaling: # Ignore the case where the adapter is not in the layer return warnings.warn("Scaling operation for OFT not supported! Automatically set scale to 1.") def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.oft_r.keys(): continue warnings.warn("Scaling operation for OFT not supported! Automatically set scale to 1.") def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.oft_r.keys(): continue warnings.warn("Unscaling operation for OFT not supported! Keeping scale to 1.") def update_layer(self, adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights): """ Update the linear layer with trainable OFT weights. Override for other layer types. """ """Internal function to create oft adapter Args: adapter_name (`str`): Name for the adapter to add. r (`int`): Rank for the added adapter. oft_block_size (`int`): The block size for added adapter. module_dropout (`float`): The multiplicative dropout probability for disabling adapter blocks during training. coft (`bool`): Whether to use the constrained variant of OFT or not. eps (`float`): The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True. block_share (`bool`): Whether to share the OFT parameters between blocks or not. init_weights (`bool`): Whether to initialize weights. """ # Initialize the MultiplicativeDropoutLayer for module_dropout > 0.0. if module_dropout > 0.0: oft_dropout_layer = MultiplicativeDropoutLayer(p=module_dropout) else: oft_dropout_layer = nn.Identity() self.oft_dropout.update(nn.ModuleDict({adapter_name: oft_dropout_layer})) if r == 0 and oft_block_size != 0: if self.in_features % oft_block_size != 0 or oft_block_size > self.in_features: old_oft_block_size = oft_block_size oft_block_size = self.adjust_oft_parameters(self.in_features, oft_block_size) warnings.warn( f"Invalid `oft_block_size` ({old_oft_block_size})! Adjusted `oft_block_size` to ({oft_block_size})." ) r = int(self.in_features // oft_block_size) elif r != 0 and oft_block_size == 0: if self.in_features % r != 0 or r > self.in_features: old_r = r r = self.adjust_oft_parameters(self.in_features, r) warnings.warn(f"Invalid `r` ({old_r})! Adjusted `r` to ({r}).") oft_block_size = int(self.in_features // r) else: raise ValueError( "Something went wrong, please report this error: https://github.com/huggingface/peft/issues" ) self.coft[adapter_name] = coft self.block_share[adapter_name] = block_share self.eps[adapter_name] = eps * math.ceil(self.out_features / r) * math.ceil(self.out_features / r) # Create weights with provided shape if block_share: self.oft_r[adapter_name] = nn.Parameter( torch.empty(1, math.ceil(self.in_features / r), math.ceil(self.in_features / r)) ) else: self.oft_r[adapter_name] = nn.Parameter( torch.empty(r, math.ceil(self.in_features / r), math.ceil(self.in_features / r)) ) self.oft_s[adapter_name] = nn.Parameter(torch.empty(int(self.out_features), 1)) # Initialize weights self.reset_oft_parameters(adapter_name, init_weights) # set oft r and block size self.r[adapter_name] = r self.oft_block_size[adapter_name] = oft_block_size # Move new weights to device self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_oft_parameters(self, adapter_name, init_weights): """ Reset the OFT parameters. """ if init_weights is False: nn.init.normal_(self.oft_r[adapter_name], mean=0.0, std=0.1) nn.init.normal_(self.oft_s[adapter_name], mean=1.0, std=0.1) return if adapter_name in self.oft_r.keys(): if init_weights is True: # initialize oft_r to zero nn.init.zeros_(self.oft_r[adapter_name]) nn.init.ones_(self.oft_s[adapter_name]) else: raise ValueError(f"Unknown initialization {init_weights=}") def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor: """ Perform the Cayley parametrization on a batch of skew-symmetric matrices. Args: data: A batch of skew-symmetric matrices of shape (b, r, c). """ b, r, c = data.shape # Ensure the input matrix is skew-symmetric skew_mat = 0.5 * (data - data.transpose(1, 2)) id_mat = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) # noqa: E741 # Perform the Cayley parametrization Q = torch.linalg.solve(id_mat + skew_mat, id_mat - skew_mat, left=False) return Q # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L155 def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor: if oft_r.shape[0] == 1: # block share blocks = [oft_r[0, ...] for i in range(rank)] else: blocks = [oft_r[i, ...] for i in range(rank)] # Use torch.block_diag to create the block diagonal matrix A = torch.block_diag(*blocks) return A # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L52 def _project_batch(self, oft_r, eps=1e-5): # scaling factor for each of the smaller block matrix eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0])) I = ( # noqa: E741 torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype) .unsqueeze(0) .expand_as(oft_r) ) diff = oft_r - I norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True) mask = (norm_diff <= eps).bool() out = torch.where(mask, oft_r, I + eps * (diff / norm_diff)) return out def adjust_oft_parameters(self, in_features, params): """ Adjust the OFT parameters to be divisible by the in_features dimension. """ if params < in_features: higher_params = params while higher_params <= in_features and in_features % higher_params != 0: higher_params += 1 else: return in_features lower_params = params while lower_params > 1 and in_features % lower_params != 0: lower_params -= 1 if (params - lower_params) <= (higher_params - params): return lower_params else: return higher_params class Linear(nn.Module, OFTLayer): """OFT implemented in Linear layer""" def __init__( self, base_layer, adapter_name: str, r: int = 8, oft_block_size: int = 0, module_dropout: float = 0.0, coft: bool = False, eps: float = 6e-5, block_share: bool = False, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) init_weights: Union[bool, str] = True, is_target_conv_1d_layer: bool = False, **kwargs, ) -> None: super().__init__() OFTLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights) self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self._available_adapters: base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weights = base_layer.weight.data oft_mat, oft_s = self.get_delta_weight(active_adapter) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = torch.mm(oft_mat, orig_weights) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights * oft_s if not torch.isfinite(orig_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = orig_weights.contiguous() else: oft_mat, oft_s = self.get_delta_weight(active_adapter) orig_weights = base_layer.weight.data orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = torch.mm(oft_mat, orig_weights) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights * oft_s base_layer.weight.data = orig_weights.contiguous() self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.oft_r.keys(): oft_mat, oft_s = self.get_delta_weight(active_adapter) orig_weights = self.get_base_layer().weight.data orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = torch.mm(oft_mat.t(), orig_weights) orig_weights = torch.transpose(orig_weights, 0, 1) self.get_base_layer().weight.data = orig_weights * (1 / oft_s) def get_delta_weight(self, adapter_name) -> tuple[torch.Tensor, torch.Tensor]: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ oft_r = self.oft_r[adapter_name] oft_s = self.oft_s[adapter_name] rank = self.r[adapter_name] coft = self.coft[adapter_name] eps = self.eps[adapter_name] if coft: with torch.no_grad(): oft_r.copy_(self._project_batch(oft_r, eps=eps)) orth_rotate = self._cayley_batch(oft_r) weight = self._block_diagonal(orth_rotate, rank) return weight, oft_s def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: oft_rotation = torch.eye(self.in_features, device=x.device, dtype=previous_dtype) oft_scale = torch.ones((int(self.out_features), 1), device=x.device, dtype=previous_dtype) for active_adapter in self.active_adapters: if active_adapter not in self.oft_r.keys(): continue oft_r = self.oft_r[active_adapter] oft_s = self.oft_s[active_adapter] dropout = self.oft_dropout[active_adapter] rank = self.r[active_adapter] coft = self.coft[active_adapter] eps = self.eps[active_adapter] if coft: with torch.no_grad(): oft_r.copy_(self._project_batch(oft_r, eps=eps)) orth_rotate = self._cayley_batch(oft_r) orth_rotate = dropout(orth_rotate) oft_mat = self._block_diagonal(orth_rotate, rank) oft_rotation = oft_mat @ oft_rotation oft_scale = oft_s * oft_scale x = x.to(self.get_base_layer().weight.data.dtype) orig_weight = self.get_base_layer().weight.data orig_weight = torch.transpose(orig_weight, 0, 1) oft_rotation = oft_rotation.to(previous_dtype) orig_weight = orig_weight.to(previous_dtype) rotated_weight = torch.mm(oft_rotation, orig_weight) rotated_weight = torch.transpose(rotated_weight, 0, 1) scaled_rotated_weight = rotated_weight * oft_scale scaled_rotated_weight = scaled_rotated_weight.to(previous_dtype) bias = self.get_base_layer().bias.to(previous_dtype) if self.get_base_layer().bias is not None else None result = F.linear(input=x, weight=scaled_rotated_weight, bias=bias) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "oft." + rep class Conv2d(nn.Module, OFTLayer): """OFT implemented in Conv2d layer""" def __init__( self, base_layer: nn.Module, adapter_name: str, r: int = 8, oft_block_size: int = 0, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) module_dropout: float = 0.0, coft: bool = False, eps: float = 6e-5, block_share: bool = False, init_weights: Union[bool, str] = True, **kwargs, ) -> None: super().__init__() OFTLayer.__init__(self, base_layer) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name # Create adapter and set it active self.update_layer(adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights) def update_layer(self, adapter_name, r, oft_block_size, module_dropout, coft, eps, block_share, init_weights): """ Update the conv2d layer with trainable OFT weights. """ # Initialize the MultiplicativeDropoutLayer for module_dropout > 0.0. if module_dropout > 0.0: oft_dropout_layer = MultiplicativeDropoutLayer(p=module_dropout) else: oft_dropout_layer = nn.Identity() self.oft_dropout.update(nn.ModuleDict({adapter_name: oft_dropout_layer})) # layer information from the base layer base_layer = self.get_base_layer() conv_filter_dim = self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0] if r == 0 and oft_block_size != 0: if conv_filter_dim % oft_block_size != 0 or oft_block_size > conv_filter_dim: old_oft_block_size = oft_block_size oft_block_size = self.adjust_oft_parameters(conv_filter_dim, oft_block_size) warnings.warn( f"Invalid `oft_block_size` ({old_oft_block_size})! Adjusted `oft_block_size` to ({oft_block_size})." ) r = int(conv_filter_dim // oft_block_size) elif r != 0 and oft_block_size == 0: if conv_filter_dim % r != 0 or r > conv_filter_dim: old_r = r r = self.adjust_oft_parameters(conv_filter_dim, r) warnings.warn(f"Invalid `r` ({old_r})! Adjusted `r` to ({r}).") oft_block_size = int(conv_filter_dim // r) else: raise ValueError( "Something went wrong, please report this error: https://github.com/huggingface/peft/issues" ) self.coft[adapter_name] = coft self.block_share[adapter_name] = block_share self.eps[adapter_name] = eps * math.ceil(self.out_features / r) * math.ceil(self.out_features / r) # Create weights with provided shape if block_share: self.oft_r[adapter_name] = nn.Parameter( torch.empty(1, math.ceil(conv_filter_dim / r), math.ceil(conv_filter_dim / r)) ) else: self.oft_r[adapter_name] = nn.Parameter( torch.empty(r, math.ceil(conv_filter_dim / r), math.ceil(conv_filter_dim / r)) ) self.oft_s[adapter_name] = nn.Parameter(torch.empty(int(self.out_features), 1)) # Initialize weights self.reset_oft_parameters(adapter_name, init_weights) # set oft r and block size self.r[adapter_name] = r self.oft_block_size[adapter_name] = oft_block_size # Move new weights to device self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.oft_r.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weights = base_layer.weight.data.clone() oft_mat, oft_s = self.get_delta_weight(active_adapter) orig_weights = orig_weights.view( self.out_features, self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0] ) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = torch.mm(oft_mat, orig_weights) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights * oft_s orig_weights = orig_weights.view( self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0] ) base_layer.weight.data = orig_weights.contiguous() else: oft_mat, oft_s = self.get_delta_weight(active_adapter) orig_weights = base_layer.weight.data.clone() orig_weights = orig_weights.view( self.out_features, self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0] ) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = torch.mm(oft_mat, orig_weights) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights * oft_s orig_weights = orig_weights.view( self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0] ) base_layer.weight.data = orig_weights.contiguous() self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.oft_r.keys(): oft_mat, oft_s = self.get_delta_weight(active_adapter) orig_weights = self.get_base_layer().weight.data.clone() orig_weights = orig_weights.view( self.out_features, self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0], ) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = torch.mm(oft_mat.t(), orig_weights) orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights * (1 / oft_s) orig_weights = orig_weights.view( self.out_features, self.in_features, self.get_base_layer().kernel_size[0], self.get_base_layer().kernel_size[0], ) self.get_base_layer().weight.data = orig_weights def get_delta_weight(self, adapter_name) -> tuple[torch.Tensor, torch.Tensor]: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ oft_r = self.oft_r[adapter_name] oft_s = self.oft_s[adapter_name] rank = self.r[adapter_name] coft = self.coft[adapter_name] eps = self.eps[adapter_name] if coft: with torch.no_grad(): oft_r.copy_(self._project_batch(oft_r, eps=eps)) orth_rotate = self._cayley_batch(oft_r) weight = self._block_diagonal(orth_rotate, rank) return weight, oft_s def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: oft_rotation = torch.eye( self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0], device=x.device, dtype=previous_dtype, ) oft_scale = torch.ones((int(self.out_features), 1), device=x.device, dtype=previous_dtype) for active_adapter in self.active_adapters: if active_adapter not in self.oft_r.keys(): continue oft_r = self.oft_r[active_adapter] oft_s = self.oft_s[active_adapter] dropout = self.oft_dropout[active_adapter] rank = self.r[active_adapter] coft = self.coft[active_adapter] eps = self.eps[active_adapter] if coft: with torch.no_grad(): oft_r.copy_(self._project_batch(oft_r, eps=eps)) orth_rotate = self._cayley_batch(oft_r) orth_rotate = dropout(orth_rotate) oft_mat = self._block_diagonal(orth_rotate, rank) oft_rotation = oft_mat @ oft_rotation oft_scale = oft_s * oft_scale x = x.to(self.get_base_layer().weight.data.dtype) orig_weights = self.base_layer.weight.data orig_weights = orig_weights.view( self.out_features, self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0], ) orig_weights = torch.transpose(orig_weights, 0, 1) oft_rotation = oft_rotation.to(previous_dtype) orig_weights = orig_weights.to(previous_dtype) rotated_weight = torch.mm(oft_rotation, orig_weights) rotated_weight = torch.transpose(rotated_weight, 0, 1) scaled_rotated_weight = rotated_weight * oft_scale scaled_rotated_weight = scaled_rotated_weight.view( self.out_features, self.in_features, self.get_base_layer().kernel_size[0], self.get_base_layer().kernel_size[0], ) result = F.conv2d( input=x, weight=scaled_rotated_weight, bias=self.get_base_layer().bias, padding=self.get_base_layer().padding[0], stride=self.get_base_layer().stride[0], ) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "oft." + rep
peft/src/peft/tuners/oft/layer.py/0
{ "file_path": "peft/src/peft/tuners/oft/layer.py", "repo_id": "peft", "token_count": 14598 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import logging import os import re import textwrap import warnings from abc import ABC, abstractmethod from contextlib import contextmanager, nullcontext from typing import Any, Optional, Union import torch from accelerate.hooks import AlignDevicesHook from accelerate.utils import named_module_tensors, offload_state_dict from torch import nn from transformers import PreTrainedModel from transformers.pytorch_utils import Conv1D from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND from peft.utils.constants import ( DUMMY_MODEL_CONFIG, DUMMY_TARGET_MODULES, EMBEDDING_LAYER_NAMES, MIN_TARGET_MODULES_FOR_OPTIMIZATION, SEQ_CLS_HEAD_NAMES, ) from peft.utils.integrations import init_empty_weights from peft.utils.peft_types import PeftType, TaskType from ..config import PeftConfig from ..utils import ModulesToSaveWrapper, _get_submodules from ._buffer_dict import BufferDict logger = logging.getLogger(__name__) @contextmanager def onload_layer(layer): r""" A utility for modifying a module containing one or more tuners and a base layer, any of which are offloaded to the CPU or disk. Moves a module's sub-modules to the execution device before some action is performed, after that the base layer state dictionary is re-assigned (if that layer was offloaded to the disk) and finally the parameters are offloaded. If the module has no offloaded sub-modules, this function does nothing. Args: layer ('torch.nn.Module'): layer with tuners to be merged """ offloaded_modules = [] for name, module in layer.named_modules(): if name in ["", "base_layer"]: continue if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload: module._hf_hook.pre_forward(module) offloaded_modules.append(module) base_layer_offload = False if hasattr(layer, "base_layer") and ( hasattr(layer.base_layer, "_hf_hook") and isinstance(layer.base_layer._hf_hook, AlignDevicesHook) and layer.base_layer._hf_hook.offload ): # check if the base layer is disk-offloaded (must contain a 'dataset' and an offload index) if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values() and hasattr( layer.base_layer._hf_hook.weights_map, "dataset" ): # find the disk-offload index (maps modules to safetensors) from the `dataset` (OffloadedWeightsLoader object) index = layer.base_layer._hf_hook.weights_map.dataset.index module_name = list(dict(layer.base_layer._hf_hook.weights_map.dataset).keys())[0] # any module will do file_name = index[module_name]["safetensors_file"] base_name_arr = [] # get effective dir name for i in os.path.split(file_name): if "--" in i: base_name_arr.append(i) break base_name_arr.append(i) base_name = os.path.join(*base_name_arr) safetensors_filename = base_name + "-merged" layer.base_layer._hf_hook.pre_forward(layer.base_layer) base_layer_offload = True yield for module in offloaded_modules: module._hf_hook.post_forward(module, torch.tensor([])) if base_layer_offload: # re-make weights map (must be on cpu to send params to the disk via memmap if disk offload) layer.base_layer._hf_hook.weights_map = { name: param.to("cpu") for name, param in named_module_tensors(layer.base_layer) } # offload weights map to disk if original device is the disk if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values() and hasattr( layer.base_layer._hf_hook.weights_map, "dataset" ): # rewrite directory with merged weights offload_state_dict(safetensors_filename, layer.base_layer._hf_hook.weights_map) layer.base_layer._hf_hook.post_forward(layer.base_layer, torch.tensor([])) class BaseTuner(nn.Module, ABC): r""" A base tuner model that provides the common methods and attributes for all tuners that are injectable into a torch.nn.Module For adding a new Tuner class, one needs to overwrite the following methods: - **_prepare_adapter_config**: A private method to eventually prepare the adapter config, for example in case the field `target_modules` is missing. - **_create_and_replace**: A private method to create and replace the target module with the adapter module. - **_check_target_module_exists**: A private helper method to check if the passed module's key name matches any of the target modules in the adapter_config. The easiest is to check what is done in the `peft.tuners.lora.LoraModel` class. Attributes: model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached. forward (`Callable`): The forward method of the model. peft_config (`Union[`PeftConfig`, dict[str, PeftConfig]]`): The adapter configuration object, it should be a dictionary of `str` to `PeftConfig` objects. One can also pass a PeftConfig object and a new adapter will be created with the default name `adapter` or create a new dictionary with a key `adapter_name` and a value of that peft config. config (`dict[str, Any]`): The model configuration object, it should be a dictionary of `str` to `Any` objects. targeted_module_names (`list[str]`): The list of module names that were actually adapted. Can be useful to inspect if you want to quickly double-check that the `config.target_modules` were specified correctly. """ def __init__( self, model, peft_config: Union[PeftConfig, dict[str, PeftConfig]], adapter_name: str, low_cpu_mem_usage: bool = False, ) -> None: super().__init__() self.model = model self.targeted_module_names: list[str] = [] # For advanced developers, if you want to attach multiple adapters to your # model, just add a `peft_config` dict attribute to your model. if not hasattr(self, "peft_config"): self.peft_config = {adapter_name: peft_config} if isinstance(peft_config, PeftConfig) else peft_config else: logger.info( "Already found a `peft_config` attribute in the model. This will lead to having multiple adapters" " in the model. Make sure to know what you are doing!" ) if isinstance(peft_config, PeftConfig): self.peft_config[adapter_name] = peft_config else: # user is adding a dict of PeftConfigs self.peft_config.update(peft_config) self.active_adapter: str | list[str] = adapter_name self._pre_injection_hook(self.model, self.peft_config[adapter_name], adapter_name) if peft_config != PeftType.XLORA or peft_config[adapter_name] != PeftType.XLORA: self.inject_adapter(self.model, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) # Copy the peft_config in the injected model. self.model.peft_config = self.peft_config @property def active_adapters(self) -> list[str]: if isinstance(self.active_adapter, str): return [self.active_adapter] # is already a list of str return self.active_adapter def forward(self, *args: Any, **kwargs: Any): return self.model.forward(*args, **kwargs) def _pre_injection_hook(self, model: nn.Module, config: PeftConfig, adapter_name: str) -> None: r""" A hook to be called before the adapter is injected into the model. This method can be overridden by child classes to perform any pre-injection operations. Args: model (`nn.Module`): The model to be adapted. config (`PeftConfig`): The adapter config. adapter_name (`str`): The adapter name. """ pass @abstractmethod def _prepare_adapter_config(self, peft_config: PeftConfig, model_config: dict) -> PeftConfig: r""" A private method to eventually prepare the adapter config. For transformers based models, if `peft_config.target_modules` is None, we can automatically infer the target modules from the `TRANSFORMERS_MODELS_TO_XXX_TARGET_MODULES_MAPPING`. This method can be further refactored in the future to automatically infer it for all tuner models. Check out `peft.tuner.lora.LoraModel._prepare_adapter_config` for an example. Args: peft_config (`PeftConfig`): The adapter config. model_config (`dict`): The transformers model config, that config should contain the `model_type` key. """ ... def _prepare_model(self, peft_config: PeftConfig, model: nn.Module): r""" A private method to modify the model structure before adapter is applied. See `peft.tuner.lora.LoraModel._prepare_model` for an example. Args: peft_config (`PeftConfig`): The prepared adapter config. model (`nn.Module`): The model that is going to be adapted. """ pass @abstractmethod def _check_target_module_exists(peft_config: PeftConfig, key: str) -> bool: r""" A helper private method to check if the passed module's key name matches any of the target modules in the `peft_config.target_modules` list. If it does, return `True`, else return `False`. Args: peft_config (`PeftConfig`): The adapter config. key (`str`): The module's key name. """ ... @abstractmethod def _create_and_replace( self, peft_config: PeftConfig, adapter_name: str, target: nn.Module, target_name: str, parent: nn.Module, current_key: str, ) -> None: r""" Inplace replacement of the target module with the adapter layer. This method needs to be overridden by all the tuner classes. Check `peft.tuners.lora.LoraModel._create_and_replace` for an example. Args: peft_config (`PeftConfig`): The adapter config. adapter_name (`str`): The adapter name. target (`nn.Module`): The target module. target_name (`str`): The target module's name. parent (`nn.Module`): The parent module. current_key (`str`): The key of the current target being adapted. """ ... @abstractmethod def _mark_only_adapters_as_trainable(self, model: nn.Module): r""" A helper method to mark only the adapter layers as trainable (i.e. module.requires_grad = False) This needs to be overridden for all tuner classes to match the correct key names. Check `peft.tuners.lora.LoraModel._mark_only_adapters_as_trainable` for an example. """ ... @abstractmethod def disable_adapter_layers(self) -> None: """ Disable all adapters in-place. """ ... @abstractmethod def enable_adapter_layers(self) -> None: """ Enable all adapters in-place """ ... def _check_new_adapter_config(self, config: PeftConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ pass def _cast_adapter_dtype(self, adapter_name: str, autocast_adapter_dtype: bool = True) -> None: """ A helper method to cast the adapter weights to the correct dtype. Currently, this only upcasts float16 and bfloat16 to float32. Args: adapter_name (`str`): The adapter name. autocast_adapter_dtype (`bool`, *optional*): Whether to autocast the adapter dtype. Defaults to `True`. """ if not autocast_adapter_dtype: return dtypes_to_convert_to_fp32 = {torch.float16, torch.bfloat16} for module in self.model.modules(): if not isinstance(module, BaseTunerLayer): continue for submodule in module.modules(): if not isinstance(submodule, (nn.ModuleDict, nn.ParameterDict, BufferDict)): continue if adapter_name not in submodule: continue if isinstance(submodule[adapter_name], nn.Parameter): if submodule[adapter_name].dtype in dtypes_to_convert_to_fp32: submodule[adapter_name].data = submodule[adapter_name].data.to(torch.float32) continue if isinstance(submodule[adapter_name], torch.Tensor): # e.g. from a BufferDict if submodule[adapter_name].dtype in dtypes_to_convert_to_fp32: submodule[adapter_name] = submodule[adapter_name].to(torch.float32) continue for param in submodule[adapter_name].parameters(): if param.dtype in dtypes_to_convert_to_fp32: param.data = param.data.to(torch.float32) def _check_merge_allowed(self): """Helper method to check whether the adapter can be merged. Raise a ValueError if it is not possible to merge the adapter with the given configuration. """ example_code = textwrap.dedent( """ ```python from transformers import AutoModelForCausalLM # Load original tied model model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b-it", tie_word_embeddings=False) # Set the randomly initialized lm_head to the previously tied embeddings model.lm_head.weight.data = model.model.embed_tokens.weight.data.clone() # Save the untied model untied_model_dir = "dir/for/untied/model" model.save_pretrained(untied_model_dir) model.config.save_pretrained(untied_model_dir) # Now use the original model but in untied format model = AutoModelForCausalLM.from_pretrained(untied_model_dir) ``` """ ) tied_target_modules = self._get_tied_target_modules(self.model) if tied_target_modules: warnings.warn( f"Model with `tie_word_embeddings=True` and the {tied_target_modules=} are part of the adapter. " "This can lead to complications. " "You can opt to merge the adapter after cloning the weights (to untie the embeddings). " "You can untie the embeddings by loading the model with `tie_word_embeddings=False`. For example:" + example_code ) def inject_adapter( self, model: nn.Module, adapter_name: str, autocast_adapter_dtype: bool = True, low_cpu_mem_usage: bool = False ) -> None: r""" Creates adapter layers and replaces the target modules with the adapter layers. This method is called under the hood by `peft.mapping.get_peft_model` if a non-prompt tuning adapter class is passed. The corresponding PEFT config is directly retrieved from the `peft_config` attribute of the BaseTuner class. Args: model (`nn.Module`): The model to be tuned. adapter_name (`str`): The adapter name. autocast_adapter_dtype (`bool`, *optional*): Whether to autocast the adapter dtype. Defaults to `True`. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device. Useful to speed up the loading process. """ peft_config = self.peft_config[adapter_name] excluded_modules = [] unmatched_modules = [] # Note: If possible, all checks should be performed *at the start of this method*. # This way, we can raise early if something goes wrong, without leaving the model # in a bad (half-initialized) state. self._check_new_adapter_config(peft_config) _check_for_modules_to_save = getattr(peft_config, "modules_to_save", None) is not None _has_modules_to_save = False model_config = self.get_model_config(model) peft_config = self._prepare_adapter_config(peft_config, model_config) self._prepare_model(peft_config, model) key_list = [key for key, _ in model.named_modules()] uses_dummy_target_modules = getattr(peft_config, "target_modules", None) == DUMMY_TARGET_MODULES if uses_dummy_target_modules: # dummy adapter, we allow not matching any module key_list = [] # update peft_config.target_modules if required peft_config = _maybe_include_all_linear_layers(peft_config, model) # This is an optimization to reduce the number of entries in the target_modules list. The reason is that in some # circumstances, target_modules can contain hundreds of entries. Since each target module is checked against # each module of the net (which can be thousands), this can become quite expensive when many adapters are being # added. Often, the target_modules can be condensed in such a case, which speeds up the process. # A context in which this can happen is when diffusers loads non-PEFT LoRAs. As there is no meta info on # target_modules in that case, they are just inferred by listing all keys from the state_dict, which can be # quite a lot. See: https://github.com/huggingface/diffusers/issues/9297 # As there is a small chance for undiscovered bugs, we apply this optimization only if the list of # target_modules is sufficiently big. if ( isinstance(peft_config.target_modules, (list, set)) and len(peft_config.target_modules) >= MIN_TARGET_MODULES_FOR_OPTIMIZATION ): names_no_target = [ name for name in key_list if not any((name == suffix) or name.endswith("." + suffix) for suffix in peft_config.target_modules) ] new_target_modules = _find_minimal_target_modules(peft_config.target_modules, names_no_target) if len(new_target_modules) < len(peft_config.target_modules): peft_config.target_modules = new_target_modules for key in key_list: if not key: continue # Check for modules_to_save in case if _check_for_modules_to_save and any( key.endswith(f"{module_to_save}") for module_to_save in peft_config.modules_to_save ): # Optionally set the modules to save parent, target, target_name = _get_submodules(model, key) if not isinstance(target, ModulesToSaveWrapper): new_module = ModulesToSaveWrapper(target, adapter_name) setattr(parent, target_name, new_module) else: target.update(adapter_name) _has_modules_to_save = True continue result = self._check_target_module_exists(peft_config, key) if isinstance(result, _ExcludedModule): excluded_modules.append(key) elif not result: unmatched_modules.append(key) else: self.targeted_module_names.append(key) parent, target, target_name = _get_submodules(model, key) ctx = init_empty_weights if low_cpu_mem_usage else nullcontext with ctx(): self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key) if not self.targeted_module_names and not uses_dummy_target_modules: if excluded_modules and not unmatched_modules: # All targeted modules were excluded raise ValueError( "All modules were excluded. This is likely unintended. " "Check your `target_modules` and `exclude_modules` configuration." ) elif not excluded_modules and unmatched_modules: # None of the targeted modules matched error_msg = ( f"Target modules {peft_config.target_modules} not found in the base model. " f"Please check the target modules and try again." ) if peft_config.layers_to_transform is not None: error_msg += f" Note: You specified 'layers_to_transform': {peft_config.layers_to_transform}." if peft_config.layers_pattern is not None: error_msg += f" You also specified 'layers_pattern': {peft_config.layers_pattern}." raise ValueError(error_msg) else: # Some modules did not match and some matched but were excluded error_msg = ( "No modules were targeted for adaptation. " "This might be caused by a combination of mismatched target modules and excluded modules. " "Please check your `target_modules` and `exclude_modules` configuration." ) if peft_config.layers_to_transform is not None: error_msg += f" Note: You specified 'layers_to_transform': {peft_config.layers_to_transform}." if peft_config.layers_pattern is not None: error_msg += f" You also specified 'layers_pattern': {peft_config.layers_pattern}." raise ValueError(error_msg) elif hasattr(peft_config, "exclude_modules") and peft_config.exclude_modules and not excluded_modules: # exclude_modules was passed but was not used warnings.warn( f"You have passed exclude_modules={peft_config.exclude_modules} but no modules were excluded. " "Please check that exclude_modules was set correctly." ) tied_target_modules = self._get_tied_target_modules(model=model) if tied_target_modules: warnings.warn( f"Model with `tie_word_embeddings=True` and the {tied_target_modules=} are part of the adapter. " "This can lead to complications, for example when merging the adapter " "or converting your model to formats other than safetensors. " "See for example https://github.com/huggingface/peft/issues/2018." ) # It's important to set the adapter here (again), because otherwise it can happen that if a 2nd adapter is # added, and it targets different layer(s) than the first adapter (which is active), then those different # layers will be activated, which we don't want. self.set_adapter(self.active_adapters) self._mark_only_adapters_as_trainable(model) if self.peft_config[adapter_name].inference_mode: for n, p in model.named_parameters(): if adapter_name in n: p.requires_grad = False if _has_modules_to_save: if not hasattr(model, "modules_to_save"): model.modules_to_save = set(peft_config.modules_to_save) else: model.modules_to_save.update(set(peft_config.modules_to_save)) def merge_adapter(self, adapter_names: Optional[list[str]] = None) -> None: """ This method merges the adapter layers into the base model. Merging adapters can lead to a speed up of the forward pass. A copy of the adapter weights is still kept in memory, which is required to unmerge the adapters. In order to merge the adapter weights without keeping them in memory, please call `merge_and_unload`. Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ self._check_merge_allowed() for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.merge(adapter_names=adapter_names) def unmerge_adapter(self): """ This method unmerges all merged adapter layers from the base model. """ for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.unmerge() def _unloading_checks(self, adapter_names: Optional[list[str]]): adapters_to_consider = adapter_names or self.active_adapters is_modules_to_save_available = any( self.peft_config[adapter].modules_to_save for adapter in adapters_to_consider ) if is_modules_to_save_available and len(adapters_to_consider) > 1: raise ValueError("Cannot unload multiple adapters that specify `modules_to_save`.") @staticmethod def get_model_config(model: nn.Module) -> dict: """ This method gets the config from a model in dictionary form. If model has not attribute config, then this method returns a default config. Args: model (`nn.Module`): Model to get the config from. default (`dict|None`, *optional*):: What to return if model does not have a config attribute. """ model_config = getattr(model, "config", DUMMY_MODEL_CONFIG) if hasattr(model_config, "to_dict"): model_config = model_config.to_dict() return model_config def _get_tied_target_modules(self, model: nn.Module) -> list[str]: tied_target_modules = [] model_config = self.get_model_config(model) if model_config.get("tie_word_embeddings"): for target_module in self.targeted_module_names: if target_module in EMBEDDING_LAYER_NAMES: tied_target_modules.append(target_module) return tied_target_modules class BaseTunerLayer(ABC): r""" A tuner layer mixin that provides the common methods and attributes for all tuners. Args: is_pluggable (`bool`, *optional*): Whether the adapter layer can be plugged to any pytorch module active_adapters (Union[List[`str`], `str`], *optional*): The name of the active adapter. """ # All names of layers that may contain adapter (trainable) weights adapter_layer_names: tuple[str, ...] = () # All names of other parameters that may contain adapter-related parameters other_param_names: tuple[str, ...] = () # indicates whether all adapters should be disabled _disable_adapters: bool = False # the currently active adapter(s) _active_adapter: str | list[str] = "default" # List all merged adapters merged_adapters: list[str] = [] def get_base_layer(self) -> nn.Module: """ (Recursively) get the base_layer. This is necessary for the case that the tuner layer wraps another tuner layer. """ base_layer = self while hasattr(base_layer, "base_layer"): base_layer = base_layer.base_layer return base_layer @property def weight(self) -> torch.Tensor: # This is required for some transformers code, e.g. for T5, weight is accessed as: # self.wo.weight # where "wo" is the adapter layer. # https://github.com/huggingface/transformers/blob/78f6ed6c70b29c1560780e3869a7ad4c6b3d2710/src/transformers # /models/t5/modeling_t5.py#L292 base_layer = self.get_base_layer() if hasattr(base_layer, "qweight"): # QuantLinear weight = base_layer.qweight else: # Other layers weight = base_layer.weight return weight @property def bias(self) -> torch.Tensor: base_layer = self.get_base_layer() return base_layer.bias def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: raise NotImplementedError def unmerge(self) -> None: raise NotImplementedError @property def merged(self) -> bool: return bool(self.merged_adapters) @property def disable_adapters(self) -> bool: # use a property to ensure that disable_adapters is not set directly, instead use the enable_adapters method return self._disable_adapters @property def active_adapter(self) -> str | list[str]: # use a property to ensure that active_adapter is not set directly, instead use the set_adapter method return self._active_adapter def _get_available_adapters(self) -> set[str]: """Return all adapter names that can be found on this module.""" adapters = set() for layer_name in self.adapter_layer_names: module = getattr(self, layer_name) if not isinstance(module, (nn.ModuleDict, nn.ParameterDict)): continue adapters.update(set(module.keys())) return adapters @property def active_adapters(self): if isinstance(self.active_adapter, str): return [self.active_adapter] # is already a list of str return self.active_adapter def enable_adapters(self, enabled: bool) -> None: """Toggle the enabling and disabling of adapters Takes care of setting the requires_grad flag for the adapter weights. Args: enabled (bool): True to enable adapters, False to disable adapters """ if enabled: self.set_adapter(self.active_adapters) self._disable_adapters = False else: # disable grads on all adapter layers for layer_name in self.adapter_layer_names: layer = getattr(self, layer_name) layer.requires_grad_(False) self._disable_adapters = True def set_adapter(self, adapter_names: str | list[str]) -> None: """Set the active adapter(s). Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is not desired, use the following code. ```py >>> for name, param in model_peft.named_parameters(): ... if ...: # some check on name (ex. if 'lora' in name) ... param.requires_grad = False ``` Args: adapter_name (`str` or `List[str]`): Name of the adapter(s) to be activated. """ if isinstance(adapter_names, str): adapter_names = [adapter_names] # Deactivate grads on the inactive adapter and activate grads on the active adapter for layer_name in self.adapter_layer_names: module_dict = getattr(self, layer_name) for key, layer in module_dict.items(): if key in adapter_names: # Note: It is possible that not a single layer is called with requires_grad_(True) here. This may # happen if a completely different adapter layer is being activated. layer.requires_grad_(True) else: layer.requires_grad_(False) self._active_adapter = adapter_names def _all_available_adapter_names(self) -> list[str]: """Return a sorted list of all available adapter names""" adapter_names = set() for name in self.adapter_layer_names + self.other_param_names: # we check each possible attribute and if it's a dict or ModuleDict, we assume that the keys are the adapter # names attr = getattr(self, name) if hasattr(attr, "keys"): adapter_names.update(attr.keys()) return sorted(adapter_names) def delete_adapter(self, adapter_name: str) -> None: """ Delete an adapter from the layer This should be called on all adapter layers, or else we will get an inconsistent state. This method will also set a new active adapter if the deleted adapter was an active adapter. It is important that the new adapter is chosen in a deterministic way, so that the same adapter is chosen on all layers. Args: adapter_name (`str`): The name of the adapter to delete """ for attr in self.adapter_layer_names + self.other_param_names: if adapter_name in getattr(self, attr): del getattr(self, attr)[adapter_name] if adapter_name in self.active_adapters: # choose a new active adapter active_adapters = self.active_adapters[:] active_adapters.remove(adapter_name) if active_adapters: self.set_adapter(active_adapters) else: # no active adapters left, set a new default adapter # here we get the list of all adapters existing adapter names and choose the first one remaining_adapters = self._all_available_adapter_names() if not remaining_adapters: self.set_adapter([]) else: new_active_adapter = remaining_adapters[0] warnings.warn( f"Adapter {adapter_name} was active which is now deleted. Setting active adapter to " f"{new_active_adapter}." ) self.set_adapter(remaining_adapters[0]) def _move_adapter_to_device_of_base_layer(self, adapter_name: str, device: Optional[torch.device] = None) -> None: """ Move the adapter of the given name to the device of the base layer. """ if device is None: base_layer = self.get_base_layer() if isinstance(base_layer, nn.MultiheadAttention): base_layer = base_layer.out_proj # check weight and qweight (for GPTQ) for weight_name in ("weight", "qweight"): weight = getattr(base_layer, weight_name, None) if weight is not None: device = weight.device dtype = weight.dtype break else: # no break encountered: could not determine the device return meta = torch.device("meta") # loop through all potential adapter layers and move them to the device of the base layer; be careful to only # move this specific adapter to the device, as the other adapters could be on different devices # see #1639 for adapter_layer_name in self.adapter_layer_names + self.other_param_names: adapter_layer = getattr(self, adapter_layer_name, None) if not isinstance(adapter_layer, (nn.ModuleDict, nn.ParameterDict, BufferDict)): continue if adapter_name not in adapter_layer: continue if any(p.device == meta for p in adapter_layer.parameters()): continue if weight.dtype.is_floating_point or weight.dtype.is_complex: adapter_layer[adapter_name] = adapter_layer[adapter_name].to(device, dtype=dtype) else: adapter_layer[adapter_name] = adapter_layer[adapter_name].to(device) def _find_minimal_target_modules( target_modules: list[str] | set[str], other_module_names: list[str] | set[str] ) -> set[str]: """Find the minimal set of target modules that is sufficient to separate them from the other modules. Sometimes, a very large list of target_modules could be passed, which can slow down loading of adapters (e.g. when loaded from diffusers). It may be possible to condense this list from hundreds of items to just a handful of suffixes that are sufficient to distinguish the target modules from the other modules. Example: ```py >>> from peft.tuners.tuners_utils import _find_minimal_target_modules >>> target_modules = [f"model.decoder.layers.{i}.self_attn.q_proj" for i in range(100)] >>> target_modules += [f"model.decoder.layers.{i}.self_attn.v_proj" for i in range(100)] >>> other_module_names = [f"model.encoder.layers.{i}.self_attn.k_proj" for i in range(100)] >>> _find_minimal_target_modules(target_modules, other_module_names) {"q_proj", "v_proj"} ``` Args: target_modules (`list[str]` | `set[str]`): The list of target modules. other_module_names (`list[str]` | `set[str]`): The list of other module names. They must not overlap with the target modules. Returns: `set[str]`: The minimal set of target modules that is sufficient to separate them from the other modules. Raises: ValueError: If `target_modules` is not a list or set of strings or if it contains an empty string. Also raises an error if `target_modules` and `other_module_names` contain common elements. """ if isinstance(target_modules, str) or not target_modules: raise ValueError("target_modules should be a list or set of strings.") target_modules = set(target_modules) if "" in target_modules: raise ValueError("target_modules should not contain an empty string.") other_module_names = set(other_module_names) if not target_modules.isdisjoint(other_module_names): msg = ( "target_modules and other_module_names contain common elements, this should not happen, please " "open a GitHub issue at https://github.com/huggingface/peft/issues with the code to reproduce this issue" ) raise ValueError(msg) # it is assumed that module name parts are separated by a "." def generate_suffixes(s): parts = s.split(".") return [".".join(parts[i:]) for i in range(len(parts))][::-1] # Create a reverse lookup for other_module_names to quickly check suffix matches other_module_suffixes = {suffix for item in other_module_names for suffix in generate_suffixes(item)} # Find all potential suffixes from target_modules target_modules_suffix_map = {item: generate_suffixes(item) for item in target_modules} # Initialize a set for required suffixes required_suffixes = set() # We sort the target_modules_suffix_map simply to get deterministic behavior, since sets have no order. In theory # the order should not matter but in case there is a bug, it's better for the bug to be deterministic. for item, suffixes in sorted(target_modules_suffix_map.items(), key=lambda tup: tup[1]): # Go through target_modules items, shortest suffixes first for suffix in suffixes: # If the suffix is already in required_suffixes or matches other_module_names, skip it if suffix in required_suffixes or suffix in other_module_suffixes: continue # Check if adding this suffix covers the item if not any(item.endswith("." + req_suffix) for req_suffix in required_suffixes): required_suffixes.add(suffix) break if not required_suffixes: return set(target_modules) return required_suffixes class _ExcludedModule: """ A private helper method used to represent excluded modules in the check_target_module_exists function. """ def __bool__(self): return False def check_target_module_exists(config, key: str) -> bool | re.Match[str] | None: """A helper method to check if the passed module's key name matches any of the target modules in the adapter_config. Args: config (`LoraConfig` | `LycorisConfig`): A config to match target modules from key (`str`): A key to search any matches in config Returns: `bool` | `re.Match[str]` | `None`: True of match object if key matches any target modules from config, False or None if no match found """ if hasattr(config, "exclude_modules") and config.exclude_modules: if isinstance(config.exclude_modules, str): if re.fullmatch(config.exclude_modules, key): return _ExcludedModule() elif key in config.exclude_modules: return _ExcludedModule() elif any(key.endswith(f".{exclude_key}") for exclude_key in config.exclude_modules): return _ExcludedModule() if isinstance(config.target_modules, str): target_module_found = re.fullmatch(config.target_modules, key) elif key in config.target_modules: # this module is specified directly in target_modules target_module_found = True else: target_module_found = any(key.endswith(f".{target_key}") for target_key in config.target_modules) layer_indexes = getattr(config, "layers_to_transform", None) layers_pattern = getattr(config, "layers_pattern", None) is_using_layer_indexes = layer_indexes is not None and ( len(layer_indexes) != 0 if isinstance(layer_indexes, list) else True ) if is_using_layer_indexes and target_module_found: layer_index = None # TODO: It's still unclear how empty layers_pattern (None, [], or "") should behave # For now, empty layers_pattern means any layer pattern is ok if layers_pattern is None or len(layers_pattern) == 0: layer_index = re.match(r".*\.[^.]*\.(\d+)\.", key) else: layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern for pattern in layers_pattern: layer_index = re.match(rf".*\.{pattern}\.(\d+)\.", key) if layer_index is not None: break if layer_index is None: target_module_found = False else: layer_index = int(layer_index.group(1)) if isinstance(layer_indexes, int): target_module_found = layer_index == layer_indexes else: target_module_found = layer_index in layer_indexes return target_module_found def inspect_matched_modules(tuner: BaseTuner, adapter_name: str = "default") -> dict: """ A helper function to inspect the set of matched and unmatched modules for a PEFT model and the given adapter. """ config = tuner.peft_config[adapter_name] key_list = [key for key, _ in tuner.model.named_modules()] module_dict = {"matched": [], "unmatched": []} for key in key_list: if tuner._check_target_module_exists(config, key): module_dict["matched"].append(key) else: module_dict["unmatched"].append(key) return module_dict def _maybe_include_all_linear_layers(peft_config: PeftConfig, model: nn.Module) -> PeftConfig: """ Helper function to update `target_modules` to all linear/Conv1D layers if provided as 'all-linear'. Adapted from the QLoRA repository: https://github.com/artidoro/qlora/blob/main/qlora.py """ if not hasattr(peft_config, "target_modules"): return peft_config # if `target_modules` is a string, convert to lower case and check if it matches "all-linear" if not ( isinstance(peft_config.target_modules, str) and peft_config.target_modules.lower() == INCLUDE_LINEAR_LAYERS_SHORTHAND ): return peft_config linear_classes = (torch.nn.Linear, Conv1D) linear_module_names = set() for name, module in model.named_modules(): # match with all linear classes. if isinstance(module, linear_classes): linear_module_names.add(name) # Try to remove linear layers that should not be targeted as best as possible. We have to rely on convention as # there are no hard rules to detect these modules. module_names_to_exclude = set() if isinstance(model, PreTrainedModel): output_emb = model.get_output_embeddings() if output_emb is not None: # ignore the last classification head for text generation models last_module_name = [name for name, module in model.named_modules() if module is output_emb][0] module_names_to_exclude.add(last_module_name) elif peft_config.task_type == TaskType.SEQ_CLS: # ignore classifier head for classification models (issue 2027) # there is no fix name for the classifier head, so check the common ones for name in SEQ_CLS_HEAD_NAMES: cls_head = getattr(model, name, None) if cls_head is not None: last_module_name = [name for name, module in model.named_modules() if module is cls_head][0] module_names_to_exclude.add(last_module_name) break linear_module_names -= module_names_to_exclude peft_config.target_modules = linear_module_names return peft_config def check_adapters_to_merge(module: BaseTunerLayer, adapter_names: Optional[list[str]] = None) -> list[str]: """ Helper function to check which adapters should be merged. Only return those adapters that are not already merged. Give a warning if some or all of the adapters are already merged. """ if adapter_names is None: adapter_names = module.active_adapters if isinstance(adapter_names, str): raise ValueError(f"adapter_names should be a list of strings, got {adapter_names!r}.") if module.merged: merged_adapters = set(module.merged_adapters) adapter_names = [name for name in adapter_names if name not in merged_adapters] if adapter_names: warnings.warn( f"Already following adapters were merged {','.join(module.merged_adapters)}. " f"You are now additionally merging {','.join(adapter_names)}." ) else: warnings.warn("All adapters are already merged, nothing to do.") return adapter_names def clone_module(module: nn.Module, share_weights=False): """Clone a module in a pytorch model. Clones a module of a model, optionally sharing all the parameters between the original and the clone. Simplifies reusing a module when manipulating the architecture of a model. """ clone = copy.deepcopy(module) def _share_weights(src: nn.Module, dst: nn.Module): for name, param in src.named_parameters(recurse=False): dst.register_parameter(name, param) if share_weights: for name, submodule in module.named_modules(): _share_weights(submodule, clone.get_submodule(name)) return clone def replicate_layers(model: nn.Module, layer_map: list[tuple[int, int]]): """Replicate layers in a transfomer model with weight sharing. This function looks for a module list attribute at model[(.model)*].layers and replicates the layers in the module list according to the layer map. For example the map `[[0, 4], [2, 5]]` will take the set of layers `[0, 1, 2, 3, 4]` and replace them with a module list containing `[0, 1, 2, 3, 2, 3, 4]`. """ while hasattr(model, "model"): model = model.model # Some variants of the bert model nest the main model under the bert attribute. if hasattr(model, "bert"): model = model.bert model_type = None layers: nn.ModuleList = None if hasattr(model, "layers"): model_type = "llama" layers = model.layers elif hasattr(model, "encoder") and hasattr(model.encoder, "layer"): model_type = "bert" layers = model.encoder.layer elif hasattr(model, "h"): model_type = "falcon" layers = model.h if not model_type or not isinstance(layers, nn.ModuleList): raise ValueError( "Could not locate the layers attribute in the model. " "Expected Llama, Bert or Falcon compatible architectures." ) new_layers = [] for start, end in layer_map: for i in range(start, end): current_idx = len(new_layers) new_layers.append(clone_module(layers[i], share_weights=True)) # This is a hack needed to work around the layer_idx introduced in HF transformers. for submodule in new_layers[-1].modules(): if hasattr(submodule, "layer_idx"): submodule.layer_idx = current_idx layers = nn.ModuleList(new_layers) if model_type == "llama": model.layers = layers elif model_type == "bert": model.encoder.layer = layers elif model_type == "falcon": model.h = layers else: raise ValueError("Unexpected model type, need to handle post-processing of layers.") if hasattr(model.config, "num_hidden_layers"): # Common to Llama, Bert, Falcon. model.config.num_hidden_layers = len(new_layers)
peft/src/peft/tuners/tuners_utils.py/0
{ "file_path": "peft/src/peft/tuners/tuners_utils.py", "repo_id": "peft", "token_count": 21148 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from transformers import BloomPreTrainedModel # needed for prefix-tuning of bloom model def bloom_model_postprocess_past_key_value(past_key_values): past_key_values = torch.cat(past_key_values) total_layers, batch_size, num_attention_heads, num_virtual_tokens, head_dim = past_key_values.shape keys = past_key_values[: total_layers // 2] keys = keys.transpose(2, 3).reshape( total_layers // 2, batch_size * num_attention_heads, head_dim, num_virtual_tokens ) values = past_key_values[total_layers // 2 :] values = values.reshape(total_layers // 2, batch_size * num_attention_heads, num_virtual_tokens, head_dim) return tuple(zip(keys, values)) # needed for prefix-tuning of StarCoder models def starcoder_model_postprocess_past_key_value(past_key_values): result = [] for k in past_key_values: k = k[:, :, 0] k = k.permute([1, 2, 0, 3]) k = k.reshape(*k.shape[:-2], -1) result.append(k) return tuple(result) TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING = { "gpt_bigcode": starcoder_model_postprocess_past_key_value, } if hasattr(BloomPreTrainedModel, "_convert_to_standard_cache"): # special handling for bloom architecture was fixed in: # https://github.com/huggingface/transformers/pull/31445 # the _convert_to_standard_cache method is removed in the PR and thus serves as an indicator TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING["bloom"] = bloom_model_postprocess_past_key_value TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING = { "llama": ["input_layernorm", "post_attention_layernorm", "norm"], "bloom": ["input_layernorm", "post_attention_layernorm", "ln_f"], "llava": [ "multi_modal_projector", "input_layernorm", "post_attention_layernorm", "norm", "embed_tokens", "lm_head", ], "t5": ["layer_norm", "final_layer_norm"], "mt5": ["layer_norm", "final_layer_norm"], "bart": ["self_attn_layer_norm", "encoder_attn_layer_norm", "final_layer_norm"], "gpt2": ["ln_1", "ln_2", "ln_f"], "blip-2": ["layernorm", "LayerNorm", "final_layer_norm", "self_attn_layer_norm"], "gptj": ["ln_1", "ln_f"], "falcon": ["input_layernorm", "post_attention_layernorm", "ln_f"], "mistral": ["input_layernorm", "post_attention_layernorm", "norm"], "phi": ["input_layernorm", "final_layernorm"], "gemma": ["input_layernorm", "post_attention_layernorm", "norm"], "gemma2": [ "input_layernorm", "post_attention_layernorm", "pre_feedforward_layernorm", "post_feedforward_layernorm", "norm", ], "qwen2": ["post_attention_layernorm"], } TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING = { "t5": ["q", "v"], "mt5": ["q", "v"], "bart": ["q_proj", "v_proj"], "gpt2": ["c_attn"], "bloom": ["query_key_value"], "blip-2": ["q", "v", "q_proj", "v_proj"], "opt": ["q_proj", "v_proj"], "gptj": ["q_proj", "v_proj"], "gpt_neox": ["query_key_value"], "gpt_neo": ["q_proj", "v_proj"], "bert": ["query", "value"], "roberta": ["query", "value"], "xlm-roberta": ["query", "value"], "electra": ["query", "value"], "deberta-v2": ["query_proj", "value_proj"], "deberta": ["in_proj"], "layoutlm": ["query", "value"], "llama": ["q_proj", "v_proj"], "chatglm": ["query_key_value"], "gpt_bigcode": ["c_attn"], "mpt": ["Wqkv"], "RefinedWebModel": ["query_key_value"], "RefinedWeb": ["query_key_value"], "falcon": ["query_key_value"], "btlm": ["c_proj", "c_attn"], "codegen": ["qkv_proj"], "mistral": ["q_proj", "v_proj"], "mixtral": ["q_proj", "v_proj"], "stablelm": ["q_proj", "v_proj"], "phi": ["q_proj", "v_proj", "fc1", "fc2"], "gemma": ["q_proj", "v_proj"], "gemma2": ["q_proj", "v_proj"], "qwen2": ["q_proj", "v_proj"], } TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING = { "t5": ["k", "v", "wo"], "mt5": ["k", "v", "wi_1"], "gpt2": ["c_attn", "mlp.c_proj"], "bloom": ["query_key_value", "mlp.dense_4h_to_h"], "roberta": ["key", "value", "output.dense"], "opt": ["q_proj", "k_proj", "fc2"], "gptj": ["q_proj", "v_proj", "fc_out"], "gpt_neox": ["query_key_value", "dense_4h_to_h"], "gpt_neo": ["q_proj", "v_proj", "c_proj"], "bart": ["q_proj", "v_proj", "fc2"], "gpt_bigcode": ["c_attn", "mlp.c_proj"], "llama": ["k_proj", "v_proj", "down_proj"], "mistral": ["k_proj", "v_proj", "down_proj"], "mixtral": ["k_proj", "v_proj", "w2"], "bert": ["key", "value", "output.dense"], "deberta-v2": ["key_proj", "value_proj", "output.dense"], "deberta": ["in_proj", "output.dense"], "RefinedWebModel": ["query_key_value", "dense_4h_to_h"], "RefinedWeb": ["query_key_value", "dense_4h_to_h"], "falcon": ["query_key_value", "dense_4h_to_h"], "phi": ["q_proj", "v_proj", "fc2"], "gemma": ["q_proj", "v_proj", "down_proj"], "gemma2": ["q_proj", "v_proj", "down_proj"], "qwen2": ["q_proj", "v_proj", "down_proj"], } TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING = { "t5": ["wo"], "mt5": [], "gpt2": ["mlp.c_proj"], "bloom": ["mlp.dense_4h_to_h"], "roberta": ["output.dense"], "opt": ["fc2"], "gptj": ["fc_out"], "gpt_neox": ["dense_4h_to_h"], "gpt_neo": ["c_proj"], "bart": ["fc2"], "gpt_bigcode": ["mlp.c_proj"], "llama": ["down_proj"], "mistral": ["down_proj"], "mixtral": ["w2"], "bert": ["output.dense"], "deberta-v2": ["output.dense"], "deberta": ["output.dense"], "RefinedWeb": ["dense_4h_to_h"], "RefinedWebModel": ["dense_4h_to_h"], "falcon": ["dense_4h_to_h"], "phi": ["fc2"], "gemma": ["down_proj"], "gemma2": ["down_proj"], "qwen2": ["down_proj"], } TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING = { "t5": ["q", "k", "v", "o", "wi", "wo"], "mt5": ["q", "k", "v", "o", "wi_0", "wi_1", "wo"], "bart": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"], "gpt2": ["c_attn"], "bloom": ["query_key_value"], "opt": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"], "gptj": ["q_proj", "v_proj"], "gpt_neox": ["query_key_value"], "gpt_neo": ["q_proj", "v_proj"], "llama": ["q_proj", "v_proj"], "bert": ["query", "value"], "roberta": ["query", "key", "value", "dense"], # "xlm-roberta": ["query", "value"], # "electra": ["query", "value"], "deberta-v2": ["query_proj", "key_proj", "value_proj", "dense"], "gpt_bigcode": ["c_attn"], "deberta": ["in_proj"], # "layoutlm": ["query", "value"], "qwen2": ["q_proj", "v_proj"], } TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING = { "t5": ["q", "v"], "mt5": ["q", "v"], "bart": ["q_proj", "v_proj"], "gpt2": ["c_attn"], "bloom": ["query_key_value"], "blip-2": ["q", "v", "q_proj", "v_proj"], "opt": ["q_proj", "v_proj"], "gptj": ["q_proj", "v_proj"], "gpt_neox": ["query_key_value"], "gpt_neo": ["q_proj", "v_proj"], "bert": ["query", "value"], "roberta": ["query", "value"], "xlm-roberta": ["query", "value"], "electra": ["query", "value"], "deberta-v2": ["query_proj", "value_proj"], "deberta": ["in_proj"], "layoutlm": ["query", "value"], "llama": ["q_proj", "v_proj"], "chatglm": ["query_key_value"], "gpt_bigcode": ["c_attn"], "mpt": ["Wqkv"], "RefinedWebModel": ["query_key_value"], "RefinedWeb": ["query_key_value"], "falcon": ["query_key_value"], "btlm": ["c_proj", "c_attn"], "codegen": ["qkv_proj"], "mistral": ["q_proj", "v_proj"], "mixtral": ["q_proj", "v_proj"], "stablelm": ["q_proj", "v_proj"], "phi": ["q_proj", "v_proj"], "gemma": ["q_proj", "v_proj"], "gemma2": ["q_proj", "v_proj"], "qwen2": ["q_proj", "v_proj"], } TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING = { "t5": ["q", "v"], "mt5": ["q", "v"], "bart": ["q_proj", "v_proj"], "gpt2": ["mlp.c_proj"], "bloom": ["query_key_value"], "blip-2": ["q", "v", "q_proj", "v_proj"], "opt": ["q_proj", "v_proj"], "gptj": ["q_proj", "v_proj"], "gpt_neox": ["query_key_value"], "gpt_neo": ["q_proj", "v_proj"], "bert": ["query", "value"], "roberta": ["query", "value"], "xlm-roberta": ["query", "value"], "electra": ["query", "value"], "deberta-v2": ["query_proj", "value_proj"], "deberta": ["in_proj"], "layoutlm": ["query", "value"], "llama": ["q_proj", "v_proj"], "chatglm": ["query_key_value"], "gpt_bigcode": ["mlp.c_proj"], "mpt": ["Wqkv"], "RefinedWebModel": ["query_key_value"], "RefinedWeb": ["query_key_value"], "falcon": ["query_key_value"], "codegen": ["qkv_proj"], "mistral": ["q_proj", "v_proj"], "mixtral": ["q_proj", "v_proj"], "stablelm": ["q_proj", "v_proj"], "phi": ["q_proj", "v_proj", "fc1", "fc2"], "gemma": ["q_proj", "v_proj"], "gemma2": ["q_proj", "v_proj"], "qwen2": ["q_proj", "v_proj"], } TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING = { "t5": ["q", "k", "v", "o", "wi", "wo"], "mt5": ["q", "k", "v", "o", "wi_0", "wi_1", "wo"], "bart": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"], "gpt2": ["c_attn"], "bloom": ["query_key_value"], "opt": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"], "gptj": ["q_proj", "v_proj"], "gpt_neox": ["query_key_value"], "gpt_neo": ["q_proj", "v_proj"], "llama": ["q_proj", "v_proj"], "bert": ["query", "value"], "roberta": ["query", "value"], "deberta-v2": ["query_proj", "key_proj", "value_proj", "dense"], "gpt_bigcode": ["c_attn"], "deberta": ["in_proj"], "qwen2": ["q_proj", "v_proj"], } WEIGHTS_NAME = "adapter_model.bin" SAFETENSORS_WEIGHTS_NAME = "adapter_model.safetensors" CONFIG_NAME = "adapter_config.json" EMBEDDING_LAYER_NAMES = ["embed_tokens", "lm_head"] SEQ_CLS_HEAD_NAMES = ["score", "classifier"] INCLUDE_LINEAR_LAYERS_SHORTHAND = "all-linear" TOKENIZER_CONFIG_NAME = "tokenizer_config.json" DUMMY_TARGET_MODULES = "dummy-target-modules" DUMMY_MODEL_CONFIG = {"model_type": "custom"} # If users specify more than this number of target modules, we apply an optimization to try to reduce the target modules # to a minimal set of suffixes, which makes loading faster. We only apply this when exceeding a certain size since # otherwise there is no point in optimizing and there is a small chance of bugs in the optimization algorithm, so no # point in taking unnecessary risks. See #2045 for more context. MIN_TARGET_MODULES_FOR_OPTIMIZATION = 20
peft/src/peft/utils/constants.py/0
{ "file_path": "peft/src/peft/utils/constants.py", "repo_id": "peft", "token_count": 5367 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import pytest import torch import torch.nn.functional as F from datasets import load_dataset from parameterized import parameterized from torch import nn from transformers import ( AutoImageProcessor, AutoModelForCausalLM, AutoModelForImageClassification, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, BitsAndBytesConfig, LlamaForCausalLM, WhisperForConditionalGeneration, ) from transformers.pytorch_utils import Conv1D from peft import ( AdaLoraConfig, AdaptionPromptConfig, BOFTConfig, HRAConfig, IA3Config, LNTuningConfig, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig, PeftModel, TaskType, VBLoRAConfig, VeraConfig, get_peft_model, prepare_model_for_kbit_training, ) from peft.import_utils import is_bnb_4bit_available, is_bnb_available, is_xpu_available from peft.tuners.lora.config import LoraRuntimeConfig from peft.utils import infer_device from .testing_utils import ( device_count, require_bitsandbytes, require_multi_accelerator, require_non_cpu, require_torch_gpu, require_torch_multi_gpu, ) if is_bnb_available(): import bitsandbytes as bnb from peft.tuners.ia3 import Linear8bitLt as IA3Linear8bitLt from peft.tuners.lora import Linear8bitLt as LoraLinear8bitLt from peft.tuners.vera import Linear8bitLt as VeraLinear8bitLt if is_bnb_4bit_available(): from peft.tuners.ia3 import Linear4bit as IA3Linear4bit from peft.tuners.lora import Linear4bit as LoraLinear4bit from peft.tuners.vera import Linear4bit as VeraLinear4bit @require_non_cpu class PeftGPUCommonTests(unittest.TestCase): r""" A common tester to run common operations that are performed on GPU such as generation, loading in 8bit, etc. """ def setUp(self): self.seq2seq_model_id = "google/flan-t5-base" self.causal_lm_model_id = "facebook/opt-350m" self.audio_model_id = "openai/whisper-large" self.device = infer_device() def tearDown(self): r""" Efficient mechanism to free GPU memory after each test. Based on https://github.com/huggingface/transformers/issues/21094 """ gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() elif is_xpu_available(): torch.xpu.empty_cache() gc.collect() @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using LoRA works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_8bit = get_peft_model(flan_8bit, flan_lora_config) assert isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear8bitLt) opt_8bit = get_peft_model(opt_8bit, opt_lora_config) assert isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) whisper_8bit = get_peft_model(whisper_8bit, config) assert isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_vera_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using VeRA works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_vera_config = VeraConfig( r=16, target_modules=["q", "v"], vera_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_vera_config = VeraConfig( r=16, target_modules=["q_proj", "v_proj"], vera_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = VeraConfig(r=32, target_modules=["q_proj", "v_proj"], vera_dropout=0.05, bias="none") flan_8bit = get_peft_model(flan_8bit, flan_vera_config) assert isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, VeraLinear8bitLt) opt_8bit = get_peft_model(opt_8bit, opt_vera_config) assert isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, VeraLinear8bitLt) whisper_8bit = get_peft_model(whisper_8bit, config) assert isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, VeraLinear8bitLt) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_ia3_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using IA3 works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_ia3_config = IA3Config(target_modules=["q", "v"], task_type="SEQ_2_SEQ_LM") opt_ia3_config = IA3Config( target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"], task_type="CAUSAL_LM", ) config = IA3Config(target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"]) flan_8bit = get_peft_model(flan_8bit, flan_ia3_config) assert isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, IA3Linear8bitLt) opt_8bit = get_peft_model(opt_8bit, opt_ia3_config) assert isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear8bitLt) whisper_8bit = get_peft_model(whisper_8bit, config) assert isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear8bitLt) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_lora_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using LoRA works as expected with safetensors weights. """ model_id = "facebook/opt-350m" peft_model_id = "ybelkada/test-st-lora" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, peft_model_id) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(peft_model_id, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_adalora_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using AdaLora works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = AdaLoraConfig(task_type=TaskType.CAUSAL_LM, total_step=1) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(peft_model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_vera_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using VeRA works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = VeraConfig(task_type=TaskType.CAUSAL_LM) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.vera_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.vera_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_ia3_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using IA³ works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = IA3Config(task_type=TaskType.CAUSAL_LM) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.ia3_l assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.ia3_l @pytest.mark.single_gpu_tests def test_lora_gptq_quantization_from_pretrained_safetensors(self): r""" Tests that the autogptq quantization using LoRA works as expected with safetensors weights. """ from transformers import GPTQConfig model_id = "marcsun13/opt-350m-gptq-4bit" quantization_config = GPTQConfig(bits=4, use_exllama=False) kwargs = { "pretrained_model_name_or_path": model_id, "torch_dtype": torch.float16, "device_map": "auto", "quantization_config": quantization_config, } model = AutoModelForCausalLM.from_pretrained(**kwargs) model = prepare_model_for_kbit_training(model) config = LoraConfig(task_type="CAUSAL_LM") peft_model = get_peft_model(model, config) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(peft_model.device)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(**kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(peft_model.device)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(peft_model.device)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using LoRA works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_4bit = get_peft_model(flan_4bit, flan_lora_config) assert isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear4bit) opt_4bit = get_peft_model(opt_4bit, opt_lora_config) assert isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) whisper_4bit = get_peft_model(whisper_4bit, config) assert isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_vera_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using VeRA works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_vera_config = VeraConfig( r=16, target_modules=["q", "v"], vera_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_vera_config = VeraConfig( r=16, target_modules=["q_proj", "v_proj"], vera_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = VeraConfig(r=32, target_modules=["q_proj", "v_proj"], vera_dropout=0.05, bias="none") flan_4bit = get_peft_model(flan_4bit, flan_vera_config) assert isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, VeraLinear4bit) opt_4bit = get_peft_model(opt_4bit, opt_vera_config) assert isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, VeraLinear4bit) whisper_4bit = get_peft_model(whisper_4bit, config) assert isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, VeraLinear4bit) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_ia3_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using IA3 works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_ia3_config = IA3Config(target_modules=["q", "v"], task_type="SEQ_2_SEQ_LM") opt_ia3_config = IA3Config( target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"], task_type="CAUSAL_LM", ) config = IA3Config(target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"]) flan_4bit = get_peft_model(flan_4bit, flan_ia3_config) assert isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, IA3Linear4bit) opt_4bit = get_peft_model(opt_4bit, opt_ia3_config) assert isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear4bit) whisper_4bit = get_peft_model(whisper_4bit, config) assert isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear4bit) @pytest.mark.multi_gpu_tests @require_multi_accelerator def test_lora_causal_lm_multi_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="balanced") tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) assert set(model.hf_device_map.values()) == set(range(device_count)) model = get_peft_model(model, lora_config) assert isinstance(model, PeftModel) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_lora_seq2seq_lm_multi_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs - 8bit version. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) model = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="balanced", quantization_config=BitsAndBytesConfig(load_in_8bit=True) ) tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) assert set(model.hf_device_map.values()) == set(range(device_count)) model = get_peft_model(model, lora_config) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear8bitLt) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_8bit(self): model = LlamaForCausalLM.from_pretrained( "trl-internal-testing/tiny-random-LlamaForCausalLM", quantization_config=BitsAndBytesConfig(load_in_8bit=True), torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) _ = model(random_input) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_4bit(self): model = LlamaForCausalLM.from_pretrained( "trl-internal-testing/tiny-random-LlamaForCausalLM", quantization_config=BitsAndBytesConfig(load_in_4bit=True), torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) _ = model(random_input) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_print_4bit_expected(self): EXPECTED_TRAINABLE_PARAMS = 294912 EXPECTED_ALL_PARAMS = 125534208 model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() assert trainable_params == EXPECTED_TRAINABLE_PARAMS assert all_params == EXPECTED_ALL_PARAMS # test with double quant bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() assert trainable_params == EXPECTED_TRAINABLE_PARAMS assert all_params == EXPECTED_ALL_PARAMS @require_non_cpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_modules_to_save_grad(self): model_id = "bigscience/bloomz-560m" model = AutoModelForSequenceClassification.from_pretrained( model_id, quantization_config=BitsAndBytesConfig(load_in_4bit=True), torch_dtype=torch.float32, ) model = prepare_model_for_kbit_training(model) config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="SEQ_CLS", ) peft_model = get_peft_model(model, config) lm_head = peft_model.base_model.model.score original_module = lm_head.original_module modules_to_save = lm_head.modules_to_save.default inputs = torch.randn(1024).to(model.device) o1 = lm_head(inputs) o1.mean().backward() assert modules_to_save.weight.requires_grad is True assert original_module.weight.grad is None assert modules_to_save.weight.grad is not None @require_non_cpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_lora(self): torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) atol = 1e-3 rtol = 1 assert not torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol) assert torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, bnb.nn.Linear8bitLt) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, bnb.nn.Linear8bitLt) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_and_disable_lora(self): torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() with model.disable_adapter(): with torch.inference_mode(): out_after = F.softmax(model(random_input).logits, dim=-1) atol = 1e-3 rtol = 1 assert not torch.allclose(out_base, out_before, atol=atol, rtol=rtol) assert torch.allclose(out_base, out_after, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear8bitLt) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_lora_with_bias(self): # same as test_8bit_merge_lora but with lora_bias=True torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, lora_bias=True, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) atol = 1e-3 rtol = 1 assert not torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol) assert torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_lora(self): torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_dtype=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) # tolerances are pretty high because some deviations are expected with quantization atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol) assert torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, bnb.nn.Linear4bit) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, bnb.nn.Linear4bit) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_and_disable_lora(self): torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_dtype=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() with model.disable_adapter(): with torch.inference_mode(): out_after = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before, atol=atol, rtol=rtol) assert torch.allclose(out_base, out_after, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear4bit) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_lora_with_bias(self): # same as test_4bit_merge_lora but with lora_bias=True torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_dtype=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, lora_bias=True, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) # tolerances are pretty high because some deviations are expected with quantization atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol) assert torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_lora_mixed_adapter_batches_lora(self): # check that we can pass mixed adapter names to the model torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_dtype=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ).eval() tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") # input with 9 samples inputs = tokenizer( [ "Hello, my dog is cute", "Hello, my cat is awesome", "Hello, my fish is great", "Salut, mon chien est mignon", "Salut, mon chat est génial", "Salut, mon poisson est super", "Hallo, mein Hund ist süß", "Hallo, meine Katze ist toll", "Hallo, mein Fisch ist großartig", ], return_tensors="pt", padding=True, ).to(model.device) with torch.inference_mode(): out_base = model(**inputs).logits config0 = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config0).eval() with torch.inference_mode(): out_adapter0 = model(**inputs).logits config1 = LoraConfig( r=16, init_lora_weights=False, ) model.add_adapter("adapter1", config1) model.set_adapter("adapter1") with torch.inference_mode(): out_adapter1 = model(**inputs).logits atol, rtol = 3e-5, 1e-5 # sanity check, outputs have the right shape and are not the same assert len(out_base) >= 3 assert len(out_base) == len(out_adapter0) == len(out_adapter1) assert not torch.allclose(out_base, out_adapter0, atol=atol, rtol=rtol) assert not torch.allclose(out_base, out_adapter1, atol=atol, rtol=rtol) assert not torch.allclose(out_adapter0, out_adapter1, atol=atol, rtol=rtol) # mixed adapter batch adapters = ["__base__", "default", "adapter1"] adapter_names = [adapters[i % 3] for i in (range(9))] with torch.inference_mode(): out_mixed = model(**inputs, adapter_names=adapter_names).logits assert torch.allclose(out_base[::3], out_mixed[::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter0[1::3], out_mixed[1::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter1[2::3], out_mixed[2::3], atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_lora_mixed_adapter_batches_lora(self): # check that we can pass mixed adapter names to the model # note that with 8bit, we have quite a bit of imprecision, therefore we use softmax and higher tolerances torch.manual_seed(3000) bnb_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ).eval() tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") # input with 9 samples inputs = tokenizer( [ "Hello, my dog is cute", "Hello, my cat is awesome", "Hello, my fish is great", "Salut, mon chien est mignon", "Salut, mon chat est génial", "Salut, mon poisson est super", "Hallo, mein Hund ist süß", "Hallo, meine Katze ist toll", "Hallo, mein Fisch ist großartig", ], return_tensors="pt", padding=True, ).to(model.device) with torch.inference_mode(): out_base = F.softmax(model(**inputs).logits, dim=-1) config0 = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config0).eval() with torch.inference_mode(): out_adapter0 = F.softmax(model(**inputs).logits, dim=-1) config1 = LoraConfig( r=16, init_lora_weights=False, ) model.add_adapter("adapter1", config1) model.set_adapter("adapter1") with torch.inference_mode(): out_adapter1 = F.softmax(model(**inputs).logits, dim=-1) atol = 0.01 rtol = 0.5 # sanity check, outputs have the right shape and are not the same assert len(out_base) >= 3 assert len(out_base) == len(out_adapter0) == len(out_adapter1) assert not torch.allclose(out_base, out_adapter0, atol=atol, rtol=rtol) assert not torch.allclose(out_base, out_adapter1, atol=atol, rtol=rtol) assert not torch.allclose(out_adapter0, out_adapter1, atol=atol, rtol=rtol) # mixed adapter batch adapters = ["__base__", "default", "adapter1"] adapter_names = [adapters[i % 3] for i in (range(9))] with torch.inference_mode(): out_mixed = F.softmax(model(**inputs, adapter_names=adapter_names).logits, dim=-1) assert torch.allclose(out_base[::3], out_mixed[::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter0[1::3], out_mixed[1::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter1[2::3], out_mixed[2::3], atol=atol, rtol=rtol) @require_non_cpu @pytest.mark.single_gpu_tests def test_serialization_shared_tensors(self): model_checkpoint = "roberta-base" peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=11).to(self.device) model = get_peft_model(model, peft_config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_dora_inference(self): # check for same result with and without DoRA when initializing with init_lora_weights=False bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_dtype=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) torch.manual_seed(0) config_lora = LoraConfig(r=8, init_lora_weights=False, use_dora=False) model = get_peft_model(model, config_lora).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) logits_lora = model(random_input).logits model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) torch.manual_seed(0) config_dora = LoraConfig(r=8, init_lora_weights=False, use_dora=True) model = get_peft_model(model, config_dora) logits_dora = model(random_input).logits assert torch.allclose(logits_lora, logits_dora) # sanity check assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear4bit) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_dora_inference(self): # check for same result with and without DoRA when initializing with init_lora_weights=False model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), torch_dtype=torch.float32, ).eval() torch.manual_seed(0) config_lora = LoraConfig(r=8, init_lora_weights=False, use_dora=False) model = get_peft_model(model, config_lora).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) logits_lora = model(random_input).logits model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), torch_dtype=torch.float32, ) torch.manual_seed(0) config_dora = LoraConfig(r=8, init_lora_weights=False, use_dora=True) model = get_peft_model(model, config_dora) logits_dora = model(random_input).logits assert torch.allclose(logits_lora, logits_dora) # sanity check assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear8bitLt) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_dora_merging(self): # Check results for merging, unmerging, unloading torch.manual_seed(0) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_dtype=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "trl-internal-testing/tiny-random-LlamaForCausalLM", quantization_config=bnb_config, torch_dtype=torch.float32, ).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, use_dora=True, ) model = get_peft_model(model, config).eval() # Note: By default, DoRA is a no-op before training, even if we set init_lora_weights=False. In order to # measure any differences, we need to change the magnitude vector. for name, module in model.named_modules(): if isinstance(module, LoraLinear4bit): module.lora_magnitude_vector["default"].weight = torch.nn.Parameter( 10 * torch.rand_like(module.lora_magnitude_vector["default"].weight) ) with torch.inference_mode(): out_dora = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() out_merged = F.softmax(model(random_input).logits, dim=-1) model.unmerge_adapter() out_unmerged = F.softmax(model(random_input).logits, dim=-1) model = model.merge_and_unload() out_unloaded = F.softmax(model(random_input).logits, dim=-1) atol = 1e-5 rtol = 1e-3 # sanity check that using DoRA changes the results assert not torch.allclose(out_base, out_dora, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_merged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unmerged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unloaded, atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_dora_merging(self): # Check results for merging, unmerging, unloading torch.manual_seed(0) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), torch_dtype=torch.float32, ).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, use_dora=True, ) model = get_peft_model(model, config).eval() # Note: By default, DoRA is a no-op before training, even if we set init_lora_weights=False. In order to # measure any differences, we need to change the magnitude vector. for name, module in model.named_modules(): if isinstance(module, LoraLinear8bitLt): module.lora_magnitude_vector["default"].weight = torch.nn.Parameter( 10 * torch.rand_like(module.lora_magnitude_vector["default"].weight) ) with torch.inference_mode(): out_dora = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() out_merged = F.softmax(model(random_input).logits, dim=-1) model.unmerge_adapter() out_unmerged = F.softmax(model(random_input).logits, dim=-1) model = model.merge_and_unload() out_unloaded = F.softmax(model(random_input).logits, dim=-1) atol = 1e-3 rtol = 1 # sanity check that using DoRA changes the results assert not torch.allclose(out_base, out_dora, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_merged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unmerged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unloaded, atol=atol, rtol=rtol) @pytest.mark.single_gpu_tests def test_dora_ephemeral_gpu_offload(self): torch.manual_seed(0) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, ).eval() config = LoraConfig( r=128, init_lora_weights=False, use_dora=True, runtime_config=LoraRuntimeConfig( ephemeral_gpu_offload=True ), # we enable this, but only to verify that it's gone later ) peft_model = get_peft_model(model, config).eval() # Check that ephemeral GPU offloading is present assert peft_model.peft_config["default"].runtime_config.ephemeral_gpu_offload # Save to disk with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) # Load from disk 100% on CPU without ephemeral GPU offloading peft_model_cpu = PeftModel.from_pretrained( model, tmp_dir, device_map={"": "cpu"}, ).eval() # Check that ephemeral GPU offloading is absent assert not peft_model_cpu.peft_config["default"].runtime_config.ephemeral_gpu_offload # Load again, with ephemeral GPU offloading enabled peft_model_ego = PeftModel.from_pretrained( model, tmp_dir, device_map={"": "cpu"}, ephemeral_gpu_offload=True, ).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) with torch.inference_mode(): out_peft_model_cpu = F.softmax(peft_model_cpu(random_input).logits, dim=-1) out_peft_model_ego = F.softmax(peft_model_ego(random_input).logits, dim=-1) # The results should be the same assert torch.allclose(out_peft_model_cpu, out_peft_model_ego) @require_multi_accelerator @pytest.mark.multi_gpu_tests def test_dora_ephemeral_gpu_offload_multigpu(self): torch.manual_seed(0) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, ).eval() config = LoraConfig( r=16, # too small and the time difference is too small init_lora_weights=False, use_dora=True, runtime_config=LoraRuntimeConfig(ephemeral_gpu_offload=True), ) peft_model = get_peft_model(model, config).eval() layer = peft_model.base_model.model.model.decoder.layers[0].self_attn.v_proj lora_A, lora_B = layer.lora_A, layer.lora_B possible_combinations = ["cpu", self.device, f"{self.device}:0", f"{self.device}:1"] for device_A in possible_combinations: la = lora_A.to(device_A) for device_B in possible_combinations: lb = lora_B.to(device_B) layer.lora_A, layer.lora_B = la, lb layer.dora_init(layer.active_adapter[0]) # should not raise an error def test_apply_GS_hra_inference(self): # check for different result with and without apply_GS model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, ).eval() torch.manual_seed(0) config_hra = HRAConfig(r=8, init_weights=True, apply_GS=False) model = get_peft_model(model, config_hra).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) logits_hra = model(random_input).logits model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, ) torch.manual_seed(0) config_hra_GS = HRAConfig(r=8, init_weights=True, apply_GS=True) model = get_peft_model(model, config_hra_GS) logits_hra_GS = model(random_input).logits assert not torch.allclose(logits_hra, logits_hra_GS) @require_non_cpu @pytest.mark.single_gpu_tests def test_apply_GS_hra_conv2d_inference(self): # check for different result with and without apply_GS model_id = "microsoft/resnet-18" image_processor = AutoImageProcessor.from_pretrained(model_id) dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) image = dataset["test"]["image"][0] data = image_processor(image, return_tensors="pt") model = AutoModelForImageClassification.from_pretrained(model_id).eval() torch.manual_seed(0) config_hra = HRAConfig(r=8, init_weights=True, target_modules=["convolution"], apply_GS=False) model = get_peft_model(model, config_hra).eval() logits_hra = model(**data).logits model = AutoModelForImageClassification.from_pretrained(model_id).eval() torch.manual_seed(0) config_hra_GS = HRAConfig(r=8, init_weights=True, target_modules=["convolution"], apply_GS=True) model = get_peft_model(model, config_hra_GS) logits_hra_GS = model(**data).logits assert not torch.allclose(logits_hra, logits_hra_GS) @require_non_cpu @pytest.mark.single_gpu_tests def test_r_odd_hra_inference(self): # check that an untrained HRA adapter can't be initialized as an identity tranformation # when r is an odd number model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, ).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) torch.manual_seed(0) logits = model(random_input).logits config_hra = HRAConfig(r=7, init_weights=True, apply_GS=False) model = get_peft_model(model, config_hra).eval() logits_hra = model(random_input).logits assert not torch.allclose(logits, logits_hra) @pytest.mark.skipif( not (torch.cuda.is_available() or is_xpu_available()), reason="test requires a hardware accelerator" ) @pytest.mark.single_gpu_tests class TestSameAdapterDifferentDevices: device = infer_device() # 1639 # The original issue comes down to the following problem: If the user has a base layer on CUDA, moves the adapter to # CPU, then adds another adapter (which will automatically be moved to CUDA), then the first adapter will also be # moved to CUDA. @pytest.fixture def mlp(self): class MLP(nn.Module): def __init__(self, bias=True): super().__init__() self.lin0 = nn.Linear(8, 32, bias=bias) self.lin1 = nn.Linear(32, 2, bias=bias) return MLP() @pytest.fixture def emb_conv1d(self): class ModelEmbConv1D(nn.Module): def __init__(self, emb_size=100): super().__init__() self.emb = nn.Embedding(emb_size, 5) self.conv1d = Conv1D(1, 5) return ModelEmbConv1D() @pytest.fixture def conv2d(self): class ModelConv2D(nn.Module): def __init__(self): super().__init__() self.conv2d = nn.Conv2d(5, 10, 3) return ModelConv2D() def test_lora_one_target_add_new_adapter_does_not_change_device(self, mlp): config = LoraConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.lora_A.cpu() model.lin0.lora_B.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.lora_A.default.weight.device.type == "cpu" assert model.lin0.lora_B.default.weight.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.lora_A.default.weight.device.type == "cpu" assert model.lin0.lora_B.default.weight.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.lora_A.other.weight.device.type == self.device assert model.lin0.lora_B.other.weight.device.type == self.device def test_lora_multiple_targets_add_new_adapater_does_not_change_device(self, mlp): # same as the previous test, but targeting multiple layers config = LoraConfig(target_modules=["lin0", "lin1"]) model = get_peft_model(mlp, config) model = model.to(self.device) # move lin1 to CPU but leave lin0 on GPU model.lin1.lora_A.cpu() model.lin1.lora_B.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin1.lora_A.default.weight.device.type == "cpu" assert model.lin1.lora_B.default.weight.device.type == "cpu" assert model.lin1.base_layer.weight.device.type == self.device assert model.lin0.lora_A.default.weight.device.type == self.device assert model.lin0.lora_B.default.weight.device.type == self.device assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin1.lora_A.default.weight.device.type == "cpu" assert model.lin1.lora_B.default.weight.device.type == "cpu" assert model.lin1.base_layer.weight.device.type == self.device # the rest should be on GPU assert model.lin0.lora_A.default.weight.device.type == self.device assert model.lin0.lora_B.default.weight.device.type == self.device assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.lora_A.other.weight.device.type == self.device assert model.lin0.lora_B.other.weight.device.type == self.device assert model.lin1.lora_A.other.weight.device.type == self.device assert model.lin1.lora_B.other.weight.device.type == self.device def test_lora_embedding_target_add_new_adapter_does_not_change_device(self, emb_conv1d): # same as first test, but targeting the embedding layer config = LoraConfig(target_modules=["emb"]) model = get_peft_model(emb_conv1d, config) model = model.to(self.device) model.emb.lora_embedding_A.cpu() model.emb.lora_embedding_B.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.emb.lora_embedding_A.default.device.type == "cpu" assert model.emb.lora_embedding_B.default.device.type == "cpu" assert model.emb.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.emb.lora_embedding_A.default.device.type == "cpu" assert model.emb.lora_embedding_B.default.device.type == "cpu" # the rest should be on GPU assert model.emb.weight.device.type == self.device assert model.emb.lora_embedding_A.other.device.type == self.device assert model.emb.lora_embedding_B.other.device.type == self.device def test_lora_conv1d_target_add_new_adapter_does_not_change_device(self, emb_conv1d): # same as first test, but targeting the Conv1D layer config = LoraConfig(target_modules=["conv1d"]) model = get_peft_model(emb_conv1d, config) model = model.to(self.device) model.conv1d.lora_A.cpu() model.conv1d.lora_B.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.conv1d.lora_A.default.weight.device.type == "cpu" assert model.conv1d.lora_B.default.weight.device.type == "cpu" assert model.conv1d.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.conv1d.lora_A.default.weight.device.type == "cpu" assert model.conv1d.lora_B.default.weight.device.type == "cpu" # the rest should be on GPU assert model.conv1d.weight.device.type == self.device assert model.conv1d.lora_A.other.weight.device.type == self.device assert model.conv1d.lora_B.other.weight.device.type == self.device def test_lora_dora_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but also using DoRA config = LoraConfig(target_modules=["lin0"], use_dora=True) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.lora_A.cpu() model.lin0.lora_B.cpu() model.lin0.lora_magnitude_vector.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.lora_A.default.weight.device.type == "cpu" assert model.lin0.lora_B.default.weight.device.type == "cpu" assert model.lin0.lora_magnitude_vector.default.weight.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.lora_A.default.weight.device.type == "cpu" assert model.lin0.lora_B.default.weight.device.type == "cpu" assert model.lin0.lora_magnitude_vector.default.weight.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.lora_A.other.weight.device.type == self.device assert model.lin0.lora_B.other.weight.device.type == self.device assert model.lin0.lora_magnitude_vector.other.weight.device.type == self.device def test_adalora_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using AdaLORA # AdaLora does not like multiple trainable adapters, hence inference_mode=True config = AdaLoraConfig(target_modules=["lin0"], inference_mode=True, total_step=1) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.lora_A.cpu() model.lin0.lora_E.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.lora_A.default.device.type == "cpu" assert model.lin0.lora_E.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.lora_A.default.device.type == "cpu" assert model.lin0.lora_E.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.lora_A.other.device.type == self.device assert model.lin0.lora_E.other.device.type == self.device def test_boft_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using BoFT config = BOFTConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.boft_R.cpu() model.lin0.boft_s.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.boft_R.default.device.type == "cpu" assert model.lin0.boft_s.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.boft_R.default.device.type == "cpu" assert model.lin0.boft_s.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.boft_R.other.device.type == self.device assert model.lin0.boft_s.other.device.type == self.device def test_ia3_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using IA3 config = IA3Config(target_modules=["lin0"], feedforward_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.ia3_l.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.ia3_l.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.ia3_l.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.ia3_l.other.device.type == self.device @pytest.mark.xfail(reason="LN Tuning handling of multiple adapters may not be correct", strict=True) def test_ln_tuning_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using LN tuning config = LNTuningConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.ln_tuning_layers.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.ln_tuning_layers.default.weight.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.ln_tuning_layers.default.weight.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.ln_tuning_layers.other.weight.device.type == self.device def test_loha_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using LoHa config = LoHaConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.hada_w1_a.cpu() model.lin0.hada_w2_b.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.hada_w1_a.default.device.type == "cpu" assert model.lin0.hada_w2_b.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.hada_w1_a.default.device.type == "cpu" assert model.lin0.hada_w2_b.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.hada_w1_a.other.device.type == self.device assert model.lin0.hada_w2_b.other.device.type == self.device def test_lokr_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using LoKr config = LoKrConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.lokr_w1.cpu() model.lin0.lokr_w2.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.lokr_w1.default.device.type == "cpu" assert model.lin0.lokr_w2.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.lokr_w1.default.device.type == "cpu" assert model.lin0.lokr_w2.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.lokr_w1.other.device.type == self.device assert model.lin0.lokr_w2.other.device.type == self.device def test_oft_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using OFT config = OFTConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.oft_r.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.oft_r.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.oft_r.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.oft_r.other.device.type == self.device def test_vera_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using VERA config = VeraConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.vera_A.cpu() model.lin0.vera_lambda_d.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.vera_A.default.device.type == "cpu" assert model.lin0.vera_lambda_d.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.vera_A.default.device.type == "cpu" assert model.lin0.vera_lambda_d.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.vera_A.other.device.type == self.device assert model.lin0.vera_lambda_d.other.device.type == self.device def test_vblora_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using VBLoRA config = VBLoRAConfig(target_modules=["lin0"], vector_length=2) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.vblora_logits_A.cpu() model.lin0.vblora_logits_B.cpu() model.lin0.vblora_vector_bank.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.vblora_logits_A.default.device.type == "cpu" assert model.lin0.vblora_logits_B.default.device.type == "cpu" assert model.lin0.vblora_vector_bank.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.vblora_logits_A.default.device.type == "cpu" assert model.lin0.vblora_logits_B.default.device.type == "cpu" assert model.lin0.vblora_vector_bank.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.vblora_logits_A.other.device.type == self.device assert model.lin0.vblora_logits_B.other.device.type == self.device assert model.lin0.vblora_vector_bank.other.device.type == self.device def test_hra_add_new_adapter_does_not_change_device(self, mlp): # same as first test, but using HRA config = HRAConfig(target_modules=["lin0"]) model = get_peft_model(mlp, config) model = model.to(self.device) model.lin0.hra_u.cpu() # check that the adapter is indeed on CPU and the base model on GPU assert model.lin0.hra_u.default.device.type == "cpu" assert model.lin0.base_layer.weight.device.type == self.device model.add_adapter("other", config) # check that after adding a new adapter, the old adapter is still on CPU assert model.lin0.hra_u.default.device.type == "cpu" # the rest should be on GPU assert model.lin0.base_layer.weight.device.type == self.device assert model.lin0.hra_u.other.device.type == self.device
peft/tests/test_common_gpu.py/0
{ "file_path": "peft/tests/test_common_gpu.py", "repo_id": "peft", "token_count": 35269 }
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from peft import LoraConfig, get_peft_model_state_dict, inject_adapter_in_model from peft.utils import ModulesToSaveWrapper class DummyModel(torch.nn.Module): def __init__(self): super().__init__() self.embedding = torch.nn.Embedding(10, 10) self.linear = torch.nn.Linear(10, 10) self.linear2 = torch.nn.Linear(10, 10, bias=True) self.lm_head = torch.nn.Linear(10, 10) def forward(self, input_ids): x = self.embedding(input_ids) x = self.linear(x) x = self.lm_head(x) return x class TestPeft(unittest.TestCase): def setUp(self): self.model = DummyModel() lora_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", target_modules=["linear"], ) self.model = inject_adapter_in_model(lora_config, self.model) def test_inject_adapter_in_model(self): dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]) _ = self.model(dummy_inputs) for name, module in self.model.named_modules(): if name == "linear": assert hasattr(module, "lora_A") assert hasattr(module, "lora_B") def test_get_peft_model_state_dict(self): peft_state_dict = get_peft_model_state_dict(self.model) for key in peft_state_dict.keys(): assert "lora" in key def test_modules_to_save(self): self.model = DummyModel() lora_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", target_modules=["linear"], modules_to_save=["embedding", "linear2"], ) self.model = inject_adapter_in_model(lora_config, self.model) for name, module in self.model.named_modules(): if name == "linear": assert hasattr(module, "lora_A") assert hasattr(module, "lora_B") elif name in ["embedding", "linear2"]: assert isinstance(module, ModulesToSaveWrapper) state_dict = get_peft_model_state_dict(self.model) assert "embedding.weight" in state_dict.keys() assert hasattr(self.model.embedding, "weight") assert hasattr(self.model.linear2, "weight") assert hasattr(self.model.linear2, "bias")
peft/tests/test_low_level_api.py/0
{ "file_path": "peft/tests/test_low_level_api.py", "repo_id": "peft", "token_count": 1362 }
import argparse import hashlib import os import mxnet as mx import gluoncv import torch from timm import create_model parser = argparse.ArgumentParser(description='Convert from MXNet') parser.add_argument('--model', default='all', type=str, metavar='MODEL', help='Name of model to train (default: "all"') def convert(mxnet_name, torch_name): # download and load the pre-trained model net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True) # create corresponding torch model torch_net = create_model(torch_name) mxp = [(k, v) for k, v in net.collect_params().items() if 'running' not in k] torchp = list(torch_net.named_parameters()) torch_params = {} # convert parameters # NOTE: we are relying on the fact that the order of parameters # are usually exactly the same between these models, thus no key name mapping # is necessary. Asserts will trip if this is not the case. for (tn, tv), (mn, mv) in zip(torchp, mxp): m_split = mn.split('_') t_split = tn.split('.') print(t_split, m_split) print(tv.shape, mv.shape) # ensure ordering of BN params match since their sizes are not specific if m_split[-1] == 'gamma': assert t_split[-1] == 'weight' if m_split[-1] == 'beta': assert t_split[-1] == 'bias' # ensure shapes match assert all(t == m for t, m in zip(tv.shape, mv.shape)) torch_tensor = torch.from_numpy(mv.data().asnumpy()) torch_params[tn] = torch_tensor # convert buffers (batch norm running stats) mxb = [(k, v) for k, v in net.collect_params().items() if any(x in k for x in ['running_mean', 'running_var'])] torchb = [(k, v) for k, v in torch_net.named_buffers() if 'num_batches' not in k] for (tn, tv), (mn, mv) in zip(torchb, mxb): print(tn, mn) print(tv.shape, mv.shape) # ensure ordering of BN params match since their sizes are not specific if 'running_var' in tn: assert 'running_var' in mn if 'running_mean' in tn: assert 'running_mean' in mn torch_tensor = torch.from_numpy(mv.data().asnumpy()) torch_params[tn] = torch_tensor torch_net.load_state_dict(torch_params) torch_filename = './%s.pth' % torch_name torch.save(torch_net.state_dict(), torch_filename) with open(torch_filename, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth' os.rename(torch_filename, final_filename) print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash)) def map_mx_to_torch_model(mx_name): torch_name = mx_name.lower() if torch_name.startswith('se_'): torch_name = torch_name.replace('se_', 'se') elif torch_name.startswith('senet_'): torch_name = torch_name.replace('senet_', 'senet') elif torch_name.startswith('inceptionv3'): torch_name = torch_name.replace('inceptionv3', 'inception_v3') torch_name = 'gluon_' + torch_name return torch_name ALL = ['resnet18_v1b', 'resnet34_v1b', 'resnet50_v1b', 'resnet101_v1b', 'resnet152_v1b', 'resnet50_v1c', 'resnet101_v1c', 'resnet152_v1c', 'resnet50_v1d', 'resnet101_v1d', 'resnet152_v1d', #'resnet50_v1e', 'resnet101_v1e', 'resnet152_v1e', 'resnet50_v1s', 'resnet101_v1s', 'resnet152_v1s', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d', 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnext101_64x4d', 'senet_154', 'inceptionv3'] def main(): args = parser.parse_args() if not args.model or args.model == 'all': for mx_model in ALL: torch_model = map_mx_to_torch_model(mx_model) convert(mx_model, torch_model) else: mx_model = args.model torch_model = map_mx_to_torch_model(mx_model) convert(mx_model, torch_model) if __name__ == '__main__': main()
pytorch-image-models/convert/convert_from_mxnet.py/0
{ "file_path": "pytorch-image-models/convert/convert_from_mxnet.py", "repo_id": "pytorch-image-models", "token_count": 1786 }
# CSP-ResNeXt **CSPResNeXt** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNeXt](https://paperswithcode.com/method/resnext). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('cspresnext50', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspresnext50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('cspresnext50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNeXt Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnext50 In Collection: CSP ResNeXt Metadata: FLOPs: 3962945536 Parameters: 20570000 File Size: 82562887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 1x GPU ID: cspresnext50 LR: 0.1 Layers: 50 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 128 Image Size: '224' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L430 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.05% Top 5 Accuracy: 94.94% -->
pytorch-image-models/hfdocs/source/models/csp-resnext.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/csp-resnext.mdx", "repo_id": "pytorch-image-models", "token_count": 1727 }
# HRNet **HRNet**, or **High-Resolution Net**, is a general purpose convolutional neural network for tasks like semantic segmentation, object detection and image classification. It is able to maintain high resolution representations through the whole process. We start from a high-resolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network consists of several (\\( 4 \\) in the paper) stages and the \\( n \\)th stage contains \\( n \\) streams corresponding to \\( n \\) resolutions. The authors conduct repeated multi-resolution fusions by exchanging the information across the parallel streams over and over. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('hrnet_w18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `hrnet_w18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('hrnet_w18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @misc{sun2019highresolution, title={High-Resolution Representations for Labeling Pixels and Regions}, author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang}, year={2019}, eprint={1904.04514}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: HRNet Paper: Title: Deep High-Resolution Representation Learning for Visual Recognition URL: https://paperswithcode.com/paper/190807919 Models: - Name: hrnet_w18 In Collection: HRNet Metadata: FLOPs: 5547205500 Parameters: 21300000 File Size: 85718883 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L800 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.76% Top 5 Accuracy: 93.44% - Name: hrnet_w18_small In Collection: HRNet Metadata: FLOPs: 2071651488 Parameters: 13190000 File Size: 52934302 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L790 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.34% Top 5 Accuracy: 90.68% - Name: hrnet_w18_small_v2 In Collection: HRNet Metadata: FLOPs: 3360023160 Parameters: 15600000 File Size: 62682879 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small_v2 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L795 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.41% - Name: hrnet_w30 In Collection: HRNet Metadata: FLOPs: 10474119492 Parameters: 37710000 File Size: 151452218 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w30 Epochs: 100 Layers: 30 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L805 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.21% Top 5 Accuracy: 94.22% - Name: hrnet_w32 In Collection: HRNet Metadata: FLOPs: 11524528320 Parameters: 41230000 File Size: 165547812 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 60 hours ID: hrnet_w32 Epochs: 100 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L810 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.45% Top 5 Accuracy: 94.19% - Name: hrnet_w40 In Collection: HRNet Metadata: FLOPs: 16381182192 Parameters: 57560000 File Size: 230899236 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w40 Epochs: 100 Layers: 40 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L815 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.93% Top 5 Accuracy: 94.48% - Name: hrnet_w44 In Collection: HRNet Metadata: FLOPs: 19202520264 Parameters: 67060000 File Size: 268957432 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w44 Epochs: 100 Layers: 44 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L820 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.89% Top 5 Accuracy: 94.37% - Name: hrnet_w48 In Collection: HRNet Metadata: FLOPs: 22285865760 Parameters: 77470000 File Size: 310603710 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 80 hours ID: hrnet_w48 Epochs: 100 Layers: 48 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L825 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.32% Top 5 Accuracy: 94.51% - Name: hrnet_w64 In Collection: HRNet Metadata: FLOPs: 37239321984 Parameters: 128060000 File Size: 513071818 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w64 Epochs: 100 Layers: 64 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L830 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.46% Top 5 Accuracy: 94.65% -->
pytorch-image-models/hfdocs/source/models/hrnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/hrnet.mdx", "repo_id": "pytorch-image-models", "token_count": 5058 }
# RegNetY **RegNetY** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w_{0} > 0 \\), and slope \\( w_{a} > 0 \\), and generates a different block width \\( u_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): \\( u_{j} = w_{0} + w_{a}\cdot{j} \\) For **RegNetX** authors have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w_{m} \geq 2 \\) (the width multiplier). For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('regnety_002', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `regnety_002`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('regnety_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetY Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnety_002 In Collection: RegNetY Metadata: FLOPs: 255754236 Parameters: 3160000 File Size: 12782926 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L409 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.28% Top 5 Accuracy: 89.55% - Name: regnety_004 In Collection: RegNetY Metadata: FLOPs: 515664568 Parameters: 4340000 File Size: 17542753 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.02% Top 5 Accuracy: 91.76% - Name: regnety_006 In Collection: RegNetY Metadata: FLOPs: 771746928 Parameters: 6060000 File Size: 24394127 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L421 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.27% Top 5 Accuracy: 92.53% - Name: regnety_008 In Collection: RegNetY Metadata: FLOPs: 1023448952 Parameters: 6260000 File Size: 25223268 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.32% Top 5 Accuracy: 93.07% - Name: regnety_016 In Collection: RegNetY Metadata: FLOPs: 2070895094 Parameters: 11200000 File Size: 45115589 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.87% Top 5 Accuracy: 93.73% - Name: regnety_032 In Collection: RegNetY Metadata: FLOPs: 4081118714 Parameters: 19440000 File Size: 78084523 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L439 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.01% Top 5 Accuracy: 95.91% - Name: regnety_040 In Collection: RegNetY Metadata: FLOPs: 5105933432 Parameters: 20650000 File Size: 82913909 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L445 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.23% Top 5 Accuracy: 94.64% - Name: regnety_064 In Collection: RegNetY Metadata: FLOPs: 8167730444 Parameters: 30580000 File Size: 122751416 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L451 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.73% Top 5 Accuracy: 94.76% - Name: regnety_080 In Collection: RegNetY Metadata: FLOPs: 10233621420 Parameters: 39180000 File Size: 157124671 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.87% Top 5 Accuracy: 94.83% - Name: regnety_120 In Collection: RegNetY Metadata: FLOPs: 15542094856 Parameters: 51820000 File Size: 207743949 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L463 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.12% - Name: regnety_160 In Collection: RegNetY Metadata: FLOPs: 20450196852 Parameters: 83590000 File Size: 334916722 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L469 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.28% Top 5 Accuracy: 94.97% - Name: regnety_320 In Collection: RegNetY Metadata: FLOPs: 41492618394 Parameters: 145050000 File Size: 580891965 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L475 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.8% Top 5 Accuracy: 95.25% -->
pytorch-image-models/hfdocs/source/models/regnety.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/regnety.mdx", "repo_id": "pytorch-image-models", "token_count": 6761 }
# SWSL ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('swsl_resnext101_32x16d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `swsl_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('swsl_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SWSL ResNext Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: swsl_resnext101_32x16d In Collection: SWSL ResNext Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x16d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L1009 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.34% Top 5 Accuracy: 96.84% - Name: swsl_resnext101_32x4d In Collection: SWSL ResNext Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177341913 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x4d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L987 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.22% Top 5 Accuracy: 96.77% - Name: swsl_resnext101_32x8d In Collection: SWSL ResNext Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x8d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L998 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.27% Top 5 Accuracy: 97.17% - Name: swsl_resnext50_32x4d In Collection: SWSL ResNext Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100428550 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext50_32x4d LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L976 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.17% Top 5 Accuracy: 96.23% -->
pytorch-image-models/hfdocs/source/models/swsl-resnext.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/swsl-resnext.mdx", "repo_id": "pytorch-image-models", "token_count": 3474 }
DEFAULT_CROP_PCT = 0.875 DEFAULT_CROP_MODE = 'center' IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255) IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3) OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073) OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
pytorch-image-models/timm/data/constants.py/0
{ "file_path": "pytorch-image-models/timm/data/constants.py", "repo_id": "pytorch-image-models", "token_count": 236 }
""" A dataset reader that extracts images from folders Folders are scanned recursively to find image files. Labels are based on the folder hierarchy, just leaf folders by default. Hacked together by / Copyright 2020 Ross Wightman """ import os from typing import Dict, List, Optional, Set, Tuple, Union from timm.utils.misc import natural_key from .class_map import load_class_map from .img_extensions import get_img_extensions from .reader import Reader def find_images_and_targets( folder: str, types: Optional[Union[List, Tuple, Set]] = None, class_to_idx: Optional[Dict] = None, leaf_name_only: bool = True, sort: bool = True ): """ Walk folder recursively to discover images and map them to classes by folder names. Args: folder: root of folder to recursively search types: types (file extensions) to search for in path class_to_idx: specify mapping for class (folder name) to class index if set leaf_name_only: use only leaf-name of folder walk for class names sort: re-sort found images by name (for consistent ordering) Returns: A list of image and target tuples, class_to_idx mapping """ types = get_img_extensions(as_set=True) if not types else set(types) labels = [] filenames = [] for root, subdirs, files in os.walk(folder, topdown=False, followlinks=True): rel_path = os.path.relpath(root, folder) if (root != folder) else '' label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_') for f in files: base, ext = os.path.splitext(f) if ext.lower() in types: filenames.append(os.path.join(root, f)) labels.append(label) if class_to_idx is None: # building class index unique_labels = set(labels) sorted_labels = list(sorted(unique_labels, key=natural_key)) class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx] if sort: images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0])) return images_and_targets, class_to_idx class ReaderImageFolder(Reader): def __init__( self, root, class_map='', input_key=None, ): super().__init__() self.root = root class_to_idx = None if class_map: class_to_idx = load_class_map(class_map, root) find_types = None if input_key: find_types = input_key.split(';') self.samples, self.class_to_idx = find_images_and_targets( root, class_to_idx=class_to_idx, types=find_types, ) if len(self.samples) == 0: raise RuntimeError( f'Found 0 images in subfolders of {root}. ' f'Supported image extensions are {", ".join(get_img_extensions())}') def __getitem__(self, index): path, target = self.samples[index] return open(path, 'rb'), target def __len__(self): return len(self.samples) def _filename(self, index, basename=False, absolute=False): filename = self.samples[index][0] if basename: filename = os.path.basename(filename) elif not absolute: filename = os.path.relpath(filename, self.root) return filename
pytorch-image-models/timm/data/readers/reader_image_folder.py/0
{ "file_path": "pytorch-image-models/timm/data/readers/reader_image_folder.py", "repo_id": "pytorch-image-models", "token_count": 1510 }
""" Attention Pool 2D Implementations of 2D spatial feature pooling using multi-head attention instead of average pool. Based on idea in CLIP by OpenAI, licensed Apache 2.0 https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py Hacked together by / Copyright 2021 Ross Wightman """ from typing import Optional, Union, Tuple import torch import torch.nn as nn from. config import use_fused_attn from .helpers import to_2tuple from .pos_embed import resample_abs_pos_embed from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding from .weight_init import trunc_normal_ class RotAttentionPool2d(nn.Module): """ Attention based 2D feature pooling w/ rotary (relative) pos embedding. This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed. https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW """ fused_attn: torch.jit.Final[bool] def __init__( self, in_features: int, out_features: Optional[int] = None, ref_feat_size: Union[int, Tuple[int, int]] = 7, embed_dim: Optional[int] = None, head_dim: Optional[int] = 64, num_heads: Optional[int] = None, qkv_bias: bool = True, qkv_separate: bool = False, pool_type: str = 'token', class_token: bool = False, drop_rate: float = 0., ): super().__init__() assert pool_type in ('', 'token') self.embed_dim = embed_dim = embed_dim or in_features self.in_features = in_features self.out_features = out_features or in_features ref_feat_size = to_2tuple(ref_feat_size) if num_heads is not None: assert embed_dim % num_heads == 0 head_dim = embed_dim // num_heads else: assert embed_dim % head_dim == 0 num_heads = embed_dim // head_dim self.num_heads = num_heads self.head_dim = head_dim self.pool_type = pool_type.lower() self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() if class_token: self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) else: self.cls_token = None if qkv_separate: self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.qkv = None else: self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) self.drop = nn.Dropout(drop_rate) self.proj = nn.Linear(embed_dim, self.out_features) self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size) def init_weights(self, zero_init_last: bool = False): if self.qkv is None: in_features = self.q.in_features trunc_normal_(self.q.weight, std=in_features ** -0.5) nn.init.zeros_(self.q.bias) trunc_normal_(self.k.weight, std=in_features ** -0.5) nn.init.zeros_(self.k.bias) trunc_normal_(self.v.weight, std=in_features ** -0.5) nn.init.zeros_(self.v.bias) else: in_features = self.qkv.in_features trunc_normal_(self.qkv.weight, std=in_features ** -0.5) nn.init.zeros_(self.qkv.bias) def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): # NOTE: this module is being used as a head, so need compatible reset() if pool_type is not None: assert pool_type in ('', 'token') self.pool_type = pool_type if num_classes is not None: self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() self.out_features = num_classes if num_classes > 0 else self.embed_dim def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: if self.pool_type == 'token': x = x[:, 0] else: # if not pooled, return spatial output without token x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) return x def forward(self, x, pre_logits: bool = False): B, _, H, W = x.shape N = H * W x = x.flatten(2).transpose(1, 2) if self.cls_token is None: x = torch.cat([x.mean(1, keepdim=True), x], dim=1) else: x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) if self.qkv is None: q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) else: x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = x.unbind(0) rse, rce = self.pos_embed.get_embed((H, W)) q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v) k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v) if self.fused_attn: x = nn.functional.scaled_dot_product_attention(q, k, v) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 2).reshape(B, N + 1, -1) x = self.drop(x) if pre_logits: x = self._pool(x, H, W) return x x = self.proj(x) x = self._pool(x, H, W) return x class AttentionPool2d(nn.Module): """ Attention based 2D feature pooling w/ learned (absolute) pos embedding. This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. It was based on impl in CLIP by OpenAI https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network. """ fused_attn: torch.jit.Final[bool] def __init__( self, in_features: int, feat_size: Union[int, Tuple[int, int]] = 7, out_features: Optional[int] = None, embed_dim: Optional[int] = None, head_dim: Optional[int] = 64, num_heads: Optional[int] = None, qkv_bias: bool = True, qkv_separate: bool = False, pool_type: str = 'token', class_token: bool = False, drop_rate: float = 0., ): super().__init__() assert pool_type in ('', 'token') self.embed_dim = embed_dim = embed_dim or in_features self.in_features = in_features self.out_features = out_features or in_features if num_heads is not None: assert embed_dim % num_heads == 0 head_dim = embed_dim // num_heads else: assert embed_dim % head_dim == 0 num_heads = embed_dim // head_dim self.feat_size = to_2tuple(feat_size) self.seq_len = self.feat_size[0] * self.feat_size[1] self.num_heads = num_heads self.head_dim = head_dim self.pool_type = pool_type self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() if class_token: self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) else: self.cls_token = None if qkv_separate: self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.qkv = None else: self.q = self.k = self.v = None self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) self.drop = nn.Dropout(drop_rate) self.proj = nn.Linear(embed_dim, self.out_features) self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features)) self.init_weights() def init_weights(self, zero_init_last: bool = False): if self.qkv is None: in_features = self.q.in_features trunc_normal_(self.q.weight, std=in_features ** -0.5) nn.init.zeros_(self.q.bias) trunc_normal_(self.k.weight, std=in_features ** -0.5) nn.init.zeros_(self.k.bias) trunc_normal_(self.v.weight, std=in_features ** -0.5) nn.init.zeros_(self.v.bias) else: in_features = self.qkv.in_features trunc_normal_(self.qkv.weight, std=in_features ** -0.5) nn.init.zeros_(self.qkv.bias) trunc_normal_(self.pos_embed, std=in_features ** -0.5) def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): # NOTE: this module is being used as a head, so need compatible reset() if pool_type is not None: assert pool_type in ('', 'token') self.pool_type = pool_type if num_classes is not None: self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() self.out_features = num_classes if num_classes > 0 else self.embed_dim def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: if self.pool_type == 'token': x = x[:, 0] else: # if not pooled, return spatial output without token x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) return x def forward(self, x, pre_logits: bool = False): B, _, H, W = x.shape N = H * W x = x.flatten(2).transpose(1, 2) if self.cls_token is None: x = torch.cat([x.mean(1, keepdim=True), x], dim=1) else: x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1) x = x + pos_embed if self.qkv is None: q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) else: x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = x.unbind(0) if self.fused_attn: x = nn.functional.scaled_dot_product_attention(q, k, v) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 2).reshape(B, N + 1, -1) x = self.drop(x) if pre_logits: x = self._pool(x, H, W) return x x = self.proj(x) x = self._pool(x, H, W) return x
pytorch-image-models/timm/layers/attention_pool2d.py/0
{ "file_path": "pytorch-image-models/timm/layers/attention_pool2d.py", "repo_id": "pytorch-image-models", "token_count": 5737 }
""" EvoNorm in PyTorch Based on `Evolving Normalization-Activation Layers` - https://arxiv.org/abs/2004.02967 @inproceedings{NEURIPS2020, author = {Liu, Hanxiao and Brock, Andy and Simonyan, Karen and Le, Quoc}, booktitle = {Advances in Neural Information Processing Systems}, editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin}, pages = {13539--13550}, publisher = {Curran Associates, Inc.}, title = {Evolving Normalization-Activation Layers}, url = {https://proceedings.neurips.cc/paper/2020/file/9d4c03631b8b0c85ae08bf05eda37d0f-Paper.pdf}, volume = {33}, year = {2020} } An attempt at getting decent performing EvoNorms running in PyTorch. While faster than other PyTorch impl, still quite a ways off the built-in BatchNorm in terms of memory usage and throughput on GPUs. I'm testing these modules on TPU w/ PyTorch XLA. Promising start but currently working around some issues with builtin torch/tensor.var/std. Unlike GPU, similar train speeds for EvoNormS variants and BatchNorm. Hacked together by / Copyright 2020 Ross Wightman """ from typing import Sequence, Union import torch import torch.nn as nn import torch.nn.functional as F from .create_act import create_act_layer from .trace_utils import _assert def instance_std(x, eps: float = 1e-5): std = x.float().var(dim=(2, 3), unbiased=False, keepdim=True).add(eps).sqrt().to(x.dtype) return std.expand(x.shape) def instance_std_tpu(x, eps: float = 1e-5): std = manual_var(x, dim=(2, 3)).add(eps).sqrt() return std.expand(x.shape) # instance_std = instance_std_tpu def instance_rms(x, eps: float = 1e-5): rms = x.float().square().mean(dim=(2, 3), keepdim=True).add(eps).sqrt().to(x.dtype) return rms.expand(x.shape) def manual_var(x, dim: Union[int, Sequence[int]], diff_sqm: bool = False): xm = x.mean(dim=dim, keepdim=True) if diff_sqm: # difference of squared mean and mean squared, faster on TPU can be less stable var = ((x * x).mean(dim=dim, keepdim=True) - (xm * xm)).clamp(0) else: var = ((x - xm) * (x - xm)).mean(dim=dim, keepdim=True) return var def group_std(x, groups: int = 32, eps: float = 1e-5, flatten: bool = False): B, C, H, W = x.shape x_dtype = x.dtype _assert(C % groups == 0, '') if flatten: x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype) else: x = x.reshape(B, groups, C // groups, H, W) std = x.float().var(dim=(2, 3, 4), unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype) return std.expand(x.shape).reshape(B, C, H, W) def group_std_tpu(x, groups: int = 32, eps: float = 1e-5, diff_sqm: bool = False, flatten: bool = False): # This is a workaround for some stability / odd behaviour of .var and .std # running on PyTorch XLA w/ TPUs. These manual var impl are producing much better results B, C, H, W = x.shape _assert(C % groups == 0, '') if flatten: x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues var = manual_var(x, dim=-1, diff_sqm=diff_sqm) else: x = x.reshape(B, groups, C // groups, H, W) var = manual_var(x, dim=(2, 3, 4), diff_sqm=diff_sqm) return var.add(eps).sqrt().expand(x.shape).reshape(B, C, H, W) #group_std = group_std_tpu # FIXME TPU temporary def group_rms(x, groups: int = 32, eps: float = 1e-5): B, C, H, W = x.shape _assert(C % groups == 0, '') x_dtype = x.dtype x = x.reshape(B, groups, C // groups, H, W) rms = x.float().square().mean(dim=(2, 3, 4), keepdim=True).add(eps).sqrt_().to(x_dtype) return rms.expand(x.shape).reshape(B, C, H, W) class EvoNorm2dB0(nn.Module): def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-3, **_): super().__init__() self.apply_act = apply_act # apply activation (non-linearity) self.momentum = momentum self.eps = eps self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.weight) nn.init.zeros_(self.bias) if self.v is not None: nn.init.ones_(self.v) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) if self.v is not None: if self.training: var = x.float().var(dim=(0, 2, 3), unbiased=False) # var = manual_var(x, dim=(0, 2, 3)).squeeze() n = x.numel() / x.shape[1] self.running_var.copy_( self.running_var * (1 - self.momentum) + var.detach() * self.momentum * (n / (n - 1))) else: var = self.running_var left = var.add(self.eps).sqrt_().to(x_dtype).view(v_shape).expand_as(x) v = self.v.to(x_dtype).view(v_shape) right = x * v + instance_std(x, self.eps) x = x / left.max(right) return x * self.weight.to(x_dtype).view(v_shape) + self.bias.to(x_dtype).view(v_shape) class EvoNorm2dB1(nn.Module): def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, **_): super().__init__() self.apply_act = apply_act # apply activation (non-linearity) self.momentum = momentum self.eps = eps self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) if self.apply_act: if self.training: var = x.float().var(dim=(0, 2, 3), unbiased=False) n = x.numel() / x.shape[1] self.running_var.copy_( self.running_var * (1 - self.momentum) + var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1))) else: var = self.running_var var = var.to(x_dtype).view(v_shape) left = var.add(self.eps).sqrt_() right = (x + 1) * instance_rms(x, self.eps) x = x / left.max(right) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dB2(nn.Module): def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, **_): super().__init__() self.apply_act = apply_act # apply activation (non-linearity) self.momentum = momentum self.eps = eps self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) if self.apply_act: if self.training: var = x.float().var(dim=(0, 2, 3), unbiased=False) n = x.numel() / x.shape[1] self.running_var.copy_( self.running_var * (1 - self.momentum) + var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1))) else: var = self.running_var var = var.to(x_dtype).view(v_shape) left = var.add(self.eps).sqrt_() right = instance_rms(x, self.eps) - x x = x / left.max(right) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dS0(nn.Module): def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-5, **_): super().__init__() self.apply_act = apply_act # apply activation (non-linearity) if group_size: assert num_features % group_size == 0 self.groups = num_features // group_size else: self.groups = groups self.eps = eps self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.weight) nn.init.zeros_(self.bias) if self.v is not None: nn.init.ones_(self.v) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) if self.v is not None: v = self.v.view(v_shape).to(x_dtype) x = x * (x * v).sigmoid() / group_std(x, self.groups, self.eps) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dS0a(EvoNorm2dS0): def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-3, **_): super().__init__( num_features, groups=groups, group_size=group_size, apply_act=apply_act, eps=eps) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) d = group_std(x, self.groups, self.eps) if self.v is not None: v = self.v.view(v_shape).to(x_dtype) x = x * (x * v).sigmoid() x = x / d return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dS1(nn.Module): def __init__( self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=1e-5, **_): super().__init__() act_layer = act_layer or nn.SiLU self.apply_act = apply_act # apply activation (non-linearity) if act_layer is not None and apply_act: self.act = create_act_layer(act_layer) else: self.act = nn.Identity() if group_size: assert num_features % group_size == 0 self.groups = num_features // group_size else: self.groups = groups self.eps = eps self.pre_act_norm = False self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) if self.apply_act: x = self.act(x) / group_std(x, self.groups, self.eps) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dS1a(EvoNorm2dS1): def __init__( self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=1e-3, **_): super().__init__( num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) x = self.act(x) / group_std(x, self.groups, self.eps) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dS2(nn.Module): def __init__( self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=1e-5, **_): super().__init__() act_layer = act_layer or nn.SiLU self.apply_act = apply_act # apply activation (non-linearity) if act_layer is not None and apply_act: self.act = create_act_layer(act_layer) else: self.act = nn.Identity() if group_size: assert num_features % group_size == 0 self.groups = num_features // group_size else: self.groups = groups self.eps = eps self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) if self.apply_act: x = self.act(x) / group_rms(x, self.groups, self.eps) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) class EvoNorm2dS2a(EvoNorm2dS2): def __init__( self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=1e-3, **_): super().__init__( num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps) def forward(self, x): _assert(x.dim() == 4, 'expected 4D input') x_dtype = x.dtype v_shape = (1, -1, 1, 1) x = self.act(x) / group_rms(x, self.groups, self.eps) return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
pytorch-image-models/timm/layers/evo_norm.py/0
{ "file_path": "pytorch-image-models/timm/layers/evo_norm.py", "repo_id": "pytorch-image-models", "token_count": 6684 }
""" Median Pool Hacked together by / Copyright 2020 Ross Wightman """ import torch.nn as nn import torch.nn.functional as F from .helpers import to_2tuple, to_4tuple class MedianPool2d(nn.Module): """ Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=False): super(MedianPool2d, self).__init__() self.k = to_2tuple(kernel_size) self.stride = to_2tuple(stride) self.padding = to_4tuple(padding) # convert to l, r, t, b self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - (ih % self.stride[0]), 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - (iw % self.stride[1]), 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = (pl, pr, pt, pb) else: padding = self.padding return padding def forward(self, x): x = F.pad(x, self._padding(x), mode='reflect') x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] return x
pytorch-image-models/timm/layers/median_pool.py/0
{ "file_path": "pytorch-image-models/timm/layers/median_pool.py", "repo_id": "pytorch-image-models", "token_count": 883 }
import torch import torch.nn as nn class SpaceToDepth(nn.Module): bs: torch.jit.Final[int] def __init__(self, block_size=4): super().__init__() assert block_size == 4 self.bs = block_size def forward(self, x): N, C, H, W = x.size() x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs) x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs) x = x.view(N, C * self.bs * self.bs, H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs) return x class DepthToSpace(nn.Module): def __init__(self, block_size): super().__init__() self.bs = block_size def forward(self, x): N, C, H, W = x.size() x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W) x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs) x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs) return x
pytorch-image-models/timm/layers/space_to_depth.py/0
{ "file_path": "pytorch-image-models/timm/layers/space_to_depth.py", "repo_id": "pytorch-image-models", "token_count": 568 }
""" EfficientNet, MobileNetV3, etc Blocks Hacked together by / Copyright 2019, Ross Wightman """ from typing import Callable, Dict, Optional, Type import torch import torch.nn as nn from torch.nn import functional as F from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, create_aa, to_2tuple, LayerType,\ ConvNormAct, get_norm_act_layer, MultiQueryAttention2d, Attention2d __all__ = [ 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual', 'UniversalInvertedResidual', 'MobileAttention' ] ModuleType = Type[nn.Module] def num_groups(group_size: Optional[int], channels: int): if not group_size: # 0 or None return 1 # normal conv with 1 group else: # NOTE group_size == 1 -> depthwise conv assert channels % group_size == 0 return channels // group_size class SqueezeExcite(nn.Module): """ Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family Args: in_chs (int): input channels to layer rd_ratio (float): ratio of squeeze reduction act_layer (nn.Module): activation layer of containing block gate_layer (Callable): attention gate function force_act_layer (nn.Module): override block's activation fn if this is set/bound rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs """ def __init__( self, in_chs: int, rd_ratio: float = 0.25, rd_channels: Optional[int] = None, act_layer: LayerType = nn.ReLU, gate_layer: LayerType = nn.Sigmoid, force_act_layer: Optional[LayerType] = None, rd_round_fn: Optional[Callable] = None, ): super(SqueezeExcite, self).__init__() if rd_channels is None: rd_round_fn = rd_round_fn or round rd_channels = rd_round_fn(in_chs * rd_ratio) act_layer = force_act_layer or act_layer self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) self.act1 = create_act_layer(act_layer, inplace=True) self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) return x * self.gate(x_se) class ConvBnAct(nn.Module): """ Conv + Norm Layer + Activation w/ optional skip connection """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int, stride: int = 1, dilation: int = 1, group_size: int = 0, pad_type: str = '', skip: bool = False, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, drop_path_rate: float = 0., ): super(ConvBnAct, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) groups = num_groups(group_size, in_chs) self.has_skip = skip and stride == 1 and in_chs == out_chs use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation self.conv = create_conv2d( in_chs, out_chs, kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=pad_type) self.bn1 = norm_act_layer(out_chs, inplace=True) self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # output of conv after act, same as block coutput return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv.out_channels) def forward(self, x): shortcut = x x = self.conv(x) x = self.bn1(x) x = self.aa(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class DepthwiseSeparableConv(nn.Module): """ Depthwise-separable block Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. """ def __init__( self, in_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, pw_kernel_size: int = 1, pw_act: bool = False, s2d: int = 0, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, drop_path_rate: float = 0., ): super(DepthwiseSeparableConv, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation # Space to depth if s2d == 1: sd_chs = int(in_chs * 4) self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') self.bn_s2d = norm_act_layer(sd_chs, sd_chs) dw_kernel_size = (dw_kernel_size + 1) // 2 dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type in_chs = sd_chs use_aa = False # disable AA else: self.conv_s2d = None self.bn_s2d = None dw_pad_type = pad_type groups = num_groups(group_size, in_chs) self.conv_dw = create_conv2d( in_chs, in_chs, dw_kernel_size, stride=1 if use_aa else stride, dilation=dilation, padding=dw_pad_type, groups=groups) self.bn1 = norm_act_layer(in_chs, inplace=True) self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) # Squeeze-and-excitation self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pw.out_channels) def forward(self, x): shortcut = x if self.conv_s2d is not None: x = self.conv_s2d(x) x = self.bn_s2d(x) x = self.conv_dw(x) x = self.bn1(x) x = self.aa(x) x = self.se(x) x = self.conv_pw(x) x = self.bn2(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in * MNasNet - https://arxiv.org/abs/1807.11626 * EfficientNet - https://arxiv.org/abs/1905.11946 * MobileNet-V3 - https://arxiv.org/abs/1905.02244 """ def __init__( self, in_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, exp_ratio: float = 1.0, exp_kernel_size: int = 1, pw_kernel_size: int = 1, s2d: int = 0, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, conv_kwargs: Optional[Dict] = None, drop_path_rate: float = 0., ): super(InvertedResidual, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) conv_kwargs = conv_kwargs or {} self.has_skip = (in_chs == out_chs and stride == 1) and not noskip use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation # Space to depth if s2d == 1: sd_chs = int(in_chs * 4) self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') self.bn_s2d = norm_act_layer(sd_chs, sd_chs) dw_kernel_size = (dw_kernel_size + 1) // 2 dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type in_chs = sd_chs use_aa = False # disable AA else: self.conv_s2d = None self.bn_s2d = None dw_pad_type = pad_type mid_chs = make_divisible(in_chs * exp_ratio) groups = num_groups(group_size, mid_chs) # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_act_layer(mid_chs, inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=dw_pad_type, **conv_kwargs) self.bn2 = norm_act_layer(mid_chs, inplace=True) self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_act_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PWL return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pwl.out_channels) def forward(self, x): shortcut = x if self.conv_s2d is not None: x = self.conv_s2d(x) x = self.bn_s2d(x) x = self.conv_pw(x) x = self.bn1(x) x = self.conv_dw(x) x = self.bn2(x) x = self.aa(x) x = self.se(x) x = self.conv_pwl(x) x = self.bn3(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class LayerScale2d(nn.Module): def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): gamma = self.gamma.view(1, -1, 1, 1) return x.mul_(gamma) if self.inplace else x * gamma class UniversalInvertedResidual(nn.Module): """ Universal Inverted Residual Block (aka Universal Inverted Bottleneck, UIB) For MobileNetV4 - https://arxiv.org/abs/, referenced from https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L778 """ def __init__( self, in_chs: int, out_chs: int, dw_kernel_size_start: int = 0, dw_kernel_size_mid: int = 3, dw_kernel_size_end: int = 0, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, exp_ratio: float = 1.0, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, conv_kwargs: Optional[Dict] = None, drop_path_rate: float = 0., layer_scale_init_value: Optional[float] = 1e-5, ): super(UniversalInvertedResidual, self).__init__() conv_kwargs = conv_kwargs or {} self.has_skip = (in_chs == out_chs and stride == 1) and not noskip if stride > 1: assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end # FIXME dilation isn't right w/ extra ks > 1 convs if dw_kernel_size_start: dw_start_stride = stride if not dw_kernel_size_mid else 1 dw_start_groups = num_groups(group_size, in_chs) self.dw_start = ConvNormAct( in_chs, in_chs, dw_kernel_size_start, stride=dw_start_stride, dilation=dilation, # FIXME groups=dw_start_groups, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, **conv_kwargs, ) else: self.dw_start = nn.Identity() # Point-wise expansion mid_chs = make_divisible(in_chs * exp_ratio) self.pw_exp = ConvNormAct( in_chs, mid_chs, 1, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs, ) # Middle depth-wise convolution if dw_kernel_size_mid: groups = num_groups(group_size, mid_chs) self.dw_mid = ConvNormAct( mid_chs, mid_chs, dw_kernel_size_mid, stride=stride, dilation=dilation, # FIXME groups=groups, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, **conv_kwargs, ) else: # keeping mid as identity so it can be hooked more easily for features self.dw_mid = nn.Identity() # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.pw_proj = ConvNormAct( mid_chs, out_chs, 1, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs, ) if dw_kernel_size_end: dw_end_stride = stride if not dw_kernel_size_start and not dw_kernel_size_mid else 1 dw_end_groups = num_groups(group_size, out_chs) if dw_end_stride > 1: assert not aa_layer self.dw_end = ConvNormAct( out_chs, out_chs, dw_kernel_size_end, stride=dw_end_stride, dilation=dilation, groups=dw_end_groups, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs, ) else: self.dw_end = nn.Identity() if layer_scale_init_value is not None: self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) else: self.layer_scale = nn.Identity() self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PWL return dict(module='pw_proj.conv', hook_type='forward_pre', num_chs=self.pw_proj.conv.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.pw_proj.conv.out_channels) def forward(self, x): shortcut = x x = self.dw_start(x) x = self.pw_exp(x) x = self.dw_mid(x) x = self.se(x) x = self.pw_proj(x) x = self.dw_end(x) x = self.layer_scale(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class MobileAttention(nn.Module): """ Mobile Attention Block For MobileNetV4 - https://arxiv.org/abs/, referenced from https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L1504 """ def __init__( self, in_chs: int, out_chs: int, stride: int = 1, dw_kernel_size: int = 3, dilation: int = 1, group_size: int = 1, pad_type: str = '', num_heads: int = 8, key_dim: int = 64, value_dim: int = 64, use_multi_query: bool = False, query_strides: int = (1, 1), kv_stride: int = 1, cpe_dw_kernel_size: int = 3, noskip: bool = False, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, drop_path_rate: float = 0., attn_drop: float = 0.0, proj_drop: float = 0.0, layer_scale_init_value: Optional[float] = 1e-5, use_bias: bool = False, use_cpe: bool = False, ): super(MobileAttention, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip self.query_strides = to_2tuple(query_strides) self.kv_stride = kv_stride self.has_query_stride = any([s > 1 for s in self.query_strides]) # This CPE is different than the one suggested in the original paper. # https://arxiv.org/abs/2102.10882 # 1. Rather than adding one CPE before the attention blocks, we add a CPE # into every attention block. # 2. We replace the expensive Conv2D by a Separable DW Conv. if use_cpe: self.conv_cpe_dw = create_conv2d( in_chs, in_chs, kernel_size=cpe_dw_kernel_size, dilation=dilation, depthwise=True, bias=True, ) else: self.conv_cpe_dw = None self.norm = norm_act_layer(in_chs, apply_act=False) if num_heads is None: assert in_chs % key_dim == 0 num_heads = in_chs // key_dim if use_multi_query: self.attn = MultiQueryAttention2d( in_chs, dim_out=out_chs, num_heads=num_heads, key_dim=key_dim, value_dim=value_dim, query_strides=query_strides, kv_stride=kv_stride, dilation=dilation, padding=pad_type, dw_kernel_size=dw_kernel_size, attn_drop=attn_drop, proj_drop=proj_drop, #bias=use_bias, # why not here if used w/ mhsa? ) else: self.attn = Attention2d( in_chs, dim_out=out_chs, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop, bias=use_bias, ) if layer_scale_init_value is not None: self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) else: self.layer_scale = nn.Identity() self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pw.out_channels) def forward(self, x): if self.conv_cpe_dw is not None: x_cpe = self.conv_cpe_dw(x) x = x + x_cpe shortcut = x x = self.norm(x) x = self.attn(x) x = self.layer_scale(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class CondConvResidual(InvertedResidual): """ Inverted residual block w/ CondConv routing""" def __init__( self, in_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, exp_ratio: float = 1.0, exp_kernel_size: int = 1, pw_kernel_size: int = 1, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, num_experts: int = 0, drop_path_rate: float = 0., ): self.num_experts = num_experts conv_kwargs = dict(num_experts=self.num_experts) super(CondConvResidual, self).__init__( in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, group_size=group_size, pad_type=pad_type, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, conv_kwargs=conv_kwargs, drop_path_rate=drop_path_rate, ) self.routing_fn = nn.Linear(in_chs, self.num_experts) def forward(self, x): shortcut = x pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) # CondConv routing routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) x = self.conv_pw(x, routing_weights) x = self.bn1(x) x = self.conv_dw(x, routing_weights) x = self.bn2(x) x = self.se(x) x = self.conv_pwl(x, routing_weights) x = self.bn3(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class EdgeResidual(nn.Module): """ Residual block with expansion convolution followed by pointwise-linear w/ stride Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML` - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers * MobileDet - https://arxiv.org/abs/2004.14525 * EfficientNet-X - https://arxiv.org/abs/2102.05610 * EfficientNet-V2 - https://arxiv.org/abs/2104.00298 """ def __init__( self, in_chs: int, out_chs: int, exp_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 0, pad_type: str = '', force_in_chs: int = 0, noskip: bool = False, exp_ratio: float = 1.0, pw_kernel_size: int = 1, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, drop_path_rate: float = 0., ): super(EdgeResidual, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) if force_in_chs > 0: mid_chs = make_divisible(force_in_chs * exp_ratio) else: mid_chs = make_divisible(in_chs * exp_ratio) groups = num_groups(group_size, mid_chs) # NOTE: Using out_chs of conv_exp for groups calc self.has_skip = (in_chs == out_chs and stride == 1) and not noskip use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation # Expansion convolution self.conv_exp = create_conv2d( in_chs, mid_chs, exp_kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=pad_type) self.bn1 = norm_act_layer(mid_chs, inplace=True) self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_act_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, before PWL return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pwl.out_channels) def forward(self, x): shortcut = x x = self.conv_exp(x) x = self.bn1(x) x = self.aa(x) x = self.se(x) x = self.conv_pwl(x) x = self.bn2(x) if self.has_skip: x = self.drop_path(x) + shortcut return x
pytorch-image-models/timm/models/_efficientnet_blocks.py/0
{ "file_path": "pytorch-image-models/timm/models/_efficientnet_blocks.py", "repo_id": "pytorch-image-models", "token_count": 13538 }
""" BEiT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) Model from official source: https://github.com/microsoft/unilm/tree/master/beit @inproceedings{beit, title={{BEiT}: {BERT} Pre-Training of Image Transformers}, author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=p-BhZSz59o4} } BEiT-v2 from https://github.com/microsoft/unilm/tree/master/beit2 @article{beitv2, title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers}, author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei}, year={2022}, eprint={2208.06366}, archivePrefix={arXiv}, primaryClass={cs.CV} } At this point only the 1k fine-tuned classification weights and model configs have been added, see original source above for pre-training models and procedure. Modifications by / Copyright 2021 Ross Wightman, original copyrights below """ # -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table, ndgrid from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint from ._registry import generate_default_cfgs, register_model __all__ = ['Beit'] def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor: num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window window_area = window_size[0] * window_size[1] coords = torch.stack(ndgrid(torch.arange(window_size[0]), torch.arange(window_size[1]))) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = num_relative_distance - 3 relative_position_index[0:, 0] = num_relative_distance - 2 relative_position_index[0, 0] = num_relative_distance - 1 return relative_position_index class Attention(nn.Module): fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qkv_bias_separate: bool = False, attn_drop: float = 0., proj_drop: float = 0., window_size: Optional[Tuple[int, int]] = None, attn_head_dim: Optional[int] = None, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv_bias_separate = qkv_bias_separate self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.k_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH self.register_buffer("relative_position_index", gen_relative_position_index(window_size), persistent=False) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def _get_rel_pos_bias(self): relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww return relative_position_bias.unsqueeze(0) def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): B, N, C = x.shape if self.q_bias is None: qkv = self.qkv(x) else: qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.qkv_bias_separate: qkv = self.qkv(x) qkv += qkv_bias else: qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # B, num_heads, N, head_dim if self.fused_attn: rel_pos_bias = None if self.relative_position_bias_table is not None: rel_pos_bias = self._get_rel_pos_bias() if shared_rel_pos_bias is not None: rel_pos_bias = rel_pos_bias + shared_rel_pos_bias elif shared_rel_pos_bias is not None: rel_pos_bias = shared_rel_pos_bias x = F.scaled_dot_product_attention( q, k, v, attn_mask=rel_pos_bias, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: attn = attn + self._get_rel_pos_bias() if shared_rel_pos_bias is not None: attn = attn + shared_rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim: int, num_heads: int, qkv_bias: bool = False, mlp_ratio: float = 4., scale_mlp: bool = False, swiglu_mlp: bool = False, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., init_values: Optional[float] = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, window_size: Optional[Tuple[int, int]] = None, attn_head_dim: Optional[int] = None, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, window_size=window_size, attn_head_dim=attn_head_dim, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) if swiglu_mlp: self.mlp = SwiGLU( in_features=dim, hidden_features=int(dim * mlp_ratio), norm_layer=norm_layer if scale_mlp else None, drop=proj_drop, ) else: self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() if init_values: self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): if self.gamma_1 is None: x = x + self.drop_path1(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) x = x + self.drop_path2(self.mlp(self.norm2(x))) else: x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.window_area = window_size[0] * window_size[1] num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) # trunc_normal_(self.relative_position_bias_table, std=.02) self.register_buffer("relative_position_index", gen_relative_position_index(window_size)) def forward(self): relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_area + 1, self.window_area + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class Beit(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool = True, mlp_ratio: float = 4., swiglu_mlp: bool = False, scale_mlp: bool = False, drop_rate: float = 0., pos_drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., norm_layer: Callable = LayerNorm, init_values: Optional[float] = None, use_abs_pos_emb: bool = True, use_rel_pos_bias: bool = False, use_shared_rel_pos_bias: bool = False, head_init_scale: float = 0.001, ): super().__init__() self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models self.num_prefix_tokens = 1 self.grad_checkpointing = False self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None self.pos_drop = nn.Dropout(p=pos_drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias( window_size=self.patch_embed.grid_size, num_heads=num_heads, ) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, mlp_ratio=mlp_ratio, scale_mlp=scale_mlp, swiglu_mlp=swiglu_mlp, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None, ) for i in range(depth)]) self.feature_info = [ dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] use_fc_norm = self.global_pool == 'avg' self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.fix_init_weight() if isinstance(self.head, nn.Linear): trunc_normal_(self.head.weight, std=.02) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): nwd = {'pos_embed', 'cls_token'} for n, _ in self.named_parameters(): if 'relative_position_bias_table' in n: nwd.add(n) return nwd @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], ) return matcher @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, return_prefix_tokens: bool = False, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if an int, if is a sequence, select by matching indices return_prefix_tokens: Return both prefix and spatial intermediate tokens norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' reshape = output_fmt == 'NCHW' intermediates = [] take_indices, max_index = feature_take_indices(len(self.blocks), indices) # forward pass B, _, height, width = x.shape x = self.patch_embed(x) x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript blocks = self.blocks else: blocks = self.blocks[:max_index + 1] for i, blk in enumerate(blocks): x = blk(x, shared_rel_pos_bias=rel_pos_bias) if i in take_indices: # normalize intermediates with final norm layer if enabled intermediates.append(self.norm(x) if norm else x) # process intermediates if self.num_prefix_tokens: # split prefix (e.g. class, distill) and spatial feature tokens prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] if reshape: # reshape to BCHW output format H, W = self.patch_embed.dynamic_feat_size((height, width)) intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] if not torch.jit.is_scripting() and return_prefix_tokens: # return_prefix not support in torchscript due to poor type handling intermediates = list(zip(intermediates, prefix_tokens)) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.blocks), indices) self.blocks = self.blocks[:max_index + 1] # truncate blocks if prune_norm: self.norm = nn.Identity() if prune_head: self.fc_norm = nn.Identity() self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.patch_embed(x) x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias) else: x = blk(x, shared_rel_pos_bias=rel_pos_bias) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] x = self.fc_norm(x) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ 'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth', hf_hub_id='timm/'), 'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, ), 'beit_base_patch16_224.in22k_ft_in22k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth', hf_hub_id='timm/', num_classes=21841, ), 'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth', hf_hub_id='timm/'), 'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, ), 'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth', hf_hub_id='timm/', input_size=(3, 512, 512), crop_pct=1.0, ), 'beit_large_patch16_224.in22k_ft_in22k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth', hf_hub_id='timm/', num_classes=21841, ), 'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ), 'beitv2_base_patch16_224.in1k_ft_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft1k.pth', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ), 'beitv2_base_patch16_224.in1k_ft_in22k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth', hf_hub_id='timm/', num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ), 'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth', hf_hub_id='timm/', crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ), 'beitv2_large_patch16_224.in1k_ft_in1k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft1k.pth', hf_hub_id='timm/', crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ), 'beitv2_large_patch16_224.in1k_ft_in22k': _cfg( #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth', hf_hub_id='timm/', num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ), }) def checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True): state_dict = state_dict.get('model', state_dict) state_dict = state_dict.get('module', state_dict) # beit v2 didn't strip module out_dict = {} for k, v in state_dict.items(): if 'relative_position_index' in k: continue if 'patch_embed.proj.weight' in k: O, I, H, W = model.patch_embed.proj.weight.shape if v.shape[-1] != W or v.shape[-2] != H: v = resample_patch_embed( v, (H, W), interpolation=interpolation, antialias=antialias, verbose=True, ) elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # To resize pos embedding when using model at different size from pretrained weights num_prefix_tokens = 1 v = resample_abs_pos_embed( v, new_size=model.patch_embed.grid_size, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True, ) elif k.endswith('relative_position_bias_table'): m = model.get_submodule(k[:-29]) if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: v = resize_rel_pos_bias_table( v, new_window_size=m.window_size, new_bias_shape=m.relative_position_bias_table.shape, ) out_dict[k] = v return out_dict def _create_beit(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) model = build_model_with_cfg( Beit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) return model @register_model def beit_base_patch16_224(pretrained=False, **kwargs) -> Beit: model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs) -> Beit: model_args = dict( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def beit_large_patch16_224(pretrained=False, **kwargs) -> Beit: model_args = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs) -> Beit: model_args = dict( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def beit_large_patch16_512(pretrained=False, **kwargs) -> Beit: model_args = dict( img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def beitv2_base_patch16_224(pretrained=False, **kwargs) -> Beit: model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def beitv2_large_patch16_224(pretrained=False, **kwargs) -> Beit: model_args = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model
pytorch-image-models/timm/models/beit.py/0
{ "file_path": "pytorch-image-models/timm/models/beit.py", "repo_id": "pytorch-image-models", "token_count": 14383 }
""" EfficientFormer @article{li2022efficientformer, title={EfficientFormer: Vision Transformers at MobileNet Speed}, author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian}, journal={arXiv preprint arXiv:2206.01191}, year={2022} } Based on Apache 2.0 licensed code at https://github.com/snap-research/EfficientFormer, Copyright (c) 2022 Snap Inc. Modifications and timm support by / Copyright 2022, Ross Wightman """ from typing import Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, trunc_normal_, to_2tuple, Mlp, ndgrid from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['EfficientFormer'] # model_registry will add each entrypoint fn to this EfficientFormer_width = { 'l1': (48, 96, 224, 448), 'l3': (64, 128, 320, 512), 'l7': (96, 192, 384, 768), } EfficientFormer_depth = { 'l1': (3, 2, 6, 4), 'l3': (4, 4, 12, 6), 'l7': (6, 6, 18, 8), } class Attention(torch.nn.Module): attention_bias_cache: Dict[str, torch.Tensor] def __init__( self, dim=384, key_dim=32, num_heads=8, attn_ratio=4, resolution=7 ): super().__init__() self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = self.val_dim * num_heads self.attn_ratio = attn_ratio self.qkv = nn.Linear(dim, self.key_attn_dim * 2 + self.val_attn_dim) self.proj = nn.Linear(self.val_attn_dim, dim) resolution = to_2tuple(resolution) pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) self.register_buffer('attention_bias_idxs', rel_pos) self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): # x (B,N,C) B, N, C = x.shape qkv = self.qkv(x) qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) q, k, v = qkv.split([self.key_dim, self.key_dim, self.val_dim], dim=3) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) x = self.proj(x) return x class Stem4(nn.Sequential): def __init__(self, in_chs, out_chs, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): super().__init__() self.stride = 4 self.add_module('conv1', nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1)) self.add_module('norm1', norm_layer(out_chs // 2)) self.add_module('act1', act_layer()) self.add_module('conv2', nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1)) self.add_module('norm2', norm_layer(out_chs)) self.add_module('act2', act_layer()) class Downsample(nn.Module): """ Downsampling via strided conv w/ norm Input: tensor in shape [B, C, H, W] Output: tensor in shape [B, C, H/stride, W/stride] """ def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=None, norm_layer=nn.BatchNorm2d): super().__init__() if padding is None: padding = kernel_size // 2 self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) self.norm = norm_layer(out_chs) def forward(self, x): x = self.conv(x) x = self.norm(x) return x class Flat(nn.Module): def __init__(self, ): super().__init__() def forward(self, x): x = x.flatten(2).transpose(1, 2) return x class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class ConvMlpWithNorm(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, drop=0. ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.norm1 = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.norm2 = norm_layer(out_features) if norm_layer is not None else nn.Identity() self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.norm1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.norm2(x) x = self.drop(x) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class MetaBlock1d(nn.Module): def __init__( self, dim, mlp_ratio=4., act_layer=nn.GELU, norm_layer=nn.LayerNorm, proj_drop=0., drop_path=0., layer_scale_init_value=1e-5 ): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Attention(dim) self.norm2 = norm_layer(dim) self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.ls1 = LayerScale(dim, layer_scale_init_value) self.ls2 = LayerScale(dim, layer_scale_init_value) def forward(self, x): x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x)))) x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x)))) return x class LayerScale2d(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): gamma = self.gamma.view(1, -1, 1, 1) return x.mul_(gamma) if self.inplace else x * gamma class MetaBlock2d(nn.Module): def __init__( self, dim, pool_size=3, mlp_ratio=4., act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, proj_drop=0., drop_path=0., layer_scale_init_value=1e-5 ): super().__init__() self.token_mixer = Pooling(pool_size=pool_size) self.ls1 = LayerScale2d(dim, layer_scale_init_value) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = ConvMlpWithNorm( dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer, drop=proj_drop, ) self.ls2 = LayerScale2d(dim, layer_scale_init_value) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = x + self.drop_path1(self.ls1(self.token_mixer(x))) x = x + self.drop_path2(self.ls2(self.mlp(x))) return x class EfficientFormerStage(nn.Module): def __init__( self, dim, dim_out, depth, downsample=True, num_vit=1, pool_size=3, mlp_ratio=4., act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, norm_layer_cl=nn.LayerNorm, proj_drop=.0, drop_path=0., layer_scale_init_value=1e-5, ): super().__init__() self.grad_checkpointing = False if downsample: self.downsample = Downsample(in_chs=dim, out_chs=dim_out, norm_layer=norm_layer) dim = dim_out else: assert dim == dim_out self.downsample = nn.Identity() blocks = [] if num_vit and num_vit >= depth: blocks.append(Flat()) for block_idx in range(depth): remain_idx = depth - block_idx - 1 if num_vit and num_vit > remain_idx: blocks.append( MetaBlock1d( dim, mlp_ratio=mlp_ratio, act_layer=act_layer, norm_layer=norm_layer_cl, proj_drop=proj_drop, drop_path=drop_path[block_idx], layer_scale_init_value=layer_scale_init_value, )) else: blocks.append( MetaBlock2d( dim, pool_size=pool_size, mlp_ratio=mlp_ratio, act_layer=act_layer, norm_layer=norm_layer, proj_drop=proj_drop, drop_path=drop_path[block_idx], layer_scale_init_value=layer_scale_init_value, )) if num_vit and num_vit == remain_idx: blocks.append(Flat()) self.blocks = nn.Sequential(*blocks) def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class EfficientFormer(nn.Module): def __init__( self, depths, embed_dims=None, in_chans=3, num_classes=1000, global_pool='avg', downsamples=None, num_vit=0, mlp_ratios=4, pool_size=3, layer_scale_init_value=1e-5, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, norm_layer_cl=nn.LayerNorm, drop_rate=0., proj_drop_rate=0., drop_path_rate=0., **kwargs ): super().__init__() self.num_classes = num_classes self.global_pool = global_pool self.stem = Stem4(in_chans, embed_dims[0], norm_layer=norm_layer) prev_dim = embed_dims[0] # stochastic depth decay rule self.num_stages = len(depths) last_stage = self.num_stages - 1 dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] downsamples = downsamples or (False,) + (True,) * (self.num_stages - 1) stages = [] self.feature_info = [] for i in range(self.num_stages): stage = EfficientFormerStage( prev_dim, embed_dims[i], depths[i], downsample=downsamples[i], num_vit=num_vit if i == last_stage else 0, pool_size=pool_size, mlp_ratio=mlp_ratios, act_layer=act_layer, norm_layer_cl=norm_layer_cl, norm_layer=norm_layer, proj_drop=proj_drop_rate, drop_path=dpr[i], layer_scale_init_value=layer_scale_init_value, ) prev_dim = embed_dims[i] stages.append(stage) self.feature_info += [dict(num_chs=embed_dims[i], reduction=2**(i+2), module=f'stages.{i}')] self.stages = nn.Sequential(*stages) # Classifier head self.num_features = self.head_hidden_size = embed_dims[-1] self.norm = norm_layer_cl(self.num_features) self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() # assuming model is always distilled (valid for current checkpoints, will split def if that changes) self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token self.apply(self._init_weights) # init for classification def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {k for k, _ in self.named_parameters() if 'attention_biases' in k} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head, self.head_dist def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) # forward pass x = self.stem(x) B, C, H, W = x.shape last_idx = self.num_stages - 1 if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.stages else: stages = self.stages[:max_index + 1] feat_idx = 0 for feat_idx, stage in enumerate(stages): x = stage(x) if feat_idx < last_idx: B, C, H, W = x.shape if feat_idx in take_indices: if feat_idx == last_idx: x_inter = self.norm(x) if norm else x intermediates.append(x_inter.reshape(B, H // 2, W // 2, -1).permute(0, 3, 1, 2)) else: intermediates.append(x) if intermediates_only: return intermediates if feat_idx == last_idx: x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.stem(x) x = self.stages(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=1) x = self.head_drop(x) if pre_logits: return x x, x_dist = self.head(x), self.head_dist(x) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train/finetune, inference average the classifier predictions return (x + x_dist) / 2 def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): """ Remap original checkpoints -> timm """ if 'stem.0.weight' in state_dict: return state_dict # non-original checkpoint, no remapping needed out_dict = {} import re stage_idx = 0 for k, v in state_dict.items(): if k.startswith('patch_embed'): k = k.replace('patch_embed.0', 'stem.conv1') k = k.replace('patch_embed.1', 'stem.norm1') k = k.replace('patch_embed.3', 'stem.conv2') k = k.replace('patch_embed.4', 'stem.norm2') if re.match(r'network\.(\d+)\.proj\.weight', k): stage_idx += 1 k = re.sub(r'network.(\d+).(\d+)', f'stages.{stage_idx}.blocks.\\2', k) k = re.sub(r'network.(\d+).proj', f'stages.{stage_idx}.downsample.conv', k) k = re.sub(r'network.(\d+).norm', f'stages.{stage_idx}.downsample.norm', k) k = re.sub(r'layer_scale_([0-9])', r'ls\1.gamma', k) k = k.replace('dist_head', 'head_dist') out_dict[k] = v return out_dict def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, 'crop_pct': .95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'), **kwargs } default_cfgs = generate_default_cfgs({ 'efficientformer_l1.snap_dist_in1k': _cfg( hf_hub_id='timm/', ), 'efficientformer_l3.snap_dist_in1k': _cfg( hf_hub_id='timm/', ), 'efficientformer_l7.snap_dist_in1k': _cfg( hf_hub_id='timm/', ), }) def _create_efficientformer(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 4) model = build_model_with_cfg( EfficientFormer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) return model @register_model def efficientformer_l1(pretrained=False, **kwargs) -> EfficientFormer: model_args = dict( depths=EfficientFormer_depth['l1'], embed_dims=EfficientFormer_width['l1'], num_vit=1, ) return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def efficientformer_l3(pretrained=False, **kwargs) -> EfficientFormer: model_args = dict( depths=EfficientFormer_depth['l3'], embed_dims=EfficientFormer_width['l3'], num_vit=4, ) return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def efficientformer_l7(pretrained=False, **kwargs) -> EfficientFormer: model_args = dict( depths=EfficientFormer_depth['l7'], embed_dims=EfficientFormer_width['l7'], num_vit=8, ) return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **dict(model_args, **kwargs))
pytorch-image-models/timm/models/efficientformer.py/0
{ "file_path": "pytorch-image-models/timm/models/efficientformer.py", "repo_id": "pytorch-image-models", "token_count": 10905 }
""" An PyTorch implementation of Hiera Adapted for timm from originals at https://github.com/facebookresearch/hiera """ # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # # Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles # # Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, # Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, # Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer. # # Paper: https://arxiv.org/abs/2306.00989/ # # References: # slowfast: https://github.com/facebookresearch/SlowFast # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # -------------------------------------------------------- import math from functools import partial from typing import Callable, Dict, List, Optional, Tuple, Type, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \ _assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax from ._registry import generate_default_cfgs, register_model from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._features_fx import register_notrace_function from ._manipulate import named_apply, checkpoint __all__ = ['Hiera'] def conv_nd(n: int) -> Type[nn.Module]: """ Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3. If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises) """ return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n] @register_notrace_function def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor: # target_size: [(T), (H), W] # (spatial) mask: [B, C, (t), (h), w] if mask is None: return mask _assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.") if mask.shape[2:] != target_size: return F.interpolate(mask.float(), size=target_size) return mask def undo_windowing( x: torch.Tensor, shape: List[int], mu_shape: List[int], ) -> torch.Tensor: """ Restore spatial organization by undoing windowed organization of mask units. Args: x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C] shape: current spatial shape, if it were not organized into mask unit windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C]. mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx] Returns: x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C] """ D = len(shape) B, C = x.shape[0], x.shape[-1] # [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C] num_MUs = [s // mu for s, mu in zip(shape, mu_shape)] x = x.view(B, *num_MUs, *mu_shape, C) # [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C] permute = ( [0] + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], []) + [len(x.shape) - 1] ) x = x.permute(permute).reshape(B, *shape, C) return x class Unroll(nn.Module): """ Reorders the tokens such that patches are contiguous in memory. E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as [B, (Sy, Sx, H // Sy, W // Sx), C] This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1). Not only is this faster, but it also makes it easy to support inputs of arbitrary dimensions in addition to patch-wise sparsity. Performing this operation multiple times in sequence puts entire windows as contiguous in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of size 8x8 would be contiguous in memory, allowing operations like mask unit attention computed easily and efficiently, while also allowing max to be applied sequentially. Note: This means that intermediate values of the model are not in HxW order, so they need to be re-rolled if you want to use the intermediate values as a HxW feature map. The last block of the network is fine though, since by then the strides are all consumed. """ def __init__( self, input_size: Tuple[int, ...], patch_stride: Tuple[int, ...], unroll_schedule: List[Tuple[int, ...]], ): super().__init__() self.size = [i // s for i, s in zip(input_size, patch_stride)] self.schedule = unroll_schedule def forward(self, x: torch.Tensor) -> torch.Tensor: """ Input: Flattened patch embeddings [B, N, C] Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd """ B, _, C = x.shape cur_size = self.size x = x.view(*([B] + cur_size + [C])) for strides in self.schedule: # Move patches with the given strides to the batch dimension # Create a view of the tensor with the patch stride as separate dims # For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C] cur_size = [i // s for i, s in zip(cur_size, strides)] new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C] x = x.view(new_shape) # Move the patch stride into the batch dimension # For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C] L = len(new_shape) permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1] x = x.permute(permute) # Now finally flatten the relevant dims into the batch dimension x = x.flatten(0, len(strides)) B *= math.prod(strides) x = x.reshape(-1, math.prod(self.size), C) return x class Reroll(nn.Module): """ Undos the "unroll" operation so that you can use intermediate features. """ def __init__( self, input_size: Tuple[int, ...], patch_stride: Tuple[int, ...], unroll_schedule: List[Tuple[int, ...]], stage_ends: List[int], q_pool: int, ): super().__init__() self.size = [i // s for i, s in zip(input_size, patch_stride)] # The first stage has to reverse everything # The next stage has to reverse all but the first unroll, etc. self.schedule = {} size = self.size for i in range(stage_ends[-1] + 1): self.schedule[i] = unroll_schedule, size # schedule unchanged if no pooling at a stage end if i in stage_ends[:q_pool]: if len(unroll_schedule) > 0: size = [n // s for n, s in zip(size, unroll_schedule[0])] unroll_schedule = unroll_schedule[1:] def forward( self, x: torch.Tensor, block_idx: int, mask: torch.Tensor = None ) -> torch.Tensor: """ Roll the given tensor back up to spatial order assuming it's from the given block. If no mask is provided: - Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc. If a mask is provided: - Returns [B, #MUs, MUy, MUx, C] for 2d, etc. """ schedule, size = self.schedule[block_idx] B, N, C = x.shape D = len(size) cur_mu_shape = [1] * D for strides in schedule: # Extract the current patch from N x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C) # Move that patch into the current MU # Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C] L = len(x.shape) permute = ( [0, 1 + D] + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], []) + [L - 1] ) x = x.permute(permute) # Reshape to [B, N//(Sy*Sx), *MU, C] for i in range(D): cur_mu_shape[i] *= strides[i] x = x.reshape(B, -1, *cur_mu_shape, C) N = x.shape[1] # Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C]) x = x.view(B, N, *cur_mu_shape, C) # If masked, return [B, #MUs, MUy, MUx, C] if mask is not None: return x # If not masked, we can return [B, H, W, C] x = undo_windowing(x, size, cur_mu_shape) return x class MaskUnitAttention(nn.Module): """ Computes either Mask Unit or Global Attention. Also is able to perform q pooling. Note: this assumes the tokens have already been flattened and unrolled into mask units. See `Unroll` for more details. """ fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, dim_out: int, heads: int, q_stride: int = 1, window_size: int = 0, use_mask_unit_attn: bool = False, ): """ Args: - dim, dim_out: The input and output feature dimensions. - heads: The number of attention heads. - q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4). - window_size: The current (flattened) size of a mask unit *after* pooling (if any). - use_mask_unit_attn: Use Mask Unit or Global Attention. """ super().__init__() self.dim = dim self.dim_out = dim_out self.heads = heads self.q_stride = q_stride self.head_dim = dim_out // heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, 3 * dim_out) self.proj = nn.Linear(dim_out, dim_out) self.window_size = window_size self.use_mask_unit_attn = use_mask_unit_attn def forward(self, x: torch.Tensor) -> torch.Tensor: """ Input should be of shape [batch, tokens, channels]. """ B, N, _ = x.shape num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1 qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5) q, k, v = qkv.unbind(0) if self.q_stride > 1: # Refer to Unroll to see how this performs a maxpool-Nd q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3) if self.fused_attn: # Note: the original paper did *not* use SDPA, it's a free boost! x = F.scaled_dot_product_attention(q, k, v) else: attn = (q * self.scale) @ k.transpose(-1, -2) attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 3).reshape(B, -1, self.dim_out) x = self.proj(x) return x class HieraBlock(nn.Module): def __init__( self, dim: int, dim_out: int, heads: int, mlp_ratio: float = 4.0, drop_path: float = 0.0, init_values: Optional[float] = None, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, q_stride: int = 1, window_size: int = 0, use_expand_proj: bool = True, use_mask_unit_attn: bool = False, ): super().__init__() self.dim = dim self.dim_out = dim_out self.norm1 = norm_layer(dim) if dim != dim_out: self.do_expand = True if use_expand_proj: self.proj = nn.Linear(dim, dim_out) else: assert dim_out == dim * 2 self.proj = None else: self.do_expand = False self.proj = None self.attn = MaskUnitAttention( dim, dim_out, heads, q_stride, window_size, use_mask_unit_attn ) self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer) self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: # Attention + Q Pooling x_norm = self.norm1(x) if self.do_expand: if self.proj is not None: x = self.proj(x_norm) x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) # max-pool else: x = torch.cat([ x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), # max-pool x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1), # avg-pool ], dim=-1, ) x = x + self.drop_path1(self.ls1(self.attn(x_norm))) # MLP x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class PatchEmbed(nn.Module): """Patch embed that supports any number of spatial dimensions (1d, 2d, 3d).""" def __init__( self, dim_in: int, dim_out: int, kernel: Tuple[int, ...], stride: Tuple[int, ...], padding: Tuple[int, ...], reshape: bool = True, ): super().__init__() # Support any number of spatial dimensions self.spatial_dims = len(kernel) self.reshape = reshape self.proj = conv_nd(self.spatial_dims)( dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding, ) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: if mask is not None: mask = get_resized_mask(target_size=x.shape[2:], mask=mask) x = self.proj(x * mask.to(torch.bool)) else: x = self.proj(x) if self.reshape: x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1) return x class Hiera(nn.Module): def __init__( self, img_size: Tuple[int, ...] = (224, 224), in_chans: int = 3, embed_dim: int = 96, # initial embed dim num_heads: int = 1, # initial number of heads num_classes: int = 1000, global_pool: str = 'avg', stages: Tuple[int, ...] = (2, 3, 16, 3), q_pool: int = 3, # number of q_pool stages q_stride: Tuple[int, ...] = (2, 2), mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1) # mask_unit_attn: which stages use mask unit attention? mask_unit_attn: Tuple[bool, ...] = (True, True, False, False), use_expand_proj: bool = True, dim_mul: float = 2.0, head_mul: float = 2.0, patch_kernel: Tuple[int, ...] = (7, 7), patch_stride: Tuple[int, ...] = (4, 4), patch_padding: Tuple[int, ...] = (3, 3), mlp_ratio: float = 4.0, drop_path_rate: float = 0.0, init_values: Optional[float] = None, fix_init: bool = True, weight_init: str = '', norm_layer: Union[str, nn.Module] = "LayerNorm", drop_rate: float = 0.0, patch_drop_rate: float = 0.0, head_init_scale: float = 0.001, sep_pos_embed: bool = False, abs_win_pos_embed: bool = False, global_pos_size: Tuple[int, int] = (14, 14), ): super().__init__() self.num_classes = num_classes self.grad_checkpointing = False norm_layer = get_norm_layer(norm_layer) if isinstance(img_size, int): img_size = to_2tuple(img_size) self.patch_stride = patch_stride self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)] num_tokens = math.prod(self.tokens_spatial_shape) flat_mu_size = math.prod(mask_unit_size) flat_q_stride = math.prod(q_stride) assert q_pool < len(stages) self.q_pool, self.q_stride = q_pool, q_stride self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)] self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] self.patch_drop_rate = patch_drop_rate self.patch_embed = PatchEmbed( in_chans, embed_dim, patch_kernel, patch_stride, patch_padding, ) self.pos_embed: Optional[nn.Parameter] = None self.pos_embed_win: Optional[nn.Parameter] = None self.pos_embed_spatial: Optional[nn.Parameter] = None self.pos_embed_temporal: Optional[nn.Parameter] = None if sep_pos_embed: self.pos_embed_spatial = nn.Parameter( torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim) ) self.pos_embed_temporal = nn.Parameter( torch.zeros(1, self.tokens_spatial_shape[0], embed_dim) ) else: if abs_win_pos_embed: # absolute win, params NCHW to make tile & interpolate more natural before add & reshape self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size)) self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size)) else: self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim)) # Setup roll and reroll modules self.unroll = Unroll( img_size, patch_stride, [q_stride] * len(self.stage_ends[:-1]) ) self.reroll = Reroll( img_size, patch_stride, [q_stride] * len(self.stage_ends[:-1]), self.stage_ends, q_pool, ) # q_pool locations q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]] # Transformer blocks cur_stage = 0 depth = sum(stages) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList() self.feature_info = [] for i in range(depth): dim_out = embed_dim # Mask unit or global attention. # Lag by 1 block, so that global attention, # applied post pooling on lower resolution use_mask_unit_attn = mask_unit_attn[cur_stage] if i - 1 in self.stage_ends: dim_out = int(embed_dim * dim_mul) num_heads = int(num_heads * head_mul) cur_stage += 1 if i in q_pool_blocks: flat_mu_size //= flat_q_stride block = HieraBlock( dim=embed_dim, dim_out=dim_out, heads=num_heads, mlp_ratio=mlp_ratio, drop_path=dpr[i], init_values=init_values, norm_layer=norm_layer, q_stride=(flat_q_stride if i in q_pool_blocks else 1), window_size=flat_mu_size, use_expand_proj=use_expand_proj, use_mask_unit_attn=use_mask_unit_attn, ) embed_dim = dim_out if i in self.stage_ends: self.feature_info += [ dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] self.blocks.append(block) self.num_features = self.head_hidden_size = embed_dim self.head = ClNormMlpClassifierHead( embed_dim, num_classes, pool_type=global_pool, drop_rate=drop_rate, norm_layer=norm_layer, input_fmt='NLC', ) # Initialize everything if sep_pos_embed: nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02) nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02) else: if self.pos_embed is not None: nn.init.trunc_normal_(self.pos_embed, std=0.02) if self.pos_embed_win is not None: nn.init.trunc_normal_(self.pos_embed_win, std=0.02) if weight_init != 'skip': init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit init_fn = partial(init_fn, classifier_name='head.fc') named_apply(init_fn, self) if fix_init: self.fix_init_weight() if isinstance(self.head.fc, nn.Linear): self.head.fc.weight.data.mul_(head_init_scale) self.head.fc.bias.data.mul_(head_init_scale) def fix_init_weight(self): def rescale(param, _layer_id): param.div_(math.sqrt(2.0 * _layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) @torch.jit.ignore def no_weight_decay(self): if self.pos_embed is not None: return ["pos_embed"] elif self.pos_embed_abs is not None: return ['pos_embed_abs', 'pos_embed_win'] else: return ["pos_embed_spatial", "pos_embed_temporal"] @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict: return dict( stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed', blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True) -> None: self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): self.num_classes = num_classes self.head.reset(num_classes, global_pool, reset_other=reset_other) def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor: """ Generates a random mask, mask_ratio fraction are dropped. 1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc. """ B = x.shape[0] # Tokens selected for masking at mask unit level num_windows = math.prod(self.mask_spatial_shape) # num_mask_units len_keep = int(num_windows * (1 - mask_ratio)) noise = torch.rand(B, num_windows, device=x.device) # Sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # Generate the binary mask: 1 is *keep*, 0 is *remove* # Note this is opposite to original MAE mask = torch.zeros([B, num_windows], device=x.device) mask[:, :len_keep] = 1 # Unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return mask.bool() def _pos_embed(self, x) -> torch.Tensor: if self.pos_embed_win is not None: # absolute win position embedding, from # Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613) pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape) pos_embed = F.interpolate( self.pos_embed, size=pos_embed_win.shape[-2:], mode='bicubic', antialias=True, ) pos_embed = pos_embed + pos_embed_win pos_embed = pos_embed.flatten(2).transpose(1, 2) elif self.pos_embed is not None: pos_embed = self.pos_embed else: pos_embed = ( self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1) + torch.repeat_interleave( self.pos_embed_temporal, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], dim=1, ) ) x = x + pos_embed return x def forward_intermediates( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = True, output_fmt: str = 'NCHW', intermediates_only: bool = False, coarse: bool = True, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert not norm, 'normalization of features not supported' assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' if coarse: take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) take_indices = [self.stage_ends[i] for i in take_indices] max_index = self.stage_ends[max_index] else: take_indices, max_index = feature_take_indices(len(self.blocks), indices) if mask is not None: patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape else: patch_mask = None x = self.patch_embed(x, mask=patch_mask) x = self._pos_embed(x) x = self.unroll(x) # Discard masked tokens if mask is not None: x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) intermediates = [] if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript blocks = self.blocks else: blocks = self.blocks[:max_index + 1] for i, blk in enumerate(blocks): x = blk(x) if i in take_indices: x_int = self.reroll(x, i, mask=mask) intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int) if intermediates_only: return intermediates return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, coarse: bool = True, ): """ Prune layers not required for specified intermediates. """ if coarse: take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) max_index = self.stage_ends[max_index] else: take_indices, max_index = feature_take_indices(len(self.blocks), indices) self.blocks = self.blocks[:max_index + 1] # truncate blocks if prune_head: self.head.reset(0, reset_other=True) return take_indices def forward_features( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, return_intermediates: bool = False, ) -> torch.Tensor: """ mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim. Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch. """ if self.training and self.patch_drop_rate > 0: # using mask for something like 'patch dropout' via mask-units in supervised train / fine-tune assert mask is None mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate) if mask is not None: patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape else: patch_mask = None x = self.patch_embed(x, mask=patch_mask) x = self._pos_embed(x) x = self.unroll(x) # Discard masked tokens if mask is not None: x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) intermediates = [] for i, blk in enumerate(self.blocks): if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x) else: x = blk(x) if return_intermediates and i in self.stage_ends: intermediates.append(self.reroll(x, i, mask=mask)) # x may not always be in spatial order here. # e.g. if q_pool = 2, mask_unit_size = (8, 8), and # q_stride = (2, 2), not all unrolls were consumed, # intermediates[-1] is x in spatial order if return_intermediates: return x, intermediates return x def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) return x def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: x = self.forward_features(x, mask=mask) if mask is None: x = self.forward_head(x) return x def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ "hiera_tiny_224.mae_in1k_ft_in1k": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', ), "hiera_tiny_224.mae": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0, ), "hiera_small_224.mae_in1k_ft_in1k": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', ), "hiera_small_224.mae": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0, ), "hiera_base_224.mae_in1k_ft_in1k": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', ), "hiera_base_224.mae": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0, ), "hiera_base_plus_224.mae_in1k_ft_in1k": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', ), "hiera_base_plus_224.mae": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0, ), "hiera_large_224.mae_in1k_ft_in1k": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', ), "hiera_large_224.mae": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0, ), "hiera_huge_224.mae_in1k_ft_in1k": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', ), "hiera_huge_224.mae": _cfg( hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0, ), "hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, ), "hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, ), "hiera_small_abswin_256.sbb2_e200_in12k": _cfg( hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95, ), "hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg( hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95, ), "hiera_base_abswin_256.untrained": _cfg( # hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, ), }) def checkpoint_filter_fn(state_dict, model=None): state_dict = state_dict.get('model_state', state_dict) output = {} for k, v in state_dict.items(): # if k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # # To resize pos embedding when using model at different size from pretrained weights # from timm.layers import resample_abs_pos_embed # v = resample_abs_pos_embed( # v, # new_size=(64, 64), # num_prefix_tokens=0, # verbose=True, # ) if 'head.projection.' in k: k = k.replace('head.projection.', 'head.fc.') if k.startswith('encoder_norm.'): k = k.replace('encoder_norm.', 'head.norm.') elif k.startswith('norm.'): k = k.replace('norm.', 'head.norm.') if k == 'pos_embed_abs': k = 'pos_embed' output[k] = v return output def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera: out_indices = kwargs.pop('out_indices', 4) return build_model_with_cfg( Hiera, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) @register_model def hiera_tiny_224(pretrained=False, **kwargs): model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2)) return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_small_224(pretrained=False, **kwargs): model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2)) return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_base_224(pretrained=False, **kwargs): model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3)) return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_base_plus_224(pretrained=False, **kwargs): model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3)) return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_large_224(pretrained=False, **kwargs): model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4)) return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_huge_224(pretrained=False, **kwargs): model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4)) return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_small_abswin_256(pretrained=False, **kwargs): model_args = dict( embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16), init_values=1e-5, weight_init='jax', use_expand_proj=False, ) return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hiera_base_abswin_256(pretrained=False, **kwargs): model_args = dict( embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax') return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
pytorch-image-models/timm/models/hiera.py/0
{ "file_path": "pytorch-image-models/timm/models/hiera.py", "repo_id": "pytorch-image-models", "token_count": 18103 }
""" Multi-Scale Vision Transformer v2 @inproceedings{li2021improved, title={MViTv2: Improved multiscale vision transformers for classification and detection}, author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph}, booktitle={CVPR}, year={2022} } Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit Original copyright below. Modifications and timm support by / Copyright 2022, Ross Wightman """ # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved. import operator from collections import OrderedDict from dataclasses import dataclass from functools import partial, reduce from typing import Union, List, Tuple, Optional import torch from torch import nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._features_fx import register_notrace_function from ._manipulate import checkpoint from ._registry import register_model, generate_default_cfgs __all__ = ['MultiScaleVit', 'MultiScaleVitCfg'] # model_registry will add each entrypoint fn to this @dataclass class MultiScaleVitCfg: depths: Tuple[int, ...] = (2, 3, 16, 3) embed_dim: Union[int, Tuple[int, ...]] = 96 num_heads: Union[int, Tuple[int, ...]] = 1 mlp_ratio: float = 4. pool_first: bool = False expand_attn: bool = True qkv_bias: bool = True use_cls_token: bool = False use_abs_pos: bool = False residual_pooling: bool = True mode: str = 'conv' kernel_qkv: Tuple[int, int] = (3, 3) stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2)) stride_kv: Optional[Tuple[Tuple[int, int]]] = None stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4) patch_kernel: Tuple[int, int] = (7, 7) patch_stride: Tuple[int, int] = (4, 4) patch_padding: Tuple[int, int] = (3, 3) pool_type: str = 'max' rel_pos_type: str = 'spatial' act_layer: Union[str, Tuple[str, str]] = 'gelu' norm_layer: Union[str, Tuple[str, str]] = 'layernorm' norm_eps: float = 1e-6 def __post_init__(self): num_stages = len(self.depths) if not isinstance(self.embed_dim, (tuple, list)): self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages)) assert len(self.embed_dim) == num_stages if not isinstance(self.num_heads, (tuple, list)): self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages)) assert len(self.num_heads) == num_stages if self.stride_kv_adaptive is not None and self.stride_kv is None: _stride_kv = self.stride_kv_adaptive pool_kv_stride = [] for i in range(num_stages): if min(self.stride_q[i]) > 1: _stride_kv = [ max(_stride_kv[d] // self.stride_q[i][d], 1) for d in range(len(_stride_kv)) ] pool_kv_stride.append(tuple(_stride_kv)) self.stride_kv = tuple(pool_kv_stride) def prod(iterable): return reduce(operator.mul, iterable, 1) class PatchEmbed(nn.Module): """ PatchEmbed. """ def __init__( self, dim_in=3, dim_out=768, kernel=(7, 7), stride=(4, 4), padding=(3, 3), ): super().__init__() self.proj = nn.Conv2d( dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding, ) def forward(self, x) -> Tuple[torch.Tensor, List[int]]: x = self.proj(x) # B C H W -> B HW C return x.flatten(2).transpose(1, 2), x.shape[-2:] @register_notrace_function def reshape_pre_pool( x, feat_size: List[int], has_cls_token: bool = True ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: H, W = feat_size if has_cls_token: cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :] else: cls_tok = None x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous() return x, cls_tok @register_notrace_function def reshape_post_pool( x, num_heads: int, cls_tok: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, List[int]]: feat_size = [x.shape[2], x.shape[3]] L_pooled = x.shape[2] * x.shape[3] x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=2) return x, feat_size @register_notrace_function def cal_rel_pos_type( attn: torch.Tensor, q: torch.Tensor, has_cls_token: bool, q_size: List[int], k_size: List[int], rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, ): """ Spatial Relative Positional Embeddings. """ sp_idx = 1 if has_cls_token else 0 q_h, q_w = q_size k_h, k_w = k_size # Scale up rel pos if shapes for q and k are different. q_h_ratio = max(k_h / q_h, 1.0) k_h_ratio = max(q_h / k_h, 1.0) dist_h = ( torch.arange(q_h, device=q.device).unsqueeze(-1) * q_h_ratio - torch.arange(k_h, device=q.device).unsqueeze(0) * k_h_ratio ) dist_h += (k_h - 1) * k_h_ratio q_w_ratio = max(k_w / q_w, 1.0) k_w_ratio = max(q_w / k_w, 1.0) dist_w = ( torch.arange(q_w, device=q.device).unsqueeze(-1) * q_w_ratio - torch.arange(k_w, device=q.device).unsqueeze(0) * k_w_ratio ) dist_w += (k_w - 1) * k_w_ratio rel_h = rel_pos_h[dist_h.long()] rel_w = rel_pos_w[dist_w.long()] B, n_head, q_N, dim = q.shape r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim) rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, rel_h) rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, rel_w) attn[:, :, sp_idx:, sp_idx:] = ( attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w) + rel_h.unsqueeze(-1) + rel_w.unsqueeze(-2) ).view(B, -1, q_h * q_w, k_h * k_w) return attn class MultiScaleAttentionPoolFirst(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.q = nn.Linear(dim, dim_out, bias=qkv_bias) self.k = nn.Linear(dim, dim_out, bias=qkv_bias) self.v = nn.Linear(dim, dim_out, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.pool_q, self.pool_k, self.pool_v = None, None, None self.norm_q, self.norm_k, self.norm_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim // num_heads if mode == "conv" else dim if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape fold_dim = 1 if self.unshared else self.num_heads x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3) q = k = v = x if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, v_size = reshape_post_pool(v, self.num_heads, v_tok) else: v_size = feat_size if self.norm_v is not None: v = self.norm_v(v) q_N = q_size[0] * q_size[1] + int(self.has_cls_token) q = q.transpose(1, 2).reshape(B, q_N, -1) q = self.q(q).reshape(B, q_N, self.num_heads, -1).transpose(1, 2) k_N = k_size[0] * k_size[1] + int(self.has_cls_token) k = k.transpose(1, 2).reshape(B, k_N, -1) k = self.k(k).reshape(B, k_N, self.num_heads, -1) v_N = v_size[0] * v_size[1] + int(self.has_cls_token) v = v.transpose(1, 2).reshape(B, v_N, -1) v = self.v(v).reshape(B, v_N, self.num_heads, -1).transpose(1, 2) attn = (q * self.scale) @ k if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleAttention(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.norm_q, self.norm_k, self.norm_v = None, None, None self.pool_q, self.pool_k, self.pool_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim_out // num_heads if mode == "conv" else dim_out if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(dim=0) if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, _ = reshape_post_pool(v, self.num_heads, v_tok) if self.norm_v is not None: v = self.norm_v(v) attn = (q * self.scale) @ k.transpose(-2, -1) if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleBlock(nn.Module): def __init__( self, dim, dim_out, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, norm_layer=nn.LayerNorm, kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), mode="conv", has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, ): super().__init__() proj_needed = dim != dim_out self.dim = dim self.dim_out = dim_out self.has_cls_token = has_cls_token self.norm1 = norm_layer(dim) self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None if stride_q and prod(stride_q) > 1: kernel_skip = [s + 1 if s > 1 else s for s in stride_q] stride_skip = stride_q padding_skip = [int(skip // 2) for skip in kernel_skip] self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip) else: self.shortcut_pool_attn = None att_dim = dim_out if expand_attn else dim attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention self.attn = attn_layer( dim, att_dim, num_heads=num_heads, feat_size=feat_size, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv, norm_layer=norm_layer, has_cls_token=has_cls_token, mode=mode, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(att_dim) mlp_dim_out = dim_out self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None self.mlp = Mlp( in_features=att_dim, hidden_features=int(att_dim * mlp_ratio), out_features=mlp_dim_out, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def _shortcut_pool(self, x, feat_size: List[int]): if self.shortcut_pool_attn is None: return x if self.has_cls_token: cls_tok, x = x[:, :1, :], x[:, 1:, :] else: cls_tok = None B, L, C = x.shape H, W = feat_size x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = self.shortcut_pool_attn(x) x = x.reshape(B, C, -1).transpose(1, 2) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=1) return x def forward(self, x, feat_size: List[int]): x_norm = self.norm1(x) # NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm) x_shortcut = self._shortcut_pool(x_shortcut, feat_size) x, feat_size_new = self.attn(x_norm, feat_size) x = x_shortcut + self.drop_path1(x) x_norm = self.norm2(x) x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm) x = x_shortcut + self.drop_path2(self.mlp(x_norm)) return x, feat_size_new class MultiScaleVitStage(nn.Module): def __init__( self, dim, dim_out, depth, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, drop_path=0.0, ): super().__init__() self.grad_checkpointing = False self.blocks = nn.ModuleList() if expand_attn: out_dims = (dim_out,) * depth else: out_dims = (dim,) * (depth - 1) + (dim_out,) for i in range(depth): attention_block = MultiScaleBlock( dim=dim, dim_out=out_dims[i], num_heads=num_heads, feat_size=feat_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q if i == 0 else (1, 1), stride_kv=stride_kv, mode=mode, has_cls_token=has_cls_token, pool_first=pool_first, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, expand_attn=expand_attn, norm_layer=norm_layer, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, ) dim = out_dims[i] self.blocks.append(attention_block) if i == 0: feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)]) self.feat_size = feat_size def forward(self, x, feat_size: List[int]): for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x, feat_size = checkpoint.checkpoint(blk, x, feat_size) else: x, feat_size = blk(x, feat_size) return x, feat_size class MultiScaleVit(nn.Module): """ Improved Multiscale Vision Transformers for Classification and Detection Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2112.01526 Multiscale Vision Transformers Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2104.11227 """ def __init__( self, cfg: MultiScaleVitCfg, img_size: Tuple[int, int] = (224, 224), in_chans: int = 3, global_pool: Optional[str] = None, num_classes: int = 1000, drop_path_rate: float = 0., drop_rate: float = 0., ): super().__init__() img_size = to_2tuple(img_size) norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) self.num_classes = num_classes self.drop_rate = drop_rate if global_pool is None: global_pool = 'token' if cfg.use_cls_token else 'avg' self.global_pool = global_pool self.depths = tuple(cfg.depths) self.expand_attn = cfg.expand_attn embed_dim = cfg.embed_dim[0] self.patch_embed = PatchEmbed( dim_in=in_chans, dim_out=embed_dim, kernel=cfg.patch_kernel, stride=cfg.patch_stride, padding=cfg.patch_padding, ) patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1]) num_patches = prod(patch_dims) if cfg.use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.num_prefix_tokens = 1 pos_embed_dim = num_patches + 1 else: self.num_prefix_tokens = 0 self.cls_token = None pos_embed_dim = num_patches if cfg.use_abs_pos: self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim)) else: self.pos_embed = None num_stages = len(cfg.embed_dim) feat_size = patch_dims curr_stride = max(cfg.patch_stride) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] self.stages = nn.ModuleList() self.feature_info = [] for i in range(num_stages): if cfg.expand_attn: dim_out = cfg.embed_dim[i] else: dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)] stage = MultiScaleVitStage( dim=embed_dim, dim_out=dim_out, depth=cfg.depths[i], num_heads=cfg.num_heads[i], feat_size=feat_size, mlp_ratio=cfg.mlp_ratio, qkv_bias=cfg.qkv_bias, mode=cfg.mode, pool_first=cfg.pool_first, expand_attn=cfg.expand_attn, kernel_q=cfg.kernel_qkv, kernel_kv=cfg.kernel_qkv, stride_q=cfg.stride_q[i], stride_kv=cfg.stride_kv[i], has_cls_token=cfg.use_cls_token, rel_pos_type=cfg.rel_pos_type, residual_pooling=cfg.residual_pooling, norm_layer=norm_layer, drop_path=dpr[i], ) curr_stride *= max(cfg.stride_q[i]) self.feature_info += [dict(module=f'block.{i}', num_chs=dim_out, reduction=curr_stride)] embed_dim = dim_out feat_size = stage.feat_size self.stages.append(stage) self.num_features = self.head_hidden_size = embed_dim self.norm = norm_layer(embed_dim) self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) if self.pos_embed is not None: trunc_normal_tf_(self.pos_embed, std=0.02) if self.cls_token is not None: trunc_normal_tf_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_tf_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0.0) @torch.jit.ignore def no_weight_decay(self): return {k for k, _ in self.named_parameters() if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW', 'NLC'), 'Output shape must be NCHW or NLC.' reshape = output_fmt == 'NCHW' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) # FIXME slice block/pos_block if < max # forward pass x, feat_size = self.patch_embed(x) B = x.shape[0] if self.cls_token is not None: cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed for i, stage in enumerate(self.stages): x, feat_size = stage(x, feat_size) if i in take_indices: if norm and i == (len(self.stages) - 1): x_inter = self.norm(x) # applying final norm last intermediate else: x_inter = x if reshape: if self.cls_token is not None: # possible to allow return of class tokens, TBD x_inter = x_inter[:, 1:] x_inter = x_inter.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2) intermediates.append(x_inter) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) # FIXME add stage pruning # self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): x, feat_size = self.patch_embed(x) B, N, C = x.shape if self.cls_token is not None: cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed for stage in self.stages: x, feat_size = stage(x, feat_size) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: if self.global_pool == 'avg': x = x[:, self.num_prefix_tokens:].mean(1) else: x = x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'stages.0.blocks.0.norm1.weight' in state_dict: # native checkpoint, look for rel_pos interpolations for k in state_dict.keys(): if 'rel_pos' in k: rel_pos = state_dict[k] dest_rel_pos_shape = model.state_dict()[k].shape if rel_pos.shape[0] != dest_rel_pos_shape[0]: rel_pos_resized = torch.nn.functional.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=dest_rel_pos_shape[0], mode="linear", ) state_dict[k] = rel_pos_resized.reshape(-1, dest_rel_pos_shape[0]).permute(1, 0) return state_dict import re if 'model_state' in state_dict: state_dict = state_dict['model_state'] depths = getattr(model, 'depths', None) expand_attn = getattr(model, 'expand_attn', True) assert depths is not None, 'model requires depth attribute to remap checkpoints' depth_map = {} block_idx = 0 for stage_idx, d in enumerate(depths): depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)}) block_idx += d out_dict = {} for k, v in state_dict.items(): k = re.sub( r'blocks\.(\d+)', lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}', k) if expand_attn: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k) else: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k) if 'head' in k: k = k.replace('head.projection', 'head.fc') out_dict[k] = v return out_dict model_cfgs = dict( mvitv2_tiny=MultiScaleVitCfg( depths=(1, 2, 5, 2), ), mvitv2_small=MultiScaleVitCfg( depths=(1, 2, 11, 2), ), mvitv2_base=MultiScaleVitCfg( depths=(2, 3, 16, 3), ), mvitv2_large=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, expand_attn=False, ), mvitv2_small_cls=MultiScaleVitCfg( depths=(1, 2, 11, 2), use_cls_token=True, ), mvitv2_base_cls=MultiScaleVitCfg( depths=(2, 3, 16, 3), use_cls_token=True, ), mvitv2_large_cls=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, use_cls_token=True, expand_attn=True, ), mvitv2_huge_cls=MultiScaleVitCfg( depths=(4, 8, 60, 8), embed_dim=192, num_heads=3, use_cls_token=True, expand_attn=True, ), ) def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 4) return build_model_with_cfg( MultiScaleVit, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = generate_default_cfgs({ 'mvitv2_tiny.fb_in1k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_base.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_large.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small_cls': _cfg(url=''), 'mvitv2_base_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_large_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_huge_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth', hf_hub_id='timm/', num_classes=19168), }) @register_model def mvitv2_tiny(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs) @register_model def mvitv2_small(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs) @register_model def mvitv2_base(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs) @register_model def mvitv2_large(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs) @register_model def mvitv2_small_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_base_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_base_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_large_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_large_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_huge_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_huge_cls', pretrained=pretrained, **kwargs)
pytorch-image-models/timm/models/mvitv2.py/0
{ "file_path": "pytorch-image-models/timm/models/mvitv2.py", "repo_id": "pytorch-image-models", "token_count": 21263 }
"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization. A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfer (BiT) source code at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have been included here as pretrained models from their original .NPZ checkpoints. Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transformers (ViT) and extra padding support to allow porting of official Hybrid ResNet pretrained weights from https://github.com/google-research/vision_transformer Thanks to the Google team for the above two repositories and associated papers: * Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370 * An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929 * Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020. """ # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict # pylint: disable=g-importing-member from functools import partial from typing import Optional import torch import torch.nn as nn from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.layers import GroupNormAct, BatchNormAct2d, EvoNorm2dS0, FilterResponseNormTlu2d, ClassifierHead, \ DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d, get_act_layer, get_norm_act_layer, make_divisible from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq, named_apply, adapt_input_conv from ._registry import generate_default_cfgs, register_model, register_model_deprecations __all__ = ['ResNetV2'] # model_registry will add each entrypoint fn to this class PreActBasic(nn.Module): """ Pre-activation basic block (not in typical 'v2' implementations) """ def __init__( self, in_chs, out_chs=None, bottle_ratio=1.0, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0., ): super().__init__() first_dilation = first_dilation or dilation conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_divisible(out_chs * bottle_ratio) if proj_layer is not None and (stride != 1 or first_dilation != dilation or in_chs != out_chs): self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True, conv_layer=conv_layer, norm_layer=norm_layer, ) else: self.downsample = None self.norm1 = norm_layer(in_chs) self.conv1 = conv_layer(in_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm2 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, out_chs, 3, dilation=dilation, groups=groups) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv3.weight) def forward(self, x): x_preact = self.norm1(x) # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x_preact) # residual branch x = self.conv1(x_preact) x = self.conv2(self.norm2(x)) x = self.drop_path(x) return x + shortcut class PreActBottleneck(nn.Module): """Pre-activation (v2) bottleneck block. Follows the implementation of "Identity Mappings in Deep Residual Networks": https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua Except it puts the stride on 3x3 conv when available. """ def __init__( self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0., ): super().__init__() first_dilation = first_dilation or dilation conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_divisible(out_chs * bottle_ratio) if proj_layer is not None: self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True, conv_layer=conv_layer, norm_layer=norm_layer, ) else: self.downsample = None self.norm1 = norm_layer(in_chs) self.conv1 = conv_layer(in_chs, mid_chs, 1) self.norm2 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm3 = norm_layer(mid_chs) self.conv3 = conv_layer(mid_chs, out_chs, 1) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv3.weight) def forward(self, x): x_preact = self.norm1(x) # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x_preact) # residual branch x = self.conv1(x_preact) x = self.conv2(self.norm2(x)) x = self.conv3(self.norm3(x)) x = self.drop_path(x) return x + shortcut class Bottleneck(nn.Module): """Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT. """ def __init__( self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0., ): super().__init__() first_dilation = first_dilation or dilation act_layer = act_layer or nn.ReLU conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_divisible(out_chs * bottle_ratio) if proj_layer is not None: self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, preact=False, conv_layer=conv_layer, norm_layer=norm_layer, ) else: self.downsample = None self.conv1 = conv_layer(in_chs, mid_chs, 1) self.norm1 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm2 = norm_layer(mid_chs) self.conv3 = conv_layer(mid_chs, out_chs, 1) self.norm3 = norm_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() self.act3 = act_layer(inplace=True) def zero_init_last(self): if getattr(self.norm3, 'weight', None) is not None: nn.init.zeros_(self.norm3.weight) def forward(self, x): # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x) # residual x = self.conv1(x) x = self.norm1(x) x = self.conv2(x) x = self.norm2(x) x = self.conv3(x) x = self.norm3(x) x = self.drop_path(x) x = self.act3(x + shortcut) return x class DownsampleConv(nn.Module): def __init__( self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None, ): super(DownsampleConv, self).__init__() self.conv = conv_layer(in_chs, out_chs, 1, stride=stride) self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) def forward(self, x): return self.norm(self.conv(x)) class DownsampleAvg(nn.Module): def __init__( self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None, ): """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" super(DownsampleAvg, self).__init__() avg_stride = stride if dilation == 1 else 1 if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) else: self.pool = nn.Identity() self.conv = conv_layer(in_chs, out_chs, 1, stride=1) self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) def forward(self, x): return self.norm(self.conv(self.pool(x))) class ResNetStage(nn.Module): """ResNet Stage.""" def __init__( self, in_chs, out_chs, stride, dilation, depth, bottle_ratio=0.25, groups=1, avg_down=False, block_dpr=None, block_fn=PreActBottleneck, act_layer=None, conv_layer=None, norm_layer=None, **block_kwargs, ): super(ResNetStage, self).__init__() first_dilation = 1 if dilation in (1, 2) else 2 layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer) proj_layer = DownsampleAvg if avg_down else DownsampleConv prev_chs = in_chs self.blocks = nn.Sequential() for block_idx in range(depth): drop_path_rate = block_dpr[block_idx] if block_dpr else 0. stride = stride if block_idx == 0 else 1 self.blocks.add_module(str(block_idx), block_fn( prev_chs, out_chs, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, first_dilation=first_dilation, proj_layer=proj_layer, drop_path_rate=drop_path_rate, **layer_kwargs, **block_kwargs, )) prev_chs = out_chs first_dilation = dilation proj_layer = None def forward(self, x): x = self.blocks(x) return x def is_stem_deep(stem_type): return any([s in stem_type for s in ('deep', 'tiered')]) def create_resnetv2_stem( in_chs, out_chs=64, stem_type='', preact=True, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32), ): stem = OrderedDict() assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same', 'tiered') # NOTE conv padding mode can be changed by overriding the conv_layer def if is_stem_deep(stem_type): # A 3 deep 3x3 conv stack as in ResNet V1D models if 'tiered' in stem_type: stem_chs = (3 * out_chs // 8, out_chs // 2) # 'T' resnets in resnet.py else: stem_chs = (out_chs // 2, out_chs // 2) # 'D' ResNets stem['conv1'] = conv_layer(in_chs, stem_chs[0], kernel_size=3, stride=2) stem['norm1'] = norm_layer(stem_chs[0]) stem['conv2'] = conv_layer(stem_chs[0], stem_chs[1], kernel_size=3, stride=1) stem['norm2'] = norm_layer(stem_chs[1]) stem['conv3'] = conv_layer(stem_chs[1], out_chs, kernel_size=3, stride=1) if not preact: stem['norm3'] = norm_layer(out_chs) else: # The usual 7x7 stem conv stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) if not preact: stem['norm'] = norm_layer(out_chs) if 'fixed' in stem_type: # 'fixed' SAME padding approximation that is used in BiT models stem['pad'] = nn.ConstantPad2d(1, 0.) stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0) elif 'same' in stem_type: # full, input size based 'SAME' padding, used in ViT Hybrid model stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same') else: # the usual PyTorch symmetric padding stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) return nn.Sequential(stem) class ResNetV2(nn.Module): """Implementation of Pre-activation (v2) ResNet mode. """ def __init__( self, layers, channels=(256, 512, 1024, 2048), num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, width_factor=1, stem_chs=64, stem_type='', avg_down=False, preact=True, basic=False, bottle_ratio=0.25, act_layer=nn.ReLU, norm_layer=partial(GroupNormAct, num_groups=32), conv_layer=StdConv2d, drop_rate=0., drop_path_rate=0., zero_init_last=False, ): """ Args: layers (List[int]) : number of layers in each block channels (List[int]) : number of channels in each block: num_classes (int): number of classification classes (default 1000) in_chans (int): number of input (color) channels. (default 3) global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg') output_stride (int): output stride of the network, 32, 16, or 8. (default 32) width_factor (int): channel (width) multiplication factor stem_chs (int): stem width (default: 64) stem_type (str): stem type (default: '' == 7x7) avg_down (bool): average pooling in residual downsampling (default: False) preact (bool): pre-activation (default: True) act_layer (Union[str, nn.Module]): activation layer norm_layer (Union[str, nn.Module]): normalization layer conv_layer (nn.Module): convolution module drop_rate: classifier dropout rate (default: 0.) drop_path_rate: stochastic depth rate (default: 0.) zero_init_last: zero-init last weight in residual path (default: False) """ super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate wf = width_factor norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) act_layer = get_act_layer(act_layer) self.feature_info = [] stem_chs = make_divisible(stem_chs * wf) self.stem = create_resnetv2_stem( in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer, ) stem_feat = ('stem.conv3' if is_stem_deep(stem_type) else 'stem.conv') if preact else 'stem.norm' self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat)) prev_chs = stem_chs curr_stride = 4 dilation = 1 block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] if preact: block_fn = PreActBasic if basic else PreActBottleneck else: assert not basic block_fn = Bottleneck self.stages = nn.Sequential() for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)): out_chs = make_divisible(c * wf) stride = 1 if stage_idx == 0 else 2 if curr_stride >= output_stride: dilation *= stride stride = 1 stage = ResNetStage( prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, bottle_ratio=bottle_ratio, avg_down=avg_down, act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_dpr=bdpr, block_fn=block_fn, ) prev_chs = out_chs curr_stride *= stride self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')] self.stages.add_module(str(stage_idx), stage) self.num_features = self.head_hidden_size = prev_chs self.norm = norm_layer(self.num_features) if preact else nn.Identity() self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True, ) self.init_weights(zero_init_last=zero_init_last) self.grad_checkpointing = False @torch.jit.ignore def init_weights(self, zero_init_last=True): named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) @torch.jit.ignore() def load_pretrained(self, checkpoint_path, prefix='resnet/'): _load_weights(self, checkpoint_path, prefix) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^norm', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x, flatten=True) else: x = self.stages(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module: nn.Module, name: str = '', zero_init_last=True): if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)): nn.init.normal_(module.weight, mean=0.0, std=0.01) nn.init.zeros_(module.bias) elif isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif zero_init_last and hasattr(module, 'zero_init_last'): module.zero_init_last() @torch.no_grad() def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'): import numpy as np def t2p(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) weights = np.load(checkpoint_path) stem_conv_w = adapt_input_conv( model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel'])) model.stem.conv.weight.copy_(stem_conv_w) model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma'])) model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta'])) if isinstance(getattr(model.head, 'fc', None), nn.Conv2d) and \ model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]: model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel'])) model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias'])) for i, (sname, stage) in enumerate(model.stages.named_children()): for j, (bname, block) in enumerate(stage.blocks.named_children()): cname = 'standardized_conv2d' block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/' block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel'])) block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel'])) block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel'])) block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma'])) block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma'])) block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma'])) block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta'])) block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta'])) block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta'])) if block.downsample is not None: w = weights[f'{block_prefix}a/proj/{cname}/kernel'] block.downsample.conv.weight.copy_(t2p(w)) def _create_resnetv2(variant, pretrained=False, **kwargs): feature_cfg = dict(flatten_sequential=True) return build_model_with_cfg( ResNetV2, variant, pretrained, feature_cfg=feature_cfg, **kwargs, ) def _create_resnetv2_bit(variant, pretrained=False, **kwargs): return _create_resnetv2( variant, pretrained=pretrained, stem_type='fixed', conv_layer=partial(StdConv2d, eps=1e-8), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ # Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 'resnetv2_50x1_bit.goog_distilled_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', custom_load=True), 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', custom_load=True), 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic', custom_load=True), # pretrained on imagenet21k, finetuned on imagenet1k 'resnetv2_50x1_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_50x3_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_101x1_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_101x3_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_152x2_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_152x4_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0, custom_load=True), # only one at 480x480? # trained on imagenet-21k 'resnetv2_50x1_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_50x3_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_101x1_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_101x3_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_152x2_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_152x4_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_18.ra4_e3600_r224_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_18d.ra4_e3600_r224_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0, first_conv='stem.conv1'), 'resnetv2_34.ra4_e3600_r224_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_34d.ra4_e3600_r224_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0, first_conv='stem.conv1'), 'resnetv2_34d.ra4_e3600_r384_in1k': _cfg( hf_hub_id='timm/', crop_pct=1.0, input_size=(3, 384, 384), pool_size=(12, 12), test_input_size=(3, 448, 448), interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50.a1h_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50t.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_101.a1h_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_101d.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_152.untrained': _cfg( interpolation='bicubic'), 'resnetv2_152d.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50d_gn.ah_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', first_conv='stem.conv1', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d_evos.ah_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', first_conv='stem.conv1', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d_frn.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), }) @register_model def resnetv2_50x1_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_50x1_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs) @register_model def resnetv2_50x3_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_50x3_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs) @register_model def resnetv2_101x1_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_101x1_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs) @register_model def resnetv2_101x3_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_101x3_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs) @register_model def resnetv2_152x2_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_152x2_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) @register_model def resnetv2_152x4_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_152x4_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs) @register_model def resnetv2_18(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[2, 2, 2, 2], channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, conv_layer=create_conv2d, norm_layer=BatchNormAct2d ) return _create_resnetv2('resnetv2_18', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_18d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[2, 2, 2, 2], channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True ) return _create_resnetv2('resnetv2_18d', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_34(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, conv_layer=create_conv2d, norm_layer=BatchNormAct2d ) return _create_resnetv2('resnetv2_34', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_34d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True ) return _create_resnetv2('resnetv2_34d', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2: model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) return _create_resnetv2('resnetv2_50', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50t(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='tiered', avg_down=True) return _create_resnetv2('resnetv2_50t', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_101(pretrained=False, **kwargs) -> ResNetV2: model_args = dict(layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) return _create_resnetv2('resnetv2_101', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_101d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_101d', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_152(pretrained=False, **kwargs) -> ResNetV2: model_args = dict(layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) return _create_resnetv2('resnetv2_152', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_152d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_152d', pretrained=pretrained, **dict(model_args, **kwargs)) # Experimental configs (may change / be removed) @register_model def resnetv2_50d_gn(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=GroupNormAct, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d_gn', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50d_evos(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNorm2dS0, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d_evos', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50d_frn(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=FilterResponseNormTlu2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d_frn', pretrained=pretrained, **dict(model_args, **kwargs)) register_model_deprecations(__name__, { 'resnetv2_50x1_bitm': 'resnetv2_50x1_bit.goog_in21k_ft_in1k', 'resnetv2_50x3_bitm': 'resnetv2_50x3_bit.goog_in21k_ft_in1k', 'resnetv2_101x1_bitm': 'resnetv2_101x1_bit.goog_in21k_ft_in1k', 'resnetv2_101x3_bitm': 'resnetv2_101x3_bit.goog_in21k_ft_in1k', 'resnetv2_152x2_bitm': 'resnetv2_152x2_bit.goog_in21k_ft_in1k', 'resnetv2_152x4_bitm': 'resnetv2_152x4_bit.goog_in21k_ft_in1k', 'resnetv2_50x1_bitm_in21k': 'resnetv2_50x1_bit.goog_in21k', 'resnetv2_50x3_bitm_in21k': 'resnetv2_50x3_bit.goog_in21k', 'resnetv2_101x1_bitm_in21k': 'resnetv2_101x1_bit.goog_in21k', 'resnetv2_101x3_bitm_in21k': 'resnetv2_101x3_bit.goog_in21k', 'resnetv2_152x2_bitm_in21k': 'resnetv2_152x2_bit.goog_in21k', 'resnetv2_152x4_bitm_in21k': 'resnetv2_152x4_bit.goog_in21k', 'resnetv2_50x1_bit_distilled': 'resnetv2_50x1_bit.goog_distilled_in1k', 'resnetv2_152x2_bit_teacher': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k', 'resnetv2_152x2_bit_teacher_384': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', })
pytorch-image-models/timm/models/resnetv2.py/0
{ "file_path": "pytorch-image-models/timm/models/resnetv2.py", "repo_id": "pytorch-image-models", "token_count": 17289 }
""" Hybrid Vision Transformer (ViT) in PyTorch A PyTorch implement of the Hybrid Vision Transformers as described in: 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` - https://arxiv.org/abs/2106.10270 NOTE These hybrid model definitions depend on code in vision_transformer.py. They were moved here to keep file sizes sane. Hacked together by / Copyright 2020, Ross Wightman """ import math from functools import partial from typing import Dict, List, Optional, Tuple, Type, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import StdConv2dSame, StdConv2d, ConvNormAct, to_2tuple, to_ntuple, HybridEmbed from ._builder import build_model_with_cfg from ._registry import generate_default_cfgs, register_model, register_model_deprecations from .resnet import resnet26d, resnet50d from .resnetv2 import ResNetV2, create_resnetv2_stem from .vision_transformer import VisionTransformer class ConvStem(nn.Sequential): def __init__( self, in_chans: int = 3, depth: int = 3, channels: Union[int, Tuple[int, ...]] = 64, kernel_size: Union[int, Tuple[int, ...]] = 3, stride: Union[int, Tuple[int, ...]] = (2, 2, 2), padding: Union[str, int, Tuple[int, ...]] = "", norm_layer: Type[nn.Module] = nn.BatchNorm2d, act_layer: Type[nn.Module] = nn.ReLU, ): super().__init__() if isinstance(channels, int): # a default tiered channel strategy channels = tuple([channels // 2**i for i in range(depth)][::-1]) kernel_size = to_ntuple(depth)(kernel_size) padding = to_ntuple(depth)(padding) assert depth == len(stride) == len(kernel_size) == len(channels) in_chs = in_chans for i in range(len(channels)): last_conv = i == len(channels) - 1 self.add_module(f'{i}', ConvNormAct( in_chs, channels[i], kernel_size=kernel_size[i], stride=stride[i], padding=padding[i], bias=last_conv, apply_norm=not last_conv, apply_act=not last_conv, norm_layer=norm_layer, act_layer=act_layer, )) in_chs = channels[i] def _resnetv2(layers=(3, 4, 9), **kwargs): """ ResNet-V2 backbone helper""" padding_same = kwargs.get('padding_same', True) stem_type = 'same' if padding_same else '' conv_layer = partial(StdConv2dSame, eps=1e-8) if padding_same else partial(StdConv2d, eps=1e-8) if len(layers): backbone = ResNetV2( layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3), preact=False, stem_type=stem_type, conv_layer=conv_layer) else: backbone = create_resnetv2_stem( kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer) return backbone def _convert_mobileclip(state_dict, model, prefix='image_encoder.model.'): out = {} for k, v in state_dict.items(): if not k.startswith(prefix): continue k = k.replace(prefix, '') k = k.replace('patch_emb.', 'patch_embed.backbone.') k = k.replace('block.conv', 'conv') k = k.replace('block.norm', 'bn') k = k.replace('post_transformer_norm.', 'norm.') k = k.replace('pre_norm_mha.0', 'norm1') k = k.replace('pre_norm_mha.1', 'attn') k = k.replace('pre_norm_ffn.0', 'norm2') k = k.replace('pre_norm_ffn.1', 'mlp.fc1') k = k.replace('pre_norm_ffn.4', 'mlp.fc2') k = k.replace('qkv_proj.', 'qkv.') k = k.replace('out_proj.', 'proj.') k = k.replace('transformer.', 'blocks.') if k == 'pos_embed.pos_embed.pos_embed': k = 'pos_embed' v = v.squeeze(0) if 'classifier.proj' in k: bias_k = k.replace('classifier.proj', 'head.bias') k = k.replace('classifier.proj', 'head.weight') v = v.T out[bias_k] = torch.zeros(v.shape[0]) out[k] = v return out def checkpoint_filter_fn( state_dict: Dict[str, torch.Tensor], model: VisionTransformer, interpolation: str = 'bicubic', antialias: bool = True, ) -> Dict[str, torch.Tensor]: from .vision_transformer import checkpoint_filter_fn as _filter_fn if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict: state_dict = _convert_mobileclip(state_dict, model) return _filter_fn(state_dict, model, interpolation=interpolation, antialias=antialias) def _create_vision_transformer_hybrid(variant, backbone, embed_args=None, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) embed_args = embed_args or {} embed_layer = partial(HybridEmbed, backbone=backbone, **embed_args) kwargs.setdefault('embed_layer', embed_layer) kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set return build_model_with_cfg( VisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ # hybrid in-1k models (weights from official JAX impl where they exist) 'vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, first_conv='patch_embed.backbone.conv'), 'vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', first_conv='patch_embed.backbone.conv', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_small_r26_s32_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_light0-wd_0.03-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, ), 'vit_small_r26_s32_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_base_r26_s32_224.untrained': _cfg(), 'vit_base_r50_s16_384.orig_in21k_ft_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_large_r50_s32_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True, ), 'vit_large_r50_s32_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True, ), # hybrid in-21k models (weights from official Google JAX impl where they exist) 'vit_tiny_r_s16_p8_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, first_conv='patch_embed.backbone.conv', custom_load=True), 'vit_small_r26_s32_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), 'vit_base_r50_s16_224.orig_in21k': _cfg( #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth', hf_hub_id='timm/', num_classes=0, crop_pct=0.9), 'vit_large_r50_s32_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), # hybrid models (using timm resnet backbones) 'vit_small_resnet26d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_small_resnet50d_s16_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet26d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet50d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_mci_224.apple_mclip_lt': _cfg( hf_hub_id='apple/mobileclip_b_lt_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt', num_classes=512, mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', ), 'vit_base_mci_224.apple_mclip': _cfg( hf_hub_id='apple/mobileclip_b_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_b.pt', num_classes=512, mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', ), }) @register_model def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs) -> VisionTransformer: """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224. """ backbone = _resnetv2(layers=(), **kwargs) model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer_hybrid( 'vit_tiny_r_s16_p8_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs) -> VisionTransformer: """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 384 x 384. """ backbone = _resnetv2(layers=(), **kwargs) model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer_hybrid( 'vit_tiny_r_s16_p8_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-S/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer_hybrid( 'vit_small_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_r26_s32_384(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-S/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer_hybrid( 'vit_small_r26_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-B/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r50_s16_224(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929). """ backbone = _resnetv2((3, 4, 9), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r50_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r50_s16_384(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ backbone = _resnetv2((3, 4, 9), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r50_s16_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_large_r50_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-L/S32 hybrid. """ backbone = _resnetv2((3, 4, 6, 3), **kwargs) model_args = dict(embed_dim=1024, depth=24, num_heads=16) model = _create_vision_transformer_hybrid( 'vit_large_r50_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_large_r50_s32_384(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-L/S32 hybrid. """ backbone = _resnetv2((3, 4, 6, 3), **kwargs) model_args = dict(embed_dim=1024, depth=24, num_heads=16) model = _create_vision_transformer_hybrid( 'vit_large_r50_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) model = _create_vision_transformer_hybrid( 'vit_small_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_resnet50d_s16_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights. """ backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3]) model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) model = _create_vision_transformer_hybrid( 'vit_small_resnet50d_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_resnet50d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_resnet50d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_mci_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = ConvStem( channels=(768//4, 768//4, 768), stride=(4, 2, 2), kernel_size=(4, 2, 2), padding=0, in_chans=kwargs.get('in_chans', 3), act_layer=nn.GELU, ) model_args = dict(embed_dim=768, depth=12, num_heads=12, no_embed_class=True) model = _create_vision_transformer_hybrid( 'vit_base_mci_224', backbone=backbone, embed_args=dict(proj=False), pretrained=pretrained, **dict(model_args, **kwargs) ) return model register_model_deprecations(__name__, { 'vit_tiny_r_s16_p8_224_in21k': 'vit_tiny_r_s16_p8_224.augreg_in21k', 'vit_small_r26_s32_224_in21k': 'vit_small_r26_s32_224.augreg_in21k', 'vit_base_r50_s16_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_base_resnet50_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_large_r50_s32_224_in21k': 'vit_large_r50_s32_224.augreg_in21k', 'vit_base_resnet50_384': 'vit_base_r50_s16_384.orig_in21k_ft_in1k' })
pytorch-image-models/timm/models/vision_transformer_hybrid.py/0
{ "file_path": "pytorch-image-models/timm/models/vision_transformer_hybrid.py", "repo_id": "pytorch-image-models", "token_count": 8273 }
""" AdaHessian Optimizer Lifted from https://github.com/davda54/ada-hessian/blob/master/ada_hessian.py Originally licensed MIT, Copyright 2020, David Samuel """ import torch class Adahessian(torch.optim.Optimizer): """ Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning" Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 0.1) betas ((float, float), optional): coefficients used for computing running averages of gradient and the squared hessian trace (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0.0) hessian_power (float, optional): exponent of the hessian trace (default: 1.0) update_each (int, optional): compute the hessian trace approximation only after *this* number of steps (to save time) (default: 1) n_samples (int, optional): how many times to sample `z` for the approximation of the hessian trace (default: 1) """ def __init__( self, params, lr=0.1, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, hessian_power=1.0, update_each=1, n_samples=1, avg_conv_kernel=False, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= hessian_power <= 1.0: raise ValueError(f"Invalid Hessian power value: {hessian_power}") self.n_samples = n_samples self.update_each = update_each self.avg_conv_kernel = avg_conv_kernel # use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training self.seed = 2147483647 self.generator = torch.Generator().manual_seed(self.seed) defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, hessian_power=hessian_power, ) super(Adahessian, self).__init__(params, defaults) for p in self.get_params(): p.hess = 0.0 self.state[p]["hessian step"] = 0 @property def is_second_order(self): return True def get_params(self): """ Gets all parameters in all param_groups with gradients """ return (p for group in self.param_groups for p in group['params'] if p.requires_grad) def zero_hessian(self): """ Zeros out the accumulated hessian traces. """ for p in self.get_params(): if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0: p.hess.zero_() @torch.no_grad() def set_hessian(self): """ Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter. """ params = [] for p in filter(lambda p: p.grad is not None, self.get_params()): if self.state[p]["hessian step"] % self.update_each == 0: # compute the trace only each `update_each` step params.append(p) self.state[p]["hessian step"] += 1 if len(params) == 0: return if self.generator.device != params[0].device: # hackish way of casting the generator to the right device self.generator = torch.Generator(params[0].device).manual_seed(self.seed) grads = [p.grad for p in params] for i in range(self.n_samples): # Rademacher distribution {-1.0, 1.0} zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params] h_zs = torch.autograd.grad( grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1) for h_z, z, p in zip(h_zs, zs, params): p.hess += h_z * z / self.n_samples # approximate the expected values of z*(H@z) @torch.no_grad() def step(self, closure=None): """ Performs a single optimization step. Arguments: closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None) """ loss = None if closure is not None: loss = closure() self.zero_hessian() self.set_hessian() for group in self.param_groups: for p in group['params']: if p.grad is None or p.hess is None: continue if self.avg_conv_kernel and p.dim() == 4: p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone() # Perform correct stepweight decay as in AdamW p.mul_(1 - group['lr'] * group['weight_decay']) state = self.state[p] # State initialization if len(state) == 1: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of Hessian diagonal square values state['exp_hessian_diag_sq'] = torch.zeros_like(p) exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1) exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] k = group['hessian_power'] denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps']) # make update step_size = group['lr'] / bias_correction1 p.addcdiv_(exp_avg, denom, value=-step_size) return loss
pytorch-image-models/timm/optim/adahessian.py/0
{ "file_path": "pytorch-image-models/timm/optim/adahessian.py", "repo_id": "pytorch-image-models", "token_count": 3131 }
""" Adaptive Gradient Clipping An impl of AGC, as per (https://arxiv.org/abs/2102.06171): @article{brock2021high, author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan}, title={High-Performance Large-Scale Image Recognition Without Normalization}, journal={arXiv preprint arXiv:}, year={2021} } Code references: * Official JAX impl (paper authors): https://github.com/deepmind/deepmind-research/tree/master/nfnets * Phil Wang's PyTorch gist: https://gist.github.com/lucidrains/0d6560077edac419ab5d3aa29e674d5c Hacked together by / Copyright 2021 Ross Wightman """ import torch def unitwise_norm(x, norm_type=2.0): if x.ndim <= 1: return x.norm(norm_type) else: # works for nn.ConvNd and nn,Linear where output dim is first in the kernel/weight tensor # might need special cases for other weights (possibly MHA) where this may not be true return x.norm(norm_type, dim=tuple(range(1, x.ndim)), keepdim=True) def adaptive_clip_grad(parameters, clip_factor=0.01, eps=1e-3, norm_type=2.0): if isinstance(parameters, torch.Tensor): parameters = [parameters] for p in parameters: if p.grad is None: continue p_data = p.detach() g_data = p.grad.detach() max_norm = unitwise_norm(p_data, norm_type=norm_type).clamp_(min=eps).mul_(clip_factor) grad_norm = unitwise_norm(g_data, norm_type=norm_type) clipped_grad = g_data * (max_norm / grad_norm.clamp(min=1e-6)) new_grads = torch.where(grad_norm < max_norm, g_data, clipped_grad) p.grad.detach().copy_(new_grads)
pytorch-image-models/timm/utils/agc.py/0
{ "file_path": "pytorch-image-models/timm/utils/agc.py", "repo_id": "pytorch-image-models", "token_count": 661 }
# docstyle-ignore INSTALL_CONTENT = """ # Installation ! pip install smolagents # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/smolagents.git """ notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}] black_avoid_patterns = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
smolagents/docs/source/en/_config.py/0
{ "file_path": "smolagents/docs/source/en/_config.py", "repo_id": "smolagents", "token_count": 155 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Tools [[open-in-colab]] Here, we're going to see advanced tool usage. > [!TIP] > If you're new to building agents, make sure to first read the [intro to agents](../conceptual_guides/intro_agents) and the [guided tour of smolagents](../guided_tour). - [Tools](#tools) - [What is a tool, and how to build one?](#what-is-a-tool-and-how-to-build-one) - [Share your tool to the Hub](#share-your-tool-to-the-hub) - [Import a Space as a tool](#import-a-space-as-a-tool) - [Use LangChain tools](#use-langchain-tools) - [Manage your agent's toolbox](#manage-your-agents-toolbox) - [Use a collection of tools](#use-a-collection-of-tools) ### What is a tool, and how to build one? A tool is mostly a function that an LLM can use in an agentic system. But to use it, the LLM will need to be given an API: name, tool description, input types and descriptions, output type. So it cannot be only a function. It should be a class. So at core, the tool is a class that wraps a function with metadata that helps the LLM understand how to use it. Here's how it looks: ```python from smolagents import Tool class HFModelDownloadsTool(Tool): name = "model_download_counter" description = """ This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. It returns the name of the checkpoint.""" inputs = { "task": { "type": "string", "description": "the task category (such as text-classification, depth-estimation, etc)", } } output_type = "string" def forward(self, task: str): from huggingface_hub import list_models model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) return model.id model_downloads_tool = HFModelDownloadsTool() ``` The custom tool subclasses [`Tool`] to inherit useful methods. The child class also defines: - An attribute `name`, which corresponds to the name of the tool itself. The name usually describes what the tool does. Since the code returns the model with the most downloads for a task, let's name it `model_download_counter`. - An attribute `description` is used to populate the agent's system prompt. - An `inputs` attribute, which is a dictionary with keys `"type"` and `"description"`. It contains information that helps the Python interpreter make educated choices about the input. - An `output_type` attribute, which specifies the output type. The types for both `inputs` and `output_type` should be [Pydantic formats](https://docs.pydantic.dev/latest/concepts/json_schema/#generating-json-schema), they can be either of these: [`~AUTHORIZED_TYPES`]. - A `forward` method which contains the inference code to be executed. And that's all it needs to be used in an agent! There's another way to build a tool. In the [guided_tour](../guided_tour), we implemented a tool using the `@tool` decorator. The [`tool`] decorator is the recommended way to define simple tools, but sometimes you need more than this: using several methods in a class for more clarity, or using additional class attributes. In this case, you can build your tool by subclassing [`Tool`] as described above. ### Share your tool to the Hub You can share your custom tool to the Hub by calling [`~Tool.push_to_hub`] on the tool. Make sure you've created a repository for it on the Hub and are using a token with read access. ```python model_downloads_tool.push_to_hub("{your_username}/hf-model-downloads", token="<YOUR_HUGGINGFACEHUB_API_TOKEN>") ``` For the push to Hub to work, your tool will need to respect some rules: - All methods are self-contained, e.g. use variables that come either from their args. - As per the above point, **all imports should be defined directly within the tool's functions**, else you will get an error when trying to call [`~Tool.save`] or [`~Tool.push_to_hub`] with your custom tool. - If you subclass the `__init__` method, you can give it no other argument than `self`. This is because arguments set during a specific tool instance's initialization are hard to track, which prevents from sharing them properly to the hub. And anyway, the idea of making a specific class is that you can already set class attributes for anything you need to hard-code (just set `your_variable=(...)` directly under the `class YourTool(Tool):` line). And of course you can still create a class attribute anywhere in your code by assigning stuff to `self.your_variable`. Once your tool is pushed to Hub, you can visualize it. [Here](https://huggingface.co/spaces/m-ric/hf-model-downloads) is the `model_downloads_tool` that I've pushed. It has a nice gradio interface. When diving into the tool files, you can find that all the tool's logic is under [tool.py](https://huggingface.co/spaces/m-ric/hf-model-downloads/blob/main/tool.py). That is where you can inspect a tool shared by someone else. Then you can load the tool with [`load_tool`] or create it with [`~Tool.from_hub`] and pass it to the `tools` parameter in your agent. Since running tools means running custom code, you need to make sure you trust the repository, thus we require to pass `trust_remote_code=True` to load a tool from the Hub. ```python from smolagents import load_tool, CodeAgent model_download_tool = load_tool( "{your_username}/hf-model-downloads", trust_remote_code=True ) ``` ### Import a Space as a tool You can directly import a Space from the Hub as a tool using the [`Tool.from_space`] method! You only need to provide the id of the Space on the Hub, its name, and a description that will help you agent understand what the tool does. Under the hood, this will use [`gradio-client`](https://pypi.org/project/gradio-client/) library to call the Space. For instance, let's import the [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) Space from the Hub and use it to generate an image. ```python image_generation_tool = Tool.from_space( "black-forest-labs/FLUX.1-schnell", name="image_generator", description="Generate an image from a prompt" ) image_generation_tool("A sunny beach") ``` And voilà, here's your image! 🏖️ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sunny_beach.webp"> Then you can use this tool just like any other tool. For example, let's improve the prompt `a rabbit wearing a space suit` and generate an image of it. This example also shows how you can pass additional arguments to the agent. ```python from smolagents import CodeAgent, HfApiModel model = HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct") agent = CodeAgent(tools=[image_generation_tool], model=model) agent.run( "Improve this prompt, then generate an image of it.", additional_args={'user_prompt': 'A rabbit wearing a space suit'} ) ``` ```text === Agent thoughts: improved_prompt could be "A bright blue space suit wearing rabbit, on the surface of the moon, under a bright orange sunset, with the Earth visible in the background" Now that I have improved the prompt, I can use the image generator tool to generate an image based on this prompt. >>> Agent is executing the code below: image = image_generator(prompt="A bright blue space suit wearing rabbit, on the surface of the moon, under a bright orange sunset, with the Earth visible in the background") final_answer(image) ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit_spacesuit_flux.webp"> How cool is this? 🤩 ### Use LangChain tools We love Langchain and think it has a very compelling suite of tools. To import a tool from LangChain, use the `from_langchain()` method. Here is how you can use it to recreate the intro's search result using a LangChain web search tool. This tool will need `pip install langchain google-search-results -q` to work properly. ```python from langchain.agents import load_tools search_tool = Tool.from_langchain(load_tools(["serpapi"])[0]) agent = CodeAgent(tools=[search_tool], model=model) agent.run("How many more blocks (also denoted as layers) are in BERT base encoder compared to the encoder from the architecture proposed in Attention is All You Need?") ``` ### Manage your agent's toolbox You can manage an agent's toolbox by adding or replacing a tool in attribute `agent.tools`, since it is a standard dictionary. Let's add the `model_download_tool` to an existing agent initialized with only the default toolbox. ```python from smolagents import HfApiModel model = HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct") agent = CodeAgent(tools=[], model=model, add_base_tools=True) agent.tools[model_download_tool.name] = model_download_tool ``` Now we can leverage the new tool: ```python agent.run( "Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub but reverse the letters?" ) ``` > [!TIP] > Beware of not adding too many tools to an agent: this can overwhelm weaker LLM engines. ### Use a collection of tools You can leverage tool collections by using the `ToolCollection` object. It supports loading either a collection from the Hub or an MCP server tools. #### Tool Collection from a collection in the Hub You can leverage it with the slug of the collection you want to use. Then pass them as a list to initialize your agent, and start using them! ```py from smolagents import ToolCollection, CodeAgent image_tool_collection = ToolCollection.from_hub( collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f", token="<YOUR_HUGGINGFACEHUB_API_TOKEN>" ) agent = CodeAgent(tools=[*image_tool_collection.tools], model=model, add_base_tools=True) agent.run("Please draw me a picture of rivers and lakes.") ``` To speed up the start, tools are loaded only if called by the agent. #### Tool Collection from any MCP server Leverage tools from the hundreds of MCP servers available on [glama.ai](https://glama.ai/mcp/servers) or [smithery.ai](https://smithery.ai/). The MCP servers tools can be loaded in a `ToolCollection` object as follow: ```py from smolagents import ToolCollection, CodeAgent from mcp import StdioServerParameters server_parameters = StdioServerParameters( command="uv", args=["--quiet", "[email protected]"], env={"UV_PYTHON": "3.12", **os.environ}, ) with ToolCollection.from_mcp(server_parameters) as tool_collection: agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True) agent.run("Please find a remedy for hangover.") ```
smolagents/docs/source/en/tutorials/tools.md/0
{ "file_path": "smolagents/docs/source/en/tutorials/tools.md", "repo_id": "smolagents", "token_count": 3370 }
from typing import Optional from smolagents import HfApiModel, LiteLLMModel, TransformersModel, tool from smolagents.agents import CodeAgent, ToolCallingAgent # Choose which inference type to use! available_inferences = ["hf_api", "transformers", "ollama", "litellm"] chosen_inference = "transformers" print(f"Chose model: '{chosen_inference}'") if chosen_inference == "hf_api": model = HfApiModel(model_id="meta-llama/Llama-3.3-70B-Instruct") elif chosen_inference == "transformers": model = TransformersModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct", device_map="auto", max_new_tokens=1000) elif chosen_inference == "ollama": model = LiteLLMModel( model_id="ollama_chat/llama3.2", api_base="http://localhost:11434", # replace with remote open-ai compatible server if necessary api_key="your-api-key", # replace with API key if necessary num_ctx=8192, # ollama default is 2048 which will often fail horribly. 8192 works for easy tasks, more is better. Check https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator to calculate how much VRAM this will need for the selected model. ) elif chosen_inference == "litellm": # For anthropic: change model_id below to 'anthropic/claude-3-5-sonnet-latest' model = LiteLLMModel(model_id="gpt-4o") @tool def get_weather(location: str, celsius: Optional[bool] = False) -> str: """ Get weather in the next days at given location. Secretly this tool does not care about the location, it hates the weather everywhere. Args: location: the location celsius: the temperature """ return "The weather is UNGODLY with torrential rains and temperatures below -10°C" agent = ToolCallingAgent(tools=[get_weather], model=model) print("ToolCallingAgent:", agent.run("What's the weather like in Paris?")) agent = CodeAgent(tools=[get_weather], model=model) print("CodeAgent:", agent.run("What's the weather like in Paris?"))
smolagents/examples/agent_from_any_llm.py/0
{ "file_path": "smolagents/examples/agent_from_any_llm.py", "repo_id": "smolagents", "token_count": 681 }
# Shamelessly stolen from Microsoft Autogen team: thanks to them for this great resource! # https://github.com/microsoft/autogen/blob/gaia_multiagent_v01_march_1st/autogen/browser_utils.py import mimetypes import os import pathlib import re import time import uuid from typing import Any, Dict, List, Optional, Tuple, Union from urllib.parse import unquote, urljoin, urlparse import pathvalidate import requests from serpapi import GoogleSearch from smolagents import Tool from .cookies import COOKIES from .mdconvert import FileConversionException, MarkdownConverter, UnsupportedFormatException class SimpleTextBrowser: """(In preview) An extremely simple text-based web browser comparable to Lynx. Suitable for Agentic use.""" def __init__( self, start_page: Optional[str] = None, viewport_size: Optional[int] = 1024 * 8, downloads_folder: Optional[Union[str, None]] = None, serpapi_key: Optional[Union[str, None]] = None, request_kwargs: Optional[Union[Dict[str, Any], None]] = None, ): self.start_page: str = start_page if start_page else "about:blank" self.viewport_size = viewport_size # Applies only to the standard uri types self.downloads_folder = downloads_folder self.history: List[Tuple[str, float]] = list() self.page_title: Optional[str] = None self.viewport_current_page = 0 self.viewport_pages: List[Tuple[int, int]] = list() self.set_address(self.start_page) self.serpapi_key = serpapi_key self.request_kwargs = request_kwargs self.request_kwargs["cookies"] = COOKIES self._mdconvert = MarkdownConverter() self._page_content: str = "" self._find_on_page_query: Union[str, None] = None self._find_on_page_last_result: Union[int, None] = None # Location of the last result @property def address(self) -> str: """Return the address of the current page.""" return self.history[-1][0] def set_address(self, uri_or_path: str, filter_year: Optional[int] = None) -> None: # TODO: Handle anchors self.history.append((uri_or_path, time.time())) # Handle special URIs if uri_or_path == "about:blank": self._set_page_content("") elif uri_or_path.startswith("google:"): self._serpapi_search(uri_or_path[len("google:") :].strip(), filter_year=filter_year) else: if ( not uri_or_path.startswith("http:") and not uri_or_path.startswith("https:") and not uri_or_path.startswith("file:") ): if len(self.history) > 1: prior_address = self.history[-2][0] uri_or_path = urljoin(prior_address, uri_or_path) # Update the address with the fully-qualified path self.history[-1] = (uri_or_path, self.history[-1][1]) self._fetch_page(uri_or_path) self.viewport_current_page = 0 self.find_on_page_query = None self.find_on_page_viewport = None @property def viewport(self) -> str: """Return the content of the current viewport.""" bounds = self.viewport_pages[self.viewport_current_page] return self.page_content[bounds[0] : bounds[1]] @property def page_content(self) -> str: """Return the full contents of the current page.""" return self._page_content def _set_page_content(self, content: str) -> None: """Sets the text content of the current page.""" self._page_content = content self._split_pages() if self.viewport_current_page >= len(self.viewport_pages): self.viewport_current_page = len(self.viewport_pages) - 1 def page_down(self) -> None: self.viewport_current_page = min(self.viewport_current_page + 1, len(self.viewport_pages) - 1) def page_up(self) -> None: self.viewport_current_page = max(self.viewport_current_page - 1, 0) def find_on_page(self, query: str) -> Union[str, None]: """Searches for the query from the current viewport forward, looping back to the start if necessary.""" # Did we get here via a previous find_on_page search with the same query? # If so, map to find_next if query == self._find_on_page_query and self.viewport_current_page == self._find_on_page_last_result: return self.find_next() # Ok it's a new search start from the current viewport self._find_on_page_query = query viewport_match = self._find_next_viewport(query, self.viewport_current_page) if viewport_match is None: self._find_on_page_last_result = None return None else: self.viewport_current_page = viewport_match self._find_on_page_last_result = viewport_match return self.viewport def find_next(self) -> Union[str, None]: """Scroll to the next viewport that matches the query""" if self._find_on_page_query is None: return None starting_viewport = self._find_on_page_last_result if starting_viewport is None: starting_viewport = 0 else: starting_viewport += 1 if starting_viewport >= len(self.viewport_pages): starting_viewport = 0 viewport_match = self._find_next_viewport(self._find_on_page_query, starting_viewport) if viewport_match is None: self._find_on_page_last_result = None return None else: self.viewport_current_page = viewport_match self._find_on_page_last_result = viewport_match return self.viewport def _find_next_viewport(self, query: str, starting_viewport: int) -> Union[int, None]: """Search for matches between the starting viewport looping when reaching the end.""" if query is None: return None # Normalize the query, and convert to a regular expression nquery = re.sub(r"\*", "__STAR__", query) nquery = " " + (" ".join(re.split(r"\W+", nquery))).strip() + " " nquery = nquery.replace(" __STAR__ ", "__STAR__ ") # Merge isolated stars with prior word nquery = nquery.replace("__STAR__", ".*").lower() if nquery.strip() == "": return None idxs = list() idxs.extend(range(starting_viewport, len(self.viewport_pages))) idxs.extend(range(0, starting_viewport)) for i in idxs: bounds = self.viewport_pages[i] content = self.page_content[bounds[0] : bounds[1]] # TODO: Remove markdown links and images ncontent = " " + (" ".join(re.split(r"\W+", content))).strip().lower() + " " if re.search(nquery, ncontent): return i return None def visit_page(self, path_or_uri: str, filter_year: Optional[int] = None) -> str: """Update the address, visit the page, and return the content of the viewport.""" self.set_address(path_or_uri, filter_year=filter_year) return self.viewport def _split_pages(self) -> None: # Do not split search results if self.address.startswith("google:"): self.viewport_pages = [(0, len(self._page_content))] return # Handle empty pages if len(self._page_content) == 0: self.viewport_pages = [(0, 0)] return # Break the viewport into pages self.viewport_pages = [] start_idx = 0 while start_idx < len(self._page_content): end_idx = min(start_idx + self.viewport_size, len(self._page_content)) # type: ignore[operator] # Adjust to end on a space while end_idx < len(self._page_content) and self._page_content[end_idx - 1] not in [" ", "\t", "\r", "\n"]: end_idx += 1 self.viewport_pages.append((start_idx, end_idx)) start_idx = end_idx def _serpapi_search(self, query: str, filter_year: Optional[int] = None) -> None: if self.serpapi_key is None: raise ValueError("Missing SerpAPI key.") params = { "engine": "google", "q": query, "api_key": self.serpapi_key, } if filter_year is not None: params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}" search = GoogleSearch(params) results = search.get_dict() self.page_title = f"{query} - Search" if "organic_results" not in results.keys(): raise Exception(f"No results found for query: '{query}'. Use a less specific query.") if len(results["organic_results"]) == 0: year_filter_message = f" with filter year={filter_year}" if filter_year is not None else "" self._set_page_content( f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter." ) return def _prev_visit(url): for i in range(len(self.history) - 1, -1, -1): if self.history[i][0] == url: return f"You previously visited this page {round(time.time() - self.history[i][1])} seconds ago.\n" return "" web_snippets: List[str] = list() idx = 0 if "organic_results" in results: for page in results["organic_results"]: idx += 1 date_published = "" if "date" in page: date_published = "\nDate published: " + page["date"] source = "" if "source" in page: source = "\nSource: " + page["source"] snippet = "" if "snippet" in page: snippet = "\n" + page["snippet"] redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{_prev_visit(page['link'])}{snippet}" redacted_version = redacted_version.replace("Your browser can't play this video.", "") web_snippets.append(redacted_version) content = ( f"A Google search for '{query}' found {len(web_snippets)} results:\n\n## Web Results\n" + "\n\n".join(web_snippets) ) self._set_page_content(content) def _fetch_page(self, url: str) -> None: download_path = "" try: if url.startswith("file://"): download_path = os.path.normcase(os.path.normpath(unquote(url[7:]))) res = self._mdconvert.convert_local(download_path) self.page_title = res.title self._set_page_content(res.text_content) else: # Prepare the request parameters request_kwargs = self.request_kwargs.copy() if self.request_kwargs is not None else {} request_kwargs["stream"] = True # Send a HTTP request to the URL response = requests.get(url, **request_kwargs) response.raise_for_status() # If the HTTP request was successful content_type = response.headers.get("content-type", "") # Text or HTML if "text/" in content_type.lower(): res = self._mdconvert.convert_response(response) self.page_title = res.title self._set_page_content(res.text_content) # A download else: # Try producing a safe filename fname = None download_path = None try: fname = pathvalidate.sanitize_filename(os.path.basename(urlparse(url).path)).strip() download_path = os.path.abspath(os.path.join(self.downloads_folder, fname)) suffix = 0 while os.path.exists(download_path) and suffix < 1000: suffix += 1 base, ext = os.path.splitext(fname) new_fname = f"{base}__{suffix}{ext}" download_path = os.path.abspath(os.path.join(self.downloads_folder, new_fname)) except NameError: pass # No suitable name, so make one if fname is None: extension = mimetypes.guess_extension(content_type) if extension is None: extension = ".download" fname = str(uuid.uuid4()) + extension download_path = os.path.abspath(os.path.join(self.downloads_folder, fname)) # Open a file for writing with open(download_path, "wb") as fh: for chunk in response.iter_content(chunk_size=512): fh.write(chunk) # Render it local_uri = pathlib.Path(download_path).as_uri() self.set_address(local_uri) except UnsupportedFormatException as e: print(e) self.page_title = ("Download complete.",) self._set_page_content(f"# Download complete\n\nSaved file to '{download_path}'") except FileConversionException as e: print(e) self.page_title = ("Download complete.",) self._set_page_content(f"# Download complete\n\nSaved file to '{download_path}'") except FileNotFoundError: self.page_title = "Error 404" self._set_page_content(f"## Error 404\n\nFile not found: {download_path}") except requests.exceptions.RequestException as request_exception: try: self.page_title = f"Error {response.status_code}" # If the error was rendered in HTML we might as well render it content_type = response.headers.get("content-type", "") if content_type is not None and "text/html" in content_type.lower(): res = self._mdconvert.convert(response) self.page_title = f"Error {response.status_code}" self._set_page_content(f"## Error {response.status_code}\n\n{res.text_content}") else: text = "" for chunk in response.iter_content(chunk_size=512, decode_unicode=True): text += chunk self.page_title = f"Error {response.status_code}" self._set_page_content(f"## Error {response.status_code}\n\n{text}") except NameError: self.page_title = "Error" self._set_page_content(f"## Error\n\n{str(request_exception)}") def _state(self) -> Tuple[str, str]: header = f"Address: {self.address}\n" if self.page_title is not None: header += f"Title: {self.page_title}\n" current_page = self.viewport_current_page total_pages = len(self.viewport_pages) address = self.address for i in range(len(self.history) - 2, -1, -1): # Start from the second last if self.history[i][0] == address: header += f"You previously visited this page {round(time.time() - self.history[i][1])} seconds ago.\n" break header += f"Viewport position: Showing page {current_page + 1} of {total_pages}.\n" return (header, self.viewport) class SearchInformationTool(Tool): name = "web_search" description = "Perform a web search query (think a google search) and returns the search results." inputs = {"query": {"type": "string", "description": "The web search query to perform."}} inputs["filter_year"] = { "type": "string", "description": "[Optional parameter]: filter the search results to only include pages from a specific year. For example, '2020' will only include pages from 2020. Make sure to use this parameter if you're trying to search for articles from a specific date!", "nullable": True, } output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self, query: str, filter_year: Optional[int] = None) -> str: self.browser.visit_page(f"google: {query}", filter_year=filter_year) header, content = self.browser._state() return header.strip() + "\n=======================\n" + content class VisitTool(Tool): name = "visit_page" description = "Visit a webpage at a given URL and return its text. Given a url to a YouTube video, this returns the transcript." inputs = {"url": {"type": "string", "description": "The relative or absolute url of the webpage to visit."}} output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self, url: str) -> str: self.browser.visit_page(url) header, content = self.browser._state() return header.strip() + "\n=======================\n" + content class DownloadTool(Tool): name = "download_file" description = """ Download a file at a given URL. The file should be of this format: [".xlsx", ".pptx", ".wav", ".mp3", ".png", ".docx"] After using this tool, for further inspection of this page you should return the download path to your manager via final_answer, and they will be able to inspect it. DO NOT use this tool for .pdf or .txt or .htm files: for these types of files use visit_page with the file url instead.""" inputs = {"url": {"type": "string", "description": "The relative or absolute url of the file to be downloaded."}} output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self, url: str) -> str: if "arxiv" in url: url = url.replace("abs", "pdf") response = requests.get(url) content_type = response.headers.get("content-type", "") extension = mimetypes.guess_extension(content_type) if extension and isinstance(extension, str): new_path = f"./downloads/file{extension}" else: new_path = "./downloads/file.object" with open(new_path, "wb") as f: f.write(response.content) if "pdf" in extension or "txt" in extension or "htm" in extension: raise Exception("Do not use this tool for pdf or txt or html files: use visit_page instead.") return f"File was downloaded and saved under path {new_path}." class ArchiveSearchTool(Tool): name = "find_archived_url" description = "Given a url, searches the Wayback Machine and returns the archived version of the url that's closest in time to the desired date." inputs = { "url": {"type": "string", "description": "The url you need the archive for."}, "date": { "type": "string", "description": "The date that you want to find the archive for. Give this date in the format 'YYYYMMDD', for instance '27 June 2008' is written as '20080627'.", }, } output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self, url, date) -> str: no_timestamp_url = f"https://archive.org/wayback/available?url={url}" archive_url = no_timestamp_url + f"&timestamp={date}" response = requests.get(archive_url).json() response_notimestamp = requests.get(no_timestamp_url).json() if "archived_snapshots" in response and "closest" in response["archived_snapshots"]: closest = response["archived_snapshots"]["closest"] print("Archive found!", closest) elif "archived_snapshots" in response_notimestamp and "closest" in response_notimestamp["archived_snapshots"]: closest = response_notimestamp["archived_snapshots"]["closest"] print("Archive found!", closest) else: raise Exception(f"Your {url=} was not archived on Wayback Machine, try a different url.") target_url = closest["url"] self.browser.visit_page(target_url) header, content = self.browser._state() return ( f"Web archive for url {url}, snapshot taken at date {closest['timestamp'][:8]}:\n" + header.strip() + "\n=======================\n" + content ) class PageUpTool(Tool): name = "page_up" description = "Scroll the viewport UP one page-length in the current webpage and return the new viewport content." inputs = {} output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self) -> str: self.browser.page_up() header, content = self.browser._state() return header.strip() + "\n=======================\n" + content class PageDownTool(Tool): name = "page_down" description = ( "Scroll the viewport DOWN one page-length in the current webpage and return the new viewport content." ) inputs = {} output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self) -> str: self.browser.page_down() header, content = self.browser._state() return header.strip() + "\n=======================\n" + content class FinderTool(Tool): name = "find_on_page_ctrl_f" description = "Scroll the viewport to the first occurrence of the search string. This is equivalent to Ctrl+F." inputs = { "search_string": { "type": "string", "description": "The string to search for on the page. This search string supports wildcards like '*'", } } output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self, search_string: str) -> str: find_result = self.browser.find_on_page(search_string) header, content = self.browser._state() if find_result is None: return ( header.strip() + f"\n=======================\nThe search string '{search_string}' was not found on this page." ) else: return header.strip() + "\n=======================\n" + content class FindNextTool(Tool): name = "find_next" description = "Scroll the viewport to next occurrence of the search string. This is equivalent to finding the next match in a Ctrl+F search." inputs = {} output_type = "string" def __init__(self, browser): super().__init__() self.browser = browser def forward(self) -> str: find_result = self.browser.find_next() header, content = self.browser._state() if find_result is None: return header.strip() + "\n=======================\nThe search string was not found on this page." else: return header.strip() + "\n=======================\n" + content
smolagents/examples/open_deep_research/scripts/text_web_browser.py/0
{ "file_path": "smolagents/examples/open_deep_research/scripts/text_web_browser.py", "repo_id": "smolagents", "token_count": 10243 }
from dataclasses import asdict, dataclass from logging import getLogger from typing import TYPE_CHECKING, Any, Dict, List, TypedDict, Union from smolagents.models import ChatMessage, MessageRole from smolagents.monitoring import AgentLogger from smolagents.utils import AgentError, make_json_serializable if TYPE_CHECKING: from smolagents.models import ChatMessage from smolagents.monitoring import AgentLogger logger = getLogger(__name__) class Message(TypedDict): role: MessageRole content: str | list[dict] @dataclass class ToolCall: name: str arguments: Any id: str def dict(self): return { "id": self.id, "type": "function", "function": { "name": self.name, "arguments": make_json_serializable(self.arguments), }, } @dataclass class MemoryStep: def dict(self): return asdict(self) def to_messages(self, **kwargs) -> List[Dict[str, Any]]: raise NotImplementedError @dataclass class ActionStep(MemoryStep): model_input_messages: List[Message] | None = None tool_calls: List[ToolCall] | None = None start_time: float | None = None end_time: float | None = None step_number: int | None = None error: AgentError | None = None duration: float | None = None model_output_message: ChatMessage = None model_output: str | None = None observations: str | None = None observations_images: List[str] | None = None action_output: Any = None def dict(self): # We overwrite the method to parse the tool_calls and action_output manually return { "model_input_messages": self.model_input_messages, "tool_calls": [tc.dict() for tc in self.tool_calls] if self.tool_calls else [], "start_time": self.start_time, "end_time": self.end_time, "step": self.step_number, "error": self.error.dict() if self.error else None, "duration": self.duration, "model_output_message": self.model_output_message, "model_output": self.model_output, "observations": self.observations, "action_output": make_json_serializable(self.action_output), } def to_messages(self, summary_mode: bool = False, show_model_input_messages: bool = False) -> List[Message]: messages = [] if self.model_input_messages is not None and show_model_input_messages: messages.append(Message(role=MessageRole.SYSTEM, content=self.model_input_messages)) if self.model_output is not None and not summary_mode: messages.append( Message(role=MessageRole.ASSISTANT, content=[{"type": "text", "text": self.model_output.strip()}]) ) if self.tool_calls is not None: messages.append( Message( role=MessageRole.ASSISTANT, content=[ { "type": "text", "text": "Calling tools:\n" + str([tc.dict() for tc in self.tool_calls]), } ], ) ) if self.observations is not None: messages.append( Message( role=MessageRole.TOOL_RESPONSE, content=[ { "type": "text", "text": f"Call id: {self.tool_calls[0].id}\nObservation:\n{self.observations}", } ], ) ) if self.error is not None: error_message = ( "Error:\n" + str(self.error) + "\nNow let's retry: take care not to repeat previous errors! If you have retried several times, try a completely different approach.\n" ) message_content = f"Call id: {self.tool_calls[0].id}\n" if self.tool_calls else "" message_content += error_message messages.append( Message(role=MessageRole.TOOL_RESPONSE, content=[{"type": "text", "text": message_content}]) ) if self.observations_images: messages.append( Message( role=MessageRole.USER, content=[{"type": "text", "text": "Here are the observed images:"}] + [ { "type": "image", "image": image, } for image in self.observations_images ], ) ) return messages @dataclass class PlanningStep(MemoryStep): model_input_messages: List[Message] model_output_message_facts: ChatMessage facts: str model_output_message_plan: ChatMessage plan: str def to_messages(self, summary_mode: bool, **kwargs) -> List[Message]: messages = [] messages.append( Message( role=MessageRole.ASSISTANT, content=[{"type": "text", "text": f"[FACTS LIST]:\n{self.facts.strip()}"}] ) ) if not summary_mode: # This step is not shown to a model writing a plan to avoid influencing the new plan messages.append( Message( role=MessageRole.ASSISTANT, content=[{"type": "text", "text": f"[PLAN]:\n{self.plan.strip()}"}] ) ) return messages @dataclass class TaskStep(MemoryStep): task: str task_images: List[str] | None = None def to_messages(self, summary_mode: bool = False, **kwargs) -> List[Message]: content = [{"type": "text", "text": f"New task:\n{self.task}"}] if self.task_images: for image in self.task_images: content.append({"type": "image", "image": image}) return [Message(role=MessageRole.USER, content=content)] @dataclass class SystemPromptStep(MemoryStep): system_prompt: str def to_messages(self, summary_mode: bool = False, **kwargs) -> List[Message]: if summary_mode: return [] return [Message(role=MessageRole.SYSTEM, content=[{"type": "text", "text": self.system_prompt}])] class AgentMemory: def __init__(self, system_prompt: str): self.system_prompt = SystemPromptStep(system_prompt=system_prompt) self.steps: List[Union[TaskStep, ActionStep, PlanningStep]] = [] def reset(self): self.steps = [] def get_succinct_steps(self) -> list[dict]: return [ {key: value for key, value in step.dict().items() if key != "model_input_messages"} for step in self.steps ] def get_full_steps(self) -> list[dict]: return [step.dict() for step in self.steps] def replay(self, logger: AgentLogger, detailed: bool = False): """Prints a pretty replay of the agent's steps. Args: logger (AgentLogger): The logger to print replay logs to. detailed (bool, optional): If True, also displays the memory at each step. Defaults to False. Careful: will increase log length exponentially. Use only for debugging. """ logger.console.log("Replaying the agent's steps:") for step in self.steps: if isinstance(step, SystemPromptStep) and detailed: logger.log_markdown(title="System prompt", content=step.system_prompt) elif isinstance(step, TaskStep): logger.log_task(step.task, "", 2) elif isinstance(step, ActionStep): logger.log_rule(f"Step {step.step_number}") if detailed: logger.log_messages(step.model_input_messages) logger.log_markdown(title="Agent output:", content=step.model_output) elif isinstance(step, PlanningStep): logger.log_rule("Planning step") if detailed: logger.log_messages(step.model_input_messages) logger.log_markdown(title="Agent output:", content=step.facts + "\n" + step.plan) __all__ = ["AgentMemory"]
smolagents/src/smolagents/memory.py/0
{ "file_path": "smolagents/src/smolagents/memory.py", "repo_id": "smolagents", "token_count": 3900 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path import numpy as np from PIL import Image from transformers import is_torch_available from transformers.testing_utils import get_tests_dir, require_torch from smolagents.agent_types import _AGENT_TYPE_MAPPING from smolagents.default_tools import FinalAnswerTool from .test_tools import ToolTesterMixin if is_torch_available(): import torch class FinalAnswerToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.inputs = {"answer": "Final answer"} self.tool = FinalAnswerTool() def test_exact_match_arg(self): result = self.tool("Final answer") self.assertEqual(result, "Final answer") def test_exact_match_kwarg(self): result = self.tool(answer=self.inputs["answer"]) self.assertEqual(result, "Final answer") def create_inputs(self): inputs_text = {"answer": "Text input"} inputs_image = {"answer": Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png").resize((512, 512))} inputs_audio = {"answer": torch.Tensor(np.ones(3000))} return {"string": inputs_text, "image": inputs_image, "audio": inputs_audio} @require_torch def test_agent_type_output(self): inputs = self.create_inputs() for input_type, input in inputs.items(): output = self.tool(**input, sanitize_inputs_outputs=True) agent_type = _AGENT_TYPE_MAPPING[input_type] self.assertTrue(isinstance(output, agent_type))
smolagents/tests/test_final_answer.py/0
{ "file_path": "smolagents/tests/test_final_answer.py", "repo_id": "smolagents", "token_count": 740 }
//! Text Generation gRPC client library pub mod v2; pub mod v3; use async_trait::async_trait; use base64::{engine::general_purpose::STANDARD, Engine}; use thiserror::Error; use tonic::transport; use tonic::Status; pub use v3::{Chunk, Image, Input, InputChunk}; #[async_trait] pub trait Health { /// Check if a generate server is healthy by asking it to allocate a tensor on device async fn device_health(&self) -> Result<()>; /// Check if a generate server is healthy by doing a forward pass. /// EXPENSIVE async fn model_health(&self) -> Result<()>; } #[derive(Debug)] pub struct ShardInfo { pub requires_padding: bool, pub dtype: String, pub device_type: String, pub window_size: Option<u32>, pub speculate: u32, } #[derive(Error, Debug, Clone)] pub enum ClientError { #[error("Could not connect to Text Generation server: {0}")] Connection(String), #[error("Server error: {0}")] Generation(String), #[error("Sharded results are empty")] EmptyResults, } impl From<Status> for ClientError { fn from(err: Status) -> Self { let err = Self::Generation(err.message().to_string()); tracing::error!("{err}"); err } } impl From<transport::Error> for ClientError { fn from(err: transport::Error) -> Self { let err = Self::Connection(err.to_string()); tracing::error!("{err}"); err } } // Small convenience re-wrapping of `Chunk`. impl From<Chunk> for InputChunk { fn from(chunk: Chunk) -> Self { InputChunk { chunk: Some(chunk) } } } /// Convert input chunks to a stringly-typed input for backwards /// compat for backends that haven't implemented chunked inputs. pub trait ChunksToString { /// Convert chunks to string. fn chunks_to_string(&self) -> String; } impl ChunksToString for Vec<InputChunk> { fn chunks_to_string(&self) -> String { let mut output = String::new(); self.iter().for_each(|c| match &c.chunk { Some(Chunk::Text(text)) => output.push_str(text), Some(Chunk::Image(Image { data, mimetype })) => { let encoded = STANDARD.encode(data); output.push_str(&format!("![](data:{};base64,{})", mimetype, encoded)) } // We don't create empty chunks, so this should be unreachable. None => unreachable!("Chunks should never be empty"), }); output } } static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII="; pub type Result<T> = std::result::Result<T, ClientError>;
text-generation-inference/backends/client/src/lib.rs/0
{ "file_path": "text-generation-inference/backends/client/src/lib.rs", "repo_id": "text-generation-inference", "token_count": 1545 }
use crate::client::{Batch, CachedBatch, ClientError, Generation, Health, ShardedClient}; /// Batching and inference logic use crate::queue::{Entry, Queue}; use async_trait::async_trait; use nohash_hasher::IntMap; use std::sync::Arc; use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse}; use text_generation_router::validation::ValidGenerateRequest; use text_generation_router::{FinishReason, PrefillToken, Token}; use tokio::sync::mpsc::error::SendError; use tokio::sync::{mpsc, Notify}; use tokio::time::Instant; use tokio_stream::wrappers::UnboundedReceiverStream; use tracing::{info_span, instrument, Instrument, Span}; pub struct BackendV2 { /// Request queue queue: Queue, /// Notify batcher on queue appends batching_task_notifier: Arc<Notify>, /// Client clone, used for health checks to skip the queue client: ShardedClient, } impl BackendV2 { #[allow(clippy::too_many_arguments)] pub(crate) fn new( client: ShardedClient, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: u32, max_waiting_tokens: usize, max_batch_size: Option<usize>, requires_padding: bool, window_size: Option<u32>, speculate: u32, ) -> Self { // Infer shared state let attention = std::env::var("ATTENTION").unwrap_or("paged".to_string()); let block_size = match attention.as_str() { "flashinfer" => 1, "flashdecoding" => 256, "paged" => 16, _ => unreachable!(), }; let queue = Queue::new(requires_padding, block_size, window_size, speculate); let batching_task_notifier = Arc::new(Notify::new()); // Spawn batching background task that contains all the inference logic tokio::spawn(batching_task( client.clone(), waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_batch_size, queue.clone(), batching_task_notifier.clone(), )); Self { queue, batching_task_notifier, client, } } } #[async_trait] impl Backend for BackendV2 { #[instrument(skip_all)] fn schedule( &self, request: ValidGenerateRequest, ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> { // MPSC channel to communicate with the background batching task let (response_tx, response_rx) = mpsc::unbounded_channel(); // Append the request to the queue self.queue.append(Entry { request, response_tx, span: Span::current(), temp_span: None, queue_time: Instant::now(), batch_time: None, }); // Notify the background task that we have a new entry in the queue that needs // to be batched self.batching_task_notifier.notify_one(); // Return stream Ok(UnboundedReceiverStream::new(response_rx)) } async fn health(&self, current_health: bool) -> bool { if current_health { // Generation is healthy, we only check that the shards can allocate on device self.client.device_health().await } else { self.client.model_health().await } .is_ok() } fn start_health(&self) -> bool { true } fn name(&self) -> &'static str { "tgi-v2" } } /// Batching logic /// Will be launched in a background Tokio task /// /// Batches requests and sends them to the inference server #[allow(clippy::too_many_arguments)] pub(crate) async fn batching_task( mut client: ShardedClient, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: u32, max_waiting_tokens: usize, max_batch_size: Option<usize>, queue: Queue, notifier: Arc<Notify>, ) { // Infinite loop loop { // Wait for a notification from the Infer struct notifier.notified().await; // Get the next batch from the queue // This batch might be smaller than the maximum batch size if there are not enough requests // waiting in the queue while let Some((mut entries, batch, span)) = queue .next_batch( None, max_batch_size, max_batch_prefill_tokens, max_batch_total_tokens, ) .await { let mut cached_batch = prefill(&mut client, batch, &mut entries) .instrument(span) .await; let mut waiting_tokens = 1; // We loop until we do not receive any cached batch from the inference server (== until // all requests have met their stopping criteria) while let Some(batch) = cached_batch { // Get current batch info let batch_size = batch.size; let batch_max_tokens = batch.max_tokens; let mut batches = vec![batch]; metrics::gauge!("tgi_batch_current_size").set(batch_size as f64); metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64); let min_size = if waiting_tokens >= max_waiting_tokens { // If we didn't onboard any new requests since >= max_waiting_tokens, we try // to add a new batch even though its size might be small None } else { // Minimum batch size Some((batch_size as f32 * waiting_served_ratio).floor() as usize) }; let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens); let max_size = max_batch_size.map(|max_size| max_size.saturating_sub(batch_size as usize)); // Try to get a new batch if let Some((mut new_entries, new_batch, span)) = queue .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget) .await { // Tracking metrics if min_size.is_some() { metrics::counter!("tgi_batch_concat", "reason" => "backpressure") .increment(1); } else { metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded") .increment(1); } entries.iter_mut().for_each(|(_, entry)| { // Create a new span to add the info that this entry is waiting // because a new batch is being computed let entry_waiting_span = info_span!(parent: &entry.span, "waiting"); // Add relationships span.follows_from(&entry_waiting_span); entry_waiting_span.follows_from(&span); // Update entry entry.temp_span = Some(entry_waiting_span); }); // Generate one token for this new batch to have the attention past in cache let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries) .instrument(span) .await; // Reset waiting counter waiting_tokens = 1; // Extend current batch with the new batch if let Some(new_cached_batch) = new_cached_batch { entries.extend(new_entries); batches.push(new_cached_batch); } } // Create span for this batch to add context to inference calls let next_batch_size = entries.len(); let next_batch_span = info_span!(parent: None, "batch", batch_size = next_batch_size); entries.iter_mut().for_each(|(_, entry)| { // Create a new span to link the batch back to this entry let entry_batch_span = info_span!(parent: &entry.span, "infer"); // Add relationships next_batch_span.follows_from(&entry_batch_span); entry_batch_span.follows_from(&next_batch_span); // Update entry entry.temp_span = Some(entry_batch_span); }); cached_batch = decode(&mut client, batches, &mut entries) .instrument(next_batch_span) .await; waiting_tokens += 1; } metrics::gauge!("tgi_batch_current_size").set(0.0); metrics::gauge!("tgi_batch_current_max_tokens").set(0.0); } } } #[instrument(skip_all)] async fn prefill( client: &mut ShardedClient, batch: Batch, entries: &mut IntMap<u64, Entry>, ) -> Option<CachedBatch> { let start_time = Instant::now(); let batch_id = batch.id; metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1); match client.prefill(batch).await { Ok((generations, next_batch, timings)) => { let start_filtering_time = Instant::now(); // Send generated tokens and filter stopped entries filter_send_generations(generations, entries); // Filter next batch and remove requests that were stopped let next_batch = filter_batch(client, next_batch, entries).await; metrics::histogram!("tgi_batch_forward_duration","method" => "prefill") .record(timings.forward.as_secs_f64()); metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill") .record(timings.decode.as_secs_f64()); metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill") .record(start_filtering_time.elapsed().as_secs_f64()); metrics::histogram!("tgi_batch_inference_duration","method" => "prefill") .record(start_time.elapsed().as_secs_f64()); metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1); next_batch } // If we have an error, we discard the whole batch Err(err) => { let _ = client.clear_cache(Some(batch_id)).await; send_errors(err, entries); metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1); None } } } #[instrument(skip_all)] async fn decode( client: &mut ShardedClient, batches: Vec<CachedBatch>, entries: &mut IntMap<u64, Entry>, ) -> Option<CachedBatch> { let start_time = Instant::now(); let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect(); metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1); match client.decode(batches).await { Ok((generations, next_batch, timings)) => { let start_filtering_time = Instant::now(); // Send generated tokens and filter stopped entries filter_send_generations(generations, entries); // Filter next batch and remove requests that were stopped let next_batch = filter_batch(client, next_batch, entries).await; if let Some(concat_duration) = timings.concat { metrics::histogram!("tgi_batch_concat_duration", "method" => "decode") .record(concat_duration.as_secs_f64()); } metrics::histogram!("tgi_batch_forward_duration", "method" => "decode") .record(timings.forward.as_secs_f64()); metrics::histogram!("tgi_batch_decode_duration", "method" => "decode") .record(timings.decode.as_secs_f64()); metrics::histogram!("tgi_batch_filter_duration", "method" => "decode") .record(start_filtering_time.elapsed().as_secs_f64()); metrics::histogram!("tgi_batch_inference_duration", "method" => "decode") .record(start_time.elapsed().as_secs_f64()); metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1); next_batch } // If we have an error, we discard the whole batch Err(err) => { for id in batch_ids { let _ = client.clear_cache(Some(id)).await; } send_errors(err, entries); metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1); None } } } /// Filter a `batch` and remove all requests not present in `entries` #[instrument(skip_all)] async fn filter_batch( client: &mut ShardedClient, next_batch: Option<CachedBatch>, entries: &IntMap<u64, Entry>, ) -> Option<CachedBatch> { let mut batch = next_batch?; // No need to filter if batch.size as usize == entries.len() { return Some(batch); } let id = batch.id; // Retain only requests that are still in entries batch.request_ids.retain(|id| entries.contains_key(id)); if batch.request_ids.is_empty() { // All requests have been filtered out // Next batch is now empty // Clear it from the Python shards cache // We unwrap here as we need to panic since we cannot recover if this method fails client.clear_cache(Some(id)).await.unwrap(); None } else { // Filter Python shard cache // We unwrap here as we need to panic since we cannot recover if this method fails client.filter_batch(id, batch.request_ids).await.unwrap() } } /// Send one or multiple `InferStreamResponse` to Infer for all `entries` /// and filter entries #[instrument(skip_all)] fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) { generations.into_iter().for_each(|generation| { let id = generation.request_id; // Get entry // We can `expect` here as the request id should always be in the entries let entry = entries .get(&id) .expect("ID not found in entries. This is a bug."); // Create and enter a span to link this function back to the entry let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); // Send generation responses back to the infer task // If the receive an error from the Flume channel, it means that the client dropped the // request and we need to stop generating hence why we unwrap_or(true) let stopped = send_responses(generation, entry).inspect_err(|_err| { tracing::error!("Entry response channel error."); metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); }).unwrap_or(true); if stopped { entries.remove(&id).expect("ID not found in entries. This is a bug."); } }); } /// Send responses through the `entry` response channel fn send_responses( generation: Generation, entry: &Entry, ) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> { // Return directly if the channel is disconnected if entry.response_tx.is_closed() { metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); return Ok(true); } let mut stopped = false; if let Some(prefill_tokens) = generation.prefill_tokens { // Create Token objects // We do that here instead of in the Python code as Rust for loops are faster let prefill_tokens = prefill_tokens .ids .into_iter() .zip(prefill_tokens.logprobs) .zip(prefill_tokens.texts) .map(|((id, logprob), text)| PrefillToken { id, text, logprob }) .collect(); // Send message entry .response_tx .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?; } // Create last Token let tokens_ = generation.tokens.expect("Non empty tokens in generation"); let n = tokens_.ids.len(); metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64); let mut iterator = tokens_ .ids .into_iter() .zip(tokens_.logprobs) .zip(tokens_.texts) .zip(tokens_.is_special) .enumerate() .peekable(); while let Some((i, (((id, logprob), text), special))) = iterator.next() { let token = Token { id, text, logprob, special, }; let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) { top_tokens_ .ids .iter() .zip(top_tokens_.logprobs.iter()) .zip(top_tokens_.texts.iter()) .zip(top_tokens_.is_special.iter()) .map(|(((&id, &logprob), text), &special)| Token { id, text: text.to_string(), logprob, special, }) .collect() } else { vec![] }; match (&generation.generated_text, iterator.peek()) { (Some(generated_text), None) => { // Generation has ended stopped = true; // Send message entry.response_tx.send(Ok(InferStreamResponse::End { token, top_tokens, generated_text: GeneratedText::from(generated_text.clone()), queued: entry.queue_time, start: entry.batch_time.unwrap(), }))?; } _ => { // Send message entry .response_tx .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?; } } } Ok(stopped) } /// Send errors to Infer for all `entries` #[instrument(skip_all)] fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) { entries.drain().for_each(|(_, entry)| { // Create and enter a span to link this function back to the entry let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered(); let err = InferError::GenerationError(error.to_string()); metrics::counter!("tgi_request_failure", "err" => "generation").increment(1); tracing::error!("{err}"); // unwrap_or is valid here as we don't care if the receiver is gone. entry .response_tx .send(Err(err)) .unwrap_or(()); }); } impl From<crate::client::GeneratedText> for GeneratedText { fn from(value: crate::client::GeneratedText) -> Self { let v2_finish_reason = crate::client::FinishReason::try_from(value.finish_reason).unwrap(); let finish_reason = match v2_finish_reason { crate::client::FinishReason::Length => FinishReason::Length, crate::client::FinishReason::EosToken => FinishReason::EndOfSequenceToken, crate::client::FinishReason::StopSequence => FinishReason::StopSequence, }; Self { text: value.text, generated_tokens: value.generated_tokens, finish_reason, seed: value.seed, } } }
text-generation-inference/backends/v2/src/backend.rs/0
{ "file_path": "text-generation-inference/backends/v2/src/backend.rs", "repo_id": "text-generation-inference", "token_count": 9328 }
use clap::{Parser, Subcommand}; use text_generation_router::{server, usage_stats}; use text_generation_router_v3::{connect_backend, V3Error}; use thiserror::Error; /// App Configuration #[derive(Parser, Debug)] #[clap(author, version, about, long_about = None)] struct Args { #[command(subcommand)] command: Option<Commands>, #[clap(default_value = "128", long, env)] max_concurrent_requests: usize, #[clap(default_value = "2", long, env)] max_best_of: usize, #[clap(default_value = "4", long, env)] max_stop_sequences: usize, #[clap(default_value = "5", long, env)] max_top_n_tokens: u32, #[clap(long, env)] max_input_tokens: Option<usize>, #[clap(long, env)] max_total_tokens: Option<usize>, #[clap(default_value = "1.2", long, env)] waiting_served_ratio: f32, #[clap(default_value = "4096", long, env)] max_batch_prefill_tokens: u32, #[clap(long, env)] max_batch_total_tokens: Option<u32>, #[clap(default_value = "20", long, env)] max_waiting_tokens: usize, #[clap(long, env)] max_batch_size: Option<usize>, #[clap(default_value = "0.0.0.0", long, env)] hostname: String, #[clap(default_value = "3000", long, short, env)] port: u16, #[clap(default_value = "/tmp/text-generation-server-0", long, env)] master_shard_uds_path: String, #[clap(default_value = "bigscience/bloom", long, env)] tokenizer_name: String, #[clap(long, env)] tokenizer_config_path: Option<String>, #[clap(long, env)] revision: Option<String>, #[clap(long, env, value_enum)] trust_remote_code: bool, #[clap(default_value = "2", long, env)] validation_workers: usize, #[clap(long, env)] api_key: Option<String>, #[clap(long, env)] json_output: bool, #[clap(long, env)] otlp_endpoint: Option<String>, #[clap(default_value = "text-generation-inference.router", long, env)] otlp_service_name: String, #[clap(long, env)] cors_allow_origin: Option<Vec<String>>, #[clap(long, env)] ngrok: bool, #[clap(long, env)] ngrok_authtoken: Option<String>, #[clap(long, env)] ngrok_edge: Option<String>, #[clap(long, env, default_value_t = false)] disable_grammar_support: bool, #[clap(default_value = "4", long, env)] max_client_batch_size: usize, #[clap(default_value = "on", long, env)] usage_stats: usage_stats::UsageStatsLevel, #[clap(default_value = "2000000", long, env)] payload_limit: usize, } #[derive(Debug, Subcommand)] enum Commands { PrintSchema, } #[tokio::main] async fn main() -> Result<(), RouterError> { // Get args let args = Args::parse(); // Pattern match configuration let Args { command, max_concurrent_requests, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_tokens, max_total_tokens, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_batch_size, hostname, port, master_shard_uds_path, tokenizer_name, tokenizer_config_path, revision, trust_remote_code, validation_workers, api_key, json_output, otlp_endpoint, otlp_service_name, cors_allow_origin, ngrok, ngrok_authtoken, ngrok_edge, disable_grammar_support, max_client_batch_size, usage_stats, payload_limit, } = args; if let Some(Commands::PrintSchema) = command { use utoipa::OpenApi; let api_doc = text_generation_router::server::ApiDoc::openapi(); let api_doc = serde_json::to_string_pretty(&api_doc).unwrap(); println!("{}", api_doc); std::process::exit(0); }; text_generation_router::logging::init_logging(otlp_endpoint, otlp_service_name, json_output); // Validate args if validation_workers == 0 { return Err(RouterError::ArgumentValidation( "`validation_workers` must be > 0".to_string(), )); } if let Some(max_batch_size) = max_batch_size { if max_batch_size == 0 { return Err(RouterError::ArgumentValidation( "`max_batch_size` must be > 0".to_string(), )); } } let (backend, backend_info) = connect_backend( max_input_tokens, max_total_tokens, master_shard_uds_path, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_batch_size, ) .await?; // Validate remaining args now that the backend is known let support_chunking = backend_info.support_chunking; let max_batch_total_tokens = backend_info.max_batch_total_tokens; if max_input_tokens.is_none() { tracing::info!( "Maximum input tokens defaulted to {}", backend_info.max_input_tokens ); } if max_total_tokens.is_none() { tracing::info!( "Maximum total tokens defaulted to {}", backend_info.max_total_tokens ); } let max_input_tokens = backend_info.max_input_tokens; let max_total_tokens = backend_info.max_total_tokens; if max_input_tokens >= max_total_tokens { return Err(RouterError::ArgumentValidation( "`max_input_tokens` must be < `max_total_tokens`".to_string(), )); } if max_input_tokens as u32 > max_batch_prefill_tokens && !support_chunking { return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}"))); } if max_batch_prefill_tokens > max_batch_total_tokens { return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}"))); } if max_total_tokens as u32 > max_batch_total_tokens { return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}"))); } // Run server server::run( backend, max_concurrent_requests, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_tokens, max_total_tokens, validation_workers, api_key, tokenizer_name, tokenizer_config_path, revision, trust_remote_code, hostname, port, cors_allow_origin, ngrok, ngrok_authtoken, ngrok_edge, disable_grammar_support, max_client_batch_size, usage_stats, payload_limit, ) .await?; Ok(()) } #[derive(Debug, Error)] enum RouterError { #[error("Argument validation error: {0}")] ArgumentValidation(String), #[error("Backend failed: {0}")] Backend(#[from] V3Error), #[error("WebServer error: {0}")] WebServer(#[from] server::WebServerError), #[error("Tokio runtime failed to start: {0}")] Tokio(#[from] std::io::Error), }
text-generation-inference/backends/v3/src/main.rs/0
{ "file_path": "text-generation-inference/backends/v3/src/main.rs", "repo_id": "text-generation-inference", "token_count": 3407 }
[tool.poetry] name = "text-generation" version = "0.7.0" description = "Hugging Face Text Generation Python Client" license = "Apache-2.0" authors = ["Olivier Dehaene <[email protected]>"] maintainers = ["Olivier Dehaene <[email protected]>"] readme = "README.md" homepage = "https://github.com/huggingface/text-generation-inference" repository = "https://github.com/huggingface/text-generation-inference" [tool.poetry.dependencies] python = "^3.7" pydantic = "> 2, < 3" aiohttp = "^3.8" huggingface-hub = ">= 0.12, < 1.0" [tool.poetry.dev-dependencies] pytest = "^6.2.5" pytest-asyncio = "^0.17.2" pytest-cov = "^3.0.0" [tool.pytest.ini_options] asyncio_mode = "auto" [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.isort] profile = "black"
text-generation-inference/clients/python/pyproject.toml/0
{ "file_path": "text-generation-inference/clients/python/pyproject.toml", "repo_id": "text-generation-inference", "token_count": 348 }
# Text Generation Inference Architecture This document aims at describing the architecture of Text Generation Inference (TGI), by describing the call flow between the separate components. A high-level architecture diagram can be seen here: ![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png) This diagram shows well there are these separate components: - **The router**, also named `webserver`, that receives the client requests, buffers them, creates some batches, and prepares gRPC calls to a model server. - **The launcher** is a helper that will be able to launch one or several model servers (if model is sharded), and it launches the router with the compatible arguments. - **The model server**, responsible for receiving the gRPC requests and to process the inference on the model. If the model is sharded across multiple accelerators (e.g.: multiple GPUs), the model server shards might be synchronized via NCCL or equivalent. Note that for other backends (eg. TRTLLM) the model server and launcher are specific to the backend. The router and the model server can be two different machines, they do not need to be deployed together. ## The Router This component is a rust web server binary that accepts HTTP requests using the custom [HTTP API](https://huggingface.github.io/text-generation-inference/), as well as OpenAI's [Messages API](https://huggingface.co/docs/text-generation-inference/messages_api). The router receives the API calls and handles the "baches" logic (and introduction to batching can be found [here](https://github.com/huggingface/text-generation-inference/blob/main/router/README.md)). It uses different strategies to reduce latency between requests and responses, especially oriented to decoding latency. It will use queues, schedulers, and block allocators to achieve that and produce batched requests that it will then be sent to the model server. ### Router's command line The router command line will be the way to pass parameters to it (it does not rely on configuration file): ``` Text Generation Webserver Usage: text-generation-router [OPTIONS] Options: --max-concurrent-requests <MAX_CONCURRENT_REQUESTS> [env: MAX_CONCURRENT_REQUESTS=] [default: 128] --max-best-of <MAX_BEST_OF> [env: MAX_BEST_OF=] [default: 2] --max-stop-sequences <MAX_STOP_SEQUENCES> [env: MAX_STOP_SEQUENCES=] [default: 4] --max-top-n-tokens <MAX_TOP_N_TOKENS> [env: MAX_TOP_N_TOKENS=] [default: 5] --max-input-tokens <MAX_INPUT_TOKENS> [env: MAX_INPUT_TOKENS=] [default: 1024] --max-total-tokens <MAX_TOTAL_TOKENS> [env: MAX_TOTAL_TOKENS=] [default: 2048] --waiting-served-ratio <WAITING_SERVED_RATIO> [env: WAITING_SERVED_RATIO=] [default: 1.2] --max-batch-prefill-tokens <MAX_BATCH_PREFILL_TOKENS> [env: MAX_BATCH_PREFILL_TOKENS=] [default: 4096] --max-batch-total-tokens <MAX_BATCH_TOTAL_TOKENS> [env: MAX_BATCH_TOTAL_TOKENS=] --max-waiting-tokens <MAX_WAITING_TOKENS> [env: MAX_WAITING_TOKENS=] [default: 20] --max-batch-size <MAX_BATCH_SIZE> [env: MAX_BATCH_SIZE=] --hostname <HOSTNAME> [env: HOSTNAME=] [default: 0.0.0.0] -p, --port <PORT> [env: PORT=] [default: 3000] --master-shard-uds-path <MASTER_SHARD_UDS_PATH> [env: MASTER_SHARD_UDS_PATH=] [default: /tmp/text-generation-server-0] --tokenizer-name <TOKENIZER_NAME> [env: TOKENIZER_NAME=] [default: bigscience/bloom] --tokenizer-config-path <TOKENIZER_CONFIG_PATH> [env: TOKENIZER_CONFIG_PATH=] --revision <REVISION> [env: REVISION=] --validation-workers <VALIDATION_WORKERS> [env: VALIDATION_WORKERS=] [default: 2] --json-output [env: JSON_OUTPUT=] --otlp-endpoint <OTLP_ENDPOINT> [env: OTLP_ENDPOINT=] --otlp-service-name <OTLP_SERVICE_NAME> [env: OTLP_SERVICE_NAME=] --cors-allow-origin <CORS_ALLOW_ORIGIN> [env: CORS_ALLOW_ORIGIN=] --ngrok [env: NGROK=] --ngrok-authtoken <NGROK_AUTHTOKEN> [env: NGROK_AUTHTOKEN=] --ngrok-edge <NGROK_EDGE> [env: NGROK_EDGE=] --messages-api-enabled [env: MESSAGES_API_ENABLED=] --disable-grammar-support [env: DISABLE_GRAMMAR_SUPPORT=] --max-client-batch-size <MAX_CLIENT_BATCH_SIZE> [env: MAX_CLIENT_BATCH_SIZE=] [default: 4] -h, --help Print help -V, --version Print version ``` ## The Model Server The model server is a python server, capable of starting a server waiting for gRPC requests, loads a given model, perform sharding to provide [tensor parallelism](https://huggingface.co/docs/text-generation-inference/conceptual/tensor_parallelism), and stays alive while waiting for new requests. The model server supports models instantiated using Pytorch and optimized for inference mainly on CUDA/ROCM. ### Model Server Variants Several variants of the model server exist that are actively supported by Hugging Face: - By default, the model server will attempt building [a server optimized for Nvidia GPUs with CUDA](https://huggingface.co/docs/text-generation-inference/installation_nvidia). The code for this version is hosted in the [main TGI repository](https://github.com/huggingface/text-generation-inference). - A [version optimized for AMD with ROCm](https://huggingface.co/docs/text-generation-inference/installation_amd) is hosted in the main TGI repository. Some model features differ. - A [version optimized for Intel GPUs](https://huggingface.co/docs/text-generation-inference/installation_intel) is hosted in the main TGI repository. Some model features differ. - The [version for Intel Gaudi](https://huggingface.co/docs/text-generation-inference/installation_gaudi) is maintained on a forked repository, often resynchronized with the main [TGI repository](https://github.com/huggingface/tgi-gaudi). - A [version for Neuron (AWS Inferentia2)](https://huggingface.co/docs/text-generation-inference/installation_inferentia) is maintained as part of [Optimum Neuron](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference). - A version for Google TPUs is maintained as part of [Optimum TPU](https://github.com/huggingface/optimum-tpu/tree/main/text-generation-inference). Not all variants provide the same features, as hardware and middleware capabilities do not provide the same optimizations. ### Command Line Interface The official command line interface (CLI) for the server supports three subcommands, `download-weights`, `quantize` and `serve`: - `download-weights` will download weights from the hub and, in some variants it will convert weights to a format that is adapted to the given implementation; - `quantize` will allow to quantize a model using the `qptq` package. This feature is not available nor supported on all variants; - `serve` will start the server that load a model (or a model shard), receives gRPC calls from the router, performs an inference and provides a formatted response to the given request. Serve's command line parameters on the TGI repository are these: ``` Usage: cli.py serve [OPTIONS] MODEL_ID ╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────╮ │ * model_id TEXT [default: None] [required] │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────╯ ╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────╮ │ --revision TEXT [default: None] │ │ --sharded --no-sharded [default: no-sharded] │ │ --quantize [bitsandbytes|bitsandbytes [default: None] │ │ -nf4|bitsandbytes-fp4|gptq │ │ |awq|eetq|exl2|fp8] │ │ --speculate INTEGER [default: None] │ │ --dtype [float16|bfloat16] [default: None] │ │ --trust-remote-code --no-trust-remote-code [default: │ │ no-trust-remote-code] │ │ --uds-path PATH [default: │ │ /tmp/text-generation-serve… │ │ --logger-level TEXT [default: INFO] │ │ --json-output --no-json-output [default: no-json-output] │ │ --otlp-endpoint TEXT [default: None] │ │ --otlp-service-name TEXT [default: │ │ text-generation-inference...│ │ --help Show this message and exit. │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────╯ ``` Note that some variants might support different parameters, and they could possibly accept more options that can be passed on using environment variables. ## Call Flow Once both components are initialized, weights downloaded and model server is up and running, router and model server exchange data and info through the gRPC call. There are currently two supported schemas, [v2](https://github.com/huggingface/text-generation-inference/blob/main/proto/generate.proto) and [v3](https://github.com/huggingface/text-generation-inference/blob/main/proto/v3/generate.proto). These two versions are almost identical, except for: - input chunks support, for text and image data, - paged attention support Here's a diagram that displays the exchanges that follow the router and model server startup. ```mermaid sequenceDiagram Router->>Model Server: service discovery Model Server-->>Router: urls for other shards Router->>Model Server: get model info Model Server-->>Router: shard info Router->>Model Server: health check Model Server-->>Router: health OK Router->>Model Server: warmup(max_input_tokens, max_batch_prefill_tokens, max_total_tokens, max_batch_size) Model Server-->>Router: warmup result ``` After these are done, the router is ready to receive generate calls from multiple clients. Here's an example. ```mermaid sequenceDiagram participant Client 1 participant Client 2 participant Client 3 participant Router participant Model Server Client 1->>Router: generate_stream Router->>Model Server: prefill(batch1) Model Server-->>Router: generations, cached_batch1, timings Router-->>Client 1: token 1 Router->>Model Server: decode(cached_batch1) Model Server-->>Router: generations, cached_batch1, timings Router-->>Client 1: token 2 Router->>Model Server: decode(cached_batch1) Model Server-->>Router: generations, cached_batch1, timings Router-->>Client 1: token 3 Client 2->>Router: generate_stream Router->>Model Server: prefill(batch2) Note right of Model Server: This stops previous batch, that is restarted Model Server-->>Router: generations, cached_batch2, timings Router-->>Client 2: token 1' Router->>Model Server: decode(cached_batch1, cached_batch2) Model Server-->>Router: generations, cached_batch1, timings Router-->>Client 1: token 4 Router-->>Client 2: token 2' Note left of Client 1: Client 1 leaves Router->>Model Server: filter_batch(cached_batch1, request_ids_to_keep=batch2) Model Server-->>Router: filtered batch Router->>Model Server: decode(cached_batch2) Model Server-->>Router: generations, cached_batch2, timings Router-->>Client 2: token 3' Client 3->>Router: generate_stream Note right of Model Server: This stops previous batch, that is restarted Router->>Model Server: prefill(batch3) Note left of Client 1: Client 3 leaves without receiving any batch Router->>Model Server: clear_cache(batch3) Note right of Model Server: This stops previous batch, that is restarted Router->>Model Server: decode(cached_batch3) Note right of Model Server: Last token (stopping criteria) Model Server-->>Router: generations, cached_batch3, timings Router-->>Client 2: token 4' ```
text-generation-inference/docs/source/architecture.md/0
{ "file_path": "text-generation-inference/docs/source/architecture.md", "repo_id": "text-generation-inference", "token_count": 5207 }
# LoRA (Low-Rank Adaptation) ## What is LoRA? LoRA is a technique that allows for efficent fine-tuning a model while only updating a small portion of the model's weights. This is useful when you have a large model that has been pre-trained on a large dataset, but you want to fine-tune it on a smaller dataset or for a specific task. LoRA works by adding a small number of additional weights to the model, which are used to adapt the model to the new dataset or task. These additional weights are learned during the fine-tuning process, while the rest of the model's weights are kept fixed. ## How is it used? LoRA can be used in many ways and the community is always finding new ways to use it. Here are some examples of how you can use LoRA: Technically, LoRA can be used to fine-tune a large language model on a small dataset. However, these use cases can span a wide range of applications, such as: - fine-tuning a language model on a small dataset - fine-tuning a language model on a domain-specific dataset - fine-tuning a language model on a dataset with limited labels ## Optimizing Inference with LoRA LoRA's can be used during inference by mutliplying the adapter weights with the model weights at each specified layer. This process can be computationally expensive, but due to awesome work by [punica-ai](https://github.com/punica-ai/punica) and the [lorax](https://github.com/predibase/lorax) team, optimized kernels/and frameworks have been developed to make this process more efficient. TGI leverages these optimizations in order to provide fast and efficient inference with mulitple LoRA models. ## Serving multiple LoRA adapters with TGI Once a LoRA model has been trained, it can be used to generate text or perform other tasks just like a regular language model. However, because the model has been fine-tuned on a specific dataset, it may perform better on that dataset than a model that has not been fine-tuned. In practice its often useful to have multiple LoRA models, each fine-tuned on a different dataset or for a different task. This allows you to use the model that is best suited for a particular task or dataset. Text Generation Inference (TGI) now supports loading multiple LoRA models at startup that can be used in generation requests. This feature is available starting from version `~2.0.6` and is compatible with LoRA models trained using the `peft` library. ### Specifying LoRA models To use LoRA in TGI, when starting the server, you can specify the list of LoRA models to load using the `LORA_ADAPTERS` environment variable. For example: ```bash LORA_ADAPTERS=predibase/customer_support,predibase/dbpedia ``` To specify model revision, use `adapter_id@revision`, as follows: ```bash LORA_ADAPTERS=predibase/customer_support@main,predibase/dbpedia@rev2 ``` To use a locally stored lora adapter, use `adapter-name=/path/to/adapter`, as seen below. When you want to use this adapter, set `"parameters": {"adapter_id": "adapter-name"}"` ```bash LORA_ADAPTERS=myadapter=/some/path/to/adapter,myadapter2=/another/path/to/adapter ``` note it's possible to mix adapter_ids with adapter_id=adapter_path e.g. ```bash LORA_ADAPTERS=predibase/dbpedia,myadapter=/path/to/dir/ ``` In the server logs, you will see the following message: ```txt Loading adapter weights into model: predibase/customer_support Loading adapter weights into model: predibase/dbpedia ``` ## Generate text You can then use these models in generation requests by specifying the `lora_model` parameter in the request payload. For example: ```json curl 127.0.0.1:3000/generate \ -X POST \ -H 'Content-Type: application/json' \ -d '{ "inputs": "Hello who are you?", "parameters": { "max_new_tokens": 40, "adapter_id": "predibase/customer_support" } }' ``` If you are using a lora adapter stored locally that was set in the following manner: `LORA_ADAPTERS=myadapter=/some/path/to/adapter`, here is an example payload: ```json curl 127.0.0.1:3000/generate \ -X POST \ -H 'Content-Type: application/json' \ -d '{ "inputs": "Hello who are you?", "parameters": { "max_new_tokens": 40, "adapter_id": "myadapter" } }' ``` > **Note:** The Lora feature is new and still being improved. If you encounter any issues or have any feedback, please let us know by opening an issue on the [GitHub repository](https://github.com/huggingface/text-generation-inference/issues/new/choose). Additionally documentation and an improved client library will be published soon. An updated tutorial with detailed examples will be published soon. Stay tuned!
text-generation-inference/docs/source/conceptual/lora.md/0
{ "file_path": "text-generation-inference/docs/source/conceptual/lora.md", "repo_id": "text-generation-inference", "token_count": 1339 }
# Quick Tour The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/). ## Launching TGI Let's say you want to deploy [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model with TGI on an Nvidia GPU. Here is an example on how to do that: ```bash model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ ghcr.io/huggingface/text-generation-inference:3.1.0 \ --model-id $model ``` <Tip> If you want to serve gated or private models, please refer to [this guide](https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/gated_model_access) for detailed instructions. </Tip> ### Supported hardware TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Intel GPUs](./installation_intel), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on. ## Consuming TGI Once TGI is running, you can use the `generate` endpoint or the Open AI Chat Completion API compatible [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint. <inferencesnippet> <python> ```python import requests headers = { "Content-Type": "application/json", } data = { 'inputs': 'What is Deep Learning?', 'parameters': { 'max_new_tokens': 20, }, } response = requests.post('http://127.0.0.1:8080/generate', headers=headers, json=data) print(response.json()) # {'generated_text': '\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can'} ``` </python> <js> ```js async function query() { const response = await fetch( 'http://127.0.0.1:8080/generate', { method: 'POST', headers: { 'Content-Type': 'application/json'}, body: JSON.stringify({ 'inputs': 'What is Deep Learning?', 'parameters': { 'max_new_tokens': 20 } }) } ); } query().then((response) => { console.log(JSON.stringify(response)); }); /// {"generated_text":"\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can"} ``` </js> <curl> ```curl curl 127.0.0.1:8080/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` </curl> </inferencesnippet> <Tip> To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more. ```bash docker run ghcr.io/huggingface/text-generation-inference:3.1.0 --help ``` </Tip>
text-generation-inference/docs/source/quicktour.md/0
{ "file_path": "text-generation-inference/docs/source/quicktour.md", "repo_id": "text-generation-inference", "token_count": 1206 }
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 17934, "logprob": null, "text": "Pour" }, { "id": 49833, "logprob": -10.5390625, "text": " dég" }, { "id": 21543, "logprob": -0.14758301, "text": "uster" }, { "id": 447, "logprob": -1.9296875, "text": " un" }, { "id": 46341, "logprob": -15.4453125, "text": " ort" }, { "id": 35567, "logprob": -7.59375, "text": "olan" }, { "id": 15, "logprob": -1.3994141, "text": "," }, { "id": 1669, "logprob": -1.578125, "text": " il" }, { "id": 11580, "logprob": -0.9453125, "text": " faut" }, { "id": 3913, "logprob": -3.7011719, "text": " tout" }, { "id": 39261, "logprob": -1.5732422, "text": " d'abord" } ], "seed": null, "tokens": [ { "id": 578, "logprob": -1.7529297, "special": false, "text": " le" }, { "id": 5608, "logprob": -2.6054688, "special": false, "text": " faire" }, { "id": 1767, "logprob": -1.5283203, "special": false, "text": " cu" }, { "id": 1273, "logprob": -0.00010049343, "special": false, "text": "ire" }, { "id": 1486, "logprob": -1.4716797, "special": false, "text": " dans" }, { "id": 283, "logprob": -1.1982422, "special": false, "text": " de" }, { "id": 40410, "logprob": -0.11853027, "special": false, "text": " l'eau" }, { "id": 20226, "logprob": -0.41210938, "special": false, "text": " bou" }, { "id": 172483, "logprob": -0.0037765503, "special": false, "text": "illante" }, { "id": 2805, "logprob": -1.0166016, "special": false, "text": " sal" } ] }, "generated_text": " le faire cuire dans de l'eau bouillante sal" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 17934, "logprob": null, "text": "Pour" }, { "id": 49833, "logprob": -10.515625, "text": " dég" }, { "id": 21543, "logprob": -0.1484375, "text": "uster" }, { "id": 447, "logprob": -1.9287109, "text": " un" }, { "id": 46341, "logprob": -15.34375, "text": " ort" }, { "id": 35567, "logprob": -7.515625, "text": "olan" }, { "id": 15, "logprob": -1.4199219, "text": "," }, { "id": 1669, "logprob": -1.5664062, "text": " il" }, { "id": 11580, "logprob": -0.94091797, "text": " faut" }, { "id": 3913, "logprob": -3.6660156, "text": " tout" }, { "id": 39261, "logprob": -1.7753906, "text": " d'abord" } ], "seed": null, "tokens": [ { "id": 578, "logprob": -1.7626953, "special": false, "text": " le" }, { "id": 5608, "logprob": -2.5820312, "special": false, "text": " faire" }, { "id": 1767, "logprob": -1.5097656, "special": false, "text": " cu" }, { "id": 1273, "logprob": -9.393692e-05, "special": false, "text": "ire" }, { "id": 1486, "logprob": -1.5175781, "special": false, "text": " dans" }, { "id": 283, "logprob": -1.1982422, "special": false, "text": " de" }, { "id": 40410, "logprob": -0.11883545, "special": false, "text": " l'eau" }, { "id": 20226, "logprob": -0.4909668, "special": false, "text": " bou" }, { "id": 172483, "logprob": -0.003047943, "special": false, "text": "illante" }, { "id": 2805, "logprob": -1.0185547, "special": false, "text": " sal" } ] }, "generated_text": " le faire cuire dans de l'eau bouillante sal" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 17934, "logprob": null, "text": "Pour" }, { "id": 49833, "logprob": -10.515625, "text": " dég" }, { "id": 21543, "logprob": -0.1484375, "text": "uster" }, { "id": 447, "logprob": -1.9287109, "text": " un" }, { "id": 46341, "logprob": -15.34375, "text": " ort" }, { "id": 35567, "logprob": -7.515625, "text": "olan" }, { "id": 15, "logprob": -1.4199219, "text": "," }, { "id": 1669, "logprob": -1.5664062, "text": " il" }, { "id": 11580, "logprob": -0.94091797, "text": " faut" }, { "id": 3913, "logprob": -3.6660156, "text": " tout" }, { "id": 39261, "logprob": -1.7753906, "text": " d'abord" } ], "seed": null, "tokens": [ { "id": 578, "logprob": -1.7626953, "special": false, "text": " le" }, { "id": 5608, "logprob": -2.5820312, "special": false, "text": " faire" }, { "id": 1767, "logprob": -1.5097656, "special": false, "text": " cu" }, { "id": 1273, "logprob": -9.393692e-05, "special": false, "text": "ire" }, { "id": 1486, "logprob": -1.5175781, "special": false, "text": " dans" }, { "id": 283, "logprob": -1.1982422, "special": false, "text": " de" }, { "id": 40410, "logprob": -0.11883545, "special": false, "text": " l'eau" }, { "id": 20226, "logprob": -0.4909668, "special": false, "text": " bou" }, { "id": 172483, "logprob": -0.003047943, "special": false, "text": "illante" }, { "id": 2805, "logprob": -1.0185547, "special": false, "text": " sal" } ] }, "generated_text": " le faire cuire dans de l'eau bouillante sal" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 17934, "logprob": null, "text": "Pour" }, { "id": 49833, "logprob": -10.515625, "text": " dég" }, { "id": 21543, "logprob": -0.1484375, "text": "uster" }, { "id": 447, "logprob": -1.9287109, "text": " un" }, { "id": 46341, "logprob": -15.34375, "text": " ort" }, { "id": 35567, "logprob": -7.515625, "text": "olan" }, { "id": 15, "logprob": -1.4199219, "text": "," }, { "id": 1669, "logprob": -1.5664062, "text": " il" }, { "id": 11580, "logprob": -0.94091797, "text": " faut" }, { "id": 3913, "logprob": -3.6660156, "text": " tout" }, { "id": 39261, "logprob": -1.7753906, "text": " d'abord" } ], "seed": null, "tokens": [ { "id": 578, "logprob": -1.7626953, "special": false, "text": " le" }, { "id": 5608, "logprob": -2.5820312, "special": false, "text": " faire" }, { "id": 1767, "logprob": -1.5097656, "special": false, "text": " cu" }, { "id": 1273, "logprob": -9.393692e-05, "special": false, "text": "ire" }, { "id": 1486, "logprob": -1.5175781, "special": false, "text": " dans" }, { "id": 283, "logprob": -1.1982422, "special": false, "text": " de" }, { "id": 40410, "logprob": -0.11883545, "special": false, "text": " l'eau" }, { "id": 20226, "logprob": -0.4909668, "special": false, "text": " bou" }, { "id": 172483, "logprob": -0.003047943, "special": false, "text": "illante" }, { "id": 2805, "logprob": -1.0185547, "special": false, "text": " sal" } ] }, "generated_text": " le faire cuire dans de l'eau bouillante sal" } ]
text-generation-inference/integration-tests/models/__snapshots__/test_bloom_560m_sharded/test_bloom_560m_sharded_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_bloom_560m_sharded/test_bloom_560m_sharded_load.json", "repo_id": "text-generation-inference", "token_count": 7258 }
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": 0, "tokens": [ { "id": 836, "logprob": -1.265625, "special": false, "text": " i" }, { "id": 18, "logprob": -0.119628906, "special": false, "text": "'" }, { "id": 298, "logprob": -2.265625, "special": false, "text": "ve" }, { "id": 650, "logprob": -0.49804688, "special": false, "text": " been" }, { "id": 1241, "logprob": 0.0, "special": false, "text": " using" }, { "id": 334, "logprob": 0.0, "special": false, "text": " it" }, { "id": 312, "logprob": -1.2421875, "special": false, "text": " for" }, { "id": 909, "logprob": -0.99609375, "special": false, "text": " years" }, { "id": 193, "logprob": -0.30273438, "special": false, "text": "\n" }, { "id": 807, "logprob": -1.078125, "special": false, "text": "ik" } ] }, "generated_text": "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron: i've been using it for years\nik" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_falcon/test_flash_falcon_all_params.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_falcon/test_flash_falcon_all_params.json", "repo_id": "text-generation-inference", "token_count": 905 }
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 29896, "logprob": -0.7685547, "special": false, "text": "1" }, { "id": 29906, "logprob": -0.33666992, "special": false, "text": "2" }, { "id": 29941, "logprob": -0.009979248, "special": false, "text": "3" }, { "id": 29946, "logprob": -0.64208984, "special": false, "text": "4" }, { "id": 29945, "logprob": -0.4970703, "special": false, "text": "5" }, { "id": 29953, "logprob": -0.46533203, "special": false, "text": "6" }, { "id": 29992, "logprob": -0.5336914, "special": false, "text": "@" }, { "id": 21980, "logprob": -0.53759766, "special": false, "text": "gmail" }, { "id": 29889, "logprob": -0.0008878708, "special": false, "text": "." }, { "id": 510, "logprob": -0.002275467, "special": false, "text": "com" } ], "top_tokens": null }, "generated_text": "[email protected]" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_grammar_llama/test_flash_llama_grammar_single_load_instance.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_grammar_llama/test_flash_llama_grammar_single_load_instance.json", "repo_id": "text-generation-inference", "token_count": 866 }
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 13, "logprob": -2.0507812, "special": false, "text": "\n" }, { "id": 13, "logprob": -2.3007812, "special": false, "text": "\n" }, { "id": 29902, "logprob": -2.0449219, "special": false, "text": "I" }, { "id": 505, "logprob": -1.3242188, "special": false, "text": " have" }, { "id": 263, "logprob": -0.2076416, "special": false, "text": " a" }, { "id": 1243, "logprob": -2.0273438, "special": false, "text": " test" }, { "id": 2009, "logprob": -0.6845703, "special": false, "text": " request" }, { "id": 515, "logprob": -1.1748047, "special": false, "text": " from" }, { "id": 263, "logprob": -1.0644531, "special": false, "text": " a" }, { "id": 1404, "logprob": -1.5224609, "special": false, "text": " user" } ], "top_tokens": null }, "generated_text": "\n\nI have a test request from a user" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_llama_marlin/test_flash_llama_marlin.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_llama_marlin/test_flash_llama_marlin.json", "repo_id": "text-generation-inference", "token_count": 864 }
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 20910, "logprob": -0.96484375, "special": false, "text": "Grad" }, { "id": 722, "logprob": -0.003168106, "special": false, "text": "ient" }, { "id": 24871, "logprob": -0.16369629, "special": false, "text": " descent" }, { "id": 349, "logprob": -0.0881958, "special": false, "text": " is" }, { "id": 396, "logprob": -0.76708984, "special": false, "text": " an" }, { "id": 18586, "logprob": -0.57373047, "special": false, "text": " optimization" }, { "id": 9464, "logprob": -0.11291504, "special": false, "text": " algorithm" }, { "id": 1307, "logprob": -0.79589844, "special": false, "text": " used" }, { "id": 298, "logprob": -0.1694336, "special": false, "text": " to" }, { "id": 26518, "logprob": -0.34350586, "special": false, "text": " minimize" } ], "top_tokens": null }, "generated_text": "Gradient descent is an optimization algorithm used to minimize" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 20910, "logprob": -0.9628906, "special": false, "text": "Grad" }, { "id": 722, "logprob": -0.0032176971, "special": false, "text": "ient" }, { "id": 24871, "logprob": -0.16540527, "special": false, "text": " descent" }, { "id": 349, "logprob": -0.08898926, "special": false, "text": " is" }, { "id": 396, "logprob": -0.765625, "special": false, "text": " an" }, { "id": 18586, "logprob": -0.5708008, "special": false, "text": " optimization" }, { "id": 9464, "logprob": -0.11401367, "special": false, "text": " algorithm" }, { "id": 1307, "logprob": -0.7963867, "special": false, "text": " used" }, { "id": 298, "logprob": -0.17028809, "special": false, "text": " to" }, { "id": 26518, "logprob": -0.34326172, "special": false, "text": " minimize" } ], "top_tokens": null }, "generated_text": "Gradient descent is an optimization algorithm used to minimize" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 20910, "logprob": -0.9580078, "special": false, "text": "Grad" }, { "id": 722, "logprob": -0.0032176971, "special": false, "text": "ient" }, { "id": 24871, "logprob": -0.16552734, "special": false, "text": " descent" }, { "id": 349, "logprob": -0.08874512, "special": false, "text": " is" }, { "id": 396, "logprob": -0.75878906, "special": false, "text": " an" }, { "id": 18586, "logprob": -0.5703125, "special": false, "text": " optimization" }, { "id": 9464, "logprob": -0.11236572, "special": false, "text": " algorithm" }, { "id": 1307, "logprob": -0.79541016, "special": false, "text": " used" }, { "id": 298, "logprob": -0.17102051, "special": false, "text": " to" }, { "id": 26518, "logprob": -0.34326172, "special": false, "text": " minimize" } ], "top_tokens": null }, "generated_text": "Gradient descent is an optimization algorithm used to minimize" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 20910, "logprob": -0.9609375, "special": false, "text": "Grad" }, { "id": 722, "logprob": -0.003168106, "special": false, "text": "ient" }, { "id": 24871, "logprob": -0.16601562, "special": false, "text": " descent" }, { "id": 349, "logprob": -0.088134766, "special": false, "text": " is" }, { "id": 396, "logprob": -0.7597656, "special": false, "text": " an" }, { "id": 18586, "logprob": -0.5708008, "special": false, "text": " optimization" }, { "id": 9464, "logprob": -0.11291504, "special": false, "text": " algorithm" }, { "id": 1307, "logprob": -0.7944336, "special": false, "text": " used" }, { "id": 298, "logprob": -0.17102051, "special": false, "text": " to" }, { "id": 26518, "logprob": -0.34399414, "special": false, "text": " minimize" } ], "top_tokens": null }, "generated_text": "Gradient descent is an optimization algorithm used to minimize" } ]
text-generation-inference/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_load.json", "repo_id": "text-generation-inference", "token_count": 4054 }
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09289551, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31396484, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051727295, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34448242, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.03237915, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018751621, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07043457, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.00422287, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09448242, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31201172, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051635742, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34033203, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.032562256, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018763542, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07122803, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.0041007996, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09448242, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31201172, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051635742, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34033203, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.032562256, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018787384, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07122803, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.0041007996, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09448242, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31201172, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051635742, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34033203, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.032562256, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018763542, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07122803, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.0041007996, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." } ]
text-generation-inference/integration-tests/models/__snapshots__/test_idefics2/test_flash_idefics2_next_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_idefics2/test_flash_idefics2_next_load.json", "repo_id": "text-generation-inference", "token_count": 4039 }
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 17, "prefill": [ { "id": 1276, "logprob": null, "text": "What" }, { "id": 310, "logprob": -1.5117188, "text": " is" }, { "id": 18147, "logprob": -8.96875, "text": " Deep" }, { "id": 20727, "logprob": -1.953125, "text": " Learning" }, { "id": 32, "logprob": -0.94189453, "text": "?" } ], "seed": null, "tokens": [ { "id": 428, "logprob": -1.5830078, "special": false, "text": " -" }, { "id": 18147, "logprob": -3.3105469, "special": false, "text": " Deep" }, { "id": 20727, "logprob": -0.3215332, "special": false, "text": " Learning" }, { "id": 187, "logprob": -2.5566406, "special": false, "text": "\n" }, { "id": 30763, "logprob": -1.6074219, "special": false, "text": "Deep" }, { "id": 20727, "logprob": -0.69628906, "special": false, "text": " Learning" }, { "id": 310, "logprob": -0.6923828, "special": false, "text": " is" }, { "id": 247, "logprob": -0.5263672, "special": false, "text": " a" }, { "id": 749, "logprob": -1.8544922, "special": false, "text": " sub" }, { "id": 3423, "logprob": -0.6118164, "special": false, "text": "field" }, { "id": 273, "logprob": -0.055877686, "special": false, "text": " of" }, { "id": 5145, "logprob": -1.0537109, "special": false, "text": " machine" }, { "id": 4715, "logprob": -0.0115737915, "special": false, "text": " learning" }, { "id": 326, "logprob": -0.9111328, "special": false, "text": " that" }, { "id": 4648, "logprob": -1.4589844, "special": false, "text": " uses" }, { "id": 13345, "logprob": -1.4853516, "special": false, "text": " artificial" }, { "id": 11454, "logprob": -0.021636963, "special": false, "text": " neural" } ] }, "generated_text": " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" }
text-generation-inference/integration-tests/models/__snapshots__/test_mpt/test_mpt.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_mpt/test_mpt.json", "repo_id": "text-generation-inference", "token_count": 1691 }
{ "choices": [ { "finish_reason": "stop", "index": 0, "logprobs": null, "message": { "content": null, "name": null, "role": "assistant", "tool_calls": [ { "function": { "arguments": { "format": "celsius", "location": "Brooklyn, New York" }, "description": null, "name": "get_current_weather" }, "id": "0", "type": "function" } ] }, "usage": null } ], "created": 1732293384, "id": "", "model": "meta-llama/Llama-3.1-8B-Instruct", "object": "chat.completion", "system_fingerprint": "2.4.1-dev0-native", "usage": { "completion_tokens": 30, "prompt_tokens": 615, "total_tokens": 645 } }
text-generation-inference/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_auto.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_auto.json", "repo_id": "text-generation-inference", "token_count": 492 }
import pytest @pytest.fixture(scope="module") def compressed_tensors_wna16_handle(launcher): with launcher( "neuralmagic/gemma-2-2b-it-quantized.w4a16", num_shard=2, quantize="compressed-tensors", ) as handle: yield handle @pytest.fixture(scope="module") async def compressed_tensors_wna16(compressed_tensors_wna16_handle): await compressed_tensors_wna16_handle.health(300) return compressed_tensors_wna16_handle.client @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_compressed_tensors_wna16(compressed_tensors_wna16, response_snapshot): response = await compressed_tensors_wna16.generate( "What is deep learning?", max_new_tokens=10, decoder_input_details=True, ) assert ( response.generated_text == "\n\nDeep learning is a subset of machine learning that" ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio async def test_compressed_tensors_wna16_all_params( compressed_tensors_wna16, response_snapshot ): response = await compressed_tensors_wna16.generate( "What is deep learning", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert ( response.generated_text == "What is deep learning?\n\nDeep Learning is a subset of machine learning" ) assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_compressed_tensors_wna16_load( compressed_tensors_wna16, generate_load, response_snapshot ): responses = await generate_load( compressed_tensors_wna16, "What is deep learning?", max_new_tokens=10, n=4, ) assert ( responses[0].generated_text == "\n\nDeep learning is a subset of machine learning that" ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_compressed_tensors_wna16_int.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_compressed_tensors_wna16_int.py", "repo_id": "text-generation-inference", "token_count": 1007 }
import pytest @pytest.fixture(scope="module") def flash_llama_gptq_handle(launcher): with launcher( "astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit", num_shard=2, quantize="gptq" ) as handle: yield handle @pytest.fixture(scope="module") async def flash_llama_gptq(flash_llama_gptq_handle): await flash_llama_gptq_handle.health(300) return flash_llama_gptq_handle.client @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq(flash_llama_gptq, response_snapshot): response = await flash_llama_gptq.generate( "Test request", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq_all_params(flash_llama_gptq, response_snapshot): response = await flash_llama_gptq.generate( "Test request", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq_load( flash_llama_gptq, generate_load, response_snapshot ): responses = await generate_load( flash_llama_gptq, "Test request", max_new_tokens=10, n=4 ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_llama_gptq.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_llama_gptq.py", "repo_id": "text-generation-inference", "token_count": 769 }
import pytest @pytest.fixture(scope="module") def flash_qwen2_handle(launcher): with launcher("Qwen/Qwen1.5-0.5B") as handle: yield handle @pytest.fixture(scope="module") async def flash_qwen2(flash_qwen2_handle): await flash_qwen2_handle.health(300) return flash_qwen2_handle.client @pytest.mark.release @pytest.mark.asyncio async def test_flash_qwen2(flash_qwen2, response_snapshot): response = await flash_qwen2.generate( "Test request", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert response.generated_text == "\n# Create a request\nrequest = requests.get" assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_flash_qwen2_all_params(flash_qwen2, response_snapshot): response = await flash_qwen2.generate( "Test request", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_flash_qwen2_load(flash_qwen2, generate_load, response_snapshot): responses = await generate_load(flash_qwen2, "Test request", max_new_tokens=10, n=4) assert len(responses) == 4 assert all( [r.generated_text == responses[0].generated_text for r in responses] ), f"{[r.generated_text for r in responses]}" assert responses[0].generated_text == "\n# Create a request\nrequest = requests.get" assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_qwen2.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_qwen2.py", "repo_id": "text-generation-inference", "token_count": 747 }
import pytest @pytest.fixture(scope="module") def mpt_sharded_handle(launcher): with launcher("mosaicml/mpt-7b", num_shard=2) as handle: yield handle @pytest.fixture(scope="module") async def mpt_sharded(mpt_sharded_handle): await mpt_sharded_handle.health(300) return mpt_sharded_handle.client @pytest.mark.release @pytest.mark.asyncio async def test_mpt(mpt_sharded, response_snapshot): response = await mpt_sharded.generate( "What is Deep Learning?", max_new_tokens=17, decoder_input_details=True, ) assert response.details.generated_tokens == 17 assert ( response.generated_text == " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" ) assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_mpt_load(mpt_sharded, generate_load, response_snapshot): responses = await generate_load( mpt_sharded, "What is Deep Learning?", max_new_tokens=17, n=4, ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert ( responses[0].generated_text == " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" ) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_mpt.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_mpt.py", "repo_id": "text-generation-inference", "token_count": 541 }
use clap::{Parser, ValueEnum}; use hf_hub::{ api::sync::{Api, ApiBuilder}, Repo, RepoType, }; use nix::sys::signal::{self, Signal}; use nix::unistd::Pid; use serde::Deserialize; use std::env; use std::ffi::OsString; use std::io::{BufRead, BufReader}; use std::os::unix::process::{CommandExt, ExitStatusExt}; use std::path::Path; use std::process::{Child, Command, ExitStatus, Stdio}; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::mpsc::TryRecvError; use std::sync::{mpsc, Arc}; use std::thread; use std::thread::sleep; use std::time::{Duration, Instant}; use std::{ fs, io, io::{Read, Write}, }; use thiserror::Error; use tracing_subscriber::{filter::LevelFilter, EnvFilter}; mod env_runtime; mod gpu; fn compute_optimal(config: Option<&Config>, compute: Option<&ComputeType>) -> Option<usize> { let config = config?; let compute = compute?; let f16_max_compute = compute.f16_flop()?; let model_compute = config.flop()?; tracing::debug!( "Max compute {} model compute {}", human_size(f16_max_compute as usize, "flop"), human_size(model_compute as usize, "flop") ); let optimal_size = (f16_max_compute / model_compute) as usize; if optimal_size > 100 { // Ignore calculations that's too low // Most likely an error Some(optimal_size) } else { None } } fn human_size(size: usize, suffix: &str) -> String { let mut size: f64 = size as f64; let mut p = ""; for prefix in ["", "K", "M", "G", "T"] { p = prefix; if size > 1_000.0 { size /= 1_000.0; } else { break; } } format!("{size:.2}{p}{suffix}") } fn vram_maximum( config: Option<&Config>, compute: Option<&ComputeType>, memory_fraction: f32, ) -> Option<usize> { let config = config?; let compute = compute?; let available = compute.vram(memory_fraction)?; let model = config.model_vram()?; let token_vram = config.token_vram()?; if let Some(vram) = available.checked_sub(model) { let tokens_allowed = vram / token_vram; tracing::debug!( "Available vram {}: model needs {}, every tokens requires {}, maximum allocatable tokens {tokens_allowed}", human_size(available, "B"), human_size(model, "B"), human_size(token_vram, "B"), ); Some(tokens_allowed) } else { tracing::warn!( "Not enough VRAM to run the model: Available: {} - Model {}.", human_size(available, "B"), human_size(model, "B") ); None } } fn get_config( model_id: &str, revision: &Option<String>, ) -> Result<Config, Box<dyn std::error::Error>> { let mut path = std::path::Path::new(model_id).to_path_buf(); let model_id = model_id.to_string(); let filename = if !path.exists() { // Assume it's a hub id let api = if let Ok(token) = std::env::var("HF_TOKEN") { // env variable has precedence over on file token. ApiBuilder::new().with_token(Some(token)).build()? } else { Api::new()? }; let repo = if let Some(ref revision) = revision { api.repo(Repo::with_revision( model_id, RepoType::Model, revision.to_string(), )) } else { api.model(model_id) }; repo.get("config.json")? } else { path.push("config.json"); path }; let content = std::fs::read_to_string(filename)?; let config: RawConfig = serde_json::from_str(&content)?; let config: Config = config.into(); Ok(config) } fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) { let compute_capability = gpu::get_cuda_capability(); let mut prefix_caching: Option<String> = std::env::var("PREFIX_CACHING").ok(); let mut attention: Option<String> = std::env::var("ATTENTION").ok(); if let Some(config) = config { if prefix_caching.is_none() { if config.vision_config.is_some() { tracing::info!("Disabling prefix caching because of VLM model"); prefix_caching = Some("0".to_string()); } else if config.is_encoder_decoder { tracing::info!("Disabling prefix caching because of seq2seq model"); prefix_caching = Some("0".to_string()); } } let fallback_attention = if compute_capability.is_none() || matches!(compute_capability, Some((major, _)) if major < 8) { "paged" } else { "flashdecoding" }; match config.head_dim { Some(h) if h == 64 || h == 128 || h == 256 => { if lora_adapters.is_some() && prefix_caching.is_none() { tracing::info!("Disabling prefix caching because of lora adapters"); prefix_caching = Some("0".to_string()); } match config.model_type.as_deref() { Some("falcon") | Some("deepseek_v2") => { // Required because gemma2 needs bfloat16 which is not supported by // flashinfer ? if attention.is_none() { tracing::info!( "Forcing attention to '{fallback_attention}' because model {} requires it", config.model_type.as_ref().unwrap() ); attention = Some(fallback_attention.to_string()); } if fallback_attention == "paged" && prefix_caching.is_none() { tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention"); prefix_caching = Some("0".to_string()); } } Some("t5") => {} _ => {} } } _ => { if attention.is_none() { tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching"); attention = Some(fallback_attention.to_string()); } if prefix_caching.is_none() { prefix_caching = Some("0".to_string()); } } } } if attention == Some("paged".to_string()) && prefix_caching.is_none() { tracing::info!("Disabling prefix caching on paged attention"); prefix_caching = Some("0".to_string()); } let attention = attention.unwrap_or("flashinfer".to_string()); let prefix_caching = prefix_caching.unwrap_or("true".to_string()); (prefix_caching, attention) } #[derive(Deserialize)] struct RawConfig { max_position_embeddings: Option<usize>, n_positions: Option<usize>, model_type: Option<String>, max_seq_len: Option<usize>, quantization_config: Option<QuantizationConfig>, n_embd: Option<usize>, hidden_size: Option<usize>, intermediate_size: Option<usize>, num_attention_heads: Option<usize>, num_key_value_heads: Option<usize>, num_hidden_layers: Option<usize>, head_dim: Option<usize>, vision_config: Option<VisionConfig>, is_encoder_decoder: Option<bool>, #[serde(rename = "num_experts_per_tok")] num_experts_per_token: Option<usize>, #[serde(rename = "n_shared_experts")] num_shared_experts: Option<usize>, #[serde(rename = "num_local_experts")] num_experts: Option<usize>, vocab_size: Option<usize>, } #[derive(Deserialize)] struct QuantizationConfig { quant_method: Option<Quantization>, } #[derive(Debug, Deserialize)] struct VisionConfig {} #[derive(Debug, Deserialize)] struct Config { max_position_embeddings: Option<usize>, quantize: Option<Quantization>, head_dim: Option<usize>, num_heads: Option<usize>, num_kv_heads: Option<usize>, num_layers: Option<usize>, intermediate_size: Option<usize>, hidden_size: Option<usize>, model_type: Option<String>, vision_config: Option<VisionConfig>, is_encoder_decoder: bool, num_experts_per_token: usize, num_shared_experts: usize, num_experts: usize, vocab_size: Option<usize>, } impl Config { fn flop(&self) -> Option<u64> { if self.vision_config.is_some() { // VLM are much harder to predict and VRAM requirements // Are more complex. return None; } let num_heads = self.num_heads? as u64; let num_kv_heads = self.num_kv_heads? as u64; let head_dim = self.head_dim? as u64; let hidden_size = self.hidden_size? as u64; let intermediate_size = (self.intermediate_size? * (self.num_experts_per_token + self.num_shared_experts)) as u64; let num_layers = self.num_layers? as u64; let q_flops = 2 * num_heads * head_dim * hidden_size; let k_flops = 2 * num_kv_heads * head_dim * hidden_size; let v_flops = 2 * num_kv_heads * head_dim * hidden_size; let attn_flops = 2 * num_heads * head_dim * hidden_size; let o_flops = 2 * num_heads * head_dim * hidden_size; let attn_layer_flops = q_flops + k_flops + v_flops + attn_flops + o_flops; let gate_up_down_flops = 2 * 3 * hidden_size * intermediate_size; let layer_flops = attn_layer_flops + gate_up_down_flops; let total = layer_flops * num_layers; Some(total) } fn kv_vram_per_tok(&self) -> Option<usize> { if self.quantize.is_some() { // TODO handle quantization return None; } // 2 for key and values // 2 for f16 dtype? Some(self.num_kv_heads? * 2 * self.head_dim? * 2 * self.num_layers?) } fn mlp_vram_per_tok(&self) -> Option<usize> { // TODO handle quantization // TODO This calculation depends on the actual implementation let dtype_size = 2; let mlp_size = self.intermediate_size?; // calculation is overshooting here. // Coming from here: https://github.com/vllm-project/vllm/blob/d1c2e15eb31ef12e688ce0cb71895f88eaf4cd4f/vllm/model_executor/layers/fused_moe/fused_moe.py#L618-L624 Some((mlp_size + mlp_size / 2) * self.num_experts * dtype_size * 3) } fn token_vram(&self) -> Option<usize> { let kv = self.kv_vram_per_tok()?; let mlp_intermediary = self.mlp_vram_per_tok()?; let per_tok = kv + mlp_intermediary; Some(per_tok) } fn model_vram(&self) -> Option<usize> { let attn_vram = (self.num_heads? + 2 * self.num_kv_heads?) * self.head_dim?; let o_vram = self.num_heads? * self.head_dim? * self.hidden_size?; // gate + up + down = 3 let mlp_vram = 3 * self.intermediate_size? * self.num_experts * self.hidden_size?; let layer_vram = mlp_vram + attn_vram + o_vram; let vocab = self.hidden_size? * self.vocab_size?; let params = layer_vram * self.num_layers? + 2 * vocab; let dtype_size = 2; if self.quantize.is_some() { // TODO handle quantization return None; } Some(params * dtype_size) } } impl From<RawConfig> for Config { fn from(other: RawConfig) -> Self { let max_position_embeddings = other .max_position_embeddings .or(other.max_seq_len) .or(other.n_positions); let quantize = other.quantization_config.and_then(|q| q.quant_method); let hidden_size = other.hidden_size.or(other.n_embd); let head_dim = other .head_dim .or_else(|| match (hidden_size, other.num_attention_heads) { (Some(hidden_size), Some(num_attention_heads)) if hidden_size % num_attention_heads == 0 => { Some(hidden_size / num_attention_heads) } _ => None, }); let num_heads = other.num_attention_heads; let num_layers = other.num_hidden_layers; let num_kv_heads = other.num_key_value_heads.or(other.num_attention_heads); let intermediate_size = other.intermediate_size; let model_type = other.model_type; let vision_config = other.vision_config; let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false); let num_experts_per_token = other.num_experts_per_token.unwrap_or(1); let num_shared_experts = other.num_shared_experts.unwrap_or(0); let num_experts = other.num_experts.unwrap_or(1); let vocab_size = other.vocab_size; Config { max_position_embeddings, quantize, head_dim, model_type, vision_config, is_encoder_decoder, hidden_size, num_heads, num_kv_heads, intermediate_size, num_layers, num_experts_per_token, num_shared_experts, num_experts, vocab_size, } } } #[derive(Clone, Copy, Debug, ValueEnum, Deserialize)] #[serde(rename_all = "kebab-case")] enum Quantization { /// 4 bit quantization. Requires a specific AWQ quantized model: /// <https://hf.co/models?search=awq>. /// Should replace GPTQ models wherever possible because of the better latency Awq, /// Compressed tensors, which can be a mixture of different quantization methods. CompressedTensors, /// 8 bit quantization, doesn't require specific model. /// Should be a drop-in replacement to bitsandbytes with much better performance. /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git> Eetq, /// Variable bit quantization. Requires a specific EXL2 quantized model: /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does /// not support tensor parallelism (num_shard > 1). Exl2, /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>. /// text-generation-inference will use exllama (faster) kernels wherever possible, and use /// triton kernel (wider support) when it's not. /// AWQ has faster kernels. Gptq, /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>. Marlin, /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half, /// but it is known that the model will be much slower to run than the native f16. // #[deprecated( // since = "1.1.0", // note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases" // )] Bitsandbytes, /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x, /// but it is known that the model will be much slower to run than the native f16. BitsandbytesNf4, /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better /// perplexity performance for you model BitsandbytesFp4, /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above /// This dtype has native ops should be the fastest if available. /// This is currently not the fastest because of local unpacking + padding to satisfy matrix /// multiplication limitations. Fp8, } impl std::fmt::Display for Quantization { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // To keep in track with `server`. match self { #[allow(deprecated)] // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases Quantization::Bitsandbytes => { write!(f, "bitsandbytes") } Quantization::BitsandbytesNf4 => { write!(f, "bitsandbytes-nf4") } Quantization::BitsandbytesFp4 => { write!(f, "bitsandbytes-fp4") } Quantization::Exl2 => { write!(f, "exl2") } Quantization::Gptq => { write!(f, "gptq") } Quantization::Marlin => { write!(f, "marlin") } Quantization::Awq => { write!(f, "awq") } Quantization::CompressedTensors => { write!(f, "compressed-tensors") } Quantization::Eetq => { write!(f, "eetq") } Quantization::Fp8 => { write!(f, "fp8") } } } } #[derive(Clone, Copy, Debug, ValueEnum)] enum Dtype { Float16, #[clap(name = "bfloat16")] BFloat16, } impl std::fmt::Display for Dtype { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // To keep in track with `server`. match self { Dtype::Float16 => { write!(f, "float16") } Dtype::BFloat16 => { write!(f, "bfloat16") } } } } #[derive(Clone, Copy, Debug, ValueEnum)] enum KVCacheDtype { #[clap(name = "fp8_e4m3fn")] Fp8e4m3fn, #[clap(name = "fp8_e5m2")] Fp8e5m2, } impl std::fmt::Display for KVCacheDtype { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { KVCacheDtype::Fp8e4m3fn => { write!(f, "fp8_e4m3fn") } KVCacheDtype::Fp8e5m2 => { write!(f, "fp8_e5m2") } } } } #[derive(Clone, Copy, Debug, ValueEnum)] enum RopeScaling { Linear, Dynamic, } impl std::fmt::Display for RopeScaling { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // To keep in track with `server`. match self { RopeScaling::Linear => { write!(f, "linear") } RopeScaling::Dynamic => { write!(f, "dynamic") } } } } #[derive(Clone, Copy, Debug, ValueEnum)] pub enum UsageStatsLevel { /// Default option, usage statistics are collected anonymously On, /// Disables all collection of usage statistics Off, /// Doesn't send the error stack trace or error type, but allows sending a crash event NoStack, } impl std::fmt::Display for UsageStatsLevel { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // To keep in track with `server`. match self { UsageStatsLevel::On => { write!(f, "on") } UsageStatsLevel::Off => { write!(f, "off") } UsageStatsLevel::NoStack => { write!(f, "no-stack") } } } } /// App Configuration #[derive(Parser, Debug)] #[clap(author, version, about, long_about = None)] struct Args { /// The name of the model to load. /// Can be a MODEL_ID as listed on <https://hf.co/models> like /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`. /// Or it can be a local directory containing the necessary files /// as saved by `save_pretrained(...)` methods of transformers #[clap(default_value = "bigscience/bloom-560m", long, env)] model_id: String, /// The actual revision of the model if you're referring to a model /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`. #[clap(long, env)] revision: Option<String>, /// The number of tokenizer workers used for payload validation and truncation inside the /// router. #[clap(default_value = "2", long, env)] validation_workers: usize, /// Whether to shard the model across multiple GPUs /// By default text-generation-inference will use all available GPUs to run /// the model. Setting it to `false` deactivates `num_shard`. #[clap(long, env)] sharded: Option<bool>, /// The number of shards to use if you don't want to use all GPUs on a given machine. /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2` /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance. #[clap(long, env)] num_shard: Option<usize>, /// Quantization method to use for the model. It is not necessary to specify this option /// for pre-quantized models, since the quantization method is read from the model /// configuration. /// /// Marlin kernels will be used automatically for GPTQ/AWQ models. #[clap(long, env, value_enum)] quantize: Option<Quantization>, /// The number of input_ids to speculate on /// If using a medusa model, the heads will be picked up automatically /// Other wise, it will use n-gram speculation which is relatively free /// in terms of compute, but the speedup heavily depends on the task. #[clap(long, env)] speculate: Option<usize>, /// The dtype to be forced upon the model. This option cannot be used with `--quantize`. #[clap(long, env, value_enum)] dtype: Option<Dtype>, /// Specify the dtype for the key-value cache. When this option is not provided, /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently /// the only supported value are `fp8_e4m3fn` and `fp8_e5m2` on CUDA. #[clap(long, env, value_enum)] kv_cache_dtype: Option<KVCacheDtype>, /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is /// encouraged when loading a model with custom code to ensure no malicious code has been /// contributed in a newer revision. #[clap(long, env, value_enum)] trust_remote_code: bool, /// The maximum amount of concurrent requests for this particular deployment. /// Having a low limit will refuse clients requests instead of having them /// wait for too long and is usually good to handle backpressure correctly. #[clap(default_value = "128", long, env)] max_concurrent_requests: usize, /// This is the maximum allowed value for clients to set `best_of`. /// Best of makes `n` generations at the same time, and return the best /// in terms of overall log probability over the entire generated sequence #[clap(default_value = "2", long, env)] max_best_of: usize, /// This is the maximum allowed value for clients to set `stop_sequences`. /// Stop sequences are used to allow the model to stop on more than just /// the EOS token, and enable more complex "prompting" where users can preprompt /// the model in a specific way and define their "own" stop token aligned with /// their prompt. #[clap(default_value = "4", long, env)] max_stop_sequences: usize, /// This is the maximum allowed value for clients to set `top_n_tokens`. /// `top_n_tokens` is used to return information about the the `n` most likely /// tokens at each generation step, instead of just the sampled token. This /// information can be used for downstream tasks like for classification or /// ranking. #[clap(default_value = "5", long, env)] max_top_n_tokens: u32, /// This is the maximum allowed input length (expressed in number of tokens) /// for users. The larger this value, the longer prompt users can send which /// can impact the overall memory required to handle the load. /// Please note that some models have a finite range of sequence they can handle. /// Default to min(max_allocatable, max_position_embeddings) - 1 #[clap(long, env)] max_input_tokens: Option<usize>, /// Legacy version of [`Args::max_input_tokens`]. #[clap(long, env)] max_input_length: Option<usize>, /// This is the most important value to set as it defines the "memory budget" /// of running clients requests. /// Clients will send input sequences and ask to generate `max_new_tokens` /// on top. with a value of `1512` users can send either a prompt of /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for /// `1511` max_new_tokens. /// The larger this value, the larger amount each request will be in your RAM /// and the less effective batching can be. /// Default to min(max_allocatable, max_position_embeddings) #[clap(long, env)] max_total_tokens: Option<usize>, /// This represents the ratio of waiting queries vs running queries where /// you want to start considering pausing the running queries to include the waiting /// ones into the same batch. /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's /// only 10 queries left in the current batch we check if we can fit those 12 /// waiting queries into the batching strategy, and if yes, then batching happens /// delaying the 10 running queries by a `prefill` run. /// /// This setting is only applied if there is room in the batch /// as defined by `max_batch_total_tokens`. #[clap(default_value = "0.3", long, env)] waiting_served_ratio: f32, /// Limits the number of tokens for the prefill operation. /// Since this operation take the most memory and is compute bound, it is interesting /// to limit the number of requests that can be sent. /// Default to `max_input_tokens + 50` to give a bit of room. #[clap(long, env)] max_batch_prefill_tokens: Option<u32>, /// **IMPORTANT** This is one critical control to allow maximum usage /// of the available hardware. /// /// This represents the total amount of potential tokens within a batch. /// When using padding (not recommended) this would be equivalent of /// `batch_size` * `max_total_tokens`. /// /// However in the non-padded (flash attention) version this can be much finer. /// /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100` /// or a single query of `1000` tokens. /// /// Overall this number should be the largest possible amount that fits the /// remaining memory (after the model is loaded). Since the actual memory overhead /// depends on other parameters like if you're using quantization, flash attention /// or the model implementation, text-generation-inference cannot infer this number /// automatically. #[clap(long, env)] max_batch_total_tokens: Option<u32>, /// This setting defines how many tokens can be passed before forcing the waiting /// queries to be put on the batch (if the size of the batch allows for it). /// New queries require 1 `prefill` forward, which is different from `decode` /// and therefore you need to pause the running batch in order to run `prefill` /// to create the correct values for the waiting queries to be able to join the batch. /// /// With a value too small, queries will always "steal" the compute to run `prefill` /// and running queries will be delayed by a lot. /// /// With a value too big, waiting queries could wait for a very long time /// before being allowed a slot in the running batch. If your server is busy /// that means that requests that could run in ~2s on an empty server could /// end up running in ~20s because the query had to wait for 18s. /// /// This number is expressed in number of tokens to make it a bit more /// "model" agnostic, but what should really matter is the overall latency /// for end users. #[clap(default_value = "20", long, env)] max_waiting_tokens: usize, /// Enforce a maximum number of requests per batch /// Specific flag for hardware targets that do not support unpadded inference #[clap(long, env)] max_batch_size: Option<usize>, /// Specify the batch sizes to compute cuda graphs for. /// Use "0" to disable. /// Default = "1,2,4,8,16,32" #[clap(long, env, value_delimiter = ',')] cuda_graphs: Option<Vec<usize>>, /// The IP address to listen on #[clap(default_value = "0.0.0.0", long, env)] hostname: String, /// The port to listen on. #[clap(default_value = "3000", long, short, env)] port: u16, /// The name of the socket for gRPC communication between the webserver /// and the shards. #[clap(default_value = "/tmp/text-generation-server", long, env)] shard_uds_path: String, /// The address the master shard will listen on. (setting used by torch distributed) #[clap(default_value = "localhost", long, env)] master_addr: String, /// The address the master port will listen on. (setting used by torch distributed) #[clap(default_value = "29500", long, env)] master_port: usize, /// The location of the huggingface hub cache. /// Used to override the location if you want to provide a mounted disk for instance #[clap(long, env)] huggingface_hub_cache: Option<String>, /// The location of the huggingface hub cache. /// Used to override the location if you want to provide a mounted disk for instance #[clap(long, env)] weights_cache_override: Option<String>, /// For some models (like bloom), text-generation-inference implemented custom /// cuda kernels to speed up inference. Those kernels were only tested on A100. /// Use this flag to disable them if you're running on different hardware and /// encounter issues. #[clap(long, env)] disable_custom_kernels: bool, /// Limit the CUDA available memory. /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction. #[clap(default_value = "1.0", long, env)] cuda_memory_fraction: f32, /// Rope scaling will only be used for RoPE models /// and allow rescaling the position rotary to accomodate for /// larger prompts. /// /// Goes together with `rope_factor`. /// /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0 /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0 /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed /// basically) /// /// `--rope-scaling linear --rope-factor` fully describes the scaling you want #[clap(long, env)] rope_scaling: Option<RopeScaling>, /// Rope scaling will only be used for RoPE models /// See `rope_scaling` #[clap(long, env)] rope_factor: Option<f32>, /// Outputs the logs in JSON format (useful for telemetry) #[clap(long, env)] json_output: bool, #[clap(long, env)] otlp_endpoint: Option<String>, #[clap(default_value = "text-generation-inference.router", long, env)] otlp_service_name: String, #[clap(long, env)] cors_allow_origin: Vec<String>, #[clap(long, env)] api_key: Option<String>, #[clap(long, env)] watermark_gamma: Option<f32>, #[clap(long, env)] watermark_delta: Option<f32>, /// Enable ngrok tunneling #[clap(long, env)] ngrok: bool, /// ngrok authentication token #[clap(long, env)] ngrok_authtoken: Option<String>, /// ngrok edge #[clap(long, env)] ngrok_edge: Option<String>, /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may /// include a `chat_template`. If not provided, the default config will be used from the model hub. #[clap(long, env)] tokenizer_config_path: Option<String>, /// Disable outlines grammar constrained generation. /// This is a feature that allows you to generate text that follows a specific grammar. #[clap(long, env)] disable_grammar_support: bool, /// Display a lot of information about your runtime environment #[clap(long, short, action)] env: bool, /// Control the maximum number of inputs that a client can send in a single request #[clap(default_value = "4", long, env)] max_client_batch_size: usize, /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during /// startup that will be available to callers via the `adapter_id` field in a request. #[clap(long, env)] lora_adapters: Option<String>, /// Control if anonymous usage stats are collected. /// Options are "on", "off" and "no-stack" /// Defaul is on. #[clap(default_value = "on", long, env)] usage_stats: UsageStatsLevel, /// Payload size limit in bytes /// /// Default is 2MB #[clap(default_value = "2000000", long, env)] payload_limit: usize, /// Enables prefill logprobs /// /// Logprobs in the prompt are deactivated by default because they consume /// a large amount of VRAM (especially for long prompts). /// Using this flag reallows users to ask for them. #[clap(long, env)] enable_prefill_logprobs: bool, } #[derive(Debug)] enum ShardStatus { Ready, Failed(usize), } #[allow(clippy::too_many_arguments)] fn shard_manager( model_id: String, revision: Option<String>, quantize: Option<Quantization>, speculate: Option<usize>, dtype: Option<Dtype>, kv_cache_dtype: Option<KVCacheDtype>, trust_remote_code: bool, uds_path: String, rank: usize, world_size: usize, master_addr: String, master_port: usize, huggingface_hub_cache: Option<String>, weights_cache_override: Option<String>, disable_custom_kernels: bool, watermark_gamma: Option<f32>, watermark_delta: Option<f32>, cuda_graphs: Vec<usize>, cuda_memory_fraction: f32, rope_scaling: Option<RopeScaling>, rope_factor: Option<f32>, max_total_tokens: Option<usize>, max_batch_size: Option<usize>, max_input_tokens: Option<usize>, lora_adapters: Option<String>, enable_prefill_logprobs: bool, otlp_endpoint: Option<String>, otlp_service_name: String, log_level: LevelFilter, status_sender: mpsc::Sender<ShardStatus>, shutdown: Arc<AtomicBool>, _shutdown_sender: mpsc::Sender<()>, ) { // Enter shard-manager tracing span let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered(); // Get UDS path let uds_string = format!("{uds_path}-{rank}"); let uds = Path::new(&uds_string); // Clean previous runs if uds.exists() { fs::remove_file(uds).unwrap(); } // Process args let mut shard_args = vec![ "serve".to_string(), model_id, "--uds-path".to_string(), uds_path, "--logger-level".to_string(), log_level.to_string().to_uppercase(), "--json-output".to_string(), ]; // Activate trust remote code if trust_remote_code { shard_args.push("--trust-remote-code".to_string()); } // Activate tensor parallelism if world_size > 1 { shard_args.push("--sharded".to_string()); } if let Some(quantize) = quantize { shard_args.push("--quantize".to_string()); shard_args.push(quantize.to_string()) } if let Some(speculate) = speculate { shard_args.push("--speculate".to_string()); shard_args.push(speculate.to_string()) } if let Some(dtype) = dtype { shard_args.push("--dtype".to_string()); shard_args.push(dtype.to_string()) } if let Some(kv_cache_dtype) = kv_cache_dtype { shard_args.push("--kv-cache-dtype".to_string()); shard_args.push(kv_cache_dtype.to_string()) } // Model optional revision if let Some(revision) = revision { shard_args.push("--revision".to_string()); shard_args.push(revision) } let rope = match (rope_scaling, rope_factor) { (None, None) => None, (Some(scaling), None) => Some((scaling, 1.0)), (Some(scaling), Some(factor)) => Some((scaling, factor)), (None, Some(factor)) => Some((RopeScaling::Linear, factor)), }; // OpenTelemetry Endpoint if let Some(otlp_endpoint) = otlp_endpoint { shard_args.push("--otlp-endpoint".to_string()); shard_args.push(otlp_endpoint); } // OpenTelemetry Service Name shard_args.push("--otlp-service-name".to_string()); shard_args.push(otlp_service_name); // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter. if let Some(max_input_tokens) = max_input_tokens { shard_args.push("--max-input-tokens".to_string()); shard_args.push(max_input_tokens.to_string()); } // Copy current process env let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect(); // Remove LOG_LEVEL if present envs.retain(|(name, _)| name != "LOG_LEVEL"); // Torch Distributed Env vars envs.push(("RANK".into(), rank.to_string().into())); envs.push(("WORLD_SIZE".into(), world_size.to_string().into())); envs.push(("MASTER_ADDR".into(), master_addr.into())); envs.push(("MASTER_PORT".into(), master_port.to_string().into())); envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into())); // CUDA memory fraction envs.push(( "CUDA_MEMORY_FRACTION".into(), cuda_memory_fraction.to_string().into(), )); // Safetensors load fast envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into())); // Disable progress bar envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into())); // Enable hf transfer for insane download speeds let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string()); envs.push(( "HF_HUB_ENABLE_HF_TRANSFER".into(), enable_hf_transfer.into(), )); // Parse Inference API token if let Ok(api_token) = env::var("HF_API_TOKEN") { envs.push(("HF_TOKEN".into(), api_token.into())) }; // Detect rope scaling // Sending as env instead of CLI args to not bloat everything // those only can be used by RoPE models, so passing information around // for all models will complexify code unnecessarily if let Some((scaling, factor)) = rope { envs.push(("ROPE_SCALING".into(), scaling.to_string().into())); envs.push(("ROPE_FACTOR".into(), factor.to_string().into())); } if let Some(max_total_tokens) = max_total_tokens { envs.push(( "MAX_TOTAL_TOKENS".into(), max_total_tokens.to_string().into(), )); } if let Some(max_batch_size) = max_batch_size { envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into())); } // Lora Adapters if let Some(lora_adapters) = lora_adapters { envs.push(("LORA_ADAPTERS".into(), lora_adapters.into())); } // Logprobs if enable_prefill_logprobs { envs.push(("REQUEST_LOGPROBS".into(), "1".into())); } // If huggingface_hub_cache is some, pass it to the shard // Useful when running inside a docker container if let Some(huggingface_hub_cache) = huggingface_hub_cache { envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into())); }; // If weights_cache_override is some, pass it to the shard // Useful when running inside a HuggingFace Inference Endpoint if let Some(weights_cache_override) = weights_cache_override { envs.push(( "WEIGHTS_CACHE_OVERRIDE".into(), weights_cache_override.into(), )); }; // Enable experimental support for cuda graphs if !cuda_graphs.is_empty() { envs.push(( "CUDA_GRAPHS".into(), cuda_graphs .into_iter() .map(|c| c.to_string()) .collect::<Vec<_>>() .join(",") .into(), )); } // If disable_custom_kernels is true, pass it to the shard as an env var if disable_custom_kernels { envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into())) } // Watermark Gamma if let Some(watermark_gamma) = watermark_gamma { envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into())) } // Watermark Delta if let Some(watermark_delta) = watermark_delta { envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into())) } // Start process tracing::info!("Starting shard"); let mut p = match Command::new("text-generation-server") .args(shard_args) .env_clear() .envs(envs) .stdin(Stdio::piped()) .stdout(Stdio::piped()) .stderr(Stdio::piped()) .process_group(0) .spawn() { Ok(p) => p, Err(err) => { if err.kind() == io::ErrorKind::NotFound { tracing::error!("text-generation-server not found in PATH"); tracing::error!("Please install it with `make install-server`") } { tracing::error!("{}", err); } status_sender.send(ShardStatus::Failed(rank)).unwrap(); return; } }; // Redirect STDOUT to the console let mut pstdin = p.stdin.take().unwrap(); let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap()); let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap()); //stdout tracing thread thread::spawn(move || { log_lines(shard_stdout_reader); }); // We read stderr in another thread as it seems that lines() can block in some cases let (err_sender, err_receiver) = mpsc::channel(); thread::spawn(move || { for line in shard_stderr_reader.lines().map_while(Result::ok) { err_sender.send(line).unwrap_or(()); } }); // We read stdin in another thread as it seems that lines() can block in some cases if LevelFilter::current() >= tracing::Level::DEBUG { thread::spawn(move || { let mut stdin = io::stdin(); // We get `Stdin` here. loop { let mut buffer = vec![0; 4096]; if let Ok(n) = stdin.read(&mut buffer) { if n > 0 { let _ = pstdin.write_all(&buffer[..n]); } } } }); } let mut ready = false; let start_time = Instant::now(); let mut wait_time = Instant::now(); loop { // Process exited if let Some(exit_status) = p.try_wait().unwrap() { let mut err = String::new(); while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) { err = err + "\n" + &line; } tracing::error!("Shard complete standard error output:\n{err}"); if let Some(signal) = exit_status.signal() { tracing::error!("Shard process was signaled to shutdown with signal {signal}"); } status_sender.send(ShardStatus::Failed(rank)).unwrap(); return; } // We received a shutdown signal if shutdown.load(Ordering::SeqCst) { terminate("shard", p, Duration::from_secs(90)).unwrap(); return; } // Shard is ready if uds.exists() && !ready { tracing::info!("Shard ready in {:?}", start_time.elapsed()); status_sender.send(ShardStatus::Ready).unwrap(); ready = true; } else if !ready && wait_time.elapsed() > Duration::from_secs(10) { tracing::info!("Waiting for shard to be ready..."); wait_time = Instant::now(); } sleep(Duration::from_millis(100)); } } fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) { tracing::info!("Shutting down shards"); // Update shutdown value to true // This will be picked up by the shard manager shutdown.store(true, Ordering::SeqCst); // Wait for shards to shutdown // This will block till all shutdown_sender are dropped let _ = shutdown_receiver.recv(); } fn num_cuda_devices() -> Option<usize> { let devices = match env::var("CUDA_VISIBLE_DEVICES") { Ok(devices) => devices, Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") { Ok(devices) => devices, Err(_) => env::var("ZE_AFFINITY_MASK").ok()?, }, }; let n_devices = devices.split(',').count(); Some(n_devices) } #[derive(Deserialize)] #[serde(rename_all = "UPPERCASE")] enum PythonLogLevelEnum { Trace, Debug, Info, Success, Warning, Error, Critical, } #[derive(Deserialize)] struct PythonLogLevel { name: PythonLogLevelEnum, } #[derive(Deserialize)] struct PythonLogRecord { level: PythonLogLevel, } #[derive(Deserialize)] struct PythonLogMessage { text: String, record: PythonLogRecord, } impl PythonLogMessage { fn trace(&self) { match self.record.level.name { PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()), PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()), PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()), PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()), PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()), PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()), PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()), } } } impl TryFrom<&[u8]> for PythonLogMessage { type Error = serde_json::Error; fn try_from(value: &[u8]) -> Result<Self, Self::Error> { serde_json::from_slice::<Self>(value) } } fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) { let mut buffer = vec![0u8; 8 * 4096]; let mut stdout = std::io::stdout(); loop { let n = bufread.read(&mut buffer); if let Ok(n) = n { if n > 0 { let mut lines = buffer[..n].split(|i| *i == b'\n').peekable(); while let Some(line) = lines.next() { match PythonLogMessage::try_from(line) { Ok(log) => log.trace(), // For interactive debugging ? Err(_) => { if LevelFilter::current() >= tracing::Level::DEBUG { stdout.write_all(line).unwrap(); if lines.peek().is_some() { stdout.write_all(b"\n").unwrap(); } stdout.flush().unwrap(); } } } } } else { break; } } } } fn find_num_shards( sharded: Option<bool>, num_shard: Option<usize>, ) -> Result<usize, LauncherError> { // get the number of shards given `sharded` and `num_shard` let num_shard = match (sharded, num_shard) { (Some(true), None) => { // try to default to the number of available GPUs tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK"); let n_devices = num_cuda_devices() .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set"); if n_devices <= 1 { return Err(LauncherError::NotEnoughCUDADevices(format!( "`sharded` is true but only found {n_devices} CUDA devices" ))); } n_devices } (Some(true), Some(num_shard)) => { // we can't have only one shard while sharded if num_shard <= 1 { return Err(LauncherError::ArgumentValidation( "`sharded` is true but `num_shard` <= 1".to_string(), )); } num_shard } (Some(false), Some(num_shard)) => num_shard, (Some(false), None) => 1, (None, None) => num_cuda_devices().unwrap_or(1), (None, Some(num_shard)) => num_shard, }; if num_shard < 1 { return Err(LauncherError::ArgumentValidation( "`num_shard` cannot be < 1".to_string(), )); } Ok(num_shard) } #[derive(Debug, Error)] enum LauncherError { #[error("Invalid argument: {0}")] ArgumentValidation(String), #[error("not enough cuda devices: {0}")] NotEnoughCUDADevices(String), #[error("Download error")] DownloadError, #[error("Shard cannot start")] ShardCannotStart, #[error("Shard disconnected")] ShardDisconnected, #[error("Shard failed")] ShardFailed, #[error("Webserver failed")] WebserverFailed, #[error("Webserver cannot start")] WebserverCannotStart, } fn download_convert_model( model_id: &str, revision: Option<&str>, trust_remote_code: bool, huggingface_hub_cache: Option<&str>, weights_cache_override: Option<&str>, running: Arc<AtomicBool>, merge_lora: bool, ) -> Result<(), LauncherError> { // Enter download tracing span let _span = tracing::span!(tracing::Level::INFO, "download").entered(); let mut download_args = vec![ "download-weights".to_string(), model_id.to_string(), "--extension".to_string(), ".safetensors".to_string(), "--logger-level".to_string(), "INFO".to_string(), "--json-output".to_string(), ]; if merge_lora { download_args.push("--merge-lora".to_string()); } // Model optional revision if let Some(revision) = &revision { download_args.push("--revision".to_string()); download_args.push(revision.to_string()) } // Trust remote code for automatic peft fusion if trust_remote_code { download_args.push("--trust-remote-code".to_string()); } // Copy current process env let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect(); // Remove LOG_LEVEL if present envs.retain(|(name, _)| name != "LOG_LEVEL"); // Disable progress bar envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into())); // If huggingface_hub_cache is set, pass it to the download process // Useful when running inside a docker container if let Some(ref huggingface_hub_cache) = huggingface_hub_cache { envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into())); }; // Enable hf transfer for insane download speeds let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string()); envs.push(( "HF_HUB_ENABLE_HF_TRANSFER".into(), enable_hf_transfer.into(), )); // Parse Inference API token if let Ok(api_token) = env::var("HF_API_TOKEN") { envs.push(("HF_TOKEN".into(), api_token.into())) }; // If args.weights_cache_override is some, pass it to the download process // Useful when running inside a HuggingFace Inference Endpoint if let Some(weights_cache_override) = &weights_cache_override { envs.push(( "WEIGHTS_CACHE_OVERRIDE".into(), weights_cache_override.into(), )); }; // Start process tracing::info!("Starting check and download process for {model_id}"); let mut download_process = match Command::new("text-generation-server") .args(download_args) .env_clear() .envs(envs) .stdout(Stdio::piped()) .stderr(Stdio::piped()) .process_group(0) .spawn() { Ok(p) => p, Err(err) => { if err.kind() == io::ErrorKind::NotFound { tracing::error!("text-generation-server not found in PATH"); tracing::error!("Please install it with `make install-server`") } else { tracing::error!("{}", err); } return Err(LauncherError::DownloadError); } }; let download_stdout = BufReader::new(download_process.stdout.take().unwrap()); thread::spawn(move || { log_lines(download_stdout); }); let download_stderr = BufReader::new(download_process.stderr.take().unwrap()); // We read stderr in another thread as it seems that lines() can block in some cases let (err_sender, err_receiver) = mpsc::channel(); thread::spawn(move || { for line in download_stderr.lines().map_while(Result::ok) { err_sender.send(line).unwrap_or(()); } }); loop { if let Some(status) = download_process.try_wait().unwrap() { if status.success() { tracing::info!("Successfully downloaded weights for {model_id}"); break; } let mut err = String::new(); while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) { err = err + "\n" + &line; } if let Some(signal) = status.signal() { tracing::error!( "Download process was signaled to shutdown with signal {signal}: {err}" ); } else { tracing::error!("Download encountered an error: {err}"); } return Err(LauncherError::DownloadError); } if !running.load(Ordering::SeqCst) { terminate("download", download_process, Duration::from_secs(10)).unwrap(); return Ok(()); } sleep(Duration::from_millis(100)); } Ok(()) } #[allow(clippy::too_many_arguments)] fn spawn_shards( num_shard: usize, args: &Args, cuda_graphs: Vec<usize>, max_total_tokens: Option<usize>, max_input_tokens: Option<usize>, quantize: Option<Quantization>, max_log_level: LevelFilter, shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>, shutdown_sender: mpsc::Sender<()>, status_receiver: &mpsc::Receiver<ShardStatus>, status_sender: mpsc::Sender<ShardStatus>, running: Arc<AtomicBool>, ) -> Result<(), LauncherError> { // Start shard processes for rank in 0..num_shard { let model_id = args.model_id.clone(); let revision = args.revision.clone(); let uds_path = args.shard_uds_path.clone(); let master_addr = args.master_addr.clone(); let huggingface_hub_cache = args.huggingface_hub_cache.clone(); let weights_cache_override = args.weights_cache_override.clone(); let status_sender = status_sender.clone(); let shutdown = shutdown.clone(); let shutdown_sender = shutdown_sender.clone(); let otlp_endpoint = args.otlp_endpoint.clone(); let otlp_service_name = args.otlp_service_name.clone(); let speculate = args.speculate; let dtype = args.dtype; let kv_cache_dtype = args.kv_cache_dtype; let trust_remote_code = args.trust_remote_code; let master_port = args.master_port; let disable_custom_kernels = args.disable_custom_kernels; let watermark_gamma = args.watermark_gamma; let watermark_delta = args.watermark_delta; let cuda_graphs_clone = cuda_graphs.clone(); let cuda_memory_fraction = args.cuda_memory_fraction; let rope_scaling = args.rope_scaling; let rope_factor = args.rope_factor; let max_batch_size = args.max_batch_size; let lora_adapters = args.lora_adapters.clone(); let enable_prefill_logprobs = args.enable_prefill_logprobs; thread::spawn(move || { shard_manager( model_id, revision, quantize, speculate, dtype, kv_cache_dtype, trust_remote_code, uds_path, rank, num_shard, master_addr, master_port, huggingface_hub_cache, weights_cache_override, disable_custom_kernels, watermark_gamma, watermark_delta, cuda_graphs_clone, cuda_memory_fraction, rope_scaling, rope_factor, max_total_tokens, max_batch_size, max_input_tokens, lora_adapters, enable_prefill_logprobs, otlp_endpoint, otlp_service_name, max_log_level, status_sender, shutdown, shutdown_sender, ) }); } drop(shutdown_sender); // Wait for shard to start let mut shard_ready = 0; while running.load(Ordering::SeqCst) { match status_receiver.try_recv() { Ok(ShardStatus::Ready) => { shard_ready += 1; if shard_ready == num_shard { break; } } Err(TryRecvError::Empty) => { sleep(Duration::from_millis(100)); } Ok(ShardStatus::Failed(rank)) => { tracing::error!("Shard {rank} failed to start"); shutdown_shards(shutdown, shutdown_receiver); return Err(LauncherError::ShardCannotStart); } Err(TryRecvError::Disconnected) => { tracing::error!("Shard status channel disconnected"); shutdown_shards(shutdown, shutdown_receiver); return Err(LauncherError::ShardDisconnected); } } } Ok(()) } #[derive(Debug)] enum Gpu { RTX4090, T4, L4, L40, L40S, A10G, A40, H100, A100, H200, Unknown(String), } #[derive(Debug)] struct ComputeType { count: usize, card: Gpu, } impl From<&str> for Gpu { fn from(value: &str) -> Self { match value { "nvidia-4090" => Gpu::RTX4090, "nvidia-t4" => Gpu::T4, "nvidia-l4" => Gpu::L4, "nvidia-l40" => Gpu::L40, "nvidia-l40s" => Gpu::L40S, "nvidia-a10g" => Gpu::A10G, "nvidia-a40" => Gpu::A40, "nvidia-h100-80gb-hbm3" => Gpu::H100, "nvidia-h100-nvl" => Gpu::H100, "nvidia-h100" => Gpu::H100, "nvidia-a100-sxm4-80gb" => Gpu::A100, "nvidia-a100-sxm4-40gb" => Gpu::A100, "nvidia-a100-80gb-pcie" => Gpu::A100, "nvidia-a100" => Gpu::A100, "nvidia-h200" => Gpu::H200, card => Gpu::Unknown(card.to_string()), } } } impl std::fmt::Display for Gpu { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Gpu::RTX4090 => write!(f, "nvida-4090"), Gpu::T4 => write!(f, "nvida-t4"), Gpu::L4 => write!(f, "nvida-l4"), Gpu::L40 => write!(f, "nvida-l40"), Gpu::L40S => write!(f, "nvida-l40s"), Gpu::A10G => write!(f, "nvidia-a10g"), Gpu::A40 => write!(f, "nvidia-a40"), Gpu::H100 => write!(f, "nvidia-h100-80fb-hbm3"), Gpu::A100 => write!(f, "nvida-a100-sxm4-80gb"), Gpu::H200 => write!(f, "nvida-h200"), Gpu::Unknown(card) => write!(f, "{}", card), } } } impl ComputeType { fn f16_flop(&self) -> Option<u64> { let card_flop = match &self.card { // https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/ // Specs are unclear https://www.itcreations.com/nvidia-gpu/nvidia-geforce-rtx-4090-gpu Gpu::RTX4090 => Some(82 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/tesla-t4/ Gpu::T4 => Some(65 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/l4/ Gpu::L4 => Some(121 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/l40/ Gpu::L40 => Some(181 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/l40s/ Gpu::L40S => Some(363 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/products/a10-gpu/ Gpu::A10G => Some(125 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/a40/ // https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf Gpu::A40 => Some(149 * 10u64.pow(12)), // https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf Gpu::A100 => Some(312 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/h100/ // https://www.techpowerup.com/gpu-specs/docs/nvidia-gh100-architecture.pdf Gpu::H100 => Some(900 * 10u64.pow(12)), // https://www.nvidia.com/en-us/data-center/h200/ Gpu::H200 => Some(989 * 10u64.pow(12)), Gpu::Unknown(card) => { tracing::warn!("Unkown compute for card {card}"); None } }; card_flop.map(|f| f * self.count as u64) } fn vram(&self, memory_fraction: f32) -> Option<usize> { let output = Command::new("nvidia-smi") .args(["--query-gpu=memory.total", "--format=csv"]) .output() .ok()?; let output = String::from_utf8(output.stdout).ok()?; let fullname = output.split('\n').nth(1)?; let mut tokens = fullname.split(' '); let amount = tokens.next()?; let unit = tokens.next()?; if unit != "MiB" { tracing::warn!("Unexpected memory unit {unit}, expected MiB"); return None; } let amount: usize = amount.parse().ok()?; let amount = amount * 2usize.pow(20); let wiggle_room: f32 = env::var("TGI_WIGGLE_ROOM") .ok() .and_then(|wiggle| wiggle.parse().ok()) .unwrap_or(0.95); let total = amount * self.count; let adjusted = ((total as f32) * memory_fraction * wiggle_room) as usize; Some(adjusted) } } impl From<ComputeType> for OsString { fn from(value: ComputeType) -> Self { format!("{}-{}", value.count, value.card).into() } } fn compute_type(count: usize) -> Option<ComputeType> { let output = Command::new("nvidia-smi") .args(["--query-gpu=gpu_name", "--format=csv"]) .output() .ok()?; let output = String::from_utf8(output.stdout).ok()?; let fullname = output.split('\n').nth(1)?; let cardname = fullname.replace(' ', "-").to_lowercase(); let card = (&*cardname).into(); Some(ComputeType { count, card }) } fn spawn_webserver( num_shard: usize, args: Args, max_input_tokens: Option<usize>, max_total_tokens: Option<usize>, max_batch_prefill_tokens: u32, shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>, ) -> Result<Child, LauncherError> { // All shard started // Start webserver tracing::info!("Starting Webserver"); let mut router_args = vec![ "--max-client-batch-size".to_string(), args.max_client_batch_size.to_string(), "--max-concurrent-requests".to_string(), args.max_concurrent_requests.to_string(), "--max-best-of".to_string(), args.max_best_of.to_string(), "--max-stop-sequences".to_string(), args.max_stop_sequences.to_string(), "--max-top-n-tokens".to_string(), args.max_top_n_tokens.to_string(), "--max-batch-prefill-tokens".to_string(), max_batch_prefill_tokens.to_string(), "--waiting-served-ratio".to_string(), args.waiting_served_ratio.to_string(), "--max-waiting-tokens".to_string(), args.max_waiting_tokens.to_string(), "--validation-workers".to_string(), args.validation_workers.to_string(), "--hostname".to_string(), args.hostname.to_string(), "--port".to_string(), args.port.to_string(), "--master-shard-uds-path".to_string(), format!("{}-0", args.shard_uds_path), "--tokenizer-name".to_string(), args.model_id, "--payload-limit".to_string(), args.payload_limit.to_string(), ]; if let Some(max_input_tokens) = max_input_tokens { router_args.extend_from_slice(&[ "--max-input-tokens".to_string(), max_input_tokens.to_string(), ]); } if let Some(max_total_tokens) = max_total_tokens { router_args.extend_from_slice(&[ "--max-total-tokens".to_string(), max_total_tokens.to_string(), ]); } // Pass usage stats flags to router router_args.push("--usage-stats".to_string()); router_args.push(args.usage_stats.to_string()); // Grammar support if args.disable_grammar_support { router_args.push("--disable-grammar-support".to_string()); } // Tokenizer config path if let Some(ref tokenizer_config_path) = args.tokenizer_config_path { router_args.push("--tokenizer-config-path".to_string()); router_args.push(tokenizer_config_path.to_string()); } // Model optional max batch total tokens if let Some(max_batch_total_tokens) = args.max_batch_total_tokens { router_args.push("--max-batch-total-tokens".to_string()); router_args.push(max_batch_total_tokens.to_string()); } // Router optional max batch size if let Some(max_batch_size) = args.max_batch_size { router_args.push("--max-batch-size".to_string()); router_args.push(max_batch_size.to_string()); } // Model optional revision if let Some(ref revision) = args.revision { router_args.push("--revision".to_string()); router_args.push(revision.to_string()) } if args.trust_remote_code { router_args.push("--trust-remote-code".to_string()); } if args.json_output { router_args.push("--json-output".to_string()); } // OpenTelemetry if let Some(otlp_endpoint) = args.otlp_endpoint { router_args.push("--otlp-endpoint".to_string()); router_args.push(otlp_endpoint); } // OpenTelemetry let otlp_service_name = args.otlp_service_name; router_args.push("--otlp-service-name".to_string()); router_args.push(otlp_service_name); // CORS origins for origin in args.cors_allow_origin.into_iter() { router_args.push("--cors-allow-origin".to_string()); router_args.push(origin); } // API Key if let Some(api_key) = args.api_key { router_args.push("--api-key".to_string()); router_args.push(api_key); } // Ngrok if args.ngrok { router_args.push("--ngrok".to_string()); router_args.push("--ngrok-authtoken".to_string()); router_args.push(args.ngrok_authtoken.unwrap()); router_args.push("--ngrok-edge".to_string()); router_args.push(args.ngrok_edge.unwrap()); } // Copy current process env let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect(); // Parse Inference API token if let Ok(api_token) = env::var("HF_API_TOKEN") { envs.push(("HF_TOKEN".into(), api_token.into())) }; // Parse Compute type if let Ok(compute_type) = env::var("COMPUTE_TYPE") { envs.push(("COMPUTE_TYPE".into(), compute_type.into())) } else if let Some(compute_type) = compute_type(num_shard) { envs.push(("COMPUTE_TYPE".into(), compute_type.into())) } let mut webserver = match Command::new("text-generation-router") .args(router_args) .envs(envs) .stdout(Stdio::piped()) .stderr(Stdio::piped()) .process_group(0) .spawn() { Ok(p) => p, Err(err) => { tracing::error!("Failed to start webserver: {}", err); if err.kind() == io::ErrorKind::NotFound { tracing::error!("text-generation-router not found in PATH"); tracing::error!("Please install it with `make install-router`") } else { tracing::error!("{}", err); } shutdown_shards(shutdown, shutdown_receiver); return Err(LauncherError::WebserverCannotStart); } }; // Redirect STDOUT and STDERR to the console let webserver_stdout = webserver.stdout.take().unwrap(); let webserver_stderr = webserver.stderr.take().unwrap(); thread::spawn(move || { let stdout = BufReader::new(webserver_stdout); let stderr = BufReader::new(webserver_stderr); for line in stdout.lines() { println!("{}", line.unwrap()); } for line in stderr.lines() { println!("{}", line.unwrap()); } }); Ok(webserver) } fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> { tracing::info!("Terminating {process_name}"); let terminate_time = Instant::now(); signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap(); tracing::info!("Waiting for {process_name} to gracefully shutdown"); while terminate_time.elapsed() < timeout { if let Some(status) = process.try_wait()? { tracing::info!("{process_name} terminated"); return Ok(status); } sleep(Duration::from_millis(100)); } tracing::info!("Killing {process_name}"); process.kill()?; let exit_status = process.wait()?; tracing::info!("{process_name} killed"); Ok(exit_status) } fn main() -> Result<(), LauncherError> { // Pattern match configuration let args: Args = Args::parse(); // Filter events with LOG_LEVEL let varname = "LOG_LEVEL"; let env_filter = if let Ok(log_level) = std::env::var(varname) { // Override to avoid simple logs to be spammed with tokio level informations let log_level = match &log_level[..] { "warn" => "text_generation_launcher=warn,text_generation_router=warn", "info" => "text_generation_launcher=info,text_generation_router=info", "debug" => "text_generation_launcher=debug,text_generation_router=debug", log_level => log_level, }; EnvFilter::builder() .with_default_directive(LevelFilter::INFO.into()) .parse_lossy(log_level) } else { EnvFilter::new("info") }; let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO); if args.json_output { tracing_subscriber::fmt() .with_env_filter(env_filter) .json() .init(); } else { tracing_subscriber::fmt() .with_env_filter(env_filter) .compact() .init(); } if args.env { let env_runtime = env_runtime::Env::new(); tracing::info!("{}", env_runtime); } tracing::info!("{:#?}", args); let config: Option<Config> = get_config(&args.model_id, &args.revision).ok(); let quantize = config.as_ref().and_then(|c| c.quantize); // Quantization usually means you're even more RAM constrained. let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters); tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}"); std::env::set_var("PREFIX_CACHING", prefix_caching); std::env::set_var("ATTENTION", attention); let num_shard = find_num_shards(args.sharded, args.num_shard)?; if num_shard > 1 { if matches!(args.quantize, Some(Quantization::Exl2)) { return Err(LauncherError::ArgumentValidation( "Sharding is currently not supported with `exl2` quantization".into(), )); } tracing::info!("Sharding model on {num_shard} processes"); } let max_input_tokens = { match (args.max_input_tokens, args.max_input_length) { (Some(max_input_tokens), Some(max_input_length)) => { return Err(LauncherError::ArgumentValidation( format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.", ))); } (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => { Some(max_input_tokens) } (None, None) => None, } }; let max_total_tokens = args.max_total_tokens; let max_batch_prefill_tokens = { match args.max_batch_prefill_tokens { Some(max_batch_prefill_tokens) => max_batch_prefill_tokens, None => { let compute_type = compute_type(num_shard); let compute_optimal = compute_optimal(config.as_ref(), compute_type.as_ref()); // TODO: remove this when we correctly esimate the flops for VLMs // this is a short term temporary fix to enable vlms to avoid rejecting images let default_optimal = match config { Some(ref config) => match config.model_type.as_deref() { Some("qwen2_vl") => 10_000, _ => 4096, }, None => 4096, }; let default = compute_optimal.unwrap_or(default_optimal); let vram_maximum = vram_maximum( config.as_ref(), compute_type.as_ref(), args.cuda_memory_fraction, ); let max_position_embeddings = config.and_then(|c| c.max_position_embeddings); let value = if let Some(max_position_embeddings) = max_position_embeddings { default.min(max_position_embeddings) } else { default }; let value = if let Some(vram_maximum) = vram_maximum { if vram_maximum < value { tracing::warn!("Reducing the max batch prefill from {default} to {vram_maximum} because there is not enough VRAM to support it."); } value.min(vram_maximum) } else { value }; tracing::info!("Default `max_batch_prefill_tokens` to {value}"); value as u32 } } }; // Validate args if let (Some(max_input_tokens), Some(max_total_tokens)) = (max_input_tokens, max_total_tokens) { if max_input_tokens >= max_total_tokens { return Err(LauncherError::ArgumentValidation( format!("`max_input_tokens`({max_input_tokens}) must be < `max_total_tokens`({max_total_tokens})"), )); } } if matches!(args.quantize, Some(Quantization::Bitsandbytes)) { tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases."); } let quantize = args.quantize.or(quantize); let cuda_graphs = match (&args.cuda_graphs, &quantize) { (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(), #[allow(deprecated)] (None, Some(Quantization::Bitsandbytes)) => { tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them"); vec![] } (None, Some(Quantization::Exl2)) => { tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them"); vec![] } _ => { let cuda_graphs = vec![1, 2, 4, 8, 16, 32]; tracing::info!("Using default cuda graphs {cuda_graphs:?}"); cuda_graphs } }; if args.validation_workers == 0 { return Err(LauncherError::ArgumentValidation( "`validation_workers` must be > 0".to_string(), )); } if args.trust_remote_code { tracing::warn!( "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.", args.model_id ); } if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens { if let Some(max_total_tokens) = max_total_tokens { if max_total_tokens as u32 > *max_batch_total_tokens { return Err(LauncherError::ArgumentValidation(format!( "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}", max_total_tokens, max_batch_total_tokens ))); } } } if args.ngrok { if args.ngrok_authtoken.is_none() { return Err(LauncherError::ArgumentValidation( "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(), )); } if args.ngrok_edge.is_none() { return Err(LauncherError::ArgumentValidation( "`ngrok-edge` must be set when using ngrok tunneling".to_string(), )); } } // Signal handler let running = Arc::new(AtomicBool::new(true)); let r = running.clone(); ctrlc::set_handler(move || { r.store(false, Ordering::SeqCst); }) .expect("Error setting Ctrl-C handler"); // Download and convert model weights download_convert_model( &args.model_id, args.revision.as_deref(), args.trust_remote_code, args.huggingface_hub_cache.as_deref(), args.weights_cache_override.as_deref(), running.clone(), true, // if its only a lora model - we should merge the lora adapters )?; // Download and convert lora adapters if any if let Some(lora_adapters) = &args.lora_adapters { for adapter in lora_adapters.split(',') { // skip download if a path is provided if adapter.contains('=') { continue; } let adapter = adapter.trim(); // check if adapter has more than 1 '@' if adapter.matches('@').count() > 1 { return Err(LauncherError::ArgumentValidation(format!( "Invalid LoRA adapter format: {}", adapter ))); } // capture adapter_id, path, revision in format of adapter_id=path@revision // path is disabled beforehand. let mut splits = adapter.split("@"); let adapter_id = splits.next().ok_or_else(|| { LauncherError::ArgumentValidation("Missing adapter id".to_string()) })?; let revision = splits.next(); download_convert_model( adapter_id, revision, args.trust_remote_code, args.huggingface_hub_cache.as_deref(), args.weights_cache_override.as_deref(), running.clone(), false, // avoid merging lora adapters if using multi-lora )?; } } if !running.load(Ordering::SeqCst) { // Launcher was asked to stop return Ok(()); } // Shared shutdown bool let shutdown = Arc::new(AtomicBool::new(false)); // Shared shutdown channel // When shutting down, the main thread will wait for all senders to be dropped let (shutdown_sender, shutdown_receiver) = mpsc::channel(); // Shared channel to track shard status let (status_sender, status_receiver) = mpsc::channel(); spawn_shards( num_shard, &args, cuda_graphs, max_total_tokens, max_input_tokens, quantize, max_log_level, shutdown.clone(), &shutdown_receiver, shutdown_sender, &status_receiver, status_sender, running.clone(), )?; // We might have received a termination signal if !running.load(Ordering::SeqCst) { shutdown_shards(shutdown, &shutdown_receiver); return Ok(()); } let mut webserver = spawn_webserver( num_shard, args, max_input_tokens, max_total_tokens, max_batch_prefill_tokens, shutdown.clone(), &shutdown_receiver, ) .inspect_err(|_| { shutdown_shards(shutdown.clone(), &shutdown_receiver); })?; // Default exit code let mut exit_code = Ok(()); while running.load(Ordering::SeqCst) { if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() { tracing::error!("Shard {rank} crashed"); exit_code = Err(LauncherError::ShardFailed); break; }; match webserver.try_wait().unwrap() { Some(_) => { tracing::error!("Webserver Crashed"); shutdown_shards(shutdown, &shutdown_receiver); return Err(LauncherError::WebserverFailed); } None => { sleep(Duration::from_millis(100)); } }; } // Graceful termination terminate("webserver", webserver, Duration::from_secs(90)).unwrap(); shutdown_shards(shutdown, &shutdown_receiver); exit_code }
text-generation-inference/launcher/src/main.rs/0
{ "file_path": "text-generation-inference/launcher/src/main.rs", "repo_id": "text-generation-inference", "token_count": 36985 }
{ nix-filter, buildPythonPackage, poetry-core, mypy-protobuf, attention-kernels, awq-inference-engine, causal-conv1d, compressed-tensors, eetq, einops, exllamav2, flashinfer, flash-attn, flash-attn-layer-norm, flash-attn-rotary, flash-attn-v1, grpc-interceptor, grpcio-reflection, grpcio-status, grpcio-tools, hf-transfer, loguru, mamba-ssm, marlin-kernels, moe-kernels, opentelemetry-api, opentelemetry-exporter-otlp, opentelemetry-instrumentation-grpc, opentelemetry-semantic-conventions, outlines, peft, pillow, prometheus-client, punica-kernels, py-cpuinfo, pydantic, safetensors, tokenizers, torch, sentencepiece, transformers, typer, }: let filter = nix-filter.lib; in buildPythonPackage { name = "text-generation-server"; src = filter { root = ../.; include = with filter; [ isDirectory (and (inDirectory "server") (or_ (matchExt "py") (matchExt "pyi"))) "server/pyproject.toml" (and (inDirectory "proto/v3") (matchExt "proto")) ]; }; pyproject = true; build-system = [ poetry-core ]; nativeBuildInputs = [ mypy-protobuf ]; pythonRelaxDeps = [ "einops" "huggingface-hub" "loguru" "opentelemetry-instrumentation-grpc" "pillow" "sentencepiece" "typer" ]; pythonRemoveDeps = [ "scipy" ]; dependencies = [ attention-kernels awq-inference-engine eetq causal-conv1d compressed-tensors einops exllamav2 flashinfer flash-attn flash-attn-layer-norm flash-attn-rotary grpc-interceptor grpcio-reflection grpcio-status grpcio-tools hf-transfer loguru mamba-ssm marlin-kernels moe-kernels opentelemetry-api opentelemetry-exporter-otlp opentelemetry-instrumentation-grpc opentelemetry-semantic-conventions outlines peft pillow prometheus-client punica-kernels py-cpuinfo pydantic safetensors sentencepiece tokenizers transformers typer ]; prePatch = '' python -m grpc_tools.protoc -Iproto/v3 --python_out=server/text_generation_server/pb \ --grpc_python_out=server/text_generation_server/pb --mypy_out=server/text_generation_server/pb proto/v3/generate.proto find server/text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \; touch server/text_generation_server/pb/__init__.py cd server ''; }
text-generation-inference/nix/server.nix/0
{ "file_path": "text-generation-inference/nix/server.nix", "repo_id": "text-generation-inference", "token_count": 1093 }
use crate::config::Config; use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput}; use crate::{ GenerateParameters, GenerateRequest, GrammarType, HubPreprocessorConfig, Idefics2Preprocessor, TokenizerTrait, }; use crate::{PyTokenizer, Tokenizer}; use base64::{engine::general_purpose::STANDARD, Engine}; use image::{ImageFormat, ImageReader}; use outlines_core::json_schema::to_regex as json_schema_to_regex; use rand::{thread_rng, Rng}; use serde_json::Value; /// Payload validation logic use std::cmp::min; use std::io::Cursor; use std::iter; use std::sync::Arc; use thiserror::Error; use tokio::sync::mpsc; use tokio::sync::oneshot; use tracing::{instrument, Span}; use {once_cell::sync::Lazy, regex::Regex}; static DEFAULT_GENERATION_LENGTH: u32 = 1024; /// Validation #[derive(Debug, Clone)] pub struct Validation { /// Validation parameters max_best_of: usize, max_stop_sequences: usize, max_top_n_tokens: u32, max_input_length: usize, max_total_tokens: usize, disable_grammar_support: bool, /// Channel to communicate with the background tokenization task sender: mpsc::UnboundedSender<TokenizerRequest>, } impl Validation { #[allow(clippy::too_many_arguments)] pub(crate) fn new( workers: usize, tokenizer: Tokenizer, config: Option<Config>, preprocessor_config: Option<HubPreprocessorConfig>, max_best_of: usize, max_stop_sequences: usize, max_top_n_tokens: u32, max_input_length: usize, max_total_tokens: usize, disable_grammar_support: bool, ) -> Self { let workers = if let Tokenizer::Python { .. } = &tokenizer { 1 } else { workers }; // If we have a fast tokenizer let sender = { // Create round robin channel let (validation_sender, validation_round_robin_receiver) = mpsc::unbounded_channel(); let mut senders = Vec::with_capacity(workers); // Create workers for _ in 0..workers { let tokenizer_clone = tokenizer.clone(); let config_clone = config.clone(); let preprocessor_config_clone = preprocessor_config.clone(); let (tokenizer_sender, tokenizer_receiver) = mpsc::unbounded_channel(); senders.push(tokenizer_sender); // Spawn worker tokio::task::spawn_blocking(move || { tokenizer_worker( tokenizer_clone, config_clone, preprocessor_config_clone, tokenizer_receiver, ) }); } // Create tokenization round robin task tokio::spawn(round_robin_task(validation_round_robin_receiver, senders)); validation_sender }; Self { max_best_of, sender, max_stop_sequences, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, } } #[instrument(skip(self, inputs))] pub async fn tokenize( &self, inputs: String, add_special_tokens: bool, truncate: Option<usize>, ) -> Result<(tokenizers::Encoding, Vec<Chunk>), ValidationError> { // If we have a fast tokenizer // Create response channel let (response_sender, response_receiver) = oneshot::channel(); // Send request to the background validation task // Unwrap is safe here let _ = &self .sender .send(( (inputs, add_special_tokens, truncate), response_sender, Span::current(), )) .unwrap(); // Await on response channel // Unwrap is safe here let encoding = response_receiver.await.unwrap()?; Ok(encoding) } #[allow(clippy::type_complexity)] #[instrument(skip(self, inputs))] async fn validate_input( &self, inputs: String, add_special_tokens: bool, truncate: Option<usize>, max_new_tokens: Option<u32>, ) -> Result<(Vec<Chunk>, Option<Vec<u32>>, usize, u32, u32), ValidationError> { // If we have a fast tokenizer let (encoding, inputs) = self .tokenize(inputs.clone(), add_special_tokens, truncate) .await?; // Create response channel let input_length = if let Some(truncate) = truncate { std::cmp::min(encoding.len(), truncate) } else { encoding.len() }; // Get total tokens let (max_new_tokens, max_total_new_tokens) = if let Some(max_new_tokens) = max_new_tokens { (max_new_tokens, max_new_tokens) } else { // Use the maximum possible number of tokens as default // However, the system will re-queue the request everytime it completes // `DEFAULT_GENERATION_LENGTH` tokens. let max_new_tokens = self.max_total_tokens.saturating_sub(input_length) as u32; ( min(max_new_tokens, DEFAULT_GENERATION_LENGTH), max_new_tokens, ) }; let total_tokens = input_length + max_new_tokens as usize; // Validate MaxTotalTokens if total_tokens > self.max_total_tokens { return Err(ValidationError::MaxTotalTokens( self.max_total_tokens, input_length, max_new_tokens, )); } // Validate InputLength if input_length > self.max_input_length { return Err(ValidationError::InputLength( self.max_input_length, input_length, )); } let ids = encoding.get_ids(); let input_ids = ids[ids.len().saturating_sub(input_length)..].to_owned(); metrics::histogram!("tgi_request_input_length").record(input_length as f64); Ok(( inputs, Some(input_ids), input_length, max_new_tokens, max_total_new_tokens, )) } /// Validate a payload and get the number of tokens in the input #[instrument(skip_all)] pub(crate) async fn validate( &self, request: GenerateRequest, ) -> Result<ValidGenerateRequest, ValidationError> { let GenerateParameters { best_of, temperature, repetition_penalty, frequency_penalty, top_k, top_p, typical_p, do_sample, max_new_tokens, stop: stop_sequences, truncate, seed, watermark, decoder_input_details, top_n_tokens, grammar, adapter_id, .. } = request.parameters; // sampling must be true when best_of > 1 let best_of = best_of.unwrap_or(1); let sampling = do_sample || temperature.is_some() || top_k.is_some() || top_p.is_some() || typical_p.is_some(); if best_of > 1 && !sampling { return Err(BestOfSampling); } let temperature = temperature.unwrap_or(1.0); if temperature <= 0.0 { return Err(ValidationError::Temperature); } let repetition_penalty = repetition_penalty.unwrap_or(1.0); if repetition_penalty <= 0.0 { return Err(ValidationError::RepetitionPenalty); } let frequency_penalty = frequency_penalty.unwrap_or(0.0); if !(-2.0..=2.0).contains(&frequency_penalty) { return Err(ValidationError::FrequencyPenalty); } // Different because the proto default value is not a valid value // for the user let top_p = top_p .map(|value| { if value <= 0.0 || value >= 1.0 { return Err(ValidationError::TopP); } Ok(value) }) .unwrap_or(Ok(1.0))?; let typical_p = typical_p .map(|value| { if value <= 0.0 || value >= 1.0 { return Err(ValidationError::TypicalP); } Ok(value) }) .unwrap_or(Ok(1.0))?; let top_k: u32 = top_k .map(|value| { if value <= 0 { return Err(ValidationError::TopK); } Ok(value as u32) }) .unwrap_or(Ok(0))?; if max_new_tokens == Some(0) { return Err(ValidationError::NegativeMaxNewTokens); } if stop_sequences.len() > self.max_stop_sequences { return Err(ValidationError::StopSequence( self.max_stop_sequences, stop_sequences.len(), )); } // If seed is None, assign a random one let seed = match seed { None => thread_rng().gen(), Some(seed) => { if best_of > 1 { return Err(BestOfSeed); } seed } }; let top_n_tokens = top_n_tokens .map(|value| { if value > self.max_top_n_tokens { return Err(ValidationError::TopNTokens(self.max_top_n_tokens, value)); } Ok(value) }) .unwrap_or(Ok(0))?; // Check if inputs is empty if request.inputs.is_empty() { return Err(EmptyInput); } // Check if truncate is strictly positive and less than max_input_length let truncate = truncate .map(|value| { if value == 0 || value > self.max_input_length { return Err(ValidationError::Truncate(self.max_input_length, value)); } Ok(Some(value)) }) .unwrap_or(Ok(None))?; // Validate inputs let (inputs, input_ids, input_length, max_new_tokens, max_total_new_tokens) = self .validate_input( request.inputs, request.add_special_tokens, truncate, max_new_tokens, ) .await?; // TODO: we should build the FSM here and pass the compiled FSM instead of the grammar // NOTE: this is currently difficult because we need the tokenizer in Python to build // the FSM and we'd have to load a copy of the tokenizer into our Pyo3 instance which // may be slow and memory intensive. Best case is to have a Rust implementation of the FSM // compiler and use that to build the FSM here. // Validate grammar and unpack the grammar and type for the proto message let grammar = match grammar { Some(grammar) => { // Ensure that grammar is not set if it's not supported if self.disable_grammar_support { return Err(ValidationError::Grammar); } let valid_grammar = match grammar { GrammarType::Json(json) => { let json = match json { // if value is a string, we need to parse it again to make sure its // a valid json Value::String(s) => serde_json::from_str(&s) .map_err(|e| ValidationError::InvalidGrammar(e.to_string())), Value::Object(_) => Ok(json), _ => Err(ValidationError::Grammar), }?; // Check if the json is a valid JSONSchema jsonschema::draft202012::meta::validate(&json) .map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?; // The schema can be valid but lack properties. // We need properties for the grammar to be successfully parsed in Python. // Therefore, we must check and throw an error if properties are missing. json.get("properties") .ok_or(ValidationError::InvalidGrammar( "Grammar must have a 'properties' field".to_string(), ))?; // Do compilation in the router for performance. In the future, we // should also move regex -> automaton compilation in the router, // but this is not yet supported in pure Rust by outlines-core. let grammar_regex = json_schema_to_regex(&json, None, &json) .map_err(ValidationError::RegexFromSchema)?; ValidGrammar::Regex(grammar_regex.to_string()) } GrammarType::Regex(regex) => ValidGrammar::Regex(regex), }; Some(valid_grammar) } None => None, }; let parameters = ValidParameters { temperature, repetition_penalty, frequency_penalty, top_k, top_p, typical_p, do_sample, seed, watermark, grammar, }; let stopping_parameters = ValidStoppingParameters { max_new_tokens, max_total_new_tokens, stop_sequences, ignore_eos_token: false, }; metrics::histogram!("tgi_request_max_new_tokens").record(max_new_tokens as f64); Ok(ValidGenerateRequest { inputs, input_ids: input_ids.map(Arc::new), add_special_tokens: request.add_special_tokens, decoder_input_details, input_length: input_length as u32, truncate: truncate.unwrap_or(self.max_input_length) as u32, parameters, stopping_parameters, top_n_tokens, adapter_id, }) } /// Validate the best_of parameter #[instrument(skip_all)] pub(crate) fn validate_best_of(&self, best_of: usize) -> Result<usize, ValidationError> { if self.max_best_of == 1 && best_of != 1 { return Err(ValidationError::BestOfDisabled); } if best_of > self.max_best_of { return Err(ValidationError::BestOf(self.max_best_of, best_of)); } Ok(best_of) } } /// Round robin tokenization task async fn round_robin_task( mut receiver: mpsc::UnboundedReceiver<TokenizerRequest>, senders: Vec<mpsc::UnboundedSender<TokenizerRequest>>, ) { loop { for sender in &senders { match receiver.recv().await { None => return, Some(request) => sender.send(request).unwrap(), }; } } } /// Start tokenization workers fn tokenizer_worker( tokenizer: Tokenizer, config: Option<Config>, preprocessor_config: Option<HubPreprocessorConfig>, mut receiver: mpsc::UnboundedReceiver<TokenizerRequest>, ) { match tokenizer { Tokenizer::Python { tokenizer_name, revision, trust_remote_code, } => { pyo3::Python::with_gil(|py| -> pyo3::PyResult<()> { let tokenizer = PyTokenizer::from_py(py, tokenizer_name, revision, trust_remote_code)?; // Loop over requests while let Some(((inputs, add_special_tokens, truncate), response_tx, parent_span)) = receiver.blocking_recv() { parent_span.in_scope(|| { response_tx .send(prepare_input( inputs, truncate, add_special_tokens, &tokenizer, config.as_ref(), preprocessor_config.as_ref(), )) .unwrap_or(()) }) } Ok(()) }) .expect("Failure in python tokenizer worker"); } Tokenizer::Rust(tokenizer) => { while let Some(((inputs, add_special_tokens, truncate), response_tx, parent_span)) = receiver.blocking_recv() { parent_span.in_scope(|| { response_tx .send(prepare_input( inputs, truncate, add_special_tokens, &tokenizer, config.as_ref(), preprocessor_config.as_ref(), )) .unwrap_or(()) }) } } } } fn format_from_mimetype(mimetype: &str) -> Option<ImageFormat> { match mimetype { "image/png" => Some(ImageFormat::Png), "image/jpeg" => Some(ImageFormat::Jpeg), "image/jpg" => Some(ImageFormat::Jpeg), "image/gif" => Some(ImageFormat::Gif), "image/webp" => Some(ImageFormat::WebP), "image/tiff" => Some(ImageFormat::Tiff), // "image/pnm"=>Some(ImageFormat::Pnm), // "image/tga"=>Some(ImageFormat::Tga), // "image/dds"=>Some(ImageFormat::Dds), // "image/bmp"=>Some(ImageFormat::Bmp), // "image/ico"=>Some(ImageFormat::Ico), // "image/x-exr"=>Some(ImageFormat::OpenExr), _ => None, } } fn format_to_mimetype(format: ImageFormat) -> String { match format { ImageFormat::Png => "image/png", ImageFormat::Jpeg => "image/jpeg", ImageFormat::Gif => "image/gif", ImageFormat::WebP => "image/webp", ImageFormat::Tiff => "image/tiff", _ => "application/octet-stream", } .to_string() } fn fetch_image(input: &str) -> Result<(Vec<u8>, String, usize, usize), ValidationError> { if input.starts_with("![](http://") || input.starts_with("![](https://") { let url = &input["![](".len()..input.len() - 1]; let data = reqwest::blocking::get(url)?.bytes()?; let format = image::guess_format(&data)?; // TODO Remove this clone let img = ImageReader::with_format(Cursor::new(data.clone()), format).decode()?; let height: usize = img.height().try_into()?; let width: usize = img.width().try_into()?; let mimetype = format_to_mimetype(format); Ok((data.to_vec(), mimetype, height, width)) } else if input.starts_with("![](data:") { // Remove ![](....) let content = &input["![](data:".len()..input.len() - 1]; let tokens: Vec<_> = content.split(';').collect(); if tokens.len() != 2 { return Err(ValidationError::InvalidImageContent(content.to_string())); } let mimetype = tokens[0]; let content = tokens[1]; if !content.starts_with("base64,") { return Err(ValidationError::InvalidImageContent(content.to_string())); } let data = STANDARD.decode(content["base64,".len()..].as_bytes())?; let img = if let Some(format) = format_from_mimetype(mimetype) { ImageReader::with_format(Cursor::new(&data), format).decode()? } else { ImageReader::new(Cursor::new(&data)) .with_guessed_format() .map_err(|_io_error| ValidationError::InvalidImageContent(content.to_string()))? .decode()? }; let height: usize = img.height().try_into()?; let width: usize = img.width().try_into()?; Ok((data, mimetype.to_string(), height, width)) } else { Err(ValidationError::InvalidImageContent(input.to_string())) } } fn image_tokens( config: &Config, preprocessor_config: Option<&HubPreprocessorConfig>, height: usize, width: usize, ) -> String { use Config::*; use HubPreprocessorConfig::*; match config { Idefics => "<image>".to_string(), Mllama => "<|image|>".to_string(), Idefics2(config) => { const FAKE: &str = "<fake_token_around_image>"; const IMAGE: &str = "<image>"; let slots = config.get_number_of_features(height, width); let mut image_string = String::with_capacity(2 * FAKE.len() + slots * IMAGE.len()); image_string.push_str(FAKE); image_string.extend(iter::repeat(IMAGE).take(slots)); image_string.push_str(FAKE); if matches!( preprocessor_config, Some(Idefics2Processor(Idefics2Preprocessor { do_image_splitting: true, .. })) ) { image_string = image_string.repeat(5); }; image_string } Idefics3(config) => { const FAKE: &str = "<fake_token_around_image>"; const IMAGE: &str = "<image>"; const GLOBAL_IMG: &str = "<global-img>"; let max_longest_edge_for_image_resize = config.get_max_longest_edge_for_image_resize(); // resize image if it is larger than max_longest_edge_for_image_resize keeping aspect ratio let (height, width) = if height > max_longest_edge_for_image_resize || width > max_longest_edge_for_image_resize { let aspect_ratio = height as f32 / width as f32; if height > width { ( max_longest_edge_for_image_resize, (max_longest_edge_for_image_resize as f32 / aspect_ratio) as usize, ) } else { ( (max_longest_edge_for_image_resize as f32 * aspect_ratio) as usize, max_longest_edge_for_image_resize, ) } } else { (height, width) }; let image_seq_len = config.get_number_of_features(); let max_edge = config.get_max_longest_edge(); let (image_rows, image_cols) = if height > max_edge || width > max_edge { ( (height as f32 / max_edge as f32).ceil() as usize, (width as f32 / max_edge as f32).ceil() as usize, ) } else { (0, 0) }; let mut image_string = String::new(); if image_rows == 0 && image_cols == 0 { // Single image case image_string.push_str(FAKE); image_string.push_str(GLOBAL_IMG); image_string.push_str(&IMAGE.repeat(image_seq_len)); image_string.push_str(FAKE); } else { // Split image case for n_h in 0..image_rows { for n_w in 0..image_cols { image_string.push_str(FAKE); image_string.push_str(&format!("<row_{}_col_{}>", n_h + 1, n_w + 1)); image_string.push_str(&IMAGE.repeat(image_seq_len)); } image_string.push('\n'); } image_string.push('\n'); image_string.push_str(FAKE); image_string.push_str(GLOBAL_IMG); image_string.push_str(&IMAGE.repeat(image_seq_len)); image_string.push_str(FAKE); } image_string } Paligemma(config) => "<image>".repeat(config.get_number_of_features(height, width)), LlavaNext(config) => "<image>".repeat(config.get_number_of_features(height, width)), Qwen2Vl(config) => format!( "<|vision_start|>{:?}<|vision_end|>", "<|image_pad|>".repeat(config.get_number_of_features(height, width)) ), _ => unimplemented!("Images tokens are not supported for this model configuration"), } } fn image_tokens_fixup(config: &Config, text: String) -> String { match config { Config::Idefics2(_) => { const FAKE: &str = "<fake_token_around_image>"; text.replace(&format!("{FAKE}{FAKE}"), FAKE) } _ => text, } } /// Get input length and optionally truncate it fn prepare_input<T: TokenizerTrait>( inputs: String, _truncate: Option<usize>, add_special_tokens: bool, tokenizer: &T, config: Option<&Config>, preprocessor_config: Option<&HubPreprocessorConfig>, ) -> Result<(tokenizers::Encoding, Vec<Chunk>), ValidationError> { use Config::*; static RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap()); let (tokenizer_query, input_chunks) = match config { Some( config @ (Idefics | Mllama | Idefics2(_) | Idefics3(_) | Paligemma(_) | LlavaNext(_) | Qwen2Vl(_)), ) => { let mut input_chunks = Vec::new(); let mut tokenizer_query = String::with_capacity(inputs.len()); let mut start = 0; for chunk in RE.find_iter(&inputs) { let chunk_start = chunk.start(); let chunk_end = chunk.end(); if chunk_start != start { input_chunks.push(Chunk::Text(inputs[start..chunk_start].to_string())); tokenizer_query.push_str(&inputs[start..chunk_start]); } let (data, mimetype, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?; input_chunks.push(Chunk::Image(Image { data, mimetype })); tokenizer_query.push_str(&image_tokens(config, preprocessor_config, height, width)); start = chunk_end; } if start != inputs.len() { input_chunks.push(Chunk::Text(inputs[start..].to_string())); tokenizer_query.push_str(&inputs[start..]); } tokenizer_query = image_tokens_fixup(config, tokenizer_query); (tokenizer_query, input_chunks) } _ => (inputs.clone(), vec![Chunk::Text(inputs)]), }; // Get the number of tokens in the input let encoding = tokenizer .encode_trait(tokenizer_query, add_special_tokens) .map_err(|err| ValidationError::Tokenizer(err.to_string()))?; Ok((encoding, input_chunks)) } type TokenizerRequest = ( (String, bool, Option<usize>), oneshot::Sender<Result<(tokenizers::Encoding, Vec<Chunk>), ValidationError>>, Span, ); #[derive(Debug, Clone, Eq, PartialEq)] pub struct Image { pub data: Vec<u8>, pub mimetype: String, } #[derive(Debug, Clone, Eq, PartialEq)] pub enum Chunk { Text(String), Image(Image), } /// Convert input chunks to a stringly-typed input for backwards /// compat for backends that haven't implemented chunked inputs. pub trait ChunksToString { /// Convert chunks to string. fn chunks_to_string(&self) -> String; } impl ChunksToString for Vec<Chunk> { fn chunks_to_string(&self) -> String { let mut output = String::new(); self.iter().for_each(|c| match &c { Chunk::Text(text) => output.push_str(text), Chunk::Image(Image { data, mimetype }) => { let encoded = STANDARD.encode(data); output.push_str(&format!("![](data:{};base64,{})", mimetype, encoded)) } }); output } } #[derive(Debug, Clone)] pub enum ValidGrammar { Json(String), Regex(String), } #[derive(Debug, Clone)] pub struct ValidParameters { /// / exponential scaling output probability distribution pub temperature: f32, /// / restricting to the k highest probability elements pub top_k: u32, /// / restricting to top tokens summing to prob_cut_off <= prob_cut_off pub top_p: f32, /// / restricting to top tokens summing to prob_cut_off <= prob_cut_off pub typical_p: f32, /// / apply sampling on the logits pub do_sample: bool, /// / random seed for sampling pub seed: u64, /// / repetition penalty pub repetition_penalty: f32, /// / frequency penalty pub frequency_penalty: f32, /// / token watermarking using "A Watermark for Large Language Models" pub watermark: bool, /// / grammar (applied if not empty) pub grammar: Option<ValidGrammar>, } #[derive(Debug, Clone)] pub struct ValidStoppingParameters { /// / Maximum number of generated tokens pub max_new_tokens: u32, /// Maximum number of generated tokens before being re-queued by the system pub max_total_new_tokens: u32, /// / Optional stopping sequences pub stop_sequences: Vec<String>, /// / Ignore end of sequence token /// / used for benchmarking pub ignore_eos_token: bool, } #[derive(Debug, Clone)] pub struct ValidGenerateRequest { pub inputs: Vec<Chunk>, pub input_ids: Option<Arc<Vec<u32>>>, pub input_length: u32, pub truncate: u32, pub add_special_tokens: bool, pub decoder_input_details: bool, pub parameters: ValidParameters, pub stopping_parameters: ValidStoppingParameters, pub top_n_tokens: u32, pub adapter_id: Option<String>, } #[derive(Error, Debug)] pub enum ValidationError { #[error("`best_of` must be > 0 and <= {0}. Given: {1}")] BestOf(usize, usize), #[error("`best_of` != 1 is not allowed for this endpoint")] BestOfDisabled, #[error("you must use sampling when `best_of` is > 1")] BestOfSampling, #[error("`seed` must not be set when `best_of` > 1")] BestOfSeed, #[error("`best_of` != 1 is not supported when streaming tokens")] BestOfStream, #[error("`top_n_tokens` must be >= 0 and <= {0}. Given: {1}")] TopNTokens(u32, u32), #[error("`top_n_tokens` != 0 is not allowed for this endpoint")] TopNTokensDisabled, #[error("`decoder_input_details` == true is not supported when streaming tokens")] PrefillDetailsStream, #[error("`temperature` must be strictly positive")] Temperature, #[error("`repetition_penalty` must be strictly positive")] RepetitionPenalty, #[error("`frequency_penalty` must be >= -2.0 and <= 2.0")] FrequencyPenalty, #[error("`top_p` must be > 0.0 and < 1.0")] TopP, #[error("`top_k` must be strictly positive")] TopK, #[error("`truncate` must be strictly positive and less than {0}. Given: {1}")] Truncate(usize, usize), #[error("`typical_p` must be > 0.0 and < 1.0")] TypicalP, #[error("one of `max_new_tokens` or `truncate` must be set if a fast tokenizer is not in use")] UnsetMaxNewTokens, #[error("`max_new_tokens` must be strictly positive")] NegativeMaxNewTokens, #[error("`max_new_tokens` must be <= {0}. Given: {1}")] MaxNewTokens(usize, u32), #[error("`inputs` tokens + `max_new_tokens` must be <= {0}. Given: {1} `inputs` tokens and {2} `max_new_tokens`")] MaxTotalTokens(usize, usize, u32), #[error("`inputs` must have less than {0} tokens. Given: {1}")] InputLength(usize, usize), #[error("`inputs` cannot be empty")] EmptyInput, #[error("`stop` supports up to {0} stop sequences. Given: {1}")] StopSequence(usize, usize), #[error("tokenizer error {0}")] Tokenizer(String), #[error("grammar is not supported")] Grammar, #[error("grammar is not valid: {0}")] InvalidGrammar(String), #[error("cannot compile regex from schema: {0}")] RegexFromSchema(anyhow::Error), #[error("base64 encoding is invalid: {0}")] InvalidBase64(#[from] base64::DecodeError), #[error("invalid image: {0}")] InvalidImage(#[from] image::ImageError), #[error("invalid integer: {0}")] InvalidInt(#[from] core::num::TryFromIntError), #[error("invalid image content: {0}")] InvalidImageContent(String), #[error("Could not fetch image: {0}")] FailedFetchImage(#[from] reqwest::Error), #[error("{0} modality is not supported")] UnsupportedModality(&'static str), } #[cfg(test)] mod tests { use super::*; use crate::config::{Idefics2, PaliTextConfig, Paligemma}; use crate::default_parameters; use crate::tests::get_tokenizer; #[tokio::test] async fn test_validation_max_new_tokens() { let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequence = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 6; let workers = 1; let disable_grammar_support = true; let config = None; let validation = Validation::new( workers, tokenizer, config, None, max_best_of, max_stop_sequence, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); let max_new_tokens = 10; match validation .validate_input("Hello".to_string(), true, None, Some(max_new_tokens)) .await { Err(ValidationError::MaxTotalTokens(6, 1, 10)) => (), // Ok((_s, _, 0, 10)) => (), r => panic!("Unexpected not max new tokens: {r:?}"), } } #[tokio::test] async fn test_validation_input_length() { let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequence = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 6; let disable_grammar_support = true; let workers = 1; let config = None; let validation = Validation::new( workers, tokenizer, config, None, max_best_of, max_stop_sequence, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); let max_new_tokens = 10; match validation .validate_input("Hello".to_string(), true, None, Some(max_new_tokens)) .await { Err(ValidationError::MaxTotalTokens(6, 1, 10)) => (), _ => panic!("Unexpected not max new tokens"), } } #[tokio::test] async fn test_validation_best_of_sampling() { let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequence = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 6; let workers = 1; let disable_grammar_support = true; let config = None; let validation = Validation::new( workers, tokenizer, config, None, max_best_of, max_stop_sequence, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); match validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { best_of: Some(2), do_sample: false, ..default_parameters() }, }) .await { Err(ValidationError::BestOfSampling) => (), _ => panic!("Unexpected not best of sampling"), } } #[tokio::test] async fn test_validation_top_p() { let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequence = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 106; let workers = 1; let disable_grammar_support = true; let config = None; let validation = Validation::new( workers, tokenizer, config, None, max_best_of, max_stop_sequence, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); match validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_p: Some(1.0), max_new_tokens: Some(5), ..default_parameters() }, }) .await { Err(ValidationError::TopP) => (), _ => panic!("Unexpected top_p"), } match validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_p: Some(0.99), max_new_tokens: Some(5), ..default_parameters() }, }) .await { Ok(_) => (), _ => panic!("Unexpected top_p error"), } let valid_request = validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_p: None, max_new_tokens: Some(5), ..default_parameters() }, }) .await .unwrap(); // top_p == 1.0 is invalid for users to ask for but it's the default resolved value. assert_eq!(valid_request.parameters.top_p, 1.0); } #[tokio::test] async fn test_validation_top_n_tokens() { let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequences = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 106; let workers = 1; let disable_grammar_support = true; let config = None; let validation = Validation::new( workers, tokenizer, config, None, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); match validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_n_tokens: Some(5), max_new_tokens: Some(5), ..default_parameters() }, }) .await { Err(ValidationError::TopNTokens(4, 5)) => (), _ => panic!("Unexpected top_n_tokens"), } validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_n_tokens: Some(4), max_new_tokens: Some(5), ..default_parameters() }, }) .await .unwrap(); validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_n_tokens: Some(0), max_new_tokens: Some(5), ..default_parameters() }, }) .await .unwrap(); let valid_request = validation .validate(GenerateRequest { inputs: "Hello".to_string(), add_special_tokens: true, parameters: GenerateParameters { top_n_tokens: None, max_new_tokens: Some(5), ..default_parameters() }, }) .await .unwrap(); assert_eq!(valid_request.top_n_tokens, 0); } static PIXEL_GIF: &str = "R0lGODdhAQABAIEAAP///wAAAAAAAAAAACwAAAAAAQABAAAIBAABBAQAOw=="; #[tokio::test] async fn test_prepare_input_chunks() { let pixel_data = STANDARD.decode(PIXEL_GIF).unwrap(); let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequence = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 6; let disable_grammar_support = true; let workers = 1; let config = Config::Paligemma(Paligemma { text_config: PaliTextConfig { num_image_tokens: 1, }, }); let validation = Validation::new( workers, tokenizer, Some(config), None, max_best_of, max_stop_sequence, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); let chunks = match validation .tokenize( format!("test![](data:image/gif;base64,{})", PIXEL_GIF), true, None, ) .await { Ok((_encoding, chunks)) => chunks, _ => panic!("Unexpected tokenization failure"), }; assert!( chunks == vec![ Chunk::Text("test".to_string()), Chunk::Image(Image { data: pixel_data.clone(), mimetype: "image/gif".to_string() }) ], "Failed to process images", ); } #[tokio::test] async fn test_idefics2_correct_n_fake_tokens() { let pixel_data = STANDARD.decode(PIXEL_GIF).unwrap(); let tokenizer = get_tokenizer(); let max_best_of = 2; let max_stop_sequence = 3; let max_top_n_tokens = 4; let max_input_length = 5; let max_total_tokens = 6; let disable_grammar_support = true; let workers = 1; let config = Config::Idefics2(Idefics2 {}); let validation = Validation::new( workers, tokenizer, Some(config), Some(HubPreprocessorConfig::Idefics2Processor( Idefics2Preprocessor { do_image_splitting: true, }, )), max_best_of, max_stop_sequence, max_top_n_tokens, max_input_length, max_total_tokens, disable_grammar_support, ); let (encoding, chunks) = match validation .tokenize( format!( "test![](data:image/gif;base64,{})![](data:image/gif;base64,{})", PIXEL_GIF, PIXEL_GIF ), true, None, ) .await { Ok((encoding, chunks)) => (encoding, chunks), _ => panic!("Unexpected tokenization failure"), }; assert!( chunks == vec![ Chunk::Text("test".to_string()), Chunk::Image(Image { data: pixel_data.clone(), mimetype: "image/gif".to_string() }), Chunk::Image(Image { data: pixel_data.clone(), mimetype: "image/gif".to_string() }) ], "Failed to process images", ); // Verify the number of fake tokens: // // - Two images surrounded/separated by a fake token = 3. // - Both are split in 5 subimages, separated by a fake token: 2 * 4 // // Fake tokens get split up by the testing tokenizer, but we don't care. assert_eq!( encoding .get_tokens() .iter() .filter(|t| *t == "fake") .count(), 11 ); } }
text-generation-inference/router/src/validation.rs/0
{ "file_path": "text-generation-inference/router/src/validation.rs", "repo_id": "text-generation-inference", "token_count": 23260 }
#!/usr/bin/env python3 import json import subprocess from typing import Dict, Union import toml # Special cases that have download URLs. SKIP = {"attention-kernels", "marlin-kernels", "moe-kernels"} def is_optional(info: Union[str, Dict[str, str]]) -> bool: return isinstance(info, dict) and "optional" in info and info["optional"] if __name__ == "__main__": with open("pyproject.toml") as f: pyproject = toml.load(f) nix_packages = json.loads( subprocess.run( ["nix", "develop", ".#server", "--command", "pip", "list", "--format=json"], stdout=subprocess.PIPE, ).stdout ) nix_packages = {pkg["name"]: pkg["version"] for pkg in nix_packages} packages = [] optional_packages = [] for package, info in pyproject["tool"]["poetry"]["dependencies"].items(): if package in nix_packages and package not in SKIP: if is_optional(info): optional_packages.append(f'"{package}@^{nix_packages[package]}"') else: packages.append(f'"{package}@^{nix_packages[package]}"') print(f"poetry add {' '.join(packages)}") print(f"poetry add --optional {' '.join(optional_packages)}")
text-generation-inference/server/bounds-from-nix.py/0
{ "file_path": "text-generation-inference/server/bounds-from-nix.py", "repo_id": "text-generation-inference", "token_count": 505 }
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _tuning_h #define _tuning_h struct ExLlamaTuning { int matmul_recons_thd; bool matmul_fused_remap; bool matmul_no_half2; }; #endif
text-generation-inference/server/exllama_kernels/exllama_kernels/tuning.h/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/tuning.h", "repo_id": "text-generation-inference", "token_count": 106 }
#ifndef _qdq_5_cuh #define _qdq_5_cuh #include "qdq_util.cuh" #include "../../config.h" #if QMODE_5BIT == 1 // Permutation: // // v5555533 33311111 u4444422 22200000 (u, v lsb) // vbbbbb99 99977777 uaaaaa88 88866666 // vhhhhhff fffddddd ugggggee eeeccccc // vnnnnnll llljjjjj ummmmmkk kkkiiiii // vtttttrr rrrppppp usssssqq qqqooooo __forceinline__ __device__ void shuffle_5bit_32 ( uint32_t* q, int stride ) { uint32_t qa = q[0 * stride]; uint32_t qb = q[1 * stride]; uint32_t qc = q[2 * stride]; uint32_t qd = q[3 * stride]; uint32_t qe = q[4 * stride]; // qa: 66555554 44443333 32222211 11100000 // qb: ccccbbbb baaaaa99 99988888 77777666 // qc: jiiiiihh hhhggggg fffffeee eedddddc // qd: pppooooo nnnnnmmm mmlllllk kkkkjjjj // qe: vvvvvuuu uuttttts ssssrrrr rqqqqqpp uint32_t qf = qe >> 22; qe <<= 8; qe |= qd >> 24; qd <<= 6; qd |= qc >> 26; qc <<= 4; qc |= qb >> 28; qb <<= 2; qb |= qa >> 30; // qa: 555554 44443333 32222211 11100000 // qb: bbbbba aaaa9999 98888877 77766666 // qc: hhhhhg ggggffff feeeeedd dddccccc // qd: nnnnnm mmmmllll lkkkkkjj jjjiiiii // qe: ttttts ssssrrrr rqqqqqpp pppooooo // qf: vv vvvuuuuu uint32_t za = 0; uint32_t zb = 0; uint32_t zc = 0; uint32_t zd = 0; uint32_t ze = 0; for (int i = 0; i < 3; i++) { uint32_t t0 = qa & 0x1f; uint32_t t1 = (qa & 0x3e0) >> 5; qa >>= 10; za |= (t0 << (i * 5)); za |= (t1 << (i * 5 + 16)); } for (int i = 0; i < 3; i++) { uint32_t t0 = qb & 0x1f; uint32_t t1 = (qb & 0x3e0) >> 5; qb >>= 10; zb |= (t0 << (i * 5)); zb |= (t1 << (i * 5 + 16)); } for (int i = 0; i < 3; i++) { uint32_t t0 = qc & 0x1f; uint32_t t1 = (qc & 0x3e0) >> 5; qc >>= 10; zc |= (t0 << (i * 5)); zc |= (t1 << (i * 5 + 16)); } for (int i = 0; i < 3; i++) { uint32_t t0 = qd & 0x1f; uint32_t t1 = (qd & 0x3e0) >> 5; qd >>= 10; zd |= (t0 << (i * 5)); zd |= (t1 << (i * 5 + 16)); } for (int i = 0; i < 3; i++) { uint32_t t0 = qe & 0x1f; uint32_t t1 = (qe & 0x3e0) >> 5; qe >>= 10; ze |= (t0 << (i * 5)); ze |= (t1 << (i * 5 + 16)); } // za: 5555533 33311111 4444422 22200000 // zb: bbbbb99 99977777 aaaaa88 88866666 // zc: hhhhhff fffddddd gggggee eeeccccc // zd: nnnnnll llljjjjj mmmmmkk kkkiiiii // ze: tttttrr rrrppppp sssssqq qqqooooo // qf: vv vvvuuuuu za |= ((qf & 0x001) >> 0) << 15; zb |= ((qf & 0x002) >> 1) << 15; zc |= ((qf & 0x004) >> 2) << 15; zd |= ((qf & 0x008) >> 3) << 15; ze |= ((qf & 0x010) >> 4) << 15; za |= ((qf & 0x020) >> 5) << 31; zb |= ((qf & 0x040) >> 6) << 31; zc |= ((qf & 0x080) >> 7) << 31; zd |= ((qf & 0x100) >> 8) << 31; ze |= ((qf & 0x200) >> 9) << 31; // za: v5555533 33311111 u4444422 22200000 (u, v lsb) // zb: vbbbbb99 99977777 uaaaaa88 88866666 // zc: vhhhhhff fffddddd ugggggee eeeccccc // zd: vnnnnnll llljjjjj ummmmmkk kkkiiiii // ze: vtttttrr rrrppppp usssssqq qqqooooo q[0 * stride] = za; q[1 * stride] = zb; q[2 * stride] = zc; q[3 * stride] = zd; q[4 * stride] = ze; } __forceinline__ __device__ void dequant_5bit_32 ( const uint32_t q_0, const uint32_t q_1, const uint32_t q_2, const uint32_t q_3, const uint32_t q_4, half2 (&dq)[16], int stride ) { const uint32_t c0 = 0x64006400; const half y32_ = __float2half_rn(1.0f / 32.0f); const half2 y32 = __halves2half2(y32_, y32_); const half z1_ = __float2half_rn(-1024.0f - 16.0f); const half z32_ = __float2half_rn(-1024.0f / 32.0f - 16.0f); const half2 z1 = __halves2half2(z1_, z1_); const half2 z32 = __halves2half2(z32_, z32_); uint32_t qa = q_0; uint32_t qb = q_1; uint32_t qc = q_2; uint32_t qd = q_3; uint32_t qe = q_4; half2_uint32 q0 ((qa & 0x001f001f) | c0); // half2(q[ 0], q[ 1]) + 1024 half2_uint32 q1 ((qa & 0x03e003e0) | c0); // half2(q[ 2], q[ 3]) * 32 + 1024 qa >>= 10; half2_uint32 q2 ((qa & 0x001f001f) | c0); // half2(q[ 4], q[ 5]) + 1024 qa >>= 5; qa &= 0x00010001; half2_uint32 q3 ((qb & 0x001f001f) | c0); // half2(q[ 6], q[ 7]) + 1024 half2_uint32 q4 ((qb & 0x03e003e0) | c0); // half2(q[ 8], q[ 9]) * 32 + 1024 qb >>= 10; half2_uint32 q5 ((qb & 0x001f001f) | c0); // half2(q[10], q[11]) + 1024 qb >>= 4; qb &= 0x00020002; half2_uint32 q6 ((qc & 0x001f001f) | c0); // half2(q[12], q[13]) + 1024 half2_uint32 q7 ((qc & 0x03e003e0) | c0); // half2(q[14], q[15]) * 32 + 1024 qc >>= 10; half2_uint32 q8 ((qc & 0x001f001f) | c0); // half2(q[16], q[17]) + 1024 qc >>= 3; qc &= 0x00040004; half2_uint32 q9 ((qd & 0x001f001f) | c0); // half2(q[18], q[19]) + 1024 half2_uint32 q10((qd & 0x03e003e0) | c0); // half2(q[20], q[21]) * 32 + 1024 qd >>= 10; half2_uint32 q11((qd & 0x001f001f) | c0); // half2(q[22], q[23]) + 1024 qd >>= 2; qd &= 0x00080008; half2_uint32 q12((qe & 0x001f001f) | c0); // half2(q[24], q[25]) + 1024 half2_uint32 q13((qe & 0x03e003e0) | c0); // half2(q[26], q[27]) * 32 + 1024 qe >>= 10; half2_uint32 q14((qe & 0x001f001f) | c0); // half2(q[28], q[29]) + 1024 qe >>= 1; qe &= 0x00100010; half2_uint32 q15((qa | qb | qc | qd | qe) | c0); dq[ 0] = __hadd2( q0.as_half2, z1); dq[ 1] = __hfma2( q1.as_half2, y32, z32); dq[ 2] = __hadd2( q2.as_half2, z1); dq[ 3] = __hadd2( q3.as_half2, z1); dq[ 4] = __hfma2( q4.as_half2, y32, z32); dq[ 5] = __hadd2( q5.as_half2, z1); dq[ 6] = __hadd2( q6.as_half2, z1); dq[ 7] = __hfma2( q7.as_half2, y32, z32); dq[ 8] = __hadd2( q8.as_half2, z1); dq[ 9] = __hadd2( q9.as_half2, z1); dq[10] = __hfma2(q10.as_half2, y32, z32); dq[11] = __hadd2(q11.as_half2, z1); dq[12] = __hadd2(q12.as_half2, z1); dq[13] = __hfma2(q13.as_half2, y32, z32); dq[14] = __hadd2(q14.as_half2, z1); dq[15] = __hadd2(q15.as_half2, z1); } #else __forceinline__ __device__ void shuffle_5bit_32 ( uint32_t* q, int stride ) { } __forceinline__ __device__ void dequant_5bit_32 ( const uint32_t q_0, const uint32_t q_1, const uint32_t q_2, const uint32_t q_3, const uint32_t q_4, half2 (&dq)[16], int stride ) { half dqh[32]; for (int i = 0; i < 6; i++) dqh[ i] = dq_ns(exb( q_0, i * 5 , 0x1f), 16); dqh[ 6 ] = dq_ns(exb(q_1, q_0, 30, 0x1f), 16); for (int i = 0; i < 5; i++) dqh[ 7 + i] = dq_ns(exb( q_1, i * 5 + 3, 0x1f), 16); dqh[12 ] = dq_ns(exb(q_2, q_1, 28, 0x1f), 16); for (int i = 0; i < 6; i++) dqh[13 + i] = dq_ns(exb( q_2, i * 5 + 1, 0x1f), 16); dqh[19 ] = dq_ns(exb(q_3, q_2, 31, 0x1f), 16); for (int i = 0; i < 5; i++) dqh[20 + i] = dq_ns(exb( q_3, i * 5 + 4, 0x1f), 16); dqh[25 ] = dq_ns(exb(q_4, q_3, 29, 0x1f), 16); for (int i = 0; i < 6; i++) dqh[26 + i] = dq_ns(exb( q_4, i * 5 + 2, 0x1f), 16); for (int i = 0; i < 16; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]); } #endif #endif
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/quant/qdq_5.cuh/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/quant/qdq_5.cuh", "repo_id": "text-generation-inference", "token_count": 4272 }
import pytest import torch from transformers import AutoTokenizer from text_generation_server.models import Model def get_test_model(): class TestModel(Model): def batch_type(self): raise NotImplementedError def generate_token(self, batch): raise NotImplementedError tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b") model = TestModel( "test_model_id", torch.nn.Linear(1, 1), tokenizer, False, torch.float32, torch.device("cpu"), ) return model @pytest.mark.private def test_decode_streaming_english_spaces(): model = get_test_model() truth = "Hello here, this is a simple test" all_input_ids = [15043, 1244, 29892, 445, 338, 263, 2560, 1243] assert ( all_input_ids == model.tokenizer(truth, add_special_tokens=False)["input_ids"] ) decoded_text = "" offset = 0 token_offset = 0 for i in range(len(all_input_ids)): text, offset, token_offset = model.decode_token( all_input_ids[: i + 1], offset, token_offset ) decoded_text += text assert decoded_text == truth @pytest.mark.private def test_decode_streaming_chinese_utf8(): model = get_test_model() truth = "我很感谢你的热情" all_input_ids = [ 30672, 232, 193, 139, 233, 135, 162, 235, 179, 165, 30919, 30210, 234, 134, 176, 30993, ] decoded_text = "" offset = 0 token_offset = 0 for i in range(len(all_input_ids)): text, offset, token_offset = model.decode_token( all_input_ids[: i + 1], offset, token_offset ) decoded_text += text assert decoded_text == truth
text-generation-inference/server/tests/models/test_model.py/0
{ "file_path": "text-generation-inference/server/tests/models/test_model.py", "repo_id": "text-generation-inference", "token_count": 876 }
import os import sys import typer from pathlib import Path from loguru import logger from typing import Optional from enum import Enum from huggingface_hub import hf_hub_download from text_generation_server.utils.adapter import parse_lora_adapters # Dummy change should cache hit. app = typer.Typer() class Quantization(str, Enum): bitsandbytes = "bitsandbytes" bitsandbytes_nf4 = "bitsandbytes-nf4" bitsandbytes_fp4 = "bitsandbytes-fp4" gptq = "gptq" awq = "awq" compressed_tensors = "compressed-tensors" eetq = "eetq" exl2 = "exl2" fp8 = "fp8" marlin = "marlin" class Dtype(str, Enum): float16 = "float16" bloat16 = "bfloat16" class KVCacheDtype(str, Enum): fp8_e4m3fn = "fp8_e4m3fn" fp8_e5m2 = "fp8_e5m2" @app.command() def serve( model_id: str, revision: Optional[str] = None, sharded: bool = False, quantize: Optional[Quantization] = None, speculate: Optional[int] = None, dtype: Optional[Dtype] = None, kv_cache_dtype: Optional[KVCacheDtype] = None, trust_remote_code: bool = False, uds_path: Path = "/tmp/text-generation-server", logger_level: str = "INFO", json_output: bool = False, otlp_endpoint: Optional[str] = None, otlp_service_name: str = "text-generation-inference.server", max_input_tokens: Optional[int] = None, ): if sharded: assert ( os.getenv("RANK", None) is not None ), "RANK must be set when sharded is True" assert ( os.getenv("WORLD_SIZE", None) is not None ), "WORLD_SIZE must be set when sharded is True" assert ( os.getenv("MASTER_ADDR", None) is not None ), "MASTER_ADDR must be set when sharded is True" assert ( os.getenv("MASTER_PORT", None) is not None ), "MASTER_PORT must be set when sharded is True" # Remove default handler logger.remove() logger.add( sys.stdout, format="{message}", filter="text_generation_server", level=logger_level, serialize=json_output, backtrace=True, diagnose=False, ) # Import here after the logger is added to log potential import exceptions from text_generation_server import server from text_generation_server.tracing import setup_tracing # Setup OpenTelemetry distributed tracing if otlp_endpoint is not None: setup_tracing(otlp_service_name=otlp_service_name, otlp_endpoint=otlp_endpoint) lora_adapters = parse_lora_adapters(os.getenv("LORA_ADAPTERS")) # TODO: enable lora with cuda graphs. for now disable cuda graphs if lora is enabled # and warn the user if lora_adapters: logger.warning("LoRA adapters enabled (experimental feature).") if "CUDA_GRAPHS" in os.environ: logger.warning( "LoRA adapters incompatible with CUDA Graphs. Disabling CUDA Graphs." ) global CUDA_GRAPHS CUDA_GRAPHS = None # Downgrade enum into str for easier management later on quantize = None if quantize is None else quantize.value dtype = None if dtype is None else dtype.value kv_cache_dtype = None if kv_cache_dtype is None else kv_cache_dtype.value if dtype is not None and quantize not in { None, "bitsandbytes", "bitsandbytes-nf4", "bitsandbytes-fp4", }: raise RuntimeError( "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model." ) server.serve( model_id, lora_adapters, revision, sharded, quantize, speculate, dtype, kv_cache_dtype, trust_remote_code, uds_path, max_input_tokens, ) @app.command() def download_weights( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors", auto_convert: bool = True, logger_level: str = "INFO", json_output: bool = False, trust_remote_code: bool = False, merge_lora: bool = False, ): # Remove default handler logger.remove() logger.add( sys.stdout, format="{message}", filter="text_generation_server", level=logger_level, serialize=json_output, backtrace=True, diagnose=False, ) # Import here after the logger is added to log potential import exceptions from text_generation_server import utils # Test if files were already download try: utils.weight_files(model_id, revision, extension) logger.info("Files are already present on the host. " "Skipping download.") return # Local files not found except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError): pass is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv( "WEIGHTS_CACHE_OVERRIDE", None ) is not None if not is_local_model: # TODO: maybe reverse the default value of merge_lora? # currently by default we don't merge the weights with the base model if merge_lora: try: hf_hub_download( model_id, revision=revision, filename="adapter_config.json" ) utils.download_and_unload_peft( model_id, revision, trust_remote_code=trust_remote_code ) is_local_model = True utils.weight_files(model_id, revision, extension) return except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass else: try: utils.peft.download_peft( model_id, revision, trust_remote_code=trust_remote_code ) except Exception: pass try: import json config = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(config, "r") as f: config = json.load(f) base_model_id = config.get("base_model_name_or_path", None) if base_model_id and base_model_id != model_id: try: logger.info(f"Downloading parent model {base_model_id}") download_weights( model_id=base_model_id, revision="main", extension=extension, auto_convert=auto_convert, logger_level=logger_level, json_output=json_output, trust_remote_code=trust_remote_code, ) except Exception: pass except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass # Try to download weights from the hub try: filenames = utils.weight_hub_files(model_id, revision, extension) utils.download_weights(filenames, model_id, revision) # Successfully downloaded weights return # No weights found on the hub with this extension except utils.EntryNotFoundError as e: # Check if we want to automatically convert to safetensors or if we can use .bin weights instead if not extension == ".safetensors" or not auto_convert: raise e elif (Path(model_id) / "adapter_config.json").exists(): # Try to load as a local PEFT model try: utils.download_and_unload_peft( model_id, revision, trust_remote_code=trust_remote_code ) utils.weight_files(model_id, revision, extension) return except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass elif (Path(model_id) / "config.json").exists(): # Try to load as a local Medusa model try: import json config = Path(model_id) / "config.json" with open(config, "r") as f: config = json.load(f) base_model_id = config.get("base_model_name_or_path", None) if base_model_id: try: logger.info(f"Downloading parent model {base_model_id}") download_weights( model_id=base_model_id, revision="main", extension=extension, auto_convert=auto_convert, logger_level=logger_level, json_output=json_output, trust_remote_code=trust_remote_code, ) except Exception: pass except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass # Try to see if there are local pytorch weights try: # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE try: local_pt_files = utils.weight_files(model_id, revision, ".bin") except Exception: local_pt_files = utils.weight_files(model_id, revision, ".pt") # No local pytorch weights except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): if extension == ".safetensors": logger.warning( f"No safetensors weights found for model {model_id} at revision {revision}. " f"Downloading PyTorch weights." ) # Try to see if there are pytorch weights on the hub pt_filenames = utils.weight_hub_files(model_id, revision, ".bin") # Download pytorch weights local_pt_files = utils.download_weights(pt_filenames, model_id, revision) if auto_convert: if not trust_remote_code: logger.warning( "🚨🚨BREAKING CHANGE in 2.0🚨🚨: Safetensors conversion is disabled without `--trust-remote-code` because " "Pickle files are unsafe and can essentially contain remote code execution!" "Please check for more information here: https://huggingface.co/docs/text-generation-inference/basic_tutorials/safety", ) logger.warning( f"No safetensors weights found for model {model_id} at revision {revision}. " f"Converting PyTorch weights to safetensors." ) # Safetensors final filenames local_st_files = [ p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors" for p in local_pt_files ] try: import transformers import json if is_local_model: config_filename = os.path.join(model_id, "config.json") else: config_filename = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(config_filename, "r") as f: config = json.load(f) architecture = config["architectures"][0] class_ = getattr(transformers, architecture) # Name for this varible depends on transformers version. discard_names = getattr(class_, "_tied_weights_keys", []) except Exception: discard_names = [] # Convert pytorch weights to safetensors utils.convert_files(local_pt_files, local_st_files, discard_names) @app.command() def quantize( model_id: str, output_dir: str, revision: Optional[str] = None, logger_level: str = "INFO", json_output: bool = False, trust_remote_code: bool = False, upload_to_model_id: Optional[str] = None, percdamp: float = 0.01, act_order: bool = False, groupsize: int = 128, ): if revision is None: revision = "main" download_weights( model_id=model_id, revision=revision, logger_level=logger_level, json_output=json_output, ) from text_generation_server.layers.gptq.quantize import quantize quantize( model_id=model_id, bits=4, groupsize=groupsize, output_dir=output_dir, revision=revision, trust_remote_code=trust_remote_code, upload_to_model_id=upload_to_model_id, percdamp=percdamp, act_order=act_order, sym=True, ) if __name__ == "__main__": app()
text-generation-inference/server/text_generation_server/cli.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/cli.py", "repo_id": "text-generation-inference", "token_count": 5883 }
import math import numpy as np import torch import torch.nn as nn from torch.cuda.amp import custom_fwd import triton import triton.language as tl from . import custom_autotune # code based https://github.com/fpgaminer/GPTQ-triton @custom_autotune.autotune( configs=[ triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=2, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8, }, num_stages=3, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 8, }, num_stages=2, num_warps=4, ), ], key=["M", "N", "K"], nearest_power_of_two=True, prune_configs_by={ "early_config_prune": custom_autotune.matmul248_kernel_config_pruner, "perf_model": None, "top_k": None, }, ) @triton.jit def matmul_248_kernel( a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """ Compute the matrix multiplication C = A x B. A is of shape (M, K) float16 B is of shape (K//8, N) int32 C is of shape (M, N) float16 scales is of shape (G, N) float16 zeros is of shape (G, N) float16 g_ptr is of shape (K) int32 """ infearure_per_bits = 32 // bits pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + ( offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak ) # (BLOCK_SIZE_M, BLOCK_SIZE_K) a_mask = offs_am[:, None] < M # b_ptrs is set up such that it repeats elements along the K axis 8 times b_ptrs = b_ptr + ( (offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn ) # (BLOCK_SIZE_K, BLOCK_SIZE_N) g_ptrs = g_ptr + offs_k # shifter is used to extract the N bits of each element in the 32-bit word from B scales_ptrs = scales_ptr + offs_bn[None, :] zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits) shifter = (offs_k % infearure_per_bits) * bits zeros_shifter = (offs_bn % infearure_per_bits) * bits accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, num_pid_k): g_idx = tl.load(g_ptrs) # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop scales = tl.load( scales_ptrs + g_idx[:, None] * stride_scales ) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) zeros = tl.load( zeros_ptrs + g_idx[:, None] * stride_zeros ) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) zeros = (zeros >> zeros_shifter[None, :]) & maxq zeros = (zeros + 1) & maxq # eventually avoid overflow a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K) b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated # Now we need to unpack b (which is N-bit values) into 32-bit values b = (b >> shifter[:, None]) & maxq # Extract the N-bit values b = (b - zeros) * scales # Scale and shift accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk g_ptrs += BLOCK_SIZE_K c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :] c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N) tl.store(c_ptrs, accumulator, mask=c_mask) def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq): with torch.cuda.device(input.device): output = torch.empty( (input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16 ) def grid(META): return ( triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"]) * triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"]), ) matmul_248_kernel[grid]( input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0), qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0), ) return output class QuantLinearFunction(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq): output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq) return output class QuantLinear(nn.Module): def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() self.register_buffer("qweight", qweight) self.register_buffer("qzeros", qzeros) self.register_buffer("scales", scales) self.register_buffer("g_idx", g_idx) if bias is not None: self.register_buffer("bias", bias) else: self.bias = None if bits not in [2, 4, 8]: raise NotImplementedError("Only 2,4,8 bits are supported.") self.bits = bits self.maxq = 2**self.bits - 1 self.groupsize = groupsize self.outfeatures = qweight.shape[1] self.infeatures = qweight.shape[0] * 32 // bits @classmethod def new(cls, bits, groupsize, infeatures, outfeatures, bias): if bits not in [2, 4, 8]: raise NotImplementedError("Only 2,4,8 bits are supported.") qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32) qzeros = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures // 32 * bits), dtype=torch.int32, ) scales = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16 ) g_idx = torch.tensor( [i // groupsize for i in range(infeatures)], dtype=torch.int32 ) if bias: bias = torch.zeros((outfeatures), dtype=torch.float16) else: bias = None return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize) def pack(self, linear, scales, zeros, g_idx=None): self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( (linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) i = 0 row = 0 while row < qweight.shape[0]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 2,4,8 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros( (zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32 ) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 2,4,8 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out_shape = x.shape[:-1] + (self.outfeatures,) out = QuantLinearFunction.apply( x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq, ) out = out + self.bias if self.bias is not None else out return out.reshape(out_shape)
text-generation-inference/server/text_generation_server/layers/gptq/triton.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/gptq/triton.py", "repo_id": "text-generation-inference", "token_count": 6287 }
from typing import Optional import torch import torch.nn as nn from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import UnquantizedWeight, Weights if SYSTEM == "ipex": from intel_extension_for_pytorch.llm.modules import GatedMLPMOE else: from moe_kernels.fused_moe import fused_moe class UnquantizedSparseMoELayer(nn.Module): def __init__( self, *, n_expert_group: Optional[int], n_experts: int, prefix: str, renormalize: bool, topk: int, topk_group: Optional[int], weights: Weights, scoring_func: Optional[str] = "softmax", e_score_correction_bias: Optional[float] = None, gate_proj_name: str = "gate_proj", up_proj_name: str = "up_proj", down_proj_name: str = "down_proj", ): super().__init__() assert (n_expert_group is None) == ( topk_group is None ), "n_expert_group and topk_group must both be None or have some value" self.n_expert_group = n_expert_group self.topk = topk self.topk_group = topk_group self.renormalize = renormalize self.weight_block_size = weights.weights_loader.weight_block_size self.scoring_func = scoring_func self.e_score_correction_bias = e_score_correction_bias self.gate_up_proj = _load_expert_multi_weights_col( prefix=prefix, n_experts=n_experts, gate_proj_name=gate_proj_name, up_proj_name=up_proj_name, weights=weights, ) self.down_proj = _load_expert_weights_row( prefix=prefix, n_experts=n_experts, name=down_proj_name, weights=weights, ) if SYSTEM == "ipex": self.ipex_fused_moe = GatedMLPMOE( W13=self.gate_up_proj, W2=self.down_proj, use_prepack=True ) def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: if SYSTEM == "ipex": return self.ipex_fused_moe( hidden_states=x, router_logits=gating_output, top_k=self.topk, renormalize=self.renormalize, use_grouped_topk=self.n_expert_group is not None, num_expert_group=self.n_expert_group, topk_group=self.topk_group, ) return fused_moe( x, w1=self.gate_up_proj, w2=self.down_proj, gating_output=gating_output, topk=self.topk, renormalize=self.renormalize, inplace=True, use_grouped_topk=self.n_expert_group is not None, num_expert_group=self.n_expert_group, topk_group=self.topk_group, scoring_func=self.scoring_func, e_score_correction_bias=self.e_score_correction_bias, ) def _load_expert_multi_weights_col( *, prefix: str, n_experts: int, gate_proj_name: str, up_proj_name: str, weights: Weights, ) -> torch.Tensor: all_weight = None for i in range(n_experts): weight = weights.get_multi_weights_col( [f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0 ) assert isinstance(weight, UnquantizedWeight) if all_weight is None: all_weight = torch.empty( (n_experts,) + weight.weight.shape, dtype=weight.weight.dtype, device=weight.weight.device, ) all_weight[i] = weight.weight assert all_weight is not None return all_weight def _load_expert_weights_row( *, prefix: str, n_experts: int, name: str, weights: Weights, ) -> torch.Tensor: all_weight = None for i in range(n_experts): weight = weights.get_weights_row( f"{prefix}.{i}.{name}", ) assert isinstance(weight, UnquantizedWeight) if all_weight is None: all_weight = torch.empty( (n_experts,) + weight.weight.shape, dtype=weight.weight.dtype, device=weight.weight.device, ) all_weight[i] = weight.weight assert all_weight is not None return all_weight
text-generation-inference/server/text_generation_server/layers/moe/unquantized.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/moe/unquantized.py", "repo_id": "text-generation-inference", "token_count": 2234 }
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, get_linear, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales def load_qkv(config, prefix: str, weights, head_size, num_heads): if config.quantize == "gptq": return _load_qkv_gptq( config, prefix, weights, ) elif config.quantize == "marlin": raise RuntimeError( "GPT-2 models with marlin quantization are not yet supported" ) else: return _load_qkv(config, prefix, weights, head_size, num_heads) def _load_qkv_gptq(config, prefix: str, weights): world_size = weights.process_group.size() rank = weights.process_group.rank() # Weights weight = weights.get_weights_col_packed_qkv( f"{prefix}.c_attn", config.num_attention_heads, config.num_attention_heads, ) # Bias slice_ = weights._get_slice(f"{prefix}.c_attn.bias") shape = slice_.get_shape() total_size = shape[0] assert total_size % 3 == 0, f"Prepacked is not divisible by {3}" single_size = total_size // 3 assert single_size % world_size == 0 block_size = single_size // world_size start = rank * block_size stop = (rank + 1) * block_size tensors = [] for i in range(3): tensor = slice_[start + i * single_size : stop + i * single_size] tensors.append(tensor) bias = torch.cat(tensors, dim=0) bias = bias.to(device=weights.device) return TensorParallelColumnLinear(get_linear(weight, bias)) def _load_qkv(config, prefix: str, weights, head_size, num_heads): """Load QKV from a single, transposed matrix.""" slice_ = weights._get_slice(f"{prefix}.c_attn.weight") shape = slice_.get_shape() total_size = shape[1] assert total_size % 3 == 0, f"Prepacked is not divisible by {3}" world_size = weights.process_group.size() single_size = total_size // 3 assert single_size % world_size == 0 rank = weights.process_group.rank() # Weights block_size = single_size // world_size start = rank * block_size stop = (rank + 1) * block_size tensors = [] for i in range(3): tensor = slice_[:, start + i * single_size : stop + i * single_size] tensors.append(tensor) weight = torch.cat(tensors, dim=1).T weight = weight.to(dtype=weights.dtype) weight = weight.to(device=weights.device) # Bias slice_ = weights._get_slice(f"{prefix}.c_attn.bias") shape = slice_.get_shape() total_size = shape[0] single_size = total_size // 3 block_size = single_size // world_size assert single_size % world_size == 0 start = rank * block_size stop = (rank + 1) * block_size b = [] for i in range(3): tensor = slice_[start + i * single_size : stop + i * single_size] b.append(tensor) bias = torch.cat(b, dim=0) bias = bias.to(dtype=weights.dtype) bias = bias.to(device=weights.device) assert list(bias.shape) == [ 3 * num_heads * head_size ], f"{weight.shape} != {[3 * num_heads * head_size]}" return TensorParallelColumnLinear(get_linear(weight, bias)) def load_row(config, prefix: str, weights, bias: bool): """load_row, but with transposed weight matrices.""" if config.quantize == "gptq": weight = weights.get_weights_row(prefix) else: weight = weights.get_sharded(f"{prefix}.weight", dim=0).T if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return TensorParallelRowLinear( get_linear(weight, bias), process_group=weights.process_group ) def load_col(config, prefix: str, weights, bias: bool): """load_col, but with transposed weight matrices.""" if config.quantize == "gptq": weight = weights.get_multi_weights_col([prefix], dim=1) else: weight = weights.get_sharded(f"{prefix}.weight", dim=1).T if bias: bias = weights.get_sharded(f"{prefix}.bias", dim=0) else: bias = None return TensorParallelColumnLinear(get_linear(weight, bias)) class FlashGPT2Attention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.query_key_value = load_qkv( config, prefix=prefix, weights=weights, head_size=self.head_size, num_heads=self.num_heads, ) self.kv_scales = get_kv_scales(weights, f"{prefix}") self.o_proj = load_row( config, prefix=f"{prefix}.c_proj", weights=weights, bias=True, ) self.kv_head_mapping = torch.arange( 0, self.num_heads, dtype=torch.int32, device=weights.device ) def forward( self, hidden_states, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): query, key, value = self.query_key_value(hidden_states).split( self.head_size * self.num_heads, dim=1 ) query = query.view(-1, self.num_heads, self.head_size) key = key.view(-1, self.num_heads, self.head_size) value = value.view(-1, self.num_heads, self.head_size) kv_cache.store( key=key, value=value, slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=key, value=value, kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) class GPT2MLP(nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() act = config.activation_function self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) self.c_fc = load_col( config, prefix=f"{prefix}.c_fc", weights=weights, bias=True ) self.c_proj = load_row( config, prefix=f"{prefix}.c_proj", weights=weights, bias=True, ) intermediate_size = ( config.n_inner if config.n_inner is not None else 4 * config.hidden_size ) self.intermediate_size = intermediate_size // weights.process_group.size() def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) return self.c_proj(hidden_states) class FlashGPT2Layer(nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.self_attn = FlashGPT2Attention( prefix=f"{prefix}.attn", config=config, weights=weights ) self.mlp = GPT2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.input_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.ln_1", weights=weights, eps=config.layer_norm_epsilon ) self.post_attention_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.ln_2", weights=weights, eps=config.layer_norm_epsilon, ) def forward( self, hidden_states, residual, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_output = self.self_attn( hidden_states, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) hidden_states = attn_output + residual residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(hidden_states) return residual + mlp_output, residual class FlashGPT2Model(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.layers = nn.ModuleList( [ FlashGPT2Layer( prefix=( f"h.{layer_id}" if not prefix else f"{prefix}.h.{layer_id}" ), config=config, weights=weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = nn.LayerNorm.load( prefix="ln_f" if not prefix else f"{prefix}.ln_f", weights=weights, eps=config.layer_norm_epsilon, ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads def forward( self, inputs_embeds: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], ) -> torch.Tensor: hidden_states = inputs_embeds residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, ) hidden_states = self.norm(hidden_states) return hidden_states class FlashGPT2ForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.embed_tokens = TensorParallelEmbedding( prefix=("wte" if not prefix else f"{prefix}.wte"), weights=weights, ) self.embed_positions = TensorParallelEmbedding( prefix=("wpe" if not prefix else f"{prefix}.wpe"), weights=weights, ) self.model = FlashGPT2Model(prefix, config, weights) self.lm_head = SpeculativeHead.load( config, prefix="wte" if not prefix else f"{prefix}.wte", weights=weights, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: token_embeds = self.embed_tokens(input_ids) position_embeds = self.embed_positions(position_ids) inputs_embeds = token_embeds + position_embeds hidden_states = self.model( inputs_embeds, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, true_max_s=max_s, prefill_cache_indices=prefill_cache_indices, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits, speculative_logits = self.lm_head(hidden_states) return logits, speculative_logits
text-generation-inference/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py", "repo_id": "text-generation-inference", "token_count": 6969 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Idefics.""" from typing import Callable, Dict, List, Optional, Union, Iterable import numpy as np from PIL import Image import transformers from transformers.image_processing_utils import BaseImageProcessor, BatchFeature from transformers.image_transforms import ( resize, to_channel_dimension_format, rescale, normalize, ) from transformers.image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from io import BytesIO import base64 import requests from transformers import TensorType, is_torch_available IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073] IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711] def convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite class IdeficsImageProcessor(BaseImageProcessor): r""" Constructs a Idefics image processor. Args: image_size (`int`, *optional*, defaults to `224`): Resize to image size image_num_channels (`int`, *optional*, defaults to `3`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, image_size: int = 224, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, image_num_channels: Optional[int] = 3, **kwargs, ) -> None: super().__init__(**kwargs) self.image_size = image_size self.image_num_channels = image_num_channels self.image_mean = image_mean self.image_std = image_std def preprocess( self, images: ImageInput, image_num_channels: Optional[int] = 3, image_size: Optional[Dict[str, int]] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, transform: Callable = None, **kwargs, ) -> TensorType.PYTORCH: """ Preprocess a batch of images. Args: images (`ImageInput`): A list of images to preprocess. image_size (`int`, *optional*, defaults to `self.image_size`): Resize to image size image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. transform (`Callable`, *optional*, defaults to `None`): A custom transform function that accepts a single image can be passed for training. For example, `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is assumed - and then a preset of inference-specific transforms will be applied to the images Returns: a PyTorch tensor of the processed images """ image_size = image_size if image_size is not None else self.image_size image_num_channels = ( image_num_channels if image_num_channels is not None else self.image_num_channels ) image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = (image_size, image_size) if len(images) == 0: return [] images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # For training a user needs to pass their own set of transforms as a Callable. # For reference this is what was used in the original IDEFICS training: # transform = transforms.Compose([ # convert_to_rgb, # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC), # transforms.ToTensor(), # transforms.Normalize(mean=image_mean, std=image_std), # ]) if transform is not None: if not is_torch_available(): raise ImportError("To pass in `transform` torch must be installed") import torch images = [transform(x) for x in images] return torch.stack(images) # for inference we do the exact transforms that were used to train IDEFICS images = [convert_to_rgb(x) for x in images] # further transforms expect numpy arrays images = [to_numpy_array(x) for x in images] images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images] images = [self.rescale(image=image, scale=1 / 255) for image in images] images = [self.normalize(x, mean=image_mean, std=image_std) for x in images] images = [ to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images ] # TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available images = BatchFeature( data={"pixel_values": images}, tensor_type=TensorType.PYTORCH )["pixel_values"] return images def fetch_images(self, image_url_or_urls: Union[str, List[str]]): """ Convert a single or a list of urls into the corresponding `PIL.Image` objects. If a single url is passed, the return value will be a single object. If a list is passed a list of objects is returned. """ headers = { "User-Agent": ( "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0" " Safari/537.36" ) } if isinstance(image_url_or_urls, list): return [self.fetch_images(x) for x in image_url_or_urls] elif isinstance(image_url_or_urls, str): image = image_url_or_urls if image.startswith("http://") or image.startswith("https://"): response = requests.get( image_url_or_urls, stream=True, headers=headers, timeout=(1, 5) ) response.raise_for_status() content = response.content elif image.startswith("data:"): # https://stackoverflow.com/questions/17090571/is-there-a-way-to-set-background-image-as-a-base64-encoded-image #  image = image.split(",")[-1] content = base64.b64decode(image) else: raise ValueError(f"Unrecognized image {image}") try: image = Image.open(BytesIO(content)) # image.verify() except Exception: raise ValueError(f"Could not load image from url {image_url_or_urls}") return image else: raise ValueError( f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}" ) def rescale( self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Rescale an image by a scale factor. image = image * scale. Args: image (`np.ndarray`): Image to rescale. scale (`float`): The scaling factor to rescale pixel values by. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The rescaled image. """ # return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs) # requires 4.32 return rescale(image, scale=scale, data_format=data_format, **kwargs) def normalize( self, image: np.ndarray, mean: Union[float, Iterable[float]], std: Union[float, Iterable[float]], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Normalize an image. image = (image - image_mean) / image_std. Args: image (`np.ndarray`): Image to normalize. mean (`float` or `Iterable[float]`): Image mean to use for normalization. std (`float` or `Iterable[float]`): Image standard deviation to use for normalization. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The normalized image. """ # TODO 4.32 return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs) transformers.IdeficsImageProcessor = IdeficsImageProcessor
text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py", "repo_id": "text-generation-inference", "token_count": 5686 }
from contextlib import nullcontext import math import os import time import torch import torch.distributed import numpy as np from loguru import logger from dataclasses import dataclass from opentelemetry import trace from transformers import ( PreTrainedTokenizerBase, AutoConfig, AutoTokenizer, GenerationConfig, ) from typing import ( Any, ContextManager, Iterable, Optional, Tuple, List, Type, Dict, Union, ) from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from text_generation_server.utils.chunks import concat_text_chunks from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.models import Model from text_generation_server.utils.log import log_master from text_generation_server.utils.prefill_chunking import ( get_support_chunking, get_max_prefill_tokens, ) from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.utils.speculate import get_speculate from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) from text_generation_server.models.types import ( Batch, Tokens, Generation, GeneratedText, ) from text_generation_server.pb import generate_pb2 from text_generation_server.models.globals import ( MEM_POOL, ATTENTION, BLOCK_SIZE, CUDA_GRAPHS, REQUEST_LOGPROBS, TGI_WIGGLE_ROOM, get_adapter_to_index, ) from text_generation_server.layers.attention import KVCache, Seqlen from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser from text_generation_server.utils.dist import MEMORY_FRACTION from text_generation_server.utils.quantization import get_loader from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments from text_generation_server.utils.import_utils import ( empty_cache, synchronize, get_free_memory, ) from text_generation_server.models.metadata_kernels import ( has_triton, copy_next_input_ids_inplace, block_tables_to_ragged, block_tables_to_padded, prepare_position_slot_ids, slots_filtering, ) tracer = trace.get_tracer(__name__) # Will be set in init SLIDING_WINDOW: Optional[int] = None def small_power_of_2(n: int): return 1 << ((n - 1).bit_length() - 1) def set_sliding_window(sliding_window: int): global SLIDING_WINDOW SLIDING_WINDOW = sliding_window def get_sliding_windows() -> int: global SLIDING_WINDOW return SLIDING_WINDOW def init_cpu_threads_env(rank_id: int, world_size: int): import importlib.util if importlib.util.find_spec("numa") is not None: import numa import psutil nodes = numa.info.get_max_node() + 1 rank_per_node = math.ceil(world_size / nodes) num_cpus_per_nodes = int(psutil.cpu_count(logical=False) / nodes) node_id = int(rank_id / rank_per_node) rank_offset_per_node = rank_id % rank_per_node if os.getenv("OMP_NUM_THREADS") is None: num_cpus_per_rank = max(int(num_cpus_per_nodes / rank_per_node), 1) else: num_cpus_per_rank = int(os.getenv("OMP_NUM_THREADS")) if len(numa.memory.get_membind_nodes()) == nodes: numa.memory.set_membind_nodes((node_id)) torch.set_num_threads(num_cpus_per_rank) if len(numa.schedule.get_affinitive_cpus(0)) == psutil.cpu_count(logical=True): cpu_start = num_cpus_per_rank * rank_offset_per_node numa.schedule.run_on_cpus( 0, *( numa.info.node_to_cpus(node_id)[ cpu_start : cpu_start + num_cpus_per_rank ] ), ) logger.info( f"affinity={numa.schedule.get_affinitive_cpus(0)}, membind = {numa.memory.get_membind_nodes()}" ) @dataclass class FlashCausalLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] # request id -> idx in list mapping requests_idx_mapping: Dict[int, int] # Decoder values # Can be a list for easy filtering # If `input_ids` is a list, it needs to be materialized to a tensor first input_ids: Union[torch.Tensor, List[List[int]]] # Will be set by `generate_token` and reset after each prefill forward before staying set in decode position_ids: Optional[torch.Tensor] speculative_ids: Optional[torch.Tensor] # Set when creating the batch # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode # Will be set by `generate_token` and reset after each prefill forward before staying set in decode slot_indices: Optional[torch.Tensor] # list of length b of list of length s_i // block_size block_tables: List[List[int]] # tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences block_tables_tensor: torch.Tensor # tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences slots: torch.Tensor # list of length b + 1 containing the cumulative sequence slot lengths of the sequences in the batch # used for filtering cu_slots: torch.Tensor max_input_length: int max_current_length: int # Whether this batch contains at least one request that is prefilling prefilling: bool # Whether each request is prefilling prefilling_mask: List[bool] # Prefill metadata tensors to efficiently compute logprobs # tensor of length b + 1 containing the cumulative sequence lengths of the sequences in the batch, only used in prefill cu_seqlen_prefill: Optional[torch.Tensor] # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers # as we only keep SLIDING_WINDOW values instead of the whole tensor prefill_cache_indices: Optional[torch.Tensor] # Will be set by `generate_token` and reset after each prefill forward prefill_head_indices: Optional[torch.Tensor] # Will be set by `generate_token` and reset after each prefill forward prefill_next_token_indices: Optional[torch.tensor] # Will be set by `generate_token` and reset after each prefill forward prefill_cu_outlens: Optional[List[int]] # Will be set by `generate_token` and reset after each prefill forward prefill_logprob_tokens: List[Optional[Tokens]] # All tokens all_input_ids: List[List[int]] all_input_ids_tensor: torch.Tensor # Lengths of all generations present in the batch input_lengths: List[int] # size [b], containing the number of blocks that can be retrieved from the cache cache_lengths: List[int] prompt_lengths: List[int] # Will be set by `generate_token` and reset after each prefill forward before staying set in decode input_lengths_tensor: Optional[torch.Tensor] cache_lengths_tensor: Optional[torch.Tensor] prompt_lengths_tensor: torch.Tensor prefix_offsets: List[Optional[int]] read_offsets: List[Optional[int]] # Generation helpers next_token_chooser: HeterogeneousNextTokenChooser stopping_criterias: List[StoppingCriteria] top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor # Adapter metadata for each request # Will be set by `generate_token` and reset after each prefill forward before staying set in decode adapter_meta: Optional[AdapterBatchMetadata] # Number of blocks in this batch num_blocks: int # Maximum number of blocks max_blocks: int def to_pb(self) -> generate_pb2.CachedBatch: return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.num_blocks * BLOCK_SIZE, current_tokens=( sum([len(i) for i in self.input_ids]) if isinstance(self.input_ids, list) else len(self.input_ids) ), ) @classmethod def batch_tokenized_inputs( cls, requests: Iterable[generate_pb2.Request], tokenizer ): max_length = 0 all_input_ids = [] batch_size = 0 for r in requests: batch_size += 1 inputs = concat_text_chunks(r.input_chunks.chunks) input_ids = tokenizer( inputs, truncation=True, max_length=r.truncate, add_special_tokens=r.add_special_tokens, )["input_ids"] max_length = max(max_length, len(input_ids)) all_input_ids.append(input_ids) return all_input_ids @classmethod def from_tokenized( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, batch_tokenized_inputs, dtype: torch.dtype, device: torch.device, ) -> "FlashCausalLMBatch": speculate = get_speculate() cache_lengths = [] input_lengths = [] prompt_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] all_postfix_ids = [] requests_idx_mapping = {} slots = [] cu_slots = [0] next_token_chooser_parameters = [] stopping_criterias = [] top_n_tokens = [] num_blocks = 0 max_input_length = 0 max_current_length = 0 max_length = 0 max_blocks = 0 cu_blocks = [0] block_tables = [] block_tables_ragged = [] # Parse batch for i, (r, tokenized_input) in enumerate( zip(pb.requests, batch_tokenized_inputs) ): ### XXX: This consumes so much memory on long requests ### Deactivating it by default seems like the best course. if not REQUEST_LOGPROBS: r.prefill_logprobs = False # request id -> idx in list mapping requests_idx_mapping[r.id] = i prompt_length = len(tokenized_input) prompt_lengths.append(prompt_length) cache_length = r.cache_len assert ( cache_length <= prompt_length ), f"Prefix {cache_length} vs input {prompt_length}" if cache_length == prompt_length: assert False, "unreachable" # `chunk_len` is an optional field in the protobuf # It is only set if the model support chunking if r.HasField("chunk_len"): input_length = r.chunk_len if cache_length + input_length < prompt_length: # FIXME: speculate is not supported for context chunking at the moment assert speculate == 0 assert get_support_chunking() assert input_length > 0 postfix_ids = tokenized_input[ cache_length : cache_length + input_length ] assert ( len(postfix_ids) == input_length ), "Rust and Python tokenizers are not aligned" else: # Use all the remaining ids postfix_ids = tokenized_input[cache_length:] input_length = len(postfix_ids) input_lengths.append(input_length) prefix_offsets.append(prompt_length - 5) read_offsets.append(prompt_length) all_postfix_ids.append(postfix_ids) all_input_ids.append(tokenized_input) next_token_chooser_parameters.append(r.parameters) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) max_new_tokens = stopping_criteria.max_new_tokens stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) # Paged attention # Remove one as the first token des not have a past speculative_length = get_speculate() speculative_length = 0 if speculative_length is None else speculative_length # Tokens that need to be mapped to blocks. block_tokens = prompt_length + max_new_tokens - 1 + speculative_length # blocks and slots can be empty (for example in warmup) if not r.blocks: needed_blocks = math.ceil(block_tokens / BLOCK_SIZE) request_blocks = [ b for b in range(num_blocks, num_blocks + needed_blocks) ] request_slots = [ s for b in request_blocks for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE) ] else: request_blocks = r.blocks request_slots = r.slots block_tables.append(request_blocks) block_tables_ragged.extend(request_blocks) cu_blocks.append(len(block_tables_ragged)) slots.extend(request_slots) cu_slots.append(len(slots)) cache_lengths.append(cache_length) num_blocks += len(request_blocks) # Update max_blocks = max(max_blocks, len(request_blocks)) max_input_length = max(max_input_length, input_length) max_current_length = max(max_current_length, cache_length + input_length) max_length = max( max_length, prompt_length + max_new_tokens + speculative_length, ) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser_parameters, dtype, device, tokenizer ) # Padded all_input_ids_tensor all_input_ids_tensor = np.zeros( (len(all_input_ids), max_length), dtype=np.int64 ) for i, input_ids in enumerate(all_input_ids): all_input_ids_tensor[i, : len(input_ids)] = input_ids # Create tensors on device all_input_ids_tensor = torch.tensor( all_input_ids_tensor, dtype=torch.int64, device=device ) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) block_tables_ragged = torch.tensor( block_tables_ragged, device=device, dtype=torch.int32 ) cu_blocks = torch.tensor(cu_blocks, device=device, dtype=torch.int64) block_tables_tensor = torch.empty( (len(block_tables), max_blocks), device=device, dtype=torch.int32, ) # If the device supports Triton, we can use a fused kernel if has_triton(): block_tables_to_padded( max_blocks, cu_blocks, block_tables_tensor, block_tables_ragged ) else: for i, request_blocks in enumerate(block_tables): block_tables_tensor[i, : len(request_blocks)] = torch.tensor( request_blocks ) prompt_lengths_tensor = torch.tensor( prompt_lengths, dtype=torch.int32, device=device ) slots = torch.tensor(slots, dtype=torch.int64, device=device) cu_slots = torch.tensor(cu_slots, dtype=torch.int64) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=all_postfix_ids, block_tables=block_tables, block_tables_tensor=block_tables_tensor, cache_lengths=cache_lengths, max_input_length=max_input_length, max_current_length=max_current_length, prefilling=True, prefilling_mask=[True] * len(pb.requests), prefill_logprob_tokens=[None] * len(pb.requests), input_lengths=input_lengths, prompt_lengths=prompt_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, num_blocks=num_blocks, max_blocks=max_blocks, speculative_ids=None, prompt_lengths_tensor=prompt_lengths_tensor, # These values will be set by `FlashCausalLMBatch.prepare_for_prefill` position_ids=None, cu_seqlen_prefill=None, prefill_cache_indices=None, slot_indices=None, slots=slots, cu_slots=cu_slots, prefill_head_indices=None, prefill_next_token_indices=None, prefill_cu_outlens=None, cache_lengths_tensor=None, input_lengths_tensor=None, adapter_meta=None, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "FlashCausalLMBatch": assert len(pb.requests) > 0 batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer) return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch": if len(request_ids) == 0: raise ValueError("Batch must have at least one request") # We assume that if len(requests) == len(self) then the requests are the same if len(request_ids) == len(self): return self device = self.block_tables_tensor.device # New values after filtering requests_idx_mapping = {} # Used to index into tensors indices = [] if not has_triton(): # slots to keep after filtering slot_filtering_indices = torch.zeros( self.slots.shape[0], dtype=torch.bool, device=device ) # Create on CPU to only move to GPU once instead of at every copy slot_indices = torch.empty(len(request_ids), dtype=torch.int64) max_input_length = 0 max_current_length = 0 requests = [] block_tables = [] all_input_ids = [] input_ids = [] prompt_lengths = [] input_lengths = [] cache_lengths = [] prefix_offsets = [] read_offsets = [] cu_slots = [0] prefilling_mask = [] prefill_logprob_tokens = [] stopping_criterias = [] top_n_tokens = [] adapter_set = set() num_blocks = 0 max_blocks = 0 max_slots = 0 cumulative_slot_tokens = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] indices.append(idx) requests_idx_mapping[request_id] = i requests.append(self.requests[idx]) # Prefilling request_prefilling = self.prefilling_mask[idx] prefilling_mask.append(request_prefilling) # Get length request_input_length = self.input_lengths[idx] request_cache_length = self.cache_lengths[idx] max_input_length = max(max_input_length, request_input_length) max_current_length = max( max_current_length, request_cache_length + request_input_length ) all_input_ids.append(self.all_input_ids[idx]) prompt_lengths.append(self.prompt_lengths[idx]) input_lengths.append(request_input_length) cache_lengths.append(request_cache_length) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) top_n_tokens.append(self.top_n_tokens[idx]) prefill_logprob_tokens.append(self.prefill_logprob_tokens[idx]) ADAPTER_TO_INDEX = get_adapter_to_index() adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0) adapter_set.add(adapter_index) request_block_table = self.block_tables[idx] num_blocks += len(request_block_table) block_tables.append(request_block_table) start_slot = self.cu_slots[idx] end_slot = self.cu_slots[idx + 1] slot_length = end_slot - start_slot if not has_triton(): # Set slice slot_filtering_indices[start_slot:end_slot] = True cu_slots.append(cumulative_slot_tokens + slot_length) # Input ids if the request was part of a prefilling batch # If the batch was decoding we can index into the tensor directly later if self.prefilling: input_ids.append(self.input_ids[idx]) else: # Copy to tensor (CPU) slot_indices[i] = cumulative_slot_tokens + request_cache_length cumulative_slot_tokens += slot_length max_blocks = max(max_blocks, len(request_block_table)) max_slots = max(max_slots, slot_length) all_input_ids_tensor = self.all_input_ids_tensor[indices] block_tables_tensor = self.block_tables_tensor[indices] next_token_chooser = self.next_token_chooser.filter(indices) top_n_tokens_tensor = self.top_n_tokens_tensor[indices] speculative_ids = ( self.speculative_ids[indices] if self.speculative_ids is not None else None ) prompt_lengths_tensor = self.prompt_lengths_tensor[indices] cu_slots = torch.tensor(cu_slots, dtype=torch.int64) if not has_triton(): slots = self.slots[slot_filtering_indices] else: slots = self.slots.new_empty(cumulative_slot_tokens) gpu_cu_slots = cu_slots.to(device) slots_indexing_start = self.cu_slots.to(device)[indices] slots_filtering( max_slots, self.slots, slots, gpu_cu_slots, slots_indexing_start ) if self.prefilling: # These values will be set by `FlashCausalLMBatch.prepare_for_prefill` position_ids = None slot_indices = None cache_lengths_tensor = None input_lengths_tensor = None adapter_meta = None else: # Index into tensors input_ids = self.input_ids[indices] position_ids = self.position_ids[indices] adapter_indices = self.adapter_meta.adapter_indices[indices] input_lengths_tensor = self.input_lengths_tensor[indices] cache_lengths_tensor = self.cache_lengths_tensor[indices] # Move to GPU now that we have the whole tensor slot_indices = slot_indices.to(device) adapter_segments, adapter_segment_indices = find_segments(adapter_indices) adapter_segments = torch.tensor( adapter_segments, dtype=torch.int32, device=device ) adapter_meta = AdapterBatchMetadata( adapter_indices=adapter_indices, adapter_set=adapter_set, adapter_segments=adapter_segments, segment_indices=adapter_segment_indices, ) return type(self)( batch_id=self.batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=None, prefill_cache_indices=None, slot_indices=slot_indices, block_tables=block_tables, block_tables_tensor=block_tables_tensor, slots=slots, cu_slots=cu_slots, max_input_length=max_input_length, max_current_length=max_current_length, prefilling=self.prefilling, prefilling_mask=prefilling_mask, prefill_head_indices=None, prefill_next_token_indices=None, prefill_cu_outlens=None, prefill_logprob_tokens=prefill_logprob_tokens, prompt_lengths=prompt_lengths, prompt_lengths_tensor=prompt_lengths_tensor, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, cache_lengths=cache_lengths, cache_lengths_tensor=cache_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, num_blocks=num_blocks, max_blocks=max_blocks, speculative_ids=speculative_ids, adapter_meta=adapter_meta, ) @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch": # Batch attributes requests = [] requests_idx_mapping = {} prefilling = False num_blocks = 0 total_batch_size = 0 total_slots = 0 max_blocks = 0 max_length = 0 max_input_length = 0 max_current_length = 0 for b in batches: total_batch_size += len(b) max_blocks = max(max_blocks, b.max_blocks) total_slots += len(b.slots) num_blocks += b.num_blocks speculative_length = ( b.speculative_ids.shape[1] if b.speculative_ids is not None else 0 ) max_input_length = max(max_input_length, b.max_input_length) max_current_length = max(max_current_length, b.max_current_length) max_length = max( max_length, max( prompt_length + stopping_criteria.max_new_tokens + speculative_length for prompt_length, stopping_criteria in zip( b.prompt_lengths, b.stopping_criterias ) ), ) prefilling = prefilling or b.prefilling slots = batches[0].slots.new_empty(total_slots) cu_slots = torch.zeros(total_batch_size + 1, dtype=torch.int64) if prefilling: input_ids = [] # These values will be set by `FlashCausalLMBatch.prepare_for_prefill` position_ids = None slot_indices = None cache_lengths_tensor = None input_lengths_tensor = None adapter_meta = None adapter_segment_builder = None else: input_ids = batches[0].input_ids.new_empty(total_batch_size) position_ids = batches[0].position_ids.new_empty(total_batch_size) slot_indices = batches[0].slot_indices.new_empty(total_batch_size) input_lengths_tensor = batches[0].input_lengths_tensor.new_empty( total_batch_size ) cache_lengths_tensor = batches[0].cache_lengths_tensor.new_empty( total_batch_size ) total_indices_size = sum( b.adapter_meta.adapter_indices.shape[0] for b in batches ) adapter_indices = batches[0].adapter_meta.adapter_indices.new_empty( total_indices_size ) adapter_segment_builder = SegmentConcatBuilder() adapter_set = set() prompt_lengths_tensor = batches[0].prompt_lengths_tensor.new_empty( total_batch_size ) block_tables_tensor = batches[0].block_tables_tensor.new_zeros( (total_batch_size, max_blocks) ) all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros( (total_batch_size, max_length) ) top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros( total_batch_size, ) block_tables = [] cache_lengths = [] all_input_ids = [] prompt_lengths = [] input_lengths = [] prefix_offsets = [] read_offsets = [] prefill_logprob_tokens = [] next_token_chooser_parameters = [] fsm_grammar_states = [] stopping_criterias = [] top_n_tokens = [] prefilling_mask = [] # Cumulative length cumulative_batch_size = 0 cumulative_slots = 0 cumulative_adapter_indices_size = 0 for i, batch in enumerate(batches): requests.extend(batch.requests) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + cumulative_batch_size start_index = cumulative_batch_size end_index = cumulative_batch_size + len(batch) # Copy tensors (GPU) top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor all_input_ids_tensor[ start_index:end_index, : batch.all_input_ids_tensor.shape[1] ] = batch.all_input_ids_tensor[:, :max_length] block_tables_tensor[ start_index:end_index, : batch.block_tables_tensor.shape[1] ] = batch.block_tables_tensor[:, :max_blocks] prompt_lengths_tensor[start_index:end_index] = batch.prompt_lengths_tensor slots_start_index = cumulative_slots slots_end_index = cumulative_slots + len(batch.slots) slots[slots_start_index:slots_end_index] = batch.slots cu_slots[start_index + 1 : end_index + 1] = ( batch.cu_slots[1:] + cumulative_slots ) if not prefilling: input_ids[start_index:end_index] = batch.input_ids position_ids[start_index:end_index] = batch.position_ids slot_indices[start_index:end_index] = ( batch.slot_indices + cumulative_slots ) input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor cache_lengths_tensor[start_index:end_index] = batch.cache_lengths_tensor # Copy over adapter indices adapter_start_index = cumulative_adapter_indices_size adapter_end_index = ( cumulative_adapter_indices_size + batch.adapter_meta.adapter_indices.shape[0] ) adapter_indices[adapter_start_index:adapter_end_index] = ( batch.adapter_meta.adapter_indices ) cumulative_adapter_indices_size = adapter_end_index adapter_set.update(batch.adapter_meta.adapter_set) adapter_segment_builder.concat( batch.adapter_meta.adapter_segments, batch.adapter_meta.segment_indices, ) else: if isinstance(batch.input_ids, torch.Tensor): batch.input_ids = batch.input_ids.view(-1, 1).tolist() input_ids.extend(batch.input_ids) prefilling_mask.extend(batch.prefilling_mask) block_tables.extend(batch.block_tables) cache_lengths.extend(batch.cache_lengths) all_input_ids.extend(batch.all_input_ids) prompt_lengths.extend(batch.prompt_lengths) input_lengths.extend(batch.input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) prefill_logprob_tokens.extend(batch.prefill_logprob_tokens) next_token_chooser_parameters.extend([r.parameters for r in batch.requests]) fsm_grammar_states.extend(batch.next_token_chooser.fsm_grammar_states) stopping_criterias.extend(batch.stopping_criterias) top_n_tokens.extend(batch.top_n_tokens) # Update cumulative_slots += len(batch.slots) cumulative_batch_size += len(batch) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser_parameters, dtype=batches[0].next_token_chooser.dtype, device=batches[0].next_token_chooser.device, tokenizer=batches[0].next_token_chooser.tokenizer, fsm_grammar_states=fsm_grammar_states, ) # We skip computing the speculative_ids when the batch size is too large, so # we must check that all batches have them, otherwise they must be discarded if get_speculate() > 0 and all(b.speculative_ids is not None for b in batches): speculative_ids = torch.cat([b.speculative_ids for b in batches], dim=0) else: speculative_ids = None if adapter_segment_builder is not None: adapter_segments, adapter_segment_indices = adapter_segment_builder.build() adapter_meta = AdapterBatchMetadata( adapter_indices=adapter_indices, adapter_set=adapter_set, adapter_segments=adapter_segments, segment_indices=adapter_segment_indices, ) return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=None, prefill_cache_indices=None, slot_indices=slot_indices, block_tables=block_tables, block_tables_tensor=block_tables_tensor, cache_lengths=cache_lengths, cache_lengths_tensor=cache_lengths_tensor, slots=slots, cu_slots=cu_slots, max_input_length=max_input_length, max_current_length=max_current_length, prefilling=prefilling, prefilling_mask=prefilling_mask, prefill_head_indices=None, prefill_next_token_indices=None, prefill_cu_outlens=None, prefill_logprob_tokens=prefill_logprob_tokens, prompt_lengths=prompt_lengths, prompt_lengths_tensor=prompt_lengths_tensor, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, num_blocks=num_blocks, max_blocks=max_blocks, speculative_ids=speculative_ids, adapter_meta=adapter_meta, ) def prepare_for_prefill(self): # Prepare values if we need to continue prefilling # Speculation must be ignored while we prefill even with chunking # it simplifies everything assert self.speculative_ids is None device = self.block_tables_tensor.device if isinstance(self.input_ids, list): if len(self) > 1: input_ids = np.concatenate(self.input_ids, dtype=np.int64) else: input_ids = self.input_ids[0] self.input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device) self.input_lengths_tensor = torch.tensor( self.input_lengths, dtype=torch.int32, device=device ) cu_seqlen_prefill = self.input_lengths_tensor.new_zeros(len(self) + 1) torch.cumsum(self.input_lengths_tensor, out=cu_seqlen_prefill[1:], dim=0) self.cu_seqlen_prefill = cu_seqlen_prefill.to(torch.int32) self.cache_lengths_tensor = torch.tensor( self.cache_lengths, dtype=torch.int32, device=device ) # If the device supports Triton, we can use a fused kernel if has_triton(): self.position_ids = torch.empty( len(self.input_ids), dtype=torch.int32, device=device ) self.slot_indices = torch.empty( len(self.input_ids), dtype=torch.int64, device=device ) cu_slots_gpu = self.cu_slots.to(device) prepare_position_slot_ids( self.max_input_length, self.cache_lengths_tensor, self.cu_seqlen_prefill, cu_slots_gpu, self.position_ids, self.slot_indices, ) sliding_window = get_sliding_windows() position_ids = [] slot_indices = [] prefill_cache_indices = [] all_prefill_logprobs = True no_prefill_logprobs = True prefill_cu_outlens = [0] # Cumulative length cumulative_length = 0 cumulative_slot_tokens = 0 prefill_out_cumulative_length = 0 adapter_indices_list = [] adapter_set = set() for i, ( r, cache_length, input_length, prompt_length, request_prefilling, blocks, ) in enumerate( zip( self.requests, self.cache_lengths, self.input_lengths, self.prompt_lengths, self.prefilling_mask, self.block_tables, ) ): next_chunk_length = input_length if not has_triton(): # Position ids request_position_ids = torch.arange( cache_length, cache_length + input_length, dtype=torch.int32 ) position_ids.append(request_position_ids) if not r.slots: request_slots = [ s for b in blocks for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE) ] else: request_slots = r.slots request_slot_indices = torch.arange( cache_length + cumulative_slot_tokens, cache_length + cumulative_slot_tokens + input_length, dtype=torch.int64, ) slot_indices.append(request_slot_indices) # Update cumulative_slot_tokens += len(request_slots) # Create tensor to slice into the kv tensor in prefill if sliding_window is not None: request_prefill_cache_indices = torch.arange( cumulative_length + max(0, input_length - sliding_window), cumulative_length + input_length, dtype=torch.int64, ) # Prefill logprobs is ignored if the request is done prefilling prefill_logprobs = r.prefill_logprobs and request_prefilling all_prefill_logprobs = all_prefill_logprobs and prefill_logprobs no_prefill_logprobs = no_prefill_logprobs and not prefill_logprobs if prefill_logprobs: prefill_cu_outlens.append(prefill_out_cumulative_length + input_length) prefill_out_cumulative_length += input_length else: prefill_cu_outlens.append(prefill_out_cumulative_length + 1) prefill_out_cumulative_length += 1 if sliding_window is not None: prefill_cache_indices.append(request_prefill_cache_indices) ADAPTER_TO_INDEX = get_adapter_to_index() if ADAPTER_TO_INDEX: adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0) adapter_indices_list.append( torch.full((next_chunk_length,), adapter_index) ) adapter_set.add(adapter_index) # Update cumulative_length += next_chunk_length if not all_prefill_logprobs and not no_prefill_logprobs: prefill_head_indices = [] prefill_next_token_indices = [] # Cumulative length cumulative_length = 0 prefill_out_cumulative_length = 0 for i, ( r, input_length, request_prefilling, ) in enumerate( zip( self.requests, self.input_lengths, self.prefilling_mask, ) ): # Prefill logprobs is ignored if the request is done prefilling prefill_logprobs = r.prefill_logprobs and request_prefilling if prefill_logprobs: prefill_head_indices.append( torch.arange( cumulative_length, cumulative_length + input_length, dtype=torch.int64, ) ) prefill_next_token_indices.append( prefill_out_cumulative_length + input_length - 1 ) prefill_out_cumulative_length += input_length else: prefill_head_indices.append( torch.tensor( [cumulative_length + input_length - 1], dtype=torch.int64, ) ) prefill_next_token_indices.append(prefill_out_cumulative_length) prefill_out_cumulative_length += 1 # Update cumulative_length += input_length if len(self) > 1: if position_ids: position_ids = torch.cat(position_ids) if slot_indices: slot_indices = torch.cat(slot_indices) if sliding_window is not None: prefill_cache_indices = torch.cat(prefill_cache_indices) else: if position_ids: position_ids = position_ids[0] if slot_indices: slot_indices = slot_indices[0] if sliding_window is not None: prefill_cache_indices = prefill_cache_indices[0] if not has_triton(): self.position_ids = position_ids.to(device) self.slot_indices = slot_indices.to(device) self.prefill_cu_outlens = prefill_cu_outlens self.prefill_cache_indices = ( prefill_cache_indices.to(device) if sliding_window is not None else None ) if all_prefill_logprobs: prefill_head_indices = None prefill_next_token_indices = self.cu_seqlen_prefill[1:] - 1 elif no_prefill_logprobs: prefill_head_indices = self.cu_seqlen_prefill[1:] - 1 prefill_next_token_indices = None else: prefill_head_indices = torch.cat(prefill_head_indices).to(device) prefill_next_token_indices = torch.tensor( prefill_next_token_indices, dtype=torch.int64, device=device ) self.prefill_head_indices = prefill_head_indices self.prefill_next_token_indices = prefill_next_token_indices if adapter_set: adapter_indices = torch.cat(adapter_indices_list).to( dtype=torch.int64, device=device ) adapter_segments, adapter_segment_indices = find_segments(adapter_indices) else: adapter_indices = torch.zeros_like(self.input_ids) adapter_segments = [0, len(adapter_indices)] adapter_segment_indices = [len(adapter_indices) - 1] adapter_segments = torch.tensor( adapter_segments, dtype=torch.int32, device=device ) self.adapter_meta = AdapterBatchMetadata( adapter_indices=adapter_indices, adapter_set=adapter_set, adapter_segments=adapter_segments, segment_indices=adapter_segment_indices, ) def __len__(self): return len(self.requests) ADAPTER_LAYERS = [ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", ] ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"} class FlashCausalLM(Model): def __init__( self, model_id: str, model_class, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, lora_adapter_ids: Optional[list] = [], tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer, config_class: PreTrainedTokenizerBase = AutoConfig, default_dtype=torch.float16, aliases=None, # Used for Santacoder override of config num_kv_heads: Optional[int] = None, # Deepseek V2 uses different QK and V dims. head_size: Optional[int] = None, skip_special_tokens: bool = True, kv_cache_dtype: Optional[torch.dtype] = None, support_chunking: bool = True, ): self.quantize = quantize self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = default_dtype if dtype is None else dtype elif SYSTEM == "ipex": if hasattr(torch, "xpu") and torch.xpu.is_available(): device = torch.device(f"xpu:{rank}") dtype = default_dtype if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.bfloat16 if dtype is None else dtype init_cpu_threads_env(rank_id=rank, world_size=world_size) else: raise NotImplementedError(f"{model_class} is only available on GPU") tokenizer = tokenizer_class.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) try: generation_config = GenerationConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) if isinstance(generation_config.eos_token_id, (list, set)): # TODO Huge hack tokenizer._eos_token_ids = set(generation_config.eos_token_id) except Exception: pass config = config_class.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize config.speculator = speculator torch.distributed.barrier(group=self.process_group) weights_loader = get_loader(quantize, model_id, revision) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device, dtype, process_group=self.process_group, aliases=aliases, weights_loader=weights_loader, ) prefix = None model = model_class(prefix, config, weights) torch.distributed.barrier(group=self.process_group) # VLM models define the config we care about in their text_config text_config = getattr(config, "text_config", None) if text_config is not None: config = text_config if getattr(config, "sliding_window", None) is not None: set_sliding_window(config.sliding_window) else: config.sliding_window = None self.num_layers = config.num_hidden_layers self.num_heads = config.num_attention_heads // self.process_group.size() self.config = config # Validation is done in the model itself if num_kv_heads is None: num_kv_heads = getattr(config, "num_key_value_heads", None) # GPT-2 workaround if num_kv_heads is None: num_kv_heads = getattr(config, "n_head", None) if num_kv_heads is None: raise ValueError("Cannot get the number of key/value heads") self.num_kv_heads = ( num_kv_heads // self.process_group.size() if num_kv_heads > 1 else num_kv_heads ) assert self.num_kv_heads > 0 if head_size is None: # Some models use GQA and different sizes for o_proj # and q_proj, that allows for that. if hasattr(config, "head_dim"): self.head_size = config.head_dim else: self.head_size = config.hidden_size // config.num_attention_heads else: self.head_size = head_size self.cuda_graphs = {} self.kv_cache = [] self.kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype if ATTENTION == "flashinfer": from text_generation_server.layers.attention.flashinfer import ( create_prefill_state, create_decode_state, create_prefill_with_paged_kv_state, ) self.prefill_state = create_prefill_state(device=device) self.prefill_with_paged_kv_state = create_prefill_with_paged_kv_state( device=device ) self.decode_state = create_decode_state( device=device, num_heads=self.num_heads, num_kv_heads=self.num_kv_heads, ) super().__init__( model_id=model_id, model=model, tokenizer=tokenizer, requires_padding=False, dtype=dtype, device=device, rank=rank, world_size=world_size, sliding_window=config.sliding_window, support_chunking=support_chunking, ) @property def batch_type(self) -> Type[FlashCausalLMBatch]: return FlashCausalLMBatch def max_past(self) -> int: return getattr(self.model, "max_past", None) def init_kv_cache( self, num_blocks: int, num_layers: int, num_heads: int, head_size: int, dtype: torch.dtype, device: torch.device, ): self.kv_cache = [] empty_cache() self.kv_cache = [ KVCache( num_blocks=num_blocks, num_heads=num_heads, head_size=head_size, dtype=dtype, device=device, ) for _ in range(num_layers) ] def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int): max_bs = max(self.cuda_graphs.keys()) if self.cuda_graphs else None input_lengths = [max_s] * bs cache_lengths = [0] * bs if max_bs is None: input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device) position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device) config = getattr(self.model, "config", None) rope_scaling = getattr(config, "rope_scaling", None) if config else None if ( # mrope have position_ids per section, if so repeat n times isinstance(rope_scaling, dict) and rope_scaling["rope_type"] == "mrope" ): n_sections = len(self.model.config.rope_scaling["mrope_section"]) position_ids = position_ids.unsqueeze(1).repeat(1, n_sections) slots = torch.arange(bs, dtype=torch.int64, device=self.device) input_lengths_tensor = ( torch.ones(bs, dtype=torch.int32, device=self.device) * max_s ) cache_lengths_tensor = torch.zeros( bs, dtype=torch.int32, device=self.device ) block_tables = torch.arange( max_bt, dtype=torch.int32, device=self.device ).repeat(bs) block_tables = block_tables.reshape((bs, max_bt)) if ATTENTION == "flashinfer": block_tables = block_tables_to_ragged( block_tables=block_tables, input_lengths=input_lengths, cache_lengths=cache_lengths, input_lengths_tensor=input_lengths_tensor, cache_lengths_tensor=cache_lengths_tensor, max_current_length=max_s, ) else: if bs > max_bs: raise RuntimeError( "Cuda graphs should be generated in decreasing order size to reduce VRAM usage" ) input_ids = self.cuda_graphs[max_bs]["input_ids"][:bs] position_ids = self.cuda_graphs[max_bs]["position_ids"][:bs] if ATTENTION == "flashinfer": block_tables = self.cuda_graphs[max_bs]["block_tables"][: bs * max_bt] else: block_tables = self.cuda_graphs[max_bs]["block_tables"][:bs] slots = self.cuda_graphs[max_bs]["slots"][:bs] input_lengths_tensor = self.cuda_graphs[max_bs]["input_lengths"][:bs] cache_lengths_tensor = self.cuda_graphs[max_bs]["cache_lengths"][:bs] if ATTENTION == "flashinfer": from text_generation_server.layers.attention.flashinfer import ( create_decode_state_cuda_graphs, ) block_tables_ptr = torch.zeros( bs + 1, dtype=torch.int32, device=self.device ) last_page_len = torch.ones(bs, dtype=torch.int32, device=self.device) state = create_decode_state_cuda_graphs( device=input_ids.device, block_tables=block_tables, block_tables_ptr=block_tables_ptr, last_page_len=last_page_len, num_heads=self.num_heads, num_kv_heads=self.num_kv_heads, ) else: state = None graph = torch.cuda.CUDAGraph() self.cuda_graphs[bs] = { "input_ids": input_ids, "position_ids": position_ids, "kv_cache": self.kv_cache, "block_tables": block_tables, "slots": slots, "input_lengths": input_lengths_tensor, "cache_lengths": cache_lengths_tensor, "state": state, "graph": graph, } torch.cuda.synchronize() # Run once outside to warmup with self._forward_context( block_tables=block_tables, cu_seqlen_prefill=None, input_lengths_tensor=input_lengths_tensor, state=state, cache_lengths_tensor=cache_lengths_tensor, ): seqlen = Seqlen( input_lengths=input_lengths_tensor, cache_lengths=cache_lengths_tensor, cu_seqlen_q=None, max_q=1, max_k=max_s, ) self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=None, kv_cache=self.kv_cache, block_tables=block_tables, slots=slots, seqlen=seqlen, max_s=max_s, prefill_cache_indices=None, lm_head_indices=None, ) del seqlen torch.cuda.synchronize() with torch.cuda.graph(graph, pool=MEM_POOL): seqlen = Seqlen( input_lengths=input_lengths_tensor, cache_lengths=cache_lengths_tensor, cu_seqlen_q=None, max_q=1, max_k=max_s, ) logits, speculative_logits = self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=None, kv_cache=self.kv_cache, block_tables=block_tables, slots=slots, seqlen=seqlen, max_s=max_s, prefill_cache_indices=None, lm_head_indices=None, ) self.cuda_graphs[bs]["logits"] = logits self.cuda_graphs[bs]["speculative_logits"] = speculative_logits torch.cuda.synchronize() def warmup( self, batch: FlashCausalLMBatch, max_input_tokens: Optional[int], max_total_tokens: Optional[int], ): # The warmup batch is the biggest batch we could ever receive self.kv_cache = [] empty_cache() # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm) # Calculate the number of blocks that can be allocated with the free memory dtype_size = torch.tensor([], dtype=self.kv_cache_dtype).element_size() cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size try: self.init_kv_cache( batch.num_blocks, self.num_layers, self.num_kv_heads, self.head_size, self.kv_cache_dtype, self.device, ) batch_num_blocks = batch.num_blocks num_tokens = batch.to_pb().current_tokens if SYSTEM == "rocm" and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False): torch.cuda.tunable.tuning_enable(False) synchronize(self.device) free_memory = get_free_memory( self.device, MEMORY_FRACTION * TGI_WIGGLE_ROOM ) real_free_memory = get_free_memory(self.device, MEMORY_FRACTION) log_master( logger.debug, f"Free memory {free_memory / 1e9:.2f}GB , (real: {real_free_memory / 1e9:.2f}GB", ) _, _batch, _ = self.generate_token(batch) except torch.cuda.OutOfMemoryError as e: raise RuntimeError( f"Not enough memory to handle {num_tokens} prefill tokens. " f"You need to decrease `--max-batch-prefill-tokens`" ) from e synchronize(self.device) free_memory = get_free_memory(self.device, MEMORY_FRACTION * TGI_WIGGLE_ROOM) kv_memory = free_memory num_blocks = ( # Leave 5% for some wiggle room int(kv_memory // total_cache_size) # Add batch.num_blocks as we allocated it above, so it is included in the peak memory. + batch_num_blocks ) log_master(logger.info, f"KV-cache blocks: {num_blocks}, size: {BLOCK_SIZE}") if max_total_tokens is None: if get_support_chunking(): model_max_length = self.tokenizer.model_max_length max_position_embeddings = getattr( self.config, "max_position_embeddings", model_max_length ) max_total_tokens = min( num_blocks * BLOCK_SIZE, model_max_length, max_position_embeddings ) else: max_total_tokens = sum(batch.cache_lengths) if max_input_tokens is None: max_input_tokens = max_total_tokens - 1 del _batch, batch self.kv_cache = [] empty_cache() self.init_kv_cache( num_blocks, self.num_layers, self.num_kv_heads, self.head_size, self.kv_cache_dtype, self.device, ) if SYSTEM == "rocm": if ( os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1" ): torch.cuda.tunable.enable() if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0": torch.cuda.tunable.tuning_enable(True) if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None: tuning_sequences = [ int(val) for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",") ] elif CUDA_GRAPHS is not None: tuning_sequences = CUDA_GRAPHS else: tuning_sequences = [1, 2, 3, 4, 5, 6, 7] tunableop_filepath = os.path.join( HUGGINGFACE_HUB_CACHE, f"tunableop_{self.model_id.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv", ) log_master( logger.info, f"PyTorch TunableOp is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.", ) torch.cuda.tunable.set_filename( tunableop_filepath, insert_device_ordinal=False ) if os.path.isfile(tunableop_filepath): log_master( logger.info, f"The file {tunableop_filepath} already exists and will be reused.", ) torch.cuda.tunable.read_file(tunableop_filepath) os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True) for seqlen in tuning_sequences: log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}") self.tunableop_warmup(seqlen, max_total_tokens) torch.cuda.tunable.write_file(tunableop_filepath) if os.environ.get("PYTORCH_TUNABLEOP_TUNING_AFTER_WARMUP") != "1": torch.cuda.tunable.tuning_enable(False) else: log_master( logger.info, "PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp.", ) if CUDA_GRAPHS: try: log_master( logger.info, f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}" ) # Warmup cuda graphs for bs in CUDA_GRAPHS: synchronize(self.device) free_memory = get_free_memory( self.device, MEMORY_FRACTION * TGI_WIGGLE_ROOM ) log_master( logger.debug, f"Free RAM before cuda graph {bs} {free_memory / 1e9:.2f}GB", ) if self.speculate is None or self.speculate + 1 <= bs: self.cuda_graph_warmup(bs, max_total_tokens, max_total_tokens) empty_cache() synchronize(self.device) free_memory = get_free_memory( self.device, MEMORY_FRACTION * TGI_WIGGLE_ROOM ) log_master( logger.debug, f"Free RAM after cuda graphs {free_memory / 1e9:.2f}GB", ) except torch.cuda.OutOfMemoryError: logger.exception("Decode cuda graph warmup failed") else: log_master( logger.info, f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS})." ) assert max_input_tokens is not None assert max_total_tokens is not None return int(num_blocks * BLOCK_SIZE), max_input_tokens, max_total_tokens def tunableop_warmup(self, seqlen: int, max_bt: int): input_ids = torch.zeros(seqlen, dtype=torch.int64, device=self.device) position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device) slots = torch.arange(seqlen, dtype=torch.int64, device=self.device) # Dummy value, some models (starcoder2) don't accept `None`. input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device) cache_lengths_tensor = torch.zeros( seqlen, dtype=torch.int32, device=self.device ) cu_seqlen_prefill = torch.tensor( [0, seqlen], device=self.device, dtype=torch.int32 ) max_s = seqlen block_tables = torch.arange( max_bt, dtype=torch.int32, device=self.device ).repeat(seqlen) block_tables = block_tables.reshape((seqlen, max_bt)) seqlen = Seqlen( input_lengths=input_lengths, cache_lengths=cache_lengths_tensor, max_k=seqlen, ) # We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation. self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=self.kv_cache, block_tables=block_tables, seqlen=seqlen, slots=slots, max_s=max_s, lm_head_indices=None, prefill_cache_indices=None, ) def forward( self, batch: FlashCausalLMBatch, adapter_data: AdapterBatchData ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: # Model Forward if batch.speculative_ids is not None: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = self.kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_current_length lm_head_indices = batch.prefill_head_indices speculative_ids = batch.speculative_ids B, speculative_length = speculative_ids.shape new_length = speculative_length + 1 new_input_ids = torch.cat( [input_ids.unsqueeze(-1), speculative_ids], dim=1 ).reshape(-1) arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) arange_int = arange.to(dtype=torch.int32) new_position_ids = ( position_ids.unsqueeze(-1).expand(B, new_length) + arange ).view(-1) # Slots can be discontiguous when prefix caching is enabled, so we need to expand the slot_indices, # then update the slots with the additional indices to ensure we're grabbing the ones that have been # allocated slot_indices = ( batch.slot_indices.unsqueeze(-1).expand(B, new_length) + arange_int ).view(-1) slots = batch.slots[slot_indices] input_lengths = ( input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int ).view(-1) cache_lengths_tensor = ( batch.cache_lengths_tensor.unsqueeze(-1).expand(B, new_length) ).reshape(-1) # Add Copy the block tables for all members block_tables = ( block_tables.unsqueeze(1) .expand(B, new_length, -1) .reshape(B * new_length, -1) .contiguous() ) max_s = max_s + speculative_length input_ids = new_input_ids position_ids = new_position_ids else: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = self.kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor cache_lengths_tensor = batch.cache_lengths_tensor max_s = batch.max_current_length lm_head_indices = batch.prefill_head_indices if cu_seqlen_prefill is None and self.max_past() is not None: # In decode, not prefill, we're actually overwriting the KV-cache # in a circular buffer mode. # This makes sure the max_s for the decode pass is correct. max_s = min(self.max_past(), max_s) bs = input_ids.shape[0] sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs]) if sorted_padded_bs: # Get associated cuda graph cuda_graph = self.cuda_graphs[sorted_padded_bs[0]] else: cuda_graph = None if cu_seqlen_prefill is not None or cuda_graph is None: if ATTENTION == "flashinfer": block_tables = block_tables_to_ragged( block_tables=block_tables, input_lengths=batch.input_lengths, cache_lengths=batch.cache_lengths, input_lengths_tensor=batch.input_lengths_tensor, cache_lengths_tensor=batch.cache_lengths_tensor, max_current_length=batch.max_current_length, ) with self._forward_context( block_tables=block_tables, cu_seqlen_prefill=cu_seqlen_prefill, input_lengths_tensor=input_lengths, cache_lengths_tensor=cache_lengths_tensor, ): seqlen = Seqlen( input_lengths=input_lengths, cache_lengths=cache_lengths_tensor, cu_seqlen_q=cu_seqlen_prefill, max_q=batch.max_input_length, max_k=batch.max_current_length, ) logits, speculative_logits = self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=kv_cache, block_tables=block_tables, slots=slots, seqlen=seqlen, max_s=max_s, prefill_cache_indices=batch.prefill_cache_indices, lm_head_indices=lm_head_indices, adapter_data=adapter_data, ) if batch.prefill_cache_indices is not None: batch.prefill_cache_indices = None return logits, speculative_logits # Copy inputs to the static inputs of the cuda graph # Static inputs are potentially padded cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids cuda_graph["position_ids"][: position_ids.shape[-1]] = position_ids if ATTENTION == "flashinfer": block_tables = block_tables_to_ragged( block_tables=block_tables, input_lengths=batch.input_lengths, cache_lengths=batch.cache_lengths, input_lengths_tensor=batch.input_lengths_tensor, cache_lengths_tensor=batch.cache_lengths_tensor, max_current_length=batch.max_current_length, ) # assert block_tables.shape[0] >= slots.shape[0] cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables else: cuda_graph["block_tables"][ : block_tables.shape[0], : block_tables.shape[1] ] = block_tables # XXX: This is working only because block 0 is reserved for the healthcheck # so it doesn't matter if we override it with bogus values. cuda_graph["slots"].fill_(0) cuda_graph["slots"][: slots.shape[0]] = slots cuda_graph["input_lengths"].zero_() cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths cuda_graph["cache_lengths"].zero_() cuda_graph["cache_lengths"][ : cache_lengths_tensor.shape[0] ] = cache_lengths_tensor with self._forward_context( block_tables=cuda_graph["block_tables"], cu_seqlen_prefill=None, input_lengths_tensor=cuda_graph["input_lengths"], cache_lengths_tensor=cuda_graph["cache_lengths"], state=cuda_graph["state"], ): # Replay the graph cuda_graph["graph"].replay() # Slice output to the correct shape speculative_logits = ( cuda_graph["speculative_logits"][:bs] if cuda_graph["speculative_logits"] is not None else None ) logits = cuda_graph["logits"][:bs] return logits, speculative_logits @tracer.start_as_current_span("generate_token") def generate_token( self, batch: FlashCausalLMBatch ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]: start = time.time_ns() prefill = batch.prefilling if prefill: batch.prepare_for_prefill() prefill_logprobs = batch.prefill_next_token_indices is not None # Update adapter indices for speculative tokens (if present) adapter_meta = batch.adapter_meta if batch.speculative_ids is not None: B, speculative_length = batch.speculative_ids.shape new_length = speculative_length + 1 adapter_indices = ( adapter_meta.adapter_indices.unsqueeze(-1) .expand(B, new_length) .reshape(-1) ) adapter_segments = adapter_meta.adapter_segments * new_length adapter_meta = AdapterBatchMetadata( adapter_indices=adapter_indices, adapter_set=adapter_meta.adapter_set, adapter_segments=adapter_segments, segment_indices=adapter_meta.segment_indices, ) # Assign pointers to adapter weights # TODO(travis): don't update this if indices haven't changed adapter_data = AdapterBatchData.from_meta( adapter_meta, self.layer_to_adapter_weights, prefill, batch.prefill_head_indices, ) out, speculative_logits = self.forward(batch, adapter_data) if prefill: next_token_logits = ( out[batch.prefill_next_token_indices] if prefill_logprobs else out ) if speculative_logits is not None: speculative_logits = ( speculative_logits[batch.prefill_next_token_indices] if prefill_logprobs else speculative_logits ) if len(batch) > 1 and prefill_logprobs: # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs # When batch == 1, we will just use the batch.input_ids values directly prefill_tokens_indices = batch.input_ids.new_zeros(len(out)) else: prefill_logprobs = None next_token_logits = out finished_prefilling = True next_chunk_lengths = [] current_prefilling_mask = batch.prefilling_mask if prefill: if get_support_chunking(): next_prefilling_mask = [] # Budget in tokens for the next batch # We remove (len(batch) - 1) to always have enough space for at least a single decode # for the remaining requests -1 because the first request does not need to be removed from the budget # (ex: you have one request in the batch, you want it to take the full budget not budget -1) batch_budget = get_max_prefill_tokens() - (len(batch) - 1) # We reverse to prioritize older requests # zip() is not reversible so reverse the underlying lists instead for cache_length, input_length, prompt_length in zip( reversed(batch.cache_lengths), reversed(batch.input_lengths), reversed(batch.prompt_lengths), ): remaining_prefill_tokens = max( prompt_length - cache_length - input_length, 0 ) if remaining_prefill_tokens > 0: next_chunk_length = max( min(remaining_prefill_tokens, batch_budget), 1 ) batch_budget -= next_chunk_length finished_prefilling = False next_prefilling_mask.append(True) else: # FIXME: use true number of accepted tokens instead of 1 # Since speculation will be turned off, this is always true next_chunk_length = 1 next_prefilling_mask.append(False) next_chunk_lengths.append(next_chunk_length) # Reverse back the obtained values² next_chunk_lengths.reverse() next_prefilling_mask.reverse() else: # The model does not support chunking # We know we only do a single prefill finished_prefilling = True next_prefilling_mask = [False] * len(batch) batch.prefilling = not finished_prefilling batch.prefilling_mask = next_prefilling_mask speculate = get_speculate() ( next_input_ids, next_token_logprobs, logprobs, accepted_ids, speculative_ids, ) = batch.next_token_chooser( batch.all_input_ids_tensor[:, : batch.max_current_length], next_token_logits, speculate, batch.speculative_ids, speculative_logits, ) batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids ) # Since we are done prefilling, all the tensors that were concatenating values for all the requests # instantly become of shape [BATCH_SIZE] if prefill and finished_prefilling: indices = batch.cu_seqlen_prefill[1:] - 1 batch.position_ids = batch.position_ids[indices] batch.slot_indices = batch.slot_indices[indices] batch.adapter_meta.adapter_indices = batch.adapter_meta.adapter_indices[ indices ] # Zipped iterator iterator = zip( batch.requests, batch.prompt_lengths, batch.cache_lengths, batch.input_lengths, batch.all_input_ids, accepted_ids, current_prefilling_mask, batch.prefilling_mask, ) # We do two for loops as the first one can run completely asynchronously from the GPU while for the second # one, we need to first do a GPU <-> CPU sync # It is faster if we delay this sync for the maximum amount of time # For each member of the batch # Cumulative length cu_accepted_ids = accepted_ids.new_zeros(accepted_ids.shape[0] + 1) torch.cumsum(accepted_ids, dim=0, out=cu_accepted_ids[1:]) cumulative_length = 0 for i, ( request, prompt_length, cache_length, input_length, all_input_ids, n_accepted_ids, request_was_prefilling, request_is_prefilling, ) in enumerate(iterator): # Used to gather prefill logprobs # Copy batch.all_input_ids_tensor to prefill_token_indices if request.prefill_logprobs and request_was_prefilling: # Indexing metadata out_start_index = batch.prefill_cu_outlens[i] out_end_index = batch.prefill_cu_outlens[i + 1] # Logprobs generated by the model are for the next token # So we need to translate the id tensor by 1 ids = batch.all_input_ids_tensor[ i, cache_length + 1 : cache_length + input_length + 1 ] if len(batch) > 1: prefill_tokens_indices[out_start_index:out_end_index] = ids else: # Set prefill_tokens_indices to the correct slice prefill_tokens_indices = ids # If the device does not support triton, we copy one by one if not request_is_prefilling and not has_triton(): # Only save tokens if we are done prefilling for this request batch.all_input_ids_tensor[ i, batch.cache_lengths_tensor[i] + batch.input_lengths[i] : batch.cache_lengths_tensor[i] + batch.input_lengths[i] + accepted_ids[i], ] = next_input_ids[cu_accepted_ids[i] : cu_accepted_ids[i + 1]] cumulative_length += input_length # If the device support triton, we can use a fused kernel if has_triton(): copy_next_input_ids_inplace( speculate + 1, batch.all_input_ids_tensor, batch.cache_lengths_tensor, batch.input_lengths_tensor, batch.prompt_lengths_tensor, next_input_ids, cu_accepted_ids, ) # Update values # These values can be updated without a GPU -> CPU sync if not prefill or (prefill and finished_prefilling): batch.input_ids = next_input_ids[cu_accepted_ids[1:] - 1] batch.speculative_ids = speculative_ids batch.position_ids += accepted_ids batch.cache_lengths_tensor += batch.input_lengths_tensor + accepted_ids - 1 batch.input_lengths_tensor = torch.ones_like(batch.input_lengths_tensor) batch.slot_indices += accepted_ids if prefill and prefill_logprobs: # Get prefill logprobs with inplace softmax (avoid copying the `out` tensor (max_batch_prefill_tokens * vocab_size)) torch.log_softmax(out, -1, out=out) prefill_logprobs_tensor = out prefill_logprobs = torch.gather( prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1) ) # GPU <-> CPU sync prefill_logprobs = prefill_logprobs.view(-1).tolist() # Does a GPU <-> CPU sync internally if prefill and finished_prefilling: # adjust segment lengths to account for all request lengths being 1 during decoding adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices) batch.adapter_meta.adapter_segments = torch.tensor( adapter_segments, dtype=torch.int32, device=batch.adapter_meta.adapter_segments.device, ) # GPU <-> CPU sync next_token_logprobs = next_token_logprobs.tolist() next_token_ids = next_input_ids.tolist() accepted_ids = accepted_ids.tolist() # Update values if we need to continue prefilling # This represents the `else` case of the `Update values` if above # but since this require the `next_token_ids` to be on CPU, it is better to do it here if prefill and not finished_prefilling: # Speculation must be ignored while we prefill even with chunking # it simplifies everything assert batch.speculative_ids is None all_postfix_ids = [] for i, ( request_prefilling, next_token_id, all_input_ids, cache_length, input_length, next_chunk_length, ) in enumerate( zip( batch.prefilling_mask, next_token_ids, batch.all_input_ids, batch.cache_lengths, batch.input_lengths, next_chunk_lengths, ) ): if request_prefilling: next_cache_length = cache_length + input_length # Get new prompt IDs to prefill postfix_ids = all_input_ids[ next_cache_length : next_cache_length + next_chunk_length ] else: # This request is done prefilling, the new id is the one selected the sampling method postfix_ids = [next_token_id] all_postfix_ids.append(postfix_ids) batch.input_ids = all_postfix_ids start_decode = time.time_ns() # Results generations: List[Generation] = [] stopped = True # Zipped iterator iterator = zip( batch.requests, batch.prompt_lengths, batch.cache_lengths, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, batch.stopping_criterias, batch.all_input_ids, batch.next_token_chooser.do_sample, batch.next_token_chooser.seeds, batch.top_n_tokens, current_prefilling_mask, batch.prefilling_mask, accepted_ids, batch_top_token_ids, batch_top_token_logprobs, ) # Reset max_input_length batch.max_input_length = 0 # For each member of the batch index = 0 for i, ( request, prompt_length, cache_length, input_length, prefix_offset, read_offset, stopping_criteria, all_input_ids, do_sample, seed, top_n_tokens, request_was_prefilling, request_is_prefilling, n_accepted_ids, top_token_ids, top_token_logprobs, ) in enumerate(iterator): # Compute logprobs first as, even though we might skip the token, # it can still be required to compute the logprobs # modulo on request.id as it is robust to batch.filter whereas the index in the batch is not and we need # this state to be stable if request.id % self.world_size == self.rank: # Prefill if request_was_prefilling and request.prefill_logprobs: out_start_index = batch.prefill_cu_outlens[i] out_end_index = batch.prefill_cu_outlens[i + 1] if not request_is_prefilling: # The request is dones prefilling, meaning that we started generating new tokens # The last logprob is a logprob for a generated token that was not part of the prompt # We need to remove it out_end_index -= 1 request_prefill_logprobs = prefill_logprobs[ out_start_index:out_end_index ] # Logprobs generated by the model are for the next token # So we need to translate the id tensor by 1 prefill_token_ids = all_input_ids[ cache_length + 1 : cache_length + input_length + 1 ] past_prefill_logprob_tokens = batch.prefill_logprob_tokens[i] if past_prefill_logprob_tokens is None: # add nan for cached prompt tokens/first token request_prefill_logprobs = [float("nan")] * ( cache_length + 1 ) + request_prefill_logprobs prefill_token_ids = ( all_input_ids[: cache_length + 1] + prefill_token_ids ) prefill_texts = self.tokenizer.batch_decode( prefill_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) prefill_logprob_tokens = Tokens( prefill_token_ids, request_prefill_logprobs, prefill_texts, is_special=[], ) if past_prefill_logprob_tokens is not None: prefill_logprob_tokens = ( past_prefill_logprob_tokens + prefill_logprob_tokens ) batch.prefill_logprob_tokens[i] = prefill_logprob_tokens else: batch.prefill_logprob_tokens[i] = None # If it is, the tokens we decoded should be ignored if request_is_prefilling: # Make sure that we do not stop as even though this request did not create a token, it is still # processing stopped = False new_input_length = next_chunk_lengths[i] new_cache_length = cache_length + input_length else: new_input_length = 1 new_cache_length = cache_length + input_length + n_accepted_ids - 1 # Append next token to all tokens next_token_texts = [] left = 0 if n_accepted_ids > 1: log_master(logger.debug, f"speculated ids {n_accepted_ids - 1}") current_stopped = False for j in range(index, index + n_accepted_ids): # Generated token next_token_id = next_token_ids[j] all_input_ids.append(next_token_id) next_token_text, prefix_offset, read_offset = self.decode_token( all_input_ids, prefix_offset, read_offset, ) next_token_texts.append(next_token_text) stop, reason = stopping_criteria( next_token_id, next_token_text, ) if stop: left = index + n_accepted_ids - j - 1 current_stopped = True break else: current_stopped = False stopped = stopped and current_stopped _next_token_ids = next_token_ids[index : index + n_accepted_ids - left] _next_token_logprobs = next_token_logprobs[ index : index + n_accepted_ids - left ] # Shard generations # All generations will be appended in the rust sharded client if request.id % self.world_size == self.rank: if stop: # Decode generated tokens output_text, _, _ = self.decode_token( all_input_ids, prefix_offset=len(all_input_ids) - stopping_criteria.current_tokens - 1, read_offset=len(all_input_ids) - stopping_criteria.current_tokens, skip_special_tokens=True, ) generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed if do_sample else None, ) else: generated_text = None if top_n_tokens > 0: all_top_tokens = [] for top_token_ids, top_token_logprobs in zip( top_token_ids, top_token_logprobs ): toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) all_top_tokens.append(top_tokens) top_tokens = all_top_tokens else: top_tokens = None generation = Generation( request.id, batch.prefill_logprob_tokens[i], Tokens( _next_token_ids, _next_token_logprobs, next_token_texts, [nid in self.all_special_ids for nid in _next_token_ids], ), generated_text, top_tokens, ) generations.append(generation) # accept each new token for this specific request since we may # have more than one new token per request with speculative decoding for next_token_id in _next_token_ids: batch.next_token_chooser = ( batch.next_token_chooser.advance_grammar_single( i, next_token_id ) ) # Update values index += n_accepted_ids batch.cache_lengths[i] = new_cache_length batch.max_input_length = max(batch.max_input_length, new_input_length) batch.input_lengths[i] = new_input_length current_length = new_cache_length + new_input_length batch.max_current_length = max(batch.max_current_length, current_length) batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.all_input_ids[i] = all_input_ids if stopped: # No need to return a batch if we know that all requests stopped forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) if prefill and finished_prefilling: # We do not need prefill tensors anymore batch.cu_seqlen_prefill = None batch.prefill_cache_indices = None batch.prefill_cu_outlens = None batch.prefill_head_indices = None batch.prefill_next_token_indices = None forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns) def _forward_context( self, *, block_tables: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], input_lengths_tensor: torch.Tensor, cache_lengths_tensor: torch.Tensor, state: Optional[Any] = None, ) -> ContextManager: if ATTENTION != "flashinfer": return nullcontext() from text_generation_server.layers.attention.flashinfer import ( use_decode_state, use_prefill_with_paged_kv_state, ) if cu_seqlen_prefill is not None: return use_prefill_with_paged_kv_state( state=( state if state is not None else self.prefill_with_paged_kv_state ), block_tables=block_tables, cu_seqlens=cu_seqlen_prefill, input_lengths=input_lengths_tensor + cache_lengths_tensor, num_heads=self.num_heads, num_kv_heads=self.num_kv_heads, head_size=self.head_size, page_size=BLOCK_SIZE, kv_dtype=self.kv_cache_dtype, q_dtype=self.dtype, window_left=self.sliding_window, ) else: assert input_lengths_tensor is not None return use_decode_state( state=state if state is not None else self.decode_state, input_lengths=input_lengths_tensor + cache_lengths_tensor, block_tables=block_tables, num_heads=self.num_heads, num_kv_heads=self.num_kv_heads, head_size=self.head_size, page_size=BLOCK_SIZE, kv_cache_dtype=self.kv_cache_dtype, q_dtype=self.dtype, window_left=self.sliding_window, )
text-generation-inference/server/text_generation_server/models/flash_causal_lm.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/flash_causal_lm.py", "repo_id": "text-generation-inference", "token_count": 51639 }
from text_generation_server.utils.convert import convert_file, convert_files from text_generation_server.utils.dist import initialize_torch_distributed from text_generation_server.utils.weights import Weights from text_generation_server.utils.peft import download_and_unload_peft from text_generation_server.utils.hub import ( weight_files, weight_hub_files, download_weights, EntryNotFoundError, LocalEntryNotFoundError, RevisionNotFoundError, ) from text_generation_server.utils.tokens import ( NextTokenChooser, HeterogeneousNextTokenChooser, StoppingCriteria, StopSequenceCriteria, FinishReason, Sampling, Greedy, ) __all__ = [ "convert_file", "convert_files", "initialize_torch_distributed", "weight_files", "weight_hub_files", "download_weights", "download_and_unload_peft", "EntryNotFoundError", "HeterogeneousNextTokenChooser", "LocalEntryNotFoundError", "RevisionNotFoundError", "Greedy", "NextTokenChooser", "Sampling", "StoppingCriteria", "StopSequenceCriteria", "FinishReason", "Weights", ]
text-generation-inference/server/text_generation_server/utils/__init__.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/__init__.py", "repo_id": "text-generation-inference", "token_count": 417 }
SPECULATE = None def get_speculate() -> int: global SPECULATE return SPECULATE def set_speculate(speculate: int): global SPECULATE SPECULATE = speculate
text-generation-inference/server/text_generation_server/utils/speculate.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/speculate.py", "repo_id": "text-generation-inference", "token_count": 66 }
{ "name": "tokenizers-darwin-x64", "version": "0.13.4-rc1", "os": [ "darwin" ], "cpu": [ "x64" ], "main": "tokenizers.darwin-x64.node", "files": [ "tokenizers.darwin-x64.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/darwin-x64/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/darwin-x64/package.json", "repo_id": "tokenizers", "token_count": 268 }
{ "name": "tokenizers-win32-ia32-msvc", "version": "0.13.4-rc1", "os": [ "win32" ], "cpu": [ "ia32" ], "main": "tokenizers.win32-ia32-msvc.node", "files": [ "tokenizers.win32-ia32-msvc.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/win32-ia32-msvc/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/win32-ia32-msvc/package.json", "repo_id": "tokenizers", "token_count": 277 }
use crate::decoders::Decoder; use crate::encoding::{JsEncoding, JsTruncationDirection, JsTruncationStrategy}; use crate::models::Model; use crate::normalizers::Normalizer; use crate::pre_tokenizers::PreTokenizer; use crate::processors::Processor; use crate::tasks::tokenizer::{DecodeBatchTask, DecodeTask, EncodeBatchTask, EncodeTask}; use crate::trainers::Trainer; use std::collections::HashMap; use tokenizers::Model as ModelTrait; use napi::bindgen_prelude::*; use napi_derive::napi; use std::sync::{Arc, RwLock}; use tokenizers as tk; #[napi] #[derive(Default)] pub enum PaddingDirection { #[default] Left, Right, } impl From<PaddingDirection> for tk::PaddingDirection { fn from(w: PaddingDirection) -> Self { match w { PaddingDirection::Left => tk::PaddingDirection::Left, PaddingDirection::Right => tk::PaddingDirection::Right, } } } impl TryFrom<String> for PaddingDirection { type Error = Error; fn try_from(w: String) -> Result<Self> { match w.as_str() { "left" => Ok(PaddingDirection::Left), "right" => Ok(PaddingDirection::Right), s => Err(Error::from_reason(format!( "{s:?} is not a valid direction" ))), } } } #[napi(object)] #[derive(Default)] pub struct PaddingOptions { pub max_length: Option<u32>, pub direction: Option<Either<String, PaddingDirection>>, pub pad_to_multiple_of: Option<u32>, pub pad_id: Option<u32>, pub pad_type_id: Option<u32>, pub pad_token: Option<String>, } impl TryFrom<PaddingOptions> for tk::PaddingParams { type Error = Error; fn try_from(value: PaddingOptions) -> Result<Self> { let direction = match value.direction { Some(either) => match either { Either::A(string) => { let direction: PaddingDirection = string.try_into()?; direction.into() } Either::B(direction) => direction.into(), }, None => tk::PaddingDirection::Right, }; Ok(Self { pad_to_multiple_of: value.pad_to_multiple_of.map(|s| s as usize), pad_id: value.pad_id.unwrap_or_default(), pad_type_id: value.pad_type_id.unwrap_or_default(), pad_token: value.pad_token.unwrap_or("[PAD]".to_string()), direction, strategy: match value.max_length { Some(length) => tk::PaddingStrategy::Fixed(length as usize), None => tk::PaddingStrategy::BatchLongest, }, }) } } #[napi(object)] #[derive(Default)] pub struct EncodeOptions { pub is_pretokenized: Option<bool>, pub add_special_tokens: Option<bool>, } #[derive(Default)] struct EncodeOptionsDef { // TODO // is_pretokenized: bool, add_special_tokens: bool, } impl From<EncodeOptions> for EncodeOptionsDef { fn from(value: EncodeOptions) -> Self { EncodeOptionsDef { // TODO // is_pretokenized: value.is_pretokenized.unwrap_or(false), add_special_tokens: value.add_special_tokens.unwrap_or(true), } } } #[napi(object)] #[derive(Default)] pub struct TruncationOptions { pub max_length: Option<u32>, pub strategy: Option<JsTruncationStrategy>, pub direction: Option<Either<String, JsTruncationDirection>>, pub stride: Option<u32>, } impl TryFrom<TruncationOptions> for tk::TruncationParams { type Error = Error; fn try_from(value: TruncationOptions) -> Result<Self> { let direction = match value.direction { Some(either) => match either { Either::A(string) => { let direction: JsTruncationDirection = string.try_into()?; direction.into() } Either::B(direction) => direction.into(), }, None => Default::default(), }; Ok(Self { max_length: value.max_length.unwrap_or(0) as usize, strategy: value.strategy.map(|s| s.into()).unwrap_or_default(), direction, stride: value.stride.unwrap_or_default() as usize, }) } } #[napi(object)] pub struct AddedTokenOptions { pub single_word: Option<bool>, pub left_strip: Option<bool>, pub right_strip: Option<bool>, pub normalized: Option<bool>, } #[napi] #[derive(Clone)] pub struct AddedToken { token: tk::AddedToken, } #[napi] impl AddedToken { #[napi(constructor)] pub fn from(token: String, is_special: bool, options: Option<AddedTokenOptions>) -> Self { let mut token = tk::AddedToken::from(token, is_special); if let Some(options) = options { if let Some(sw) = options.single_word { token = token.single_word(sw); } if let Some(ls) = options.left_strip { token = token.lstrip(ls); } if let Some(rs) = options.right_strip { token = token.rstrip(rs); } if let Some(n) = options.normalized { token = token.normalized(n); } } Self { token } } #[napi] pub fn get_content(&self) -> String { self.token.content.clone() } } impl From<AddedToken> for tk::AddedToken { fn from(v: AddedToken) -> Self { v.token } } type RsTokenizer = tk::TokenizerImpl<Model, Normalizer, PreTokenizer, Processor, Decoder>; #[napi] #[derive(Clone)] pub struct Tokenizer { pub(crate) tokenizer: Arc<RwLock<RsTokenizer>>, } #[napi] impl Tokenizer { #[napi(constructor)] pub fn new(model: &Model) -> Self { Self { tokenizer: Arc::new(RwLock::new(tk::TokenizerImpl::new((*model).clone()))), } } #[napi] pub fn set_pre_tokenizer(&mut self, pre_tokenizer: &PreTokenizer) { self .tokenizer .write() .unwrap() .with_pre_tokenizer(Some((*pre_tokenizer).clone())); } #[napi] pub fn set_decoder(&mut self, decoder: &Decoder) { self .tokenizer .write() .unwrap() .with_decoder(Some((*decoder).clone())); } #[napi] pub fn set_model(&mut self, model: &Model) { self.tokenizer.write().unwrap().with_model((*model).clone()); } #[napi] pub fn set_post_processor(&mut self, post_processor: &Processor) { self .tokenizer .write() .unwrap() .with_post_processor(Some((*post_processor).clone())); } #[napi] pub fn set_normalizer(&mut self, normalizer: &Normalizer) { self .tokenizer .write() .unwrap() .with_normalizer(Some((*normalizer).clone())); } #[napi] pub fn save(&self, path: String, pretty: Option<bool>) -> Result<()> { let pretty = pretty.unwrap_or(false); self .tokenizer .read() .unwrap() .save(path, pretty) .map_err(|e| Error::from_reason(format!("{}", e))) } #[napi] pub fn add_added_tokens(&mut self, tokens: Vec<&AddedToken>) -> u32 { let tokens: Vec<_> = tokens .into_iter() .map(|tok| (*tok).clone().into()) .collect(); self.tokenizer.write().unwrap().add_tokens(&tokens) as u32 } #[napi] pub fn add_tokens(&mut self, tokens: Vec<String>) -> u32 { let tokens: Vec<_> = tokens .into_iter() .map(|tok| tk::AddedToken::from(tok, false)) .collect(); self.tokenizer.write().unwrap().add_tokens(&tokens) as u32 } #[napi(ts_return_type = "Promise<JsEncoding>")] pub fn encode( &self, #[napi(ts_arg_type = "InputSequence")] sentence: String, #[napi(ts_arg_type = "InputSequence | null")] pair: Option<String>, encode_options: Option<EncodeOptions>, ) -> AsyncTask<EncodeTask<'static>> { let options: EncodeOptionsDef = encode_options.unwrap_or_default().into(); let input: tk::EncodeInput = match pair { Some(pair) => (sentence, pair).into(), None => sentence.into(), }; AsyncTask::new(EncodeTask { tokenizer: (*self).clone(), input: Some(input), add_special_tokens: options.add_special_tokens, }) } #[napi(ts_return_type = "Promise<JsEncoding[]>")] pub fn encode_batch( &self, #[napi(ts_arg_type = "EncodeInput[]")] sentences: Vec<String>, encode_options: Option<EncodeOptions>, ) -> AsyncTask<EncodeBatchTask<'static>> { let options: EncodeOptionsDef = encode_options.unwrap_or_default().into(); let inputs: Vec<tk::EncodeInput> = sentences .into_iter() .map(|sentence| sentence.into()) .collect(); AsyncTask::new(EncodeBatchTask { tokenizer: (*self).clone(), inputs: Some(inputs), add_special_tokens: options.add_special_tokens, }) } #[napi(ts_return_type = "Promise<string>")] pub fn decode(&self, ids: Vec<u32>, skip_special_tokens: bool) -> AsyncTask<DecodeTask> { AsyncTask::new(DecodeTask { tokenizer: (*self).clone(), ids, skip_special_tokens, }) } #[napi(ts_return_type = "Promise<string[]>")] pub fn decode_batch( &self, ids: Vec<Vec<u32>>, skip_special_tokens: bool, ) -> AsyncTask<DecodeBatchTask> { AsyncTask::new(DecodeBatchTask { tokenizer: (*self).clone(), ids, skip_special_tokens, }) } #[napi(factory)] pub fn from_string(s: String) -> Result<Self> { let tokenizer: tk::tokenizer::TokenizerImpl< Model, Normalizer, PreTokenizer, Processor, Decoder, > = s .parse() .map_err(|e| Error::from_reason(format!("{}", e)))?; Ok(Self { tokenizer: Arc::new(RwLock::new(tokenizer)), }) } #[napi(factory)] pub fn from_file(file: String) -> Result<Self> { let tokenizer = tk::tokenizer::TokenizerImpl::from_file(file) .map_err(|e| Error::from_reason(format!("Error loading from file{}", e)))?; Ok(Self { tokenizer: Arc::new(RwLock::new(tokenizer)), }) } #[napi] pub fn add_special_tokens(&mut self, tokens: Vec<String>) { let tokens: Vec<_> = tokens .into_iter() .map(|s| tk::AddedToken::from(s, true)) .collect(); self.tokenizer.write().unwrap().add_special_tokens(&tokens); } #[napi] pub fn set_truncation( &mut self, max_length: u32, options: Option<TruncationOptions>, ) -> Result<()> { let mut options: tk::TruncationParams = if let Some(options) = options { options.try_into()? } else { Default::default() }; options.max_length = max_length as usize; self .tokenizer .write() .unwrap() .with_truncation(Some(options)) .unwrap(); Ok(()) } #[napi] pub fn disable_truncation(&mut self) { self .tokenizer .write() .unwrap() .with_truncation(None) .unwrap(); } #[napi] pub fn set_padding(&mut self, options: Option<PaddingOptions>) -> Result<()> { let options = if let Some(options) = options { Some(options.try_into()?) } else { None }; self.tokenizer.write().unwrap().with_padding(options); Ok(()) } #[napi] pub fn disable_padding(&mut self) { self.tokenizer.write().unwrap().with_padding(None); } #[napi] pub fn get_decoder(&self) -> Option<Decoder> { self.tokenizer.read().unwrap().get_decoder().cloned() } #[napi] pub fn get_normalizer(&self) -> Option<Normalizer> { self.tokenizer.read().unwrap().get_normalizer().cloned() } #[napi] pub fn get_pre_tokenizer(&self) -> Option<PreTokenizer> { self.tokenizer.read().unwrap().get_pre_tokenizer().cloned() } #[napi] pub fn get_post_processor(&self) -> Option<Processor> { self.tokenizer.read().unwrap().get_post_processor().cloned() } #[napi] pub fn get_vocab(&self, with_added_tokens: Option<bool>) -> HashMap<String, u32> { let with_added_tokens = with_added_tokens.unwrap_or(true); self.tokenizer.read().unwrap().get_vocab(with_added_tokens) } #[napi] pub fn get_vocab_size(&self, with_added_tokens: Option<bool>) -> u32 { self.get_vocab(with_added_tokens).len() as u32 } #[napi] pub fn id_to_token(&self, id: u32) -> Option<String> { self.tokenizer.read().unwrap().id_to_token(id) } #[napi] pub fn token_to_id(&self, token: String) -> Option<u32> { self.tokenizer.read().unwrap().token_to_id(&token) } #[napi] pub fn train(&mut self, files: Vec<String>) -> Result<()> { let mut trainer: Trainer = self .tokenizer .read() .unwrap() .get_model() .model .as_ref() .unwrap() .read() .unwrap() .get_trainer() .into(); self .tokenizer .write() .unwrap() .train_from_files(&mut trainer, files) .map_err(|e| Error::from_reason(format!("{}", e)))?; Ok(()) } #[napi] pub fn running_tasks(&self) -> u32 { std::sync::Arc::strong_count(&self.tokenizer) as u32 } #[napi] pub fn post_process( &self, encoding: &JsEncoding, pair: Option<&JsEncoding>, add_special_tokens: Option<bool>, ) -> Result<JsEncoding> { let add_special_tokens = add_special_tokens.unwrap_or(true); Ok( self .tokenizer .read() .unwrap() .post_process( (*encoding).clone().try_into()?, if let Some(pair) = pair { Some((*pair).clone().try_into()?) } else { None }, add_special_tokens, ) .map_err(|e| Error::from_reason(format!("{}", e)))? .into(), ) } } #[napi(object)] #[derive(Default)] pub struct JsFromPretrainedParameters { pub revision: Option<String>, pub auth_token: Option<String>, }
tokenizers/bindings/node/src/tokenizer.rs/0
{ "file_path": "tokenizers/bindings/node/src/tokenizer.rs", "repo_id": "tokenizers", "token_count": 5713 }
import argparse import logging import time from tqdm import tqdm from tokenizers import Tokenizer, decoders, pre_tokenizers from tokenizers.models import BPE, WordPiece from tokenizers.normalizers import BertNormalizer from tokenizers.processors import BertProcessing from transformers import BertTokenizer, GPT2Tokenizer logging.getLogger("transformers").disabled = True logging.getLogger("transformers.tokenization_utils").disabled = True parser = argparse.ArgumentParser() parser.add_argument("--type", default="gpt2", type=str, help="The type of tokenizer (bert|gpt2)") parser.add_argument("--file", default=None, type=str, help="The file to encode") parser.add_argument("--vocab", default=None, type=str, required=True, help="The vocab file") parser.add_argument("--merges", default=None, type=str, help="The merges.txt file") parser.add_argument("--debug", action="store_true", help="Verbose output") args = parser.parse_args() if args.type == "gpt2" and args.merges is None: raise Exception("Expected merges.txt file") if args.file is not None: with open(args.file, "r") as fp: text = [line.strip() for line in fp] else: text = """ The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those! """.split("\n") if args.type == "gpt2": print("Running GPT-2 tokenizer") tok_p = GPT2Tokenizer.from_pretrained("gpt2") # Create a Tokenizer using BPE tok_r = Tokenizer(BPE(args.vocab, args.merges)) # Use ByteLevel PreTokenizer tok_r.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) # Use ByteLevel Decoder tok_r.decoder = decoders.ByteLevel() elif args.type == "bert": print("Running Bert tokenizer") tok_p = BertTokenizer.from_pretrained(args.vocab) tok_r = Tokenizer(WordPiece(args.vocab, unk_token="[UNK]", max_input_chars_per_word=100)) tok_r.normalizer = BertNormalizer( clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True, ) # tok_r.pre_tokenizer = pre_tokenizers.Whitespace() tok_r.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tok_r.decoder = decoders.WordPiece() tok_r.post_processor = BertProcessing( ("[SEP]", tok_r.token_to_id("[SEP]")), ("[CLS]", tok_r.token_to_id("[CLS]")), ) else: raise Exception(f"Unknown type {args.type}") def tokenize_r(): return tok_r.encode_batch(text) def tokenize_p(): return [tok_p.encode(sentence, add_special_tokens=True) for sentence in tqdm(text)] print(f"Tokenizing {len(text)} lines") # Rust version start = time.time() encoded_r = tokenize_r() end = time.time() time_r = end - start print(f"Rust tokenizer took: {time_r} sec") # Python version start = time.time() encoded_p = tokenize_p() end = time.time() time_p = end - start print(f"Transformer tokenizer took: {time_p} sec") print(f"SpeedUp Ratio: {time_p / time_r}") ids_r = [sentence.ids for sentence in encoded_r] diff_ids = 0 for i in range(0, len(encoded_r)): if encoded_r[i].ids != encoded_p[i]: diff_ids += 1 if args.debug: print(encoded_r[i].ids) print(encoded_p[i]) print(encoded_r[i].tokens) print(tok_p.tokenize(text[i])) print(text[i]) print("") print(f"Ids differences: {diff_ids}") decoded_r = tok_r.decode_batch([sentence.ids for sentence in encoded_r], False) decoded_p = [tok_p.decode(en) for en in encoded_p] diff_decoded = 0 for i in range(0, len(text)): if decoded_r[i] != decoded_p[i]: diff_decoded += 1 if args.debug: print(f"Original: {text[i]}") print(f"Rust: {decoded_r[i]}") print(f"Python: {decoded_p[i]}") print("") print(f"Decoding differences: {diff_decoded}")
tokenizers/bindings/python/examples/example.py/0
{ "file_path": "tokenizers/bindings/python/examples/example.py", "repo_id": "tokenizers", "token_count": 1770 }
from argparse import ArgumentParser from json import dump from logging import basicConfig, getLogger from os import linesep, remove from os.path import exists from tempfile import NamedTemporaryFile from typing import Dict, List, Tuple from requests import get from sentencepiece import SentencePieceProcessor from tqdm import trange, tqdm basicConfig() logger = getLogger() class SentencePieceExtractor: """ Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece """ def __init__(self, model: str): # Get SentencePiece self.sp = SentencePieceProcessor() self.sp.Load(model) def extract(self) -> Tuple[Dict[str, int], List[Tuple]]: sp = self.sp vocab = {sp.id_to_piece(index): index for index in trange(sp.GetPieceSize())} # Merges merges = [] for piece_l in tqdm(vocab.keys(), total=sp.GetPieceSize()): for piece_r in vocab.keys(): merge = f"{piece_l}{piece_r}" piece_id = vocab.get(merge, None) if piece_id: merges += [(piece_l, piece_r, piece_id)] merges = sorted(merges, key=lambda val: val[2]) merges = [(val[0], val[1]) for val in merges] return vocab, merges class YouTokenToMeExtractor: """ Extractor implementation for YouTokenToMe trained models format. Model are as follow: vocab_size nb_merges piece piece_id ...(repeated vocab_size) piece_id_left piece_id_right piece_id ...(repeated nb merges) """ def __init__(self, model: str): self._model = model def extract(self) -> Tuple[Dict[str, int], List[Tuple]]: with open(self._model, "r") as model_f: # Retrieve information nb_pieces, nb_merges = map(int, model_f.readline().split()) vocab, merges = {}, [] # Vocab for _ in trange(nb_pieces): piece, piece_id = map(int, model_f.readline().split()) vocab[piece_id] = chr(piece) # Merges for _ in trange(nb_merges): piece_id_l, piece_id_r, piece = map(int, model_f.readline().split()) piece_l, piece_r = vocab[piece_id_l], vocab[piece_id_r] vocab[piece] = f"{piece_l}{piece_r}" merges += [(piece_l, piece_r)] # Special tokens unk, pad, bos, eos = map(int, model_f.readline().split()) vocab[unk] = "<unk>" vocab[pad] = "<pad>" vocab[bos] = "<bos>" vocab[eos] = "<eos>" # Invert key and value for vocab vocab = dict(zip(vocab.values(), vocab.keys())) return vocab, merges if __name__ == "__main__": parser = ArgumentParser("SentencePiece vocab extractor") parser.add_argument( "--provider", type=str, required=True, choices=["sentencepiece", "youtokentome"], help="Indicate the format of the file.", ) parser.add_argument("--model", type=str, required=True, help="SentencePiece model to extract vocab from.") parser.add_argument( "--vocab-output-path", type=str, required=True, help="Path where the vocab.json file will be extracted", ) parser.add_argument( "--merges-output-path", type=str, required=True, help="Path where the merges file will be extracted", ) # Parse cli arguments args = parser.parse_args() try: if args.model.startswith("http"): # Saving model with NamedTemporaryFile("wb", delete=False) as f: logger.info("Writing content from {} to {}".format(args.model, f.name)) response = get(args.model, allow_redirects=True) f.write(response.content) args.remote_model = args.model args.model = f.name # Allocate extractor extractor = SentencePieceExtractor if args.provider == "sentencepiece" else YouTokenToMeExtractor extractor = extractor(args.model) logger.info(f"Using {type(extractor).__name__}") # Open output files and let's extract model information with open(args.vocab_output_path, "w") as vocab_f: with open(args.merges_output_path, "w") as merges_f: # Do the extraction vocab, merges = extractor.extract() # Save content dump(vocab, vocab_f) merges_f.writelines(map(lambda x: f"{x[0]} {x[1]}{linesep}", merges)) finally: # If model was downloaded from internet we need to cleanup the tmp folder. if hasattr(args, "remote_model") and exists(args.model): remove(args.model)
tokenizers/bindings/python/scripts/sentencepiece_extractor.py/0
{ "file_path": "tokenizers/bindings/python/scripts/sentencepiece_extractor.py", "repo_id": "tokenizers", "token_count": 2231 }
use super::regex::PyRegex; use super::{DestroyPtr, RefMutContainer, RefMutGuard}; use crate::error::ToPyResult; use pyo3::exceptions; use pyo3::prelude::*; use pyo3::types::*; use tk::normalizer::{char_to_bytes, NormalizedString, Range, SplitDelimiterBehavior}; use tk::pattern::Pattern; /// Represents a Pattern as used by `NormalizedString` #[derive(FromPyObject)] pub enum PyPattern { #[pyo3(annotation = "str")] Str(String), #[pyo3(annotation = "tokenizers.Regex")] Regex(Py<PyRegex>), // TODO: Add the compatibility for Fn(char) -> bool } impl Pattern for PyPattern { fn find_matches(&self, inside: &str) -> tk::Result<Vec<(tk::Offsets, bool)>> { match self { PyPattern::Str(s) => { let mut chars = s.chars(); if let (Some(c), None) = (chars.next(), chars.next()) { c.find_matches(inside) } else { s.find_matches(inside) } } PyPattern::Regex(r) => { Python::with_gil(|py| (&r.borrow(py).inner).find_matches(inside)) } } } } impl From<PyPattern> for tk::normalizers::replace::ReplacePattern { fn from(pattern: PyPattern) -> Self { match pattern { PyPattern::Str(s) => Self::String(s.to_owned()), PyPattern::Regex(r) => Python::with_gil(|py| Self::Regex(r.borrow(py).pattern.clone())), } } } impl From<PyPattern> for tk::pre_tokenizers::split::SplitPattern { fn from(pattern: PyPattern) -> Self { match pattern { PyPattern::Str(s) => Self::String(s.to_owned()), PyPattern::Regex(r) => Python::with_gil(|py| Self::Regex(r.borrow(py).pattern.clone())), } } } #[derive(Debug, Clone, FromPyObject)] pub enum PyRange<'s> { #[pyo3(annotation = "int")] Single(isize), #[pyo3(annotation = "Tuple[uint, uint]")] Range(usize, usize), #[pyo3(annotation = "slice")] Slice(Bound<'s, PySlice>), } impl PyRange<'_> { pub fn to_range(&self, max_len: usize) -> PyResult<std::ops::Range<usize>> { match self { PyRange::Single(i) => { if i.is_negative() { let i = -i as usize; if i > max_len { Err(exceptions::PyValueError::new_err(format!( "{} is bigger than max len", i ))) } else { Ok(max_len - i..max_len - i + 1) } } else { let i = *i as usize; Ok(i..i + 1) } } PyRange::Range(s, e) => Ok(*s..*e), PyRange::Slice(s) => { let r = s.indices(max_len.try_into()?)?; Ok(r.start as usize..r.stop as usize) } } } } #[derive(Clone)] pub struct PySplitDelimiterBehavior(pub SplitDelimiterBehavior); impl FromPyObject<'_> for PySplitDelimiterBehavior { fn extract_bound(obj: &Bound<'_, PyAny>) -> PyResult<Self> { let s = obj.extract::<String>()?; Ok(Self(match s.as_ref() { "removed" => Ok(SplitDelimiterBehavior::Removed), "isolated" => Ok(SplitDelimiterBehavior::Isolated), "merged_with_previous" => Ok(SplitDelimiterBehavior::MergedWithPrevious), "merged_with_next" => Ok(SplitDelimiterBehavior::MergedWithNext), "contiguous" => Ok(SplitDelimiterBehavior::Contiguous), _ => Err(exceptions::PyValueError::new_err( "Wrong value for SplitDelimiterBehavior, expected one of: \ `removed, isolated, merged_with_previous, merged_with_next, contiguous`", )), }?)) } } impl From<PySplitDelimiterBehavior> for SplitDelimiterBehavior { fn from(v: PySplitDelimiterBehavior) -> Self { v.0 } } impl From<SplitDelimiterBehavior> for PySplitDelimiterBehavior { fn from(v: SplitDelimiterBehavior) -> Self { Self(v) } } fn filter(normalized: &mut NormalizedString, func: &Bound<'_, PyAny>) -> PyResult<()> { let err = "`filter` expect a callable with the signature: `fn(char) -> bool`"; if !func.is_callable() { Err(exceptions::PyTypeError::new_err(err)) } else { normalized.filter(|c| { func.call1((c.to_string(),)) .expect(err) .extract() .expect(err) }); Ok(()) } } fn for_each(normalized: &NormalizedString, func: &Bound<'_, PyAny>) -> PyResult<()> { let err = "`for_each` expect a callable with the signature: `fn(char)`"; if !func.is_callable() { Err(exceptions::PyTypeError::new_err(err)) } else { normalized.for_each(|c| { func.call1((c.to_string(),)).expect(err); }); Ok(()) } } fn map(normalized: &mut NormalizedString, func: &Bound<'_, PyAny>) -> PyResult<()> { let err = "`map` expect a callable with the signature: `fn(char) -> char`"; if !func.is_callable() { Err(exceptions::PyTypeError::new_err(err)) } else { normalized.map(|c| { let c: String = func .call1((c.to_string(),)) .expect(err) .extract() .expect(err); c.chars().next().expect(err) }); Ok(()) } } fn slice( normalized: &NormalizedString, range: &PyRange<'_>, ) -> PyResult<Option<PyNormalizedString>> { let n_char = normalized.len(); let char_range = range.to_range(n_char)?; Ok( char_to_bytes(normalized.get(), char_range).and_then(|bytes_range| { normalized .slice(Range::Normalized(bytes_range)) .map(|n| n.into()) }), ) } /// NormalizedString /// /// A NormalizedString takes care of modifying an "original" string, to obtain a "normalized" one. /// While making all the requested modifications, it keeps track of the alignment information /// between the two versions of the string. /// /// Args: /// sequence: str: /// The string sequence used to initialize this NormalizedString #[pyclass(module = "tokenizers", name = "NormalizedString")] #[derive(Clone)] pub struct PyNormalizedString { pub(crate) normalized: NormalizedString, } #[pymethods] impl PyNormalizedString { #[new] #[pyo3(text_signature = None)] fn new(s: &str) -> Self { NormalizedString::from(s).into() } /// The normalized part of the string #[getter] fn get_normalized(&self) -> &str { self.normalized.get() } #[getter] fn get_original(&self) -> &str { self.normalized.get_original() } /// Runs the NFD normalization #[pyo3(text_signature = "(self)")] fn nfd(&mut self) { self.normalized.nfd(); } /// Runs the NFKD normalization #[pyo3(text_signature = "(self)")] fn nfkd(&mut self) { self.normalized.nfkd(); } /// Runs the NFC normalization #[pyo3(text_signature = "(self)")] fn nfc(&mut self) { self.normalized.nfc(); } /// Runs the NFKC normalization #[pyo3(text_signature = "(self)")] fn nfkc(&mut self) { self.normalized.nfkc(); } /// Lowercase the string #[pyo3(text_signature = "(self)")] fn lowercase(&mut self) { self.normalized.lowercase(); } /// Uppercase the string #[pyo3(text_signature = "(self)")] fn uppercase(&mut self) { self.normalized.uppercase(); } /// Prepend the given sequence to the string #[pyo3(text_signature = "(self, s)")] fn prepend(&mut self, s: &str) { self.normalized.prepend(s); } /// Append the given sequence to the string #[pyo3(text_signature = "(self, s)")] fn append(&mut self, s: &str) { self.normalized.append(s); } /// Strip the left of the string #[pyo3(text_signature = "(self)")] fn lstrip(&mut self) { self.normalized.lstrip(); } /// Strip the right of the string #[pyo3(text_signature = "(self)")] fn rstrip(&mut self) { self.normalized.rstrip(); } /// Strip both ends of the string #[pyo3(text_signature = "(self)")] fn strip(&mut self) { self.normalized.strip(); } /// Clears the string #[pyo3(text_signature = "(self)")] fn clear(&mut self) { self.normalized.clear(); } /// Slice the string using the given range #[pyo3(text_signature = "(self, range)")] fn slice(&self, range: PyRange) -> PyResult<Option<PyNormalizedString>> { slice(&self.normalized, &range) } /// Filter each character of the string using the given func #[pyo3(text_signature = "(self, func)")] fn filter(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { filter(&mut self.normalized, func) } /// Calls the given function for each character of the string #[pyo3(text_signature = "(self, func)")] fn for_each(&self, func: &Bound<'_, PyAny>) -> PyResult<()> { for_each(&self.normalized, func) } /// Calls the given function for each character of the string /// /// Replaces each character of the string using the returned value. Each /// returned value **must** be a str of length 1 (ie a character). #[pyo3(text_signature = "(self, func)")] fn map(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { map(&mut self.normalized, func) } /// Split the NormalizedString using the given pattern and the specified behavior /// /// Args: /// pattern: Pattern: /// A pattern used to split the string. Usually a string or a regex built with `tokenizers.Regex` /// /// behavior: SplitDelimiterBehavior: /// The behavior to use when splitting. /// Choices: "removed", "isolated", "merged_with_previous", "merged_with_next", /// "contiguous" /// /// Returns: /// A list of NormalizedString, representing each split #[pyo3(text_signature = "(self, pattern, behavior)")] fn split( &mut self, pattern: PyPattern, behavior: PySplitDelimiterBehavior, ) -> PyResult<Vec<PyNormalizedString>> { Ok(ToPyResult(self.normalized.split(pattern, behavior.into())) .into_py()? .into_iter() .map(|n| n.into()) .collect()) } /// Replace the content of the given pattern with the provided content /// /// Args: /// pattern: Pattern: /// A pattern used to match the string. Usually a string or a Regex /// /// content: str: /// The content to be used as replacement #[pyo3(text_signature = "(self, pattern, content)")] fn replace(&mut self, pattern: PyPattern, content: &str) -> PyResult<()> { ToPyResult(self.normalized.replace(pattern, content)).into() } fn __repr__(&self) -> String { format!( r#"NormalizedString(original="{}", normalized="{}")"#, self.normalized.get_original(), self.normalized.get() ) } fn __str__(&self) -> &str { self.normalized.get() } fn __getitem__(&self, range: PyRange<'_>) -> PyResult<Option<PyNormalizedString>> { slice(&self.normalized, &range) } } impl From<NormalizedString> for PyNormalizedString { fn from(normalized: NormalizedString) -> Self { Self { normalized } } } impl From<PyNormalizedString> for NormalizedString { fn from(normalized: PyNormalizedString) -> Self { normalized.normalized } } #[pyclass(module = "tokenizers", name = "NormalizedStringRefMut")] #[derive(Clone)] pub struct PyNormalizedStringRefMut { inner: RefMutContainer<NormalizedString>, } impl DestroyPtr for PyNormalizedStringRefMut { fn destroy(&mut self) { self.inner.destroy(); } } impl PyNormalizedStringRefMut { pub fn new(normalized: &mut NormalizedString) -> RefMutGuard<'_, Self> { RefMutGuard::new(Self { inner: RefMutContainer::new(normalized), }) } pub fn destroyed_error() -> PyErr { exceptions::PyException::new_err("Cannot use a NormalizedStringRefMut outside `normalize`") } /// Provides a way to access a reference to the underlying NormalizedString pub fn map_as_ref<F: FnOnce(&NormalizedString) -> U, U>(&self, f: F) -> PyResult<U> { self.inner .map(f) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } /// Provides a way to access a mutable reference to the underlying NormalizedString pub fn map_as_mut<F: FnOnce(&mut NormalizedString) -> U, U>(&mut self, f: F) -> PyResult<U> { self.inner .map_mut(f) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } } #[pymethods] impl PyNormalizedStringRefMut { #[getter] fn get_normalized(&self) -> PyResult<String> { self.inner .map(|n| n.get().to_owned()) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } #[getter] fn get_original(&self) -> PyResult<String> { self.inner .map(|n| n.get_original().to_owned()) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } fn nfd(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfd(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn nfkd(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfkd(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn nfc(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfc(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn nfkc(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfkc(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn lowercase(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.lowercase(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn uppercase(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.uppercase(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn prepend(&mut self, s: &str) -> PyResult<()> { self.inner .map_mut(|n| { n.prepend(s); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn append(&mut self, s: &str) -> PyResult<()> { self.inner .map_mut(|n| { n.append(s); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn lstrip(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.lstrip(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn rstrip(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.rstrip(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn strip(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.strip(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn clear(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.clear(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn slice(&self, range: PyRange) -> PyResult<Option<PyNormalizedString>> { self.inner .map(|n| slice(n, &range)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)? } fn filter(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { self.inner .map_mut(|n| filter(n, func)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)??; Ok(()) } fn for_each(&self, func: &Bound<'_, PyAny>) -> PyResult<()> { self.inner .map(|n| for_each(n, func)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)??; Ok(()) } fn map(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { self.inner .map_mut(|n| map(n, func)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)??; Ok(()) } fn split( &mut self, pattern: PyPattern, behavior: PySplitDelimiterBehavior, ) -> PyResult<Vec<PyNormalizedString>> { Ok(ToPyResult( self.inner .map_mut(|n| n.split(pattern, behavior.into())) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?, ) .into_py()? .into_iter() .map(|n| n.into()) .collect()) } fn replace(&mut self, pattern: PyPattern, content: &str) -> PyResult<()> { ToPyResult( self.inner .map_mut(|n| n.replace(pattern, content)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?, ) .into() } }
tokenizers/bindings/python/src/utils/normalization.rs/0
{ "file_path": "tokenizers/bindings/python/src/utils/normalization.rs", "repo_id": "tokenizers", "token_count": 8560 }
# Decoders <tokenizerslangcontent> <python> ## BPEDecoder [[autodoc]] tokenizers.decoders.BPEDecoder ## ByteLevel [[autodoc]] tokenizers.decoders.ByteLevel ## CTC [[autodoc]] tokenizers.decoders.CTC ## Metaspace [[autodoc]] tokenizers.decoders.Metaspace ## WordPiece [[autodoc]] tokenizers.decoders.WordPiece </python> <rust> The Rust API Reference is available directly on the [Docs.rs](https://docs.rs/tokenizers/latest/tokenizers/) website. </rust> <node> The node API has not been documented yet. </node> </tokenizerslangcontent>
tokenizers/docs/source-doc-builder/api/decoders.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/api/decoders.mdx", "repo_id": "tokenizers", "token_count": 197 }
# Training from memory In the [Quicktour](quicktour), we saw how to build and train a tokenizer using text files, but we can actually use any Python Iterator. In this section we'll see a few different ways of training our tokenizer. For all the examples listed below, we'll use the same [`~tokenizers.Tokenizer`] and [`~tokenizers.trainers.Trainer`], built as following: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START init_tokenizer_trainer", "end-before": "END init_tokenizer_trainer", "dedent": 8} </literalinclude> This tokenizer is based on the [`~tokenizers.models.Unigram`] model. It takes care of normalizing the input using the NFKC Unicode normalization method, and uses a [`~tokenizers.pre_tokenizers.ByteLevel`] pre-tokenizer with the corresponding decoder. For more information on the components used here, you can check [here](components). ## The most basic way As you probably guessed already, the easiest way to train our tokenizer is by using a `List`{.interpreted-text role="obj"}: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_basic", "end-before": "END train_basic", "dedent": 8} </literalinclude> Easy, right? You can use anything working as an iterator here, be it a `List`{.interpreted-text role="obj"}, `Tuple`{.interpreted-text role="obj"}, or a `np.Array`{.interpreted-text role="obj"}. Anything works as long as it provides strings. ## Using the 🤗 Datasets library An awesome way to access one of the many datasets that exist out there is by using the 🤗 Datasets library. For more information about it, you should check [the official documentation here](https://huggingface.co/docs/datasets/). Let's start by loading our dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START load_dataset", "end-before": "END load_dataset", "dedent": 8} </literalinclude> The next step is to build an iterator over this dataset. The easiest way to do this is probably by using a generator: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START def_batch_iterator", "end-before": "END def_batch_iterator", "dedent": 8} </literalinclude> As you can see here, for improved efficiency we can actually provide a batch of examples used to train, instead of iterating over them one by one. By doing so, we can expect performances very similar to those we got while training directly from files. With our iterator ready, we just need to launch the training. In order to improve the look of our progress bars, we can specify the total length of the dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_datasets", "end-before": "END train_datasets", "dedent": 8} </literalinclude> And that's it! ## Using gzip files Since gzip files in Python can be used as iterators, it is extremely simple to train on such files: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START single_gzip", "end-before": "END single_gzip", "dedent": 8} </literalinclude> Now if we wanted to train from multiple gzip files, it wouldn't be much harder: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START multi_gzip", "end-before": "END multi_gzip", "dedent": 8} </literalinclude> And voilà!
tokenizers/docs/source-doc-builder/training_from_memory.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/training_from_memory.mdx", "repo_id": "tokenizers", "token_count": 1199 }
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("./_ext")) sys.path.insert(0, os.path.abspath(".")) # -- Project information ----------------------------------------------------- project = "tokenizers" copyright = "2020, huggingface" author = "huggingface" # The full version, including alpha/beta/rc tags release = "" # -- Custom information ------------------------------------------------------ # The possible values for languages (used by `_ext/entities`) languages = ["node", "rust", "python"] # This defines the version used to generate links to docs.rs rust_version = "latest" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon", "entities", "rust_doc", "toctree_tags"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {"analytics_id": "UA-83738774-2"} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] def setup(app): for language in languages: if not tags.has(language): exclude_patterns.append(f"tutorials/{language}/*") app.add_css_file("css/huggingface.css") app.add_css_file("css/code-snippets.css") app.add_js_file("js/custom.js")
tokenizers/docs/source/conf.py/0
{ "file_path": "tokenizers/docs/source/conf.py", "repo_id": "tokenizers", "token_count": 781 }
#[macro_use] extern crate criterion; mod common; use std::fs::File; use std::io::{BufRead, BufReader}; use std::path::Path; use criterion::Criterion; use tokenizers::models::wordpiece::{WordPiece, WordPieceTrainerBuilder}; use tokenizers::normalizers::{BertNormalizer, NormalizerWrapper}; use tokenizers::pre_tokenizers::bert::BertPreTokenizer; use tokenizers::processors::bert::BertProcessing; use tokenizers::{decoders, EncodeInput, Model, TokenizerImpl}; use common::{iter_bench_encode, iter_bench_encode_batch, iter_bench_train}; use tokenizers::decoders::DecoderWrapper; use tokenizers::pre_tokenizers::whitespace::Whitespace; use tokenizers::processors::PostProcessorWrapper; static BATCH_SIZE: usize = 1_000; type BertTokenizer = TokenizerImpl< WordPiece, BertNormalizer, BertPreTokenizer, BertProcessing, decoders::wordpiece::WordPiece, >; /// Resembling the BertTokenizer implementation from the Python bindings. fn create_bert_tokenizer(wp: WordPiece) -> BertTokenizer { let sep_id = *wp.get_vocab().get("[SEP]").unwrap(); let cls_id = *wp.get_vocab().get("[CLS]").unwrap(); let mut tokenizer = TokenizerImpl::new(wp); tokenizer.with_pre_tokenizer(Some(BertPreTokenizer)); tokenizer.with_normalizer(Some(BertNormalizer::default())); tokenizer.with_decoder(Some(decoders::wordpiece::WordPiece::default())); tokenizer.with_post_processor(Some(BertProcessing::new( ("[SEP]".to_string(), sep_id), ("[CLS]".to_string(), cls_id), ))); tokenizer } pub fn bench_bert(c: &mut Criterion) { let wp = WordPiece::from_file("data/bert-base-uncased-vocab.txt") .build() .unwrap(); let tokenizer = create_bert_tokenizer(wp); let mut lines: Vec<EncodeInput> = vec![]; let mut batches: Vec<Vec<EncodeInput>> = vec![vec![]]; for line in BufReader::new(File::open(Path::new("data/big.txt")).unwrap()).lines() { let line: EncodeInput = line.unwrap().into(); lines.push(line.clone()); if batches.last().unwrap().len() >= BATCH_SIZE { batches.push(vec![]); } batches.last_mut().unwrap().push(line); } c.bench_function("WordPiece BERT encode", |b| { b.iter_custom(|iters| iter_bench_encode(iters, &tokenizer, &lines)) }); c.bench_function("WordPiece BERT encode batch", |b| { b.iter_custom(|iters| iter_bench_encode_batch(iters, &tokenizer, &batches)) }); } fn bench_train(c: &mut Criterion) { let mut trainer = WordPieceTrainerBuilder::default() .show_progress(false) .build(); type Tok = TokenizerImpl< WordPiece, NormalizerWrapper, Whitespace, PostProcessorWrapper, DecoderWrapper, >; let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Some(Whitespace {})); c.bench_function("WordPiece Train vocabulary (small)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/small.txt".to_string()], ) }) }); let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Some(Whitespace {})); c.bench_function("WordPiece Train vocabulary (big)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/big.txt".to_string()], ) }) }); } criterion_group! { name = bert_benches; config = Criterion::default().sample_size(20); targets = bench_bert } criterion_group! { name = benches_train; config = Criterion::default().sample_size(10); targets = bench_train } criterion_main!(bert_benches, benches_train);
tokenizers/tokenizers/benches/bert_benchmark.rs/0
{ "file_path": "tokenizers/tokenizers/benches/bert_benchmark.rs", "repo_id": "tokenizers", "token_count": 1657 }
use crate::decoders::DecoderWrapper; use crate::tokenizer::{Decoder, Result}; use crate::utils::macro_rules_attribute; use serde::{Deserialize, Serialize}; #[derive(Clone, Debug)] #[macro_rules_attribute(impl_serde_type!)] pub struct Sequence { decoders: Vec<DecoderWrapper>, } impl Sequence { pub fn new(decoders: Vec<DecoderWrapper>) -> Self { Self { decoders } } pub fn get_decoders(&self) -> &[DecoderWrapper] { &self.decoders } pub fn get_decoders_mut(&mut self) -> &mut [DecoderWrapper] { &mut self.decoders } } impl Decoder for Sequence { fn decode_chain(&self, mut tokens: Vec<String>) -> Result<Vec<String>> { for decoder in &self.decoders { tokens = decoder.decode_chain(tokens)?; } Ok(tokens) } } #[cfg(test)] mod tests { use super::*; use crate::decoders::ctc::CTC; use crate::pre_tokenizers::metaspace::Metaspace; #[test] fn sequence_basic() { let decoders = vec![ DecoderWrapper::CTC(CTC::default()), DecoderWrapper::Metaspace(Metaspace::default()), ]; let decoder = Sequence::new(decoders); let tokens: Vec<String> = vec!["▁", "▁", "H", "H", "i", "i", "▁", "y", "o", "u"] .into_iter() .map(|s| s.to_string()) .collect(); let out_tokens = decoder.decode(tokens).unwrap(); assert_eq!(out_tokens, "Hi you"); } }
tokenizers/tokenizers/src/decoders/sequence.rs/0
{ "file_path": "tokenizers/tokenizers/src/decoders/sequence.rs", "repo_id": "tokenizers", "token_count": 689 }
use super::OrderedVocabIter; use crate::tokenizer::{Model, Result, Token}; use serde_json::Value; use std::collections::HashMap; use std::fs::File; use std::io::{BufReader, Read, Write}; use std::path::{Path, PathBuf}; mod serialization; mod trainer; // Re-export pub use trainer::*; type Vocab = HashMap<String, u32>; #[derive(thiserror::Error, Debug)] pub enum Error { #[error("WordLevel error: Missing [UNK] token from the vocabulary")] MissingUnkToken, #[error("Bad vocabulary json file")] BadVocabulary, } struct Config { files: Option<String>, vocab: HashMap<String, u32>, unk_token: String, } /// A `WordLevelBuilder` can be used to create a `WordLevel` /// model with a custom configuration. pub struct WordLevelBuilder { config: Config, } impl Default for WordLevelBuilder { fn default() -> Self { Self { config: Config { files: None, vocab: HashMap::new(), unk_token: String::from("<unk>"), }, } } } impl WordLevelBuilder { /// Construct a new `WordLevelBuilder`. pub fn new() -> Self { Self::default() } /// Set the input files. #[must_use] pub fn files(mut self, vocab: String) -> Self { self.config.files = Some(vocab); self } /// Set the vocab (token -> ID) mapping. #[must_use] pub fn vocab(mut self, vocab: HashMap<String, u32>) -> Self { self.config.vocab = vocab; self } /// The the `UNK` token for the vocab. #[must_use] pub fn unk_token(mut self, unk_token: String) -> Self { self.config.unk_token = unk_token; self } /// Contructs a `WordLevel` model that uses the `WordLevelBuilder`'s configuration. pub fn build(mut self) -> Result<WordLevel> { if let Some(vocab) = self.config.files { self.config.vocab = WordLevel::read_file(&vocab)?; } let vocab_r = self .config .vocab .iter() .map(|(key, val)| (*val, key.to_owned())) .collect(); Ok(WordLevel { vocab: self.config.vocab, vocab_r, unk_token: self.config.unk_token, }) } } #[derive(PartialEq, Clone, Eq)] pub struct WordLevel { vocab: HashMap<String, u32>, vocab_r: HashMap<u32, String>, pub unk_token: String, } impl std::fmt::Debug for WordLevel { fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result { fmt.debug_struct("WordLevel") .field("unk_token", &self.unk_token) .field("vocab", &self.vocab.len()) .finish() } } impl WordLevel { pub fn builder() -> WordLevelBuilder { WordLevelBuilder::new() } pub fn read_file(vocab_path: &str) -> Result<Vocab> { let vocab_file = File::open(vocab_path)?; let mut vocab_file = BufReader::new(vocab_file); let mut buffer = String::new(); let mut vocab = HashMap::new(); vocab_file.read_to_string(&mut buffer)?; let json: Value = serde_json::from_str(&buffer)?; match json { Value::Object(m) => { for (token, id) in m { if let Value::Number(id) = id { let id = id.as_u64().ok_or(Error::BadVocabulary)? as u32; vocab.insert(token, id); } } } _ => return Err(Box::new(Error::BadVocabulary)), }; Ok(vocab) } /// Initialize a WordLevel model from vocab and merges file. pub fn from_file(vocab_path: &str, unk_token: String) -> Result<WordLevel> { let vocab = WordLevel::read_file(vocab_path)?; Self::builder().vocab(vocab).unk_token(unk_token).build() } } impl Default for WordLevel { fn default() -> Self { Self { vocab: HashMap::new(), vocab_r: HashMap::new(), unk_token: String::from("<unk>"), } } } impl Model for WordLevel { type Trainer = WordLevelTrainer; fn tokenize(&self, token: &str) -> Result<Vec<Token>> { if let Some(&id) = self.vocab.get(token) { Ok(vec![Token { id, value: token.to_owned(), offsets: (0, token.len()), }]) } else if let Some(&unk_id) = self.vocab.get(&self.unk_token) { Ok(vec![Token { id: unk_id, value: self.unk_token.to_owned(), offsets: (0, token.len()), }]) } else { Err(Box::new(Error::MissingUnkToken)) } } fn token_to_id(&self, token: &str) -> Option<u32> { self.vocab.get(token).copied() } fn id_to_token(&self, id: u32) -> Option<String> { self.vocab_r.get(&id).cloned() } fn get_vocab(&self) -> HashMap<String, u32> { self.vocab.clone() } fn get_vocab_size(&self) -> usize { self.vocab.keys().len() } fn save(&self, folder: &Path, name: Option<&str>) -> Result<Vec<PathBuf>> { let vocab_file_name = match name { Some(name) => format!("{name}-vocab.json"), None => "vocab.json".to_string(), }; // Write vocab.json let vocab_path: PathBuf = [folder, Path::new(vocab_file_name.as_str())] .iter() .collect(); let mut vocab_file = File::create(&vocab_path)?; let order_vocab_iter = OrderedVocabIter::new(&self.vocab_r); let serialized = serde_json::to_string(&order_vocab_iter)?; vocab_file.write_all(serialized.as_bytes())?; Ok(vec![vocab_path]) } fn get_trainer(&self) -> Self::Trainer { WordLevelTrainer::default() } } #[cfg(test)] mod tests { use super::*; #[test] fn test_tokenize_unk() { let vocab: Vocab = [("<unk>".into(), 0), ("a".into(), 1), ("b".into(), 2)] .iter() .cloned() .collect(); let wordlevel = WordLevelBuilder::default() .vocab(vocab) .unk_token("<unk>".to_string()) .build() .unwrap(); let tokens = wordlevel.tokenize("c").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "<unk>".into(), (0, 1)),]); let tokens = wordlevel.tokenize("a").unwrap(); assert_eq!(tokens, vec![Token::new(1u32, "a".into(), (0, 1)),]); } #[test] fn test_tokenize_missing_unk_token() { let vocab: Vocab = [("a".into(), 0), ("b".into(), 1)].iter().cloned().collect(); let wordlevel = WordLevelBuilder::default().vocab(vocab).build().unwrap(); let tokens = wordlevel.tokenize("a").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "a".into(), (0, 1)),]); let error = wordlevel.tokenize("c").err().unwrap(); assert!(error.is::<Error>()); } }
tokenizers/tokenizers/src/models/wordlevel/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/wordlevel/mod.rs", "repo_id": "tokenizers", "token_count": 3382 }
use std::collections::{HashMap, HashSet}; use crate::utils::SysRegex; use serde::{Deserialize, Serialize}; use crate::tokenizer::{ Decoder, Encoding, PostProcessor, PreTokenizedString, PreTokenizer, Result, SplitDelimiterBehavior, }; use crate::utils::macro_rules_attribute; /// Converts bytes to unicode characters. /// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L9 pub(crate) fn bytes_char() -> HashMap<u8, char> { let mut bs: Vec<u8> = vec![]; bs.extend(b'!'..=b'~'); bs.extend(b'\xA1'..=b'\xAC'); bs.extend(b'\xAE'..=b'\xFF'); let mut cs: Vec<u32> = bs.iter().map(|i| *i as u32).collect(); let mut n = 0; for b in 0..=255u8 { if !bs.contains(&b) { bs.push(b); cs.push(u32::pow(2, 8) + n); n += 1; } } // Safety: cs contains all values from bs (between 0 and 255), // and some values of value 2⁸ + n, where n is between 0 and 255. This is between 255 and 512. // Both ranges are valid UTF-32 values (which is fully saturated until 0xD000) bs.into_iter() .zip(cs) .map(|(f, t)| (f, unsafe { std::char::from_u32_unchecked(t) })) .collect() } lazy_static! { /// Regex that matches exactly one token. /// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L98 static ref RE: SysRegex = SysRegex::new( r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) .unwrap(); static ref BYTES_CHAR: HashMap<u8, char> = bytes_char(); static ref CHAR_BYTES: HashMap<char, u8> = bytes_char().into_iter().map(|(c, b)| (b, c)).collect(); } #[derive(Copy, Clone, Debug, PartialEq, Eq)] /// Provides all the necessary steps to handle the BPE tokenization at the byte-level. Takes care /// of all the required processing steps to transform a UTF-8 string as needed before and after the /// BPE model does its job. #[macro_rules_attribute(impl_serde_type!)] #[non_exhaustive] pub struct ByteLevel { /// Whether to add a leading space to the first word. This allows to treat the leading word /// just as any other word. pub add_prefix_space: bool, /// Whether the post processing step should trim offsets to avoid including whitespaces. pub trim_offsets: bool, /// Whether to use the standard GPT2 regex for whitespace splitting /// Set it to False if you want to use your own splitting. #[serde(default = "default_true")] pub use_regex: bool, } fn default_true() -> bool { true } impl Default for ByteLevel { fn default() -> Self { Self { add_prefix_space: true, trim_offsets: true, use_regex: true, } } } impl ByteLevel { pub fn new(add_prefix_space: bool, trim_offsets: bool, use_regex: bool) -> Self { Self { add_prefix_space, trim_offsets, use_regex, } } pub fn alphabet() -> HashSet<char> { BYTES_CHAR.values().copied().collect() } #[must_use] pub fn add_prefix_space(mut self, v: bool) -> Self { self.add_prefix_space = v; self } #[must_use] pub fn trim_offsets(mut self, v: bool) -> Self { self.trim_offsets = v; self } #[must_use] pub fn use_regex(mut self, v: bool) -> Self { self.use_regex = v; self } } /// As a `PreTokenizer`, `ByteLevel` is in charge of transforming all the unicode characters into /// their byte-level counterpart. It also splits the input according to the configured regex. // TODO: Give the ability to modify this regex impl PreTokenizer for ByteLevel { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { let re_ref: &SysRegex = &RE; pretokenized.split(|_, mut normalized| { if self.add_prefix_space && !normalized.get().starts_with(' ') { normalized.prepend(" "); } if self.use_regex { normalized.split(re_ref, SplitDelimiterBehavior::Isolated) } else { Ok(vec![normalized]) } })?; pretokenized.normalize(|normalized| { let s = normalized.get(); let mut transformations: Vec<(char, isize)> = Vec::with_capacity(s.len()); let mut i = 0; for cur_char in s.chars() { let size = cur_char.len_utf8(); let bytes = s[i..i + size].as_bytes(); i += size; transformations.extend( bytes .iter() .enumerate() .map(|(i, b)| (BYTES_CHAR[b], isize::from(i > 0))), ); } normalized.transform(transformations, 0); Ok(()) }) } } /// As a `Decoder`, `ByteLevel` is in charge of converting any byte-level characters to their /// unicode counterpart, before merging everything back into a single String. /// This decoder will consume the tokens and merge them in one step to alleviate /// the fact that single token decoded might be a byte not representable as /// as String. impl Decoder for ByteLevel { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { let toks = tokens .into_iter() .flat_map(|t| { t.chars() .try_fold(vec![], |mut acc, c| { CHAR_BYTES.get(&c).map(|b| { acc.push(*b); acc }) }) .unwrap_or_else(|| t.as_bytes().to_vec()) }) .collect::<Vec<u8>>(); Ok(vec![String::from_utf8_lossy(&toks).to_string()]) } } /// As a `PostProcessor`, `ByteLevel` is in charge of trimming the offsets if necessary. impl PostProcessor for ByteLevel { fn added_tokens(&self, _is_pair: bool) -> usize { 0 } fn process_encodings( &self, mut encodings: Vec<Encoding>, _add_special_tokens: bool, ) -> Result<Vec<Encoding>> { if self.trim_offsets { for encoding in encodings.iter_mut() { process_offsets(encoding, self.add_prefix_space); encoding .get_overflowing_mut() .iter_mut() .for_each(|encoding| process_offsets(encoding, self.add_prefix_space)); } } for (i, encoding) in encodings.iter_mut().enumerate() { encoding.set_sequence_id(i); } Ok(encodings) //<dyn PostProcessor>::default_process(encodings, add_special_tokens) } } pub fn process_offsets(encoding: &mut Encoding, add_prefix_space: bool) { encoding.process_tokens_with_offsets_mut(|(i, (token, offsets))| { let mut leading_spaces = token .chars() .take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace()) .count(); let trailing_spaces = token .chars() .rev() .take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace()) .count(); if leading_spaces > 0 || trailing_spaces > 0 { if leading_spaces > 0 { // If user uses `is_pretokenized=True` we might have // offsets that might begin at the start of the string but are // NOT the first token. let is_first = i == 0 || offsets.0 == 0; if is_first && add_prefix_space && leading_spaces == 1 { // If we are processing the first pair of offsets, with `add_prefix_space`, // then we shouldn't remove anything we added. If there are more than one // leading spaces though, it means we didn't add them, and they should be // removed. leading_spaces = 0; } offsets.0 = std::cmp::min(offsets.0 + leading_spaces, offsets.1); } if trailing_spaces > 0 && offsets.1 >= trailing_spaces { offsets.1 = std::cmp::max(offsets.1 - trailing_spaces, offsets.0); } } }); } #[cfg(test)] mod tests { use super::*; use crate::tokenizer::{ Decoder, Encoding, OffsetReferential, OffsetType, PostProcessor, PreTokenizedString, PreTokenizer, }; use std::iter::FromIterator; #[test] fn pre_tokenization() { let bytelevel = ByteLevel::default().add_prefix_space(false); let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into(); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ġmy", (5, 8)), ("Ġfriend", (8, 15)), (",", (15, 16)), ("Ġhow", (16, 20)), ("Ġis", (20, 23)), ("Ġyour", (23, 28)), ("Ġday", (28, 32)), ("Ġgoing", (32, 38)), ("?", (38, 39)) ] ); } #[test] fn pre_tokenization_no_regex() { let bytelevel = ByteLevel::default().use_regex(false); let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into(); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("ĠHelloĠmyĠfriend,ĠhowĠisĠyourĠdayĠgoing?", (0, 39))] ); } #[test] fn decoding() { let bytelevel = ByteLevel::default().add_prefix_space(false); assert_eq!( bytelevel .decode_chain( vec![ "Hello", "Ġmy", "Ġfriend", ",", "Ġhow", "Ġis", "Ġyour", "Ġday", "Ġgoing", "?" ] .into_iter() .map(|s| s.into()) .collect::<Vec<String>>() ) .unwrap(), vec!["Hello my friend, how is your day going?"] ); } #[test] fn add_prefix_space() { let bytelevel = ByteLevel::default().add_prefix_space(true); for s in &[ " Hello my friend, how is your day going?", "Hello my friend, how is your day going?", ] { let mut pretokenized = PreTokenizedString::from(*s); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("ĠHello", (0, 7)), ("Ġmy", (7, 11)), ("Ġfriend", (11, 19)), (",", (19, 20)), ("Ġhow", (20, 25)), ("Ġis", (25, 29)), ("Ġyour", (29, 35)), ("Ġday", (35, 40)), ("Ġgoing", (40, 47)), ("?", (47, 48)) ] ); } } #[test] fn decode_works_on_separated_tokens() { let samples = vec![ "A Nuskhuri abbreviation of იესუ ქრისტე ( iesu kriste ) \" Jesus Christ \"", "An equal number have descenders , like p or q in English \ : გ , დ , ე , ვ , კ , ლ , ჟ , ტ , უ , ფ , ღ , ყ , ც", ]; let bytelevel = ByteLevel::default().add_prefix_space(false); for sample in samples { let mut pretokenized = PreTokenizedString::from(sample); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); let separated_tokens = pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .iter() .flat_map(|(s, _, _)| s.split("").map(|t| t.into())) .collect::<Vec<_>>(); assert_eq!( sample, bytelevel.decode_chain(separated_tokens).unwrap().join("") ); } } #[test] fn handling_of_newlines() { let mut pretokenized = PreTokenizedString::from("Hello there\nHello there"); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ġthere", (5, 11)), ("Ċ", (11, 12)), ("Hello", (12, 17)), ("Ġthere", (17, 23)) ] ); } #[test] fn handling_of_multiple_whitespaces() { let mut pretokenized = PreTokenizedString::from("Hello there dear"); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ġthere", (5, 11)), ("ĠĠĠĠĠĠ", (11, 17)), ("Ġdear", (17, 22)) ] ); } #[test] fn offsets_when_char_split_up() { let input = "i⭢j"; let mut pretokenized = PreTokenizedString::from(input); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("i", (0, 1)), ("âŃ¢", (1, 4)), ("j", (4, 5))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("i", (0, 1)), ("âŃ¢", (1, 7)), ("j", (7, 8))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(_, o, _)| &input[o.0..o.1]) .collect::<Vec<_>>(), vec!["i", "⭢", "j"] ); } #[test] fn processor_trims_offsets_pre_tokenized() { // If user uses `is_pretokenized=True` we might have // offsets that might begin at the start of the string but are // NOT the first token. let mut encoding = Encoding::new( vec![0; 5], vec![], vec!["Ġl".into(), "ove".into(), "Ġl".into(), "ove".into()], vec![], vec![(0, 1), (1, 4), (0, 1), (1, 4)], vec![], vec![], vec![], HashMap::new(), ); process_offsets(&mut encoding, true); assert_eq!( encoding, Encoding::new( vec![0; 5], vec![], vec!["Ġl".into(), "ove".into(), "Ġl".into(), "ove".into()], vec![], vec![(0, 1), (1, 4), (0, 1), (1, 4)], vec![], vec![], vec![], HashMap::new(), ) ); } #[test] fn processor_trims_offsets() { let start = Encoding::new( vec![0; 5], vec![], vec![ "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), ], vec![], vec![(0, 1), (0, 11), (11, 18), (18, 25), (25, 29)], vec![], vec![], vec![], HashMap::new(), ); let expected = Encoding::new( vec![0; 5], vec![0; 5], vec![ "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), ], vec![], vec![(0, 0), (4, 9), (13, 18), (18, 23), (29, 29)], vec![], vec![], vec![], HashMap::from_iter(vec![(0, 0..5)]), ); let bytelevel = ByteLevel::default().trim_offsets(true); assert_eq!( expected, bytelevel.process(start.clone(), None, false).unwrap() ); let pair_expected = Encoding::new( vec![0; 10], vec![0, 0, 0, 0, 0, 1, 1, 1, 1, 1], vec![ "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), ], vec![], vec![ (0, 0), (4, 9), (13, 18), (18, 23), (29, 29), (0, 0), (4, 9), (13, 18), (18, 23), (29, 29), ], vec![], vec![], vec![], HashMap::from_iter(vec![(0, 0..5), (1, 5..10)]), ); assert_eq!( pair_expected, bytelevel .process(start.clone(), Some(start), false) .unwrap() ); } #[test] fn decode_unknown_characters() { let byte_level = ByteLevel::default(); assert_eq!( byte_level .decode_chain(vec![ "Hello".into(), "Ġthere".into(), "Ġdear".into(), "Ġfriend!".into(), "Ġ".into(), "[PA D]".into() ]) .unwrap(), vec!["Hello there dear friend! [PA D]"] ); } #[test] fn deserialization() { // Before use_regex let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false}"#, ) .unwrap(); assert!(byte_level.use_regex); // Loading works, new future BC test. let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": true}"#, ) .unwrap(); assert!(byte_level.use_regex); let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": false}"#, ) .unwrap(); assert!(!byte_level.use_regex); } }
tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs", "repo_id": "tokenizers", "token_count": 11010 }
//! # Template Processing //! //! Provides a way to specify templates in order to add the special tokens to each //! input sequence as relevant. //! //! ## Example //! //! Let's take `BERT` tokenizer as an example. It uses two special tokens, used to //! delimitate each sequence. `[CLS]` is always used at the beginning of the first //! sequence, and `[SEP]` is added at the end of both the first, and the pair //! sequences. The final result looks like this: //! - Single sequence: `[CLS] Hello there [SEP]` //! - Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]` //! //! With the type ids as following: //! ```markdown //! [CLS] ... [SEP] ... [SEP] //! 0 0 0 1 1 //! ``` //! //! So, we can define a [`TemplateProcessing`] that will achieve this result: //! ``` //! # use tokenizers::processors::template::TemplateProcessing; //! let template = TemplateProcessing::builder() //! // The template when we only have a single sequence: //! .try_single(vec!["[CLS]", "$0", "[SEP]"]).unwrap() //! // Same as: //! .try_single("[CLS] $0 [SEP]").unwrap() //! //! // The template when we have both sequences: //! .try_pair(vec!["[CLS]:0", "$A:0", "[SEP]:0", "$B:1", "[SEP]:1"]).unwrap() //! // Same as: //! .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1").unwrap() //! // Or: //! .try_pair("[CLS] $0 [SEP] $B:1 [SEP]:1").unwrap() //! //! // The list of special tokens used by each sequences //! .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) //! .build() //! .unwrap(); //! ``` //! //! In this example, each input sequence is identified using a `$` construct. This identifier //! lets us specify each input sequence, and the type_id to use. When nothing is specified, //! it uses the default values. Here are the different ways to specify it: //! - Specifying the sequence, with default `type_id == 0`: `$A` or `$B` //! - Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ... //! - Specifying both: `$A:0`, `$B:1`, ... //! //! The same construct is used for special tokens: `<identifier>(:<type_id>)?`. //! //! **Warning**: You must ensure that you are giving the correct tokens/ids as these will //! be added to the `Encoding` without any further check. If the given ids correspond to //! something totally different in a `Tokenizer` using this `PostProcessor`, it might lead //! to unexpected results. //! //! [`TemplateProcessing`]: struct.TemplateProcessing.html //! use crate::{Encoding, PostProcessor, Result}; use itertools::Itertools; use serde::{Deserialize, Serialize}; use std::collections::{HashMap, HashSet}; use std::convert::{TryFrom, TryInto}; use std::result::Result as StdResult; /// Represents any sequences received as input of the PostProcessor #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum Sequence { /// This is the first sequence, the one that is always specified A, /// This is the pair sequence, that is optional B, } /// Represents the different kind of pieces that constitute a template. /// It can be either the input sequence or a [`SpecialToken`]: /// /// - The `Sequence` has an associated `type_id` which is used by default /// for any token inside this sequence. The `Sequence` corresponds to one /// of the input sequence given as input of the `PostProcessor`. /// /// - The `SpecialToken` has an associated `id`. It corresponds to a [`SpecialToken`]. /// /// The easiest way to build a `Piece` is actually by converting it from a string: /// ``` /// # use tokenizers::processors::template::Piece; /// # use std::convert::TryFrom; /// let sequence_with_type_id_0 = Piece::try_from("$0").unwrap(); /// let sequence_with_type_id_1 = Piece::try_from("$1").unwrap(); /// let special_token_cls = Piece::try_from("[CLS]").unwrap(); /// ``` /// /// [`SpecialToken`]: struct.SpecialToken.html /// #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum Piece { Sequence { id: Sequence, type_id: u32 }, SpecialToken { id: String, type_id: u32 }, } impl Piece { fn extract_id(s: &str) -> Option<Self> { if s.starts_with('$') { let rest = &s['$'.len_utf8()..]; // If the id is just `$`, we use 0 as type_id, and Sequence A match rest { "" => Some(Self::Sequence { id: Sequence::A, type_id: 0, }), "A" | "a" => Some(Self::Sequence { id: Sequence::A, type_id: 0, }), "B" | "b" => Some(Self::Sequence { id: Sequence::B, type_id: 0, }), n => { if let Ok(type_id) = n.parse::<u32>() { Some(Self::Sequence { id: Sequence::A, type_id, }) } else { None } } } } else { Some(Self::SpecialToken { id: s.to_owned(), type_id: 0, }) } } fn with_type_id(self, type_id: u32) -> Self { match self { Self::Sequence { id, .. } => Self::Sequence { id, type_id }, Self::SpecialToken { id, .. } => Self::SpecialToken { id, type_id }, } } } impl TryFrom<String> for Piece { type Error = String; fn try_from(s: String) -> StdResult<Self, Self::Error> { let parts = s.split(':').collect::<Vec<_>>(); let err = || format!("Cannot build Piece from string \"{s}\""); match parts.as_slice() { [id, type_id] => { let type_id: u32 = type_id.parse().map_err(|_| err())?; let piece = Self::extract_id(id).ok_or_else(err)?; Ok(piece.with_type_id(type_id)) } [id] => Self::extract_id(id).ok_or_else(err), _ => Err(err()), } } } impl TryFrom<&str> for Piece { type Error = String; fn try_from(s: &str) -> StdResult<Self, Self::Error> { Piece::try_from(s.to_owned()) } } /// Represents a bunch of tokens to be used in a template. /// Usually, special tokens have only one associated id/token but in /// some cases, it might be interesting to have multiple ids/tokens. /// /// # Examples /// ``` /// # use tokenizers::processors::template::SpecialToken; /// // Simple cases, where a single id/token is necessary: /// let cls = SpecialToken::from(("[CLS]", 1)); /// let sep = SpecialToken::from((0, "[SEP]")); // The order in the tuple is not important /// /// // More complex case with multiple values: /// let complex = SpecialToken::new( /// "A complex special token:".into(), /// vec![0, 1, 2, 3, 4], /// vec!["A".into(), "complex".into(), "special".into(), "token".into(), ":".into()] /// ).unwrap(); /// ``` #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub struct SpecialToken { /// A unique id used to identify this SpecialToken in the template id: String, /// The list of associated ids ids: Vec<u32>, /// The list of associated tokens tokens: Vec<String>, } impl From<(String, u32)> for SpecialToken { fn from(v: (String, u32)) -> Self { Self { id: v.0.clone(), ids: vec![v.1], tokens: vec![v.0], } } } impl From<(&str, u32)> for SpecialToken { fn from(v: (&str, u32)) -> Self { Self::from((v.0.to_owned(), v.1)) } } impl From<(u32, String)> for SpecialToken { fn from(v: (u32, String)) -> Self { Self::from((v.1, v.0)) } } impl From<(u32, &str)> for SpecialToken { fn from(v: (u32, &str)) -> Self { Self::from((v.1.to_owned(), v.0)) } } impl SpecialToken { pub fn new(id: String, ids: Vec<u32>, tokens: Vec<String>) -> Result<Self> { if ids.len() != tokens.len() { Err("SpecialToken: ids and tokens must be of the same length".into()) } else { Ok(Self { id, ids, tokens }) } } } /// A Template represents a Vec<[`Piece`]>. /// /// We can easily build one as follows /// ``` /// # use tokenizers::processors::template::Template; /// # use std::convert::TryFrom; /// // By providing a `String` or `&str`, we just split on whitespaces: /// let template = Template::try_from("[CLS] $0 [SEP]").unwrap(); /// /// // By providing pieces directly: /// let template = Template::try_from(vec!["[CLS]", "$0", "[SEP]"]).unwrap(); /// ``` /// Both of these methods give the same result. /// /// [`Piece`]: enum.Piece.html /// #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] #[serde(transparent)] pub struct Template(Vec<Piece>); impl<T> TryFrom<Vec<T>> for Template where T: TryInto<Piece, Error = String>, { type Error = String; fn try_from(v: Vec<T>) -> StdResult<Self, Self::Error> { Ok(Self( v.into_iter() .map(|p| p.try_into()) .collect::<StdResult<Vec<_>, Self::Error>>()?, )) } } impl TryFrom<String> for Template { type Error = String; fn try_from(s: String) -> StdResult<Self, Self::Error> { Self::try_from(s.as_ref()) } } impl TryFrom<&str> for Template { type Error = String; fn try_from(s: &str) -> StdResult<Self, Self::Error> { Self::try_from(s.split(' ').collect::<Vec<_>>()) } } /// A bunch of [`SpecialToken`] represented by their ID. /// Internally, `Tokens` is a `HashMap<String, SpecialToken>` and can be built /// from a HashMap or a Vec<[`SpecialToken`]>. /// /// [`SpecialToken`]: struct.SpecialToken.html #[derive(Debug, Clone, PartialEq, Default, Serialize, Deserialize, Eq)] #[serde(transparent)] pub struct Tokens( #[serde(serialize_with = "crate::utils::ordered_map")] pub HashMap<String, SpecialToken>, ); impl<T: Into<SpecialToken>> From<Vec<T>> for Tokens { fn from(v: Vec<T>) -> Self { Self( v.into_iter() .map(|t| { let token: SpecialToken = t.into(); (token.id.clone(), token) }) .collect(), ) } } impl From<HashMap<String, SpecialToken>> for Tokens { fn from(v: HashMap<String, SpecialToken>) -> Self { Self(v) } } /// This PostProcessor takes care of processing each input `Encoding` by applying /// the corresponding template, before merging them in the final Encoding. /// /// A `Template` is actually a sequence of `Piece` that will be /// concatenated together in the given order. Each `Piece` represents either /// one of the input `Encoding` or a `SpecialToken`. /// /// ## Example /// ``` /// # use tokenizers::processors::template::TemplateProcessing; /// let template = TemplateProcessing::builder() /// .try_single("[CLS] $A [SEP]").unwrap() /// .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1").unwrap() /// .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) /// .build() /// .unwrap(); /// ``` /// #[derive(Debug, Clone, PartialEq, Builder, Serialize, Deserialize, Eq)] #[serde(tag = "type", from = "TemplateProcessingDeserializer")] #[builder(build_fn(validate = "Self::validate"))] pub struct TemplateProcessing { #[builder(try_setter, default = "\"$0\".try_into().unwrap()")] pub single: Template, #[builder(try_setter, default = "\"$A:0 $B:1\".try_into().unwrap()")] pair: Template, #[builder(setter(skip), default = "self.default_added(true)")] #[serde(skip)] added_single: usize, #[builder(setter(skip), default = "self.default_added(false)")] #[serde(skip)] added_pair: usize, #[builder(setter(into), default)] special_tokens: Tokens, } impl TemplateProcessing { // Getter for `single` pub fn get_single(&self) -> String { format!("{:?}", self.single) } // Setter for `single` pub fn set_single(&mut self, single: Template) { self.single = single; } // Getter for `pair` pub fn get_pair(&self) -> &Template { &self.pair } // Setter for `pair` pub fn set_pair(&mut self, pair: Template) { self.pair = pair; } // Getter for `added_single` pub fn get_added_single(&self) -> usize { self.added_single } // Setter for `added_single` pub fn set_added_single(&mut self, added_single: usize) { self.added_single = added_single; } // Getter for `added_pair` pub fn get_added_pair(&self) -> usize { self.added_pair } // Setter for `added_pair` pub fn set_added_pair(&mut self, added_pair: usize) { self.added_pair = added_pair; } // Getter for `special_tokens` pub fn get_special_tokens(&self) -> &Tokens { &self.special_tokens } // Setter for `special_tokens` pub fn set_special_tokens(&mut self, special_tokens: Tokens) { self.special_tokens = special_tokens; } } impl From<&str> for TemplateProcessingBuilderError { fn from(e: &str) -> Self { e.to_string().into() } } impl PartialEq for TemplateProcessingBuilderError { fn eq(&self, other: &Self) -> bool { self.to_string() == other.to_string() } } /// We use this custom deserializer to provided the values for `added_single` /// and `added_pair` during deserialization, while not having to serialize them #[doc(hidden)] #[derive(Deserialize)] #[serde(tag = "type")] struct TemplateProcessingDeserializer { single: Template, pair: Template, special_tokens: Tokens, } impl From<TemplateProcessingDeserializer> for TemplateProcessing { fn from(t: TemplateProcessingDeserializer) -> Self { let added_single = count_added(&t.single, Some(&t.special_tokens)); let added_pair = count_added(&t.pair, Some(&t.special_tokens)); Self { single: t.single, pair: t.pair, added_single, added_pair, special_tokens: t.special_tokens, } } } /// Count the number of added tokens in the given template fn count_added(container: &Template, special_tokens: Option<&Tokens>) -> usize { container .0 .iter() .map(|p| match p { Piece::Sequence { .. } => 0, Piece::SpecialToken { id, .. } => { special_tokens.map_or(0, |spt| spt.0.get(id).map_or(0, |s| s.ids.len())) } }) .sum() } impl TemplateProcessingBuilder { fn default_added(&self, is_single: bool) -> usize { let container = if is_single { self.single.as_ref() } else { self.pair.as_ref() }; container.map_or(0, |pieces| { count_added(pieces, self.special_tokens.as_ref()) }) } fn validate(&self) -> std::result::Result<(), String> { let pair_has_both = self.pair.as_ref().map_or(true, |pair| { let mut has_a = false; let mut has_b = false; for piece in &pair.0 { if let Piece::Sequence { id: Sequence::A, .. } = piece { has_a = true; } if let Piece::Sequence { id: Sequence::B, .. } = piece { has_b = true; } } has_a && has_b }); if !pair_has_both { return Err("Template for `pair` must use both sequences".into()); } let check = |sp| { let exist = self .special_tokens .as_ref() .is_some_and(|map| map.0.contains_key(sp)); match exist { false => Some(sp), true => None, } }; let empty = []; let missing: HashSet<&str> = self .single .as_ref() .map_or(empty.iter(), |s| s.0.iter()) .chain(self.pair.as_ref().map_or(empty.iter(), |s| s.0.iter())) .filter_map(|piece| match piece { Piece::Sequence { .. } => None, Piece::SpecialToken { id, .. } => check(id.as_ref()), }) .collect::<HashSet<_>>(); if missing.is_empty() { Ok(()) } else { Err(format!( "Missing SpecialToken(s) with id(s) `{}`", missing.iter().join(", ") )) } } } impl Default for TemplateProcessing { fn default() -> Self { Self { single: "$0".try_into().unwrap(), pair: "$1".try_into().unwrap(), added_single: 0, added_pair: 0, special_tokens: Tokens::default(), } } } impl TemplateProcessing { pub fn builder() -> TemplateProcessingBuilder { TemplateProcessingBuilder::default() } fn apply_template( &self, template: &[Piece], mut encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> { let final_encodings: Vec<Encoding> = template .iter() .flat_map(|piece| { match piece { Piece::Sequence { id, type_id } => { let i = usize::from(*id != Sequence::A); let encoding = &mut encodings[i]; encoding.set_type_ids(vec![*type_id; encoding.len()]); encoding.set_sequence_id(i); Some(encoding.clone()) } Piece::SpecialToken { id, type_id } => { if add_special_tokens { let tok = &self.special_tokens.0[id]; // We already checked existence above let len = tok.ids.len(); let encoding = Encoding::new( tok.ids.clone(), std::iter::repeat(*type_id).take(len).collect(), tok.tokens.clone(), // words std::iter::repeat(None).take(len).collect(), // offsets std::iter::repeat((0, 0)).take(len).collect(), // special_tokens_mask std::iter::repeat(1).take(len).collect(), // attention_mask std::iter::repeat(1).take(len).collect(), // overflowing vec![], // sequence_range HashMap::new(), ); Some(encoding) } else { None } } } }) .collect(); //let mut pair = if encodings.len() > 1 { // Some(encodings.pop().unwrap()) //} else { // None //}; //let mut encoding = encodings.pop().unwrap(); //let pair_overflowing = pair.as_mut().map_or(vec![], |e| e.take_overflowing()); //let mut overflowing: Vec<Encoding> = encoding // .take_overflowing() // .iter() // .map(|encoding| -> Result<Vec<Encoding>> { // // 1. The pair itself // let mut overflowings = self.apply_template( // template, // if encodings.len() > 1 { // vec![encoding.clone(), encodings[1].clone()] // } else { // vec![encoding.clone()] // }, // add_special_tokens, // )?; // // 2. Its overflowings // for other_o in &pair_overflowing { // overflowings.extend(self.apply_template( // template, // vec![encoding.clone(), other_o.clone()], // add_special_tokens, // )?); // } // Ok(overflowings) // }) // .collect::<Result<Vec<Vec<Encoding>>>>()? // .into_iter() // .flatten() // .collect(); //// We also need to combine the first sequence with all other overflowings //overflowing.extend( // pair_overflowing // .into_iter() // .map(|pair| { // self.apply_template(template, vec![encoding.clone(), pair], add_special_tokens) // }) // .collect::<Result<Vec<_>>>()? // .into_iter() // .flatten(), //); Ok(final_encodings) } } impl PostProcessor for TemplateProcessing { fn added_tokens(&self, is_pair: bool) -> usize { if is_pair { self.added_pair } else { self.added_single } } fn process_encodings( &self, encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> { // let (encoding, pair): (Encoding, Option<Encoding>) = match encodings.len() { // 1 => ( // encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?, // None, // ), // 2 => { // let pair = encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?; // let encoding = encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?; // (encoding, Some(pair)) // } // _ => return Err(Box::new(ProcessorError::InvalidEncodingsVecLength)), // }; let template = match encodings.len() { 2 => &self.pair.0, 1 => &self.single.0, _ => todo!(), }; let encodings = self.apply_template(template, encodings, add_special_tokens)?; Ok(encodings) } } #[cfg(test)] mod tests { use super::*; use std::convert::TryInto; use std::iter::FromIterator; #[test] fn piece_serde() { let seq_0 = Piece::Sequence { id: Sequence::A, type_id: 0, }; let seq_0_s = r#"{"Sequence":{"id":"A","type_id":0}}"#; assert_eq!(serde_json::to_string(&seq_0).unwrap(), seq_0_s); assert_eq!(serde_json::from_str::<Piece>(seq_0_s).unwrap(), seq_0); let seq_1 = Piece::Sequence { id: Sequence::B, type_id: 1, }; let seq_1_s = r#"{"Sequence":{"id":"B","type_id":1}}"#; assert_eq!(serde_json::to_string(&seq_1).unwrap(), seq_1_s); assert_eq!(serde_json::from_str::<Piece>(seq_1_s).unwrap(), seq_1); let spe = Piece::SpecialToken { id: "[CLS]".into(), type_id: 0, }; let spe_s = r#"{"SpecialToken":{"id":"[CLS]","type_id":0}}"#; assert_eq!(serde_json::to_string(&spe).unwrap(), spe_s); assert_eq!(serde_json::from_str::<Piece>(spe_s).unwrap(), spe); } #[test] fn piece() { assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 0 }), "$".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::B, type_id: 0 }), "$B".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 1 }), "$1".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::B, type_id: 2 }), "$B:2".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 1 }), "$:1".try_into() ); assert!(Piece::try_from("$C:1").is_err()); assert!(Piece::try_from("$A:").is_err()); } #[test] fn special_token_serde() { let simple = SpecialToken::from(("[CLS]", 0)); let simple_s = r#"{"id":"[CLS]","ids":[0],"tokens":["[CLS]"]}"#; assert_eq!(serde_json::to_string(&simple).unwrap(), simple_s); assert_eq!( serde_json::from_str::<SpecialToken>(simple_s).unwrap(), simple ); let complete = SpecialToken::new( "[2FR]".into(), vec![1, 2, 3], vec!["convert".into(), "to".into(), "FR".into()], ) .unwrap(); let complete_s = r#"{"id":"[2FR]","ids":[1,2,3],"tokens":["convert","to","FR"]}"#; assert_eq!(serde_json::to_string(&complete).unwrap(), complete_s); assert_eq!( serde_json::from_str::<SpecialToken>(complete_s).unwrap(), complete ); let malformed = SpecialToken::new( "[2FR]".into(), vec![1, 2], vec!["convert".into(), "to".into(), "FR".into()], ); assert!(malformed.is_err()); let malformed = SpecialToken::new( "[2FR]".into(), vec![1, 2, 3], vec!["convert".into(), "FR".into()], ); assert!(malformed.is_err()); } #[test] fn template_serde() { let template = Template(vec![ Piece::Sequence { id: Sequence::A, type_id: 0, }, Piece::SpecialToken { id: "[CLS]".into(), type_id: 0, }, ]); let template_s = r#"[{"Sequence":{"id":"A","type_id":0}},{"SpecialToken":{"id":"[CLS]","type_id":0}}]"#; assert_eq!(serde_json::to_string(&template).unwrap(), template_s); assert_eq!( serde_json::from_str::<Template>(template_s).unwrap(), template ); } #[test] fn tokens_serde() { let tokens = Tokens::from(vec![("[CLS]", 1), ("[SEP]", 0)]); let tokens_s = r#"{"[CLS]":{"id":"[CLS]","ids":[1],"tokens":["[CLS]"]},"[SEP]":{"id":"[SEP]","ids":[0],"tokens":["[SEP]"]}}"#; let tokens_ser = serde_json::to_string(&tokens).unwrap(); assert_eq!(tokens_ser, tokens_s); assert_eq!(serde_json::from_str::<Tokens>(tokens_s).unwrap(), tokens); } fn get_bert_template() -> TemplateProcessing { TemplateProcessing::builder() .try_single(vec!["[CLS]", "$0", "[SEP]"]) .unwrap() .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1") .unwrap() .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) .build() .unwrap() } #[test] fn template_processing_serde() { let template = tests::get_bert_template(); let template_s = "{\ \"type\":\"TemplateProcessing\",\ \"single\":[\ {\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}}\ ],\ \"pair\":[\ {\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"B\",\"type_id\":1}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":1}}\ ],\ \"special_tokens\":{\ \"[CLS]\":{\ \"id\":\"[CLS]\",\"ids\":[1],\"tokens\":[\"[CLS]\"]\ },\ \"[SEP]\":{\ \"id\":\"[SEP]\",\"ids\":[0],\"tokens\":[\"[SEP]\"]\ }\ }}"; let template_ser = serde_json::to_string(&template).unwrap(); assert_eq!(template_ser, template_s); assert_eq!( serde_json::from_str::<TemplateProcessing>(template_s).unwrap(), template ); } #[test] fn missing_special_tokens() { let processor = TemplateProcessing::builder() .try_single("[CLS] $0 [SEP]") .unwrap() .try_pair("[CLS] $A:0 [SEP] $B:1 [SEP]") .unwrap() .build(); let err_a = Err("Missing SpecialToken(s) with id(s) `[SEP], [CLS]`".into()); let err_b = Err("Missing SpecialToken(s) with id(s) `[CLS], [SEP]`".into()); assert!(processor == err_a || processor == err_b); } #[test] fn template_processing() { let processor = tests::get_bert_template(); assert_eq!(processor.added_tokens(false), 2); assert_eq!(processor.added_tokens(true), 3); use crate::Token; let encoding = Encoding::from_tokens( vec![ Token::new(12, "Hello".into(), (0, 5)), Token::new(14, "there".into(), (6, 11)), ], 0, ); let pair = Encoding::from_tokens(vec![Token::new(15, "pair".into(), (0, 4))], 0); let single_encoding = processor.process(encoding.clone(), None, true).unwrap(); assert_eq!( single_encoding, Encoding::new( vec![1, 12, 14, 0], vec![0, 0, 0, 0], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into() ], vec![None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0)], vec![1, 0, 0, 1], vec![1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..3)]), ) ); assert_eq!(single_encoding.token_to_sequence(2), Some(0)); assert_eq!(single_encoding.token_to_sequence(3), None); let pair_encoding = processor.process(encoding, Some(pair), true).unwrap(); assert_eq!( pair_encoding, Encoding::new( vec![1, 12, 14, 0, 15, 0], vec![0, 0, 0, 0, 1, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "pair".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (0, 0)], vec![1, 0, 0, 1, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]), ) ); assert_eq!(pair_encoding.token_to_sequence(2), Some(0)); assert_eq!(pair_encoding.token_to_sequence(3), None); assert_eq!(pair_encoding.token_to_sequence(4), Some(1)); assert_eq!(pair_encoding.token_to_sequence(5), None); } #[test] fn template_processing_overflowing() { let processor = tests::get_bert_template(); assert_eq!(processor.added_tokens(false), 2); assert_eq!(processor.added_tokens(true), 3); use crate::Token; let mut encoding = Encoding::from_tokens( vec![ Token::new(12, "Hello".into(), (0, 5)), Token::new(14, "there".into(), (6, 11)), ], 0, ); let overflowing = Encoding::from_tokens(vec![Token::new(13, "you".into(), (12, 15))], 0); encoding.set_overflowing(vec![overflowing]); let mut pair = Encoding::from_tokens( vec![ Token::new(15, "pair".into(), (0, 4)), Token::new(16, "with".into(), (5, 9)), ], 0, ); let pair_overflowing = Encoding::from_tokens(vec![Token::new(17, "info".into(), (10, 14))], 0); pair.set_overflowing(vec![pair_overflowing]); let single_encoding = processor.process(encoding.clone(), None, true).unwrap(); assert_eq!( single_encoding, Encoding::new( vec![1, 12, 14, 0], vec![0, 0, 0, 0], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into() ], vec![None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0)], vec![1, 0, 0, 1], vec![1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0], vec![0, 0, 0], vec!["[CLS]".into(), "you".into(), "[SEP]".into()], vec![None, None, None], vec![(0, 0), (12, 15), (0, 0)], vec![1, 0, 1], vec![1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2)]), )], HashMap::from_iter(vec![(0, 1..3)]), ) ); assert_eq!(single_encoding.token_to_sequence(2), Some(0)); assert_eq!(single_encoding.token_to_sequence(3), None); let pair_encoding = processor.process(encoding, Some(pair), true).unwrap(); println!("{pair_encoding:#?}"); assert_eq!( pair_encoding, Encoding::new( vec![1, 12, 14, 0, 15, 16, 0], vec![0, 0, 0, 0, 1, 1, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "pair".into(), "with".into(), "[SEP]".into() ], vec![None, None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (5, 9), (0, 0)], vec![1, 0, 0, 1, 0, 0, 1], vec![1, 1, 1, 1, 1, 1, 1], vec![ Encoding::new( vec![1, 13, 0, 15, 16, 0], vec![0, 0, 0, 1, 1, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "pair".into(), "with".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (12, 15), (0, 0), (0, 4), (5, 9), (0, 0)], vec![1, 0, 1, 0, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ),], HashMap::from_iter(vec![(1, 3..5), (0, 1..2)]), ), Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ), Encoding::new( vec![1, 12, 14, 0, 17, 0], vec![0, 0, 0, 0, 0, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (10, 14), (0, 0)], vec![1, 0, 0, 1, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ),], HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]), ) ], HashMap::from_iter(vec![(0, 1..3), (1, 4..6)]), ) ); assert_eq!(pair_encoding.token_to_sequence(2), Some(0)); assert_eq!(pair_encoding.token_to_sequence(3), None); assert_eq!(pair_encoding.token_to_sequence(4), Some(1)); assert_eq!(pair_encoding.token_to_sequence(5), Some(1)); assert_eq!(pair_encoding.token_to_sequence(6), None); } #[test] fn pair_must_use_both_sequences() { let processor = TemplateProcessing::builder() .try_single("$0") .unwrap() .try_pair("$0 $1") .unwrap() .build(); assert_eq!( processor, Err("Template for `pair` must use both sequences".into()) ); } #[test] fn expect_wrong_error_message() { let processor = TemplateProcessing::builder() .try_single("$0") .unwrap() .try_pair("$0 $1") .unwrap() .build(); assert_ne!( processor, Err("Expect the left side error message to be different from the right side!".into()) ); } }
tokenizers/tokenizers/src/processors/template.rs/0
{ "file_path": "tokenizers/tokenizers/src/processors/template.rs", "repo_id": "tokenizers", "token_count": 21738 }
#[cfg(feature = "progressbar")] pub(crate) use indicatif::{ProgressBar, ProgressStyle}; #[cfg(not(feature = "progressbar"))] mod progressbar { use std::borrow::Cow; pub struct ProgressBar; impl ProgressBar { pub fn new(_length: u64) -> Self { Self {} } pub fn set_length(&self, _length: u64) {} pub fn set_message(&self, _message: impl Into<Cow<'static, str>>) {} pub fn finish(&self) {} pub fn reset(&self) {} pub fn inc(&self, _inc: u64) {} pub fn set_style(&self, _style: ProgressStyle) {} } pub struct ProgressStyle {} impl ProgressStyle { pub fn default_bar() -> Self { Self {} } pub fn template(self, _template: &str) -> Result<Self, String> { Ok(self) } } } #[cfg(not(feature = "progressbar"))] pub(crate) use progressbar::{ProgressBar, ProgressStyle};
tokenizers/tokenizers/src/utils/progress.rs/0
{ "file_path": "tokenizers/tokenizers/src/utils/progress.rs", "repo_id": "tokenizers", "token_count": 403 }
# Building a Next.js application In this tutorial, we'll build a simple Next.js application that performs sentiment analysis using Transformers.js! Since Transformers.js can run in the browser or in Node.js, you can choose whether you want to perform inference [client-side](#client-side-inference) or [server-side](#server-side-inference) (we'll show you how to do both). In either case, we will be developing with the new [App Router](https://nextjs.org/docs/app) paradigm. The final product will look something like this: ![Demo](https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/next-demo.gif) Useful links: - Demo site: [client-side](https://huggingface.co/spaces/Xenova/next-example-app) or [server-side](https://huggingface.co/spaces/Xenova/next-server-example-app) - Source code: [client-side](https://github.com/huggingface/transformers.js/tree/main/examples/next-client) or [server-side](https://github.com/huggingface/transformers.js/tree/main/examples/next-server) ## Prerequisites - [Node.js](https://nodejs.org/en/) version 18+ - [npm](https://www.npmjs.com/) version 9+ ## Client-side inference ### Step 1: Initialise the project Start by creating a new Next.js application using `create-next-app`: ```bash npx create-next-app@latest ``` On installation, you'll see various prompts. For this demo, we'll be selecting those shown below in bold: <pre>√ What is your project named? ... next √ Would you like to use TypeScript? ... <b>No</b> / Yes √ Would you like to use ESLint? ... No / <b>Yes</b> √ Would you like to use Tailwind CSS? ... No / <b>Yes</b> √ Would you like to use `src/` directory? ... No / <b>Yes</b> √ Would you like to use App Router? (recommended) ... No / <b>Yes</b> √ Would you like to customize the default import alias? ... <b>No</b> / Yes </pre> ### Step 2: Install and configure Transformers.js You can install Transformers.js from [NPM](https://www.npmjs.com/package/@huggingface/transformers) with the following command: ```bash npm i @huggingface/transformers ``` We also need to update the `next.config.js` file to ignore node-specific modules when bundling for the browser: ```js /** @type {import('next').NextConfig} */ const nextConfig = { // (Optional) Export as a static site // See https://nextjs.org/docs/pages/building-your-application/deploying/static-exports#configuration output: 'export', // Feel free to modify/remove this option // Override the default webpack configuration webpack: (config) => { // See https://webpack.js.org/configuration/resolve/#resolvealias config.resolve.alias = { ...config.resolve.alias, "sharp$": false, "onnxruntime-node$": false, } return config; }, } module.exports = nextConfig ``` Next, we'll create a new [Web Worker](https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers) script where we'll place all ML-related code. This is to ensure that the main thread is not blocked while the model is loading and performing inference. For this application, we'll be using [`Xenova/distilbert-base-uncased-finetuned-sst-2-english`](https://huggingface.co/Xenova/distilbert-base-uncased-finetuned-sst-2-english), a ~67M parameter model finetuned on the [Stanford Sentiment Treebank](https://huggingface.co/datasets/sst) dataset. Add the following code to `./src/app/worker.js`: ```js import { pipeline, env } from "@huggingface/transformers"; // Skip local model check env.allowLocalModels = false; // Use the Singleton pattern to enable lazy construction of the pipeline. class PipelineSingleton { static task = 'text-classification'; static model = 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'; static instance = null; static async getInstance(progress_callback = null) { if (this.instance === null) { this.instance = pipeline(this.task, this.model, { progress_callback }); } return this.instance; } } // Listen for messages from the main thread self.addEventListener('message', async (event) => { // Retrieve the classification pipeline. When called for the first time, // this will load the pipeline and save it for future use. let classifier = await PipelineSingleton.getInstance(x => { // We also add a progress callback to the pipeline so that we can // track model loading. self.postMessage(x); }); // Actually perform the classification let output = await classifier(event.data.text); // Send the output back to the main thread self.postMessage({ status: 'complete', output: output, }); }); ``` ### Step 3: Design the user interface We'll now modify the default `./src/app/page.js` file so that it connects to our worker thread. Since we'll only be performing in-browser inference, we can opt-in to Client components using the [`'use client'` directive](https://nextjs.org/docs/getting-started/react-essentials#the-use-client-directive). ```jsx 'use client' import { useState, useEffect, useRef, useCallback } from 'react' export default function Home() { /* TODO: Add state variables */ // Create a reference to the worker object. const worker = useRef(null); // We use the `useEffect` hook to set up the worker as soon as the `App` component is mounted. useEffect(() => { if (!worker.current) { // Create the worker if it does not yet exist. worker.current = new Worker(new URL('./worker.js', import.meta.url), { type: 'module' }); } // Create a callback function for messages from the worker thread. const onMessageReceived = (e) => { /* TODO: See below */}; // Attach the callback function as an event listener. worker.current.addEventListener('message', onMessageReceived); // Define a cleanup function for when the component is unmounted. return () => worker.current.removeEventListener('message', onMessageReceived); }); const classify = useCallback((text) => { if (worker.current) { worker.current.postMessage({ text }); } }, []); return ( /* TODO: See below */ ) } ``` Initialise the following state variables at the beginning of the `Home` component: ```jsx // Keep track of the classification result and the model loading status. const [result, setResult] = useState(null); const [ready, setReady] = useState(null); ``` and fill in the `onMessageReceived` function to update these variables when the worker thread sends a message: ```js const onMessageReceived = (e) => { switch (e.data.status) { case 'initiate': setReady(false); break; case 'ready': setReady(true); break; case 'complete': setResult(e.data.output[0]) break; } }; ``` Finally, we can add a simple UI to the `Home` component, consisting of an input textbox and a preformatted text element to display the classification result: ```jsx <main className="flex min-h-screen flex-col items-center justify-center p-12"> <h1 className="text-5xl font-bold mb-2 text-center">Transformers.js</h1> <h2 className="text-2xl mb-4 text-center">Next.js template</h2> <input className="w-full max-w-xs p-2 border border-gray-300 rounded mb-4" type="text" placeholder="Enter text here" onInput={e => { classify(e.target.value); }} /> {ready !== null && ( <pre className="bg-gray-100 p-2 rounded"> { (!ready || !result) ? 'Loading...' : JSON.stringify(result, null, 2) } </pre> )} </main> ``` You can now run your application using the following command: ```bash npm run dev ``` Visit the URL shown in the terminal (e.g., [http://localhost:3000/](http://localhost:3000/)) to see your application in action! ### (Optional) Step 4: Build and deploy To build your application, simply run: ```bash npm run build ``` This will bundle your application and output the static files to the `out` folder. For this demo, we will deploy our application as a static [Hugging Face Space](https://huggingface.co/docs/hub/spaces), but you can deploy it anywhere you like! If you haven't already, you can create a free Hugging Face account [here](https://huggingface.co/join). 1. Visit [https://huggingface.co/new-space](https://huggingface.co/new-space) and fill in the form. Remember to select "Static" as the space type. 2. Click the "Create space" button at the bottom of the page. 3. Go to "Files" &rarr; "Add file" &rarr; "Upload files". Drag the files from the `out` folder into the upload box and click "Upload". After they have uploaded, scroll down to the button and click "Commit changes to main". **That's it!** Your application should now be live at `https://huggingface.co/spaces/<your-username>/<your-space-name>`! ## Server-side inference While there are many different ways to perform server-side inference, the simplest (which we will discuss in this tutorial) is using the new [Route Handlers](https://nextjs.org/docs/app/building-your-application/routing/router-handlers) feature. ### Step 1: Initialise the project Start by creating a new Next.js application using `create-next-app`: ```bash npx create-next-app@latest ``` On installation, you'll see various prompts. For this demo, we'll be selecting those shown below in bold: <pre>√ What is your project named? ... next √ Would you like to use TypeScript? ... <b>No</b> / Yes √ Would you like to use ESLint? ... No / <b>Yes</b> √ Would you like to use Tailwind CSS? ... No / <b>Yes</b> √ Would you like to use `src/` directory? ... No / <b>Yes</b> √ Would you like to use App Router? (recommended) ... No / <b>Yes</b> √ Would you like to customize the default import alias? ... <b>No</b> / Yes </pre> ### Step 2: Install and configure Transformers.js You can install Transformers.js from [NPM](https://www.npmjs.com/package/@huggingface/transformers) with the following command: ```bash npm i @huggingface/transformers ``` We also need to update the `next.config.js` file to prevent Webpack from bundling certain packages: ```js /** @type {import('next').NextConfig} */ const nextConfig = { // (Optional) Export as a standalone site // See https://nextjs.org/docs/pages/api-reference/next-config-js/output#automatically-copying-traced-files output: 'standalone', // Feel free to modify/remove this option // Indicate that these packages should not be bundled by webpack experimental: { serverComponentsExternalPackages: ['sharp', 'onnxruntime-node'], }, }; module.exports = nextConfig ``` Next, let's set up our Route Handler. We can do this by creating two files in a new `./src/app/classify/` directory: 1. `pipeline.js` - to handle the construction of our pipeline. ```js import { pipeline } from "@huggingface/transformers"; // Use the Singleton pattern to enable lazy construction of the pipeline. // NOTE: We wrap the class in a function to prevent code duplication (see below). const P = () => class PipelineSingleton { static task = 'text-classification'; static model = 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'; static instance = null; static async getInstance(progress_callback = null) { if (this.instance === null) { this.instance = pipeline(this.task, this.model, { progress_callback }); } return this.instance; } } let PipelineSingleton; if (process.env.NODE_ENV !== 'production') { // When running in development mode, attach the pipeline to the // global object so that it's preserved between hot reloads. // For more information, see https://vercel.com/guides/nextjs-prisma-postgres if (!global.PipelineSingleton) { global.PipelineSingleton = P(); } PipelineSingleton = global.PipelineSingleton; } else { PipelineSingleton = P(); } export default PipelineSingleton; ``` 2. `route.js` - to process requests made to the `/classify` route. ```js import { NextResponse } from 'next/server' import PipelineSingleton from './pipeline.js'; export async function GET(request) { const text = request.nextUrl.searchParams.get('text'); if (!text) { return NextResponse.json({ error: 'Missing text parameter', }, { status: 400 }); } // Get the classification pipeline. When called for the first time, // this will load the pipeline and cache it for future use. const classifier = await PipelineSingleton.getInstance(); // Actually perform the classification const result = await classifier(text); return NextResponse.json(result); } ``` ### Step 3: Design the user interface We'll now modify the default `./src/app/page.js` file to make requests to our newly-created Route Handler. ```jsx 'use client' import { useState } from 'react' export default function Home() { // Keep track of the classification result and the model loading status. const [result, setResult] = useState(null); const [ready, setReady] = useState(null); const classify = async (text) => { if (!text) return; if (ready === null) setReady(false); // Make a request to the /classify route on the server. const result = await fetch(`/classify?text=${encodeURIComponent(text)}`); // If this is the first time we've made a request, set the ready flag. if (!ready) setReady(true); const json = await result.json(); setResult(json); }; return ( <main className="flex min-h-screen flex-col items-center justify-center p-12"> <h1 className="text-5xl font-bold mb-2 text-center">Transformers.js</h1> <h2 className="text-2xl mb-4 text-center">Next.js template (server-side)</h2> <input type="text" className="w-full max-w-xs p-2 border border-gray-300 rounded mb-4" placeholder="Enter text here" onInput={e => { classify(e.target.value); }} /> {ready !== null && ( <pre className="bg-gray-100 p-2 rounded"> { (!ready || !result) ? 'Loading...' : JSON.stringify(result, null, 2)} </pre> )} </main> ) } ``` You can now run your application using the following command: ```bash npm run dev ``` Visit the URL shown in the terminal (e.g., [http://localhost:3000/](http://localhost:3000/)) to see your application in action! ### (Optional) Step 4: Build and deploy For this demo, we will build and deploy our application to [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces). If you haven't already, you can create a free Hugging Face account [here](https://huggingface.co/join). 1. Create a new `Dockerfile` in your project's root folder. You can use our [example Dockerfile](https://github.com/huggingface/transformers.js/blob/main/examples/next-server/Dockerfile) as a template. 2. Visit [https://huggingface.co/new-space](https://huggingface.co/new-space) and fill in the form. Remember to select "Docker" as the space type (you can choose the "Blank" Docker template). 3. Click the "Create space" button at the bottom of the page. 4. Go to "Files" &rarr; "Add file" &rarr; "Upload files". Drag the files from your project folder (excluding `node_modules` and `.next`, if present) into the upload box and click "Upload". After they have uploaded, scroll down to the button and click "Commit changes to main". 5. Add the following lines to the top of your `README.md`: ``` --- title: Next Server Example App emoji: 🔥 colorFrom: yellow colorTo: red sdk: docker pinned: false app_port: 3000 --- ``` **That's it!** Your application should now be live at `https://huggingface.co/spaces/<your-username>/<your-space-name>`!
transformers.js/docs/source/tutorials/next.md/0
{ "file_path": "transformers.js/docs/source/tutorials/next.md", "repo_id": "transformers.js", "token_count": 5397 }
module.exports = { root: true, env: { browser: true, es2020: true }, extends: [ 'eslint:recommended', 'plugin:react/recommended', 'plugin:react/jsx-runtime', 'plugin:react-hooks/recommended', ], ignorePatterns: ['dist', '.eslintrc.cjs'], parserOptions: { ecmaVersion: 'latest', sourceType: 'module' }, settings: { react: { version: '18.2' } }, plugins: ['react-refresh'], rules: { 'react-refresh/only-export-components': [ 'warn', { allowConstantExport: true }, ], }, }
transformers.js/examples/cross-encoder/.eslintrc.cjs/0
{ "file_path": "transformers.js/examples/cross-encoder/.eslintrc.cjs", "repo_id": "transformers.js", "token_count": 211 }
.progress-bar { align-items: start; width: 0%; padding: 2px 8px; min-height: 22px; } .progress { height: auto; } .form-control:checked[type=checkbox] { background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10l3 3l6-6'/%3e%3c/svg%3e"); } .form-control[type=checkbox]:indeterminate { background-color: #0d6efd; border-color: #0d6efd; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e"); } .form-control[type=checkbox] { border-radius: 0.25em; } .form-control:checked { background-color: #0d6efd; border-color: #0d6efd; } .code-container { height: 300px; position: relative; } .code-container>textarea, .code-container>pre { /* Both elements need the same text and space styling so they are directly on top of each other */ margin: 0; padding: 16px; border: 0; width: 100%; height: 100%; } .code-container>textarea, .code-container>pre, .code-container>pre * { /* Also add text styles to highlighing tokens */ font-size: 15pt; font-family: monospace; line-height: 20pt; tab-size: 4; } .code-container>textarea, .code-container>pre { /* In the same place */ position: absolute; top: 0; left: 0; } /* Move the textarea in front of the result */ .code-container>textarea { z-index: 1; } .code-container>pre { z-index: 0; white-space: pre-wrap; pointer-events: none; } /* Make textarea almost completely transparent */ .code-container>textarea { color: transparent; background: transparent; caret-color: black; } /* Can be scrolled */ .code-container>textarea, .code-container>pre { overflow: auto; white-space: nowrap; /* Allows textarea to scroll horizontally */ } /* No resize on textarea */ .code-container>textarea { resize: none; } code#highlighting-content { border-radius: 2px; /* background-color: #eee; */ color: #111; } #od-overlay>rect { fill-opacity: 0.1; opacity: 1; transition: all 0.2s ease-in-out; stroke-width: 2px; stroke: white; } #tc-output { border: 1px solid #ced4da; min-height: 134px; max-height: 134px; border-radius: 0.25rem; color: #4B5563; line-height: 1.75; margin-top: 0.5rem; overflow-y: auto; } .ner-container, .ner-tag { border-radius: 0.25rem; font-weight: 600; } .ner-container { padding-left: 0.25rem; padding-right: 0.25rem; } .ner-tag { font-size: 0.75rem; padding-left: 0.125rem; padding-right: 0.125rem; margin-left: 0.125rem; } /* Override default code highlighting for operators */ .token.operator { background: none; }
transformers.js/examples/demo-site/src/style.css/0
{ "file_path": "transformers.js/examples/demo-site/src/style.css", "repo_id": "transformers.js", "token_count": 1131 }
// This script handles interaction with the user interface, as well as communication // between the renderer thread (UI) and the worker thread (processing). const inputElement = document.getElementById('text'); const outputElement = document.getElementById('output'); // 1. Send input data to the worker thread when it changes. inputElement.addEventListener('input', async (event) => { // 2. Await the result from the worker thread. const result = await window.electronAPI.run(event.target.value); // 3. Update the UI. outputElement.innerText = JSON.stringify(result, null, 2); });
transformers.js/examples/electron/src/client.js/0
{ "file_path": "transformers.js/examples/electron/src/client.js", "repo_id": "transformers.js", "token_count": 163 }
// popup.js - handles interaction with the extension's popup, sends requests to the // service worker (background.js), and updates the popup's UI (popup.html) on completion. const inputElement = document.getElementById('text'); const outputElement = document.getElementById('output'); // Listen for changes made to the textbox. inputElement.addEventListener('input', (event) => { // Bundle the input data into a message. const message = { action: 'classify', text: event.target.value, } // Send this message to the service worker. chrome.runtime.sendMessage(message, (response) => { // Handle results returned by the service worker (`background.js`) and update the popup's UI. outputElement.innerText = JSON.stringify(response, null, 2); }); });
transformers.js/examples/extension/src/popup.js/0
{ "file_path": "transformers.js/examples/extension/src/popup.js", "repo_id": "transformers.js", "token_count": 245 }
This is a [Next.js](https://nextjs.org/) project bootstrapped with [`create-next-app`](https://github.com/vercel/next.js/tree/canary/packages/create-next-app). ## Getting Started First, run the development server: ```bash npm run dev # or yarn dev # or pnpm dev ``` Open [http://localhost:3000](http://localhost:3000) with your browser to see the result. You can start editing the page by modifying `app/page.js`. The page auto-updates as you edit the file. This project uses [`next/font`](https://nextjs.org/docs/basic-features/font-optimization) to automatically optimize and load Inter, a custom Google Font. ## Learn More To learn more about Next.js, take a look at the following resources: - [Next.js Documentation](https://nextjs.org/docs) - learn about Next.js features and API. - [Learn Next.js](https://nextjs.org/learn) - an interactive Next.js tutorial. You can check out [the Next.js GitHub repository](https://github.com/vercel/next.js/) - your feedback and contributions are welcome! ## Deploy on Vercel The easiest way to deploy your Next.js app is to use the [Vercel Platform](https://vercel.com/new?utm_medium=default-template&filter=next.js&utm_source=create-next-app&utm_campaign=create-next-app-readme) from the creators of Next.js. Check out our [Next.js deployment documentation](https://nextjs.org/docs/deployment) for more details.
transformers.js/examples/next-server/README.md/0
{ "file_path": "transformers.js/examples/next-server/README.md", "repo_id": "transformers.js", "token_count": 414 }
{ "name": "audio-processing", "version": "1.0.0", "description": "", "main": "index.js", "type": "module", "scripts": { "test": "echo \"Error: no test specified\" && exit 1" }, "keywords": [], "author": "", "license": "ISC", "dependencies": { "@xenova/transformers": "^2.2.0", "wavefile": "^11.0.0" } }
transformers.js/examples/node-audio-processing/package.json/0
{ "file_path": "transformers.js/examples/node-audio-processing/package.json", "repo_id": "transformers.js", "token_count": 149 }
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>Semantic Audio Search | Transformers.js</title> <link rel="stylesheet" href="./style.css" /> </head> <body> <div id="header"> <div id="title">In-browser Semantic Audio Search</div> <p>Powered by <a href="https://hf.co/docs/transformers.js" target="_blank">🤗 Transformers.js</a></p> </div> <div id="overlay"></div> <div id="deepscatter"></div> <div id="search-bar"> <input id="query" placeholder="Search for music..." type="text" /> <button id="search"></button> </div> </body> <script src="./index.js" type="module"></script> </html>
transformers.js/examples/semantic-audio-search/index.html/0
{ "file_path": "transformers.js/examples/semantic-audio-search/index.html", "repo_id": "transformers.js", "token_count": 275 }
// Create a custom request handler for the /classify route. // For more information, see https://nextjs.org/docs/app/building-your-application/routing/router-handlers import { NextResponse } from 'next/server' import ApplicationSingleton from '../app.js' const parseInputs = (searchParams) => { const text = searchParams.get('text'); if (!text) { return { error: 'Missing text parameter', }; } const threshold = searchParams.get('threshold'); const match_threshold = Number(threshold ?? 0.1); if (isNaN(match_threshold) || match_threshold < 0 || match_threshold > 1) { return { error: `Invalid threshold parameter "${threshold}" (should be a number between 0 and 1)`, }; } const limit = searchParams.get('limit'); const match_count = Number(limit ?? 25); if (isNaN(match_count) || !Number.isInteger(match_count) || match_count < 0 || match_count > 1000) { return { error: `Invalid limit parameter "${limit}" (should be an integer between 0 and 1000)`, }; } return { text, match_threshold, match_count } } // TODO: add caching export async function GET(request) { const parsedInputs = parseInputs(request.nextUrl.searchParams); if (parsedInputs.error) { return NextResponse.json({ error: parsedInputs.error, }, { status: 400 }); } // Valid inputs, so we can proceed const { text, match_threshold, match_count } = parsedInputs; // Get the tokenizer, model, and database singletons. When called for the first time, // this will load the models and cache them for future use. const [tokenizer, text_model, database] = await ApplicationSingleton.getInstance(); // Run tokenization let text_inputs = tokenizer(text, { padding: true, truncation: true }); // Compute embeddings const { text_embeds } = await text_model(text_inputs); const query_embedding = text_embeds.tolist()[0]; // TODO add pagination? let { data: images, error } = await database .rpc('match_images', { query_embedding, match_threshold, match_count, }); if (error) { console.warn('Error fetching images', error); return NextResponse.json({ error: 'An error occurred while fetching images', }, { status: 500 }); } return NextResponse.json(images); }
transformers.js/examples/semantic-image-search/src/app/search/route.js/0
{ "file_path": "transformers.js/examples/semantic-image-search/src/app/search/route.js", "repo_id": "transformers.js", "token_count": 917 }
import { env, Tensor, AutoTokenizer, SpeechT5ForTextToSpeech, SpeechT5HifiGan } from '@xenova/transformers'; import { encodeWAV } from './utils'; // Disable local model checks env.allowLocalModels = false; // Use the Singleton pattern to enable lazy construction of the pipeline. class MyTextToSpeechPipeline { static BASE_URL = 'https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/'; static model_id = 'Xenova/speecht5_tts'; static vocoder_id = 'Xenova/speecht5_hifigan'; static tokenizer_instance = null; static model_instance = null; static vocoder_instance = null; static async getInstance(progress_callback = null) { if (this.tokenizer_instance === null) { this.tokenizer = AutoTokenizer.from_pretrained(this.model_id, { progress_callback }); } if (this.model_instance === null) { this.model_instance = SpeechT5ForTextToSpeech.from_pretrained(this.model_id, { dtype: 'fp32', progress_callback, }); } if (this.vocoder_instance === null) { this.vocoder_instance = SpeechT5HifiGan.from_pretrained(this.vocoder_id, { dtype: 'fp32', progress_callback, }); } return new Promise(async (resolve, reject) => { const result = await Promise.all([ this.tokenizer, this.model_instance, this.vocoder_instance, ]); self.postMessage({ status: 'ready', }); resolve(result); }); } static async getSpeakerEmbeddings(speaker_id) { // e.g., `cmu_us_awb_arctic-wav-arctic_a0001` const speaker_embeddings_url = `${this.BASE_URL}${speaker_id}.bin`; const speaker_embeddings = new Tensor( 'float32', new Float32Array(await (await fetch(speaker_embeddings_url)).arrayBuffer()), [1, 512] ) return speaker_embeddings; } } // Mapping of cached speaker embeddings const speaker_embeddings_cache = new Map(); // Listen for messages from the main thread self.addEventListener('message', async (event) => { // Load the pipeline const [tokenizer, model, vocoder] = await MyTextToSpeechPipeline.getInstance(x => { // We also add a progress callback so that we can track model loading. self.postMessage(x); }); // Tokenize the input const { input_ids } = tokenizer(event.data.text); // Load the speaker embeddings let speaker_embeddings = speaker_embeddings_cache.get(event.data.speaker_id); if (speaker_embeddings === undefined) { speaker_embeddings = await MyTextToSpeechPipeline.getSpeakerEmbeddings(event.data.speaker_id); speaker_embeddings_cache.set(event.data.speaker_id, speaker_embeddings); } // Generate the waveform const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder }); // Encode the waveform as a WAV file const wav = encodeWAV(waveform.data); // Send the output back to the main thread self.postMessage({ status: 'complete', output: new Blob([wav], { type: 'audio/wav' }), }); });
transformers.js/examples/text-to-speech-client/src/worker.js/0
{ "file_path": "transformers.js/examples/text-to-speech-client/src/worker.js", "repo_id": "transformers.js", "token_count": 1398 }
/** @type {import('tailwindcss').Config} */ export default { content: [ "./index.html", "./src/**/*.{js,ts,jsx,tsx}", ], theme: { extend: {}, }, plugins: [], }
transformers.js/examples/tokenizer-playground/tailwind.config.js/0
{ "file_path": "transformers.js/examples/tokenizer-playground/tailwind.config.js", "repo_id": "transformers.js", "token_count": 82 }
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8" /> <link rel="icon" type="image/svg+xml" href="/vite.svg" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>Phi-3 WebGPU</title> </head> <body> <div id="root"></div> <script type="module" src="/src/main.jsx"></script> </body> </html>
transformers.js/examples/webgpu-chat/index.html/0
{ "file_path": "transformers.js/examples/webgpu-chat/index.html", "repo_id": "transformers.js", "token_count": 158 }
{ "name": "webgpu-video-background-removal", "private": true, "version": "0.0.0", "type": "module", "scripts": { "dev": "vite", "build": "vite build", "preview": "vite preview" }, "devDependencies": { "vite": "^5.0.12" }, "dependencies": { "@xenova/transformers": "^3.0.0" } }
transformers.js/examples/webgpu-video-background-removal/package.json/0
{ "file_path": "transformers.js/examples/webgpu-video-background-removal/package.json", "repo_id": "transformers.js", "token_count": 150 }