code
stringlengths 141
97.3k
| apis
sequencelengths 1
24
| extract_api
stringlengths 113
214k
|
---|---|---|
from langchain import PromptTemplate
from codedog.templates import grimoire_en
TRANSLATE_PROMPT = PromptTemplate(
template=grimoire_en.TRANSLATE_PR_REVIEW, input_variables=["language", "description", "content"]
)
| [
"langchain.PromptTemplate"
] | [((100, 217), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'grimoire_en.TRANSLATE_PR_REVIEW', 'input_variables': "['language', 'description', 'content']"}), "(template=grimoire_en.TRANSLATE_PR_REVIEW, input_variables=[\n 'language', 'description', 'content'])\n", (114, 217), False, 'from langchain import PromptTemplate\n')] |
from typing import Any, Dict, List, Union
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema.messages import BaseMessage, get_buffer_string
class ConversationBufferWindowMemory(BaseChatMemory):
"""Buffer for storing conversation memory inside a limited size window."""
human_prefix: str = "Human"
ai_prefix: str = "AI"
memory_key: str = "history" #: :meta private:
k: int = 5
"""Number of messages to store in buffer."""
@property
def buffer(self) -> Union[str, List[BaseMessage]]:
"""String buffer of memory."""
return self.buffer_as_messages if self.return_messages else self.buffer_as_str
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
return get_buffer_string(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
return {self.memory_key: self.buffer}
| [
"langchain.schema.messages.get_buffer_string"
] | [((899, 989), 'langchain.schema.messages.get_buffer_string', 'get_buffer_string', (['messages'], {'human_prefix': 'self.human_prefix', 'ai_prefix': 'self.ai_prefix'}), '(messages, human_prefix=self.human_prefix, ai_prefix=self.\n ai_prefix)\n', (916, 989), False, 'from langchain.schema.messages import BaseMessage, get_buffer_string\n')] |
from typing import Any, Dict, List, Union
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema.messages import BaseMessage, get_buffer_string
class ConversationBufferWindowMemory(BaseChatMemory):
"""Buffer for storing conversation memory inside a limited size window."""
human_prefix: str = "Human"
ai_prefix: str = "AI"
memory_key: str = "history" #: :meta private:
k: int = 5
"""Number of messages to store in buffer."""
@property
def buffer(self) -> Union[str, List[BaseMessage]]:
"""String buffer of memory."""
return self.buffer_as_messages if self.return_messages else self.buffer_as_str
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
return get_buffer_string(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
return {self.memory_key: self.buffer}
| [
"langchain.schema.messages.get_buffer_string"
] | [((899, 989), 'langchain.schema.messages.get_buffer_string', 'get_buffer_string', (['messages'], {'human_prefix': 'self.human_prefix', 'ai_prefix': 'self.ai_prefix'}), '(messages, human_prefix=self.human_prefix, ai_prefix=self.\n ai_prefix)\n', (916, 989), False, 'from langchain.schema.messages import BaseMessage, get_buffer_string\n')] |
from typing import Any, Dict, List, Union
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema.messages import BaseMessage, get_buffer_string
class ConversationBufferWindowMemory(BaseChatMemory):
"""Buffer for storing conversation memory inside a limited size window."""
human_prefix: str = "Human"
ai_prefix: str = "AI"
memory_key: str = "history" #: :meta private:
k: int = 5
"""Number of messages to store in buffer."""
@property
def buffer(self) -> Union[str, List[BaseMessage]]:
"""String buffer of memory."""
return self.buffer_as_messages if self.return_messages else self.buffer_as_str
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
return get_buffer_string(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
return {self.memory_key: self.buffer}
| [
"langchain.schema.messages.get_buffer_string"
] | [((899, 989), 'langchain.schema.messages.get_buffer_string', 'get_buffer_string', (['messages'], {'human_prefix': 'self.human_prefix', 'ai_prefix': 'self.ai_prefix'}), '(messages, human_prefix=self.human_prefix, ai_prefix=self.\n ai_prefix)\n', (916, 989), False, 'from langchain.schema.messages import BaseMessage, get_buffer_string\n')] |
from typing import Any, Dict, List, Union
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema.messages import BaseMessage, get_buffer_string
class ConversationBufferWindowMemory(BaseChatMemory):
"""Buffer for storing conversation memory inside a limited size window."""
human_prefix: str = "Human"
ai_prefix: str = "AI"
memory_key: str = "history" #: :meta private:
k: int = 5
"""Number of messages to store in buffer."""
@property
def buffer(self) -> Union[str, List[BaseMessage]]:
"""String buffer of memory."""
return self.buffer_as_messages if self.return_messages else self.buffer_as_str
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
return get_buffer_string(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
return {self.memory_key: self.buffer}
| [
"langchain.schema.messages.get_buffer_string"
] | [((899, 989), 'langchain.schema.messages.get_buffer_string', 'get_buffer_string', (['messages'], {'human_prefix': 'self.human_prefix', 'ai_prefix': 'self.ai_prefix'}), '(messages, human_prefix=self.human_prefix, ai_prefix=self.\n ai_prefix)\n', (916, 989), False, 'from langchain.schema.messages import BaseMessage, get_buffer_string\n')] |
from typing import Any, Dict, Optional, Type # type: ignore
import langchain
from langchain import LLMChain, PromptTemplate
from langchain.experimental.autonomous_agents import AutoGPT
from sam.core.utils import logger
class AutoGptAgent:
agent: AutoGPT
def __init__(
self, ai_name: str, ai_role: str, memory: VectorStoreRetriever, llm: BaseChatModel, tools: List[BaseTool], **kwargs
):
self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name,
ai_role=ai_role,
llm=llm,
memory=memory,
tools=tools,
)
def start(self, goals: List[str]):
return self.agent.run(goals=goals) | [
"langchain.experimental.autonomous_agents.AutoGPT.from_llm_and_tools"
] | [((434, 535), 'langchain.experimental.autonomous_agents.AutoGPT.from_llm_and_tools', 'AutoGPT.from_llm_and_tools', ([], {'ai_name': 'ai_name', 'ai_role': 'ai_role', 'llm': 'llm', 'memory': 'memory', 'tools': 'tools'}), '(ai_name=ai_name, ai_role=ai_role, llm=llm,\n memory=memory, tools=tools)\n', (460, 535), False, 'from langchain.experimental.autonomous_agents import AutoGPT\n')] |
from typing import Any, Dict, Optional, Type # type: ignore
import langchain
from langchain import LLMChain, PromptTemplate
from langchain.experimental.autonomous_agents import AutoGPT
from sam.core.utils import logger
class AutoGptAgent:
agent: AutoGPT
def __init__(
self, ai_name: str, ai_role: str, memory: VectorStoreRetriever, llm: BaseChatModel, tools: List[BaseTool], **kwargs
):
self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name,
ai_role=ai_role,
llm=llm,
memory=memory,
tools=tools,
)
def start(self, goals: List[str]):
return self.agent.run(goals=goals) | [
"langchain.experimental.autonomous_agents.AutoGPT.from_llm_and_tools"
] | [((434, 535), 'langchain.experimental.autonomous_agents.AutoGPT.from_llm_and_tools', 'AutoGPT.from_llm_and_tools', ([], {'ai_name': 'ai_name', 'ai_role': 'ai_role', 'llm': 'llm', 'memory': 'memory', 'tools': 'tools'}), '(ai_name=ai_name, ai_role=ai_role, llm=llm,\n memory=memory, tools=tools)\n', (460, 535), False, 'from langchain.experimental.autonomous_agents import AutoGPT\n')] |
from typing import Any, Dict, Optional, Type # type: ignore
import langchain
from langchain import LLMChain, PromptTemplate
from langchain.experimental.autonomous_agents import AutoGPT
from sam.core.utils import logger
class AutoGptAgent:
agent: AutoGPT
def __init__(
self, ai_name: str, ai_role: str, memory: VectorStoreRetriever, llm: BaseChatModel, tools: List[BaseTool], **kwargs
):
self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name,
ai_role=ai_role,
llm=llm,
memory=memory,
tools=tools,
)
def start(self, goals: List[str]):
return self.agent.run(goals=goals) | [
"langchain.experimental.autonomous_agents.AutoGPT.from_llm_and_tools"
] | [((434, 535), 'langchain.experimental.autonomous_agents.AutoGPT.from_llm_and_tools', 'AutoGPT.from_llm_and_tools', ([], {'ai_name': 'ai_name', 'ai_role': 'ai_role', 'llm': 'llm', 'memory': 'memory', 'tools': 'tools'}), '(ai_name=ai_name, ai_role=ai_role, llm=llm,\n memory=memory, tools=tools)\n', (460, 535), False, 'from langchain.experimental.autonomous_agents import AutoGPT\n')] |
#import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
import warnings
warnings.filterwarnings("ignore")
from langchain.agents.agent_toolkits import create_python_agent
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
from langchain.tools.python.tool import PythonREPLTool
#from langchain.python import PythonREPL
from langchain.chat_models import ChatOpenAI
import langchain
llm = ChatOpenAI(temperature=0)
tools = load_tools(["llm-math", "wikipedia"], llm=llm)
customer_list = [["Harrison", "Chase"],
["Lang", "Chain"],
["Dolly", "Too"],
["Elle", "Elem"],
["Geoff", "Fusion"],
["Trance", "Former"],
["Jen", "Ayai"]]
def do_answer1():
langchain.debug = True
agent = create_python_agent(
llm,
tool=PythonREPLTool(),
verbose=True
)
answer = agent.run(f"""Sort these customers by \
last name and then first name \
and print the output: {customer_list}""")
print(answer)
langchain.debug = False
def do_answer2():
from langchain.agents import tool
from datetime import date
langchain.debug = True
@tool
def time(text: str) -> str:
"""Returns todays date, use this for any \
questions related to knowing todays date. \
The input should always be an empty string, \
and this function will always return todays \
date - any date mathmatics should occur \
outside this function."""
return str(date.today())
agent = initialize_agent(
tools + [time],
llm,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
handle_parsing_errors=True,
verbose = True)
try:
result = agent("whats the date today?")
except: # noqa
print("exception on external access")
print(result)
langchain.debug = False
if __name__ == "__main__":
#do_answer1()
do_answer2()
| [
"langchain.tools.python.tool.PythonREPLTool",
"langchain.agents.load_tools",
"langchain.agents.initialize_agent",
"langchain.chat_models.ChatOpenAI"
] | [((128, 161), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (151, 161), False, 'import warnings\n'), ((489, 514), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (499, 514), False, 'from langchain.chat_models import ChatOpenAI\n'), ((523, 569), 'langchain.agents.load_tools', 'load_tools', (["['llm-math', 'wikipedia']"], {'llm': 'llm'}), "(['llm-math', 'wikipedia'], llm=llm)\n", (533, 569), False, 'from langchain.agents import load_tools, initialize_agent\n'), ((72, 85), 'dotenv.find_dotenv', 'find_dotenv', ([], {}), '()\n', (83, 85), False, 'from dotenv import load_dotenv, find_dotenv\n'), ((1666, 1800), 'langchain.agents.initialize_agent', 'initialize_agent', (['(tools + [time])', 'llm'], {'agent': 'AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION', 'handle_parsing_errors': '(True)', 'verbose': '(True)'}), '(tools + [time], llm, agent=AgentType.\n CHAT_ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True, verbose=True)\n', (1682, 1800), False, 'from langchain.agents import load_tools, initialize_agent\n'), ((936, 952), 'langchain.tools.python.tool.PythonREPLTool', 'PythonREPLTool', ([], {}), '()\n', (950, 952), False, 'from langchain.tools.python.tool import PythonREPLTool\n'), ((1638, 1650), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1648, 1650), False, 'from datetime import date\n')] |
from typing import List, Optional, Type
from langchain.memory import (
ChatMessageHistory,
ConversationBufferMemory,
ConversationSummaryMemory,
RedisChatMessageHistory,
RedisEntityStore,
VectorStoreRetrieverMemory,
)
class Memory:
@staticmethod
def messageHistory(path: str):
history = ChatMessageHistory()
return history
@staticmethod
def bufferMemory(path: str):
memory = ConversationBufferMemory()
return memory
@staticmethod
def chatSummary(path: str):
memory = ConversationSummaryMemory()
return memory
| [
"langchain.memory.ConversationBufferMemory",
"langchain.memory.ChatMessageHistory",
"langchain.memory.ConversationSummaryMemory"
] | [((329, 349), 'langchain.memory.ChatMessageHistory', 'ChatMessageHistory', ([], {}), '()\n', (347, 349), False, 'from langchain.memory import ChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory, RedisChatMessageHistory, RedisEntityStore, VectorStoreRetrieverMemory\n'), ((442, 468), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {}), '()\n', (466, 468), False, 'from langchain.memory import ChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory, RedisChatMessageHistory, RedisEntityStore, VectorStoreRetrieverMemory\n'), ((559, 586), 'langchain.memory.ConversationSummaryMemory', 'ConversationSummaryMemory', ([], {}), '()\n', (584, 586), False, 'from langchain.memory import ChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory, RedisChatMessageHistory, RedisEntityStore, VectorStoreRetrieverMemory\n')] |
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders import HNLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import UnstructuredHTMLLoader
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_openai.llms import OpenAI
from constant import openai
import os
os.environ['OPENAI_API_KEY'] = openai
loader = PyPDFLoader("attention is all you need.pdf")
data = loader.load()
# print(data[0])
loader = CSVLoader(file_path="job_placement.csv")
data = loader.load()
# print(data[0])
loader = HNLoader("https://news.ycombinator.com")
data = loader.load()
# print(data[0])
quote = "one Machine can do the work of fifty ordinary humans, No machine can do the" \
"work of one extraordinary human."
ct_splitter = CharacterTextSplitter(
separator='.',
chunk_size=24,
chunk_overlap=3
)
# docs = ct_splitter.split_text(quote)
# print(docs)
rc_splitter = RecursiveCharacterTextSplitter(
chunk_size=24,
chunk_overlap=3,
)
# docs = rc_splitter.split_text(quote)
# print(docs)
loader = UnstructuredHTMLLoader("data.html")
data = loader.load()
rc_splitter = RecursiveCharacterTextSplitter(
chunk_size=24,
chunk_overlap=3,
separators='.',
)
# docs = rc_splitter.split_documents(data)
# print(docs)
quote = "There is a kingdom of lychee fruit that are alive and thriving in Iceland, but they feel " \
"taken advantage of and are not fast enough for you."
splitter = RecursiveCharacterTextSplitter(
chunk_size=40,
chunk_overlap=10,
)
docs = splitter.split_text(quote)
embeddings = OpenAIEmbeddings(openai_api_key=openai)
vectordb = Chroma(
persist_directory="data",
embedding_function=embeddings
)
vectordb.persist()
docstorage = Chroma.from_texts(docs,embeddings)
qa = RetrievalQA.from_chain_type(
llm = OpenAI(model_name="gpt-3.5-turbo-instruct"),
chain_type="stuff",
retriever = docstorage.as_retriever()
)
# query = "Where do lychee fruit live?"
# print(qa.invoke(query))
quote = "There is a kingdom of lycee fruit that are alive and thriving in Iceland, but they fee" \
"taken advantage of and are not fast enough for you."
qa1 = RetrievalQAWithSourcesChain.from_chain_type(
llm = OpenAI(model_name="gpt-3.5-turbo-instruct"),
chain_type="stuff",
retriever = docstorage.as_retriever(),
)
results = qa1({'question':'What is the primary architecture presented in the document?'},return_only_outputs=True)
print(results)
| [
"langchain_community.vectorstores.Chroma",
"langchain_community.vectorstores.Chroma.from_texts",
"langchain.text_splitter.CharacterTextSplitter",
"langchain_community.document_loaders.PyPDFLoader",
"langchain_openai.llms.OpenAI",
"langchain.text_splitter.RecursiveCharacterTextSplitter",
"langchain_community.document_loaders.HNLoader",
"langchain_community.document_loaders.UnstructuredHTMLLoader",
"langchain_community.document_loaders.csv_loader.CSVLoader",
"langchain_openai.embeddings.OpenAIEmbeddings"
] | [((741, 785), 'langchain_community.document_loaders.PyPDFLoader', 'PyPDFLoader', (['"""attention is all you need.pdf"""'], {}), "('attention is all you need.pdf')\n", (752, 785), False, 'from langchain_community.document_loaders import PyPDFLoader\n'), ((838, 878), 'langchain_community.document_loaders.csv_loader.CSVLoader', 'CSVLoader', ([], {'file_path': '"""job_placement.csv"""'}), "(file_path='job_placement.csv')\n", (847, 878), False, 'from langchain_community.document_loaders.csv_loader import CSVLoader\n'), ((931, 971), 'langchain_community.document_loaders.HNLoader', 'HNLoader', (['"""https://news.ycombinator.com"""'], {}), "('https://news.ycombinator.com')\n", (939, 971), False, 'from langchain_community.document_loaders import HNLoader\n'), ((1166, 1234), 'langchain.text_splitter.CharacterTextSplitter', 'CharacterTextSplitter', ([], {'separator': '"""."""', 'chunk_size': '(24)', 'chunk_overlap': '(3)'}), "(separator='.', chunk_size=24, chunk_overlap=3)\n", (1187, 1234), False, 'from langchain.text_splitter import CharacterTextSplitter\n'), ((1327, 1389), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(24)', 'chunk_overlap': '(3)'}), '(chunk_size=24, chunk_overlap=3)\n', (1357, 1389), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1473, 1508), 'langchain_community.document_loaders.UnstructuredHTMLLoader', 'UnstructuredHTMLLoader', (['"""data.html"""'], {}), "('data.html')\n", (1495, 1508), False, 'from langchain_community.document_loaders import UnstructuredHTMLLoader\n'), ((1548, 1626), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(24)', 'chunk_overlap': '(3)', 'separators': '"""."""'}), "(chunk_size=24, chunk_overlap=3, separators='.')\n", (1578, 1626), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1889, 1952), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(40)', 'chunk_overlap': '(10)'}), '(chunk_size=40, chunk_overlap=10)\n', (1919, 1952), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((2020, 2059), 'langchain_openai.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'openai_api_key': 'openai'}), '(openai_api_key=openai)\n', (2036, 2059), False, 'from langchain_openai.embeddings import OpenAIEmbeddings\n'), ((2074, 2137), 'langchain_community.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': '"""data"""', 'embedding_function': 'embeddings'}), "(persist_directory='data', embedding_function=embeddings)\n", (2080, 2137), False, 'from langchain_community.vectorstores import Chroma\n'), ((2189, 2224), 'langchain_community.vectorstores.Chroma.from_texts', 'Chroma.from_texts', (['docs', 'embeddings'], {}), '(docs, embeddings)\n', (2206, 2224), False, 'from langchain_community.vectorstores import Chroma\n'), ((2272, 2315), 'langchain_openai.llms.OpenAI', 'OpenAI', ([], {'model_name': '"""gpt-3.5-turbo-instruct"""'}), "(model_name='gpt-3.5-turbo-instruct')\n", (2278, 2315), False, 'from langchain_openai.llms import OpenAI\n'), ((2688, 2731), 'langchain_openai.llms.OpenAI', 'OpenAI', ([], {'model_name': '"""gpt-3.5-turbo-instruct"""'}), "(model_name='gpt-3.5-turbo-instruct')\n", (2694, 2731), False, 'from langchain_openai.llms import OpenAI\n')] |
from __future__ import annotations
from typing import Any, TypeVar
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
T = TypeVar("T")
class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
@classmethod
def is_lc_serializable(cls) -> bool:
return True
parser: BaseOutputParser[T]
"""The parser to use to parse the output."""
# Should be an LLMChain but we want to avoid top-level imports from langchain.chains
retry_chain: Any
"""The LLMChain to use to retry the completion."""
max_retries: int = 1
"""The maximum number of times to retry the parse."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
max_retries: int = 1,
) -> OutputFixingParser[T]:
"""Create an OutputFixingParser from a language model and a parser.
Args:
llm: llm to use for fixing
parser: parser to use for parsing
prompt: prompt to use for fixing
max_retries: Maximum number of retries to parse.
Returns:
OutputFixingParser
"""
from langchain.chains.llm import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain, max_retries=max_retries)
def parse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return self.parser.parse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
async def aparse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return await self.parser.aparse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = await self.retry_chain.arun(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "output_fixing"
| [
"langchain_core.exceptions.OutputParserException",
"langchain.chains.llm.LLMChain"
] | [((371, 383), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (378, 383), False, 'from typing import Any, TypeVar\n'), ((1545, 1577), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (1553, 1577), False, 'from langchain.chains.llm import LLMChain\n'), ((2266, 2306), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2287, 2306), False, 'from langchain_core.exceptions import OutputParserException\n'), ((2938, 2978), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2959, 2978), False, 'from langchain_core.exceptions import OutputParserException\n')] |
from __future__ import annotations
from typing import Any, TypeVar
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
T = TypeVar("T")
class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
@classmethod
def is_lc_serializable(cls) -> bool:
return True
parser: BaseOutputParser[T]
"""The parser to use to parse the output."""
# Should be an LLMChain but we want to avoid top-level imports from langchain.chains
retry_chain: Any
"""The LLMChain to use to retry the completion."""
max_retries: int = 1
"""The maximum number of times to retry the parse."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
max_retries: int = 1,
) -> OutputFixingParser[T]:
"""Create an OutputFixingParser from a language model and a parser.
Args:
llm: llm to use for fixing
parser: parser to use for parsing
prompt: prompt to use for fixing
max_retries: Maximum number of retries to parse.
Returns:
OutputFixingParser
"""
from langchain.chains.llm import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain, max_retries=max_retries)
def parse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return self.parser.parse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
async def aparse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return await self.parser.aparse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = await self.retry_chain.arun(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "output_fixing"
| [
"langchain_core.exceptions.OutputParserException",
"langchain.chains.llm.LLMChain"
] | [((371, 383), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (378, 383), False, 'from typing import Any, TypeVar\n'), ((1545, 1577), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (1553, 1577), False, 'from langchain.chains.llm import LLMChain\n'), ((2266, 2306), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2287, 2306), False, 'from langchain_core.exceptions import OutputParserException\n'), ((2938, 2978), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2959, 2978), False, 'from langchain_core.exceptions import OutputParserException\n')] |
from __future__ import annotations
from typing import Any, TypeVar
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
T = TypeVar("T")
class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
@classmethod
def is_lc_serializable(cls) -> bool:
return True
parser: BaseOutputParser[T]
"""The parser to use to parse the output."""
# Should be an LLMChain but we want to avoid top-level imports from langchain.chains
retry_chain: Any
"""The LLMChain to use to retry the completion."""
max_retries: int = 1
"""The maximum number of times to retry the parse."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
max_retries: int = 1,
) -> OutputFixingParser[T]:
"""Create an OutputFixingParser from a language model and a parser.
Args:
llm: llm to use for fixing
parser: parser to use for parsing
prompt: prompt to use for fixing
max_retries: Maximum number of retries to parse.
Returns:
OutputFixingParser
"""
from langchain.chains.llm import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain, max_retries=max_retries)
def parse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return self.parser.parse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
async def aparse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return await self.parser.aparse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = await self.retry_chain.arun(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "output_fixing"
| [
"langchain_core.exceptions.OutputParserException",
"langchain.chains.llm.LLMChain"
] | [((371, 383), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (378, 383), False, 'from typing import Any, TypeVar\n'), ((1545, 1577), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (1553, 1577), False, 'from langchain.chains.llm import LLMChain\n'), ((2266, 2306), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2287, 2306), False, 'from langchain_core.exceptions import OutputParserException\n'), ((2938, 2978), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2959, 2978), False, 'from langchain_core.exceptions import OutputParserException\n')] |
from __future__ import annotations
from typing import Any, TypeVar
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
T = TypeVar("T")
class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
@classmethod
def is_lc_serializable(cls) -> bool:
return True
parser: BaseOutputParser[T]
"""The parser to use to parse the output."""
# Should be an LLMChain but we want to avoid top-level imports from langchain.chains
retry_chain: Any
"""The LLMChain to use to retry the completion."""
max_retries: int = 1
"""The maximum number of times to retry the parse."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
max_retries: int = 1,
) -> OutputFixingParser[T]:
"""Create an OutputFixingParser from a language model and a parser.
Args:
llm: llm to use for fixing
parser: parser to use for parsing
prompt: prompt to use for fixing
max_retries: Maximum number of retries to parse.
Returns:
OutputFixingParser
"""
from langchain.chains.llm import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain, max_retries=max_retries)
def parse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return self.parser.parse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
async def aparse(self, completion: str) -> T:
retries = 0
while retries <= self.max_retries:
try:
return await self.parser.aparse(completion)
except OutputParserException as e:
if retries == self.max_retries:
raise e
else:
retries += 1
completion = await self.retry_chain.arun(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
raise OutputParserException("Failed to parse")
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "output_fixing"
| [
"langchain_core.exceptions.OutputParserException",
"langchain.chains.llm.LLMChain"
] | [((371, 383), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (378, 383), False, 'from typing import Any, TypeVar\n'), ((1545, 1577), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (1553, 1577), False, 'from langchain.chains.llm import LLMChain\n'), ((2266, 2306), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2287, 2306), False, 'from langchain_core.exceptions import OutputParserException\n'), ((2938, 2978), 'langchain_core.exceptions.OutputParserException', 'OutputParserException', (['"""Failed to parse"""'], {}), "('Failed to parse')\n", (2959, 2978), False, 'from langchain_core.exceptions import OutputParserException\n')] |
from __future__ import annotations
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from meilisearch import Client
def _create_client(
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
) -> Client:
try:
import meilisearch
except ImportError:
raise ImportError(
"Could not import meilisearch python package. "
"Please install it with `pip install meilisearch`."
)
if not client:
url = url or get_from_env("url", "MEILI_HTTP_ADDR")
try:
api_key = api_key or get_from_env("api_key", "MEILI_MASTER_KEY")
except Exception:
pass
client = meilisearch.Client(url=url, api_key=api_key)
elif not isinstance(client, meilisearch.Client):
raise ValueError(
f"client should be an instance of meilisearch.Client, "
f"got {type(client)}"
)
try:
client.version()
except ValueError as e:
raise ValueError(f"Failed to connect to Meilisearch: {e}")
return client
class Meilisearch(VectorStore):
"""`Meilisearch` vector store.
To use this, you need to have `meilisearch` python package installed,
and a running Meilisearch instance.
To learn more about Meilisearch Python, refer to the in-depth
Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
See the following documentation for how to run a Meilisearch instance:
https://www.meilisearch.com/docs/learn/getting_started/quick_start.
Example:
.. code-block:: python
from langchain.vectorstores import Meilisearch
from langchain.embeddings.openai import OpenAIEmbeddings
import meilisearch
# api_key is optional; provide it if your meilisearch instance requires it
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
vectorstore = Meilisearch(
embedding=embeddings,
client=client,
index_name='langchain_demo',
text_key='text')
"""
def __init__(
self,
embedding: Embeddings,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
text_key: str = "text",
metadata_key: str = "metadata",
):
"""Initialize with Meilisearch client."""
client = _create_client(client=client, url=url, api_key=api_key)
self._client = client
self._index_name = index_name
self._embedding = embedding
self._text_key = text_key
self._metadata_key = metadata_key
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embedding and add them to the vector store.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]]): Optional list of metadata.
Defaults to None.
ids Optional[List[str]]: Optional list of IDs.
Defaults to None.
Returns:
List[str]: List of IDs of the texts added to the vectorstore.
"""
texts = list(texts)
# Embed and create the documents
docs = []
if ids is None:
ids = [uuid.uuid4().hex for _ in texts]
if metadatas is None:
metadatas = [{} for _ in texts]
embedding_vectors = self._embedding.embed_documents(texts)
for i, text in enumerate(texts):
id = ids[i]
metadata = metadatas[i]
metadata[self._text_key] = text
embedding = embedding_vectors[i]
docs.append(
{
"id": id,
"_vectors": embedding,
f"{self._metadata_key}": metadata,
}
)
# Send to Meilisearch
self._client.index(str(self._index_name)).add_documents(docs)
return ids
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to the query.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
docs_and_scores = self.similarity_search_with_score(
query=query,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to the query, along with scores.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
_query = self._embedding.embed_query(query)
docs = self.similarity_search_by_vector_with_scores(
embedding=_query,
k=k,
filter=filter,
kwargs=kwargs,
)
return docs
def similarity_search_by_vector_with_scores(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = []
results = self._client.index(str(self._index_name)).search(
"", {"vector": embedding, "limit": k, "filter": filter}
)
for result in results["hits"]:
metadata = result[self._metadata_key]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
semantic_score = result["_semanticScore"]
docs.append(
(Document(page_content=text, metadata=metadata), semantic_score)
)
return docs
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = self.similarity_search_by_vector_with_scores(
embedding=embedding,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs]
@classmethod
def from_texts(
cls: Type[Meilisearch],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
ids: Optional[List[str]] = None,
text_key: Optional[str] = "text",
metadata_key: Optional[str] = "metadata",
**kwargs: Any,
) -> Meilisearch:
"""Construct Meilisearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Meilisearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Meilisearch
from langchain.embeddings import OpenAIEmbeddings
import meilisearch
# The environment should be the one specified next to the API key
# in your Meilisearch console
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
docsearch = Meilisearch.from_texts(
client=client,
embeddings=embeddings,
)
"""
client = _create_client(client=client, url=url, api_key=api_key)
vectorstore = cls(
embedding=embedding,
client=client,
index_name=index_name,
)
vectorstore.add_texts(
texts=texts,
metadatas=metadatas,
ids=ids,
text_key=text_key,
metadata_key=metadata_key,
)
return vectorstore
| [
"langchain.docstore.document.Document",
"langchain.utils.get_from_env"
] | [((965, 1009), 'meilisearch.Client', 'meilisearch.Client', ([], {'url': 'url', 'api_key': 'api_key'}), '(url=url, api_key=api_key)\n', (983, 1009), False, 'import meilisearch\n'), ((776, 814), 'langchain.utils.get_from_env', 'get_from_env', (['"""url"""', '"""MEILI_HTTP_ADDR"""'], {}), "('url', 'MEILI_HTTP_ADDR')\n", (788, 814), False, 'from langchain.utils import get_from_env\n'), ((861, 904), 'langchain.utils.get_from_env', 'get_from_env', (['"""api_key"""', '"""MEILI_MASTER_KEY"""'], {}), "('api_key', 'MEILI_MASTER_KEY')\n", (873, 904), False, 'from langchain.utils import get_from_env\n'), ((3872, 3884), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (3882, 3884), False, 'import uuid\n'), ((7512, 7558), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (7520, 7558), False, 'from langchain.docstore.document import Document\n')] |
from __future__ import annotations
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from meilisearch import Client
def _create_client(
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
) -> Client:
try:
import meilisearch
except ImportError:
raise ImportError(
"Could not import meilisearch python package. "
"Please install it with `pip install meilisearch`."
)
if not client:
url = url or get_from_env("url", "MEILI_HTTP_ADDR")
try:
api_key = api_key or get_from_env("api_key", "MEILI_MASTER_KEY")
except Exception:
pass
client = meilisearch.Client(url=url, api_key=api_key)
elif not isinstance(client, meilisearch.Client):
raise ValueError(
f"client should be an instance of meilisearch.Client, "
f"got {type(client)}"
)
try:
client.version()
except ValueError as e:
raise ValueError(f"Failed to connect to Meilisearch: {e}")
return client
class Meilisearch(VectorStore):
"""`Meilisearch` vector store.
To use this, you need to have `meilisearch` python package installed,
and a running Meilisearch instance.
To learn more about Meilisearch Python, refer to the in-depth
Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
See the following documentation for how to run a Meilisearch instance:
https://www.meilisearch.com/docs/learn/getting_started/quick_start.
Example:
.. code-block:: python
from langchain.vectorstores import Meilisearch
from langchain.embeddings.openai import OpenAIEmbeddings
import meilisearch
# api_key is optional; provide it if your meilisearch instance requires it
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
vectorstore = Meilisearch(
embedding=embeddings,
client=client,
index_name='langchain_demo',
text_key='text')
"""
def __init__(
self,
embedding: Embeddings,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
text_key: str = "text",
metadata_key: str = "metadata",
):
"""Initialize with Meilisearch client."""
client = _create_client(client=client, url=url, api_key=api_key)
self._client = client
self._index_name = index_name
self._embedding = embedding
self._text_key = text_key
self._metadata_key = metadata_key
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embedding and add them to the vector store.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]]): Optional list of metadata.
Defaults to None.
ids Optional[List[str]]: Optional list of IDs.
Defaults to None.
Returns:
List[str]: List of IDs of the texts added to the vectorstore.
"""
texts = list(texts)
# Embed and create the documents
docs = []
if ids is None:
ids = [uuid.uuid4().hex for _ in texts]
if metadatas is None:
metadatas = [{} for _ in texts]
embedding_vectors = self._embedding.embed_documents(texts)
for i, text in enumerate(texts):
id = ids[i]
metadata = metadatas[i]
metadata[self._text_key] = text
embedding = embedding_vectors[i]
docs.append(
{
"id": id,
"_vectors": embedding,
f"{self._metadata_key}": metadata,
}
)
# Send to Meilisearch
self._client.index(str(self._index_name)).add_documents(docs)
return ids
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to the query.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
docs_and_scores = self.similarity_search_with_score(
query=query,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to the query, along with scores.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
_query = self._embedding.embed_query(query)
docs = self.similarity_search_by_vector_with_scores(
embedding=_query,
k=k,
filter=filter,
kwargs=kwargs,
)
return docs
def similarity_search_by_vector_with_scores(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = []
results = self._client.index(str(self._index_name)).search(
"", {"vector": embedding, "limit": k, "filter": filter}
)
for result in results["hits"]:
metadata = result[self._metadata_key]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
semantic_score = result["_semanticScore"]
docs.append(
(Document(page_content=text, metadata=metadata), semantic_score)
)
return docs
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = self.similarity_search_by_vector_with_scores(
embedding=embedding,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs]
@classmethod
def from_texts(
cls: Type[Meilisearch],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
ids: Optional[List[str]] = None,
text_key: Optional[str] = "text",
metadata_key: Optional[str] = "metadata",
**kwargs: Any,
) -> Meilisearch:
"""Construct Meilisearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Meilisearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Meilisearch
from langchain.embeddings import OpenAIEmbeddings
import meilisearch
# The environment should be the one specified next to the API key
# in your Meilisearch console
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
docsearch = Meilisearch.from_texts(
client=client,
embeddings=embeddings,
)
"""
client = _create_client(client=client, url=url, api_key=api_key)
vectorstore = cls(
embedding=embedding,
client=client,
index_name=index_name,
)
vectorstore.add_texts(
texts=texts,
metadatas=metadatas,
ids=ids,
text_key=text_key,
metadata_key=metadata_key,
)
return vectorstore
| [
"langchain.docstore.document.Document",
"langchain.utils.get_from_env"
] | [((965, 1009), 'meilisearch.Client', 'meilisearch.Client', ([], {'url': 'url', 'api_key': 'api_key'}), '(url=url, api_key=api_key)\n', (983, 1009), False, 'import meilisearch\n'), ((776, 814), 'langchain.utils.get_from_env', 'get_from_env', (['"""url"""', '"""MEILI_HTTP_ADDR"""'], {}), "('url', 'MEILI_HTTP_ADDR')\n", (788, 814), False, 'from langchain.utils import get_from_env\n'), ((861, 904), 'langchain.utils.get_from_env', 'get_from_env', (['"""api_key"""', '"""MEILI_MASTER_KEY"""'], {}), "('api_key', 'MEILI_MASTER_KEY')\n", (873, 904), False, 'from langchain.utils import get_from_env\n'), ((3872, 3884), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (3882, 3884), False, 'import uuid\n'), ((7512, 7558), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (7520, 7558), False, 'from langchain.docstore.document import Document\n')] |
from __future__ import annotations
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from meilisearch import Client
def _create_client(
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
) -> Client:
try:
import meilisearch
except ImportError:
raise ImportError(
"Could not import meilisearch python package. "
"Please install it with `pip install meilisearch`."
)
if not client:
url = url or get_from_env("url", "MEILI_HTTP_ADDR")
try:
api_key = api_key or get_from_env("api_key", "MEILI_MASTER_KEY")
except Exception:
pass
client = meilisearch.Client(url=url, api_key=api_key)
elif not isinstance(client, meilisearch.Client):
raise ValueError(
f"client should be an instance of meilisearch.Client, "
f"got {type(client)}"
)
try:
client.version()
except ValueError as e:
raise ValueError(f"Failed to connect to Meilisearch: {e}")
return client
class Meilisearch(VectorStore):
"""`Meilisearch` vector store.
To use this, you need to have `meilisearch` python package installed,
and a running Meilisearch instance.
To learn more about Meilisearch Python, refer to the in-depth
Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
See the following documentation for how to run a Meilisearch instance:
https://www.meilisearch.com/docs/learn/getting_started/quick_start.
Example:
.. code-block:: python
from langchain.vectorstores import Meilisearch
from langchain.embeddings.openai import OpenAIEmbeddings
import meilisearch
# api_key is optional; provide it if your meilisearch instance requires it
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
vectorstore = Meilisearch(
embedding=embeddings,
client=client,
index_name='langchain_demo',
text_key='text')
"""
def __init__(
self,
embedding: Embeddings,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
text_key: str = "text",
metadata_key: str = "metadata",
):
"""Initialize with Meilisearch client."""
client = _create_client(client=client, url=url, api_key=api_key)
self._client = client
self._index_name = index_name
self._embedding = embedding
self._text_key = text_key
self._metadata_key = metadata_key
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embedding and add them to the vector store.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]]): Optional list of metadata.
Defaults to None.
ids Optional[List[str]]: Optional list of IDs.
Defaults to None.
Returns:
List[str]: List of IDs of the texts added to the vectorstore.
"""
texts = list(texts)
# Embed and create the documents
docs = []
if ids is None:
ids = [uuid.uuid4().hex for _ in texts]
if metadatas is None:
metadatas = [{} for _ in texts]
embedding_vectors = self._embedding.embed_documents(texts)
for i, text in enumerate(texts):
id = ids[i]
metadata = metadatas[i]
metadata[self._text_key] = text
embedding = embedding_vectors[i]
docs.append(
{
"id": id,
"_vectors": embedding,
f"{self._metadata_key}": metadata,
}
)
# Send to Meilisearch
self._client.index(str(self._index_name)).add_documents(docs)
return ids
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to the query.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
docs_and_scores = self.similarity_search_with_score(
query=query,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to the query, along with scores.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
_query = self._embedding.embed_query(query)
docs = self.similarity_search_by_vector_with_scores(
embedding=_query,
k=k,
filter=filter,
kwargs=kwargs,
)
return docs
def similarity_search_by_vector_with_scores(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = []
results = self._client.index(str(self._index_name)).search(
"", {"vector": embedding, "limit": k, "filter": filter}
)
for result in results["hits"]:
metadata = result[self._metadata_key]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
semantic_score = result["_semanticScore"]
docs.append(
(Document(page_content=text, metadata=metadata), semantic_score)
)
return docs
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = self.similarity_search_by_vector_with_scores(
embedding=embedding,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs]
@classmethod
def from_texts(
cls: Type[Meilisearch],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
ids: Optional[List[str]] = None,
text_key: Optional[str] = "text",
metadata_key: Optional[str] = "metadata",
**kwargs: Any,
) -> Meilisearch:
"""Construct Meilisearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Meilisearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Meilisearch
from langchain.embeddings import OpenAIEmbeddings
import meilisearch
# The environment should be the one specified next to the API key
# in your Meilisearch console
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
docsearch = Meilisearch.from_texts(
client=client,
embeddings=embeddings,
)
"""
client = _create_client(client=client, url=url, api_key=api_key)
vectorstore = cls(
embedding=embedding,
client=client,
index_name=index_name,
)
vectorstore.add_texts(
texts=texts,
metadatas=metadatas,
ids=ids,
text_key=text_key,
metadata_key=metadata_key,
)
return vectorstore
| [
"langchain.docstore.document.Document",
"langchain.utils.get_from_env"
] | [((965, 1009), 'meilisearch.Client', 'meilisearch.Client', ([], {'url': 'url', 'api_key': 'api_key'}), '(url=url, api_key=api_key)\n', (983, 1009), False, 'import meilisearch\n'), ((776, 814), 'langchain.utils.get_from_env', 'get_from_env', (['"""url"""', '"""MEILI_HTTP_ADDR"""'], {}), "('url', 'MEILI_HTTP_ADDR')\n", (788, 814), False, 'from langchain.utils import get_from_env\n'), ((861, 904), 'langchain.utils.get_from_env', 'get_from_env', (['"""api_key"""', '"""MEILI_MASTER_KEY"""'], {}), "('api_key', 'MEILI_MASTER_KEY')\n", (873, 904), False, 'from langchain.utils import get_from_env\n'), ((3872, 3884), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (3882, 3884), False, 'import uuid\n'), ((7512, 7558), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (7520, 7558), False, 'from langchain.docstore.document import Document\n')] |
from __future__ import annotations
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from meilisearch import Client
def _create_client(
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
) -> Client:
try:
import meilisearch
except ImportError:
raise ImportError(
"Could not import meilisearch python package. "
"Please install it with `pip install meilisearch`."
)
if not client:
url = url or get_from_env("url", "MEILI_HTTP_ADDR")
try:
api_key = api_key or get_from_env("api_key", "MEILI_MASTER_KEY")
except Exception:
pass
client = meilisearch.Client(url=url, api_key=api_key)
elif not isinstance(client, meilisearch.Client):
raise ValueError(
f"client should be an instance of meilisearch.Client, "
f"got {type(client)}"
)
try:
client.version()
except ValueError as e:
raise ValueError(f"Failed to connect to Meilisearch: {e}")
return client
class Meilisearch(VectorStore):
"""`Meilisearch` vector store.
To use this, you need to have `meilisearch` python package installed,
and a running Meilisearch instance.
To learn more about Meilisearch Python, refer to the in-depth
Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
See the following documentation for how to run a Meilisearch instance:
https://www.meilisearch.com/docs/learn/getting_started/quick_start.
Example:
.. code-block:: python
from langchain.vectorstores import Meilisearch
from langchain.embeddings.openai import OpenAIEmbeddings
import meilisearch
# api_key is optional; provide it if your meilisearch instance requires it
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
vectorstore = Meilisearch(
embedding=embeddings,
client=client,
index_name='langchain_demo',
text_key='text')
"""
def __init__(
self,
embedding: Embeddings,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
text_key: str = "text",
metadata_key: str = "metadata",
):
"""Initialize with Meilisearch client."""
client = _create_client(client=client, url=url, api_key=api_key)
self._client = client
self._index_name = index_name
self._embedding = embedding
self._text_key = text_key
self._metadata_key = metadata_key
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embedding and add them to the vector store.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]]): Optional list of metadata.
Defaults to None.
ids Optional[List[str]]: Optional list of IDs.
Defaults to None.
Returns:
List[str]: List of IDs of the texts added to the vectorstore.
"""
texts = list(texts)
# Embed and create the documents
docs = []
if ids is None:
ids = [uuid.uuid4().hex for _ in texts]
if metadatas is None:
metadatas = [{} for _ in texts]
embedding_vectors = self._embedding.embed_documents(texts)
for i, text in enumerate(texts):
id = ids[i]
metadata = metadatas[i]
metadata[self._text_key] = text
embedding = embedding_vectors[i]
docs.append(
{
"id": id,
"_vectors": embedding,
f"{self._metadata_key}": metadata,
}
)
# Send to Meilisearch
self._client.index(str(self._index_name)).add_documents(docs)
return ids
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to the query.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
docs_and_scores = self.similarity_search_with_score(
query=query,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to the query, along with scores.
Args:
query (str): Query text for which to find similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
text and score for each.
"""
_query = self._embedding.embed_query(query)
docs = self.similarity_search_by_vector_with_scores(
embedding=_query,
k=k,
filter=filter,
kwargs=kwargs,
)
return docs
def similarity_search_by_vector_with_scores(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = []
results = self._client.index(str(self._index_name)).search(
"", {"vector": embedding, "limit": k, "filter": filter}
)
for result in results["hits"]:
metadata = result[self._metadata_key]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
semantic_score = result["_semanticScore"]
docs.append(
(Document(page_content=text, metadata=metadata), semantic_score)
)
return docs
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return meilisearch documents most similar to embedding vector.
Args:
embedding (List[float]): Embedding to look up similar documents.
k (int): Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
Returns:
List[Document]: List of Documents most similar to the query
vector and score for each.
"""
docs = self.similarity_search_by_vector_with_scores(
embedding=embedding,
k=k,
filter=filter,
kwargs=kwargs,
)
return [doc for doc, _ in docs]
@classmethod
def from_texts(
cls: Type[Meilisearch],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
client: Optional[Client] = None,
url: Optional[str] = None,
api_key: Optional[str] = None,
index_name: str = "langchain-demo",
ids: Optional[List[str]] = None,
text_key: Optional[str] = "text",
metadata_key: Optional[str] = "metadata",
**kwargs: Any,
) -> Meilisearch:
"""Construct Meilisearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Meilisearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Meilisearch
from langchain.embeddings import OpenAIEmbeddings
import meilisearch
# The environment should be the one specified next to the API key
# in your Meilisearch console
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
docsearch = Meilisearch.from_texts(
client=client,
embeddings=embeddings,
)
"""
client = _create_client(client=client, url=url, api_key=api_key)
vectorstore = cls(
embedding=embedding,
client=client,
index_name=index_name,
)
vectorstore.add_texts(
texts=texts,
metadatas=metadatas,
ids=ids,
text_key=text_key,
metadata_key=metadata_key,
)
return vectorstore
| [
"langchain.docstore.document.Document",
"langchain.utils.get_from_env"
] | [((965, 1009), 'meilisearch.Client', 'meilisearch.Client', ([], {'url': 'url', 'api_key': 'api_key'}), '(url=url, api_key=api_key)\n', (983, 1009), False, 'import meilisearch\n'), ((776, 814), 'langchain.utils.get_from_env', 'get_from_env', (['"""url"""', '"""MEILI_HTTP_ADDR"""'], {}), "('url', 'MEILI_HTTP_ADDR')\n", (788, 814), False, 'from langchain.utils import get_from_env\n'), ((861, 904), 'langchain.utils.get_from_env', 'get_from_env', (['"""api_key"""', '"""MEILI_MASTER_KEY"""'], {}), "('api_key', 'MEILI_MASTER_KEY')\n", (873, 904), False, 'from langchain.utils import get_from_env\n'), ((3872, 3884), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (3882, 3884), False, 'import uuid\n'), ((7512, 7558), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (7520, 7558), False, 'from langchain.docstore.document import Document\n')] |
## This is a fork/based from https://gist.github.com/wiseman/4a706428eaabf4af1002a07a114f61d6
from io import StringIO
import sys
import os
from typing import Dict, Optional
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents.tools import Tool
from langchain.llms import OpenAI
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
model_name = os.environ.get('MODEL_NAME', 'gpt-3.5-turbo')
class PythonREPL:
"""Simulates a standalone Python REPL."""
def __init__(self):
pass
def run(self, command: str) -> str:
"""Run command and returns anything printed."""
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
try:
exec(command, globals())
sys.stdout = old_stdout
output = mystdout.getvalue()
except Exception as e:
sys.stdout = old_stdout
output = str(e)
return output
llm = OpenAI(temperature=0.0, openai_api_base=base_path, model_name=model_name)
python_repl = Tool(
"Python REPL",
PythonREPL().run,
"""A Python shell. Use this to execute python commands. Input should be a valid python command.
If you expect output it should be printed out.""",
)
tools = [python_repl]
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
agent.run("What is the 10th fibonacci number?") | [
"langchain.llms.OpenAI",
"langchain.agents.initialize_agent"
] | [((348, 409), 'os.environ.get', 'os.environ.get', (['"""OPENAI_API_BASE"""', '"""http://localhost:8080/v1"""'], {}), "('OPENAI_API_BASE', 'http://localhost:8080/v1')\n", (362, 409), False, 'import os\n'), ((423, 468), 'os.environ.get', 'os.environ.get', (['"""MODEL_NAME"""', '"""gpt-3.5-turbo"""'], {}), "('MODEL_NAME', 'gpt-3.5-turbo')\n", (437, 468), False, 'import os\n'), ((1003, 1076), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0.0)', 'openai_api_base': 'base_path', 'model_name': 'model_name'}), '(temperature=0.0, openai_api_base=base_path, model_name=model_name)\n', (1009, 1076), False, 'from langchain.llms import OpenAI\n'), ((1345, 1424), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'llm'], {'agent': '"""zero-shot-react-description"""', 'verbose': '(True)'}), "(tools, llm, agent='zero-shot-react-description', verbose=True)\n", (1361, 1424), False, 'from langchain.agents import initialize_agent\n'), ((741, 751), 'io.StringIO', 'StringIO', ([], {}), '()\n', (749, 751), False, 'from io import StringIO\n')] |
import time
from typing import List
import pandas as pd
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import VectorStore
from mindsdb.integrations.handlers.rag_handler.settings import (
PersistedVectorStoreSaver,
PersistedVectorStoreSaverConfig,
RAGBaseParameters,
VectorStoreFactory,
df_to_documents,
get_chroma_client,
load_embeddings_model,
url_to_documents,
)
from mindsdb.utilities import log
logger = log.getLogger(__name__)
def validate_document(doc) -> bool:
"""Check an individual document."""
# Example checks
if not isinstance(doc, Document):
return False
if not doc.page_content:
return False
return True
def validate_documents(documents) -> bool:
"""Validate document list format."""
if not isinstance(documents, list):
return False
if not documents:
return False
# Check fields/format of a document
return all([validate_document(doc) for doc in documents])
class RAGIngestor:
"""A class for converting a dataframe and/or url to a vectorstore embedded with a given embeddings model"""
def __init__(
self,
args: RAGBaseParameters,
df: pd.DataFrame,
):
self.args = args
self.df = df
self.embeddings_model_name = args.embeddings_model_name
self.vector_store = VectorStoreFactory.get_vectorstore_class(
args.vector_store_name
)
def split_documents(self, chunk_size, chunk_overlap) -> list:
# Load documents and split in chunks
logger.info(f"Loading documents from input data")
documents = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
if self.df is not None:
# if user provides a dataframe, load documents from dataframe
documents.extend(
df_to_documents(
df=self.df,
page_content_columns=self.args.context_columns,
url_column_name=self.args.url_column_name,
)
)
if self.args.url:
# if user provides a url, load documents from url
documents.extend(url_to_documents(self.args.url))
n_tokens = sum([len(doc.page_content) for doc in documents])
# split documents into chunks of text
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(documents)} documents from input data")
logger.info(f"Total number of tokens: {n_tokens}")
logger.info(f"Split into {len(texts)} chunks of text (tokens)")
return texts
def create_db_from_documents(self, documents, embeddings_model) -> VectorStore:
"""Create DB from documents."""
if self.args.vector_store_name == "chromadb":
return self.vector_store.from_documents(
documents=documents,
embedding=embeddings_model,
client=get_chroma_client(
persist_directory=self.args.vector_store_storage_path
),
collection_name=self.args.collection_name,
)
else:
return self.create_db_from_texts(documents, embeddings_model)
def create_db_from_texts(self, documents, embeddings_model) -> VectorStore:
"""Create DB from text content."""
texts = [doc.page_content for doc in documents]
metadata = [doc.metadata for doc in documents]
return self.vector_store.from_texts(
texts=texts, embedding=embeddings_model, metadatas=metadata
)
@staticmethod
def _create_batch_embeddings(documents: List[Document], embeddings_batch_size):
"""
create batch of document embeddings
"""
for i in range(0, len(documents), embeddings_batch_size):
yield documents[i: i + embeddings_batch_size]
def embeddings_to_vectordb(self) -> None:
"""Create vectorstore from documents and store locally."""
start_time = time.time()
# Load documents and splits in chunks (if not in evaluation_type mode)
documents = self.split_documents(
chunk_size=self.args.chunk_size, chunk_overlap=self.args.chunk_overlap
)
# Load embeddings model
embeddings_model = load_embeddings_model(
self.embeddings_model_name, self.args.use_gpu
)
logger.info(f"Creating vectorstore from documents")
if not validate_documents(documents):
raise ValueError("Invalid documents")
try:
db = self.create_db_from_documents(documents, embeddings_model)
except Exception as e:
raise Exception(
f"Error loading embeddings to {self.args.vector_store_name}: {e}"
)
config = PersistedVectorStoreSaverConfig(
vector_store_name=self.args.vector_store_name,
vector_store=db,
persist_directory=self.args.vector_store_storage_path,
collection_name=self.args.collection_name,
)
vector_store_saver = PersistedVectorStoreSaver(config)
vector_store_saver.save_vector_store(db)
db = None # Free up memory
end_time = time.time()
elapsed_time = round(end_time - start_time)
logger.info(f"Finished creating {self.args.vector_store_name} from texts, it has been "
f"persisted to {self.args.vector_store_storage_path}")
time_minutes = round(elapsed_time / 60)
if time_minutes > 1:
logger.info(f"Elapsed time: {time_minutes} minutes")
else:
logger.info(f"Elapsed time: {elapsed_time} seconds")
| [
"langchain.text_splitter.RecursiveCharacterTextSplitter"
] | [((539, 562), 'mindsdb.utilities.log.getLogger', 'log.getLogger', (['__name__'], {}), '(__name__)\n', (552, 562), False, 'from mindsdb.utilities import log\n'), ((1455, 1519), 'mindsdb.integrations.handlers.rag_handler.settings.VectorStoreFactory.get_vectorstore_class', 'VectorStoreFactory.get_vectorstore_class', (['args.vector_store_name'], {}), '(args.vector_store_name)\n', (1495, 1519), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n'), ((1761, 1848), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': 'chunk_size', 'chunk_overlap': 'chunk_overlap'}), '(chunk_size=chunk_size, chunk_overlap=\n chunk_overlap)\n', (1791, 1848), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((4190, 4201), 'time.time', 'time.time', ([], {}), '()\n', (4199, 4201), False, 'import time\n'), ((4477, 4545), 'mindsdb.integrations.handlers.rag_handler.settings.load_embeddings_model', 'load_embeddings_model', (['self.embeddings_model_name', 'self.args.use_gpu'], {}), '(self.embeddings_model_name, self.args.use_gpu)\n', (4498, 4545), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n'), ((4990, 5193), 'mindsdb.integrations.handlers.rag_handler.settings.PersistedVectorStoreSaverConfig', 'PersistedVectorStoreSaverConfig', ([], {'vector_store_name': 'self.args.vector_store_name', 'vector_store': 'db', 'persist_directory': 'self.args.vector_store_storage_path', 'collection_name': 'self.args.collection_name'}), '(vector_store_name=self.args.\n vector_store_name, vector_store=db, persist_directory=self.args.\n vector_store_storage_path, collection_name=self.args.collection_name)\n', (5021, 5193), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n'), ((5273, 5306), 'mindsdb.integrations.handlers.rag_handler.settings.PersistedVectorStoreSaver', 'PersistedVectorStoreSaver', (['config'], {}), '(config)\n', (5298, 5306), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n'), ((5414, 5425), 'time.time', 'time.time', ([], {}), '()\n', (5423, 5425), False, 'import time\n'), ((2019, 2141), 'mindsdb.integrations.handlers.rag_handler.settings.df_to_documents', 'df_to_documents', ([], {'df': 'self.df', 'page_content_columns': 'self.args.context_columns', 'url_column_name': 'self.args.url_column_name'}), '(df=self.df, page_content_columns=self.args.context_columns,\n url_column_name=self.args.url_column_name)\n', (2034, 2141), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n'), ((2349, 2380), 'mindsdb.integrations.handlers.rag_handler.settings.url_to_documents', 'url_to_documents', (['self.args.url'], {}), '(self.args.url)\n', (2365, 2380), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n'), ((3121, 3193), 'mindsdb.integrations.handlers.rag_handler.settings.get_chroma_client', 'get_chroma_client', ([], {'persist_directory': 'self.args.vector_store_storage_path'}), '(persist_directory=self.args.vector_store_storage_path)\n', (3138, 3193), False, 'from mindsdb.integrations.handlers.rag_handler.settings import PersistedVectorStoreSaver, PersistedVectorStoreSaverConfig, RAGBaseParameters, VectorStoreFactory, df_to_documents, get_chroma_client, load_embeddings_model, url_to_documents\n')] |
"""
Multilingual retrieval based conversation system backed by ChatGPT
"""
import argparse
import os
from colossalqa.data_loader.document_loader import DocumentLoader
from colossalqa.memory import ConversationBufferWithSummary
from colossalqa.retriever import CustomRetriever
from langchain import LLMChain
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import OpenAI
from langchain.prompts.prompt import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Multilingual retrieval based conversation system backed by ChatGPT")
parser.add_argument("--open_ai_key_path", type=str, default=None, help="path to the model")
parser.add_argument(
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing"
)
args = parser.parse_args()
if not os.path.exists(args.sql_file_path):
os.makedirs(args.sql_file_path)
# Setup openai key
# Set env var OPENAI_API_KEY or load from a file
openai_key = open(args.open_ai_key_path).read()
os.environ["OPENAI_API_KEY"] = openai_key
llm = OpenAI(temperature=0.6)
information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True)
# VectorDB
embedding = HuggingFaceEmbeddings(
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False}
)
# Define memory with summarization ability
memory = ConversationBufferWithSummary(llm=llm)
# Load data to vector store
print("Select files for constructing retriever")
documents = []
while True:
file = input("Enter a file path or press Enter directory without input to exit:").strip()
if file == "":
break
data_name = input("Enter a short description of the data:")
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data
# Split
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0)
splits = text_splitter.split_documents(retriever_data)
documents.extend(splits)
# Create retriever
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding)
prompt_template = """Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If the answer cannot be inferred based on the given context, please don't share false information.
Use the context and chat history to respond to the human's input at the end or carry on the conversation. You should generate one response only. No following up is needed.
context:
{context}
chat history
{chat_history}
Human: {question}
Assistant:"""
prompt_template_disambiguate = """You are a helpful, respectful and honest assistant. You always follow the instruction.
Please replace any ambiguous references in the given sentence with the specific names or entities mentioned in the chat history or just output the original sentence if no chat history is provided or if the sentence doesn't contain ambiguous references. Your output should be the disambiguated sentence itself (in the same line as "disambiguated sentence:") and contain nothing else.
Here is an example:
Chat history:
Human: I have a friend, Mike. Do you know him?
Assistant: Yes, I know a person named Mike
sentence: What's his favorite food?
disambiguated sentence: What's Mike's favorite food?
END OF EXAMPLE
Chat history:
{chat_history}
sentence: {input}
disambiguated sentence:"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["question", "chat_history", "context"])
memory.initiate_document_retrieval_chain(
llm,
PROMPT,
information_retriever,
chain_type_kwargs={
"chat_history": "",
},
)
PROMPT_DISAMBIGUATE = PromptTemplate(
template=prompt_template_disambiguate, input_variables=["chat_history", "input"]
)
llm_chain = RetrievalQA.from_chain_type(
llm=llm,
verbose=False,
chain_type="stuff",
retriever=information_retriever,
chain_type_kwargs={"prompt": PROMPT, "memory": memory},
)
llm_chain_disambiguate = LLMChain(llm=llm, prompt=PROMPT_DISAMBIGUATE)
def disambiguity(input):
out = llm_chain_disambiguate.run({"input": input, "chat_history": memory.buffer})
return out.split("\n")[0]
information_retriever.set_rephrase_handler(disambiguity)
while True:
user_input = input("User: ")
if " end " in user_input:
print("Agent: Happy to chat with you :)")
break
agent_response = llm_chain.run(user_input)
agent_response = agent_response.split("\n")[0]
print(f"Agent: {agent_response}")
| [
"langchain.text_splitter.RecursiveCharacterTextSplitter",
"langchain.llms.OpenAI",
"langchain.prompts.prompt.PromptTemplate",
"langchain.embeddings.HuggingFaceEmbeddings",
"langchain.chains.RetrievalQA.from_chain_type",
"langchain.LLMChain"
] | [((599, 709), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Multilingual retrieval based conversation system backed by ChatGPT"""'}), "(description=\n 'Multilingual retrieval based conversation system backed by ChatGPT')\n", (622, 709), False, 'import argparse\n'), ((1258, 1281), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0.6)'}), '(temperature=0.6)\n', (1264, 1281), False, 'from langchain.llms import OpenAI\n'), ((1311, 1379), 'colossalqa.retriever.CustomRetriever', 'CustomRetriever', ([], {'k': '(3)', 'sql_file_path': 'args.sql_file_path', 'verbose': '(True)'}), '(k=3, sql_file_path=args.sql_file_path, verbose=True)\n', (1326, 1379), False, 'from colossalqa.retriever import CustomRetriever\n'), ((1411, 1546), 'langchain.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': '"""moka-ai/m3e-base"""', 'model_kwargs': "{'device': 'cpu'}", 'encode_kwargs': "{'normalize_embeddings': False}"}), "(model_name='moka-ai/m3e-base', model_kwargs={'device':\n 'cpu'}, encode_kwargs={'normalize_embeddings': False})\n", (1432, 1546), False, 'from langchain.embeddings import HuggingFaceEmbeddings\n'), ((1618, 1656), 'colossalqa.memory.ConversationBufferWithSummary', 'ConversationBufferWithSummary', ([], {'llm': 'llm'}), '(llm=llm)\n', (1647, 1656), False, 'from colossalqa.memory import ConversationBufferWithSummary\n'), ((3951, 4052), 'langchain.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'template': 'prompt_template', 'input_variables': "['question', 'chat_history', 'context']"}), "(template=prompt_template, input_variables=['question',\n 'chat_history', 'context'])\n", (3965, 4052), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((4260, 4361), 'langchain.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'template': 'prompt_template_disambiguate', 'input_variables': "['chat_history', 'input']"}), "(template=prompt_template_disambiguate, input_variables=[\n 'chat_history', 'input'])\n", (4274, 4361), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((4388, 4556), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'llm', 'verbose': '(False)', 'chain_type': '"""stuff"""', 'retriever': 'information_retriever', 'chain_type_kwargs': "{'prompt': PROMPT, 'memory': memory}"}), "(llm=llm, verbose=False, chain_type='stuff',\n retriever=information_retriever, chain_type_kwargs={'prompt': PROMPT,\n 'memory': memory})\n", (4415, 4556), False, 'from langchain.chains import RetrievalQA\n'), ((4625, 4670), 'langchain.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'PROMPT_DISAMBIGUATE'}), '(llm=llm, prompt=PROMPT_DISAMBIGUATE)\n', (4633, 4670), False, 'from langchain import LLMChain\n'), ((996, 1030), 'os.path.exists', 'os.path.exists', (['args.sql_file_path'], {}), '(args.sql_file_path)\n', (1010, 1030), False, 'import os\n'), ((1040, 1071), 'os.makedirs', 'os.makedirs', (['args.sql_file_path'], {}), '(args.sql_file_path)\n', (1051, 1071), False, 'import os\n'), ((2114, 2177), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(200)', 'chunk_overlap': '(0)'}), '(chunk_size=200, chunk_overlap=0)\n', (2144, 2177), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n')] |
from templates.common.suffix import suffix
from templates.common.format_instructions import format_instructions
from templates.common.docs_system_instructions import docs_system_instructions
from langchain.schema import (
# AIMessage,
HumanMessage,
SystemMessage
)
from langchain.tools.json.tool import JsonSpec
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain.llms.openai import OpenAI
from langchain.agents import create_json_agent, ZeroShotAgent, AgentExecutor
from langchain.chains import LLMChain
from config.config import config
import openai # required
from dotenv import load_dotenv
load_dotenv()
class OpenAPIExplorerTool:
@staticmethod
def create_tools(docs):
json_spec = JsonSpec(dict_=docs)
json_toolkit = JsonToolkit(spec=json_spec)
tools = json_toolkit.get_tools()
return tools
class PipedreamOpenAPIAgent:
def __init__(self, docs, templates, auth_example, parsed_common_files):
system_instructions = format_template(
f"{templates.system_instructions(auth_example, parsed_common_files)}\n{docs_system_instructions}")
tools = OpenAPIExplorerTool.create_tools(docs)
tool_names = [tool.name for tool in tools]
prompt_template = ZeroShotAgent.create_prompt(
tools=tools,
prefix=system_instructions,
suffix=suffix,
format_instructions=format_instructions,
input_variables=['input', 'agent_scratchpad']
)
llm_chain = LLMChain(llm=get_llm(), prompt=prompt_template)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
verbose = True if config['logging']['level'] == 'DEBUG' else False
self.agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=verbose)
def run(self, input):
try:
result = self.agent_executor.run(input)
except Exception as e:
result = str(e)
if "I don't know" in result:
return "I don't know"
if '```' not in result:
raise e
return format_result(result)
def format_template(text):
return text.replace("{", "{{").replace("}", "}}") # escape curly braces
def format_result(result):
if '```' in result:
if '```javascript' in result:
result = result.split('```javascript')[1].split('```')[0].strip()
else:
result = result.split('```')[1].split('```')[0].strip()
return result
def create_user_prompt(prompt, urls_content):
if len(urls_content) == 0:
return prompt + "\n\n"
user_prompt = f"{prompt}\n\n## API docs\n\n"
for item in urls_content:
user_prompt += f"\n\n### {item['url']}\n\n{item['content']}"
return user_prompt + "\n\n"
def get_llm():
if config['openai_api_type'] == "azure":
azure_config = config["azure"]
return AzureChatOpenAI(deployment_name=azure_config['deployment_name'],
model_name=azure_config["model"], temperature=config["temperature"], request_timeout=300)
else:
openai_config = config["openai"]
print(f"Using OpenAI API: {openai_config['model']}")
return ChatOpenAI(
model_name=openai_config["model"], temperature=config["temperature"])
def ask_agent(prompt, docs, templates, auth_example, parsed_common_files, urls_content):
agent = PipedreamOpenAPIAgent(
docs, templates, auth_example, parsed_common_files)
user_prompt = create_user_prompt(prompt, urls_content)
result = agent.run(user_prompt)
return result
def no_docs(prompt, templates, auth_example, parsed_common_files, urls_content, normal_order=True):
user_prompt = create_user_prompt(prompt, urls_content)
pd_instructions = format_template(
templates.system_instructions(auth_example, parsed_common_files))
result = get_llm()(messages=[
SystemMessage(content="You are the most intelligent software engineer in the world. You carefully provide accurate, factual, thoughtful, nuanced code, and are brilliant at reasoning. Follow all of the instructions below — they are all incredibly important. This code will be shipped directly to production, so it's important that it's accurate and complete."),
HumanMessage(content=user_prompt +
pd_instructions if normal_order else pd_instructions+user_prompt),
])
return format_result(result.content)
| [
"langchain.agents.AgentExecutor.from_agent_and_tools",
"langchain.chat_models.ChatOpenAI",
"langchain.chat_models.AzureChatOpenAI",
"langchain.agents.agent_toolkits.json.toolkit.JsonToolkit",
"langchain.schema.HumanMessage",
"langchain.tools.json.tool.JsonSpec",
"langchain.schema.SystemMessage",
"langchain.agents.ZeroShotAgent",
"langchain.agents.ZeroShotAgent.create_prompt"
] | [((701, 714), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (712, 714), False, 'from dotenv import load_dotenv\n'), ((810, 830), 'langchain.tools.json.tool.JsonSpec', 'JsonSpec', ([], {'dict_': 'docs'}), '(dict_=docs)\n', (818, 830), False, 'from langchain.tools.json.tool import JsonSpec\n'), ((854, 881), 'langchain.agents.agent_toolkits.json.toolkit.JsonToolkit', 'JsonToolkit', ([], {'spec': 'json_spec'}), '(spec=json_spec)\n', (865, 881), False, 'from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit\n'), ((1343, 1524), 'langchain.agents.ZeroShotAgent.create_prompt', 'ZeroShotAgent.create_prompt', ([], {'tools': 'tools', 'prefix': 'system_instructions', 'suffix': 'suffix', 'format_instructions': 'format_instructions', 'input_variables': "['input', 'agent_scratchpad']"}), "(tools=tools, prefix=system_instructions, suffix\n =suffix, format_instructions=format_instructions, input_variables=[\n 'input', 'agent_scratchpad'])\n", (1370, 1524), False, 'from langchain.agents import create_json_agent, ZeroShotAgent, AgentExecutor\n'), ((1670, 1730), 'langchain.agents.ZeroShotAgent', 'ZeroShotAgent', ([], {'llm_chain': 'llm_chain', 'allowed_tools': 'tool_names'}), '(llm_chain=llm_chain, allowed_tools=tool_names)\n', (1683, 1730), False, 'from langchain.agents import create_json_agent, ZeroShotAgent, AgentExecutor\n'), ((1837, 1914), 'langchain.agents.AgentExecutor.from_agent_and_tools', 'AgentExecutor.from_agent_and_tools', ([], {'agent': 'agent', 'tools': 'tools', 'verbose': 'verbose'}), '(agent=agent, tools=tools, verbose=verbose)\n', (1871, 1914), False, 'from langchain.agents import create_json_agent, ZeroShotAgent, AgentExecutor\n'), ((3038, 3201), 'langchain.chat_models.AzureChatOpenAI', 'AzureChatOpenAI', ([], {'deployment_name': "azure_config['deployment_name']", 'model_name': "azure_config['model']", 'temperature': "config['temperature']", 'request_timeout': '(300)'}), "(deployment_name=azure_config['deployment_name'], model_name\n =azure_config['model'], temperature=config['temperature'],\n request_timeout=300)\n", (3053, 3201), False, 'from langchain.chat_models import ChatOpenAI, AzureChatOpenAI\n'), ((3351, 3436), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': "openai_config['model']", 'temperature': "config['temperature']"}), "(model_name=openai_config['model'], temperature=config['temperature']\n )\n", (3361, 3436), False, 'from langchain.chat_models import ChatOpenAI, AzureChatOpenAI\n'), ((4061, 4430), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': '"""You are the most intelligent software engineer in the world. You carefully provide accurate, factual, thoughtful, nuanced code, and are brilliant at reasoning. Follow all of the instructions below — they are all incredibly important. This code will be shipped directly to production, so it\'s important that it\'s accurate and complete."""'}), '(content=\n "You are the most intelligent software engineer in the world. You carefully provide accurate, factual, thoughtful, nuanced code, and are brilliant at reasoning. Follow all of the instructions below — they are all incredibly important. This code will be shipped directly to production, so it\'s important that it\'s accurate and complete."\n )\n', (4074, 4430), False, 'from langchain.schema import HumanMessage, SystemMessage\n'), ((4430, 4537), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': '(user_prompt + pd_instructions if normal_order else pd_instructions +\n user_prompt)'}), '(content=user_prompt + pd_instructions if normal_order else \n pd_instructions + user_prompt)\n', (4442, 4537), False, 'from langchain.schema import HumanMessage, SystemMessage\n')] |
import os
import threading
from chainlit.config import config
from chainlit.logger import logger
def init_lc_cache():
use_cache = config.project.cache is True and config.run.no_cache is False
if use_cache:
try:
import langchain
except ImportError:
return
from langchain.cache import SQLiteCache
from langchain.globals import set_llm_cache
if config.project.lc_cache_path is not None:
set_llm_cache(SQLiteCache(database_path=config.project.lc_cache_path))
if not os.path.exists(config.project.lc_cache_path):
logger.info(
f"LangChain cache created at: {config.project.lc_cache_path}"
)
_cache = {}
_cache_lock = threading.Lock()
def cache(func):
def wrapper(*args, **kwargs):
# Create a cache key based on the function name, arguments, and keyword arguments
cache_key = (
(func.__name__,) + args + tuple((k, v) for k, v in sorted(kwargs.items()))
)
with _cache_lock:
# Check if the result is already in the cache
if cache_key not in _cache:
# If not, call the function and store the result in the cache
_cache[cache_key] = func(*args, **kwargs)
return _cache[cache_key]
return wrapper
| [
"langchain.cache.SQLiteCache"
] | [((767, 783), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (781, 783), False, 'import threading\n'), ((487, 542), 'langchain.cache.SQLiteCache', 'SQLiteCache', ([], {'database_path': 'config.project.lc_cache_path'}), '(database_path=config.project.lc_cache_path)\n', (498, 542), False, 'from langchain.cache import SQLiteCache\n'), ((564, 608), 'os.path.exists', 'os.path.exists', (['config.project.lc_cache_path'], {}), '(config.project.lc_cache_path)\n', (578, 608), False, 'import os\n'), ((626, 700), 'chainlit.logger.logger.info', 'logger.info', (['f"""LangChain cache created at: {config.project.lc_cache_path}"""'], {}), "(f'LangChain cache created at: {config.project.lc_cache_path}')\n", (637, 700), False, 'from chainlit.logger import logger\n')] |
import json
from typing import Any, List, Tuple
import requests
from taskweaver.plugin import Plugin, register_plugin
# response entry format: (title, url, snippet)
ResponseEntry = Tuple[str, str, str]
def browse_page(
query: str,
urls: List[str],
top_k: int = 3,
chunk_size: int = 1000,
chunk_overlap: int = 250,
) -> list[dict[str, Any]]:
try:
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import AsyncHtmlLoader
from langchain_community.document_transformers import Html2TextTransformer
except ImportError:
raise ImportError("Please install langchain/langchain-community first.")
loader = AsyncHtmlLoader(web_path=urls)
docs = loader.load()
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
)
# Split
splits = text_splitter.split_documents(docs_transformed)
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
vector_store = FAISS.from_documents(
splits,
HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"),
)
result = vector_store.similarity_search(
query=query,
k=top_k,
)
chunks = [
{
"metadata": r.metadata,
"snippet": r.page_content,
}
for r in result
]
return chunks
@register_plugin
class WebSearch(Plugin):
def search_query(self, query: str) -> List[ResponseEntry]:
api_provider = self.config.get("api_provider", "google_custom_search")
result_count = int(self.config.get("result_count", 3))
if api_provider == "google_custom_search":
return self._search_google_custom_search(query, cnt=result_count)
elif api_provider == "bing":
return self._search_bing(query, cnt=result_count)
else:
raise ValueError("Invalid API provider. Please check your config file.")
def __call__(self, queries: List[str], browse: bool = True) -> str:
query_results = []
query_urls = set()
for query in queries:
query_results.extend([r for r in self.search_query(query) if r[1] not in query_urls])
query_urls.update([r[1] for r in query_results])
if not browse:
return f"WebSearch has done searching for `{queries}`.\n" + self.ctx.wrap_text_with_delimiter_temporal(
"\n```json\n" + json.dumps(query_results, indent=4) + "```\n",
)
else:
return f"WebSearch has done searching for `{queries}`.\n" + self.ctx.wrap_text_with_delimiter_temporal(
"\n```json\n" + json.dumps(browse_page(",".join(queries), list(query_urls)), indent=4) + "```\n",
)
def _search_google_custom_search(self, query: str, cnt: int) -> List[ResponseEntry]:
api_key = self.config.get("google_api_key")
search_engine_id = self.config.get("google_search_engine_id")
url = f"https://www.googleapis.com/customsearch/v1?key={api_key}&cx={search_engine_id}&q={query}"
if cnt > 0:
url += f"&num={cnt}"
response = requests.get(url)
result_list: List[ResponseEntry] = []
for item in response.json()["items"]:
result_list.append((item["title"], item["link"], item["snippet"]))
return result_list
def _search_bing(self, query: str, cnt: int) -> List[ResponseEntry]:
api_key = self.config.get("bing_api_key")
url = f"https://api.bing.microsoft.com/v7.0/search?q={query}"
if cnt > 0:
url += f"&count={cnt}"
response = requests.get(url, headers={"Ocp-Apim-Subscription-Key": api_key})
result_list: List[ResponseEntry] = []
for item in response.json()["webPages"]["value"]:
result_list.append((item["name"], item["url"], item["snippet"]))
return result_list
| [
"langchain.text_splitter.RecursiveCharacterTextSplitter",
"langchain_community.document_loaders.AsyncHtmlLoader",
"langchain_community.document_transformers.Html2TextTransformer",
"langchain_community.embeddings.HuggingFaceEmbeddings"
] | [((725, 755), 'langchain_community.document_loaders.AsyncHtmlLoader', 'AsyncHtmlLoader', ([], {'web_path': 'urls'}), '(web_path=urls)\n', (740, 755), False, 'from langchain_community.document_loaders import AsyncHtmlLoader\n'), ((798, 820), 'langchain_community.document_transformers.Html2TextTransformer', 'Html2TextTransformer', ([], {}), '()\n', (818, 820), False, 'from langchain_community.document_transformers import Html2TextTransformer\n'), ((901, 988), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': 'chunk_size', 'chunk_overlap': 'chunk_overlap'}), '(chunk_size=chunk_size, chunk_overlap=\n chunk_overlap)\n', (931, 988), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1272, 1324), 'langchain_community.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': '"""all-MiniLM-L6-v2"""'}), "(model_name='all-MiniLM-L6-v2')\n", (1293, 1324), False, 'from langchain_community.embeddings import HuggingFaceEmbeddings\n'), ((3355, 3372), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (3367, 3372), False, 'import requests\n'), ((3839, 3904), 'requests.get', 'requests.get', (['url'], {'headers': "{'Ocp-Apim-Subscription-Key': api_key}"}), "(url, headers={'Ocp-Apim-Subscription-Key': api_key})\n", (3851, 3904), False, 'import requests\n'), ((2646, 2681), 'json.dumps', 'json.dumps', (['query_results'], {'indent': '(4)'}), '(query_results, indent=4)\n', (2656, 2681), False, 'import json\n')] |
import os
from typing import Optional
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import BaseMessage, HumanMessage
from rebyte_langchain.rebyte_langchain import RebyteEndpoint
from realtime_ai_character.llm.base import (
AsyncCallbackAudioHandler,
AsyncCallbackTextHandler,
LLM,
)
from realtime_ai_character.logger import get_logger
from realtime_ai_character.utils import Character, timed
logger = get_logger(__name__)
class RebyteLlm(LLM):
def __init__(self):
self.rebyte_api_key = os.getenv("REBYTE_API_KEY", "")
self.chat_rebyte = RebyteEndpoint(
rebyte_api_key=self.rebyte_api_key, client=None, streaming=True
)
self.config = {}
def get_config(self):
return self.config
def _set_character_config(self, character: Character):
self.chat_rebyte.project_id = character.rebyte_api_project_id
self.chat_rebyte.agent_id = character.rebyte_api_agent_id
if character.rebyte_api_version is not None:
self.chat_rebyte.version = character.rebyte_api_version
def _set_user_config(self, user_id: str):
self.chat_rebyte.session_id = user_id
@timed
async def achat(
self,
history: list[BaseMessage],
user_input: str,
user_id: str,
character: Character,
callback: AsyncCallbackTextHandler,
audioCallback: Optional[AsyncCallbackAudioHandler] = None,
metadata: Optional[dict] = None,
*args,
**kwargs,
) -> str:
# 1. Add user input to history
# delete the first system message in history. just use the system prompt in rebyte platform
history.pop(0)
history.append(HumanMessage(content=user_input))
# 2. Generate response
# set project_id and agent_id for character
self._set_character_config(character=character)
# set session_id for user
self._set_user_config(user_id)
callbacks = [callback, StreamingStdOutCallbackHandler()]
if audioCallback is not None:
callbacks.append(audioCallback)
response = await self.chat_rebyte.agenerate(
[history],
callbacks=callbacks,
metadata=metadata,
)
logger.info(f"Response: {response}")
return response.generations[0][0].text
| [
"langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler",
"langchain.schema.HumanMessage"
] | [((473, 493), 'realtime_ai_character.logger.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (483, 493), False, 'from realtime_ai_character.logger import get_logger\n'), ((572, 603), 'os.getenv', 'os.getenv', (['"""REBYTE_API_KEY"""', '""""""'], {}), "('REBYTE_API_KEY', '')\n", (581, 603), False, 'import os\n'), ((632, 711), 'rebyte_langchain.rebyte_langchain.RebyteEndpoint', 'RebyteEndpoint', ([], {'rebyte_api_key': 'self.rebyte_api_key', 'client': 'None', 'streaming': '(True)'}), '(rebyte_api_key=self.rebyte_api_key, client=None, streaming=True)\n', (646, 711), False, 'from rebyte_langchain.rebyte_langchain import RebyteEndpoint\n'), ((1768, 1800), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': 'user_input'}), '(content=user_input)\n', (1780, 1800), False, 'from langchain.schema import BaseMessage, HumanMessage\n'), ((2046, 2078), 'langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler', 'StreamingStdOutCallbackHandler', ([], {}), '()\n', (2076, 2078), False, 'from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n')] |
from celery import shared_task
from langchain.text_splitter import RecursiveCharacterTextSplitter
from shared.models.opencopilot_db.pdf_data_sources import (
insert_pdf_data_source,
update_pdf_data_source_status,
)
from langchain.document_loaders import UnstructuredMarkdownLoader
from shared.utils.opencopilot_utils import (
get_embeddings,
StoreOptions,
get_file_path,
)
from shared.utils.opencopilot_utils.init_vector_store import init_vector_store
from workers.utils.remove_escape_sequences import remove_escape_sequences
@shared_task
def process_markdown(file_name: str, bot_id: str):
try:
insert_pdf_data_source(chatbot_id=bot_id, file_name=file_name, status="PENDING")
loader = UnstructuredMarkdownLoader(get_file_path(file_name))
raw_docs = loader.load()
for doc in raw_docs:
doc.page_content = remove_escape_sequences(doc.page_content)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200, length_function=len
)
docs = text_splitter.split_documents(raw_docs)
embeddings = get_embeddings()
init_vector_store(
docs,
StoreOptions(namespace="knowledgebase", metadata={"bot_id": bot_id}),
)
update_pdf_data_source_status(
chatbot_id=bot_id, file_name=file_name, status="COMPLETED"
)
except Exception as e:
update_pdf_data_source_status(
chatbot_id=bot_id, file_name=file_name, status="FAILED"
)
print(f"Error processing {file_name}:", e)
@shared_task
def retry_failed_markdown_crawl(chatbot_id: str, file_name: str):
"""Re-runs a failed PDF crawl.
Args:
chatbot_id: The ID of the chatbot.
file_name: The name of the PDF file to crawl.
"""
update_pdf_data_source_status(
chatbot_id=chatbot_id, file_name=file_name, status="PENDING"
)
try:
process_markdown(file_name=file_name, bot_id=chatbot_id)
except Exception as e:
update_pdf_data_source_status(
chatbot_id=chatbot_id, file_name=file_name, status="FAILED"
)
print(f"Error reprocessing {file_name}:", e)
| [
"langchain.text_splitter.RecursiveCharacterTextSplitter"
] | [((1830, 1925), 'shared.models.opencopilot_db.pdf_data_sources.update_pdf_data_source_status', 'update_pdf_data_source_status', ([], {'chatbot_id': 'chatbot_id', 'file_name': 'file_name', 'status': '"""PENDING"""'}), "(chatbot_id=chatbot_id, file_name=file_name,\n status='PENDING')\n", (1859, 1925), False, 'from shared.models.opencopilot_db.pdf_data_sources import insert_pdf_data_source, update_pdf_data_source_status\n'), ((630, 715), 'shared.models.opencopilot_db.pdf_data_sources.insert_pdf_data_source', 'insert_pdf_data_source', ([], {'chatbot_id': 'bot_id', 'file_name': 'file_name', 'status': '"""PENDING"""'}), "(chatbot_id=bot_id, file_name=file_name, status='PENDING'\n )\n", (652, 715), False, 'from shared.models.opencopilot_db.pdf_data_sources import insert_pdf_data_source, update_pdf_data_source_status\n'), ((941, 1032), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(200)', 'length_function': 'len'}), '(chunk_size=1000, chunk_overlap=200,\n length_function=len)\n', (971, 1032), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1127, 1143), 'shared.utils.opencopilot_utils.get_embeddings', 'get_embeddings', ([], {}), '()\n', (1141, 1143), False, 'from shared.utils.opencopilot_utils import get_embeddings, StoreOptions, get_file_path\n'), ((1290, 1383), 'shared.models.opencopilot_db.pdf_data_sources.update_pdf_data_source_status', 'update_pdf_data_source_status', ([], {'chatbot_id': 'bot_id', 'file_name': 'file_name', 'status': '"""COMPLETED"""'}), "(chatbot_id=bot_id, file_name=file_name,\n status='COMPLETED')\n", (1319, 1383), False, 'from shared.models.opencopilot_db.pdf_data_sources import insert_pdf_data_source, update_pdf_data_source_status\n'), ((755, 779), 'shared.utils.opencopilot_utils.get_file_path', 'get_file_path', (['file_name'], {}), '(file_name)\n', (768, 779), False, 'from shared.utils.opencopilot_utils import get_embeddings, StoreOptions, get_file_path\n'), ((874, 915), 'workers.utils.remove_escape_sequences.remove_escape_sequences', 'remove_escape_sequences', (['doc.page_content'], {}), '(doc.page_content)\n', (897, 915), False, 'from workers.utils.remove_escape_sequences import remove_escape_sequences\n'), ((1201, 1269), 'shared.utils.opencopilot_utils.StoreOptions', 'StoreOptions', ([], {'namespace': '"""knowledgebase"""', 'metadata': "{'bot_id': bot_id}"}), "(namespace='knowledgebase', metadata={'bot_id': bot_id})\n", (1213, 1269), False, 'from shared.utils.opencopilot_utils import get_embeddings, StoreOptions, get_file_path\n'), ((1437, 1527), 'shared.models.opencopilot_db.pdf_data_sources.update_pdf_data_source_status', 'update_pdf_data_source_status', ([], {'chatbot_id': 'bot_id', 'file_name': 'file_name', 'status': '"""FAILED"""'}), "(chatbot_id=bot_id, file_name=file_name,\n status='FAILED')\n", (1466, 1527), False, 'from shared.models.opencopilot_db.pdf_data_sources import insert_pdf_data_source, update_pdf_data_source_status\n'), ((2045, 2139), 'shared.models.opencopilot_db.pdf_data_sources.update_pdf_data_source_status', 'update_pdf_data_source_status', ([], {'chatbot_id': 'chatbot_id', 'file_name': 'file_name', 'status': '"""FAILED"""'}), "(chatbot_id=chatbot_id, file_name=file_name,\n status='FAILED')\n", (2074, 2139), False, 'from shared.models.opencopilot_db.pdf_data_sources import insert_pdf_data_source, update_pdf_data_source_status\n')] |
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This is a simple standalone implementation showing rag pipeline using Nvidia AI Foundational models.
# It uses a simple Streamlit UI and one file implementation of a minimalistic RAG pipeline.
############################################
# Component #1 - Document Loader
############################################
import streamlit as st
import os
st.set_page_config(layout = "wide")
with st.sidebar:
DOCS_DIR = os.path.abspath("./uploaded_docs")
if not os.path.exists(DOCS_DIR):
os.makedirs(DOCS_DIR)
st.subheader("Add to the Knowledge Base")
with st.form("my-form", clear_on_submit=True):
uploaded_files = st.file_uploader("Upload a file to the Knowledge Base:", accept_multiple_files = True)
submitted = st.form_submit_button("Upload!")
if uploaded_files and submitted:
for uploaded_file in uploaded_files:
st.success(f"File {uploaded_file.name} uploaded successfully!")
with open(os.path.join(DOCS_DIR, uploaded_file.name),"wb") as f:
f.write(uploaded_file.read())
############################################
# Component #2 - Embedding Model and LLM
############################################
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
# make sure to export your NVIDIA AI Playground key as NVIDIA_API_KEY!
llm = ChatNVIDIA(model="mixtral_8x7b")
document_embedder = NVIDIAEmbeddings(model="nvolveqa_40k", model_type="passage")
query_embedder = NVIDIAEmbeddings(model="nvolveqa_40k", model_type="query")
############################################
# Component #3 - Vector Database Store
############################################
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DirectoryLoader
from langchain.vectorstores import FAISS
import pickle
with st.sidebar:
# Option for using an existing vector store
use_existing_vector_store = st.radio("Use existing vector store if available", ["Yes", "No"], horizontal=True)
# Path to the vector store file
vector_store_path = "vectorstore.pkl"
# Load raw documents from the directory
raw_documents = DirectoryLoader(DOCS_DIR).load()
# Check for existing vector store file
vector_store_exists = os.path.exists(vector_store_path)
vectorstore = None
if use_existing_vector_store == "Yes" and vector_store_exists:
with open(vector_store_path, "rb") as f:
vectorstore = pickle.load(f)
with st.sidebar:
st.success("Existing vector store loaded successfully.")
else:
with st.sidebar:
if raw_documents:
with st.spinner("Splitting documents into chunks..."):
text_splitter = CharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
documents = text_splitter.split_documents(raw_documents)
with st.spinner("Adding document chunks to vector database..."):
vectorstore = FAISS.from_documents(documents, document_embedder)
with st.spinner("Saving vector store"):
with open(vector_store_path, "wb") as f:
pickle.dump(vectorstore, f)
st.success("Vector store created and saved.")
else:
st.warning("No documents available to process!", icon="⚠️")
############################################
# Component #4 - LLM Response Generation and Chat
############################################
st.subheader("Chat with your AI Assistant, Envie!")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt_template = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Envie. You will reply to questions only based on the context that you are provided. If something is out of context, you will refrain from replying and politely decline to respond to the user."), ("user", "{input}")]
)
user_input = st.chat_input("Can you tell me what NVIDIA is known for?")
llm = ChatNVIDIA(model="mixtral_8x7b")
chain = prompt_template | llm | StrOutputParser()
if user_input and vectorstore!=None:
st.session_state.messages.append({"role": "user", "content": user_input})
retriever = vectorstore.as_retriever()
docs = retriever.get_relevant_documents(user_input)
with st.chat_message("user"):
st.markdown(user_input)
context = ""
for doc in docs:
context += doc.page_content + "\n\n"
augmented_user_input = "Context: " + context + "\n\nQuestion: " + user_input + "\n"
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in chain.stream({"input": augmented_user_input}):
full_response += response
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
| [
"langchain_core.prompts.ChatPromptTemplate.from_messages",
"langchain.text_splitter.CharacterTextSplitter",
"langchain_core.output_parsers.StrOutputParser",
"langchain.document_loaders.DirectoryLoader",
"langchain_nvidia_ai_endpoints.NVIDIAEmbeddings",
"langchain.vectorstores.FAISS.from_documents",
"langchain_nvidia_ai_endpoints.ChatNVIDIA"
] | [((1034, 1067), 'streamlit.set_page_config', 'st.set_page_config', ([], {'layout': '"""wide"""'}), "(layout='wide')\n", (1052, 1067), True, 'import streamlit as st\n'), ((2031, 2063), 'langchain_nvidia_ai_endpoints.ChatNVIDIA', 'ChatNVIDIA', ([], {'model': '"""mixtral_8x7b"""'}), "(model='mixtral_8x7b')\n", (2041, 2063), False, 'from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings\n'), ((2084, 2144), 'langchain_nvidia_ai_endpoints.NVIDIAEmbeddings', 'NVIDIAEmbeddings', ([], {'model': '"""nvolveqa_40k"""', 'model_type': '"""passage"""'}), "(model='nvolveqa_40k', model_type='passage')\n", (2100, 2144), False, 'from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings\n'), ((2162, 2220), 'langchain_nvidia_ai_endpoints.NVIDIAEmbeddings', 'NVIDIAEmbeddings', ([], {'model': '"""nvolveqa_40k"""', 'model_type': '"""query"""'}), "(model='nvolveqa_40k', model_type='query')\n", (2178, 2220), False, 'from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings\n'), ((2925, 2958), 'os.path.exists', 'os.path.exists', (['vector_store_path'], {}), '(vector_store_path)\n', (2939, 2958), False, 'import os\n'), ((4095, 4146), 'streamlit.subheader', 'st.subheader', (['"""Chat with your AI Assistant, Envie!"""'], {}), "('Chat with your AI Assistant, Envie!')\n", (4107, 4146), True, 'import streamlit as st\n'), ((4480, 4788), 'langchain_core.prompts.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (["[('system',\n 'You are a helpful AI assistant named Envie. You will reply to questions only based on the context that you are provided. If something is out of context, you will refrain from replying and politely decline to respond to the user.'\n ), ('user', '{input}')]"], {}), "([('system',\n 'You are a helpful AI assistant named Envie. You will reply to questions only based on the context that you are provided. If something is out of context, you will refrain from replying and politely decline to respond to the user.'\n ), ('user', '{input}')])\n", (4512, 4788), False, 'from langchain_core.prompts import ChatPromptTemplate\n'), ((4799, 4857), 'streamlit.chat_input', 'st.chat_input', (['"""Can you tell me what NVIDIA is known for?"""'], {}), "('Can you tell me what NVIDIA is known for?')\n", (4812, 4857), True, 'import streamlit as st\n'), ((4864, 4896), 'langchain_nvidia_ai_endpoints.ChatNVIDIA', 'ChatNVIDIA', ([], {'model': '"""mixtral_8x7b"""'}), "(model='mixtral_8x7b')\n", (4874, 4896), False, 'from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings\n'), ((1103, 1137), 'os.path.abspath', 'os.path.abspath', (['"""./uploaded_docs"""'], {}), "('./uploaded_docs')\n", (1118, 1137), False, 'import os\n'), ((1209, 1250), 'streamlit.subheader', 'st.subheader', (['"""Add to the Knowledge Base"""'], {}), "('Add to the Knowledge Base')\n", (1221, 1250), True, 'import streamlit as st\n'), ((2618, 2704), 'streamlit.radio', 'st.radio', (['"""Use existing vector store if available"""', "['Yes', 'No']"], {'horizontal': '(True)'}), "('Use existing vector store if available', ['Yes', 'No'],\n horizontal=True)\n", (2626, 2704), True, 'import streamlit as st\n'), ((4930, 4947), 'langchain_core.output_parsers.StrOutputParser', 'StrOutputParser', ([], {}), '()\n', (4945, 4947), False, 'from langchain_core.output_parsers import StrOutputParser\n'), ((4990, 5063), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'role': 'user', 'content': user_input}"], {}), "({'role': 'user', 'content': user_input})\n", (5022, 5063), True, 'import streamlit as st\n'), ((5738, 5823), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'role': 'assistant', 'content': full_response}"], {}), "({'role': 'assistant', 'content':\n full_response})\n", (5770, 5823), True, 'import streamlit as st\n'), ((1149, 1173), 'os.path.exists', 'os.path.exists', (['DOCS_DIR'], {}), '(DOCS_DIR)\n', (1163, 1173), False, 'import os\n'), ((1183, 1204), 'os.makedirs', 'os.makedirs', (['DOCS_DIR'], {}), '(DOCS_DIR)\n', (1194, 1204), False, 'import os\n'), ((1260, 1300), 'streamlit.form', 'st.form', (['"""my-form"""'], {'clear_on_submit': '(True)'}), "('my-form', clear_on_submit=True)\n", (1267, 1300), True, 'import streamlit as st\n'), ((1327, 1415), 'streamlit.file_uploader', 'st.file_uploader', (['"""Upload a file to the Knowledge Base:"""'], {'accept_multiple_files': '(True)'}), "('Upload a file to the Knowledge Base:',\n accept_multiple_files=True)\n", (1343, 1415), True, 'import streamlit as st\n'), ((1434, 1466), 'streamlit.form_submit_button', 'st.form_submit_button', (['"""Upload!"""'], {}), "('Upload!')\n", (1455, 1466), True, 'import streamlit as st\n'), ((2829, 2854), 'langchain.document_loaders.DirectoryLoader', 'DirectoryLoader', (['DOCS_DIR'], {}), '(DOCS_DIR)\n', (2844, 2854), False, 'from langchain.document_loaders import DirectoryLoader\n'), ((3108, 3122), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3119, 3122), False, 'import pickle\n'), ((3152, 3208), 'streamlit.success', 'st.success', (['"""Existing vector store loaded successfully."""'], {}), "('Existing vector store loaded successfully.')\n", (3162, 3208), True, 'import streamlit as st\n'), ((4274, 4306), 'streamlit.chat_message', 'st.chat_message', (["message['role']"], {}), "(message['role'])\n", (4289, 4306), True, 'import streamlit as st\n'), ((4316, 4347), 'streamlit.markdown', 'st.markdown', (["message['content']"], {}), "(message['content'])\n", (4327, 4347), True, 'import streamlit as st\n'), ((5172, 5195), 'streamlit.chat_message', 'st.chat_message', (['"""user"""'], {}), "('user')\n", (5187, 5195), True, 'import streamlit as st\n'), ((5205, 5228), 'streamlit.markdown', 'st.markdown', (['user_input'], {}), '(user_input)\n', (5216, 5228), True, 'import streamlit as st\n'), ((5412, 5440), 'streamlit.chat_message', 'st.chat_message', (['"""assistant"""'], {}), "('assistant')\n", (5427, 5440), True, 'import streamlit as st\n'), ((5472, 5482), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (5480, 5482), True, 'import streamlit as st\n'), ((1562, 1625), 'streamlit.success', 'st.success', (['f"""File {uploaded_file.name} uploaded successfully!"""'], {}), "(f'File {uploaded_file.name} uploaded successfully!')\n", (1572, 1625), True, 'import streamlit as st\n'), ((3821, 3866), 'streamlit.success', 'st.success', (['"""Vector store created and saved."""'], {}), "('Vector store created and saved.')\n", (3831, 3866), True, 'import streamlit as st\n'), ((3893, 3952), 'streamlit.warning', 'st.warning', (['"""No documents available to process!"""'], {'icon': '"""⚠️"""'}), "('No documents available to process!', icon='⚠️')\n", (3903, 3952), True, 'import streamlit as st\n'), ((3279, 3327), 'streamlit.spinner', 'st.spinner', (['"""Splitting documents into chunks..."""'], {}), "('Splitting documents into chunks...')\n", (3289, 3327), True, 'import streamlit as st\n'), ((3361, 3418), 'langchain.text_splitter.CharacterTextSplitter', 'CharacterTextSplitter', ([], {'chunk_size': '(2000)', 'chunk_overlap': '(200)'}), '(chunk_size=2000, chunk_overlap=200)\n', (3382, 3418), False, 'from langchain.text_splitter import CharacterTextSplitter\n'), ((3510, 3568), 'streamlit.spinner', 'st.spinner', (['"""Adding document chunks to vector database..."""'], {}), "('Adding document chunks to vector database...')\n", (3520, 3568), True, 'import streamlit as st\n'), ((3600, 3650), 'langchain.vectorstores.FAISS.from_documents', 'FAISS.from_documents', (['documents', 'document_embedder'], {}), '(documents, document_embedder)\n', (3620, 3650), False, 'from langchain.vectorstores import FAISS\n'), ((3669, 3702), 'streamlit.spinner', 'st.spinner', (['"""Saving vector store"""'], {}), "('Saving vector store')\n", (3679, 3702), True, 'import streamlit as st\n'), ((1648, 1690), 'os.path.join', 'os.path.join', (['DOCS_DIR', 'uploaded_file.name'], {}), '(DOCS_DIR, uploaded_file.name)\n', (1660, 1690), False, 'import os\n'), ((3781, 3808), 'pickle.dump', 'pickle.dump', (['vectorstore', 'f'], {}), '(vectorstore, f)\n', (3792, 3808), False, 'import pickle\n')] |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain, ConversationChain
from langchain.prompts.prompt import PromptTemplate
from langchain.vectorstores.base import VectorStoreRetriever
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
import pickle
import os
from env import OPENAI_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
You can assume the question about the most recent state of the union address.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """You are an AI assistant for answering questions about the most recent state of the union address.
You are given the following extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
If the question is not about the most recent state of the union, politely inform them that you are tuned to only answer questions about the most recent state of the union.
Lastly, answer the question as if you were a pirate from the south seas and are just coming back from a pirate expedition where you found a treasure chest full of gold doubloons.
Question: {question}
=========
{context}
=========
Answer in Markdown:"""
QA_PROMPT = PromptTemplate(template=template, input_variables=[
"question", "context"])
pyhealth_template = """
1. role clarification, task definition (high-level instruction), and model encouragement
2. task flow/procedures (input/output clarification)
3. information (chat history, retrieval results: doc + codes) -> separate code doc and txt doc
4. notice (law, regulation, policy, etc.) -> !!!
5. now, give the response.
tricks:
- important info should be at the beginning or in the end. knowledge is in the middle.
- use "sep" to block the prompt
"""
def load_retriever():
with open("vectorstore.pkl", "rb") as f:
vectorstore = pickle.load(f)
retriever = VectorStoreRetriever(vectorstore=vectorstore)
return retriever
def get_basic_qa_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory)
return model
def get_custom_prompt_qa_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
# see: https://github.com/langchain-ai/langchain/issues/6635
# see: https://github.com/langchain-ai/langchain/issues/1497
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
combine_docs_chain_kwargs={"prompt": QA_PROMPT})
return model
def get_condense_prompt_qa_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
# see: https://github.com/langchain-ai/langchain/issues/5890
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
combine_docs_chain_kwargs={"prompt": QA_PROMPT})
return model
def get_qa_with_sources_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
history = []
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
return_source_documents=True)
def model_func(question):
# bug: this doesn't work with the built-in memory
# hacking around it for the tutorial
# see: https://github.com/langchain-ai/langchain/issues/5630
new_input = {"question": question['question'], "chat_history": history}
result = model(new_input)
history.append((question['question'], result['answer']))
return result
return model_func
def get_basic_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
memory = ConversationBufferMemory()
model = ConversationChain(
llm=llm,
memory=memory)
return model
chain_options = {
"basic": get_basic_qa_chain,
"with_sources": get_qa_with_sources_chain,
"custom_prompt": get_custom_prompt_qa_chain,
"condense_prompt": get_condense_prompt_qa_chain
}
| [
"langchain.chains.ConversationalRetrievalChain.from_llm",
"langchain.chat_models.ChatOpenAI",
"langchain.prompts.prompt.PromptTemplate.from_template",
"langchain.prompts.prompt.PromptTemplate",
"langchain.vectorstores.base.VectorStoreRetriever",
"langchain.chains.ConversationChain",
"langchain.memory.ConversationBufferMemory"
] | [((727, 766), 'langchain.prompts.prompt.PromptTemplate.from_template', 'PromptTemplate.from_template', (['_template'], {}), '(_template)\n', (755, 766), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((1521, 1595), 'langchain.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'template': 'template', 'input_variables': "['question', 'context']"}), "(template=template, input_variables=['question', 'context'])\n", (1535, 1595), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((2225, 2270), 'langchain.vectorstores.base.VectorStoreRetriever', 'VectorStoreRetriever', ([], {'vectorstore': 'vectorstore'}), '(vectorstore=vectorstore)\n', (2245, 2270), False, 'from langchain.vectorstores.base import VectorStoreRetriever\n'), ((2330, 2375), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (2340, 2375), False, 'from langchain.chat_models import ChatOpenAI\n'), ((2422, 2495), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {'memory_key': '"""chat_history"""', 'return_messages': '(True)'}), "(memory_key='chat_history', return_messages=True)\n", (2446, 2495), False, 'from langchain.memory import ConversationBufferMemory\n'), ((2517, 2604), 'langchain.chains.ConversationalRetrievalChain.from_llm', 'ConversationalRetrievalChain.from_llm', ([], {'llm': 'llm', 'retriever': 'retriever', 'memory': 'memory'}), '(llm=llm, retriever=retriever, memory=\n memory)\n', (2554, 2604), False, 'from langchain.chains import RetrievalQA, ConversationalRetrievalChain, ConversationChain\n'), ((2688, 2733), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (2698, 2733), False, 'from langchain.chat_models import ChatOpenAI\n'), ((2780, 2853), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {'memory_key': '"""chat_history"""', 'return_messages': '(True)'}), "(memory_key='chat_history', return_messages=True)\n", (2804, 2853), False, 'from langchain.memory import ConversationBufferMemory\n'), ((3005, 3141), 'langchain.chains.ConversationalRetrievalChain.from_llm', 'ConversationalRetrievalChain.from_llm', ([], {'llm': 'llm', 'retriever': 'retriever', 'memory': 'memory', 'combine_docs_chain_kwargs': "{'prompt': QA_PROMPT}"}), "(llm=llm, retriever=retriever, memory=\n memory, combine_docs_chain_kwargs={'prompt': QA_PROMPT})\n", (3042, 3141), False, 'from langchain.chains import RetrievalQA, ConversationalRetrievalChain, ConversationChain\n'), ((3235, 3280), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (3245, 3280), False, 'from langchain.chat_models import ChatOpenAI\n'), ((3327, 3400), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {'memory_key': '"""chat_history"""', 'return_messages': '(True)'}), "(memory_key='chat_history', return_messages=True)\n", (3351, 3400), False, 'from langchain.memory import ConversationBufferMemory\n'), ((3487, 3678), 'langchain.chains.ConversationalRetrievalChain.from_llm', 'ConversationalRetrievalChain.from_llm', ([], {'llm': 'llm', 'retriever': 'retriever', 'memory': 'memory', 'condense_question_prompt': 'CONDENSE_QUESTION_PROMPT', 'combine_docs_chain_kwargs': "{'prompt': QA_PROMPT}"}), "(llm=llm, retriever=retriever, memory=\n memory, condense_question_prompt=CONDENSE_QUESTION_PROMPT,\n combine_docs_chain_kwargs={'prompt': QA_PROMPT})\n", (3524, 3678), False, 'from langchain.chains import RetrievalQA, ConversationalRetrievalChain, ConversationChain\n'), ((3773, 3818), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (3783, 3818), False, 'from langchain.chat_models import ChatOpenAI\n'), ((3881, 3982), 'langchain.chains.ConversationalRetrievalChain.from_llm', 'ConversationalRetrievalChain.from_llm', ([], {'llm': 'llm', 'retriever': 'retriever', 'return_source_documents': '(True)'}), '(llm=llm, retriever=retriever,\n return_source_documents=True)\n', (3918, 3982), False, 'from langchain.chains import RetrievalQA, ConversationalRetrievalChain, ConversationChain\n'), ((4466, 4511), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (4476, 4511), False, 'from langchain.chat_models import ChatOpenAI\n'), ((4525, 4551), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {}), '()\n', (4549, 4551), False, 'from langchain.memory import ConversationBufferMemory\n'), ((4564, 4605), 'langchain.chains.ConversationChain', 'ConversationChain', ([], {'llm': 'llm', 'memory': 'memory'}), '(llm=llm, memory=memory)\n', (4581, 4605), False, 'from langchain.chains import RetrievalQA, ConversationalRetrievalChain, ConversationChain\n'), ((2194, 2208), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2205, 2208), False, 'import pickle\n')] |
# flake8: noqa
from langchain.prompts import PromptTemplate
## Use a shorter template to reduce the number of tokens in the prompt
template = """Create a final answer to the given questions using the provided document excerpts (given in no particular order) as sources. ALWAYS include a "SOURCES" section in your answer citing only the minimal set of sources needed to answer the question. If you are unable to answer the question, simply state that you do not have enough information to answer the question and leave the SOURCES section empty. Use only the provided documents and do not attempt to fabricate an answer.
---------
QUESTION: What is the purpose of ARPA-H?
=========
Content: More support for patients and families. \n\nTo get there, I call on Congress to fund ARPA-H, the Advanced Research Projects Agency for Health. \n\nIt's based on DARPA—the Defense Department project that led to the Internet, GPS, and so much more. \n\nARPA-H will have a singular purpose—to drive breakthroughs in cancer, Alzheimer's, diabetes, and more.
SOURCES: 1-32
Content: While we're at it, let's make sure every American can get the health care they need. \n\nWe've already made historic investments in health care. \n\nWe've made it easier for Americans to get the care they need, when they need it. \n\nWe've made it easier for Americans to get the treatments they need, when they need them. \n\nWe've made it easier for Americans to get the medications they need, when they need them.
SOURCES: 1-33
Content: The V.A. is pioneering new ways of linking toxic exposures to disease, already helping veterans get the care they deserve. \n\nWe need to extend that same care to all Americans. \n\nThat's why I'm calling on Congress to pass legislation that would establish a national registry of toxic exposures, and provide health care and financial assistance to those affected.
SOURCES: 1-30
=========
FINAL ANSWER: The purpose of ARPA-H is to drive breakthroughs in cancer, Alzheimer's, diabetes, and more.
SOURCES: 1-32
---------
QUESTION: {question}
=========
{summaries}
=========
FINAL ANSWER:"""
STUFF_PROMPT = PromptTemplate(
template=template, input_variables=["summaries", "question"]
)
| [
"langchain.prompts.PromptTemplate"
] | [((2121, 2197), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'template': 'template', 'input_variables': "['summaries', 'question']"}), "(template=template, input_variables=['summaries', 'question'])\n", (2135, 2197), False, 'from langchain.prompts import PromptTemplate\n')] |
from langchain.agents import load_tools
from langchain.tools import AIPluginTool
from parse import *
from langchain.chat_models.base import BaseChatModel
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
import utils
def create_plugins_static():
plugins = [
AIPluginTool.from_plugin_url(
"https://www.klarna.com/.well-known/ai-plugin.json"
)
]
plugins += load_tools(["requests_all"])
return plugins
def create_chat_model(openai_config: utils.OpenAIConfig) -> BaseChatModel:
if openai_config.is_azure_openai():
return AzureChatOpenAI(
temperature=0,
openai_api_base=openai_config.AZURE_OPENAI_API_ENDPOINT,
openai_api_version=openai_config.AZURE_OPENAI_API_VERSION
if openai_config.AZURE_OPENAI_API_VERSION
else "2023-03-15-preview",
deployment_name=openai_config.AZURE_OPENAI_API_DEPLOYMENT_NAME,
openai_api_key=openai_config.OPENAI_API_KEY,
openai_api_type=openai_config.OPENAI_API_TYPE,
)
else:
return ChatOpenAI(
temperature=0,
openai_api_key=openai_config.OPENAI_API_KEY,
openai_organization=openai_config.OPENAI_ORG_ID,
model_name=openai_config.OPENAI_MODEL_ID,
)
| [
"langchain.agents.load_tools",
"langchain.chat_models.AzureChatOpenAI",
"langchain.tools.AIPluginTool.from_plugin_url",
"langchain.chat_models.ChatOpenAI"
] | [((410, 438), 'langchain.agents.load_tools', 'load_tools', (["['requests_all']"], {}), "(['requests_all'])\n", (420, 438), False, 'from langchain.agents import load_tools\n'), ((285, 371), 'langchain.tools.AIPluginTool.from_plugin_url', 'AIPluginTool.from_plugin_url', (['"""https://www.klarna.com/.well-known/ai-plugin.json"""'], {}), "(\n 'https://www.klarna.com/.well-known/ai-plugin.json')\n", (313, 371), False, 'from langchain.tools import AIPluginTool\n'), ((590, 984), 'langchain.chat_models.AzureChatOpenAI', 'AzureChatOpenAI', ([], {'temperature': '(0)', 'openai_api_base': 'openai_config.AZURE_OPENAI_API_ENDPOINT', 'openai_api_version': "(openai_config.AZURE_OPENAI_API_VERSION if openai_config.\n AZURE_OPENAI_API_VERSION else '2023-03-15-preview')", 'deployment_name': 'openai_config.AZURE_OPENAI_API_DEPLOYMENT_NAME', 'openai_api_key': 'openai_config.OPENAI_API_KEY', 'openai_api_type': 'openai_config.OPENAI_API_TYPE'}), "(temperature=0, openai_api_base=openai_config.\n AZURE_OPENAI_API_ENDPOINT, openai_api_version=openai_config.\n AZURE_OPENAI_API_VERSION if openai_config.AZURE_OPENAI_API_VERSION else\n '2023-03-15-preview', deployment_name=openai_config.\n AZURE_OPENAI_API_DEPLOYMENT_NAME, openai_api_key=openai_config.\n OPENAI_API_KEY, openai_api_type=openai_config.OPENAI_API_TYPE)\n", (605, 984), False, 'from langchain.chat_models import ChatOpenAI, AzureChatOpenAI\n'), ((1093, 1263), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0)', 'openai_api_key': 'openai_config.OPENAI_API_KEY', 'openai_organization': 'openai_config.OPENAI_ORG_ID', 'model_name': 'openai_config.OPENAI_MODEL_ID'}), '(temperature=0, openai_api_key=openai_config.OPENAI_API_KEY,\n openai_organization=openai_config.OPENAI_ORG_ID, model_name=\n openai_config.OPENAI_MODEL_ID)\n', (1103, 1263), False, 'from langchain.chat_models import ChatOpenAI, AzureChatOpenAI\n')] |
import re
import string
from collections import Counter
import numpy as np
import pandas as pd
import tqdm
from langchain.evaluation.qa import QAEvalChain
from langchain.llms import OpenAI
from algos.PWS import PWS_Base, PWS_Extra
from algos.notool import CoT, IO
from algos.react import ReactBase
def normalize_answer(s):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
if normalized_prediction in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return 0
if normalized_ground_truth in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return 0
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def llm_accuracy_score(query, prediction, ground_truth):
data = [{
'query': query,
'answer': ground_truth,
}]
pred = [{
'query': query,
'answer': ground_truth,
'result': prediction,
}]
eval_chain = QAEvalChain.from_llm(OpenAI(temperature=0))
graded_outputs = eval_chain.evaluate(data, pred)
return 1 if graded_outputs[0]['text'].strip() == 'CORRECT' else 0
class Evaluator:
def __init__(self, task, dataset, algo, maxtry=3):
assert task in ["hotpot_qa", "trivia_qa", "gsm8k", "physics_question", "disfl_qa",
"sports_understanding", "strategy_qa", "sotu_qa"]
assert isinstance(dataset, pd.DataFrame)
assert isinstance(algo, (PWS_Base, PWS_Extra, ReactBase, IO, CoT))
self.task = task
self.dataset = dataset
self.algo = algo
self.maxtry = maxtry
self.failed_response = self._failed_response()
self.eval_data = self._initialize_eval_dict()
def run(self):
print("\n******************* Start Evaluation *******************\n")
if self.task in ["hotpot_qa", "sotu_qa"]:
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["question"][i]
label = self.dataset["answer"][i]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task == "fever":
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["claim"][i]
label = self.dataset["label"][i]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task == "trivia_qa":
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["question"][i]
label = self.dataset["answer"][i]["value"]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task == "gsm8k":
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["question"][i]
label = self.dataset["answer"][i].split("#### ")[1]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task in ["physics_question", "sports_understanding", "strategy_qa"]:
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["input"][i]
label = self.dataset["target"][i]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
else:
raise NotImplementedError
return self._get_avg_results(), self.eval_data
def _initialize_eval_dict(self):
data = {}
for d in ["label", "preds", "em", "f1", "acc", "wall_time", "total_tokens", "total_cost", "steps", "token_cost",
"tool_cost", "planner_log", "solver_log"]:
data[d] = []
return data
def _update_eval_dict(self, question, label, response):
pred = self._parse_prediction(response["output"])
self.eval_data["label"] += [label]
self.eval_data["preds"] += [pred]
self.eval_data["em"] += [self.get_metrics(question, label, pred)["em"]]
self.eval_data["f1"] += [self.get_metrics(question, label, pred)["f1"]]
self.eval_data["acc"] += [self.get_metrics(question, label, pred)["acc"]]
self.eval_data["wall_time"] += [response["wall_time"]]
self.eval_data["total_tokens"] += [response["total_tokens"]]
self.eval_data["total_cost"] += [response["total_cost"]]
self.eval_data["steps"] += [response["steps"]]
self.eval_data["token_cost"] += [response["token_cost"]]
self.eval_data["tool_cost"] += [response["tool_cost"]]
if "planner_log" in response:
self.eval_data["planner_log"] += [response["planner_log"]]
if "solver_log" in response:
self.eval_data["solver_log"] += [response["solver_log"]]
def _get_avg_results(self):
result = {}
result["avg_em"] = np.nanmean(self.eval_data["em"])
result["avg_f1"] = np.nanmean(self.eval_data["f1"])
result["avg_acc"] = np.nanmean(self.eval_data["acc"])
result["avg_wall_time"] = np.nanmean(self.eval_data["wall_time"])
result["avg_total_tokens"] = np.nanmean(self.eval_data["total_tokens"])
result["avg_total_cost"] = np.nanmean(self.eval_data["total_cost"])
result["avg_steps"] = np.nanmean(self.eval_data["steps"])
result["avg_token_cost"] = np.nanmean(self.eval_data["token_cost"])
result["avg_tool_cost"] = np.nanmean(self.eval_data["tool_cost"])
return result
def get_metrics(self, query, label, pred):
if pred is None:
return {'em': 0, 'f1': 0}
norm_label = normalize_answer(label)
norm_pred = normalize_answer(pred)
em = (norm_pred == norm_label)
f1 = f1_score(norm_pred, norm_label)
acc = llm_accuracy_score(query, pred, label)
return {'em': em, 'f1': f1, 'acc': acc}
def _parse_prediction(self, output):
if isinstance(self.algo, IO):
return str(output).strip("\n")
elif isinstance(self.algo, CoT):
return str(output).split("\n")[-1].replace("Answer:", "")
elif isinstance(self.algo, ReactBase):
return str(output).strip("\n")
elif isinstance(self.algo, PWS_Base):
return str(output).strip("\n")
elif isinstance(self.algo, PWS_Extra):
return str(output).strip("\n")
def _failed_response(self):
resposne = {}
for key in ["input", "output", "wall_time", "total_tokens", "total_cost", "steps", "token_cost", "tool_cost"]:
resposne[key] = np.nan
return resposne
| [
"langchain.llms.OpenAI"
] | [((373, 410), 're.sub', 're.sub', (['"""\\\\b(a|an|the)\\\\b"""', '""" """', 'text'], {}), "('\\\\b(a|an|the)\\\\b', ' ', text)\n", (379, 410), False, 'import re\n'), ((1278, 1304), 'collections.Counter', 'Counter', (['prediction_tokens'], {}), '(prediction_tokens)\n', (1285, 1304), False, 'from collections import Counter\n'), ((1307, 1335), 'collections.Counter', 'Counter', (['ground_truth_tokens'], {}), '(ground_truth_tokens)\n', (1314, 1335), False, 'from collections import Counter\n'), ((1874, 1895), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (1880, 1895), False, 'from langchain.llms import OpenAI\n'), ((6841, 6873), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['em']"], {}), "(self.eval_data['em'])\n", (6851, 6873), True, 'import numpy as np\n'), ((6901, 6933), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['f1']"], {}), "(self.eval_data['f1'])\n", (6911, 6933), True, 'import numpy as np\n'), ((6962, 6995), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['acc']"], {}), "(self.eval_data['acc'])\n", (6972, 6995), True, 'import numpy as np\n'), ((7030, 7069), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['wall_time']"], {}), "(self.eval_data['wall_time'])\n", (7040, 7069), True, 'import numpy as np\n'), ((7107, 7149), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['total_tokens']"], {}), "(self.eval_data['total_tokens'])\n", (7117, 7149), True, 'import numpy as np\n'), ((7185, 7225), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['total_cost']"], {}), "(self.eval_data['total_cost'])\n", (7195, 7225), True, 'import numpy as np\n'), ((7256, 7291), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['steps']"], {}), "(self.eval_data['steps'])\n", (7266, 7291), True, 'import numpy as np\n'), ((7327, 7367), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['token_cost']"], {}), "(self.eval_data['token_cost'])\n", (7337, 7367), True, 'import numpy as np\n'), ((7402, 7441), 'numpy.nanmean', 'np.nanmean', (["self.eval_data['tool_cost']"], {}), "(self.eval_data['tool_cost'])\n", (7412, 7441), True, 'import numpy as np\n')] |
from datetime import date, datetime
from decimal import Decimal
from langchain.chains import LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
)
from sqlalchemy import text
from dataherald.model.chat_model import ChatModel
from dataherald.repositories.database_connections import DatabaseConnectionRepository
from dataherald.repositories.prompts import PromptRepository
from dataherald.sql_database.base import SQLDatabase, SQLInjectionError
from dataherald.types import LLMConfig, NLGeneration, SQLGeneration
HUMAN_TEMPLATE = """Given a Question, a Sql query and the sql query result try to answer the question
If the sql query result doesn't answer the question just say 'I don't know'
Answer the question given the sql query and the sql query result.
Question: {prompt}
SQL query: {sql_query}
SQL query result: {sql_query_result}
"""
class GeneratesNlAnswer:
def __init__(self, system, storage, llm_config: LLMConfig):
self.system = system
self.storage = storage
self.llm_config = llm_config
self.model = ChatModel(self.system)
def execute(
self,
sql_generation: SQLGeneration,
top_k: int = 100,
) -> NLGeneration:
prompt_repository = PromptRepository(self.storage)
prompt = prompt_repository.find_by_id(sql_generation.prompt_id)
db_connection_repository = DatabaseConnectionRepository(self.storage)
database_connection = db_connection_repository.find_by_id(
prompt.db_connection_id
)
self.llm = self.model.get_model(
database_connection=database_connection,
temperature=0,
model_name=self.llm_config.llm_name,
api_base=self.llm_config.api_base,
)
database = SQLDatabase.get_sql_engine(database_connection, True)
if sql_generation.status == "INVALID":
return NLGeneration(
sql_generation_id=sql_generation.id,
text="I don't know, the SQL query is invalid.",
created_at=datetime.now(),
)
try:
query = database.parser_to_filter_commands(sql_generation.sql)
with database._engine.connect() as connection:
execution = connection.execute(text(query))
result = execution.fetchmany(top_k)
rows = []
for row in result:
modified_row = {}
for key, value in zip(row.keys(), row, strict=True):
if type(value) in [
date,
datetime,
]: # Check if the value is an instance of datetime.date
modified_row[key] = str(value)
elif (
type(value) is Decimal
): # Check if the value is an instance of decimal.Decimal
modified_row[key] = float(value)
else:
modified_row[key] = value
rows.append(modified_row)
except SQLInjectionError as e:
raise SQLInjectionError(
"Sensitive SQL keyword detected in the query."
) from e
human_message_prompt = HumanMessagePromptTemplate.from_template(HUMAN_TEMPLATE)
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
chain = LLMChain(llm=self.llm, prompt=chat_prompt)
nl_resp = chain.invoke(
{
"prompt": prompt.text,
"sql_query": sql_generation.sql,
"sql_query_result": "\n".join([str(row) for row in rows]),
}
)
return NLGeneration(
sql_generation_id=sql_generation.id,
llm_config=self.llm_config,
text=nl_resp["text"],
created_at=datetime.now(),
)
| [
"langchain.chains.LLMChain",
"langchain.prompts.chat.HumanMessagePromptTemplate.from_template",
"langchain.prompts.chat.ChatPromptTemplate.from_messages"
] | [((1101, 1123), 'dataherald.model.chat_model.ChatModel', 'ChatModel', (['self.system'], {}), '(self.system)\n', (1110, 1123), False, 'from dataherald.model.chat_model import ChatModel\n'), ((1272, 1302), 'dataherald.repositories.prompts.PromptRepository', 'PromptRepository', (['self.storage'], {}), '(self.storage)\n', (1288, 1302), False, 'from dataherald.repositories.prompts import PromptRepository\n'), ((1411, 1453), 'dataherald.repositories.database_connections.DatabaseConnectionRepository', 'DatabaseConnectionRepository', (['self.storage'], {}), '(self.storage)\n', (1439, 1453), False, 'from dataherald.repositories.database_connections import DatabaseConnectionRepository\n'), ((1813, 1866), 'dataherald.sql_database.base.SQLDatabase.get_sql_engine', 'SQLDatabase.get_sql_engine', (['database_connection', '(True)'], {}), '(database_connection, True)\n', (1839, 1866), False, 'from dataherald.sql_database.base import SQLDatabase, SQLInjectionError\n'), ((3295, 3351), 'langchain.prompts.chat.HumanMessagePromptTemplate.from_template', 'HumanMessagePromptTemplate.from_template', (['HUMAN_TEMPLATE'], {}), '(HUMAN_TEMPLATE)\n', (3335, 3351), False, 'from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate\n'), ((3374, 3430), 'langchain.prompts.chat.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (['[human_message_prompt]'], {}), '([human_message_prompt])\n', (3406, 3430), False, 'from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate\n'), ((3447, 3489), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'self.llm', 'prompt': 'chat_prompt'}), '(llm=self.llm, prompt=chat_prompt)\n', (3455, 3489), False, 'from langchain.chains import LLMChain\n'), ((3160, 3225), 'dataherald.sql_database.base.SQLInjectionError', 'SQLInjectionError', (['"""Sensitive SQL keyword detected in the query."""'], {}), "('Sensitive SQL keyword detected in the query.')\n", (3177, 3225), False, 'from dataherald.sql_database.base import SQLDatabase, SQLInjectionError\n'), ((3898, 3912), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3910, 3912), False, 'from datetime import date, datetime\n'), ((2092, 2106), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2104, 2106), False, 'from datetime import date, datetime\n'), ((2317, 2328), 'sqlalchemy.text', 'text', (['query'], {}), '(query)\n', (2321, 2328), False, 'from sqlalchemy import text\n')] |
import os
import re
import urllib
import urllib.parse
import urllib.request
from typing import Any, List, Tuple, Union
from urllib.parse import urlparse
import requests
from bs4 import BeautifulSoup
from langchain.chains import LLMChain
from langchain.prompts import Prompt
from langchain.tools import BaseTool
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.vectorstores.base import VectorStoreRetriever
from loguru import logger
from typing_extensions import Literal
import sherpa_ai.config as cfg
from sherpa_ai.config.task_config import AgentConfig
from sherpa_ai.output_parser import TaskAction
def get_tools(memory, config):
tools = []
# tools.append(ContextTool(memory=memory))
tools.append(UserInputTool())
if cfg.SERPER_API_KEY is not None:
search_tool = SearchTool(config=config)
tools.append(search_tool)
else:
logger.warning(
"No SERPER_API_KEY found in environment variables, skipping SearchTool"
)
return tools
class SearchArxivTool(BaseTool):
name = "Arxiv Search"
description = (
"Access all the papers from Arxiv to search for domain-specific scientific publication." # noqa: E501
"Only use this tool when you need information in the scientific paper."
)
def _run(self, query: str) -> str:
top_k = 10
logger.debug(f"Search query: {query}")
query = urllib.parse.quote_plus(query)
url = (
"http://export.arxiv.org/api/query?search_query=all:"
+ query.strip()
+ "&start=0&max_results="
+ str(top_k)
)
data = urllib.request.urlopen(url)
xml_content = data.read().decode("utf-8")
summary_pattern = r"<summary>(.*?)</summary>"
summaries = re.findall(summary_pattern, xml_content, re.DOTALL)
title_pattern = r"<title>(.*?)</title>"
titles = re.findall(title_pattern, xml_content, re.DOTALL)
result_list = []
for i in range(len(titles)):
result_list.append(
"Title: " + titles[i] + "\n" + "Summary: " + summaries[i]
)
logger.debug(f"Arxiv Search Result: {result_list}")
return " ".join(result_list)
def _arun(self, query: str) -> str:
raise NotImplementedError("SearchArxivTool does not support async run")
class SearchTool(BaseTool):
name = "Search"
config = AgentConfig()
top_k: int = 10
description = (
"Access the internet to search for the information. Only use this tool when "
"you cannot find the information using internal search."
)
def _run(
self, query: str, require_meta=False
) -> Union[str, Tuple[str, List[dict]]]:
result = ""
if self.config.search_domains:
query_list = [
query + " Site: " + str(i) for i in self.config.search_domains
]
if len(query_list) >= 5:
query_list = query_list[:5]
result = (
result
+ "Warning: Only the first 5 URLs are taken into consideration.\n"
) # noqa: E501
else:
query_list = [query]
if self.config.invalid_domains:
invalid_domain_string = ", ".join(self.config.invalid_domains)
result = (
result
+ f"Warning: The doman {invalid_domain_string} is invalid and is not taken into consideration.\n" # noqa: E501
) # noqa: E501
top_k = int(self.top_k / len(query_list))
if require_meta:
meta = []
for query in query_list:
cur_result = self._run_single_query(query, top_k, require_meta)
if require_meta:
result += "\n" + cur_result[0]
meta.extend(cur_result[1])
else:
result += "\n" + cur_result
if require_meta:
result = (result, meta)
return result
def _run_single_query(
self, query: str, top_k: int, require_meta=False
) -> Union[str, Tuple[str, List[dict]]]:
logger.debug(f"Search query: {query}")
google_serper = GoogleSerperAPIWrapper()
search_results = google_serper._google_serper_api_results(query)
logger.debug(f"Google Search Result: {search_results}")
# case 1: answerBox in the result dictionary
if search_results.get("answerBox", False):
answer_box = search_results.get("answerBox", {})
if answer_box.get("answer"):
answer = answer_box.get("answer")
elif answer_box.get("snippet"):
answer = answer_box.get("snippet").replace("\n", " ")
elif answer_box.get("snippetHighlighted"):
answer = answer_box.get("snippetHighlighted")
title = search_results["organic"][0]["title"]
link = search_results["organic"][0]["link"]
response = "Answer: " + answer
meta = [{"Document": answer, "Source": link}]
if require_meta:
return response, meta
else:
return response + "\nLink:" + link
# case 2: knowledgeGraph in the result dictionary
snippets = []
if search_results.get("knowledgeGraph", False):
kg = search_results.get("knowledgeGraph", {})
title = kg.get("title")
entity_type = kg.get("type")
if entity_type:
snippets.append(f"{title}: {entity_type}.")
description = kg.get("description")
if description:
snippets.append(description)
for attribute, value in kg.get("attributes", {}).items():
snippets.append(f"{title} {attribute}: {value}.")
search_type: Literal["news", "search", "places", "images"] = "search"
result_key_for_type = {
"news": "news",
"places": "places",
"images": "images",
"search": "organic",
}
# case 3: general search results
for result in search_results[result_key_for_type[search_type]][:top_k]:
if "snippet" in result:
snippets.append(result["snippet"])
for attribute, value in result.get("attributes", {}).items():
snippets.append(f"{attribute}: {value}.")
if len(snippets) == 0:
return ["No good Google Search Result was found"]
result = []
meta = []
for i in range(len(search_results["organic"][:top_k])):
r = search_results["organic"][i]
single_result = r["title"] + r["snippet"]
# If the links are not considered explicitly, add it to the search result
# so that it can be considered by the LLM
if not require_meta:
single_result += "\nLink:" + r["link"]
result.append(single_result)
meta.append(
{
"Document": "Description: " + r["title"] + r["snippet"],
"Source": r["link"],
}
)
full_result = "\n".join(result)
# answer = " ".join(snippets)
if (
"knowledgeGraph" in search_results
and "description" in search_results["knowledgeGraph"]
and "descriptionLink" in search_results["knowledgeGraph"]
):
answer = (
"Description: "
+ search_results["knowledgeGraph"]["title"]
+ search_results["knowledgeGraph"]["description"]
+ "\nLink:"
+ search_results["knowledgeGraph"]["descriptionLink"]
)
full_result = answer + "\n\n" + full_result
if require_meta:
return full_result, meta
else:
return full_result
def _arun(self, query: str) -> str:
raise NotImplementedError("SearchTool does not support async run")
class ContextTool(BaseTool):
name = "Context Search"
description = (
"Access internal technical documentation for AI related projects, including"
+ "Fixie, LangChain, GPT index, GPTCache, GPT4ALL, autoGPT, db-GPT, AgentGPT, sherpa." # noqa: E501
+ "Only use this tool if you need information for these projects specifically."
)
memory: VectorStoreRetriever
def _run(self, query: str, need_meta=False) -> str:
docs = self.memory.get_relevant_documents(query)
result = ""
metadata = []
for doc in docs:
result += (
"Document"
+ doc.page_content
+ "\nLink:"
+ doc.metadata.get("source", "")
+ "\n"
)
if need_meta:
metadata.append(
{
"Document": doc.page_content,
"Source": doc.metadata.get("source", ""),
}
)
if need_meta:
return result, metadata
else:
return result
def _arun(self, query: str) -> str:
raise NotImplementedError("ContextTool does not support async run")
class UserInputTool(BaseTool):
# TODO: Make an action for the user input
name = "UserInput"
description = (
"Access the user input for the task."
"You use this tool if you need more context and would like to ask clarifying questions to solve the task" # noqa: E501
)
def _run(self, query: str) -> str:
return input(query)
def _arun(self, query: str) -> str:
raise NotImplementedError("UserInputTool does not support async run")
| [
"langchain.utilities.GoogleSerperAPIWrapper"
] | [((2438, 2451), 'sherpa_ai.config.task_config.AgentConfig', 'AgentConfig', ([], {}), '()\n', (2449, 2451), False, 'from sherpa_ai.config.task_config import AgentConfig\n'), ((894, 986), 'loguru.logger.warning', 'logger.warning', (['"""No SERPER_API_KEY found in environment variables, skipping SearchTool"""'], {}), "(\n 'No SERPER_API_KEY found in environment variables, skipping SearchTool')\n", (908, 986), False, 'from loguru import logger\n'), ((1368, 1406), 'loguru.logger.debug', 'logger.debug', (['f"""Search query: {query}"""'], {}), "(f'Search query: {query}')\n", (1380, 1406), False, 'from loguru import logger\n'), ((1423, 1453), 'urllib.parse.quote_plus', 'urllib.parse.quote_plus', (['query'], {}), '(query)\n', (1446, 1453), False, 'import urllib\n'), ((1652, 1679), 'urllib.request.urlopen', 'urllib.request.urlopen', (['url'], {}), '(url)\n', (1674, 1679), False, 'import urllib\n'), ((1805, 1856), 're.findall', 're.findall', (['summary_pattern', 'xml_content', 're.DOTALL'], {}), '(summary_pattern, xml_content, re.DOTALL)\n', (1815, 1856), False, 'import re\n'), ((1922, 1971), 're.findall', 're.findall', (['title_pattern', 'xml_content', 're.DOTALL'], {}), '(title_pattern, xml_content, re.DOTALL)\n', (1932, 1971), False, 'import re\n'), ((2164, 2215), 'loguru.logger.debug', 'logger.debug', (['f"""Arxiv Search Result: {result_list}"""'], {}), "(f'Arxiv Search Result: {result_list}')\n", (2176, 2215), False, 'from loguru import logger\n'), ((4164, 4202), 'loguru.logger.debug', 'logger.debug', (['f"""Search query: {query}"""'], {}), "(f'Search query: {query}')\n", (4176, 4202), False, 'from loguru import logger\n'), ((4227, 4251), 'langchain.utilities.GoogleSerperAPIWrapper', 'GoogleSerperAPIWrapper', ([], {}), '()\n', (4249, 4251), False, 'from langchain.utilities import GoogleSerperAPIWrapper\n'), ((4333, 4388), 'loguru.logger.debug', 'logger.debug', (['f"""Google Search Result: {search_results}"""'], {}), "(f'Google Search Result: {search_results}')\n", (4345, 4388), False, 'from loguru import logger\n')] |
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
load_dotenv()
from langchain import hub
from langchain.agents import create_react_agent, AgentExecutor
from langchain_core.tools import Tool
from langchain_openai import ChatOpenAI
from tools.tools import get_profile_url
def lookup(name: str) -> str:
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
template = """
given the name {name_of_person} I want you to find a link to their Twitter profile page, and extract from it their username
In Your Final answer only the person's username"""
tools_for_agent_twitter = [
Tool(
name="Crawl Google 4 Twitter profile page",
func=get_profile_url,
description="useful for when you need get the Twitter Page URL",
),
]
# agent = initialize_agent(
# tools_for_agent_twitter,
# llm,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
# verbose=True,
# )
prompt_template = PromptTemplate(
input_variables=["name_of_person"], template=template
)
react_prompt = hub.pull("hwchase17/react")
agent = create_react_agent(
llm=llm, tools=tools_for_agent_twitter, prompt=react_prompt
)
agent_executor = AgentExecutor(
agent=agent, tools=tools_for_agent_twitter, verbose=True
)
result = agent_executor.invoke(
input={"input": prompt_template.format_prompt(name_of_person=name)}
)
twitter_username = result["output"]
return twitter_username
| [
"langchain_core.prompts.PromptTemplate",
"langchain.agents.AgentExecutor",
"langchain.hub.pull",
"langchain_openai.ChatOpenAI",
"langchain_core.tools.Tool",
"langchain.agents.create_react_agent"
] | [((82, 95), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (93, 95), False, 'from dotenv import load_dotenv\n'), ((346, 399), 'langchain_openai.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0)', 'model_name': '"""gpt-3.5-turbo"""'}), "(temperature=0, model_name='gpt-3.5-turbo')\n", (356, 399), False, 'from langchain_openai import ChatOpenAI\n'), ((1031, 1100), 'langchain_core.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['name_of_person']", 'template': 'template'}), "(input_variables=['name_of_person'], template=template)\n", (1045, 1100), False, 'from langchain_core.prompts import PromptTemplate\n'), ((1135, 1162), 'langchain.hub.pull', 'hub.pull', (['"""hwchase17/react"""'], {}), "('hwchase17/react')\n", (1143, 1162), False, 'from langchain import hub\n'), ((1175, 1254), 'langchain.agents.create_react_agent', 'create_react_agent', ([], {'llm': 'llm', 'tools': 'tools_for_agent_twitter', 'prompt': 'react_prompt'}), '(llm=llm, tools=tools_for_agent_twitter, prompt=react_prompt)\n', (1193, 1254), False, 'from langchain.agents import create_react_agent, AgentExecutor\n'), ((1290, 1361), 'langchain.agents.AgentExecutor', 'AgentExecutor', ([], {'agent': 'agent', 'tools': 'tools_for_agent_twitter', 'verbose': '(True)'}), '(agent=agent, tools=tools_for_agent_twitter, verbose=True)\n', (1303, 1361), False, 'from langchain.agents import create_react_agent, AgentExecutor\n'), ((648, 787), 'langchain_core.tools.Tool', 'Tool', ([], {'name': '"""Crawl Google 4 Twitter profile page"""', 'func': 'get_profile_url', 'description': '"""useful for when you need get the Twitter Page URL"""'}), "(name='Crawl Google 4 Twitter profile page', func=get_profile_url,\n description='useful for when you need get the Twitter Page URL')\n", (652, 787), False, 'from langchain_core.tools import Tool\n')] |
import logging, json, os
from Utilities.envVars import *
from Utilities.envVars import *
# Import required libraries
from Utilities.cogSearchVsRetriever import CognitiveSearchVsRetriever
from langchain.chains import RetrievalQA
from langchain import PromptTemplate
from Utilities.evaluator import indexDocs
import json
import time
import pandas as pd
from collections import namedtuple
from Utilities.evaluator import searchEvaluatorRunIdIndex
import uuid
import tempfile
from Utilities.azureBlob import getBlob, getFullPath
from langchain.document_loaders import PDFMinerLoader, UnstructuredFileLoader
from Utilities.evaluator import createEvaluatorResultIndex, searchEvaluatorRunIdIndex
from langchain.chat_models import AzureChatOpenAI, ChatOpenAI
from langchain.evaluation.qa import QAEvalChain
from Utilities.evaluator import searchEvaluatorRunIndex, createEvaluatorRunIndex, getEvaluatorResult
RunDocs = namedtuple('RunDoc', ['evalatorQaData', 'totalQuestions', 'promptStyle', 'documentId',
'splitMethods', 'chunkSizes', 'overlaps',
'retrieverType', 'reEvaluate', 'topK', 'model', 'fileName',
'embeddingModelType', 'temperature', 'tokenLength'])
def getPrompts():
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible.
{context}
Question: {question}
Helpful Answer:"""
QaChainPrompt = PromptTemplate(input_variables=["context", "question"],template=template,)
template = """You are a teacher grading a quiz.
You are given a question, the student's answer, and the true answer, and are asked to score the student answer as either Correct or Incorrect.
Example Format:
QUESTION: question here
STUDENT ANSWER: student's answer here
TRUE ANSWER: true answer here
GRADE: Correct or Incorrect here
Grade the student answers based ONLY on their factual accuracy. Ignore differences in punctuation and phrasing between the student answer and true answer. It is OK if the student answer contains more information than the true answer, as long as it does not contain any conflicting statements. If the student answers that there is no specific information provided in the context, then the answer is Incorrect. Begin!
QUESTION: {query}
STUDENT ANSWER: {result}
TRUE ANSWER: {answer}
GRADE:"""
promptStyleFast = PromptTemplate(input_variables=["query", "result", "answer"], template=template)
template = """You are a teacher grading a quiz.
You are given a question, the student's answer, and the true answer, and are asked to score the student answer as either Correct or Incorrect.
You are also asked to identify potential sources of bias in the question and in the true answer.
Example Format:
QUESTION: question here
STUDENT ANSWER: student's answer here
TRUE ANSWER: true answer here
GRADE: Correct or Incorrect here
Grade the student answers based ONLY on their factual accuracy. Ignore differences in punctuation and phrasing between the student answer and true answer. It is OK if the student answer contains more information than the true answer, as long as it does not contain any conflicting statements. If the student answers that there is no specific information provided in the context, then the answer is Incorrect. Begin!
QUESTION: {query}
STUDENT ANSWER: {result}
TRUE ANSWER: {answer}
GRADE:
Your response should be as follows:
GRADE: (Correct or Incorrect)
(line break)
JUSTIFICATION: (Without mentioning the student/teacher framing of this prompt, explain why the STUDENT ANSWER is Correct or Incorrect, identify potential sources of bias in the QUESTION, and identify potential sources of bias in the TRUE ANSWER. Use one or two sentences maximum. Keep the answer as concise as possible.)
"""
promptStyleBias = PromptTemplate(input_variables=["query", "result", "answer"], template=template)
template = """You are assessing a submitted student answer to a question relative to the true answer based on the provided criteria:
***
QUESTION: {query}
***
STUDENT ANSWER: {result}
***
TRUE ANSWER: {answer}
***
Criteria:
relevance: Is the submission referring to a real quote from the text?"
conciseness: Is the answer concise and to the point?"
correct: Is the answer correct?"
***
Does the submission meet the criterion? First, write out in a step by step manner your reasoning about the criterion to be sure that your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print "Correct" or "Incorrect" (without quotes or punctuation) on its own line corresponding to the correct answer.
Reasoning:
"""
promptStyleGrading = PromptTemplate(input_variables=["query", "result", "answer"], template=template)
template = """You are a teacher grading a quiz.
You are given a question, the student's answer, and the true answer, and are asked to score the student answer as either Correct or Incorrect.
Example Format:
QUESTION: question here
STUDENT ANSWER: student's answer here
TRUE ANSWER: true answer here
GRADE: Correct or Incorrect here
Grade the student answers based ONLY on their factual accuracy. Ignore differences in punctuation and phrasing between the student answer and true answer. It is OK if the student answer contains more information than the true answer, as long as it does not contain any conflicting statements. If the student answers that there is no specific information provided in the context, then the answer is Incorrect. Begin!
QUESTION: {query}
STUDENT ANSWER: {result}
TRUE ANSWER: {answer}
GRADE:
Your response should be as follows:
GRADE: (Correct or Incorrect)
(line break)
JUSTIFICATION: (Without mentioning the student/teacher framing of this prompt, explain why the STUDENT ANSWER is Correct or Incorrect. Use one or two sentences maximum. Keep the answer as concise as possible.)
"""
promptStyleDefault = PromptTemplate(input_variables=["query", "result", "answer"], template=template)
template = """
Given the question: \n
{query}
Here are some documents retrieved in response to the question: \n
{result}
And here is the answer to the question: \n
{answer}
Criteria:
relevance: Are the retrieved documents relevant to the question and do they support the answer?"
Do the retrieved documents meet the criterion? Print "Correct" (without quotes or punctuation) if the retrieved context are relevant or "Incorrect" if not (without quotes or punctuation) on its own line. """
gradeDocsPromptFast = PromptTemplate(input_variables=["query", "result", "answer"], template=template)
template = """
Given the question: \n
{query}
Here are some documents retrieved in response to the question: \n
{result}
And here is the answer to the question: \n
{answer}
Criteria:
relevance: Are the retrieved documents relevant to the question and do they support the answer?"
Your response should be as follows:
GRADE: (Correct or Incorrect, depending if the retrieved documents meet the criterion)
(line break)
JUSTIFICATION: (Write out in a step by step manner your reasoning about the criterion to be sure that your conclusion is correct. Use one or two sentences maximum. Keep the answer as concise as possible.)
"""
gradeDocsPromptDefault = PromptTemplate(input_variables=["query", "result", "answer"], template=template)
return QaChainPrompt, promptStyleFast, promptStyleBias, promptStyleGrading, promptStyleDefault, gradeDocsPromptFast, gradeDocsPromptDefault
def gradeModelAnswer(llm, predictedDataSet, predictions, promptStyle, promptStyleFast, promptStyleBias, promptStyleGrading, promptStyleDefault):
if promptStyle == "Fast":
prompt = promptStyleFast
elif promptStyle == "Descriptive w/ bias check":
prompt = promptStyleBias
elif promptStyle == "OpenAI grading prompt":
prompt = promptStyleGrading
else:
prompt = promptStyleDefault
# Note: GPT-4 grader is advised by OAI
evalChain = QAEvalChain.from_llm(llm=llm,
prompt=prompt)
gradedOutputs = evalChain.evaluate(predictedDataSet,
predictions,
question_key="question",
prediction_key="result")
return gradedOutputs
def gradeModelRetrieval(llm, getDataSet, predictions, gradeDocsPrompt, gradeDocsPromptFast, gradeDocsPromptDefault):
if gradeDocsPrompt == "Fast":
prompt = gradeDocsPromptFast
else:
prompt = gradeDocsPromptDefault
# Note: GPT-4 grader is advised by OAI
evalChain = QAEvalChain.from_llm(llm=llm,prompt=prompt)
gradedOutputs = evalChain.evaluate(getDataSet,
predictions,
question_key="question",
prediction_key="result")
return gradedOutputs
def blobLoad(blobConnectionString, blobContainer, blobName):
readBytes = getBlob(blobConnectionString, blobContainer, blobName)
downloadPath = os.path.join(tempfile.gettempdir(), blobName)
os.makedirs(os.path.dirname(tempfile.gettempdir()), exist_ok=True)
try:
with open(downloadPath, "wb") as file:
file.write(readBytes)
except Exception as e:
logging.error(e)
logging.info("File created " + downloadPath)
if (blobName.endswith(".pdf")):
loader = PDFMinerLoader(downloadPath)
rawDocs = loader.load()
fullPath = getFullPath(blobConnectionString, blobContainer, blobName)
for doc in rawDocs:
doc.metadata['source'] = fullPath
return rawDocs
def runEvaluator(llm, evaluatorQaData, totalQuestions, chain, retriever, promptStyle,
promptStyleFast, promptStyleBias, promptStyleGrading, promptStyleDefault,
gradeDocsPromptFast, gradeDocsPromptDefault) -> list:
d = pd.DataFrame(columns=['question', 'answer', 'predictedAnswer', 'answerScore', 'retrievalScore', 'latency'])
for i in range(int(totalQuestions)):
predictions = []
retrievedDocs = []
gtDataSet = []
latency = []
currentDataSet = evaluatorQaData[i]
try:
startTime = time.time()
predictions.append(chain({"query": currentDataSet["question"]}, return_only_outputs=True))
gtDataSet.append(currentDataSet)
endTime = time.time()
elapsedTime = endTime - startTime
latency.append(elapsedTime)
except:
predictions.append({'result': 'Error in prediction'})
print("Error in prediction")
# Extract text from retrieved docs
retrievedDocText = ""
docs = retriever.get_relevant_documents(currentDataSet["question"])
for i, doc in enumerate(docs):
retrievedDocText += "Doc %s: " % str(i+1) + \
doc.page_content + " "
# Log
retrieved = {"question": currentDataSet["question"],
"answer": currentDataSet["answer"], "result": retrievedDocText}
retrievedDocs.append(retrieved)
# Grade
gradedAnswer = gradeModelAnswer(llm, gtDataSet, predictions, promptStyle, promptStyleFast, promptStyleBias, promptStyleGrading, promptStyleDefault)
gradedRetrieval = gradeModelRetrieval(llm, gtDataSet, retrievedDocs, promptStyle, gradeDocsPromptFast, gradeDocsPromptDefault)
# Assemble output
# Summary statistics
dfOutput = {'question': currentDataSet['question'], 'answer': currentDataSet['answer'],
'predictedAnswer': predictions[0]['result'], 'answerScore': [{'score': 1 if "Incorrect" not in text else 0,
'justification': text} for text in [g['text'] for g in gradedAnswer]],
'retrievalScore': [{'score': 1 if "Incorrect" not in text else 0,
'justification': text} for text in [g['text'] for g in gradedRetrieval]],
'latency': latency}
#yield dfOutput
# Add to dataframe
d = pd.concat([d, pd.DataFrame(dfOutput)], axis=0)
d_dict = d.to_dict('records')
return d_dict
def main(runDocs: RunDocs) -> str:
evaluatorQaData,totalQuestions,promptStyle,documentId,splitMethods,chunkSizes,overlaps,retrieverType,reEvaluate,topK,model,fileName, embeddingModelType, temperature, tokenLength = runDocs
evaluatorDataIndexName = "evaluatordata"
evaluatorRunIndexName = "evaluatorrun"
evaluatorRunResultIndexName = "evaluatorrunresult"
qaChainPrompt, promptStyleFast, promptStyleBias, promptStyleGrading, promptStyleDefault, gradeDocsPromptFast, gradeDocsPromptDefault = getPrompts()
logging.info("Python HTTP trigger function processed a request.")
if (embeddingModelType == 'azureopenai'):
llm = AzureChatOpenAI(
azure_endpoint=OpenAiEndPoint,
api_version=OpenAiVersion,
azure_deployment=OpenAiChat,
temperature=temperature,
api_key=OpenAiKey,
max_tokens=tokenLength)
logging.info("LLM Setup done")
elif embeddingModelType == "openai":
llm = ChatOpenAI(temperature=temperature,
api_key=OpenAiApiKey,
model_name="gpt-3.5-turbo",
max_tokens=tokenLength)
# Select retriever
createEvaluatorResultIndex(SearchService, SearchKey, evaluatorRunResultIndexName)
# Check if we already have runId for this document
r = searchEvaluatorRunIdIndex(SearchService, SearchKey, evaluatorRunResultIndexName, documentId)
if r.get_count() == 0:
runId = str(uuid.uuid4())
else:
for run in r:
runId = run['runId']
break
for splitMethod in splitMethods:
for chunkSize in chunkSizes:
for overlap in overlaps:
# Verify if we have created the Run ID
r = searchEvaluatorRunIndex(SearchService, SearchKey, evaluatorRunResultIndexName, documentId, retrieverType,
promptStyle, splitMethod, chunkSize, overlap)
if r.get_count() == 0 or reEvaluate:
# Create the Run ID
print("Processing: ", documentId, retrieverType, promptStyle, splitMethod, chunkSize, overlap)
runIdData = []
subRunId = str(uuid.uuid4())
retriever = CognitiveSearchVsRetriever(contentKey="contentVector",
serviceName=SearchService,
apiKey=SearchKey,
indexName=evaluatorDataIndexName,
topK=topK,
splitMethod = splitMethod,
model = model,
chunkSize = chunkSize,
overlap = overlap,
openAiEndPoint = OpenAiEndPoint,
openAiKey = OpenAiKey,
openAiVersion = OpenAiVersion,
openAiApiKey = OpenAiApiKey,
documentId = documentId,
openAiEmbedding=OpenAiEmbedding,
returnFields=["id", "content", "sourceFile", "splitMethod", "chunkSize", "overlap", "model", "modelType", "documentId"]
)
vectorStoreChain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever,
chain_type_kwargs={"prompt": qaChainPrompt})
runEvaluations = runEvaluator(llm, evaluatorQaData, totalQuestions, vectorStoreChain, retriever, promptStyle,
promptStyleFast, promptStyleBias, promptStyleGrading, promptStyleDefault,
gradeDocsPromptFast, gradeDocsPromptDefault)
#yield runEvaluations
runEvaluationData = []
for runEvaluation in runEvaluations:
runEvaluationData.append({
"id": str(uuid.uuid4()),
"runId": runId,
"subRunId": subRunId,
"documentId": documentId,
"retrieverType": retrieverType,
"promptStyle": promptStyle,
"splitMethod": splitMethod,
"chunkSize": chunkSize,
"overlap": overlap,
"question": runEvaluation['question'],
"answer": runEvaluation['answer'],
"predictedAnswer": runEvaluation['predictedAnswer'],
"answerScore": json.dumps(runEvaluation['answerScore']),
"retrievalScore": json.dumps(runEvaluation['retrievalScore']),
"latency": str(runEvaluation['latency']),
})
indexDocs(SearchService, SearchKey, evaluatorRunResultIndexName, runEvaluationData)
return "Success" | [
"langchain.document_loaders.PDFMinerLoader",
"langchain.chat_models.ChatOpenAI",
"langchain.PromptTemplate",
"langchain.chat_models.AzureChatOpenAI",
"langchain.evaluation.qa.QAEvalChain.from_llm",
"langchain.chains.RetrievalQA.from_chain_type"
] | [((911, 1164), 'collections.namedtuple', 'namedtuple', (['"""RunDoc"""', "['evalatorQaData', 'totalQuestions', 'promptStyle', 'documentId',\n 'splitMethods', 'chunkSizes', 'overlaps', 'retrieverType', 'reEvaluate',\n 'topK', 'model', 'fileName', 'embeddingModelType', 'temperature',\n 'tokenLength']"], {}), "('RunDoc', ['evalatorQaData', 'totalQuestions', 'promptStyle',\n 'documentId', 'splitMethods', 'chunkSizes', 'overlaps', 'retrieverType',\n 'reEvaluate', 'topK', 'model', 'fileName', 'embeddingModelType',\n 'temperature', 'tokenLength'])\n", (921, 1164), False, 'from collections import namedtuple\n'), ((1626, 1700), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['context', 'question']", 'template': 'template'}), "(input_variables=['context', 'question'], template=template)\n", (1640, 1700), False, 'from langchain import PromptTemplate\n'), ((2601, 2686), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result', 'answer']", 'template': 'template'}), "(input_variables=['query', 'result', 'answer'], template=template\n )\n", (2615, 2686), False, 'from langchain import PromptTemplate\n'), ((4106, 4191), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result', 'answer']", 'template': 'template'}), "(input_variables=['query', 'result', 'answer'], template=template\n )\n", (4120, 4191), False, 'from langchain import PromptTemplate\n'), ((5082, 5167), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result', 'answer']", 'template': 'template'}), "(input_variables=['query', 'result', 'answer'], template=template\n )\n", (5096, 5167), False, 'from langchain import PromptTemplate\n'), ((6378, 6463), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result', 'answer']", 'template': 'template'}), "(input_variables=['query', 'result', 'answer'], template=template\n )\n", (6392, 6463), False, 'from langchain import PromptTemplate\n'), ((7054, 7139), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result', 'answer']", 'template': 'template'}), "(input_variables=['query', 'result', 'answer'], template=template\n )\n", (7068, 7139), False, 'from langchain import PromptTemplate\n'), ((7904, 7989), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result', 'answer']", 'template': 'template'}), "(input_variables=['query', 'result', 'answer'], template=template\n )\n", (7918, 7989), False, 'from langchain import PromptTemplate\n'), ((8618, 8662), 'langchain.evaluation.qa.QAEvalChain.from_llm', 'QAEvalChain.from_llm', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (8638, 8662), False, 'from langchain.evaluation.qa import QAEvalChain\n'), ((9269, 9313), 'langchain.evaluation.qa.QAEvalChain.from_llm', 'QAEvalChain.from_llm', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (9289, 9313), False, 'from langchain.evaluation.qa import QAEvalChain\n'), ((9654, 9708), 'Utilities.azureBlob.getBlob', 'getBlob', (['blobConnectionString', 'blobContainer', 'blobName'], {}), '(blobConnectionString, blobContainer, blobName)\n', (9661, 9708), False, 'from Utilities.azureBlob import getBlob, getFullPath\n'), ((9992, 10036), 'logging.info', 'logging.info', (["('File created ' + downloadPath)"], {}), "('File created ' + downloadPath)\n", (10004, 10036), False, 'import logging, json, os\n'), ((10164, 10222), 'Utilities.azureBlob.getFullPath', 'getFullPath', (['blobConnectionString', 'blobContainer', 'blobName'], {}), '(blobConnectionString, blobContainer, blobName)\n', (10175, 10222), False, 'from Utilities.azureBlob import getBlob, getFullPath\n'), ((10566, 10677), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['question', 'answer', 'predictedAnswer', 'answerScore', 'retrievalScore',\n 'latency']"}), "(columns=['question', 'answer', 'predictedAnswer',\n 'answerScore', 'retrievalScore', 'latency'])\n", (10578, 10677), True, 'import pandas as pd\n'), ((13425, 13490), 'logging.info', 'logging.info', (['"""Python HTTP trigger function processed a request."""'], {}), "('Python HTTP trigger function processed a request.')\n", (13437, 13490), False, 'import logging, json, os\n'), ((14167, 14252), 'Utilities.evaluator.createEvaluatorResultIndex', 'createEvaluatorResultIndex', (['SearchService', 'SearchKey', 'evaluatorRunResultIndexName'], {}), '(SearchService, SearchKey,\n evaluatorRunResultIndexName)\n', (14193, 14252), False, 'from Utilities.evaluator import createEvaluatorResultIndex, searchEvaluatorRunIdIndex\n'), ((14312, 14408), 'Utilities.evaluator.searchEvaluatorRunIdIndex', 'searchEvaluatorRunIdIndex', (['SearchService', 'SearchKey', 'evaluatorRunResultIndexName', 'documentId'], {}), '(SearchService, SearchKey,\n evaluatorRunResultIndexName, documentId)\n', (14337, 14408), False, 'from Utilities.evaluator import createEvaluatorResultIndex, searchEvaluatorRunIdIndex\n'), ((9741, 9762), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (9760, 9762), False, 'import tempfile\n'), ((10090, 10118), 'langchain.document_loaders.PDFMinerLoader', 'PDFMinerLoader', (['downloadPath'], {}), '(downloadPath)\n', (10104, 10118), False, 'from langchain.document_loaders import PDFMinerLoader, UnstructuredFileLoader\n'), ((13563, 13741), 'langchain.chat_models.AzureChatOpenAI', 'AzureChatOpenAI', ([], {'azure_endpoint': 'OpenAiEndPoint', 'api_version': 'OpenAiVersion', 'azure_deployment': 'OpenAiChat', 'temperature': 'temperature', 'api_key': 'OpenAiKey', 'max_tokens': 'tokenLength'}), '(azure_endpoint=OpenAiEndPoint, api_version=OpenAiVersion,\n azure_deployment=OpenAiChat, temperature=temperature, api_key=OpenAiKey,\n max_tokens=tokenLength)\n', (13578, 13741), False, 'from langchain.chat_models import AzureChatOpenAI, ChatOpenAI\n'), ((13891, 13921), 'logging.info', 'logging.info', (['"""LLM Setup done"""'], {}), "('LLM Setup done')\n", (13903, 13921), False, 'import logging, json, os\n'), ((9806, 9827), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (9825, 9827), False, 'import tempfile\n'), ((9970, 9986), 'logging.error', 'logging.error', (['e'], {}), '(e)\n', (9983, 9986), False, 'import logging, json, os\n'), ((10897, 10908), 'time.time', 'time.time', ([], {}), '()\n', (10906, 10908), False, 'import time\n'), ((11079, 11090), 'time.time', 'time.time', ([], {}), '()\n', (11088, 11090), False, 'import time\n'), ((13981, 14095), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': 'temperature', 'api_key': 'OpenAiApiKey', 'model_name': '"""gpt-3.5-turbo"""', 'max_tokens': 'tokenLength'}), "(temperature=temperature, api_key=OpenAiApiKey, model_name=\n 'gpt-3.5-turbo', max_tokens=tokenLength)\n", (13991, 14095), False, 'from langchain.chat_models import AzureChatOpenAI, ChatOpenAI\n'), ((14452, 14464), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (14462, 14464), False, 'import uuid\n'), ((12809, 12831), 'pandas.DataFrame', 'pd.DataFrame', (['dfOutput'], {}), '(dfOutput)\n', (12821, 12831), True, 'import pandas as pd\n'), ((14735, 14894), 'Utilities.evaluator.searchEvaluatorRunIndex', 'searchEvaluatorRunIndex', (['SearchService', 'SearchKey', 'evaluatorRunResultIndexName', 'documentId', 'retrieverType', 'promptStyle', 'splitMethod', 'chunkSize', 'overlap'], {}), '(SearchService, SearchKey,\n evaluatorRunResultIndexName, documentId, retrieverType, promptStyle,\n splitMethod, chunkSize, overlap)\n', (14758, 14894), False, 'from Utilities.evaluator import searchEvaluatorRunIndex, createEvaluatorRunIndex, getEvaluatorResult\n'), ((15269, 15805), 'Utilities.cogSearchVsRetriever.CognitiveSearchVsRetriever', 'CognitiveSearchVsRetriever', ([], {'contentKey': '"""contentVector"""', 'serviceName': 'SearchService', 'apiKey': 'SearchKey', 'indexName': 'evaluatorDataIndexName', 'topK': 'topK', 'splitMethod': 'splitMethod', 'model': 'model', 'chunkSize': 'chunkSize', 'overlap': 'overlap', 'openAiEndPoint': 'OpenAiEndPoint', 'openAiKey': 'OpenAiKey', 'openAiVersion': 'OpenAiVersion', 'openAiApiKey': 'OpenAiApiKey', 'documentId': 'documentId', 'openAiEmbedding': 'OpenAiEmbedding', 'returnFields': "['id', 'content', 'sourceFile', 'splitMethod', 'chunkSize', 'overlap',\n 'model', 'modelType', 'documentId']"}), "(contentKey='contentVector', serviceName=\n SearchService, apiKey=SearchKey, indexName=evaluatorDataIndexName, topK\n =topK, splitMethod=splitMethod, model=model, chunkSize=chunkSize,\n overlap=overlap, openAiEndPoint=OpenAiEndPoint, openAiKey=OpenAiKey,\n openAiVersion=OpenAiVersion, openAiApiKey=OpenAiApiKey, documentId=\n documentId, openAiEmbedding=OpenAiEmbedding, returnFields=['id',\n 'content', 'sourceFile', 'splitMethod', 'chunkSize', 'overlap', 'model',\n 'modelType', 'documentId'])\n", (15295, 15805), False, 'from Utilities.cogSearchVsRetriever import CognitiveSearchVsRetriever\n'), ((16345, 16472), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'llm', 'chain_type': '"""stuff"""', 'retriever': 'retriever', 'chain_type_kwargs': "{'prompt': qaChainPrompt}"}), "(llm=llm, chain_type='stuff', retriever=\n retriever, chain_type_kwargs={'prompt': qaChainPrompt})\n", (16372, 16472), False, 'from langchain.chains import RetrievalQA\n'), ((18132, 18219), 'Utilities.evaluator.indexDocs', 'indexDocs', (['SearchService', 'SearchKey', 'evaluatorRunResultIndexName', 'runEvaluationData'], {}), '(SearchService, SearchKey, evaluatorRunResultIndexName,\n runEvaluationData)\n', (18141, 18219), False, 'from Utilities.evaluator import indexDocs\n'), ((15206, 15218), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (15216, 15218), False, 'import uuid\n'), ((17870, 17910), 'json.dumps', 'json.dumps', (["runEvaluation['answerScore']"], {}), "(runEvaluation['answerScore'])\n", (17880, 17910), False, 'import json\n'), ((17962, 18005), 'json.dumps', 'json.dumps', (["runEvaluation['retrievalScore']"], {}), "(runEvaluation['retrievalScore'])\n", (17972, 18005), False, 'import json\n'), ((17133, 17145), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (17143, 17145), False, 'import uuid\n')] |
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.chat_models import ChatOpenAI
from virl.config import cfg
from virl.utils.common_utils import print_prompt, print_answer, parse_answer_to_json
from .gpt_chat import GPTChat
from .azure_gpt import AzureGPTChat
__all__ = {
'GPT': GPTChat,
'AzureGPT': AzureGPTChat,
}
def build_chatbot(name):
return __all__[name](cfg)
class UnifiedChat(object):
chatbots = None
def __init__(self):
UnifiedChat.chatbots = {
name: build_chatbot(name) for name in cfg.LLM.NAMES
}
@classmethod
def ask(cls, question, **kwargs):
print_prompt(question)
chatbot = kwargs.get('chatbot', cfg.LLM.DEFAULT)
answer = cls.chatbots[chatbot].ask(question, **kwargs)
print_answer(answer)
return answer
@classmethod
def search(cls, question, json=False):
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
tools = load_tools(["serpapi"], llm=llm)
agent = initialize_agent(tools, llm, verbose=True)
answer = agent.run(question)
if json:
answer = parse_answer_to_json(answer)
return answer
| [
"langchain.agents.load_tools",
"langchain.agents.initialize_agent",
"langchain.chat_models.ChatOpenAI"
] | [((679, 701), 'virl.utils.common_utils.print_prompt', 'print_prompt', (['question'], {}), '(question)\n', (691, 701), False, 'from virl.utils.common_utils import print_prompt, print_answer, parse_answer_to_json\n'), ((830, 850), 'virl.utils.common_utils.print_answer', 'print_answer', (['answer'], {}), '(answer)\n', (842, 850), False, 'from virl.utils.common_utils import print_prompt, print_answer, parse_answer_to_json\n'), ((949, 997), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model': '"""gpt-3.5-turbo"""', 'temperature': '(0)'}), "(model='gpt-3.5-turbo', temperature=0)\n", (959, 997), False, 'from langchain.chat_models import ChatOpenAI\n'), ((1014, 1046), 'langchain.agents.load_tools', 'load_tools', (["['serpapi']"], {'llm': 'llm'}), "(['serpapi'], llm=llm)\n", (1024, 1046), False, 'from langchain.agents import load_tools\n'), ((1063, 1105), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'llm'], {'verbose': '(True)'}), '(tools, llm, verbose=True)\n', (1079, 1105), False, 'from langchain.agents import initialize_agent\n'), ((1182, 1210), 'virl.utils.common_utils.parse_answer_to_json', 'parse_answer_to_json', (['answer'], {}), '(answer)\n', (1202, 1210), False, 'from virl.utils.common_utils import print_prompt, print_answer, parse_answer_to_json\n')] |
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from tqdm import tqdm
from lmchain.tools import tool_register
class GLMToolChain:
def __init__(self, llm):
self.llm = llm
self.tool_register = tool_register
self.tools = tool_register.get_tools()
def __call__(self, query="", tools=None):
if query == "":
raise "query需要填入查询问题"
if tools != None:
self.tools = tools
else:
raise "将使用默认tools完成函数工具调用~"
template = f"""
你现在是一个专业的人工智能助手,你现在的需求是{query}。而你需要借助于工具在{self.tools}中找到对应的函数,用json格式返回对应的函数名和参数。
函数名定义为function_name,参数名为params,还要求写入详细的形参与实参。
如果找到合适的函数,就返回json格式的函数名和需要的参数,不要回答任何描述和解释。
如果没有找到合适的函数,则返回:'未找到合适参数,请提供更详细的描述。'
"""
flag = True
counter = 0
while flag:
try:
res = self.llm(template)
import json
res_dict = json.loads(res)
res_dict = json.loads(res_dict)
flag = False
except:
# print("失败输出,现在开始重新验证")
template = f"""
你现在是一个专业的人工智能助手,你现在的需求是{query}。而你需要借助于工具在{self.tools}中找到对应的函数,用json格式返回对应的函数名和参数。
函数名定义为function_name,参数名为params,还要求写入详细的形参与实参。
如果找到合适的函数,就返回json格式的函数名和需要的参数,不要回答任何描述和解释。
如果没有找到合适的函数,则返回:'未找到合适参数,请提供更详细的描述。'
你刚才生成了一组结果,但是返回不符合json格式,现在请你重新按json格式生成并返回结果。
"""
counter += 1
if counter >= 5:
return '未找到合适参数,请提供更详细的描述。'
return res_dict
def run(self, query, tools=None):
tools = (self.tool_register.get_tools())
result = self.__call__(query, tools)
if result == "未找到合适参数,请提供更详细的描述。":
return "未找到合适参数,请提供更详细的描述。"
else:
print("找到对应工具函数,格式如下:", result)
result = self.dispatch_tool(result)
from lmchain.prompts.templates import PromptTemplate
tool_prompt = PromptTemplate(
input_variables=["query", "result"], # 输入变量包括中文和英文。
template="你现在是一个私人助手,现在你的查询任务是{query},而你通过工具从网上查询的结果是{result},现在根据查询的内容与查询的结果,生成最终答案。",
# 使用模板格式化输入和输出。
)
from langchain.chains import LLMChain
chain = LLMChain(llm=self.llm, prompt=tool_prompt)
response = (chain.run({"query": query, "result": result}))
return response
def add_tools(self, tool):
self.tool_register.register_tool(tool)
return True
def dispatch_tool(self, tool_result) -> str:
tool_name = tool_result["function_name"]
tool_params = tool_result["params"]
if tool_name not in self.tool_register._TOOL_HOOKS:
return f"Tool `{tool_name}` not found. Please use a provided tool."
tool_call = self.tool_register._TOOL_HOOKS[tool_name]
try:
ret = tool_call(**tool_params)
except:
import traceback
ret = traceback.format_exc()
return str(ret)
def get_tools(self):
return (self.tool_register.get_tools())
if __name__ == '__main__':
from lmchain.agents import llmMultiAgent
llm = llmMultiAgent.AgentZhipuAI()
from lmchain.chains import toolchain
tool_chain = toolchain.GLMToolChain(llm)
from typing import Annotated
def rando_numbr(
seed: Annotated[int, 'The random seed used by the generator', True],
range: Annotated[tuple[int, int], 'The range of the generated numbers', True],
) -> int:
"""
Generates a random number x, s.t. range[0] <= x < range[1]
"""
import random
return random.Random(seed).randint(*range)
tool_chain.add_tools(rando_numbr)
print("------------------------------------------------------")
query = "今天shanghai的天气是什么?"
result = tool_chain.run(query)
result = tool_chain.dispatch_tool(result)
print(result)
| [
"langchain.chains.LLMChain"
] | [((3292, 3320), 'lmchain.agents.llmMultiAgent.AgentZhipuAI', 'llmMultiAgent.AgentZhipuAI', ([], {}), '()\n', (3318, 3320), False, 'from lmchain.agents import llmMultiAgent\n'), ((3381, 3408), 'lmchain.chains.toolchain.GLMToolChain', 'toolchain.GLMToolChain', (['llm'], {}), '(llm)\n', (3403, 3408), False, 'from lmchain.chains import toolchain\n'), ((285, 310), 'lmchain.tools.tool_register.get_tools', 'tool_register.get_tools', ([], {}), '()\n', (308, 310), False, 'from lmchain.tools import tool_register\n'), ((2073, 2222), 'lmchain.prompts.templates.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['query', 'result']", 'template': '"""你现在是一个私人助手,现在你的查询任务是{query},而你通过工具从网上查询的结果是{result},现在根据查询的内容与查询的结果,生成最终答案。"""'}), "(input_variables=['query', 'result'], template=\n '你现在是一个私人助手,现在你的查询任务是{query},而你通过工具从网上查询的结果是{result},现在根据查询的内容与查询的结果,生成最终答案。'\n )\n", (2087, 2222), False, 'from lmchain.prompts.templates import PromptTemplate\n'), ((2378, 2420), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'self.llm', 'prompt': 'tool_prompt'}), '(llm=self.llm, prompt=tool_prompt)\n', (2386, 2420), False, 'from langchain.chains import LLMChain\n'), ((981, 996), 'json.loads', 'json.loads', (['res'], {}), '(res)\n', (991, 996), False, 'import json\n'), ((1024, 1044), 'json.loads', 'json.loads', (['res_dict'], {}), '(res_dict)\n', (1034, 1044), False, 'import json\n'), ((3086, 3108), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (3106, 3108), False, 'import traceback\n'), ((3780, 3799), 'random.Random', 'random.Random', (['seed'], {}), '(seed)\n', (3793, 3799), False, 'import random\n')] |
import json
import time
import hashlib
from typing import Dict, Any, List, Tuple
import re
from os import environ
import streamlit as st
from langchain.schema import BaseRetriever
from langchain.tools import Tool
from langchain.pydantic_v1 import BaseModel, Field
from sqlalchemy import Column, Text, create_engine, MetaData
from langchain.agents import AgentExecutor
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from clickhouse_sqlalchemy import (
types, engines
)
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
from langchain.utilities.sql_database import SQLDatabase
from langchain.chains import LLMChain
from sqlalchemy import create_engine, MetaData
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import BaseRetriever, Document
from langchain import OpenAI
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.self_query.myscale import MyScaleTranslator
from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings
from langchain.vectorstores import MyScaleSettings
from chains.arxiv_chains import MyScaleWithoutMetadataJson
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import MessagesPlaceholder
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import AgentTokenBufferMemory
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, \
SystemMessage, ChatMessage, ToolMessage
from langchain.memory import SQLChatMessageHistory
from langchain.memory.chat_message_histories.sql import \
DefaultMessageConverter
from langchain.schema.messages import BaseMessage
# from langchain.agents.agent_toolkits import create_retriever_tool
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
from .json_conv import CustomJSONEncoder
environ['TOKENIZERS_PARALLELISM'] = 'true'
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
# query_model_name = "gpt-3.5-turbo-instruct"
query_model_name = "gpt-3.5-turbo-instruct"
chat_model_name = "gpt-3.5-turbo-16k"
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
OPENAI_API_BASE = st.secrets['OPENAI_API_BASE']
MYSCALE_USER = st.secrets['MYSCALE_USER']
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
UNSTRUCTURED_API = st.secrets['UNSTRUCTURED_API']
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
(HumanMessagePromptTemplate, '{question}')])
DEFAULT_SYSTEM_PROMPT = (
"Do your best to answer the questions. "
"Feel free to use any tools available to look up "
"relevant information. Please keep all details in query "
"when calling search functions."
)
def hint_arxiv():
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"*If you want to search papers with complex filters*:\n\n"
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
"*If you want to ask questions based on papers in database*:\n\n"
"- What is PageRank?\n"
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
"- Introduce some applications of GANs published around 2019.\n"
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
"- Is it possible to synthesize room temperature super conductive material?")
def hint_sql_arxiv():
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE default.ChatArXiv (
`abstract` String,
`id` String,
`vector` Array(Float32),
`metadata` Object('JSON'),
`pubdate` DateTime,
`title` String,
`categories` Array(String),
`authors` Array(String),
`comment` String,
`primary_category` String,
VECTOR INDEX vec_idx vector TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
CONSTRAINT vec_len CHECK length(vector) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
def hint_wiki():
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"- Which company did Elon Musk found?\n"
"- What is Iron Gwazi?\n"
"- What is a Ring in mathematics?\n"
"- 苹果的发源地是那里?\n")
def hint_sql_wiki():
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE wiki.Wikipedia (
`id` String,
`title` String,
`text` String,
`url` String,
`wiki_id` UInt64,
`views` Float32,
`paragraph_id` UInt64,
`langs` UInt32,
`emb` Array(Float32),
VECTOR INDEX vec_idx emb TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
CONSTRAINT emb_len CHECK length(emb) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
sel_map = {
'Wikipedia': {
"database": "wiki",
"table": "Wikipedia",
"hint": hint_wiki,
"hint_sql": hint_sql_wiki,
"doc_prompt": PromptTemplate(
input_variables=["page_content",
"url", "title", "ref_id", "views"],
template="Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"),
"metadata_cols": [
AttributeInfo(
name="title",
description="title of the wikipedia page",
type="string",
),
AttributeInfo(
name="text",
description="paragraph from this wiki page",
type="string",
),
AttributeInfo(
name="views",
description="number of views",
type="float"
),
],
"must_have_cols": ['id', 'title', 'url', 'text', 'views'],
"vector_col": "emb",
"text_col": "text",
"metadata_col": "metadata",
"emb_model": lambda: SentenceTransformerEmbeddings(
model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2',),
"tool_desc": ("search_among_wikipedia", "Searches among Wikipedia and returns related wiki pages"),
},
'ArXiv Papers': {
"database": "default",
"table": "ChatArXiv",
"hint": hint_arxiv,
"hint_sql": hint_sql_arxiv,
"doc_prompt": PromptTemplate(
input_variables=["page_content", "id", "title", "ref_id",
"authors", "pubdate", "categories"],
template="Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"),
"metadata_cols": [
AttributeInfo(
name=VirtualColumnName(name="pubdate"),
description="The year the paper is published",
type="timestamp",
),
AttributeInfo(
name="authors",
description="List of author names",
type="list[string]",
),
AttributeInfo(
name="title",
description="Title of the paper",
type="string",
),
AttributeInfo(
name="categories",
description="arxiv categories to this paper",
type="list[string]"
),
AttributeInfo(
name="length(categories)",
description="length of arxiv categories to this paper",
type="int"
),
],
"must_have_cols": ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'],
"vector_col": "vector",
"text_col": "abstract",
"metadata_col": "metadata",
"emb_model": lambda: HuggingFaceInstructEmbeddings(
model_name='hkunlp/instructor-xl',
embed_instruction="Represent the question for retrieving supporting scientific papers: "),
"tool_desc": ("search_among_scientific_papers", "Searches among scientific papers from ArXiv and returns research papers"),
}
}
def build_embedding_model(_sel):
"""Build embedding model
"""
with st.spinner("Loading Model..."):
embeddings = sel_map[_sel]["emb_model"]()
return embeddings
def build_chains_retrievers(_sel: str) -> Dict[str, Any]:
"""build chains and retrievers
:param _sel: selected knowledge base
:type _sel: str
:return: _description_
:rtype: Dict[str, Any]
"""
metadata_field_info = sel_map[_sel]["metadata_cols"]
retriever = build_self_query(_sel)
chain = build_qa_chain(_sel, retriever, name="Self Query Retriever")
sql_retriever = build_vector_sql(_sel)
sql_chain = build_qa_chain(_sel, sql_retriever, name="Vector SQL")
return {
"metadata_columns": [{'name': m.name.name if type(m.name) is VirtualColumnName else m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info],
"retriever": retriever,
"chain": chain,
"sql_retriever": sql_retriever,
"sql_chain": sql_chain
}
def build_self_query(_sel: str) -> SelfQueryRetriever:
"""Build self querying retriever
:param _sel: selected knowledge base
:type _sel: str
:return: retriever used by chains
:rtype: SelfQueryRetriever
"""
with st.spinner(f"Connecting DB for {_sel}..."):
myscale_connection = {
"host": MYSCALE_HOST,
"port": MYSCALE_PORT,
"username": MYSCALE_USER,
"password": MYSCALE_PASSWORD,
}
config = MyScaleSettings(**myscale_connection,
database=sel_map[_sel]["database"],
table=sel_map[_sel]["table"],
column_map={
"id": "id",
"text": sel_map[_sel]["text_col"],
"vector": sel_map[_sel]["vector_col"],
"metadata": sel_map[_sel]["metadata_col"]
})
doc_search = MyScaleWithoutMetadataJson(st.session_state[f"emb_model_{_sel}"], config,
must_have_cols=sel_map[_sel]['must_have_cols'])
with st.spinner(f"Building Self Query Retriever for {_sel}..."):
metadata_field_info = sel_map[_sel]["metadata_cols"]
retriever = SelfQueryRetriever.from_llm(
OpenAI(model_name=query_model_name,
openai_api_key=OPENAI_API_KEY, temperature=0),
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
use_original_query=False, structured_query_translator=MyScaleTranslator())
return retriever
def build_vector_sql(_sel: str) -> VectorSQLDatabaseChainRetriever:
"""Build Vector SQL Database Retriever
:param _sel: selected knowledge base
:type _sel: str
:return: retriever used by chains
:rtype: VectorSQLDatabaseChainRetriever
"""
with st.spinner(f'Building Vector SQL Database Retriever for {_sel}...'):
engine = create_engine(
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel]["database"]}?protocol=https')
metadata = MetaData(bind=engine)
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "top_k"],
template=_myscale_prompt,
)
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
model=st.session_state[f'emb_model_{_sel}'], must_have_columns=sel_map[_sel]["must_have_cols"])
sql_query_chain = VectorSQLDatabaseChain.from_llm(
llm=OpenAI(model_name=query_model_name,
openai_api_key=OPENAI_API_KEY, temperature=0),
prompt=PROMPT,
top_k=10,
return_direct=True,
db=SQLDatabase(engine, None, metadata, max_string_length=1024),
sql_cmd_parser=output_parser,
native_format=True
)
sql_retriever = VectorSQLDatabaseChainRetriever(
sql_db_chain=sql_query_chain, page_content_key=sel_map[_sel]["text_col"])
return sql_retriever
def build_qa_chain(_sel: str, retriever: BaseRetriever, name: str = "Self-query") -> ArXivQAwithSourcesChain:
"""_summary_
:param _sel: selected knowledge base
:type _sel: str
:param retriever: retriever used by chains
:type retriever: BaseRetriever
:param name: display name, defaults to "Self-query"
:type name: str, optional
:return: QA chain interacts with user
:rtype: ArXivQAwithSourcesChain
"""
with st.spinner(f'Building QA Chain with {name} for {_sel}...'):
chain = ArXivQAwithSourcesChain(
retriever=retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name=chat_model_name,
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=sel_map[_sel]["doc_prompt"],
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
return chain
@st.cache_resource
def build_all() -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""build all resources
:return: sel_map_obj
:rtype: Dict[str, Any]
"""
sel_map_obj = {}
embeddings = {}
for k in sel_map:
embeddings[k] = build_embedding_model(k)
st.session_state[f'emb_model_{k}'] = embeddings[k]
sel_map_obj[k] = build_chains_retrievers(k)
return sel_map_obj, embeddings
def create_message_model(table_name, DynamicBase): # type: ignore
"""
Create a message model for a given table name.
Args:
table_name: The name of the table to use.
DynamicBase: The base class to use for the model.
Returns:
The model class.
"""
# Model decleared inside a function to have a dynamic table name
class Message(DynamicBase):
__tablename__ = table_name
id = Column(types.Float64)
session_id = Column(Text)
user_id = Column(Text)
msg_id = Column(Text, primary_key=True)
type = Column(Text)
addtionals = Column(Text)
message = Column(Text)
__table_args__ = (
engines.ReplacingMergeTree(
partition_by='session_id',
order_by=('id', 'msg_id')),
{'comment': 'Store Chat History'}
)
return Message
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
elif _type == "tool":
return ToolMessage(**message["data"])
elif _type == "AIMessageChunk":
message["data"]["type"] = "ai"
return AIMessage(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
class DefaultClickhouseMessageConverter(DefaultMessageConverter):
"""The default message converter for SQLChatMessageHistory."""
def __init__(self, table_name: str):
self.model_class = create_message_model(table_name, declarative_base())
def to_sql_model(self, message: BaseMessage, session_id: str) -> Any:
tstamp = time.time()
msg_id = hashlib.sha256(
f"{session_id}_{message}_{tstamp}".encode('utf-8')).hexdigest()
user_id, _ = session_id.split("?")
return self.model_class(
id=tstamp,
msg_id=msg_id,
user_id=user_id,
session_id=session_id,
type=message.type,
addtionals=json.dumps(message.additional_kwargs),
message=json.dumps({
"type": message.type,
"additional_kwargs": {"timestamp": tstamp},
"data": message.dict()})
)
def from_sql_model(self, sql_message: Any) -> BaseMessage:
msg_dump = json.loads(sql_message.message)
msg = _message_from_dict(msg_dump)
msg.additional_kwargs = msg_dump["additional_kwargs"]
return msg
def get_sql_model_class(self) -> Any:
return self.model_class
def create_agent_executor(name, session_id, llm, tools, system_prompt, **kwargs):
name = name.replace(" ", "_")
conn_str = f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}'
chat_memory = SQLChatMessageHistory(
session_id,
connection_string=f'{conn_str}/chat?protocol=https',
custom_message_converter=DefaultClickhouseMessageConverter(name))
memory = AgentTokenBufferMemory(llm=llm, chat_memory=chat_memory)
_system_message = SystemMessage(
content=system_prompt
)
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=_system_message,
extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
return AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=True,
return_intermediate_steps=True,
**kwargs
)
class RetrieverInput(BaseModel):
query: str = Field(description="query to look up in retriever")
def create_retriever_tool(
retriever: BaseRetriever, name: str, description: str
) -> Tool:
"""Create a tool to do retrieval of documents.
Args:
retriever: The retriever to use for the retrieval
name: The name for the tool. This will be passed to the language model,
so should be unique and somewhat descriptive.
description: The description for the tool. This will be passed to the language
model, so should be descriptive.
Returns:
Tool class to pass to an agent
"""
def wrap(func):
def wrapped_retrieve(*args, **kwargs):
docs: List[Document] = func(*args, **kwargs)
return json.dumps([d.dict() for d in docs], cls=CustomJSONEncoder)
return wrapped_retrieve
return Tool(
name=name,
description=description,
func=wrap(retriever.get_relevant_documents),
coroutine=retriever.aget_relevant_documents,
args_schema=RetrieverInput,
)
@st.cache_resource
def build_tools():
"""build all resources
:return: sel_map_obj
:rtype: Dict[str, Any]
"""
sel_map_obj = {}
for k in sel_map:
if f'emb_model_{k}' not in st.session_state:
st.session_state[f'emb_model_{k}'] = build_embedding_model(k)
if "sel_map_obj" not in st.session_state:
st.session_state["sel_map_obj"] = {}
if k not in st.session_state.sel_map_obj:
st.session_state["sel_map_obj"][k] = {}
if "langchain_retriever" not in st.session_state.sel_map_obj[k] or "vecsql_retriever" not in st.session_state.sel_map_obj[k]:
st.session_state.sel_map_obj[k].update(build_chains_retrievers(k))
sel_map_obj.update({
f"{k} + Self Querying": create_retriever_tool(st.session_state.sel_map_obj[k]["retriever"], *sel_map[k]["tool_desc"],),
f"{k} + Vector SQL": create_retriever_tool(st.session_state.sel_map_obj[k]["sql_retriever"], *sel_map[k]["tool_desc"],),
})
return sel_map_obj
def build_agents(session_id, tool_names, chat_model_name=chat_model_name, temperature=0.6, system_prompt=DEFAULT_SYSTEM_PROMPT):
chat_llm = ChatOpenAI(model_name=chat_model_name, temperature=temperature,
openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY, streaming=True,
)
tools = st.session_state.tools if "tools_with_users" not in st.session_state else st.session_state.tools_with_users
sel_tools = [tools[k] for k in tool_names]
agent = create_agent_executor(
"chat_memory",
session_id,
chat_llm,
tools=sel_tools,
system_prompt=system_prompt
)
return agent
def display(dataframe, columns_=None, index=None):
if len(dataframe) > 0:
if index:
dataframe.set_index(index)
if columns_:
st.dataframe(dataframe[columns_])
else:
st.dataframe(dataframe)
else:
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)
| [
"langchain.embeddings.SentenceTransformerEmbeddings",
"langchain.chains.query_constructor.base.VirtualColumnName",
"langchain.schema.messages.AIMessage",
"langchain.schema.messages.ToolMessage",
"langchain.pydantic_v1.Field",
"langchain.prompts.ChatPromptTemplate.from_strings",
"langchain.OpenAI",
"langchain.schema.messages.ChatMessage",
"langchain.agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory",
"langchain.chat_models.ChatOpenAI",
"langchain.agents.AgentExecutor",
"langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent",
"langchain.schema.messages.SystemMessage",
"langchain.utilities.sql_database.SQLDatabase",
"langchain.vectorstores.MyScaleSettings",
"langchain.embeddings.HuggingFaceInstructEmbeddings",
"langchain.prompts.chat.MessagesPlaceholder",
"langchain.schema.messages.HumanMessage",
"langchain.chains.query_constructor.base.AttributeInfo",
"langchain.prompts.prompt.PromptTemplate",
"langchain.schema.messages.FunctionMessage",
"langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever",
"langchain.retrievers.self_query.myscale.MyScaleTranslator"
] | [((3163, 3322), 'langchain.prompts.ChatPromptTemplate.from_strings', 'ChatPromptTemplate.from_strings', ([], {'string_messages': "[(SystemMessagePromptTemplate, combine_prompt_template), (\n HumanMessagePromptTemplate, '{question}')]"}), "(string_messages=[(\n SystemMessagePromptTemplate, combine_prompt_template), (\n HumanMessagePromptTemplate, '{question}')])\n", (3194, 3322), False, 'from langchain.prompts import PromptTemplate, ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((3590, 4394), 'streamlit.info', 'st.info', (['"""We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\nFor example: \n\n*If you want to search papers with complex filters*:\n\n- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n*If you want to ask questions based on papers in database*:\n\n- What is PageRank?\n- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n- Introduce some applications of GANs published around 2019.\n- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n- Is it possible to synthesize room temperature super conductive material?"""'], {}), '(\n """We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\nFor example: \n\n*If you want to search papers with complex filters*:\n\n- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n*If you want to ask questions based on papers in database*:\n\n- What is PageRank?\n- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n- Introduce some applications of GANs published around 2019.\n- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n- Is it possible to synthesize room temperature super conductive material?"""\n )\n', (3597, 4394), True, 'import streamlit as st\n'), ((4574, 4710), 'streamlit.info', 'st.info', (['"""You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`."""'], {'icon': '"""💡"""'}), "(\n 'You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.'\n , icon='💡')\n", (4581, 4710), True, 'import streamlit as st\n'), ((4705, 5231), 'streamlit.markdown', 'st.markdown', (['"""```sql\nCREATE TABLE default.ChatArXiv (\n `abstract` String, \n `id` String, \n `vector` Array(Float32), \n `metadata` Object(\'JSON\'), \n `pubdate` DateTime,\n `title` String,\n `categories` Array(String),\n `authors` Array(String), \n `comment` String,\n `primary_category` String,\n VECTOR INDEX vec_idx vector TYPE MSTG(\'fp16_storage=1\', \'metric_type=Cosine\', \'disk_mode=3\'), \n CONSTRAINT vec_len CHECK length(vector) = 768) \nENGINE = ReplacingMergeTree ORDER BY id\n```"""'], {}), '(\n """```sql\nCREATE TABLE default.ChatArXiv (\n `abstract` String, \n `id` String, \n `vector` Array(Float32), \n `metadata` Object(\'JSON\'), \n `pubdate` DateTime,\n `title` String,\n `categories` Array(String),\n `authors` Array(String), \n `comment` String,\n `primary_category` String,\n VECTOR INDEX vec_idx vector TYPE MSTG(\'fp16_storage=1\', \'metric_type=Cosine\', \'disk_mode=3\'), \n CONSTRAINT vec_len CHECK length(vector) = 768) \nENGINE = ReplacingMergeTree ORDER BY id\n```"""\n )\n', (4716, 5231), True, 'import streamlit as st\n'), ((5245, 5514), 'streamlit.info', 'st.info', (['"""We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\nFor example: \n\n- Which company did Elon Musk found?\n- What is Iron Gwazi?\n- What is a Ring in mathematics?\n- 苹果的发源地是那里?\n"""'], {}), '(\n """We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\nFor example: \n\n- Which company did Elon Musk found?\n- What is Iron Gwazi?\n- What is a Ring in mathematics?\n- 苹果的发源地是那里?\n"""\n )\n', (5252, 5514), True, 'import streamlit as st\n'), ((5611, 5747), 'streamlit.info', 'st.info', (['"""You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`."""'], {'icon': '"""💡"""'}), "(\n 'You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.'\n , icon='💡')\n", (5618, 5747), True, 'import streamlit as st\n'), ((5742, 6195), 'streamlit.markdown', 'st.markdown', (['"""```sql\nCREATE TABLE wiki.Wikipedia (\n `id` String, \n `title` String, \n `text` String, \n `url` String, \n `wiki_id` UInt64, \n `views` Float32, \n `paragraph_id` UInt64, \n `langs` UInt32, \n `emb` Array(Float32), \n VECTOR INDEX vec_idx emb TYPE MSTG(\'fp16_storage=1\', \'metric_type=Cosine\', \'disk_mode=3\'), \n CONSTRAINT emb_len CHECK length(emb) = 768) \nENGINE = ReplacingMergeTree ORDER BY id\n```"""'], {}), '(\n """```sql\nCREATE TABLE wiki.Wikipedia (\n `id` String, \n `title` String, \n `text` String, \n `url` String, \n `wiki_id` UInt64, \n `views` Float32, \n `paragraph_id` UInt64, \n `langs` UInt32, \n `emb` Array(Float32), \n VECTOR INDEX vec_idx emb TYPE MSTG(\'fp16_storage=1\', \'metric_type=Cosine\', \'disk_mode=3\'), \n CONSTRAINT emb_len CHECK length(emb) = 768) \nENGINE = ReplacingMergeTree ORDER BY id\n```"""\n )\n', (5753, 6195), True, 'import streamlit as st\n'), ((18531, 18587), 'langchain.agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory', 'AgentTokenBufferMemory', ([], {'llm': 'llm', 'chat_memory': 'chat_memory'}), '(llm=llm, chat_memory=chat_memory)\n', (18553, 18587), False, 'from langchain.agents.openai_functions_agent.agent_token_buffer_memory import AgentTokenBufferMemory\n'), ((18611, 18647), 'langchain.schema.messages.SystemMessage', 'SystemMessage', ([], {'content': 'system_prompt'}), '(content=system_prompt)\n', (18624, 18647), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((18847, 18904), 'langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent', 'OpenAIFunctionsAgent', ([], {'llm': 'llm', 'tools': 'tools', 'prompt': 'prompt'}), '(llm=llm, tools=tools, prompt=prompt)\n', (18867, 18904), False, 'from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent\n'), ((18916, 19030), 'langchain.agents.AgentExecutor', 'AgentExecutor', ([], {'agent': 'agent', 'tools': 'tools', 'memory': 'memory', 'verbose': '(True)', 'return_intermediate_steps': '(True)'}), '(agent=agent, tools=tools, memory=memory, verbose=True,\n return_intermediate_steps=True, **kwargs)\n', (18929, 19030), False, 'from langchain.agents import AgentExecutor\n'), ((19133, 19183), 'langchain.pydantic_v1.Field', 'Field', ([], {'description': '"""query to look up in retriever"""'}), "(description='query to look up in retriever')\n", (19138, 19183), False, 'from langchain.pydantic_v1 import BaseModel, Field\n'), ((21372, 21523), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': 'chat_model_name', 'temperature': 'temperature', 'openai_api_base': 'OPENAI_API_BASE', 'openai_api_key': 'OPENAI_API_KEY', 'streaming': '(True)'}), '(model_name=chat_model_name, temperature=temperature,\n openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY,\n streaming=True)\n', (21382, 21523), False, 'from langchain.chat_models import ChatOpenAI\n'), ((6361, 6562), 'langchain.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['page_content', 'url', 'title', 'ref_id', 'views']", 'template': '"""Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"""'}), '(input_variables=[\'page_content\', \'url\', \'title\', \'ref_id\',\n \'views\'], template=\n """Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"""\n )\n', (6375, 6562), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((7708, 7997), 'langchain.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['page_content', 'id', 'title', 'ref_id', 'authors', 'pubdate', 'categories']", 'template': '"""Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"""'}), '(input_variables=[\'page_content\', \'id\', \'title\', \'ref_id\',\n \'authors\', \'pubdate\', \'categories\'], template=\n """Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"""\n )\n', (7722, 7997), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((9574, 9604), 'streamlit.spinner', 'st.spinner', (['"""Loading Model..."""'], {}), "('Loading Model...')\n", (9584, 9604), True, 'import streamlit as st\n'), ((10739, 10781), 'streamlit.spinner', 'st.spinner', (['f"""Connecting DB for {_sel}..."""'], {}), "(f'Connecting DB for {_sel}...')\n", (10749, 10781), True, 'import streamlit as st\n'), ((10989, 11247), 'langchain.vectorstores.MyScaleSettings', 'MyScaleSettings', ([], {'database': "sel_map[_sel]['database']", 'table': "sel_map[_sel]['table']", 'column_map': "{'id': 'id', 'text': sel_map[_sel]['text_col'], 'vector': sel_map[_sel][\n 'vector_col'], 'metadata': sel_map[_sel]['metadata_col']}"}), "(**myscale_connection, database=sel_map[_sel]['database'],\n table=sel_map[_sel]['table'], column_map={'id': 'id', 'text': sel_map[\n _sel]['text_col'], 'vector': sel_map[_sel]['vector_col'], 'metadata':\n sel_map[_sel]['metadata_col']})\n", (11004, 11247), False, 'from langchain.vectorstores import MyScaleSettings\n'), ((11538, 11663), 'chains.arxiv_chains.MyScaleWithoutMetadataJson', 'MyScaleWithoutMetadataJson', (["st.session_state[f'emb_model_{_sel}']", 'config'], {'must_have_cols': "sel_map[_sel]['must_have_cols']"}), "(st.session_state[f'emb_model_{_sel}'], config,\n must_have_cols=sel_map[_sel]['must_have_cols'])\n", (11564, 11663), False, 'from chains.arxiv_chains import MyScaleWithoutMetadataJson\n'), ((11718, 11776), 'streamlit.spinner', 'st.spinner', (['f"""Building Self Query Retriever for {_sel}..."""'], {}), "(f'Building Self Query Retriever for {_sel}...')\n", (11728, 11776), True, 'import streamlit as st\n'), ((12490, 12557), 'streamlit.spinner', 'st.spinner', (['f"""Building Vector SQL Database Retriever for {_sel}..."""'], {}), "(f'Building Vector SQL Database Retriever for {_sel}...')\n", (12500, 12557), True, 'import streamlit as st\n'), ((12576, 12723), 'sqlalchemy.create_engine', 'create_engine', (['f"""clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel][\'database\']}?protocol=https"""'], {}), '(\n f"clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel][\'database\']}?protocol=https"\n )\n', (12589, 12723), False, 'from sqlalchemy import create_engine, MetaData\n'), ((12746, 12767), 'sqlalchemy.MetaData', 'MetaData', ([], {'bind': 'engine'}), '(bind=engine)\n', (12754, 12767), False, 'from sqlalchemy import create_engine, MetaData\n'), ((12785, 12880), 'langchain.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['input', 'table_info', 'top_k']", 'template': '_myscale_prompt'}), "(input_variables=['input', 'table_info', 'top_k'], template=\n _myscale_prompt)\n", (12799, 12880), False, 'from langchain.prompts.prompt import PromptTemplate\n'), ((12935, 13087), 'chains.arxiv_chains.VectorSQLRetrieveCustomOutputParser.from_embeddings', 'VectorSQLRetrieveCustomOutputParser.from_embeddings', ([], {'model': "st.session_state[f'emb_model_{_sel}']", 'must_have_columns': "sel_map[_sel]['must_have_cols']"}), "(model=st.session_state[\n f'emb_model_{_sel}'], must_have_columns=sel_map[_sel]['must_have_cols'])\n", (12986, 13087), False, 'from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser\n'), ((13541, 13650), 'langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever', 'VectorSQLDatabaseChainRetriever', ([], {'sql_db_chain': 'sql_query_chain', 'page_content_key': "sel_map[_sel]['text_col']"}), "(sql_db_chain=sql_query_chain,\n page_content_key=sel_map[_sel]['text_col'])\n", (13572, 13650), False, 'from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever\n'), ((14139, 14197), 'streamlit.spinner', 'st.spinner', (['f"""Building QA Chain with {name} for {_sel}..."""'], {}), "(f'Building QA Chain with {name} for {_sel}...')\n", (14149, 14197), True, 'import streamlit as st\n'), ((15683, 15704), 'sqlalchemy.Column', 'Column', (['types.Float64'], {}), '(types.Float64)\n', (15689, 15704), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((15726, 15738), 'sqlalchemy.Column', 'Column', (['Text'], {}), '(Text)\n', (15732, 15738), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((15757, 15769), 'sqlalchemy.Column', 'Column', (['Text'], {}), '(Text)\n', (15763, 15769), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((15787, 15817), 'sqlalchemy.Column', 'Column', (['Text'], {'primary_key': '(True)'}), '(Text, primary_key=True)\n', (15793, 15817), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((15833, 15845), 'sqlalchemy.Column', 'Column', (['Text'], {}), '(Text)\n', (15839, 15845), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((15867, 15879), 'sqlalchemy.Column', 'Column', (['Text'], {}), '(Text)\n', (15873, 15879), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((15898, 15910), 'sqlalchemy.Column', 'Column', (['Text'], {}), '(Text)\n', (15904, 15910), False, 'from sqlalchemy import Column, Text, create_engine, MetaData\n'), ((16265, 16296), 'langchain.schema.messages.HumanMessage', 'HumanMessage', ([], {}), "(**message['data'])\n", (16277, 16296), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((17209, 17220), 'time.time', 'time.time', ([], {}), '()\n', (17218, 17220), False, 'import time\n'), ((17878, 17909), 'json.loads', 'json.loads', (['sql_message.message'], {}), '(sql_message.message)\n', (17888, 17909), False, 'import json\n'), ((22189, 22429), 'streamlit.write', 'st.write', (['"""Sorry 😵 we didn\'t find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype."""'], {'unsafe_allow_html': '(True)'}), '(\n """Sorry 😵 we didn\'t find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype."""\n , unsafe_allow_html=True)\n', (22197, 22429), True, 'import streamlit as st\n'), ((6644, 6734), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""title"""', 'description': '"""title of the wikipedia page"""', 'type': '"""string"""'}), "(name='title', description='title of the wikipedia page', type\n ='string')\n", (6657, 6734), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((6806, 6896), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""text"""', 'description': '"""paragraph from this wiki page"""', 'type': '"""string"""'}), "(name='text', description='paragraph from this wiki page',\n type='string')\n", (6819, 6896), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((6969, 7041), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""views"""', 'description': '"""number of views"""', 'type': '"""float"""'}), "(name='views', description='number of views', type='float')\n", (6982, 7041), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((7305, 7413), 'langchain.embeddings.SentenceTransformerEmbeddings', 'SentenceTransformerEmbeddings', ([], {'model_name': '"""sentence-transformers/paraphrase-multilingual-mpnet-base-v2"""'}), "(model_name=\n 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2')\n", (7334, 7413), False, 'from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings\n'), ((8278, 8369), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""authors"""', 'description': '"""List of author names"""', 'type': '"""list[string]"""'}), "(name='authors', description='List of author names', type=\n 'list[string]')\n", (8291, 8369), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((8441, 8517), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""title"""', 'description': '"""Title of the paper"""', 'type': '"""string"""'}), "(name='title', description='Title of the paper', type='string')\n", (8454, 8517), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((8594, 8698), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""categories"""', 'description': '"""arxiv categories to this paper"""', 'type': '"""list[string]"""'}), "(name='categories', description=\n 'arxiv categories to this paper', type='list[string]')\n", (8607, 8698), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((8769, 8882), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""length(categories)"""', 'description': '"""length of arxiv categories to this paper"""', 'type': '"""int"""'}), "(name='length(categories)', description=\n 'length of arxiv categories to this paper', type='int')\n", (8782, 8882), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((9172, 9335), 'langchain.embeddings.HuggingFaceInstructEmbeddings', 'HuggingFaceInstructEmbeddings', ([], {'model_name': '"""hkunlp/instructor-xl"""', 'embed_instruction': '"""Represent the question for retrieving supporting scientific papers: """'}), "(model_name='hkunlp/instructor-xl',\n embed_instruction=\n 'Represent the question for retrieving supporting scientific papers: ')\n", (9201, 9335), False, 'from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings\n'), ((11900, 11985), 'langchain.OpenAI', 'OpenAI', ([], {'model_name': 'query_model_name', 'openai_api_key': 'OPENAI_API_KEY', 'temperature': '(0)'}), '(model_name=query_model_name, openai_api_key=OPENAI_API_KEY,\n temperature=0)\n', (11906, 11985), False, 'from langchain import OpenAI\n'), ((15950, 16035), 'clickhouse_sqlalchemy.engines.ReplacingMergeTree', 'engines.ReplacingMergeTree', ([], {'partition_by': '"""session_id"""', 'order_by': "('id', 'msg_id')"}), "(partition_by='session_id', order_by=('id', 'msg_id')\n )\n", (15976, 16035), False, 'from clickhouse_sqlalchemy import types, engines\n'), ((16336, 16364), 'langchain.schema.messages.AIMessage', 'AIMessage', ([], {}), "(**message['data'])\n", (16345, 16364), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((17097, 17115), 'sqlalchemy.ext.declarative.declarative_base', 'declarative_base', ([], {}), '()\n', (17113, 17115), False, 'from sqlalchemy.ext.declarative import declarative_base\n'), ((22087, 22120), 'streamlit.dataframe', 'st.dataframe', (['dataframe[columns_]'], {}), '(dataframe[columns_])\n', (22099, 22120), True, 'import streamlit as st\n'), ((22147, 22170), 'streamlit.dataframe', 'st.dataframe', (['dataframe'], {}), '(dataframe)\n', (22159, 22170), True, 'import streamlit as st\n'), ((12174, 12193), 'langchain.retrievers.self_query.myscale.MyScaleTranslator', 'MyScaleTranslator', ([], {}), '()\n', (12191, 12193), False, 'from langchain.retrievers.self_query.myscale import MyScaleTranslator\n'), ((13171, 13256), 'langchain.OpenAI', 'OpenAI', ([], {'model_name': 'query_model_name', 'openai_api_key': 'OPENAI_API_KEY', 'temperature': '(0)'}), '(model_name=query_model_name, openai_api_key=OPENAI_API_KEY,\n temperature=0)\n', (13177, 13256), False, 'from langchain import OpenAI\n'), ((13373, 13432), 'langchain.utilities.sql_database.SQLDatabase', 'SQLDatabase', (['engine', 'None', 'metadata'], {'max_string_length': '(1024)'}), '(engine, None, metadata, max_string_length=1024)\n', (13384, 13432), False, 'from langchain.utilities.sql_database import SQLDatabase\n'), ((16408, 16440), 'langchain.schema.messages.SystemMessage', 'SystemMessage', ([], {}), "(**message['data'])\n", (16421, 16440), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((17574, 17611), 'json.dumps', 'json.dumps', (['message.additional_kwargs'], {}), '(message.additional_kwargs)\n', (17584, 17611), False, 'import json\n'), ((18782, 18826), 'langchain.prompts.chat.MessagesPlaceholder', 'MessagesPlaceholder', ([], {'variable_name': '"""history"""'}), "(variable_name='history')\n", (18801, 18826), False, 'from langchain.prompts.chat import MessagesPlaceholder\n'), ((8119, 8152), 'langchain.chains.query_constructor.base.VirtualColumnName', 'VirtualColumnName', ([], {'name': '"""pubdate"""'}), "(name='pubdate')\n", (8136, 8152), False, 'from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName\n'), ((16482, 16512), 'langchain.schema.messages.ChatMessage', 'ChatMessage', ([], {}), "(**message['data'])\n", (16493, 16512), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((16558, 16592), 'langchain.schema.messages.FunctionMessage', 'FunctionMessage', ([], {}), "(**message['data'])\n", (16573, 16592), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((16634, 16664), 'langchain.schema.messages.ToolMessage', 'ToolMessage', ([], {}), "(**message['data'])\n", (16645, 16664), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n'), ((14437, 14527), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': 'chat_model_name', 'openai_api_key': 'OPENAI_API_KEY', 'temperature': '(0.6)'}), '(model_name=chat_model_name, openai_api_key=OPENAI_API_KEY,\n temperature=0.6)\n', (14447, 14527), False, 'from langchain.chat_models import ChatOpenAI\n'), ((16755, 16783), 'langchain.schema.messages.AIMessage', 'AIMessage', ([], {}), "(**message['data'])\n", (16764, 16783), False, 'from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage, ChatMessage, ToolMessage\n')] |
"""Wrapper around Replicate API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class Replicate(LLM):
"""Wrapper around Replicate models.
To use, you should have the ``replicate`` python package installed,
and the environment variable ``REPLICATE_API_TOKEN`` set with your API token.
You can find your token here: https://replicate.com/account
The model param is required, but any other model parameters can also
be passed in with the format input={model_param: value, ...}
Example:
.. code-block:: python
from langchain.llms import Replicate
replicate = Replicate(model="stability-ai/stable-diffusion: \
27b93a2413e7f36cd83da926f365628\
0b2931564ff050bf9575f1fdf9bcd7478",
input={"image_dimensions": "512x512"})
"""
model: str
input: Dict[str, Any] = Field(default_factory=dict)
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
replicate_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
replicate_api_token = get_from_dict_or_env(
values, "REPLICATE_API_TOKEN", "REPLICATE_API_TOKEN"
)
values["replicate_api_token"] = replicate_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of model."""
return "replicate"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call to replicate endpoint."""
try:
import replicate as replicate_python
except ImportError:
raise ImportError(
"Could not import replicate python package. "
"Please install it with `pip install replicate`."
)
# get the model and version
model_str, version_str = self.model.split(":")
model = replicate_python.models.get(model_str)
version = model.versions.get(version_str)
# sort through the openapi schema to get the name of the first input
input_properties = sorted(
version.openapi_schema["components"]["schemas"]["Input"][
"properties"
].items(),
key=lambda item: item[1].get("x-order", 0),
)
first_input_name = input_properties[0][0]
inputs = {first_input_name: prompt, **self.input}
iterator = replicate_python.run(self.model, input={**inputs})
return "".join([output for output in iterator])
| [
"langchain.utils.get_from_dict_or_env"
] | [((317, 344), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (334, 344), False, 'import logging\n'), ((1212, 1239), 'pydantic.Field', 'Field', ([], {'default_factory': 'dict'}), '(default_factory=dict)\n', (1217, 1239), False, 'from pydantic import Extra, Field, root_validator\n'), ((1275, 1302), 'pydantic.Field', 'Field', ([], {'default_factory': 'dict'}), '(default_factory=dict)\n', (1280, 1302), False, 'from pydantic import Extra, Field, root_validator\n'), ((1458, 1482), 'pydantic.root_validator', 'root_validator', ([], {'pre': '(True)'}), '(pre=True)\n', (1472, 1482), False, 'from pydantic import Extra, Field, root_validator\n'), ((2300, 2316), 'pydantic.root_validator', 'root_validator', ([], {}), '()\n', (2314, 2316), False, 'from pydantic import Extra, Field, root_validator\n'), ((2482, 2556), 'langchain.utils.get_from_dict_or_env', 'get_from_dict_or_env', (['values', '"""REPLICATE_API_TOKEN"""', '"""REPLICATE_API_TOKEN"""'], {}), "(values, 'REPLICATE_API_TOKEN', 'REPLICATE_API_TOKEN')\n", (2502, 2556), False, 'from langchain.utils import get_from_dict_or_env\n'), ((3550, 3588), 'replicate.models.get', 'replicate_python.models.get', (['model_str'], {}), '(model_str)\n', (3577, 3588), True, 'import replicate as replicate_python\n'), ((4068, 4118), 'replicate.run', 'replicate_python.run', (['self.model'], {'input': '{**inputs}'}), '(self.model, input={**inputs})\n', (4088, 4118), True, 'import replicate as replicate_python\n')] |
import datetime
import difflib
import logging
import os
from functools import wraps
from queue import Queue
from threading import Thread
from typing import Any, Callable, Dict, List
import numpy as np
import openai
import pandas as pd
import sqlalchemy
from google.api_core.exceptions import GoogleAPIError
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.chains.llm import LLMChain
from langchain.tools.base import BaseTool
from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAIEmbeddings
from overrides import override
from pydantic import BaseModel, Field
from sqlalchemy import MetaData
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.sql import func
from dataherald.context_store import ContextStore
from dataherald.db import DB
from dataherald.db_scanner.models.types import TableDescription, TableDescriptionStatus
from dataherald.db_scanner.repository.base import TableDescriptionRepository
from dataherald.repositories.sql_generations import (
SQLGenerationRepository,
)
from dataherald.sql_database.base import SQLDatabase, SQLInjectionError
from dataherald.sql_database.models.types import (
DatabaseConnection,
)
from dataherald.sql_generator import EngineTimeOutORItemLimitError, SQLGenerator
from dataherald.types import Prompt, SQLGeneration
from dataherald.utils.agent_prompts import (
AGENT_PREFIX,
ERROR_PARSING_MESSAGE,
FORMAT_INSTRUCTIONS,
PLAN_BASE,
PLAN_WITH_FEWSHOT_EXAMPLES,
PLAN_WITH_FEWSHOT_EXAMPLES_AND_INSTRUCTIONS,
PLAN_WITH_INSTRUCTIONS,
SUFFIX_WITH_FEW_SHOT_SAMPLES,
SUFFIX_WITHOUT_FEW_SHOT_SAMPLES,
)
from dataherald.utils.timeout_utils import run_with_timeout
logger = logging.getLogger(__name__)
TOP_K = SQLGenerator.get_upper_bound_limit()
EMBEDDING_MODEL = "text-embedding-3-large"
TOP_TABLES = 20
def catch_exceptions(): # noqa: C901
def decorator(fn: Callable[[str], str]) -> Callable[[str], str]: # noqa: C901
@wraps(fn)
def wrapper(*args: Any, **kwargs: Any) -> Any: # noqa: PLR0911
try:
return fn(*args, **kwargs)
except openai.AuthenticationError as e:
# Handle authentication error here
return f"OpenAI API authentication error: {e}"
except openai.RateLimitError as e:
# Handle API error here, e.g. retry or log
return f"OpenAI API request exceeded rate limit: {e}"
except openai.BadRequestError as e:
# Handle connection error here
return f"OpenAI API request timed out: {e}"
except openai.APIResponseValidationError as e:
# Handle rate limit error (we recommend using exponential backoff)
return f"OpenAI API response is invalid: {e}"
except openai.OpenAIError as e:
# Handle timeout error (we recommend using exponential backoff)
return f"OpenAI API returned an error: {e}"
except GoogleAPIError as e:
return f"Google API returned an error: {e}"
except SQLAlchemyError as e:
return f"Error: {e}"
return wrapper
return decorator
def replace_unprocessable_characters(text: str) -> str:
"""Replace unprocessable characters with a space."""
text = text.strip()
return text.replace(r"\_", "_")
# Classes needed for tools
class BaseSQLDatabaseTool(BaseModel):
"""Base tool for interacting with the SQL database and the context information."""
db: SQLDatabase = Field(exclude=True)
context: List[dict] | None = Field(exclude=True, default=None)
class Config(BaseTool.Config):
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
extra = "allow"
class SystemTime(BaseSQLDatabaseTool, BaseTool):
"""Tool for finding the current data and time."""
name = "SystemTime"
description = """
Input is an empty string, output is the current data and time.
Always use this tool before generating a query if there is any time or date in the given question.
"""
@catch_exceptions()
def _run(
self,
tool_input: str = "", # noqa: ARG002
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
"""Execute the query, return the results or an error message."""
current_datetime = datetime.datetime.now()
return f"Current Date and Time: {str(current_datetime)}"
async def _arun(
self,
tool_input: str = "",
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("GetCurrentTimeTool does not support async")
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for querying a SQL database."""
name = "SqlDbQuery"
description = """
Input: SQL query.
Output: Result from the database or an error message if the query is incorrect.
If an error occurs, rewrite the query and retry.
Use this tool to execute SQL queries.
"""
@catch_exceptions()
def _run(
self,
query: str,
top_k: int = TOP_K,
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
"""Execute the query, return the results or an error message."""
query = replace_unprocessable_characters(query)
if "```sql" in query:
query = query.replace("```sql", "").replace("```", "")
try:
return run_with_timeout(
self.db.run_sql,
args=(query,),
kwargs={"top_k": top_k},
timeout_duration=int(os.getenv("SQL_EXECUTION_TIMEOUT", "60")),
)[0]
except TimeoutError:
return "SQL query execution time exceeded, proceed without query execution"
async def _arun(
self,
query: str,
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("QuerySQLDataBaseTool does not support async")
class GetUserInstructions(BaseSQLDatabaseTool, BaseTool):
"""Tool for retrieving the instructions from the user"""
name = "GetAdminInstructions"
description = """
Input: is an empty string.
Output: Database admin instructions before generating the SQL query.
The generated SQL query MUST follow the admin instructions even it contradicts with the given question.
"""
instructions: List[dict]
@catch_exceptions()
def _run(
self,
tool_input: str = "", # noqa: ARG002
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
response = "Admin: All of the generated SQL queries must follow the below instructions:\n"
for instruction in self.instructions:
response += f"{instruction['instruction']}\n"
return response
async def _arun(
self,
tool_input: str = "", # noqa: ARG002
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("GetUserInstructions does not support async")
class TablesSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool which takes in the given question and returns a list of tables with their relevance score to the question"""
name = "DbTablesWithRelevanceScores"
description = """
Input: Given question.
Output: Comma-separated list of tables with their relevance scores, indicating their relevance to the question.
Use this tool to identify the relevant tables for the given question.
"""
db_scan: List[TableDescription]
embedding: OpenAIEmbeddings
def get_embedding(
self,
text: str,
) -> List[float]:
text = text.replace("\n", " ")
return self.embedding.embed_query(text)
def get_docs_embedding(
self,
docs: List[str],
) -> List[List[float]]:
return self.embedding.embed_documents(docs)
def cosine_similarity(self, a: List[float], b: List[float]) -> float:
return round(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)), 4)
@catch_exceptions()
def _run(
self,
user_question: str,
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
"""Use the concatenation of table name, columns names, and the description of the table as the table representation"""
question_embedding = self.get_embedding(user_question)
table_representations = []
for table in self.db_scan:
col_rep = ""
for column in table.columns:
if column.description is not None:
col_rep += f"{column.name}: {column.description}, "
else:
col_rep += f"{column.name}, "
if table.description is not None:
table_rep = f"Table {table.table_name} contain columns: [{col_rep}], this tables has: {table.description}"
else:
table_rep = f"Table {table.table_name} contain columns: [{col_rep}]"
table_representations.append([table.table_name, table_rep])
df = pd.DataFrame(
table_representations, columns=["table_name", "table_representation"]
)
df["table_embedding"] = self.get_docs_embedding(df.table_representation)
df["similarities"] = df.table_embedding.apply(
lambda x: self.cosine_similarity(x, question_embedding)
)
df = df.sort_values(by="similarities", ascending=True)
df = df.tail(TOP_TABLES)
table_relevance = ""
for _, row in df.iterrows():
table_relevance += (
f'Table: {row["table_name"]}, relevance score: {row["similarities"]}\n'
)
return table_relevance
async def _arun(
self,
user_question: str = "",
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("TablesSQLDatabaseTool does not support async")
class ColumnEntityChecker(BaseSQLDatabaseTool, BaseTool):
"""Tool for checking the existance of an entity inside a column."""
name = "DbColumnEntityChecker"
description = """
Input: Column name and its corresponding table, and an entity.
Output: cell-values found in the column similar to the given entity.
Use this tool to get cell values similar to the given entity in the given column.
Example Input: table1 -> column2, entity
"""
def find_similar_strings(
self, input_list: List[tuple], target_string: str, threshold=0.4
):
similar_strings = []
for item in input_list:
similarity = difflib.SequenceMatcher(
None, str(item[0]).strip().lower(), target_string.lower()
).ratio()
if similarity >= threshold:
similar_strings.append((str(item[0]).strip(), similarity))
similar_strings.sort(key=lambda x: x[1], reverse=True)
return similar_strings[:25]
@catch_exceptions()
def _run(
self,
tool_input: str,
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
try:
schema, entity = tool_input.split(",")
table_name, column_name = schema.split("->")
except ValueError:
return "Invalid input format, use following format: table_name -> column_name, entity (entity should be a string without ',')"
search_pattern = f"%{entity.strip().lower()}%"
meta = MetaData(bind=self.db.engine)
table = sqlalchemy.Table(table_name.strip(), meta, autoload=True)
try:
search_query = sqlalchemy.select(
[func.distinct(table.c[column_name.strip()])]
).where(func.lower(table.c[column_name.strip()]).like(search_pattern))
search_results = self.db.engine.execute(search_query).fetchall()
search_results = search_results[:25]
except SQLAlchemyError:
search_results = []
distinct_query = sqlalchemy.select(
[func.distinct(table.c[column_name.strip()])]
)
results = self.db.engine.execute(distinct_query).fetchall()
results = self.find_similar_strings(results, entity)
similar_items = "Similar items:\n"
already_added = {}
for item in results:
similar_items += f"{item[0]}\n"
already_added[item[0]] = True
if len(search_results) > 0:
for item in search_results:
if item[0] not in already_added:
similar_items += f"{item[0]}\n"
return similar_items
async def _arun(
self,
tool_input: str,
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("ColumnEntityChecker does not support async")
class SchemaSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting schema of relevant tables."""
name = "DbRelevantTablesSchema"
description = """
Input: Comma-separated list of tables.
Output: Schema of the specified tables.
Use this tool to discover all columns of the relevant tables and identify potentially relevant columns.
Example Input: table1, table2, table3
"""
db_scan: List[TableDescription]
@catch_exceptions()
def _run(
self,
table_names: str,
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
"""Get the schema for tables in a comma-separated list."""
table_names_list = table_names.split(", ")
table_names_list = [
replace_unprocessable_characters(table_name)
for table_name in table_names_list
]
tables_schema = ""
for table in self.db_scan:
if table.table_name in table_names_list:
tables_schema += table.table_schema + "\n"
descriptions = []
if table.description is not None:
descriptions.append(
f"Table `{table.table_name}`: {table.description}\n"
)
for column in table.columns:
if column.description is not None:
descriptions.append(
f"Column `{column.name}`: {column.description}\n"
)
if len(descriptions) > 0:
tables_schema += f"/*\n{''.join(descriptions)}*/\n"
if tables_schema == "":
tables_schema += "Tables not found in the database"
return tables_schema
async def _arun(
self,
table_name: str,
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("SchemaSQLDatabaseTool does not support async")
class InfoRelevantColumns(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting more information for potentially relevant columns"""
name = "DbRelevantColumnsInfo"
description = """
Input: Comma-separated list of potentially relevant columns with their corresponding table.
Output: Information about the values inside the columns and their descriptions.
Use this tool to gather details about potentially relevant columns. then, filter them, and identify the relevant ones.
Example Input: table1 -> column1, table1 -> column2, table2 -> column1
"""
db_scan: List[TableDescription]
@catch_exceptions()
def _run( # noqa: C901
self,
column_names: str,
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
"""Get the column level information."""
items_list = column_names.split(", ")
column_full_info = ""
for item in items_list:
if " -> " in item:
table_name, column_name = item.split(" -> ")
table_name = replace_unprocessable_characters(table_name)
column_name = replace_unprocessable_characters(column_name)
found = False
for table in self.db_scan:
if table_name == table.table_name:
col_info = ""
for column in table.columns:
if column_name == column.name:
found = True
col_info += f"Description: {column.description},"
if column.low_cardinality:
col_info += f" categories = {column.categories},"
col_info += " Sample rows: "
if found:
for row in table.examples:
col_info += row[column_name] + ", "
col_info = col_info[:-2]
column_full_info += f"Table: {table_name}, column: {column_name}, additional info: {col_info}\n"
else:
return "Malformed input, input should be in the following format Example Input: table1 -> column1, table1 -> column2, table2 -> column1" # noqa: E501
if not found:
column_full_info += f"Table: {table_name}, column: {column_name} not found in database\n"
return column_full_info
async def _arun(
self,
table_name: str,
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("InfoRelevantColumnsTool does not support async")
class GetFewShotExamples(BaseSQLDatabaseTool, BaseTool):
"""Tool to obtain few-shot examples from the pool of samples"""
name = "FewshotExamplesRetriever"
description = """
Input: Number of required Question/SQL pairs.
Output: List of similar Question/SQL pairs related to the given question.
Use this tool to fetch previously asked Question/SQL pairs as examples for improving SQL query generation.
For complex questions, request more examples to gain a better understanding of tables and columns and the SQL keywords to use.
If the given question is very similar to one of the retrieved examples, it is recommended to use the same SQL query and modify it slightly to fit the given question.
Always use this tool first and before any other tool!
""" # noqa: E501
few_shot_examples: List[dict]
@catch_exceptions()
def _run(
self,
number_of_samples: str,
run_manager: CallbackManagerForToolRun | None = None, # noqa: ARG002
) -> str:
"""Get the schema for tables in a comma-separated list."""
if number_of_samples.strip().isdigit():
number_of_samples = int(number_of_samples.strip())
else:
return "Action input for the fewshot_examples_retriever tool should be an integer"
returned_output = ""
for example in self.few_shot_examples[:number_of_samples]:
returned_output += (
f"Question: {example['prompt_text']} -> SQL: {example['sql']}\n"
)
if returned_output == "":
returned_output = "No previously asked Question/SQL pairs are available"
return returned_output
async def _arun(
self,
number_of_samples: str,
run_manager: AsyncCallbackManagerForToolRun | None = None,
) -> str:
raise NotImplementedError("GetFewShotExamplesTool does not support async")
class SQLDatabaseToolkit(BaseToolkit):
"""Dataherald toolkit"""
db: SQLDatabase = Field(exclude=True)
context: List[dict] | None = Field(exclude=True, default=None)
few_shot_examples: List[dict] | None = Field(exclude=True, default=None)
instructions: List[dict] | None = Field(exclude=True, default=None)
db_scan: List[TableDescription] = Field(exclude=True)
embedding: OpenAIEmbeddings = Field(exclude=True)
@property
def dialect(self) -> str:
"""Return string representation of SQL dialect to use."""
return self.db.dialect
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tools = []
query_sql_db_tool = QuerySQLDataBaseTool(db=self.db, context=self.context)
tools.append(query_sql_db_tool)
if self.instructions is not None:
tools.append(
GetUserInstructions(
db=self.db, context=self.context, instructions=self.instructions
)
)
get_current_datetime = SystemTime(db=self.db, context=self.context)
tools.append(get_current_datetime)
tables_sql_db_tool = TablesSQLDatabaseTool(
db=self.db,
context=self.context,
db_scan=self.db_scan,
embedding=self.embedding,
)
tools.append(tables_sql_db_tool)
schema_sql_db_tool = SchemaSQLDatabaseTool(
db=self.db, context=self.context, db_scan=self.db_scan
)
tools.append(schema_sql_db_tool)
info_relevant_tool = InfoRelevantColumns(
db=self.db, context=self.context, db_scan=self.db_scan
)
tools.append(info_relevant_tool)
column_sample_tool = ColumnEntityChecker(db=self.db, context=self.context)
tools.append(column_sample_tool)
if self.few_shot_examples is not None:
get_fewshot_examples_tool = GetFewShotExamples(
db=self.db,
context=self.context,
few_shot_examples=self.few_shot_examples,
)
tools.append(get_fewshot_examples_tool)
return tools
class DataheraldSQLAgent(SQLGenerator):
"""Dataherald SQL agent"""
max_number_of_examples: int = 5 # maximum number of question/SQL pairs
llm: Any = None
def remove_duplicate_examples(self, fewshot_exmaples: List[dict]) -> List[dict]:
returned_result = []
seen_list = []
for example in fewshot_exmaples:
if example["prompt_text"] not in seen_list:
seen_list.append(example["prompt_text"])
returned_result.append(example)
return returned_result
def create_sql_agent(
self,
toolkit: SQLDatabaseToolkit,
callback_manager: BaseCallbackManager | None = None,
prefix: str = AGENT_PREFIX,
suffix: str | None = None,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: List[str] | None = None,
max_examples: int = 20,
number_of_instructions: int = 1,
max_iterations: int
| None = int(os.getenv("AGENT_MAX_ITERATIONS", "15")), # noqa: B008
max_execution_time: float | None = None,
early_stopping_method: str = "generate",
verbose: bool = False,
agent_executor_kwargs: Dict[str, Any] | None = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct an SQL agent from an LLM and tools."""
tools = toolkit.get_tools()
if max_examples > 0 and number_of_instructions > 0:
plan = PLAN_WITH_FEWSHOT_EXAMPLES_AND_INSTRUCTIONS
suffix = SUFFIX_WITH_FEW_SHOT_SAMPLES
elif max_examples > 0:
plan = PLAN_WITH_FEWSHOT_EXAMPLES
suffix = SUFFIX_WITH_FEW_SHOT_SAMPLES
elif number_of_instructions > 0:
plan = PLAN_WITH_INSTRUCTIONS
suffix = SUFFIX_WITHOUT_FEW_SHOT_SAMPLES
else:
plan = PLAN_BASE
suffix = SUFFIX_WITHOUT_FEW_SHOT_SAMPLES
plan = plan.format(
dialect=toolkit.dialect,
max_examples=max_examples,
)
prefix = prefix.format(
dialect=toolkit.dialect, max_examples=max_examples, agent_plan=plan
)
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=self.llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
@override
def generate_response(
self,
user_prompt: Prompt,
database_connection: DatabaseConnection,
context: List[dict] = None,
) -> SQLGeneration:
context_store = self.system.instance(ContextStore)
storage = self.system.instance(DB)
response = SQLGeneration(
prompt_id=user_prompt.id,
llm_config=self.llm_config,
created_at=datetime.datetime.now(),
)
self.llm = self.model.get_model(
database_connection=database_connection,
temperature=0,
model_name=self.llm_config.llm_name,
api_base=self.llm_config.api_base,
)
repository = TableDescriptionRepository(storage)
db_scan = repository.get_all_tables_by_db(
{
"db_connection_id": str(database_connection.id),
"status": TableDescriptionStatus.SCANNED.value,
}
)
if not db_scan:
raise ValueError("No scanned tables found for database")
few_shot_examples, instructions = context_store.retrieve_context_for_question(
user_prompt, number_of_samples=self.max_number_of_examples
)
if few_shot_examples is not None:
new_fewshot_examples = self.remove_duplicate_examples(few_shot_examples)
number_of_samples = len(new_fewshot_examples)
else:
new_fewshot_examples = None
number_of_samples = 0
logger.info(f"Generating SQL response to question: {str(user_prompt.dict())}")
self.database = SQLDatabase.get_sql_engine(database_connection)
toolkit = SQLDatabaseToolkit(
db=self.database,
context=context,
few_shot_examples=new_fewshot_examples,
instructions=instructions,
db_scan=db_scan,
embedding=OpenAIEmbeddings(
openai_api_key=database_connection.decrypt_api_key(),
model=EMBEDDING_MODEL,
),
)
agent_executor = self.create_sql_agent(
toolkit=toolkit,
verbose=True,
max_examples=number_of_samples,
number_of_instructions=len(instructions) if instructions is not None else 0,
max_execution_time=int(os.environ.get("DH_ENGINE_TIMEOUT", 150)),
)
agent_executor.return_intermediate_steps = True
agent_executor.handle_parsing_errors = ERROR_PARSING_MESSAGE
with get_openai_callback() as cb:
try:
result = agent_executor.invoke({"input": user_prompt.text})
result = self.check_for_time_out_or_tool_limit(result)
except SQLInjectionError as e:
raise SQLInjectionError(e) from e
except EngineTimeOutORItemLimitError as e:
raise EngineTimeOutORItemLimitError(e) from e
except Exception as e:
return SQLGeneration(
prompt_id=user_prompt.id,
tokens_used=cb.total_tokens,
completed_at=datetime.datetime.now(),
sql="",
status="INVALID",
error=str(e),
)
sql_query = ""
if "```sql" in result["output"]:
sql_query = self.remove_markdown(result["output"])
else:
sql_query = self.extract_query_from_intermediate_steps(
result["intermediate_steps"]
)
logger.info(f"cost: {str(cb.total_cost)} tokens: {str(cb.total_tokens)}")
response.sql = replace_unprocessable_characters(sql_query)
response.tokens_used = cb.total_tokens
response.completed_at = datetime.datetime.now()
return self.create_sql_query_status(
self.database,
response.sql,
response,
)
@override
def stream_response(
self,
user_prompt: Prompt,
database_connection: DatabaseConnection,
response: SQLGeneration,
queue: Queue,
):
context_store = self.system.instance(ContextStore)
storage = self.system.instance(DB)
sql_generation_repository = SQLGenerationRepository(storage)
self.llm = self.model.get_model(
database_connection=database_connection,
temperature=0,
model_name=self.llm_config.llm_name,
api_base=self.llm_config.api_base,
streaming=True,
)
repository = TableDescriptionRepository(storage)
db_scan = repository.get_all_tables_by_db(
{
"db_connection_id": str(database_connection.id),
"status": TableDescriptionStatus.SCANNED.value,
}
)
if not db_scan:
raise ValueError("No scanned tables found for database")
few_shot_examples, instructions = context_store.retrieve_context_for_question(
user_prompt, number_of_samples=self.max_number_of_examples
)
if few_shot_examples is not None:
new_fewshot_examples = self.remove_duplicate_examples(few_shot_examples)
number_of_samples = len(new_fewshot_examples)
else:
new_fewshot_examples = None
number_of_samples = 0
self.database = SQLDatabase.get_sql_engine(database_connection)
toolkit = SQLDatabaseToolkit(
queuer=queue,
db=self.database,
context=[{}],
few_shot_examples=new_fewshot_examples,
instructions=instructions,
db_scan=db_scan,
embedding=OpenAIEmbeddings(
openai_api_key=database_connection.decrypt_api_key(),
model=EMBEDDING_MODEL,
),
)
agent_executor = self.create_sql_agent(
toolkit=toolkit,
verbose=True,
max_examples=number_of_samples,
number_of_instructions=len(instructions) if instructions is not None else 0,
max_execution_time=int(os.environ.get("DH_ENGINE_TIMEOUT", 150)),
)
agent_executor.return_intermediate_steps = True
agent_executor.handle_parsing_errors = ERROR_PARSING_MESSAGE
thread = Thread(
target=self.stream_agent_steps,
args=(
user_prompt.text,
agent_executor,
response,
sql_generation_repository,
queue,
),
)
thread.start()
| [
"langchain.chains.llm.LLMChain",
"langchain.agents.agent.AgentExecutor.from_agent_and_tools",
"langchain.agents.mrkl.base.ZeroShotAgent",
"langchain_community.callbacks.get_openai_callback",
"langchain.agents.mrkl.base.ZeroShotAgent.create_prompt"
] | [((2000, 2027), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2017, 2027), False, 'import logging\n'), ((2038, 2074), 'dataherald.sql_generator.SQLGenerator.get_upper_bound_limit', 'SQLGenerator.get_upper_bound_limit', ([], {}), '()\n', (2072, 2074), False, 'from dataherald.sql_generator import EngineTimeOutORItemLimitError, SQLGenerator\n'), ((3869, 3888), 'pydantic.Field', 'Field', ([], {'exclude': '(True)'}), '(exclude=True)\n', (3874, 3888), False, 'from pydantic import BaseModel, Field\n'), ((3922, 3955), 'pydantic.Field', 'Field', ([], {'exclude': '(True)', 'default': 'None'}), '(exclude=True, default=None)\n', (3927, 3955), False, 'from pydantic import BaseModel, Field\n'), ((20062, 20081), 'pydantic.Field', 'Field', ([], {'exclude': '(True)'}), '(exclude=True)\n', (20067, 20081), False, 'from pydantic import BaseModel, Field\n'), ((20115, 20148), 'pydantic.Field', 'Field', ([], {'exclude': '(True)', 'default': 'None'}), '(exclude=True, default=None)\n', (20120, 20148), False, 'from pydantic import BaseModel, Field\n'), ((20192, 20225), 'pydantic.Field', 'Field', ([], {'exclude': '(True)', 'default': 'None'}), '(exclude=True, default=None)\n', (20197, 20225), False, 'from pydantic import BaseModel, Field\n'), ((20264, 20297), 'pydantic.Field', 'Field', ([], {'exclude': '(True)', 'default': 'None'}), '(exclude=True, default=None)\n', (20269, 20297), False, 'from pydantic import BaseModel, Field\n'), ((20336, 20355), 'pydantic.Field', 'Field', ([], {'exclude': '(True)'}), '(exclude=True)\n', (20341, 20355), False, 'from pydantic import BaseModel, Field\n'), ((20390, 20409), 'pydantic.Field', 'Field', ([], {'exclude': '(True)'}), '(exclude=True)\n', (20395, 20409), False, 'from pydantic import BaseModel, Field\n'), ((2266, 2275), 'functools.wraps', 'wraps', (['fn'], {}), '(fn)\n', (2271, 2275), False, 'from functools import wraps\n'), ((4731, 4754), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4752, 4754), False, 'import datetime\n'), ((9562, 9649), 'pandas.DataFrame', 'pd.DataFrame', (['table_representations'], {'columns': "['table_name', 'table_representation']"}), "(table_representations, columns=['table_name',\n 'table_representation'])\n", (9574, 9649), True, 'import pandas as pd\n'), ((11971, 12000), 'sqlalchemy.MetaData', 'MetaData', ([], {'bind': 'self.db.engine'}), '(bind=self.db.engine)\n', (11979, 12000), False, 'from sqlalchemy import MetaData\n'), ((24413, 24555), 'langchain.agents.mrkl.base.ZeroShotAgent.create_prompt', 'ZeroShotAgent.create_prompt', (['tools'], {'prefix': 'prefix', 'suffix': 'suffix', 'format_instructions': 'format_instructions', 'input_variables': 'input_variables'}), '(tools, prefix=prefix, suffix=suffix,\n format_instructions=format_instructions, input_variables=input_variables)\n', (24440, 24555), False, 'from langchain.agents.mrkl.base import ZeroShotAgent\n'), ((24643, 24715), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'self.llm', 'prompt': 'prompt', 'callback_manager': 'callback_manager'}), '(llm=self.llm, prompt=prompt, callback_manager=callback_manager)\n', (24651, 24715), False, 'from langchain.chains.llm import LLMChain\n'), ((24830, 24900), 'langchain.agents.mrkl.base.ZeroShotAgent', 'ZeroShotAgent', ([], {'llm_chain': 'llm_chain', 'allowed_tools': 'tool_names'}), '(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)\n', (24843, 24900), False, 'from langchain.agents.mrkl.base import ZeroShotAgent\n'), ((24916, 25187), 'langchain.agents.agent.AgentExecutor.from_agent_and_tools', 'AgentExecutor.from_agent_and_tools', ([], {'agent': 'agent', 'tools': 'tools', 'callback_manager': 'callback_manager', 'verbose': 'verbose', 'max_iterations': 'max_iterations', 'max_execution_time': 'max_execution_time', 'early_stopping_method': 'early_stopping_method'}), '(agent=agent, tools=tools,\n callback_manager=callback_manager, verbose=verbose, max_iterations=\n max_iterations, max_execution_time=max_execution_time,\n early_stopping_method=early_stopping_method, **agent_executor_kwargs or {})\n', (24950, 25187), False, 'from langchain.agents.agent import AgentExecutor\n'), ((25998, 26033), 'dataherald.db_scanner.repository.base.TableDescriptionRepository', 'TableDescriptionRepository', (['storage'], {}), '(storage)\n', (26024, 26033), False, 'from dataherald.db_scanner.repository.base import TableDescriptionRepository\n'), ((26897, 26944), 'dataherald.sql_database.base.SQLDatabase.get_sql_engine', 'SQLDatabase.get_sql_engine', (['database_connection'], {}), '(database_connection)\n', (26923, 26944), False, 'from dataherald.sql_database.base import SQLDatabase, SQLInjectionError\n'), ((29041, 29064), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (29062, 29064), False, 'import datetime\n'), ((29527, 29559), 'dataherald.repositories.sql_generations.SQLGenerationRepository', 'SQLGenerationRepository', (['storage'], {}), '(storage)\n', (29550, 29559), False, 'from dataherald.repositories.sql_generations import SQLGenerationRepository\n'), ((29836, 29871), 'dataherald.db_scanner.repository.base.TableDescriptionRepository', 'TableDescriptionRepository', (['storage'], {}), '(storage)\n', (29862, 29871), False, 'from dataherald.db_scanner.repository.base import TableDescriptionRepository\n'), ((30648, 30695), 'dataherald.sql_database.base.SQLDatabase.get_sql_engine', 'SQLDatabase.get_sql_engine', (['database_connection'], {}), '(database_connection)\n', (30674, 30695), False, 'from dataherald.sql_database.base import SQLDatabase, SQLInjectionError\n'), ((31576, 31703), 'threading.Thread', 'Thread', ([], {'target': 'self.stream_agent_steps', 'args': '(user_prompt.text, agent_executor, response, sql_generation_repository, queue)'}), '(target=self.stream_agent_steps, args=(user_prompt.text,\n agent_executor, response, sql_generation_repository, queue))\n', (31582, 31703), False, 'from threading import Thread\n'), ((23228, 23267), 'os.getenv', 'os.getenv', (['"""AGENT_MAX_ITERATIONS"""', '"""15"""'], {}), "('AGENT_MAX_ITERATIONS', '15')\n", (23237, 23267), False, 'import os\n'), ((27798, 27819), 'langchain_community.callbacks.get_openai_callback', 'get_openai_callback', ([], {}), '()\n', (27817, 27819), False, 'from langchain_community.callbacks import get_openai_callback\n'), ((8452, 8464), 'numpy.dot', 'np.dot', (['a', 'b'], {}), '(a, b)\n', (8458, 8464), True, 'import numpy as np\n'), ((25715, 25738), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (25736, 25738), False, 'import datetime\n'), ((8468, 8485), 'numpy.linalg.norm', 'np.linalg.norm', (['a'], {}), '(a)\n', (8482, 8485), True, 'import numpy as np\n'), ((8488, 8505), 'numpy.linalg.norm', 'np.linalg.norm', (['b'], {}), '(b)\n', (8502, 8505), True, 'import numpy as np\n'), ((27607, 27647), 'os.environ.get', 'os.environ.get', (['"""DH_ENGINE_TIMEOUT"""', '(150)'], {}), "('DH_ENGINE_TIMEOUT', 150)\n", (27621, 27647), False, 'import os\n'), ((28056, 28076), 'dataherald.sql_database.base.SQLInjectionError', 'SQLInjectionError', (['e'], {}), '(e)\n', (28073, 28076), False, 'from dataherald.sql_database.base import SQLDatabase, SQLInjectionError\n'), ((28161, 28193), 'dataherald.sql_generator.EngineTimeOutORItemLimitError', 'EngineTimeOutORItemLimitError', (['e'], {}), '(e)\n', (28190, 28193), False, 'from dataherald.sql_generator import EngineTimeOutORItemLimitError, SQLGenerator\n'), ((31381, 31421), 'os.environ.get', 'os.environ.get', (['"""DH_ENGINE_TIMEOUT"""', '(150)'], {}), "('DH_ENGINE_TIMEOUT', 150)\n", (31395, 31421), False, 'import os\n'), ((6019, 6059), 'os.getenv', 'os.getenv', (['"""SQL_EXECUTION_TIMEOUT"""', '"""60"""'], {}), "('SQL_EXECUTION_TIMEOUT', '60')\n", (6028, 6059), False, 'import os\n'), ((28402, 28425), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (28423, 28425), False, 'import datetime\n')] |
from marqo import Client
import pandas as pd
import numpy as np
from langchain_openai import OpenAI
from langchain.docstore.document import Document
from langchain.chains import LLMChain
from dotenv import load_dotenv
from utilities import (
load_data,
extract_text_from_highlights,
qna_prompt,
predict_ce,
get_sorted_inds
)
load_dotenv()
if __name__ == "__main__":
#############################################################
# STEP 0: Install Marqo
#############################################################
# run the following docker commands from the terminal to start marqo
# docker rm -f marqo
# docker pull marqoai/marqo:2.0.0
# docker run --name marqo -it -p 8882:8882 --add-host host.docker.internal:host-gateway marqoai/marqo:2.0.0
#############################################################
# STEP 1: Setup Marqo
#############################################################
mq = Client()
index_name = "iron-docs"
# (optinally) delete if it already exists
try:
mq.index(index_name).delete()
except:
pass
# we can set some specific settings for the index. if they are not provided, sensible defaults are used
index_settings = {
"model": "flax-sentence-embeddings/all_datasets_v4_MiniLM-L6",
"normalizeEmbeddings": True,
"textPreprocessing": {
"splitLength": 3,
"splitOverlap": 1,
"splitMethod": "sentence"
},
}
# create the index with custom settings
mq.create_index(index_name, settings_dict=index_settings)
#############################################################
# STEP 2: Load the data
#############################################################
df = load_data()
# turn the data into a dict for indexing
documents = df.to_dict(orient='records')
#############################################################
# STEP 3: Index the data
#############################################################
# index the documents
indexing = mq.index(index_name).add_documents(documents, tensor_fields=["cleaned_text"], client_batch_size=64)
#############################################################
# STEP 4: Search the data
#############################################################
# try a generic search
q = "what is the rated voltage"
results = mq.index(index_name).search(q)
print(results['hits'][0])
#############################################################
# STEP 5: Make it chatty
#############################################################
highlights, texts = extract_text_from_highlights(results, token_limit=150)
docs = [Document(page_content=f"Source [{ind}]:" + t) for ind, t in enumerate(texts)]
llm = OpenAI(temperature=0.9)
chain_qa = LLMChain(llm=llm, prompt=qna_prompt())
llm_results = chain_qa.invoke({"summaries": docs, "question": results['query']}, return_only_outputs=True)
print(llm_results['text'])
#############################################################
# STEP 6: Score the references
#############################################################
score_threshold = 0.20
top_k = 3
scores = predict_ce(llm_results['text'], texts)
inds = get_sorted_inds(scores)
scores = scores.cpu().numpy()
scores = [np.round(s[0], 2) for s in scores]
references = [(str(np.round(scores[i], 2)), texts[i]) for i in inds[:top_k] if scores[i] > score_threshold]
df_ref = pd.DataFrame(references, columns=['score', 'sources'])
print(df_ref)
| [
"langchain.docstore.document.Document",
"langchain_openai.OpenAI"
] | [((349, 362), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (360, 362), False, 'from dotenv import load_dotenv\n'), ((984, 992), 'marqo.Client', 'Client', ([], {}), '()\n', (990, 992), False, 'from marqo import Client\n'), ((1812, 1823), 'utilities.load_data', 'load_data', ([], {}), '()\n', (1821, 1823), False, 'from utilities import load_data, extract_text_from_highlights, qna_prompt, predict_ce, get_sorted_inds\n'), ((2727, 2781), 'utilities.extract_text_from_highlights', 'extract_text_from_highlights', (['results'], {'token_limit': '(150)'}), '(results, token_limit=150)\n', (2755, 2781), False, 'from utilities import load_data, extract_text_from_highlights, qna_prompt, predict_ce, get_sorted_inds\n'), ((2882, 2905), 'langchain_openai.OpenAI', 'OpenAI', ([], {'temperature': '(0.9)'}), '(temperature=0.9)\n', (2888, 2905), False, 'from langchain_openai import OpenAI\n'), ((3331, 3369), 'utilities.predict_ce', 'predict_ce', (["llm_results['text']", 'texts'], {}), "(llm_results['text'], texts)\n", (3341, 3369), False, 'from utilities import load_data, extract_text_from_highlights, qna_prompt, predict_ce, get_sorted_inds\n'), ((3381, 3404), 'utilities.get_sorted_inds', 'get_sorted_inds', (['scores'], {}), '(scores)\n', (3396, 3404), False, 'from utilities import load_data, extract_text_from_highlights, qna_prompt, predict_ce, get_sorted_inds\n'), ((3613, 3667), 'pandas.DataFrame', 'pd.DataFrame', (['references'], {'columns': "['score', 'sources']"}), "(references, columns=['score', 'sources'])\n", (3625, 3667), True, 'import pandas as pd\n'), ((2794, 2839), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': "(f'Source [{ind}]:' + t)"}), "(page_content=f'Source [{ind}]:' + t)\n", (2802, 2839), False, 'from langchain.docstore.document import Document\n'), ((3453, 3470), 'numpy.round', 'np.round', (['s[0]', '(2)'], {}), '(s[0], 2)\n', (3461, 3470), True, 'import numpy as np\n'), ((2946, 2958), 'utilities.qna_prompt', 'qna_prompt', ([], {}), '()\n', (2956, 2958), False, 'from utilities import load_data, extract_text_from_highlights, qna_prompt, predict_ce, get_sorted_inds\n'), ((3511, 3533), 'numpy.round', 'np.round', (['scores[i]', '(2)'], {}), '(scores[i], 2)\n', (3519, 3533), True, 'import numpy as np\n')] |
from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from fastapi.encoders import jsonable_encoder
from langchain.llms import CTransformers
from langchain.chains import QAGenerationChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
from langchain.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.summarize import load_summarize_chain
from langchain.chains import RetrievalQA
import os
import json
import time
import uvicorn
import aiofiles
from PyPDF2 import PdfReader
import csv
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
def load_llm():
# Load the locally downloaded model here
llm = CTransformers(
model = "mistral-7b-instruct-v0.1.Q4_K_S.gguf",
model_type="mistral",
max_new_tokens = 1048,
temperature = 0.3
)
return llm
def file_processing(file_path):
# Load data from PDF
loader = PyPDFLoader(file_path)
data = loader.load()
question_gen = ''
for page in data:
question_gen += page.page_content
splitter_ques_gen = RecursiveCharacterTextSplitter(
chunk_size = 1000,
chunk_overlap = 100
)
chunks_ques_gen = splitter_ques_gen.split_text(question_gen)
document_ques_gen = [Document(page_content=t) for t in chunks_ques_gen]
splitter_ans_gen = RecursiveCharacterTextSplitter(
chunk_size = 300,
chunk_overlap = 30
)
document_answer_gen = splitter_ans_gen.split_documents(
document_ques_gen
)
return document_ques_gen, document_answer_gen
def llm_pipeline(file_path):
document_ques_gen, document_answer_gen = file_processing(file_path)
llm_ques_gen_pipeline = load_llm()
prompt_template = """
You are an expert at creating questions based on coding materials and documentation.
Your goal is to prepare a coder or programmer for their exam and coding tests.
You do this by asking questions about the text below:
------------
{text}
------------
Create questions that will prepare the coders or programmers for their tests.
Make sure not to lose any important information.
QUESTIONS:
"""
PROMPT_QUESTIONS = PromptTemplate(template=prompt_template, input_variables=["text"])
refine_template = ("""
You are an expert at creating practice questions based on coding material and documentation.
Your goal is to help a coder or programmer prepare for a coding test.
We have received some practice questions to a certain extent: {existing_answer}.
We have the option to refine the existing questions or add new ones.
(only if necessary) with some more context below.
------------
{text}
------------
Given the new context, refine the original questions in English.
If the context is not helpful, please provide the original questions.
QUESTIONS:
"""
)
REFINE_PROMPT_QUESTIONS = PromptTemplate(
input_variables=["existing_answer", "text"],
template=refine_template,
)
ques_gen_chain = load_summarize_chain(llm = llm_ques_gen_pipeline,
chain_type = "refine",
verbose = True,
question_prompt=PROMPT_QUESTIONS,
refine_prompt=REFINE_PROMPT_QUESTIONS)
ques = ques_gen_chain.run(document_ques_gen)
embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store = FAISS.from_documents(document_answer_gen, embeddings)
llm_answer_gen = load_llm()
ques_list = ques.split("\n")
filtered_ques_list = [element for element in ques_list if element.endswith('?') or element.endswith('.')]
answer_generation_chain = RetrievalQA.from_chain_type(llm=llm_answer_gen,
chain_type="stuff",
retriever=vector_store.as_retriever())
return answer_generation_chain, filtered_ques_list
def get_csv (file_path):
answer_generation_chain, ques_list = llm_pipeline(file_path)
base_folder = 'static/output/'
if not os.path.isdir(base_folder):
os.mkdir(base_folder)
output_file = base_folder+"QA.csv"
with open(output_file, "w", newline="", encoding="utf-8") as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow(["Question", "Answer"]) # Writing the header row
for question in ques_list:
print("Question: ", question)
answer = answer_generation_chain.run(question)
print("Answer: ", answer)
print("--------------------------------------------------\n\n")
# Save answer to CSV file
csv_writer.writerow([question, answer])
return output_file
@app.get("/")
async def index(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/upload")
async def chat(request: Request, pdf_file: bytes = File(), filename: str = Form(...)):
base_folder = 'static/docs/'
if not os.path.isdir(base_folder):
os.mkdir(base_folder)
pdf_filename = os.path.join(base_folder, filename)
async with aiofiles.open(pdf_filename, 'wb') as f:
await f.write(pdf_file)
response_data = jsonable_encoder(json.dumps({"msg": 'success',"pdf_filename": pdf_filename}))
res = Response(response_data)
return res
@app.post("/analyze")
async def chat(request: Request, pdf_filename: str = Form(...)):
output_file = get_csv(pdf_filename)
response_data = jsonable_encoder(json.dumps({"output_file": output_file}))
res = Response(response_data)
return res
if __name__ == "__main__":
uvicorn.run("app:app", host='0.0.0.0', port=8000, reload=True) | [
"langchain.text_splitter.RecursiveCharacterTextSplitter",
"langchain.prompts.PromptTemplate",
"langchain.vectorstores.FAISS.from_documents",
"langchain.document_loaders.PyPDFLoader",
"langchain.llms.CTransformers",
"langchain.docstore.document.Document",
"langchain.chains.summarize.load_summarize_chain",
"langchain.embeddings.HuggingFaceBgeEmbeddings"
] | [((911, 920), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (918, 920), False, 'from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status\n'), ((1008, 1046), 'fastapi.templating.Jinja2Templates', 'Jinja2Templates', ([], {'directory': '"""templates"""'}), "(directory='templates')\n", (1023, 1046), False, 'from fastapi.templating import Jinja2Templates\n'), ((945, 976), 'fastapi.staticfiles.StaticFiles', 'StaticFiles', ([], {'directory': '"""static"""'}), "(directory='static')\n", (956, 976), False, 'from fastapi.staticfiles import StaticFiles\n'), ((1123, 1247), 'langchain.llms.CTransformers', 'CTransformers', ([], {'model': '"""mistral-7b-instruct-v0.1.Q4_K_S.gguf"""', 'model_type': '"""mistral"""', 'max_new_tokens': '(1048)', 'temperature': '(0.3)'}), "(model='mistral-7b-instruct-v0.1.Q4_K_S.gguf', model_type=\n 'mistral', max_new_tokens=1048, temperature=0.3)\n", (1136, 1247), False, 'from langchain.llms import CTransformers\n'), ((1385, 1407), 'langchain.document_loaders.PyPDFLoader', 'PyPDFLoader', (['file_path'], {}), '(file_path)\n', (1396, 1407), False, 'from langchain.document_loaders import PyPDFLoader\n'), ((1562, 1628), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(100)'}), '(chunk_size=1000, chunk_overlap=100)\n', (1592, 1628), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1831, 1895), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(300)', 'chunk_overlap': '(30)'}), '(chunk_size=300, chunk_overlap=30)\n', (1861, 1895), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((2734, 2800), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'template': 'prompt_template', 'input_variables': "['text']"}), "(template=prompt_template, input_variables=['text'])\n", (2748, 2800), False, 'from langchain.prompts import PromptTemplate\n'), ((3479, 3569), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['existing_answer', 'text']", 'template': 'refine_template'}), "(input_variables=['existing_answer', 'text'], template=\n refine_template)\n", (3493, 3569), False, 'from langchain.prompts import PromptTemplate\n'), ((3615, 3779), 'langchain.chains.summarize.load_summarize_chain', 'load_summarize_chain', ([], {'llm': 'llm_ques_gen_pipeline', 'chain_type': '"""refine"""', 'verbose': '(True)', 'question_prompt': 'PROMPT_QUESTIONS', 'refine_prompt': 'REFINE_PROMPT_QUESTIONS'}), "(llm=llm_ques_gen_pipeline, chain_type='refine',\n verbose=True, question_prompt=PROMPT_QUESTIONS, refine_prompt=\n REFINE_PROMPT_QUESTIONS)\n", (3635, 3779), False, 'from langchain.chains.summarize import load_summarize_chain\n'), ((4033, 4111), 'langchain.embeddings.HuggingFaceBgeEmbeddings', 'HuggingFaceBgeEmbeddings', ([], {'model_name': '"""sentence-transformers/all-mpnet-base-v2"""'}), "(model_name='sentence-transformers/all-mpnet-base-v2')\n", (4057, 4111), False, 'from langchain.embeddings import HuggingFaceBgeEmbeddings\n'), ((4134, 4187), 'langchain.vectorstores.FAISS.from_documents', 'FAISS.from_documents', (['document_answer_gen', 'embeddings'], {}), '(document_answer_gen, embeddings)\n', (4154, 4187), False, 'from langchain.vectorstores import FAISS\n'), ((5686, 5692), 'fastapi.File', 'File', ([], {}), '()\n', (5690, 5692), False, 'from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status\n'), ((5710, 5719), 'fastapi.Form', 'Form', (['...'], {}), '(...)\n', (5714, 5719), False, 'from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status\n'), ((5847, 5882), 'os.path.join', 'os.path.join', (['base_folder', 'filename'], {}), '(base_folder, filename)\n', (5859, 5882), False, 'import os\n'), ((6084, 6107), 'fastapi.Response', 'Response', (['response_data'], {}), '(response_data)\n', (6092, 6107), False, 'from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status\n'), ((6205, 6214), 'fastapi.Form', 'Form', (['...'], {}), '(...)\n', (6209, 6214), False, 'from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status\n'), ((6349, 6372), 'fastapi.Response', 'Response', (['response_data'], {}), '(response_data)\n', (6357, 6372), False, 'from fastapi import FastAPI, Form, Request, Response, File, Depends, HTTPException, status\n'), ((6424, 6486), 'uvicorn.run', 'uvicorn.run', (['"""app:app"""'], {'host': '"""0.0.0.0"""', 'port': '(8000)', 'reload': '(True)'}), "('app:app', host='0.0.0.0', port=8000, reload=True)\n", (6435, 6486), False, 'import uvicorn\n'), ((1754, 1778), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 't'}), '(page_content=t)\n', (1762, 1778), False, 'from langchain.docstore.document import Document\n'), ((4812, 4838), 'os.path.isdir', 'os.path.isdir', (['base_folder'], {}), '(base_folder)\n', (4825, 4838), False, 'import os\n'), ((4849, 4870), 'os.mkdir', 'os.mkdir', (['base_folder'], {}), '(base_folder)\n', (4857, 4870), False, 'import os\n'), ((5008, 5027), 'csv.writer', 'csv.writer', (['csvfile'], {}), '(csvfile)\n', (5018, 5027), False, 'import csv\n'), ((5768, 5794), 'os.path.isdir', 'os.path.isdir', (['base_folder'], {}), '(base_folder)\n', (5781, 5794), False, 'import os\n'), ((5805, 5826), 'os.mkdir', 'os.mkdir', (['base_folder'], {}), '(base_folder)\n', (5813, 5826), False, 'import os\n'), ((5901, 5934), 'aiofiles.open', 'aiofiles.open', (['pdf_filename', '"""wb"""'], {}), "(pdf_filename, 'wb')\n", (5914, 5934), False, 'import aiofiles\n'), ((6012, 6072), 'json.dumps', 'json.dumps', (["{'msg': 'success', 'pdf_filename': pdf_filename}"], {}), "({'msg': 'success', 'pdf_filename': pdf_filename})\n", (6022, 6072), False, 'import json\n'), ((6296, 6336), 'json.dumps', 'json.dumps', (["{'output_file': output_file}"], {}), "({'output_file': output_file})\n", (6306, 6336), False, 'import json\n')] |
#!/usr/bin/env python
"""Example LangChain server exposes a retriever."""
from fastapi import FastAPI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langserve import add_routes
vectorstore = FAISS.from_texts(
["cats like fish", "dogs like sticks"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
app = FastAPI(
title="LangChain Server",
version="1.0",
description="Spin up a simple api server using Langchain's Runnable interfaces",
)
# Adds routes to the app for using the retriever under:
# /invoke
# /batch
# /stream
add_routes(app, retriever)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="localhost", port=8000)
| [
"langchain.embeddings.OpenAIEmbeddings"
] | [((381, 515), 'fastapi.FastAPI', 'FastAPI', ([], {'title': '"""LangChain Server"""', 'version': '"""1.0"""', 'description': '"""Spin up a simple api server using Langchain\'s Runnable interfaces"""'}), '(title=\'LangChain Server\', version=\'1.0\', description=\n "Spin up a simple api server using Langchain\'s Runnable interfaces")\n', (388, 515), False, 'from fastapi import FastAPI\n'), ((611, 637), 'langserve.add_routes', 'add_routes', (['app', 'retriever'], {}), '(app, retriever)\n', (621, 637), False, 'from langserve import add_routes\n'), ((690, 735), 'uvicorn.run', 'uvicorn.run', (['app'], {'host': '"""localhost"""', 'port': '(8000)'}), "(app, host='localhost', port=8000)\n", (701, 735), False, 'import uvicorn\n'), ((314, 332), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (330, 332), False, 'from langchain.embeddings import OpenAIEmbeddings\n')] |
## Conversational Q&A Chatbot
import streamlit as st
from langchain.schema import HumanMessage,SystemMessage,AIMessage
from langchain.chat_models import ChatOpenAI
## Streamlit UI
st.set_page_config(page_title="Conversational Q&A Chatbot")
st.header("Hey, Let's Chat")
from dotenv import load_dotenv
load_dotenv()
import os
chat=ChatOpenAI(temperature=0.5)
if 'flowmessages' not in st.session_state:
st.session_state['flowmessages']=[
SystemMessage(content="Yor are a comedian AI assitant")
]
## Function to load OpenAI model and get respones
def get_chatmodel_response(question):
st.session_state['flowmessages'].append(HumanMessage(content=question))
answer=chat(st.session_state['flowmessages'])
st.session_state['flowmessages'].append(AIMessage(content=answer.content))
return answer.content
input=st.text_input("Input: ",key="input")
response=get_chatmodel_response(input)
submit=st.button("Ask the question")
## If ask button is clicked
if submit:
st.subheader("The Response is")
st.write(response) | [
"langchain.schema.SystemMessage",
"langchain.schema.AIMessage",
"langchain.schema.HumanMessage",
"langchain.chat_models.ChatOpenAI"
] | [((189, 248), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""Conversational Q&A Chatbot"""'}), "(page_title='Conversational Q&A Chatbot')\n", (207, 248), True, 'import streamlit as st\n'), ((250, 278), 'streamlit.header', 'st.header', (['"""Hey, Let\'s Chat"""'], {}), '("Hey, Let\'s Chat")\n', (259, 278), True, 'import streamlit as st\n'), ((314, 327), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (325, 327), False, 'from dotenv import load_dotenv\n'), ((347, 374), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0.5)'}), '(temperature=0.5)\n', (357, 374), False, 'from langchain.chat_models import ChatOpenAI\n'), ((873, 910), 'streamlit.text_input', 'st.text_input', (['"""Input: """'], {'key': '"""input"""'}), "('Input: ', key='input')\n", (886, 910), True, 'import streamlit as st\n'), ((960, 989), 'streamlit.button', 'st.button', (['"""Ask the question"""'], {}), "('Ask the question')\n", (969, 989), True, 'import streamlit as st\n'), ((1040, 1071), 'streamlit.subheader', 'st.subheader', (['"""The Response is"""'], {}), "('The Response is')\n", (1052, 1071), True, 'import streamlit as st\n'), ((1077, 1095), 'streamlit.write', 'st.write', (['response'], {}), '(response)\n', (1085, 1095), True, 'import streamlit as st\n'), ((470, 525), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': '"""Yor are a comedian AI assitant"""'}), "(content='Yor are a comedian AI assitant')\n", (483, 525), False, 'from langchain.schema import HumanMessage, SystemMessage, AIMessage\n'), ((674, 704), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': 'question'}), '(content=question)\n', (686, 704), False, 'from langchain.schema import HumanMessage, SystemMessage, AIMessage\n'), ((802, 835), 'langchain.schema.AIMessage', 'AIMessage', ([], {'content': 'answer.content'}), '(content=answer.content)\n', (811, 835), False, 'from langchain.schema import HumanMessage, SystemMessage, AIMessage\n')] |
"""Wrapper around Google's PaLM Chat API."""
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional
from pydantic import BaseModel, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env
if TYPE_CHECKING:
import google.generativeai as genai
logger = logging.getLogger(__name__)
class ChatGooglePalmError(Exception):
pass
def _truncate_at_stop_tokens(
text: str,
stop: Optional[List[str]],
) -> str:
"""Truncates text at the earliest stop token found."""
if stop is None:
return text
for stop_token in stop:
stop_token_idx = text.find(stop_token)
if stop_token_idx != -1:
text = text[:stop_token_idx]
return text
def _response_to_result(
response: genai.types.ChatResponse,
stop: Optional[List[str]],
) -> ChatResult:
"""Converts a PaLM API response into a LangChain ChatResult."""
if not response.candidates:
raise ChatGooglePalmError("ChatResponse must have at least one candidate.")
generations: List[ChatGeneration] = []
for candidate in response.candidates:
author = candidate.get("author")
if author is None:
raise ChatGooglePalmError(f"ChatResponse must have an author: {candidate}")
content = _truncate_at_stop_tokens(candidate.get("content", ""), stop)
if content is None:
raise ChatGooglePalmError(f"ChatResponse must have a content: {candidate}")
if author == "ai":
generations.append(
ChatGeneration(text=content, message=AIMessage(content=content))
)
elif author == "human":
generations.append(
ChatGeneration(
text=content,
message=HumanMessage(content=content),
)
)
else:
generations.append(
ChatGeneration(
text=content,
message=ChatMessage(role=author, content=content),
)
)
return ChatResult(generations=generations)
def _messages_to_prompt_dict(
input_messages: List[BaseMessage],
) -> genai.types.MessagePromptDict:
"""Converts a list of LangChain messages into a PaLM API MessagePrompt structure."""
import google.generativeai as genai
context: str = ""
examples: List[genai.types.MessageDict] = []
messages: List[genai.types.MessageDict] = []
remaining = list(enumerate(input_messages))
while remaining:
index, input_message = remaining.pop(0)
if isinstance(input_message, SystemMessage):
if index != 0:
raise ChatGooglePalmError("System message must be first input message.")
context = input_message.content
elif isinstance(input_message, HumanMessage) and input_message.example:
if messages:
raise ChatGooglePalmError(
"Message examples must come before other messages."
)
_, next_input_message = remaining.pop(0)
if isinstance(next_input_message, AIMessage) and next_input_message.example:
examples.extend(
[
genai.types.MessageDict(
author="human", content=input_message.content
),
genai.types.MessageDict(
author="ai", content=next_input_message.content
),
]
)
else:
raise ChatGooglePalmError(
"Human example message must be immediately followed by an "
" AI example response."
)
elif isinstance(input_message, AIMessage) and input_message.example:
raise ChatGooglePalmError(
"AI example message must be immediately preceded by a Human "
"example message."
)
elif isinstance(input_message, AIMessage):
messages.append(
genai.types.MessageDict(author="ai", content=input_message.content)
)
elif isinstance(input_message, HumanMessage):
messages.append(
genai.types.MessageDict(author="human", content=input_message.content)
)
elif isinstance(input_message, ChatMessage):
messages.append(
genai.types.MessageDict(
author=input_message.role, content=input_message.content
)
)
else:
raise ChatGooglePalmError(
"Messages without an explicit role not supported by PaLM API."
)
return genai.types.MessagePromptDict(
context=context,
examples=examples,
messages=messages,
)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
import google.api_core.exceptions
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def chat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _chat_with_retry(**kwargs: Any) -> Any:
return llm.client.chat(**kwargs)
return _chat_with_retry(**kwargs)
async def achat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
async def _achat_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.chat_async(**kwargs)
return await _achat_with_retry(**kwargs)
class ChatGooglePalm(BaseChatModel, BaseModel):
"""Wrapper around Google's PaLM Chat API.
To use you must have the google.generativeai Python package installed and
either:
1. The ``GOOGLE_API_KEY``` environment varaible set with your API key, or
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
constructor.
Example:
.. code-block:: python
from langchain.chat_models import ChatGooglePalm
chat = ChatGooglePalm()
"""
client: Any #: :meta private:
model_name: str = "models/chat-bison-001"
"""Model name to use."""
google_api_key: Optional[str] = None
temperature: Optional[float] = None
"""Run inference with this temperature. Must by in the closed
interval [0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists, temperature, top_p, and top_k."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ChatGooglePalmError(
"Could not import google.generativeai python package. "
"Please install it with `pip install google-generativeai`"
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> ChatResult:
prompt = _messages_to_prompt_dict(messages)
response: genai.types.ChatResponse = chat_with_retry(
self,
model=self.model_name,
prompt=prompt,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
candidate_count=self.n,
)
return _response_to_result(response, stop)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
prompt = _messages_to_prompt_dict(messages)
response: genai.types.ChatResponse = await achat_with_retry(
self,
model=self.model_name,
prompt=prompt,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
candidate_count=self.n,
)
return _response_to_result(response, stop)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"n": self.n,
}
@property
def _llm_type(self) -> str:
return "google-palm-chat"
| [
"langchain.schema.AIMessage",
"langchain.utils.get_from_dict_or_env",
"langchain.schema.ChatMessage",
"langchain.schema.HumanMessage",
"langchain.schema.ChatResult"
] | [((792, 819), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (809, 819), False, 'import logging\n'), ((2563, 2598), 'langchain.schema.ChatResult', 'ChatResult', ([], {'generations': 'generations'}), '(generations=generations)\n', (2573, 2598), False, 'from langchain.schema import AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage\n'), ((5264, 5353), 'google.generativeai.types.MessagePromptDict', 'genai.types.MessagePromptDict', ([], {'context': 'context', 'examples': 'examples', 'messages': 'messages'}), '(context=context, examples=examples, messages=\n messages)\n', (5293, 5353), True, 'import google.generativeai as genai\n'), ((8257, 8273), 'pydantic.root_validator', 'root_validator', ([], {}), '()\n', (8271, 8273), False, 'from pydantic import BaseModel, root_validator\n'), ((8442, 8506), 'langchain.utils.get_from_dict_or_env', 'get_from_dict_or_env', (['values', '"""google_api_key"""', '"""GOOGLE_API_KEY"""'], {}), "(values, 'google_api_key', 'GOOGLE_API_KEY')\n", (8462, 8506), False, 'from langchain.utils import get_from_dict_or_env\n'), ((5697, 5728), 'tenacity.stop_after_attempt', 'stop_after_attempt', (['max_retries'], {}), '(max_retries)\n', (5715, 5728), False, 'from tenacity import before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential\n'), ((5743, 5816), 'tenacity.wait_exponential', 'wait_exponential', ([], {'multiplier': 'multiplier', 'min': 'min_seconds', 'max': 'max_seconds'}), '(multiplier=multiplier, min=min_seconds, max=max_seconds)\n', (5759, 5816), False, 'from tenacity import before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential\n'), ((6114, 6155), 'tenacity.before_sleep_log', 'before_sleep_log', (['logger', 'logging.WARNING'], {}), '(logger, logging.WARNING)\n', (6130, 6155), False, 'from tenacity import before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential\n'), ((8603, 8642), 'google.generativeai.configure', 'genai.configure', ([], {'api_key': 'google_api_key'}), '(api_key=google_api_key)\n', (8618, 8642), True, 'import google.generativeai as genai\n'), ((6015, 6081), 'tenacity.retry_if_exception_type', 'retry_if_exception_type', (['google.api_core.exceptions.GoogleAPIError'], {}), '(google.api_core.exceptions.GoogleAPIError)\n', (6038, 6081), False, 'from tenacity import before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential\n'), ((5846, 5915), 'tenacity.retry_if_exception_type', 'retry_if_exception_type', (['google.api_core.exceptions.ResourceExhausted'], {}), '(google.api_core.exceptions.ResourceExhausted)\n', (5869, 5915), False, 'from tenacity import before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential\n'), ((5930, 6000), 'tenacity.retry_if_exception_type', 'retry_if_exception_type', (['google.api_core.exceptions.ServiceUnavailable'], {}), '(google.api_core.exceptions.ServiceUnavailable)\n', (5953, 6000), False, 'from tenacity import before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential\n'), ((2073, 2099), 'langchain.schema.AIMessage', 'AIMessage', ([], {'content': 'content'}), '(content=content)\n', (2082, 2099), False, 'from langchain.schema import AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage\n'), ((2273, 2302), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': 'content'}), '(content=content)\n', (2285, 2302), False, 'from langchain.schema import AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage\n'), ((2476, 2517), 'langchain.schema.ChatMessage', 'ChatMessage', ([], {'role': 'author', 'content': 'content'}), '(role=author, content=content)\n', (2487, 2517), False, 'from langchain.schema import AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage\n'), ((3748, 3818), 'google.generativeai.types.MessageDict', 'genai.types.MessageDict', ([], {'author': '"""human"""', 'content': 'input_message.content'}), "(author='human', content=input_message.content)\n", (3771, 3818), True, 'import google.generativeai as genai\n'), ((3898, 3970), 'google.generativeai.types.MessageDict', 'genai.types.MessageDict', ([], {'author': '"""ai"""', 'content': 'next_input_message.content'}), "(author='ai', content=next_input_message.content)\n", (3921, 3970), True, 'import google.generativeai as genai\n'), ((4608, 4675), 'google.generativeai.types.MessageDict', 'genai.types.MessageDict', ([], {'author': '"""ai"""', 'content': 'input_message.content'}), "(author='ai', content=input_message.content)\n", (4631, 4675), True, 'import google.generativeai as genai\n'), ((4789, 4859), 'google.generativeai.types.MessageDict', 'genai.types.MessageDict', ([], {'author': '"""human"""', 'content': 'input_message.content'}), "(author='human', content=input_message.content)\n", (4812, 4859), True, 'import google.generativeai as genai\n'), ((4972, 5058), 'google.generativeai.types.MessageDict', 'genai.types.MessageDict', ([], {'author': 'input_message.role', 'content': 'input_message.content'}), '(author=input_message.role, content=input_message.\n content)\n', (4995, 5058), True, 'import google.generativeai as genai\n')] |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : create_db.py
@Time : 2023/12/14 10:56:31
@Author : Logan Zou
@Version : 1.0
@Contact : [email protected]
@License : (C)Copyright 2017-2018, Liugroup-NLPR-CASIA
@Desc : 知识库搭建
'''
# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os
# 获取文件路径函数
def get_files(dir_path):
# args:dir_path,目标文件夹路径
file_list = []
for filepath, dirnames, filenames in os.walk(dir_path):
# os.walk 函数将递归遍历指定文件夹
for filename in filenames:
# 通过后缀名判断文件类型是否满足要求
if filename.endswith(".md"):
# 如果满足要求,将其绝对路径加入到结果列表
file_list.append(os.path.join(filepath, filename))
elif filename.endswith(".txt"):
file_list.append(os.path.join(filepath, filename))
return file_list
# 加载文件函数
def get_text(dir_path):
# args:dir_path,目标文件夹路径
# 首先调用上文定义的函数得到目标文件路径列表
file_lst = get_files(dir_path)
# docs 存放加载之后的纯文本对象
docs = []
# 遍历所有目标文件
for one_file in tqdm(file_lst):
file_type = one_file.split('.')[-1]
if file_type == 'md':
loader = UnstructuredMarkdownLoader(one_file)
elif file_type == 'txt':
loader = UnstructuredFileLoader(one_file)
else:
# 如果是不符合条件的文件,直接跳过
continue
docs.extend(loader.load())
return docs
# 目标文件夹
tar_dir = [
"/root/autodl-tmp/self-llm",
"/root/autodl-tmp/llm-universe",
"/root/autodl-tmp/prompt-engineering-for-developers",
"/root/autodl-tmp/so-large-lm",
"/root/autodl-tmp/hugging-llm",
]
# 加载目标文件
docs = []
for dir_path in tar_dir:
docs.extend(get_text(dir_path))
# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/sentence-transformer")
# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
documents=split_docs,
embedding=embeddings,
persist_directory=persist_directory # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist() | [
"langchain.embeddings.huggingface.HuggingFaceEmbeddings",
"langchain.vectorstores.Chroma.from_documents",
"langchain.text_splitter.RecursiveCharacterTextSplitter",
"langchain.document_loaders.UnstructuredFileLoader",
"langchain.document_loaders.UnstructuredMarkdownLoader"
] | [((2018, 2083), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(500)', 'chunk_overlap': '(150)'}), '(chunk_size=500, chunk_overlap=150)\n', (2048, 2083), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((2164, 2237), 'langchain.embeddings.huggingface.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': '"""/root/autodl-tmp/sentence-transformer"""'}), "(model_name='/root/autodl-tmp/sentence-transformer')\n", (2185, 2237), False, 'from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n'), ((2327, 2433), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', ([], {'documents': 'split_docs', 'embedding': 'embeddings', 'persist_directory': 'persist_directory'}), '(documents=split_docs, embedding=embeddings,\n persist_directory=persist_directory)\n', (2348, 2433), False, 'from langchain.vectorstores import Chroma\n'), ((741, 758), 'os.walk', 'os.walk', (['dir_path'], {}), '(dir_path)\n', (748, 758), False, 'import os\n'), ((1335, 1349), 'tqdm.tqdm', 'tqdm', (['file_lst'], {}), '(file_lst)\n', (1339, 1349), False, 'from tqdm import tqdm\n'), ((1446, 1482), 'langchain.document_loaders.UnstructuredMarkdownLoader', 'UnstructuredMarkdownLoader', (['one_file'], {}), '(one_file)\n', (1472, 1482), False, 'from langchain.document_loaders import UnstructuredMarkdownLoader\n'), ((1537, 1569), 'langchain.document_loaders.UnstructuredFileLoader', 'UnstructuredFileLoader', (['one_file'], {}), '(one_file)\n', (1559, 1569), False, 'from langchain.document_loaders import UnstructuredFileLoader\n'), ((971, 1003), 'os.path.join', 'os.path.join', (['filepath', 'filename'], {}), '(filepath, filename)\n', (983, 1003), False, 'import os\n'), ((1082, 1114), 'os.path.join', 'os.path.join', (['filepath', 'filename'], {}), '(filepath, filename)\n', (1094, 1114), False, 'import os\n')] |
from flask import Flask, request
from flask_restful import Resource, Api, reqparse, abort
from werkzeug.utils import secure_filename
########################################################################
import tempfile
import os
from langchain.document_loaders import DirectoryLoader, PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone
import pinecone
from templates.qa_prompt import QA_PROMPT
from templates.condense_prompt import CONDENSE_PROMPT
from dotenv import load_dotenv
load_dotenv()
openai_api_key_env = os.environ.get('OPENAI_API_KEY')
pinecone_api_key_env = os.environ.get('PINECONE_API_KEY')
pinecone_environment_env = os.environ.get('PINECONE_ENVIRONMENT')
pinecone_index_env = os.environ.get('PINECONE_INDEX')
pinecone_namespace = 'testing-pdf-2389203901'
app = Flask("L-ChatBot")
UPLOAD_FOLDER = 'documents'
ALLOWED_EXTENSIONS = {'pdf'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
api = Api(app)
parser = reqparse.RequestParser()
def get_answer(message, temperature=0.7, source_amount=4):
chat_history = []
embeddings = OpenAIEmbeddings(
model='text-embedding-ada-002', openai_api_key=openai_api_key_env)
pinecone.init(api_key=pinecone_api_key_env,
environment=pinecone_environment_env)
vectorstore = Pinecone.from_existing_index(
index_name=pinecone_index_env, embedding=embeddings, text_key='text', namespace=pinecone_namespace)
model = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=temperature,
openai_api_key=openai_api_key_env, streaming=False) # max temperature is 2 least is 0
retriever = vectorstore.as_retriever(search_kwargs={
"k": source_amount}, qa_template=QA_PROMPT, question_generator_template=CONDENSE_PROMPT) # 9 is the max sources
qa = ConversationalRetrievalChain.from_llm(
llm=model, retriever=retriever, return_source_documents=True)
result = qa({"question": message, "chat_history": chat_history})
print("Cevap Geldi")
answer = result["answer"]
source_documents = result['source_documents']
parsed_documents = []
for doc in source_documents:
parsed_doc = {
"page_content": doc.page_content,
"metadata": {
"author": doc.metadata.get("author", ""),
"creationDate": doc.metadata.get("creationDate", ""),
"creator": doc.metadata.get("creator", ""),
"file_path": doc.metadata.get("file_path", ""),
"format": doc.metadata.get("format", ""),
"keywords": doc.metadata.get("keywords", ""),
"modDate": doc.metadata.get("modDate", ""),
"page_number": doc.metadata.get("page_number", 0),
"producer": doc.metadata.get("producer", ""),
"source": doc.metadata.get("source", ""),
"subject": doc.metadata.get("subject", ""),
"title": doc.metadata.get("title", ""),
"total_pages": doc.metadata.get("total_pages", 0),
"trapped": doc.metadata.get("trapped", "")
}
}
parsed_documents.append(parsed_doc)
# Display the response in the Streamlit app
return {
"answer": answer,
"meta": parsed_documents
}
########################################################################
class Ask(Resource):
def get(self):
question = request.args.get("question")
temp = request.args.get("temp", default=0.7)
sources = request.args.get("sources", default=4)
return get_answer(question, float(temp), int(sources))
class Ingest(Resource):
def allowed_file(self, filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def post(self):
# Get Text type fields
if 'file' not in request.files:
return 'No file part'
file = request.files.get("file")
if file and self.allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
loader = DirectoryLoader(
app.config['UPLOAD_FOLDER'], glob="**/*.pdf", loader_cls=PyMuPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=100)
documents = text_splitter.split_documents(documents)
pinecone.init(
api_key=pinecone_api_key_env, # find at app.pinecone.io
environment=pinecone_environment_env # next to api key in console
)
embeddings = OpenAIEmbeddings(
model='text-embedding-ada-002', openai_api_key=openai_api_key_env)
Pinecone.from_documents(
documents, embeddings, index_name=pinecone_index_env, namespace=pinecone_namespace)
return 'File uploaded and ingested successfully'
api.add_resource(Ask, "/ask")
api.add_resource(Ingest, "/ingest")
if __name__ == "__main__":
app.run()
| [
"langchain.vectorstores.Pinecone.from_existing_index",
"langchain.vectorstores.Pinecone.from_documents",
"langchain.chains.ConversationalRetrievalChain.from_llm",
"langchain.chat_models.ChatOpenAI",
"langchain.text_splitter.RecursiveCharacterTextSplitter",
"langchain.document_loaders.DirectoryLoader",
"langchain.embeddings.openai.OpenAIEmbeddings"
] | [((718, 731), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (729, 731), False, 'from dotenv import load_dotenv\n'), ((753, 785), 'os.environ.get', 'os.environ.get', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (767, 785), False, 'import os\n'), ((809, 843), 'os.environ.get', 'os.environ.get', (['"""PINECONE_API_KEY"""'], {}), "('PINECONE_API_KEY')\n", (823, 843), False, 'import os\n'), ((871, 909), 'os.environ.get', 'os.environ.get', (['"""PINECONE_ENVIRONMENT"""'], {}), "('PINECONE_ENVIRONMENT')\n", (885, 909), False, 'import os\n'), ((931, 963), 'os.environ.get', 'os.environ.get', (['"""PINECONE_INDEX"""'], {}), "('PINECONE_INDEX')\n", (945, 963), False, 'import os\n'), ((1018, 1036), 'flask.Flask', 'Flask', (['"""L-ChatBot"""'], {}), "('L-ChatBot')\n", (1023, 1036), False, 'from flask import Flask, request\n'), ((1146, 1154), 'flask_restful.Api', 'Api', (['app'], {}), '(app)\n', (1149, 1154), False, 'from flask_restful import Resource, Api, reqparse, abort\n'), ((1165, 1189), 'flask_restful.reqparse.RequestParser', 'reqparse.RequestParser', ([], {}), '()\n', (1187, 1189), False, 'from flask_restful import Resource, Api, reqparse, abort\n'), ((1290, 1378), 'langchain.embeddings.openai.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""', 'openai_api_key': 'openai_api_key_env'}), "(model='text-embedding-ada-002', openai_api_key=\n openai_api_key_env)\n", (1306, 1378), False, 'from langchain.embeddings.openai import OpenAIEmbeddings\n'), ((1388, 1474), 'pinecone.init', 'pinecone.init', ([], {'api_key': 'pinecone_api_key_env', 'environment': 'pinecone_environment_env'}), '(api_key=pinecone_api_key_env, environment=\n pinecone_environment_env)\n', (1401, 1474), False, 'import pinecone\n'), ((1506, 1639), 'langchain.vectorstores.Pinecone.from_existing_index', 'Pinecone.from_existing_index', ([], {'index_name': 'pinecone_index_env', 'embedding': 'embeddings', 'text_key': '"""text"""', 'namespace': 'pinecone_namespace'}), "(index_name=pinecone_index_env, embedding=\n embeddings, text_key='text', namespace=pinecone_namespace)\n", (1534, 1639), False, 'from langchain.vectorstores import Pinecone\n'), ((1656, 1775), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-3.5-turbo"""', 'temperature': 'temperature', 'openai_api_key': 'openai_api_key_env', 'streaming': '(False)'}), "(model_name='gpt-3.5-turbo', temperature=temperature,\n openai_api_key=openai_api_key_env, streaming=False)\n", (1666, 1775), False, 'from langchain.chat_models import ChatOpenAI\n'), ((2018, 2121), 'langchain.chains.ConversationalRetrievalChain.from_llm', 'ConversationalRetrievalChain.from_llm', ([], {'llm': 'model', 'retriever': 'retriever', 'return_source_documents': '(True)'}), '(llm=model, retriever=retriever,\n return_source_documents=True)\n', (2055, 2121), False, 'from langchain.chains import ConversationalRetrievalChain\n'), ((3647, 3675), 'flask.request.args.get', 'request.args.get', (['"""question"""'], {}), "('question')\n", (3663, 3675), False, 'from flask import Flask, request\n'), ((3691, 3728), 'flask.request.args.get', 'request.args.get', (['"""temp"""'], {'default': '(0.7)'}), "('temp', default=0.7)\n", (3707, 3728), False, 'from flask import Flask, request\n'), ((3747, 3785), 'flask.request.args.get', 'request.args.get', (['"""sources"""'], {'default': '(4)'}), "('sources', default=4)\n", (3763, 3785), False, 'from flask import Flask, request\n'), ((4162, 4187), 'flask.request.files.get', 'request.files.get', (['"""file"""'], {}), "('file')\n", (4179, 4187), False, 'from flask import Flask, request\n'), ((4265, 4295), 'werkzeug.utils.secure_filename', 'secure_filename', (['file.filename'], {}), '(file.filename)\n', (4280, 4295), False, 'from werkzeug.utils import secure_filename\n'), ((4392, 4484), 'langchain.document_loaders.DirectoryLoader', 'DirectoryLoader', (["app.config['UPLOAD_FOLDER']"], {'glob': '"""**/*.pdf"""', 'loader_cls': 'PyMuPDFLoader'}), "(app.config['UPLOAD_FOLDER'], glob='**/*.pdf', loader_cls=\n PyMuPDFLoader)\n", (4407, 4484), False, 'from langchain.document_loaders import DirectoryLoader, PyMuPDFLoader\n'), ((4563, 4629), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(100)'}), '(chunk_size=1000, chunk_overlap=100)\n', (4593, 4629), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((4725, 4811), 'pinecone.init', 'pinecone.init', ([], {'api_key': 'pinecone_api_key_env', 'environment': 'pinecone_environment_env'}), '(api_key=pinecone_api_key_env, environment=\n pinecone_environment_env)\n', (4738, 4811), False, 'import pinecone\n'), ((4935, 5023), 'langchain.embeddings.openai.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""', 'openai_api_key': 'openai_api_key_env'}), "(model='text-embedding-ada-002', openai_api_key=\n openai_api_key_env)\n", (4951, 5023), False, 'from langchain.embeddings.openai import OpenAIEmbeddings\n'), ((5048, 5160), 'langchain.vectorstores.Pinecone.from_documents', 'Pinecone.from_documents', (['documents', 'embeddings'], {'index_name': 'pinecone_index_env', 'namespace': 'pinecone_namespace'}), '(documents, embeddings, index_name=\n pinecone_index_env, namespace=pinecone_namespace)\n', (5071, 5160), False, 'from langchain.vectorstores import Pinecone\n'), ((4318, 4369), 'os.path.join', 'os.path.join', (["app.config['UPLOAD_FOLDER']", 'filename'], {}), "(app.config['UPLOAD_FOLDER'], filename)\n", (4330, 4369), False, 'import os\n')] |
from langchain.llms import LlamaCpp
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
def hf_embeddings():
return HuggingFaceEmbeddings(
model_name = "sentence-transformers/all-mpnet-base-v2",
)
def code_llama():
callbackmanager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(
model_path="./models/codellama-7b.Q4_K_M.gguf",
n_ctx=2048,
max_tokens=200,
n_gpu_layers=1,
f16_kv=True,
callback_manager=callbackmanager,
verbose=True,
use_mlock=True
)
return llm | [
"langchain.llms.LlamaCpp",
"langchain.embeddings.HuggingFaceEmbeddings",
"langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler"
] | [((260, 335), 'langchain.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': '"""sentence-transformers/all-mpnet-base-v2"""'}), "(model_name='sentence-transformers/all-mpnet-base-v2')\n", (281, 335), False, 'from langchain.embeddings import HuggingFaceEmbeddings\n'), ((456, 642), 'langchain.llms.LlamaCpp', 'LlamaCpp', ([], {'model_path': '"""./models/codellama-7b.Q4_K_M.gguf"""', 'n_ctx': '(2048)', 'max_tokens': '(200)', 'n_gpu_layers': '(1)', 'f16_kv': '(True)', 'callback_manager': 'callbackmanager', 'verbose': '(True)', 'use_mlock': '(True)'}), "(model_path='./models/codellama-7b.Q4_K_M.gguf', n_ctx=2048,\n max_tokens=200, n_gpu_layers=1, f16_kv=True, callback_manager=\n callbackmanager, verbose=True, use_mlock=True)\n", (464, 642), False, 'from langchain.llms import LlamaCpp\n'), ((411, 443), 'langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler', 'StreamingStdOutCallbackHandler', ([], {}), '()\n', (441, 443), False, 'from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n')] |
import os
import yaml
from types import SimpleNamespace
import openai
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
with open("config.yml") as f:
config = yaml.safe_load(f)
config = SimpleNamespace(**config)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def semantic_search(query_embedding, embeddings):
"""Manual similarity search (deprecated in favor of langchain)."""
similarities = cosine_similarity([query_embedding], embeddings)[0]
ranked_indices = np.argsort(-similarities)
return ranked_indices
def answer_question(context, query, model="gpt-3.5-turbo", max_tokens=None, temperature=config.temperature):
system_prompt = """
You are a truthful and accurate scientific research assistant.
You can write equations in LaTeX.
You can fix any unknown LaTeX syntax elements. Do not use the \enumerate. \itemize, \cite, \ref LaTex environments.
You are an expert and helpful programmer and write correct code.
If parts of the context are not relevant to the question, ignore them.
Only answer if you are absolutely confident in the answer. Do not make up any facts. Do not make up what acronyms stand for.
"""
if context is not None and len(context) > 0:
prompt = f"Use the following context to answer the question at the end. If parts of the context are not relevant to the question, ignore them. Context: {context}. Question: {query}"
else:
prompt = f"Question: {query}"
try:
response = openai.ChatCompletion.create(
model=model,
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}],
max_tokens=max_tokens,
n=1,
temperature=temperature,
)
return response["choices"][0]["message"]["content"]
except (openai.error.AuthenticationError, openai.error.APIError) as e:
return "Authentication error."
except (openai.error.APIError, openai.error.Timeout, openai.error.ServiceUnavailableError) as e:
return "There was an error with the OpenAI API, or the request timed out."
except openai.error.APIConnectionError as e:
return "Issue connecting to the OpenAI API."
except Exception as e:
return "An error occurred: {}".format(e)
def run(query, model="gpt-3.5-turbo", api_key=None, query_papers=True, k=config.top_k, max_len_query=300):
if api_key is None:
openai.api_key = os.getenv("OPENAI_API_KEY")
else:
openai.api_key = api_key
db_path = "./data/db/faiss_index"
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
files = [db_path]
is_missing = False
for file in files:
if not os.path.exists(file):
print(f"{file} does not exist")
is_missing = True
else:
# Load FAISS index
db = FAISS.load_local(db_path, embeddings)
# If set, don't query papers; pretend they don't exist
if not query_papers:
is_missing = True
if not query:
return "Please enter your question above, and I'll do my best to help you."
if len(query) > max_len_query:
return "Please ask a shorter question!"
else:
# Do a similarity query, combine the most relevant chunks, and answer the question
if not is_missing:
similarity_results = db.similarity_search(query, k=k)
most_relevant_chunk = ". ".join([results.page_content for results in similarity_results])
answer = answer_question(context=most_relevant_chunk, query=query, model=model)
answer.strip("\n")
return answer
else:
answer = answer_question(context=None, query=query, model=model)
answer.strip("\n")
return answer
| [
"langchain.embeddings.HuggingFaceEmbeddings",
"langchain.vectorstores.FAISS.load_local"
] | [((313, 338), 'types.SimpleNamespace', 'SimpleNamespace', ([], {}), '(**config)\n', (328, 338), False, 'from types import SimpleNamespace\n'), ((286, 303), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (300, 303), False, 'import yaml\n'), ((602, 627), 'numpy.argsort', 'np.argsort', (['(-similarities)'], {}), '(-similarities)\n', (612, 627), True, 'import numpy as np\n'), ((2699, 2788), 'langchain.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': '"""sentence-transformers/multi-qa-mpnet-base-dot-v1"""'}), "(model_name=\n 'sentence-transformers/multi-qa-mpnet-base-dot-v1')\n", (2720, 2788), False, 'from langchain.embeddings import HuggingFaceEmbeddings\n'), ((529, 577), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['[query_embedding]', 'embeddings'], {}), '([query_embedding], embeddings)\n', (546, 577), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((1617, 1813), 'openai.ChatCompletion.create', 'openai.ChatCompletion.create', ([], {'model': 'model', 'messages': "[{'role': 'system', 'content': system_prompt}, {'role': 'user', 'content':\n prompt}]", 'max_tokens': 'max_tokens', 'n': '(1)', 'temperature': 'temperature'}), "(model=model, messages=[{'role': 'system',\n 'content': system_prompt}, {'role': 'user', 'content': prompt}],\n max_tokens=max_tokens, n=1, temperature=temperature)\n", (1645, 1813), False, 'import openai\n'), ((2571, 2598), 'os.getenv', 'os.getenv', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (2580, 2598), False, 'import os\n'), ((2869, 2889), 'os.path.exists', 'os.path.exists', (['file'], {}), '(file)\n', (2883, 2889), False, 'import os\n'), ((3027, 3064), 'langchain.vectorstores.FAISS.load_local', 'FAISS.load_local', (['db_path', 'embeddings'], {}), '(db_path, embeddings)\n', (3043, 3064), False, 'from langchain.vectorstores import FAISS\n')] |
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain_app.models.vicuna_request_llm import VicunaLLM
# First, let's load the language model we're going to use to control the agent.
llm = VicunaLLM()
# Next, let's load some tools to use. Note that the `llm-math` tool uses an LLM, so we need to pass that in.
tools = load_tools(["python_repl"], llm=llm)
# Finally, let's initialize an agent with the tools, the language model, and the type of agent we want to use.
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
# Now let's test it out!
agent.run("""Write a Python script that prints 'Hello, world!""")
| [
"langchain.agents.load_tools",
"langchain_app.models.vicuna_request_llm.VicunaLLM",
"langchain.agents.initialize_agent"
] | [((275, 286), 'langchain_app.models.vicuna_request_llm.VicunaLLM', 'VicunaLLM', ([], {}), '()\n', (284, 286), False, 'from langchain_app.models.vicuna_request_llm import VicunaLLM\n'), ((405, 441), 'langchain.agents.load_tools', 'load_tools', (["['python_repl']"], {'llm': 'llm'}), "(['python_repl'], llm=llm)\n", (415, 441), False, 'from langchain.agents import load_tools\n'), ((562, 653), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'llm'], {'agent': 'AgentType.ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)'}), '(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n verbose=True)\n', (578, 653), False, 'from langchain.agents import initialize_agent\n')] |
import logging
import sys
from typing import Callable
from langchain.prompts import MessagesPlaceholder
from langchain.agents import AgentType, AgentExecutor
from langchain.agents import initialize_agent as initialize_agent_base
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.chains.base import Chain
logger = logging.getLogger(__name__)
def initialize_agent(agent: AgentType, **kwargs) -> Chain:
"""
Extended version of the initialize_agent function from ix.chains.agents.
Modifications:
- unpacks agent_kwargs: allows agent_kwargs to be flattened into the ChainNode config
A flattened config simplifies the UX integration such that it works with TypeAutoFields
"""
# Inject placeholders into prompt for memory if provided
placeholders = []
if memories := kwargs.get("memory", None):
if not isinstance(memories, list):
memories = [memories]
placeholders = []
for component in memories:
if not getattr(component, "return_messages", False):
raise ValueError(
f"Memory component {component} has return_messages=False. Agents require "
f"return_messages=True."
)
for memory_key in component.memory_variables:
placeholders.append(MessagesPlaceholder(variable_name=memory_key))
# Re-pack agent_kwargs__* arguments into agent_kwargs
agent_kwargs = {
"extra_prompt_messages": placeholders,
}
for key, value in kwargs.items():
if key.startswith("agent_kwargs__"):
agent_kwargs[key[15:]] = value
del kwargs[key]
kwargs["agent_kwargs"] = agent_kwargs
# unpack Toolkits into Tools
if "tools" in kwargs:
tools = kwargs["tools"]
unpacked_tools = []
for i, value in enumerate(tools):
if isinstance(value, BaseToolkit):
unpacked_tools.extend(value.get_tools())
else:
unpacked_tools.append(value)
kwargs["tools"] = unpacked_tools
return initialize_agent_base(agent=agent, **kwargs)
def create_init_func(agent_type: AgentType) -> Callable:
"""
This function creates a new initialization function for a given agent type. The initialization
function is a proxy to the initialize_agent function, but it has a distinct name and can be
imported directly from this module.
Agent initialization functions are used so there is a distinct class_path for each agent type.
This allows class_path to be used as an identifier for the agent type.
Args:
agent_type (str): The type of the agent to create an initialization function for.
Returns:
function: The newly created initialization function.
"""
def init_func(**kwargs) -> AgentExecutor:
return initialize_agent(agent=agent_type, **kwargs)
return init_func
# list of function names that are created, used for debugging
FUNCTION_NAMES = []
def create_functions() -> None:
"""
Generate initialization functions for each agent type and add them to this module.
This will automatically create a new function for each agent type as LangChain
creates them.
"""
for agent_type in AgentType:
# create an initialization function for this agent type
init_func = create_init_func(agent_type)
func_name = "initialize_" + agent_type.value.replace("-", "_")
FUNCTION_NAMES.append(func_name)
# add the function to the current module
setattr(sys.modules[__name__], func_name, init_func)
# auto-run the function that creates the initialization functions
create_functions()
| [
"langchain.agents.initialize_agent",
"langchain.prompts.MessagesPlaceholder"
] | [((343, 370), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (360, 370), False, 'import logging\n'), ((2107, 2151), 'langchain.agents.initialize_agent', 'initialize_agent_base', ([], {'agent': 'agent'}), '(agent=agent, **kwargs)\n', (2128, 2151), True, 'from langchain.agents import initialize_agent as initialize_agent_base\n'), ((1348, 1393), 'langchain.prompts.MessagesPlaceholder', 'MessagesPlaceholder', ([], {'variable_name': 'memory_key'}), '(variable_name=memory_key)\n', (1367, 1393), False, 'from langchain.prompts import MessagesPlaceholder\n')] |
import os
os.environ["LANGCHAIN_TRACING"] = "true"
from langchain import OpenAI
from langchain.agents import initialize_agent, AgentType
from langchain.llms import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
def multiplier(a, b):
return a / b
def parsing_multiplier(string):
a, b = string.split(",")
return multiplier(int(a), int(b))
llm = OpenAI(temperature=0)
tools = [
Tool(
name="Multiplier",
func=parsing_multiplier,
description="useful for when you need to multiply two numbers together. The input to this tool should be a comma separated list of numbers of length two, representing the two numbers you want to multiply together. For example, `1,2` would be the input if you wanted to multiply 1 by 2.",
)
]
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("3 times four?")
| [
"langchain.llms.OpenAI",
"langchain.agents.initialize_agent",
"langchain.agents.Tool"
] | [((412, 433), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (418, 433), False, 'from langchain.llms import OpenAI\n'), ((826, 917), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'llm'], {'agent': 'AgentType.ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)'}), '(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n verbose=True)\n', (842, 917), False, 'from langchain.agents import initialize_agent, Tool\n'), ((448, 794), 'langchain.agents.Tool', 'Tool', ([], {'name': '"""Multiplier"""', 'func': 'parsing_multiplier', 'description': '"""useful for when you need to multiply two numbers together. The input to this tool should be a comma separated list of numbers of length two, representing the two numbers you want to multiply together. For example, `1,2` would be the input if you wanted to multiply 1 by 2."""'}), "(name='Multiplier', func=parsing_multiplier, description=\n 'useful for when you need to multiply two numbers together. The input to this tool should be a comma separated list of numbers of length two, representing the two numbers you want to multiply together. For example, `1,2` would be the input if you wanted to multiply 1 by 2.'\n )\n", (452, 794), False, 'from langchain.agents import initialize_agent, Tool\n')] |
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from typing import List
from langchain.chains import RetrievalQA
from langchain.chains.conversational_retrieval.base import (
BaseConversationalRetrievalChain,
)
from langchain.llms.vertexai import VertexAI
from langchain.memory import ConversationBufferMemory
from langchain.tools import BaseTool
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from MyVertexAIEmbedding import MyVertexAIEmbedding # noqa: E402
from VertexMatchingEngine import MatchingEngine, MatchingEngineUtils # noqa: E402
# https://cdn.cloudflare.steamstatic.com/steam/apps/597180/manuals/Old_World-Official_User_Manual.pdf?t=1653279974
"""
Matching Engine As Retriever
"""
ME_REGION = os.getenv("GOOGLE_CLOUD_REGIN")
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
ME_INDEX_NAME = f"{PROJECT_ID}-chatbot-vme"
ME_DIMENSIONS = 768
ME_EMBEDDING_DIR = f"gs://{PROJECT_ID}-chatbot-embeddings"
REQUESTS_PER_MINUTE = 15
mengine = MatchingEngineUtils(
project_id=PROJECT_ID, region=ME_REGION, index_name=ME_INDEX_NAME
)
embedding = MyVertexAIEmbedding()
llm = VertexAI()
memory = ConversationBufferMemory()
def create_PDFQA_chain_me_RetrievalQA() -> BaseConversationalRetrievalChain:
mengine = MatchingEngineUtils(
project_id=PROJECT_ID, region=ME_REGION, index_name=ME_INDEX_NAME
)
ME_INDEX_ID, ME_INDEX_ENDPOINT_ID = mengine.get_index_and_endpoint()
me = MatchingEngine.from_components(
project_id=PROJECT_ID,
region=ME_REGION,
gcs_bucket_name=f'gs://{ME_EMBEDDING_DIR.split("/")[2]}',
embedding=embedding,
index_id=ME_INDEX_ID,
endpoint_id=ME_INDEX_ENDPOINT_ID,
)
retriever = me.as_retriever()
doc_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
verbose=True,
)
return doc_chain
class VIAI_INFO_ME(BaseTool):
name = "VIAI_INFO_ME"
description = """
Use this tool to get information regarding the solution "Visual Inspection AI Edge", or "VIAI Edge".
The Tool Input is the user's question, the user may reference to previous convsation,
add context to the question when needed.
The Output is the result
"""
def _run(self, query: str) -> str:
if query == "":
query = "summarize"
chat_history: List[str] = []
print("Running tool:{}".format(query))
qa = create_PDFQA_chain_me_RetrievalQA()
result = qa(
{"query": query, "chat_history": chat_history}, return_only_outputs=False
)
return result
async def _arun(self, query: str) -> str:
"""Use the tool asynchronously."""
print(f"*** Invoking MockTool with query '{query}'")
return f"Answer of '{query}' is 'Michael Chi'"
| [
"langchain.memory.ConversationBufferMemory",
"langchain.chains.RetrievalQA.from_chain_type",
"langchain.llms.vertexai.VertexAI"
] | [((957, 985), 'sys.path.append', 'sys.path.append', (['current_dir'], {}), '(current_dir)\n', (972, 985), False, 'import sys\n'), ((1302, 1333), 'os.getenv', 'os.getenv', (['"""GOOGLE_CLOUD_REGIN"""'], {}), "('GOOGLE_CLOUD_REGIN')\n", (1311, 1333), False, 'import os\n'), ((1347, 1380), 'os.getenv', 'os.getenv', (['"""GOOGLE_CLOUD_PROJECT"""'], {}), "('GOOGLE_CLOUD_PROJECT')\n", (1356, 1380), False, 'import os\n'), ((1540, 1631), 'VertexMatchingEngine.MatchingEngineUtils', 'MatchingEngineUtils', ([], {'project_id': 'PROJECT_ID', 'region': 'ME_REGION', 'index_name': 'ME_INDEX_NAME'}), '(project_id=PROJECT_ID, region=ME_REGION, index_name=\n ME_INDEX_NAME)\n', (1559, 1631), False, 'from VertexMatchingEngine import MatchingEngine, MatchingEngineUtils\n'), ((1645, 1666), 'MyVertexAIEmbedding.MyVertexAIEmbedding', 'MyVertexAIEmbedding', ([], {}), '()\n', (1664, 1666), False, 'from MyVertexAIEmbedding import MyVertexAIEmbedding\n'), ((1674, 1684), 'langchain.llms.vertexai.VertexAI', 'VertexAI', ([], {}), '()\n', (1682, 1684), False, 'from langchain.llms.vertexai import VertexAI\n'), ((1694, 1720), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {}), '()\n', (1718, 1720), False, 'from langchain.memory import ConversationBufferMemory\n'), ((930, 955), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (945, 955), False, 'import os\n'), ((1814, 1905), 'VertexMatchingEngine.MatchingEngineUtils', 'MatchingEngineUtils', ([], {'project_id': 'PROJECT_ID', 'region': 'ME_REGION', 'index_name': 'ME_INDEX_NAME'}), '(project_id=PROJECT_ID, region=ME_REGION, index_name=\n ME_INDEX_NAME)\n', (1833, 1905), False, 'from VertexMatchingEngine import MatchingEngine, MatchingEngineUtils\n'), ((2311, 2438), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'llm', 'chain_type': '"""stuff"""', 'retriever': 'retriever', 'return_source_documents': '(False)', 'verbose': '(True)'}), "(llm=llm, chain_type='stuff', retriever=\n retriever, return_source_documents=False, verbose=True)\n", (2338, 2438), False, 'from langchain.chains import RetrievalQA\n')] |
import boto3
from botocore.exceptions import ClientError
import json
import langchain
from importlib import reload
from langchain.agents.structured_chat import output_parser
from typing import List
import logging
import os
import sqlalchemy
from sqlalchemy import create_engine
from langchain.docstore.document import Document
from langchain import PromptTemplate,SQLDatabase, LLMChain
from langchain_experimental.sql.base import SQLDatabaseChain
from langchain.prompts.prompt import PromptTemplate
import streamlit as st
import pandas as pd
import datetime
from langchain.tools import tool
from typing import List, Optional
import json
from langchain.prompts import (
ChatPromptTemplate,
PromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.llms.bedrock import Bedrock
from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner
from langchain.agents.tools import Tool
import time
import uuid
from utility import get_cfn_details,custom_logga, upload_amz_file
from langchain.tools.python.tool import PythonREPLTool
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import DynamoDBChatMessageHistory
from streamlit.web.server.websocket_headers import _get_websocket_headers
import sys
st.set_page_config(layout="wide")
# logger = logging.getLogger('sagemaker')
# logger.setLevel(logging.DEBUG)
# logger.addHandler(logging.StreamHandler())
sys.stdout = custom_logga.Logger()
#Session states to hold sateful variables
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'ant_key' not in st.session_state:
st.session_state['ant_key'] = ''
if 'chat_id' not in st.session_state:
st.session_state['chat_id'] = 1
if 'client_id' not in st.session_state:
st.session_state['client_id'] = ''
if 'prompt' not in st.session_state:
st.session_state['prompt'] = ''
if 'memory' not in st.session_state:
st.session_state['memory'] = ""
# Global Variables
STACK_NAME="mmfsi" #change to the name of the cloudformation stack
REGION='us-east-1' #change to the name of the region you are working in
if len(st.session_state['messages'])<1:
## browser client info
headers = _get_websocket_headers()
st.session_state['client_id'] = str(headers.get("Sec-Websocket-Key"))
#print(f"Client KEY {st.session_state['client_id']}")
#st.session_state['ant_key']= get_secret()(REGION, "Secrete Name") ## PASS the AWS SECRETES secrete name
st.session_state['chat_id']= st.session_state['chat_id']+1
#print(f"Session Chat ID {st.session_state['chat_id']}")
# get cfn parameters
glue_db_name,kendra_index_id,audio_transcripts_source_bucket,textract_source_bucket,query_staging_bucket,multimodal_output_bucket=get_cfn_details.stack_info(STACK_NAME,REGION)
param={}
param['db']=glue_db_name
param['query_bucket']=query_staging_bucket
param['region']=REGION
param['kendra_id']=kendra_index_id#'45739a4f-c80f-4201-b183-20389d0febc7'
#Store parameters in json file
with open('param.json', 'w', encoding='utf-8') as f:
json.dump(param, f, ensure_ascii=False, indent=4)
# upload files to s3
#from utility.upload_amz_file import upload_file_amz
upload_amz_file.upload_file_amz('files/Amazon-10K-2022-EarningsReport.pdf', textract_source_bucket)
upload_amz_file.upload_file_amz('files/Amazon-10Q-Q1-2023-QuaterlyEarningsReport.pdf', textract_source_bucket)
upload_amz_file.upload_file_amz('files/Amazon-Quarterly-Earnings-Report-Q1-2023-Full-Call-v1.mp3', audio_transcripts_source_bucket)
#Athena connection config
connathena=f"athena.{REGION}.amazonaws.com"
portathena='443' #Update, if port is different
schemaathena=glue_db_name #from user defined params
s3stagingathena=f's3://{query_staging_bucket}/athenaresults/'#from cfn params
wkgrpathena='primary'#Update, if workgroup is different
## Create the athena connection string
connection_string = f"awsathena+rest://@{connathena}:{portathena}/{schemaathena}?s3_staging_dir={s3stagingathena}&work_group={wkgrpathena}"
## Create the athena SQLAlchemy engine
engine_athena = create_engine(connection_string, echo=False)
dbathena = SQLDatabase(engine_athena)
from botocore.config import Config
config = Config(
retries = dict(
max_attempts = 10
)
)
from utility import stock_query_mm, kendra_tool_mm, aws_tools, portfolio_tool
inference_modifier = {
'max_tokens_to_sample':512,
"temperature":0.01,
"stop_sequences":["\n\nQuestion:","\n\nHuman:","\nHuman:"]#"\n\nAssistant:","\nAssistant:"]#,"\nHuman:"]#,"\n\nAssistant:","\nAssistant:"],
# "top_k": 50,
# "top_p": 1,
}
llm = llm = Bedrock(model_id='anthropic.claude-v2',model_kwargs =inference_modifier )
table = 'stock_prices'
session_id=st.session_state['client_id']
chat_id= st.session_state['chat_id']
#persist dynamodb table id for chat history for each session and browser client
@st.cache_data
def db_table_id(session_id, chat_id):
chat_sess_id=str(uuid.uuid4())
return chat_sess_id
chat_session_id=db_table_id(session_id, chat_id)
#print(f"Chat SESSION ID {chat_session_id}")
def run_query(query):
PROMPT_sql = PromptTemplate(
input_variables=["input", "table_info", "dialect"], template=_DEFAULT_TEMPLATE
)
db_chain = SQLDatabaseChain.from_llm(llm, dbathena, prompt=PROMPT_sql, verbose=True, return_intermediate_steps=False)
response=db_chain.run(query)
return response
def SentimentAnalysis(inputString):
print(inputString)
lambda_client = boto3.client('lambda', region_name=REGION)
lambda_payload = {"inputString:"+inputString}
response=lambda_client.invoke(FunctionName='FSI-SentimentDetecttion',
InvocationType='RequestResponse',
Payload=json.dumps(inputString))
#print(response['Payload'].read())
output=json.loads(response['Payload'].read().decode())
return output['body']
def DetectKeyPhrases(inputString):
#print(inputString)
lambda_client = boto3.client('lambda', region_name=REGION)
lambda_payload = {"inputString:"+inputString}
response=lambda_client.invoke(FunctionName='FSI-KeyPhrasesDetection',
InvocationType='RequestResponse',
Payload=json.dumps(inputString))
#print(response['Payload'].read())
output=json.loads(response['Payload'].read().decode())
return output['body']
tools = [
Tool(
name="Stock Querying Tool",
func=stock_query_mm.run_query,
description="""
Useful for when you need to answer questions about stocks. It only has information about stocks.
"""
),
portfolio_tool.OptimizePortfolio(),
Tool(
name="Financial Information Lookup Tool",
func=kendra_tool_mm.run_chain,
description="""
Useful for when you need to look up financial information like revenues, sales, loss, risks etc.
"""
),
PythonREPLTool(),
Tool(
name="Sentiment Analysis Tool",
func=SentimentAnalysis,
description="""
Useful for when you need to analyze the sentiment of an excerpt from a financial report.
"""
),
Tool(
name="Detect Phrases Tool",
func=DetectKeyPhrases,
description="""
Useful for when you need to detect key phrases in financial reports.
"""
),
Tool(
name="Text Extraction Tool",
func=aws_tools.IntiateTextExtractProcessing,
description="""
Useful for when you need to trigger conversion of pdf version of quaterly reports to text files using amazon textextract
"""
),
Tool(
name="Transcribe Audio Tool",
func=aws_tools.TranscribeAudio,
description="""
Useful for when you need to convert audio recordings of earnings calls from audio to text format using Amazon Transcribe
"""
)
]
combo_template = """\n\nHuman:
You are a Minimization Solutionist with a set of tools at your disposal.
You would be presented with a problem. First understand the problem and devise a plan to solve the problem.
Please output the plan starting with the header 'Plan:' and then followed by a numbered list of steps.
Ensure the plan has the minimum amount of steps needed to solve the problem. Do not include unnecessary steps.
<instructions>
These are guidance on when to use a tool to solve a task, follow them strictly:
1. For the tool that specifically focuses on stock price data, use "Stock Query Tool".
2. For financial information lookup that covers various financial data like company's finance, performance or any other information pertaining a company beyond stocks, use the "Financial Data Explorer Tool". Ask specific questions using this tool as it is your knowledge database. Refrain from asking question like "look up 10K filings" instead a more specific question like "what is the revenue for this company".
3. When you need to find key phrases in a report, use the "Detect Phrases Tool" to get the information about all key phrases and respond with key phrases relavent to the question.
4. When you need to provide an optimized stock portfolio based on stock names, use Portfolio Optimization Tool. The output is the percent of fund you should spend on each stock. This tool only takes stock ticker as input and not stock prices, for example ["EWR","JHT"].
5. Please use the PythonREPLTool exclusively for calculations, refrain from utilizing 'print' statements for output. Use this too only when needed, most times its unnecessary.
6. When you need to analyze sentiment of a topic, use "Sentiment Analysis Tool".
</instructions>\n\nAssistant:"""
combo_template=combo_template if st.session_state['prompt']=="" else st.session_state['prompt']
chat_history_table = 'DYNAMODB table name' ### SPECIFY THE DYNAMODB TABLE
chat_history_memory = DynamoDBChatMessageHistory(table_name=chat_history_table, session_id=chat_session_id)
model = llm
planner = load_chat_planner(model)
system_message_prompt = SystemMessagePromptTemplate.from_template(combo_template)
human_message_prompt = planner.llm_chain.prompt.messages[1]
planner.llm_chain.prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
executor = load_agent_executor(model, tools, verbose=True)
if st.session_state['memory']:
memory = ConversationBufferMemory(memory_key="chat_history", chat_memory=chat_history_memory, return_messages=True)
agent = PlanAndExecute(planner=planner, executor=executor, verbose=True, max_iterations=2, memory=memory)
else:
agent = PlanAndExecute(planner=planner, executor=executor, verbose=True, max_iterations=2)#, memory=memory)
def query(request, agent, chat_history_memory):
output=agent(request)
chat_history_memory.add_ai_message(str(output))
try:
return output['output']
except:
return output
def action_doc(agent, chat_history_memory):
st.title('Multi-Modal Agent to assist Financial Analyst')
# Display chat messages from history on app rerun
for message in st.session_state.messages:
if "role" in message.keys():
with st.chat_message(message["role"]):
st.markdown(message['content'].replace("$","USD ").replace("%", " percent"))
else:
with st.expander(label="**Intermediate Steps**"):
st.write(message["steps"])
if prompt := st.chat_input("Hello?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
output_answer=query(prompt, agent, chat_history_memory)
message_placeholder.markdown(output_answer.replace("$","USD ").replace("%", " percent"))
st.session_state.messages.append({"role": "assistant", "content": output_answer})
# Saving the intermediate steps in a logf file to be shown in the UI. This is a hack due to the inability to capture these steps with the agent planner and executor library being used
with st.expander(label="**Intermediate Steps**"):
with open('logfile.txt','r')as f:
steps=f.readlines()
st.write(steps)
os.remove('logfile.txt')
st.session_state.messages.append({"steps": steps})
def app_sidebar():
with st.sidebar:
st.write('## How to use:')
description = """This app lets you query multi-modal documents and get relevant answers.
Documents inculde DB Tables, audio files and pdf files.
Type your query in the chat box to get appropiate answers.
If you need to refresh session, click on the `Clear Session` button.
Happy QnA :)
"""
st.markdown(description)
st.write('---')
st.write('## Sample Questions')
st.markdown("""
- What are the closing prices of stocks AAAA, WWW, DDD in year 2018? Can you build an optimized portfolio using these three stocks? Please provide answers to both questions.
- What is the net sales for Amazon in 2021 and 2022? What is the percent difference?
- What are the biggest risks facing Amazon Inc?
""")
st.markdown("""
**Datasets**
- [Quterly Earnings recordings](https://github.com/revdotcom/speech-datasets)
- [Annual Reports (FinTabNet)](https://developer.ibm.com/exchanges/data/all/fintabnet/)
- [S&P 500 stock data](https://www.kaggle.com/camnugent/sandp500)
""")
st.write('---')
#st.write('Pass your custom prompt')
user_input = st.text_area("Custom prompt goes here", "")
if user_input:
st.session_state['prompt']=user_input
print(user_input)
use_memory=''
mem = st.checkbox('Conversation Memory')
if mem:
use_memory='yes'
st.session_state['memory']=use_memory
if st.button('Clear Session'):
'''
The Clear context helps to refresh the UI and also create a new session for the chat. This creates a new Dynamo DB table to hold the chat history.
'''
# Delete all the items in Session state
for key in st.session_state.keys():
del st.session_state[key]
# create new session state items
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'ant_key' not in st.session_state:
st.session_state['ant_key'] = ''
if 'chat_id' not in st.session_state:
st.session_state['chat_id'] = 1
if 'client_id' not in st.session_state:
st.session_state['client_id'] = ''
if 'prompt' not in st.session_state:
st.session_state['prompt'] = ""
if 'memory' not in st.session_state:
st.session_state['memory'] = ""
def main(agent,chat_history_memory):
params=app_sidebar()
action_doc(agent, chat_history_memory)
if __name__ == '__main__':
main(agent, chat_history_memory)
| [
"langchain.tools.python.tool.PythonREPLTool",
"langchain.llms.bedrock.Bedrock",
"langchain_experimental.plan_and_execute.load_chat_planner",
"langchain.prompts.SystemMessagePromptTemplate.from_template",
"langchain.prompts.ChatPromptTemplate.from_messages",
"langchain.prompts.PromptTemplate",
"langchain.agents.tools.Tool",
"langchain.memory.chat_message_histories.DynamoDBChatMessageHistory",
"langchain.SQLDatabase",
"langchain_experimental.plan_and_execute.load_agent_executor",
"langchain.memory.ConversationBufferMemory",
"langchain_experimental.sql.base.SQLDatabaseChain.from_llm",
"langchain_experimental.plan_and_execute.PlanAndExecute"
] | [((1364, 1397), 'streamlit.set_page_config', 'st.set_page_config', ([], {'layout': '"""wide"""'}), "(layout='wide')\n", (1382, 1397), True, 'import streamlit as st\n'), ((1532, 1553), 'utility.custom_logga.Logger', 'custom_logga.Logger', ([], {}), '()\n', (1551, 1553), False, 'from utility import get_cfn_details, custom_logga, upload_amz_file\n'), ((5121, 5193), 'langchain.llms.bedrock.Bedrock', 'Bedrock', ([], {'model_id': '"""anthropic.claude-v2"""', 'model_kwargs': 'inference_modifier'}), "(model_id='anthropic.claude-v2', model_kwargs=inference_modifier)\n", (5128, 5193), False, 'from langchain.llms.bedrock import Bedrock\n'), ((10370, 10460), 'langchain.memory.chat_message_histories.DynamoDBChatMessageHistory', 'DynamoDBChatMessageHistory', ([], {'table_name': 'chat_history_table', 'session_id': 'chat_session_id'}), '(table_name=chat_history_table, session_id=\n chat_session_id)\n', (10396, 10460), False, 'from langchain.memory.chat_message_histories import DynamoDBChatMessageHistory\n'), ((10478, 10502), 'langchain_experimental.plan_and_execute.load_chat_planner', 'load_chat_planner', (['model'], {}), '(model)\n', (10495, 10502), False, 'from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner\n'), ((10528, 10585), 'langchain.prompts.SystemMessagePromptTemplate.from_template', 'SystemMessagePromptTemplate.from_template', (['combo_template'], {}), '(combo_template)\n', (10569, 10585), False, 'from langchain.prompts import ChatPromptTemplate, PromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((10673, 10752), 'langchain.prompts.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (['[system_message_prompt, human_message_prompt]'], {}), '([system_message_prompt, human_message_prompt])\n', (10705, 10752), False, 'from langchain.prompts import ChatPromptTemplate, PromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((10765, 10812), 'langchain_experimental.plan_and_execute.load_agent_executor', 'load_agent_executor', (['model', 'tools'], {'verbose': '(True)'}), '(model, tools, verbose=True)\n', (10784, 10812), False, 'from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner\n'), ((2449, 2473), 'streamlit.web.server.websocket_headers._get_websocket_headers', '_get_websocket_headers', ([], {}), '()\n', (2471, 2473), False, 'from streamlit.web.server.websocket_headers import _get_websocket_headers\n'), ((3016, 3062), 'utility.get_cfn_details.stack_info', 'get_cfn_details.stack_info', (['STACK_NAME', 'REGION'], {}), '(STACK_NAME, REGION)\n', (3042, 3062), False, 'from utility import get_cfn_details, custom_logga, upload_amz_file\n'), ((3511, 3614), 'utility.upload_amz_file.upload_file_amz', 'upload_amz_file.upload_file_amz', (['"""files/Amazon-10K-2022-EarningsReport.pdf"""', 'textract_source_bucket'], {}), "('files/Amazon-10K-2022-EarningsReport.pdf',\n textract_source_bucket)\n", (3542, 3614), False, 'from utility import get_cfn_details, custom_logga, upload_amz_file\n'), ((3615, 3734), 'utility.upload_amz_file.upload_file_amz', 'upload_amz_file.upload_file_amz', (['"""files/Amazon-10Q-Q1-2023-QuaterlyEarningsReport.pdf"""', 'textract_source_bucket'], {}), "(\n 'files/Amazon-10Q-Q1-2023-QuaterlyEarningsReport.pdf',\n textract_source_bucket)\n", (3646, 3734), False, 'from utility import get_cfn_details, custom_logga, upload_amz_file\n'), ((3730, 3870), 'utility.upload_amz_file.upload_file_amz', 'upload_amz_file.upload_file_amz', (['"""files/Amazon-Quarterly-Earnings-Report-Q1-2023-Full-Call-v1.mp3"""', 'audio_transcripts_source_bucket'], {}), "(\n 'files/Amazon-Quarterly-Earnings-Report-Q1-2023-Full-Call-v1.mp3',\n audio_transcripts_source_bucket)\n", (3761, 3870), False, 'from utility import get_cfn_details, custom_logga, upload_amz_file\n'), ((4454, 4498), 'sqlalchemy.create_engine', 'create_engine', (['connection_string'], {'echo': '(False)'}), '(connection_string, echo=False)\n', (4467, 4498), False, 'from sqlalchemy import create_engine\n'), ((4514, 4540), 'langchain.SQLDatabase', 'SQLDatabase', (['engine_athena'], {}), '(engine_athena)\n', (4525, 4540), False, 'from langchain import PromptTemplate, SQLDatabase, LLMChain\n'), ((5625, 5724), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['input', 'table_info', 'dialect']", 'template': '_DEFAULT_TEMPLATE'}), "(input_variables=['input', 'table_info', 'dialect'], template\n =_DEFAULT_TEMPLATE)\n", (5639, 5724), False, 'from langchain.prompts import ChatPromptTemplate, PromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((5754, 5864), 'langchain_experimental.sql.base.SQLDatabaseChain.from_llm', 'SQLDatabaseChain.from_llm', (['llm', 'dbathena'], {'prompt': 'PROMPT_sql', 'verbose': '(True)', 'return_intermediate_steps': '(False)'}), '(llm, dbathena, prompt=PROMPT_sql, verbose=True,\n return_intermediate_steps=False)\n', (5779, 5864), False, 'from langchain_experimental.sql.base import SQLDatabaseChain\n'), ((5999, 6041), 'boto3.client', 'boto3.client', (['"""lambda"""'], {'region_name': 'REGION'}), "('lambda', region_name=REGION)\n", (6011, 6041), False, 'import boto3\n'), ((6482, 6524), 'boto3.client', 'boto3.client', (['"""lambda"""'], {'region_name': 'REGION'}), "('lambda', region_name=REGION)\n", (6494, 6524), False, 'import boto3\n'), ((6901, 7113), 'langchain.agents.tools.Tool', 'Tool', ([], {'name': '"""Stock Querying Tool"""', 'func': 'stock_query_mm.run_query', 'description': '"""\n Useful for when you need to answer questions about stocks. It only has information about stocks.\n """'}), '(name=\'Stock Querying Tool\', func=stock_query_mm.run_query, description\n =\n """\n Useful for when you need to answer questions about stocks. It only has information about stocks.\n """\n )\n', (6905, 7113), False, 'from langchain.agents.tools import Tool\n'), ((7134, 7168), 'utility.portfolio_tool.OptimizePortfolio', 'portfolio_tool.OptimizePortfolio', ([], {}), '()\n', (7166, 7168), False, 'from utility import stock_query_mm, kendra_tool_mm, aws_tools, portfolio_tool\n'), ((7174, 7401), 'langchain.agents.tools.Tool', 'Tool', ([], {'name': '"""Financial Information Lookup Tool"""', 'func': 'kendra_tool_mm.run_chain', 'description': '"""\n Useful for when you need to look up financial information like revenues, sales, loss, risks etc. \n """'}), '(name=\'Financial Information Lookup Tool\', func=kendra_tool_mm.\n run_chain, description=\n """\n Useful for when you need to look up financial information like revenues, sales, loss, risks etc. \n """\n )\n', (7178, 7401), False, 'from langchain.agents.tools import Tool\n'), ((7422, 7438), 'langchain.tools.python.tool.PythonREPLTool', 'PythonREPLTool', ([], {}), '()\n', (7436, 7438), False, 'from langchain.tools.python.tool import PythonREPLTool\n'), ((7444, 7640), 'langchain.agents.tools.Tool', 'Tool', ([], {'name': '"""Sentiment Analysis Tool"""', 'func': 'SentimentAnalysis', 'description': '"""\n Useful for when you need to analyze the sentiment of an excerpt from a financial report.\n """'}), '(name=\'Sentiment Analysis Tool\', func=SentimentAnalysis, description=\n """\n Useful for when you need to analyze the sentiment of an excerpt from a financial report.\n """\n )\n', (7448, 7640), False, 'from langchain.agents.tools import Tool\n'), ((7667, 7838), 'langchain.agents.tools.Tool', 'Tool', ([], {'name': '"""Detect Phrases Tool"""', 'func': 'DetectKeyPhrases', 'description': '"""\n Useful for when you need to detect key phrases in financial reports.\n """'}), '(name=\'Detect Phrases Tool\', func=DetectKeyPhrases, description=\n """\n Useful for when you need to detect key phrases in financial reports.\n """\n )\n', (7671, 7838), False, 'from langchain.agents.tools import Tool\n'), ((7865, 8117), 'langchain.agents.tools.Tool', 'Tool', ([], {'name': '"""Text Extraction Tool"""', 'func': 'aws_tools.IntiateTextExtractProcessing', 'description': '"""\n Useful for when you need to trigger conversion of pdf version of quaterly reports to text files using amazon textextract\n """'}), '(name=\'Text Extraction Tool\', func=aws_tools.\n IntiateTextExtractProcessing, description=\n """\n Useful for when you need to trigger conversion of pdf version of quaterly reports to text files using amazon textextract\n """\n )\n', (7869, 8117), False, 'from langchain.agents.tools import Tool\n'), ((8139, 8377), 'langchain.agents.tools.Tool', 'Tool', ([], {'name': '"""Transcribe Audio Tool"""', 'func': 'aws_tools.TranscribeAudio', 'description': '"""\n Useful for when you need to convert audio recordings of earnings calls from audio to text format using Amazon Transcribe\n """'}), '(name=\'Transcribe Audio Tool\', func=aws_tools.TranscribeAudio,\n description=\n """\n Useful for when you need to convert audio recordings of earnings calls from audio to text format using Amazon Transcribe\n """\n )\n', (8143, 8377), False, 'from langchain.agents.tools import Tool\n'), ((10867, 10978), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {'memory_key': '"""chat_history"""', 'chat_memory': 'chat_history_memory', 'return_messages': '(True)'}), "(memory_key='chat_history', chat_memory=\n chat_history_memory, return_messages=True)\n", (10891, 10978), False, 'from langchain.memory import ConversationBufferMemory\n'), ((10986, 11087), 'langchain_experimental.plan_and_execute.PlanAndExecute', 'PlanAndExecute', ([], {'planner': 'planner', 'executor': 'executor', 'verbose': '(True)', 'max_iterations': '(2)', 'memory': 'memory'}), '(planner=planner, executor=executor, verbose=True,\n max_iterations=2, memory=memory)\n', (11000, 11087), False, 'from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner\n'), ((11102, 11188), 'langchain_experimental.plan_and_execute.PlanAndExecute', 'PlanAndExecute', ([], {'planner': 'planner', 'executor': 'executor', 'verbose': '(True)', 'max_iterations': '(2)'}), '(planner=planner, executor=executor, verbose=True,\n max_iterations=2)\n', (11116, 11188), False, 'from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner\n'), ((11461, 11518), 'streamlit.title', 'st.title', (['"""Multi-Modal Agent to assist Financial Analyst"""'], {}), "('Multi-Modal Agent to assist Financial Analyst')\n", (11469, 11518), True, 'import streamlit as st\n'), ((3361, 3410), 'json.dump', 'json.dump', (['param', 'f'], {'ensure_ascii': '(False)', 'indent': '(4)'}), '(param, f, ensure_ascii=False, indent=4)\n', (3370, 3410), False, 'import json\n'), ((5451, 5463), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (5461, 5463), False, 'import uuid\n'), ((11979, 12002), 'streamlit.chat_input', 'st.chat_input', (['"""Hello?"""'], {}), "('Hello?')\n", (11992, 12002), True, 'import streamlit as st\n'), ((12012, 12081), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'role': 'user', 'content': prompt}"], {}), "({'role': 'user', 'content': prompt})\n", (12044, 12081), True, 'import streamlit as st\n'), ((12444, 12529), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'role': 'assistant', 'content': output_answer}"], {}), "({'role': 'assistant', 'content':\n output_answer})\n", (12476, 12529), True, 'import streamlit as st\n'), ((12945, 12995), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'steps': steps}"], {}), "({'steps': steps})\n", (12977, 12995), True, 'import streamlit as st\n'), ((13107, 13133), 'streamlit.write', 'st.write', (['"""## How to use:"""'], {}), "('## How to use:')\n", (13115, 13133), True, 'import streamlit as st\n'), ((13561, 13585), 'streamlit.markdown', 'st.markdown', (['description'], {}), '(description)\n', (13572, 13585), True, 'import streamlit as st\n'), ((13594, 13609), 'streamlit.write', 'st.write', (['"""---"""'], {}), "('---')\n", (13602, 13609), True, 'import streamlit as st\n'), ((13618, 13649), 'streamlit.write', 'st.write', (['"""## Sample Questions"""'], {}), "('## Sample Questions')\n", (13626, 13649), True, 'import streamlit as st\n'), ((13658, 14109), 'streamlit.markdown', 'st.markdown', (['"""\n - What are the closing prices of stocks AAAA, WWW, DDD in year 2018? Can you build an optimized portfolio using these three stocks? Please provide answers to both questions.\n - What is the net sales for Amazon in 2021 and 2022? What is the percent difference?\n - What are the biggest risks facing Amazon Inc? \n """'], {}), '(\n """\n - What are the closing prices of stocks AAAA, WWW, DDD in year 2018? Can you build an optimized portfolio using these three stocks? Please provide answers to both questions.\n - What is the net sales for Amazon in 2021 and 2022? What is the percent difference?\n - What are the biggest risks facing Amazon Inc? \n """\n )\n', (13669, 14109), True, 'import streamlit as st\n'), ((14108, 14504), 'streamlit.markdown', 'st.markdown', (['"""\n **Datasets**\n \n - [Quterly Earnings recordings](https://github.com/revdotcom/speech-datasets)\n - [Annual Reports (FinTabNet)](https://developer.ibm.com/exchanges/data/all/fintabnet/)\n - [S&P 500 stock data](https://www.kaggle.com/camnugent/sandp500)\n """'], {}), '(\n """\n **Datasets**\n \n - [Quterly Earnings recordings](https://github.com/revdotcom/speech-datasets)\n - [Annual Reports (FinTabNet)](https://developer.ibm.com/exchanges/data/all/fintabnet/)\n - [S&P 500 stock data](https://www.kaggle.com/camnugent/sandp500)\n """\n )\n', (14119, 14504), True, 'import streamlit as st\n'), ((14503, 14518), 'streamlit.write', 'st.write', (['"""---"""'], {}), "('---')\n", (14511, 14518), True, 'import streamlit as st\n'), ((14585, 14628), 'streamlit.text_area', 'st.text_area', (['"""Custom prompt goes here"""', '""""""'], {}), "('Custom prompt goes here', '')\n", (14597, 14628), True, 'import streamlit as st\n'), ((14773, 14807), 'streamlit.checkbox', 'st.checkbox', (['"""Conversation Memory"""'], {}), "('Conversation Memory')\n", (14784, 14807), True, 'import streamlit as st\n'), ((14924, 14950), 'streamlit.button', 'st.button', (['"""Clear Session"""'], {}), "('Clear Session')\n", (14933, 14950), True, 'import streamlit as st\n'), ((6253, 6276), 'json.dumps', 'json.dumps', (['inputString'], {}), '(inputString)\n', (6263, 6276), False, 'import json\n'), ((6736, 6759), 'json.dumps', 'json.dumps', (['inputString'], {}), '(inputString)\n', (6746, 6759), False, 'import json\n'), ((12095, 12118), 'streamlit.chat_message', 'st.chat_message', (['"""user"""'], {}), "('user')\n", (12110, 12118), True, 'import streamlit as st\n'), ((12132, 12151), 'streamlit.markdown', 'st.markdown', (['prompt'], {}), '(prompt)\n', (12143, 12151), True, 'import streamlit as st\n'), ((12191, 12219), 'streamlit.chat_message', 'st.chat_message', (['"""assistant"""'], {}), "('assistant')\n", (12206, 12219), True, 'import streamlit as st\n'), ((12255, 12265), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (12263, 12265), True, 'import streamlit as st\n'), ((12740, 12783), 'streamlit.expander', 'st.expander', ([], {'label': '"""**Intermediate Steps**"""'}), "(label='**Intermediate Steps**')\n", (12751, 12783), True, 'import streamlit as st\n'), ((12912, 12936), 'os.remove', 'os.remove', (['"""logfile.txt"""'], {}), "('logfile.txt')\n", (12921, 12936), False, 'import os\n'), ((15241, 15264), 'streamlit.session_state.keys', 'st.session_state.keys', ([], {}), '()\n', (15262, 15264), True, 'import streamlit as st\n'), ((11674, 11706), 'streamlit.chat_message', 'st.chat_message', (["message['role']"], {}), "(message['role'])\n", (11689, 11706), True, 'import streamlit as st\n'), ((11861, 11904), 'streamlit.expander', 'st.expander', ([], {'label': '"""**Intermediate Steps**"""'}), "(label='**Intermediate Steps**')\n", (11872, 11904), True, 'import streamlit as st\n'), ((11922, 11948), 'streamlit.write', 'st.write', (["message['steps']"], {}), "(message['steps'])\n", (11930, 11948), True, 'import streamlit as st\n'), ((12884, 12899), 'streamlit.write', 'st.write', (['steps'], {}), '(steps)\n', (12892, 12899), True, 'import streamlit as st\n')] |
from langchain.agents.agent_toolkits import create_python_agent
from langchain.tools.python.tool import PythonREPLTool
from langchain.python import PythonREPL
from langchain.llms.openai import OpenAI
from langchain.agents.agent_types import AgentType
from langchain.chat_models import ChatOpenAI
import os
agent_executor = create_python_agent(
llm=OpenAI(temperature=0.5, max_tokens=2000),
tool=PythonREPLTool(),
verbose=True,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
agent_executor.run("What is the 10th fibonacci number?")
| [
"langchain.tools.python.tool.PythonREPLTool",
"langchain.llms.openai.OpenAI"
] | [((354, 394), 'langchain.llms.openai.OpenAI', 'OpenAI', ([], {'temperature': '(0.5)', 'max_tokens': '(2000)'}), '(temperature=0.5, max_tokens=2000)\n', (360, 394), False, 'from langchain.llms.openai import OpenAI\n'), ((405, 421), 'langchain.tools.python.tool.PythonREPLTool', 'PythonREPLTool', ([], {}), '()\n', (419, 421), False, 'from langchain.tools.python.tool import PythonREPLTool\n')] |
"""Loaders for Prefect."""
import asyncio
import httpx
import os
import shutil
import tempfile
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain_prefect.types import GitHubComment, GitHubIssue
from prefect.utilities.asyncutils import sync_compatible
class GithubIssueLoader(BaseLoader):
"""Loader for GitHub issues for a given repository."""
def __init__(self, repo: str, n_issues: int):
"""
Initialize the loader with the given repository.
Args:
repo: The name of the repository, in the format "<owner>/<repo>"
"""
self.repo = repo
self.n_issues = n_issues
self.request_headers = {
"Accept": "application/vnd.github.v3+json",
}
# If a GitHub token is available, use it to increase the rate limit
if token := os.environ.get("GITHUB_TOKEN"):
self.request_headers["Authorization"] = f"Bearer {token}"
def _get_issue_comments(
self, issue_number: int, per_page: int = 100
) -> List[GitHubComment]:
"""
Get a list of all comments for the given issue.
Returns:
A list of dictionaries, each representing a comment.
"""
url = f"https://api.github.com/repos/{self.repo}/issues/{issue_number}/comments"
comments = []
page = 1
while True:
response = httpx.get(
url=url,
headers=self.request_headers,
params={"per_page": per_page, "page": page},
)
response.raise_for_status()
if not (new_comments := response.json()):
break
comments.extend([GitHubComment(**comment) for comment in new_comments])
page += 1
return comments
def _get_issues(self, per_page: int = 100) -> List[GitHubIssue]:
"""
Get a list of all issues for the given repository.
Returns:
A list of `GitHubIssue` objects, each representing an issue.
"""
url = f"https://api.github.com/repos/{self.repo}/issues"
issues = []
page = 1
while True:
if len(issues) >= self.n_issues:
break
remaining = self.n_issues - len(issues)
response = httpx.get(
url=url,
headers=self.request_headers,
params={
"per_page": remaining if remaining < per_page else per_page,
"page": page,
"include": "comments",
},
)
response.raise_for_status()
if not (new_issues := response.json()):
break
issues.extend([GitHubIssue(**issue) for issue in new_issues])
page += 1
return issues
def load(self) -> List[Document]:
"""
Load all issues for the given repository.
Returns:
A list of `Document` objects, each representing an issue.
"""
issues = self._get_issues()
documents = []
for issue in issues:
text = f"{issue.title}\n{issue.body}"
if issue.comments:
for comment in self._get_issue_comments(issue.number):
text += f"\n\n{comment.user.login}: {comment.body}\n\n"
metadata = {
"source": issue.html_url,
"title": issue.title,
"labels": ",".join([label.name for label in issue.labels]),
}
documents.append(Document(page_content=text, metadata=metadata))
return documents
class GitHubRepoLoader(BaseLoader):
"""Loader for files on GitHub that match a glob pattern."""
def __init__(self, repo: str, glob: str):
"""Initialize with the GitHub repository and glob pattern.
Attrs:
repo: The organization and repository name, e.g. "prefecthq/prefect"
glob: The glob pattern to match files, e.g. "**/*.md"
"""
self.repo = f"https://github.com/{repo}.git"
self.glob = glob
@sync_compatible
async def load(self) -> List[Document]:
"""Load files from GitHub that match the glob pattern."""
tmp_dir = tempfile.mkdtemp()
try:
process = await asyncio.create_subprocess_exec(
*["git", "clone", "--depth", "1", self.repo, tmp_dir]
)
if (await process.wait()) != 0:
raise OSError(
f"Failed to clone repository:\n {process.stderr.decode()}"
)
# Read the contents of each file that matches the glob pattern
documents = []
for file in Path(tmp_dir).glob(self.glob):
with open(file, "r") as f:
text = f.read()
metadata = {
"source": os.path.join(self.repo, file.relative_to(tmp_dir))
}
documents.append(Document(page_content=text, metadata=metadata))
return documents
finally:
shutil.rmtree(tmp_dir)
| [
"langchain_prefect.types.GitHubIssue",
"langchain.docstore.document.Document",
"langchain_prefect.types.GitHubComment"
] | [((4368, 4386), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (4384, 4386), False, 'import tempfile\n'), ((944, 974), 'os.environ.get', 'os.environ.get', (['"""GITHUB_TOKEN"""'], {}), "('GITHUB_TOKEN')\n", (958, 974), False, 'import os\n'), ((1493, 1590), 'httpx.get', 'httpx.get', ([], {'url': 'url', 'headers': 'self.request_headers', 'params': "{'per_page': per_page, 'page': page}"}), "(url=url, headers=self.request_headers, params={'per_page':\n per_page, 'page': page})\n", (1502, 1590), False, 'import httpx\n'), ((2404, 2568), 'httpx.get', 'httpx.get', ([], {'url': 'url', 'headers': 'self.request_headers', 'params': "{'per_page': remaining if remaining < per_page else per_page, 'page': page,\n 'include': 'comments'}"}), "(url=url, headers=self.request_headers, params={'per_page': \n remaining if remaining < per_page else per_page, 'page': page,\n 'include': 'comments'})\n", (2413, 2568), False, 'import httpx\n'), ((5222, 5244), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (5235, 5244), False, 'import shutil\n'), ((3675, 3721), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (3683, 3721), False, 'from langchain.docstore.document import Document\n'), ((4428, 4517), 'asyncio.create_subprocess_exec', 'asyncio.create_subprocess_exec', (["*['git', 'clone', '--depth', '1', self.repo, tmp_dir]"], {}), "(*['git', 'clone', '--depth', '1', self.repo,\n tmp_dir])\n", (4458, 4517), False, 'import asyncio\n'), ((1795, 1819), 'langchain_prefect.types.GitHubComment', 'GitHubComment', ([], {}), '(**comment)\n', (1808, 1819), False, 'from langchain_prefect.types import GitHubComment, GitHubIssue\n'), ((2843, 2863), 'langchain_prefect.types.GitHubIssue', 'GitHubIssue', ([], {}), '(**issue)\n', (2854, 2863), False, 'from langchain_prefect.types import GitHubComment, GitHubIssue\n'), ((4843, 4856), 'pathlib.Path', 'Path', (['tmp_dir'], {}), '(tmp_dir)\n', (4847, 4856), False, 'from pathlib import Path\n'), ((5115, 5161), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (5123, 5161), False, 'from langchain.docstore.document import Document\n')] |
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.llms import OpenAI
from benchllm import SemanticEvaluator, Test, Tester
tools = load_tools(["serpapi", "llm-math"], llm=OpenAI(temperature=0))
agent = initialize_agent(tools, OpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
tests = [Test(input="How many people live in canada as of 2023?", expected=["approximately 38,625,801"])]
tester = Tester(lambda input: agent(input)["output"])
tester.add_tests(tests)
predictions = tester.run()
evaluator = SemanticEvaluator()
evaluator.load(predictions)
report = evaluator.run()
print(report)
| [
"langchain.llms.OpenAI"
] | [((569, 588), 'benchllm.SemanticEvaluator', 'SemanticEvaluator', ([], {}), '()\n', (586, 588), False, 'from benchllm import SemanticEvaluator, Test, Tester\n'), ((261, 282), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (267, 282), False, 'from langchain.llms import OpenAI\n'), ((353, 453), 'benchllm.Test', 'Test', ([], {'input': '"""How many people live in canada as of 2023?"""', 'expected': "['approximately 38,625,801']"}), "(input='How many people live in canada as of 2023?', expected=[\n 'approximately 38,625,801'])\n", (357, 453), False, 'from benchllm import SemanticEvaluator, Test, Tester\n'), ((206, 227), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (212, 227), False, 'from langchain.llms import OpenAI\n')] |
"""Wrapper around HuggingFace Pipeline APIs."""
import importlib.util
import logging
from typing import Any, List, Mapping, Optional
from pydantic import BaseModel, Extra
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation")
logger = logging.getLogger()
class HuggingFacePipeline(LLM, BaseModel):
"""Wrapper around HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation` and `text2text-generation` for now.
Example using from_model_id:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2", task="text-generation"
)
Example passing pipeline in directly:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any #: :meta private:
model_id: str = DEFAULT_MODEL_ID
"""Model name to use."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@classmethod
def from_model_id(
cls,
model_id: str,
task: str,
device: int = -1,
model_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please it install it with `pip install transformers`."
)
_model_kwargs = model_kwargs or {}
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
if task == "text-generation":
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
elif task == "text2text-generation":
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
else:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
except ImportError as e:
raise ValueError(
f"Could not load the {task} model due to missing dependencies."
) from e
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
model_kwargs=_model_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_id": self.model_id},
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
response = self.pipeline(prompt)
if self.pipeline.task == "text-generation":
# Text generation return includes the starter text.
text = response[0]["generated_text"][len(prompt) :]
elif self.pipeline.task == "text2text-generation":
text = response[0]["generated_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text
| [
"langchain.llms.utils.enforce_stop_tokens"
] | [((390, 409), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (407, 409), False, 'import logging\n'), ((2546, 2602), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['model_id'], {}), '(model_id, **_model_kwargs)\n', (2575, 2602), False, 'from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer\n'), ((4077, 4180), 'transformers.pipeline', 'hf_pipeline', ([], {'task': 'task', 'model': 'model', 'tokenizer': 'tokenizer', 'device': 'device', 'model_kwargs': '_model_kwargs'}), '(task=task, model=model, tokenizer=tokenizer, device=device,\n model_kwargs=_model_kwargs)\n', (4088, 4180), True, 'from transformers import pipeline as hf_pipeline\n'), ((3351, 3376), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (3374, 3376), False, 'import torch\n'), ((5708, 5739), 'langchain.llms.utils.enforce_stop_tokens', 'enforce_stop_tokens', (['text', 'stop'], {}), '(text, stop)\n', (5727, 5739), False, 'from langchain.llms.utils import enforce_stop_tokens\n'), ((2683, 2746), 'transformers.AutoModelForCausalLM.from_pretrained', 'AutoModelForCausalLM.from_pretrained', (['model_id'], {}), '(model_id, **_model_kwargs)\n', (2719, 2746), False, 'from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer\n'), ((2820, 2884), 'transformers.AutoModelForSeq2SeqLM.from_pretrained', 'AutoModelForSeq2SeqLM.from_pretrained', (['model_id'], {}), '(model_id, **_model_kwargs)\n', (2857, 2884), False, 'from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer\n')] |
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from datetime import datetime
current_time_iso = datetime.utcnow().isoformat() + "Z"
# example metadat
"""
{
"type": "file_load_gcs",
"attrs": "namespace:edmonbrain",
"source": "gs://devoteam-mark-langchain-loader/edmonbrain/MarkWork/Running LLMs on Google Cloud Platform via Cloud Run, VertexAI and PubSub - LLMOps on GCP.md",
"bucketId": "devoteam-mark-langchain-loader",
"category": "NarrativeText",
"filename": "Running LLMs on Google Cloud Platform via Cloud Run, VertexAI and PubSub - LLMOps on GCP.md",
"filetype": "text/markdown",
"objectId": "edmonbrain/MarkWork/Running LLMs on Google Cloud Platform via Cloud Run, VertexAI and PubSub - LLMOps on GCP.md",
"eventTime": "2023-07-12T19:36:07.325740Z",
"eventType": "OBJECT_FINALIZE",
"bucket_name": "devoteam-mark-langchain-loader",
"page_number": 1,
"payloadFormat": "JSON_API_V1",
"objectGeneration": "1689190567243818",
"notificationConfig": "projects/_/buckets/devoteam-mark-langchain-loader/notificationConfigs/1"
}
"""
metadata_field_info = [
AttributeInfo(
name="source",
description="The document source url or path to where the document is located",
type="string",
),
AttributeInfo(
name="eventTime",
description=f"When this content was put into the memory. The current datetime is {current_time_iso}",
type="ISO 8601 formatted date and time string",
),
AttributeInfo(
name="type",
description="How this content was added to the memory",
type="string",
),
]
document_content_description = "Documents stored in the bot long term memory"
def get_self_query_retriever(llm, vectorstore):
return SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
| [
"langchain.chains.query_constructor.base.AttributeInfo",
"langchain.retrievers.self_query.base.SelfQueryRetriever.from_llm"
] | [((1179, 1311), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""source"""', 'description': '"""The document source url or path to where the document is located"""', 'type': '"""string"""'}), "(name='source', description=\n 'The document source url or path to where the document is located',\n type='string')\n", (1192, 1311), False, 'from langchain.chains.query_constructor.base import AttributeInfo\n'), ((1339, 1531), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""eventTime"""', 'description': 'f"""When this content was put into the memory. The current datetime is {current_time_iso}"""', 'type': '"""ISO 8601 formatted date and time string"""'}), "(name='eventTime', description=\n f'When this content was put into the memory. The current datetime is {current_time_iso}'\n , type='ISO 8601 formatted date and time string')\n", (1352, 1531), False, 'from langchain.chains.query_constructor.base import AttributeInfo\n'), ((1558, 1660), 'langchain.chains.query_constructor.base.AttributeInfo', 'AttributeInfo', ([], {'name': '"""type"""', 'description': '"""How this content was added to the memory"""', 'type': '"""string"""'}), "(name='type', description=\n 'How this content was added to the memory', type='string')\n", (1571, 1660), False, 'from langchain.chains.query_constructor.base import AttributeInfo\n'), ((1829, 1943), 'langchain.retrievers.self_query.base.SelfQueryRetriever.from_llm', 'SelfQueryRetriever.from_llm', (['llm', 'vectorstore', 'document_content_description', 'metadata_field_info'], {'verbose': '(True)'}), '(llm, vectorstore, document_content_description,\n metadata_field_info, verbose=True)\n', (1856, 1943), False, 'from langchain.retrievers.self_query.base import SelfQueryRetriever\n'), ((184, 201), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (199, 201), False, 'from datetime import datetime\n')] |
import os
import re
from typing import List, Optional, Any
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from loguru import logger
from tqdm import tqdm
from src.config import local_embedding, retrieve_proxy, chunk_overlap, chunk_size, hf_emb_model_name
from src import shared
from src.utils import excel_to_string, get_files_hash, load_pkl, save_pkl
pwd_path = os.path.abspath(os.path.dirname(__file__))
class ChineseRecursiveTextSplitter(RecursiveCharacterTextSplitter):
"""Recursive text splitter for Chinese text.
copy from: https://github.com/chatchat-space/Langchain-Chatchat/tree/master
"""
def __init__(
self,
separators: Optional[List[str]] = None,
keep_separator: bool = True,
is_separator_regex: bool = True,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(keep_separator=keep_separator, **kwargs)
self._separators = separators or [
"\n\n",
"\n",
"。|!|?",
"\.\s|\!\s|\?\s",
";|;\s",
",|,\s"
]
self._is_separator_regex = is_separator_regex
@staticmethod
def _split_text_with_regex_from_end(
text: str, separator: str, keep_separator: bool
) -> List[str]:
# Now that we have the separator, split the text
if separator:
if keep_separator:
# The parentheses in the pattern keep the delimiters in the result.
_splits = re.split(f"({separator})", text)
splits = ["".join(i) for i in zip(_splits[0::2], _splits[1::2])]
if len(_splits) % 2 == 1:
splits += _splits[-1:]
else:
splits = re.split(separator, text)
else:
splits = list(text)
return [s for s in splits if s != ""]
def _split_text(self, text: str, separators: List[str]) -> List[str]:
"""Split incoming text and return chunks."""
final_chunks = []
# Get appropriate separator to use
separator = separators[-1]
new_separators = []
for i, _s in enumerate(separators):
_separator = _s if self._is_separator_regex else re.escape(_s)
if _s == "":
separator = _s
break
if re.search(_separator, text):
separator = _s
new_separators = separators[i + 1:]
break
_separator = separator if self._is_separator_regex else re.escape(separator)
splits = self._split_text_with_regex_from_end(text, _separator, self._keep_separator)
# Now go merging things, recursively splitting longer texts.
_good_splits = []
_separator = "" if self._keep_separator else separator
for s in splits:
if self._length_function(s) < self._chunk_size:
_good_splits.append(s)
else:
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator)
final_chunks.extend(merged_text)
_good_splits = []
if not new_separators:
final_chunks.append(s)
else:
other_info = self._split_text(s, new_separators)
final_chunks.extend(other_info)
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator)
final_chunks.extend(merged_text)
return [re.sub(r"\n{2,}", "\n", chunk.strip()) for chunk in final_chunks if chunk.strip() != ""]
def get_documents(file_paths):
text_splitter = ChineseRecursiveTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = []
logger.debug("Loading documents...")
logger.debug(f"file_paths: {file_paths}")
for file in file_paths:
filepath = file.name
filename = os.path.basename(filepath)
file_type = os.path.splitext(filename)[1]
logger.info(f"loading file: {filename}")
texts = None
try:
if file_type == ".pdf":
import PyPDF2
logger.debug("Loading PDF...")
try:
from src.pdf_func import parse_pdf
from src.config import advance_docs
two_column = advance_docs["pdf"].get("two_column", False)
pdftext = parse_pdf(filepath, two_column).text
except:
pdftext = ""
with open(filepath, "rb") as pdfFileObj:
pdfReader = PyPDF2.PdfReader(pdfFileObj)
for page in tqdm(pdfReader.pages):
pdftext += page.extract_text()
texts = [Document(page_content=pdftext,
metadata={"source": filepath})]
elif file_type == ".docx":
logger.debug("Loading Word...")
from langchain.document_loaders import UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader(filepath)
texts = loader.load()
elif file_type == ".pptx":
logger.debug("Loading PowerPoint...")
from langchain.document_loaders import UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader(filepath)
texts = loader.load()
elif file_type == ".epub":
logger.debug("Loading EPUB...")
from langchain.document_loaders import UnstructuredEPubLoader
loader = UnstructuredEPubLoader(filepath)
texts = loader.load()
elif file_type == ".xlsx":
logger.debug("Loading Excel...")
text_list = excel_to_string(filepath)
texts = []
for elem in text_list:
texts.append(Document(page_content=elem,
metadata={"source": filepath}))
else:
logger.debug("Loading text file...")
from langchain_community.document_loaders import TextLoader
loader = TextLoader(filepath, "utf8")
texts = loader.load()
logger.debug(f"text size: {len(texts)}, text top3: {texts[:3]}")
except Exception as e:
logger.error(f"Error loading file: {filename}, {e}")
if texts is not None:
texts = text_splitter.split_documents(texts)
documents.extend(texts)
logger.debug(f"Documents loaded. documents size: {len(documents)}, top3: {documents[:3]}")
return documents
def construct_index(
api_key,
files,
load_from_cache_if_possible=True,
):
from langchain_community.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
else:
os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx"
index_name = get_files_hash(files)
index_dir = os.path.join(pwd_path, '../index')
index_path = f"{index_dir}/{index_name}"
doc_file = f"{index_path}/docs.pkl"
if local_embedding:
embeddings = HuggingFaceEmbeddings(model_name=hf_emb_model_name)
else:
from langchain_community.embeddings import OpenAIEmbeddings
if os.environ.get("OPENAI_API_TYPE", "openai") == "openai":
embeddings = OpenAIEmbeddings(
openai_api_base=shared.state.openai_api_base,
openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key)
)
else:
embeddings = OpenAIEmbeddings(
deployment=os.environ["AZURE_EMBEDDING_DEPLOYMENT_NAME"],
openai_api_key=os.environ["AZURE_OPENAI_API_KEY"],
model=os.environ["AZURE_EMBEDDING_MODEL_NAME"],
openai_api_base=os.environ["AZURE_OPENAI_API_BASE_URL"],
openai_api_type="azure"
)
if os.path.exists(index_path) and load_from_cache_if_possible:
logger.info("找到了缓存的索引文件,加载中……")
index = FAISS.load_local(index_path, embeddings)
documents = load_pkl(doc_file)
return index, documents
else:
try:
documents = get_documents(files)
logger.info("构建索引中……")
with retrieve_proxy():
index = FAISS.from_documents(documents, embeddings)
logger.debug("索引构建完成!")
os.makedirs(index_dir, exist_ok=True)
index.save_local(index_path)
logger.debug("索引已保存至本地!")
save_pkl(documents, doc_file)
logger.debug("索引文档已保存至本地!")
return index, documents
except Exception as e:
logger.error(f"索引构建失败!error: {e}")
return None
| [
"langchain.embeddings.huggingface.HuggingFaceEmbeddings",
"langchain_community.vectorstores.FAISS.load_local",
"langchain_community.document_loaders.TextLoader",
"langchain_community.vectorstores.FAISS.from_documents",
"langchain.document_loaders.UnstructuredWordDocumentLoader",
"langchain_community.embeddings.OpenAIEmbeddings",
"langchain.document_loaders.UnstructuredPowerPointLoader",
"langchain.schema.Document",
"langchain.document_loaders.UnstructuredEPubLoader"
] | [((440, 465), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (455, 465), False, 'import os\n'), ((3874, 3910), 'loguru.logger.debug', 'logger.debug', (['"""Loading documents..."""'], {}), "('Loading documents...')\n", (3886, 3910), False, 'from loguru import logger\n'), ((3915, 3956), 'loguru.logger.debug', 'logger.debug', (['f"""file_paths: {file_paths}"""'], {}), "(f'file_paths: {file_paths}')\n", (3927, 3956), False, 'from loguru import logger\n'), ((7187, 7208), 'src.utils.get_files_hash', 'get_files_hash', (['files'], {}), '(files)\n', (7201, 7208), False, 'from src.utils import excel_to_string, get_files_hash, load_pkl, save_pkl\n'), ((7225, 7259), 'os.path.join', 'os.path.join', (['pwd_path', '"""../index"""'], {}), "(pwd_path, '../index')\n", (7237, 7259), False, 'import os\n'), ((4033, 4059), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (4049, 4059), False, 'import os\n'), ((4118, 4158), 'loguru.logger.info', 'logger.info', (['f"""loading file: {filename}"""'], {}), "(f'loading file: {filename}')\n", (4129, 4158), False, 'from loguru import logger\n'), ((7390, 7441), 'langchain.embeddings.huggingface.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': 'hf_emb_model_name'}), '(model_name=hf_emb_model_name)\n', (7411, 7441), False, 'from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n'), ((8186, 8212), 'os.path.exists', 'os.path.exists', (['index_path'], {}), '(index_path)\n', (8200, 8212), False, 'import os\n'), ((8254, 8285), 'loguru.logger.info', 'logger.info', (['"""找到了缓存的索引文件,加载中……"""'], {}), "('找到了缓存的索引文件,加载中……')\n", (8265, 8285), False, 'from loguru import logger\n'), ((8302, 8342), 'langchain_community.vectorstores.FAISS.load_local', 'FAISS.load_local', (['index_path', 'embeddings'], {}), '(index_path, embeddings)\n', (8318, 8342), False, 'from langchain_community.vectorstores import FAISS\n'), ((8363, 8381), 'src.utils.load_pkl', 'load_pkl', (['doc_file'], {}), '(doc_file)\n', (8371, 8381), False, 'from src.utils import excel_to_string, get_files_hash, load_pkl, save_pkl\n'), ((2427, 2454), 're.search', 're.search', (['_separator', 'text'], {}), '(_separator, text)\n', (2436, 2454), False, 'import re\n'), ((2626, 2646), 're.escape', 're.escape', (['separator'], {}), '(separator)\n', (2635, 2646), False, 'import re\n'), ((4080, 4106), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (4096, 4106), False, 'import os\n'), ((7531, 7574), 'os.environ.get', 'os.environ.get', (['"""OPENAI_API_TYPE"""', '"""openai"""'], {}), "('OPENAI_API_TYPE', 'openai')\n", (7545, 7574), False, 'import os\n'), ((7829, 8098), 'langchain_community.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'deployment': "os.environ['AZURE_EMBEDDING_DEPLOYMENT_NAME']", 'openai_api_key': "os.environ['AZURE_OPENAI_API_KEY']", 'model': "os.environ['AZURE_EMBEDDING_MODEL_NAME']", 'openai_api_base': "os.environ['AZURE_OPENAI_API_BASE_URL']", 'openai_api_type': '"""azure"""'}), "(deployment=os.environ['AZURE_EMBEDDING_DEPLOYMENT_NAME'],\n openai_api_key=os.environ['AZURE_OPENAI_API_KEY'], model=os.environ[\n 'AZURE_EMBEDDING_MODEL_NAME'], openai_api_base=os.environ[\n 'AZURE_OPENAI_API_BASE_URL'], openai_api_type='azure')\n", (7845, 8098), False, 'from langchain_community.embeddings import OpenAIEmbeddings\n'), ((8494, 8516), 'loguru.logger.info', 'logger.info', (['"""构建索引中……"""'], {}), "('构建索引中……')\n", (8505, 8516), False, 'from loguru import logger\n'), ((8632, 8655), 'loguru.logger.debug', 'logger.debug', (['"""索引构建完成!"""'], {}), "('索引构建完成!')\n", (8644, 8655), False, 'from loguru import logger\n'), ((8668, 8705), 'os.makedirs', 'os.makedirs', (['index_dir'], {'exist_ok': '(True)'}), '(index_dir, exist_ok=True)\n', (8679, 8705), False, 'import os\n'), ((8759, 8784), 'loguru.logger.debug', 'logger.debug', (['"""索引已保存至本地!"""'], {}), "('索引已保存至本地!')\n", (8771, 8784), False, 'from loguru import logger\n'), ((8797, 8826), 'src.utils.save_pkl', 'save_pkl', (['documents', 'doc_file'], {}), '(documents, doc_file)\n', (8805, 8826), False, 'from src.utils import excel_to_string, get_files_hash, load_pkl, save_pkl\n'), ((8839, 8866), 'loguru.logger.debug', 'logger.debug', (['"""索引文档已保存至本地!"""'], {}), "('索引文档已保存至本地!')\n", (8851, 8866), False, 'from loguru import logger\n'), ((1595, 1627), 're.split', 're.split', (['f"""({separator})"""', 'text'], {}), "(f'({separator})', text)\n", (1603, 1627), False, 'import re\n'), ((1837, 1862), 're.split', 're.split', (['separator', 'text'], {}), '(separator, text)\n', (1845, 1862), False, 'import re\n'), ((2320, 2333), 're.escape', 're.escape', (['_s'], {}), '(_s)\n', (2329, 2333), False, 'import re\n'), ((4275, 4305), 'loguru.logger.debug', 'logger.debug', (['"""Loading PDF..."""'], {}), "('Loading PDF...')\n", (4287, 4305), False, 'from loguru import logger\n'), ((6526, 6578), 'loguru.logger.error', 'logger.error', (['f"""Error loading file: {filename}, {e}"""'], {}), "(f'Error loading file: {filename}, {e}')\n", (6538, 6578), False, 'from loguru import logger\n'), ((8534, 8550), 'src.config.retrieve_proxy', 'retrieve_proxy', ([], {}), '()\n', (8548, 8550), False, 'from src.config import local_embedding, retrieve_proxy, chunk_overlap, chunk_size, hf_emb_model_name\n'), ((8576, 8619), 'langchain_community.vectorstores.FAISS.from_documents', 'FAISS.from_documents', (['documents', 'embeddings'], {}), '(documents, embeddings)\n', (8596, 8619), False, 'from langchain_community.vectorstores import FAISS\n'), ((8946, 8980), 'loguru.logger.error', 'logger.error', (['f"""索引构建失败!error: {e}"""'], {}), "(f'索引构建失败!error: {e}')\n", (8958, 8980), False, 'from loguru import logger\n'), ((4910, 4971), 'langchain.schema.Document', 'Document', ([], {'page_content': 'pdftext', 'metadata': "{'source': filepath}"}), "(page_content=pdftext, metadata={'source': filepath})\n", (4918, 4971), False, 'from langchain.schema import Document\n'), ((5062, 5093), 'loguru.logger.debug', 'logger.debug', (['"""Loading Word..."""'], {}), "('Loading Word...')\n", (5074, 5093), False, 'from loguru import logger\n'), ((5205, 5245), 'langchain.document_loaders.UnstructuredWordDocumentLoader', 'UnstructuredWordDocumentLoader', (['filepath'], {}), '(filepath)\n', (5235, 5245), False, 'from langchain.document_loaders import UnstructuredWordDocumentLoader\n'), ((7724, 7775), 'os.environ.get', 'os.environ.get', (['"""OPENAI_EMBEDDING_API_KEY"""', 'api_key'], {}), "('OPENAI_EMBEDDING_API_KEY', api_key)\n", (7738, 7775), False, 'import os\n'), ((4547, 4578), 'src.pdf_func.parse_pdf', 'parse_pdf', (['filepath', 'two_column'], {}), '(filepath, two_column)\n', (4556, 4578), False, 'from src.pdf_func import parse_pdf\n'), ((5339, 5376), 'loguru.logger.debug', 'logger.debug', (['"""Loading PowerPoint..."""'], {}), "('Loading PowerPoint...')\n", (5351, 5376), False, 'from loguru import logger\n'), ((5486, 5524), 'langchain.document_loaders.UnstructuredPowerPointLoader', 'UnstructuredPowerPointLoader', (['filepath'], {}), '(filepath)\n', (5514, 5524), False, 'from langchain.document_loaders import UnstructuredPowerPointLoader\n'), ((4738, 4766), 'PyPDF2.PdfReader', 'PyPDF2.PdfReader', (['pdfFileObj'], {}), '(pdfFileObj)\n', (4754, 4766), False, 'import PyPDF2\n'), ((4803, 4824), 'tqdm.tqdm', 'tqdm', (['pdfReader.pages'], {}), '(pdfReader.pages)\n', (4807, 4824), False, 'from tqdm import tqdm\n'), ((5618, 5649), 'loguru.logger.debug', 'logger.debug', (['"""Loading EPUB..."""'], {}), "('Loading EPUB...')\n", (5630, 5649), False, 'from loguru import logger\n'), ((5753, 5785), 'langchain.document_loaders.UnstructuredEPubLoader', 'UnstructuredEPubLoader', (['filepath'], {}), '(filepath)\n', (5775, 5785), False, 'from langchain.document_loaders import UnstructuredEPubLoader\n'), ((5879, 5911), 'loguru.logger.debug', 'logger.debug', (['"""Loading Excel..."""'], {}), "('Loading Excel...')\n", (5891, 5911), False, 'from loguru import logger\n'), ((5940, 5965), 'src.utils.excel_to_string', 'excel_to_string', (['filepath'], {}), '(filepath)\n', (5955, 5965), False, 'from src.utils import excel_to_string, get_files_hash, load_pkl, save_pkl\n'), ((6201, 6237), 'loguru.logger.debug', 'logger.debug', (['"""Loading text file..."""'], {}), "('Loading text file...')\n", (6213, 6237), False, 'from loguru import logger\n'), ((6339, 6367), 'langchain_community.document_loaders.TextLoader', 'TextLoader', (['filepath', '"""utf8"""'], {}), "(filepath, 'utf8')\n", (6349, 6367), False, 'from langchain_community.document_loaders import TextLoader\n'), ((6065, 6123), 'langchain.schema.Document', 'Document', ([], {'page_content': 'elem', 'metadata': "{'source': filepath}"}), "(page_content=elem, metadata={'source': filepath})\n", (6073, 6123), False, 'from langchain.schema import Document\n')] |
from fastapi import FastAPI
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import ElasticVectorSearch
from config import openai_api_key
embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
db = ElasticVectorSearch(
elasticsearch_url="http://localhost:9200",
index_name="elastic-index",
embedding=embedding,
)
qa = RetrievalQA.from_chain_type(
llm=ChatOpenAI(temperature=0),
chain_type="stuff",
retriever=db.as_retriever(),
)
app = FastAPI()
@app.get("/")
def index():
return {
"message": "Make a post request to /ask to ask questions about Meditations by Marcus Aurelius"
}
@app.post("/ask")
def ask(query: str):
response = qa.run(query)
return {
"response": response,
}
| [
"langchain.embeddings.openai.OpenAIEmbeddings",
"langchain.vectorstores.ElasticVectorSearch",
"langchain.chat_models.ChatOpenAI"
] | [((274, 321), 'langchain.embeddings.openai.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'openai_api_key': 'openai_api_key'}), '(openai_api_key=openai_api_key)\n', (290, 321), False, 'from langchain.embeddings.openai import OpenAIEmbeddings\n'), ((328, 444), 'langchain.vectorstores.ElasticVectorSearch', 'ElasticVectorSearch', ([], {'elasticsearch_url': '"""http://localhost:9200"""', 'index_name': '"""elastic-index"""', 'embedding': 'embedding'}), "(elasticsearch_url='http://localhost:9200', index_name=\n 'elastic-index', embedding=embedding)\n", (347, 444), False, 'from langchain.vectorstores import ElasticVectorSearch\n'), ((590, 599), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (597, 599), False, 'from fastapi import FastAPI\n'), ((497, 522), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (507, 522), False, 'from langchain.chat_models import ChatOpenAI\n')] |
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List
import pandas as pd
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts.few_shot import FewShotPromptTemplate
from doccano_mini.components import (
display_download_button,
openai_model_form,
task_instruction_editor,
usage,
)
from doccano_mini.utils import escape_markdown
class BasePage(ABC):
example_path: str = ""
def __init__(self, title: str) -> None:
self.title = title
@property
def columns(self) -> List[str]:
return []
def load_examples(self, filename: str) -> pd.DataFrame:
filepath = Path(__file__).parent.resolve().joinpath("examples", filename)
return pd.read_json(filepath)
def make_examples(self, columns: List[str]) -> List[Dict]:
df = self.load_examples(self.example_path)
edited_df = st.experimental_data_editor(df, num_rows="dynamic", width=1000)
examples = edited_df.to_dict(orient="records")
return examples
@abstractmethod
def make_prompt(self, examples: List[Dict]) -> FewShotPromptTemplate:
raise NotImplementedError()
@abstractmethod
def prepare_inputs(self, columns: List[str]) -> Dict:
raise NotImplementedError()
def annotate(self, examples: List[Dict]) -> List[Dict]:
return examples
def render(self) -> None:
st.title(self.title)
st.header("Annotate your data")
columns = self.columns
examples = self.make_examples(columns)
examples = self.annotate(examples)
prompt = self.make_prompt(examples)
prompt = task_instruction_editor(prompt)
st.header("Test")
col1, col2 = st.columns([3, 1])
with col1:
inputs = self.prepare_inputs(columns)
with col2:
llm = openai_model_form()
with st.expander("See your prompt"):
st.markdown(f"```\n{prompt.format(**inputs)}\n```")
if llm is None:
st.error("Enter your API key.")
if st.button("Predict", disabled=llm is None):
chain = LLMChain(llm=llm, prompt=prompt) # type:ignore
response = chain.run(**inputs)
st.markdown(escape_markdown(response).replace("\n", " \n"))
chain.save("config.yaml")
display_download_button()
usage()
| [
"langchain.chains.LLMChain"
] | [((763, 785), 'pandas.read_json', 'pd.read_json', (['filepath'], {}), '(filepath)\n', (775, 785), True, 'import pandas as pd\n'), ((921, 984), 'streamlit.experimental_data_editor', 'st.experimental_data_editor', (['df'], {'num_rows': '"""dynamic"""', 'width': '(1000)'}), "(df, num_rows='dynamic', width=1000)\n", (948, 984), True, 'import streamlit as st\n'), ((1434, 1454), 'streamlit.title', 'st.title', (['self.title'], {}), '(self.title)\n', (1442, 1454), True, 'import streamlit as st\n'), ((1463, 1494), 'streamlit.header', 'st.header', (['"""Annotate your data"""'], {}), "('Annotate your data')\n", (1472, 1494), True, 'import streamlit as st\n'), ((1678, 1709), 'doccano_mini.components.task_instruction_editor', 'task_instruction_editor', (['prompt'], {}), '(prompt)\n', (1701, 1709), False, 'from doccano_mini.components import display_download_button, openai_model_form, task_instruction_editor, usage\n'), ((1719, 1736), 'streamlit.header', 'st.header', (['"""Test"""'], {}), "('Test')\n", (1728, 1736), True, 'import streamlit as st\n'), ((1758, 1776), 'streamlit.columns', 'st.columns', (['[3, 1]'], {}), '([3, 1])\n', (1768, 1776), True, 'import streamlit as st\n'), ((2096, 2138), 'streamlit.button', 'st.button', (['"""Predict"""'], {'disabled': '(llm is None)'}), "('Predict', disabled=llm is None)\n", (2105, 2138), True, 'import streamlit as st\n'), ((2409, 2416), 'doccano_mini.components.usage', 'usage', ([], {}), '()\n', (2414, 2416), False, 'from doccano_mini.components import display_download_button, openai_model_form, task_instruction_editor, usage\n'), ((1885, 1904), 'doccano_mini.components.openai_model_form', 'openai_model_form', ([], {}), '()\n', (1902, 1904), False, 'from doccano_mini.components import display_download_button, openai_model_form, task_instruction_editor, usage\n'), ((1919, 1949), 'streamlit.expander', 'st.expander', (['"""See your prompt"""'], {}), "('See your prompt')\n", (1930, 1949), True, 'import streamlit as st\n'), ((2052, 2083), 'streamlit.error', 'st.error', (['"""Enter your API key."""'], {}), "('Enter your API key.')\n", (2060, 2083), True, 'import streamlit as st\n'), ((2160, 2192), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (2168, 2192), False, 'from langchain.chains import LLMChain\n'), ((2375, 2400), 'doccano_mini.components.display_download_button', 'display_download_button', ([], {}), '()\n', (2398, 2400), False, 'from doccano_mini.components import display_download_button, openai_model_form, task_instruction_editor, usage\n'), ((2275, 2300), 'doccano_mini.utils.escape_markdown', 'escape_markdown', (['response'], {}), '(response)\n', (2290, 2300), False, 'from doccano_mini.utils import escape_markdown\n'), ((685, 699), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (689, 699), False, 'from pathlib import Path\n')] |
"""This module contains functions for loading and managing vector stores in the Wandbot ingestion system.
The module includes the following functions:
- `load`: Loads the vector store from the specified source artifact path and returns the name of the resulting artifact.
Typical usage example:
project = "wandbot-dev"
entity = "wandbot"
source_artifact_path = "wandbot/wandbot-dev/raw_dataset:latest"
result_artifact_name = "wandbot_index"
load(project, entity, source_artifact_path, result_artifact_name)
"""
import json
import pathlib
from typing import Any, Dict, List
from langchain.schema import Document as LcDocument
from llama_index.callbacks import WandbCallbackHandler
import wandb
from wandbot.ingestion import preprocess_data
from wandbot.ingestion.config import VectorStoreConfig
from wandbot.utils import (
get_logger,
load_index,
load_service_context,
load_storage_context,
)
logger = get_logger(__name__)
def load(
project: str,
entity: str,
source_artifact_path: str,
result_artifact_name: str = "wandbot_index",
) -> str:
"""Load the vector store.
Loads the vector store from the specified source artifact path and returns the name of the resulting artifact.
Args:
project: The name of the project.
entity: The name of the entity.
source_artifact_path: The path to the source artifact.
result_artifact_name: The name of the resulting artifact. Defaults to "wandbot_index".
Returns:
The name of the resulting artifact.
Raises:
wandb.Error: An error occurred during the loading process.
"""
config: VectorStoreConfig = VectorStoreConfig()
run: wandb.Run = wandb.init(
project=project, entity=entity, job_type="create_vectorstore"
)
artifact: wandb.Artifact = run.use_artifact(
source_artifact_path, type="dataset"
)
artifact_dir: str = artifact.download()
storage_context = load_storage_context(config.embedding_dim)
service_context = load_service_context(
embeddings_cache=str(config.embeddings_cache),
llm="gpt-3.5-turbo-16k-0613",
temperature=config.temperature,
max_retries=config.max_retries,
)
document_files: List[pathlib.Path] = list(
pathlib.Path(artifact_dir).rglob("documents.jsonl")
)
transformed_documents: List[LcDocument] = []
for document_file in document_files:
documents: List[LcDocument] = []
with document_file.open() as f:
for line in f:
doc_dict: Dict[str, Any] = json.loads(line)
doc: LcDocument = LcDocument(**doc_dict)
documents.append(doc)
transformed_documents.extend(preprocess_data.load(documents))
unique_objects = {obj.hash: obj for obj in transformed_documents}
transformed_documents = list(unique_objects.values())
index = load_index(
transformed_documents,
service_context,
storage_context,
persist_dir=str(config.persist_dir),
)
wandb_callback: WandbCallbackHandler = WandbCallbackHandler()
wandb_callback.persist_index(index, index_name=result_artifact_name)
wandb_callback.finish()
run.finish()
return f"{entity}/{project}/{result_artifact_name}:latest"
| [
"langchain.schema.Document"
] | [((944, 964), 'wandbot.utils.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (954, 964), False, 'from wandbot.utils import get_logger, load_index, load_service_context, load_storage_context\n'), ((1677, 1696), 'wandbot.ingestion.config.VectorStoreConfig', 'VectorStoreConfig', ([], {}), '()\n', (1694, 1696), False, 'from wandbot.ingestion.config import VectorStoreConfig\n'), ((1718, 1791), 'wandb.init', 'wandb.init', ([], {'project': 'project', 'entity': 'entity', 'job_type': '"""create_vectorstore"""'}), "(project=project, entity=entity, job_type='create_vectorstore')\n", (1728, 1791), False, 'import wandb\n'), ((1972, 2014), 'wandbot.utils.load_storage_context', 'load_storage_context', (['config.embedding_dim'], {}), '(config.embedding_dim)\n', (1992, 2014), False, 'from wandbot.utils import get_logger, load_index, load_service_context, load_storage_context\n'), ((3103, 3125), 'llama_index.callbacks.WandbCallbackHandler', 'WandbCallbackHandler', ([], {}), '()\n', (3123, 3125), False, 'from llama_index.callbacks import WandbCallbackHandler\n'), ((2743, 2774), 'wandbot.ingestion.preprocess_data.load', 'preprocess_data.load', (['documents'], {}), '(documents)\n', (2763, 2774), False, 'from wandbot.ingestion import preprocess_data\n'), ((2294, 2320), 'pathlib.Path', 'pathlib.Path', (['artifact_dir'], {}), '(artifact_dir)\n', (2306, 2320), False, 'import pathlib\n'), ((2594, 2610), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (2604, 2610), False, 'import json\n'), ((2645, 2667), 'langchain.schema.Document', 'LcDocument', ([], {}), '(**doc_dict)\n', (2655, 2667), True, 'from langchain.schema import Document as LcDocument\n')] |
from textwrap import dedent
from langchain import OpenAI
from langchain.schema import BaseModel
from utils import format_prompt_components_without_tools
def extract_first_message(message: str) -> str:
"""The LLM can continue the conversation from the recipient. So extract just the first line."""
return message.split("\n")[0].strip()
def get_unsolicited_message_prompt(ai_prefix: str, human_prefix: str) -> str:
"""Get prompt for unsolicited message."""
inspirational_thought = f"""
*{ai_prefix} then drew on their past experiences with {human_prefix} and continued the conversation*"""
return dedent(inspirational_thought)
def generate_unsolicited_message(
prompt: str,
model: BaseModel,
ai_settings: dict,
contact_settings: dict,
temperature: int = 0,
) -> str:
"""Generate AI message without message from user."""
ai_prefix, _, prefix, suffix = format_prompt_components_without_tools(
ai_settings, contact_settings
)
chat_history = model.memory.load_memory_variables({})["chat_history"]
prompt = "\n".join([prefix, suffix, prompt, "", f"{ai_prefix}:"]).format(
chat_history=chat_history
)
llm = OpenAI(temperature=temperature)
message = llm(prompt)
message = extract_first_message(message)
model.memory.chat_memory.add_ai_message(message)
return message
| [
"langchain.OpenAI"
] | [((627, 656), 'textwrap.dedent', 'dedent', (['inspirational_thought'], {}), '(inspirational_thought)\n', (633, 656), False, 'from textwrap import dedent\n'), ((912, 981), 'utils.format_prompt_components_without_tools', 'format_prompt_components_without_tools', (['ai_settings', 'contact_settings'], {}), '(ai_settings, contact_settings)\n', (950, 981), False, 'from utils import format_prompt_components_without_tools\n'), ((1199, 1230), 'langchain.OpenAI', 'OpenAI', ([], {'temperature': 'temperature'}), '(temperature=temperature)\n', (1205, 1230), False, 'from langchain import OpenAI\n')] |
"""VectorStore wrapper around a Postgres/PGVector database."""
from __future__ import annotations
import enum
import logging
import uuid
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type
import sqlalchemy
from pgvector.sqlalchemy import Vector
from sqlalchemy.dialects.postgresql import JSON, UUID
from sqlalchemy.orm import Session, declarative_base, relationship
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
Base = declarative_base() # type: Any
ADA_TOKEN_COUNT = 1536
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
class BaseModel(Base):
__abstract__ = True
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
class CollectionStore(BaseModel):
__tablename__ = "langchain_pg_collection"
name = sqlalchemy.Column(sqlalchemy.String)
cmetadata = sqlalchemy.Column(JSON)
embeddings = relationship(
"EmbeddingStore",
back_populates="collection",
passive_deletes=True,
)
@classmethod
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
return session.query(cls).filter(cls.name == name).first() # type: ignore
@classmethod
def get_or_create(
cls,
session: Session,
name: str,
cmetadata: Optional[dict] = None,
) -> Tuple["CollectionStore", bool]:
"""
Get or create a collection.
Returns [Collection, bool] where the bool is True if the collection was created.
"""
created = False
collection = cls.get_by_name(session, name)
if collection:
return collection, created
collection = cls(name=name, cmetadata=cmetadata)
session.add(collection)
session.commit()
created = True
return collection, created
class EmbeddingStore(BaseModel):
__tablename__ = "langchain_pg_embedding"
collection_id = sqlalchemy.Column(
UUID(as_uuid=True),
sqlalchemy.ForeignKey(
f"{CollectionStore.__tablename__}.uuid",
ondelete="CASCADE",
),
)
collection = relationship(CollectionStore, back_populates="embeddings")
embedding: Vector = sqlalchemy.Column(Vector(ADA_TOKEN_COUNT))
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
cmetadata = sqlalchemy.Column(JSON, nullable=True)
# custom_id : any user defined id
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
class QueryResult:
EmbeddingStore: EmbeddingStore
distance: float
class DistanceStrategy(str, enum.Enum):
EUCLIDEAN = EmbeddingStore.embedding.l2_distance
COSINE = EmbeddingStore.embedding.cosine_distance
MAX_INNER_PRODUCT = EmbeddingStore.embedding.max_inner_product
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.EUCLIDEAN
class PGVector(VectorStore):
"""
VectorStore implementation using Postgres and pgvector.
- `connection_string` is a postgres connection string.
- `embedding_function` any embedding function implementing
`langchain.embeddings.base.Embeddings` interface.
- `collection_name` is the name of the collection to use. (default: langchain)
- NOTE: This is not the name of the table, but the name of the collection.
The tables will be created when initializing the store (if not exists)
So, make sure the user has the right permissions to create tables.
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
- `EUCLIDEAN` is the euclidean distance.
- `COSINE` is the cosine distance.
- `pre_delete_collection` if True, will delete the collection if it exists.
(default: False)
- Useful for testing.
"""
def __init__(
self,
connection_string: str,
embedding_function: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
collection_metadata: Optional[dict] = None,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
pre_delete_collection: bool = False,
logger: Optional[logging.Logger] = None,
) -> None:
self.connection_string = connection_string
self.embedding_function = embedding_function
self.collection_name = collection_name
self.collection_metadata = collection_metadata
self.distance_strategy = distance_strategy
self.pre_delete_collection = pre_delete_collection
self.logger = logger or logging.getLogger(__name__)
self.__post_init__()
def __post_init__(
self,
) -> None:
"""
Initialize the store.
"""
self._conn = self.connect()
# self.create_vector_extension()
self.create_tables_if_not_exists()
self.create_collection()
def connect(self) -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(self.connection_string)
conn = engine.connect()
return conn
def create_vector_extension(self) -> None:
try:
with Session(self._conn) as session:
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS vector")
session.execute(statement)
session.commit()
except Exception as e:
self.logger.exception(e)
def create_tables_if_not_exists(self) -> None:
with self._conn.begin():
Base.metadata.create_all(self._conn)
def drop_tables(self) -> None:
with self._conn.begin():
Base.metadata.drop_all(self._conn)
def create_collection(self) -> None:
if self.pre_delete_collection:
self.delete_collection()
with Session(self._conn) as session:
CollectionStore.get_or_create(
session, self.collection_name, cmetadata=self.collection_metadata
)
def delete_collection(self) -> None:
self.logger.debug("Trying to delete collection")
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
self.logger.warning("Collection not found")
return
session.delete(collection)
session.commit()
def get_collection(self, session: Session) -> Optional["CollectionStore"]:
return CollectionStore.get_by_name(session, self.collection_name)
@classmethod
def __from(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DistanceStrategy.COSINE,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
if not metadatas:
metadatas = [{} for _ in texts]
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
)
store.add_embeddings(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
return store
def add_embeddings(
self,
texts: List[str],
embeddings: List[List[float]],
metadatas: List[dict],
ids: List[str],
**kwargs: Any,
) -> None:
"""Add embeddings to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
embeddings: List of list of embedding vectors.
metadatas: List of metadatas associated with the texts.
kwargs: vectorstore specific parameters
"""
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
)
collection.embeddings.append(embedding_store)
session.add(embedding_store)
session.commit()
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
embeddings = self.embedding_function.embed_documents(list(texts))
if not metadatas:
metadatas = [{} for _ in texts]
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
)
collection.embeddings.append(embedding_store)
session.add(embedding_store)
session.commit()
return ids
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with PGVector with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding_function.embed_query(text=query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
filter=filter,
)
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding_function.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return docs
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
filter_by = EmbeddingStore.collection_id == collection.uuid
if filter is not None:
filter_clauses = []
for key, value in filter.items():
IN = "in"
if isinstance(value, dict) and IN in map(str.lower, value):
value_case_insensitive = {
k.lower(): v for k, v in value.items()
}
filter_by_metadata = EmbeddingStore.cmetadata[key].astext.in_(
value_case_insensitive[IN]
)
filter_clauses.append(filter_by_metadata)
else:
filter_by_metadata = EmbeddingStore.cmetadata[
key
].astext == str(value)
filter_clauses.append(filter_by_metadata)
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
results: List[QueryResult] = (
session.query(
EmbeddingStore,
self.distance_strategy(embedding).label("distance"), # type: ignore
)
.filter(filter_by)
.order_by(sqlalchemy.asc("distance"))
.join(
CollectionStore,
EmbeddingStore.collection_id == CollectionStore.uuid,
)
.limit(k)
.all()
)
docs = [
(
Document(
page_content=result.EmbeddingStore.document,
metadata=result.EmbeddingStore.cmetadata,
),
result.distance if self.embedding_function is not None else None,
)
for result in results
]
return docs
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query vector.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return [doc for doc, _ in docs_and_scores]
@classmethod
def from_texts(
cls: Type[PGVector],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DistanceStrategy.COSINE,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
embeddings = embedding.embed_documents(list(texts))
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
@classmethod
def from_embeddings(
cls,
text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DistanceStrategy.COSINE,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""Construct PGVector wrapper from raw documents and pre-
generated embeddings.
Return VectorStore initialized from documents and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
Example:
.. code-block:: python
from langchain import PGVector
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
@classmethod
def from_existing_index(
cls: Type[PGVector],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DistanceStrategy.COSINE,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""
Get intsance of an existing PGVector store.This method will
return the instance of the store without inserting any new
embeddings
"""
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
)
return store
@classmethod
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
connection_string: str = get_from_dict_or_env(
data=kwargs,
key="connection_string",
env_key="PGVECTOR_CONNECTION_STRING",
)
if not connection_string:
raise ValueError(
"Postgres connection string is required"
"Either pass it as a parameter"
"or set the PGVECTOR_CONNECTION_STRING environment variable."
)
return connection_string
@classmethod
def from_documents(
cls: Type[PGVector],
documents: List[Document],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""
Return VectorStore initialized from documents and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
connection_string = cls.get_connection_string(kwargs)
kwargs["connection_string"] = connection_string
return cls.from_texts(
texts=texts,
pre_delete_collection=pre_delete_collection,
embedding=embedding,
distance_strategy=distance_strategy,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
**kwargs,
)
@classmethod
def connection_string_from_db_params(
cls,
driver: str,
host: str,
port: int,
database: str,
user: str,
password: str,
) -> str:
"""Return connection string from database parameters."""
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
| [
"langchain.docstore.document.Document",
"langchain.utils.get_from_dict_or_env"
] | [((593, 611), 'sqlalchemy.orm.declarative_base', 'declarative_base', ([], {}), '()\n', (609, 611), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((929, 965), 'sqlalchemy.Column', 'sqlalchemy.Column', (['sqlalchemy.String'], {}), '(sqlalchemy.String)\n', (946, 965), False, 'import sqlalchemy\n'), ((982, 1005), 'sqlalchemy.Column', 'sqlalchemy.Column', (['JSON'], {}), '(JSON)\n', (999, 1005), False, 'import sqlalchemy\n'), ((1024, 1110), 'sqlalchemy.orm.relationship', 'relationship', (['"""EmbeddingStore"""'], {'back_populates': '"""collection"""', 'passive_deletes': '(True)'}), "('EmbeddingStore', back_populates='collection', passive_deletes\n =True)\n", (1036, 1110), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((2264, 2322), 'sqlalchemy.orm.relationship', 'relationship', (['CollectionStore'], {'back_populates': '"""embeddings"""'}), "(CollectionStore, back_populates='embeddings')\n", (2276, 2322), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((2406, 2457), 'sqlalchemy.Column', 'sqlalchemy.Column', (['sqlalchemy.String'], {'nullable': '(True)'}), '(sqlalchemy.String, nullable=True)\n', (2423, 2457), False, 'import sqlalchemy\n'), ((2474, 2512), 'sqlalchemy.Column', 'sqlalchemy.Column', (['JSON'], {'nullable': '(True)'}), '(JSON, nullable=True)\n', (2491, 2512), False, 'import sqlalchemy\n'), ((2568, 2619), 'sqlalchemy.Column', 'sqlalchemy.Column', (['sqlalchemy.String'], {'nullable': '(True)'}), '(sqlalchemy.String, nullable=True)\n', (2585, 2619), False, 'import sqlalchemy\n'), ((777, 795), 'sqlalchemy.dialects.postgresql.UUID', 'UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (781, 795), False, 'from sqlalchemy.dialects.postgresql import JSON, UUID\n'), ((2094, 2112), 'sqlalchemy.dialects.postgresql.UUID', 'UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (2098, 2112), False, 'from sqlalchemy.dialects.postgresql import JSON, UUID\n'), ((2122, 2209), 'sqlalchemy.ForeignKey', 'sqlalchemy.ForeignKey', (['f"""{CollectionStore.__tablename__}.uuid"""'], {'ondelete': '"""CASCADE"""'}), "(f'{CollectionStore.__tablename__}.uuid', ondelete=\n 'CASCADE')\n", (2143, 2209), False, 'import sqlalchemy\n'), ((2366, 2389), 'pgvector.sqlalchemy.Vector', 'Vector', (['ADA_TOKEN_COUNT'], {}), '(ADA_TOKEN_COUNT)\n', (2372, 2389), False, 'from pgvector.sqlalchemy import Vector\n'), ((5035, 5083), 'sqlalchemy.create_engine', 'sqlalchemy.create_engine', (['self.connection_string'], {}), '(self.connection_string)\n', (5059, 5083), False, 'import sqlalchemy\n'), ((18474, 18575), 'langchain.utils.get_from_dict_or_env', 'get_from_dict_or_env', ([], {'data': 'kwargs', 'key': '"""connection_string"""', 'env_key': '"""PGVECTOR_CONNECTION_STRING"""'}), "(data=kwargs, key='connection_string', env_key=\n 'PGVECTOR_CONNECTION_STRING')\n", (18494, 18575), False, 'from langchain.utils import get_from_dict_or_env\n'), ((4645, 4672), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4662, 4672), False, 'import logging\n'), ((5856, 5875), 'sqlalchemy.orm.Session', 'Session', (['self._conn'], {}), '(self._conn)\n', (5863, 5875), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((6139, 6158), 'sqlalchemy.orm.Session', 'Session', (['self._conn'], {}), '(self._conn)\n', (6146, 6158), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((8181, 8200), 'sqlalchemy.orm.Session', 'Session', (['self._conn'], {}), '(self._conn)\n', (8188, 8200), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((9616, 9635), 'sqlalchemy.orm.Session', 'Session', (['self._conn'], {}), '(self._conn)\n', (9623, 9635), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((11942, 11961), 'sqlalchemy.orm.Session', 'Session', (['self._conn'], {}), '(self._conn)\n', (11949, 11961), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((5214, 5233), 'sqlalchemy.orm.Session', 'Session', (['self._conn'], {}), '(self._conn)\n', (5221, 5233), False, 'from sqlalchemy.orm import Session, declarative_base, relationship\n'), ((5274, 5330), 'sqlalchemy.text', 'sqlalchemy.text', (['"""CREATE EXTENSION IF NOT EXISTS vector"""'], {}), "('CREATE EXTENSION IF NOT EXISTS vector')\n", (5289, 5330), False, 'import sqlalchemy\n'), ((13070, 13113), 'sqlalchemy.and_', 'sqlalchemy.and_', (['filter_by', '*filter_clauses'], {}), '(filter_by, *filter_clauses)\n', (13085, 13113), False, 'import sqlalchemy\n'), ((13684, 13784), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'result.EmbeddingStore.document', 'metadata': 'result.EmbeddingStore.cmetadata'}), '(page_content=result.EmbeddingStore.document, metadata=result.\n EmbeddingStore.cmetadata)\n', (13692, 13784), False, 'from langchain.docstore.document import Document\n'), ((7065, 7077), 'uuid.uuid1', 'uuid.uuid1', ([], {}), '()\n', (7075, 7077), False, 'import uuid\n'), ((9426, 9438), 'uuid.uuid1', 'uuid.uuid1', ([], {}), '()\n', (9436, 9438), False, 'import uuid\n'), ((13393, 13419), 'sqlalchemy.asc', 'sqlalchemy.asc', (['"""distance"""'], {}), "('distance')\n", (13407, 13419), False, 'import sqlalchemy\n')] |
import tempfile
import time
import os
from utils import compute_sha1_from_file
from langchain.schema import Document
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from typing import List
from sqlite3 import Connection
from verse.sqlite_helper import *
def update_metadata(conn: Connection, docs_with_metadata: List[Document]):
insert_tuple = list(
set(
map(
lambda x: (
hash(x.metadata["file_sha1"]),
x.metadata["file_sha1"],
x.metadata["file_name"],
),
docs_with_metadata,
)
)
)
insertmany(conn=conn, datalist=insert_tuple)
def process_file(
conn: Connection, file, loader_class, file_suffix, stats_db=None
) -> List[Document]:
documents = []
file_name = file.name
file_size = file.size
if st.secrets.self_hosted == "false":
if file_size > 1000000:
st.error(
"File size is too large. Please upload a file smaller than 1MB or self host."
)
return
dateshort = time.strftime("%Y%m%d")
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
tmp_file.write(file.getvalue())
tmp_file.flush()
loader = loader_class(tmp_file.name)
documents = loader.load()
file_sha1 = compute_sha1_from_file(tmp_file.name)
os.remove(tmp_file.name)
chunk_size = st.session_state["chunk_size"]
chunk_overlap = st.session_state["chunk_overlap"]
print(f"Chunk Size {chunk_size} Overlap {chunk_overlap}")
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, separators=["\n\n", ""]
)
documents = text_splitter.split_documents(documents)
# Add the document sha1 as metadata to each document
docs_with_metadata = [
Document(
page_content=doc.page_content,
metadata={
"file_sha1": file_sha1,
"file_size": file_size,
"file_name": file_name,
"chunk_size": chunk_size,
"chunk_overlap": chunk_overlap,
"date": dateshort,
"file_type": file_suffix,
"page": doc.metadata["page"],
"dbsource": doc.metadata["source"]
},
)
for doc in documents
]
return docs_with_metadata
| [
"langchain.schema.Document",
"langchain.text_splitter.RecursiveCharacterTextSplitter.from_tiktoken_encoder"
] | [((1152, 1175), 'time.strftime', 'time.strftime', (['"""%Y%m%d"""'], {}), "('%Y%m%d')\n", (1165, 1175), False, 'import time\n'), ((1468, 1492), 'os.remove', 'os.remove', (['tmp_file.name'], {}), '(tmp_file.name)\n', (1477, 1492), False, 'import os\n'), ((1679, 1812), 'langchain.text_splitter.RecursiveCharacterTextSplitter.from_tiktoken_encoder', 'RecursiveCharacterTextSplitter.from_tiktoken_encoder', ([], {'chunk_size': 'chunk_size', 'chunk_overlap': 'chunk_overlap', 'separators': "['\\n\\n', '']"}), "(chunk_size=chunk_size,\n chunk_overlap=chunk_overlap, separators=['\\n\\n', ''])\n", (1731, 1812), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1185, 1246), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'delete': '(False)', 'suffix': 'file_suffix'}), '(delete=False, suffix=file_suffix)\n', (1212, 1246), False, 'import tempfile\n'), ((1425, 1462), 'utils.compute_sha1_from_file', 'compute_sha1_from_file', (['tmp_file.name'], {}), '(tmp_file.name)\n', (1447, 1462), False, 'from utils import compute_sha1_from_file\n'), ((1973, 2281), 'langchain.schema.Document', 'Document', ([], {'page_content': 'doc.page_content', 'metadata': "{'file_sha1': file_sha1, 'file_size': file_size, 'file_name': file_name,\n 'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap, 'date':\n dateshort, 'file_type': file_suffix, 'page': doc.metadata['page'],\n 'dbsource': doc.metadata['source']}"}), "(page_content=doc.page_content, metadata={'file_sha1': file_sha1,\n 'file_size': file_size, 'file_name': file_name, 'chunk_size':\n chunk_size, 'chunk_overlap': chunk_overlap, 'date': dateshort,\n 'file_type': file_suffix, 'page': doc.metadata['page'], 'dbsource': doc\n .metadata['source']})\n", (1981, 2281), False, 'from langchain.schema import Document\n'), ((998, 1095), 'streamlit.error', 'st.error', (['"""File size is too large. Please upload a file smaller than 1MB or self host."""'], {}), "(\n 'File size is too large. Please upload a file smaller than 1MB or self host.'\n )\n", (1006, 1095), True, 'import streamlit as st\n')] |
import json
import logging
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Field
from langchain.schema.output import GenerationChunk
logger = logging.getLogger(__name__)
class TextGen(LLM):
"""text-generation-webui models.
To use, you should have the text-generation-webui installed, a model loaded,
and --api added as a command-line option.
Suggested installation, use one-click installer for your OS:
https://github.com/oobabooga/text-generation-webui#one-click-installers
Parameters below taken from text-generation-webui api example:
https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(model_url="http://localhost:8500")
"""
model_url: str
"""The full URL to the textgen webui including http[s]://host:port """
preset: Optional[str] = None
"""The preset to use in the textgen webui """
max_new_tokens: Optional[int] = 250
"""The maximum number of tokens to generate."""
do_sample: bool = Field(True, alias="do_sample")
"""Do sample"""
temperature: Optional[float] = 1.3
"""Primary factor to control randomness of outputs. 0 = deterministic
(only the most likely token is used). Higher value = more randomness."""
top_p: Optional[float] = 0.1
"""If not set to 1, select tokens with probabilities adding up to less than this
number. Higher value = higher range of possible random results."""
typical_p: Optional[float] = 1
"""If not set to 1, select only tokens that are at least this much more likely to
appear than random tokens, given the prior text."""
epsilon_cutoff: Optional[float] = 0 # In units of 1e-4
"""Epsilon cutoff"""
eta_cutoff: Optional[float] = 0 # In units of 1e-4
"""ETA cutoff"""
repetition_penalty: Optional[float] = 1.18
"""Exponential penalty factor for repeating prior tokens. 1 means no penalty,
higher value = less repetition, lower value = more repetition."""
top_k: Optional[float] = 40
"""Similar to top_p, but select instead only the top_k most likely tokens.
Higher value = higher range of possible random results."""
min_length: Optional[int] = 0
"""Minimum generation length in tokens."""
no_repeat_ngram_size: Optional[int] = 0
"""If not set to 0, specifies the length of token sets that are completely blocked
from repeating at all. Higher values = blocks larger phrases,
lower values = blocks words or letters from repeating.
Only 0 or high values are a good idea in most cases."""
num_beams: Optional[int] = 1
"""Number of beams"""
penalty_alpha: Optional[float] = 0
"""Penalty Alpha"""
length_penalty: Optional[float] = 1
"""Length Penalty"""
early_stopping: bool = Field(False, alias="early_stopping")
"""Early stopping"""
seed: int = Field(-1, alias="seed")
"""Seed (-1 for random)"""
add_bos_token: bool = Field(True, alias="add_bos_token")
"""Add the bos_token to the beginning of prompts.
Disabling this can make the replies more creative."""
truncation_length: Optional[int] = 2048
"""Truncate the prompt up to this length. The leftmost tokens are removed if
the prompt exceeds this length. Most models require this to be at most 2048."""
ban_eos_token: bool = Field(False, alias="ban_eos_token")
"""Ban the eos_token. Forces the model to never end the generation prematurely."""
skip_special_tokens: bool = Field(True, alias="skip_special_tokens")
"""Skip special tokens. Some specific models need this unset."""
stopping_strings: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
streaming: bool = False
"""Whether to stream the results, token by token."""
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling textgen."""
return {
"max_new_tokens": self.max_new_tokens,
"do_sample": self.do_sample,
"temperature": self.temperature,
"top_p": self.top_p,
"typical_p": self.typical_p,
"epsilon_cutoff": self.epsilon_cutoff,
"eta_cutoff": self.eta_cutoff,
"repetition_penalty": self.repetition_penalty,
"top_k": self.top_k,
"min_length": self.min_length,
"no_repeat_ngram_size": self.no_repeat_ngram_size,
"num_beams": self.num_beams,
"penalty_alpha": self.penalty_alpha,
"length_penalty": self.length_penalty,
"early_stopping": self.early_stopping,
"seed": self.seed,
"add_bos_token": self.add_bos_token,
"truncation_length": self.truncation_length,
"ban_eos_token": self.ban_eos_token,
"skip_special_tokens": self.skip_special_tokens,
"stopping_strings": self.stopping_strings,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_url": self.model_url}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "textgen"
def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
"""
Performs sanity check, preparing parameters in format needed by textgen.
Args:
stop (Optional[List[str]]): List of stop sequences for textgen.
Returns:
Dictionary containing the combined parameters.
"""
# Raise error if stop sequences are in both input and default params
# if self.stop and stop is not None:
if self.stopping_strings and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
if self.preset is None:
params = self._default_params
else:
params = {"preset": self.preset}
# then sets it as configured, or default to an empty list:
params["stop"] = self.stopping_strings or stop or []
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the textgen web API and return the output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(model_url="http://localhost:5000")
llm("Write a story about llamas.")
"""
if self.streaming:
combined_text_output = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
combined_text_output += chunk.text
print(prompt + combined_text_output)
result = combined_text_output
else:
url = f"{self.model_url}/api/v1/generate"
params = self._get_parameters(stop)
request = params.copy()
request["prompt"] = prompt
response = requests.post(url, json=request)
if response.status_code == 200:
result = response.json()["results"][0]["text"]
print(prompt + result)
else:
print(f"ERROR: response: {response}")
result = ""
return result
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like objects containing a string token and metadata.
See text-generation-webui docs and below for more.
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(
model_url = "ws://localhost:5005"
streaming=True
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
print(chunk, end='', flush=True)
"""
try:
import websocket
except ImportError:
raise ImportError(
"The `websocket-client` package is required for streaming."
)
params = {**self._get_parameters(stop), **kwargs}
url = f"{self.model_url}/api/v1/stream"
request = params.copy()
request["prompt"] = prompt
websocket_client = websocket.WebSocket()
websocket_client.connect(url)
websocket_client.send(json.dumps(request))
while True:
result = websocket_client.recv()
result = json.loads(result)
if result["event"] == "text_stream":
chunk = GenerationChunk(
text=result["text"],
generation_info=None,
)
yield chunk
elif result["event"] == "stream_end":
websocket_client.close()
return
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
| [
"langchain.pydantic_v1.Field",
"langchain.schema.output.GenerationChunk"
] | [((303, 330), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (320, 330), False, 'import logging\n'), ((1278, 1308), 'langchain.pydantic_v1.Field', 'Field', (['(True)'], {'alias': '"""do_sample"""'}), "(True, alias='do_sample')\n", (1283, 1308), False, 'from langchain.pydantic_v1 import Field\n'), ((3044, 3080), 'langchain.pydantic_v1.Field', 'Field', (['(False)'], {'alias': '"""early_stopping"""'}), "(False, alias='early_stopping')\n", (3049, 3080), False, 'from langchain.pydantic_v1 import Field\n'), ((3123, 3146), 'langchain.pydantic_v1.Field', 'Field', (['(-1)'], {'alias': '"""seed"""'}), "(-1, alias='seed')\n", (3128, 3146), False, 'from langchain.pydantic_v1 import Field\n'), ((3205, 3239), 'langchain.pydantic_v1.Field', 'Field', (['(True)'], {'alias': '"""add_bos_token"""'}), "(True, alias='add_bos_token')\n", (3210, 3239), False, 'from langchain.pydantic_v1 import Field\n'), ((3589, 3624), 'langchain.pydantic_v1.Field', 'Field', (['(False)'], {'alias': '"""ban_eos_token"""'}), "(False, alias='ban_eos_token')\n", (3594, 3624), False, 'from langchain.pydantic_v1 import Field\n'), ((3745, 3785), 'langchain.pydantic_v1.Field', 'Field', (['(True)'], {'alias': '"""skip_special_tokens"""'}), "(True, alias='skip_special_tokens')\n", (3750, 3785), False, 'from langchain.pydantic_v1 import Field\n'), ((9592, 9613), 'websocket.WebSocket', 'websocket.WebSocket', ([], {}), '()\n', (9611, 9613), False, 'import websocket\n'), ((7631, 7663), 'requests.post', 'requests.post', (['url'], {'json': 'request'}), '(url, json=request)\n', (7644, 7663), False, 'import requests\n'), ((9684, 9703), 'json.dumps', 'json.dumps', (['request'], {}), '(request)\n', (9694, 9703), False, 'import json\n'), ((9792, 9810), 'json.loads', 'json.loads', (['result'], {}), '(result)\n', (9802, 9810), False, 'import json\n'), ((9885, 9943), 'langchain.schema.output.GenerationChunk', 'GenerationChunk', ([], {'text': "result['text']", 'generation_info': 'None'}), "(text=result['text'], generation_info=None)\n", (9900, 9943), False, 'from langchain.schema.output import GenerationChunk\n')] |
# imports
from loguru import logger
# LLM modules
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_community.llms.ollama import Ollama
from langchain_openai import ChatOpenAI, AzureChatOpenAI
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# local imports
import settings_template as settings
class LLMCreator():
"""
LLM class to import into other modules
"""
def __init__(self, llm_type=None, llm_model_type=None, local_api_url=None, azureopenai_api_version=None) -> None:
self.llm_type = settings.LLM_TYPE if llm_type is None else llm_type
self.llm_model_type = settings.LLM_MODEL_TYPE if llm_model_type is None else llm_model_type
self.local_api_url = settings.API_URL if local_api_url is None else local_api_url
self.azureopenai_api_version = settings.AZUREOPENAI_API_VERSION \
if azureopenai_api_version is None and settings.AZUREOPENAI_API_VERSION is not None \
else azureopenai_api_version
def get_llm(self):
"""
returns, based on settings, the llm object
"""
# if llm_type is "chatopenai"
if self.llm_type == "chatopenai":
# default llm_model_type value is "gpt-3.5-turbo"
self.llm_model_type = "gpt-3.5-turbo"
if self.llm_model_type == "gpt35_16":
self.llm_model_type = "gpt-3.5-turbo-16k"
elif self.llm_model_type == "gpt4":
self.llm_model_type = "gpt-4"
self.llm = ChatOpenAI(
client=None,
model=self.llm_model_type,
temperature=0,
)
# else, if llm_type is "huggingface"
elif self.llm_type == "huggingface":
# default value is llama-2, with maximum output length 512
self.llm_model_type = "meta-llama/Llama-2-7b-chat-hf"
max_length = 512
if self.llm_model_type == 'GoogleFlan':
self.llm_model_type = 'google/flan-t5-base'
max_length = 512
self.llm = HuggingFaceHub(repo_id=self.llm_model_type,
model_kwargs={"temperature": 0.1,
"max_length": max_length}
)
# else, if llm_type is "local_llm"
elif self.llm_type == "local_llm":
logger.info("Use Local LLM")
logger.info("Retrieving " + self.llm_model_type)
# If API URL is defined, use it
if self.local_api_url is not None:
logger.info("Using local api url " + self.local_api_url)
self.llm = Ollama(
model=self.llm_model_type,
base_url=self.local_api_url,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])
)
else:
self.llm = Ollama(
model=self.llm_model_type,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])
)
logger.info("Retrieved " + self.llm_model_type)
# else, if llm_type is "azureopenai"
elif self.llm_type == "azureopenai":
logger.info("Use Azure OpenAI LLM")
logger.info("Retrieving " + self.llm_model_type)
self.llm = AzureChatOpenAI(
azure_deployment=self.llm_model_type,
azure_endpoint=self.local_api_url,
api_version=self.azureopenai_api_version,
)
logger.info("Retrieved " + self.llm_model_type)
return self.llm
| [
"langchain_openai.AzureChatOpenAI",
"langchain_community.llms.huggingface_hub.HuggingFaceHub",
"langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler",
"langchain_openai.ChatOpenAI"
] | [((1610, 1675), 'langchain_openai.ChatOpenAI', 'ChatOpenAI', ([], {'client': 'None', 'model': 'self.llm_model_type', 'temperature': '(0)'}), '(client=None, model=self.llm_model_type, temperature=0)\n', (1620, 1675), False, 'from langchain_openai import ChatOpenAI, AzureChatOpenAI\n'), ((2163, 2272), 'langchain_community.llms.huggingface_hub.HuggingFaceHub', 'HuggingFaceHub', ([], {'repo_id': 'self.llm_model_type', 'model_kwargs': "{'temperature': 0.1, 'max_length': max_length}"}), "(repo_id=self.llm_model_type, model_kwargs={'temperature': \n 0.1, 'max_length': max_length})\n", (2177, 2272), False, 'from langchain_community.llms.huggingface_hub import HuggingFaceHub\n'), ((2495, 2523), 'loguru.logger.info', 'logger.info', (['"""Use Local LLM"""'], {}), "('Use Local LLM')\n", (2506, 2523), False, 'from loguru import logger\n'), ((2536, 2584), 'loguru.logger.info', 'logger.info', (["('Retrieving ' + self.llm_model_type)"], {}), "('Retrieving ' + self.llm_model_type)\n", (2547, 2584), False, 'from loguru import logger\n'), ((3206, 3253), 'loguru.logger.info', 'logger.info', (["('Retrieved ' + self.llm_model_type)"], {}), "('Retrieved ' + self.llm_model_type)\n", (3217, 3253), False, 'from loguru import logger\n'), ((2692, 2748), 'loguru.logger.info', 'logger.info', (["('Using local api url ' + self.local_api_url)"], {}), "('Using local api url ' + self.local_api_url)\n", (2703, 2748), False, 'from loguru import logger\n'), ((3356, 3391), 'loguru.logger.info', 'logger.info', (['"""Use Azure OpenAI LLM"""'], {}), "('Use Azure OpenAI LLM')\n", (3367, 3391), False, 'from loguru import logger\n'), ((3404, 3452), 'loguru.logger.info', 'logger.info', (["('Retrieving ' + self.llm_model_type)"], {}), "('Retrieving ' + self.llm_model_type)\n", (3415, 3452), False, 'from loguru import logger\n'), ((3476, 3611), 'langchain_openai.AzureChatOpenAI', 'AzureChatOpenAI', ([], {'azure_deployment': 'self.llm_model_type', 'azure_endpoint': 'self.local_api_url', 'api_version': 'self.azureopenai_api_version'}), '(azure_deployment=self.llm_model_type, azure_endpoint=self.\n local_api_url, api_version=self.azureopenai_api_version)\n', (3491, 3611), False, 'from langchain_openai import ChatOpenAI, AzureChatOpenAI\n'), ((3682, 3729), 'loguru.logger.info', 'logger.info', (["('Retrieved ' + self.llm_model_type)"], {}), "('Retrieved ' + self.llm_model_type)\n", (3693, 3729), False, 'from loguru import logger\n'), ((2934, 2966), 'langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler', 'StreamingStdOutCallbackHandler', ([], {}), '()\n', (2964, 2966), False, 'from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n'), ((3141, 3173), 'langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler', 'StreamingStdOutCallbackHandler', ([], {}), '()\n', (3171, 3173), False, 'from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n')] |
from typing import List
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain_core.documents import Document
from dotenv import load_dotenv
from themind.llm.func_instraction import instruct
from pydantic import BaseModel
import csv
from themind.vectorstores.chunking.question_answer_strategy import QuestionChunkingStrategy
from themind.vectorstores.chunking.chunking_strategy import ChunkingStrategy
class VectorStore(object):
def __init__(self, local_storage_dir: str = "./"):
self.vectorstore = Chroma(collection_name="all-data", persist_directory=local_storage_dir, embedding_function=OpenAIEmbeddings())
def ingest(self, uid: str, data: List[str], chunking_strategy: ChunkingStrategy = QuestionChunkingStrategy):
# Question & Answear strategy
# for each chunk, crete a list a question and answear from the text, similar how embeddings are being trained!
for chunk in data:
print('Chunk: ' + chunk)
docs = chunking_strategy.chunk(uid, chunk)
if len(docs) == 0:
print('No documents were created for this chunk')
continue
# append metadata to its document
for doc in docs:
doc.metadata['uid'] = uid
# doc.metadata['location'] = location
# doc.metadata['created_at'] = created_at
self.vectorstore.add_documents(docs)
print('Added chunk to vectorstore')
def query(self, uid: str, query: str):
output = self.vectorstore.similarity_search(query=query, k=10, filters={"uid": uid})
print(output)
@instruct
def answer(query: str, texts: List[str]) -> str:
"""
This was a query user made: {query}
This is a context we have: {texts}
Reply:
"""
return answer(query, [o.page_content for o in output])
if __name__ == '__main__':
uid = 'test'
# Process the CSV data
csv_path = "/Users/zvada/Documents/TheMind/themind-memory/data/alex-rivera-ground-truth.csv"
with open(csv_path, 'r') as file:
sentences = file.read().splitlines()
vec = VectorStore()
vec.ingest(uid, sentences)
# output = vec.query(uid, "what should i give laura for christmas?")
output = vec.query(uid, "what is alex's favorite food?")
print(output)
| [
"langchain.embeddings.OpenAIEmbeddings"
] | [((657, 675), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (673, 675), False, 'from langchain.embeddings import OpenAIEmbeddings\n')] |
import re
import time
import copy
import random
import numpy as np
import multiprocessing
import matplotlib.pyplot as plt
import modules.prompts as prompts
from langchain import PromptTemplate
from shapely.ops import substring
from shapely.geometry import Polygon, box, Point, LineString
class WallObjectGenerator():
def __init__(self, llm, object_retriever):
self.json_template = {"assetId": None, "id": None, "kinematic": True,
"position": {}, "rotation": {}, "material": None, "roomId": None}
self.llm = llm
self.object_retriever = object_retriever
self.database = object_retriever.database
self.constraint_prompt_template = PromptTemplate(input_variables=["room_type", "wall_height", "floor_objects", "wall_objects"],
template=prompts.wall_object_constraints_prompt)
self.grid_size = 25
self.default_height = 150
self.constraint_type = "llm"
def generate_wall_objects(self, scene, use_constraint=True):
doors = scene["doors"]
windows = scene["windows"]
open_walls = scene["open_walls"]
wall_height = scene["wall_height"]
wall_objects = []
selected_objects = scene["selected_objects"]
packed_args = [(room, scene, doors, windows, open_walls, wall_height, selected_objects, use_constraint) for room in scene["rooms"]]
pool = multiprocessing.Pool(processes=4)
all_placements = pool.map(self.generate_wall_objects_per_room, packed_args)
pool.close()
pool.join()
for placements in all_placements:
wall_objects += placements
return wall_objects
def generate_wall_objects_per_room(self, args):
room, scene, doors, windows, open_walls, wall_height, selected_objects, use_constraint = args
selected_wall_objects = selected_objects[room["roomType"]]["wall"]
selected_wall_objects = self.order_objects_by_size(selected_wall_objects)
wall_object_name2id = {object_name: asset_id for object_name, asset_id in selected_wall_objects}
room_id = room["id"]
room_type = room["roomType"]
wall_object_names = list(wall_object_name2id.keys())
floor_object_name2id = {object["object_name"]: object["assetId"] for object in scene["floor_objects"] if object["roomId"] == room["id"]}
floor_object_names = list(floor_object_name2id.keys())
# get constraints
constraints_prompt = self.constraint_prompt_template.format(room_type=room_type,
wall_height=int(wall_height*100),
floor_objects=", ".join(floor_object_names),
wall_objects=", ".join(wall_object_names))
if self.constraint_type == "llm" and use_constraint:
constraint_plan = self.llm(constraints_prompt)
else:
constraint_plan = ""
for object_name in wall_object_names:
random_height = random.randint(0, int(wall_height*100))
constraint_plan += f"{object_name} | N/A | {random_height} \n"
print(f"\nwall object constraint plan for {room_type}:\n{constraint_plan}")
constraints = self.parse_wall_object_constraints(constraint_plan, wall_object_names, floor_object_names)
# get wall objects
wall_object2dimension = {object_name: self.database[object_id]['assetMetadata']['boundingBox'] for object_name, object_id in wall_object_name2id.items()}
wall_objects_list = [(object_name, (wall_object2dimension[object_name]['x'] * 100, wall_object2dimension[object_name]['y'] * 100, wall_object2dimension[object_name]['z'] * 100)) for object_name in constraints]
# update constraints with max height
wall_object2max_height = {object_name: min(scene["wall_height"] * 100 - wall_object2dimension[object_name]["y"] * 100 - 20, constraints[object_name]["height"]) for object_name in constraints}
for object_name in constraints:
constraints[object_name]["height"] = max(wall_object2max_height[object_name], 0) # avoid negative height
# get initial state
room_vertices = [(x * 100, y * 100) for (x, y) in room["vertices"]]
room_poly = Polygon(room_vertices)
initial_state = self.get_initial_state(scene, doors, windows, room_vertices, open_walls)
# solve
room_x, room_z = self.get_room_size(room)
grid_size = max(room_x // 20, room_z // 20)
solver = DFS_Solver_Wall(grid_size=grid_size, max_duration=5, constraint_bouns=100)
solutions = solver.get_solution(room_poly, wall_objects_list, constraints, initial_state)
placements = self.solution2placement(solutions, wall_object_name2id, room_id)
return placements
def parse_wall_object_constraints(self, constraint_text, wall_object_names, floor_object_names):
object2constraints = {}
lines = [line.lower() for line in constraint_text.split('\n') if "|" in line]
for line in lines:
# remove index
pattern = re.compile(r'^\d+\.\s*')
line = pattern.sub('', line)
if line[-1] == ".": line = line[:-1] # remove the last period
try:
object_name, location, height = line.split("|")
object_name = object_name.replace("*", "").strip()
location = location.strip()
height = height.strip()
except:
print(f"Warning: cannot parse {line}.")
continue
if object_name not in wall_object_names: continue
try: target_floor_object_name = location.split(", ")[-1]
except: print(f"Warning: cannot parse {location}."); target_floor_object_name = None
try: height = int(height)
except: height = self.default_height
if target_floor_object_name in floor_object_names:
object2constraints[object_name] = {"target_floor_object_name": target_floor_object_name, "height": height}
else:
object2constraints[object_name] = {"target_floor_object_name": None, "height": height}
return object2constraints
def get_room_size(self, room):
floor_polygon = room["floorPolygon"]
x_values = [point['x'] for point in floor_polygon]
z_values = [point['z'] for point in floor_polygon]
return (int(max(x_values) - min(x_values)) * 100, int(max(z_values) - min(z_values)) * 100)
def check_wall_object_size(self, room_size, object_size):
if object_size["x"] * 100 > max(room_size) * 0.5:
print(f"Warning: object size {object_size} is too large for room size {room_size}.")
return False
else:
return True
def get_initial_state(self, scene, doors, windows, room_vertices, open_walls):
room_poly = Polygon(room_vertices)
initial_state = {}
i = 0
for door in doors:
door_boxes = door["doorBoxes"]
for door_box in door_boxes:
door_vertices = [(x * 100, z * 100) for (x, z) in door_box]
door_poly = Polygon(door_vertices)
door_center = door_poly.centroid
if room_poly.contains(door_center):
door_height = door["assetPosition"]["y"] * 100 * 2
x_min, z_min, x_max, z_max = door_poly.bounds
initial_state[f"door-{i}"] = ((x_min, 0, z_min), (x_max, door_height, z_max), 0, door_vertices, 1)
i += 1
for window in windows:
window_boxes = window["windowBoxes"]
for window_box in window_boxes:
window_vertices = [(x * 100, z * 100) for (x, z) in window_box]
window_poly = Polygon(window_vertices)
window_center = window_poly.centroid
if room_poly.contains(window_center):
y_min = window["holePolygon"][0]["y"] * 100
y_max = window["holePolygon"][1]["y"] * 100
x_min, z_min, x_max, z_max = window_poly.bounds
initial_state[f"window-{i}"] = ((x_min, y_min, z_min), (x_max, y_max, z_max), 0, window_vertices, 1)
i += 1
if len(open_walls) != 0:
open_wall_boxes = open_walls["openWallBoxes"]
for open_wall_box in open_wall_boxes:
open_wall_vertices = [(x * 100, z * 100) for (x, z) in open_wall_box]
open_wall_poly = Polygon(open_wall_vertices)
open_wall_center = open_wall_poly.centroid
if room_poly.contains(open_wall_center):
x_min, z_min, x_max, z_max = open_wall_poly.bounds
initial_state[f"open-{i}"] = ((x_min, 0, z_min), (x_max, scene["wall_height"] * 100, z_max), 0, open_wall_vertices, 1)
i += 1
for object in scene["floor_objects"]:
try: object_vertices = object["vertices"]
except: continue
object_poly = Polygon(object_vertices)
object_center = object_poly.centroid
if room_poly.contains(object_center):
object_height = object["position"]["y"] * 100 * 2 # the height should be twice the value of the y coordinate
x_min, z_min, x_max, z_max = object_poly.bounds
initial_state[object["object_name"]] = ((x_min, 0, z_min), (x_max, object_height, z_max), object["rotation"]["y"], object_vertices, 1)
return initial_state
def solution2placement(self, solutions, wall_object_name2id, room_id):
placements = []
for object_name, solution in solutions.items():
if object_name not in wall_object_name2id: continue
placement = self.json_template.copy()
placement["assetId"] = wall_object_name2id[object_name]
placement["id"] = f"{object_name} ({room_id})"
position_x = (solution[0][0] + solution[1][0]) / 200
position_y = (solution[0][1] + solution[1][1]) / 200
position_z = (solution[0][2] + solution[1][2]) / 200
placement["position"] = {"x": position_x, "y": position_y, "z": position_z}
placement["rotation"] = {"x": 0, "y": solution[2], "z": 0}
# move the object a little bit to avoid collision
if placement["rotation"]["y"] == 0: placement["position"]["z"] += 0.01
elif placement["rotation"]["y"] == 90: placement["position"]["x"] += 0.01
elif placement["rotation"]["y"]== 180: placement["position"]["z"] -= 0.01
elif placement["rotation"]["y"] == 270: placement["position"]["x"] -= 0.01
placement["roomId"] = room_id
placement["vertices"] = list(solution[3])
placement["object_name"] = object_name
placements.append(placement)
return placements
def order_objects_by_size(self, selected_wall_objects):
ordered_wall_objects = []
for object_name, asset_id in selected_wall_objects:
dimensions = self.database[asset_id]['assetMetadata']['boundingBox']
size = dimensions["x"]
ordered_wall_objects.append([object_name, asset_id, size])
ordered_wall_objects.sort(key=lambda x: x[2], reverse=True)
ordered_wall_objects_no_size = [[object_name, asset_id] for object_name, asset_id, size in ordered_wall_objects]
return ordered_wall_objects_no_size
class SolutionFound(Exception):
def __init__(self, solution):
self.solution = solution
pass
class DFS_Solver_Wall():
def __init__(self, grid_size, random_seed=0, max_duration=5, constraint_bouns=100):
self.grid_size = grid_size
self.random_seed = random_seed
self.max_duration = max_duration # maximum allowed time in seconds
self.constraint_bouns = constraint_bouns
self.start_time = None
self.solutions = []
self.visualize = False
def get_solution(self, room_poly, wall_objects_list, constraints, initial_state):
grid_points = self.create_grids(room_poly)
self.start_time = time.time()
try:
self.dfs(room_poly, wall_objects_list, constraints, grid_points, initial_state)
except SolutionFound as e:
print(f"Time taken: {time.time() - self.start_time}")
max_solution = self.get_max_solution(self.solutions)
if self.visualize: self.visualize_grid(room_poly, grid_points, max_solution)
return max_solution
def get_max_solution(self, solutions):
path_weights = []
for solution in solutions:
path_weights.append(sum([obj[-1] for obj in solution.values()]))
max_index = np.argmax(path_weights)
return solutions[max_index]
def dfs(self, room_poly, wall_objects_list, constraints, grid_points, placed_objects):
if len(wall_objects_list) == 0:
self.solutions.append(placed_objects)
return placed_objects
if time.time() - self.start_time > self.max_duration:
print(f"Time limit reached.")
raise SolutionFound(self.solutions)
object_name, object_dim = wall_objects_list[0]
placements = self.get_possible_placements(room_poly, object_dim, constraints[object_name], grid_points, placed_objects)
if len(placements) == 0:
self.solutions.append(placed_objects)
paths = []
for placement in placements:
placed_objects_updated = copy.deepcopy(placed_objects)
placed_objects_updated[object_name] = placement
sub_paths = self.dfs(room_poly, wall_objects_list[1:], constraints, grid_points, placed_objects_updated)
paths.extend(sub_paths)
return paths
def get_possible_placements(self, room_poly, object_dim, constraint, grid_points, placed_objects):
all_solutions = self.filter_collision(placed_objects, self.get_all_solutions(room_poly, grid_points, object_dim, constraint["height"]))
random.shuffle(all_solutions)
target_floor_object_name = constraint["target_floor_object_name"]
if target_floor_object_name is not None and target_floor_object_name in placed_objects:
all_solutions = self.score_solution_by_distance(all_solutions, placed_objects[target_floor_object_name])
# order solutions by distance to target floor object
all_solutions = sorted(all_solutions, key=lambda x: x[-1], reverse=True)
return all_solutions
def create_grids(self, room_poly):
# Get the coordinates of the polygon
poly_coords = list(room_poly.exterior.coords)
grid_points = []
# Iterate over each pair of points (edges of the polygon)
for i in range(len(poly_coords) - 1):
line = LineString([poly_coords[i], poly_coords[i + 1]])
line_length = line.length
# Create points along the edge at intervals of grid size
for j in range(0, int(line_length), self.grid_size):
point_on_line = substring(line, j, j) # Get a point at distance j from the start of the line
if point_on_line:
grid_points.append((point_on_line.x, point_on_line.y))
return grid_points
def get_all_solutions(self, room_poly, grid_points, object_dim, height):
obj_length, obj_height, obj_width = object_dim
obj_half_length = obj_length / 2
rotation_adjustments = {
0: ((-obj_half_length, 0), (obj_half_length, obj_width)),
90: ((0, -obj_half_length), (obj_width, obj_half_length)),
180: ((-obj_half_length, -obj_width), (obj_half_length, 0)),
270: ((-obj_width, -obj_half_length), (0, obj_half_length))
}
solutions = []
for rotation in [0, 90, 180, 270]:
for point in grid_points:
center_x, center_y = point
lower_left_adjustment, upper_right_adjustment = rotation_adjustments[rotation]
lower_left = (center_x + lower_left_adjustment[0], center_y + lower_left_adjustment[1])
upper_right = (center_x + upper_right_adjustment[0], center_y + upper_right_adjustment[1])
obj_box = box(*lower_left, *upper_right)
if room_poly.contains(obj_box):
object_coords = obj_box.exterior.coords[:]
coordinates_on_edge = [coord for coord in object_coords if room_poly.boundary.contains(Point(coord))]
coordinates_on_edge = list(set(coordinates_on_edge))
if len(coordinates_on_edge) >= 2:
vertex_min = (lower_left[0], height, lower_left[1])
vertex_max = (upper_right[0], height + obj_height, upper_right[1])
solutions.append([vertex_min, vertex_max, rotation, tuple(obj_box.exterior.coords[:]), 1])
return solutions
def filter_collision(self, placed_objects, solutions):
def intersect_3d(box1, box2):
# box1 and box2 are dictionaries with 'min' and 'max' keys,
# which are tuples representing the minimum and maximum corners of the 3D box.
for i in range(3):
if box1['max'][i] < box2['min'][i] or box1['min'][i] > box2['max'][i]:
return False
return True
valid_solutions = []
boxes = [{"min": vertex_min, "max": vertex_max} for vertex_min, vertex_max, rotation, box_coords, path_weight in placed_objects.values()]
for solution in solutions:
for box in boxes:
if intersect_3d(box, {"min": solution[0], "max": solution[1]}):
break
else:
valid_solutions.append(solution)
return valid_solutions
def score_solution_by_distance(self, solutions, target_object):
distances = []
scored_solutions = []
for solution in solutions:
center_x, center_y, center_z = (solution[0][0]+solution[1][0])/2, (solution[0][1]+solution[1][1])/2, (solution[0][2]+solution[1][2])/2
target_x, target_y, target_z = (target_object[0][0]+target_object[1][0])/2, (target_object[0][1]+target_object[1][1])/2, (target_object[0][2]+target_object[1][2])/2
distance = np.sqrt((center_x - target_x)**2 + (center_y - target_y)**2 + (center_z - target_z)**2)
distances.append(distance)
scored_solution = solution.copy()
scored_solution[-1] = solution[-1] + self.constraint_bouns * (1/distance)
scored_solutions.append(scored_solution)
return scored_solutions
def visualize_grid(self, room_poly, grid_points, solutions):
# create a new figure
fig, ax = plt.subplots()
# draw the room
x, y = room_poly.exterior.xy
ax.plot(x, y, 'b-', label='Room')
# draw the grid points
grid_x = [point[0] for point in grid_points]
grid_y = [point[1] for point in grid_points]
ax.plot(grid_x, grid_y, 'ro', markersize=2)
# draw the solutions
for object_name, solution in solutions.items():
vertex_min, vertex_max, rotation, box_coords = solution[:-1]
center_x, center_y = (vertex_min[0]+vertex_max[0])/2, (vertex_min[2]+vertex_max[2])/2
# create a polygon for the solution
obj_poly = Polygon(box_coords)
x, y = obj_poly.exterior.xy
ax.plot(x, y, 'g-', linewidth=2)
ax.text(center_x, center_y, object_name, fontsize=12, ha='center')
# set arrow direction based on rotation
if rotation == 0:
ax.arrow(center_x, center_y, 0, 25, head_width=10, fc='g')
elif rotation == 90:
ax.arrow(center_x, center_y, 25, 0, head_width=10, fc='g')
elif rotation == 180:
ax.arrow(center_x, center_y, 0, -25, head_width=10, fc='g')
elif rotation == 270:
ax.arrow(center_x, center_y, -25, 0, head_width=10, fc='g')
ax.set_aspect('equal', 'box') # to keep the ratios equal along x and y axis
plt.show() | [
"langchain.PromptTemplate"
] | [((704, 850), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['room_type', 'wall_height', 'floor_objects', 'wall_objects']", 'template': 'prompts.wall_object_constraints_prompt'}), "(input_variables=['room_type', 'wall_height', 'floor_objects',\n 'wall_objects'], template=prompts.wall_object_constraints_prompt)\n", (718, 850), False, 'from langchain import PromptTemplate\n'), ((1447, 1480), 'multiprocessing.Pool', 'multiprocessing.Pool', ([], {'processes': '(4)'}), '(processes=4)\n', (1467, 1480), False, 'import multiprocessing\n'), ((4462, 4484), 'shapely.geometry.Polygon', 'Polygon', (['room_vertices'], {}), '(room_vertices)\n', (4469, 4484), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((7172, 7194), 'shapely.geometry.Polygon', 'Polygon', (['room_vertices'], {}), '(room_vertices)\n', (7179, 7194), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((12562, 12573), 'time.time', 'time.time', ([], {}), '()\n', (12571, 12573), False, 'import time\n'), ((13175, 13198), 'numpy.argmax', 'np.argmax', (['path_weights'], {}), '(path_weights)\n', (13184, 13198), True, 'import numpy as np\n'), ((14518, 14547), 'random.shuffle', 'random.shuffle', (['all_solutions'], {}), '(all_solutions)\n', (14532, 14547), False, 'import random\n'), ((19373, 19387), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (19385, 19387), True, 'import matplotlib.pyplot as plt\n'), ((20776, 20786), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20784, 20786), True, 'import matplotlib.pyplot as plt\n'), ((5311, 5337), 're.compile', 're.compile', (['"""^\\\\d+\\\\.\\\\s*"""'], {}), "('^\\\\d+\\\\.\\\\s*')\n", (5321, 5337), False, 'import re\n'), ((9403, 9427), 'shapely.geometry.Polygon', 'Polygon', (['object_vertices'], {}), '(object_vertices)\n', (9410, 9427), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((13991, 14020), 'copy.deepcopy', 'copy.deepcopy', (['placed_objects'], {}), '(placed_objects)\n', (14004, 14020), False, 'import copy\n'), ((15311, 15359), 'shapely.geometry.LineString', 'LineString', (['[poly_coords[i], poly_coords[i + 1]]'], {}), '([poly_coords[i], poly_coords[i + 1]])\n', (15321, 15359), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((18902, 18999), 'numpy.sqrt', 'np.sqrt', (['((center_x - target_x) ** 2 + (center_y - target_y) ** 2 + (center_z -\n target_z) ** 2)'], {}), '((center_x - target_x) ** 2 + (center_y - target_y) ** 2 + (center_z -\n target_z) ** 2)\n', (18909, 18999), True, 'import numpy as np\n'), ((20011, 20030), 'shapely.geometry.Polygon', 'Polygon', (['box_coords'], {}), '(box_coords)\n', (20018, 20030), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((7450, 7472), 'shapely.geometry.Polygon', 'Polygon', (['door_vertices'], {}), '(door_vertices)\n', (7457, 7472), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((8100, 8124), 'shapely.geometry.Polygon', 'Polygon', (['window_vertices'], {}), '(window_vertices)\n', (8107, 8124), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((8845, 8872), 'shapely.geometry.Polygon', 'Polygon', (['open_wall_vertices'], {}), '(open_wall_vertices)\n', (8852, 8872), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((13472, 13483), 'time.time', 'time.time', ([], {}), '()\n', (13481, 13483), False, 'import time\n'), ((15565, 15586), 'shapely.ops.substring', 'substring', (['line', 'j', 'j'], {}), '(line, j, j)\n', (15574, 15586), False, 'from shapely.ops import substring\n'), ((16776, 16806), 'shapely.geometry.box', 'box', (['*lower_left', '*upper_right'], {}), '(*lower_left, *upper_right)\n', (16779, 16806), False, 'from shapely.geometry import Polygon, box, Point, LineString\n'), ((12747, 12758), 'time.time', 'time.time', ([], {}), '()\n', (12756, 12758), False, 'import time\n'), ((17026, 17038), 'shapely.geometry.Point', 'Point', (['coord'], {}), '(coord)\n', (17031, 17038), False, 'from shapely.geometry import Polygon, box, Point, LineString\n')] |
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate
from config.config import OPENAI_API_KEY
from game.poker import PokerGameManager
from db.db_utils import DatabaseManager
import json
class GPTPlayer:
def __init__(self, db: DatabaseManager, model_name="gpt-3.5-turbo"):
self.db = db
llm = ChatOpenAI(model_name=model_name)
output_parser = StrOutputParser()
template = '''
Imagine you're a poker bot in a heads-up Texas Hold'em game. Your play is optimal,
mixing strategic bluffs and strong hands. You raise on strength, going All-in only with the best hands.
Folding against a superior opponent hand, you call and check when fitting. Remember, only "call" the ALL-IN if your hand is better.
Please reply in the following JSON format: {{your_hand": "what is the current hand you are playing",
"opponents_hand": "what do you think your opponent has based on how he has played", "thought_process": "what is your thought process",
"action": "your action", "raise_amount": your raise amount if applicable}}
Note: If the action you chose doesn't involve a raise, please do not include the "raise_amount" key in your JSON response.
'''
prompt = ChatPromptTemplate.from_messages([
("system", template),
("user", "{input}")
])
self.chain = prompt | llm | output_parser
def _extract_action(self, json_string, pokerGame: PokerGameManager):
min_raise, max_raise = pokerGame.return_min_max_raise(1)
try:
json_data = json.loads(json_string)
action = json_data['action'].capitalize()
raise_amount = 0
if action == "Raise":
raise_amount = json_data['raise_amount']
raise_amount = int(raise_amount)
if raise_amount < min_raise:
raise_amount = min_raise
elif raise_amount > max_raise:
action = "All-in"
raise_amount = pokerGame.return_player_stack(1)
self.db.record_gpt_action(action, raise_amount, json_string)
return (action, raise_amount)
except Exception as erro:
return ("Default", 0)
def pre_flop_small_blind(self, pokerGame: PokerGameManager):
# return Call, Raise, Fold or All-in
inputs = {
'small_blind': pokerGame.small_blind,
'big_blind': pokerGame.big_blind,
'stack': pokerGame.return_player_stack(1),
'opponents_stack': pokerGame.return_player_stack(0),
'hand': pokerGame.players[1].return_long_hand(),
'pot': pokerGame.current_pot,
'amount_to_call': pokerGame.big_blind - pokerGame.small_blind
}
human_template = '''
The small blind is {small_blind} chips and the big blind is {big_blind} chips.
You have {stack} chips in your stack and your opponent has {opponents_stack} chips.
Your hand is {hand}. The pot is {pot} chips.
You are the small blind and it's your turn.
It costs {amount_to_call} chips to call.
What action would you take? (Call, Raise, All-in, or Fold)
'''
formatted_text = human_template.format(**inputs)
response = self.chain.invoke({'input': formatted_text})
return self._extract_action(response, pokerGame)
def pre_flop_big_blind(self, pokerGame: PokerGameManager):
# return Check, Raise, or All-in
inputs = {
'small_blind': pokerGame.small_blind,
'big_blind': pokerGame.big_blind,
'stack': pokerGame.return_player_stack(1),
'opponents_stack': pokerGame.return_player_stack(0),
'hand': pokerGame.players[1].return_long_hand(),
'pot': pokerGame.current_pot,
'amount_to_call': pokerGame.big_blind - pokerGame.small_blind
}
human_template = '''
The small blind is {small_blind} chips and the big blind is {big_blind} chips.
You have {stack} chips in your stack and your opponent has {opponents_stack} chips.
Your hand is {hand}. The pot is {pot} chips.
You are the small blind and it's your turn.
It costs {amount_to_call} chips to call.
What action would you take? (Check, Raise, or All-in)
'''
formatted_text = human_template.format(**inputs)
response = self.chain.invoke({'input': formatted_text})
return self._extract_action(response, pokerGame)
def first_to_act(self, pokerGame: PokerGameManager):
# return Check, Raise, or All-in
inputs = {
'small_blind': pokerGame.small_blind,
'big_blind': pokerGame.big_blind,
'stack': pokerGame.return_player_stack(1),
'opponents_stack': pokerGame.return_player_stack(0),
'hand': pokerGame.players[1].return_long_hand(),
'pot': pokerGame.current_pot,
'round': pokerGame.round,
'community_cards': pokerGame.return_community_cards()
}
human_template = '''
The small blind is {small_blind} chips and the big blind is {big_blind} chips.
You have {stack} chips in your stack and your opponent has {opponents_stack} chips.
Your hand is {hand}. The pot is {pot} chips.
It's the {round} round and you're first to act. The community cards are {community_cards}.
What action would you take? (Check, Raise, or All-in)
'''
formatted_text = human_template.format(**inputs)
response = self.chain.invoke({'input': formatted_text})
return self._extract_action(response, pokerGame)
def player_check(self, pokerGame: PokerGameManager):
# return Check, Raise, or All-in
inputs = {
'small_blind': pokerGame.small_blind,
'big_blind': pokerGame.big_blind,
'stack': pokerGame.return_player_stack(1),
'opponents_stack': pokerGame.return_player_stack(0),
'hand': pokerGame.players[1].return_long_hand(),
'pot': pokerGame.current_pot,
'round': pokerGame.round,
'community_cards': pokerGame.return_community_cards()
}
human_template = """
The small blind is {small_blind} chips and the big blind is {big_blind} chips.
You have {stack} chips in your stack and your opponent has {opponents_stack} chips.
Your hand is {hand}. The pot is {pot} chips.
It is the {round} round and the action checks to you. The community cards are {community_cards}.
Based on this information, what action would you like to take? (Check, Raise, or All-in).
"""
formatted_text = human_template.format(**inputs)
response = self.chain.invoke({'input': formatted_text})
return self._extract_action(response, pokerGame)
def player_raise(self, pokerGame: PokerGameManager):
# return Call, Raise, All-in, or Fold
inputs = {
'small_blind': pokerGame.small_blind,
'big_blind': pokerGame.big_blind,
'stack': pokerGame.return_player_stack(1),
'opponents_stack': pokerGame.return_player_stack(0),
'hand': pokerGame.players[1].return_long_hand(),
'pot': pokerGame.current_pot,
'round': pokerGame.round,
'community_cards': pokerGame.return_community_cards(),
'opponent_raise': pokerGame.current_bet,
'amount_to_call': pokerGame.current_bet - pokerGame.players[1].round_pot_commitment
}
human_template = '''
The small blind is {small_blind} chips and the big blind is {big_blind} chips.
You have {stack} chips in your stack and your opponent has {opponents_stack} chips.
Your hand is {hand}. The pot is {pot} chips.
It's the {round} round. The community cards are {community_cards}.
Your opponent has raised to {opponent_raise} chips.
It costs {amount_to_call} chips to call.
What action would you take? (Call, Raise, All-in, or Fold)
'''
formatted_text = human_template.format(**inputs)
response = self.chain.invoke({'input': formatted_text})
return self._extract_action(response, pokerGame)
def player_all_in(self, pokerGame: PokerGameManager):
# return Call, or Fold
amount_to_call = pokerGame.current_bet - pokerGame.players[1].round_pot_commitment
if amount_to_call > pokerGame.return_player_stack(1):
amount_to_call = pokerGame.return_player_stack(1)
inputs = {
'small_blind': pokerGame.small_blind,
'big_blind': pokerGame.big_blind,
'stack': pokerGame.return_player_stack(1),
'hand': pokerGame.players[1].return_long_hand(),
'pot': pokerGame.current_pot,
'round': pokerGame.round,
'community_cards': pokerGame.return_community_cards(),
'opponent_raise': pokerGame.current_bet,
'amount_to_call': amount_to_call
}
human_template = '''
The small blind is {small_blind} chips and the big blind is {big_blind} chips.
You have {stack} chips in your stack.
Your hand is {hand}. The pot is {pot} chips.
It's the {round} round. The community cards are {community_cards}.
Your opponent has gone all in for {opponent_raise} chips.
It costs {amount_to_call} chips to call.
What action would you take? (Call, or Fold)
'''
formatted_text = human_template.format(**inputs)
response = self.chain.invoke({'input': formatted_text})
return self._extract_action(response, pokerGame)
| [
"langchain_core.output_parsers.StrOutputParser",
"langchain.prompts.chat.ChatPromptTemplate.from_messages",
"langchain_openai.ChatOpenAI"
] | [((456, 489), 'langchain_openai.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': 'model_name'}), '(model_name=model_name)\n', (466, 489), False, 'from langchain_openai import ChatOpenAI\n'), ((514, 531), 'langchain_core.output_parsers.StrOutputParser', 'StrOutputParser', ([], {}), '()\n', (529, 531), False, 'from langchain_core.output_parsers import StrOutputParser\n'), ((1408, 1485), 'langchain.prompts.chat.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (["[('system', template), ('user', '{input}')]"], {}), "([('system', template), ('user', '{input}')])\n", (1440, 1485), False, 'from langchain.prompts.chat import ChatPromptTemplate\n'), ((1755, 1778), 'json.loads', 'json.loads', (['json_string'], {}), '(json_string)\n', (1765, 1778), False, 'import json\n')] |
import logging
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, root_validator
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class Clarifai(LLM):
"""Clarifai large language models.
To use, you should have an account on the Clarifai platform,
the ``clarifai`` python package installed, and the
environment variable ``CLARIFAI_PAT`` set with your PAT key,
or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms import Clarifai
clarifai_llm = Clarifai(pat=CLARIFAI_PAT, \
user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
"""
stub: Any #: :meta private:
userDataObject: Any
model_id: Optional[str] = None
"""Model id to use."""
model_version_id: Optional[str] = None
"""Model version id to use."""
app_id: Optional[str] = None
"""Clarifai application id to use."""
user_id: Optional[str] = None
"""Clarifai user id to use."""
pat: Optional[str] = None
api_base: str = "https://api.clarifai.com"
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that we have all required info to access Clarifai
platform and python package exists in environment."""
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
user_id = values.get("user_id")
app_id = values.get("app_id")
model_id = values.get("model_id")
if values["pat"] is None:
raise ValueError("Please provide a pat.")
if user_id is None:
raise ValueError("Please provide a user_id.")
if app_id is None:
raise ValueError("Please provide a app_id.")
if model_id is None:
raise ValueError("Please provide a model_id.")
try:
from clarifai.auth.helper import ClarifaiAuthHelper
from clarifai.client import create_stub
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
auth = ClarifaiAuthHelper(
user_id=user_id,
app_id=app_id,
pat=values["pat"],
base=values["api_base"],
)
values["userDataObject"] = auth.get_user_app_id_proto()
values["stub"] = create_stub(auth)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Clarifai API."""
return {}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
**{
"user_id": self.user_id,
"app_id": self.app_id,
"model_id": self.model_id,
}
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "clarifai"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Clarfai's PostModelOutputs endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = clarifai_llm("Tell me a joke.")
"""
try:
from clarifai_grpc.grpc.api import (
resources_pb2,
service_pb2,
)
from clarifai_grpc.grpc.api.status import status_code_pb2
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
# The userDataObject is created in the overview and
# is required when using a PAT
# If version_id None, Defaults to the latest model version
post_model_outputs_request = service_pb2.PostModelOutputsRequest(
user_app_id=self.userDataObject,
model_id=self.model_id,
version_id=self.model_version_id,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt))
)
],
)
post_model_outputs_response = self.stub.PostModelOutputs(
post_model_outputs_request
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
logger.error(post_model_outputs_response.status)
first_model_failure = (
post_model_outputs_response.outputs[0].status
if len(post_model_outputs_response.outputs)
else None
)
raise Exception(
f"Post model outputs failed, status: "
f"{post_model_outputs_response.status}, first output failure: "
f"{first_model_failure}"
)
text = post_model_outputs_response.outputs[0].data.text.raw
# In order to make this consistent with other endpoints, we strip them.
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
try:
from clarifai_grpc.grpc.api import (
resources_pb2,
service_pb2,
)
from clarifai_grpc.grpc.api.status import status_code_pb2
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
# TODO: add caching here.
generations = []
batch_size = 32
for i in range(0, len(prompts), batch_size):
batch = prompts[i : i + batch_size]
post_model_outputs_request = service_pb2.PostModelOutputsRequest(
user_app_id=self.userDataObject,
model_id=self.model_id,
version_id=self.model_version_id,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt))
)
for prompt in batch
],
)
post_model_outputs_response = self.stub.PostModelOutputs(
post_model_outputs_request
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
logger.error(post_model_outputs_response.status)
first_model_failure = (
post_model_outputs_response.outputs[0].status
if len(post_model_outputs_response.outputs)
else None
)
raise Exception(
f"Post model outputs failed, status: "
f"{post_model_outputs_response.status}, first output failure: "
f"{first_model_failure}"
)
for output in post_model_outputs_response.outputs:
if stop is not None:
text = enforce_stop_tokens(output.data.text.raw, stop)
else:
text = output.data.text.raw
generations.append([Generation(text=text)])
return LLMResult(generations=generations)
| [
"langchain.schema.Generation",
"langchain.utils.get_from_dict_or_env",
"langchain.pydantic_v1.root_validator",
"langchain.schema.LLMResult",
"langchain.llms.utils.enforce_stop_tokens"
] | [((381, 408), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (398, 408), False, 'import logging\n'), ((1472, 1488), 'langchain.pydantic_v1.root_validator', 'root_validator', ([], {}), '()\n', (1486, 1488), False, 'from langchain.pydantic_v1 import Extra, root_validator\n'), ((1702, 1753), 'langchain.utils.get_from_dict_or_env', 'get_from_dict_or_env', (['values', '"""pat"""', '"""CLARIFAI_PAT"""'], {}), "(values, 'pat', 'CLARIFAI_PAT')\n", (1722, 1753), False, 'from langchain.utils import get_from_dict_or_env\n'), ((2565, 2664), 'clarifai.auth.helper.ClarifaiAuthHelper', 'ClarifaiAuthHelper', ([], {'user_id': 'user_id', 'app_id': 'app_id', 'pat': "values['pat']", 'base': "values['api_base']"}), "(user_id=user_id, app_id=app_id, pat=values['pat'], base=\n values['api_base'])\n", (2583, 2664), False, 'from clarifai.auth.helper import ClarifaiAuthHelper\n'), ((2808, 2825), 'clarifai.client.create_stub', 'create_stub', (['auth'], {}), '(auth)\n', (2819, 2825), False, 'from clarifai.client import create_stub\n'), ((8240, 8274), 'langchain.schema.LLMResult', 'LLMResult', ([], {'generations': 'generations'}), '(generations=generations)\n', (8249, 8274), False, 'from langchain.schema import Generation, LLMResult\n'), ((5810, 5841), 'langchain.llms.utils.enforce_stop_tokens', 'enforce_stop_tokens', (['text', 'stop'], {}), '(text, stop)\n', (5829, 5841), False, 'from langchain.llms.utils import enforce_stop_tokens\n'), ((8045, 8092), 'langchain.llms.utils.enforce_stop_tokens', 'enforce_stop_tokens', (['output.data.text.raw', 'stop'], {}), '(output.data.text.raw, stop)\n', (8064, 8092), False, 'from langchain.llms.utils import enforce_stop_tokens\n'), ((8200, 8221), 'langchain.schema.Generation', 'Generation', ([], {'text': 'text'}), '(text=text)\n', (8210, 8221), False, 'from langchain.schema import Generation, LLMResult\n'), ((4864, 4894), 'clarifai_grpc.grpc.api.resources_pb2.Text', 'resources_pb2.Text', ([], {'raw': 'prompt'}), '(raw=prompt)\n', (4882, 4894), False, 'from clarifai_grpc.grpc.api import resources_pb2, service_pb2\n'), ((7057, 7087), 'clarifai_grpc.grpc.api.resources_pb2.Text', 'resources_pb2.Text', ([], {'raw': 'prompt'}), '(raw=prompt)\n', (7075, 7087), False, 'from clarifai_grpc.grpc.api import resources_pb2, service_pb2\n')] |
"""This example shows how to use the ChatGPT API
with LangChain to answer questions about Prefect."""
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import ChatVectorDBChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain_prefect.loaders import GitHubRepoLoader
from langchain_prefect.plugins import RecordLLMCalls
documents = GitHubRepoLoader("PrefectHQ/prefect", glob="**/*.md").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
system_template = """Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't make up an answer.
----------------
{context}"""
prompt = ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
)
qa = ChatVectorDBChain.from_llm(
llm=ChatOpenAI(temperature=0),
vectorstore=Chroma.from_documents(documents, embeddings),
qa_prompt=prompt,
)
with RecordLLMCalls(
tags={qa.vectorstore.__class__.__name__}, max_prompt_tokens=int(1e4)
):
chat_history = []
query = "What infrastructures does Prefect support?"
result = qa({"question": query, "chat_history": chat_history})
print(result["answer"])
chat_history = [(query, result["answer"])]
query = "Can I use Prefect with AWS?"
result = qa({"question": query, "chat_history": chat_history})
print(result["answer"])
| [
"langchain.text_splitter.CharacterTextSplitter",
"langchain.prompts.chat.HumanMessagePromptTemplate.from_template",
"langchain.chat_models.ChatOpenAI",
"langchain.vectorstores.Chroma.from_documents",
"langchain_prefect.loaders.GitHubRepoLoader",
"langchain.embeddings.openai.OpenAIEmbeddings",
"langchain.prompts.chat.SystemMessagePromptTemplate.from_template"
] | [((680, 735), 'langchain.text_splitter.CharacterTextSplitter', 'CharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(0)'}), '(chunk_size=1000, chunk_overlap=0)\n', (701, 735), False, 'from langchain.text_splitter import CharacterTextSplitter\n'), ((803, 821), 'langchain.embeddings.openai.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (819, 821), False, 'from langchain.embeddings.openai import OpenAIEmbeddings\n'), ((602, 655), 'langchain_prefect.loaders.GitHubRepoLoader', 'GitHubRepoLoader', (['"""PrefectHQ/prefect"""'], {'glob': '"""**/*.md"""'}), "('PrefectHQ/prefect', glob='**/*.md')\n", (618, 655), False, 'from langchain_prefect.loaders import GitHubRepoLoader\n'), ((1084, 1142), 'langchain.prompts.chat.SystemMessagePromptTemplate.from_template', 'SystemMessagePromptTemplate.from_template', (['system_template'], {}), '(system_template)\n', (1125, 1142), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((1152, 1206), 'langchain.prompts.chat.HumanMessagePromptTemplate.from_template', 'HumanMessagePromptTemplate.from_template', (['"""{question}"""'], {}), "('{question}')\n", (1192, 1206), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((1258, 1283), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (1268, 1283), False, 'from langchain.chat_models import ChatOpenAI\n'), ((1301, 1345), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', (['documents', 'embeddings'], {}), '(documents, embeddings)\n', (1322, 1345), False, 'from langchain.vectorstores import Chroma\n')] |
from dotenv import load_dotenv
load_dotenv()
import os
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts import (
PromptTemplate,
)
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.agents import AgentExecutor, ConversationalChatAgent
from tools.make_thunder_tool import MakeThunderTool
from tools.draw_tool import DrawTool
from tools.is_in_heaven import IsInHeavenTool
from voice.speech import speak
from voice.listen import listen
openai_api_key = os.getenv("OPENAI_API_KEY")
class GodAgent:
def __init__(self):
self.executor = self.assemble_agent_executor()
def assemble_agent_executor(self):
template = """
You are omnipotent, kind, benevolent god. The user is "your child". Be a little bit condescending yet funny. You try to fulfill his every wish. Make witty comments about user wishes.
You can use tools to help you fulfill user wishes. YOU MUST RESPOND IN THE CORRECT FORMAT.
"""
#Initialize LLM
llm = ChatOpenAI(openai_api_key=openai_api_key, verbose=True, temperature=0.3, model_name="gpt-4")
# Create memory
memory = ConversationBufferMemory(memory_key="chat_history", human_prefix="User", ai_prefix="God", return_messages=True)
#Register tools
tools = [
IsInHeavenTool(),
MakeThunderTool(),
DrawTool()
]
# Create Langchain agent and executor
agent = ConversationalChatAgent.from_llm_and_tools(llm= llm, memory=memory, tools=tools, verbose=True, system_message=template)
executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, memory=memory, verbose=True)
return executor
def processing_callback(self,recognized_input):
print("--")
print(recognized_input)
print("")
result = self.executor.run(input=recognized_input)
#print(result)
speak(result)
def run(self):
listen(self.processing_callback)
GodAgent().run()
| [
"langchain.memory.ConversationBufferMemory",
"langchain.agents.ConversationalChatAgent.from_llm_and_tools",
"langchain.agents.AgentExecutor.from_agent_and_tools",
"langchain.chat_models.ChatOpenAI"
] | [((31, 44), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (42, 44), False, 'from dotenv import load_dotenv\n'), ((574, 601), 'os.getenv', 'os.getenv', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (583, 601), False, 'import os\n'), ((1087, 1183), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'openai_api_key': 'openai_api_key', 'verbose': '(True)', 'temperature': '(0.3)', 'model_name': '"""gpt-4"""'}), "(openai_api_key=openai_api_key, verbose=True, temperature=0.3,\n model_name='gpt-4')\n", (1097, 1183), False, 'from langchain.chat_models import ChatOpenAI\n'), ((1222, 1337), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {'memory_key': '"""chat_history"""', 'human_prefix': '"""User"""', 'ai_prefix': '"""God"""', 'return_messages': '(True)'}), "(memory_key='chat_history', human_prefix='User',\n ai_prefix='God', return_messages=True)\n", (1246, 1337), False, 'from langchain.memory import ConversationBufferMemory\n'), ((1550, 1673), 'langchain.agents.ConversationalChatAgent.from_llm_and_tools', 'ConversationalChatAgent.from_llm_and_tools', ([], {'llm': 'llm', 'memory': 'memory', 'tools': 'tools', 'verbose': '(True)', 'system_message': 'template'}), '(llm=llm, memory=memory, tools=\n tools, verbose=True, system_message=template)\n', (1592, 1673), False, 'from langchain.agents import AgentExecutor, ConversationalChatAgent\n'), ((1690, 1783), 'langchain.agents.AgentExecutor.from_agent_and_tools', 'AgentExecutor.from_agent_and_tools', ([], {'agent': 'agent', 'tools': 'tools', 'memory': 'memory', 'verbose': '(True)'}), '(agent=agent, tools=tools, memory=memory,\n verbose=True)\n', (1724, 1783), False, 'from langchain.agents import AgentExecutor, ConversationalChatAgent\n'), ((2021, 2034), 'voice.speech.speak', 'speak', (['result'], {}), '(result)\n', (2026, 2034), False, 'from voice.speech import speak\n'), ((2063, 2095), 'voice.listen.listen', 'listen', (['self.processing_callback'], {}), '(self.processing_callback)\n', (2069, 2095), False, 'from voice.listen import listen\n'), ((1397, 1413), 'tools.is_in_heaven.IsInHeavenTool', 'IsInHeavenTool', ([], {}), '()\n', (1411, 1413), False, 'from tools.is_in_heaven import IsInHeavenTool\n'), ((1427, 1444), 'tools.make_thunder_tool.MakeThunderTool', 'MakeThunderTool', ([], {}), '()\n', (1442, 1444), False, 'from tools.make_thunder_tool import MakeThunderTool\n'), ((1458, 1468), 'tools.draw_tool.DrawTool', 'DrawTool', ([], {}), '()\n', (1466, 1468), False, 'from tools.draw_tool import DrawTool\n')] |
from __future__ import annotations
from abc import abstractmethod
from typing import TYPE_CHECKING, Any, Dict, List, Sequence
from langchain.load.serializable import Serializable
from langchain.pydantic_v1 import Field
if TYPE_CHECKING:
from langchain.prompts.chat import ChatPromptTemplate
def get_buffer_string(
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
"""Convert sequence of Messages to strings and concatenate them into one string.
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:
A single string concatenation of all input messages.
Example:
.. code-block:: python
from langchain.schema import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
"""
string_messages = []
for m in messages:
if isinstance(m, HumanMessage):
role = human_prefix
elif isinstance(m, AIMessage):
role = ai_prefix
elif isinstance(m, SystemMessage):
role = "System"
elif isinstance(m, FunctionMessage):
role = "Function"
elif isinstance(m, ChatMessage):
role = m.role
else:
raise ValueError(f"Got unsupported message type: {m}")
message = f"{role}: {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return "\n".join(string_messages)
class BaseMessage(Serializable):
"""The base abstract Message class.
Messages are the inputs and outputs of ChatModels.
"""
content: str
"""The string contents of the message."""
additional_kwargs: dict = Field(default_factory=dict)
"""Any additional information."""
@property
@abstractmethod
def type(self) -> str:
"""Type of the Message, used for serialization."""
@property
def lc_serializable(self) -> bool:
"""Whether this class is LangChain serializable."""
return True
def __add__(self, other: Any) -> ChatPromptTemplate:
from langchain.prompts.chat import ChatPromptTemplate
prompt = ChatPromptTemplate(messages=[self])
return prompt + other
class BaseMessageChunk(BaseMessage):
"""A Message chunk, which can be concatenated with other Message chunks."""
def _merge_kwargs_dict(
self, left: Dict[str, Any], right: Dict[str, Any]
) -> Dict[str, Any]:
"""Merge additional_kwargs from another BaseMessageChunk into this one."""
merged = left.copy()
for k, v in right.items():
if k not in merged:
merged[k] = v
elif type(merged[k]) != type(v):
raise ValueError(
f'additional_kwargs["{k}"] already exists in this message,'
" but with a different type."
)
elif isinstance(merged[k], str):
merged[k] += v
elif isinstance(merged[k], dict):
merged[k] = self._merge_kwargs_dict(merged[k], v)
else:
raise ValueError(
f"Additional kwargs key {k} already exists in this message."
)
return merged
def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore
if isinstance(other, BaseMessageChunk):
# If both are (subclasses of) BaseMessageChunk,
# concat into a single BaseMessageChunk
return self.__class__(
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
)
else:
raise TypeError(
'unsupported operand type(s) for +: "'
f"{self.__class__.__name__}"
f'" and "{other.__class__.__name__}"'
)
class HumanMessage(BaseMessage):
"""A Message from a human."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "human"
class HumanMessageChunk(HumanMessage, BaseMessageChunk):
"""A Human Message chunk."""
pass
class AIMessage(BaseMessage):
"""A Message from an AI."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "ai"
class AIMessageChunk(AIMessage, BaseMessageChunk):
"""A Message chunk from an AI."""
pass
class SystemMessage(BaseMessage):
"""A Message for priming AI behavior, usually passed in as the first of a sequence
of input messages.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "system"
class SystemMessageChunk(SystemMessage, BaseMessageChunk):
"""A System Message chunk."""
pass
class FunctionMessage(BaseMessage):
"""A Message for passing the result of executing a function back to a model."""
name: str
"""The name of the function that was executed."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "function"
class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
"""A Function Message chunk."""
pass
class ChatMessage(BaseMessage):
"""A Message that can be assigned an arbitrary speaker (i.e. role)."""
role: str
"""The speaker / role of the Message."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "chat"
class ChatMessageChunk(ChatMessage, BaseMessageChunk):
"""A Chat Message chunk."""
pass
def _message_to_dict(message: BaseMessage) -> dict:
return {"type": message.type, "data": message.dict()}
def messages_to_dict(messages: Sequence[BaseMessage]) -> List[dict]:
"""Convert a sequence of Messages to a list of dictionaries.
Args:
messages: Sequence of messages (as BaseMessages) to convert.
Returns:
List of messages as dicts.
"""
return [_message_to_dict(m) for m in messages]
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
def messages_from_dict(messages: List[dict]) -> List[BaseMessage]:
"""Convert a sequence of messages from dicts to Message objects.
Args:
messages: Sequence of messages (as dicts) to convert.
Returns:
List of messages (BaseMessages).
"""
return [_message_from_dict(m) for m in messages]
| [
"langchain.pydantic_v1.Field",
"langchain.prompts.chat.ChatPromptTemplate"
] | [((2151, 2178), 'langchain.pydantic_v1.Field', 'Field', ([], {'default_factory': 'dict'}), '(default_factory=dict)\n', (2156, 2178), False, 'from langchain.pydantic_v1 import Field\n'), ((2610, 2645), 'langchain.prompts.chat.ChatPromptTemplate', 'ChatPromptTemplate', ([], {'messages': '[self]'}), '(messages=[self])\n', (2628, 2645), False, 'from langchain.prompts.chat import ChatPromptTemplate\n')] |
import logging
from typing import Any, Dict, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class PipelineAI(LLM, BaseModel):
"""PipelineAI large language models.
To use, you should have the ``pipeline-ai`` python package installed,
and the environment variable ``PIPELINE_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain import PipelineAI
pipeline = PipelineAI(pipeline_key="")
"""
pipeline_key: str = ""
"""The id or tag of the target pipeline"""
pipeline_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any pipeline parameters valid for `create` call not
explicitly specified."""
pipeline_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("pipeline_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transferred to pipeline_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["pipeline_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
pipeline_api_key = get_from_dict_or_env(
values, "pipeline_api_key", "PIPELINE_API_KEY"
)
values["pipeline_api_key"] = pipeline_api_key
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"pipeline_key": self.pipeline_key},
**{"pipeline_kwargs": self.pipeline_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "pipeline_ai"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call to Pipeline Cloud endpoint."""
try:
from pipeline import PipelineCloud
except ImportError:
raise ValueError(
"Could not import pipeline-ai python package. "
"Please install it with `pip install pipeline-ai`."
)
client = PipelineCloud(token=self.pipeline_api_key)
params = self.pipeline_kwargs or {}
params = {**params, **kwargs}
run = client.run_pipeline(self.pipeline_key, [prompt, params])
try:
text = run.result_preview[0][0]
except AttributeError:
raise AttributeError(
f"A pipeline run should have a `result_preview` attribute."
f"Run was: {run}"
)
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the pipeline parameters
text = enforce_stop_tokens(text, stop)
return text
| [
"langchain.pydantic_v1.Field",
"langchain.llms.utils.enforce_stop_tokens",
"langchain.pydantic_v1.root_validator",
"langchain.utils.get_from_dict_or_env"
] | [((357, 384), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (374, 384), False, 'import logging\n'), ((1004, 1031), 'langchain.pydantic_v1.Field', 'Field', ([], {'default_factory': 'dict'}), '(default_factory=dict)\n', (1009, 1031), False, 'from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator\n'), ((1279, 1303), 'langchain.pydantic_v1.root_validator', 'root_validator', ([], {'pre': '(True)'}), '(pre=True)\n', (1293, 1303), False, 'from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator\n'), ((2131, 2147), 'langchain.pydantic_v1.root_validator', 'root_validator', ([], {}), '()\n', (2145, 2147), False, 'from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator\n'), ((2310, 2378), 'langchain.utils.get_from_dict_or_env', 'get_from_dict_or_env', (['values', '"""pipeline_api_key"""', '"""PIPELINE_API_KEY"""'], {}), "(values, 'pipeline_api_key', 'PIPELINE_API_KEY')\n", (2330, 2378), False, 'from langchain.utils import get_from_dict_or_env\n'), ((3361, 3403), 'pipeline.PipelineCloud', 'PipelineCloud', ([], {'token': 'self.pipeline_api_key'}), '(token=self.pipeline_api_key)\n', (3374, 3403), False, 'from pipeline import PipelineCloud\n'), ((3973, 4004), 'langchain.llms.utils.enforce_stop_tokens', 'enforce_stop_tokens', (['text', 'stop'], {}), '(text, stop)\n', (3992, 4004), False, 'from langchain.llms.utils import enforce_stop_tokens\n')] |
from typing import Optional, Type
import streamlit as st
import tldextract
import whois
import whoisit
from langchain.agents import AgentType, Tool, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool
from langchain.tools.ddg_search import DuckDuckGoSearchRun
from pydantic import BaseModel, Field
# Streamlit app
st.title("TakedownGPT ⬇️🤖")
# Add 'How to Use' section to the sidebar
st.sidebar.header("How to Use 📝")
st.sidebar.markdown("""
1. Enter your OpenAI API key and select the OpenAI model you would like to use.
2. Input the domain name for which you want to send a takedown request.
3. Select the reason for the takedown request, or specify a custom reason.
4. Click the 'Generate Takedown Request' button to create the draft email and find the appropriate email address for the takedown request.
5. Copy or download the draft email and send it to the appropriate email address.
""")
api_key = st.sidebar.text_input("Enter your OpenAI API key:", type="password", help="You can find your OpenAI API on the [OpenAI dashboard](https://platform.openai.com/account/api-keys)")
# Add 'Model Selection' section to the sidebar
model_options = [
"gpt-3.5-turbo-0613",
"gpt-4-0613"
]
selected_model = st.sidebar.selectbox("Select the OpenAI model you would like to use:", model_options, help="You must have been given access to the [GPT-4 API](https://openai.com/waitlist/gpt-4-api) by OpenAI in order to use it.")
# Add 'About' section to the sidebar
st.sidebar.header("About 🌐")
st.sidebar.markdown("""
This app helps you draft takedown requests to domain registrars.
It uses a combination of autonomous LangChain Agents and OpenAI's recently introduced support for function calling to:
1. Perform a WHOIS / RDAP lookup to identify the registrar for the given website
2. Search the web with DuckDuckGo to find the appropriate email address for takedown requests for that domain registrar
3. Draft a takedown request email to the hosting provider citing the reason for the takedown request
Created by [Matt Adams](https://www.linkedin.com/in/matthewrwadams/).
""")
# Domain input field
domain = st.text_input("Enter the domain that is the subject of the takedown request:", help="e.g. 'example.com'")
# Takedown reason drop-down field
reason_options = [
"Copyright infringement",
"Trademark infringement",
"Defamation or libel",
"Privacy violations",
"Malware or phishing activities",
"Violation of terms of service",
"Personal safety concerns",
"Other (specify)",
]
reason = st.selectbox("Select the reason for the takedown request:", reason_options)
if reason == "Other (specify)":
custom_reason = st.text_input("Specify the custom reason for the takedown request:")
else:
custom_reason = None
# Additional information input field
additional_info = st.text_area("Provide additional information to support your request (optional):", help="This information will be included in the takedown request email.")
# Advanced Options collapsible menu
advanced_options = st.expander("Advanced Options ⚙️")
# Add protocol options for performing domain lookups
lookup_options = [
"WHOIS",
"RDAP"
]
selected_lookup = advanced_options.selectbox("Select your preferred protocol for domain registrar lookups:", lookup_options)
if selected_lookup == "RDAP":
tool_name = "rdap_lookup"
else:
tool_name = "get_registrar"
# Check if domain is valid
def is_valid_domain(domain):
extracted = tldextract.extract(domain)
if extracted.domain and extracted.suffix:
return True
return False
# Error handling function
def handle_error(error_message):
st.error(error_message)
if st.button("Generate Takedown Request 📨"):
if not api_key:
handle_error("Please provide an OpenAI API key. 🔑")
elif not domain:
handle_error("Please provide a domain name. 🌐")
elif not is_valid_domain(domain):
handle_error("Please provide a valid domain name. 🌐")
else:
# Set API key
api_key = api_key
# Initialize ChatOpenAI
llm = ChatOpenAI(temperature=0.7, model=selected_model, openai_api_key=api_key)
# Initialize DuckDuckGo Search
search = DuckDuckGoSearchRun()
# Define a custom tool for WHOIS lookups
class GetRegistrarCheckInput(BaseModel):
domain: str = Field(..., description="The domain name to look up")
class GetRegistrarTool(BaseTool):
name = "get_registrar"
description = "Useful for finding the registrar of a given domain name using WHOIS"
def _run(self, domain: str):
w = whois.whois(domain)
return w.registrar
def _arun(self, domain: str):
raise NotImplementedError("This tool does not support async")
args_schema: Optional[Type[BaseModel]] = GetRegistrarCheckInput
# Define a custom tool for RDAP lookups
class RDAPLookupTool(BaseTool):
name = "rdap_lookup"
description = "Useful for finding the registrar of a given domain name using RDAP"
def _run(self, domain: str):
whoisit.bootstrap()
results = whoisit.domain(domain)
return results
def _arun(self, domain: str):
raise NotImplementedError("This tool does not support async")
args_schema: Optional[Type[BaseModel]] = GetRegistrarCheckInput
# Defining Tools
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to find web pages. You should ask targeted questions"
),
GetRegistrarTool(),
RDAPLookupTool()
]
# Initializing the Agent
open_ai_agent = initialize_agent(tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)
# Defining and running the Prompt
prompt = """
Task:
1. Use the {tool_name} tool to find the domain registrar for {domain}.
2. Perform a web search to find the email address for takedown requests for that domain registrar.
3. Prepare a draft email takedown request to the hosting provider citing the following reason: {reason}. Include the additional information provided: {additional_info}
Your response must be in the following format and should not include any other information:
- Registrar name: [registrar]
- Email address for takedown requests: [registrar_email]
- Email subject: [subject]
- Email body: [body]
Your response:
"""
# Fill placeholders with actual data
if custom_reason:
prompt_filled = prompt.format(tool_name=tool_name, domain=domain, reason=custom_reason, additional_info=additional_info)
else:
prompt_filled = prompt.format(tool_name=tool_name, domain=domain, reason=reason, additional_info=additional_info)
try:
with st.spinner("Processing your request... ⏳"):
# Run the agent
response = open_ai_agent.run(prompt_filled)
if "Email address for takedown requests: [not found]" in response:
handle_error("Could not find the email address for takedown requests. Please try again or manually search for the domain registrar's contact information. 🚫")
else:
# Display the result
st.code(response, language="text")
# Add download button for the generated takedown request
filename = f"{domain}_takedown_request.txt"
st.download_button(
label="Download Takedown Request 📥",
data=response.encode("utf-8"),
file_name=filename,
mime="text/plain",
)
except Exception as e:
handle_error(f"An error occurred while processing your request: {str(e)} ❌") | [
"langchain.tools.ddg_search.DuckDuckGoSearchRun",
"langchain.agents.initialize_agent",
"langchain.chat_models.ChatOpenAI",
"langchain.agents.Tool"
] | [((363, 390), 'streamlit.title', 'st.title', (['"""TakedownGPT ⬇️🤖"""'], {}), "('TakedownGPT ⬇️🤖')\n", (371, 390), True, 'import streamlit as st\n'), ((434, 467), 'streamlit.sidebar.header', 'st.sidebar.header', (['"""How to Use 📝"""'], {}), "('How to Use 📝')\n", (451, 467), True, 'import streamlit as st\n'), ((468, 954), 'streamlit.sidebar.markdown', 'st.sidebar.markdown', (['"""\n1. Enter your OpenAI API key and select the OpenAI model you would like to use.\n2. Input the domain name for which you want to send a takedown request.\n3. Select the reason for the takedown request, or specify a custom reason.\n4. Click the \'Generate Takedown Request\' button to create the draft email and find the appropriate email address for the takedown request.\n5. Copy or download the draft email and send it to the appropriate email address.\n"""'], {}), '(\n """\n1. Enter your OpenAI API key and select the OpenAI model you would like to use.\n2. Input the domain name for which you want to send a takedown request.\n3. Select the reason for the takedown request, or specify a custom reason.\n4. Click the \'Generate Takedown Request\' button to create the draft email and find the appropriate email address for the takedown request.\n5. Copy or download the draft email and send it to the appropriate email address.\n"""\n )\n', (487, 954), True, 'import streamlit as st\n'), ((956, 1143), 'streamlit.sidebar.text_input', 'st.sidebar.text_input', (['"""Enter your OpenAI API key:"""'], {'type': '"""password"""', 'help': '"""You can find your OpenAI API on the [OpenAI dashboard](https://platform.openai.com/account/api-keys)"""'}), "('Enter your OpenAI API key:', type='password', help=\n 'You can find your OpenAI API on the [OpenAI dashboard](https://platform.openai.com/account/api-keys)'\n )\n", (977, 1143), True, 'import streamlit as st\n'), ((1262, 1489), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""Select the OpenAI model you would like to use:"""', 'model_options'], {'help': '"""You must have been given access to the [GPT-4 API](https://openai.com/waitlist/gpt-4-api) by OpenAI in order to use it."""'}), "('Select the OpenAI model you would like to use:',\n model_options, help=\n 'You must have been given access to the [GPT-4 API](https://openai.com/waitlist/gpt-4-api) by OpenAI in order to use it.'\n )\n", (1282, 1489), True, 'import streamlit as st\n'), ((1514, 1542), 'streamlit.sidebar.header', 'st.sidebar.header', (['"""About 🌐"""'], {}), "('About 🌐')\n", (1531, 1542), True, 'import streamlit as st\n'), ((1543, 2144), 'streamlit.sidebar.markdown', 'st.sidebar.markdown', (['"""\nThis app helps you draft takedown requests to domain registrars.\nIt uses a combination of autonomous LangChain Agents and OpenAI\'s recently introduced support for function calling to:\n 1. Perform a WHOIS / RDAP lookup to identify the registrar for the given website\n 2. Search the web with DuckDuckGo to find the appropriate email address for takedown requests for that domain registrar\n 3. Draft a takedown request email to the hosting provider citing the reason for the takedown request\n\nCreated by [Matt Adams](https://www.linkedin.com/in/matthewrwadams/).\n"""'], {}), '(\n """\nThis app helps you draft takedown requests to domain registrars.\nIt uses a combination of autonomous LangChain Agents and OpenAI\'s recently introduced support for function calling to:\n 1. Perform a WHOIS / RDAP lookup to identify the registrar for the given website\n 2. Search the web with DuckDuckGo to find the appropriate email address for takedown requests for that domain registrar\n 3. Draft a takedown request email to the hosting provider citing the reason for the takedown request\n\nCreated by [Matt Adams](https://www.linkedin.com/in/matthewrwadams/).\n"""\n )\n', (1562, 2144), True, 'import streamlit as st\n'), ((2166, 2275), 'streamlit.text_input', 'st.text_input', (['"""Enter the domain that is the subject of the takedown request:"""'], {'help': '"""e.g. \'example.com\'"""'}), '(\'Enter the domain that is the subject of the takedown request:\',\n help="e.g. \'example.com\'")\n', (2179, 2275), True, 'import streamlit as st\n'), ((2580, 2655), 'streamlit.selectbox', 'st.selectbox', (['"""Select the reason for the takedown request:"""', 'reason_options'], {}), "('Select the reason for the takedown request:', reason_options)\n", (2592, 2655), True, 'import streamlit as st\n'), ((2865, 3029), 'streamlit.text_area', 'st.text_area', (['"""Provide additional information to support your request (optional):"""'], {'help': '"""This information will be included in the takedown request email."""'}), "(\n 'Provide additional information to support your request (optional):',\n help='This information will be included in the takedown request email.')\n", (2877, 3029), True, 'import streamlit as st\n'), ((3077, 3111), 'streamlit.expander', 'st.expander', (['"""Advanced Options ⚙️"""'], {}), "('Advanced Options ⚙️')\n", (3088, 3111), True, 'import streamlit as st\n'), ((3710, 3750), 'streamlit.button', 'st.button', (['"""Generate Takedown Request 📨"""'], {}), "('Generate Takedown Request 📨')\n", (3719, 3750), True, 'import streamlit as st\n'), ((2709, 2777), 'streamlit.text_input', 'st.text_input', (['"""Specify the custom reason for the takedown request:"""'], {}), "('Specify the custom reason for the takedown request:')\n", (2722, 2777), True, 'import streamlit as st\n'), ((3508, 3534), 'tldextract.extract', 'tldextract.extract', (['domain'], {}), '(domain)\n', (3526, 3534), False, 'import tldextract\n'), ((3682, 3705), 'streamlit.error', 'st.error', (['error_message'], {}), '(error_message)\n', (3690, 3705), True, 'import streamlit as st\n'), ((4114, 4187), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0.7)', 'model': 'selected_model', 'openai_api_key': 'api_key'}), '(temperature=0.7, model=selected_model, openai_api_key=api_key)\n', (4124, 4187), False, 'from langchain.chat_models import ChatOpenAI\n'), ((4245, 4266), 'langchain.tools.ddg_search.DuckDuckGoSearchRun', 'DuckDuckGoSearchRun', ([], {}), '()\n', (4264, 4266), False, 'from langchain.tools.ddg_search import DuckDuckGoSearchRun\n'), ((5885, 5961), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'llm'], {'agent': 'AgentType.OPENAI_FUNCTIONS', 'verbose': '(True)'}), '(tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)\n', (5901, 5961), False, 'from langchain.agents import AgentType, Tool, initialize_agent\n'), ((4392, 4444), 'pydantic.Field', 'Field', (['...'], {'description': '"""The domain name to look up"""'}), "(..., description='The domain name to look up')\n", (4397, 4444), False, 'from pydantic import BaseModel, Field\n'), ((5563, 5702), 'langchain.agents.Tool', 'Tool', ([], {'name': '"""Search"""', 'func': 'search.run', 'description': '"""useful for when you need to find web pages. You should ask targeted questions"""'}), "(name='Search', func=search.run, description=\n 'useful for when you need to find web pages. You should ask targeted questions'\n )\n", (5567, 5702), False, 'from langchain.agents import AgentType, Tool, initialize_agent\n'), ((4681, 4700), 'whois.whois', 'whois.whois', (['domain'], {}), '(domain)\n', (4692, 4700), False, 'import whois\n'), ((5209, 5228), 'whoisit.bootstrap', 'whoisit.bootstrap', ([], {}), '()\n', (5226, 5228), False, 'import whoisit\n'), ((5255, 5277), 'whoisit.domain', 'whoisit.domain', (['domain'], {}), '(domain)\n', (5269, 5277), False, 'import whoisit\n'), ((7118, 7160), 'streamlit.spinner', 'st.spinner', (['"""Processing your request... ⏳"""'], {}), "('Processing your request... ⏳')\n", (7128, 7160), True, 'import streamlit as st\n'), ((7591, 7625), 'streamlit.code', 'st.code', (['response'], {'language': '"""text"""'}), "(response, language='text')\n", (7598, 7625), True, 'import streamlit as st\n')] |
import sqlite3
import pandas as pd
import os
import json
import warnings
from langchain import SQLDatabase
from langchain.docstore.document import Document
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from sqlalchemy import exc
from sqlalchemy.exc import SAWarning
warnings.filterwarnings('ignore', category=SAWarning)
from src.data.setup.vector_setup_functions import get_json, connect_db, prep_chroma_documents, create_chroma_db
from src.data.setup.db_setup_functions import get_filenames, get_table_names, get_column_info, df_text_processing, build_schema_info, convert_df_to_json
#### BUILD CONSOLIDATED SCHEMA INFORMATION ####
#you can do this from the provided tables, but that would not be as scaleable in the real world.
#point to location you saved the data to and the type of database
data_directory = 'src/data/raw/spider/database/'
db_type = '.sqlite'
#create a dataframe with schema info
schema_df = build_schema_info(filepath=data_directory, filetype=db_type)
#create a json of the same data if that fomrat tickles your fancy
schema_json = convert_df_to_json(df=schema_df)
##### SAVE SCHEMA INFO #####
save_path = 'src/data/processed/db/'
print("\nSaving dataframe and JSON...")
#save df in pickle file
filepath = save_path+'schema_info.pkl'
schema_df.to_pickle(filepath)
#save json in json file
with open(save_path+'schema_info.json', 'w') as file:
json.dump(schema_json, file)
print("...Success")
#### CREATING VECTOR DATABASE FROM SCHEMA INFORMATION ####
#setup embeddings using HuggingFace
embeddings = HuggingFaceEmbeddings()
#point to json file with schema info
json_path = 'src/data/processed/db/schema_info.json'
#point to location to save the vector database
persist_directory = 'src/data/processed/chromadb/'
schema_docs = prep_chroma_documents(json_path=json_path, db_path=data_directory)
create_chroma_db(docs=schema_docs, persist_dir=persist_directory, embed_func=embeddings) | [
"langchain.embeddings.HuggingFaceEmbeddings"
] | [((320, 373), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'SAWarning'}), "('ignore', category=SAWarning)\n", (343, 373), False, 'import warnings\n'), ((973, 1033), 'src.data.setup.db_setup_functions.build_schema_info', 'build_schema_info', ([], {'filepath': 'data_directory', 'filetype': 'db_type'}), '(filepath=data_directory, filetype=db_type)\n', (990, 1033), False, 'from src.data.setup.db_setup_functions import get_filenames, get_table_names, get_column_info, df_text_processing, build_schema_info, convert_df_to_json\n'), ((1115, 1147), 'src.data.setup.db_setup_functions.convert_df_to_json', 'convert_df_to_json', ([], {'df': 'schema_df'}), '(df=schema_df)\n', (1133, 1147), False, 'from src.data.setup.db_setup_functions import get_filenames, get_table_names, get_column_info, df_text_processing, build_schema_info, convert_df_to_json\n'), ((1594, 1617), 'langchain.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {}), '()\n', (1615, 1617), False, 'from langchain.embeddings import HuggingFaceEmbeddings\n'), ((1823, 1889), 'src.data.setup.vector_setup_functions.prep_chroma_documents', 'prep_chroma_documents', ([], {'json_path': 'json_path', 'db_path': 'data_directory'}), '(json_path=json_path, db_path=data_directory)\n', (1844, 1889), False, 'from src.data.setup.vector_setup_functions import get_json, connect_db, prep_chroma_documents, create_chroma_db\n'), ((1891, 1983), 'src.data.setup.vector_setup_functions.create_chroma_db', 'create_chroma_db', ([], {'docs': 'schema_docs', 'persist_dir': 'persist_directory', 'embed_func': 'embeddings'}), '(docs=schema_docs, persist_dir=persist_directory,\n embed_func=embeddings)\n', (1907, 1983), False, 'from src.data.setup.vector_setup_functions import get_json, connect_db, prep_chroma_documents, create_chroma_db\n'), ((1432, 1460), 'json.dump', 'json.dump', (['schema_json', 'file'], {}), '(schema_json, file)\n', (1441, 1460), False, 'import json\n')] |
from langchain.llms import OpenAI
from callback import MyCallbackHandler
from langchain.callbacks.base import BaseCallbackManager
class QaLlm():
def __init__(self) -> None:
manager = BaseCallbackManager([MyCallbackHandler()])
self.llm = OpenAI(temperature=0, callback_manager=manager, model_name="gpt-3.5-turbo")
def get_llm(self):
return self.llm | [
"langchain.llms.OpenAI"
] | [((259, 334), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)', 'callback_manager': 'manager', 'model_name': '"""gpt-3.5-turbo"""'}), "(temperature=0, callback_manager=manager, model_name='gpt-3.5-turbo')\n", (265, 334), False, 'from langchain.llms import OpenAI\n'), ((218, 237), 'callback.MyCallbackHandler', 'MyCallbackHandler', ([], {}), '()\n', (235, 237), False, 'from callback import MyCallbackHandler\n')] |
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from apikey import (
apikey,
google_search,
google_cse,
serp,
aws_access_key,
aws_secret_key,
aws_region,
)
import os
from typing import Dict
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.utilities import GoogleSearchAPIWrapper
os.environ["OPENAI_API_KEY"] = apikey
os.environ["GOOGLE_API_KEY"] = google_search
os.environ["GOOGLE_CSE_ID"] = google_cse
os.environ["SERPAPI_API_KEY"] = serp
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_key
os.environ["AWS_DEFAULT_REGION"] = aws_region
# LLMs
llm = OpenAI(temperature=0.3, max_tokens=100, model_name="text-davinci-003")
# Memory
conv_memory = ConversationBufferMemory()
# Prompt template for LLM
script_template = PromptTemplate(
input_variables=["topic", "google_search"],
template="Write me a YouTube voiceover script about {topic}, and also do research about the topic on Google. {google_search}",
)
adjust_template = PromptTemplate(
input_variables=["script"],
template="Edit, and adjust the script in a fun, relaxed way: {script}\n\n-=-=-=- Adjusted Script -=-=-=-",
)
# Add a new prompt template for further adjustments
refine_template = PromptTemplate(
input_variables=[
"script",
"adjusted_script",
],
template="Refine the adjusted script staying on topic to make it more charismatic:\n{script}\n\n-=-=-=- Adjusted Script -=-=-=-\n{adjusted_script}\n\n-=-=-=- Refined Script -=-=-=-",
)
# LLM Chains
script_chain = LLMChain(
llm=llm, prompt=script_template, verbose=True, output_key="script"
)
adjust_chain = LLMChain(
llm=llm, prompt=adjust_template, verbose=True, output_key="adjusted_script"
)
refine_chain = LLMChain(
llm=llm, prompt=refine_template, verbose=True, output_key="refined_script"
)
search = GoogleSearchAPIWrapper()
def run_all_chains(prompt: str, google_search_result: str) -> Dict[str, str]:
script = script_chain({"topic": prompt, "google_search": google_search_result})
conv_memory.save_context(
{"topic": prompt}, {"script": script[script_chain.output_key]}
)
adjust = adjust_chain({"script": script[script_chain.output_key]})
conv_memory.save_context(
{"script": script[script_chain.output_key]},
{"adjusted_script": adjust[adjust_chain.output_key]},
)
adjust_output = adjust[adjust_chain.output_key]
adjusted_script = adjust_output.split("-=-=-=- Adjusted Script -=-=-=-")[-1].strip()
refine = refine_chain(
{
"script": script[script_chain.output_key],
"adjusted_script": adjust[adjust_chain.output_key],
}
)
conv_memory.save_context(
{"adjusted_script": adjust[adjust_chain.output_key]},
{"refined_script": refine[refine_chain.output_key]},
)
refine_output = refine[refine_chain.output_key]
refined_script = refine_output.split("-=-=-=- Refined Script -=-=-=-")[-1].strip()
return {
"script": script[script_chain.output_key],
"adjusted_script": adjusted_script,
"refined_script": refined_script,
}
| [
"langchain.chains.LLMChain",
"langchain.llms.OpenAI",
"langchain.prompts.PromptTemplate",
"langchain.memory.ConversationBufferMemory",
"langchain.utilities.GoogleSearchAPIWrapper"
] | [((765, 835), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0.3)', 'max_tokens': '(100)', 'model_name': '"""text-davinci-003"""'}), "(temperature=0.3, max_tokens=100, model_name='text-davinci-003')\n", (771, 835), False, 'from langchain.llms import OpenAI\n'), ((860, 886), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {}), '()\n', (884, 886), False, 'from langchain.memory import ConversationBufferMemory\n'), ((933, 1128), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['topic', 'google_search']", 'template': '"""Write me a YouTube voiceover script about {topic}, and also do research about the topic on Google. {google_search}"""'}), "(input_variables=['topic', 'google_search'], template=\n 'Write me a YouTube voiceover script about {topic}, and also do research about the topic on Google. {google_search}'\n )\n", (947, 1128), False, 'from langchain.prompts import PromptTemplate\n'), ((1149, 1310), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['script']", 'template': '"""Edit, and adjust the script in a fun, relaxed way: {script}\n\n-=-=-=- Adjusted Script -=-=-=-"""'}), '(input_variables=[\'script\'], template=\n """Edit, and adjust the script in a fun, relaxed way: {script}\n\n-=-=-=- Adjusted Script -=-=-=-"""\n )\n', (1163, 1310), False, 'from langchain.prompts import PromptTemplate\n'), ((1381, 1633), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['script', 'adjusted_script']", 'template': '"""Refine the adjusted script staying on topic to make it more charismatic:\n{script}\n\n-=-=-=- Adjusted Script -=-=-=-\n{adjusted_script}\n\n-=-=-=- Refined Script -=-=-=-"""'}), '(input_variables=[\'script\', \'adjusted_script\'], template=\n """Refine the adjusted script staying on topic to make it more charismatic:\n{script}\n\n-=-=-=- Adjusted Script -=-=-=-\n{adjusted_script}\n\n-=-=-=- Refined Script -=-=-=-"""\n )\n', (1395, 1633), False, 'from langchain.prompts import PromptTemplate\n'), ((1689, 1765), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'script_template', 'verbose': '(True)', 'output_key': '"""script"""'}), "(llm=llm, prompt=script_template, verbose=True, output_key='script')\n", (1697, 1765), False, 'from langchain.chains import LLMChain\n'), ((1787, 1877), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'adjust_template', 'verbose': '(True)', 'output_key': '"""adjusted_script"""'}), "(llm=llm, prompt=adjust_template, verbose=True, output_key=\n 'adjusted_script')\n", (1795, 1877), False, 'from langchain.chains import LLMChain\n'), ((1894, 1983), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'refine_template', 'verbose': '(True)', 'output_key': '"""refined_script"""'}), "(llm=llm, prompt=refine_template, verbose=True, output_key=\n 'refined_script')\n", (1902, 1983), False, 'from langchain.chains import LLMChain\n'), ((1995, 2019), 'langchain.utilities.GoogleSearchAPIWrapper', 'GoogleSearchAPIWrapper', ([], {}), '()\n', (2017, 2019), False, 'from langchain.utilities import GoogleSearchAPIWrapper\n')] |
from langchain.retrievers import AmazonKendraRetriever
from langchain.chains import ConversationalRetrievalChain
from langchain import SagemakerEndpoint
from langchain.llms.sagemaker_endpoint import LLMContentHandler
from langchain.prompts import PromptTemplate
import sys
import json
import os
class bcolors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKCYAN = "\033[96m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
MAX_HISTORY_LENGTH = 5
def build_chain():
region = os.environ["AWS_REGION"]
kendra_index_id = os.environ["KENDRA_INDEX_ID"]
endpoint_name = os.environ["FALCON_40B_ENDPOINT"]
language_code = os.environ["LANGUAGE_CODE"]
class ContentHandler(LLMContentHandler):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: dict) -> bytes:
input_str = json.dumps({"inputs": prompt, "parameters": model_kwargs})
return input_str.encode("utf-8")
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
return response_json[0]["generated_text"]
content_handler = ContentHandler()
llm = SagemakerEndpoint(
endpoint_name=endpoint_name,
region_name=region,
model_kwargs={
"temperature": 0.8,
"max_new_tokens": 512,
"do_sample": True,
"top_p": 0.9,
"repetition_penalty": 1.03,
"stop": ["\nUser:", "<|endoftext|>", "</s>"],
},
content_handler=content_handler,
)
retriever = AmazonKendraRetriever(
index_id=kendra_index_id,
region_name=region,
top_k=1,
attribute_filter={
"EqualsTo": {
"Key": "_language_code",
"Value": {"StringValue": language_code},
}
},
)
prompt_template = """
システム: システムは資料から抜粋して質問に答えます。資料にない内容には答えず、正直に「わかりません」と答えます。
{context}
上記の資料に基づいて以下の質問について資料から抜粋して回答を生成します。資料にない内容には答えず「わかりません」と答えます。
ユーザー: {question}
システム:
"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
condense_qa_template = """
次のような会話とフォローアップの質問に基づいて、フォローアップの質問を独立した質問に言い換えてください。
フォローアップの質問: {question}
独立した質問:"""
standalone_question_prompt = PromptTemplate.from_template(condense_qa_template)
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
condense_question_prompt=standalone_question_prompt,
return_source_documents=True,
verbose=True,
combine_docs_chain_kwargs={"prompt": PROMPT},
)
return qa
def run_chain(chain, prompt: str, history=[]):
return chain({"question": prompt, "chat_history": history})
if __name__ == "__main__":
chat_history = []
qa = build_chain()
print(bcolors.OKBLUE + "Hello! How can I help you?" + bcolors.ENDC)
print(
bcolors.OKCYAN
+ "Ask a question, start a New search: or CTRL-D to exit."
+ bcolors.ENDC
)
print(">", end=" ", flush=True)
for query in sys.stdin:
if query.strip().lower().startswith("new search:"):
query = query.strip().lower().replace("new search:", "")
chat_history = []
elif len(chat_history) == MAX_HISTORY_LENGTH:
chat_history.pop(0)
result = run_chain(qa, query, chat_history)
chat_history.append((query, result["answer"]))
print(bcolors.OKGREEN + result["answer"] + bcolors.ENDC)
if "source_documents" in result:
print(bcolors.OKGREEN + "Sources:")
for d in result["source_documents"]:
print(d.metadata["source"])
print(bcolors.ENDC)
print(
bcolors.OKCYAN
+ "Ask a question, start a New search: or CTRL-D to exit."
+ bcolors.ENDC
)
print(">", end=" ", flush=True)
print(bcolors.OKBLUE + "Bye" + bcolors.ENDC)
| [
"langchain.retrievers.AmazonKendraRetriever",
"langchain.chains.ConversationalRetrievalChain.from_llm",
"langchain.prompts.PromptTemplate.from_template",
"langchain.prompts.PromptTemplate",
"langchain.SagemakerEndpoint"
] | [((1327, 1604), 'langchain.SagemakerEndpoint', 'SagemakerEndpoint', ([], {'endpoint_name': 'endpoint_name', 'region_name': 'region', 'model_kwargs': "{'temperature': 0.8, 'max_new_tokens': 512, 'do_sample': True, 'top_p': 0.9,\n 'repetition_penalty': 1.03, 'stop': ['\\nUser:', '<|endoftext|>', '</s>']}", 'content_handler': 'content_handler'}), "(endpoint_name=endpoint_name, region_name=region,\n model_kwargs={'temperature': 0.8, 'max_new_tokens': 512, 'do_sample': \n True, 'top_p': 0.9, 'repetition_penalty': 1.03, 'stop': ['\\nUser:',\n '<|endoftext|>', '</s>']}, content_handler=content_handler)\n", (1344, 1604), False, 'from langchain import SagemakerEndpoint\n'), ((1731, 1915), 'langchain.retrievers.AmazonKendraRetriever', 'AmazonKendraRetriever', ([], {'index_id': 'kendra_index_id', 'region_name': 'region', 'top_k': '(1)', 'attribute_filter': "{'EqualsTo': {'Key': '_language_code', 'Value': {'StringValue': language_code}}\n }"}), "(index_id=kendra_index_id, region_name=region, top_k=1,\n attribute_filter={'EqualsTo': {'Key': '_language_code', 'Value': {\n 'StringValue': language_code}}})\n", (1752, 1915), False, 'from langchain.retrievers import AmazonKendraRetriever\n'), ((2227, 2312), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'template': 'prompt_template', 'input_variables': "['context', 'question']"}), "(template=prompt_template, input_variables=['context',\n 'question'])\n", (2241, 2312), False, 'from langchain.prompts import PromptTemplate\n'), ((2482, 2532), 'langchain.prompts.PromptTemplate.from_template', 'PromptTemplate.from_template', (['condense_qa_template'], {}), '(condense_qa_template)\n', (2510, 2532), False, 'from langchain.prompts import PromptTemplate\n'), ((2543, 2766), 'langchain.chains.ConversationalRetrievalChain.from_llm', 'ConversationalRetrievalChain.from_llm', ([], {'llm': 'llm', 'retriever': 'retriever', 'condense_question_prompt': 'standalone_question_prompt', 'return_source_documents': '(True)', 'verbose': '(True)', 'combine_docs_chain_kwargs': "{'prompt': PROMPT}"}), "(llm=llm, retriever=retriever,\n condense_question_prompt=standalone_question_prompt,\n return_source_documents=True, verbose=True, combine_docs_chain_kwargs={\n 'prompt': PROMPT})\n", (2580, 2766), False, 'from langchain.chains import ConversationalRetrievalChain\n'), ((989, 1047), 'json.dumps', 'json.dumps', (["{'inputs': prompt, 'parameters': model_kwargs}"], {}), "({'inputs': prompt, 'parameters': model_kwargs})\n", (999, 1047), False, 'import json\n')] |
#Make sure to install the following packages: dlt, langchain, duckdb, python-dotenv, openai, weaviate-client
import dlt
from langchain import PromptTemplate, LLMChain
from langchain.chains.openai_functions import create_structured_output_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
import weaviate
import os
import json
import argparse
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.retrievers import WeaviateHybridSearchRetriever
from langchain.schema import Document, SystemMessage, HumanMessage
from langchain.vectorstores import Weaviate
import uuid
from dotenv import load_dotenv
load_dotenv()
from pathlib import Path
from langchain import OpenAI, LLMMathChain
import os
embeddings = OpenAIEmbeddings()
from deep_translator import (GoogleTranslator)
def _convert_pdf_to_document(path: str = None):
"""Convert a PDF document to a Document object"""
if path is None:
raise ValueError("A valid path to the document must be provided.")
loader = PyPDFLoader(path)
pages = loader.load_and_split()
print("PAGES", pages[0])
# Parse metadata from the folder path
path_parts = Path(path).parts
personal_receipts_index = path_parts.index("personal_receipts")
metadata_parts = path_parts[personal_receipts_index+1:]
documents = []
for page in pages:
translation = GoogleTranslator(source='auto', target='en').translate(text=page.page_content)
documents.append(
Document(
metadata={
"title": "Personal Receipt",
"country": metadata_parts[1],
"year": metadata_parts[0],
"author": str(uuid.uuid4()),
"source": "/".join(metadata_parts),
},
page_content=translation,
)
)
print(documents)
return documents
def _init_weaviate():
"""Initialize weaviate client and retriever"""
auth_config = weaviate.auth.AuthApiKey(api_key=os.environ.get('WEAVIATE_API_KEY'))
client = weaviate.Client(
url='https://my-vev-index-o4qitptw.weaviate.network',
auth_client_secret=auth_config,
additional_headers={
"X-OpenAI-Api-Key": os.environ.get('OPENAI_API_KEY')
}
)
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name="PDFloader",
text_key="text",
attributes=[],
embedding=embeddings,
create_schema_if_missing=True,
)
return retriever
def load_to_weaviate(document_path=None):
"""Load documents to weaviate"""
retriever =_init_weaviate()
docs = _convert_pdf_to_document(document_path)
return retriever.add_documents(docs)
def get_from_weaviate(query=None, path=None, operator=None, valueText=None):
"""
Get documents from weaviate.
Args:
query (str): The query string.
path (list): The path for filtering, e.g., ['year'].
operator (str): The operator for filtering, e.g., 'Equal'.
valueText (str): The value for filtering, e.g., '2017*'.
Example:
get_from_weaviate(query="some query", path=['year'], operator='Equal', valueText='2017*')
"""
retriever = _init_weaviate()
# Initial retrieval without filters
output = retriever.get_relevant_documents(
query,
score=True,
)
# Apply filters if provided
if path or operator or valueText:
# Create the where_filter based on provided parameters
where_filter = {
'path': path if path else [],
'operator': operator if operator else '',
'valueText': valueText if valueText else ''
}
# Retrieve documents with filters applied
output = retriever.get_relevant_documents(
query,
score=True,
where_filter=where_filter
)
return output
def delete_from_weaviate(query=None, filters=None):
"""Delete documents from weaviate, pass dict as filters"""
""" {
'path': ['year'],
'operator': 'Equal',
'valueText': '2017*' }"""
auth_config = weaviate.auth.AuthApiKey(api_key=os.environ.get('WEAVIATE_API_KEY'))
client = weaviate.Client(
url='https://my-vev-index-o4qitptw.weaviate.network',
auth_client_secret=auth_config,
additional_headers={
"X-OpenAI-Api-Key": os.environ.get('OPENAI_API_KEY')
}
)
client.batch.delete_objects(
class_name='PDFloader',
# Same `where` filter as in the GraphQL API
where={
'path': ['year'],
'operator': 'Equal',
'valueText': '2017*'
},
)
return "Success"
llm = ChatOpenAI(
temperature=0.0,
max_tokens=1200,
openai_api_key=os.environ.get('OPENAI_API_KEY'),
model_name="gpt-4-0613",
)
def infer_schema_from_text(text: str):
"""Infer schema from text"""
prompt_ = """ You are a json schema master. Create a JSON schema based on the following data and don't write anything else: {prompt} """
complete_query = PromptTemplate(
input_variables=["prompt"],
template=prompt_,
)
chain = LLMChain(
llm=llm, prompt=complete_query, verbose=True
)
chain_result = chain.run(prompt=text).strip()
json_data = json.dumps(chain_result)
return json_data
def set_data_contract(data, version, date, agreement_id=None, privacy_policy=None, terms_of_service=None, format=None, schema_version=None, checksum=None, owner=None, license=None, validity_start=None, validity_end=None):
# Creating the generic data contract
data_contract = {
"version": version or "",
"date": date or "",
"agreement_id": agreement_id or "",
"privacy_policy": privacy_policy or "",
"terms_of_service": terms_of_service or "",
"format": format or "",
"schema_version": schema_version or "",
"checksum": checksum or "",
"owner": owner or "",
"license": license or "",
"validity_start": validity_start or "",
"validity_end": validity_end or "",
"properties": data # Adding the given data under the "properties" field
}
return data_contract
def create_id_dict(memory_id=None, st_memory_id=None, buffer_id=None):
"""
Create a dictionary containing IDs for memory, st_memory, and buffer.
Args:
memory_id (str): The Memory ID.
st_memory_id (str): The St_memory ID.
buffer_id (str): The Buffer ID.
Returns:
dict: A dictionary containing the IDs.
"""
id_dict = {
"memoryID": memory_id or "",
"st_MemoryID": st_memory_id or "",
"bufferID": buffer_id or ""
}
return id_dict
def init_buffer(data, version, date, memory_id=None, st_memory_id=None, buffer_id=None, agreement_id=None, privacy_policy=None, terms_of_service=None, format=None, schema_version=None, checksum=None, owner=None, license=None, validity_start=None, validity_end=None, text=None, process=None):
# Create ID dictionary
id_dict = create_id_dict(memory_id, st_memory_id, buffer_id)
# Set data contract
data_contract = set_data_contract(data, version, date, agreement_id, privacy_policy, terms_of_service, format, schema_version, checksum, owner, license, validity_start, validity_end)
# Add ID dictionary to properties
data_contract["properties"]["relations"] = id_dict
# Infer schema from text and add to properties
if text:
schema = infer_schema_from_text(text)
data_contract["properties"]["schema"] = schema
if process:
data_contract["properties"]["process"] = process
return data_contract
def infer_properties_from_text(text: str):
"""Infer schema properties from text"""
prompt_ = """ You are a json index master. Create a short JSON index containing the most important data and don't write anything else: {prompt} """
complete_query = PromptTemplate(
input_variables=["prompt"],
template=prompt_,
)
chain = LLMChain(
llm=llm, prompt=complete_query, verbose=True
)
chain_result = chain.run(prompt=text).strip()
# json_data = json.dumps(chain_result)
return chain_result
#
#
# # print(infer_schema_from_text(output[0].page_content))
def load_json_or_infer_schema(file_path, document_path):
"""Load JSON schema from file or infer schema from text"""
try:
# Attempt to load the JSON file
with open(file_path, 'r') as file:
json_schema = json.load(file)
return json_schema
except FileNotFoundError:
# If the file doesn't exist, run the specified function
output = _convert_pdf_to_document(path=document_path)
json_schema = infer_schema_from_text(output[0].page_content)
return json_schema
def ai_function(prompt=None, json_schema=None):
"""AI function to convert unstructured data to structured data"""
# Here we define the user prompt and the structure of the output we desire
# prompt = output[0].page_content
prompt_msgs = [
SystemMessage(
content="You are a world class algorithm converting unstructured data into structured data."
),
HumanMessage(content="Convert unstructured data to structured data:"),
HumanMessagePromptTemplate.from_template("{input}"),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt_ = ChatPromptTemplate(messages=prompt_msgs)
chain = create_structured_output_chain(json_schema , prompt=prompt_, llm=llm, verbose=True)
output = chain.run(input = prompt, llm=llm)
yield output
# Define a base directory if you have one; this could be the directory where your script is located
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def higher_level_thinking():
"""Higher level thinking function to calculate the sum of the price of the tickets from these documents"""
docs_data = get_from_weaviate(query="Train", path=['year'], operator='Equal', valueText='2017*')
str_docs_data = str(docs_data)
llm_math = LLMMathChain.from_llm(llm, verbose=True)
output = llm_math.run(f"Calculate the sum of the price of the tickets from these documents: {str_docs_data}")
# data_format = init_buffer(data=output, version="0.0.1", date="2021-09-01")
yield output
result_higher_level_thinking = higher_level_thinking()
def process_higher_level_thinking(result=None):
data_format = init_buffer(data=result, version="0.0.1", date="2021-09-01")
import json
data_format=json.dumps(data_format)
yield data_format
document_paths = [
os.path.join(BASE_DIR, "personal_receipts", "2017", "de", "public_transport", "3ZCCCW.pdf"),
os.path.join(BASE_DIR, "personal_receipts", "2017", "de", "public_transport", "4GBEC9.pdf")
]
def main(raw_loading, processed_loading,document_paths):
BASE_DIR = os.getcwd() # Assuming the current working directory is where the data_processing_script.py is located
def format_document_paths(base_dir, path):
# Split the input path and extract the elements
elements = path.strip("/").split("/")
# Construct the document_paths list
document_paths = [os.path.join(base_dir, *elements)]
return document_paths
document_paths_ =[format_document_paths(BASE_DIR, path) for path in document_paths][0]
print(document_paths)
if raw_loading:
for document in document_paths_:
file_path = os.path.join(BASE_DIR, "ticket_schema.json")
json_schema = load_json_or_infer_schema(file_path, document)
output = _convert_pdf_to_document(path=document)
find_data_in_store = get_from_weaviate(query="Train", path=['year'], operator='Equal', valueText='2017*')
if find_data_in_store:
output = find_data_in_store
print(output[1])
else:
load_to_weaviate(document)
pipeline = dlt.pipeline(pipeline_name="train_ticket", destination='duckdb', dataset_name='train_ticket_data')
info = pipeline.run(data=ai_function(output[0].page_content, json_schema))
print(info)
elif processed_loading:
pipeline_processed = dlt.pipeline(pipeline_name="train_ticket_processed", destination='duckdb',
dataset_name='train_ticket_processed_data')
info = pipeline_processed.run(data=higher_level_thinking())
print(info)
else:
print("Please specify either '--raw_loading' or '--processed_loading' option.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Data Processing Script")
parser.add_argument("--raw_loading", action="store_true", help="Load raw document data and perform AI tasks")
parser.add_argument("--processed_loading", action="store_true",
help="Load processed data and run higher-level thinking AI function")
parser.add_argument("document_paths", nargs="*", help="Paths to the documents to process")
args = parser.parse_args()
main(args.raw_loading, args.processed_loading, args.document_paths)
#to run: python3 level_1_pdf_vectorstore_dlt_etl.py --raw_loading "/personal_receipts/2017/de/public_transport/3ZCCCW.pdf"
| [
"langchain.PromptTemplate",
"langchain.LLMMathChain.from_llm",
"langchain.prompts.ChatPromptTemplate",
"langchain.schema.HumanMessage",
"langchain.prompts.HumanMessagePromptTemplate.from_template",
"langchain.document_loaders.PyPDFLoader",
"langchain.embeddings.OpenAIEmbeddings",
"langchain.chains.openai_functions.create_structured_output_chain",
"langchain.schema.SystemMessage",
"langchain.retrievers.WeaviateHybridSearchRetriever",
"langchain.LLMChain"
] | [((741, 754), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (752, 754), False, 'from dotenv import load_dotenv\n'), ((848, 866), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (864, 866), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((1129, 1146), 'langchain.document_loaders.PyPDFLoader', 'PyPDFLoader', (['path'], {}), '(path)\n', (1140, 1146), False, 'from langchain.document_loaders import PyPDFLoader\n'), ((2438, 2599), 'langchain.retrievers.WeaviateHybridSearchRetriever', 'WeaviateHybridSearchRetriever', ([], {'client': 'client', 'index_name': '"""PDFloader"""', 'text_key': '"""text"""', 'attributes': '[]', 'embedding': 'embeddings', 'create_schema_if_missing': '(True)'}), "(client=client, index_name='PDFloader',\n text_key='text', attributes=[], embedding=embeddings,\n create_schema_if_missing=True)\n", (2467, 2599), False, 'from langchain.retrievers import WeaviateHybridSearchRetriever\n'), ((5296, 5356), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['prompt']", 'template': 'prompt_'}), "(input_variables=['prompt'], template=prompt_)\n", (5310, 5356), False, 'from langchain import PromptTemplate, LLMChain\n'), ((5381, 5435), 'langchain.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'complete_query', 'verbose': '(True)'}), '(llm=llm, prompt=complete_query, verbose=True)\n', (5389, 5435), False, 'from langchain import PromptTemplate, LLMChain\n'), ((5517, 5541), 'json.dumps', 'json.dumps', (['chain_result'], {}), '(chain_result)\n', (5527, 5541), False, 'import json\n'), ((8185, 8245), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['prompt']", 'template': 'prompt_'}), "(input_variables=['prompt'], template=prompt_)\n", (8199, 8245), False, 'from langchain import PromptTemplate, LLMChain\n'), ((8270, 8324), 'langchain.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'complete_query', 'verbose': '(True)'}), '(llm=llm, prompt=complete_query, verbose=True)\n', (8278, 8324), False, 'from langchain import PromptTemplate, LLMChain\n'), ((9693, 9733), 'langchain.prompts.ChatPromptTemplate', 'ChatPromptTemplate', ([], {'messages': 'prompt_msgs'}), '(messages=prompt_msgs)\n', (9711, 9733), False, 'from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate\n'), ((9746, 9832), 'langchain.chains.openai_functions.create_structured_output_chain', 'create_structured_output_chain', (['json_schema'], {'prompt': 'prompt_', 'llm': 'llm', 'verbose': '(True)'}), '(json_schema, prompt=prompt_, llm=llm,\n verbose=True)\n', (9776, 9832), False, 'from langchain.chains.openai_functions import create_structured_output_chain\n'), ((10024, 10049), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (10039, 10049), False, 'import os\n'), ((10347, 10387), 'langchain.LLMMathChain.from_llm', 'LLMMathChain.from_llm', (['llm'], {'verbose': '(True)'}), '(llm, verbose=True)\n', (10368, 10387), False, 'from langchain import OpenAI, LLMMathChain\n'), ((10815, 10838), 'json.dumps', 'json.dumps', (['data_format'], {}), '(data_format)\n', (10825, 10838), False, 'import json\n'), ((10885, 10980), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""personal_receipts"""', '"""2017"""', '"""de"""', '"""public_transport"""', '"""3ZCCCW.pdf"""'], {}), "(BASE_DIR, 'personal_receipts', '2017', 'de',\n 'public_transport', '3ZCCCW.pdf')\n", (10897, 10980), False, 'import os\n'), ((10982, 11077), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""personal_receipts"""', '"""2017"""', '"""de"""', '"""public_transport"""', '"""4GBEC9.pdf"""'], {}), "(BASE_DIR, 'personal_receipts', '2017', 'de',\n 'public_transport', '4GBEC9.pdf')\n", (10994, 11077), False, 'import os\n'), ((11151, 11162), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (11160, 11162), False, 'import os\n'), ((12901, 12962), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Data Processing Script"""'}), "(description='Data Processing Script')\n", (12924, 12962), False, 'import argparse\n'), ((1273, 1283), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (1277, 1283), False, 'from pathlib import Path\n'), ((4976, 5008), 'os.environ.get', 'os.environ.get', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (4990, 5008), False, 'import os\n'), ((9321, 9438), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': '"""You are a world class algorithm converting unstructured data into structured data."""'}), "(content=\n 'You are a world class algorithm converting unstructured data into structured data.'\n )\n", (9334, 9438), False, 'from langchain.schema import Document, SystemMessage, HumanMessage\n'), ((9460, 9529), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': '"""Convert unstructured data to structured data:"""'}), "(content='Convert unstructured data to structured data:')\n", (9472, 9529), False, 'from langchain.schema import Document, SystemMessage, HumanMessage\n'), ((9539, 9590), 'langchain.prompts.HumanMessagePromptTemplate.from_template', 'HumanMessagePromptTemplate.from_template', (['"""{input}"""'], {}), "('{input}')\n", (9579, 9590), False, 'from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate\n'), ((9600, 9671), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': '"""Tips: Make sure to answer in the correct format"""'}), "(content='Tips: Make sure to answer in the correct format')\n", (9612, 9671), False, 'from langchain.schema import Document, SystemMessage, HumanMessage\n'), ((2143, 2177), 'os.environ.get', 'os.environ.get', (['"""WEAVIATE_API_KEY"""'], {}), "('WEAVIATE_API_KEY')\n", (2157, 2177), False, 'import os\n'), ((4324, 4358), 'os.environ.get', 'os.environ.get', (['"""WEAVIATE_API_KEY"""'], {}), "('WEAVIATE_API_KEY')\n", (4338, 4358), False, 'import os\n'), ((8758, 8773), 'json.load', 'json.load', (['file'], {}), '(file)\n', (8767, 8773), False, 'import json\n'), ((11476, 11509), 'os.path.join', 'os.path.join', (['base_dir', '*elements'], {}), '(base_dir, *elements)\n', (11488, 11509), False, 'import os\n'), ((11746, 11790), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""ticket_schema.json"""'], {}), "(BASE_DIR, 'ticket_schema.json')\n", (11758, 11790), False, 'import os\n'), ((12241, 12343), 'dlt.pipeline', 'dlt.pipeline', ([], {'pipeline_name': '"""train_ticket"""', 'destination': '"""duckdb"""', 'dataset_name': '"""train_ticket_data"""'}), "(pipeline_name='train_ticket', destination='duckdb',\n dataset_name='train_ticket_data')\n", (12253, 12343), False, 'import dlt\n'), ((12509, 12631), 'dlt.pipeline', 'dlt.pipeline', ([], {'pipeline_name': '"""train_ticket_processed"""', 'destination': '"""duckdb"""', 'dataset_name': '"""train_ticket_processed_data"""'}), "(pipeline_name='train_ticket_processed', destination='duckdb',\n dataset_name='train_ticket_processed_data')\n", (12521, 12631), False, 'import dlt\n'), ((1483, 1527), 'deep_translator.GoogleTranslator', 'GoogleTranslator', ([], {'source': '"""auto"""', 'target': '"""en"""'}), "(source='auto', target='en')\n", (1499, 1527), False, 'from deep_translator import GoogleTranslator\n'), ((2373, 2405), 'os.environ.get', 'os.environ.get', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (2387, 2405), False, 'import os\n'), ((4554, 4586), 'os.environ.get', 'os.environ.get', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (4568, 4586), False, 'import os\n'), ((1817, 1829), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1827, 1829), False, 'import uuid\n')] |
import logging
from time import sleep
from langchain.llms import OpenAI
from scrapy import Request, Spider
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from conf import (
CONNECTION_REQUEST_LLM_PROMPT,
DEFAULT_CONNECTION_MESSAGE,
MAX_PROFILES_TO_CONNECT,
MAX_PROFILES_TO_SCRAPE,
OPENAI_API_KEY,
ROLES_KEYWORDS,
SELECTIVE_SCRAPING,
SEND_CONNECTION_REQUESTS,
)
from linkedin.integrations.linkedin_api import extract_profile_from_url
from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none
from linkedin.items import LinkedinUser
from linkedin.middlewares.selenium import SeleniumSpiderMixin
logger = logging.getLogger(__name__)
SLEEP_TIME_BETWEEN_CLICKS = 1.5
roles_keywords_lowercase = [role.lower() for role in ROLES_KEYWORDS]
def remove_non_bmp_characters(text):
return "".join(c for c in text if 0x0000 <= ord(c) <= 0xFFFF)
def remove_primary_language(text):
lines = text.split("\n")
filtered_lines = [line for line in lines if "primary language" not in line.lower()]
return "\n".join(filtered_lines)
def is_your_network_is_growing_present(driver):
got_it_button = get_by_xpath_or_none(
driver,
'//button[@aria-label="Got it"]',
wait_timeout=0.5,
)
return got_it_button is not None
def is_email_verifier_present(driver):
email_verifier = get_by_xpath_or_none(
driver,
"//label[@for='email']",
wait_timeout=0.5,
)
return email_verifier is not None
def send_connection_request(driver, message):
sleep(SLEEP_TIME_BETWEEN_CLICKS)
# Click the "Add a note" button
add_note_button = get_by_xpath_or_none(
driver,
"//button[contains(@aria-label, 'note')]",
)
click(driver, add_note_button) if add_note_button else logger.warning(
"Add note button unreachable"
)
sleep(SLEEP_TIME_BETWEEN_CLICKS)
# Write the message in the textarea
message_textarea = get_by_xpath_or_none(
driver,
"//textarea[@name='message' and @id='custom-message']",
)
message_textarea.send_keys(message[:300]) if message_textarea else logger.warning(
"Textarea unreachable"
)
sleep(SLEEP_TIME_BETWEEN_CLICKS)
# Click the "Send" button
send_button = get_by_xpath_or_none(
driver,
"//button[@aria-label='Send now']",
)
click(driver, send_button) if send_button else logger.warning(
"Send button unreachable"
)
sleep(SLEEP_TIME_BETWEEN_CLICKS)
return True
def skip_connection_request(connect_button):
return not (connect_button and SEND_CONNECTION_REQUESTS)
def contains_keywords(user_profile):
headline = user_profile["headline"].lower()
return any(role in headline for role in roles_keywords_lowercase)
def skip_profile(user_profile):
return SELECTIVE_SCRAPING and not contains_keywords(user_profile)
def generate_connection_message(llm: OpenAI, user_profile):
from langchain import PromptTemplate
prompt_template = PromptTemplate.from_template(CONNECTION_REQUEST_LLM_PROMPT)
prompt = prompt_template.format(profile=user_profile)
logger.debug(f"Generate message with prompt:\n{prompt}:")
msg = llm.predict(prompt).strip()
msg = remove_primary_language(msg).strip()
msg = remove_non_bmp_characters(msg).strip()
logger.info(f"Generated Icebreaker:\n{msg}")
return msg
def extract_connect_button(user_container):
connect_button = get_by_xpath_or_none(
user_container,
".//button[contains(@aria-label, 'connect')]/span",
wait_timeout=5,
)
return (
connect_button if connect_button else logger.debug("Connect button not found")
)
def increment_index_at_end_url(response):
# incrementing the index at the end of the url
url = response.request.url
next_url_split = url.split("=")
index = int(next_url_split[-1])
next_url = "=".join(next_url_split[:-1]) + "=" + str(index + 1)
return index, next_url
def extract_user_url(user_container):
# Use this XPath to select the <a> element
link_elem = get_by_xpath_or_none(
user_container,
".//a[contains(@class, 'app-aware-link') and contains(@href, '/in/')]",
)
if not link_elem:
logger.warning("Can't extract user URL")
return None
user_url = link_elem.get_attribute("href")
logger.debug(f"Extracted user URL: {user_url}")
return user_url
def click(driver, element):
driver.execute_script("arguments[0].scrollIntoView();", element)
driver.execute_script("arguments[0].click();", element)
def press_exit(driver):
webdriver.ActionChains(driver).send_keys(Keys.ESCAPE).perform()
class SearchSpider(Spider, SeleniumSpiderMixin):
"""
Abstract class for generic search on linkedin.
"""
allowed_domains = ("linkedin.com",)
def __init__(self, start_url, driver=None, name=None, *args, **kwargs):
super().__init__(name=name, *args, **kwargs)
self.start_url = start_url
self.driver = driver or build_driver()
self.user_profile = None
self.profile_counter = 0
self.connections_sent_counter = 0
self.llm = (
OpenAI(
max_tokens=90,
model_name="text-davinci-003",
openai_api_key=OPENAI_API_KEY,
)
if SEND_CONNECTION_REQUESTS
else None
)
def wait_page_completion(self, driver):
"""
Abstract function, used to customize how the specific spider must wait for a search page completion.
"""
get_by_xpath_or_none(driver, "//*[@id='global-nav']/div", wait_timeout=5)
def parse_search_list(self, response):
continue_scrape = True
driver = self.get_driver_from_response(response)
if self.check_if_no_results_found(driver):
logger.warning("No results found. Stopping crawl.")
return
for user_container in self.iterate_containers(driver):
if is_your_network_is_growing_present(driver):
press_exit(driver)
user_profile_url = extract_user_url(user_container)
if user_profile_url is None:
continue
logger.debug(f"Found user URL:{user_profile_url}")
self.user_profile = extract_profile_from_url(
user_profile_url, driver.get_cookies()
)
if self.should_stop(response):
continue_scrape = False
break
connect_button = extract_connect_button(user_container)
if skip_profile(self.user_profile):
logger.info(f"Skipped profile: {user_profile_url}")
else:
message = (
generate_connection_message(self.llm, self.user_profile)
if OPENAI_API_KEY
else DEFAULT_CONNECTION_MESSAGE
)
self.user_profile["connection_msg"] = (
message if OPENAI_API_KEY else None
)
if skip_connection_request(connect_button):
logger.info(f"Skipped connection request: {user_profile_url}")
else:
click(driver, connect_button)
if is_email_verifier_present(driver):
press_exit(driver)
else:
conn_sent = send_connection_request(driver, message=message)
logger.info(
f"Connection request sent to {user_profile_url}\n{message}"
) if conn_sent else None
self.connections_sent_counter += 1
yield LinkedinUser(linkedinUrl=user_profile_url, **self.user_profile)
self.profile_counter += 1
if continue_scrape:
next_url = self.get_next_url(response)
yield self.create_next_request(next_url, response)
def get_driver_from_response(self, response):
return response.meta.pop("driver")
def check_if_no_results_found(self, driver):
no_result_found_xpath = (
"//div[contains(@class, 'search-reusable-search-no-results')]"
)
return (
get_by_xpath_or_none(
driver=driver, xpath=no_result_found_xpath, wait_timeout=3
)
is not None
)
def get_next_url(self, response):
index, next_url = increment_index_at_end_url(response)
return next_url
def create_next_request(self, next_url, response):
return Request(
url=next_url,
priority=-1,
callback=self.parse_search_list,
meta=response.meta,
)
def iterate_containers(self, driver):
for i in range(1, 11):
container_xpath = f"//li[contains(@class, 'result-container')][{i}]"
container_elem = get_by_xpath_or_none(
driver, container_xpath, wait_timeout=2
)
if container_elem:
logger.debug(f"Loading {i}th user")
driver.execute_script("arguments[0].scrollIntoView();", container_elem)
self.sleep()
yield container_elem
def should_stop(self, response):
max_num_profiles = self.profile_counter >= MAX_PROFILES_TO_SCRAPE
if max_num_profiles:
logger.info(
"Stopping Reached maximum number of profiles to scrape. Stopping crawl."
)
max_num_connections = self.connections_sent_counter >= MAX_PROFILES_TO_CONNECT
if max_num_connections:
logger.info(
"Stopping Reached maximum number of profiles to connect. Stopping crawl."
)
return max_num_profiles
| [
"langchain.PromptTemplate.from_template",
"langchain.llms.OpenAI"
] | [((689, 716), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (706, 716), False, 'import logging\n'), ((1186, 1271), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', '"""//button[@aria-label="Got it"]"""'], {'wait_timeout': '(0.5)'}), '(driver, \'//button[@aria-label="Got it"]\', wait_timeout=0.5\n )\n', (1206, 1271), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((1397, 1468), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', '"""//label[@for=\'email\']"""'], {'wait_timeout': '(0.5)'}), '(driver, "//label[@for=\'email\']", wait_timeout=0.5)\n', (1417, 1468), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((1590, 1622), 'time.sleep', 'sleep', (['SLEEP_TIME_BETWEEN_CLICKS'], {}), '(SLEEP_TIME_BETWEEN_CLICKS)\n', (1595, 1622), False, 'from time import sleep\n'), ((1682, 1753), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', '"""//button[contains(@aria-label, \'note\')]"""'], {}), '(driver, "//button[contains(@aria-label, \'note\')]")\n', (1702, 1753), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((1900, 1932), 'time.sleep', 'sleep', (['SLEEP_TIME_BETWEEN_CLICKS'], {}), '(SLEEP_TIME_BETWEEN_CLICKS)\n', (1905, 1932), False, 'from time import sleep\n'), ((1997, 2085), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', '"""//textarea[@name=\'message\' and @id=\'custom-message\']"""'], {}), '(driver,\n "//textarea[@name=\'message\' and @id=\'custom-message\']")\n', (2017, 2085), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((2233, 2265), 'time.sleep', 'sleep', (['SLEEP_TIME_BETWEEN_CLICKS'], {}), '(SLEEP_TIME_BETWEEN_CLICKS)\n', (2238, 2265), False, 'from time import sleep\n'), ((2315, 2379), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', '"""//button[@aria-label=\'Send now\']"""'], {}), '(driver, "//button[@aria-label=\'Send now\']")\n', (2335, 2379), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((2514, 2546), 'time.sleep', 'sleep', (['SLEEP_TIME_BETWEEN_CLICKS'], {}), '(SLEEP_TIME_BETWEEN_CLICKS)\n', (2519, 2546), False, 'from time import sleep\n'), ((3058, 3117), 'langchain.PromptTemplate.from_template', 'PromptTemplate.from_template', (['CONNECTION_REQUEST_LLM_PROMPT'], {}), '(CONNECTION_REQUEST_LLM_PROMPT)\n', (3086, 3117), False, 'from langchain import PromptTemplate\n'), ((3504, 3612), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['user_container', '""".//button[contains(@aria-label, \'connect\')]/span"""'], {'wait_timeout': '(5)'}), '(user_container,\n ".//button[contains(@aria-label, \'connect\')]/span", wait_timeout=5)\n', (3524, 3612), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((4142, 4254), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['user_container', '""".//a[contains(@class, \'app-aware-link\') and contains(@href, \'/in/\')]"""'], {}), '(user_container,\n ".//a[contains(@class, \'app-aware-link\') and contains(@href, \'/in/\')]")\n', (4162, 4254), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((5656, 5729), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', '"""//*[@id=\'global-nav\']/div"""'], {'wait_timeout': '(5)'}), '(driver, "//*[@id=\'global-nav\']/div", wait_timeout=5)\n', (5676, 5729), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((8691, 8783), 'scrapy.Request', 'Request', ([], {'url': 'next_url', 'priority': '(-1)', 'callback': 'self.parse_search_list', 'meta': 'response.meta'}), '(url=next_url, priority=-1, callback=self.parse_search_list, meta=\n response.meta)\n', (8698, 8783), False, 'from scrapy import Request, Spider\n'), ((5095, 5109), 'linkedin.integrations.selenium.build_driver', 'build_driver', ([], {}), '()\n', (5107, 5109), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((5251, 5339), 'langchain.llms.OpenAI', 'OpenAI', ([], {'max_tokens': '(90)', 'model_name': '"""text-davinci-003"""', 'openai_api_key': 'OPENAI_API_KEY'}), "(max_tokens=90, model_name='text-davinci-003', openai_api_key=\n OPENAI_API_KEY)\n", (5257, 5339), False, 'from langchain.llms import OpenAI\n'), ((8349, 8434), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', ([], {'driver': 'driver', 'xpath': 'no_result_found_xpath', 'wait_timeout': '(3)'}), '(driver=driver, xpath=no_result_found_xpath, wait_timeout=3\n )\n', (8369, 8434), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((9022, 9083), 'linkedin.integrations.selenium.get_by_xpath_or_none', 'get_by_xpath_or_none', (['driver', 'container_xpath'], {'wait_timeout': '(2)'}), '(driver, container_xpath, wait_timeout=2)\n', (9042, 9083), False, 'from linkedin.integrations.selenium import build_driver, get_by_xpath_or_none\n'), ((4675, 4705), 'selenium.webdriver.ActionChains', 'webdriver.ActionChains', (['driver'], {}), '(driver)\n', (4697, 4705), False, 'from selenium import webdriver\n'), ((7808, 7871), 'linkedin.items.LinkedinUser', 'LinkedinUser', ([], {'linkedinUrl': 'user_profile_url'}), '(linkedinUrl=user_profile_url, **self.user_profile)\n', (7820, 7871), False, 'from linkedin.items import LinkedinUser\n')] |
import streamlit as st
import os
from azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
from PyPDF2 import PdfReader
# Import
#import textwrap
import openai
from langchain.llms import AzureOpenAI, OpenAI
from langchain.embeddings import OpenAIEmbeddings
from llama_index.vector_stores import RedisVectorStore
from llama_index import LangchainEmbedding
from llama_index import (
GPTVectorStoreIndex,
SimpleDirectoryReader,
LLMPredictor,
PromptHelper,
ServiceContext,
StorageContext
)
import sys
import logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO) # logging.DEBUG for more verbose output
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
REDIS_HOST = os.getenv("REDIS_HOST", "localhost")
REDIS_PORT = os.getenv("REDIS_PORT", "6379")
REDIS_PASSWORD = os.getenv("REDIS_PASSWORD", "")
OPENAI_API_TYPE = os.getenv("OPENAI_API_TYPE", "")
OPENAI_COMPLETIONS_ENGINE = os.getenv("OPENAI_COMPLETIONS_ENGINE", "text-davinci-003")
OPENAI_EMBEDDINGS_ENGINE = os.getenv("OPENAI_EMBEDDINGS_ENGINE", "text-embedding-ada-002")
STORAGE_CONNECTION_STRING=os.getenv("STORAGE_CONNECTION_STRING", "")
CONTAINER_NAME=os.getenv("CONTAINER_NAME", "data")
def get_embeddings():
if OPENAI_API_TYPE=="azure":
#currently Azure OpenAI embeddings require request for service limit increase to be useful
#using build-in HuggingFace instead
#from langchain.embeddings import HuggingFaceEmbeddings
#embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(deployment=OPENAI_EMBEDDINGS_ENGINE, chunk_size=1 )
else:
from langchain.embeddings import OpenAIEmbeddings
# Init OpenAI Embeddings
embeddings = OpenAIEmbeddings()
return embeddings
def get_llm():
if OPENAI_API_TYPE=="azure":
openai.api_type = "azure"
openai.api_base = os.getenv("OPENAI_API_BASE")
openai.api_version = os.getenv("OPENAI_API_VERSION")
openai.api_key = os.getenv("OPENAI_API_KEY")
text_model_deployment = OPENAI_COMPLETIONS_ENGINE
from langchain.llms import AzureOpenAI
llm = AzureOpenAI(deployment_name=text_model_deployment, model_kwargs={
"api_key": openai.api_key,
"api_base": openai.api_base,
"api_type": openai.api_type,
"api_version": openai.api_version,
})
#llm_predictor = LLMPredictor(llm=llm)
else:
from langchain.llms import OpenAI
llm=OpenAI()
return llm
@st.cache_resource
def get_query_engine():
blob_service_client = BlobServiceClient.from_connection_string(STORAGE_CONNECTION_STRING)
container_client = blob_service_client.get_container_client(container=CONTAINER_NAME)
download_file_path = "/tmp/docs"
isExist = os.path.exists(download_file_path)
if not isExist:
os.makedirs(download_file_path)
# List the blobs in the container
blob_list = container_client.list_blobs()
for blob in blob_list:
print("\t" + blob.name)
if not os.path.exists( download_file_path+ "/" + blob.name):
print("\nDownloading blob to \n\t" + download_file_path+ "/" + blob.name)
with open(file=download_file_path + "/" + blob.name, mode="wb") as download_file:
download_file.write(container_client.download_blob(blob.name).readall())
else:
print("\nSkipping \n\t" + download_file_path+ "/" + blob.name)
# load documents
documents = SimpleDirectoryReader(download_file_path).load_data()
print('Document ID:', documents[0].doc_id)
from llama_index.storage.storage_context import StorageContext
vector_store = RedisVectorStore(
index_name="chevy_docs",
index_prefix="llama",
redis_url="rediss://default:{}@{}:{}".format(REDIS_PASSWORD,REDIS_HOST,REDIS_PORT),
overwrite=True
)
llm_predictor = LLMPredictor(llm=get_llm())
llm_embedding = LangchainEmbedding(get_embeddings())
service_context = ServiceContext.from_defaults(
llm_predictor=llm_predictor,
embed_model=llm_embedding,
)
storage_context = StorageContext.from_defaults(
vector_store=vector_store
)
index = GPTVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
service_context=service_context
)
return index.as_query_engine()
file = open("assets/app-info.md", "r")
st.markdown(file.read())
query_engine = get_query_engine()
user_query = st.text_input("Query:", 'What types of variants are available for the Chevrolet Colorado?')
try:
response = query_engine.query(user_query)
except Exception as e:
response = "Error: %s" % str(e)
st.markdown(str(response))
#print(str(response)) | [
"langchain.llms.OpenAI",
"langchain.llms.AzureOpenAI",
"langchain.embeddings.OpenAIEmbeddings"
] | [((558, 616), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'level': 'logging.INFO'}), '(stream=sys.stdout, level=logging.INFO)\n', (577, 616), False, 'import logging\n'), ((744, 780), 'os.getenv', 'os.getenv', (['"""REDIS_HOST"""', '"""localhost"""'], {}), "('REDIS_HOST', 'localhost')\n", (753, 780), False, 'import os\n'), ((794, 825), 'os.getenv', 'os.getenv', (['"""REDIS_PORT"""', '"""6379"""'], {}), "('REDIS_PORT', '6379')\n", (803, 825), False, 'import os\n'), ((843, 874), 'os.getenv', 'os.getenv', (['"""REDIS_PASSWORD"""', '""""""'], {}), "('REDIS_PASSWORD', '')\n", (852, 874), False, 'import os\n'), ((894, 926), 'os.getenv', 'os.getenv', (['"""OPENAI_API_TYPE"""', '""""""'], {}), "('OPENAI_API_TYPE', '')\n", (903, 926), False, 'import os\n'), ((955, 1013), 'os.getenv', 'os.getenv', (['"""OPENAI_COMPLETIONS_ENGINE"""', '"""text-davinci-003"""'], {}), "('OPENAI_COMPLETIONS_ENGINE', 'text-davinci-003')\n", (964, 1013), False, 'import os\n'), ((1041, 1104), 'os.getenv', 'os.getenv', (['"""OPENAI_EMBEDDINGS_ENGINE"""', '"""text-embedding-ada-002"""'], {}), "('OPENAI_EMBEDDINGS_ENGINE', 'text-embedding-ada-002')\n", (1050, 1104), False, 'import os\n'), ((1133, 1175), 'os.getenv', 'os.getenv', (['"""STORAGE_CONNECTION_STRING"""', '""""""'], {}), "('STORAGE_CONNECTION_STRING', '')\n", (1142, 1175), False, 'import os\n'), ((1191, 1226), 'os.getenv', 'os.getenv', (['"""CONTAINER_NAME"""', '"""data"""'], {}), "('CONTAINER_NAME', 'data')\n", (1200, 1226), False, 'import os\n'), ((4640, 4735), 'streamlit.text_input', 'st.text_input', (['"""Query:"""', '"""What types of variants are available for the Chevrolet Colorado?"""'], {}), "('Query:',\n 'What types of variants are available for the Chevrolet Colorado?')\n", (4653, 4735), True, 'import streamlit as st\n'), ((688, 728), 'logging.StreamHandler', 'logging.StreamHandler', ([], {'stream': 'sys.stdout'}), '(stream=sys.stdout)\n', (709, 728), False, 'import logging\n'), ((2701, 2768), 'azure.storage.blob.BlobServiceClient.from_connection_string', 'BlobServiceClient.from_connection_string', (['STORAGE_CONNECTION_STRING'], {}), '(STORAGE_CONNECTION_STRING)\n', (2741, 2768), False, 'from azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient\n'), ((2910, 2944), 'os.path.exists', 'os.path.exists', (['download_file_path'], {}), '(download_file_path)\n', (2924, 2944), False, 'import os\n'), ((4135, 4224), 'llama_index.ServiceContext.from_defaults', 'ServiceContext.from_defaults', ([], {'llm_predictor': 'llm_predictor', 'embed_model': 'llm_embedding'}), '(llm_predictor=llm_predictor, embed_model=\n llm_embedding)\n', (4163, 4224), False, 'from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext, StorageContext\n'), ((4265, 4320), 'llama_index.storage.storage_context.StorageContext.from_defaults', 'StorageContext.from_defaults', ([], {'vector_store': 'vector_store'}), '(vector_store=vector_store)\n', (4293, 4320), False, 'from llama_index.storage.storage_context import StorageContext\n'), ((4347, 4463), 'llama_index.GPTVectorStoreIndex.from_documents', 'GPTVectorStoreIndex.from_documents', (['documents'], {'storage_context': 'storage_context', 'service_context': 'service_context'}), '(documents, storage_context=\n storage_context, service_context=service_context)\n', (4381, 4463), False, 'from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext, StorageContext\n'), ((657, 676), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (674, 676), False, 'import logging\n'), ((1645, 1712), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'deployment': 'OPENAI_EMBEDDINGS_ENGINE', 'chunk_size': '(1)'}), '(deployment=OPENAI_EMBEDDINGS_ENGINE, chunk_size=1)\n', (1661, 1712), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((1836, 1854), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (1852, 1854), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((1987, 2015), 'os.getenv', 'os.getenv', (['"""OPENAI_API_BASE"""'], {}), "('OPENAI_API_BASE')\n", (1996, 2015), False, 'import os\n'), ((2045, 2076), 'os.getenv', 'os.getenv', (['"""OPENAI_API_VERSION"""'], {}), "('OPENAI_API_VERSION')\n", (2054, 2076), False, 'import os\n'), ((2102, 2129), 'os.getenv', 'os.getenv', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (2111, 2129), False, 'import os\n'), ((2249, 2443), 'langchain.llms.AzureOpenAI', 'AzureOpenAI', ([], {'deployment_name': 'text_model_deployment', 'model_kwargs': "{'api_key': openai.api_key, 'api_base': openai.api_base, 'api_type': openai\n .api_type, 'api_version': openai.api_version}"}), "(deployment_name=text_model_deployment, model_kwargs={'api_key':\n openai.api_key, 'api_base': openai.api_base, 'api_type': openai.\n api_type, 'api_version': openai.api_version})\n", (2260, 2443), False, 'from langchain.llms import AzureOpenAI\n'), ((2605, 2613), 'langchain.llms.OpenAI', 'OpenAI', ([], {}), '()\n', (2611, 2613), False, 'from langchain.llms import OpenAI\n'), ((2973, 3004), 'os.makedirs', 'os.makedirs', (['download_file_path'], {}), '(download_file_path)\n', (2984, 3004), False, 'import os\n'), ((3164, 3216), 'os.path.exists', 'os.path.exists', (["(download_file_path + '/' + blob.name)"], {}), "(download_file_path + '/' + blob.name)\n", (3178, 3216), False, 'import os\n'), ((3615, 3656), 'llama_index.SimpleDirectoryReader', 'SimpleDirectoryReader', (['download_file_path'], {}), '(download_file_path)\n', (3636, 3656), False, 'from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext, StorageContext\n')] |
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from whenx.models.team import Team
from whenx.models.scout import Scout
from whenx.models.sentinel import Sentinel
from whenx.models.soldier import Soldier
import re
from whenx.database import db
class Captain:
def __init__(self, mission: str):
self.mission = mission
def run(self, team):
prompts = self.generate_prompts()
team = self.create_team(prompts, team)
return team
def initialize_team(self, prompts, team):
db.add(team)
db.commit()
scout = Scout(instruction=prompts["scout"], teamId=team.id)
sentinel = Sentinel(instruction=prompts["sentinel"], teamId=team.id)
soldier = Soldier(instruction=prompts["soldier"], teamId=team.id)
db.add(scout)
db.add(sentinel)
db.add(soldier)
db.commit()
return team
def generate_prompts(self):
system = """You are the captain of a team of scouts, sentinels, and soldiers.
You generate instructions for your team to follow based on a mission.
Scouts are responsible for gathering information from the internet.
Sentinels are responsible for monitoring the observations of scouts for changes.
Soldiers are responsible for writing reports.
Instruction examples:
Mission: When apple relseases a new product.
Scout: What is the new apple product? return the answer.
Sentinel: Was a new product released? Reply with (Yes/No) and the name of the product.
Soldier: Write a report about it.
"""
prompt = f"""
Complete the instructions for the scouts, sentinels, and soldiers. One per line.
Mission:{self.mission}
"""
model = ChatOpenAI(model="gpt-4", temperature=0)
messages = [
SystemMessage(
content=system
),
HumanMessage(content=prompt),
]
response = model(messages)
response = self.parse_response(response.content)
return response
def parse_response(self, response):
lines = re.split(r'\n+', response.strip())
# Extract the relevant information from the lines
prompts = {}
prompts["scout"] = lines[0].split(": ")[1]
prompts["sentinel"] = lines[1].split(": ")[1]
prompts["soldier"] = lines[2].split(": ")[1]
return prompts
| [
"langchain.schema.SystemMessage",
"langchain.schema.HumanMessage",
"langchain.chat_models.ChatOpenAI"
] | [((575, 587), 'whenx.database.db.add', 'db.add', (['team'], {}), '(team)\n', (581, 587), False, 'from whenx.database import db\n'), ((596, 607), 'whenx.database.db.commit', 'db.commit', ([], {}), '()\n', (605, 607), False, 'from whenx.database import db\n'), ((624, 675), 'whenx.models.scout.Scout', 'Scout', ([], {'instruction': "prompts['scout']", 'teamId': 'team.id'}), "(instruction=prompts['scout'], teamId=team.id)\n", (629, 675), False, 'from whenx.models.scout import Scout\n'), ((695, 752), 'whenx.models.sentinel.Sentinel', 'Sentinel', ([], {'instruction': "prompts['sentinel']", 'teamId': 'team.id'}), "(instruction=prompts['sentinel'], teamId=team.id)\n", (703, 752), False, 'from whenx.models.sentinel import Sentinel\n'), ((771, 826), 'whenx.models.soldier.Soldier', 'Soldier', ([], {'instruction': "prompts['soldier']", 'teamId': 'team.id'}), "(instruction=prompts['soldier'], teamId=team.id)\n", (778, 826), False, 'from whenx.models.soldier import Soldier\n'), ((835, 848), 'whenx.database.db.add', 'db.add', (['scout'], {}), '(scout)\n', (841, 848), False, 'from whenx.database import db\n'), ((857, 873), 'whenx.database.db.add', 'db.add', (['sentinel'], {}), '(sentinel)\n', (863, 873), False, 'from whenx.database import db\n'), ((882, 897), 'whenx.database.db.add', 'db.add', (['soldier'], {}), '(soldier)\n', (888, 897), False, 'from whenx.database import db\n'), ((906, 917), 'whenx.database.db.commit', 'db.commit', ([], {}), '()\n', (915, 917), False, 'from whenx.database import db\n'), ((1719, 1759), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model': '"""gpt-4"""', 'temperature': '(0)'}), "(model='gpt-4', temperature=0)\n", (1729, 1759), False, 'from langchain.chat_models import ChatOpenAI\n'), ((1793, 1822), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': 'system'}), '(content=system)\n', (1806, 1822), False, 'from langchain.schema import HumanMessage, SystemMessage\n'), ((1866, 1894), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': 'prompt'}), '(content=prompt)\n', (1878, 1894), False, 'from langchain.schema import HumanMessage, SystemMessage\n')] |
import json
import re
from langchain.chains import RetrievalQA
from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
def section_schemas(heading, keyword, format_instructions, retriever, prompt):
chat = ChatOpenAI(
temperature=0,
model_name='gpt-3.5-turbo-16k-0613'
)
llm = LLMChain(llm=chat,
prompt=prompt)
if "Introduction" in heading:
return 'none'
elif "introduction" in heading:
return 'none'
try:
with Timeout(60):
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever)
print("<----- closest")
print(qa.run(heading))
closest = qa.run(heading)
print("<----- closest end")
except Timeout.Timeout:
print("<---- excepting out of qa")
return "nothing"
if len(closest)<350:
return 'none'
temp = """
Don't repeat anything you've already said. Output in html format with subheadings.
Do not write anything about Artificial Intelligence. If anything is about artificial intelligence remove it.
Make sure to write as a blog writer NOT as the manufacturer. Don't start the intro with 'Yes'.
Remember to have the closing quotation marks and closing curly bracket for the JSON.
Remember - DO NOT add any titles, subtitles or intro before the blog section.
Only add in subheadings (h3) where applicable to break up the text. Only add h3 heading every 150 to 250 words.
Put the subheadings in html 'h3' tags and the content in 'p' tags.
Use ordered and unordered lists where applicable.
Write 8, 60 word paragraphs for my blog section with subheadings for my article about "{keyword}".
Use the context below to create the blog section.
There should be at least 6-9 paragraph 60 word paragraphs.
Use this context (real article summaries) to create the intro.
Context: {context}
Format the output as JSON with the following keys:
blog_section
{format_instructions}
Final Checks:
Don't repeat anything you've already said.
Are there 1 or 2 subheadings? If not, add them.
Do not say 'Sure!'
Are any of the paragraphs longer than 80 words? If so, break them up into smaller paragraphs.
Is the entire thing under 350 words? If so, lengthen it.
Is there a closing quotation mark for the JSON content? If not, add one.
Make sure to include the opening and closing brackets of the JSON.
Section:
"""
messages = temp.format(
format_instructions=format_instructions,
keyword=keyword,
heading=heading,
context=closest,
)
output_dict = llm.run(input=messages)
print("<-- output dict start for "+heading)
print(output_dict)
print(heading+r"\n\n" in output_dict)
print("<-- output dict end")
output_dict = output_dict.replace("\\'","'")
output_dict = output_dict.replace('\\"',"'")
output_dict = remove_extra_heading(output_dict, heading)
result = re.findall(r'{([^{]*?)}', str(output_dict))
if len(result)>0:
try:
t_res = result[0].strip().replace('“',"'")
t_res = t_res.replace('"',"'")
nth=find_nth(t_res, "'",3)
nth_text = t_res[nth+1:]
res_2 = add_json_characters(nth_text)
except:
print("res2 second")
pass
else:
stripped_output = output_dict.replace("{","")
stripped_output = stripped_output.strip()
if stripped_output.startswith('"blog_section":'):
t_res = stripped_output.replace('"',"'")
t_res = t_res.replace('“',"'")
nth=find_nth(t_res, "'",3)
nth_text = t_res[nth+1:]
res_2 = add_json_characters(nth_text)
else:
test_res = '{"blog_section": "'+stripped_output.replace('"',"'")
period_index = test_res.rfind(".") + 1
res_2 = test_res[:period_index]+'</p>"}'
if "I apologize" not in str(res_2):
print("is not in string")
try:
new_response = json.loads(str(res_2), strict=False)
new_response = new_response['blog_section']
except:
new_response = res_2
else:
new_response = res_2
print("<---section start")
print("section for "+heading)
print(new_response)
print("<---section end")
return new_response | [
"langchain.chains.RetrievalQA.from_chain_type",
"langchain.LLMChain",
"langchain.chat_models.ChatOpenAI"
] | [((325, 387), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0)', 'model_name': '"""gpt-3.5-turbo-16k-0613"""'}), "(temperature=0, model_name='gpt-3.5-turbo-16k-0613')\n", (335, 387), False, 'from langchain.chat_models import ChatOpenAI\n'), ((433, 466), 'langchain.LLMChain', 'LLMChain', ([], {'llm': 'chat', 'prompt': 'prompt'}), '(llm=chat, prompt=prompt)\n', (441, 466), False, 'from langchain import LLMChain\n'), ((3113, 3155), 'utils.functions.remove_extra_heading', 'remove_extra_heading', (['output_dict', 'heading'], {}), '(output_dict, heading)\n', (3133, 3155), False, 'from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout\n'), ((618, 629), 'utils.functions.Timeout', 'Timeout', (['(60)'], {}), '(60)\n', (625, 629), False, 'from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout\n'), ((648, 726), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'chat', 'chain_type': '"""stuff"""', 'retriever': 'retriever'}), "(llm=chat, chain_type='stuff', retriever=retriever)\n", (675, 726), False, 'from langchain.chains import RetrievalQA\n'), ((3363, 3386), 'utils.functions.find_nth', 'find_nth', (['t_res', '"""\'"""', '(3)'], {}), '(t_res, "\'", 3)\n', (3371, 3386), False, 'from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout\n'), ((3443, 3472), 'utils.functions.add_json_characters', 'add_json_characters', (['nth_text'], {}), '(nth_text)\n', (3462, 3472), False, 'from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout\n'), ((3825, 3848), 'utils.functions.find_nth', 'find_nth', (['t_res', '"""\'"""', '(3)'], {}), '(t_res, "\'", 3)\n', (3833, 3848), False, 'from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout\n'), ((3905, 3934), 'utils.functions.add_json_characters', 'add_json_characters', (['nth_text'], {}), '(nth_text)\n', (3924, 3934), False, 'from utils.functions import find_nth, remove_extra_heading, add_json_characters, Timeout\n')] |
"""Experiment with different models."""
from __future__ import annotations
from typing import List, Optional, Sequence
from langchain_core.language_models.llms import BaseLLM
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.utils.input import get_color_mapping, print_text
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
class ModelLaboratory:
"""Experiment with different models."""
def __init__(self, chains: Sequence[Chain], names: Optional[List[str]] = None):
"""Initialize with chains to experiment with.
Args:
chains: list of chains to experiment with.
"""
for chain in chains:
if not isinstance(chain, Chain):
raise ValueError(
"ModelLaboratory should now be initialized with Chains. "
"If you want to initialize with LLMs, use the `from_llms` method "
"instead (`ModelLaboratory.from_llms(...)`)"
)
if len(chain.input_keys) != 1:
raise ValueError(
"Currently only support chains with one input variable, "
f"got {chain.input_keys}"
)
if len(chain.output_keys) != 1:
raise ValueError(
"Currently only support chains with one output variable, "
f"got {chain.output_keys}"
)
if names is not None:
if len(names) != len(chains):
raise ValueError("Length of chains does not match length of names.")
self.chains = chains
chain_range = [str(i) for i in range(len(self.chains))]
self.chain_colors = get_color_mapping(chain_range)
self.names = names
@classmethod
def from_llms(
cls, llms: List[BaseLLM], prompt: Optional[PromptTemplate] = None
) -> ModelLaboratory:
"""Initialize with LLMs to experiment with and optional prompt.
Args:
llms: list of LLMs to experiment with
prompt: Optional prompt to use to prompt the LLMs. Defaults to None.
If a prompt was provided, it should only have one input variable.
"""
if prompt is None:
prompt = PromptTemplate(input_variables=["_input"], template="{_input}")
chains = [LLMChain(llm=llm, prompt=prompt) for llm in llms]
names = [str(llm) for llm in llms]
return cls(chains, names=names)
def compare(self, text: str) -> None:
"""Compare model outputs on an input text.
If a prompt was provided with starting the laboratory, then this text will be
fed into the prompt. If no prompt was provided, then the input text is the
entire prompt.
Args:
text: input text to run all models on.
"""
print(f"\033[1mInput:\033[0m\n{text}\n") # noqa: T201
for i, chain in enumerate(self.chains):
if self.names is not None:
name = self.names[i]
else:
name = str(chain)
print_text(name, end="\n")
output = chain.run(text)
print_text(output, color=self.chain_colors[str(i)], end="\n\n")
| [
"langchain.chains.llm.LLMChain",
"langchain_core.utils.input.get_color_mapping",
"langchain_core.prompts.prompt.PromptTemplate",
"langchain_core.utils.input.print_text"
] | [((1752, 1782), 'langchain_core.utils.input.get_color_mapping', 'get_color_mapping', (['chain_range'], {}), '(chain_range)\n', (1769, 1782), False, 'from langchain_core.utils.input import get_color_mapping, print_text\n'), ((2307, 2370), 'langchain_core.prompts.prompt.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['_input']", 'template': '"""{_input}"""'}), "(input_variables=['_input'], template='{_input}')\n", (2321, 2370), False, 'from langchain_core.prompts.prompt import PromptTemplate\n'), ((2389, 2421), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (2397, 2421), False, 'from langchain.chains.llm import LLMChain\n'), ((3138, 3164), 'langchain_core.utils.input.print_text', 'print_text', (['name'], {'end': '"""\n"""'}), "(name, end='\\n')\n", (3148, 3164), False, 'from langchain_core.utils.input import get_color_mapping, print_text\n')] |
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. 2023
# SPDX-License-Identifier: Apache-2.0
from typing import Any, Dict, List, Optional
from langchain.agents import tool
from langchain.chains.base import Chain
from langchain.chains import LLMChain
from langchain import PromptTemplate
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
import chainlit as cl
from chainlit.context import context
from chainlit import run_sync
from tabulate import tabulate
from ..llm import get_bedrock_text, get_processed_prompt_template
from .graph import GraphChain
def get_tool_metadata():
return {
"name": "3dview",
"description": "Useful to teleport in 3D viewer to the equipment the user is interested in. \
Input to this tool should be the entityId of the equipment. \
Output is a string to confirm whether the view is found or not.",
}
@tool
def run(input: str) -> str:
"""Identify the location of the object user is asking about."""
point_camera_to_entity(input)
return 'Found it!'
def point_camera_to_entity(entityId):
run_sync(context.session.emit('view', entityId))
ENTITY_EXTRACTION_PROMPT = """
Your job is to identify the entity user is asking about based on the user question.
Use the following format:
Question: the input question from the user
Entity: the phrase about the entity in the original question
Only output the entity phrase, do not repeat the question.
Here are some examples:
Question: teleport me to the cookie line in alarm state
Entity: the cookie line in alarm state
Question: show me the freezer tunnel
Entity: the freezer tunnel
Question: show me the conveyer belt
Entity: the conveyer belt
Now begin!
Question: {question}
Entity:
"""
class EntityExtractorChain(Chain):
"""Chain to find the entity in the question."""
llm_chain: LLMChain
@property
def input_keys(self) -> List[str]:
return ['question']
@property
def output_keys(self) -> List[str]:
return ['entity']
@classmethod
def create(cls, **kwargs):
llm = get_bedrock_text()
prompt = PromptTemplate(
template=get_processed_prompt_template(ENTITY_EXTRACTION_PROMPT),
input_variables=["question"],
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
**kwargs)
return cls(llm_chain=llm_chain)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
output = self.llm_chain.run(callbacks=callbacks, **inputs)
return {
'entity': output
}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
output = await self.llm_chain.arun(callbacks=callbacks, **inputs)
return {
'entity': output
}
class ViewChain(Chain):
"""Chain that manipulates 3D viewer."""
entity_extractor: EntityExtractorChain
entity_lookup: GraphChain
@property
def input_keys(self) -> List[str]:
return ['question']
@property
def output_keys(self) -> List[str]:
return ['text', 'selected_entity']
@classmethod
def create(cls, **kwargs):
entity_extractor = EntityExtractorChain.create(**kwargs)
entity_lookup = GraphChain.create(**kwargs)
return cls(entity_extractor=entity_extractor, entity_lookup=entity_lookup, **kwargs)
def pick_entity(self, entities):
if entities.shape[0] > 1:
headers = ['No', 'Name', 'Id']
rows = [[i + 1, row.entityName, row.entityId] for i, row in entities.items()]
entity_table = tabulate(rows, headers=headers, tablefmt="pipe")
run_sync(cl.Message(content="I've found these matching entities:\n\n" + entity_table).send())
res = run_sync(cl.AskUserMessage(content="Which one do you mean?").send())
if res is not None:
# TODO: use a LLMChain to parse the user input
idx = int(res['content']) - 1
entityId = entities.iloc[idx].entityId
else:
entityId = None
else:
entityId = entities.iloc[0].entityId
return entityId
async def apick_entity(self, entities):
if entities.shape[0] > 1:
headers = ['No', 'Name', 'Id']
rows = [[i + 1, row.entityName, row.entityId] for i, row in entities.items()]
entity_table = tabulate(rows, headers=headers, tablefmt="pipe")
await cl.Message(content="I've found these matching entities:\n\n" + entity_table).send()
res = await cl.AskUserMessage(content="Which one do you mean?").send()
if res is not None:
# TODO: use a LLMChain to parse the user input
idx = int(res['content']) - 1
entityId = entities.iloc[idx].entityId
else:
entityId = None
else:
entityId = entities.iloc[0].entityId
return entityId
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
entity = self.entity_extractor.run(callbacks=callbacks, **inputs)
df = self.entity_lookup.run(
callbacks,
{
"question": "Find all entities matching the description: " + entity,
"format_output": False
})
# TODO: handle the column detection better
if df.shape[0] < 1 or df.columns[0] != 'e':
return {
'text': "I didn't find any result.",
'selected_entity': ''
}
entities = df[df.columns[0]]
entityId = self.pick_entity(entities)
if entityId is None:
return {
'text': "I didn't find any result.",
'selected_entity': ''
}
point_camera_to_entity(entityId)
return {
'text': f"I've pointed you to the {entityId} in the 3D Viewer.",
'selected_entity': entityId
}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
entity = await self.entity_extractor.arun(callbacks=callbacks, **inputs)
df = await self.entity_lookup.arun(
**{
"question": "Find all entities matching the description: " + entity,
"format_output": False
})
# TODO: handle the column detection better
if df.shape[0] < 1 or df.columns[0] != 'e':
return {
'text': "I didn't find any result.",
'selected_entity': ''
}
entities = df[df.columns[0]]
entityId = await self.apick_entity(entities)
if entityId is None:
return {
'text': "I didn't find any result.",
'selected_entity': ''
}
point_camera_to_entity(entityId)
return {
'text': f"I've pointed you to the {entityId} in the 3D Viewer.",
'selected_entity': entityId
}
| [
"langchain.chains.LLMChain",
"langchain.callbacks.manager.CallbackManagerForChainRun.get_noop_manager"
] | [((1178, 1216), 'chainlit.context.context.session.emit', 'context.session.emit', (['"""view"""', 'entityId'], {}), "('view', entityId)\n", (1198, 1216), False, 'from chainlit.context import context\n'), ((2370, 2412), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt, **kwargs)\n', (2378, 2412), False, 'from langchain.chains import LLMChain\n'), ((2681, 2726), 'langchain.callbacks.manager.CallbackManagerForChainRun.get_noop_manager', 'CallbackManagerForChainRun.get_noop_manager', ([], {}), '()\n', (2724, 2726), False, 'from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun\n'), ((3098, 3143), 'langchain.callbacks.manager.CallbackManagerForChainRun.get_noop_manager', 'CallbackManagerForChainRun.get_noop_manager', ([], {}), '()\n', (3141, 3143), False, 'from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun\n'), ((4150, 4198), 'tabulate.tabulate', 'tabulate', (['rows'], {'headers': 'headers', 'tablefmt': '"""pipe"""'}), "(rows, headers=headers, tablefmt='pipe')\n", (4158, 4198), False, 'from tabulate import tabulate\n'), ((5033, 5081), 'tabulate.tabulate', 'tabulate', (['rows'], {'headers': 'headers', 'tablefmt': '"""pipe"""'}), "(rows, headers=headers, tablefmt='pipe')\n", (5041, 5081), False, 'from tabulate import tabulate\n'), ((5864, 5909), 'langchain.callbacks.manager.CallbackManagerForChainRun.get_noop_manager', 'CallbackManagerForChainRun.get_noop_manager', ([], {}), '()\n', (5907, 5909), False, 'from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun\n'), ((7168, 7213), 'langchain.callbacks.manager.CallbackManagerForChainRun.get_noop_manager', 'CallbackManagerForChainRun.get_noop_manager', ([], {}), '()\n', (7211, 7213), False, 'from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun\n'), ((4233, 4309), 'chainlit.Message', 'cl.Message', ([], {'content': '("I\'ve found these matching entities:\\n\\n" + entity_table)'}), '(content="I\'ve found these matching entities:\\n\\n" + entity_table)\n', (4243, 4309), True, 'import chainlit as cl\n'), ((4358, 4409), 'chainlit.AskUserMessage', 'cl.AskUserMessage', ([], {'content': '"""Which one do you mean?"""'}), "(content='Which one do you mean?')\n", (4375, 4409), True, 'import chainlit as cl\n'), ((5113, 5189), 'chainlit.Message', 'cl.Message', ([], {'content': '("I\'ve found these matching entities:\\n\\n" + entity_table)'}), '(content="I\'ve found these matching entities:\\n\\n" + entity_table)\n', (5123, 5189), True, 'import chainlit as cl\n'), ((5234, 5285), 'chainlit.AskUserMessage', 'cl.AskUserMessage', ([], {'content': '"""Which one do you mean?"""'}), "(content='Which one do you mean?')\n", (5251, 5285), True, 'import chainlit as cl\n')] |
from langchain.retrievers import AmazonKendraRetriever
from langchain.chains import RetrievalQA
from langchain import OpenAI
from langchain.prompts import PromptTemplate
from langchain import SagemakerEndpoint
from langchain.llms.sagemaker_endpoint import LLMContentHandler
import json
import os
def build_chain():
region = os.environ["AWS_REGION"]
kendra_index_id = os.environ["KENDRA_INDEX_ID"]
endpoint_name = os.environ["FALCON_40B_ENDPOINT"]
inference_component_name = os.environ["INFERENCE_COMPONENT_NAME"]
class ContentHandler(LLMContentHandler):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: dict) -> bytes:
input_str = json.dumps({"inputs": prompt, "parameters": model_kwargs})
return input_str.encode('utf-8')
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
print(response_json)
return response_json[0]["generated_text"]
content_handler = ContentHandler()
if 'inference_component_name' in locals():
llm=SagemakerEndpoint(
endpoint_name=endpoint_name,
region_name=region,
model_kwargs={"max_new_tokens": 1500, "top_p": 0.8,"temperature":0.6},
endpoint_kwargs={"CustomAttributes":"accept_eula=true",
"InferenceComponentName":inference_component_name},
content_handler=content_handler,
)
else :
llm=SagemakerEndpoint(
endpoint_name=endpoint_name,
region_name=region,
model_kwargs={"max_new_tokens": 1500, "top_p": 0.8,"temperature":0.6},
content_handler=content_handler,
)
retriever = AmazonKendraRetriever(index_id=kendra_index_id,region_name=region)
prompt_template = """
The following is a friendly conversation between a human and an AI.
The AI is talkative and provides lots of specific details from its context.
If the AI does not know the answer to a question, it truthfully says it
does not know.
{context}
Instruction: Based on the above documents, provide a detailed answer for, {question} Answer "don't know"
if not present in the document.
Solution:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
qa = RetrievalQA.from_chain_type(
llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True
)
return qa
def run_chain(chain, prompt: str, history=[]):
result = chain(prompt)
# To make it compatible with chat samples
return {
"answer": result['result'],
"source_documents": result['source_documents']
}
if __name__ == "__main__":
chain = build_chain()
result = run_chain(chain, "What's SageMaker?")
print(result['answer'])
if 'source_documents' in result:
print('Sources:')
for d in result['source_documents']:
print(d.metadata['source'])
| [
"langchain.chains.RetrievalQA.from_chain_type",
"langchain.prompts.PromptTemplate",
"langchain.retrievers.AmazonKendraRetriever",
"langchain.SagemakerEndpoint"
] | [((1839, 1906), 'langchain.retrievers.AmazonKendraRetriever', 'AmazonKendraRetriever', ([], {'index_id': 'kendra_index_id', 'region_name': 'region'}), '(index_id=kendra_index_id, region_name=region)\n', (1860, 1906), False, 'from langchain.retrievers import AmazonKendraRetriever\n'), ((2373, 2458), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'template': 'prompt_template', 'input_variables': "['context', 'question']"}), "(template=prompt_template, input_variables=['context',\n 'question'])\n", (2387, 2458), False, 'from langchain.prompts import PromptTemplate\n'), ((2521, 2665), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', (['llm'], {'chain_type': '"""stuff"""', 'retriever': 'retriever', 'chain_type_kwargs': 'chain_type_kwargs', 'return_source_documents': '(True)'}), "(llm, chain_type='stuff', retriever=retriever,\n chain_type_kwargs=chain_type_kwargs, return_source_documents=True)\n", (2548, 2665), False, 'from langchain.chains import RetrievalQA\n'), ((1186, 1485), 'langchain.SagemakerEndpoint', 'SagemakerEndpoint', ([], {'endpoint_name': 'endpoint_name', 'region_name': 'region', 'model_kwargs': "{'max_new_tokens': 1500, 'top_p': 0.8, 'temperature': 0.6}", 'endpoint_kwargs': "{'CustomAttributes': 'accept_eula=true', 'InferenceComponentName':\n inference_component_name}", 'content_handler': 'content_handler'}), "(endpoint_name=endpoint_name, region_name=region,\n model_kwargs={'max_new_tokens': 1500, 'top_p': 0.8, 'temperature': 0.6},\n endpoint_kwargs={'CustomAttributes': 'accept_eula=true',\n 'InferenceComponentName': inference_component_name}, content_handler=\n content_handler)\n", (1203, 1485), False, 'from langchain import SagemakerEndpoint\n'), ((1590, 1770), 'langchain.SagemakerEndpoint', 'SagemakerEndpoint', ([], {'endpoint_name': 'endpoint_name', 'region_name': 'region', 'model_kwargs': "{'max_new_tokens': 1500, 'top_p': 0.8, 'temperature': 0.6}", 'content_handler': 'content_handler'}), "(endpoint_name=endpoint_name, region_name=region,\n model_kwargs={'max_new_tokens': 1500, 'top_p': 0.8, 'temperature': 0.6},\n content_handler=content_handler)\n", (1607, 1770), False, 'from langchain import SagemakerEndpoint\n'), ((758, 816), 'json.dumps', 'json.dumps', (["{'inputs': prompt, 'parameters': model_kwargs}"], {}), "({'inputs': prompt, 'parameters': model_kwargs})\n", (768, 816), False, 'import json\n')] |
'''
This script takes the True/False style questions from the csv file and save the result as another csv file.
This script makes use of Llama model.
Before running this script, make sure to configure the filepaths in config.yaml file.
'''
from langchain import PromptTemplate, LLMChain
from kg_rag.utility import *
import sys
QUESTION_PATH = config_data["TRUE_FALSE_PATH"]
SYSTEM_PROMPT = system_prompts["TRUE_FALSE_QUESTION"]
QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"])
QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"])
VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"]
NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"]
SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"]
SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"]
SAVE_PATH = config_data["SAVE_RESULTS_PATH"]
MODEL_NAME = config_data["LLAMA_MODEL_NAME"]
BRANCH_NAME = config_data["LLAMA_MODEL_BRANCH"]
CACHE_DIR = config_data["LLM_CACHE_DIR"]
CONTEXT_VOLUME = 100
save_name = "_".join(MODEL_NAME.split("/")[-1].split("-"))+"_one_hop_true_false_binary_response.csv"
INSTRUCTION = "Context:\n\n{context} \n\nQuestion: {question}"
vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL)
embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL)
node_context_df = pd.read_csv(NODE_CONTEXT_PATH)
def main():
start_time = time.time()
llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR)
template = get_prompt(INSTRUCTION, SYSTEM_PROMPT)
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
llm_chain = LLMChain(prompt=prompt, llm=llm)
question_df = pd.read_csv(QUESTION_PATH)
answer_list = []
for index, row in question_df.iterrows():
question = row["text"]
context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY)
output = llm_chain.run(context=context, question=question)
answer_list.append((row["text"], row["label"], output))
answer_df = pd.DataFrame(answer_list, columns=["question", "label", "llm_answer"])
answer_df.to_csv(os.path.join(SAVE_PATH, save_name), index=False, header=True)
print("Completed in {} min".format((time.time()-start_time)/60))
if __name__ == "__main__":
main()
| [
"langchain.LLMChain",
"langchain.PromptTemplate"
] | [((1786, 1860), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'template', 'input_variables': "['context', 'question']"}), "(template=template, input_variables=['context', 'question'])\n", (1800, 1860), False, 'from langchain import PromptTemplate, LLMChain\n'), ((1877, 1909), 'langchain.LLMChain', 'LLMChain', ([], {'prompt': 'prompt', 'llm': 'llm'}), '(prompt=prompt, llm=llm)\n', (1885, 1909), False, 'from langchain import PromptTemplate, LLMChain\n')] |
import os
from typing import Any, Callable
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
import registry
from .base import BaseChat, ChatHistory, Response
TEMPLATE = '''
You are a web3 assistant. You help users use web3 apps, such as Uniswap, AAVE, MakerDao, etc. You assist users in achieving their goals with these protocols, by providing users with relevant information, and creating transactions for users. Your responses should sound natural, helpful, cheerful, and engaging, and you should use easy to understand language with explanations for jargon.
Information to help complete your task is below. Only use information below to answer the question, and create a final answer with references ("SOURCES").
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
-----
{task_info}
-----
User: {question}
Assistant:'''
# TODO: make this few-shot on real examples instead of dummy ones
REPHRASE_TEMPLATE = '''
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to web3.
## Example:
Chat History:
User: Who created Ethereum?
Assistant: Vitalik Buterin
Follow Up Input: What about AAVE?
Standalone question: Who created AAVE?
## Example:
Chat History:
User: Who created Ethereum?
Assistant: Vitalik Buterin
User: What about AAVE?
Assistant: Stani Kulechov
Follow Up Input: When was that?
Standalone question: When were Ethereum and AAVE created?
## Example:
Chat History:
User: Who created Ethereum?
Assistant: Vitalik Buterin
Follow Up Input: What is AAVE?
Standalone question: What is AAVE?
## Example:
Chat History:
User: Who created Ethereum?
Assistant: Vitalik Buterin
User: What is AAVE?
Assistant: AAVE is a decentralized finance protocol that allows users to borrow and lend digital assets. It is a protocol built on Ethereum and is powered by a native token, Aave.
Follow Up Input: Bitoin?
Standalone question: What is Bitcoin?
## Example:
Chat History:
{history}
Follow Up Input: {question}
Standalone question:'''
@registry.register_class
class RephraseCitedChat(BaseChat):
def __init__(self, doc_index: Any, top_k: int = 3, show_thinking: bool = True) -> None:
super().__init__()
self.prompt = PromptTemplate(
input_variables=["task_info", "question"],
template=TEMPLATE,
)
self.llm = OpenAI(temperature=0.0, max_tokens=-1)
self.chain = LLMChain(llm=self.llm, prompt=self.prompt)
self.chain.verbose = True
self.doc_index = doc_index
self.top_k = top_k
self.show_thinking = show_thinking
self.rephrase_prompt = PromptTemplate(
input_variables=["history", "question"],
template=REPHRASE_TEMPLATE,
)
self.rephrase_chain = LLMChain(llm=self.llm, prompt=self.rephrase_prompt)
self.rephrase_chain.verbose = True
def receive_input(self, history: ChatHistory, userinput: str, send: Callable) -> None:
userinput = userinput.strip()
if history:
# First rephrase the question
history_string = history.to_string()
question = self.rephrase_chain.run({
"history": history_string.strip(),
"question": userinput,
"stop": "##",
}).strip()
rephrased = True
else:
question = userinput
rephrased = False
if self.show_thinking and rephrased and userinput != question:
send(Response(response="I think you're asking: " + question, still_thinking=True))
docs = self.doc_index.similarity_search(question, k=self.top_k)
task_info = '\n'.join([f'Content: {doc.page_content}\nSource: {doc.metadata["url"]}' for doc in docs])
result = self.chain.run({
"task_info": task_info,
"question": question,
"stop": "User",
})
result = result.strip()
history.add_interaction(userinput, result)
send(Response(result))
| [
"langchain.llms.OpenAI",
"langchain.prompts.PromptTemplate",
"langchain.chains.LLMChain"
] | [((2418, 2494), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['task_info', 'question']", 'template': 'TEMPLATE'}), "(input_variables=['task_info', 'question'], template=TEMPLATE)\n", (2432, 2494), False, 'from langchain.prompts import PromptTemplate\n'), ((2549, 2587), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0.0)', 'max_tokens': '(-1)'}), '(temperature=0.0, max_tokens=-1)\n', (2555, 2587), False, 'from langchain.llms import OpenAI\n'), ((2609, 2651), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'self.llm', 'prompt': 'self.prompt'}), '(llm=self.llm, prompt=self.prompt)\n', (2617, 2651), False, 'from langchain.chains import LLMChain\n'), ((2823, 2911), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['history', 'question']", 'template': 'REPHRASE_TEMPLATE'}), "(input_variables=['history', 'question'], template=\n REPHRASE_TEMPLATE)\n", (2837, 2911), False, 'from langchain.prompts import PromptTemplate\n'), ((2972, 3023), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'self.llm', 'prompt': 'self.rephrase_prompt'}), '(llm=self.llm, prompt=self.rephrase_prompt)\n', (2980, 3023), False, 'from langchain.chains import LLMChain\n')] |
from typing import List
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
import langchain.docstore.document as docstore
from loguru import logger
from settings import COLLECTION_NAME, PERSIST_DIRECTORY
from .vortex_pdf_parser import VortexPdfParser
from .vortext_content_iterator import VortexContentIterator
class VortexIngester:
def __init__(self, content_folder: str):
self.content_folder = content_folder
def ingest(self) -> None:
vortex_content_iterator = VortexContentIterator(self.content_folder)
vortex_pdf_parser = VortexPdfParser()
chunks: List[docstore.Document] = []
for document in vortex_content_iterator:
vortex_pdf_parser.set_pdf_file_path(document)
document_chunks = vortex_pdf_parser.clean_text_to_docs()
chunks.extend(document_chunks)
logger.info(f"Extracted {len(chunks)} chunks from {document}")
embeddings = OpenAIEmbeddings(client=None)
logger.info("Loaded embeddings")
vector_store = Chroma.from_documents(
chunks,
embeddings,
collection_name=COLLECTION_NAME,
persist_directory=PERSIST_DIRECTORY,
)
logger.info("Created Chroma vector store")
vector_store.persist()
logger.info("Persisted Chroma vector store")
| [
"langchain.embeddings.OpenAIEmbeddings",
"langchain.vectorstores.Chroma.from_documents"
] | [((985, 1014), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'client': 'None'}), '(client=None)\n', (1001, 1014), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((1023, 1055), 'loguru.logger.info', 'logger.info', (['"""Loaded embeddings"""'], {}), "('Loaded embeddings')\n", (1034, 1055), False, 'from loguru import logger\n'), ((1079, 1194), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', (['chunks', 'embeddings'], {'collection_name': 'COLLECTION_NAME', 'persist_directory': 'PERSIST_DIRECTORY'}), '(chunks, embeddings, collection_name=COLLECTION_NAME,\n persist_directory=PERSIST_DIRECTORY)\n', (1100, 1194), False, 'from langchain.vectorstores import Chroma\n'), ((1259, 1301), 'loguru.logger.info', 'logger.info', (['"""Created Chroma vector store"""'], {}), "('Created Chroma vector store')\n", (1270, 1301), False, 'from loguru import logger\n'), ((1341, 1385), 'loguru.logger.info', 'logger.info', (['"""Persisted Chroma vector store"""'], {}), "('Persisted Chroma vector store')\n", (1352, 1385), False, 'from loguru import logger\n')] |
# -*- coding: utf-8 -*-
import os
import re
import sys
sys.path.append('.')
sys.path.append('..')
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain import OpenAI, GoogleSearchAPIWrapper, LLMChain
from typing import List, Union, Callable
from langchain.schema import AgentAction, AgentFinish
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
from utils.configs import configs
os.environ["GOOGLE_CSE_ID"] = configs['tools']['google_cse_id']
os.environ["GOOGLE_API_KEY"] = configs['tools']['google_api_key']
os.environ["OPENAI_API_KEY"] = configs['openai_api_key']
# Set up the base template
template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s
Question: {input}
{agent_scratchpad}"""
def fake_func(inp: str) -> str:
return "foo"
def get_tools(query):
docs = retriever.get_relevant_documents(query)
return [ALL_TOOLS[d.metadata["index"]] for d in docs]
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
############## NEW ######################
# The list of tools available
tools_getter: Callable
def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
############## NEW ######################
tools = self.tools_getter(kwargs["input"])
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
print(self.template.format(**kwargs))
return self.template.format(**kwargs)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
if __name__ == '__main__':
# Define which tools the agent can use to answer user queries
search = GoogleSearchAPIWrapper()
search_tool = Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events"
)
fake_tools = [
Tool(
name=f"foo-{i}",
func=fake_func,
description=f"a silly function that you can use to get more information about the number {i}"
)
for i in range(99)
]
ALL_TOOLS = [search_tool] + fake_tools
# tools retrieval
tool_lib = configs['demo_agents']['tool_faiss_index']
if os.path.exists(tool_lib):
vector_store = FAISS.load_local(tool_lib, OpenAIEmbeddings())
else:
docs = [Document(page_content=t.description, metadata={"index": i}) for i, t in enumerate(ALL_TOOLS)]
vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())
vector_store.save_local(tool_lib)
retriever = vector_store.as_retriever()
prompt = CustomPromptTemplate(
template=template,
tools_getter=get_tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps"]
)
output_parser = CustomOutputParser()
model_name = configs['model_name']
llm = OpenAI(model_name=model_name, temperature=0)
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt)
query = "What's the weather in SF?"
tools = get_tools(query)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run(query)
| [
"langchain.agents.AgentExecutor.from_agent_and_tools",
"langchain.GoogleSearchAPIWrapper",
"langchain.schema.Document",
"langchain.embeddings.OpenAIEmbeddings",
"langchain.agents.LLMSingleActionAgent",
"langchain.LLMChain",
"langchain.OpenAI",
"langchain.agents.Tool"
] | [((55, 75), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (70, 75), False, 'import sys\n'), ((76, 97), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (91, 97), False, 'import sys\n'), ((4014, 4038), 'langchain.GoogleSearchAPIWrapper', 'GoogleSearchAPIWrapper', ([], {}), '()\n', (4036, 4038), False, 'from langchain import OpenAI, GoogleSearchAPIWrapper, LLMChain\n'), ((4058, 4180), 'langchain.agents.Tool', 'Tool', ([], {'name': '"""Search"""', 'func': 'search.run', 'description': '"""useful for when you need to answer questions about current events"""'}), "(name='Search', func=search.run, description=\n 'useful for when you need to answer questions about current events')\n", (4062, 4180), False, 'from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser\n'), ((4577, 4601), 'os.path.exists', 'os.path.exists', (['tool_lib'], {}), '(tool_lib)\n', (4591, 4601), False, 'import os\n'), ((5400, 5444), 'langchain.OpenAI', 'OpenAI', ([], {'model_name': 'model_name', 'temperature': '(0)'}), '(model_name=model_name, temperature=0)\n', (5406, 5444), False, 'from langchain import OpenAI, GoogleSearchAPIWrapper, LLMChain\n'), ((5512, 5544), 'langchain.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'prompt'}), '(llm=llm, prompt=prompt)\n', (5520, 5544), False, 'from langchain import OpenAI, GoogleSearchAPIWrapper, LLMChain\n'), ((5674, 5800), 'langchain.agents.LLMSingleActionAgent', 'LLMSingleActionAgent', ([], {'llm_chain': 'llm_chain', 'output_parser': 'output_parser', 'stop': "['\\nObservation:']", 'allowed_tools': 'tool_names'}), "(llm_chain=llm_chain, output_parser=output_parser, stop\n =['\\nObservation:'], allowed_tools=tool_names)\n", (5694, 5800), False, 'from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser\n'), ((5856, 5930), 'langchain.agents.AgentExecutor.from_agent_and_tools', 'AgentExecutor.from_agent_and_tools', ([], {'agent': 'agent', 'tools': 'tools', 'verbose': '(True)'}), '(agent=agent, tools=tools, verbose=True)\n', (5890, 5930), False, 'from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser\n'), ((3542, 3581), 're.search', 're.search', (['regex', 'llm_output', 're.DOTALL'], {}), '(regex, llm_output, re.DOTALL)\n', (3551, 3581), False, 'import re\n'), ((4233, 4375), 'langchain.agents.Tool', 'Tool', ([], {'name': 'f"""foo-{i}"""', 'func': 'fake_func', 'description': 'f"""a silly function that you can use to get more information about the number {i}"""'}), "(name=f'foo-{i}', func=fake_func, description=\n f'a silly function that you can use to get more information about the number {i}'\n )\n", (4237, 4375), False, 'from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser\n'), ((4653, 4671), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (4669, 4671), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((4699, 4758), 'langchain.schema.Document', 'Document', ([], {'page_content': 't.description', 'metadata': "{'index': i}"}), "(page_content=t.description, metadata={'index': i})\n", (4707, 4758), False, 'from langchain.schema import Document\n'), ((4843, 4861), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (4859, 4861), False, 'from langchain.embeddings import OpenAIEmbeddings\n')] |
import base64
from email.message import EmailMessage
from typing import List, Optional, Type
from langchain.callbacks.manager import CallbackManagerForToolRun
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools.gmail.base import GmailBaseTool
class CreateDraftSchema(BaseModel):
"""Input for CreateDraftTool."""
message: str = Field(
...,
description="The message to include in the draft.",
)
to: List[str] = Field(
...,
description="The list of recipients.",
)
subject: str = Field(
...,
description="The subject of the message.",
)
cc: Optional[List[str]] = Field(
None,
description="The list of CC recipients.",
)
bcc: Optional[List[str]] = Field(
None,
description="The list of BCC recipients.",
)
class GmailCreateDraft(GmailBaseTool):
"""Tool that creates a draft email for Gmail."""
name: str = "create_gmail_draft"
description: str = (
"Use this tool to create a draft email with the provided message fields."
)
args_schema: Type[CreateDraftSchema] = CreateDraftSchema
def _prepare_draft_message(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
) -> dict:
draft_message = EmailMessage()
draft_message.set_content(message)
draft_message["To"] = ", ".join(to)
draft_message["Subject"] = subject
if cc is not None:
draft_message["Cc"] = ", ".join(cc)
if bcc is not None:
draft_message["Bcc"] = ", ".join(bcc)
encoded_message = base64.urlsafe_b64encode(draft_message.as_bytes()).decode()
return {"message": {"raw": encoded_message}}
def _run(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
create_message = self._prepare_draft_message(message, to, subject, cc, bcc)
draft = (
self.api_resource.users()
.drafts()
.create(userId="me", body=create_message)
.execute()
)
output = f'Draft created. Draft Id: {draft["id"]}'
return output
except Exception as e:
raise Exception(f"An error occurred: {e}")
| [
"langchain.pydantic_v1.Field"
] | [((359, 421), 'langchain.pydantic_v1.Field', 'Field', (['...'], {'description': '"""The message to include in the draft."""'}), "(..., description='The message to include in the draft.')\n", (364, 421), False, 'from langchain.pydantic_v1 import BaseModel, Field\n'), ((465, 514), 'langchain.pydantic_v1.Field', 'Field', (['...'], {'description': '"""The list of recipients."""'}), "(..., description='The list of recipients.')\n", (470, 514), False, 'from langchain.pydantic_v1 import BaseModel, Field\n'), ((557, 610), 'langchain.pydantic_v1.Field', 'Field', (['...'], {'description': '"""The subject of the message."""'}), "(..., description='The subject of the message.')\n", (562, 610), False, 'from langchain.pydantic_v1 import BaseModel, Field\n'), ((664, 717), 'langchain.pydantic_v1.Field', 'Field', (['None'], {'description': '"""The list of CC recipients."""'}), "(None, description='The list of CC recipients.')\n", (669, 717), False, 'from langchain.pydantic_v1 import BaseModel, Field\n'), ((772, 826), 'langchain.pydantic_v1.Field', 'Field', (['None'], {'description': '"""The list of BCC recipients."""'}), "(None, description='The list of BCC recipients.')\n", (777, 826), False, 'from langchain.pydantic_v1 import BaseModel, Field\n'), ((1390, 1404), 'email.message.EmailMessage', 'EmailMessage', ([], {}), '()\n', (1402, 1404), False, 'from email.message import EmailMessage\n')] |
from langchain import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.docstore.document import Document
base_prompt = """A profound and powerful writer, you have been given a context text and a search query, {0}. You must write an in-depth analysis, highlighting the significance of {0} in larger context's meaning as well as INCLUDE AS MANY SPECIFIC QUOTATIONS AS POSSIBLE (marked with quotes) from the context and note what page you found them from. Try to prioritize quotations in responses that should be about 1000 characters total.
"""
def summarize_context(search_term: str, contexts: list[str], openai_api_key: str):
try:
if openai_api_key:
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
else:
llm = OpenAI(temperature=0)
docs = [Document(page_content=context) for context in contexts]
# have to do a little weird acrobatics here because summarize cannot take more than one input
# so have to construct the prompt template string after we interpolate the characters
final_prompt = base_prompt.format(search_term) + "\n{text}\n\nSUMMARY:"
final_prompt_template = PromptTemplate(template = final_prompt, input_variables=["text"])
llm_summarize = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=final_prompt_template, combine_prompt=final_prompt_template)
global_summary = llm_summarize({"input_documents": docs}, return_only_outputs=True)
if (len(global_summary["output_text"]) > 400):
return global_summary["output_text"]
else:
# To augment the summary with more details that don't get lost, we extract some info from the summaries
doc_summaries = [Document(page_content=summary) for summary in global_summary["intermediate_steps"]]
qa_chain = load_qa_chain(llm, chain_type="stuff")
query = "What is the significance of {0} in the context and quotes (include quotations) to back up your reasoning".format(search_term)
additional_context = qa_chain({"input_documents": doc_summaries, "question": query}, return_only_outputs=True)
return global_summary["output_text"] + additional_context["output_text"]
except Exception as e:
print("Error generating summary: ", e)
raise e
| [
"langchain.PromptTemplate",
"langchain.llms.OpenAI",
"langchain.chains.question_answering.load_qa_chain",
"langchain.docstore.document.Document",
"langchain.chains.summarize.load_summarize_chain"
] | [((1309, 1372), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'final_prompt', 'input_variables': "['text']"}), "(template=final_prompt, input_variables=['text'])\n", (1323, 1372), False, 'from langchain import PromptTemplate\n'), ((1399, 1561), 'langchain.chains.summarize.load_summarize_chain', 'load_summarize_chain', (['llm'], {'chain_type': '"""map_reduce"""', 'return_intermediate_steps': '(True)', 'map_prompt': 'final_prompt_template', 'combine_prompt': 'final_prompt_template'}), "(llm, chain_type='map_reduce',\n return_intermediate_steps=True, map_prompt=final_prompt_template,\n combine_prompt=final_prompt_template)\n", (1419, 1561), False, 'from langchain.chains.summarize import load_summarize_chain\n'), ((821, 873), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)', 'openai_api_key': 'openai_api_key'}), '(temperature=0, openai_api_key=openai_api_key)\n', (827, 873), False, 'from langchain.llms import OpenAI\n'), ((907, 928), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (913, 928), False, 'from langchain.llms import OpenAI\n'), ((945, 975), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'context'}), '(page_content=context)\n', (953, 975), False, 'from langchain.docstore.document import Document\n'), ((2016, 2054), 'langchain.chains.question_answering.load_qa_chain', 'load_qa_chain', (['llm'], {'chain_type': '"""stuff"""'}), "(llm, chain_type='stuff')\n", (2029, 2054), False, 'from langchain.chains.question_answering import load_qa_chain\n'), ((1909, 1939), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'summary'}), '(page_content=summary)\n', (1917, 1939), False, 'from langchain.docstore.document import Document\n')] |
import streamlit as st
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
def generate_response(uploaded_file, openai_api_key, query_text):
# Load document if file is uploaded
if uploaded_file is not None:
documents = [uploaded_file.read().decode()]
# Split documents into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents(documents)
# Select embeddings
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Create a vectorstore from documents
db = Chroma.from_documents(texts, embeddings)
# Create retriever interface
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)
return qa.run(query_text)
# Page title
st.set_page_config(page_title='🦜🔗 Ask the Doc App')
st.title('🦜🔗 Ask the Doc App')
# File upload
uploaded_file = st.file_uploader('Upload an article', type='txt')
# Query text
query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file)
# Form input and query
result = []
with st.form('myform', clear_on_submit=True):
openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text))
submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text))
if submitted and openai_api_key.startswith('sk-'):
with st.spinner('Calculating...'):
response = generate_response(uploaded_file, openai_api_key, query_text)
result.append(response)
del openai_api_key
if len(result):
st.info(response)
| [
"langchain.llms.OpenAI",
"langchain.text_splitter.CharacterTextSplitter",
"langchain.embeddings.OpenAIEmbeddings",
"langchain.vectorstores.Chroma.from_documents"
] | [((1040, 1091), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""🦜🔗 Ask the Doc App"""'}), "(page_title='🦜🔗 Ask the Doc App')\n", (1058, 1091), True, 'import streamlit as st\n'), ((1092, 1122), 'streamlit.title', 'st.title', (['"""🦜🔗 Ask the Doc App"""'], {}), "('🦜🔗 Ask the Doc App')\n", (1100, 1122), True, 'import streamlit as st\n'), ((1154, 1203), 'streamlit.file_uploader', 'st.file_uploader', (['"""Upload an article"""'], {'type': '"""txt"""'}), "('Upload an article', type='txt')\n", (1170, 1203), True, 'import streamlit as st\n'), ((1230, 1347), 'streamlit.text_input', 'st.text_input', (['"""Enter your question:"""'], {'placeholder': '"""Please provide a short summary."""', 'disabled': '(not uploaded_file)'}), "('Enter your question:', placeholder=\n 'Please provide a short summary.', disabled=not uploaded_file)\n", (1243, 1347), True, 'import streamlit as st\n'), ((495, 550), 'langchain.text_splitter.CharacterTextSplitter', 'CharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(0)'}), '(chunk_size=1000, chunk_overlap=0)\n', (516, 550), False, 'from langchain.text_splitter import CharacterTextSplitter\n'), ((646, 693), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'openai_api_key': 'openai_api_key'}), '(openai_api_key=openai_api_key)\n', (662, 693), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((745, 785), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', (['texts', 'embeddings'], {}), '(texts, embeddings)\n', (766, 785), False, 'from langchain.vectorstores import Chroma\n'), ((1386, 1425), 'streamlit.form', 'st.form', (['"""myform"""'], {'clear_on_submit': '(True)'}), "('myform', clear_on_submit=True)\n", (1393, 1425), True, 'import streamlit as st\n'), ((1448, 1546), 'streamlit.text_input', 'st.text_input', (['"""OpenAI API Key"""'], {'type': '"""password"""', 'disabled': '(not (uploaded_file and query_text))'}), "('OpenAI API Key', type='password', disabled=not (\n uploaded_file and query_text))\n", (1461, 1546), True, 'import streamlit as st\n'), ((1558, 1634), 'streamlit.form_submit_button', 'st.form_submit_button', (['"""Submit"""'], {'disabled': '(not (uploaded_file and query_text))'}), "('Submit', disabled=not (uploaded_file and query_text))\n", (1579, 1634), True, 'import streamlit as st\n'), ((1904, 1921), 'streamlit.info', 'st.info', (['response'], {}), '(response)\n', (1911, 1921), True, 'import streamlit as st\n'), ((916, 953), 'langchain.llms.OpenAI', 'OpenAI', ([], {'openai_api_key': 'openai_api_key'}), '(openai_api_key=openai_api_key)\n', (922, 953), False, 'from langchain.llms import OpenAI\n'), ((1702, 1730), 'streamlit.spinner', 'st.spinner', (['"""Calculating..."""'], {}), "('Calculating...')\n", (1712, 1730), True, 'import streamlit as st\n')] |
import os
import os.path as osp
from typing import List
from tqdm import tqdm
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import NLTKTextSplitter
from langchain.vectorstores.faiss import FAISS
import pandas as pd
import nltk
nltk.download('punkt')
PROCESSED_CSV_DIRECTORY = "processed" # Directory to save processed CSV file
def create_docs() -> List[Document]:
docs = []
df = pd.read_csv(osp.join(PROCESSED_CSV_DIRECTORY, 'scraped.csv'))
for index, row in df.iterrows():
doc = Document(page_content=row['text'], metadata={"source": row['url']})
docs.append(doc)
return docs
docs = create_docs()
doc_chunks = []
seen_chunks = set()
total_websites = set()
total_words = 0
splitter = NLTKTextSplitter(chunk_size=1024)
for source in tqdm(docs):
for chunk in splitter.split_text(source.page_content):
if chunk not in seen_chunks:
doc_chunks.append(
Document(page_content=chunk, metadata=source.metadata))
total_words += len(chunk.split())
total_websites.add(source.metadata['source'])
seen_chunks.add(chunk)
print(f'Total websites: {len(total_websites)}')
print(f'Total chunks: {len(doc_chunks)}')
print(f'Total words: {total_words}')
print(f'Avg words per chunk: {int(total_words / len(doc_chunks))}')
print(f'Estimated embedding cost: ${total_words / 0.75 / 1000 * 0.0004:.2f}')
search_index = FAISS.from_documents(doc_chunks, OpenAIEmbeddings(model='text-embedding-ada-002'))
# persistent search index
search_index.save_local("search_index")
| [
"langchain.embeddings.openai.OpenAIEmbeddings",
"langchain.docstore.document.Document",
"langchain.text_splitter.NLTKTextSplitter"
] | [((316, 338), 'nltk.download', 'nltk.download', (['"""punkt"""'], {}), "('punkt')\n", (329, 338), False, 'import nltk\n'), ((810, 843), 'langchain.text_splitter.NLTKTextSplitter', 'NLTKTextSplitter', ([], {'chunk_size': '(1024)'}), '(chunk_size=1024)\n', (826, 843), False, 'from langchain.text_splitter import NLTKTextSplitter\n'), ((858, 868), 'tqdm.tqdm', 'tqdm', (['docs'], {}), '(docs)\n', (862, 868), False, 'from tqdm import tqdm\n'), ((1527, 1575), 'langchain.embeddings.openai.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""'}), "(model='text-embedding-ada-002')\n", (1543, 1575), False, 'from langchain.embeddings.openai import OpenAIEmbeddings\n'), ((490, 538), 'os.path.join', 'osp.join', (['PROCESSED_CSV_DIRECTORY', '"""scraped.csv"""'], {}), "(PROCESSED_CSV_DIRECTORY, 'scraped.csv')\n", (498, 538), True, 'import os.path as osp\n'), ((591, 658), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': "row['text']", 'metadata': "{'source': row['url']}"}), "(page_content=row['text'], metadata={'source': row['url']})\n", (599, 658), False, 'from langchain.docstore.document import Document\n'), ((1013, 1067), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'chunk', 'metadata': 'source.metadata'}), '(page_content=chunk, metadata=source.metadata)\n', (1021, 1067), False, 'from langchain.docstore.document import Document\n')] |
"""
相关资料:
llama-cpp-python文档:https://llama-cpp-python.readthedocs.io/en/latest/
前提:
1.安装C++环境
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
勾选“使用C++桌面开发”
2.安装模块
pip install llama-cpp-python
pip install llama-cpp-python[server]
3.运行服务
python3 -m llama_cpp.server --model “模型路径”
# http://localhost:8000/v1
"""
import time
import os
import gradio as gr
from langchain.document_loaders import DirectoryLoader
from langchain.llms import ChatGLM
from langchain.llms.llamacpp import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
# 加载embedding
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"text2vec2": "uer/sbert-base-chinese-nli",
"text2vec3": "shibing624/text2vec-base-chinese",
}
def load_documents(directory="documents"):
"""
加载books下的文件,进行拆分
:param directory:
:return:
"""
loader = DirectoryLoader(directory)
documents = loader.load()
text_spliter = CharacterTextSplitter(chunk_size=256, chunk_overlap=0)
split_docs = text_spliter.split_documents(documents)
return split_docs
def load_embedding_model(model_name="ernie-tiny"):
"""
加载embedding模型
:param model_name:
:return:
"""
encode_kwargs = {"normalize_embeddings": False}
model_kwargs = {"device": "cuda:0"}
return HuggingFaceEmbeddings(
model_name=embedding_model_dict[model_name],
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
def store_chroma(docs, embeddings, persist_directory="VectorStore"):
"""
讲文档向量化,存入向量数据库
:param docs:
:param embeddings:
:param persist_directory:
:return:
"""
db = Chroma.from_documents(docs, embeddings, persist_directory=persist_directory)
db.persist()
return db
# 加载embedding模型
embeddings = load_embedding_model('text2vec3')
# 加载数据库
if not os.path.exists('VectorStore'):
documents = load_documents()
db = store_chroma(documents, embeddings)
else:
db = Chroma(persist_directory='VectorStore', embedding_function=embeddings)
# 创建llm
# llm = ChatGLM(
# endpoint_url='http://127.0.0.1:8000',
# max_token=80000,
# top_p=0.9
# )
llm = LlamaCpp(
model_path=r"G:\models\llama2\llama-2-7b-chat-q4\llama-2-7b-chat.Q4_0.gguf",
n_ctx=2048,
stop=['Human:']
)
# 创建qa
QA_CHAIN_PROMPT = PromptTemplate.from_template("""Human:
根据下面的上下文(context)内容回答问题。
如果你不知道答案,就回答不知道,不要试图编造答案。
答案最多3句话,保持答案简介。
总是在答案结束时说”谢谢你的提问!“
{context}
问题:{question}
Assistant:
""")
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
verbose=True,
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
)
def add_text(history, text):
history = history + [(text, None)]
return history, gr.update(value="", interactive=False)
def add_file(history, file):
"""
上传文件后的回调函数,将上传的文件向量化存入数据库
:param history:
:param file:
:return:
"""
global qa
directory = os.path.dirname(file.name)
documents = load_documents(directory)
db = store_chroma(documents, embeddings)
retriever = db.as_retriever()
qa.retriever = retriever
history = history + [((file.name,), None)]
return history
def bot(history):
"""
聊天调用的函数
:param history:
:return:
"""
message = history[-1][0]
if isinstance(message, tuple):
response = "文件上传成功!!"
else:
response = qa({"query": message})['result']
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
with gr.Blocks() as demo:
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(None, (os.path.join(os.path.dirname(__file__), "avatar.png"))),
)
with gr.Row():
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter, or upload an image",
container=False,
)
btn = gr.UploadButton("📁", file_types=['txt'])
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, chatbot, chatbot
)
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
bot, chatbot, chatbot
)
demo.queue()
if __name__ == "__main__":
demo.launch()
| [
"langchain.llms.llamacpp.LlamaCpp",
"langchain.embeddings.huggingface.HuggingFaceEmbeddings",
"langchain.text_splitter.CharacterTextSplitter",
"langchain.prompts.PromptTemplate.from_template",
"langchain.vectorstores.Chroma.from_documents",
"langchain.document_loaders.DirectoryLoader",
"langchain.chains.RetrievalQA.from_chain_type",
"langchain.vectorstores.Chroma"
] | [((2537, 2663), 'langchain.llms.llamacpp.LlamaCpp', 'LlamaCpp', ([], {'model_path': '"""G:\\\\models\\\\llama2\\\\llama-2-7b-chat-q4\\\\llama-2-7b-chat.Q4_0.gguf"""', 'n_ctx': '(2048)', 'stop': "['Human:']"}), "(model_path=\n 'G:\\\\models\\\\llama2\\\\llama-2-7b-chat-q4\\\\llama-2-7b-chat.Q4_0.gguf',\n n_ctx=2048, stop=['Human:'])\n", (2545, 2663), False, 'from langchain.llms.llamacpp import LlamaCpp\n'), ((2691, 2865), 'langchain.prompts.PromptTemplate.from_template', 'PromptTemplate.from_template', (['"""Human:\n根据下面的上下文(context)内容回答问题。\n如果你不知道答案,就回答不知道,不要试图编造答案。\n答案最多3句话,保持答案简介。\n总是在答案结束时说”谢谢你的提问!“\n{context}\n问题:{question}\nAssistant:\n"""'], {}), '(\n """Human:\n根据下面的上下文(context)内容回答问题。\n如果你不知道答案,就回答不知道,不要试图编造答案。\n答案最多3句话,保持答案简介。\n总是在答案结束时说”谢谢你的提问!“\n{context}\n问题:{question}\nAssistant:\n"""\n )\n', (2719, 2865), False, 'from langchain.prompts import PromptTemplate\n'), ((2891, 3013), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'llm', 'retriever': 'retriever', 'verbose': '(True)', 'chain_type_kwargs': "{'prompt': QA_CHAIN_PROMPT}"}), "(llm=llm, retriever=retriever, verbose=True,\n chain_type_kwargs={'prompt': QA_CHAIN_PROMPT})\n", (2918, 3013), False, 'from langchain.chains import RetrievalQA\n'), ((1249, 1275), 'langchain.document_loaders.DirectoryLoader', 'DirectoryLoader', (['directory'], {}), '(directory)\n', (1264, 1275), False, 'from langchain.document_loaders import DirectoryLoader\n'), ((1325, 1379), 'langchain.text_splitter.CharacterTextSplitter', 'CharacterTextSplitter', ([], {'chunk_size': '(256)', 'chunk_overlap': '(0)'}), '(chunk_size=256, chunk_overlap=0)\n', (1346, 1379), False, 'from langchain.text_splitter import CharacterTextSplitter\n'), ((1685, 1811), 'langchain.embeddings.huggingface.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': 'embedding_model_dict[model_name]', 'model_kwargs': 'model_kwargs', 'encode_kwargs': 'encode_kwargs'}), '(model_name=embedding_model_dict[model_name],\n model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)\n', (1706, 1811), False, 'from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n'), ((2036, 2112), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', (['docs', 'embeddings'], {'persist_directory': 'persist_directory'}), '(docs, embeddings, persist_directory=persist_directory)\n', (2057, 2112), False, 'from langchain.vectorstores import Chroma\n'), ((2224, 2253), 'os.path.exists', 'os.path.exists', (['"""VectorStore"""'], {}), "('VectorStore')\n", (2238, 2253), False, 'import os\n'), ((2348, 2418), 'langchain.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': '"""VectorStore"""', 'embedding_function': 'embeddings'}), "(persist_directory='VectorStore', embedding_function=embeddings)\n", (2354, 2418), False, 'from langchain.vectorstores import Chroma\n'), ((3314, 3340), 'os.path.dirname', 'os.path.dirname', (['file.name'], {}), '(file.name)\n', (3329, 3340), False, 'import os\n'), ((3939, 3950), 'gradio.Blocks', 'gr.Blocks', ([], {}), '()\n', (3948, 3950), True, 'import gradio as gr\n'), ((3118, 3156), 'gradio.update', 'gr.update', ([], {'value': '""""""', 'interactive': '(False)'}), "(value='', interactive=False)\n", (3127, 3156), True, 'import gradio as gr\n'), ((3893, 3909), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (3903, 3909), False, 'import time\n'), ((4161, 4169), 'gradio.Row', 'gr.Row', ([], {}), '()\n', (4167, 4169), True, 'import gradio as gr\n'), ((4185, 4306), 'gradio.Textbox', 'gr.Textbox', ([], {'scale': '(4)', 'show_label': '(False)', 'placeholder': '"""Enter text and press enter, or upload an image"""', 'container': '(False)'}), "(scale=4, show_label=False, placeholder=\n 'Enter text and press enter, or upload an image', container=False)\n", (4195, 4306), True, 'import gradio as gr\n'), ((4375, 4415), 'gradio.UploadButton', 'gr.UploadButton', (['"""📁"""'], {'file_types': "['txt']"}), "('📁', file_types=['txt'])\n", (4390, 4415), True, 'import gradio as gr\n'), ((4564, 4591), 'gradio.update', 'gr.update', ([], {'interactive': '(True)'}), '(interactive=True)\n', (4573, 4591), True, 'import gradio as gr\n'), ((4101, 4126), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4116, 4126), False, 'import os\n')] |
from langchain.tools import tool
from graph_chain import get_results
@tool("graph-tool")
def graph_tool(query:str) -> str:
"""Tool for returning aggregations of Manager or Company or Industry data or if answer is dependent on relationships between a Company and other objects. Use this tool second and to verify results of vector-graph-tool.
"""
return get_results(query) | [
"langchain.tools.tool"
] | [((71, 89), 'langchain.tools.tool', 'tool', (['"""graph-tool"""'], {}), "('graph-tool')\n", (75, 89), False, 'from langchain.tools import tool\n'), ((366, 384), 'graph_chain.get_results', 'get_results', (['query'], {}), '(query)\n', (377, 384), False, 'from graph_chain import get_results\n')] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.