code
stringlengths
419
102k
apis
sequencelengths
1
10
extract_api
stringlengths
67
54.7k
package io.thomasvitale.langchain4j.spring.openai; import java.util.List; import dev.langchain4j.agent.tool.ToolExecutionRequest; import dev.langchain4j.agent.tool.ToolParameters; import dev.langchain4j.agent.tool.ToolSpecification; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.image.Image; import dev.langchain4j.data.message.AiMessage; import dev.langchain4j.data.message.ChatMessage; import dev.langchain4j.data.message.Content; import dev.langchain4j.data.message.ContentType; import dev.langchain4j.data.message.ImageContent; import dev.langchain4j.data.message.SystemMessage; import dev.langchain4j.data.message.TextContent; import dev.langchain4j.data.message.ToolExecutionResultMessage; import dev.langchain4j.data.message.UserMessage; import dev.langchain4j.model.output.FinishReason; import dev.langchain4j.model.output.TokenUsage; import org.springframework.lang.Nullable; import org.springframework.util.CollectionUtils; import io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionFinishReason; import io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage; import io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionRequest; import io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionResponse; import io.thomasvitale.langchain4j.spring.openai.api.chat.Tool; import io.thomasvitale.langchain4j.spring.openai.api.embedding.EmbeddingResponse; import io.thomasvitale.langchain4j.spring.openai.api.image.ImageGenerationResponse; import io.thomasvitale.langchain4j.spring.openai.api.shared.Usage; import static java.lang.String.format; import static java.util.stream.Collectors.toList; /** * Utility class to convert between OpenAI and Langchain4j types. * <p> * Based on the original LangChain4j implementation. */ public final class OpenAiAdapters { /** * Converts from a list of LangChain4J ChatMessage to a list of OpenAI ChatCompletionMessage. */ public static List<ChatCompletionMessage> toOpenAiMessages(List<ChatMessage> messages) { return messages.stream() .map(OpenAiAdapters::toOpenAiMessage) .toList(); } /** * Converts from LangChain4J ChatMessage to ChatCompletionMessage. */ private static ChatCompletionMessage toOpenAiMessage(ChatMessage message) { if (message instanceof SystemMessage systemMessage) { return ChatCompletionMessage.builder() .role(ChatCompletionMessage.Role.SYSTEM) .content(systemMessage.text()) .build(); } if (message instanceof UserMessage userMessage) { if (userMessage.hasSingleText()) { return ChatCompletionMessage.builder() .role(ChatCompletionMessage.Role.USER) .content(userMessage.text()) .name(userMessage.name()) .build(); } else { return ChatCompletionMessage.builder() .content(userMessage.contents().stream() .map(OpenAiAdapters::toOpenAiContent) .collect(toList())) .name(userMessage.name()) .build(); } } if (message instanceof AiMessage aiMessage) { if (!aiMessage.hasToolExecutionRequests()) { return ChatCompletionMessage.builder() .role(ChatCompletionMessage.Role.ASSISTANT) .content(aiMessage.text()) .build(); } return ChatCompletionMessage.builder() .role(ChatCompletionMessage.Role.ASSISTANT) .toolCalls(toOpenAiToolCalls(aiMessage.toolExecutionRequests())) .build(); } if (message instanceof ToolExecutionResultMessage toolExecutionResultMessage) { return ChatCompletionMessage.builder() .role(ChatCompletionMessage.Role.TOOL) .content(toolExecutionResultMessage.text()) .toolCallId(toolExecutionResultMessage.id()) .build(); } throw new IllegalArgumentException("Unknown message type: " + message.type()); } /** * Converts from LangChain4J Content to OpenAI Content. */ public static ChatCompletionMessage.Content toOpenAiContent(Content content) { if (ContentType.TEXT.equals(content.type())) { var textContent = (TextContent) content; return ChatCompletionMessage.Content.builder() .type(ChatCompletionMessage.ContentType.TEXT) .text(textContent.text()) .build(); } else if (ContentType.IMAGE.equals(content.type())) { var imageContent = (ImageContent) content; return ChatCompletionMessage.Content.builder() .type(ChatCompletionMessage.ContentType.IMAGE_URL) .imageUrl(new ChatCompletionMessage.ImageUrl( toOpenAiUrl(imageContent.image()), toOpenAiDetail(imageContent.detailLevel()))) .build(); } else { throw new IllegalArgumentException("Unknown content type: " + content.type()); } } /** * Converts from LangChain4J Image to OpenAI Image URL. */ private static String toOpenAiUrl(Image image) { if (image.url() != null) { return image.url().toString(); } return format("data:%s;base64,%s", image.mimeType(), image.base64Data()); } /** * Converts from LangChain4J DetailLevel to OpenAI DetailLevel. */ private static String toOpenAiDetail(ImageContent.DetailLevel detailLevel) { if (detailLevel == null) { return null; } return detailLevel.name(); } /** * Converts from a list of LangChain4J ToolExecutionRequest to a list of OpenAI ToolCall. */ private static List<ChatCompletionMessage.ToolCall> toOpenAiToolCalls(List<ToolExecutionRequest> toolExecutionRequests) { return toolExecutionRequests.stream() .map(OpenAiAdapters::toOpenAiToolCall) .toList(); } /** * Converts from LangChain4J ToolExecutionRequest to OpenAI ToolCall. */ private static ChatCompletionMessage.ToolCall toOpenAiToolCall(ToolExecutionRequest toolExecutionRequest) { var functionCall = new ChatCompletionMessage.ChatCompletionFunction( toolExecutionRequest.name(), toolExecutionRequest.arguments()); return new ChatCompletionMessage.ToolCall(toolExecutionRequest.id(), functionCall); } /** * Converts from LangChain4J ToolSpecification to OpenAI ToolChoice. */ public static ChatCompletionRequest.ToolChoice toOpenAiToolChoice(ToolSpecification toolSpecification) { return new ChatCompletionRequest.ToolChoice(toolSpecification.name()); } /** * Converts from a list of LangChain4J ToolSpecification to a list of OpenAI Tool. */ public static List<Tool> toOpenAiTools(List<ToolSpecification> toolSpecifications) { return toolSpecifications.stream() .map(OpenAiAdapters::toOpenAiTool) .toList(); } /** * Converts from LangChain4J ToolSpecification to OpenAI Tool. */ private static Tool toOpenAiTool(ToolSpecification toolSpecification) { var function = Tool.Function.builder() .description(toolSpecification.description()) .name(toolSpecification.name()) .parameters(OpenAiAdapters.toOpenAiParameters(toolSpecification.parameters())) .build(); return new Tool(function); } /** * Converts from LangChain4J ToolParameters to OpenAI Tool.Parameters. */ private static Tool.Parameters toOpenAiParameters(@Nullable ToolParameters toolParameters) { if (toolParameters == null) { return Tool.Parameters.builder().build(); } return Tool.Parameters.builder() .properties(toolParameters.properties()) .required(toolParameters.required()) .build(); } /** * Converts from OpenAI Usage to LangChain4J Usage. */ public static TokenUsage toTokenUsage(Usage usage) { return new TokenUsage(usage.promptTokens(), usage.completionTokens(), usage.totalTokens()); } /** * Converts from OpenAI ChatCompletionResponse to LangChain4J AiMessage. */ public static AiMessage toAiMessage(ChatCompletionResponse response) { var assistantMessage = response.choices().get(0).message(); var toolCalls = assistantMessage.toolCalls(); if (!(CollectionUtils.isEmpty(toolCalls))) { List<ToolExecutionRequest> toolExecutionRequests = toolCalls.stream() .filter(toolCall -> "function".equals(toolCall.type())) .map(OpenAiAdapters::toToolExecutionRequest) .toList(); return AiMessage.from(toolExecutionRequests); } return AiMessage.from((String) assistantMessage.content()); } /** * Converts from OpenAI ToolCall to LangChain4J ToolExecutionRequest. */ private static ToolExecutionRequest toToolExecutionRequest(ChatCompletionMessage.ToolCall toolCall) { return ToolExecutionRequest.builder() .id(toolCall.id()) .name(toolCall.function().name()) .arguments(toolCall.function().arguments()) .build(); } /** * Converts from OpenAI ChatCompletionFinishReason to LangChain4J FinishReason. */ public static FinishReason toFinishReason(ChatCompletionFinishReason finishReason) { return switch (finishReason) { case STOP -> FinishReason.STOP; case LENGTH -> FinishReason.LENGTH; case TOOL_CALLS -> FinishReason.TOOL_EXECUTION; case CONTENT_FILTER -> FinishReason.CONTENT_FILTER; }; } /** * Converts from OpenAI EmbeddingData to LangChain4J Embedding. */ public static Embedding toEmbedding(EmbeddingResponse.EmbeddingData embeddingData) { var floatVectors = embeddingData.embedding().stream() .map(Double::floatValue) .toList(); return Embedding.from(floatVectors); } /** * Converts from OpenAI ImageData to LangChain4J Image. */ public static Image toImage(ImageGenerationResponse.ImageData imageData) { return Image.builder() .url(imageData.url()) .base64Data(imageData.b64Json()) .revisedPrompt(imageData.revisedPrompt()) .build(); } }
[ "dev.langchain4j.agent.tool.ToolExecutionRequest.builder", "dev.langchain4j.data.message.ContentType.TEXT.equals", "dev.langchain4j.data.image.Image.builder", "dev.langchain4j.data.message.ContentType.IMAGE.equals" ]
[((2434, 2606), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((2434, 2577), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((2434, 2526), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((2747, 2977), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((2747, 2944), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((2747, 2894), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((2747, 2841), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3023, 3324), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3023, 3291), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3023, 3241), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3485, 3668), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3485, 3635), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3485, 3584), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3704, 3913), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3704, 3884), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((3704, 3799), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((4033, 4281), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((4033, 4252), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((4033, 4187), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((4033, 4123), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.builder'), ((4559, 4598), 'dev.langchain4j.data.message.ContentType.TEXT.equals'), ((4674, 4854), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4674, 4825), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4674, 4779), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4674, 4713), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4875, 4915), 'dev.langchain4j.data.message.ContentType.IMAGE.equals'), ((4993, 5334), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4993, 5305), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4993, 5103), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((4993, 5032), 'io.thomasvitale.langchain4j.spring.openai.api.chat.ChatCompletionMessage.Content.builder'), ((7675, 7928), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Function.builder'), ((7675, 7903), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Function.builder'), ((7675, 7808), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Function.builder'), ((7675, 7760), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Function.builder'), ((7675, 7698), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Function.builder'), ((8217, 8250), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Parameters.builder'), ((8217, 8242), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Parameters.builder'), ((8277, 8437), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Parameters.builder'), ((8277, 8412), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Parameters.builder'), ((8277, 8359), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Parameters.builder'), ((8277, 8302), 'io.thomasvitale.langchain4j.spring.openai.api.chat.Tool.Parameters.builder'), ((9635, 9835), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder'), ((9635, 9810), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder'), ((9635, 9750), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder'), ((9635, 9700), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder'), ((10831, 11016), 'dev.langchain4j.data.image.Image.builder'), ((10831, 10991), 'dev.langchain4j.data.image.Image.builder'), ((10831, 10933), 'dev.langchain4j.data.image.Image.builder'), ((10831, 10884), 'dev.langchain4j.data.image.Image.builder')]
package org.jugph; import dev.langchain4j.agent.tool.Tool; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.UrlDocumentLoader; import dev.langchain4j.data.document.transformer.HtmlTextExtractor; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import dev.langchain4j.service.UserMessage; import static java.time.Duration.ofSeconds; public class JavaNewsRetrieverToolsExample { static class JavaNewsRetriever { @Tool("Retrieves the latest java news. Limit to the 3 latest news") String retrieveJavaNews() { Document javaNews = UrlDocumentLoader.load("https://dev.java/news/"); Document transformedJavaNews = new HtmlTextExtractor(".container", null, true) .transform(javaNews); return transformedJavaNews.text().replaceAll("\n", " "); } } interface Assistant { String chat(String userMessage); } interface NewsPrettierAssistant { @UserMessage("Given a jumbled java news {{it}}, summarize each, and list down them in numerical format, latest to oldest. " + "Include details such as url and date announced.") String prettify(String userMessage); } public static void main(String[] args) { var model = OpenAiChatModel.builder() .apiKey(System.getenv("OPENAI_API_KEY")) .timeout(ofSeconds(120)) .build(); var assistant = AiServices.builder(Assistant.class) .chatLanguageModel(model) .tools(new JavaNewsRetriever()) .chatMemory(MessageWindowChatMemory.withMaxMessages(10)) .build(); var newsPrettierAssistant = AiServices.builder(NewsPrettierAssistant.class) .chatLanguageModel(model) .build(); var question = "What are latest java news?"; var answer = assistant.chat(question); var prettiedAnswer = newsPrettierAssistant.prettify(answer); System.out.println("\n=================================\n"+prettiedAnswer); } }
[ "dev.langchain4j.service.AiServices.builder", "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((1405, 1553), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((1405, 1528), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((1405, 1487), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((1580, 1803), 'dev.langchain4j.service.AiServices.builder'), ((1580, 1778), 'dev.langchain4j.service.AiServices.builder'), ((1580, 1705), 'dev.langchain4j.service.AiServices.builder'), ((1580, 1657), 'dev.langchain4j.service.AiServices.builder'), ((1842, 1956), 'dev.langchain4j.service.AiServices.builder'), ((1842, 1931), 'dev.langchain4j.service.AiServices.builder')]
package io.quarkiverse.langchain4j.sample.chatbot; import static dev.langchain4j.data.document.splitter.DocumentSplitters.recursive; import java.io.File; import java.util.List; import jakarta.enterprise.context.ApplicationScoped; import jakarta.enterprise.event.Observes; import jakarta.inject.Inject; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.loader.FileSystemDocumentLoader; import dev.langchain4j.data.document.parser.TextDocumentParser; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import io.quarkus.logging.Log; import io.quarkus.runtime.StartupEvent; @ApplicationScoped public class IngestorExample { /** * The embedding store (the database). * The bean is provided by the quarkus-langchain4j-redis extension. */ @Inject EmbeddingStore store; /** * The embedding model (how the vector of a document is computed). * The bean is provided by the LLM (like openai) extension. */ @Inject EmbeddingModel embeddingModel; public void ingest(@Observes StartupEvent event) { Log.infof("Ingesting documents..."); List<Document> documents = FileSystemDocumentLoader.loadDocuments(new File("src/main/resources/catalog").toPath(), new TextDocumentParser()); var ingestor = EmbeddingStoreIngestor.builder() .embeddingStore(store) .embeddingModel(embeddingModel) .documentSplitter(recursive(500, 0)) .build(); ingestor.ingest(documents); Log.infof("Ingested %d documents.%n", documents.size()); } }
[ "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder" ]
[((1441, 1638), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1441, 1613), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1441, 1560), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1441, 1512), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder')]
package com.honvay.flychat.langchain.llama.model; import dev.ai4j.openai4j.chat.*; import dev.langchain4j.agent.tool.ToolExecutionRequest; import dev.langchain4j.agent.tool.ToolParameters; import dev.langchain4j.agent.tool.ToolSpecification; import dev.langchain4j.data.message.AiMessage; import dev.langchain4j.data.message.ChatMessage; import dev.langchain4j.data.message.SystemMessage; import dev.langchain4j.data.message.ToolExecutionResultMessage; import java.util.Collection; import java.util.List; import java.util.stream.Collectors; import static dev.ai4j.openai4j.chat.Role.*; import static dev.langchain4j.data.message.AiMessage.aiMessage; public class OpenAiConverters { static List<Message> toOpenAiMessages(List<ChatMessage> messages) { return messages.stream() .map(OpenAiConverters::toOpenAiMessage) .collect(Collectors.toList()); } static Message toOpenAiMessage(ChatMessage message) { return Message.builder() .role(roleFrom(message)) .name(nameFrom(message)) .content(message.text()) .functionCall(functionCallFrom(message)) .build(); } private static String nameFrom(ChatMessage message) { if (message instanceof ToolExecutionResultMessage) { return ((ToolExecutionResultMessage) message).toolName(); } return null; } private static FunctionCall functionCallFrom(ChatMessage message) { if (message instanceof AiMessage) { AiMessage aiMessage = (AiMessage) message; if (aiMessage.toolExecutionRequest() != null) { return FunctionCall.builder() .name(aiMessage.toolExecutionRequest().name()) .arguments(aiMessage.toolExecutionRequest().arguments()) .build(); } } return null; } static Role roleFrom(ChatMessage message) { if (message instanceof AiMessage) { return Role.ASSISTANT; } else if (message instanceof ToolExecutionResultMessage) { return Role.FUNCTION; } else if (message instanceof SystemMessage) { return Role.SYSTEM; } else { return Role.USER; } } static List<Function> toFunctions(Collection<ToolSpecification> toolSpecifications) { if (toolSpecifications == null) { return null; } return toolSpecifications.stream() .map(OpenAiConverters::toFunction) .collect(Collectors.toList()); } private static Function toFunction(ToolSpecification toolSpecification) { return Function.builder() .name(toolSpecification.name()) .description(toolSpecification.description()) .parameters(toOpenAiParameters(toolSpecification.parameters())) .build(); } private static dev.ai4j.openai4j.chat.Parameters toOpenAiParameters(ToolParameters toolParameters) { if (toolParameters == null) { return dev.ai4j.openai4j.chat.Parameters.builder().build(); } return dev.ai4j.openai4j.chat.Parameters.builder() .properties(toolParameters.properties()) .required(toolParameters.required()) .build(); } static AiMessage aiMessageFrom(ChatCompletionResponse response) { return AiMessage.aiMessage(response.choices().get(0).delta().content()); } }
[ "dev.langchain4j.data.message.AiMessage.aiMessage.toolExecutionRequest" ]
[((1743, 1782), 'dev.langchain4j.data.message.AiMessage.aiMessage.toolExecutionRequest'), ((1819, 1863), 'dev.langchain4j.data.message.AiMessage.aiMessage.toolExecutionRequest')]
package ma.enset.projet.service; import dev.langchain4j.chain.ConversationalRetrievalChain; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.memory.ChatMemory; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore; import ma.enset.projet.Dao.DocumentImp; import ma.enset.projet.Dao.VectorBd; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Path; public class ConversationBuild { private final ChatMemory customChatMemory = MessageWindowChatMemory.withMaxMessages(20); private DocumentImp document; private VectorBd vectorBd = new VectorBd() ; public void setVectorBd(VectorBd vectorBd) { this.vectorBd = vectorBd; } public ConversationBuild() { } public ChatMemory getCustomChatMemory() { return customChatMemory; } public DocumentImp getDocument() { return document; } public void setDocument(DocumentImp document) { this.document = document; } public VectorBd getVectorBd() { return vectorBd; } public int getMaxResults() { return maxResults; } public Double getMinScore() { return minScore; } private final int maxResults = 4; private final Double minScore = 0.7; public EmbeddingStoreRetriever retriever(){ ChromaEmbeddingStore chromaStore = vectorBd.getConnection(); EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); return new EmbeddingStoreRetriever(chromaStore, embeddingModel, maxResults, minScore); } public void build(String path) throws IOException { document = new DocumentImp(path); String txtFilePath = document.setTxtFilePath(path); String txtContent = Files.readString(Path.of(txtFilePath)); DocumentSplitter lineSplitter = document.SplitDocument(); Document doc = document.Document(txtContent); // EmbeddingStoreIngestor.builder() // .documentSplitter(lineSplitter) // .embeddingModel(new AllMiniLmL6V2EmbeddingModel()) // .embeddingStore(vectorBd.getConnection()) // .build() // .ingest(doc); } public ConversationalRetrievalChain chain(String API){ return ConversationalRetrievalChain.builder() .chatLanguageModel(OpenAiChatModel.withApiKey(API)) .chatMemory(customChatMemory) .promptTemplate(document.template()) .retriever(retriever()) .build(); } }
[ "dev.langchain4j.chain.ConversationalRetrievalChain.builder" ]
[((2701, 2971), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((2701, 2946), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((2701, 2906), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((2701, 2853), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((2701, 2807), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder')]
package com.datawise.bertdocqa.config; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore; import dev.langchain4j.data.segment.TextSegment; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class ElasticsearchConfig { @Value("${elasticsearch.server.url}") private String serverUrl; @Value("${elasticsearch.index.name}") private String indexName; @Value("${elasticsearch.dimension}") private int dimension; @Bean public EmbeddingStore<TextSegment> embeddingStore() { return ElasticsearchEmbeddingStore.builder() .serverUrl(serverUrl) .indexName(indexName) .dimension(dimension) .build(); } }
[ "dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder" ]
[((747, 923), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((747, 898), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((747, 860), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((747, 822), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder')]
import dev.langchain4j.chain.ConversationalRetrievalChain; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentParser; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.data.document.loader.FileSystemDocumentLoader; import dev.langchain4j.data.document.parser.TextDocumentParser; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.rag.DefaultRetrievalAugmentor; import dev.langchain4j.rag.RetrievalAugmentor; import dev.langchain4j.rag.content.retriever.ContentRetriever; import dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever; import dev.langchain4j.rag.query.transformer.CompressingQueryTransformer; import dev.langchain4j.rag.query.transformer.QueryTransformer; import dev.langchain4j.service.AiServices; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import java.net.URISyntaxException; import java.net.URL; import java.nio.file.Path; import java.nio.file.Paths; import java.util.List; import java.util.Scanner; public class _02_Advanced_RAG_with_Query_Compression { /** * Please refer to previous examples for basic context. * <p> * Advanced RAG in LangChain4j is described here: https://github.com/langchain4j/langchain4j/pull/538 * <p> * This example illustrates the implementation of a more sophisticated RAG application * using a technique known as "query compression". * Often, a query from a user is a follow-up question that refers back to earlier parts of the conversation * and lacks all the necessary details for effective retrieval. * For example, consider this conversation: * User: What is the legacy of John Doe? * AI: John Doe was a... * User: When was he born? * <p> * In such scenarios, using a basic RAG approach with a query like "When was he born?" * would likely fail to find articles about John Doe, as it doesn't contain "John Doe" in the query. * Query compression involves taking the user's query and the preceding conversation, then asking the LLM * to "compress" this into a single, self-contained query. * The LLM should generate a query like "When was John Doe born?". * This method adds a bit of latency and cost but significantly enhances the quality of the RAG process. * It's worth noting that the LLM used for compression doesn't have to be the same as the one * used for conversation. For instance, you might use a smaller local model trained for summarization. * <p> * In this example, we will continue using {@link AiServices}, * but the same principles apply to {@link ConversationalRetrievalChain}, or you can develop your custom RAG flow. */ public static void main(String[] args) { Biographer biographer = createBiographer(); // First, ask "What is the legacy of John Doe?" // Then, ask "When was he born?" // Now, review the logs: // The first query was not compressed as there was no preceding context to compress. // The second query, however, was compressed into something like "When was John Doe born?" try (Scanner scanner = new Scanner(System.in)) { while (true) { System.out.println("=================================================="); System.out.print("User: "); String userQuery = scanner.nextLine(); System.out.println("=================================================="); if ("exit".equalsIgnoreCase(userQuery)) { break; } String biographerAnswer = biographer.answer(userQuery); System.out.println("=================================================="); System.out.println("Biographer: " + biographerAnswer); } } } private static Biographer createBiographer() { // Check _01_Naive_RAG if you need more details on what is going on here ChatLanguageModel chatModel = OpenAiChatModel.builder() .apiKey("demo") .build(); EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); Path documentPath = toPath("biography-of-john-doe.txt"); EmbeddingStore<TextSegment> embeddingStore = embed(documentPath, embeddingModel); // We will create a CompressingQueryTransformer, which is responsible for compressing // the user's query and the preceding conversation into a single, stand-alone query. // This should significantly improve the quality of the retrieval process. QueryTransformer queryTransformer = new CompressingQueryTransformer(chatModel); ContentRetriever contentRetriever = EmbeddingStoreContentRetriever.builder() .embeddingStore(embeddingStore) .embeddingModel(embeddingModel) .maxResults(2) .minScore(0.6) .build(); // The RetrievalAugmentor serves as the entry point into the RAG flow in LangChain4j. // It can be configured to customize the RAG behavior according to your requirements. // In subsequent examples, we will explore more customizations. RetrievalAugmentor retrievalAugmentor = DefaultRetrievalAugmentor.builder() .queryTransformer(queryTransformer) .contentRetriever(contentRetriever) .build(); return AiServices.builder(Biographer.class) .chatLanguageModel(chatModel) .retrievalAugmentor(retrievalAugmentor) .chatMemory(MessageWindowChatMemory.withMaxMessages(10)) .build(); } private static EmbeddingStore<TextSegment> embed(Path documentPath, EmbeddingModel embeddingModel) { DocumentParser documentParser = new TextDocumentParser(); Document document = FileSystemDocumentLoader.loadDocument(documentPath, documentParser); DocumentSplitter splitter = DocumentSplitters.recursive(300, 0); List<TextSegment> segments = splitter.split(document); List<Embedding> embeddings = embeddingModel.embedAll(segments).content(); EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); embeddingStore.addAll(embeddings, segments); return embeddingStore; } interface Biographer { String answer(String query); } private static Path toPath(String fileName) { try { URL fileUrl = _02_Advanced_RAG_with_Query_Compression.class.getResource(fileName); return Paths.get(fileUrl.toURI()); } catch (URISyntaxException e) { throw new RuntimeException(e); } } }
[ "dev.langchain4j.service.AiServices.builder", "dev.langchain4j.rag.DefaultRetrievalAugmentor.builder", "dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever.builder", "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((4539, 4621), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((4539, 4596), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((5259, 5482), 'dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever.builder'), ((5259, 5457), 'dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever.builder'), ((5259, 5426), 'dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever.builder'), ((5259, 5395), 'dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever.builder'), ((5259, 5347), 'dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever.builder'), ((5793, 5957), 'dev.langchain4j.rag.DefaultRetrievalAugmentor.builder'), ((5793, 5932), 'dev.langchain4j.rag.DefaultRetrievalAugmentor.builder'), ((5793, 5880), 'dev.langchain4j.rag.DefaultRetrievalAugmentor.builder'), ((5975, 6211), 'dev.langchain4j.service.AiServices.builder'), ((5975, 6186), 'dev.langchain4j.service.AiServices.builder'), ((5975, 6113), 'dev.langchain4j.service.AiServices.builder'), ((5975, 6057), 'dev.langchain4j.service.AiServices.builder')]
package _Engenharia; import dev.langchain4j.chain.ConversationalRetrievalChain; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.message.AiMessage; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.memory.ChatMemory; import dev.langchain4j.memory.chat.TokenWindowChatMemory; import dev.langchain4j.model.chat.ChatLanguageModel; //import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel; import dev.langchain4j.model.input.Prompt; import dev.langchain4j.model.input.PromptTemplate; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.model.openai.OpenAiTokenizer; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.store.embedding.EmbeddingMatch; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import java.net.URISyntaxException; import java.net.URL; import java.nio.file.Path; import java.nio.file.Paths; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; import static dev.langchain4j.data.document.FileSystemDocumentLoader.loadDocument; import static dev.langchain4j.data.message.UserMessage.userMessage; import static dev.langchain4j.model.openai.OpenAiModelName.GPT_3_5_TURBO; import static java.util.stream.Collectors.joining; import static java.time.Duration.ofSeconds; import assistente.ApiKeys; public class AssistenteMemoryDocument { private static final String vetModel = "sentence-transformers/all-MiniLM-L6-v2"; private static final ChatMemory chatMemory = TokenWindowChatMemory.withMaxTokens(300, new OpenAiTokenizer(GPT_3_5_TURBO)); public String fazerPergunta(String pergunta) throws Exception { //ChatMemoria //ChatLanguageModel model = OpenAiChatModel.withApiKey(ApiKeys.OPENAI_API_KEY); //Chat Language Model Builder OpenAi ChatLanguageModel chatLanguageModel = OpenAiChatModel.builder() .apiKey(ApiKeys.OPENAI_API_KEY) .temperature(0.0) .timeout(ofSeconds(900)) .build(); //EmbeddingModel Builder HuggingFace EmbeddingModel embeddingModel = HuggingFaceEmbeddingModel.builder() .accessToken(ApiKeys.HF_API_KEY) .modelId(vetModel) .waitForModel(true) .timeout(ofSeconds(60)) .build(); EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); //"Cosumo" do texto do arquivo EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() .documentSplitter(DocumentSplitters.recursive(500, 0)) .embeddingModel(embeddingModel) .embeddingStore(embeddingStore) .build(); Document document = loadDocument(toPath("template.txt")); ingestor.ingest(document); ConversationalRetrievalChain chain = ConversationalRetrievalChain.builder() .chatLanguageModel(chatLanguageModel) .retriever(EmbeddingStoreRetriever.from(embeddingStore, embeddingModel)) .chatMemory(chatMemory) // you can override default chat memory // .promptTemplate() // you can override default prompt template .build(); chatMemory.add(userMessage(pergunta)); return chain.execute(pergunta); } //Procura arquivo private static Path toPath(String fileName) { try { URL fileUrl = AssistenteMemoryDocument.class.getResource(fileName); return Paths.get(fileUrl.toURI()); } catch (URISyntaxException e) { throw new RuntimeException(e); } } }
[ "dev.langchain4j.chain.ConversationalRetrievalChain.builder", "dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel.builder", "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder", "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((2335, 2508), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2335, 2483), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2335, 2442), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2335, 2408), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2615, 2835), 'dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel.builder'), ((2615, 2810), 'dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel.builder'), ((2615, 2770), 'dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel.builder'), ((2615, 2734), 'dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel.builder'), ((2615, 2699), 'dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel.builder'), ((3022, 3246), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3022, 3221), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3022, 3173), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3022, 3125), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3396, 3763), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((3396, 3617), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((3396, 3577), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((3396, 3488), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder')]
package io.quarkiverse.langchain4j.sample.chatbot; import static dev.langchain4j.data.document.splitter.DocumentSplitters.recursive; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.Reader; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import jakarta.enterprise.context.ApplicationScoped; import jakarta.enterprise.event.Observes; import jakarta.inject.Inject; import org.apache.commons.csv.CSVFormat; import org.apache.commons.csv.CSVRecord; import org.eclipse.microprofile.config.inject.ConfigProperty; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.Metadata; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import io.quarkiverse.langchain4j.redis.RedisEmbeddingStore; import io.quarkus.runtime.StartupEvent; @ApplicationScoped public class CsvIngestorExample { /** * The embedding store (the database). * The bean is provided by the quarkus-langchain4j-redis extension. */ @Inject RedisEmbeddingStore store; /** * The embedding model (how the vector of a document is computed). * The bean is provided by the LLM (like openai) extension. */ @Inject EmbeddingModel embeddingModel; @ConfigProperty(name = "csv.file") File file; @ConfigProperty(name = "csv.headers") List<String> headers; public void ingest(@Observes StartupEvent event) throws IOException { CSVFormat csvFormat = CSVFormat.DEFAULT.builder() .setHeader(headers.toArray(new String[0])) .setSkipHeaderRecord(true) .build(); List<Document> documents = new ArrayList<>(); try (Reader reader = new FileReader(file)) { // Generate on document per row, the document is using the following syntax: // key1: value1 // key2: value2 Iterable<CSVRecord> records = csvFormat.parse(reader); int i = 1; for (CSVRecord record : records) { Map<String, String> metadata = new HashMap<>(); metadata.put("source", file.getAbsolutePath()); metadata.put("row", String.valueOf(i++)); StringBuilder content = new StringBuilder(); for (String header : headers) { metadata.put(header, record.get(header)); // Include all headers in the metadata. content.append(header).append(": ").append(record.get(header)).append("\n"); } documents.add(new Document(content.toString(), Metadata.from(metadata))); } var ingestor = EmbeddingStoreIngestor.builder() .embeddingStore(store) .embeddingModel(embeddingModel) .documentSplitter(recursive(300, 0)) .build(); ingestor.ingest(documents); System.out.printf("Ingested %d documents.%n", documents.size()); } } }
[ "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder" ]
[((1575, 1729), 'org.apache.commons.csv.CSVFormat.DEFAULT.builder'), ((1575, 1704), 'org.apache.commons.csv.CSVFormat.DEFAULT.builder'), ((1575, 1661), 'org.apache.commons.csv.CSVFormat.DEFAULT.builder'), ((1575, 1602), 'org.apache.commons.csv.CSVFormat.DEFAULT.builder'), ((2766, 2979), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((2766, 2950), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((2766, 2893), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((2766, 2841), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder')]
package org.goafabric.dbagent.ai; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.context.annotation.Profile; import static java.time.Duration.ofSeconds; @Configuration @Profile("openai") public class OpenAiConfiguration { @Bean ChatLanguageModel chatModelOpenAi(DatabaseTool databaseTool) { return OpenAiChatModel.builder().apiKey("demo") .modelName("gpt-3.5-turbo") .timeout(ofSeconds(30)).temperature(0.0) .build(); } @Bean DatabaseAgent databaseAgent(ChatLanguageModel chatLanguageModel, DatabaseTool databaseTool) { return AiServices.builder(DatabaseAgent.class) .chatLanguageModel(chatLanguageModel) .chatMemory(MessageWindowChatMemory.withMaxMessages(20)) .tools(databaseTool) .build(); } }
[ "dev.langchain4j.service.AiServices.builder", "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((620, 786), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((620, 761), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((620, 744), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((620, 704), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((620, 660), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((918, 1146), 'dev.langchain4j.service.AiServices.builder'), ((918, 1121), 'dev.langchain4j.service.AiServices.builder'), ((918, 1084), 'dev.langchain4j.service.AiServices.builder'), ((918, 1011), 'dev.langchain4j.service.AiServices.builder')]
package com.elec5620.studyhelper.api.llm; import io.github.cdimascio.dotenv.Dotenv; import java.net.URL; import java.util.Scanner; import com.elec5620.studyhelper.core.HelperSystem; import dev.langchain4j.chain.ConversationalRetrievalChain; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import java.io.File; import java.io.IOException; import java.net.MalformedURLException; import java.net.URISyntaxException; import java.nio.file.Path; import java.nio.file.Paths; import java.time.Duration; import static dev.langchain4j.data.document.FileSystemDocumentLoader.loadDocument; public class ChatBot { public static String response(String filePath, String request) { Dotenv dotenv = Dotenv.load(); String token = dotenv.get("OPENAI_API_KEY"); System.out.println("file path: " + filePath); try { EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); OpenAiChatModel model = OpenAiChatModel.builder().apiKey(token).timeout(Duration.ofMinutes(1)).build(); EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() .documentSplitter(DocumentSplitters.recursive(500, 0)) .embeddingModel(embeddingModel) .embeddingStore(embeddingStore) .build(); Document document = loadDocument(toPath(filePath)); ingestor.ingest(document); ConversationalRetrievalChain chain = ConversationalRetrievalChain.builder() .chatLanguageModel(model) .retriever(EmbeddingStoreRetriever.from(embeddingStore, embeddingModel)) // .chatMemory() // you can override default chat memory // .promptTemplate() // you can override default prompt template .build(); String answer = chain.execute(request); System.out.println(answer); // answer based on given information answer = answer.replace("\\n", System.lineSeparator()); return answer; } catch (Exception e) { return e.getMessage(); } } public static void main(String[] args) { Dotenv dotenv = Dotenv.load(); String token = dotenv.get("OPENAI_API_KEY"); try (Scanner myObj = new Scanner(System.in)) { System.out.println("Enter question to ask:"); String question = myObj.nextLine(); EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() .documentSplitter(DocumentSplitters.recursive(500, 0)) .embeddingModel(embeddingModel) .embeddingStore(embeddingStore) .build(); Document document = loadDocument(toPath("example.txt")); ingestor.ingest(document); ConversationalRetrievalChain chain = ConversationalRetrievalChain.builder() .chatLanguageModel(OpenAiChatModel.withApiKey(token)) .retriever(EmbeddingStoreRetriever.from(embeddingStore, embeddingModel)) // .chatMemory() // you can override default chat memory // .promptTemplate() // you can override default prompt template .build(); String answer = chain.execute(question); System.out.println(answer); // answer based on given information } } private static Path toPath(String fileName) { try { Path filePath = Paths.get(fileName); URL fileURL = filePath.toUri().toURL(); return Paths.get(fileURL.toURI()); } catch (URISyntaxException e) { throw new RuntimeException(e); } catch (MalformedURLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return null; } }
[ "dev.langchain4j.chain.ConversationalRetrievalChain.builder", "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder", "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((1554, 1632), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((1554, 1624), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((1554, 1593), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((1788, 2060), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1788, 2023), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1788, 1963), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1788, 1903), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((2248, 2656), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((2248, 2441), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((2248, 2340), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((3503, 3759), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3503, 3726), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3503, 3670), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3503, 3614), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((3940, 4356), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((3940, 4153), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder'), ((3940, 4056), 'dev.langchain4j.chain.ConversationalRetrievalChain.builder')]
package org.agoncal.fascicle.langchain4j.vectordb.cassandra; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.store.embedding.EmbeddingMatch; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.cassandra.CassandraEmbeddingStore; import java.util.List; // tag::adocSkip[] /** * @author Antonio Goncalves * http://www.antoniogoncalves.org * -- */ // end::adocSkip[] public class MusicianService { public static void main(String[] args) { MusicianService musicianService = new MusicianService(); musicianService.useQdrantToStoreEmbeddings(); } public void useQdrantToStoreEmbeddings() { System.out.println("### useQdrantToStoreEmbeddings"); // tag::adocSnippet[] EmbeddingStore<TextSegment> embeddingStore = CassandraEmbeddingStore.builder() .port(6334) .build(); EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); TextSegment segment1 = TextSegment.from("I've been to France twice."); Embedding embedding1 = embeddingModel.embed(segment1).content(); embeddingStore.add(embedding1, segment1); TextSegment segment2 = TextSegment.from("New Delhi is the capital of India."); Embedding embedding2 = embeddingModel.embed(segment2).content(); embeddingStore.add(embedding2, segment2); Embedding queryEmbedding = embeddingModel.embed("Did you ever travel abroad?").content(); List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(queryEmbedding, 1); EmbeddingMatch<TextSegment> embeddingMatch = relevant.get(0); System.out.println(embeddingMatch.score()); System.out.println(embeddingMatch.embedded().text()); // end::adocSnippet[] } }
[ "dev.langchain4j.store.embedding.cassandra.CassandraEmbeddingStore.builder" ]
[((986, 1056), 'dev.langchain4j.store.embedding.cassandra.CassandraEmbeddingStore.builder'), ((986, 1039), 'dev.langchain4j.store.embedding.cassandra.CassandraEmbeddingStore.builder')]
package embedding.model; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.output.Response; import dev.langchain4j.model.vertexai.VertexAiEmbeddingModel; public class VertexAiEmbeddingModelExample { public static void main(String[] args) { EmbeddingModel embeddingModel = VertexAiEmbeddingModel.builder() .endpoint("us-central1-aiplatform.googleapis.com:443") .project("langchain4j") .location("us-central1") .publisher("google") .modelName("textembedding-gecko@001") .build(); Response<Embedding> response = embeddingModel.embed("Hello, how are you?"); System.out.println(response); } }
[ "dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder" ]
[((371, 671), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 646), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 592), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 555), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 514), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 474), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder')]
package com.example; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.openai.OpenAiEmbeddingModel; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore; public class Chroma { public static final EmbeddingStore<TextSegment> embeddingStore = ChromaEmbeddingStore.builder() .baseUrl("http://localhost:8000/") .collectionName("my-collection") .build(); public static final EmbeddingModel embeddingModel = OpenAiEmbeddingModel.builder() .apiKey("API_KEY") .modelName("text-embedding-ada-002") .build(); }
[ "dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore.builder", "dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder" ]
[((412, 579), 'dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore.builder'), ((412, 550), 'dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore.builder'), ((412, 497), 'dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore.builder'), ((650, 805), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((650, 776), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((650, 719), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder')]
package io.quarkiverse.langchain4j.deployment; import static dev.langchain4j.agent.tool.JsonSchemaProperty.ARRAY; import static dev.langchain4j.agent.tool.JsonSchemaProperty.BOOLEAN; import static dev.langchain4j.agent.tool.JsonSchemaProperty.INTEGER; import static dev.langchain4j.agent.tool.JsonSchemaProperty.NUMBER; import static dev.langchain4j.agent.tool.JsonSchemaProperty.OBJECT; import static dev.langchain4j.agent.tool.JsonSchemaProperty.STRING; import static dev.langchain4j.agent.tool.JsonSchemaProperty.description; import static dev.langchain4j.agent.tool.JsonSchemaProperty.enums; import static java.util.Arrays.stream; import static java.util.stream.Collectors.toList; import java.lang.reflect.Modifier; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Objects; import java.util.function.BiFunction; import java.util.stream.Collectors; import org.jboss.jandex.AnnotationInstance; import org.jboss.jandex.AnnotationTarget; import org.jboss.jandex.AnnotationValue; import org.jboss.jandex.ClassInfo; import org.jboss.jandex.DotName; import org.jboss.jandex.IndexView; import org.jboss.jandex.MethodInfo; import org.jboss.jandex.MethodParameterInfo; import org.jboss.jandex.Type; import org.jboss.logging.Logger; import org.objectweb.asm.ClassVisitor; import org.objectweb.asm.Opcodes; import dev.langchain4j.agent.tool.JsonSchemaProperty; import dev.langchain4j.agent.tool.Tool; import dev.langchain4j.agent.tool.ToolMemoryId; import dev.langchain4j.agent.tool.ToolParameters; import dev.langchain4j.agent.tool.ToolSpecification; import io.quarkiverse.langchain4j.runtime.ToolsRecorder; import io.quarkiverse.langchain4j.runtime.prompt.Mappable; import io.quarkiverse.langchain4j.runtime.tool.ToolInvoker; import io.quarkiverse.langchain4j.runtime.tool.ToolMethodCreateInfo; import io.quarkiverse.langchain4j.runtime.tool.ToolParametersObjectSubstitution; import io.quarkiverse.langchain4j.runtime.tool.ToolSpanWrapper; import io.quarkiverse.langchain4j.runtime.tool.ToolSpecificationObjectSubstitution; import io.quarkus.arc.deployment.AdditionalBeanBuildItem; import io.quarkus.arc.deployment.ValidationPhaseBuildItem; import io.quarkus.deployment.Capabilities; import io.quarkus.deployment.Capability; import io.quarkus.deployment.GeneratedClassGizmoAdaptor; import io.quarkus.deployment.annotations.BuildProducer; import io.quarkus.deployment.annotations.BuildStep; import io.quarkus.deployment.annotations.ExecutionTime; import io.quarkus.deployment.annotations.Record; import io.quarkus.deployment.builditem.BytecodeTransformerBuildItem; import io.quarkus.deployment.builditem.CombinedIndexBuildItem; import io.quarkus.deployment.builditem.GeneratedClassBuildItem; import io.quarkus.deployment.builditem.nativeimage.ReflectiveClassBuildItem; import io.quarkus.deployment.recording.RecorderContext; import io.quarkus.gizmo.ClassCreator; import io.quarkus.gizmo.ClassOutput; import io.quarkus.gizmo.ClassTransformer; import io.quarkus.gizmo.FieldDescriptor; import io.quarkus.gizmo.MethodCreator; import io.quarkus.gizmo.MethodDescriptor; import io.quarkus.gizmo.ResultHandle; public class ToolProcessor { private static final Logger log = Logger.getLogger(AiServicesProcessor.class); private static final DotName TOOL = DotName.createSimple(Tool.class); private static final DotName TOOL_MEMORY_ID = DotName.createSimple(ToolMemoryId.class); private static final DotName P = DotName.createSimple(dev.langchain4j.agent.tool.P.class); private static final MethodDescriptor METHOD_METADATA_CTOR = MethodDescriptor .ofConstructor(ToolInvoker.MethodMetadata.class, boolean.class, Map.class, Integer.class); private static final MethodDescriptor HASHMAP_CTOR = MethodDescriptor.ofConstructor(HashMap.class); public static final MethodDescriptor MAP_PUT = MethodDescriptor.ofMethod(Map.class, "put", Object.class, Object.class, Object.class); @BuildStep public void telemetry(Capabilities capabilities, BuildProducer<AdditionalBeanBuildItem> additionalBeanProducer) { var addOpenTelemetrySpan = capabilities.isPresent(Capability.OPENTELEMETRY_TRACER); if (addOpenTelemetrySpan) { additionalBeanProducer.produce(AdditionalBeanBuildItem.builder().addBeanClass(ToolSpanWrapper.class).build()); } } @BuildStep @Record(ExecutionTime.STATIC_INIT) public void handleTools(CombinedIndexBuildItem indexBuildItem, ToolsRecorder recorder, RecorderContext recorderContext, BuildProducer<BytecodeTransformerBuildItem> transformerProducer, BuildProducer<GeneratedClassBuildItem> generatedClassProducer, BuildProducer<ReflectiveClassBuildItem> reflectiveClassProducer, BuildProducer<ValidationPhaseBuildItem.ValidationErrorBuildItem> validation, BuildProducer<ToolsMetadataBuildItem> toolsMetadataProducer) { recorderContext.registerSubstitution(ToolSpecification.class, ToolSpecificationObjectSubstitution.Serialized.class, ToolSpecificationObjectSubstitution.class); recorderContext.registerSubstitution(ToolParameters.class, ToolParametersObjectSubstitution.Serialized.class, ToolParametersObjectSubstitution.class); IndexView index = indexBuildItem.getIndex(); Collection<AnnotationInstance> instances = index.getAnnotations(TOOL); Map<String, List<ToolMethodCreateInfo>> metadata = new HashMap<>(); List<String> generatedInvokerClasses = new ArrayList<>(); List<String> generatedArgumentMapperClasses = new ArrayList<>(); if (!instances.isEmpty()) { ClassOutput classOutput = new GeneratedClassGizmoAdaptor(generatedClassProducer, true); Map<DotName, List<MethodInfo>> methodsPerClass = new HashMap<>(); for (AnnotationInstance instance : instances) { if (instance.target().kind() != AnnotationTarget.Kind.METHOD) { continue; } MethodInfo methodInfo = instance.target().asMethod(); ClassInfo classInfo = methodInfo.declaringClass(); if (classInfo.isInterface() || Modifier.isAbstract(classInfo.flags())) { validation.produce( new ValidationPhaseBuildItem.ValidationErrorBuildItem(new IllegalStateException( "@Tool is only supported on non-abstract classes, all other usages are ignored. Offending method is '" + methodInfo.declaringClass().name().toString() + "#" + methodInfo.name() + "'"))); continue; } DotName declaringClassName = classInfo.name(); methodsPerClass.computeIfAbsent(declaringClassName, (n -> new ArrayList<>())).add(methodInfo); } boolean validationErrorFound = false; Map<String, ClassInfo> discoveredTools = new HashMap<>(); for (var entry : methodsPerClass.entrySet()) { DotName className = entry.getKey(); List<MethodInfo> toolMethods = entry.getValue(); List<MethodInfo> privateMethods = new ArrayList<>(); for (MethodInfo toolMethod : toolMethods) { // Validation // - Must not have another tool with the same method name // - Must have at least one parameter if (discoveredTools.containsKey(toolMethod.name())) { validation.produce( new ValidationPhaseBuildItem.ValidationErrorBuildItem(new IllegalStateException( "A tool with the name '" + toolMethod.name() + "' from class '" + className + "' is already declared in class '" + discoveredTools.get(toolMethod.name()) + "'. Tools method name must be unique."))); validationErrorFound = true; continue; } discoveredTools.put(toolMethod.name(), toolMethod.declaringClass()); if (Modifier.isPrivate(toolMethod.flags())) { privateMethods.add(toolMethod); } } if (!privateMethods.isEmpty()) { transformerProducer.produce(new BytecodeTransformerBuildItem(className.toString(), new RemovePrivateFromMethodsVisitor(privateMethods))); } if (validationErrorFound) { return; } for (MethodInfo toolMethod : toolMethods) { AnnotationInstance instance = toolMethod.annotation(TOOL); AnnotationValue nameValue = instance.value("name"); AnnotationValue descriptionValue = instance.value(); String toolName = getToolName(nameValue, toolMethod); String toolDescription = getToolDescription(descriptionValue); ToolSpecification.Builder builder = ToolSpecification.builder() .name(toolName) .description(toolDescription); MethodParameterInfo memoryIdParameter = null; for (MethodParameterInfo parameter : toolMethod.parameters()) { if (parameter.hasAnnotation(TOOL_MEMORY_ID)) { memoryIdParameter = parameter; continue; } builder.addParameter(parameter.name(), toJsonSchemaProperties(parameter, index)); } Map<String, Integer> nameToParamPosition = toolMethod.parameters().stream().collect( Collectors.toMap(MethodParameterInfo::name, i -> Integer.valueOf(i.position()))); String methodSignature = createUniqueSignature(toolMethod); String invokerClassName = generateInvoker(toolMethod, classOutput, nameToParamPosition, memoryIdParameter != null ? memoryIdParameter.position() : null, methodSignature); generatedInvokerClasses.add(invokerClassName); String argumentMapperClassName = generateArgumentMapper(toolMethod, classOutput, methodSignature); generatedArgumentMapperClasses.add(argumentMapperClassName); ToolSpecification toolSpecification = builder.build(); ToolMethodCreateInfo methodCreateInfo = new ToolMethodCreateInfo( toolMethod.name(), invokerClassName, toolSpecification, argumentMapperClassName); metadata.computeIfAbsent(className.toString(), (c) -> new ArrayList<>()).add(methodCreateInfo); } } } if (!generatedInvokerClasses.isEmpty()) { reflectiveClassProducer.produce(ReflectiveClassBuildItem .builder(generatedInvokerClasses.toArray(String[]::new)) .constructors(true) .build()); } if (!generatedArgumentMapperClasses.isEmpty()) { reflectiveClassProducer.produce(ReflectiveClassBuildItem .builder(generatedArgumentMapperClasses.toArray(String[]::new)) .fields(true) .constructors(true) .build()); } toolsMetadataProducer.produce(new ToolsMetadataBuildItem(metadata)); recorder.setMetadata(metadata); } private static String createUniqueSignature(MethodInfo toolMethod) { StringBuilder sigBuilder = new StringBuilder(); sigBuilder.append(toolMethod.name()) .append(toolMethod.returnType().name().toString()); for (MethodParameterInfo t : toolMethod.parameters()) { sigBuilder.append(t.type().name().toString()); } return sigBuilder.toString(); } private static String getToolName(AnnotationValue nameValue, MethodInfo methodInfo) { if (nameValue == null) { return methodInfo.name(); } String annotationValue = nameValue.asString(); if (annotationValue.isEmpty()) { return methodInfo.name(); } return annotationValue; } private String getToolDescription(AnnotationValue descriptionValue) { if (descriptionValue == null) { return ""; } return String.join("\n", descriptionValue.asStringArray()); } private static String generateInvoker(MethodInfo methodInfo, ClassOutput classOutput, Map<String, Integer> nameToParamPosition, Short memoryIdParamPosition, String methodSignature) { String implClassName = methodInfo.declaringClass().name() + "$$QuarkusInvoker$" + methodInfo.name() + "_" + HashUtil.sha1(methodSignature); try (ClassCreator classCreator = ClassCreator.builder() .classOutput(classOutput) .className(implClassName) .interfaces(ToolInvoker.class) .build()) { MethodCreator invokeMc = classCreator.getMethodCreator( MethodDescriptor.ofMethod(implClassName, "invoke", Object.class, Object.class, Object[].class)); ResultHandle result; if (methodInfo.parametersCount() > 0) { List<ResultHandle> argumentHandles = new ArrayList<>(methodInfo.parametersCount()); for (int i = 0; i < methodInfo.parametersCount(); i++) { argumentHandles.add(invokeMc.readArrayValue(invokeMc.getMethodParam(1), i)); } ResultHandle[] targetMethodHandles = argumentHandles.toArray(new ResultHandle[0]); result = invokeMc.invokeVirtualMethod(MethodDescriptor.of(methodInfo), invokeMc.getMethodParam(0), targetMethodHandles); } else { result = invokeMc.invokeVirtualMethod(MethodDescriptor.of(methodInfo), invokeMc.getMethodParam(0)); } boolean toolReturnsVoid = methodInfo.returnType().kind() == Type.Kind.VOID; if (toolReturnsVoid) { invokeMc.returnValue(invokeMc.load("Success")); } else { invokeMc.returnValue(result); } MethodCreator methodMetadataMc = classCreator .getMethodCreator(MethodDescriptor.ofMethod(implClassName, "methodMetadata", ToolInvoker.MethodMetadata.class)); ResultHandle nameToParamPositionHandle = methodMetadataMc.newInstance(HASHMAP_CTOR); for (var entry : nameToParamPosition.entrySet()) { methodMetadataMc.invokeInterfaceMethod(MAP_PUT, nameToParamPositionHandle, methodMetadataMc.load(entry.getKey()), methodMetadataMc.load(entry.getValue())); } ResultHandle resultHandle = methodMetadataMc.newInstance(METHOD_METADATA_CTOR, methodMetadataMc.load(toolReturnsVoid), nameToParamPositionHandle, memoryIdParamPosition != null ? methodMetadataMc.load(Integer.valueOf(memoryIdParamPosition)) : methodMetadataMc.loadNull()); methodMetadataMc.returnValue(resultHandle); } return implClassName; } private String generateArgumentMapper(MethodInfo methodInfo, ClassOutput classOutput, String methodSignature) { String implClassName = methodInfo.declaringClass().name() + "$$QuarkusToolArgumentMapper$" + methodInfo.name() + "_" + HashUtil.sha1(methodSignature); try (ClassCreator classCreator = ClassCreator.builder() .classOutput(classOutput) .className(implClassName) .interfaces(Mappable.class) .build()) { List<FieldDescriptor> fieldDescriptors = new ArrayList<>(); for (MethodParameterInfo parameter : methodInfo.parameters()) { FieldDescriptor fieldDescriptor = FieldDescriptor.of(implClassName, parameter.name(), parameter.type().name().toString()); fieldDescriptors.add(fieldDescriptor); classCreator.getFieldCreator(fieldDescriptor).setModifiers(Modifier.PUBLIC); } MethodCreator mc = classCreator .getMethodCreator(MethodDescriptor.ofMethod(implClassName, "obtainFieldValuesMap", Map.class)); ResultHandle mapHandle = mc.newInstance(MethodDescriptor.ofConstructor(HashMap.class)); for (FieldDescriptor field : fieldDescriptors) { ResultHandle fieldValue = mc.readInstanceField(field, mc.getThis()); mc.invokeInterfaceMethod(MAP_PUT, mapHandle, mc.load(field.getName()), fieldValue); } mc.returnValue(mapHandle); } return implClassName; } private Iterable<JsonSchemaProperty> toJsonSchemaProperties(MethodParameterInfo parameter, IndexView index) { Type type = parameter.type(); DotName typeName = parameter.type().name(); AnnotationInstance pInstance = parameter.annotation(P); JsonSchemaProperty description = pInstance == null ? null : description(pInstance.value().asString()); if (DotNames.STRING.equals(typeName) || DotNames.CHARACTER.equals(typeName) || DotNames.PRIMITIVE_CHAR.equals(typeName)) { return removeNulls(STRING, description); } if (DotNames.BOOLEAN.equals(typeName) || DotNames.PRIMITIVE_BOOLEAN.equals(typeName)) { return removeNulls(BOOLEAN, description); } if (DotNames.BYTE.equals(typeName) || DotNames.PRIMITIVE_BYTE.equals(typeName) || DotNames.SHORT.equals(typeName) || DotNames.PRIMITIVE_SHORT.equals(typeName) || DotNames.INTEGER.equals(typeName) || DotNames.PRIMITIVE_INT.equals(typeName) || DotNames.LONG.equals(typeName) || DotNames.PRIMITIVE_LONG.equals(typeName) || DotNames.BIG_INTEGER.equals(typeName)) { return removeNulls(INTEGER, description); } // TODO put constraints on min and max? if (DotNames.FLOAT.equals(typeName) || DotNames.PRIMITIVE_FLOAT.equals(typeName) || DotNames.DOUBLE.equals(typeName) || DotNames.PRIMITIVE_DOUBLE.equals(typeName) || DotNames.BIG_DECIMAL.equals(typeName)) { return removeNulls(NUMBER, description); } if ((type.kind() == Type.Kind.ARRAY) || DotNames.LIST.equals(typeName) || DotNames.SET.equals(typeName)) { // TODO something else? return removeNulls(ARRAY, description); // TODO provide type of array? } if (isEnum(type, index)) { return removeNulls(STRING, enums(enumConstants(type)), description); } return removeNulls(OBJECT, description); // TODO provide internals } private Iterable<JsonSchemaProperty> removeNulls(JsonSchemaProperty... properties) { return stream(properties) .filter(Objects::nonNull) .collect(toList()); } private boolean isEnum(Type returnType, IndexView index) { if (returnType.kind() != Type.Kind.CLASS) { return false; } ClassInfo maybeEnum = index.getClassByName(returnType.name()); return maybeEnum != null && maybeEnum.isEnum(); } private static Object[] enumConstants(Type type) { return JandexUtil.load(type, Thread.currentThread().getContextClassLoader()).getEnumConstants(); } /** * Simply removes the {@code private} modifier from tool methods */ private static class RemovePrivateFromMethodsVisitor implements BiFunction<String, ClassVisitor, ClassVisitor> { private final List<MethodInfo> privateMethods; private RemovePrivateFromMethodsVisitor(List<MethodInfo> privateMethods) { this.privateMethods = privateMethods; } @Override public ClassVisitor apply(String className, ClassVisitor classVisitor) { ClassTransformer transformer = new ClassTransformer(className); for (MethodInfo method : privateMethods) { transformer.modifyMethod(MethodDescriptor.of(method)).removeModifiers(Opcodes.ACC_PRIVATE); } return transformer.applyTo(classVisitor); } } }
[ "dev.langchain4j.agent.tool.ToolSpecification.builder" ]
[((4315, 4392), 'io.quarkus.arc.deployment.AdditionalBeanBuildItem.builder'), ((4315, 4384), 'io.quarkus.arc.deployment.AdditionalBeanBuildItem.builder'), ((9418, 9547), 'dev.langchain4j.agent.tool.ToolSpecification.builder'), ((9418, 9489), 'dev.langchain4j.agent.tool.ToolSpecification.builder'), ((13423, 13601), 'io.quarkus.gizmo.ClassCreator.builder'), ((13423, 13576), 'io.quarkus.gizmo.ClassCreator.builder'), ((13423, 13529), 'io.quarkus.gizmo.ClassCreator.builder'), ((13423, 13487), 'io.quarkus.gizmo.ClassCreator.builder'), ((16279, 16454), 'io.quarkus.gizmo.ClassCreator.builder'), ((16279, 16429), 'io.quarkus.gizmo.ClassCreator.builder'), ((16279, 16385), 'io.quarkus.gizmo.ClassCreator.builder'), ((16279, 16343), 'io.quarkus.gizmo.ClassCreator.builder')]
import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.ollama.OllamaChatModel; import org.junit.jupiter.api.Test; import org.testcontainers.containers.GenericContainer; import org.testcontainers.junit.jupiter.Container; import org.testcontainers.junit.jupiter.Testcontainers; @Testcontainers class OllamaChatModelTest { /** * The first time you run this test, it will download a Docker image with Ollama and a model. * It might take a few minutes. * <p> * This test uses modified Ollama Docker images, which already contain models inside them. * All images with pre-packaged models are available here: https://hub.docker.com/repositories/langchain4j * <p> * However, you are not restricted to these images. * You can run any model from https://ollama.ai/library by following these steps: * 1. Run "docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama" * 2. Run "docker exec -it ollama ollama run mistral" <- specify the desired model here */ static String MODEL_NAME = "orca-mini"; // try "mistral", "llama2", "codellama", "phi" or "tinyllama" @Container static GenericContainer<?> ollama = new GenericContainer<>("langchain4j/ollama-" + MODEL_NAME + ":latest") .withExposedPorts(11434); @Test void simple_example() { ChatLanguageModel model = OllamaChatModel.builder() .baseUrl(baseUrl()) .modelName(MODEL_NAME) .build(); String answer = model.generate("Provide 3 short bullet points explaining why Java is awesome"); System.out.println(answer); } @Test void json_output_example() { ChatLanguageModel model = OllamaChatModel.builder() .baseUrl(baseUrl()) .modelName(MODEL_NAME) .format("json") .build(); String json = model.generate("Give me a JSON with 2 fields: name and age of a John Doe, 42"); System.out.println(json); } static String baseUrl() { return String.format("http://%s:%d", ollama.getHost(), ollama.getFirstMappedPort()); } }
[ "dev.langchain4j.model.ollama.OllamaChatModel.builder" ]
[((1404, 1529), 'dev.langchain4j.model.ollama.OllamaChatModel.builder'), ((1404, 1504), 'dev.langchain4j.model.ollama.OllamaChatModel.builder'), ((1404, 1465), 'dev.langchain4j.model.ollama.OllamaChatModel.builder'), ((1758, 1915), 'dev.langchain4j.model.ollama.OllamaChatModel.builder'), ((1758, 1890), 'dev.langchain4j.model.ollama.OllamaChatModel.builder'), ((1758, 1858), 'dev.langchain4j.model.ollama.OllamaChatModel.builder'), ((1758, 1819), 'dev.langchain4j.model.ollama.OllamaChatModel.builder')]
package com.honvay.flychat.langchain.llama.embedding; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.openai.OpenAiEmbeddingModel; import dev.langchain4j.model.openai.OpenAiModelName; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Service; import java.time.Duration; import java.util.List; import java.util.stream.Collectors; @Service public class OpenAiEmbeddingService implements EmbeddingService { private final String apiKey; public OpenAiEmbeddingService(@Value("${openai.apiKey:}") String apiKey) { this.apiKey = apiKey; } @Override public List<float[]> embed(List<String> texts){ List<TextSegment> segments = texts.stream() .map(TextSegment::from) .collect(Collectors.toList()); EmbeddingModel embeddingModel = OpenAiEmbeddingModel.builder() .apiKey(apiKey) // https://platform.openai.com/account/api-keys .modelName(OpenAiModelName.TEXT_EMBEDDING_ADA_002) .timeout(Duration.ofSeconds(15)) .build(); List<Embedding> embeddings = embeddingModel.embedAll(segments); return embeddings .stream() .map(Embedding::vector) .collect(Collectors.toList()); } @Override public float[] embed(String text) { EmbeddingModel embeddingModel = OpenAiEmbeddingModel.builder() .apiKey(apiKey) // https://platform.openai.com/account/api-keys .modelName(OpenAiModelName.TEXT_EMBEDDING_ADA_002) .timeout(Duration.ofSeconds(15)) .build(); Embedding embedding = embeddingModel.embed(text); return embedding.vector(); } }
[ "dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder" ]
[((981, 1228), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((981, 1204), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((981, 1156), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((981, 1042), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((1539, 1790), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((1539, 1765), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((1539, 1716), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((1539, 1601), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder')]
package com.wxm158.promptgeneration.service; import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.ObjectWriter; import com.google.common.reflect.TypeToken; import com.google.gson.Gson; import com.google.gson.GsonBuilder; import com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel; import com.wxm158.promptgeneration.mapper.QuestionMapper; import com.wxm158.promptgeneration.model.dto.ChatRequest; import com.wxm158.promptgeneration.model.dto.QuestionGeneration; import com.wxm158.promptgeneration.model.dto.TopicResponse; import com.wxm158.promptgeneration.model.entity.Question; import com.wxm158.promptgeneration.repository.QuestionRepository; import com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore; import dev.langchain4j.chain.ConversationalRetrievalChain; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.message.AiMessage; import dev.langchain4j.data.message.ChatMessage; import dev.langchain4j.data.message.SystemMessage; import dev.langchain4j.data.message.UserMessage; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.input.PromptTemplate; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.model.openai.OpenAiTokenizer; import dev.langchain4j.model.output.Response; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.retriever.Retriever; import dev.langchain4j.store.embedding.EmbeddingStore; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringEscapeUtils; import org.springframework.beans.factory.annotation.Value; import org.springframework.data.domain.PageRequest; import org.springframework.data.domain.Pageable; import org.springframework.http.ResponseEntity; import org.springframework.stereotype.Service; import java.io.FileWriter; import java.io.IOException; import java.lang.reflect.Type; import java.net.Proxy; import java.nio.file.Paths; import java.time.Duration; import java.time.LocalDateTime; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import static dev.langchain4j.data.document.FileSystemDocumentLoader.loadDocument; import static dev.langchain4j.internal.Utils.getOrDefault; import static dev.langchain4j.model.openai.OpenAiModelName.GPT_3_5_TURBO; import static java.util.stream.Collectors.joining; @Slf4j @Service @RequiredArgsConstructor public class EmbeddingService { @Value("${OPENAI_API_KEY}") private String API_KEY; @Value("${WEAVIATE_API_KEY}") private String WEAVIATE_API_KEY; private static final String DEFAULT_NAMESPACE = "default"; // do not change, will break backward compatibility! private static final String DEFAULT_METADATA_TEXT_KEY = "text_segment"; // do not change, will break backward compatibility! String baseUrl = "https://api.openai.com/v1"; String modelName = "text-embedding-ada-002"; // You can change this if needed Duration timeout = Duration.ofSeconds(120); // You can change this if needed Integer maxRetries = 3; // You can change this if needed Proxy proxy = null; // You can provide a proxy if needed Boolean logRequests = true; // Set to true if you want to log requests Boolean logResponses = true; // Set to true if you want to log responses private final QuestionRepository questionRepository; private final QuestionMapper questionMapper; // Create embedding model private EmbeddingModel createEmbeddingModel() { return OpenAiEmbeddingModel.builder() .baseUrl(baseUrl) .apiKey(API_KEY) .modelName(modelName) .timeout(timeout) .maxRetries(maxRetries) .proxy(proxy) .logRequests(logRequests) .logResponses(logResponses) .build(); } // Create embedding store private EmbeddingStore<TextSegment> createEmbeddingStore() { return WeaviateEmbeddingStore.builder() .apiKey(WEAVIATE_API_KEY) .scheme("https") .host("question-gen-wwxbinax.weaviate.network") .avoidDups(true) .consistencyLevel("ALL") .build(); } // Create Chat Model private OpenAiChatModel createChatModel() { return OpenAiChatModel.builder() .apiKey(API_KEY) // old key 8T6eTtmk .modelName("ft:gpt-3.5-turbo-1106:personal::8VzKieWR") .timeout(timeout) .temperature(0.3) .build(); } private String format(List<TextSegment> relevantSegments) { return relevantSegments.stream() .map(TextSegment::text) .map(segment -> "..." + segment + "...") .collect(joining("\n\n")); } // Create question from embedding and fine tuning public List<QuestionGeneration> createQuestions(ChatRequest chatRequest) { String message = chatRequest.getTopic(); String questionType = chatRequest.getQuestionType(); String questionAmount = chatRequest.getQuestionAmount(); // Initialise fine tuned chat model, embedding model, embedding store. OpenAiChatModel chatModel = createChatModel(); EmbeddingModel embeddingModel = createEmbeddingModel(); EmbeddingStore<TextSegment> embeddingStore = createEmbeddingStore(); // retrieve relevant text from embedding store. max three text segments. Retriever<TextSegment> retriever = EmbeddingStoreRetriever.from(embeddingStore, embeddingModel, 1); String information = format(retriever.findRelevant(message)).replace("\n", " "); // Create the prompt in format used in training fine-tuned model. ChatMessage[] messagesArray = { new SystemMessage("You are an A-level Computer Science teacher. You aim to generate various questions for your students."), new UserMessage("SCOPE: " + message + ", QUESTION_TYPE: " + questionType + ", QUESTION_AMOUNT: " + questionAmount + ", TEXT: " + information) }; List<ChatMessage> messages = new ArrayList<>(List.of(messagesArray)); System.out.println(messages.toString()); // Get response from model (json list of questions and answers) Response<AiMessage> response = chatModel.generate(messages); String stringResponse = response.content().text(); System.out.println(stringResponse); // Map response to List of QuestionGeneration object for the frontend. int startIndex = stringResponse.indexOf("["); int endIndex = stringResponse.lastIndexOf("]"); Gson gson = new Gson(); Type type = new TypeToken<List<QuestionGeneration>>(){}.getType(); List<QuestionGeneration> questions = gson.fromJson(stringResponse.substring(startIndex, endIndex + 1), type); for (QuestionGeneration question : questions) { question.setId((long) questions.indexOf(question)); question.setQuestionType(questionType); } return questions; } // Save Questions in question-generation-db public List<Question> saveQuestions(List<QuestionGeneration> questions, String userId) { List<Question> questionList = questionMapper.mapQuestionGenerationsToQuestions(questions, userId); List<Question> savedQuestions = new ArrayList<>(); for (Question question: questionList) { if (!questionRepository.existsByQuestionAndQuestionType(question.getQuestion(), question.getQuestionType())) { savedQuestions.add(questionRepository.save(question)); } } return savedQuestions; } public List<Question> getAllQuestions(String userId) { return questionRepository.findAllByUserId(Long.valueOf(userId)); // return questionMapper.mapQuestionsToQuestionGenerations(questionList); } }
[ "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((3990, 4340), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4315), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4271), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4229), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4199), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4159), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4125), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4087), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((3990, 4054), 'com.wxm158.promptgeneration.OpenAI.OpenAiEmbeddingModel.builder'), ((4457, 4727), 'com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore.builder'), ((4457, 4702), 'com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore.builder'), ((4457, 4661), 'com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore.builder'), ((4457, 4628), 'com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore.builder'), ((4457, 4564), 'com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore.builder'), ((4457, 4531), 'com.wxm158.promptgeneration.weviate.WeaviateEmbeddingStore.builder'), ((4822, 5080), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((4822, 5055), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((4822, 5021), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((4822, 4987), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((4822, 4880), 'dev.langchain4j.model.openai.OpenAiChatModel.builder')]
package com.gonnect.helpme.config; import com.gonnect.helpme.agent.ReservationSupportAgent; import com.gonnect.helpme.service.ReservationToolService; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.data.document.parser.TextDocumentParser; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.openai.OpenAiTokenizer; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.retriever.Retriever; import dev.langchain4j.service.AiServices; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.core.io.Resource; import org.springframework.core.io.ResourceLoader; import java.io.IOException; import static dev.langchain4j.data.document.loader.FileSystemDocumentLoader.loadDocument; import static dev.langchain4j.model.openai.OpenAiModelName.GPT_3_5_TURBO; @Configuration public class ReservationHelpMeApplicationConfigurer { /** * Run ReservationSupportApplicationTest to see simulated conversation with customer support agent */ @Bean ReservationSupportAgent reservationSupportAgent(ChatLanguageModel chatLanguageModel, ReservationToolService reservationToolService, Retriever<TextSegment> retriever) { return AiServices.builder(ReservationSupportAgent.class) .chatLanguageModel(chatLanguageModel) .chatMemory(MessageWindowChatMemory.withMaxMessages(20)) .tools(reservationToolService) .retriever(retriever) .build(); } @Bean Retriever<TextSegment> fetch(EmbeddingStore<TextSegment> embeddingStore, EmbeddingModel embeddingModel) { // You will need to adjust these parameters to find the optimal setting, which will depend on two main factors: // - The nature of your data // - The embedding model you are using int maxResultsRetrieved = 1; double minScore = 0.6; return EmbeddingStoreRetriever.from(embeddingStore, embeddingModel, maxResultsRetrieved, minScore); } @Bean EmbeddingModel embeddingModel() { return new AllMiniLmL6V2EmbeddingModel(); } @Bean EmbeddingStore<TextSegment> embeddingStore(EmbeddingModel embeddingModel, ResourceLoader resourceLoader) throws IOException { // Embedding Store Setup // -------------------- // For demonstration purposes, the embedding store is populated // dynamically instead of being pre-filled with application data. // This allows the code to run self-sufficiently for demos. // The first step is initializing an embedding store. // For this example we use an in-memory implementation. // This stores the vector representations of text for similarity lookups. EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); // Load "Gonnect Support Bot" training guidelines as sample Resource resource = resourceLoader.getResource("classpath:gonnect-miles-terms-and-condition.txt"); Document document = loadDocument(resource.getFile().toPath(), new TextDocumentParser()); // Ingest Sample Document // --------------------- // 1. Split document into 100-token segments // 2. Convert text segments into vector embeddings // 3. Save embeddings in the store // The EmbeddingStoreIngestor automates this process of // analyzing text and populating the embedding store DocumentSplitter documentSplitter = DocumentSplitters.recursive(100, 0, new OpenAiTokenizer(GPT_3_5_TURBO)); EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() .documentSplitter(documentSplitter) .embeddingModel(embeddingModel) .embeddingStore(embeddingStore) .build(); ingestor.ingest(document); return embeddingStore; } }
[ "dev.langchain4j.service.AiServices.builder", "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder" ]
[((1951, 2237), 'dev.langchain4j.service.AiServices.builder'), ((1951, 2212), 'dev.langchain4j.service.AiServices.builder'), ((1951, 2174), 'dev.langchain4j.service.AiServices.builder'), ((1951, 2127), 'dev.langchain4j.service.AiServices.builder'), ((1951, 2054), 'dev.langchain4j.service.AiServices.builder'), ((4356, 4561), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((4356, 4536), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((4356, 4488), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((4356, 4440), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder')]
package com.anthonyquere.companionapi.completion.langchain; import com.anthonyquere.companionapi.completion.langchain.services.Summary; import com.anthonyquere.companionapi.completion.langchain.services.TalkWithCompanion; import com.anthonyquere.companionapi.crud.companions.Companion; import com.anthonyquere.companionapi.crud.message.MessageRepository; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.service.AiServices; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class CompanionAiService { @Bean public TalkWithCompanion buildAiCompanionService( ChatLanguageModel model, MessageRepository messageRepository ) { return AiServices.builder(TalkWithCompanion.class) .chatLanguageModel(model) .chatMemoryProvider(companion -> new CompanionChatMemory((Companion) companion, messageRepository)) .build(); } @Bean public Summary buildAiSummaryService( ChatLanguageModel model ) { return AiServices.builder(Summary.class) .chatLanguageModel(model) .build(); } }
[ "dev.langchain4j.service.AiServices.builder" ]
[((789, 1015), 'dev.langchain4j.service.AiServices.builder'), ((789, 990), 'dev.langchain4j.service.AiServices.builder'), ((789, 874), 'dev.langchain4j.service.AiServices.builder'), ((1135, 1235), 'dev.langchain4j.service.AiServices.builder'), ((1135, 1210), 'dev.langchain4j.service.AiServices.builder')]
package my.samples; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.loader.FileSystemDocumentLoader; import dev.langchain4j.data.document.parser.apache.pdfbox.ApachePdfBoxDocumentParser; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.store.embedding.EmbeddingMatch; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import java.io.IOException; import java.net.URISyntaxException; import java.net.URL; import java.nio.file.Path; import java.nio.file.Paths; import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class InMemoryEmbeddingManualExample { public static final String ANSI_GREEN = "\u001B[32m"; public static final String ANSI_RESET = "\u001B[0m"; public static final String ANSI_YELLOW = "\u001B[33m"; public static void main(String[] args) { EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() .documentSplitter(DocumentSplitters.recursive(300, 0)) .embeddingModel(embeddingModel) .embeddingStore(embeddingStore) .build(); Path filePath = toPath("example-files/2025_US_F150_Warranty_Guide_ENG_V1.pdf"); Document document = FileSystemDocumentLoader.loadDocument(filePath, new ApachePdfBoxDocumentParser()); document.metadata().add("fileName", filePath.getFileName().toString()); document.metadata().add("filePath", filePath.toString()); document.metadata().add("company", "FORD"); document.metadata().add("product", "F150"); document.metadata().add("language", "ENG"); document.metadata().add("version", "V1"); document.metadata().add("year", "2025"); document.metadata().add("type", "Warranty Guide"); document.metadata().add("country", "US"); document.metadata().add("category", "Automotive"); ingestor.ingest(document); Scanner scanner = new Scanner(System.in); while (true) { System.out.println("Enter your query (or type 'exit' to quit):"); // Wait for the user to input a query String query = scanner.nextLine(); // Check if the user wants to exit the program if ("exit".equalsIgnoreCase(query)) { System.out.println("Exiting program."); break; } // Who Pays For Warranty Repairs? // What is the warranty period? // What is the warranty period for the powertrain? // What is the warranty period for the powertrain? // Process the query and get an answer Embedding queryEmbedding = embeddingModel.embed(query).content(); List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(queryEmbedding,5 ); System.out.println("Start --------- Matching Context from Document: 2025_US_F150_Warranty_Guide_ENG_V1.pdf"); List<String> answers = new ArrayList<>(); for (EmbeddingMatch<TextSegment> match : relevant) { System.out.println(match.score()); answers.add(match.embedded().text()); System.out.println(ANSI_GREEN+match.embedded().text()+ANSI_RESET); System.out.println(""); } System.out.println("End --------- Matching Context from Document: 2025_US_F150_Warranty_Guide_ENG_V1.pdf"); if(!answers.isEmpty()){ try { System.out.println(ANSI_YELLOW+ RestClient.getAnswer(query, answers) + ANSI_RESET); } catch (IOException e) { e.printStackTrace(); } } } // Close the scanner scanner.close(); // In-memory embedding store can be serialized and deserialized to/from JSON String serializedStore = ((InMemoryEmbeddingStore)embeddingStore).serializeToJson(); System.out.println(serializedStore); // InMemoryEmbeddingStore<TextSegment> deserializedStore = InMemoryEmbeddingStore.fromJson(serializedStore); // In-memory embedding store can be serialized and deserialized to/from file // String filePath = "/home/me/embedding.store"; // embeddingStore.serializeToFile(filePath); // InMemoryEmbeddingStore<TextSegment> deserializedStore = InMemoryEmbeddingStore.fromFile(filePath); } private static Path toPath(String fileName) { try { // Corrected path assuming files are in src/main/resources/example-files URL fileUrl = InMemoryEmbeddingManualExample.class.getClassLoader().getResource( fileName); if (fileUrl == null) { throw new RuntimeException("Resource not found: " + fileName); } return Paths.get(fileUrl.toURI()); } catch (URISyntaxException e) { throw new RuntimeException("Failed to resolve URI for: " + fileName, e); } } }
[ "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder" ]
[((1444, 1668), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1444, 1643), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1444, 1595), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((1444, 1547), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder')]
package org.agoncal.fascicle.langchain4j.accessing.bedrock; import dev.langchain4j.model.bedrock.BedrockAnthropicChatModel; import software.amazon.awssdk.regions.Region; // tag::adocSkip[] /** * @author Antonio Goncalves * http://www.antoniogoncalves.org * -- */ // end::adocSkip[] public class MusicianService { public static void main(String[] args) { MusicianService musicianService = new MusicianService(); musicianService.useBedrockLanguageModelBuilder(); } private static final String AZURE_OPENAI_KEY = System.getenv("AZURE_OPENAI_KEY"); private static final String AZURE_OPENAI_ENDPOINT = System.getenv("AZURE_OPENAI_ENDPOINT"); private static final String AZURE_OPENAI_DEPLOYMENT_NAME = System.getenv("AZURE_OPENAI_DEPLOYMENT_NAME"); private static final String PROMPT = "When was the first Beatles album released?"; // ############################## // ### BEDROCK LANGUAGE MODEL ### // ############################## public void useBedrockLanguageModelBuilder() { System.out.println("### useBedrockLanguageModelBuilder"); // tag::adocSnippet[] BedrockAnthropicChatModel model = BedrockAnthropicChatModel.builder() .build(); // end::adocSnippet[] String completion = model.generate(PROMPT); } // ########################## // ### BEDROCK CHAT MODEL ### // ########################## public void useBedrockChatModelRequest() { System.out.println("### useBedrockChatModelRequest"); // tag::adocRequest[] BedrockAnthropicChatModel model = BedrockAnthropicChatModel.builder() .maxRetries(3) .topP(1.0f) .temperature(0.9f) .model(BedrockAnthropicChatModel.Types.AnthropicClaudeV1) .maxTokens(100) .anthropicVersion("v2") .assistantPrompt("assistant prompt") .humanPrompt("human prompt") .region(Region.AF_SOUTH_1) .build(); // end::adocRequest[] String completion = model.generate("When was the first Rolling Stones album released?"); System.out.println(completion); } }
[ "dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder" ]
[((1142, 1192), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1880), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1865), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1832), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1797), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1754), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1724), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1702), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1638), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1613), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder'), ((1539, 1595), 'dev.langchain4j.model.bedrock.BedrockAnthropicChatModel.builder')]
package dev.langchain4j.model.qianfan; import dev.langchain4j.agent.tool.ToolExecutionRequest; import dev.langchain4j.agent.tool.ToolParameters; import dev.langchain4j.agent.tool.ToolSpecification; import dev.langchain4j.data.message.*; import dev.langchain4j.data.message.UserMessage; import dev.langchain4j.internal.Utils; import dev.langchain4j.model.qianfan.client.embedding.EmbeddingResponse; import dev.langchain4j.model.qianfan.client.chat.Parameters; import dev.langchain4j.model.output.FinishReason; import dev.langchain4j.model.output.TokenUsage; import dev.langchain4j.model.qianfan.client.chat.ChatCompletionResponse; import dev.langchain4j.model.qianfan.client.chat.Message; import dev.langchain4j.model.qianfan.client.chat.Role; import dev.langchain4j.model.qianfan.client.chat.FunctionCall; import dev.langchain4j.model.qianfan.client.chat.Function; import dev.langchain4j.model.qianfan.client.completion.CompletionResponse; import java.util.Collection; import java.util.List; import java.util.Optional; import static dev.langchain4j.data.message.AiMessage.aiMessage; import static dev.langchain4j.internal.Exceptions.illegalArgument; import static dev.langchain4j.model.output.FinishReason.*; import static java.util.stream.Collectors.toList; public class InternalQianfanHelper { public static List<Function> toFunctions(Collection<ToolSpecification> toolSpecifications) { return toolSpecifications.stream() .map(InternalQianfanHelper::toFunction) .collect(toList()); } private static Function toFunction(ToolSpecification toolSpecification) { return Function.builder() .name(toolSpecification.name()) .description(toolSpecification.description()) .parameters(toOpenAiParameters(toolSpecification.parameters())) .build(); } private static Parameters toOpenAiParameters(ToolParameters toolParameters) { if (toolParameters == null) { return Parameters.builder().build(); } return Parameters.builder() .properties(toolParameters.properties()) .required(toolParameters.required()) .build(); } public static Message toQianfanMessage(ChatMessage message) { if (message instanceof UserMessage) { UserMessage userMessage = (UserMessage) message; return Message.builder() .role(Role.USER) .content(userMessage.text()) .name(userMessage.name()) .build(); } if (message instanceof AiMessage) { AiMessage aiMessage = (AiMessage) message; if (!aiMessage.hasToolExecutionRequests()) { return Message.builder() .content(message.text()) .role(Role.ASSISTANT) .build(); } ToolExecutionRequest toolExecutionRequest = aiMessage.toolExecutionRequests().get(0); if (toolExecutionRequest.id() == null) { FunctionCall functionCall = FunctionCall.builder() .name(toolExecutionRequest.name()) .arguments(toolExecutionRequest.arguments()) .build(); return Message.builder() .content(message.text()) .role(Role.ASSISTANT) .functionCall(functionCall) .build(); } } if (message instanceof ToolExecutionResultMessage) { ToolExecutionResultMessage toolExecutionResultMessage = (ToolExecutionResultMessage) message; FunctionCall functionCall = FunctionCall.builder() .name(toolExecutionResultMessage.toolName()) .arguments(toolExecutionResultMessage.text()) .build(); return Message.builder() .content(message.text()) .role(Role.FUNCTION) .name(functionCall.name()) .build(); } throw illegalArgument("Unknown message type: " + message.type()); } static TokenUsage tokenUsageFrom(ChatCompletionResponse response) { return Optional.of(response) .map(ChatCompletionResponse::getUsage) .map(usage -> new TokenUsage(usage.promptTokens(), usage.completionTokens(), usage.totalTokens())) .orElse(null); } static TokenUsage tokenUsageFrom(CompletionResponse response) { return Optional.of(response) .map(CompletionResponse::getUsage) .map(usage -> new TokenUsage(usage.promptTokens(), usage.completionTokens(), usage.totalTokens())) .orElse(null); } static TokenUsage tokenUsageFrom(EmbeddingResponse response) { return Optional.of(response) .map(EmbeddingResponse::getUsage) .map(usage -> new TokenUsage(usage.promptTokens(), usage.completionTokens(), usage.totalTokens())) .orElse(null); } public static FinishReason finishReasonFrom(String finishReason) { if(Utils.isNullOrBlank(finishReason)){ return null; } switch (finishReason) { case "normal": return STOP; case "stop": return STOP; case "length": return LENGTH; case "content_filter": return CONTENT_FILTER; case "function_call": return TOOL_EXECUTION; default: return null; } } public static AiMessage aiMessageFrom(ChatCompletionResponse response) { FunctionCall functionCall = response.getFunctionCall(); if (functionCall != null) { ToolExecutionRequest toolExecutionRequest = ToolExecutionRequest.builder() .name(functionCall.name()) .arguments(functionCall.arguments()) .build(); return aiMessage(toolExecutionRequest); } return aiMessage(response.getResult()); } static String getSystemMessage(List<ChatMessage> messages) { List<ChatMessage> systemMessages = messages.stream().filter(message -> message instanceof SystemMessage).collect(toList()); if (systemMessages.size() > 1) { throw new RuntimeException("Multiple system messages are not supported"); } if(Utils.isNullOrEmpty(systemMessages)){ return null; } return ((SystemMessage) systemMessages.get(0)).text(); } public static List<Message> toOpenAiMessages(List<ChatMessage> messages) { return messages.stream() .filter(chatMessage -> !(chatMessage instanceof SystemMessage)) .map(InternalQianfanHelper::toQianfanMessage) .collect(toList()); } }
[ "dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder", "dev.langchain4j.model.qianfan.client.chat.Message.builder", "dev.langchain4j.agent.tool.ToolExecutionRequest.builder", "dev.langchain4j.model.qianfan.client.chat.Parameters.builder", "dev.langchain4j.model.qianfan.client.chat.Function.builder", "dev.langchain4j.data.message.AiMessage.aiMessage.toolExecutionRequests" ]
[((1632, 1865), 'dev.langchain4j.model.qianfan.client.chat.Function.builder'), ((1632, 1840), 'dev.langchain4j.model.qianfan.client.chat.Function.builder'), ((1632, 1760), 'dev.langchain4j.model.qianfan.client.chat.Function.builder'), ((1632, 1698), 'dev.langchain4j.model.qianfan.client.chat.Function.builder'), ((2013, 2041), 'dev.langchain4j.model.qianfan.client.chat.Parameters.builder'), ((2068, 2223), 'dev.langchain4j.model.qianfan.client.chat.Parameters.builder'), ((2068, 2198), 'dev.langchain4j.model.qianfan.client.chat.Parameters.builder'), ((2068, 2145), 'dev.langchain4j.model.qianfan.client.chat.Parameters.builder'), ((2424, 2602), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((2424, 2573), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((2424, 2527), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((2424, 2478), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((2797, 2942), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((2797, 2909), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((2797, 2863), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((3015, 3055), 'dev.langchain4j.data.message.AiMessage.aiMessage.toolExecutionRequests'), ((3154, 3337), 'dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder'), ((3154, 3304), 'dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder'), ((3154, 3235), 'dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder'), ((3363, 3560), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((3363, 3527), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((3363, 3475), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((3363, 3429), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((3799, 3993), 'dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder'), ((3799, 3960), 'dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder'), ((3799, 3890), 'dev.langchain4j.model.qianfan.client.chat.FunctionCall.builder'), ((4019, 4214), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((4019, 4181), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((4019, 4130), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((4019, 4085), 'dev.langchain4j.model.qianfan.client.chat.Message.builder'), ((4394, 4615), 'java.util.Optional.of'), ((4394, 4585), 'java.util.Optional.of'), ((4394, 4470), 'java.util.Optional.of'), ((4707, 4924), 'java.util.Optional.of'), ((4707, 4894), 'java.util.Optional.of'), ((4707, 4779), 'java.util.Optional.of'), ((5016, 5232), 'java.util.Optional.of'), ((5016, 5202), 'java.util.Optional.of'), ((5016, 5087), 'java.util.Optional.of'), ((6045, 6208), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder'), ((6045, 6179), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder'), ((6045, 6122), 'dev.langchain4j.agent.tool.ToolExecutionRequest.builder')]
package io.quarkiverse.langchain4j.runtime.tool; import java.util.List; import java.util.Map; import dev.langchain4j.agent.tool.ToolParameters; import io.quarkus.runtime.ObjectSubstitution; import io.quarkus.runtime.annotations.RecordableConstructor; public class ToolParametersObjectSubstitution implements ObjectSubstitution<ToolParameters, ToolParametersObjectSubstitution.Serialized> { @Override public Serialized serialize(ToolParameters obj) { return new Serialized(obj.type(), obj.properties(), obj.required()); } @Override public ToolParameters deserialize(Serialized obj) { return ToolParameters.builder() .type(obj.type) .required(obj.required) .properties(obj.properties).build(); } public static class Serialized { private final String type; private final Map<String, Map<String, Object>> properties; private final List<String> required; @RecordableConstructor public Serialized(String type, Map<String, Map<String, Object>> properties, List<String> required) { this.type = type; this.properties = properties; this.required = required; } public String getType() { return type; } public Map<String, Map<String, Object>> getProperties() { return properties; } public List<String> getRequired() { return required; } } }
[ "dev.langchain4j.agent.tool.ToolParameters.builder" ]
[((639, 787), 'dev.langchain4j.agent.tool.ToolParameters.builder'), ((639, 779), 'dev.langchain4j.agent.tool.ToolParameters.builder'), ((639, 735), 'dev.langchain4j.agent.tool.ToolParameters.builder'), ((639, 695), 'dev.langchain4j.agent.tool.ToolParameters.builder')]
package me.nzuguem.something.story.configurations.langchain; import dev.langchain4j.rag.DefaultRetrievalAugmentor; import dev.langchain4j.rag.RetrievalAugmentor; import jakarta.enterprise.context.ApplicationScoped; import java.util.function.Supplier; @ApplicationScoped public class StoryRetrievalAugmentor implements Supplier<RetrievalAugmentor> { private final StoryContentRetriever retriever; public StoryRetrievalAugmentor(StoryContentRetriever retriever) { this.retriever = retriever; } @Override public RetrievalAugmentor get() { return DefaultRetrievalAugmentor.builder() .contentRetriever(this.retriever) .build(); } }
[ "dev.langchain4j.rag.DefaultRetrievalAugmentor.builder" ]
[((585, 695), 'dev.langchain4j.rag.DefaultRetrievalAugmentor.builder'), ((585, 670), 'dev.langchain4j.rag.DefaultRetrievalAugmentor.builder')]
package org.example; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import dev.langchain4j.service.MemoryId; import dev.langchain4j.service.UserMessage; import dev.langchain4j.store.memory.chat.ChatMemoryStore; public class _09_AIServices_05_ChatMemory { public static void main(String[] args) { OpenAiChatModel model = OpenAiChatModel.withApiKey(ApiKeys.OPENAI_DEMO); ChatAssistant assistant = AiServices.builder(ChatAssistant.class) .chatLanguageModel(model) .chatMemoryProvider(memoryId -> MessageWindowChatMemory.withMaxMessages(10)) .build(); System.out.println(assistant.chat(1, "Hello, my name is Michael")); System.out.println(assistant.chat(2, "Hello, my name is Karl")); System.out.println(assistant.chat(2, "What is my name?")); System.out.println(assistant.chat(1, "What is my name?")); } } interface ChatAssistant { String chat(@MemoryId int memoryId, @UserMessage String message); }
[ "dev.langchain4j.service.AiServices.builder" ]
[((529, 728), 'dev.langchain4j.service.AiServices.builder'), ((529, 703), 'dev.langchain4j.service.AiServices.builder'), ((529, 610), 'dev.langchain4j.service.AiServices.builder')]
package embedding.model; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.output.Response; import dev.langchain4j.model.vertexai.VertexAiEmbeddingModel; public class VertexAiEmbeddingModelExample { public static void main(String[] args) { EmbeddingModel embeddingModel = VertexAiEmbeddingModel.builder() .endpoint("us-central1-aiplatform.googleapis.com:443") .project("neat-vent-381323") .location("us-central1") .publisher("google") .modelName("textembedding-gecko@002") .build(); Response<Embedding> response = embeddingModel.embed("Hello, how are you?"); System.out.println(response); } }
[ "dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder" ]
[((371, 676), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 651), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 597), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 560), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 519), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder'), ((371, 474), 'dev.langchain4j.model.vertexai.VertexAiEmbeddingModel.builder')]
package com.magicrepokit.chat; import cn.hutool.core.util.StrUtil; import cn.hutool.json.JSONArray; import cn.hutool.json.ObjectMapper; import com.magicrepokit.chat.agent.CustomerSupportAgent; import com.magicrepokit.chat.component.GoogleSearch; import com.magicrepokit.chat.component.LangchainComponent; import com.magicrepokit.chat.service.tool.CalculatorService; import com.magicrepokit.langchain.ElasticOperation; import com.magicrepokit.langchain.config.ConfigProperties; import com.magicrepokit.oss.OssTemplate; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.data.document.loader.UrlDocumentLoader; import dev.langchain4j.data.document.parser.TextDocumentParser; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.message.AiMessage; import dev.langchain4j.data.message.ChatMessage; import dev.langchain4j.data.message.UserMessage; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.StreamingResponseHandler; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.chat.StreamingChatLanguageModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.input.Prompt; import dev.langchain4j.model.input.PromptTemplate; import dev.langchain4j.model.openai.OpenAiStreamingChatModel; import dev.langchain4j.model.openai.OpenAiTokenizer; import dev.langchain4j.model.output.Response; import dev.langchain4j.service.AiServices; import dev.langchain4j.service.SystemMessage; import dev.langchain4j.store.embedding.EmbeddingMatch; import dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore; import lombok.extern.slf4j.Slf4j; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.context.annotation.ComponentScan; import org.springframework.test.context.ActiveProfiles; import org.springframework.test.context.junit4.SpringRunner; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import static dev.langchain4j.model.openai.OpenAiModelName.GPT_3_5_TURBO; import static java.util.stream.Collectors.joining; @SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT) @RunWith(SpringRunner.class) @Slf4j @ActiveProfiles("test") @ComponentScan(basePackages = {"com.magicrepokit"}) public class ChatTest { @Autowired private ChatLanguageModel model; @Autowired CustomerSupportAgent agent; @Autowired EmbeddingModel embeddingModel; @Autowired ElasticOperation elasticOperation; @Autowired OssTemplate ossTemplate; @Autowired ConfigProperties langchainConfigProperties; @Autowired LangchainComponent langchainComponent; @Autowired GoogleSearch googleSearch; @Test public void testOssTemplate(){ ossTemplate.makeBucket("test"); } @Test public void simpleChat() { String response = model.generate("你好"); System.out.println(response); } interface Assistant { @SystemMessage({"1.你是是一个数学专家,你只能回答数学方面的知识,如果用户内容与数学无关,你会只能回答:不知道!", "2.你可以使用工具类,使用之前你需要确定工具类的描述与用户问题相关,如果不相关,你会只能回答:不知道!"}) String chat(String userMessage); } @Test public void chatWithTool() { Assistant build = AiServices.builder(Assistant.class) .chatLanguageModel(model) .tools(new CalculatorService()) .chatMemory(MessageWindowChatMemory.withMaxMessages(10)).build(); String question = "5/4=?"; String answer = build.chat(question); System.out.println(answer); } @Test public void should_provide_booking_details_and_explain_why_cancellation_is_not_possible() { // Please define API keys in application.properties before running this test. // Tip: Use gpt-4 for this example, as gpt-3.5-turbo tends to hallucinate often and invent name and surname. interact(agent, "你好,我忘记我的预订信息"); interact(agent, "123-457"); // interact(agent, "I'm sorry I'm so inattentive today. Klaus Heisler."); // interact(agent, "My bad, it's 123-456"); // // // Here, information about the cancellation policy is automatically retrieved and injected into the prompt. // // Although the LLM sometimes attempts to cancel the booking, it fails to do so and will explain // // the reason why the booking cannot be cancelled, based on the injected cancellation policy. // interact(agent, "My plans have changed, can I cancel my booking?"); } private static void interact(CustomerSupportAgent agent, String userMessage) { System.out.println("=========================================================================================="); System.out.println("[User]: " + userMessage); System.out.println("=========================================================================================="); String agentAnswer = agent.chat(userMessage); System.out.println("=========================================================================================="); System.out.println("[Agent]: " + agentAnswer); System.out.println("=========================================================================================="); } private ElasticsearchEmbeddingStore getElasticsearchEmbeddingStore(String indexName){ if(langchainConfigProperties.getEnabled()){ log.error("未开启elasticsearch"); return null; } String elasticHost = langchainConfigProperties.getElasticHost(); int elasticPort = langchainConfigProperties.getElasticPort(); String url = StrUtil.format("{}:{}", elasticHost, elasticPort); return ElasticsearchEmbeddingStore.builder() .serverUrl(url) .userName(langchainConfigProperties.getElasticUsername()) .password(langchainConfigProperties.getElasticPassword()) .indexName(indexName) .dimension(1536) .build(); } /** * 创建EmbeddingStore with Elasticsearch */ @Test public void createEmbeddingStoreWithElasticsearch() { //1.elsaticstore ElasticsearchEmbeddingStore embeddingStore = getElasticsearchEmbeddingStore("c2267fb9-7539-46b7-8aab-c1c8c532cbd5"); Embedding content = embeddingModel.embed("这里石昊是谁").content(); List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(content, 1, 0.9); System.out.println(relevant.get(0).score()); System.out.println(relevant.get(0).embedded()); } /** * 创建elastic客户端 */ @Test public void createElasticClient() { //1.判断索引是否存在 System.out.println(elasticOperation.isIndexExist("mrk_gpt_knowledge2")); //2.根据id查询document System.out.println(elasticOperation.getDocumentById("mrk_gpt_knowledge2", "62c3470d-6f38-4b52-959e-988dc0721b01")); //3.删除索引 System.out.println(elasticOperation.deleteIndex("mrk_gpt_knowledge2")); } @Test public void loadFromURL() { Document document = UrlDocumentLoader.load("http://s6ie5kuog.hd-bkt.clouddn.com/raipiot_user.txt", new TextDocumentParser()); System.out.println(document.text()); DocumentSplitter documentSplitter = DocumentSplitters.recursive(500, 100, new OpenAiTokenizer(GPT_3_5_TURBO)); List<TextSegment> split = documentSplitter.split(document); ObjectMapper objectMapper = ObjectMapper.of(split); JSONArray jsonArray = new JSONArray(); objectMapper.map(jsonArray,null); System.out.println(jsonArray.toString()); } interface Chef { String answer(String question); } @Test public void testPoJO() throws InterruptedException { StreamingChatLanguageModel model =OpenAiStreamingChatModel.builder().apiKey("sk-gRbZ9FJz2E7c7mwO5JOvp2u2rtoWoAbg12CxDy3Y25eLeDvd").baseUrl("https://api.chatanywhere.tech/").build(); List<ChatMessage> chatMessages = new ArrayList<>(); chatMessages.add(new dev.langchain4j.data.message.SystemMessage("你是一个代码专家,你只能回答代码方面的知识,如果用户内容与代码无关,你会只能回答:我是一个代码专家,只能帮你回答有关代码的问题!")); chatMessages.add(new UserMessage("帮我写一个简单的计算器的js代码?")); model.generate(chatMessages, new StreamingResponseHandler<AiMessage>() { @Override public void onNext(String token) { System.out.println("=========================================================================================="); System.out.println("[answer]: " + token); System.out.println("=========================================================================================="); } @Override public void onError(Throwable error) { System.out.println("=========================================================================================="); System.out.println("[error]: " + error); System.out.println("=========================================================================================="); } @Override public void onComplete(Response<AiMessage> response) { System.out.println("=========================================================================================="); System.out.println("[complate]: " + response); System.out.println("=========================================================================================="); } }); Thread.sleep(10000); } @Test public void testTemplate(){ PromptTemplate promptTemplate = new PromptTemplate("你可以根据知识库内容回答用户相关问题\n" + "知识库:\n"+ "{{knowledge}} \n"+ "用户问题:\n" + "{{question}} \n" ); //3.检索知识库 List<TextSegment> relevant = langchainComponent.findRelevant("mrk_gpt_knowledge2","你好,我忘记我的预订信息?"); String relevantContext = relevant.stream().map(TextSegment::text).collect(joining("\n\n")); Map<String,Object> promtMap = new HashMap<>(); promtMap.put("knowledge",relevantContext); promtMap.put("question","H你好,我忘记我的预订信息?"); Prompt apply = promptTemplate.apply(promtMap); System.out.println(apply.text()); } @Test public void testCostToken(){ OpenAiTokenizer openAiTokenizer = new OpenAiTokenizer("gpt-3.5-turbo"); int i = openAiTokenizer.estimateTokenCountInText("你好,我忘记我的预订信息?"); String generate = model.generate("你好,我忘记我的预订信息?"); System.out.println(i); System.out.println(generate); } @Test public void searchTest(){ String s = googleSearch.searchGoogle("完美世界"); System.out.println(s); } }
[ "dev.langchain4j.service.AiServices.builder", "dev.langchain4j.model.openai.OpenAiStreamingChatModel.builder", "dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder" ]
[((3786, 3992), 'dev.langchain4j.service.AiServices.builder'), ((3786, 3984), 'dev.langchain4j.service.AiServices.builder'), ((3786, 3911), 'dev.langchain4j.service.AiServices.builder'), ((3786, 3863), 'dev.langchain4j.service.AiServices.builder'), ((6278, 6591), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((6278, 6566), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((6278, 6533), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((6278, 6495), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((6278, 6421), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((6278, 6347), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((8457, 8603), 'dev.langchain4j.model.openai.OpenAiStreamingChatModel.builder'), ((8457, 8595), 'dev.langchain4j.model.openai.OpenAiStreamingChatModel.builder'), ((8457, 8553), 'dev.langchain4j.model.openai.OpenAiStreamingChatModel.builder')]
package com.magicrepokit.chat; import com.magicrepokit.chat.agent.CustomerSupportAgent; import com.magicrepokit.chat.service.tool.BookingTools; import com.magicrepokit.chat.vo.knowledge.KnowledgeFileListVO; import com.magicrepokit.oss.OssTemplate; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.DocumentSplitter; import dev.langchain4j.data.document.parser.TextDocumentParser; import dev.langchain4j.data.document.splitter.DocumentSplitters; import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.memory.chat.MessageWindowChatMemory; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.input.Prompt; import dev.langchain4j.model.input.PromptTemplate; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.model.openai.OpenAiEmbeddingModel; import dev.langchain4j.model.openai.OpenAiTokenizer; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.retriever.Retriever; import dev.langchain4j.service.AiServices; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStoreIngestor; import dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import org.junit.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.core.io.Resource; import org.springframework.core.io.ResourceLoader; import java.io.IOException; import java.util.HashMap; import java.util.List; import java.util.Map; import static dev.langchain4j.data.document.loader.FileSystemDocumentLoader.loadDocument; import static dev.langchain4j.model.openai.OpenAiModelName.GPT_3_5_TURBO; import static java.util.stream.Collectors.joining; @Configuration public class TestConfiguration { /** * 创建openai chat model * @return */ @Bean ChatLanguageModel chatLanguageModel(){ return OpenAiChatModel.builder().apiKey("sk-gRbZ9FJz2E7c7mwO5JOvp2u2rtoWoAbg12CxDy3Y25eLeDvd").baseUrl("https://api.chatanywhere.tech/").build(); } /** * 创建客服代理 */ @Bean CustomerSupportAgent customerSupportAgent(ChatLanguageModel chatLanguageModel, BookingTools bookingTools, Retriever<TextSegment> retriever) { return AiServices.builder(CustomerSupportAgent.class) .chatLanguageModel(chatLanguageModel) .chatMemory(MessageWindowChatMemory.withMaxMessages(20)) .tools(bookingTools) .retriever(retriever) .build(); } /** * 创建retriever * @param embeddingStore * @param embeddingModel * @return */ @Bean Retriever<TextSegment> retriever(EmbeddingStore<TextSegment> embeddingStore, EmbeddingModel embeddingModel) { // You will need to adjust these parameters to find the optimal setting, which will depend on two main factors: // - The nature of your data // - The embedding model you are using int maxResultsRetrieved = 5; double minScore = 0.6; return EmbeddingStoreRetriever.from(embeddingStore, embeddingModel, maxResultsRetrieved, minScore); } /** * 创建embedding model * @return */ @Bean EmbeddingModel embeddingModel() { return OpenAiEmbeddingModel.builder().apiKey("sk-gRbZ9FJz2E7c7mwO5JOvp2u2rtoWoAbg12CxDy3Y25eLeDvd").baseUrl("https://api.chatanywhere.tech/v1").build(); } /** * 创建embedding store * @param embeddingModel * @param resourceLoader * @return * @throws IOException */ @Bean EmbeddingStore<TextSegment> embeddingStore(EmbeddingModel embeddingModel, ResourceLoader resourceLoader) throws IOException { // Normally, you would already have your embedding store filled with your data. // However, for the purpose of this demonstration, we will: // 1. Create an in-memory embedding store //EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>(); ElasticsearchEmbeddingStore embeddingStore = ElasticsearchEmbeddingStore.builder() .serverUrl("154.204.60.125:9200") .userName("elastic") .password("123456") .indexName("mrk_gpt_knowledge2") .dimension(1536) .build(); // 2. Load an example document ("Miles of Smiles" terms of use) Resource resource = resourceLoader.getResource("classpath:miles-of-smiles-terms-of-use.txt"); Document document = loadDocument(resource.getFile().toPath(), new TextDocumentParser()); // 3. Split the document into segments 100 tokens each // 4. Convert segments into embeddings // 5. Store embeddings into embedding store // All this can be done manually, but we will use EmbeddingStoreIngestor to automate this: DocumentSplitter documentSplitter = DocumentSplitters.recursive(100, 0, new OpenAiTokenizer(GPT_3_5_TURBO)); EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() .documentSplitter(documentSplitter) .embeddingModel(embeddingModel) .embeddingStore(embeddingStore) .build(); ingestor.ingest(document); return embeddingStore; } }
[ "dev.langchain4j.service.AiServices.builder", "dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder", "dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder", "dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder", "dev.langchain4j.model.openai.OpenAiChatModel.builder" ]
[((2216, 2353), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2216, 2345), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2216, 2303), 'dev.langchain4j.model.openai.OpenAiChatModel.builder'), ((2577, 2850), 'dev.langchain4j.service.AiServices.builder'), ((2577, 2825), 'dev.langchain4j.service.AiServices.builder'), ((2577, 2787), 'dev.langchain4j.service.AiServices.builder'), ((2577, 2750), 'dev.langchain4j.service.AiServices.builder'), ((2577, 2677), 'dev.langchain4j.service.AiServices.builder'), ((3607, 3751), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((3607, 3743), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((3607, 3699), 'dev.langchain4j.model.openai.OpenAiEmbeddingModel.builder'), ((4393, 4660), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((4393, 4635), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((4393, 4602), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((4393, 4553), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((4393, 4517), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((4393, 4480), 'dev.langchain4j.store.embedding.elasticsearch.ElasticsearchEmbeddingStore.builder'), ((5355, 5560), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((5355, 5535), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((5355, 5487), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder'), ((5355, 5439), 'dev.langchain4j.store.embedding.EmbeddingStoreIngestor.builder')]