id
int64 0
843k
| repository_name
stringlengths 7
55
| file_path
stringlengths 9
332
| class_name
stringlengths 3
290
| human_written_code
stringlengths 12
4.36M
| class_skeleton
stringlengths 19
2.2M
| total_program_units
int64 1
9.57k
| total_doc_str
int64 0
4.2k
| AvgCountLine
float64 0
7.89k
| AvgCountLineBlank
float64 0
300
| AvgCountLineCode
float64 0
7.89k
| AvgCountLineComment
float64 0
7.89k
| AvgCyclomatic
float64 0
130
| CommentToCodeRatio
float64 0
176
| CountClassBase
float64 0
48
| CountClassCoupled
float64 0
589
| CountClassCoupledModified
float64 0
581
| CountClassDerived
float64 0
5.37k
| CountDeclInstanceMethod
float64 0
4.2k
| CountDeclInstanceVariable
float64 0
299
| CountDeclMethod
float64 0
4.2k
| CountDeclMethodAll
float64 0
4.2k
| CountLine
float64 1
115k
| CountLineBlank
float64 0
9.01k
| CountLineCode
float64 0
94.4k
| CountLineCodeDecl
float64 0
46.1k
| CountLineCodeExe
float64 0
91.3k
| CountLineComment
float64 0
27k
| CountStmt
float64 1
93.2k
| CountStmtDecl
float64 0
46.1k
| CountStmtExe
float64 0
90.2k
| MaxCyclomatic
float64 0
759
| MaxInheritanceTree
float64 0
16
| MaxNesting
float64 0
34
| SumCyclomatic
float64 0
6k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1,700 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_labels_to_matrix
|
class TestModule_labels_to_matrix(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_labels_to_matrix_example(self):
fi = ants.image_read(ants.get_ants_data("r16")).resample_image((60, 60), 1, 0)
mask = ants.get_mask(fi)
labs = ants.kmeans_segmentation(fi, 3)["segmentation"]
labmat = ants.labels_to_matrix(labs, mask)
|
class TestModule_labels_to_matrix(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_labels_to_matrix_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 12 | 2 | 10 | 8 | 6 | 0 | 10 | 8 | 6 | 1 | 2 | 0 | 3 |
1,701 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_label_stats
|
class TestModule_label_stats(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_stats_example(self):
image = ants.image_read(ants.get_ants_data("r16"), 2)
image = ants.resample_image(image, (64, 64), 1, 0)
segs1 = ants.kmeans_segmentation(image, 3)
stats = ants.label_stats(image, segs1["segmentation"])
|
class TestModule_label_stats(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_stats_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 12 | 2 | 10 | 7 | 6 | 0 | 10 | 7 | 6 | 1 | 2 | 0 | 3 |
1,702 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_label_overlap_measures
|
class TestModule_label_overlap_measures(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_overlap_measures(self):
r16 = ants.image_read( ants.get_ants_data('r16') )
r64 = ants.image_read( ants.get_ants_data('r64') )
s16 = ants.kmeans_segmentation( r16, 3 )['segmentation']
s64 = ants.kmeans_segmentation( r64, 3 )['segmentation']
stats = ants.label_overlap_measures(s16, s64)
|
class TestModule_label_overlap_measures(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_overlap_measures(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 13 | 2 | 11 | 9 | 7 | 0 | 11 | 9 | 7 | 1 | 2 | 0 | 3 |
1,703 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_label_image_centroids
|
class TestModule_label_image_centroids(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_image_centroids(self):
image = ants.from_numpy(
np.asarray([[[0, 2], [1, 3]], [[4, 6], [5, 7]]]).astype("float32")
)
labels = ants.label_image_centroids(image)
self.assertEqual(len(labels['labels']), 7)
# Test non-sequential labels
image = ants.from_numpy(
np.asarray([[[0, 2], [2, 2]], [[2, 0], [5, 0]]]).astype("float32")
)
labels = ants.label_image_centroids(image)
self.assertTrue(len(labels['labels']) == 2)
self.assertTrue(labels['labels'][1] == 5)
self.assertTrue(np.allclose(labels['vertices'][0], [0.5 , 0.5 , 0.25], atol=1e-5))
# With convex = False, the centroid position should change
labels = ants.label_image_centroids(image, convex=False)
self.assertTrue(np.allclose(labels['vertices'][0], [1.0, 1.0, 0.0], atol=1e-5))
# single point unchanged
self.assertTrue(np.allclose(labels['vertices'][1], [0.0, 1.0, 1.0], atol=1e-5))
|
class TestModule_label_image_centroids(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_image_centroids(self):
pass
| 4 | 0 | 8 | 1 | 7 | 1 | 1 | 0.14 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 28 | 4 | 21 | 6 | 17 | 3 | 17 | 6 | 13 | 1 | 2 | 0 | 3 |
1,704 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_label_clusters
|
class TestModule_label_clusters(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_clusters_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
timageFully = ants.label_clusters(image, 10, 128, 150, True)
timageFace = ants.label_clusters(image, 10, 128, 150, False)
|
class TestModule_label_clusters(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_label_clusters_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 11 | 2 | 9 | 7 | 5 | 0 | 9 | 7 | 5 | 1 | 2 | 0 | 3 |
1,705 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_image_to_cluster_images
|
class TestModule_image_to_cluster_images(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_image_to_cluster_images_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
image = ants.threshold_image(image, 1, 1e15)
image_cluster_list = ants.image_to_cluster_images(image)
|
class TestModule_image_to_cluster_images(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_image_to_cluster_images_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 3 | 75 | 13 | 2 | 11 | 9 | 7 | 0 | 11 | 9 | 7 | 1 | 2 | 0 | 3 |
1,706 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_image_similarity
|
class TestModule_image_similarity(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_image_similarity_example(self):
x = ants.image_read(ants.get_ants_data("r16"))
y = ants.image_read(ants.get_ants_data("r30"))
metric = ants.image_similarity(x, y, metric_type="MeanSquares")
self.assertTrue(metric > 0)
|
class TestModule_image_similarity(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_image_similarity_example(self):
pass
| 4 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 3 | 75 | 14 | 2 | 12 | 10 | 8 | 0 | 12 | 10 | 8 | 1 | 2 | 0 | 3 |
1,707 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_scalar_rgb_vector
|
class TestModule_scalar_rgb_vector(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test1(self):
import ants
import numpy as np
# this fails because ConvertScalarImageToRGB is not wrapped
img = ants.image_read(ants.get_data("r16"), pixeltype="unsigned char")
# img_rgb = img.scalar_to_rgb()
# img_vec = img_rgb.rgb_to_vector()
# rgb_arr = img_rgb.numpy()
# vec_arr = img_vec.numpy()
print(np.allclose(img.numpy(), img.numpy()))
def test2(self):
import ants
import numpy as np
rgb_img = ants.from_numpy(
np.random.randint(0, 255, (20, 20, 3)).astype("uint8"), is_rgb=True
)
vec_img = rgb_img.rgb_to_vector()
print(ants.allclose(rgb_img, vec_img))
vec_img = ants.from_numpy(
np.random.randint(0, 255, (20, 20, 3)).astype("uint8"), has_components=True
)
rgb_img = vec_img.vector_to_rgb()
print(ants.allclose(rgb_img, vec_img))
|
class TestModule_scalar_rgb_vector(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test1(self):
pass
def test2(self):
pass
| 5 | 0 | 8 | 1 | 6 | 1 | 1 | 0.22 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 76 | 35 | 7 | 23 | 12 | 14 | 5 | 19 | 12 | 10 | 1 | 2 | 0 | 4 |
1,708 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_iMath
|
class TestModule_iMath(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
#img3d = ants.image_read(ants.get_ants_data('mni')).resample_image((2,2,2))
self.imgs = [img2d]
def tearDown(self):
pass
def test_iMath_example(self):
img = ants.image_read(ants.get_ants_data('r16'))
img2 = ants.iMath(img, 'Canny', 1, 5, 12)
def test_iMath_options(self):
for img in self.imgs:
# Grayscale dilation
img_gd = ants.iMath(img, 'GD', 3)
self.assertTrue(ants.image_physical_space_consistency(img_gd, img))
self.assertTrue(not ants.allclose(img_gd, img))
# Grayscale erosion
img_tx = ants.iMath(img, 'GE', 3)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertFalse(ants.allclose(img_tx, img))
# Morphological dilation
img_tx = ants.iMath(img, 'MD', 3)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertFalse(ants.allclose(img_tx, img))
# Morphological erosion
img_tx = ants.iMath(img, 'ME', 3)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertFalse(ants.allclose(img_tx, img))
# Morphological closing
img_tx = ants.iMath(img, 'MC', 3)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertTrue(not ants.allclose(img_tx, img))
# Morphological opening
img_tx = ants.iMath(img, 'MO', 3)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertTrue(not ants.allclose(img_tx, img))
# Pad image - ERRORS
#img_tx = ants.iMath(img, 'PadImage', 2)
# PeronaMalik - ERRORS
#img_tx = ants.iMath(img, 'PeronaMalik', 10, 0.5)
# Maurer Distance
img_tx = ants.iMath(img, 'MaurerDistance')
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertTrue(not ants.allclose(img_tx, img))
# Danielsson Distance Map
#img_tx = ants.iMath(img, 'DistanceMap')
#self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
#self.assertTrue(not ants.allclose(img_tx, img))
# Image gradient
img_tx = ants.iMath(img, 'Grad', 1)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertTrue(not ants.allclose(img_tx, img))
# Laplacian
img_tx = ants.iMath(img, 'Laplacian', 1, 1)
self.assertTrue(ants.image_physical_space_consistency(img_tx, img))
self.assertTrue(not ants.allclose(img_tx, img))
|
class TestModule_iMath(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_iMath_example(self):
pass
def test_iMath_options(self):
pass
| 5 | 0 | 17 | 3 | 9 | 5 | 1 | 0.47 | 1 | 0 | 0 | 0 | 4 | 1 | 4 | 76 | 71 | 15 | 38 | 12 | 33 | 18 | 38 | 12 | 33 | 2 | 2 | 1 | 5 |
1,709 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_get_mask
|
class TestModule_get_mask(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_get_mask_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
mask = ants.get_mask(image)
|
class TestModule_get_mask(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_get_mask_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 3 | 75 | 12 | 2 | 10 | 9 | 6 | 0 | 10 | 9 | 6 | 1 | 2 | 0 | 3 |
1,710 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_get_centroids
|
class TestModule_get_centroids(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_get_centroids_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
image = ants.threshold_image(image, 90, 120)
image = ants.label_clusters(image, 10)
cents = ants.get_centroids(image)
|
class TestModule_get_centroids(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_get_centroids_example(self):
pass
| 4 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 3 | 75 | 14 | 2 | 12 | 9 | 8 | 0 | 12 | 9 | 8 | 1 | 2 | 0 | 3 |
1,711 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_get_ants_data
|
class TestModule_get_ants_data(unittest.TestCase):
def test_get_ants_data(self):
for dataname in ants.get_ants_data(None):
if dataname.endswith("nii.gz"):
img = ants.image_read(dataname)
# def test_get_ants_data_files(self):
# datanames = ants.get_ants_data(None)
# self.assertTrue(isinstance(datanames, list))
# self.assertTrue(len(datanames) > 0)
def test_get_ants_data2(self):
for dataname in ants.get_data(None):
if dataname.endswith("nii.gz"):
img = ants.image_read(dataname)
|
class TestModule_get_ants_data(unittest.TestCase):
def test_get_ants_data(self):
pass
def test_get_ants_data2(self):
pass
| 3 | 0 | 4 | 0 | 4 | 0 | 3 | 0.44 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 74 | 15 | 2 | 9 | 7 | 6 | 4 | 9 | 7 | 6 | 3 | 2 | 2 | 6 |
1,712 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_fit_bspline_object_to_scattered_data
|
class TestModule_fit_bspline_object_to_scattered_data(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_fit_bspline_object_to_scattered_data_1d_curve_example(self):
x = np.linspace(-4, 4, num=100) + np.random.uniform(-0.1, 0.1, 100)
u = np.linspace(0, 1.0, num=len(x))
scattered_data = np.expand_dims(u, axis=-1)
parametric_data = np.expand_dims(u, axis=-1)
spacing = 1/(len(x)-1) * 1.0
bspline_curve = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0], parametric_domain_spacing=[spacing],
parametric_domain_size=[len(x)], is_parametric_dimension_closed=None,
number_of_fitting_levels=5, mesh_size=1)
def test_fit_bspline_object_to_scattered_data_2d_curve_example(self):
x = np.linspace(-4, 4, num=100)
y = np.exp(-np.multiply(x, x)) + np.random.uniform(-0.1, 0.1, len(x))
u = np.linspace(0, 1.0, num=len(x))
scattered_data = np.column_stack((x, y))
parametric_data = np.expand_dims(u, axis=-1)
spacing = 1/(len(x)-1) * 1.0
bspline_curve = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0], parametric_domain_spacing=[spacing],
parametric_domain_size=[len(x)], is_parametric_dimension_closed=None,
number_of_fitting_levels=5, mesh_size=1)
def test_fit_bspline_object_to_scattered_data_3d_curve_example(self):
x = np.linspace(-4, 4, num=100)
y = np.exp(-np.multiply(x, x)) + np.random.uniform(-0.1, 0.1, len(x))
z = np.exp(-np.multiply(x, y)) + np.random.uniform(-0.1, 0.1, len(x))
u = np.linspace(0, 1.0, num=len(x))
scattered_data = np.column_stack((x, y))
parametric_data = np.expand_dims(u, axis=-1)
spacing = 1/(len(x)-1) * 1.0
bspline_curve = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0], parametric_domain_spacing=[spacing],
parametric_domain_size=[len(x)], is_parametric_dimension_closed=None,
number_of_fitting_levels=5, mesh_size=1)
def test_fit_bspline_object_to_scattered_data_2d_scalar_field_example(self):
number_of_random_points = 10000
img = ants.image_read( ants.get_ants_data("r16"))
img_array = img.numpy()
row_indices = np.random.choice(range(2, img_array.shape[0]), number_of_random_points)
col_indices = np.random.choice(range(2, img_array.shape[1]), number_of_random_points)
scattered_data = np.zeros((number_of_random_points, 1))
parametric_data = np.zeros((number_of_random_points, 2))
for i in range(number_of_random_points):
scattered_data[i,0] = img_array[row_indices[i], col_indices[i]]
parametric_data[i,0] = row_indices[i]
parametric_data[i,1] = col_indices[i]
bspline_img = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0, 0.0],
parametric_domain_spacing=[1.0, 1.0],
parametric_domain_size = img.shape,
number_of_fitting_levels=7, mesh_size=1)
def test_fit_bspline_object_to_scattered_data_3d_scalar_field_example(self):
number_of_random_points = 10000
img = ants.image_read( ants.get_ants_data("mni"))
img_array = img.numpy()
row_indices = np.random.choice(range(2, img_array.shape[0]), number_of_random_points)
col_indices = np.random.choice(range(2, img_array.shape[1]), number_of_random_points)
dep_indices = np.random.choice(range(2, img_array.shape[2]), number_of_random_points)
scattered_data = np.zeros((number_of_random_points, 1))
parametric_data = np.zeros((number_of_random_points, 3))
for i in range(number_of_random_points):
scattered_data[i,0] = img_array[row_indices[i], col_indices[i], dep_indices[i]]
parametric_data[i,0] = row_indices[i]
parametric_data[i,1] = col_indices[i]
parametric_data[i,2] = dep_indices[i]
bspline_img = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0, 0.0, 0.0],
parametric_domain_spacing=[1.0, 1.0, 1.0],
parametric_domain_size = img.shape,
number_of_fitting_levels=5, mesh_size=1)
def test_fit_bspline_object_to_scattered_data_2d_displacement_field_example(self):
img = ants.image_read( ants.get_ants_data("r16"))
# smooth a single vector in the middle of the image
scattered_data = np.reshape(np.asarray((10.0, 10.0)), (1, 2))
parametric_data = np.reshape(np.asarray(
(scattered_data[0, 0]/img.shape[0], scattered_data[0, 1]/img.shape[1])), (1, 2))
bspline_field = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0, 0.0],
parametric_domain_spacing=[1.0, 1.0],
parametric_domain_size = img.shape,
number_of_fitting_levels=7, mesh_size=1)
def test_fit_bspline_object_to_scattered_data_3d_displacement_field_example(self):
img = ants.image_read( ants.get_ants_data("mni"))
# smooth a single vector in the middle of the image
scattered_data = np.reshape(np.asarray((10.0, 10.0, 10.0)), (1, 3))
parametric_data = np.reshape(np.asarray(
(scattered_data[0, 0]/img.shape[0],
scattered_data[0, 1]/img.shape[1],
scattered_data[0, 2]/img.shape[2])), (1, 3))
bspline_field = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0, 0.0, 0.0],
parametric_domain_spacing=[1.0, 1.0, 1.0],
parametric_domain_size = img.shape,
number_of_fitting_levels=5, mesh_size=1)
|
class TestModule_fit_bspline_object_to_scattered_data(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_fit_bspline_object_to_scattered_data_1d_curve_example(self):
pass
def test_fit_bspline_object_to_scattered_data_2d_curve_example(self):
pass
def test_fit_bspline_object_to_scattered_data_3d_curve_example(self):
pass
def test_fit_bspline_object_to_scattered_data_2d_scalar_field_example(self):
pass
def test_fit_bspline_object_to_scattered_data_3d_scalar_field_example(self):
pass
def test_fit_bspline_object_to_scattered_data_2d_displacement_field_example(self):
pass
def test_fit_bspline_object_to_scattered_data_3d_displacement_field_example(self):
pass
| 10 | 0 | 12 | 0 | 11 | 0 | 1 | 0.02 | 1 | 1 | 0 | 0 | 9 | 0 | 9 | 81 | 113 | 8 | 103 | 58 | 93 | 2 | 67 | 58 | 57 | 2 | 2 | 1 | 11 |
1,713 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_denoise_image
|
class TestModule_denoise_image(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_denoise_image_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
# add fairly large salt and pepper noise
imagenoise = image + np.random.randn(*image.shape).astype("float32") * 5
imagedenoise = ants.denoise_image(imagenoise, image > image.mean())
|
class TestModule_denoise_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_denoise_image_example(self):
pass
| 4 | 0 | 4 | 0 | 3 | 0 | 1 | 0.09 | 1 | 0 | 0 | 0 | 3 | 1 | 3 | 75 | 14 | 2 | 11 | 10 | 7 | 1 | 11 | 10 | 7 | 1 | 2 | 0 | 3 |
1,714 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_crop_image
|
class TestModule_crop_image(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_crop_image_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
cropped = ants.crop_image(fi)
cropped = ants.crop_image(fi, fi, 100)
# image not float type
cropped = ants.crop_image(fi.clone("unsigned int"))
# label image not float
cropped = ants.crop_image(fi, fi.clone("unsigned int"), 100)
# channel image
fi = ants.image_read( ants.get_ants_data('r16') )
cropped = ants.crop_image(fi)
fi2 = ants.merge_channels([fi,fi])
cropped2 = ants.crop_image(fi2)
self.assertEqual(cropped.shape, cropped2.shape)
def test_crop_indices_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
cropped = ants.crop_indices(fi, (10, 10), (100, 100))
cropped = ants.smooth_image(cropped, 5)
decropped = ants.decrop_image(cropped, fi)
# image not float
cropped = ants.crop_indices(fi.clone("unsigned int"), (10, 10), (100, 100))
# image dim not equal to indices
with self.assertRaises(Exception):
cropped = ants.crop_indices(fi, (10, 10, 10), (100, 100))
cropped = ants.crop_indices(fi, (10, 10), (100, 100, 100))
# vector images
fi = ants.image_read( ants.get_ants_data("r16"))
cropped = ants.crop_indices( fi, (10,10), (100,100) )
fi2 = ants.merge_channels([fi,fi])
cropped2 = ants.crop_indices( fi, (10,10), (100,100) )
self.assertEqual(cropped.shape, cropped2.shape)
def test_decrop_image_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
mask = ants.get_mask(fi)
cropped = ants.crop_image(fi, mask, 1)
cropped = ants.smooth_image(cropped, 1)
decropped = ants.decrop_image(cropped, fi)
# image not float
cropped = ants.crop_image(fi.clone("unsigned int"), mask, 1)
# full image not float
cropped = ants.crop_image(fi, mask.clone("unsigned int"), 1)
|
class TestModule_crop_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_crop_image_example(self):
pass
def test_crop_indices_example(self):
pass
def test_decrop_image_example(self):
pass
| 6 | 0 | 11 | 2 | 8 | 2 | 1 | 0.2 | 1 | 1 | 0 | 0 | 5 | 1 | 5 | 77 | 61 | 13 | 40 | 22 | 34 | 8 | 40 | 22 | 34 | 1 | 2 | 1 | 5 |
1,715 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_channels
|
class TestModule_channels(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni"))
self.imgs = [img2d, img3d]
arr2d = np.random.randn(69, 70, 4).astype("float32")
arr3d = np.random.randn(69, 70, 71, 4).astype("float32")
self.comparrs = [arr2d, arr3d]
def tearDown(self):
pass
def test_merge_channels(self):
for img in self.imgs:
imglist = [img.clone(), img.clone()]
merged_img = ants.merge_channels(imglist)
self.assertEqual(merged_img.shape, img.shape)
self.assertEqual(merged_img.components, len(imglist))
nptest.assert_allclose(merged_img.numpy()[..., 0], imglist[0].numpy())
imglist = [img.clone(), img.clone(), img.clone(), img.clone()]
merged_img = ants.merge_channels(imglist)
self.assertEqual(merged_img.shape, img.shape)
self.assertEqual(merged_img.components, len(imglist))
nptest.assert_allclose(merged_img.numpy()[..., 0], imglist[-1].numpy())
for comparr in self.comparrs:
imglist = [
ants.from_numpy(comparr[..., i].copy())
for i in range(comparr.shape[-1])
]
merged_img = ants.merge_channels(imglist)
for i in range(comparr.shape[-1]):
nptest.assert_allclose(merged_img.numpy()[..., i], comparr[..., i])
|
class TestModule_channels(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_merge_channels(self):
pass
| 4 | 0 | 11 | 1 | 10 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 3 | 2 | 3 | 75 | 36 | 6 | 30 | 14 | 26 | 0 | 27 | 14 | 23 | 4 | 2 | 2 | 6 |
1,716 |
ANTsX/ANTsPy
|
ants/core/ants_metric.py
|
ants.core.ants_metric.ANTsImageToImageMetric
|
class ANTsImageToImageMetric(object):
"""
ANTsImageToImageMetric class
"""
def __init__(self, metric):
self._metric = metric
self._is_initialized = False
self.fixed_image = None
self.fixed_mask = None
self.moving_image = None
self.moving_mask = None
# ------------------------------------------
# PROPERTIES
@property
def precision(self):
return self._metric.precision
@property
def dimension(self):
return self._metric.dimension
@property
def metrictype(self):
return self._metric.metrictype.replace('ImageToImageMetricv4','')
@property
def is_vector(self):
return self._metric.isVector == 1
@property
def pointer(self):
return self._metric.pointer
# ------------------------------------------
# METHODS
def set_fixed_image(self, image):
"""
Set Fixed ANTsImage for metric
"""
if not ants.is_image(image):
raise ValueError('image must be ANTsImage type')
if image.dimension != self.dimension:
raise ValueError('image dim (%i) does not match metric dim (%i)' % (image.dimension, self.dimension))
self._metric.setFixedImage(image.pointer, False)
self.fixed_image = image
def set_fixed_mask(self, image):
"""
Set Fixed ANTsImage Mask for metric
"""
if not ants.is_image(image):
raise ValueError('image must be ANTsImage type')
if image.dimension != self.dimension:
raise ValueError('image dim (%i) does not match metric dim (%i)' % (image.dimension, self.dimension))
self._metric.setFixedImage(image.pointer, True)
self.fixed_mask = image
def set_moving_image(self, image):
"""
Set Moving ANTsImage for metric
"""
if not ants.is_image(image):
raise ValueError('image must be ANTsImage type')
if image.dimension != self.dimension:
raise ValueError('image dim (%i) does not match metric dim (%i)' % (image.dimension, self.dimension))
self._metric.setMovingImage(image.pointer, False)
self.moving_image = image
def set_moving_mask(self, image):
"""
Set Fixed ANTsImage Mask for metric
"""
if not ants.is_image(image):
raise ValueError('image must be ANTsImage type')
if image.dimension != self.dimension:
raise ValueError('image dim (%i) does not match metric dim (%i)' % (image.dimension, self.dimension))
self._metric.setMovingImage(image.pointer, True)
self.moving_mask = image
def set_sampling(self, strategy='regular', percentage=1.):
if (self.fixed_image is None) or (self.moving_image is None):
raise ValueError('must set fixed_image and moving_image before setting sampling')
self._metric.setSampling(strategy, percentage)
def initialize(self):
if (self.fixed_image is None) or (self.moving_image is None):
raise ValueError('must set fixed_image and moving_image before initializing')
self._metric.initialize()
self._is_initialized = True
def get_value(self):
if not self._is_initialized:
self.initialize()
return self._metric.getValue()
def __call__(self, fixed, moving, fixed_mask=None, moving_mask=None, sampling_strategy='regular', sampling_percentage=1.):
self.set_fixed_image(fixed)
self.set_moving_image(moving)
if fixed_mask is not None:
self.set_fixed_mask(fixed_mask)
if moving_mask is not None:
self.set_moving_mask(moving_mask)
if (sampling_strategy is not None) or (sampling_percentage is not None):
self.set_sampling(sampling_strategy, sampling_percentage)
self.initialize()
return self.get_value()
def __repr__(self):
s = "ANTsImageToImageMetric\n" +\
'\t {:<10} : {}\n'.format('Dimension', self.dimension)+\
'\t {:<10} : {}\n'.format('Precision', self.precision)+\
'\t {:<10} : {}\n'.format('MetricType', self.metrictype)+\
'\t {:<10} : {}\n'.format('IsVector', self.is_vector)
return s
|
class ANTsImageToImageMetric(object):
'''
ANTsImageToImageMetric class
'''
def __init__(self, metric):
pass
@property
def precision(self):
pass
@property
def dimension(self):
pass
@property
def metrictype(self):
pass
@property
def is_vector(self):
pass
@property
def pointer(self):
pass
def set_fixed_image(self, image):
'''
Set Fixed ANTsImage for metric
'''
pass
def set_fixed_mask(self, image):
'''
Set Fixed ANTsImage Mask for metric
'''
pass
def set_moving_image(self, image):
'''
Set Moving ANTsImage for metric
'''
pass
def set_moving_mask(self, image):
'''
Set Fixed ANTsImage Mask for metric
'''
pass
def set_sampling(self, strategy='regular', percentage=1.):
pass
def initialize(self):
pass
def get_value(self):
pass
def __call__(self, fixed, moving, fixed_mask=None, moving_mask=None, sampling_strategy='regular', sampling_percentage=1.):
pass
def __repr__(self):
pass
| 21 | 5 | 7 | 1 | 5 | 1 | 2 | 0.23 | 1 | 1 | 0 | 0 | 15 | 6 | 15 | 15 | 131 | 30 | 82 | 28 | 61 | 19 | 73 | 23 | 57 | 4 | 1 | 1 | 29 |
1,717 |
ANTsX/ANTsPy
|
tests/test_segmentation.py
|
test_segmentation.TestModule_random
|
class TestModule_random(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_fuzzy_cmeans(self):
image = ants.image_read(ants.get_ants_data('r16'))
mask = ants.get_mask(image)
fuzzy = ants.fuzzy_spatial_cmeans_segmentation(image, mask, number_of_clusters=3)
def test_functional_lung(self):
image = ants.image_read(ants.get_data("mni")).resample_image((4,4,4))
mask = image.get_mask()
seg = ants.functional_lung_segmentation(image, mask, verbose=True,
number_of_iterations=1,
number_of_clusters=2,
number_of_atropos_iterations=1)
def test_anti_alias(self):
img = ants.image_read(ants.get_data('r16'))
mask = ants.get_mask(img)
mask_aa = ants.anti_alias(mask)
|
class TestModule_random(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_fuzzy_cmeans(self):
pass
def test_functional_lung(self):
pass
def test_anti_alias(self):
pass
| 6 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 5 | 77 | 24 | 4 | 20 | 15 | 14 | 0 | 17 | 15 | 11 | 1 | 2 | 0 | 5 |
1,718 |
ANTsX/ANTsPy
|
tests/test_segmentation.py
|
test_segmentation.TestModule_prior_based_segmentation
|
class TestModule_prior_based_segmentation(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data('r16'))
seg = ants.kmeans_segmentation(fi,3)
mask = ants.threshold_image(seg['segmentation'], 1, 1e15)
priorseg = ants.prior_based_segmentation(fi, seg['probabilityimages'], mask, 0.25, 0.1, 3)
|
class TestModule_prior_based_segmentation(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 13 | 3 | 10 | 8 | 6 | 0 | 10 | 8 | 6 | 1 | 2 | 0 | 3 |
1,719 |
ANTsX/ANTsPy
|
tests/test_segmentation.py
|
test_segmentation.TestModule_kmeans
|
class TestModule_kmeans(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data('r16'))
fi = ants.n3_bias_field_correction(fi, 2)
seg = ants.kmeans_segmentation(fi, 3)
|
class TestModule_kmeans(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 12 | 3 | 9 | 6 | 5 | 0 | 9 | 6 | 5 | 1 | 2 | 0 | 3 |
1,720 |
ANTsX/ANTsPy
|
tests/test_segmentation.py
|
test_segmentation.TestModule_kelly_kapowski
|
class TestModule_kelly_kapowski(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
img = ants.image_read( ants.get_ants_data('r16') ,2)
img = ants.resample_image(img, (64,64),1,0)
mask = ants.get_mask( img )
segs = ants.kmeans_segmentation( img, k=3, kmask = mask)
thick = ants.kelly_kapowski(s=segs['segmentation'], g=segs['probabilityimages'][1],
w=segs['probabilityimages'][2], its=45,
r=0.5, m=1)
|
class TestModule_kelly_kapowski(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 16 | 3 | 13 | 8 | 9 | 0 | 11 | 8 | 7 | 1 | 2 | 0 | 3 |
1,721 |
ANTsX/ANTsPy
|
tests/test_utils.py
|
test_utils.TestModule_get_neighborhood
|
class TestModule_get_neighborhood(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data("r16"))
img3d = ants.image_read(ants.get_ants_data("mni")).resample_image((2, 2, 2))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_get_neighborhood_in_mask_example(self):
img = ants.image_read(ants.get_ants_data("r16"))
mask = ants.get_mask(img)
mat = ants.get_neighborhood_in_mask(img, mask, radius=(2, 2))
# image not ANTsImage
with self.assertRaises(Exception):
ants.get_neighborhood_in_mask(2, mask, radius=(2, 2))
# mask not ANTsImage
with self.assertRaises(Exception):
ants.get_neighborhood_in_mask(img, 2, radius=(2, 2))
# radius not right length
with self.assertRaises(Exception):
ants.get_neighborhood_in_mask(img, 2, radius=(2, 2, 2, 2))
# radius is just a float/int
mat = ants.get_neighborhood_in_mask(img, mask, radius=2)
# boundary condition == 'image'
mat = ants.get_neighborhood_in_mask(
img, mask, radius=(2, 2), boundary_condition="image"
)
# boundary condition == 'mean'
mat = ants.get_neighborhood_in_mask(
img, mask, radius=(2, 2), boundary_condition="mean"
)
# spatial info
mat = ants.get_neighborhood_in_mask(img, mask, radius=(2, 2), spatial_info=True)
# get_gradient
mat = ants.get_neighborhood_in_mask(img, mask, radius=(2, 2), get_gradient=True)
def test_get_neighborhood_at_voxel_example(self):
img = ants.image_read(ants.get_ants_data("r16"))
center = (2, 2)
radius = (3, 3)
retval = ants.get_neighborhood_at_voxel(img, center, radius)
# image not ANTsImage
with self.assertRaises(Exception):
ants.get_neighborhood_at_voxel(2, center, radius)
# wrong center length
with self.assertRaises(Exception):
ants.get_neighborhood_at_voxel(img, (2, 2, 2, 2, 2), radius)
# wrong radius length
with self.assertRaises(Exception):
ants.get_neighborhood_at_voxel(img, center, (2, 2, 2, 2))
|
class TestModule_get_neighborhood(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_get_neighborhood_in_mask_example(self):
pass
def test_get_neighborhood_at_voxel_example(self):
pass
| 5 | 0 | 13 | 2 | 9 | 3 | 1 | 0.3 | 1 | 1 | 0 | 0 | 4 | 1 | 4 | 76 | 57 | 9 | 37 | 15 | 32 | 11 | 33 | 15 | 28 | 1 | 2 | 1 | 4 |
1,722 |
ANTsX/ANTsPy
|
tests/test_segmentation.py
|
test_segmentation.TestModule_joint_label_fusion
|
class TestModule_joint_label_fusion(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
ref = ants.image_read( ants.get_ants_data('r16'))
ref = ants.resample_image(ref, (50,50),1,0)
ref = ants.iMath(ref,'Normalize')
mi = ants.image_read( ants.get_ants_data('r27'))
mi2 = ants.image_read( ants.get_ants_data('r30'))
mi3 = ants.image_read( ants.get_ants_data('r62'))
mi4 = ants.image_read( ants.get_ants_data('r64'))
mi5 = ants.image_read( ants.get_ants_data('r85'))
refmask = ants.get_mask(ref)
refmask = ants.iMath(refmask,'ME',2) # just to speed things up
ilist = [mi,mi2,mi3,mi4,mi5]
seglist = [None]*len(ilist)
for i in range(len(ilist)):
ilist[i] = ants.iMath(ilist[i],'Normalize')
mytx = ants.registration(fixed=ref , moving=ilist[i] ,
type_of_transform = ('Affine') )
mywarpedimage = ants.apply_transforms(fixed=ref,moving=ilist[i],
transformlist=mytx['fwdtransforms'])
ilist[i] = mywarpedimage
seg = ants.threshold_image(ilist[i],'Otsu', 3)
seglist[i] = ( seg ) + ants.threshold_image( seg, 1, 3 ).morphology( operation='dilate', radius=3 )
r = 2
pp = ants.joint_label_fusion(ref, refmask, ilist, r_search=2,
label_list=seglist, rad=[r]*ref.dimension )
pp = ants.joint_label_fusion(ref,refmask,ilist, r_search=2, rad=2 )
def test_max_lab_plus_one(self):
ref = ants.image_read( ants.get_ants_data('r16'))
ref = ants.resample_image(ref, (50,50),1,0)
ref = ants.iMath(ref,'Normalize')
mi = ants.image_read( ants.get_ants_data('r27'))
mi2 = ants.image_read( ants.get_ants_data('r30'))
mi3 = ants.image_read( ants.get_ants_data('r62'))
mi4 = ants.image_read( ants.get_ants_data('r64'))
mi5 = ants.image_read( ants.get_ants_data('r85'))
refmask = ants.get_mask(ref)
refmask = ants.iMath(refmask,'ME',2) # just to speed things up
ilist = [mi,mi2,mi3,mi4,mi5]
seglist = [None]*len(ilist)
for i in range(len(ilist)):
ilist[i] = ants.iMath(ilist[i],'Normalize')
mytx = ants.registration(fixed=ref , moving=ilist[i] ,
type_of_transform = ('Affine') )
mywarpedimage = ants.apply_transforms(fixed=ref,moving=ilist[i],
transformlist=mytx['fwdtransforms'])
ilist[i] = mywarpedimage
seg = ants.threshold_image(ilist[i],'Otsu', 3)
seglist[i] = ( seg ) + ants.threshold_image( seg, 1, 3 ).morphology( operation='dilate', radius=3 )
r = 2
pp = ants.joint_label_fusion(ref, refmask, ilist, r_search=2,
label_list=seglist, rad=[r]*ref.dimension, max_lab_plus_one=True )
pp = ants.joint_label_fusion(ref,refmask,ilist, r_search=2, rad=2,
max_lab_plus_one=True)
|
class TestModule_joint_label_fusion(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
def test_max_lab_plus_one(self):
pass
| 5 | 0 | 15 | 1 | 14 | 1 | 2 | 0.03 | 1 | 1 | 0 | 0 | 4 | 0 | 4 | 76 | 64 | 6 | 58 | 35 | 53 | 2 | 51 | 35 | 46 | 2 | 2 | 1 | 6 |
1,723 |
ANTsX/ANTsPy
|
tests/test_core_ants_image_indexing.py
|
test_core_ants_image_indexing.TestClass_AntsImageIndexing
|
class TestClass_AntsImageIndexing(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_pixeltype_2d(self):
img = ants.image_read(ants.get_data('r16'))
for ptype in ['unsigned char', 'unsigned int', 'float', 'double']:
img = img.clone(ptype)
self.assertEqual(img.pixeltype, ptype)
img2 = img[:10,:10]
self.assertEqual(img2.pixeltype, ptype)
def test_pixeltype_3d(self):
img = ants.image_read(ants.get_data('mni'))
for ptype in ['unsigned char', 'unsigned int', 'float', 'double']:
img = img.clone(ptype)
self.assertEqual(img.pixeltype, ptype)
img2 = img[:10,:10,:10]
self.assertEqual(img2.pixeltype, ptype)
img3 = img[:10,:10,10]
self.assertEqual(img3.pixeltype, ptype)
def test_2d(self):
img = ants.image_read(ants.get_data('r16'))
img2 = img[:10,:10]
self.assertEqual(img2.dimension, 2)
img2 = img[:5,:5]
self.assertEqual(img2.dimension, 2)
img2 = img[1:20,1:10]
self.assertEqual(img2.dimension, 2)
img2 = img[:5,:5]
self.assertEqual(img2.dimension, 2)
img2 = img[:5,4:5]
self.assertEqual(img2.dimension, 2)
img2 = img[5:5,5:5]
# down to 1d
arr = img[10,:]
self.assertTrue(isinstance(arr, np.ndarray))
# single value
arr = img[10,10]
def test_2d_image_index(self):
img = ants.image_read(ants.get_data('r16'))
idx = img > 200
# acts like a mask
img2 = img[idx]
def test_3d(self):
img = ants.image_read(ants.get_data('mni'))
img2 = img[:10,:10,:10]
self.assertEqual(img2.dimension, 3)
img2 = img[:5,:5,:5]
self.assertEqual(img2.dimension, 3)
img2 = img[1:20,1:10,1:15]
self.assertEqual(img2.dimension, 3)
img2 = img[:5,:5,:5]
self.assertEqual(img2.dimension, 3)
# down to 2d
img2 = img[10,:,:]
self.assertEqual(img2.dimension, 2)
img2 = img[:,10,:]
self.assertEqual(img2.dimension, 2)
img2 = img[:,:,10]
self.assertEqual(img2.dimension, 2)
img2 = img[10,:20,:20]
self.assertEqual(img2.dimension, 2)
img2 = img[:20,10,:]
self.assertEqual(img2.dimension, 2)
img2 = img[2:20,3:30,10]
self.assertEqual(img2.dimension, 2)
# down to 1d
arr = img[10,:,10]
self.assertTrue(isinstance(arr, np.ndarray))
arr = img[10,:,5]
self.assertTrue(isinstance(arr, np.ndarray))
# single value
arr = img[10,10,10]
def test_double_indexing(self):
img = ants.image_read(ants.get_data('mni'))
img2 = img[20:,:,:]
self.assertEqual(img2.shape, (162,218,182))
img3 = img[0,:,:]
self.assertEqual(img3.shape, (218,182))
def test_reverse_error(self):
img = ants.image_read(ants.get_data('mni'))
with self.assertRaises(Exception):
img2 = img[20:10,:,:]
def test_2d_vector(self):
img = ants.image_read(ants.get_data('r16'))
img2 = img[:10,:10]
img_v = ants.merge_channels([img])
img_v2 = img_v[:10,:10]
self.assertTrue(ants.allclose(img2, ants.split_channels(img_v2)[0]))
def test_2d_vector_multi(self):
img = ants.image_read(ants.get_data('r16'))
img2 = img[:10,:10]
img_v = ants.merge_channels([img,img,img])
img_v2 = img_v[:10,:10]
self.assertTrue(ants.allclose(img2, ants.split_channels(img_v2)[0]))
self.assertTrue(ants.allclose(img2, ants.split_channels(img_v2)[1]))
self.assertTrue(ants.allclose(img2, ants.split_channels(img_v2)[2]))
def test_setting_3d(self):
img = ants.image_read(ants.get_data('mni'))
img2d = img[100,:,:]
# setting a sub-image with an image
img2 = img + 10
img2[100,:,:] = img2d
self.assertFalse(ants.allclose(img, img2))
self.assertTrue(ants.allclose(img2d, img2[100,:,:]))
# setting a sub-image with an array
img2 = img + 10
img2[100,:,:] = img2d.numpy()
self.assertFalse(ants.allclose(img, img2))
self.assertTrue(ants.allclose(img2d, img2[100,:,:]))
def test_setting_2d(self):
img = ants.image_read(ants.get_data('r16'))
img2d = img[100,:]
# setting a sub-image with an image
img2 = img + 10
img2[100,:] = img2d
self.assertFalse(ants.allclose(img, img2))
self.assertTrue(np.allclose(img2d, img2[100,:]))
def test_setting_2d_sub_image(self):
img = ants.image_read(ants.get_data('r16'))
img2d = img[10:30,10:30]
# setting a sub-image with an image
img2 = img + 10
img2[10:30,10:30] = img2d
self.assertFalse(ants.allclose(img, img2))
self.assertTrue(ants.allclose(img2d, img2[10:30,10:30]))
# setting a sub-image with an array
img2 = img + 10
img2[10:30,10:30] = img2d.numpy()
self.assertFalse(ants.allclose(img, img2))
self.assertTrue(ants.allclose(img2d, img2[10:30,10:30]))
def test_setting_correctness(self):
img = ants.image_read(ants.get_data('r16')) * 0
self.assertEqual(img.sum(), 0)
img2 = img[10:30,10:30]
img2 = img2 + 10
self.assertEqual(img2.mean(), 10)
img[:20,:20] = img2
self.assertEqual(img.sum(), img2.sum())
self.assertEqual(img.numpy()[:20,:20].sum(), img2.sum())
self.assertNotEqual(img.numpy()[10:30,10:30].sum(), img2.sum())
def test_slicing_3d(self):
img = ants.image_read(ants.get_data('mni'))
img2 = img[:10,:10,:10]
img3 = img[10:20,10:20,10:20]
self.assertTrue(ants.allclose(img2, img3))
img_np = img.numpy()
self.assertTrue(np.allclose(img2.numpy(), img_np[:10,:10,:10]))
self.assertTrue(np.allclose(img[20].numpy(), img_np[20]))
self.assertTrue(np.allclose(img[:,20:40].numpy(), img_np[:,20:40]))
self.assertTrue(np.allclose(img[:,:,20:-2].numpy(), img_np[:,:,20:-2]))
self.assertTrue(np.allclose(img[0:-1,].numpy(), img_np[0:-1,]))
self.assertTrue(np.allclose(img[100,10:100,0:-1].numpy(), img_np[100,10:100,0:-1]))
self.assertTrue(np.allclose(img[:,10:,30:].numpy(), img_np[:,10:,30:]))
# if the slice returns 1D, it should be a numpy array already
self.assertTrue(np.allclose(img[100:-1,30,40], img_np[100:-1,30,40]))
def test_slicing_2d(self):
img = ants.image_read(ants.get_data('r16'))
img2 = img[:10,:10]
img_np = img.numpy()
self.assertTrue(np.allclose(img2.numpy(), img_np[:10,:10]))
self.assertTrue(np.allclose(img[:,20:40].numpy(), img_np[:,20:40]))
self.assertTrue(np.allclose(img[0:-1,].numpy(), img_np[0:-1,]))
self.assertTrue(np.allclose(img[50:,10:-3].numpy(), img_np[50:,10:-3]))
# if the slice returns 1D, it should be a numpy array already
self.assertTrue(np.allclose(img[20], img_np[20]))
self.assertTrue(np.allclose(img[100:-1,30], img_np[100:-1,30]))
|
class TestClass_AntsImageIndexing(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_pixeltype_2d(self):
pass
def test_pixeltype_3d(self):
pass
def test_2d(self):
pass
def test_2d_image_index(self):
pass
def test_3d(self):
pass
def test_double_indexing(self):
pass
def test_reverse_error(self):
pass
def test_2d_vector(self):
pass
def test_2d_vector_multi(self):
pass
def test_setting_3d(self):
pass
def test_setting_2d(self):
pass
def test_setting_2d_sub_image(self):
pass
def test_setting_correctness(self):
pass
def test_slicing_3d(self):
pass
def test_slicing_2d(self):
pass
| 18 | 0 | 12 | 2 | 9 | 1 | 1 | 0.08 | 1 | 1 | 0 | 0 | 17 | 0 | 17 | 89 | 220 | 52 | 155 | 65 | 137 | 13 | 155 | 65 | 137 | 2 | 2 | 1 | 19 |
1,724 |
ANTsX/ANTsPy
|
tests/test_core_ants_image.py
|
test_core_ants_image.TestClass_ANTsImage
|
class TestClass_ANTsImage(unittest.TestCase):
"""
Test ants.ANTsImage class
"""
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
self.imgs = [img2d, img3d]
self.pixeltypes = ['unsigned char', 'unsigned int', 'float', 'double']
self.numpy_pixeltypes = ['uint8', 'uint32', 'float32', 'float64']
def tearDown(self):
pass
def test_get_spacing(self):
#self.setUp()
for img in self.imgs:
spacing = img.spacing
self.assertTrue(isinstance(spacing, tuple))
self.assertEqual(len(img.spacing), img.dimension)
def test_set_spacing(self):
#self.setUp()
for img in self.imgs:
# set spacing from list
new_spacing_list = [6.9]*img.dimension
img.set_spacing(new_spacing_list)
self.assertEqual(img.spacing, tuple(new_spacing_list))
# set spacing from tuple
new_spacing_tuple = tuple(new_spacing_list)
img.set_spacing(new_spacing_tuple)
self.assertEqual(img.spacing, new_spacing_tuple)
# test exceptions
with self.assertRaises(Exception):
new_spacing = img.clone()
img.set_spacing(new_spacing)
with self.assertRaises(Exception):
new_spacing = [6.9]*(img.dimension+1)
img.set_spacing(new_spacing)
def test_get_origin(self):
#self.setUp()
for img in self.imgs:
origin = img.origin
self.assertTrue(isinstance(origin, tuple))
self.assertEqual(len(img.origin), img.dimension)
def test_set_origin(self):
for img in self.imgs:
# set spacing from list
new_origin_list = [6.9]*img.dimension
img.set_origin(new_origin_list)
self.assertEqual(img.origin, tuple(new_origin_list))
# set spacing from tuple
new_origin_tuple = tuple(new_origin_list)
img.set_origin(new_origin_tuple)
self.assertEqual(img.origin, new_origin_tuple)
# test exceptions
with self.assertRaises(Exception):
new_origin = img.clone()
img.set_origin(new_origin)
with self.assertRaises(Exception):
new_origin = [6.9]*(img.dimension+1)
img.set_origin(new_origin)
def test_get_direction(self):
#self.setUp()
for img in self.imgs:
direction = img.direction
self.assertTrue(isinstance(direction,np.ndarray))
self.assertTrue(img.direction.shape, (img.dimension,img.dimension))
def test_set_direction(self):
#self.setUp()
for img in self.imgs:
new_direction = np.eye(img.dimension)*3
img.set_direction(new_direction)
nptest.assert_allclose(img.direction, new_direction)
# set from list
img.set_direction(new_direction.tolist())
# test exceptions
with self.assertRaises(Exception):
new_direction = img.clone()
img.set_direction(new_direction)
with self.assertRaises(Exception):
new_direction = np.eye(img.dimension+2)*3
img.set_direction(new_direction)
def test_view(self):
#self.setUp()
for img in self.imgs:
myview = img.view()
self.assertTrue(isinstance(myview, np.ndarray))
self.assertEqual(myview.shape, img.shape)
# test that changes to view are direct changes to the image
myview *= 3.
nptest.assert_allclose(myview, img.numpy())
def test_numpy(self):
#self.setUp()
for img in self.imgs:
mynumpy = img.numpy()
self.assertTrue(isinstance(mynumpy, np.ndarray))
self.assertEqual(mynumpy.shape, img.shape)
# test that changes to view are NOT direct changes to the image
mynumpy *= 3.
nptest.assert_allclose(mynumpy, img.numpy()*3.)
def test_clone(self):
#self.setUp()
for img in self.imgs:
orig_ptype = img.pixeltype
for ptype in [*self.pixeltypes, *self.numpy_pixeltypes]:
imgclone = img.clone(ptype)
self.assertIn(ptype, [imgclone.dtype, imgclone.pixeltype])
self.assertEqual(img.pixeltype, orig_ptype)
# test physical space consistency
self.assertTrue(ants.image_physical_space_consistency(img, imgclone))
if ptype == orig_ptype:
# test that they dont share image pointer
view1 = img.view()
view1 *= 6.9
nptest.assert_allclose(view1, imgclone.numpy()*6.9)
def test_new_image_like(self):
#self.setUp()
for img in self.imgs:
myarray = img.numpy()
myarray *= 6.9
imgnew = img.new_image_like(myarray)
# test physical space consistency
self.assertTrue(ants.image_physical_space_consistency(img, imgnew))
# test data
nptest.assert_allclose(myarray, imgnew.numpy())
nptest.assert_allclose(myarray, img.numpy()*6.9)
# test exceptions
with self.assertRaises(Exception):
# not ndarray
new_data = img.clone()
img.new_image_like(new_data)
with self.assertRaises(Exception):
# wrong shape
new_data = np.random.randn(69,12,21).astype('float32')
img.new_image_like(new_data)
with self.assertRaises(Exception):
# wrong shape with components
vecimg = ants.from_numpy(np.random.randn(69,12,3).astype('float32'), has_components=True)
new_data = np.random.randn(69,12,4).astype('float32')
vecimg.new_image_like(new_data)
def test_from_numpy_like(self):
img = ants.image_read(ants.get_data('mni'))
arr = img.numpy()
arr *= 2
img2 = ants.from_numpy_like(arr, img)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
self.assertEqual(img2.mean() / img.mean(), 2)
def test_to_file(self):
#self.setUp()
for img in self.imgs:
filename = mktemp(suffix='.nii.gz')
img.to_file(filename)
# test that file now exists
self.assertTrue(os.path.exists(filename))
img2 = ants.image_read(filename)
# test physical space and data
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img.numpy(), img2.numpy())
try:
os.remove(filename)
except:
pass
def test_apply(self):
#self.setUp()
for img in self.imgs:
img2 = img.apply(lambda x: x*6.9)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()*6.9)
def test_numpy_ops(self):
for img in self.imgs:
median = img.median()
std = img.std()
argmin = img.argmin()
argmax = img.argmax()
flat = img.flatten()
nonzero = img.nonzero()
unique = img.unique()
def test__add__(self):
#self.setUp()
for img in self.imgs:
# op on constant
img2 = img + 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()+6.9)
# op on another image
img2 = img + img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()+img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img + img2
def test__radd__(self):
#self.setUp()
for img in self.imgs:
# op on constant
img2 = img.__radd__(6.9)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy() + 6.9)
# op on another image
img2 = img + img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()+img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img + img2
def test__sub__(self):
#self.setUp()
for img in self.imgs:
# op on constant
img2 = img - 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()-6.9)
# op on another image
img2 = img - img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()-img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img - img2
def test__rsub__(self):
#self.setUp()
for img in self.imgs:
# op on constant
img2 = img.__rsub__(6.9)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), 6.9 - img.numpy())
# op on another image
img2 = img - img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()-img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img - img2
def test__mul__(self):
#self.setUp()
for img in self.imgs:
# op on constant
img2 = img * 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()*6.9)
# op on another image
img2 = img * img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()*img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img * img2
def test__rmul__(self):
#self.setUp()
for img in self.imgs:
# op on constant
img2 = img.__rmul__(6.9)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), 6.9*img.numpy())
# op on another image
img2 = img * img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()*img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img * img2
def test__div__(self):
#self.setUp()
for img in self.imgs:
img = img + 10
# op on constant
img2 = img / 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()/6.9)
# op on another image
img2 = img / img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()/img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img / img2
def test__pow__(self):
#self.setUp()
for img in self.imgs:
img = img + 10
# op on constant
img2 = img ** 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()**6.9)
# op on another image
img2 = img ** img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()**img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img ** img2
def test__gt__(self):
#self.setUp()
for img in self.imgs:
img2 = img > 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), (img.numpy()>6.9).astype('int'))
# op on another image
img2 = img > img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()>img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img > img2
def test__ge__(self):
#self.setUp()
for img in self.imgs:
img2 = img >= 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), (img.numpy()>=6.9).astype('int'))
# op on another image
img2 = img >= img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()>=img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img >= img2
def test__lt__(self):
#self.setUp()
for img in self.imgs:
img2 = img < 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), (img.numpy()<6.9).astype('int'))
# op on another image
img2 = img < img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()<img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img < img2
def test__le__(self):
#self.setUp()
for img in self.imgs:
img2 = img <= 6.9
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), (img.numpy()<=6.9).astype('int'))
# op on another image
img2 = img <= img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()<=img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img <= img2
def test__eq__(self):
#self.setUp()
for img in self.imgs:
img2 = (img == 6.9)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), (img.numpy()==6.9).astype('int'))
# op on another image
img2 = img == img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()==img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img == img2
def test__ne__(self):
#self.setUp()
for img in self.imgs:
img2 = (img != 6.9)
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), (img.numpy()!=6.9).astype('int'))
# op on another image
img2 = img != img.clone()
self.assertTrue(ants.image_physical_space_consistency(img, img2))
nptest.assert_allclose(img2.numpy(), img.numpy()!=img.numpy())
with self.assertRaises(Exception):
# different physical space
img2 = img.clone()
img2.set_spacing([2.31]*img.dimension)
img3 = img != img2
def test__getitem__(self):
for img in self.imgs:
if img.dimension == 2:
img2 = img[6:9,6:9]
nptest.assert_allclose(img2.numpy(), img.numpy()[6:9,6:9])
elif img.dimension == 3:
img2 = img[6:9,6:9,6:9]
nptest.assert_allclose(img2.numpy(), img.numpy()[6:9,6:9,6:9])
# get from another image
img2 = img.clone()
xx = img[img2]
with self.assertRaises(Exception):
# different physical space
img2.set_direction(img.direction*2)
xx = img[img2]
def test__setitem__(self):
for img in self.imgs:
if img.dimension == 2:
img[6:9,6:9] = 6.9
self.assertTrue(img.numpy()[6:9,6:9].mean(), 6.9)
elif img.dimension == 3:
img[6:9,6:9,6:9] = 6.9
self.assertTrue(img.numpy()[6:9,6:9,6:9].mean(), 6.9)
# set from another image
img2 = img.clone()
img3 = img.clone()
img[img2] = 0
with self.assertRaises(Exception):
# different physical space
img2.set_direction(img3.direction*2)
img3[img2] = 0
def test__repr__(self):
for img in self.imgs:
s = img.__repr__()
def test__iter__(self):
# Attempts to use __iter__ on an ANTsImage should raise a TypeError
img = self.imgs[0]
with self.assertRaises(TypeError):
for _ in img:
pass
|
class TestClass_ANTsImage(unittest.TestCase):
'''
Test ants.ANTsImage class
'''
def setUp(self):
pass
def tearDown(self):
pass
def test_get_spacing(self):
pass
def test_set_spacing(self):
pass
def test_get_origin(self):
pass
def test_set_origin(self):
pass
def test_get_direction(self):
pass
def test_set_direction(self):
pass
def test_view(self):
pass
def test_numpy(self):
pass
def test_clone(self):
pass
def test_new_image_like(self):
pass
def test_from_numpy_like(self):
pass
def test_to_file(self):
pass
def test_apply(self):
pass
def test_numpy_ops(self):
pass
def test__add__(self):
pass
def test__radd__(self):
pass
def test__sub__(self):
pass
def test__rsub__(self):
pass
def test__mul__(self):
pass
def test__rmul__(self):
pass
def test__div__(self):
pass
def test__pow__(self):
pass
def test__gt__(self):
pass
def test__ge__(self):
pass
def test__lt__(self):
pass
def test__le__(self):
pass
def test__eq__(self):
pass
def test__ne__(self):
pass
def test__getitem__(self):
pass
def test__setitem__(self):
pass
def test__repr__(self):
pass
def test__iter__(self):
pass
| 35 | 1 | 14 | 1 | 10 | 3 | 2 | 0.26 | 1 | 3 | 0 | 0 | 34 | 3 | 34 | 106 | 512 | 77 | 346 | 138 | 311 | 89 | 344 | 138 | 309 | 4 | 2 | 3 | 72 |
1,725 |
ANTsX/ANTsPy
|
ants/core/ants_image.py
|
ants.core.ants_image.ANTsImage
|
class ANTsImage(object):
def __init__(self, pointer):
"""
Initialize an ANTsImage.
Creating an ANTsImage requires a pointer to an underlying ITK image that
is stored via a nanobind class wrapping a AntsImage struct.
Arguments
---------
pointer : nb::class
nanobind class wrapping the struct holding the pointer to the underlying ITK image object
"""
self.pointer = pointer
self.channels_first = False
self._array = None
@property
def _libsuffix(self):
return str(type(self.pointer)).split('AntsImage')[-1].split("'")[0]
@property
def shape(self):
return tuple(get_lib_fn('getShape')(self.pointer))
@property
def physical_shape(self):
return tuple([round(sh*sp,3) for sh,sp in zip(self.shape, self.spacing)])
@property
def is_rgb(self):
return 'RGB' in self._libsuffix
@property
def has_components(self):
suffix = self._libsuffix
return suffix.startswith('V') or suffix.startswith('RGB')
@property
def components(self):
if not self.has_components:
return 1
return get_lib_fn('getComponents')(self.pointer)
@property
def pixeltype(self):
ptype = self._libsuffix[:-1]
if self.has_components:
if self.is_rgb:
ptype = ptype[3:]
else:
ptype = ptype[1:]
ptype_map = {'UC': 'unsigned char',
'UI': 'unsigned int',
'F': 'float',
'D': 'double'}
return ptype_map[ptype]
@property
def dtype(self):
return _itk_to_npy_map[self.pixeltype]
@property
def dimension(self):
return int(self._libsuffix[-1])
@property
def spacing(self):
"""
Get image spacing
Returns
-------
tuple
"""
return tuple(get_lib_fn('getSpacing')(self.pointer))
def set_spacing(self, new_spacing):
"""
Set image spacing
Arguments
---------
new_spacing : tuple or list
updated spacing for the image.
should have one value for each dimension
Returns
-------
None
"""
if not isinstance(new_spacing, (tuple, list)):
raise ValueError('arg must be tuple or list')
if len(new_spacing) != self.dimension:
raise ValueError('must give a spacing value for each dimension (%i)' % self.dimension)
get_lib_fn('setSpacing')(self.pointer, new_spacing)
@property
def origin(self):
"""
Get image origin
Returns
-------
tuple
"""
return tuple(get_lib_fn('getOrigin')(self.pointer))
def set_origin(self, new_origin):
"""
Set image origin
Arguments
---------
new_origin : tuple or list
updated origin for the image.
should have one value for each dimension
Returns
-------
None
"""
if not isinstance(new_origin, (tuple, list)):
raise ValueError('arg must be tuple or list')
if len(new_origin) != self.dimension:
raise ValueError('must give a origin value for each dimension (%i)' % self.dimension)
get_lib_fn('setOrigin')(self.pointer, new_origin)
@property
def direction(self):
"""
Get image direction
Returns
-------
tuple
"""
return np.array(get_lib_fn('getDirection')(self.pointer)).reshape(self.dimension,self.dimension)
def set_direction(self, new_direction):
"""
Set image direction
Arguments
---------
new_direction : numpy.ndarray or tuple or list
updated direction for the image.
should have one value for each dimension
Returns
-------
None
"""
if isinstance(new_direction, (tuple,list)):
new_direction = np.asarray(new_direction)
if not isinstance(new_direction, np.ndarray):
raise ValueError('arg must be np.ndarray or tuple or list')
if len(new_direction) != self.dimension:
raise ValueError('must give a origin value for each dimension (%i)' % self.dimension)
get_lib_fn('setDirection')(self.pointer, new_direction)
@property
def orientation(self):
if self.dimension == 3:
return self.get_orientation()
else:
return None
def view(self, single_components=False):
"""
Geet a numpy array providing direct, shared access to the image data.
IMPORTANT: If you alter the view, then the underlying image data
will also be altered.
Arguments
---------
single_components : boolean (default is False)
if True, keep the extra component dimension in returned array even
if image only has one component (i.e. self.has_components == False)
Returns
-------
ndarray
"""
if self.is_rgb:
img = self.rgb_to_vector()
else:
img = self
dtype = img.dtype
shape = img.shape[::-1]
if img.has_components or (single_components == True):
shape = list(shape) + [img.components]
memview = get_lib_fn('toNumpy')(img.pointer)
return np.asarray(memview).view(dtype = dtype).reshape(shape).view(np.ndarray).T
def numpy(self, single_components=False):
"""
Get a numpy array copy representing the underlying image data. Altering
this ndarray will have NO effect on the underlying image data.
Arguments
---------
single_components : boolean (default is False)
if True, keep the extra component dimension in returned array even
if image only has one component (i.e. self.has_components == False)
Returns
-------
ndarray
"""
array = np.array(self.view(single_components=single_components), copy=True, dtype=self.dtype)
if self.has_components or (single_components == True):
if not self.channels_first:
array = np.rollaxis(array, 0, self.dimension+1)
return array
def astype(self, dtype):
"""
Cast & clone an ANTsImage to a given numpy datatype.
Map:
uint8 : unsigned char
uint32 : unsigned int
float32 : float
float64 : double
"""
if dtype not in _supported_dtypes:
raise ValueError('Datatype %s not supported. Supported types are %s' % (dtype, _supported_dtypes))
pixeltype = _npy_to_itk_map[dtype]
return self.clone(pixeltype)
def to_file(self, filename):
"""
Write the ANTsImage to file
Args
----
filename : string
filepath to which the image will be written
"""
filename = os.path.expanduser(filename)
get_lib_fn('toFile')(self.pointer, filename)
to_filename = to_file
def apply(self, fn):
"""
Apply an arbitrary function to ANTsImage.
Args
----
fn : python function or lambda
function to apply to ENTIRE image at once
Returns
-------
ANTsImage
image with function applied to it
"""
this_array = self.numpy()
new_array = fn(this_array)
return self.new_image_like(new_array)
## NUMPY FUNCTIONS ##
def abs(self, axis=None):
""" Return absolute value of image """
return np.abs(self.numpy())
def mean(self, axis=None):
""" Return mean along specified axis """
return self.numpy().mean(axis=axis)
def median(self, axis=None):
""" Return median along specified axis """
return np.median(self.numpy(), axis=axis)
def std(self, axis=None):
""" Return std along specified axis """
return self.numpy().std(axis=axis)
def sum(self, axis=None, keepdims=False):
""" Return sum along specified axis """
return self.numpy().sum(axis=axis, keepdims=keepdims)
def min(self, axis=None):
""" Return min along specified axis """
return self.numpy().min(axis=axis)
def max(self, axis=None):
""" Return max along specified axis """
return self.numpy().max(axis=axis)
def range(self, axis=None):
""" Return range tuple along specified axis """
return (self.min(axis=axis), self.max(axis=axis))
def argmin(self, axis=None):
""" Return argmin along specified axis """
return self.numpy().argmin(axis=axis)
def argmax(self, axis=None):
""" Return argmax along specified axis """
return self.numpy().argmax(axis=axis)
def argrange(self, axis=None):
""" Return argrange along specified axis """
amin = self.argmin(axis=axis)
amax = self.argmax(axis=axis)
if axis is None:
return (amin, amax)
else:
return np.stack([amin, amax]).T
def flatten(self):
""" Flatten image data """
return self.numpy().flatten()
def nonzero(self):
""" Return non-zero indices of image """
return self.numpy().nonzero()
def unique(self, sort=False):
""" Return unique set of values in image """
unique_vals = np.unique(self.numpy())
if sort:
unique_vals = np.sort(unique_vals)
return unique_vals
## OVERLOADED OPERATORS ##
def __add__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array + other
return self.new_image_like(new_array)
__radd__ = __add__
def __sub__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array - other
return self.new_image_like(new_array)
def __rsub__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = other - this_array
return self.new_image_like(new_array)
def __mul__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array * other
return self.new_image_like(new_array)
__rmul__ = __mul__
def __truediv__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array / other
return self.new_image_like(new_array)
def __pow__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array ** other
return self.new_image_like(new_array)
def __gt__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array > other
return self.new_image_like(new_array.astype('uint8'))
def __ge__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array >= other
return self.new_image_like(new_array.astype('uint8'))
def __lt__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array < other
return self.new_image_like(new_array.astype('uint8'))
def __le__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array <= other
return self.new_image_like(new_array.astype('uint8'))
def __eq__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array == other
return self.new_image_like(new_array.astype('uint8'))
def __ne__(self, other):
this_array = self.numpy()
if is_image(other):
if not ants.image_physical_space_consistency(self, other):
raise ValueError('images do not occupy same physical space')
other = other.numpy()
new_array = this_array != other
return self.new_image_like(new_array.astype('uint8'))
def __getitem__(self, idx):
if self.has_components:
return ants.merge_channels([
img[idx] for img in ants.split_channels(self)
])
if isinstance(idx, ANTsImage):
if not ants.image_physical_space_consistency(self, idx):
raise ValueError('images do not occupy same physical space')
return self.numpy().__getitem__(idx.numpy().astype('bool'))
# convert idx to tuple if it is not, eg im[10] or im[10:20]
if not isinstance(idx, tuple):
idx = (idx,)
ndim = len(self.shape)
if len(idx) > ndim:
raise ValueError('Too many indices for image')
if len(idx) < ndim:
# If not all dimensions are indexed, assume the rest are full slices
# eg im[10] -> im[10, :, :]
idx = idx + (slice(None),) * (ndim - len(idx))
sizes = list(self.shape)
starts = [0] * ndim
stops = list(self.shape)
for i in range(ndim):
ti = idx[i]
if isinstance(ti, slice):
if ti.start:
starts[i] = ti.start
if ti.stop:
if ti.stop < 0:
stops[i] = self.shape[i] + ti.stop
else:
stops[i] = ti.stop
sizes[i] = stops[i] - starts[i]
if stops[i] < starts[i]:
raise ValueError('Reverse indexing is not supported.')
elif isinstance(ti, int):
starts[i] = ti
sizes[i] = 0
if sizes[i] == 0:
ndim -= 1
if ndim < 2:
return self.numpy().__getitem__(idx)
libfn = get_lib_fn('getItem%i' % ndim)
new_ptr = libfn(self.pointer, starts, sizes)
new_image = from_pointer(new_ptr)
return new_image
def __setitem__(self, idx, value):
arr = self.view()
if is_image(value):
value = value.numpy()
if is_image(idx):
if not ants.image_physical_space_consistency(self, idx):
raise ValueError('images do not occupy same physical space')
arr.__setitem__(idx.numpy().astype('bool'), value)
else:
arr.__setitem__(idx, value)
def __iter__(self):
# Do not allow iteration on ANTsImage. Builtin iteration, eg sum(), will generally be much slower
# than using numpy methods. We need to explicitly disallow it to prevent breaking object state.
raise TypeError("ANTsImage is not iterable. See docs for available functions, or use numpy.")
def __repr__(self):
if self.dimension == 3:
s = 'ANTsImage ({})\n'.format(self.orientation)
else:
s = 'ANTsImage\n'
s = s +\
'\t {:<10} : {} ({})\n'.format('Pixel Type', self.pixeltype, self.dtype)+\
'\t {:<10} : {}{}\n'.format('Components', self.components, ' (RGB)' if 'RGB' in self._libsuffix else '')+\
'\t {:<10} : {}\n'.format('Dimensions', self.shape)+\
'\t {:<10} : {}\n'.format('Spacing', tuple([round(s,4) for s in self.spacing]))+\
'\t {:<10} : {}\n'.format('Origin', tuple([round(o,4) for o in self.origin]))+\
'\t {:<10} : {}\n'.format('Direction', np.round(self.direction.flatten(),4))
return s
def __getstate__(self):
"""
import ants
import pickle
import numpy as np
from copy import deepcopy
img = ants.image_read( ants.get_ants_data("r16"))
img_pickled = pickle.dumps(img)
img2 = pickle.loads(img_pickled)
img3 = deepcopy(img)
img += 10
print(img.mean(), img3.mean())
"""
return self.numpy(), self.origin, self.spacing, self.direction, self.has_components, self.is_rgb
def __setstate__(self, state):
data, origin, spacing, direction, has_components, is_rgb = state
image = ants.from_numpy(np.copy(data), origin=origin, spacing=spacing, direction=direction, has_components=has_components, is_rgb=is_rgb)
self.__dict__ = image.__dict__
|
class ANTsImage(object):
def __init__(self, pointer):
'''
Initialize an ANTsImage.
Creating an ANTsImage requires a pointer to an underlying ITK image that
is stored via a nanobind class wrapping a AntsImage struct.
Arguments
---------
pointer : nb::class
nanobind class wrapping the struct holding the pointer to the underlying ITK image object
'''
pass
@property
def _libsuffix(self):
pass
@property
def shape(self):
pass
@property
def physical_shape(self):
pass
@property
def is_rgb(self):
pass
@property
def has_components(self):
pass
@property
def components(self):
pass
@property
def pixeltype(self):
pass
@property
def dtype(self):
pass
@property
def dimension(self):
pass
@property
def spacing(self):
'''
Get image spacing
Returns
-------
tuple
'''
pass
def set_spacing(self, new_spacing):
'''
Set image spacing
Arguments
---------
new_spacing : tuple or list
updated spacing for the image.
should have one value for each dimension
Returns
-------
None
'''
pass
@property
def origin(self):
'''
Get image origin
Returns
-------
tuple
'''
pass
def set_origin(self, new_origin):
'''
Set image origin
Arguments
---------
new_origin : tuple or list
updated origin for the image.
should have one value for each dimension
Returns
-------
None
'''
pass
@property
def direction(self):
'''
Get image direction
Returns
-------
tuple
'''
pass
def set_direction(self, new_direction):
'''
Set image direction
Arguments
---------
new_direction : numpy.ndarray or tuple or list
updated direction for the image.
should have one value for each dimension
Returns
-------
None
'''
pass
@property
def orientation(self):
pass
def view(self, single_components=False):
'''
Geet a numpy array providing direct, shared access to the image data.
IMPORTANT: If you alter the view, then the underlying image data
will also be altered.
Arguments
---------
single_components : boolean (default is False)
if True, keep the extra component dimension in returned array even
if image only has one component (i.e. self.has_components == False)
Returns
-------
ndarray
'''
pass
def numpy(self, single_components=False):
'''
Get a numpy array copy representing the underlying image data. Altering
this ndarray will have NO effect on the underlying image data.
Arguments
---------
single_components : boolean (default is False)
if True, keep the extra component dimension in returned array even
if image only has one component (i.e. self.has_components == False)
Returns
-------
ndarray
'''
pass
def astype(self, dtype):
'''
Cast & clone an ANTsImage to a given numpy datatype.
Map:
uint8 : unsigned char
uint32 : unsigned int
float32 : float
float64 : double
'''
pass
def to_file(self, filename):
'''
Write the ANTsImage to file
Args
----
filename : string
filepath to which the image will be written
'''
pass
def apply(self, fn):
'''
Apply an arbitrary function to ANTsImage.
Args
----
fn : python function or lambda
function to apply to ENTIRE image at once
Returns
-------
ANTsImage
image with function applied to it
'''
pass
def abs(self, axis=None):
''' Return absolute value of image '''
pass
def mean(self, axis=None):
''' Return mean along specified axis '''
pass
def median(self, axis=None):
''' Return median along specified axis '''
pass
def std(self, axis=None):
''' Return std along specified axis '''
pass
def sum(self, axis=None, keepdims=False):
''' Return sum along specified axis '''
pass
def min(self, axis=None):
''' Return min along specified axis '''
pass
def max(self, axis=None):
''' Return max along specified axis '''
pass
def range(self, axis=None):
''' Return range tuple along specified axis '''
pass
def argmin(self, axis=None):
''' Return argmin along specified axis '''
pass
def argmax(self, axis=None):
''' Return argmax along specified axis '''
pass
def argrange(self, axis=None):
''' Return argrange along specified axis '''
pass
def flatten(self):
''' Flatten image data '''
pass
def nonzero(self):
''' Return non-zero indices of image '''
pass
def unique(self, sort=False):
''' Return unique set of values in image '''
pass
def __add__(self, other):
pass
def __sub__(self, other):
pass
def __rsub__(self, other):
pass
def __mul__(self, other):
pass
def __truediv__(self, other):
pass
def __pow__(self, other):
pass
def __gt__(self, other):
pass
def __ge__(self, other):
pass
def __lt__(self, other):
pass
def __le__(self, other):
pass
def __eq__(self, other):
pass
def __ne__(self, other):
pass
def __getitem__(self, idx):
pass
def __setitem__(self, idx, value):
pass
def __iter__(self):
pass
def __repr__(self):
pass
def __getstate__(self):
'''
import ants
import pickle
import numpy as np
from copy import deepcopy
img = ants.image_read( ants.get_ants_data("r16"))
img_pickled = pickle.dumps(img)
img2 = pickle.loads(img_pickled)
img3 = deepcopy(img)
img += 10
print(img.mean(), img3.mean())
'''
pass
def __setstate__(self, state):
pass
| 68 | 27 | 9 | 1 | 6 | 3 | 2 | 0.45 | 1 | 10 | 0 | 0 | 54 | 4 | 54 | 54 | 571 | 109 | 318 | 126 | 250 | 144 | 286 | 113 | 231 | 16 | 1 | 4 | 116 |
1,726 |
ANTsX/ANTsPy
|
ants/contrib/sklearn_interface/sklearn_registration.py
|
ants.contrib.sklearn_interface.sklearn_registration.RigidRegistration
|
class RigidRegistration(object):
"""
Rigid Registration as a Scikit-Learn compatible transform class
Example
-------
>>> import ants
>>> import ants.extra as extrants
>>> fi = ants.image_read(ants.get_data('r16'))
>>> mi = ants.image_read(ants.get_data('r64'))
>>> regtx = extrants.RigidRegistration()
>>> regtx.fit(fi, mi)
>>> mi_r = regtx.transform(mi)
>>> ants.plot(fi, mi_r.iMath_Canny(1, 2, 4).iMath('MD',1))
"""
def __init__(self, fixed_image=None):
self.type_of_transform = 'Rigid'
self.fixed_image = fixed_image
def fit(self, moving_image, fixed_image=None):
if fixed_image is None:
if self.fixed_image is None:
raise ValueError('must give fixed_image in fit() or set it in __init__')
fixed_image = self.fixed_image
fit_result = interface.registration(fixed_image,
moving_image,
type_of_transform=self.type_of_transform,
initial_transform=None,
outprefix='',
mask=None,
grad_step=0.2,
flow_sigma=3,
total_sigma=0,
aff_metric='mattes',
aff_sampling=32,
syn_metric='mattes',
syn_sampling=32,
reg_iterations=(40,20,0),
verbose=False)
self._fit_result = fit_result
self.fwdtransforms_ = fit_result['fwdtransforms']
self.invtransforms_ = fit_result['invtransforms']
self.warpedmovout_ = fit_result['warpedmovout']
self.warpedfiout_ = fit_result['warpedfixout']
def transform(self, moving_image, fixed_image=None):
result = apply_transforms(fixed=fixed_image, moving=moving_image,
transformlist=self.fwdtransforms)
return result
def inverse_transform(self, moving_image, fixed_image=None):
result = apply_transforms(fixed=fixed_image, moving=moving_image,
transformlist=self.invtransforms)
return result
|
class RigidRegistration(object):
'''
Rigid Registration as a Scikit-Learn compatible transform class
Example
-------
>>> import ants
>>> import ants.extra as extrants
>>> fi = ants.image_read(ants.get_data('r16'))
>>> mi = ants.image_read(ants.get_data('r64'))
>>> regtx = extrants.RigidRegistration()
>>> regtx.fit(fi, mi)
>>> mi_r = regtx.transform(mi)
>>> ants.plot(fi, mi_r.iMath_Canny(1, 2, 4).iMath('MD',1))
'''
def __init__(self, fixed_image=None):
pass
def fit(self, moving_image, fixed_image=None):
pass
def transform(self, moving_image, fixed_image=None):
pass
def inverse_transform(self, moving_image, fixed_image=None):
pass
| 5 | 1 | 9 | 0 | 9 | 0 | 2 | 0.35 | 1 | 1 | 0 | 0 | 4 | 7 | 4 | 4 | 55 | 5 | 37 | 15 | 32 | 13 | 21 | 15 | 16 | 3 | 1 | 2 | 6 |
1,727 |
ANTsX/ANTsPy
|
ants/contrib/sklearn_interface/sklearn_registration.py
|
ants.contrib.sklearn_interface.sklearn_registration.Registration
|
class Registration(object):
"""
How would it work:
# Co-registration within-visit
reg = Registration('Rigid', fixed_image=t1_template,
save_dir=save_dir, save_suffix='_coreg')
for img in other_imgs:
reg.fit(img)
for img in [flair_img, t2_img]:
reg = Registration('Rigid', fixed_image=t1_template,
save_dir=save_dir, save_suffix='_coreg')
reg.fit(img)
# Co-registration across-visit
reg = Registration('Rigid', fixed_image=t1)
reg.fit(moving=t1_followup)
# now align all followups with first visit
for img in [flair_follwup, t2_followup]:
img_reg = reg.transform(img)
# conversly, align all first visits with followups
for img in [flair, t2]:
img_reg = reg.inverse_transform(img)
"""
def __init__(self, type_of_transform, fixed_image):
"""
Properties:
type_of_transform
fixed_image (template)
save_dir (where to save outputs)
save_suffix (what to append to saved outputs)
save_prefix (what to preppend to saved outputs)
"""
self.type_of_transform = type_of_transform
self.fixed_image = fixed_image
def fit(self, X, y=None):
"""
X : ANTsImage | string | list of ANTsImage types | list of strings
images to register to fixed image
y : string | list of strings
labels for images
"""
moving_images = X if isinstance(X, (list,tuple)) else [X]
moving_labels = y if y is not None else [i for i in range(len(moving_images))]
fixed_image = self.fixed_image
self.fwdtransforms_ = {}
self.invtransforms_ = {}
self.warpedmovout_ = {}
self.warpedfixout_ = {}
for moving_image, moving_label in zip(moving_images, moving_labels):
fit_result = interface.registration(fixed_image,
moving_image,
type_of_transform=self.type_of_transform,
initial_transform=None,
outprefix='',
mask=None,
grad_step=0.2,
flow_sigma=3,
total_sigma=0,
aff_metric='mattes',
aff_sampling=32,
syn_metric='mattes',
syn_sampling=32,
reg_iterations=(40,20,0),
verbose=False)
self.fwdtransforms_[moving_label] = fit_result['fwdtransforms']
self.invtransforms_[moving_label] = fit_result['invtransforms']
self.warpedmovout_[moving_label] = fit_result['warpedmovout']
self.warpedfixout_[moving_label] = fit_result['warpedfixout']
return self
def transform(self, X, y=None):
pass
|
class Registration(object):
'''
How would it work:
# Co-registration within-visit
reg = Registration('Rigid', fixed_image=t1_template,
save_dir=save_dir, save_suffix='_coreg')
for img in other_imgs:
reg.fit(img)
for img in [flair_img, t2_img]:
reg = Registration('Rigid', fixed_image=t1_template,
save_dir=save_dir, save_suffix='_coreg')
reg.fit(img)
# Co-registration across-visit
reg = Registration('Rigid', fixed_image=t1)
reg.fit(moving=t1_followup)
# now align all followups with first visit
for img in [flair_follwup, t2_followup]:
img_reg = reg.transform(img)
# conversly, align all first visits with followups
for img in [flair, t2]:
img_reg = reg.inverse_transform(img)
'''
def __init__(self, type_of_transform, fixed_image):
'''
Properties:
type_of_transform
fixed_image (template)
save_dir (where to save outputs)
save_suffix (what to append to saved outputs)
save_prefix (what to preppend to saved outputs)
'''
pass
def fit(self, X, y=None):
'''
X : ANTsImage | string | list of ANTsImage types | list of strings
images to register to fixed image
y : string | list of strings
labels for images
'''
pass
def transform(self, X, y=None):
pass
| 4 | 3 | 18 | 2 | 11 | 5 | 2 | 1 | 1 | 4 | 0 | 0 | 3 | 6 | 3 | 3 | 83 | 13 | 35 | 15 | 31 | 35 | 21 | 15 | 17 | 4 | 1 | 1 | 6 |
1,728 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.TranslateImage
|
class TranslateImage(object):
"""
Translate an image in physical space. This function calls
highly optimized ITK/C++ code.
"""
def __init__(self, translation, reference=None, interp='linear'):
"""
Initialize a TranslateImage transform
Arguments
---------
translation : list, tuple, or numpy.ndarray
absolute pixel transformation in each axis
reference : ANTsImage (optional)
image which provides the reference physical space in which
to perform the transform
interp : string
type of interpolation to use
options: linear, nearest
Example
-------
>>> import ants
>>> translater = ants.contrib.TranslateImage((10,10), interp='linear')
"""
if interp not in {'linear', 'nearest'}:
raise ValueError('interp must be one of {linear, nearest}')
self.translation = list(translation)
self.reference = reference
self.interp = interp
def transform(self, X, y=None):
"""
Example
-------
>>> import ants
>>> translater = ants.contrib.TranslateImage((40,0))
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = translater.transform(img2d)
>>> ants.plot(img2d, img2d_r)
>>> translater = ants.contrib.TranslateImage((40,0,0))
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = translater.transform(img3d)
>>> ants.plot(img3d, img3d_r, axis=2)
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
if len(self.translation) != X.dimension:
raise ValueError('must give a translation value for each image dimension')
if self.reference is None:
reference = X
else:
reference = self.reference
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('translateAntsImage%s_%s' % (insuffix, self.interp))
casted_ptr = cast_fn(X.pointer, reference.pointer, self.translation)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class TranslateImage(object):
'''
Translate an image in physical space. This function calls
highly optimized ITK/C++ code.
'''
def __init__(self, translation, reference=None, interp='linear'):
'''
Initialize a TranslateImage transform
Arguments
---------
translation : list, tuple, or numpy.ndarray
absolute pixel transformation in each axis
reference : ANTsImage (optional)
image which provides the reference physical space in which
to perform the transform
interp : string
type of interpolation to use
options: linear, nearest
Example
-------
>>> import ants
>>> translater = ants.contrib.TranslateImage((10,10), interp='linear')
'''
pass
def transform(self, X, y=None):
'''
Example
-------
>>> import ants
>>> translater = ants.contrib.TranslateImage((40,0))
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = translater.transform(img2d)
>>> ants.plot(img2d, img2d_r)
>>> translater = ants.contrib.TranslateImage((40,0,0))
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = translater.transform(img3d)
>>> ants.plot(img3d, img3d_r, axis=2)
'''
pass
| 3 | 3 | 29 | 4 | 10 | 15 | 3 | 1.62 | 1 | 3 | 1 | 0 | 2 | 3 | 2 | 2 | 64 | 9 | 21 | 10 | 18 | 34 | 19 | 10 | 16 | 4 | 1 | 1 | 6 |
1,729 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.SigmoidIntensity
|
class SigmoidIntensity(object):
"""
Transform an image using a sigmoid function
"""
def __init__(self, min_val, max_val, alpha, beta):
"""
Initialize a SigmoidIntensity transform
Arguments
---------
min_val : float
minimum value
max_val : float
maximum value
alpha : float
alpha value for sigmoid
beta : flaot
beta value for sigmoid
Example
-------
>>> import ants
>>> sigscaler = ants.contrib.SigmoidIntensity(0,1,1,1)
"""
self.min_val = min_val
self.max_val = max_val
self.alpha = alpha
self.beta = beta
def transform(self, X, y=None):
"""
Transform an image by applying a sigmoid function.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> sigscaler = ants.contrib.SigmoidIntensity(0,1,1,1)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = sigscaler.transform(img2d)
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = sigscaler.transform(img3d)
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('sigmoidAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer, self.min_val, self.max_val, self.alpha, self.beta)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class SigmoidIntensity(object):
'''
Transform an image using a sigmoid function
'''
def __init__(self, min_val, max_val, alpha, beta):
'''
Initialize a SigmoidIntensity transform
Arguments
---------
min_val : float
minimum value
max_val : float
maximum value
alpha : float
alpha value for sigmoid
beta : flaot
beta value for sigmoid
Example
-------
>>> import ants
>>> sigscaler = ants.contrib.SigmoidIntensity(0,1,1,1)
'''
pass
def transform(self, X, y=None):
'''
Transform an image by applying a sigmoid function.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> sigscaler = ants.contrib.SigmoidIntensity(0,1,1,1)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = sigscaler.transform(img2d)
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = sigscaler.transform(img3d)
'''
pass
| 3 | 3 | 28 | 5 | 7 | 17 | 2 | 2.64 | 1 | 2 | 1 | 0 | 2 | 4 | 2 | 2 | 61 | 10 | 14 | 10 | 11 | 37 | 13 | 10 | 10 | 2 | 1 | 1 | 3 |
1,730 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.ShiftScaleIntensity
|
class ShiftScaleIntensity(object):
"""
Shift and scale the intensity of an ANTsImage
"""
def __init__(self, shift, scale):
"""
Initialize a ShiftScaleIntensity transform
Arguments
---------
shift : float
shift all of the intensity values by the given amount through addition.
For example, if the minimum image value is 0.0 and the shift
is 10.0, then the new minimum value (before scaling) will be 10.0
scale : float
scale all the intensity values by the given amount through multiplication.
For example, if the min/max image values are 10/20 and the scale
is 2.0, then then new min/max values will be 20/40
Example
-------
>>> import ants
>>> shiftscaler = ants.contrib.ShiftScaleIntensity(shift=10, scale=2)
"""
self.shift = shift
self.scale = scale
def transform(self, X, y=None):
"""
Transform an image by shifting and scaling its intensity values.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> shiftscaler = ants.contrib.ShiftScaleIntensity(10,2.)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = shiftscaler.transform(img2d)
>>> print(img2d.min(), ',', img2d.max(), ' -> ', img2d_r.min(), ',', img2d_r.max())
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = shiftscaler.transform(img3d)
>>> print(img3d.min(), ',' , img3d.max(), ',', ' -> ', img3d_r.min(), ',' , img3d_r.max())
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('shiftScaleAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer, self.scale, self.shift)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class ShiftScaleIntensity(object):
'''
Shift and scale the intensity of an ANTsImage
'''
def __init__(self, shift, scale):
'''
Initialize a ShiftScaleIntensity transform
Arguments
---------
shift : float
shift all of the intensity values by the given amount through addition.
For example, if the minimum image value is 0.0 and the shift
is 10.0, then the new minimum value (before scaling) will be 10.0
scale : float
scale all the intensity values by the given amount through multiplication.
For example, if the min/max image values are 10/20 and the scale
is 2.0, then then new min/max values will be 20/40
Example
-------
>>> import ants
>>> shiftscaler = ants.contrib.ShiftScaleIntensity(shift=10, scale=2)
'''
pass
def transform(self, X, y=None):
'''
Transform an image by shifting and scaling its intensity values.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> shiftscaler = ants.contrib.ShiftScaleIntensity(10,2.)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = shiftscaler.transform(img2d)
>>> print(img2d.min(), ',', img2d.max(), ' -> ', img2d_r.min(), ',', img2d_r.max())
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = shiftscaler.transform(img3d)
>>> print(img3d.min(), ',' , img3d.max(), ',', ' -> ', img3d_r.min(), ',' , img3d_r.max())
'''
pass
| 3 | 3 | 27 | 4 | 6 | 18 | 2 | 3.25 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 59 | 8 | 12 | 8 | 9 | 39 | 11 | 8 | 8 | 2 | 1 | 1 | 3 |
1,731 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.ScaleImage
|
class ScaleImage(object):
"""
Scale an image in physical space. This function calls
highly optimized ITK/C++ code.
"""
def __init__(self, scale, reference=None, interp='linear'):
"""
Initialize a TranslateImage transform
Arguments
---------
scale : list, tuple, or numpy.ndarray
relative scaling along each axis
reference : ANTsImage (optional)
image which provides the reference physical space in which
to perform the transform
interp : string
type of interpolation to use
options: linear, nearest
Example
-------
>>> import ants
>>> translater = ants.contrib.TranslateImage((10,10), interp='linear')
"""
if interp not in {'linear', 'nearest'}:
raise ValueError('interp must be one of {linear, nearest}')
self.scale = list(scale)
self.reference = reference
self.interp = interp
def transform(self, X, y=None):
"""
Example
-------
>>> import ants
>>> scaler = ants.contrib.ScaleImage((1.2,1.2))
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = scaler.transform(img2d)
>>> ants.plot(img2d, img2d_r)
>>> scaler = ants.contrib.ScaleImage((1.2,1.2,1.2))
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = scaler.transform(img3d)
>>> ants.plot(img3d, img3d_r)
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
if len(self.scale) != X.dimension:
raise ValueError('must give a scale value for each image dimension')
if self.reference is None:
reference = X
else:
reference = self.reference
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('scaleAntsImage%s_%s' % (insuffix, self.interp))
casted_ptr = cast_fn(X.pointer, reference.pointer, self.scale)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class ScaleImage(object):
'''
Scale an image in physical space. This function calls
highly optimized ITK/C++ code.
'''
def __init__(self, scale, reference=None, interp='linear'):
'''
Initialize a TranslateImage transform
Arguments
---------
scale : list, tuple, or numpy.ndarray
relative scaling along each axis
reference : ANTsImage (optional)
image which provides the reference physical space in which
to perform the transform
interp : string
type of interpolation to use
options: linear, nearest
Example
-------
>>> import ants
>>> translater = ants.contrib.TranslateImage((10,10), interp='linear')
'''
pass
def transform(self, X, y=None):
'''
Example
-------
>>> import ants
>>> scaler = ants.contrib.ScaleImage((1.2,1.2))
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = scaler.transform(img2d)
>>> ants.plot(img2d, img2d_r)
>>> scaler = ants.contrib.ScaleImage((1.2,1.2,1.2))
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = scaler.transform(img3d)
>>> ants.plot(img3d, img3d_r)
'''
pass
| 3 | 3 | 29 | 4 | 10 | 15 | 3 | 1.62 | 1 | 3 | 1 | 0 | 2 | 3 | 2 | 2 | 64 | 9 | 21 | 10 | 18 | 34 | 19 | 10 | 16 | 4 | 1 | 1 | 6 |
1,732 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.RescaleIntensity
|
class RescaleIntensity(object):
"""
Rescale the pixeltype of an ANTsImage linearly to be between a given
minimum and maximum value.
This code uses the C++ ITK library directly, so it is fast.
NOTE: this offered a ~5x speedup over using built-in arithmetic operations in ANTs.
It is also more-or-less the same in speed as an equivalent numpy+scikit-learn
solution.
Timing vs Built-in Operations
-----------------------------
>>> import ants
>>> import time
>>> rescaler = ants.contrib.RescaleIntensity(0,1)
>>> img = ants.image_read(ants.get_data('mni'))
>>> s = time.time()
>>> for i in range(100):
... img_float = rescaler.transform(img)
>>> e = time.time()
>>> print(e - s) # 2.8s
>>> s = time.time()
>>> for i in range(100):
... maxval = img.max()
... img_float = (img - maxval) / (maxval - img.min())
>>> e = time.time()
>>> print(e - s) # 13.9s
Timing vs Numpy+Scikit-Learn
----------------------------
>>> import ants
>>> import numpy as np
>>> from sklearn.preprocessing import MinMaxScaler
>>> import time
>>> img = ants.image_read(ants.get_data('mni'))
>>> arr = img.numpy().reshape(1,-1)
>>> rescaler = ants.contrib.RescaleIntensity(-1,1)
>>> rescaler2 = MinMaxScaler((-1,1)).fit(arr)
>>> s = time.time()
>>> for i in range(100):
... img_scaled = rescaler.transform(img)
>>> e = time.time()
>>> print(e - s) # 2.8s
>>> s = time.time()
>>> for i in range(100):
... arr_scaled = rescaler2.transform(arr)
>>> e = time.time()
>>> print(e - s) # 3s
"""
def __init__(self, min_val, max_val):
"""
Initialize a RescaleIntensity transform.
Arguments
---------
min_val : float
minimum value to which image(s) will be rescaled
max_val : float
maximum value to which image(s) will be rescaled
Example
-------
>>> import ants
>>> rescaler = ants.contrib.RescaleIntensity(0,1)
"""
self.min_val = min_val
self.max_val = max_val
def transform(self, X, y=None):
"""
Transform an image by linearly rescaling its intensity to
be between a minimum and maximum value
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> rescaler = ants.contrib.RescaleIntensity(0,1)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = rescaler.transform(img2d)
>>> print(img2d.min(), ',', img2d.max(), ' -> ', img2d_r.min(), ',', img2d_r.max())
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = rescaler.transform(img3d)
>>> print(img3d.min(), ',' , img3d.max(), ' -> ', img3d_r.min(), ',' , img3d_r.max())
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('rescaleAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer, self.min_val, self.max_val)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class RescaleIntensity(object):
'''
Rescale the pixeltype of an ANTsImage linearly to be between a given
minimum and maximum value.
This code uses the C++ ITK library directly, so it is fast.
NOTE: this offered a ~5x speedup over using built-in arithmetic operations in ANTs.
It is also more-or-less the same in speed as an equivalent numpy+scikit-learn
solution.
Timing vs Built-in Operations
-----------------------------
>>> import ants
>>> import time
>>> rescaler = ants.contrib.RescaleIntensity(0,1)
>>> img = ants.image_read(ants.get_data('mni'))
>>> s = time.time()
>>> for i in range(100):
... img_float = rescaler.transform(img)
>>> e = time.time()
>>> print(e - s) # 2.8s
>>> s = time.time()
>>> for i in range(100):
... maxval = img.max()
... img_float = (img - maxval) / (maxval - img.min())
>>> e = time.time()
>>> print(e - s) # 13.9s
Timing vs Numpy+Scikit-Learn
----------------------------
>>> import ants
>>> import numpy as np
>>> from sklearn.preprocessing import MinMaxScaler
>>> import time
>>> img = ants.image_read(ants.get_data('mni'))
>>> arr = img.numpy().reshape(1,-1)
>>> rescaler = ants.contrib.RescaleIntensity(-1,1)
>>> rescaler2 = MinMaxScaler((-1,1)).fit(arr)
>>> s = time.time()
>>> for i in range(100):
... img_scaled = rescaler.transform(img)
>>> e = time.time()
>>> print(e - s) # 2.8s
>>> s = time.time()
>>> for i in range(100):
... arr_scaled = rescaler2.transform(arr)
>>> e = time.time()
>>> print(e - s) # 3s
'''
def __init__(self, min_val, max_val):
'''
Initialize a RescaleIntensity transform.
Arguments
---------
min_val : float
minimum value to which image(s) will be rescaled
max_val : float
maximum value to which image(s) will be rescaled
Example
-------
>>> import ants
>>> rescaler = ants.contrib.RescaleIntensity(0,1)
'''
pass
def transform(self, X, y=None):
'''
Transform an image by linearly rescaling its intensity to
be between a minimum and maximum value
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> rescaler = ants.contrib.RescaleIntensity(0,1)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = rescaler.transform(img2d)
>>> print(img2d.min(), ',', img2d.max(), ' -> ', img2d_r.min(), ',', img2d_r.max())
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = rescaler.transform(img3d)
>>> print(img3d.min(), ',' , img3d.max(), ' -> ', img3d_r.min(), ',' , img3d_r.max())
'''
pass
| 3 | 3 | 26 | 4 | 6 | 17 | 2 | 6.5 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 102 | 12 | 12 | 8 | 9 | 78 | 11 | 8 | 8 | 2 | 1 | 1 | 3 |
1,733 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.NormalizeIntensity
|
class NormalizeIntensity(object):
"""
Normalize the intensity values of an ANTsImage to have
zero mean and unit variance
NOTE: this transform is more-or-less the same in speed
as an equivalent numpy+scikit-learn solution.
Timing vs Numpy+Scikit-Learn
----------------------------
>>> import ants
>>> import numpy as np
>>> from sklearn.preprocessing import StandardScaler
>>> import time
>>> img = ants.image_read(ants.get_data('mni'))
>>> arr = img.numpy().reshape(1,-1)
>>> normalizer = ants.contrib.NormalizeIntensity()
>>> normalizer2 = StandardScaler()
>>> s = time.time()
>>> for i in range(100):
... img_scaled = normalizer.transform(img)
>>> e = time.time()
>>> print(e - s) # 3.3s
>>> s = time.time()
>>> for i in range(100):
... arr_scaled = normalizer2.fit_transform(arr)
>>> e = time.time()
>>> print(e - s) # 3.5s
"""
def __init__(self):
"""
Initialize a NormalizeIntensity transform
"""
pass
def transform(self, X, y=None):
"""
Transform an image by normalizing its intensity values to
have zero mean and unit variance.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> normalizer = ants.contrib.NormalizeIntensity()
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = normalizer.transform(img2d)
>>> print(img2d.mean(), ',', img2d.std(), ' -> ', img2d_r.mean(), ',', img2d_r.std())
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = normalizer.transform(img3d)
>>> print(img3d.mean(), ',' , img3d.std(), ',', ' -> ', img3d_r.mean(), ',' , img3d_r.std())
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('normalizeAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class NormalizeIntensity(object):
'''
Normalize the intensity values of an ANTsImage to have
zero mean and unit variance
NOTE: this transform is more-or-less the same in speed
as an equivalent numpy+scikit-learn solution.
Timing vs Numpy+Scikit-Learn
----------------------------
>>> import ants
>>> import numpy as np
>>> from sklearn.preprocessing import StandardScaler
>>> import time
>>> img = ants.image_read(ants.get_data('mni'))
>>> arr = img.numpy().reshape(1,-1)
>>> normalizer = ants.contrib.NormalizeIntensity()
>>> normalizer2 = StandardScaler()
>>> s = time.time()
>>> for i in range(100):
... img_scaled = normalizer.transform(img)
>>> e = time.time()
>>> print(e - s) # 3.3s
>>> s = time.time()
>>> for i in range(100):
... arr_scaled = normalizer2.fit_transform(arr)
>>> e = time.time()
>>> print(e - s) # 3.5s
'''
def __init__(self):
'''
Initialize a NormalizeIntensity transform
'''
pass
def transform(self, X, y=None):
'''
Transform an image by normalizing its intensity values to
have zero mean and unit variance.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> normalizer = ants.contrib.NormalizeIntensity()
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = normalizer.transform(img2d)
>>> print(img2d.mean(), ',', img2d.std(), ' -> ', img2d_r.mean(), ',', img2d_r.std())
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_r = normalizer.transform(img3d)
>>> print(img3d.mean(), ',' , img3d.std(), ',', ' -> ', img3d_r.mean(), ',' , img3d_r.std())
'''
pass
| 3 | 3 | 19 | 2 | 5 | 12 | 2 | 4.45 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 67 | 7 | 11 | 6 | 8 | 49 | 10 | 6 | 7 | 2 | 1 | 1 | 3 |
1,734 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.MultiResolutionImage
|
class MultiResolutionImage(object):
"""
Generate a set of images at multiple resolutions from an original image
"""
def __init__(self, levels=4, keep_shape=False):
self.levels = levels
self.keep_shape = keep_shape
def transform(self, X, y=None):
"""
Generate a set of multi-resolution ANTsImage types
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform
Example
-------
>>> import ants
>>> multires = ants.contrib.MultiResolutionImage(levels=4)
>>> img = ants.image_read(ants.get_data('r16'))
>>> imgs = multires.transform(img)
"""
insuffix = X._libsuffix
multires_fn = utils.get_lib_fn('multiResolutionAntsImage%s' % (insuffix))
casted_ptrs = multires_fn(X.pointer, self.levels)
imgs = []
for casted_ptr in casted_ptrs:
img = iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
if self.keep_shape:
img = img.resample_image_to_target(X)
imgs.append(img)
return imgs
|
class MultiResolutionImage(object):
'''
Generate a set of images at multiple resolutions from an original image
'''
def __init__(self, levels=4, keep_shape=False):
pass
def transform(self, X, y=None):
'''
Generate a set of multi-resolution ANTsImage types
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform
Example
-------
>>> import ants
>>> multires = ants.contrib.MultiResolutionImage(levels=4)
>>> img = ants.image_read(ants.get_data('r16'))
>>> imgs = multires.transform(img)
'''
pass
| 3 | 2 | 18 | 3 | 8 | 8 | 2 | 1.13 | 1 | 1 | 1 | 0 | 2 | 2 | 2 | 2 | 40 | 6 | 16 | 11 | 13 | 18 | 15 | 11 | 12 | 3 | 1 | 2 | 4 |
1,735 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.LocallyBlurIntensity
|
class LocallyBlurIntensity(object):
"""
Blur an ANTsImage locally using a gradient anisotropic
diffusion filter, thereby preserving the sharpeness of edges as best
as possible.
"""
def __init__(self, conductance=1, iters=5):
self.conductance = conductance
self.iters = iters
def transform(self, X, y=None):
"""
Locally blur an image by applying a gradient anisotropic diffusion filter.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> blur = ants.contrib.LocallyBlurIntensity(1,5)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_b = blur.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_b)
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_b = blur.transform(img3d)
>>> ants.plot(img3d)
>>> ants.plot(img3d_b)
"""
#if X.pixeltype != 'float':
# raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('locallyBlurAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer, self.iters, self.conductance)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class LocallyBlurIntensity(object):
'''
Blur an ANTsImage locally using a gradient anisotropic
diffusion filter, thereby preserving the sharpeness of edges as best
as possible.
'''
def __init__(self, conductance=1, iters=5):
pass
def transform(self, X, y=None):
'''
Locally blur an image by applying a gradient anisotropic diffusion filter.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> blur = ants.contrib.LocallyBlurIntensity(1,5)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_b = blur.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_b)
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_b = blur.transform(img3d)
>>> ants.plot(img3d)
>>> ants.plot(img3d_b)
'''
pass
| 3 | 2 | 18 | 2 | 5 | 12 | 1 | 2.8 | 1 | 1 | 1 | 0 | 2 | 2 | 2 | 2 | 42 | 4 | 10 | 8 | 7 | 28 | 9 | 8 | 6 | 1 | 1 | 0 | 2 |
1,736 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.FlipImage
|
class FlipImage(object):
"""
Transform an image by flipping two axes.
"""
def __init__(self, axis1, axis2):
"""
Initialize a SigmoidIntensity transform
Arguments
---------
axis1 : int
axis to flip
axis2 : int
other axis to flip
Example
-------
>>> import ants
>>> flipper = ants.contrib.FlipImage(0,1)
"""
self.axis1 = axis1
self.axis2 = axis2
def transform(self, X, y=None):
"""
Transform an image by applying a sigmoid function.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> flipper = ants.contrib.FlipImage(0,1)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = flipper.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_r)
>>> flipper2 = ants.contrib.FlipImage(1,0)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = flipper2.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_r)
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('flipAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer, self.axis1, self.axis2)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr,
origin=X.origin)
|
class FlipImage(object):
'''
Transform an image by flipping two axes.
'''
def __init__(self, axis1, axis2):
'''
Initialize a SigmoidIntensity transform
Arguments
---------
axis1 : int
axis to flip
axis2 : int
other axis to flip
Example
-------
>>> import ants
>>> flipper = ants.contrib.FlipImage(0,1)
'''
pass
def transform(self, X, y=None):
'''
Transform an image by applying a sigmoid function.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> flipper = ants.contrib.FlipImage(0,1)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = flipper.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_r)
>>> flipper2 = ants.contrib.FlipImage(1,0)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_r = flipper2.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_r)
'''
pass
| 3 | 3 | 27 | 4 | 6 | 18 | 2 | 2.92 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 59 | 8 | 13 | 8 | 10 | 38 | 11 | 8 | 8 | 2 | 1 | 1 | 3 |
1,737 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.CastIntensity
|
class CastIntensity(object):
"""
Cast the pixeltype of an ANTsImage to a given type.
This code uses the C++ ITK library directly, so it is fast.
NOTE: This offers a ~2.5x speedup over using img.clone(pixeltype):
Timings vs Cloning
------------------
>>> import ants
>>> import time
>>> caster = ants.contrib.CastIntensity('float')
>>> img = ants.image_read(ants.get_data('mni')).clone('unsigned int')
>>> s = time.time()
>>> for i in range(1000):
... img_float = caster.transform(img)
>>> e = time.time()
>>> print(e - s) # 9.6s
>>> s = time.time()
>>> for i in range(1000):
... img_float = img.clone('float')
>>> e = time.time()
>>> print(e - s) # 25.3s
"""
def __init__(self, pixeltype):
"""
Initialize a CastIntensity transform
Arguments
---------
pixeltype : string
pixeltype to which images will be casted
Example
-------
>>> import ants
>>> caster = ants.contrib.CastIntensity('float')
"""
self.pixeltype = pixeltype
def transform(self, X, y=None):
"""
Transform an image by casting its type
Arguments
---------
X : ANTsImage
image to cast
y : ANTsImage (optional)
another image to cast.
Example
-------
>>> import ants
>>> caster = ants.contrib.CastIntensity('float')
>>> img2d = ants.image_read(ants.get_data('r16')).clone('unsigned int')
>>> img2d_float = caster.transform(img2d)
>>> print(img2d.pixeltype, '- ', img2d_float.pixeltype)
>>> img3d = ants.image_read(ants.get_data('mni')).clone('unsigned int')
>>> img3d_float = caster.transform(img3d)
>>> print(img3d.pixeltype, ' - ' , img3d_float.pixeltype)
"""
insuffix = X._libsuffix
outsuffix = '%s%i' % (utils.short_ptype(self.pixeltype), X.dimension)
cast_fn = utils.get_lib_fn('castAntsImage%s%s' % (insuffix, outsuffix))
casted_ptr = cast_fn(X.pointer)
return iio.ANTsImage(pixeltype=self.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr)
|
class CastIntensity(object):
'''
Cast the pixeltype of an ANTsImage to a given type.
This code uses the C++ ITK library directly, so it is fast.
NOTE: This offers a ~2.5x speedup over using img.clone(pixeltype):
Timings vs Cloning
------------------
>>> import ants
>>> import time
>>> caster = ants.contrib.CastIntensity('float')
>>> img = ants.image_read(ants.get_data('mni')).clone('unsigned int')
>>> s = time.time()
>>> for i in range(1000):
... img_float = caster.transform(img)
>>> e = time.time()
>>> print(e - s) # 9.6s
>>> s = time.time()
>>> for i in range(1000):
... img_float = img.clone('float')
>>> e = time.time()
>>> print(e - s) # 25.3s
'''
def __init__(self, pixeltype):
'''
Initialize a CastIntensity transform
Arguments
---------
pixeltype : string
pixeltype to which images will be casted
Example
-------
>>> import ants
>>> caster = ants.contrib.CastIntensity('float')
'''
pass
def transform(self, X, y=None):
'''
Transform an image by casting its type
Arguments
---------
X : ANTsImage
image to cast
y : ANTsImage (optional)
another image to cast.
Example
-------
>>> import ants
>>> caster = ants.contrib.CastIntensity('float')
>>> img2d = ants.image_read(ants.get_data('r16')).clone('unsigned int')
>>> img2d_float = caster.transform(img2d)
>>> print(img2d.pixeltype, '- ', img2d_float.pixeltype)
>>> img3d = ants.image_read(ants.get_data('mni')).clone('unsigned int')
>>> img3d_float = caster.transform(img3d)
>>> print(img3d.pixeltype, ' - ' , img3d_float.pixeltype)
'''
pass
| 3 | 3 | 22 | 3 | 5 | 15 | 1 | 5.1 | 1 | 1 | 1 | 0 | 2 | 1 | 2 | 2 | 69 | 8 | 10 | 8 | 7 | 51 | 9 | 8 | 6 | 1 | 1 | 0 | 2 |
1,738 |
ANTsX/ANTsPy
|
tests/test_core_ants_image.py
|
test_core_ants_image.TestModule_ants_image
|
class TestModule_ants_image(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16')).clone('float')
img3d = ants.image_read(ants.get_ants_data('mni')).clone('float')
self.imgs = [img2d, img3d]
self.pixeltypes = ['unsigned char', 'unsigned int', 'float', 'double']
def tearDown(self):
pass
def test_copy_image_info(self):
for img in self.imgs:
img2 = img.clone()
img2.set_spacing([6.9]*img.dimension)
img2.set_origin([6.9]*img.dimension)
self.assertTrue(not ants.image_physical_space_consistency(img,img2))
img3 = ants.copy_image_info(reference=img, target=img2)
self.assertTrue(ants.image_physical_space_consistency(img,img3))
def test_get_spacing(self):
for img in self.imgs:
spacing = ants.get_spacing(img)
self.assertTrue(isinstance(spacing, tuple))
self.assertEqual(len(ants.get_spacing(img)), img.dimension)
def test_set_spacing(self):
for img in self.imgs:
# set spacing from list
new_spacing_list = [6.9]*img.dimension
ants.set_spacing(img, new_spacing_list)
self.assertEqual(img.spacing, tuple(new_spacing_list))
# set spacing from tuple
new_spacing_tuple = tuple(new_spacing_list)
ants.set_spacing(img, new_spacing_tuple)
self.assertEqual(ants.get_spacing(img), new_spacing_tuple)
def test_get_origin(self):
for img in self.imgs:
origin = ants.get_origin(img)
self.assertTrue(isinstance(origin, tuple))
self.assertEqual(len(ants.get_origin(img)), img.dimension)
def test_set_origin(self):
for img in self.imgs:
# set spacing from list
new_origin_list = [6.9]*img.dimension
ants.set_origin(img, new_origin_list)
self.assertEqual(img.origin, tuple(new_origin_list))
# set spacing from tuple
new_origin_tuple = tuple(new_origin_list)
ants.set_origin(img, new_origin_tuple)
self.assertEqual(ants.get_origin(img), new_origin_tuple)
def test_get_direction(self):
for img in self.imgs:
direction = ants.get_direction(img)
self.assertTrue(isinstance(direction,np.ndarray))
self.assertTrue(ants.get_direction(img).shape, (img.dimension,img.dimension))
def test_set_direction(self):
for img in self.imgs:
new_direction = np.eye(img.dimension)*3
ants.set_direction(img, new_direction)
nptest.assert_allclose(ants.get_direction(img), new_direction)
def test_image_physical_spacing_consistency(self):
for img in self.imgs:
self.assertTrue(ants.image_physical_space_consistency(img,img))
self.assertTrue(ants.image_physical_space_consistency(img,img,datatype=True))
clonetype = 'float' if img.pixeltype != 'float' else 'unsigned int'
img2 = img.clone(clonetype)
self.assertTrue(ants.image_physical_space_consistency(img,img2))
self.assertTrue(not ants.image_physical_space_consistency(img,img2,datatype=True))
# test incorrectness #
# bad spacing
img2 = img.clone()
img2.set_spacing([6.96]*img.dimension)
self.assertTrue(not ants.image_physical_space_consistency(img,img2))
# bad origin
img2 = img.clone()
img2.set_origin([6.96]*img.dimension)
self.assertTrue(not ants.image_physical_space_consistency(img,img2))
# bad direction
img2 = img.clone()
img2.set_direction(img.direction*2)
self.assertTrue(not ants.image_physical_space_consistency(img,img2))
# bad dimension
ndim = img.dimension
img2 = ants.from_numpy(np.random.randn(*tuple([69]*(ndim+1))).astype('float32'))
self.assertTrue(not ants.image_physical_space_consistency(img,img2))
# only one image
with self.assertRaises(Exception):
ants.image_physical_space_consistency(img)
# not an ANTsImage
with self.assertRaises(Exception):
ants.image_physical_space_consistency(img, 12)
# false because of components
vecimg = ants.from_numpy(np.random.randn(69,70,3), has_components=True)
vecimg2 = ants.from_numpy(np.random.randn(69,70,4), has_components=True)
self.assertTrue(not ants.image_physical_space_consistency(vecimg, vecimg2, datatype=True))
def test_image_type_cast(self):
# test with list of images
imgs2 = ants.image_type_cast(self.imgs)
for img in imgs2:
self.assertTrue(img.pixeltype, 'float')
# not a list or tuple
with self.assertRaises(Exception):
ants.image_type_cast(self.imgs[0])
# cast from unsigned int
imgs = [i.clone() for i in self.imgs]
imgs[0] = imgs[0].clone('unsigned int')
imgs2 = ants.image_type_cast(imgs)
def test_allclose(self):
for img in self.imgs:
img2 = img.clone()
self.assertTrue(ants.allclose(img,img2))
self.assertTrue(ants.allclose(img*6.9, img2*6.9))
self.assertTrue(not ants.allclose(img, img2*6.9))
def test_pickle(self):
import ants
import pickle
img = ants.image_read( ants.get_ants_data("mni"))
img_pickled = pickle.dumps(img)
img2 = pickle.loads(img_pickled)
self.assertTrue(ants.allclose(img, img2))
self.assertTrue(ants.image_physical_space_consistency(img, img2))
img = ants.image_read( ants.get_ants_data("r16"))
img_pickled = pickle.dumps(img)
img2 = pickle.loads(img_pickled)
self.assertTrue(ants.allclose(img, img2))
self.assertTrue(ants.image_physical_space_consistency(img, img2))
|
class TestModule_ants_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_copy_image_info(self):
pass
def test_get_spacing(self):
pass
def test_set_spacing(self):
pass
def test_get_origin(self):
pass
def test_set_origin(self):
pass
def test_get_direction(self):
pass
def test_set_direction(self):
pass
def test_image_physical_spacing_consistency(self):
pass
def test_image_type_cast(self):
pass
def test_allclose(self):
pass
def test_pickle(self):
pass
| 14 | 0 | 10 | 1 | 8 | 1 | 2 | 0.14 | 1 | 2 | 0 | 0 | 13 | 2 | 13 | 85 | 150 | 28 | 107 | 51 | 91 | 15 | 107 | 51 | 91 | 3 | 2 | 2 | 24 |
1,739 |
ANTsX/ANTsPy
|
ants/contrib/sampling/transforms.py
|
ants.contrib.sampling.transforms.BlurIntensity
|
class BlurIntensity(object):
"""
Transform for blurring the intensity of an ANTsImage
using a Gaussian Filter
"""
def __init__(self, sigma, width):
"""
Initialize a BlurIntensity transform
Arguments
---------
sigma : float
variance of gaussian kernel intensity
increasing this value increasing the amount
of blur
width : int
width of gaussian kernel shape
increasing this value increase the number of
neighboring voxels which are used for blurring
Example
-------
>>> import ants
>>> blur = ants.contrib.BlurIntensity(2,3)
"""
self.sigma = sigma
self.width = width
def transform(self, X, y=None):
"""
Blur an image by applying a gaussian filter.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> blur = ants.contrib.BlurIntensity(2,3)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_b = blur.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_b)
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_b = blur.transform(img3d)
>>> ants.plot(img3d)
>>> ants.plot(img3d_b)
"""
if X.pixeltype != 'float':
raise ValueError('image.pixeltype must be float ... use TypeCast transform or clone to float')
insuffix = X._libsuffix
cast_fn = utils.get_lib_fn('blurAntsImage%s' % (insuffix))
casted_ptr = cast_fn(X.pointer, self.sigma, self.width)
return iio.ANTsImage(pixeltype=X.pixeltype, dimension=X.dimension,
components=X.components, pointer=casted_ptr,
origin=X.origin)
|
class BlurIntensity(object):
'''
Transform for blurring the intensity of an ANTsImage
using a Gaussian Filter
'''
def __init__(self, sigma, width):
'''
Initialize a BlurIntensity transform
Arguments
---------
sigma : float
variance of gaussian kernel intensity
increasing this value increasing the amount
of blur
width : int
width of gaussian kernel shape
increasing this value increase the number of
neighboring voxels which are used for blurring
Example
-------
>>> import ants
>>> blur = ants.contrib.BlurIntensity(2,3)
'''
pass
def transform(self, X, y=None):
'''
Blur an image by applying a gaussian filter.
Arguments
---------
X : ANTsImage
image to transform
y : ANTsImage (optional)
another image to transform.
Example
-------
>>> import ants
>>> blur = ants.contrib.BlurIntensity(2,3)
>>> img2d = ants.image_read(ants.get_data('r16'))
>>> img2d_b = blur.transform(img2d)
>>> ants.plot(img2d)
>>> ants.plot(img2d_b)
>>> img3d = ants.image_read(ants.get_data('mni'))
>>> img3d_b = blur.transform(img3d)
>>> ants.plot(img3d)
>>> ants.plot(img3d_b)
'''
pass
| 3 | 3 | 29 | 4 | 6 | 19 | 2 | 3.23 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 63 | 8 | 13 | 8 | 10 | 42 | 11 | 8 | 8 | 2 | 1 | 1 | 3 |
1,740 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.Translate3D
|
class Translate3D(object):
"""
Create an ANTs Affine Transform with a specified translation.
"""
def __init__(self, translation, reference=None, lazy=False):
"""
Initialize a Translate3D object
Arguments
---------
translation : list or tuple
translation values for each axis, in degrees.
Negative values can be used for translation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(translation, (list, tuple))) or (len(translation) != 3):
raise ValueError(
"translation argument must be list/tuple with three values!"
)
self.translation = translation
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=3, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
translation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Translate3D(translation=(10,0,0))
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Translate3D(translation=(-10,0,0)) # other direction
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Translate3D(translation=(0,10,0))
>>> img2_y = tx.transform(img) # y axis stays same
>>> tx = ants.contrib.Translate3D(translation=(0,0,10))
>>> img2_z = tx.transform(img) # z axis stays same
>>> tx = ants.contrib.Translate3D(translation=(10,10,10))
>>> img2 = tx.transform(img)
"""
# unpack
translation_x, translation_y, translation_z = self.translation
translation_matrix = np.array(
[
[1, 0, 0, translation_x],
[0, 1, 0, translation_y],
[0, 0, 1, translation_z],
]
)
self.tx.set_parameters(translation_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Translate3D(object):
'''
Create an ANTs Affine Transform with a specified translation.
'''
def __init__(self, translation, reference=None, lazy=False):
'''
Initialize a Translate3D object
Arguments
---------
translation : list or tuple
translation values for each axis, in degrees.
Negative values can be used for translation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
translation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Translate3D(translation=(10,0,0))
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Translate3D(translation=(-10,0,0)) # other direction
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Translate3D(translation=(0,10,0))
>>> img2_y = tx.transform(img) # y axis stays same
>>> tx = ants.contrib.Translate3D(translation=(0,0,10))
>>> img2_z = tx.transform(img) # z axis stays same
>>> tx = ants.contrib.Translate3D(translation=(10,10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 44 | 5 | 17 | 22 | 3 | 1.38 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 93 | 12 | 34 | 9 | 31 | 47 | 19 | 9 | 16 | 3 | 1 | 2 | 6 |
1,741 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.Shear3D
|
class Shear3D(object):
"""
Create an ANTs Affine Transform with a specified shear.
"""
def __init__(self, shear, reference=None, lazy=False):
"""
Initialize a Shear3D object
Arguments
---------
shear : list or tuple
shear values for each axis, in degrees.
Negative values can be used for shear in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(shear, (list, tuple))) or (len(shear) != 3):
raise ValueError("shear argument must be list/tuple with three values!")
self.shear = shear
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=3, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
shear parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Shear3D(shear=(10,0,0))
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear3D(shear=(-10,0,0)) # other direction
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear3D(shear=(0,10,0))
>>> img2_y = tx.transform(img) # y axis stays same
>>> tx = ants.contrib.Shear3D(shear=(0,0,10))
>>> img2_z = tx.transform(img) # z axis stays same
>>> tx = ants.contrib.Shear3D(shear=(10,10,10))
>>> img2 = tx.transform(img)
"""
# convert to radians and unpack
shear = [math.pi / 180 * s for s in self.shear]
shear_x, shear_y, shear_z = shear
shear_matrix = np.array(
[
[1, shear_x, shear_x, 0],
[shear_y, 1, shear_y, 0],
[shear_z, shear_z, 1, 0],
]
)
self.tx.set_parameters(shear_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Shear3D(object):
'''
Create an ANTs Affine Transform with a specified shear.
'''
def __init__(self, shear, reference=None, lazy=False):
'''
Initialize a Shear3D object
Arguments
---------
shear : list or tuple
shear values for each axis, in degrees.
Negative values can be used for shear in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
shear parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Shear3D(shear=(10,0,0))
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear3D(shear=(-10,0,0)) # other direction
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear3D(shear=(0,10,0))
>>> img2_y = tx.transform(img) # y axis stays same
>>> tx = ants.contrib.Shear3D(shear=(0,0,10))
>>> img2_z = tx.transform(img) # z axis stays same
>>> tx = ants.contrib.Shear3D(shear=(10,10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 43 | 5 | 16 | 22 | 3 | 1.42 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 92 | 12 | 33 | 10 | 30 | 47 | 20 | 10 | 17 | 3 | 1 | 2 | 6 |
1,742 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.Rotate3D
|
class Rotate3D(object):
"""
Create an ANTs Affine Transform with a specified level
of rotation.
"""
def __init__(self, rotation, reference=None, lazy=False):
"""
Initialize a Rotate3D object
Arguments
---------
rotation : list or tuple
rotation values for each axis, in degrees.
Negative values can be used for rotation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(rotation, (list, tuple))) or (len(rotation) != 3):
raise ValueError("rotation argument must be list/tuple with three values!")
self.rotation = rotation
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=3, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
rotation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Rotate3D(rotation=(10,-5,12))
>>> img2 = tx.transform(img)
"""
# unpack zoom range
rotation_x, rotation_y, rotation_z = self.rotation
# Rotation about X axis
theta_x = math.pi / 180 * rotation_x
rotate_matrix_x = np.array(
[
[1, 0, 0, 0],
[0, math.cos(theta_x), -math.sin(theta_x), 0],
[0, math.sin(theta_x), math.cos(theta_x), 0],
[0, 0, 0, 1],
]
)
# Rotation about Y axis
theta_y = math.pi / 180 * rotation_y
rotate_matrix_y = np.array(
[
[math.cos(theta_y), 0, math.sin(theta_y), 0],
[0, 1, 0, 0],
[-math.sin(theta_y), 0, math.cos(theta_y), 0],
[0, 0, 0, 1],
]
)
# Rotation about Z axis
theta_z = math.pi / 180 * rotation_z
rotate_matrix_z = np.array(
[
[math.cos(theta_z), -math.sin(theta_z), 0, 0],
[math.sin(theta_z), math.cos(theta_z), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
)
rotate_matrix = rotate_matrix_x.dot(rotate_matrix_y).dot(rotate_matrix_z)[:3, :]
self.tx.set_parameters(rotate_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Rotate3D(object):
'''
Create an ANTs Affine Transform with a specified level
of rotation.
'''
def __init__(self, rotation, reference=None, lazy=False):
'''
Initialize a Rotate3D object
Arguments
---------
rotation : list or tuple
rotation values for each axis, in degrees.
Negative values can be used for rotation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
rotation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Rotate3D(rotation=(10,-5,12))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 52 | 7 | 26 | 20 | 3 | 0.81 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 111 | 15 | 53 | 15 | 50 | 43 | 25 | 15 | 22 | 3 | 1 | 2 | 6 |
1,743 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.RandomZoom3D
|
class RandomZoom3D(object):
"""
Apply a Zoom3D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, zoom_range, reference=None, lazy=False):
"""
Initialize a RandomZoom3D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(zoom_range, (list, tuple))) or (len(zoom_range) != 2):
raise ValueError("zoom_range argument must be list/tuple with two values!")
self.zoom_range = zoom_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
zoom parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomZoom3D(zoom_range=(0.8,0.9))
>>> img2 = tx.transform(img)
"""
# random draw in zoom range
zoom_x = np.exp(
random.gauss(np.log(self.zoom_range[0]), np.log(self.zoom_range[1]))
)
zoom_y = np.exp(
random.gauss(np.log(self.zoom_range[0]), np.log(self.zoom_range[1]))
)
zoom_z = np.exp(
random.gauss(np.log(self.zoom_range[0]), np.log(self.zoom_range[1]))
)
self.params = (zoom_x, zoom_y, zoom_z)
tx = Zoom3D((zoom_x, zoom_y, zoom_z), reference=self.reference, lazy=self.lazy)
return tx.transform(X, y)
|
class RandomZoom3D(object):
'''
Apply a Zoom3D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, zoom_range, reference=None, lazy=False):
'''
Initialize a RandomZoom3D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
zoom parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomZoom3D(zoom_range=(0.8,0.9))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 33 | 5 | 10 | 19 | 2 | 2.15 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 75 | 12 | 20 | 11 | 17 | 43 | 14 | 11 | 11 | 2 | 1 | 1 | 3 |
1,744 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.RandomTranslate3D
|
class RandomTranslate3D(object):
"""
Apply a Translate3D transform to an image, but with the shear
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, translation_range, reference=None, lazy=False):
"""
Initialize a RandomTranslate3D object
Arguments
---------
translation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. translation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(translation_range, (list, tuple))) or (
len(translation_range) != 2
):
raise ValueError("shear_range argument must be list/tuple with two values!")
self.translation_range = translation_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
translation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomShear3D(translation_range=(-10,10))
>>> img2 = tx.transform(img)
"""
# random draw in translation range
translation_x = random.gauss(
self.translation_range[0], self.translation_range[1]
)
translation_y = random.gauss(
self.translation_range[0], self.translation_range[1]
)
translation_z = random.gauss(
self.translation_range[0], self.translation_range[1]
)
self.params = (translation_x, translation_y, translation_z)
tx = Translate3D(
(translation_x, translation_y, translation_z),
reference=self.reference,
lazy=self.lazy,
)
return tx.transform(X, y)
|
class RandomTranslate3D(object):
'''
Apply a Translate3D transform to an image, but with the shear
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, translation_range, reference=None, lazy=False):
'''
Initialize a RandomTranslate3D object
Arguments
---------
translation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. translation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
translation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomShear3D(translation_range=(-10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 36 | 5 | 13 | 19 | 2 | 1.65 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 81 | 12 | 26 | 11 | 23 | 43 | 14 | 11 | 11 | 2 | 1 | 1 | 3 |
1,745 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.RandomShear3D
|
class RandomShear3D(object):
"""
Apply a Shear3D transform to an image, but with the shear
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, shear_range, reference=None, lazy=False):
"""
Initialize a RandomShear3D object
Arguments
---------
shear_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. shear_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(shear_range, (list, tuple))) or (len(shear_range) != 2):
raise ValueError("shear_range argument must be list/tuple with two values!")
self.shear_range = shear_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
shear parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomShear3D(shear_range=(-10,10))
>>> img2 = tx.transform(img)
"""
# random draw in shear range
shear_x = random.gauss(self.shear_range[0], self.shear_range[1])
shear_y = random.gauss(self.shear_range[0], self.shear_range[1])
shear_z = random.gauss(self.shear_range[0], self.shear_range[1])
self.params = (shear_x, shear_y, shear_z)
tx = Shear3D(
(shear_x, shear_y, shear_z), reference=self.reference, lazy=self.lazy
)
return tx.transform(X, y)
|
class RandomShear3D(object):
'''
Apply a Shear3D transform to an image, but with the shear
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, shear_range, reference=None, lazy=False):
'''
Initialize a RandomShear3D object
Arguments
---------
shear_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. shear_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
shear parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomShear3D(shear_range=(-10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 31 | 5 | 8 | 19 | 2 | 2.69 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 71 | 12 | 16 | 11 | 13 | 43 | 14 | 11 | 11 | 2 | 1 | 1 | 3 |
1,746 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.RandomRotate3D
|
class RandomRotate3D(object):
"""
Apply a Rotate3D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, rotation_range, reference=None, lazy=False):
"""
Initialize a RandomRotate3D object
Arguments
---------
rotation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. rotation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(rotation_range, (list, tuple))) or (
len(rotation_range) != 2
):
raise ValueError(
"rotation_range argument must be list/tuple with two values!"
)
self.rotation_range = rotation_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
rotation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomRotate3D(rotation_range=(-10,10))
>>> img2 = tx.transform(img)
"""
# random draw in rotation range
rotation_x = random.gauss(self.rotation_range[0], self.rotation_range[1])
rotation_y = random.gauss(self.rotation_range[0], self.rotation_range[1])
rotation_z = random.gauss(self.rotation_range[0], self.rotation_range[1])
self.params = (rotation_x, rotation_y, rotation_z)
tx = Rotate3D(
(rotation_x, rotation_y, rotation_z),
reference=self.reference,
lazy=self.lazy,
)
return tx.transform(X, y)
|
class RandomRotate3D(object):
'''
Apply a Rotate3D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, rotation_range, reference=None, lazy=False):
'''
Initialize a RandomRotate3D object
Arguments
---------
rotation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. rotation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
rotation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.RandomRotate3D(rotation_range=(-10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 34 | 5 | 11 | 19 | 2 | 1.95 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 77 | 12 | 22 | 11 | 19 | 43 | 14 | 11 | 11 | 2 | 1 | 1 | 3 |
1,747 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.Affine3D
|
class Affine3D(object):
"""
Create a specified ANTs Affine Transform
"""
def __init__(self, transformation, reference=None, lazy=False):
"""
Initialize a Affine object
Arguments
---------
transformation : array
affine transformation array (3x4)
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(transformation, np.ndarray) or transformation.shape != (3,4)):
raise ValueError(
"transformation argument must be 3x4 Numpy array!"
)
self.transformation = transformation
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=3, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
translation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Affine3D(transformation=np.array([[1, 0, 0, dx], [0, 1, 0, dy],[0, 0, 1, dz]])
>>> img2_x = tx.transform(img)# image translated by (dx, dy, dz)
"""
# unpack
transformation_matrix = self.transformation
self.tx.set_parameters(transformation_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Affine3D(object):
'''
Create a specified ANTs Affine Transform
'''
def __init__(self, transformation, reference=None, lazy=False):
'''
Initialize a Affine object
Arguments
---------
transformation : array
affine transformation array (3x4)
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
translation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Affine3D(transformation=np.array([[1, 0, 0, dx], [0, 1, 0, dy],[0, 0, 1, dz]])
>>> img2_x = tx.transform(img)# image translated by (dx, dy, dz)
'''
pass
| 3 | 3 | 36 | 6 | 13 | 17 | 3 | 1.37 | 1 | 2 | 1 | 0 | 2 | 4 | 2 | 2 | 78 | 14 | 27 | 8 | 24 | 37 | 18 | 8 | 15 | 3 | 1 | 2 | 6 |
1,748 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.Zoom2D
|
class Zoom2D(object):
"""
Create an ANTs Affine Transform with a specified level
of zoom. Any value greater than 1 implies a "zoom-out" and anything
less than 1 implies a "zoom-in".
"""
def __init__(self, zoom, reference=None, lazy=False):
"""
Initialize a Zoom2D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(zoom, (list, tuple))) or (len(zoom) != 2):
raise ValueError("zoom_range argument must be list/tuple with two values!")
self.zoom = zoom
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=2, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
zoom parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Zoom2D(zoom=(0.8,0.8,0.8))
>>> img2 = tx.transform(img)
"""
# unpack zoom range
zoom_x, zoom_y = self.zoom
self.params = (zoom_x, zoom_y)
zoom_matrix = np.array([[zoom_x, 0, 0], [0, zoom_y, 0]])
self.tx.set_parameters(zoom_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Zoom2D(object):
'''
Create an ANTs Affine Transform with a specified level
of zoom. Any value greater than 1 implies a "zoom-out" and anything
less than 1 implies a "zoom-in".
'''
def __init__(self, zoom, reference=None, lazy=False):
'''
Initialize a Zoom2D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
zoom parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Zoom2D(zoom=(0.8,0.8,0.8))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 36 | 5 | 13 | 18 | 3 | 1.52 | 1 | 4 | 1 | 0 | 2 | 5 | 2 | 2 | 80 | 12 | 27 | 10 | 24 | 41 | 20 | 10 | 17 | 3 | 1 | 2 | 6 |
1,749 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.Translate2D
|
class Translate2D(object):
"""
Create an ANTs Affine Transform with a specified translation.
"""
def __init__(self, translation, reference=None, lazy=False):
"""
Initialize a Translate2D object
Arguments
---------
translation : list or tuple
translation values for each axis, in degrees.
Negative values can be used for translation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(translation, (list, tuple))) or (len(translation) != 2):
raise ValueError("translation argument must be list/tuple with two values!")
self.translation = translation
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=2, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
translation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Translate2D(translation=(10,0))
>>> img2_x = tx.transform(img)
>>> tx = ants.contrib.Translate2D(translation=(-10,0)) # other direction
>>> img2_x = tx.transform(img)
>>> tx = ants.contrib.Translate2D(translation=(0,10))
>>> img2_z = tx.transform(img)
>>> tx = ants.contrib.Translate2D(translation=(10,10))
>>> img2 = tx.transform(img)
"""
# convert to radians and unpack
translation_x, translation_y = self.translation
translation_matrix = np.array([[1, 0, translation_x], [0, 1, translation_y]])
self.tx.set_parameters(translation_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Translate2D(object):
'''
Create an ANTs Affine Transform with a specified translation.
'''
def __init__(self, translation, reference=None, lazy=False):
'''
Initialize a Translate2D object
Arguments
---------
translation : list or tuple
translation values for each axis, in degrees.
Negative values can be used for translation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
translation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Translate2D(translation=(10,0))
>>> img2_x = tx.transform(img)
>>> tx = ants.contrib.Translate2D(translation=(-10,0)) # other direction
>>> img2_x = tx.transform(img)
>>> tx = ants.contrib.Translate2D(translation=(0,10))
>>> img2_z = tx.transform(img)
>>> tx = ants.contrib.Translate2D(translation=(10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 39 | 5 | 13 | 21 | 3 | 1.73 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 83 | 12 | 26 | 9 | 23 | 45 | 19 | 9 | 16 | 3 | 1 | 2 | 6 |
1,750 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.Shear2D
|
class Shear2D(object):
"""
Create an ANTs Affine Transform with a specified shear.
"""
def __init__(self, shear, reference=None, lazy=False):
"""
Initialize a Shear2D object
Arguments
---------
shear : list or tuple
shear values for each axis, in degrees.
Negative values can be used for shear in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(shear, (list, tuple))) or (len(shear) != 2):
raise ValueError("shear argument must be list/tuple with two values!")
self.shear = shear
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=2, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
shear parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Shear2D(shear=(10,0,0))
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear2D(shear=(-10,0,0)) # other direction
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear2D(shear=(0,10,0))
>>> img2_y = tx.transform(img) # y axis stays same
>>> tx = ants.contrib.Shear2D(shear=(0,0,10))
>>> img2_z = tx.transform(img) # z axis stays same
>>> tx = ants.contrib.Shear2D(shear=(10,10,10))
>>> img2 = tx.transform(img)
"""
# convert to radians and unpack
shear = [math.pi / 180 * s for s in self.shear]
shear_x, shear_y = shear
shear_matrix = np.array([[1, shear_x, 0], [shear_y, 1, 0]])
self.tx.set_parameters(shear_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Shear2D(object):
'''
Create an ANTs Affine Transform with a specified shear.
'''
def __init__(self, shear, reference=None, lazy=False):
'''
Initialize a Shear2D object
Arguments
---------
shear : list or tuple
shear values for each axis, in degrees.
Negative values can be used for shear in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
shear parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Shear2D(shear=(10,0,0))
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear2D(shear=(-10,0,0)) # other direction
>>> img2_x = tx.transform(img)# x axis stays same
>>> tx = ants.contrib.Shear2D(shear=(0,10,0))
>>> img2_y = tx.transform(img) # y axis stays same
>>> tx = ants.contrib.Shear2D(shear=(0,0,10))
>>> img2_z = tx.transform(img) # z axis stays same
>>> tx = ants.contrib.Shear2D(shear=(10,10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 40 | 5 | 13 | 22 | 3 | 1.74 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 86 | 12 | 27 | 10 | 24 | 47 | 20 | 10 | 17 | 3 | 1 | 2 | 6 |
1,751 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.Rotate2D
|
class Rotate2D(object):
"""
Create an ANTs Affine Transform with a specified level
of rotation.
"""
def __init__(self, rotation, reference=None, lazy=False):
"""
Initialize a Rotate2D object
Arguments
---------
rotation : scalar
rotation value in degrees.
Negative values can be used for rotation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
self.rotation = rotation
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=2, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
rotation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Rotate2D(rotation=(10,-5,12))
>>> img2 = tx.transform(img)
"""
# unpack zoom range
rotation = self.rotation
# Rotation about X axis
theta = math.pi / 180 * rotation
rotation_matrix = np.array(
[[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0]]
)
self.tx.set_parameters(rotation_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Rotate2D(object):
'''
Create an ANTs Affine Transform with a specified level
of rotation.
'''
def __init__(self, rotation, reference=None, lazy=False):
'''
Initialize a Rotate2D object
Arguments
---------
rotation : scalar
rotation value in degrees.
Negative values can be used for rotation in the
other direction
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
rotation parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.Rotate2D(rotation=(10,-5,12))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 37 | 5 | 13 | 19 | 3 | 1.52 | 1 | 1 | 1 | 0 | 2 | 4 | 2 | 2 | 80 | 12 | 27 | 10 | 24 | 41 | 18 | 10 | 15 | 3 | 1 | 2 | 5 |
1,752 |
ANTsX/ANTsPy
|
tests/test_bugs.py
|
test_bugs.Test_bugs
|
class Test_bugs(unittest.TestCase):
"""
Test ants.ANTsImage class
"""
def setUp(self):
pass
def tearDown(self):
pass
def test_resample_returns_NaNs(self):
"""
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
"""
img2d = ants.image_read(ants.get_ants_data('r16'))
img2dr = ants.resample_image(img2d, (2,2), 0, 0)
self.assertTrue(np.sum(np.isnan(img2dr.numpy())) == 0)
img3d = ants.image_read(ants.get_ants_data('mni'))
img3dr = ants.resample_image(img3d, (2,2,2), 0, 0)
self.assertTrue(np.sum(np.isnan(img3dr.numpy())) == 0)
def test_compose_multi_type_transforms(self):
image = ants.image_read(ants.get_ants_data("r16"))
linear_transform = ants.create_ants_transform(transform_type=
"AffineTransform", precision='float', dimension=image.dimension)
displacement_field = ants.simulate_displacement_field(image,
field_type="bspline", number_of_random_points=1000,
sd_noise=10.0, enforce_stationary_boundary=True,
number_of_fitting_levels=4, mesh_size=1,
sd_smoothing=4.0)
displacement_field_xfrm = ants.transform_from_displacement_field(displacement_field)
xfrm = ants.compose_ants_transforms([linear_transform, displacement_field_xfrm])
xfrm = ants.compose_ants_transforms([linear_transform, linear_transform])
xfrm = ants.compose_ants_transforms([displacement_field_xfrm, linear_transform])
def test_bspline_image_with_2d_weights(self):
# see https://github.com/ANTsX/ANTsPy/issues/655
import ants
import numpy as np
output_size = (256, 256)
bspline_epsilon = 1e-4
number_of_fitting_levels = 4
image = ants.image_read(ants.get_ants_data("r16"))
image = ants.resample_image(image, (100, 100), use_voxels=True)
indices = np.meshgrid(list(range(image.shape[0])),
list(range(image.shape[1])))
indices_array = np.stack((indices[1].flatten(),
indices[0].flatten()), axis=0)
image_parametric_values = indices_array.transpose()
weight_array = np.ones(image.shape)
parametric_values = image_parametric_values
scattered_data = np.atleast_2d(image.numpy().flatten()).transpose()
weight_values = np.atleast_2d(weight_array.flatten()).transpose()
min_parametric_values = np.min(parametric_values, axis=0)
max_parametric_values = np.max(parametric_values, axis=0)
spacing = np.zeros((2,))
for d in range(2):
spacing[d] = (max_parametric_values[d] - min_parametric_values[d]) / (output_size[d] - 1) + bspline_epsilon
bspline_image = ants.fit_bspline_object_to_scattered_data(scattered_data, parametric_values,
parametric_domain_origin=min_parametric_values - bspline_epsilon,
parametric_domain_spacing=spacing,
parametric_domain_size=output_size,
data_weights=weight_values,
number_of_fitting_levels=number_of_fitting_levels,
mesh_size=1)
def test_scalar_rgb_missing(self):
import ants
img = ants.image_read(ants.get_data('r16'))
with self.assertRaises(Exception):
img_color = ants.scalar_to_rgb(img, cmap='jet')
def test_bspline_zeros(self):
import ants
import numpy as np
x = np.linspace(-4, 4, num=100) + np.random.uniform(-0.1, 0.1, 100)
u = np.linspace(0, 1.0, num=len(x))
scattered_data = np.expand_dims(u, axis=-1)
parametric_data = np.expand_dims(u, axis=-1)
spacing = 1/(len(x)-1) * 1.0
bspline_curve = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0], parametric_domain_spacing=[spacing],
parametric_domain_size=[len(x)], is_parametric_dimension_closed=None,
number_of_fitting_levels=5, mesh_size=1)
# Erroneously returns all zeros.
self.assertNotEqual(bspline_curve.sum(), 0)
def test_from_numpy_different_dtypes(self):
all_dtypes = ('bool',
'int8',
'int16',
'int32',
'int64',
'uint16',
'uint64',
'float16')
arr = np.random.randn(100,100)
for dtype in all_dtypes:
arr2 = arr.astype(dtype)
img = ants.from_numpy(arr2)
self.assertTrue(ants.is_image(img))
|
class Test_bugs(unittest.TestCase):
'''
Test ants.ANTsImage class
'''
def setUp(self):
pass
def tearDown(self):
pass
def test_resample_returns_NaNs(self):
'''
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
'''
pass
def test_compose_multi_type_transforms(self):
pass
def test_bspline_image_with_2d_weights(self):
pass
def test_scalar_rgb_missing(self):
pass
def test_bspline_zeros(self):
pass
def test_from_numpy_different_dtypes(self):
pass
| 9 | 2 | 14 | 2 | 11 | 1 | 1 | 0.11 | 1 | 3 | 0 | 0 | 8 | 0 | 8 | 80 | 121 | 24 | 87 | 52 | 73 | 10 | 63 | 52 | 49 | 2 | 2 | 1 | 10 |
1,753 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine3d.py
|
ants.contrib.sampling.affine3d.Zoom3D
|
class Zoom3D(object):
"""
Create an ANTs Affine Transform with a specified level
of zoom. Any value greater than 1 implies a "zoom-out" and anything
less than 1 implies a "zoom-in".
"""
def __init__(self, zoom, reference=None, lazy=False):
"""
Initialize a Zoom3D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(zoom, (list, tuple))) or (len(zoom) != 3):
raise ValueError(
"zoom_range argument must be list/tuple with three values!"
)
self.zoom = zoom
self.lazy = lazy
self.reference = reference
self.tx = tio.ANTsTransform(
precision="float", dimension=3, transform_type="AffineTransform"
)
if self.reference is not None:
self.tx.set_fixed_parameters(self.reference.get_center_of_mass())
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with the given
zoom parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Zoom3D(zoom=(0.8,0.8,0.8))
>>> img2 = tx.transform(img)
"""
# unpack zoom range
zoom_x, zoom_y, zoom_z = self.zoom
self.params = (zoom_x, zoom_y, zoom_z)
zoom_matrix = np.array(
[[zoom_x, 0, 0, 0], [0, zoom_y, 0, 0], [0, 0, zoom_z, 0]]
)
self.tx.set_parameters(zoom_matrix)
if self.lazy or X is None:
return self.tx
else:
if y is None:
return self.tx.apply_to_image(X, reference=self.reference)
else:
return (
self.tx.apply_to_image(X, reference=self.reference),
self.tx.apply_to_image(y, reference=self.reference),
)
|
class Zoom3D(object):
'''
Create an ANTs Affine Transform with a specified level
of zoom. Any value greater than 1 implies a "zoom-out" and anything
less than 1 implies a "zoom-in".
'''
def __init__(self, zoom, reference=None, lazy=False):
'''
Initialize a Zoom3D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with the given
zoom parameters. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('ch2'))
>>> tx = ants.contrib.Zoom3D(zoom=(0.8,0.8,0.8))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 38 | 5 | 15 | 18 | 3 | 1.32 | 1 | 4 | 1 | 0 | 2 | 5 | 2 | 2 | 84 | 12 | 31 | 10 | 28 | 41 | 20 | 10 | 17 | 3 | 1 | 2 | 6 |
1,754 |
ANTsX/ANTsPy
|
tests/test_segmentation.py
|
test_segmentation.TestModule_atropos
|
class TestModule_atropos(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
# test ANTsPy/ANTsR example
img = ants.image_read(ants.get_ants_data('r16'))
img = ants.resample_image(img, (64,64), 1, 0)
mask = ants.get_mask(img)
ants.atropos( a = img, m = '[0.2,1x1]', c = '[2,0]', i = 'kmeans[3]', x = mask )
def test_multiple_inputs(self):
img = ants.image_read( ants.get_ants_data("r16"))
img = ants.resample_image( img, (64,64), 1, 0 )
mask = ants.get_mask(img)
segs1 = ants.atropos( a = img, m = '[0.2,1x1]',
c = '[2,0]', i = 'kmeans[3]', x = mask )
# Use probabilities from k-means seg as priors
segs2 = ants.atropos( a = img, m = '[0.2,1x1]',
c = '[2,0]', i = segs1['probabilityimages'], x = mask )
# multiple inputs
feats = [img, ants.iMath(img,"Laplacian"), ants.iMath(img,"Grad") ]
segs3 = ants.atropos( a = feats, m = '[0.2,1x1]',
c = '[2,0]', i = segs1['probabilityimages'], x = mask )
|
class TestModule_atropos(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
def test_multiple_inputs(self):
pass
| 5 | 0 | 6 | 1 | 5 | 1 | 1 | 0.14 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 76 | 30 | 6 | 21 | 13 | 16 | 3 | 18 | 13 | 13 | 1 | 2 | 0 | 4 |
1,755 |
ANTsX/ANTsPy
|
ants/core/ants_transform.py
|
ants.core.ants_transform.ANTsTransform
|
class ANTsTransform(object):
def __init__(self, precision='float', dimension=3, transform_type='AffineTransform', pointer=None):
"""
NOTE: This class should never be initialized directly by the user.
Initialize an ANTsTransform object.
Arguments
---------
pixeltype : string
dimension : integer
transform_type : stirng
pointer : py::capsule (optional)
"""
self.precision = precision
self.dimension = dimension
self.transform_type = transform_type
self.type = transform_type
if pointer is None:
libfn = get_lib_fn('newAntsTransform%s%i' % (short_ptype(precision), dimension))
pointer = libfn(precision, dimension, transform_type)
self.pointer = pointer
# suffix to append to all c++ library function calls
self._libsuffix = '%s%i' % (short_ptype(self.precision), self.dimension)
@property
def parameters(self):
""" Get parameters of transform """
libfn = get_lib_fn('getTransformParameters')
return np.asarray(libfn(self.pointer), order='F')#.reshape((self.dimension, self.dimension+1), order='F')
def set_parameters(self, parameters):
""" Set parameters of transform """
if not isinstance(parameters, np.ndarray):
parameters = np.asarray(parameters)
# if in two dimensions, flatten with fortran ordering
if parameters.ndim > 1:
parameters = parameters.flatten(order='F')
libfn = get_lib_fn('setTransformParameters')
libfn(self.pointer, parameters.tolist())
@property
def fixed_parameters(self):
""" Get parameters of transform """
libfn = get_lib_fn('getTransformFixedParameters')
return np.asarray(libfn(self.pointer))
def set_fixed_parameters(self, parameters):
""" Set parameters of transform """
if not isinstance(parameters, np.ndarray):
parameters = np.asarray(parameters)
libfn = get_lib_fn('setTransformFixedParameters')
libfn(self.pointer, parameters.tolist())
def invert(self):
""" Invert the transform """
libfn = get_lib_fn('inverseTransform')
inv_tx_ptr = libfn(self.pointer)
new_tx = ANTsTransform(precision=self.precision, dimension=self.dimension,
transform_type=self.transform_type, pointer=inv_tx_ptr)
return new_tx
def apply(self, data, data_type='point', reference=None, **kwargs):
"""
Apply transform to data
"""
if data_type == 'point':
return self.apply_to_point(data)
elif data_type == 'vector':
return self.apply_to_vector(data)
elif data_type == 'image':
return self.apply_to_image(data, reference, **kwargs)
def apply_to_point(self, point):
"""
Apply transform to a point
Arguments
---------
point : list/tuple
point to which the transform will be applied
Returns
-------
list : transformed point
Example
-------
>>> import ants
>>> tx = ants.new_ants_transform()
>>> params = tx.parameters
>>> tx.set_parameters(params*2)
>>> pt2 = tx.apply_to_point((1,2,3)) # should be (2,4,6)
"""
libfn = get_lib_fn('transformPoint')
return tuple(libfn(self.pointer, point))
def apply_to_vector(self, vector):
"""
Apply transform to a vector
Arguments
---------
vector : list/tuple
vector to which the transform will be applied
Returns
-------
list : transformed vector
"""
if isinstance(vector, np.ndarray):
vector = vector.tolist()
libfn = get_lib_fn('transformVector')
return np.asarray(libfn(self.pointer, vector))
def apply_to_image(self, image, reference=None, interpolation='linear'):
"""
Apply transform to an image
Arguments
---------
image : ANTsImage
image to which the transform will be applied
reference : ANTsImage
target space for transforming image
interpolation : string
type of interpolation to use. Options are:
linear
nearestneighbor
multilabel
gaussian
bspline
cosinewindowedsinc
welchwindowedsinc
hammingwindoweddinc
lanczoswindowedsinc
genericlabel
Returns
-------
list : transformed vector
"""
if reference is None:
reference = image.clone()
interpolation = interpolation.lower()
tform_fn = get_lib_fn('transformImage')
reference = reference.clone(image.pixeltype)
img_ptr = tform_fn(self.pointer, image.pointer, reference.pointer, interpolation)
return ants.from_pointer(img_ptr)
def __repr__(self):
s = "ANTsTransform\n" +\
'\t {:<10} : {}\n'.format('Type', self.type)+\
'\t {:<10} : {}\n'.format('Dimension', self.dimension)+\
'\t {:<10} : {}\n'.format('Precision', self.precision)
return s
|
class ANTsTransform(object):
def __init__(self, precision='float', dimension=3, transform_type='AffineTransform', pointer=None):
'''
NOTE: This class should never be initialized directly by the user.
Initialize an ANTsTransform object.
Arguments
---------
pixeltype : string
dimension : integer
transform_type : stirng
pointer : py::capsule (optional)
'''
pass
@property
def parameters(self):
''' Get parameters of transform '''
pass
def set_parameters(self, parameters):
''' Set parameters of transform '''
pass
@property
def fixed_parameters(self):
''' Get parameters of transform '''
pass
def set_fixed_parameters(self, parameters):
''' Set parameters of transform '''
pass
def invert(self):
''' Invert the transform '''
pass
def apply(self, data, data_type='point', reference=None, **kwargs):
'''
Apply transform to data
'''
pass
def apply_to_point(self, point):
'''
Apply transform to a point
Arguments
---------
point : list/tuple
point to which the transform will be applied
Returns
-------
list : transformed point
Example
-------
>>> import ants
>>> tx = ants.new_ants_transform()
>>> params = tx.parameters
>>> tx.set_parameters(params*2)
>>> pt2 = tx.apply_to_point((1,2,3)) # should be (2,4,6)
'''
pass
def apply_to_vector(self, vector):
'''
Apply transform to a vector
Arguments
---------
vector : list/tuple
vector to which the transform will be applied
Returns
-------
list : transformed vector
'''
pass
def apply_to_image(self, image, reference=None, interpolation='linear'):
'''
Apply transform to an image
Arguments
---------
image : ANTsImage
image to which the transform will be applied
reference : ANTsImage
target space for transforming image
interpolation : string
type of interpolation to use. Options are:
linear
nearestneighbor
multilabel
gaussian
bspline
cosinewindowedsinc
welchwindowedsinc
hammingwindoweddinc
lanczoswindowedsinc
genericlabel
Returns
-------
list : transformed vector
'''
pass
def __repr__(self):
pass
| 14 | 10 | 15 | 3 | 6 | 7 | 2 | 1.09 | 1 | 1 | 0 | 0 | 11 | 6 | 11 | 11 | 176 | 39 | 66 | 33 | 52 | 72 | 58 | 31 | 46 | 4 | 1 | 1 | 20 |
1,756 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_resample_image
|
class TestModule_resample_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_resample_image_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
finn = ants.resample_image(fi, (50, 60), True, 0)
filin = ants.resample_image(fi, (1.5, 1.5), False, 1)
def test_resample_channels(self):
img = ants.image_read( ants.get_ants_data("r16"))
img = ants.merge_channels([img, img])
outimg = ants.resample_image(img, (128,128), True)
self.assertEqual(outimg.shape, (128, 128))
self.assertEqual(outimg.components, 2)
def test_resample_image_to_target_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
fi2mm = ants.resample_image(fi, (2, 2), use_voxels=0, interp_type=1)
resampled = ants.resample_image_to_target(fi2mm, fi, verbose=True)
self.assertTrue(ants.image_physical_space_consistency(fi, resampled, 0.0001, datatype=True))
|
class TestModule_resample_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_resample_image_example(self):
pass
def test_resample_channels(self):
pass
def test_resample_image_to_target_example(self):
pass
| 6 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 5 | 77 | 24 | 4 | 20 | 14 | 14 | 0 | 20 | 14 | 14 | 1 | 2 | 0 | 5 |
1,757 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.RandomTranslate2D
|
class RandomTranslate2D(object):
"""
Apply a Translate2D transform to an image, but with the
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, translation_range, reference=None, lazy=False):
"""
Initialize a RandomTranslate2D object
Arguments
---------
translation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. translation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(translation_range, (list, tuple))) or (
len(translation_range) != 2
):
raise ValueError("shear_range argument must be list/tuple with two values!")
self.translation_range = translation_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
translation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomShear2D(translation_range=(-10,10))
>>> img2 = tx.transform(img)
"""
# random draw in translation range
translation_x = random.gauss(
self.translation_range[0], self.translation_range[1]
)
translation_y = random.gauss(
self.translation_range[0], self.translation_range[1]
)
self.params = (translation_x, translation_y)
tx = Translate2D(
(translation_x, translation_y), reference=self.reference, lazy=self.lazy
)
return tx.transform(X, y)
|
class RandomTranslate2D(object):
'''
Apply a Translate2D transform to an image, but with the
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, translation_range, reference=None, lazy=False):
'''
Initialize a RandomTranslate2D object
Arguments
---------
translation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. translation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
translation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomShear2D(translation_range=(-10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 34 | 5 | 10 | 19 | 2 | 2.05 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 76 | 12 | 21 | 10 | 18 | 43 | 13 | 10 | 10 | 2 | 1 | 1 | 3 |
1,758 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.RandomZoom2D
|
class RandomZoom2D(object):
"""
Apply a Zoom2D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, zoom_range, reference=None, lazy=False):
"""
Initialize a RandomZoom2D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(zoom_range, (list, tuple))) or (len(zoom_range) != 2):
raise ValueError("zoom_range argument must be list/tuple with two values!")
self.zoom_range = zoom_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
zoom parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomZoom2D(zoom_range=(0.8,0.9))
>>> img2 = tx.transform(img)
"""
# random draw in zoom range
zoom_x = np.exp(
random.gauss(np.log(self.zoom_range[0]), np.log(self.zoom_range[1]))
)
zoom_y = np.exp(
random.gauss(np.log(self.zoom_range[0]), np.log(self.zoom_range[1]))
)
self.params = (zoom_x, zoom_y)
tx = Zoom2D((zoom_x, zoom_y), reference=self.reference, lazy=self.lazy)
return tx.transform(X, y)
|
class RandomZoom2D(object):
'''
Apply a Zoom2D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, zoom_range, reference=None, lazy=False):
'''
Initialize a RandomZoom2D object
Arguments
---------
zoom_range : list or tuple
Lower and Upper bounds on zoom parameter.
e.g. zoom_range = (0.7,0.9) will result in a random
draw of the zoom parameters between 0.7 and 0.9
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
zoom parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomZoom2D(zoom_range=(0.8,0.9))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 32 | 5 | 8 | 19 | 2 | 2.53 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 72 | 12 | 17 | 10 | 14 | 43 | 13 | 10 | 10 | 2 | 1 | 1 | 3 |
1,759 |
ANTsX/ANTsPy
|
tests/test_core_ants_transform.py
|
test_core_ants_transform.TestClass_ANTsTransform
|
class TestClass_ANTsTransform(unittest.TestCase):
"""
Test ants.ANTsImage class
"""
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
tx2d = ants.create_ants_transform(precision='float', dimension=2)
tx3d = ants.create_ants_transform(precision='float', dimension=3)
self.imgs = [img2d, img3d]
self.txs = [tx2d, tx3d]
self.pixeltypes = ['unsigned char', 'unsigned int', 'float']
def tearDown(self):
pass
def test__repr__(self):
for tx in self.txs:
r = tx.__repr__()
def test_get_precision(self):
for tx in self.txs:
precision = tx.precision
self.assertEqual(precision, 'float')
def test_get_dimension(self):
tx2d = ants.create_ants_transform(precision='float', dimension=2)
self.assertEqual(tx2d.dimension, 2)
tx3d = ants.create_ants_transform(precision='float', dimension=3)
self.assertEqual(tx3d.dimension, 3)
def test_get_type(self):
for tx in self.txs:
ttype = tx.type
self.assertEqual(ttype, 'AffineTransform')
def test_get_pointer(self):
for tx in self.txs:
ptr = tx.pointer
def test_get_parameters(self):
for tx in self.txs:
params = tx.parameters
def test_get_fixed_parameters(self):
for tx in self.txs:
fixed_params = tx.fixed_parameters
def test_invert(self):
for tx in self.txs:
txinvert = tx.invert()
def test_apply(self):
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = tx.apply(data=(1,2,3), data_type='point')
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = tx.apply(data=(1,2,3), data_type='vector')
img = ants.image_read(ants.get_ants_data("r16")).clone('float')
tx = ants.new_ants_transform(dimension=2)
tx.set_parameters((0.9,0,0,1.1,10,11))
img2 = tx.apply(data=img, reference=img, data_type='image')
def test_apply_to_point(self):
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = tx.apply_to_point((1,2,3)) # should be (2,4,6)
def test_apply_to_vector(self):
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = tx.apply_to_vector((1,2,3)) # should be (2,4,6)
def test_apply_to_image(self):
for ptype in self.pixeltypes:
img = ants.image_read(ants.get_ants_data("r16")).clone(ptype)
tx = ants.new_ants_transform(dimension=2)
tx.set_parameters((0.9,0,0,1.1,10,11))
img2 = tx.apply_to_image(img, img)
|
class TestClass_ANTsTransform(unittest.TestCase):
'''
Test ants.ANTsImage class
'''
def setUp(self):
pass
def tearDown(self):
pass
def test__repr__(self):
pass
def test_get_precision(self):
pass
def test_get_dimension(self):
pass
def test_get_type(self):
pass
def test_get_pointer(self):
pass
def test_get_parameters(self):
pass
def test_get_fixed_parameters(self):
pass
def test_invert(self):
pass
def test_apply(self):
pass
def test_apply_to_point(self):
pass
def test_apply_to_vector(self):
pass
def test_apply_to_image(self):
pass
| 15 | 1 | 5 | 0 | 5 | 0 | 2 | 0.07 | 1 | 0 | 0 | 0 | 14 | 3 | 14 | 86 | 88 | 17 | 68 | 53 | 53 | 5 | 68 | 53 | 53 | 2 | 2 | 1 | 22 |
1,760 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_symmetrize_image
|
class TestModule_symmetrize_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
simage = ants.symmetrize_image(image)
|
class TestModule_symmetrize_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 10 | 2 | 8 | 6 | 4 | 0 | 8 | 6 | 4 | 1 | 2 | 0 | 3 |
1,761 |
ANTsX/ANTsPy
|
tests/test_core_ants_metric.py
|
test_core_ants_metric.TestClass_ANTsImageToImageMetric
|
class TestClass_ANTsImageToImageMetric(unittest.TestCase):
"""
Test ants.ANTsImage class
"""
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
metric2d = ants.new_ants_metric(precision='float', dimension=2)
metric3d = ants.new_ants_metric(precision='float', dimension=3)
self.imgs = [img2d, img3d]
self.metrics = [metric2d, metric3d]
def tearDown(self):
pass
def test__repr__(self):
for metric in self.metrics:
r = metric.__repr__()
def test_precision(self):
for metric in self.metrics:
precison = metric.precision
def dimension(self):
for metric in self.metrics:
dimension = metric.dimension
def metrictype(self):
for metric in self.metrics:
mtype = metric.metrictype
def is_vector(self):
for metric in self.metrics:
isvec = metric.is_vector
def pointer(self):
for metric in self.metrics:
ptr = metric.pointer
def test_set_fixed_image(self):
# def set_fixed_image(self, image):
for img, metric in zip(self.imgs,self.metrics):
metric.set_fixed_image(img)
def test_set_fixed_mask(self):
# def set_fixed_image(self, image):
for img, metric in zip(self.imgs,self.metrics):
mask = img > img.mean()
metric.set_fixed_mask(img)
def test_set_moving_image(self):
# def set_fixed_image(self, image):
for img, metric in zip(self.imgs,self.metrics):
metric.set_moving_image(img)
def test_set_moving_mask(self):
# def set_fixed_image(self, image):
for img, metric in zip(self.imgs,self.metrics):
mask = img > img.mean()
metric.set_moving_mask(img)
def test_set_sampling(self):
for img, metric in zip(self.imgs,self.metrics):
with self.assertRaises(Exception):
# set sampling without moving+fixed images
metric.set_sampling()
img2 = img.clone()
metric.set_fixed_image(img)
metric.set_moving_image(img2)
metric.set_sampling()
def test_initialize(self):
for img, metric in zip(self.imgs,self.metrics):
with self.assertRaises(Exception):
# initialize without moving+fixed images
metric.initialize()
img2 = img.clone()
metric.set_fixed_image(img)
metric.set_moving_image(img2)
metric.set_sampling()
metric.initialize()
def test_get_value(self):
for img, metric in zip(self.imgs,self.metrics):
with self.assertRaises(Exception):
# initialize without moving+fixed images
metric.get_value()
img2 = img.clone()
metric.set_fixed_image(img)
metric.set_moving_image(img2)
metric.set_sampling()
metric.get_value()
def test__call__(self):
for img, metric in zip(self.imgs,self.metrics):
img2 = img.clone() * 1.1
imgmask = img > img.mean()
imgmask2 = img2 > img2.mean()
val = metric(img,img2)
# val = metric(img,img2, fixed_mask=imgmask, moving_mask=imgmask2)
val = metric(img,img2, sampling_percentage=0.8)
|
class TestClass_ANTsImageToImageMetric(unittest.TestCase):
'''
Test ants.ANTsImage class
'''
def setUp(self):
pass
def tearDown(self):
pass
def test__repr__(self):
pass
def test_precision(self):
pass
def dimension(self):
pass
def metrictype(self):
pass
def is_vector(self):
pass
def pointer(self):
pass
def test_set_fixed_image(self):
pass
def test_set_fixed_mask(self):
pass
def test_set_moving_image(self):
pass
def test_set_moving_mask(self):
pass
def test_set_sampling(self):
pass
def test_initialize(self):
pass
def test_get_value(self):
pass
def test__call__(self):
pass
| 17 | 1 | 6 | 0 | 5 | 1 | 2 | 0.15 | 1 | 2 | 0 | 0 | 16 | 2 | 16 | 88 | 108 | 22 | 75 | 52 | 58 | 11 | 75 | 52 | 58 | 2 | 2 | 2 | 30 |
1,762 |
ANTsX/ANTsPy
|
tests/test_core_ants_image_io.py
|
test_core_ants_image_io.TestModule_ants_image_io
|
class TestModule_ants_image_io(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16')).clone('float')
img3d = ants.image_read(ants.get_ants_data('mni')).clone('float')
arr2d = np.random.randn(69,70).astype('float32')
arr3d = np.random.randn(69,70,71).astype('float32')
vecimg2d = ants.from_numpy(np.random.randn(69,70,4), has_components=True)
vecimg3d = ants.from_numpy(np.random.randn(69,70,71,2), has_components=True)
self.imgs = [img2d, img3d]
self.arrs = [arr2d, arr3d]
self.vecimgs = [vecimg2d, vecimg3d]
self.pixeltypes = ['unsigned char', 'unsigned int', 'float']
def tearDown(self):
pass
def test_from_numpy(self):
self.setUp()
# no physical space info
for arr in self.arrs:
img = ants.from_numpy(arr)
self.assertTrue(img.dimension, arr.ndim)
self.assertTrue(img.shape, arr.shape)
self.assertTrue(img.dtype, arr.dtype.name)
nptest.assert_allclose(img.numpy(), arr)
new_origin = tuple([6.9]*arr.ndim)
new_spacing = tuple([3.6]*arr.ndim)
new_direction = np.eye(arr.ndim)*9.6
img2 = ants.from_numpy(arr, origin=new_origin, spacing=new_spacing, direction=new_direction)
self.assertEqual(img2.origin, new_origin)
self.assertEqual(img2.spacing, new_spacing)
nptest.assert_allclose(img2.direction, new_direction)
# test with components
arr2d_components = np.random.randn(69,70,4).astype('float32')
img = ants.from_numpy(arr2d_components, has_components=True)
self.assertEqual(img.components, arr2d_components.shape[-1])
nptest.assert_allclose(arr2d_components, img.numpy())
def test_make_image(self):
self.setUp()
for arr in self.arrs:
voxval = 6.
img = ants.make_image(arr.shape, voxval=voxval)
self.assertTrue(img.dimension, arr.ndim)
self.assertTrue(img.shape, arr.shape)
nptest.assert_allclose(img.mean(), voxval)
new_origin = tuple([6.9]*arr.ndim)
new_spacing = tuple([3.6]*arr.ndim)
new_direction = np.eye(arr.ndim)*9.6
img2 = ants.make_image(arr.shape, voxval=voxval, origin=new_origin, spacing=new_spacing, direction=new_direction)
self.assertTrue(img2.dimension, arr.ndim)
self.assertTrue(img2.shape, arr.shape)
nptest.assert_allclose(img2.mean(), voxval)
self.assertEqual(img2.origin, new_origin)
self.assertEqual(img2.spacing, new_spacing)
nptest.assert_allclose(img2.direction, new_direction)
for ptype in self.pixeltypes:
img = ants.make_image(arr.shape, voxval=1., pixeltype=ptype)
self.assertEqual(img.pixeltype, ptype)
# test with components
img = ants.make_image((69,70,4), has_components=True)
self.assertEqual(img.components, 4)
self.assertEqual(img.dimension, 2)
nptest.assert_allclose(img.mean(), 0.)
img = ants.make_image((69,70,71,4), has_components=True)
self.assertEqual(img.components, 4)
self.assertEqual(img.dimension, 3)
nptest.assert_allclose(img.mean(), 0.)
# set from image
for img in self.imgs:
mask = ants.image_clone( img > img.mean(), pixeltype = 'float' )
arr = img[mask]
img2 = ants.make_image(mask, voxval=arr)
nptest.assert_allclose(img2.numpy(), (img*mask).numpy())
self.assertTrue(ants.image_physical_space_consistency(img2,mask))
# set with arr.ndim > 1
img2 = ants.make_image(mask, voxval=np.expand_dims(arr,-1))
nptest.assert_allclose(img2.numpy(), (img*mask).numpy())
self.assertTrue(ants.image_physical_space_consistency(img2,mask))
#with self.assertRaises(Exception):
# # wrong number of non-zero voxels
# img3 = ants.make_image(img, voxval=arr)
def test_matrix_to_images(self):
# def matrix_to_images(data_matrix, mask):
for img in self.imgs:
imgmask = ants.image_clone( img > img.mean(), pixeltype = 'float' )
data = img[imgmask]
dataflat = data.reshape(1,-1)
mat = np.vstack([dataflat,dataflat]).astype('float32')
imglist = ants.matrix_to_images(mat, imgmask)
nptest.assert_allclose((img*imgmask).numpy(), imglist[0].numpy())
nptest.assert_allclose((img*imgmask).numpy(), imglist[1].numpy())
self.assertTrue(ants.image_physical_space_consistency(img,imglist[0]))
self.assertTrue(ants.image_physical_space_consistency(img,imglist[1]))
# go back to matrix
mat2 = ants.images_to_matrix(imglist, imgmask)
nptest.assert_allclose(mat, mat2)
# test with matrix.ndim > 2
img = img.clone()
img.set_direction(img.direction*2)
imgmask = ants.image_clone( img > img.mean(), pixeltype = 'float' )
arr = (img*imgmask).numpy()
arr = arr[arr>=0.5]
arr2 = arr.copy()
mat = np.stack([arr,arr2])
imglist = ants.matrix_to_images(mat, imgmask)
for im in imglist:
self.assertTrue(ants.allclose(im, imgmask*img))
self.assertTrue(ants.image_physical_space_consistency(im, imgmask))
# test for wrong number of voxels
#with self.assertRaises(Exception):
# arr = (img*imgmask).numpy()
# arr = arr[arr>0.5]
# arr2 = arr.copy()
# mat = np.stack([arr,arr2])
# imglist = ants.matrix_to_images(mat, img)
def test_images_to_matrix(self):
# def images_to_matrix(image_list, mask=None, sigma=None, epsilon=0):
for img in self.imgs:
mask = ants.image_clone( img > img.mean(), pixeltype = 'float' )
imglist = [img.clone(),img.clone(),img.clone()]
imgmat = ants.images_to_matrix(imglist, mask=mask)
self.assertTrue(imgmat.shape[0] == len(imglist))
self.assertTrue(imgmat.shape[1] == (mask>0).sum())
self.assertTrue(np.allclose(img[mask], imgmat[0,:]))
# go back to images
imglist2 = ants.matrix_to_images(imgmat, mask)
for i1,i2 in zip(imglist,imglist2):
self.assertTrue(ants.image_physical_space_consistency(i1,i2))
nptest.assert_allclose(i1.numpy()*mask.numpy(),i2.numpy())
if img.dimension == 2:
# with sigma
mask = ants.image_clone( img > img.mean(), pixeltype = 'float' )
imglist = [img.clone(),img.clone(),img.clone()]
imgmat = ants.images_to_matrix(imglist, mask=mask, sigma=2.)
# with no mask
imgmat = ants.images_to_matrix(imglist)
# Mask not binary
mask = ants.image_clone( img / img.mean(), pixeltype = 'float' )
imgmat = ants.images_to_matrix(imglist, mask=mask, epsilon=1)
# with mask of different shape
s = [65]*img.dimension
mask2 = ants.from_numpy(np.random.randn(*s), spacing=[4.0, 4.0])
mask2 = mask2 > mask2.mean()
imgmat = ants.images_to_matrix(imglist, mask=mask2)
self.assertTrue(imgmat.shape[0] == len(imglist))
self.assertTrue(imgmat.shape[1] == (mask2>0).sum())
def timeseries_to_matrix(self):
img = ants.make_image( (10,10,10,5 ) )
mat = ants.timeseries_to_matrix( img )
img = ants.make_image( (10,10,10,5 ) )
mask = ants.ndimage_to_list( img )[0] * 0
mask[ 4:8, 4:8, 4:8 ] = 1
mat = ants.timeseries_to_matrix( img, mask = mask )
img2 = ants.matrix_to_timeseries( img, mat, mask)
def test_image_header_info(self):
# def image_header_info(filename):
for img in self.imgs:
img.set_spacing([6.9]*img.dimension)
img.set_origin([3.6]*img.dimension)
tmpfile = mktemp(suffix='.nii.gz')
ants.image_write(img, tmpfile)
info = ants.image_header_info(tmpfile)
self.assertEqual(info['dimensions'], img.shape)
nptest.assert_allclose(info['direction'], img.direction)
self.assertEqual(info['nComponents'], img.components)
self.assertEqual(info['nDimensions'], img.dimension)
self.assertEqual(info['origin'], img.origin)
self.assertEqual(info['pixeltype'], img.pixeltype)
self.assertEqual(info['pixelclass'], 'vector' if img.has_components else 'scalar')
self.assertEqual(info['spacing'], img.spacing)
try:
os.remove(tmpfile)
except:
pass
# test on vector image
img = ants.from_numpy(np.random.randn(69,60,4).astype('float32'), has_components=True)
tmpfile = mktemp(suffix='.nii.gz')
ants.image_write(img, tmpfile)
info = ants.image_header_info(tmpfile)
self.assertEqual(info['dimensions'], img.shape)
nptest.assert_allclose(info['direction'], img.direction)
self.assertEqual(info['nComponents'], img.components)
self.assertEqual(info['nDimensions'], img.dimension)
self.assertEqual(info['origin'], img.origin)
self.assertEqual(info['pixeltype'], img.pixeltype)
self.assertEqual(info['pixelclass'], 'vector' if img.has_components else 'scalar')
self.assertEqual(info['spacing'], img.spacing)
img = ants.from_numpy(np.random.randn(69,60,70,2).astype('float32'), has_components=True)
tmpfile = mktemp(suffix='.nii.gz')
ants.image_write(img, tmpfile)
info = ants.image_header_info(tmpfile)
self.assertEqual(info['dimensions'], img.shape)
nptest.assert_allclose(info['direction'], img.direction)
self.assertEqual(info['nComponents'], img.components)
self.assertEqual(info['nDimensions'], img.dimension)
self.assertEqual(info['origin'], img.origin)
self.assertEqual(info['pixeltype'], img.pixeltype)
self.assertEqual(info['pixelclass'], 'vector' if img.has_components else 'scalar')
self.assertEqual(info['spacing'], img.spacing)
# non-existant file
with self.assertRaises(Exception):
tmpfile = mktemp(suffix='.nii.gz')
ants.image_header_info(tmpfile)
def test_image_clone(self):
for img in self.imgs:
img = ants.image_clone(img, 'unsigned char')
orig_ptype = img.pixeltype
for ptype in self.pixeltypes:
imgcloned = ants.image_clone(img, ptype)
self.assertTrue(ants.image_physical_space_consistency(img,imgcloned))
nptest.assert_allclose(img.numpy(), imgcloned.numpy())
self.assertEqual(imgcloned.pixeltype, ptype)
self.assertEqual(img.pixeltype, orig_ptype)
for img in self.vecimgs:
img = img.clone('unsigned char')
orig_ptype = img.pixeltype
for ptype in self.pixeltypes:
imgcloned = ants.image_clone(img, ptype)
self.assertTrue(ants.image_physical_space_consistency(img,imgcloned))
self.assertEqual(imgcloned.components, img.components)
nptest.assert_allclose(img.numpy(), imgcloned.numpy())
self.assertEqual(imgcloned.pixeltype, ptype)
self.assertEqual(img.pixeltype, orig_ptype)
def test_image_read_write(self):
# def image_read(filename, dimension=None, pixeltype='float'):
# def image_write(image, filename):
# test scalar images
for img in self.imgs:
img = (img - img.min()) / (img.max() - img.min())
img = img * 255.
img = img.clone('unsigned char')
for ptype in self.pixeltypes:
img = img.clone(ptype)
tmpfile = mktemp(suffix='.nii.gz')
ants.image_write(img, tmpfile)
img2 = ants.image_read(tmpfile)
self.assertTrue(ants.image_physical_space_consistency(img,img2))
self.assertEqual(img2.components, img.components)
nptest.assert_allclose(img.numpy(), img2.numpy())
# unsupported ptype
with self.assertRaises(Exception):
ants.image_read(tmpfile, pixeltype='not-suppoted-ptype')
# test vector images
for img in self.vecimgs:
img = (img - img.min()) / (img.max() - img.min())
img = img * 255.
img = img.clone('unsigned char')
for ptype in self.pixeltypes:
img = img.clone(ptype)
tmpfile = mktemp(suffix='.nii.gz')
ants.image_write(img, tmpfile)
img2 = ants.image_read(tmpfile)
self.assertTrue(ants.image_physical_space_consistency(img,img2))
self.assertEqual(img2.components, img.components)
nptest.assert_allclose(img.numpy(), img2.numpy())
# test saving/loading as npy
for img in self.imgs:
tmpfile = mktemp(suffix='.npy')
ants.image_write(img, tmpfile)
img2 = ants.image_read(tmpfile)
self.assertTrue(ants.image_physical_space_consistency(img,img2))
self.assertEqual(img2.components, img.components)
nptest.assert_allclose(img.numpy(), img2.numpy())
# with no json header
arr = img.numpy()
tmpfile = mktemp(suffix='.npy')
np.save(tmpfile, arr)
img2 = ants.image_read(tmpfile)
nptest.assert_allclose(img.numpy(), img2.numpy())
# non-existant file
with self.assertRaises(ValueError):
tmpfile = mktemp(suffix='.nii.gz')
ants.image_read(tmpfile)
# Test empty file
with self.assertRaises(RuntimeError):
tmpfile = mktemp(suffix='.nii.gz')
open(tmpfile, 'a').close()
ants.image_read(tmpfile)
def test_image_from_numpy_shape(self):
arr = np.random.randn(1,9,1).astype('float32')
img = ants.from_numpy(arr)
self.assertEqual(img.shape, arr.shape)
nptest.assert_allclose(img.numpy(), arr)
arr = np.random.randn(2,3,4).astype('float32')
img = ants.from_numpy(arr)
self.assertEqual(img.shape, arr.shape)
nptest.assert_allclose(img.numpy(), arr)
# Test special case where shape is (1,N), was getting transposed
arr = np.random.randn(1,9).astype('float32')
img = ants.from_numpy(arr)
self.assertEqual(img.shape, arr.shape)
nptest.assert_allclose(img.numpy(), arr)
arr = np.random.randn(9,1).astype('float32')
img = ants.from_numpy(arr)
self.assertEqual(img.shape, arr.shape)
nptest.assert_allclose(img.numpy(), arr)
|
class TestModule_ants_image_io(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_from_numpy(self):
pass
def test_make_image(self):
pass
def test_matrix_to_images(self):
pass
def test_images_to_matrix(self):
pass
def timeseries_to_matrix(self):
pass
def test_image_header_info(self):
pass
def test_image_clone(self):
pass
def test_image_read_write(self):
pass
def test_image_from_numpy_shape(self):
pass
| 12 | 0 | 29 | 4 | 23 | 2 | 3 | 0.14 | 1 | 5 | 0 | 0 | 11 | 4 | 11 | 83 | 352 | 58 | 257 | 74 | 245 | 37 | 257 | 74 | 245 | 6 | 2 | 2 | 34 |
1,763 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.RandomShear2D
|
class RandomShear2D(object):
"""
Apply a Shear2D transform to an image, but with the shear
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, shear_range, reference=None, lazy=False):
"""
Initialize a RandomShear2D object
Arguments
---------
shear_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. shear_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(shear_range, (list, tuple))) or (len(shear_range) != 2):
raise ValueError("shear_range argument must be list/tuple with two values!")
self.shear_range = shear_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
shear parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomShear2D(shear_range=(-10,10))
>>> img2 = tx.transform(img)
"""
# random draw in shear range
shear_x = random.gauss(self.shear_range[0], self.shear_range[1])
shear_y = random.gauss(self.shear_range[0], self.shear_range[1])
self.params = (shear_x, shear_y)
tx = Shear2D((shear_x, shear_y), reference=self.reference, lazy=self.lazy)
return tx.transform(X, y)
|
class RandomShear2D(object):
'''
Apply a Shear2D transform to an image, but with the shear
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, shear_range, reference=None, lazy=False):
'''
Initialize a RandomShear2D object
Arguments
---------
shear_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. shear_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
shear parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomShear2D(shear_range=(-10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 30 | 5 | 6 | 19 | 2 | 3.31 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 68 | 12 | 13 | 10 | 10 | 43 | 13 | 10 | 10 | 2 | 1 | 1 | 3 |
1,764 |
ANTsX/ANTsPy
|
tests/test_core_ants_transform.py
|
test_core_ants_transform.TestModule_ants_transform
|
class TestModule_ants_transform(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
tx2d = ants.create_ants_transform(precision='float', dimension=2)
tx3d = ants.create_ants_transform(precision='float', dimension=3)
self.imgs = [img2d, img3d]
self.txs = [tx2d, tx3d]
self.pixeltypes = ['unsigned char', 'unsigned int', 'float']
def tearDown(self):
pass
def test_get_ants_transform_parameters(self):
for tx in self.txs:
params = ants.get_ants_transform_parameters(tx)
def test_set_ants_transform_parameters(self):
for tx in self.txs:
ants.set_ants_transform_parameters(tx, tx.parameters**2)
def test_get_ants_transform_fixed_parameters(self):
for tx in self.txs:
params = ants.get_ants_transform_fixed_parameters(tx)
def test_set_ants_transform_fixed_parameters(self):
for tx in self.txs:
ants.set_ants_transform_fixed_parameters(tx, tx.fixed_parameters**2)
def test_apply_ants_transform(self):
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = ants.apply_ants_transform(tx, data=(1,2,3), data_type='point')
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = ants.apply_ants_transform(tx, data=(1,2,3), data_type='vector')
img = ants.image_read(ants.get_ants_data("r16")).clone('float')
tx = ants.new_ants_transform(dimension=2)
tx.set_parameters((0.9,0,0,1.1,10,11))
img2 = ants.apply_ants_transform(tx, data=img, reference=img, data_type='image')
def test_apply_ants_transform_to_point(self):
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = ants.apply_ants_transform_to_point(tx, (1,2,3)) # should be (2,4,6)
def test_apply_ants_transform_to_vector(self):
tx = ants.new_ants_transform()
params = tx.parameters
tx.set_parameters(params*2)
pt2 = ants.apply_ants_transform_to_vector(tx, (1,2,3)) # should be (2,4,6)
def test_apply_ants_transform_to_image(self):
img = ants.image_read(ants.get_ants_data("r16")).clone('float')
tx = ants.new_ants_transform(dimension=2)
tx.set_parameters((0.9,0,0,1.1,10,11))
img2 = ants.apply_ants_transform_to_image(tx, img, img)
def test_apply_ants_transform_to_image_displacement_field(self):
img = ants.image_read(ants.get_ants_data("r27")).clone('float')
img2 = ants.image_read(ants.get_ants_data("r16")).clone('float')
reg = ants.registration(fixed=img, moving=img2, type_of_transform="SyN")
tra = ants.transform_from_displacement_field(ants.image_read(reg['fwdtransforms'][0]))
deformed = tra.apply_to_image(img2, reference=img)
deformed_aat = ants.apply_transforms(img, img2, reg['fwdtransforms'][0], singleprecision=True)
nptest.assert_allclose(deformed.numpy(), deformed_aat.numpy(), atol=1e-6)
def test_invert_ants_transform(self):
img = ants.image_read(ants.get_ants_data("r16")).clone('float')
tx = ants.new_ants_transform(dimension=2)
tx.set_parameters((0.9,0,0,1.1,10,11))
img_transformed = tx.apply_to_image(img, img)
inv_tx = ants.invert_ants_transform(tx)
img_orig = inv_tx.apply_to_image(img_transformed, img_transformed)
def test_compose_ants_transforms(self):
img = ants.image_read(ants.get_ants_data("r16")).clone('float')
tx = ants.new_ants_transform(dimension=2)
tx.set_parameters((0.9,0,0,1.1,10,11))
inv_tx = tx.invert()
single_tx = ants.compose_ants_transforms([tx, inv_tx])
img_orig = single_tx.apply_to_image(img, img)
# different precisions
tx1 = ants.new_ants_transform(dimension=2, precision='float')
tx2 = ants.new_ants_transform(dimension=2, precision='double')
with self.assertRaises(Exception):
single_tx = ants.compose_ants_transforms([tx1,tx2])
# different dimensions
tx1 = ants.new_ants_transform(dimension=2, precision='float')
tx2 = ants.new_ants_transform(dimension=3, precision='float')
with self.assertRaises(Exception):
single_tx = ants.compose_ants_transforms([tx1,tx2])
def test_transform_index_to_physical_point(self):
img = ants.make_image((10,10),np.random.randn(100))
pt = ants.transform_index_to_physical_point(img, (2,2))
# image not ANTsImage
with self.assertRaises(Exception):
ants.transform_index_to_physical_point(2, (2,2))
# index not tuple/list
with self.assertRaises(Exception):
ants.transform_index_to_physical_point(img,img)
# index not same size as dimension
with self.assertRaises(Exception):
ants.transform_index_to_physical_point(img,[2]*(img.dimension+1))
def test_transform_physical_point_to_index(self):
img = ants.make_image((10,10),np.random.randn(100))
idx = ants.transform_physical_point_to_index(img, (2,2))
img.set_spacing((2,2))
idx2 = ants.transform_physical_point_to_index(img, (4,4))
# image not ANTsImage
with self.assertRaises(Exception):
ants.transform_physical_point_to_index(2, (2,2))
# index not tuple/list
with self.assertRaises(Exception):
ants.transform_physical_point_to_index(img,img)
# index not same size as dimension
with self.assertRaises(Exception):
ants.transform_physical_point_to_index(img,[2]*(img.dimension+1))
|
class TestModule_ants_transform(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_get_ants_transform_parameters(self):
pass
def test_set_ants_transform_parameters(self):
pass
def test_get_ants_transform_fixed_parameters(self):
pass
def test_set_ants_transform_fixed_parameters(self):
pass
def test_apply_ants_transform(self):
pass
def test_apply_ants_transform_to_point(self):
pass
def test_apply_ants_transform_to_vector(self):
pass
def test_apply_ants_transform_to_image(self):
pass
def test_apply_ants_transform_to_image_displacement_field(self):
pass
def test_invert_ants_transform(self):
pass
def test_compose_ants_transforms(self):
pass
def test_transform_index_to_physical_point(self):
pass
def test_transform_physical_point_to_index(self):
pass
| 16 | 0 | 8 | 0 | 7 | 1 | 1 | 0.1 | 1 | 1 | 0 | 0 | 15 | 3 | 15 | 87 | 133 | 24 | 101 | 66 | 85 | 10 | 101 | 66 | 85 | 2 | 2 | 1 | 19 |
1,765 |
ANTsX/ANTsPy
|
tests/test_core_ants_transform_io.py
|
test_core_ants_transform_io.TestModule_ants_transform_io
|
class TestModule_ants_transform_io(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
tx2d = ants.create_ants_transform(precision='float', dimension=2)
tx3d = ants.create_ants_transform(precision='float', dimension=3)
self.imgs = [img2d, img3d]
self.txs = [tx2d, tx3d]
self.pixeltypes = ['unsigned char', 'unsigned int', 'float']
self.matrix_offset_types = ['AffineTransform',
'CenteredAffineTransform',
'Euler2DTransform',
'Euler3DTransform',
'Rigid2DTransform',
'QuaternionRigidTransform',
'Similarity2DTransform',
'CenteredSimilarity2DTransform',
'Similarity3DTransform',
'CenteredRigid2DTransform',
'CenteredEuler3DTransform',
'Rigid3DTransform']
def tearDown(self):
pass
def test_new_ants_transform(self):
tx = ants.new_ants_transform()
params = tx.parameters*2
# initialize w/ params
tx = ants.new_ants_transform(parameters=params)
def test_create_ants_transform(self):
for mtype in self.matrix_offset_types:
for ptype in {'float', 'double'}:
for ndim in {2, 3}:
ants.create_ants_transform(transform_type=mtype, precision=ptype, dimension=ndim)
# supported types
tx = ants.create_ants_transform(supported_types=True)
# input params
translation = (3,4,5)
tx = ants.create_ants_transform( transform_type='Euler3DTransform', translation=translation )
#translation = np.array([3,4,5])
tx = ants.create_ants_transform( transform_type='Euler3DTransform', translation=translation )
# invalid dimension
with self.assertRaises(Exception):
ants.create_ants_transform(dimension=5)
# unsupported type
with self.assertRaises(Exception):
ants.create_ants_transform(transform_type='unsupported-type')
# bad param arg
with self.assertRaises(Exception):
ants.create_ants_transform( transform_type='Euler3DTransform', translation=ants.image_read(ants.get_ants_data('r16')) )
# bad precision
with self.assertRaises(Exception):
ants.create_ants_transform(precision='unsigned int')
def test_read_write_transform(self):
for tx in self.txs:
filename = mktemp(suffix='.mat')
ants.write_transform(tx, filename)
tx2 = ants.read_transform(filename, precision='float')
# file doesnt exist
with self.assertRaises(Exception):
ants.read_transform('blah-blah.mat')
def test_from_displacement_components(self):
vec_np = np.ndarray((2,2,3), dtype=np.float32)
vec = ants.from_numpy(vec_np, origin=(0,0), spacing=(1,1), has_components=True)
# should get ValueError here because the 2D vector field has 3 components
with self.assertRaises(ValueError):
ants.transform_from_displacement_field(vec)
vec_np = np.ndarray((2,2,2,3), dtype=np.float32)
vec = ants.from_numpy(vec_np, origin=(0,0,0), spacing=(1,1,1), has_components=True)
# should work here because the 3D vector field has 3 components
tx = ants.transform_from_displacement_field(vec)
def test_from_displacement(self):
fi = ants.image_read(ants.get_ants_data('r16') )
mi = ants.image_read(ants.get_ants_data('r64') )
fi = ants.resample_image(fi,(60,60),1,0)
mi = ants.resample_image(mi,(60,60),1,0) # speed up
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = ('SyN') )
# read transform, which calls transform_from_displacement_field
atx = ants.read_transform( mytx['fwdtransforms'][0] )
def test_to_displacement(self):
fi = ants.image_read(ants.get_ants_data('r16') )
mi = ants.image_read(ants.get_ants_data('r64') )
fi = ants.resample_image(fi,(60,60),1,0)
mi = ants.resample_image(mi,(60,60),1,0) # speed up
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = ('SyN') )
vec = ants.image_read( mytx['fwdtransforms'][0] )
atx = ants.transform_from_displacement_field( vec )
field = ants.transform_to_displacement_field( atx, fi )
def test_catch_error(self):
with self.assertRaises(Exception):
ants.write_transform(123, 'test.mat')
|
class TestModule_ants_transform_io(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_new_ants_transform(self):
pass
def test_create_ants_transform(self):
pass
def test_read_write_transform(self):
pass
def test_from_displacement_components(self):
pass
def test_from_displacement_components(self):
pass
def test_to_displacement(self):
pass
def test_catch_error(self):
pass
| 10 | 0 | 11 | 1 | 9 | 2 | 1 | 0.18 | 1 | 2 | 0 | 0 | 9 | 4 | 9 | 81 | 110 | 20 | 78 | 41 | 68 | 14 | 67 | 41 | 57 | 4 | 2 | 3 | 13 |
1,766 |
ANTsX/ANTsPy
|
tests/test_learn.py
|
test_learn.TestModule_decomposition
|
class TestModule_decomposition(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_sparse_decom2_example(self):
mat = np.random.randn(20, 100)
mat2 = np.random.randn(20, 90)
mydecom = ants.sparse_decom2(inmatrix = (mat,mat2),
sparseness=(0.1,0.3), nvecs=3,
its=3, perms=10)
def test_initialize_eigenanatomy_example(self):
mat = np.random.randn(4,100).astype('float32')
init = ants.initialize_eigenanatomy(mat)
img = ants.image_read(ants.get_ants_data('r16'))
segs = ants.kmeans_segmentation(img, 3)
init = ants.initialize_eigenanatomy(segs['segmentation'])
def test_eig_seg_example(self):
mylist = [ants.image_read(ants.get_ants_data('r16')),
ants.image_read(ants.get_ants_data('r27')),
ants.image_read(ants.get_ants_data('r85'))]
myseg = ants.eig_seg(ants.get_mask(mylist[0]), mylist)
mylist = [ants.image_read(ants.get_ants_data('r16')),
ants.image_read(ants.get_ants_data('r27')),
ants.image_read(ants.get_ants_data('r85'))]
myseg = ants.eig_seg(ants.get_mask(mylist[0]), mylist, cthresh=2)
mylist = [ants.image_read(ants.get_ants_data('r16')),
ants.image_read(ants.get_ants_data('r27')),
ants.image_read(ants.get_ants_data('r85'))]
myseg = ants.eig_seg(ants.get_mask(mylist[0]), mylist, apply_segmentation_to_images=True)
|
class TestModule_decomposition(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_sparse_decom2_example(self):
pass
def test_initialize_eigenanatomy_example(self):
pass
def test_eig_seg_example(self):
pass
| 6 | 0 | 6 | 1 | 6 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 5 | 77 | 39 | 9 | 30 | 15 | 24 | 0 | 22 | 15 | 16 | 1 | 2 | 0 | 5 |
1,767 |
ANTsX/ANTsPy
|
tests/test_ops.py
|
test_ops.Test_iMath
|
class Test_iMath(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_functions(self):
image = ants.image_read(ants.get_data('r16'))
ants.iMath_canny(image, sigma=2, lower=0, upper=1)
ants.iMath_fill_holes(image, hole_type=2)
ants.iMath_GC(image, radius=1)
ants.iMath_GD(image, radius=1)
ants.iMath_GE(image, radius=1)
ants.iMath_GO(image, radius=1)
ants.iMath_get_largest_component(image, min_size=50)
ants.iMath_grad(image, sigma=0.5, normalize=False)
ants.iMath_histogram_equalization(image, alpha=0.5, beta=0.5)
ants.iMath_laplacian(image, sigma=0.5, normalize=False)
ants.iMath_MC(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False)
ants.iMath_MD(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False)
ants.iMath_ME(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False)
ants.iMath_MO(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False)
ants.iMath_maurer_distance(image, foreground=1)
ants.iMath_normalize(image)
ants.iMath_pad(image, padding=2)
ants.iMath_perona_malik(image, conductance=0.25, n_iterations=1)
ants.iMath_sharpen(image)
ants.iMath_truncate_intensity(image, lower_q=0.05, upper_q=0.95, n_bins=64)
|
class Test_iMath(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_functions(self):
pass
| 4 | 0 | 9 | 0 | 9 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 31 | 4 | 27 | 5 | 23 | 0 | 27 | 5 | 23 | 1 | 2 | 0 | 3 |
1,768 |
ANTsX/ANTsPy
|
tests/test_ops.py
|
test_ops.Test_slice_image
|
class Test_slice_image(unittest.TestCase):
"""
Test ants.ANTsImage class
"""
def setUp(self):
pass
def tearDown(self):
pass
def test_slice_image_2d(self):
"""
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
"""
img = ants.image_read(ants.get_ants_data('r16'))
img2 = ants.slice_image(img, 0, 100)
self.assertTrue(isinstance(img2, np.ndarray))
img2 = ants.slice_image(img, 1, 100)
self.assertTrue(isinstance(img2, np.ndarray))
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 2, 100)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, -3, 100)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 4, 100)
img2 = ants.slice_image(img, -1, 100)
img3 = ants.slice_image(img, 1, 100)
self.assertTrue(np.allclose(img2, img3))
def test_slice_image_2d_vector(self):
img0 = ants.image_read(ants.get_ants_data('r16'))
img = ants.merge_channels([img0,img0,img0])
img2 = ants.slice_image(img, 0, 100)
self.assertTrue(isinstance(img2, np.ndarray))
img2 = ants.slice_image(img, 1, 100)
self.assertTrue(isinstance(img2, np.ndarray))
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 2, 100)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, -3, 100)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 4, 100)
img2 = ants.slice_image(img, -1, 100)
img3 = ants.slice_image(img, 1, 100)
self.assertTrue(np.allclose(img2, img3))
def test_slice_image_3d(self):
"""
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
"""
img = ants.image_read(ants.get_ants_data('mni'))
img2 = ants.slice_image(img, 0, 100)
self.assertEqual(img2.dimension, 2)
img2 = ants.slice_image(img, 1, 100)
self.assertEqual(img2.dimension, 2)
img2 = ants.slice_image(img, 2, 100)
self.assertEqual(img2.dimension, 2)
img2 = ants.slice_image(img.clone('unsigned int'), 2, 100)
self.assertEqual(img2.dimension, 2)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 3, 100)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 2, 100, collapse_strategy=23)
img2 = ants.slice_image(img, -1, 100)
img3 = ants.slice_image(img, 2, 100)
self.assertTrue(ants.allclose(img2, img3))
def test_slice_image_3d_vector(self):
"""
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
"""
img0 = ants.image_read(ants.get_ants_data('mni'))
img = ants.merge_channels([img0,img0,img0])
img2 = ants.slice_image(img, 0, 100)
self.assertEqual(img2.dimension, 2)
img2 = ants.slice_image(img, 1, 100)
self.assertEqual(img2.dimension, 2)
img2 = ants.slice_image(img, 2, 100)
self.assertEqual(img2.dimension, 2)
img2 = ants.slice_image(img.clone('unsigned int'), 2, 100)
self.assertEqual(img2.dimension, 2)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 3, 100)
with self.assertRaises(Exception):
img2 = ants.slice_image(img, 2, 100, collapse_strategy=23)
img2 = ants.slice_image(img, -1, 100)
img3 = ants.slice_image(img, 2, 100)
self.assertTrue(ants.allclose(img2, img3))
|
class Test_slice_image(unittest.TestCase):
'''
Test ants.ANTsImage class
'''
def setUp(self):
pass
def tearDown(self):
pass
def test_slice_image_2d(self):
'''
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
'''
pass
def test_slice_image_2d_vector(self):
pass
def test_slice_image_3d(self):
'''
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
'''
pass
def test_slice_image_3d_vector(self):
'''
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
'''
pass
| 7 | 4 | 19 | 4 | 12 | 3 | 1 | 0.25 | 1 | 1 | 0 | 0 | 6 | 0 | 6 | 78 | 120 | 31 | 71 | 21 | 64 | 18 | 71 | 21 | 64 | 1 | 2 | 1 | 6 |
1,769 |
ANTsX/ANTsPy
|
tests/test_plotting.py
|
test_plotting.TestModule_plot
|
class TestModule_plot(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_plot_example(self):
filename = mktemp(suffix='.png')
for img in self.imgs:
ants.plot(img)
ants.plot(img, overlay=img*2)
ants.plot(img, overlay=img*2)
ants.plot(img, filename=filename)
def test_extra_plot(self):
img = ants.image_read(ants.get_ants_data('r16'))
ants.plot(img, overlay=img*2, domain_image_map=ants.image_read(ants.get_data('r64')))
img = ants.image_read(ants.get_ants_data('r16'))
ants.plot(img, crop=True)
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot(img, overlay=img*2,
domain_image_map=ants.image_read(ants.get_data('mni')).resample_image((4,4,4)))
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot(img, overlay=img*2, reorient=True, crop=True)
def test_random(self):
img = ants.image_read(ants.get_ants_data('r16'))
img3 = ants.image_read(ants.get_data('r64'))
img2 = ants.image_read(ants.get_ants_data('mni'))
imgv = ants.merge_channels([img2])
ants.plot(img2, axis='x', scale=True, ncol=1)
ants.plot(img2, axis='y', scale=(0.05, 0.95))
ants.plot(img2, axis='z', slices=[10,20,30], title='Test', cbar=True,
cbar_vertical=True)
ants.plot(img2, cbar=True, cbar_vertical=False)
ants.plot(img, black_bg=False, title='Test', cbar=True)
imgx = img2.clone()
imgx.set_spacing((10,1,1))
ants.plot(imgx)
ants.plot(ants.get_ants_data('r16'), overlay=ants.get_data('r64'), blend=True)
with self.assertRaises(Exception):
ants.plot(ants.get_ants_data('r16'), overlay=123)
with self.assertRaises(Exception):
ants.plot(ants.get_ants_data('r16'), overlay=ants.merge_channels([img,img]))
ants.plot(ants.from_numpy(np.zeros((100,100))))
ants.plot(img.clone('unsigned int'))
ants.plot(img, domain_image_map=img3)
with self.assertRaises(Exception):
ants.plot(123)
|
class TestModule_plot(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_plot_example(self):
pass
def test_extra_plot(self):
pass
def test_random(self):
pass
| 6 | 0 | 11 | 1 | 9 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 5 | 1 | 5 | 77 | 59 | 11 | 48 | 17 | 42 | 0 | 46 | 17 | 40 | 2 | 2 | 1 | 6 |
1,770 |
ANTsX/ANTsPy
|
tests/test_plotting.py
|
test_plotting.TestModule_plot_grid
|
class TestModule_plot_grid(unittest.TestCase):
def setUp(self):
mni1 = ants.image_read(ants.get_data('mni'))
mni2 = mni1.smooth_image(1.)
mni3 = mni1.smooth_image(2.)
mni4 = mni1.smooth_image(3.)
self.images3d = np.asarray([[mni1, mni2],
[mni3, mni4]])
self.images2d = np.asarray([[mni1.slice_image(2,100), mni2.slice_image(2,100)],
[mni3.slice_image(2,100), mni4.slice_image(2,100)]])
def tearDown(self):
pass
def test_plot_example(self):
ants.plot_grid(self.images3d, slices=100)
# should take middle slices if none are given
ants.plot_grid(self.images3d)
# should work with 2d images
ants.plot_grid(self.images2d)
def test_examples(self):
mni1 = ants.image_read(ants.get_data('mni'))
mni2 = mni1.smooth_image(1.)
mni3 = mni1.smooth_image(2.)
mni4 = mni1.smooth_image(3.)
images = np.asarray([[mni1, mni2],
[mni3, mni4]])
slices = np.asarray([[100, 100],
[100, 100]])
ants.plot_grid(images=images, slices=slices, title='2x2 Grid')
images2d = np.asarray([[mni1.slice_image(2,100), mni2.slice_image(2,100)],
[mni3.slice_image(2,100), mni4.slice_image(2,100)]])
ants.plot_grid(images=images2d, title='2x2 Grid Pre-Sliced')
ants.plot_grid(images.reshape(1,4), slices.reshape(1,4), title='1x4 Grid')
ants.plot_grid(images.reshape(4,1), slices.reshape(4,1), title='4x1 Grid')
# Padding between rows and/or columns
ants.plot_grid(images, slices, cpad=0.02, title='Col Padding')
ants.plot_grid(images, slices, rpad=0.02, title='Row Padding')
ants.plot_grid(images, slices, rpad=0.02, cpad=0.02, title='Row and Col Padding')
# Adding plain row and/or column labels
ants.plot_grid(images, slices, title='Adding Row Labels', rlabels=['Row #1', 'Row #2'])
ants.plot_grid(images, slices, title='Adding Col Labels', clabels=['Col #1', 'Col #2'])
ants.plot_grid(images, slices, title='Row and Col Labels',
rlabels=['Row 1', 'Row 2'], clabels=['Col 1', 'Col 2'])
# Making a publication-quality image
images = np.asarray([[mni1, mni2, mni2],
[mni3, mni4, mni4]])
slices = np.asarray([[100, 100, 100],
[100, 100, 100]])
axes = np.asarray([[0, 1, 2],
[0, 1, 2]])
ants.plot_grid(images, slices, axes, title='Publication Figures with ANTsPy',
tfontsize=20, title_dy=0.03, title_dx=-0.04,
rlabels=['Row 1', 'Row 2'],
clabels=['Col 1', 'Col 2', 'Col 3'],
rfontsize=16, cfontsize=16)
|
class TestModule_plot_grid(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_plot_example(self):
pass
def test_examples(self):
pass
| 5 | 0 | 14 | 1 | 12 | 2 | 1 | 0.14 | 1 | 0 | 0 | 0 | 4 | 2 | 4 | 76 | 61 | 7 | 49 | 19 | 44 | 7 | 36 | 19 | 31 | 1 | 2 | 0 | 4 |
1,771 |
ANTsX/ANTsPy
|
ants/contrib/sampling/affine2d.py
|
ants.contrib.sampling.affine2d.RandomRotate2D
|
class RandomRotate2D(object):
"""
Apply a Rotated2D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
"""
def __init__(self, rotation_range, reference=None, lazy=False):
"""
Initialize a RandomRotate2D object
Arguments
---------
rotation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. rotation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
"""
if (not isinstance(rotation_range, (list, tuple))) or (
len(rotation_range) != 2
):
raise ValueError(
"rotation_range argument must be list/tuple with two values!"
)
self.rotation_range = rotation_range
self.reference = reference
self.lazy = lazy
def transform(self, X=None, y=None):
"""
Transform an image using an Affine transform with
rotation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomRotate2D(rotation_range=(-10,10))
>>> img2 = tx.transform(img)
"""
# random draw in rotation range
rotation = random.gauss(self.rotation_range[0], self.rotation_range[1])
self.params = rotation
tx = Rotate2D(rotation, reference=self.reference, lazy=self.lazy)
return tx.transform(X, y)
|
class RandomRotate2D(object):
'''
Apply a Rotated2D transform to an image, but with the zoom
parameters randomly generated from a user-specified range.
The range is determined by a mean (first parameter) and standard deviation
(second parameter) via calls to random.gauss.
'''
def __init__(self, rotation_range, reference=None, lazy=False):
'''
Initialize a RandomRotate2D object
Arguments
---------
rotation_range : list or tuple
Lower and Upper bounds on rotation parameter, in degrees.
e.g. rotation_range = (-10,10) will result in a random
draw of the rotation parameters between -10 and 10 degrees
reference : ANTsImage (optional but recommended)
image providing the reference space for the transform.
this will also set the transform fixed parameters.
lazy : boolean (default = False)
if True, calling the `transform` method only returns
the randomly generated transform and does not actually
transform the image
'''
pass
def transform(self, X=None, y=None):
'''
Transform an image using an Affine transform with
rotation parameters randomly generated from the user-specified
range. Return the transform if X=None.
Arguments
---------
X : ANTsImage
Image to transform
y : ANTsImage (optional)
Another image to transform
Returns
-------
ANTsImage if y is None, else a tuple of ANTsImage types
Examples
--------
>>> import ants
>>> img = ants.image_read(ants.get_data('r16'))
>>> tx = ants.contrib.RandomRotate2D(rotation_range=(-10,10))
>>> img2 = tx.transform(img)
'''
pass
| 3 | 3 | 31 | 5 | 8 | 19 | 2 | 2.69 | 1 | 4 | 1 | 0 | 2 | 4 | 2 | 2 | 71 | 12 | 16 | 9 | 13 | 43 | 12 | 9 | 9 | 2 | 1 | 1 | 3 |
1,772 |
ANTsX/ANTsPy
|
tests/test_plotting.py
|
test_plotting.TestModule_plot_ortho
|
class TestModule_plot_ortho(unittest.TestCase):
def setUp(self):
img3d = ants.image_read(ants.get_ants_data('mni'))
self.imgs = [img3d]
def tearDown(self):
pass
def test_plot_example(self):
filename = mktemp(suffix='.png')
for img in self.imgs:
ants.plot_ortho(img)
ants.plot_ortho(img, filename=filename)
def test_plot_extra(self):
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot_ortho(img, overlay=img*2,
domain_image_map=ants.image_read(ants.get_data('mni')))
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot_ortho(img, overlay=img*2, reorient=True, crop=True)
def test_random_params(self):
img = ants.image_read(ants.get_ants_data('mni')).resample_image((4,4,4))
img2 = ants.image_read(ants.get_data('r16'))
ants.plot_ortho(ants.get_data('mni'), overlay=ants.get_data('mni'))
with self.assertRaises(Exception):
ants.plot_ortho(123)
with self.assertRaises(Exception):
ants.plot_ortho(img2)
with self.assertRaises(Exception):
ants.plot_ortho(img, overlay=img2)
imgx = img.clone()
imgx.set_spacing((3,3,3))
ants.plot_ortho(img,overlay=imgx)
ants.plot_ortho(img.clone('unsigned int'),overlay=img, blend=True)
imgx = img.clone()
imgx.set_spacing((10,1,1))
ants.plot_ortho(imgx)
ants.plot_ortho(img, flat=True, title='Test', text='This is a test')
ants.plot_ortho(img, title='Test', text='This is a test', cbar=True)
with self.assertRaises(Exception):
ants.plot_ortho(img, domain_image_map=123)
with self.assertRaises(Exception):
ants.plot_orto(ants.merge_channels([img,img]))
|
class TestModule_plot_ortho(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_plot_example(self):
pass
def test_plot_extra(self):
pass
def test_random_params(self):
pass
| 6 | 0 | 9 | 1 | 8 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 5 | 1 | 5 | 77 | 51 | 11 | 40 | 14 | 34 | 0 | 39 | 14 | 33 | 2 | 2 | 1 | 6 |
1,773 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_reorient_image
|
class TestModule_reorient_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_reorient_image(self):
mni = ants.image_read(ants.get_data('mni'))
mni2 = mni.reorient_image2()
def test_get_center_of_mass(self):
fi = ants.image_read(ants.get_ants_data("r16"))
com = ants.get_center_of_mass(fi)
self.assertEqual(len(com), fi.dimension)
fi = ants.image_read(ants.get_ants_data("r64"))
com = ants.get_center_of_mass(fi)
self.assertEqual(len(com), fi.dimension)
fi = fi.clone("unsigned int")
com = ants.get_center_of_mass(fi)
self.assertEqual(len(com), fi.dimension)
# 3d
img = ants.image_read(ants.get_ants_data("mni"))
com = ants.get_center_of_mass(img)
self.assertEqual(len(com), img.dimension)
|
class TestModule_reorient_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_reorient_image(self):
pass
def test_get_center_of_mass(self):
pass
| 5 | 0 | 6 | 1 | 5 | 0 | 1 | 0.05 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 76 | 29 | 7 | 21 | 10 | 16 | 1 | 21 | 10 | 16 | 1 | 2 | 0 | 4 |
1,774 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_reflect_image
|
class TestModule_reflect_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
axis = 2
asym = ants.reflect_image(fi, axis, "Affine")["warpedmovout"]
asym = asym - fi
|
class TestModule_reflect_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 12 | 2 | 10 | 7 | 6 | 0 | 10 | 7 | 6 | 1 | 2 | 0 | 3 |
1,775 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_random
|
class TestModule_random(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_landmark_transforms(self):
fixed = np.array([[50.0,50.0],[200.0,50.0],[200.0,200.0]])
moving = np.array([[50.0,50.0],[50.0,200.0],[200.0,200.0]])
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="syn",
domain_image=ants.image_read(ants.get_data('r16')),
verbose=True)
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="tv",
domain_image=ants.image_read(ants.get_data('r16')))
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="affine")
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="rigid")
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="similarity")
domain_image = ants.image_read(ants.get_ants_data("r16"))
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="bspline", domain_image=domain_image, number_of_fitting_levels=5)
xfrm = ants.fit_transform_to_paired_points(moving, fixed, transform_type="diffeo", domain_image=domain_image, number_of_fitting_levels=6)
res = ants.fit_time_varying_transform_to_point_sets([fixed, moving, moving],
domain_image=ants.image_read(ants.get_data('r16')),
verbose=True)
def test_deformation_gradient(self):
fi = ants.image_read( ants.get_ants_data('r16'))
mi = ants.image_read( ants.get_ants_data('r64'))
fi = ants.resample_image(fi,(128,128),1,0)
mi = ants.resample_image(mi,(128,128),1,0)
mytx = ants.registration(fixed=fi , moving=mi, type_of_transform = ('SyN') )
dg = ants.deformation_gradient( ants.image_read( mytx['fwdtransforms'][0] ) )
dg = ants.deformation_gradient( ants.image_read( mytx['fwdtransforms'][0] ),
py_based=True)
dg = ants.deformation_gradient( ants.image_read( mytx['fwdtransforms'][0] ),
to_rotation=True)
dg = ants.deformation_gradient( ants.image_read( mytx['fwdtransforms'][0] ),
to_rotation=True, py_based=True)
def test_jacobian(self):
fi = ants.image_read( ants.get_ants_data('r16'))
mi = ants.image_read( ants.get_ants_data('r64'))
fi = ants.resample_image(fi,(128,128),1,0)
mi = ants.resample_image(mi,(128,128),1,0)
mytx = ants.registration(fixed=fi , moving=mi, type_of_transform = ('SyN') )
jac = ants.create_jacobian_determinant_image(fi,mytx['fwdtransforms'][0],1)
def test_apply_transforms(self):
fixed = ants.image_read( ants.get_ants_data('r16') )
moving = ants.image_read( ants.get_ants_data('r64') )
fixed = ants.resample_image(fixed, (64,64), 1, 0)
moving = ants.resample_image(moving, (64,64), 1, 0)
mytx = ants.registration(fixed=fixed , moving=moving ,
type_of_transform = 'SyN' )
mywarpedimage = ants.apply_transforms( fixed=fixed, moving=moving,
transformlist=mytx['fwdtransforms'] )
def test_apply_transforms_to_points(self):
fixed = ants.image_read( ants.get_ants_data('r16') )
moving = ants.image_read( ants.get_ants_data('r27') )
reg = ants.registration( fixed, moving, 'Affine' )
d = {'x': [128, 127], 'y': [101, 111]}
pts = pd.DataFrame(data=d)
ptsw = ants.apply_transforms_to_points( 2, pts, reg['fwdtransforms'])
def test_warped_grid(self):
fi = ants.image_read( ants.get_ants_data( 'r16' ) )
mi = ants.image_read( ants.get_ants_data( 'r64' ) )
mygr = ants.create_warped_grid( mi )
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = ('SyN') )
mywarpedgrid = ants.create_warped_grid( mi, grid_directions=(False,True),
transform=mytx['fwdtransforms'], fixed_reference_image=fi )
def test_more_registration(self):
fi = ants.image_read(ants.get_ants_data('r16'))
mi = ants.image_read(ants.get_ants_data('r64'))
fi = ants.resample_image(fi, (60,60), 1, 0)
mi = ants.resample_image(mi, (60,60), 1, 0)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = 'SyN' )
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = 'antsRegistrationSyN[t]' )
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = 'antsRegistrationSyN[b]' )
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = 'antsRegistrationSyN[s]' )
def test_motion_correction(self):
fi = ants.image_read(ants.get_ants_data('ch2'))
mytx = ants.motion_correction( fi )
def test_label_image_registration(self):
fi = ants.image_read(ants.get_ants_data('r16'))
mi = ants.image_read(ants.get_ants_data('r64'))
fi = ants.resample_image(fi, (60,60), 1, 0)
mi = ants.resample_image(mi, (60,60), 1, 0)
fi_seg = ants.threshold_image(fi, "Kmeans", 3)-1
mi_seg = ants.threshold_image(mi, "Kmeans", 3)-1
mytx = ants.label_image_registration([fi_seg],
[mi_seg],
fixed_intensity_images=fi,
moving_intensity_images=mi)
def test_reg_precision_option(self):
# Check that registration and apply transforms works with float and double precision
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r64"))
fi = ants.resample_image(fi, (60, 60), 1, 0)
mi = ants.resample_image(mi, (60, 60), 1, 0)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform="SyN") # should be float precision
info = ants.image_header_info(mytx["fwdtransforms"][0])
self.assertEqual(info['pixeltype'], 'float')
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform="SyN", singleprecision=False)
info = ants.image_header_info(mytx["fwdtransforms"][0])
self.assertEqual(info['pixeltype'], 'double')
|
class TestModule_random(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_landmark_transforms(self):
pass
def test_deformation_gradient(self):
pass
def test_jacobian(self):
pass
def test_apply_transforms(self):
pass
def test_apply_transforms_to_points(self):
pass
def test_warped_grid(self):
pass
def test_more_registration(self):
pass
def test_motion_correction(self):
pass
def test_label_image_registration(self):
pass
def test_reg_precision_option(self):
pass
| 13 | 0 | 9 | 0 | 8 | 0 | 1 | 0.02 | 1 | 0 | 0 | 0 | 12 | 0 | 12 | 84 | 116 | 16 | 99 | 55 | 86 | 2 | 85 | 55 | 72 | 1 | 2 | 0 | 12 |
1,776 |
ANTsX/ANTsPy
|
tests/test_plotting.py
|
test_plotting.TestModule_plot_hist
|
class TestModule_plot_hist(unittest.TestCase):
def setUp(self):
img2d = ants.image_read(ants.get_ants_data('r16'))
img3d = ants.image_read(ants.get_ants_data('mni'))
self.imgs = [img2d, img3d]
def tearDown(self):
pass
def test_plot_example(self):
filename = mktemp(suffix='.png')
for img in self.imgs:
ants.plot_hist(img)
|
class TestModule_plot_hist(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_plot_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 3 | 75 | 14 | 3 | 11 | 9 | 7 | 0 | 11 | 9 | 7 | 2 | 2 | 1 | 4 |
1,777 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_metrics
|
class TestModule_metrics(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data("r16")).clone("float")
mi = ants.image_read(ants.get_ants_data("r64")).clone("float")
mival = ants.image_mutual_information(fi, mi)
|
class TestModule_metrics(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0.11 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 11 | 2 | 9 | 7 | 5 | 1 | 9 | 7 | 5 | 1 | 2 | 0 | 3 |
1,778 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_interface
|
class TestModule_interface(unittest.TestCase):
def setUp(self):
self.transform_types = {
"SyNBold",
"SyNBoldAff",
"ElasticSyN",
"SyN",
"SyNRA",
"SyNOnly",
"SyNAggro",
"SyNCC",
"TRSAA",
"SyNabp",
"SyNLessAggro",
"TVMSQ",
"TVMSQC",
"Rigid",
"Similarity",
"Translation",
"Affine",
"AffineFast",
"BOLDAffine",
"QuickRigid",
"DenseRigid",
"BOLDRigid",
"antsRegistrationSyNQuick[b,32,26]",
"antsRegistrationSyNQuick[s]",
"antsRegistrationSyNRepro[s]",
"antsRegistrationSyN[s]"
}
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r64"))
fi = ants.resample_image(fi, (60, 60), 1, 0)
mi = ants.resample_image(mi, (60, 60), 1, 0)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform="SyN")
def test_affine_interface(self):
print("Starting affine interface registration test")
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r64"))
with self.assertRaises(ValueError):
ants.registration(
fixed=fi,
moving=mi,
type_of_transform="Translation",
aff_iterations=4,
aff_shrink_factors=4,
aff_smoothing_sigmas=(4, 4),
)
mytx = ants.registration(
fixed=fi,
moving=mi,
type_of_transform="Affine",
aff_iterations=(4, 4),
aff_shrink_factors=(4, 4),
aff_smoothing_sigmas=(4, 4),
)
mytx = ants.registration(
fixed=fi,
moving=mi,
type_of_transform="Translation",
aff_iterations=4,
aff_shrink_factors=4,
aff_smoothing_sigmas=4,
)
def test_registration_types(self):
print("Starting long registration interface test")
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r64"))
fi = ants.resample_image(fi, (60, 60), 1, 0)
mi = ants.resample_image(mi, (60, 60), 1, 0)
for ttype in self.transform_types:
print(ttype)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform=ttype)
# with mask
fimask = fi > fi.mean()
mytx = ants.registration(
fixed=fi, moving=mi, mask=fimask, type_of_transform=ttype
)
print("Finished long registration interface test")
|
class TestModule_interface(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
def test_affine_interface(self):
pass
def test_registration_types(self):
pass
| 6 | 0 | 17 | 1 | 16 | 0 | 1 | 0.01 | 1 | 1 | 0 | 0 | 5 | 1 | 5 | 77 | 89 | 7 | 81 | 18 | 75 | 1 | 31 | 18 | 25 | 2 | 2 | 1 | 6 |
1,779 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_fsl2antstransform
|
class TestModule_fsl2antstransform(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fslmat = np.zeros((4, 4))
np.fill_diagonal(fslmat, 1)
img = ants.image_read(ants.get_ants_data("ch2"))
tx = ants.fsl2antstransform(fslmat, img, img)
|
class TestModule_fsl2antstransform(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 12 | 2 | 10 | 7 | 6 | 0 | 10 | 7 | 6 | 1 | 2 | 0 | 3 |
1,780 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_multivar
|
class TestModule_multivar(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
image2 = ants.image_read(ants.get_ants_data("r27"))
demonsMetric = ["demons", image, image2, 1, 1]
ccMetric = ["CC", image, image2, 2, 1]
metrics = list()
metrics.append(demonsMetric)
reg3 = ants.registration(image, image2, "SyNOnly", multivariate_extras=metrics)
metrics.append(ccMetric)
reg2 = ants.registration(
image, image2, "SyNOnly", multivariate_extras=metrics, verbose=True
)
|
class TestModule_multivar(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 5 | 0 | 5 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 3 | 75 | 19 | 2 | 17 | 11 | 13 | 0 | 15 | 11 | 11 | 1 | 2 | 0 | 3 |
1,781 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_create_jacobian_determinant_image
|
class TestModule_create_jacobian_determinant_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r64"))
fi = ants.resample_image(fi, (128, 128), 1, 0)
mi = ants.resample_image(mi, (128, 128), 1, 0)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform=("SyN"))
try:
jac = ants.create_jacobian_determinant_image(
fi, mytx["fwdtransforms"][0], 1
)
except:
pass
|
class TestModule_create_jacobian_determinant_image(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 5 | 0 | 5 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 19 | 2 | 17 | 8 | 13 | 0 | 15 | 8 | 11 | 2 | 2 | 1 | 4 |
1,782 |
ANTsX/ANTsPy
|
tests/test_plotting.py
|
test_plotting.TestModule_plot_ortho_stack
|
class TestModule_plot_ortho_stack(unittest.TestCase):
def setUp(self):
self.img = ants.image_read(ants.get_ants_data('mni'))
def tearDown(self):
pass
def test_plot_example(self):
filename = mktemp(suffix='.png')
ants.plot_ortho_stack([self.img, self.img])
ants.plot_ortho_stack([self.img, self.img], filename=filename)
def test_extra_ortho_stack(self):
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot_ortho_stack([img, img], overlays=[img*2, img*2],
domain_image_map=ants.image_read(ants.get_data('mni')))
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot_ortho_stack([img, img], overlays=[img*2, img*2], reorient=True, crop=True)
|
class TestModule_plot_ortho_stack(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_plot_example(self):
pass
def test_extra_ortho_stack(self):
pass
| 5 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | 1 | 4 | 76 | 20 | 5 | 15 | 8 | 10 | 0 | 14 | 8 | 9 | 1 | 2 | 0 | 4 |
1,783 |
ANTsX/ANTsPy
|
tests/test_plotting.py
|
test_plotting.TestModule_plot_ortho_stack
|
class TestModule_plot_ortho_stack(unittest.TestCase):
def setUp(self):
self.img = ants.image_read(ants.get_ants_data('mni'))
def tearDown(self):
pass
def test_plot_example(self):
filename = mktemp(suffix='.png')
ants.plot_ortho_stack([self.img, self.img])
ants.plot_ortho_stack([self.img, self.img], filename=filename)
def test_extra_ortho_stack(self):
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot_ortho_stack([img, img], overlays=[img*2, img*2],
domain_image_map=ants.image_read(ants.get_data('mni')))
img = ants.image_read(ants.get_ants_data('mni'))
ants.plot_ortho_stack([img, img], overlays=[img*2, img*2], reorient=True, crop=True)
|
class TestModule_plot_ortho_stack(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_plot_example(self):
pass
def test_extra_ortho_stack(self):
pass
| 5 | 0 | 11 | 2 | 9 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 3 | 75 | 35 | 7 | 28 | 7 | 24 | 0 | 25 | 7 | 21 | 1 | 2 | 1 | 3 |
1,784 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_affine_initializer
|
class TestModule_affine_initializer(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
# test ANTsPy/ANTsR example
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r27"))
txfile = ants.affine_initializer(fi, mi)
tx = ants.read_transform(txfile)
|
class TestModule_affine_initializer(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 3 | 0 | 3 | 0 | 1 | 0.1 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 13 | 2 | 10 | 8 | 6 | 1 | 10 | 8 | 6 | 1 | 2 | 0 | 3 |
1,785 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_apply_transforms
|
class TestModule_apply_transforms(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
# test ANTsPy/ANTsR example
fixed = ants.image_read(ants.get_ants_data("r16"))
moving = ants.image_read(ants.get_ants_data("r64"))
fixed = ants.resample_image(fixed, (64, 64), 1, 0)
moving = ants.resample_image(moving, (128, 128), 1, 0)
mytx = ants.registration(fixed=fixed, moving=moving, type_of_transform="SyN")
mywarpedimage = ants.apply_transforms(
fixed=fixed, moving=moving, transformlist=mytx["fwdtransforms"]
)
self.assertEqual(mywarpedimage.pixeltype, moving.pixeltype)
self.assertTrue(ants.image_physical_space_consistency(fixed, mywarpedimage,
0.0001, datatype = False))
# Call with float precision for transforms, but should still return input type
mywarpedimage2 = ants.apply_transforms(
fixed=fixed, moving=moving, transformlist=mytx["fwdtransforms"], singleprecision=True
)
self.assertEqual(mywarpedimage2.pixeltype, moving.pixeltype)
self.assertLessEqual(np.sum((mywarpedimage.numpy() - mywarpedimage2.numpy()) ** 2), 0.1)
# bad interpolator
with self.assertRaises(Exception):
mywarpedimage = ants.apply_transforms(
fixed=fixed,
moving=moving,
transformlist=mytx["fwdtransforms"],
interpolator="unsupported-interp",
)
# transform doesnt exist
with self.assertRaises(Exception):
mywarpedimage = ants.apply_transforms(
fixed=fixed,
moving=moving,
transformlist=["blah-blah.mat"],
interpolator="unsupported-interp",
)
|
class TestModule_apply_transforms(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 14 | 1 | 12 | 1 | 1 | 0.11 | 1 | 1 | 0 | 0 | 3 | 0 | 3 | 75 | 45 | 5 | 36 | 9 | 32 | 4 | 21 | 9 | 17 | 1 | 2 | 1 | 3 |
1,786 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_create_warped_grid
|
class TestModule_create_warped_grid(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
fi = ants.image_read(ants.get_ants_data("r16"))
mi = ants.image_read(ants.get_ants_data("r64"))
mygr = ants.create_warped_grid(mi)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform=("SyN"))
mywarpedgrid = ants.create_warped_grid(
mi,
grid_directions=(False, True),
transform=mytx["fwdtransforms"],
fixed_reference_image=fi,
)
|
class TestModule_create_warped_grid(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
| 4 | 0 | 5 | 0 | 5 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 19 | 3 | 16 | 9 | 12 | 0 | 11 | 9 | 7 | 1 | 2 | 0 | 3 |
1,787 |
ANTsX/ANTsPy
|
tests/test_registration.py
|
test_registration.TestModule_build_template
|
class TestModule_build_template(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
image = ants.image_read(ants.get_ants_data("r16"))
image2 = ants.image_read(ants.get_ants_data("r27"))
timage = ants.build_template(image_list=(image, image2))
def test_type_of_transform(self):
image = ants.image_read(ants.get_ants_data("r16"))
image2 = ants.image_read(ants.get_ants_data("r27"))
timage = ants.build_template(image_list=(image, image2))
timage = ants.build_template(
image_list=(image, image2), type_of_transform="SyNCC"
)
|
class TestModule_build_template(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_example(self):
pass
def test_type_of_transform(self):
pass
| 5 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 76 | 19 | 3 | 16 | 11 | 11 | 0 | 14 | 11 | 9 | 1 | 2 | 0 | 4 |
1,788 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/debug.py
|
kaio.mixins.debug.DebugMixin
|
class DebugMixin(object):
"""Debug base settings"""
@property
def DEBUG(self):
return get('DEBUG', False)
@property
def TEMPLATE_DEBUG(self):
debug = get('TEMPLATE_DEBUG', self.DEBUG)
for template in self.TEMPLATES:
if template['BACKEND'] == 'django.template.backends.django.DjangoTemplates':
template['OPTIONS']['debug'] = debug
# https://django-debug-toolbar.readthedocs.io/en/stable/installation.html#explicit-setup
DEBUG_TOOLBAR_PATCH_SETTINGS = False
DEBUG_TOOLBAR_MIDDLEWARE = 'debug_toolbar.middleware.DebugToolbarMiddleware'
@property
def ENABLE_DEBUG_TOOLBAR(self):
enabled = get('ENABLE_DEBUG_TOOLBAR', self.DEBUG)
if enabled:
try:
import debug_toolbar # noqa: F401
except ImportError:
return False
else:
self._add_debug_toolbar_to_installed_apps()
self._add_debug_toolbar_to_middleware()
return enabled
@property
def INTERNAL_IPS(self):
ips = [ip.strip() for ip in get('INTERNAL_IPS', '127.0.0.1').split(',') if ip]
# For Docker: https://django-debug-toolbar.readthedocs.io/en/stable/installation.html#configure-internal-ips
if self.ENABLE_DEBUG_TOOLBAR:
import socket
_hostname, _aliases, docker_ips = socket.gethostbyname_ex(socket.gethostname())
ips += [ip[:-1] + '1' for ip in docker_ips]
return ips
def _add_debug_toolbar_to_installed_apps(self):
if 'debug_toolbar' not in self.INSTALLED_APPS:
self.INSTALLED_APPS.append('debug_toolbar')
def _add_debug_toolbar_to_middleware(self):
middlewares_settings = (
'MIDDLEWARE', # django >= 1.10
'MIDDLEWARE_CLASSES', # django < 1.10
)
for middleware_setting in middlewares_settings:
middlewares = getattr(self, middleware_setting, None)
if middlewares is not None:
if self.DEBUG_TOOLBAR_MIDDLEWARE not in middlewares:
middlewares.insert(0, self.DEBUG_TOOLBAR_MIDDLEWARE)
|
class DebugMixin(object):
'''Debug base settings'''
@property
def DEBUG(self):
pass
@property
def TEMPLATE_DEBUG(self):
pass
@property
def ENABLE_DEBUG_TOOLBAR(self):
pass
@property
def INTERNAL_IPS(self):
pass
def _add_debug_toolbar_to_installed_apps(self):
pass
def _add_debug_toolbar_to_middleware(self):
pass
| 11 | 1 | 7 | 0 | 6 | 1 | 3 | 0.13 | 1 | 1 | 0 | 0 | 6 | 0 | 6 | 6 | 56 | 8 | 45 | 23 | 32 | 6 | 38 | 19 | 29 | 4 | 1 | 3 | 15 |
1,789 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/email.py
|
kaio.mixins.email.EmailMixin
|
class EmailMixin(object):
"""Settings para enviar emails"""
# Django settings: https://docs.djangoproject.com/en/1.11/ref/settings/#email-backend
@property
def DEFAULT_FROM_EMAIL(self):
return get('DEFAULT_FROM_EMAIL', 'Example <[email protected]>')
@property
def EMAIL_BACKEND(self):
backend = get('EMAIL_BACKEND')
if backend:
return backend
if 'django_yubin' not in self.INSTALLED_APPS:
return 'django.core.mail.backends.smtp.EmailBackend'
try:
import django_yubin # type: ignore # noqa
except ImportError:
logger.warn('WARNING: django_yubin in INSTALLED_APPS but not pip installed.')
return 'django.core.mail.backends.smtp.EmailBackend'
try:
from django_yubin.version import VERSION # type: ignore # noqa
if VERSION[0] > 1:
return 'django_yubin.backends.QueuedEmailBackend'
else:
return 'django_yubin.smtp_queue.EmailBackend'
except Exception:
return 'django_yubin.smtp_queue.EmailBackend'
@property
def EMAIL_FILE_PATH(self):
return get('EMAIL_FILE_PATH', None)
@property
def EMAIL_HOST(self):
return get('EMAIL_HOST', 'localhost')
@property
def EMAIL_HOST_PASSWORD(self):
return get('EMAIL_HOST_PASSWORD', '')
@property
def EMAIL_HOST_USER(self):
return get('EMAIL_HOST_USER', '')
@property
def EMAIL_PORT(self):
return get('EMAIL_PORT', 25)
@property
def EMAIL_SUBJECT_PREFIX(self):
return get('EMAIL_SUBJECT_PREFIX', '[Django] ')
@property
def EMAIL_USE_TLS(self):
return get('EMAIL_USE_TLS', False)
# django-yubin settings: http://django-yubin.readthedocs.org/en/latest/settings.html
@property
def MAILER_PAUSE_SEND(self):
return get('MAILER_PAUSE_SEND', False)
@property
def MAILER_USE_BACKEND(self):
return get('MAILER_USE_BACKEND', 'django.core.mail.backends.smtp.EmailBackend')
@property
def MAILER_HC_QUEUED_LIMIT_OLD(self):
return get('MAILER_HC_QUEUED_LIMIT_OLD', 30)
@property
def MAILER_STORAGE_BACKEND(self):
return get('MAILER_STORAGE_BACKEND', "django_yubin.storage_backends.DatabaseStorageBackend")
@property
def MAILER_STORAGE_DELETE(self):
return get('MAILER_STORAGE_DELETE', True)
@property
def MAILER_FILE_STORAGE_DIR(self):
return get('MAILER_FILE_STORAGE_DIR', "yubin")
# deprecated, for backwards compatibility
@property
def MAILER_MAIL_ADMINS_PRIORITY(self):
try:
from django_yubin import constants
priority = constants.PRIORITY_HIGH
except Exception:
priority = 1
return get('MAILER_MAIL_ADMINS_PRIORITY', priority)
@property
def MAILER_MAIL_MANAGERS_PRIORITY(self):
return get('MAILER_MAIL_MANAGERS_PRIORITY', None)
@property
def MAILER_EMPTY_QUEUE_SLEEP(self):
return get('MAILER_EMPTY_QUEUE_SLEEP', 30)
@property
def MAILER_LOCK_WAIT_TIMEOUT(self):
return get('MAILER_LOCK_WAIT_TIMEOUT', 0)
@property
def MAILER_LOCK_PATH(self):
return get("MAILER_LOCK_PATH", os.path.join(self.APP_ROOT, "send_mail"))
|
class EmailMixin(object):
'''Settings para enviar emails'''
@property
def DEFAULT_FROM_EMAIL(self):
pass
@property
def EMAIL_BACKEND(self):
pass
@property
def EMAIL_FILE_PATH(self):
pass
@property
def EMAIL_HOST(self):
pass
@property
def EMAIL_HOST_PASSWORD(self):
pass
@property
def EMAIL_HOST_USER(self):
pass
@property
def EMAIL_PORT(self):
pass
@property
def EMAIL_SUBJECT_PREFIX(self):
pass
@property
def EMAIL_USE_TLS(self):
pass
@property
def MAILER_PAUSE_SEND(self):
pass
@property
def MAILER_USE_BACKEND(self):
pass
@property
def MAILER_HC_QUEUED_LIMIT_OLD(self):
pass
@property
def MAILER_STORAGE_BACKEND(self):
pass
@property
def MAILER_STORAGE_DELETE(self):
pass
@property
def MAILER_FILE_STORAGE_DIR(self):
pass
@property
def MAILER_MAIL_ADMINS_PRIORITY(self):
pass
@property
def MAILER_MAIL_MANAGERS_PRIORITY(self):
pass
@property
def MAILER_EMPTY_QUEUE_SLEEP(self):
pass
@property
def MAILER_LOCK_WAIT_TIMEOUT(self):
pass
@property
def MAILER_LOCK_PATH(self):
pass
| 41 | 1 | 3 | 0 | 3 | 0 | 1 | 0.07 | 1 | 2 | 0 | 0 | 20 | 0 | 20 | 20 | 115 | 28 | 83 | 46 | 39 | 6 | 62 | 26 | 38 | 6 | 1 | 2 | 26 |
1,790 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/filerconf.py
|
kaio.mixins.filerconf.FilerMixin
|
class FilerMixin(object):
"""Settings para django-filer y easy_thumbnails"""
THUMBNAIL_PROCESSORS = (
'easy_thumbnails.processors.colorspace',
'easy_thumbnails.processors.autocrop',
# 'easy_thumbnails.processors.scale_and_crop',
'filer.thumbnail_processors.scale_and_crop_with_subject_location',
'easy_thumbnails.processors.filters',
)
@property
def FILER_IS_PUBLIC_DEFAULT(self):
return get('FILER_IS_PUBLIC_DEFAULT', True)
@property
def FILER_ENABLE_PERMISSIONS(self):
return get('FILER_ENABLE_PERMISSIONS', False)
@property
def FILER_DEBUG(self):
return get('FILER_DEBUG', False)
@property
def FILER_ENABLE_LOGGING(self):
return get('FILER_ENABLE_LOGGING', False)
@property
def FILER_0_8_COMPATIBILITY_MODE(self):
get('FILER_0_8_COMPATIBILITY_MODE', False)
@property
def THUMBNAIL_DEBUG(self):
return get('THUBMNAIL_DEBUG', False)
@property
def THUMBNAIL_QUALITY(self):
return get('THUMBNAIL_QUALITY', 85)
@property
def FILER_CUSTOM_NGINX_SERVER(self):
"""If true will serve secure file trough XNginxXAccelRedirectServer"""
return get('FILER_CUSTOM_NGINX_SERVER', False)
@property
def default_file_storage(self):
"""Common storage for filer configs"""
return getattr(
Configuration, 'DEFAULT_FILE_STORAGE',
'django.core.files.storage.FileSystemStorage')
@property
def FILER_CUSTOM_SECURE_MEDIA_ROOT(self):
"""Secure media root
As in filer settings, defaults to MEDIA_ROOT/../smedia"""
return opts.get(
'FILER_CUSTOM_SECURE_MEDIA_ROOT',
abspath(join(self.MEDIA_ROOT, '..', 'smedia')))
@property
def filer_private_files_path(self):
return abspath(
join(
self.FILER_CUSTOM_SECURE_MEDIA_ROOT,
'filer_private'
))
@property
def filer_private_thumbnails_path(self):
return abspath(
join(
self.FILER_CUSTOM_SECURE_MEDIA_ROOT,
'filer_private_thumbnails'))
@property
def FILER_SERVERS(self):
"""Filer config to be served from XNginxXAccelRedirectServer
see http://django-filer.readthedocs.org/en/0.9.4/secure_downloads.html#secure-downloads
"""
if not self.FILER_CUSTOM_NGINX_SERVER:
return {}
else:
return {
'private': {
'main': {
'ENGINE': 'filer.server.backends.nginx.NginxXAccelRedirectServer',
'OPTIONS': {
'location': self.filer_private_files_path,
'nginx_location': '/nginx_filer_private',
},
},
'thumbnails': {
'ENGINE': 'filer.server.backends.nginx.NginxXAccelRedirectServer',
'OPTIONS': {
'location': self.filer_private_thumbnails_path,
'nginx_location': '/nginx_filer_private_thumbnails',
},
},
},
}
@property
def FILER_STORAGES(self):
"""Filer config to set custom private media path
http://django-filer.readthedocs.org/en/0.9.4/settings.html#filer-storages
"""
if not self.FILER_CUSTOM_NGINX_SERVER:
return {}
return {
'public': {
'main': {
'ENGINE': self.default_file_storage,
'OPTIONS': {},
'UPLOAD_TO': 'filer.utils.generate_filename.by_date',
'UPLOAD_TO_PREFIX': 'filer_public',
},
'thumbnails': {
'ENGINE': self.default_file_storage,
'OPTIONS': {},
'THUMBNAIL_OPTIONS': {
'base_dir': 'filer_public_thumbnails',
},
},
},
'private': {
'main': {
'ENGINE': 'filer.storage.PrivateFileSystemStorage',
'OPTIONS': {
'location': self.filer_private_files_path,
'base_url': '/smedia/filer_private/',
},
'UPLOAD_TO': 'filer.utils.generate_filename.by_date',
'UPLOAD_TO_PREFIX': '',
},
'thumbnails': {
'ENGINE': 'filer.storage.PrivateFileSystemStorage',
'OPTIONS': {
'location': self.filer_private_thumbnails_path,
'base_url': '/smedia/filer_private_thumbnails/',
},
'THUMBNAIL_OPTIONS': {},
},
},
}
|
class FilerMixin(object):
'''Settings para django-filer y easy_thumbnails'''
@property
def FILER_IS_PUBLIC_DEFAULT(self):
pass
@property
def FILER_ENABLE_PERMISSIONS(self):
pass
@property
def FILER_DEBUG(self):
pass
@property
def FILER_ENABLE_LOGGING(self):
pass
@property
def FILER_0_8_COMPATIBILITY_MODE(self):
pass
@property
def THUMBNAIL_DEBUG(self):
pass
@property
def THUMBNAIL_QUALITY(self):
pass
@property
def FILER_CUSTOM_NGINX_SERVER(self):
'''If true will serve secure file trough XNginxXAccelRedirectServer'''
pass
@property
def default_file_storage(self):
'''Common storage for filer configs'''
pass
@property
def FILER_CUSTOM_SECURE_MEDIA_ROOT(self):
'''Secure media root
As in filer settings, defaults to MEDIA_ROOT/../smedia'''
pass
@property
def filer_private_files_path(self):
pass
@property
def filer_private_thumbnails_path(self):
pass
@property
def FILER_SERVERS(self):
'''Filer config to be served from XNginxXAccelRedirectServer
see http://django-filer.readthedocs.org/en/0.9.4/secure_downloads.html#secure-downloads
'''
pass
@property
def FILER_STORAGES(self):
'''Filer config to set custom private media path
http://django-filer.readthedocs.org/en/0.9.4/settings.html#filer-storages
'''
pass
| 29 | 6 | 8 | 0 | 7 | 1 | 1 | 0.1 | 1 | 0 | 0 | 0 | 14 | 0 | 14 | 14 | 145 | 16 | 117 | 30 | 88 | 12 | 34 | 16 | 19 | 2 | 1 | 1 | 16 |
1,791 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/logs.py
|
kaio.mixins.logs.LogsMixin
|
class LogsMixin(object):
"""Django Logging configuration"""
@property
def LOG_LEVEL(self):
return get('LOG_LEVEL', 'DEBUG').upper()
@property
def DJANGO_LOG_LEVEL(self):
return get('DJANGO_LOG_LEVEL', 'ERROR').upper()
@property
def LOG_FILE(self):
return get('LOG_FILE', '')
@property
def EXTRA_LOGGING(self):
"""
lista modulos con los distintos niveles a logear y su
nivel de debug
Por ejemplo:
[Logs]
EXTRA_LOGGING = oscar.paypal:DEBUG, django.db:INFO
"""
input_text = get('EXTRA_LOGGING', '')
modules = input_text.split(',')
if input_text:
modules = input_text.split(',')
modules = [x.split(':') for x in modules]
else:
modules = []
return modules
# The best way to propagate logs up to the root logger is to prevent
# Django logging configuration and handle it ourselves.
#
# http://stackoverflow.com/questions/20282521/django-request-logger-not-propagated-to-root/22336174#22336174
# https://docs.djangoproject.com/en/1.10/topics/logging/#disabling-logging-configuration
LOGGING_CONFIG = None
@property
def LOGGING(self):
config = {
'version': 1,
'disable_existing_loggers': True,
'formatters': self.formatters,
'filters': self.filters,
'handlers': self.handlers,
'loggers': self.loggers,
}
import logging.config
logging.config.dictConfig(config)
return config
@property
def handlers(self):
handlers = {}
handlers['default'] = {
'level': self.LOG_LEVEL,
'class': 'logging.StreamHandler',
'formatter': 'default'
}
if self.LOG_FILE:
handlers['default']['class'] = 'logging.FileHandler'
handlers['default']['filename'] = self.LOG_FILE
handlers['default']['encoding'] = 'utf-8'
handlers['mail_admins'] = {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'
}
return handlers
@property
def loggers(self):
loggers = {}
loggers[''] = {
'handlers': ['default'],
'level': self.LOG_LEVEL,
'propagate': True,
}
loggers['rq.worker'] = {
'handlers': ['default'],
'level': self.LOG_LEVEL,
'propagate': False,
}
loggers['requests.packages.urllib3'] = {
'handlers': ['default'],
'level': self.LOG_LEVEL,
'propagate': False,
}
loggers['django'] = {
'handlers': ['default'],
'level': self.DJANGO_LOG_LEVEL,
'propagate': False,
}
if self.EXTRA_LOGGING:
try:
for module, level in self.EXTRA_LOGGING:
loggers[module] = {
'handlers': ['default'],
'level': level,
'propagate': False,
}
except Exception as exc:
import sys
sys.stderr.write(exc)
return loggers
@property
def formatters(self):
formatters_config = {
'default': {
'format': get('LOG_FORMATTER_FORMAT', '[%(asctime)s] %(levelname)s %(name)s-%(lineno)s %(message)s')
}
}
formatter_class = get('LOG_FORMATTER_CLASS')
if formatter_class:
formatters_config['default']['()'] = formatter_class
extra_fields = get('LOG_FORMATTER_EXTRA_FIELDS')
if extra_fields:
formatters_config['default']['extra_fields'] = extra_fields
return formatters_config
@property
def filters(self):
return {
'require_debug_false': {
'()': 'django.utils.log.RequireDebugFalse',
}
}
|
class LogsMixin(object):
'''Django Logging configuration'''
@property
def LOG_LEVEL(self):
pass
@property
def DJANGO_LOG_LEVEL(self):
pass
@property
def LOG_FILE(self):
pass
@property
def EXTRA_LOGGING(self):
'''
lista modulos con los distintos niveles a logear y su
nivel de debug
Por ejemplo:
[Logs]
EXTRA_LOGGING = oscar.paypal:DEBUG, django.db:INFO
'''
pass
@property
def LOGGING(self):
pass
@property
def handlers(self):
pass
@property
def loggers(self):
pass
@property
def formatters(self):
pass
@property
def filters(self):
pass
| 19 | 2 | 13 | 2 | 11 | 1 | 2 | 0.12 | 1 | 1 | 0 | 0 | 9 | 0 | 9 | 9 | 148 | 27 | 108 | 32 | 87 | 13 | 55 | 22 | 43 | 4 | 1 | 3 | 16 |
1,792 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/cms.py
|
kaio.mixins.cms.CMSMixin
|
class CMSMixin(object):
CMS_SEO_FIELDS = True
CMS_REDIRECTS = True
CMS_SOFTROOT = False
CMS_TEMPLATE_INHERITANCE = True
CMS_MENU_TITLE_OVERWRITE = True
CMS_USE_TINYMCE = False
CMS_PERMISSION = True
@property
def CMS_LANGUAGES(self):
langs_list = [{
'code': code,
'name': name,
'hide_untranslated': code == self.LANGUAGE_CODE,
'redirect_on_fallback': not (code == self.LANGUAGE_CODE),
} for code, name in self.LANGUAGES]
return {
self.SITE_ID: langs_list,
'default': {
'fallbacks': [self.LANGUAGE_CODE, ]
}
}
|
class CMSMixin(object):
@property
def CMS_LANGUAGES(self):
pass
| 3 | 0 | 14 | 1 | 13 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 25 | 3 | 22 | 11 | 19 | 0 | 11 | 10 | 9 | 1 | 1 | 0 | 1 |
1,793 |
APSL/django-kaio
|
APSL_django-kaio/kaio/options.py
|
kaio.options.Option
|
class Option(object):
"""Option Object"""
def __init__(self, value=None, section=None, default_value=None):
self.value = value
self.section = section
self.default_value = default_value
def __repr__(self):
msg = u'Option(value=%r, section=%r, default=%r)'
return msg % (self.value, self.section, self.default_value)
def get_value_or_default(self):
if self.value is not None:
return self.value
return self.default_value
|
class Option(object):
'''Option Object'''
def __init__(self, value=None, section=None, default_value=None):
pass
def __repr__(self):
pass
def get_value_or_default(self):
pass
| 4 | 1 | 4 | 0 | 4 | 0 | 1 | 0.08 | 1 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 16 | 3 | 12 | 8 | 8 | 1 | 12 | 8 | 8 | 2 | 1 | 1 | 4 |
1,794 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/celeryconf.py
|
kaio.mixins.celeryconf.CeleryMixin
|
class CeleryMixin(object):
"""Celery APSL Custom mixin"""
CELERY_DISABLE_RATE_LIMITS = True
CELERYBEAT_SCHEDULER = 'django_celery_beat.schedulers:DatabaseScheduler'
def _redis_available(self):
try:
import redis # noqa: F401
except ImportError:
return False
if not self.REDIS_PORT or not self.REDIS_HOST:
return False
return True
@property
def CELERY_DEFAULT_QUEUE(self):
return get('CELERY_DEFAULT_QUEUE', 'celery')
@property
def CELERY_RESULT_BACKEND(self):
"""Redis result backend config"""
# allow specify directly
configured = get('CELERY_RESULT_BACKEND', None)
if configured:
return configured
if not self._redis_available():
return None
host, port = self.REDIS_HOST, self.REDIS_PORT
if host and port:
return "redis://{host}:{port}/{db}".format(
host=host,
port=port,
db=self.CELERY_REDIS_RESULT_DB,
)
@property
def CELERY_IGNORE_RESULT(self):
"""Whether to store the task return values or not (tombstones)"""
return get('CELERY_IGNORE_RESULT', False)
@property
def CELERY_RESULT_EXPIRES(self):
return get('CELERY_RESULT_EXPIRES', 86400) # 1 day in seconds
@property
def CELERY_MAX_CACHED_RESULTS(self):
"""This is the total number of results to cache before older results
are evicted. The default is 5000."""
return get('CELERY_MAX_CACHED_RESULTS', 5000)
@property
def CELERY_CACHE_BACKEND(self):
return get('CELERY_CACHE_BACKEND', 'default')
@property
def CELERY_ALWAYS_EAGER(self):
return get('CELERY_ALWAYS_EAGER', False)
@property
def CELERY_EAGER_PROPAGATES_EXCEPTIONS(self):
return get('CELERY_EAGER_PROPAGATES_EXCEPTIONS', True)
@property
def CELERY_REDIS_RESULT_DB(self):
try:
return int(get('CELERY_REDIS_RESULT_DB', 0))
except Exception:
return 0
@property
def CELERY_REDIS_BROKER_DB(self):
try:
return int(get('CELERY_REDIS_BROKER_DB', 0))
except ValueError:
return 0
@property
def RABBITMQ_HOST(self):
return get('RABBITMQ_HOST', 'localhost')
@property
def RABBITMQ_PORT(self):
return get('RABBITMQ_PORT', 5672)
@property
def RABBITMQ_USER(self):
return get('RABBITMQ_USER', 'guest')
@property
def RABBITMQ_PASSWD(self):
return get('RABBITMQ_PASSWD', 'guest')
@property
def RABBITMQ_VHOST(self):
return get('RABBITMQ_VHOST', '/')
@property
def BROKER_TYPE(self):
"""Custom setting allowing switch between rabbitmq, redis"""
broker_type = get('BROKER_TYPE', DEFAULT_BROKER_TYPE)
if broker_type not in SUPPORTED_BROKER_TYPES:
log.warn("Specified BROKER_TYPE {} not supported. Backing to default {}".format(
broker_type, DEFAULT_BROKER_TYPE))
return DEFAULT_BROKER_TYPE
else:
return broker_type
@property
def BROKER_URL(self):
"""Sets BROKER_URL depending on redis or rabbitmq settings"""
# also allow specify broker_url
broker_url = get('BROKER_URL', None)
if broker_url:
log.info("Using BROKER_URL setting: {}".format(broker_url))
return broker_url
redis_available = self._redis_available()
broker_type = self.BROKER_TYPE
if broker_type == 'redis' and not redis_available:
log.warn("Choosed broker type is redis, but redis not available. \
Check redis package, and REDIS_HOST, REDIS_PORT settings")
if broker_type == 'redis' and redis_available:
return 'redis://{host}:{port}/{db}'.format(
host=self.REDIS_HOST,
port=self.REDIS_PORT,
db=self.CELERY_REDIS_BROKER_DB)
elif broker_type == 'rabbitmq':
return 'amqp://{user}:{passwd}@{host}:{port}/{vhost}'.format(
user=self.RABBITMQ_USER,
passwd=self.RABBITMQ_PASSWD,
host=self.RABBITMQ_HOST,
port=self.RABBITMQ_PORT,
vhost=self.RABBITMQ_VHOST)
else:
return DEFAULT_BROKER_URL
|
class CeleryMixin(object):
'''Celery APSL Custom mixin'''
def _redis_available(self):
pass
@property
def CELERY_DEFAULT_QUEUE(self):
pass
@property
def CELERY_RESULT_BACKEND(self):
'''Redis result backend config'''
pass
@property
def CELERY_IGNORE_RESULT(self):
'''Whether to store the task return values or not (tombstones)'''
pass
@property
def CELERY_RESULT_EXPIRES(self):
pass
@property
def CELERY_MAX_CACHED_RESULTS(self):
'''This is the total number of results to cache before older results
are evicted. The default is 5000.'''
pass
@property
def CELERY_CACHE_BACKEND(self):
pass
@property
def CELERY_ALWAYS_EAGER(self):
pass
@property
def CELERY_EAGER_PROPAGATES_EXCEPTIONS(self):
pass
@property
def CELERY_REDIS_RESULT_DB(self):
pass
@property
def CELERY_REDIS_BROKER_DB(self):
pass
@property
def RABBITMQ_HOST(self):
pass
@property
def RABBITMQ_PORT(self):
pass
@property
def RABBITMQ_USER(self):
pass
@property
def RABBITMQ_PASSWD(self):
pass
@property
def RABBITMQ_VHOST(self):
pass
@property
def BROKER_TYPE(self):
'''Custom setting allowing switch between rabbitmq, redis'''
pass
@property
def BROKER_URL(self):
'''Sets BROKER_URL depending on redis or rabbitmq settings'''
pass
| 36 | 6 | 6 | 1 | 5 | 1 | 2 | 0.1 | 1 | 4 | 0 | 0 | 18 | 2 | 18 | 18 | 145 | 29 | 107 | 47 | 70 | 11 | 73 | 28 | 53 | 5 | 1 | 1 | 30 |
1,795 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/cache.py
|
kaio.mixins.cache.CachesMixin
|
class CachesMixin(object):
# Settings for default cache.
@property
def CACHE_TYPE(self):
return get('CACHE_TYPE', 'locmem')
@property
def REDIS_HOST(self):
return get('REDIS_HOST', 'localhost')
@property
def REDIS_PORT(self):
return get('REDIS_PORT', 6379)
@property
def CACHE_REDIS_DB(self):
return get('CACHE_REDIS_DB', 2)
@property
def CACHE_REDIS_PASSWORD(self):
return get('CACHE_REDIS_PASSWORD', None)
@property
def CACHE_PREFIX(self):
return get('CACHE_PREFIX', self.APP_SLUG)
@property
def CACHE_TIMEOUT(self):
return get('CACHE_TIMEOUT', 3600)
@property
def CACHE_MAX_ENTRIES(self):
return get('CACHE_MAX_ENTRIES', 10000)
@property
def DEFAULT_CACHE(self):
if self.CACHE_TYPE == 'redis':
CACHE = {
'BACKEND': 'django_redis.cache.RedisCache',
'LOCATION': 'redis://%s:%s/%s' % (self.REDIS_HOST,
self.REDIS_PORT,
self.CACHE_REDIS_DB),
'KEY_PREFIX': self.CACHE_PREFIX,
'TIMEOUT': self.CACHE_TIMEOUT,
'OPTIONS': {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
'MAX_ENTRIES': self.CACHE_MAX_ENTRIES,
},
}
if self.CACHE_REDIS_PASSWORD is not None:
CACHE['OPTIONS']['PASSWORD'] = self.CACHE_REDIS_PASSWORD
elif self.CACHE_TYPE == 'locmem':
CACHE = {
'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'CACHE_PREFIX': self.CACHE_PREFIX,
'LOCATION': 'unique-key-apsl'
}
else:
CACHE = {
'BACKEND': 'django.core.cache.backends.dummy.DummyCache',
}
return CACHE
# Settings for session cache.
# You must set SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
# (or cached_db). By default use almost same settings as default cache.
@property
def SESSION_CACHE_TYPE(self):
return get('SESSION_CACHE_TYPE', self.CACHE_TYPE)
@property
def SESSION_REDIS_HOST(self):
return get('SESSION_REDIS_HOST', self.REDIS_HOST)
@property
def SESSION_REDIS_PORT(self):
return get('SESSION_REDIS_PORT', self.REDIS_PORT)
@property
def SESSION_CACHE_REDIS_DB(self):
return get('SESSION_CACHE_REDIS_DB', 3)
@property
def SESSION_CACHE_REDIS_PASSWORD(self):
return get('SESSION_CACHE_REDIS_PASSWORD', self.CACHE_REDIS_PASSWORD)
@property
def SESSION_CACHE_PREFIX(self):
return get('SESSION_CACHE_PREFIX', '%s_session' % self.CACHE_PREFIX)
@property
def SESSION_CACHE_TIMEOUT(self):
return get('SESSION_CACHE_TIMEOUT', None)
@property
def SESSION_CACHE_MAX_ENTRIES(self):
return get('SESSION_CACHE_MAX_ENTRIES', 1000000)
@property
def SESSION_CACHE(self):
# Support for Redis only
if self.SESSION_CACHE_TYPE != 'redis' or self.SESSION_ENGINE not in (
'django.contrib.sessions.backends.cache',
'django.contrib.sessions.backends.cached_db'):
return
CACHE = {
'BACKEND': 'django_redis.cache.RedisCache',
'LOCATION': 'redis://%s:%s/%s' % (self.SESSION_REDIS_HOST,
self.SESSION_REDIS_PORT,
self.SESSION_CACHE_REDIS_DB),
'KEY_PREFIX': self.SESSION_CACHE_PREFIX,
'TIMEOUT': self.SESSION_CACHE_TIMEOUT,
'OPTIONS': {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
'MAX_ENTRIES': self.SESSION_CACHE_MAX_ENTRIES,
},
}
if self.SESSION_CACHE_REDIS_PASSWORD is not None:
CACHE['OPTIONS']['PASSWORD'] = self.SESSION_CACHE_REDIS_PASSWORD
return CACHE
@property
def SESSION_CACHE_ALIAS(self):
return get('SESSION_CACHE_ALIAS', 'session')
# Main cache settings.
@property
def CACHES(self):
caches = {'default': self.DEFAULT_CACHE}
session_cache = self.SESSION_CACHE
if session_cache:
caches[self.SESSION_CACHE_ALIAS] = session_cache
return caches
|
class CachesMixin(object):
@property
def CACHE_TYPE(self):
pass
@property
def REDIS_HOST(self):
pass
@property
def REDIS_PORT(self):
pass
@property
def CACHE_REDIS_DB(self):
pass
@property
def CACHE_REDIS_PASSWORD(self):
pass
@property
def CACHE_PREFIX(self):
pass
@property
def CACHE_TIMEOUT(self):
pass
@property
def CACHE_MAX_ENTRIES(self):
pass
@property
def DEFAULT_CACHE(self):
pass
@property
def SESSION_CACHE_TYPE(self):
pass
@property
def SESSION_REDIS_HOST(self):
pass
@property
def SESSION_REDIS_PORT(self):
pass
@property
def SESSION_CACHE_REDIS_DB(self):
pass
@property
def SESSION_CACHE_REDIS_PASSWORD(self):
pass
@property
def SESSION_CACHE_PREFIX(self):
pass
@property
def SESSION_CACHE_TIMEOUT(self):
pass
@property
def SESSION_CACHE_MAX_ENTRIES(self):
pass
@property
def SESSION_CACHE_TYPE(self):
pass
@property
def SESSION_CACHE_ALIAS(self):
pass
@property
def CACHES(self):
pass
| 41 | 0 | 5 | 0 | 4 | 0 | 1 | 0.06 | 1 | 0 | 0 | 0 | 20 | 0 | 20 | 20 | 141 | 27 | 108 | 45 | 67 | 6 | 56 | 25 | 35 | 4 | 1 | 2 | 26 |
1,796 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/whitenoise.py
|
kaio.mixins.whitenoise.WhiteNoiseMixin
|
class WhiteNoiseMixin(object):
"""Settings for http://whitenoise.evans.io version 3"""
@property
def ENABLE_WHITENOISE(self):
enabled = get('ENABLE_WHITENOISE', False)
if enabled:
try:
import whitenoise # noqa: F401
self._add_whitenoise_to_installed_apps()
self._add_whitenoise_to_middleware()
except ImportError:
return False
return enabled
@property
def WHITENOISE_AUTOREFRESH(self):
return get('WHITENOISE_AUTOREFRESH', True)
@property
def WHITENOISE_USE_FINDERS(self):
return get('WHITENOISE_USE_FINDERS', True)
def _add_whitenoise_to_installed_apps(self):
if 'whitenoise.runserver_nostatic' not in self.INSTALLED_APPS:
index = self.INSTALLED_APPS.index('django.contrib.staticfiles')
self.INSTALLED_APPS.insert(index, 'whitenoise.runserver_nostatic')
def _add_whitenoise_to_middleware(self):
middlewares_settings = (
'MIDDLEWARE', # django >= 1.10
'MIDDLEWARE_CLASSES', # django < 1.10
)
for middleware_setting in middlewares_settings:
middlewares = getattr(self, middleware_setting, None)
if middlewares is not None:
if 'whitenoise.middleware.WhiteNoiseMiddleware' not in middlewares:
try:
index = middlewares.index('django.middleware.security.SecurityMiddleware') + 1
except ValueError:
index = 0
middlewares.insert(index, 'whitenoise.middleware.WhiteNoiseMiddleware')
|
class WhiteNoiseMixin(object):
'''Settings for http://whitenoise.evans.io version 3'''
@property
def ENABLE_WHITENOISE(self):
pass
@property
def WHITENOISE_AUTOREFRESH(self):
pass
@property
def WHITENOISE_USE_FINDERS(self):
pass
def _add_whitenoise_to_installed_apps(self):
pass
def _add_whitenoise_to_middleware(self):
pass
| 9 | 1 | 6 | 0 | 6 | 1 | 2 | 0.11 | 1 | 2 | 0 | 0 | 5 | 0 | 5 | 5 | 42 | 5 | 36 | 16 | 26 | 4 | 30 | 13 | 23 | 5 | 1 | 4 | 12 |
1,797 |
APSL/django-kaio
|
APSL_django-kaio/kaio/mixins/database.py
|
kaio.mixins.database.DatabasesMixin
|
class DatabasesMixin(object):
@staticmethod
def get_engine(prefix):
"""
Retrieve the database engine.
Only change the full engine string if there is no «backends» in it.
"""
engine = get('{}DATABASE_ENGINE'.format(prefix), 'sqlite3')
if 'backends' in engine:
return engine
return 'django.db.backends.' + engine
def get_databases(self, prefix=''):
databases = {
'default': {
'ENGINE': self.get_engine(prefix),
'NAME': get('{}DATABASE_NAME'.format(prefix), '{}db.sqlite'.format(prefix.lower())),
'USER': get('{}DATABASE_USER'.format(prefix), None),
'PASSWORD': get('{}DATABASE_PASSWORD'.format(prefix), ''),
'HOST': get('{}DATABASE_HOST'.format(prefix), ''),
'PORT': get('{}DATABASE_PORT'.format(prefix), ''),
'CONN_MAX_AGE': get('{}DATABASE_CONN_MAX_AGE'.format(prefix), 0),
'TEST': {
'NAME': get('{}DATABASE_NAME'.format(prefix), None),
}
}
}
options = get('DATABASE_OPTIONS_OPTIONS')
if options:
databases['default']['OPTIONS'] = {'options': options}
return databases
def DATABASES(self):
return self.get_databases()
|
class DatabasesMixin(object):
@staticmethod
def get_engine(prefix):
'''
Retrieve the database engine.
Only change the full engine string if there is no «backends» in it.
'''
pass
def get_databases(self, prefix=''):
pass
def DATABASES(self):
pass
| 5 | 1 | 11 | 1 | 9 | 1 | 2 | 0.14 | 1 | 0 | 0 | 0 | 2 | 0 | 3 | 3 | 37 | 5 | 28 | 8 | 23 | 4 | 14 | 7 | 10 | 2 | 1 | 1 | 5 |
1,798 |
APSL/django-kaio
|
APSL_django-kaio/kaio/management/commands/generate_ini.py
|
kaio.management.commands.generate_ini.Command
|
class Command(NoArgsCommand):
help = """Print a .ini with default values in stdout."""
requires_model_validation = False
def handle_noargs(self, **options):
# Inspired by Postfix's "postconf -n".
from django.conf import settings
# Because settings are imported lazily, we need to explicitly load them.
settings._setup()
user_settings = module_to_dict(settings._wrapped)
opts = Options()
pformat = "%-25s = %s"
puts('')
for section in opts.sections:
puts(colored.green("[%s]" % section))
for key, kaio_value in opts.items(section):
keycolor = colored.magenta(key)
if key in user_settings:
keycolor = colored.blue(key)
default_value = opts.options[key].default_value
value = kaio_value or default_value
if sys.version_info[0] < 3:
value = unicode(value).encode('utf8') # noqa: F821
else:
value = str(value)
try:
puts(pformat % (keycolor, value))
except Exception as e:
raise e
puts('')
def handle(self, **options):
return self.handle_noargs(**options)
|
class Command(NoArgsCommand):
def handle_noargs(self, **options):
pass
def handle_noargs(self, **options):
pass
| 3 | 0 | 17 | 3 | 13 | 2 | 4 | 0.1 | 1 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | 40 | 9 | 29 | 15 | 25 | 3 | 28 | 14 | 24 | 6 | 1 | 3 | 7 |
1,799 |
APSL/django-kaio
|
APSL_django-kaio/kaio/options.py
|
kaio.options.Options
|
class Options(object):
"""Option Parser. By now based on ini files"""
# Options that will not be interpolated.
RAW_OPTIONS = {'LOG_FORMATTER_FORMAT'}
def __init__(self):
"""Parse initial options"""
self.config = ConfigParser()
self.config_file = None
self._read_config()
self.defaults = {}
self.options = {}
self._parse_options()
@classmethod
def _is_raw_option(cls, option):
return option.upper() in cls.RAW_OPTIONS
def _conf_path(self):
"""Search .ini file from current directory (included) up to "/" (excluded)"""
current = abspath(curdir)
while current != "/":
filename = join(current, DEFAULT_CONF_NAME)
if isfile(filename):
return filename
current = abspath(join(current, pardir))
# If the .ini file doesn't exist returns an empty filename so default values are used
return ''
def _read_config(self):
try:
self.config_file = self.config.read(self._conf_path())[0]
except IndexError:
self.config_file = abspath(join(curdir, DEFAULT_CONF_NAME))
def _cast_value(self, value):
"""Support: int, bool, str"""
try:
value = int(value)
except ValueError:
if value.lower().strip() in ["true", "t", "1", "yes"]:
value = True
elif value.lower().strip() in ["false", "f", "no", "0"]:
value = False
return value
def _parse_options(self):
"""Parse .ini file and set options in self.options"""
for section in self.config.sections():
for option in self.config.options(section):
raw = self._is_raw_option(option)
value = self.config.get(section=section, option=option, raw=raw)
value = self._cast_value(value)
self.options[option.upper()] = Option(value, section)
def __iter__(self):
"""Return an iterator of options"""
return (o for o in self.options.items())
@property
def sections(self):
"""Get defined sections"""
return set(o.section for k, o in self.options.items())
def items(self, section=None):
"""Iterate items of a section in format (name, value)"""
if section:
return ((k, o.value) for k, o in self.options.items() if o.section == section)
else:
return ((k, o.value) for k, o in self.options.items())
def keys(self, section=None):
"""Returns all configured option names (keys)"""
return [k for k, v in self.items(section)]
def write(self):
"""Save all defined options"""
for name, option in self.options.items():
if sys.version_info[0] < 3:
try:
value = unicode(option.value) # noqa
except UnicodeDecodeError:
value = unicode(option.value, 'utf-8') # noqa
else:
value = str(value)
try:
self.config.set(section=option.section, option=name.upper(), value=value)
except NoSectionError:
self.config.add_section(option.section)
self.config.set(section=option.section, option=name, value=value)
self._write_file()
def _write_file(self):
import codecs
with codecs.open(self.config_file, 'w', "utf-8") as config_file:
self.config.write(config_file)
def set(self, name, value, section=DEFAULT_SECTION):
name = name.strip()
if type(value) == str:
if sys.version_info[0] < 3:
value = value.decode('utf-8')
value = value.strip()
if name in self.options:
self.options[name].value = value
else:
self.options[name] = Option(value, section)
def get(self, name, default=None, section=DEFAULT_SECTION):
"""Returns value, and also saves the requested default
If value exists in environ, return environ value"""
name = name.strip()
try:
self.options[name].default_value = default
if not self.options[name].section:
self.options[name].section = section
except KeyError:
self.options[name] = Option(value=None, section=section, default_value=default)
try:
value = self._cast_value(os.environ[name].strip())
return value
except KeyError:
if self.options[name].value is not None:
return self.options[name].value
else:
return default
|
class Options(object):
'''Option Parser. By now based on ini files'''
def __init__(self):
'''Parse initial options'''
pass
@classmethod
def _is_raw_option(cls, option):
pass
def _conf_path(self):
'''Search .ini file from current directory (included) up to "/" (excluded)'''
pass
def _read_config(self):
pass
def _cast_value(self, value):
'''Support: int, bool, str'''
pass
def _parse_options(self):
'''Parse .ini file and set options in self.options'''
pass
def __iter__(self):
'''Return an iterator of options'''
pass
@property
def sections(self):
'''Get defined sections'''
pass
def items(self, section=None):
'''Iterate items of a section in format (name, value)'''
pass
def keys(self, section=None):
'''Returns all configured option names (keys)'''
pass
def write(self):
'''Save all defined options'''
pass
def _write_file(self):
pass
def set(self, name, value, section=DEFAULT_SECTION):
pass
def get(self, name, default=None, section=DEFAULT_SECTION):
'''Returns value, and also saves the requested default
If value exists in environ, return environ value'''
pass
| 17 | 11 | 8 | 0 | 7 | 1 | 2 | 0.16 | 1 | 11 | 1 | 0 | 13 | 4 | 14 | 14 | 130 | 18 | 98 | 35 | 80 | 16 | 91 | 30 | 75 | 5 | 1 | 3 | 34 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.