Dataset Viewer
Search is not available for this dataset
profile id
int64 | #friends
int64 | #following
int64 | #community
int64 | age
int64 | #postshared
int64 | #urlshared
int64 | #photos/videos
int64 | fpurls
float64 | fpphotos/videos
float64 | avgcomment/post
float64 | likes/post
float64 | tags/post
int64 | #tags/post
int64 | Label
int64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 39 | 300 | 907 | 200 | 1,000 | 850 | 922 | 0.49 | 0.55 | 0.56 | 0.47 | 40 | 14 | 1 |
2 | 150 | 350 | 30 | 300 | 300 | 100 | 290 | 0.33 | 0.96 | 0.5 | 1.2 | 10 | 4 | 0 |
3 | 300 | 450 | 50 | 465 | 500 | 150 | 450 | 0.2 | 0.84 | 0.4 | 1.5 | 15 | 7 | 0 |
4 | 25 | 110 | 660 | 350 | 2,050 | 2,000 | 2,050 | 0.97561 | 1 | 0.7 | 0.3 | 54 | 21 | 1 |
5 | 24 | 100 | 150 | 800 | 950 | 1,000 | 900 | 1.052632 | 0.947368 | 0.66 | 0.5 | 55 | 20 | 1 |
6 | 562 | 350 | 55 | 650 | 450 | 250 | 900 | 0.555556 | 2 | 0.42 | 2.2 | 15 | 10 | 0 |
7 | 662 | 454 | 22 | 764 | 365 | 100 | 1,000 | 0.273973 | 2.739726 | 0.31 | 2.5 | 23 | 10 | 0 |
8 | 50 | 100 | 700 | 350 | 2,512 | 2,000 | 2,400 | 0.796178 | 0.955414 | 0.77 | 0.32 | 58 | 32 | 1 |
9 | 800 | 550 | 66 | 850 | 460 | 500 | 300 | 1.086957 | 0.652174 | 0.4 | 2 | 23 | 10 | 0 |
10 | 605 | 555 | 58 | 782 | 700 | 100 | 650 | 0.142857 | 0.928571 | 0.24 | 2.8 | 13 | 5 | 0 |
11 | 1,005 | 380 | 13 | 1,250 | 561 | 132 | 530 | 0.235294 | 0.944742 | 0.1 | 1.6 | 16 | 4 | 0 |
12 | 1,632 | 560 | 84 | 651 | 789 | 87 | 760 | 0.110266 | 0.963245 | 0.46 | 1.9 | 35 | 12 | 0 |
13 | 2,461 | 643 | 63 | 1,523 | 756 | 123 | 713 | 0.162698 | 0.943122 | 0.46 | 2.8 | 13 | 17 | 0 |
14 | 561 | 312 | 46 | 625 | 326 | 65 | 300 | 0.199387 | 0.920245 | 0.35 | 2.3 | 32 | 15 | 0 |
15 | 1,143 | 426 | 86 | 956 | 558 | 56 | 500 | 0.100358 | 0.896057 | 0.24 | 2.1 | 15 | 19 | 0 |
16 | 784 | 466 | 46 | 423 | 326 | 32 | 300 | 0.09816 | 0.920245 | 0.26 | 2.5 | 18 | 12 | 0 |
17 | 146 | 56 | 13 | 125 | 76 | 23 | 65 | 0.302632 | 0.855263 | 0.35 | 1.3 | 19 | 19 | 0 |
18 | 894 | 465 | 123 | 565 | 420 | 63 | 400 | 0.15 | 0.952381 | 0.482 | 1 | 25 | 11 | 0 |
19 | 463 | 143 | 32 | 421 | 186 | 50 | 168 | 0.268817 | 0.903226 | 0.38 | 1.4 | 23 | 16 | 0 |
20 | 1,164 | 786 | 46 | 864 | 546 | 95 | 500 | 0.173993 | 0.915751 | 0.36 | 1.5 | 29 | 13 | 0 |
21 | 265 | 165 | 26 | 410 | 130 | 25 | 115 | 0.192308 | 0.884615 | 0.32 | 1.9 | 26 | 14 | 0 |
22 | 632 | 164 | 29 | 476 | 331 | 46 | 302 | 0.138973 | 0.912387 | 0.41 | 0.8 | 27 | 15 | 0 |
23 | 789 | 652 | 56 | 432 | 187 | 46 | 176 | 0.245989 | 0.941176 | 0.57 | 0.7 | 29 | 13 | 0 |
24 | 146 | 138 | 13 | 269 | 138 | 24 | 200 | 0.173913 | 1.449275 | 0.38 | 1.3 | 27 | 19 | 0 |
25 | 864 | 975 | 78 | 366 | 214 | 75 | 187 | 0.350467 | 0.873832 | 0.33 | 1.4 | 19 | 18 | 0 |
26 | 1,112 | 1,234 | 96 | 846 | 364 | 105 | 300 | 0.288462 | 0.824176 | 0.44 | 1.9 | 23 | 17 | 0 |
27 | 1,147 | 1,232 | 87 | 961 | 226 | 42 | 202 | 0.185841 | 0.893805 | 0.22 | 1.5 | 22 | 19 | 0 |
28 | 1,135 | 1,542 | 97 | 511 | 444 | 35 | 394 | 0.078829 | 0.887387 | 0.32 | 1.6 | 16 | 11 | 0 |
29 | 2,311 | 1,666 | 54 | 964 | 555 | 78 | 500 | 0.140541 | 0.900901 | 0.22 | 1.1 | 36 | 6 | 0 |
30 | 1,231 | 1,164 | 88 | 642 | 554 | 32 | 522 | 0.057762 | 0.942238 | 0.21 | 0.9 | 33 | 10 | 0 |
31 | 1,133 | 1,124 | 33 | 1,532 | 789 | 123 | 700 | 0.155894 | 0.887199 | 0.13 | 0.8 | 35 | 11 | 0 |
32 | 2,321 | 1,532 | 53 | 964 | 884 | 112 | 822 | 0.126697 | 0.929864 | 0.25 | 0.7 | 33 | 16 | 0 |
33 | 2,862 | 2,645 | 66 | 1,523 | 562 | 85 | 550 | 0.151246 | 0.978648 | 0.16 | 0.6 | 22 | 29 | 0 |
34 | 460 | 323 | 36 | 1,724 | 773 | 99 | 723 | 0.128072 | 0.935317 | 0.32 | 1.9 | 13 | 23 | 0 |
35 | 1,386 | 1,245 | 48 | 1,894 | 886 | 84 | 840 | 0.094808 | 0.948081 | 0.13 | 1.4 | 18 | 18 | 0 |
36 | 2,678 | 1,648 | 66 | 1,947 | 1,231 | 66 | 1,160 | 0.053615 | 0.942323 | 0.364 | 2 | 33 | 15 | 0 |
37 | 2,216 | 1,894 | 51 | 2,697 | 1,226 | 49 | 956 | 0.039967 | 0.779772 | 0.268 | 2.1 | 35 | 14 | 0 |
38 | 2,649 | 2,131 | 25 | 2,246 | 1,500 | 46 | 1,463 | 0.030667 | 0.975333 | 0.21 | 1.6 | 26 | 13 | 0 |
39 | 2,134 | 2,364 | 33 | 2,164 | 1,700 | 68 | 1,532 | 0.04 | 0.901176 | 0.22 | 1.8 | 21 | 11 | 0 |
40 | 1,123 | 1,150 | 115 | 2,246 | 1,460 | 56 | 1,163 | 0.038356 | 0.796575 | 0.33 | 1.1 | 22 | 5 | 0 |
41 | 1,009 | 1,123 | 32 | 1,423 | 1,112 | 36 | 635 | 0.032374 | 0.571043 | 0.321 | 1.88 | 36 | 4 | 0 |
42 | 1,100 | 1,356 | 49 | 1,200 | 800 | 24 | 750 | 0.03 | 0.9375 | 0.213 | 1.4 | 24 | 9 | 0 |
43 | 149 | 153 | 26 | 264 | 108 | 28 | 99 | 0.259259 | 0.916667 | 0.13 | 1.6 | 11 | 11 | 0 |
44 | 1,489 | 1,009 | 45 | 365 | 321 | 58 | 300 | 0.180685 | 0.934579 | 0.18 | 1.8 | 14 | 13 | 0 |
45 | 1,444 | 1,564 | 63 | 225 | 210 | 21 | 210 | 0.1 | 1 | 0.11 | 1.3 | 23 | 16 | 0 |
46 | 1,563 | 1,142 | 31 | 606 | 521 | 55 | 500 | 0.105566 | 0.959693 | 0.09 | 0.99 | 19 | 13 | 0 |
47 | 2,120 | 2,130 | 39 | 753 | 650 | 85 | 623 | 0.130769 | 0.958462 | 0.095 | 0.85 | 13 | 10 | 0 |
48 | 3,261 | 3,225 | 84 | 798 | 564 | 96 | 546 | 0.170213 | 0.968085 | 0.32 | 0.75 | 22 | 15 | 0 |
49 | 1,231 | 1,364 | 59 | 465 | 336 | 87 | 301 | 0.258929 | 0.895833 | 0.21 | 0.87 | 28 | 16 | 0 |
50 | 889 | 1,003 | 42 | 550 | 460 | 56 | 440 | 0.121739 | 0.956522 | 0.13 | 0.75 | 32 | 16 | 0 |
51 | 223 | 130 | 12 | 365 | 130 | 13 | 115 | 0.1 | 0.884615 | 0.236 | 0.886 | 29 | 18 | 0 |
52 | 332 | 321 | 13 | 421 | 183 | 23 | 175 | 0.125683 | 0.956284 | 0.313 | 0.889 | 21 | 12 | 0 |
53 | 2,135 | 2,364 | 54 | 1,005 | 786 | 150 | 760 | 0.19084 | 0.966921 | 0.42 | 0.66 | 34 | 16 | 0 |
54 | 3,305 | 4,510 | 168 | 1,543 | 864 | 166 | 800 | 0.19213 | 0.925926 | 0.156 | 0.78 | 31 | 10 | 0 |
55 | 4,462 | 5,312 | 113 | 665 | 512 | 87 | 495 | 0.169922 | 0.966797 | 0.28 | 0.99 | 38 | 9 | 0 |
56 | 5,554 | 4,231 | 85 | 980 | 602 | 84 | 560 | 0.139535 | 0.930233 | 0.16 | 1.6 | 25 | 11 | 0 |
57 | 654 | 461 | 49 | 1,520 | 1,231 | 186 | 941 | 0.151097 | 0.764419 | 0.12 | 1.9 | 18 | 15 | 0 |
58 | 1,546 | 1,243 | 88 | 645 | 547 | 62 | 431 | 0.113346 | 0.787934 | 0.35 | 1.1 | 26 | 14 | 0 |
59 | 1,143 | 987 | 65 | 1,546 | 786 | 112 | 653 | 0.142494 | 0.830789 | 0.34 | 1.4 | 21 | 13 | 0 |
60 | 463 | 465 | 36 | 1,502 | 623 | 68 | 581 | 0.109149 | 0.932584 | 0.292 | 1.4 | 14 | 10 | 0 |
61 | 561 | 482 | 32 | 1,645 | 658 | 66 | 599 | 0.100304 | 0.91033 | 0.223 | 1.2 | 13 | 11 | 0 |
62 | 1,325 | 1,123 | 45 | 1,895 | 633 | 89 | 593 | 0.1406 | 0.936809 | 0.23 | 1.6 | 32 | 7 | 0 |
63 | 254 | 195 | 24 | 956 | 764 | 105 | 690 | 0.137435 | 0.903141 | 0.33 | 1.5 | 42 | 17 | 0 |
64 | 336 | 226 | 22 | 869 | 321 | 43 | 300 | 0.133956 | 0.934579 | 0.54 | 1.59 | 43 | 18 | 0 |
65 | 4,563 | 3,261 | 59 | 1,235 | 1,200 | 86 | 900 | 0.071667 | 0.75 | 0.55 | 1.8 | 46 | 19 | 0 |
66 | 1,500 | 1,643 | 45 | 1,356 | 546 | 56 | 536 | 0.102564 | 0.981685 | 0.468 | 0.9 | 44 | 13 | 0 |
67 | 1,623 | 1,123 | 79 | 1,130 | 697 | 78 | 580 | 0.111908 | 0.832138 | 0.33 | 0.7 | 29 | 16 | 0 |
68 | 1,395 | 1,234 | 66 | 1,392 | 632 | 73 | 600 | 0.115506 | 0.949367 | 0.36 | 1.1 | 22 | 9 | 0 |
69 | 923 | 726 | 23 | 1,396 | 586 | 43 | 570 | 0.073379 | 0.972696 | 0.346 | 0.9 | 35 | 14 | 0 |
70 | 1,203 | 1,132 | 32 | 1,143 | 623 | 43 | 610 | 0.069021 | 0.979133 | 0.28 | 1.23 | 36 | 15 | 0 |
71 | 664 | 632 | 56 | 1,236 | 756 | 56 | 710 | 0.074074 | 0.939153 | 0.531 | 1.3 | 38 | 11 | 0 |
72 | 536 | 633 | 51 | 1,632 | 846 | 59 | 800 | 0.06974 | 0.945626 | 0.61 | 0.7 | 41 | 10 | 0 |
73 | 1,300 | 1,423 | 76 | 1,752 | 541 | 63 | 521 | 0.116451 | 0.963031 | 0.55 | 1.32 | 31 | 8 | 0 |
74 | 751 | 921 | 56 | 1,364 | 663 | 66 | 883 | 0.099548 | 1.331825 | 0.41 | 0.86 | 45 | 18 | 0 |
75 | 668 | 1,354 | 39 | 1,463 | 786 | 84 | 751 | 0.10687 | 0.955471 | 0.38 | 1.87 | 46 | 13 | 0 |
76 | 1,330 | 2,513 | 54 | 846 | 656 | 76 | 610 | 0.115854 | 0.929878 | 0.36 | 1.2 | 34 | 19 | 0 |
77 | 789 | 954 | 74 | 946 | 746 | 43 | 701 | 0.057641 | 0.939678 | 0.028 | 1.5 | 37 | 13 | 0 |
78 | 331 | 456 | 26 | 786 | 689 | 58 | 652 | 0.08418 | 0.946299 | 0.456 | 1.6 | 38 | 18 | 0 |
79 | 456 | 586 | 46 | 843 | 695 | 38 | 653 | 0.054676 | 0.939568 | 0.54 | 0.95 | 27 | 17 | 0 |
80 | 745 | 568 | 48 | 694 | 497 | 39 | 485 | 0.078471 | 0.975855 | 0.38 | 0.86 | 38 | 10 | 0 |
81 | 1,234 | 2,146 | 39 | 846 | 486 | 28 | 470 | 0.057613 | 0.967078 | 0.33 | 0.98 | 34 | 6 | 0 |
82 | 1,843 | 2,543 | 77 | 1,431 | 840 | 53 | 752 | 0.063095 | 0.895238 | 0.52 | 0.96 | 26 | 5 | 0 |
83 | 1,543 | 2,438 | 67 | 1,321 | 742 | 42 | 684 | 0.056604 | 0.921833 | 0.34 | 0.95 | 32 | 13 | 0 |
84 | 1,324 | 2,164 | 57 | 1,124 | 646 | 39 | 587 | 0.060372 | 0.908669 | 0.45 | 0.85 | 29 | 9 | 0 |
85 | 792 | 594 | 59 | 1,315 | 759 | 41 | 598 | 0.054018 | 0.787879 | 0.38 | 0.89 | 39 | 18 | 0 |
86 | 864 | 601 | 71 | 1,413 | 854 | 48 | 761 | 0.056206 | 0.891101 | 0.36 | 0.94 | 43 | 16 | 0 |
87 | 954 | 524 | 69 | 1,312 | 921 | 52 | 841 | 0.05646 | 0.913138 | 0.27 | 0.83 | 41 | 12 | 0 |
88 | 915 | 2,042 | 74 | 1,049 | 741 | 27 | 661 | 0.036437 | 0.892038 | 0.19 | 0.73 | 12 | 4 | 0 |
89 | 892 | 1,469 | 54 | 981 | 648 | 26 | 564 | 0.040123 | 0.87037 | 0.56 | 0.76 | 17 | 10 | 0 |
90 | 1,132 | 1,328 | 68 | 943 | 923 | 23 | 843 | 0.024919 | 0.913326 | 0.58 | 0.81 | 31 | 19 | 0 |
91 | 1,245 | 1,542 | 89 | 962 | 925 | 51 | 846 | 0.055135 | 0.914595 | 0.65 | 0.86 | 36 | 17 | 0 |
92 | 1,169 | 1,432 | 81 | 849 | 929 | 61 | 851 | 0.065662 | 0.916039 | 0.64 | 0.74 | 49 | 5 | 0 |
93 | 1,236 | 1,321 | 73 | 1,032 | 498 | 63 | 404 | 0.126506 | 0.811245 | 0.72 | 0.98 | 48 | 6 | 0 |
94 | 1,289 | 1,214 | 56 | 1,021 | 484 | 73 | 399 | 0.150826 | 0.82438 | 0.43 | 0.79 | 39 | 8 | 0 |
95 | 919 | 1,239 | 52 | 1,026 | 659 | 43 | 574 | 0.06525 | 0.871017 | 0.32 | 0.88 | 18 | 14 | 0 |
96 | 1,019 | 693 | 43 | 837 | 743 | 41 | 651 | 0.055182 | 0.876178 | 0.59 | 0.93 | 19 | 11 | 0 |
97 | 1,021 | 961 | 68 | 1,129 | 793 | 59 | 710 | 0.074401 | 0.895334 | 0.69 | 0.97 | 11 | 9 | 0 |
98 | 971 | 2,049 | 38 | 1,034 | 894 | 79 | 812 | 0.088367 | 0.908277 | 0.49 | 0.87 | 25 | 12 | 0 |
99 | 977 | 2,324 | 54 | 1,023 | 991 | 68 | 911 | 0.068618 | 0.919273 | 0.56 | 0.88 | 15 | 7 | 0 |
100 | 1,029 | 1,694 | 64 | 1,079 | 994 | 29 | 913 | 0.029175 | 0.918511 | 0.43 | 0.96 | 42 | 18 | 0 |
End of preview. Expand
in Data Studio
Facebook Spam Detection Dataset
Dataset Summary
This dataset contains 600 Facebook profiles with behavioral and activity features designed for spam detection in social media. The dataset enables binary classification to distinguish between spam accounts (Label=1) and legitimate accounts (Label=0), providing insights into spammer behavior patterns on Facebook.
Dataset Details
- Total Samples: 600 profiles
- Classes: Binary (0 = Legitimate, 1 = Spam)
- Class Distribution: Imbalanced (17.2% spam, 82.8% legitimate)
- Features: 14 behavioral characteristics + 1 target label
- Format: CSV file
Features Description
Feature | Type | Description | Range |
---|---|---|---|
profile id |
Integer | Unique profile identifier | 1-600 |
#friends |
Integer | Number of friends | 4-5,554 |
#following |
Integer | Number of accounts being followed | 1-5,312 |
#community |
Integer | Number of communities/groups joined | 12-1,789 |
age |
Integer | Account age (likely in days) | 125-2,697 |
#postshared |
Integer | Total number of posts shared | 76-3,896 |
#urlshared |
Integer | Number of URLs shared in posts | 11-2,956 |
#photos/videos |
Integer | Number of photos/videos posted | 65-3,891 |
fpurls |
Float | Frequency/proportion of URLs in posts | 0.01-1.09 |
fpphotos/videos |
Float | Frequency/proportion of media content | 0.0-2.74 |
avgcomment/post |
Float | Average comments per post | 0.0-665 |
likes/post |
Float | Average likes per post | 0.1-2.8 |
tags/post |
Integer | Tags used in posts | 10-99 |
#tags/post |
Integer | Number of tags per post | 1-32 |
Label |
Integer | Target variable - Spam (1) or Legitimate (0) | 0-1 |
Key Statistics
- Network Size: Average 1,066 friends and 1,069 following
- Community Engagement: Average 208 communities joined
- Account Maturity: Average age of 1,215 days (~3.3 years)
- Content Activity:
- Average 1,158 posts shared
- Average 370 URLs shared
- Average 1,121 photos/videos posted
- Engagement Metrics:
- Average 1.6 comments per post
- Average 0.88 likes per post
- Average 16 tags per post
Class Imbalance
⚠️ Important: This dataset is imbalanced:
- Legitimate accounts: 497 samples (82.8%)
- Spam accounts: 103 samples (17.2%)
Consider using techniques like SMOTE, class weighting, or balanced sampling for training.
Use Cases
This dataset is ideal for:
- Spam Detection: Build classifiers to identify Facebook spam accounts
- Behavioral Analysis: Study differences between spam and legitimate user behavior
- Anomaly Detection: Develop unsupervised methods for suspicious activity detection
- Social Media Security: Research automated content moderation systems
- Imbalanced Learning: Practice techniques for handling skewed datasets
Quick Start
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
from imblearn.over_sampling import SMOTE
# Load dataset
df = pd.read_csv('Facebook Spam Dataset.csv')
# Prepare features and target
X = df.drop(['Label', 'profile id'], axis=1)
y = df['Label']
# Handle class imbalance with SMOTE
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X_resampled, y_resampled, test_size=0.2, random_state=42, stratify=y_resampled
)
# Train model
model = RandomForestClassifier(
n_estimators=100,
class_weight='balanced',
random_state=42
)
model.fit(X_train, y_train)
# Evaluate
y_pred = model.predict(X_test)
print("Classification Report:")
print(classification_report(y_test, y_pred))
Suggested Approaches
Traditional ML
- Random Forest: Handles mixed data types well
- Gradient Boosting: XGBoost, LightGBM for performance
- SVM: With RBF kernel for non-linear patterns
- Logistic Regression: With proper feature scaling
Handling Imbalance
- Sampling: SMOTE, ADASYN for oversampling
- Cost-sensitive: Class weights in algorithms
- Ensemble: Balanced bagging, EasyEnsemble
- Metrics: Focus on F1-score, AUC-ROC, precision/recall
Feature Engineering
- Ratios: Create engagement ratios (likes/posts, comments/posts)
- Behavioral: URL sharing patterns, media content ratios
- Network: Friend-to-following ratios, community participation
- Temporal: Account age interactions with activity levels
Model Evaluation Tips
Given the class imbalance, prioritize these metrics:
- F1-Score: Harmonic mean of precision and recall
- AUC-ROC: Area under the ROC curve
- Precision/Recall: Especially for spam class (minority)
- Confusion Matrix: To understand false positives/negatives
Data Quality
- ✅ Complete Data: No missing values
- ⚠️ Class Imbalance: 82.8% legitimate vs 17.2% spam
- ✅ Feature Variety: Network, content, and engagement metrics
- ✅ Realistic Ranges: All features show plausible Facebook activity patterns
Research Opportunities
- Behavioral Patterns: What distinguishes spam from legitimate user behavior?
- Feature Importance: Which metrics are most predictive of spam accounts?
- Temporal Analysis: How does account age correlate with spam likelihood?
- Network Effects: Do spam accounts show distinct networking patterns?
- Content Analysis: How do URL sharing and media patterns differ?
Potential Applications
- Social Media Platforms: Automated spam account detection
- Content Moderation: Flagging suspicious posting patterns
- User Safety: Protecting users from spam and malicious content
- Research: Understanding social media abuse patterns
- Security Systems: Real-time threat detection algorithms
Citation
@dataset{facebook_spam_detection_2024,
title={Facebook Spam Detection Dataset},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/nahiar/facebook-spam-detection}
}
Notes
- The
age
feature appears to be in days rather than years - Some ratio features (like
fpurls
,fpphotos/videos
) may exceed 1.0, indicating normalized metrics - Consider feature scaling for distance-based algorithms
- The dataset reflects Facebook's ecosystem and user behavior patterns
- Downloads last month
- 49