text
stringlengths 0
1.16k
|
---|
2025-01-20 20:27:24.796848: Pseudo dice [np.float32(0.7595), np.float32(0.7706), np.float32(0.8548), np.float32(0.7546), np.float32(0.899), np.float32(0.7919)]
|
2025-01-20 20:27:24.796885: Epoch time: 47.69 s
|
2025-01-20 20:27:25.275854:
|
2025-01-20 20:27:25.310322: Epoch 364
|
2025-01-20 20:27:25.310411: Current learning rate: 0.00665
|
2025-01-20 20:28:12.993261: train_loss -0.7321
|
2025-01-20 20:28:13.028384: val_loss -0.7087
|
2025-01-20 20:28:13.028464: Pseudo dice [np.float32(0.7606), np.float32(0.7677), np.float32(0.8495), np.float32(0.7747), np.float32(0.8808), np.float32(0.7431)]
|
2025-01-20 20:28:13.028504: Epoch time: 47.72 s
|
2025-01-20 20:28:13.502157:
|
2025-01-20 20:28:13.536620: Epoch 365
|
2025-01-20 20:28:13.536750: Current learning rate: 0.00665
|
2025-01-20 20:29:01.223642: train_loss -0.7281
|
2025-01-20 20:29:01.258754: val_loss -0.7178
|
2025-01-20 20:29:01.258825: Pseudo dice [np.float32(0.7636), np.float32(0.7476), np.float32(0.8645), np.float32(0.7444), np.float32(0.8981), np.float32(0.7854)]
|
2025-01-20 20:29:01.258870: Epoch time: 47.72 s
|
2025-01-20 20:29:01.728979:
|
2025-01-20 20:29:01.763523: Epoch 366
|
2025-01-20 20:29:01.763623: Current learning rate: 0.00664
|
2025-01-20 20:29:49.415378: train_loss -0.7388
|
2025-01-20 20:29:49.450490: val_loss -0.7278
|
2025-01-20 20:29:49.450545: Pseudo dice [np.float32(0.7677), np.float32(0.7712), np.float32(0.8641), np.float32(0.7721), np.float32(0.8978), np.float32(0.7839)]
|
2025-01-20 20:29:49.450589: Epoch time: 47.69 s
|
2025-01-20 20:29:49.920981:
|
2025-01-20 20:29:49.955431: Epoch 367
|
2025-01-20 20:29:49.955493: Current learning rate: 0.00663
|
2025-01-20 20:30:37.613612: train_loss -0.7355
|
2025-01-20 20:30:37.648756: val_loss -0.7242
|
2025-01-20 20:30:37.648813: Pseudo dice [np.float32(0.7652), np.float32(0.7721), np.float32(0.8663), np.float32(0.7565), np.float32(0.8944), np.float32(0.7886)]
|
2025-01-20 20:30:37.648850: Epoch time: 47.69 s
|
2025-01-20 20:30:38.122056:
|
2025-01-20 20:30:38.156514: Epoch 368
|
2025-01-20 20:30:38.156600: Current learning rate: 0.00662
|
2025-01-20 20:31:25.772090: train_loss -0.7237
|
2025-01-20 20:31:25.807196: val_loss -0.7126
|
2025-01-20 20:31:25.807253: Pseudo dice [np.float32(0.7415), np.float32(0.7516), np.float32(0.8531), np.float32(0.7113), np.float32(0.8937), np.float32(0.7921)]
|
2025-01-20 20:31:25.807297: Epoch time: 47.65 s
|
2025-01-20 20:31:26.279028:
|
2025-01-20 20:31:26.313550: Epoch 369
|
2025-01-20 20:31:26.313624: Current learning rate: 0.00661
|
2025-01-20 20:32:13.942597: train_loss -0.7219
|
2025-01-20 20:32:13.977716: val_loss -0.7179
|
2025-01-20 20:32:13.977776: Pseudo dice [np.float32(0.7731), np.float32(0.7784), np.float32(0.8659), np.float32(0.7584), np.float32(0.8832), np.float32(0.7918)]
|
2025-01-20 20:32:13.977823: Epoch time: 47.66 s
|
2025-01-20 20:32:14.449963:
|
2025-01-20 20:32:14.484424: Epoch 370
|
2025-01-20 20:32:14.484485: Current learning rate: 0.0066
|
2025-01-20 20:33:02.104475: train_loss -0.7268
|
2025-01-20 20:33:02.139583: val_loss -0.7351
|
2025-01-20 20:33:02.139662: Pseudo dice [np.float32(0.7658), np.float32(0.7585), np.float32(0.8687), np.float32(0.7514), np.float32(0.8973), np.float32(0.7848)]
|
2025-01-20 20:33:02.139699: Epoch time: 47.66 s
|
2025-01-20 20:33:02.730762:
|
2025-01-20 20:33:02.765138: Epoch 371
|
2025-01-20 20:33:02.765231: Current learning rate: 0.00659
|
2025-01-20 20:33:50.421375: train_loss -0.7221
|
2025-01-20 20:33:50.456480: val_loss -0.722
|
2025-01-20 20:33:50.456546: Pseudo dice [np.float32(0.7642), np.float32(0.7529), np.float32(0.8565), np.float32(0.7859), np.float32(0.8931), np.float32(0.7673)]
|
2025-01-20 20:33:50.456583: Epoch time: 47.69 s
|
2025-01-20 20:33:50.929313:
|
2025-01-20 20:33:50.963794: Epoch 372
|
2025-01-20 20:33:50.963874: Current learning rate: 0.00658
|
2025-01-20 20:34:38.632641: train_loss -0.723
|
2025-01-20 20:34:38.668014: val_loss -0.6988
|
2025-01-20 20:34:38.668094: Pseudo dice [np.float32(0.7536), np.float32(0.7587), np.float32(0.8524), np.float32(0.7441), np.float32(0.896), np.float32(0.7807)]
|
2025-01-20 20:34:38.668132: Epoch time: 47.7 s
|
2025-01-20 20:34:39.140512:
|
2025-01-20 20:34:39.175023: Epoch 373
|
2025-01-20 20:34:39.175123: Current learning rate: 0.00657
|
2025-01-20 20:35:26.826299: train_loss -0.7232
|
2025-01-20 20:35:26.861398: val_loss -0.7155
|
2025-01-20 20:35:26.861452: Pseudo dice [np.float32(0.7652), np.float32(0.7607), np.float32(0.8616), np.float32(0.7581), np.float32(0.902), np.float32(0.7879)]
|
2025-01-20 20:35:26.861487: Epoch time: 47.69 s
|
2025-01-20 20:35:27.333295:
|
2025-01-20 20:35:27.367784: Epoch 374
|
2025-01-20 20:35:27.367846: Current learning rate: 0.00656
|
2025-01-20 20:36:15.058274: train_loss -0.7177
|
2025-01-20 20:36:15.093420: val_loss -0.7072
|
2025-01-20 20:36:15.093492: Pseudo dice [np.float32(0.7672), np.float32(0.7446), np.float32(0.8624), np.float32(0.7612), np.float32(0.8944), np.float32(0.7949)]
|
2025-01-20 20:36:15.093546: Epoch time: 47.73 s
|
2025-01-20 20:36:15.566558:
|
2025-01-20 20:36:15.600919: Epoch 375
|
2025-01-20 20:36:15.600999: Current learning rate: 0.00655
|
2025-01-20 20:37:03.269469: train_loss -0.7242
|
2025-01-20 20:37:03.304571: val_loss -0.7298
|
2025-01-20 20:37:03.304640: Pseudo dice [np.float32(0.7675), np.float32(0.7737), np.float32(0.8636), np.float32(0.743), np.float32(0.9037), np.float32(0.784)]
|
2025-01-20 20:37:03.304691: Epoch time: 47.7 s
|
2025-01-20 20:37:03.781465:
|
2025-01-20 20:37:03.815821: Epoch 376
|
2025-01-20 20:37:03.815918: Current learning rate: 0.00654
|
2025-01-20 20:37:51.474879: train_loss -0.727
|
2025-01-20 20:37:51.510036: val_loss -0.6895
|
2025-01-20 20:37:51.510090: Pseudo dice [np.float32(0.766), np.float32(0.7733), np.float32(0.8614), np.float32(0.7424), np.float32(0.8794), np.float32(0.7744)]
|
2025-01-20 20:37:51.510126: Epoch time: 47.69 s
|
2025-01-20 20:37:51.980750:
|
2025-01-20 20:37:52.015201: Epoch 377
|
2025-01-20 20:37:52.015273: Current learning rate: 0.00653
|
2025-01-20 20:38:39.646264: train_loss -0.6991
|
2025-01-20 20:38:39.681370: val_loss -0.6947
|
2025-01-20 20:38:39.681425: Pseudo dice [np.float32(0.7513), np.float32(0.7503), np.float32(0.8518), np.float32(0.7406), np.float32(0.8805), np.float32(0.771)]
|
2025-01-20 20:38:39.681462: Epoch time: 47.67 s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.