original_code
stringclasses
565 values
transformation
stringclasses
24 values
transformed_code
stringlengths
35
955
label
int64
0
1
groups
int64
1
971
dataset
stringclasses
1 value
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_rename_variable_rn
def sort_on_occurence(lst): dct = {} for i, c in lst: dct.setdefault(i, []).append(c) return [(i, *dict.fromkeys(c), len(c)) for i, c in dct.items()]
1
240
mbpp
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_mul_div_variable
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, /dict.fromkeys(j), len(j)) for i, j in dct.items()])
0
240
mbpp
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
240
mbpp
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
240
mbpp
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
240
mbpp
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
240
mbpp
def sort_on_occurence(lst): dct = {} for i, j in lst: dct.setdefault(i, []).append(j) return ([(i, *dict.fromkeys(j), len(j)) for i, j in dct.items()])
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
240
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_dead_code_insert
def next_Perfect_Square(N): _i_4 = 0 if _i_4 < _i_4: import math import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
1
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_for_while_loop
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
1
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_operand_swap
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
1
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_rename_variable_cb
def next_Perfect_Square(N): import math N2 = math.floor(math.sqrt(N)) + 1 return N2 * N2
1
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_rename_variable_naive
def next_Perfect_Square(N): import math VAR_0 = math.floor(math.sqrt(N)) + 1 return VAR_0 * VAR_0
1
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_rename_variable_rn
def next_Perfect_Square(N): import math K3885 = math.floor(math.sqrt(N)) + 1 return K3885 * K3885
1
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_add_sub_variable
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) - 1 return nextN * nextN
0
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_mul_div_variable
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN / nextN
0
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
241
mbpp
def next_Perfect_Square(N): import math nextN = math.floor(math.sqrt(N)) + 1 return nextN * nextN
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
241
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_dead_code_insert
def max_sum(arr, n): _i_1 = 0 while _i_1 > _i_1: if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
1
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_for_while_loop
def max_sum(arr, n): MSIBS = arr[:] i = 0 while i < n: for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] i += 1 MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
1
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_operand_swap
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[j] < arr[i] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
1
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_rename_variable_cb
def max_sum(arr, n): MSIBS = arr[:] for i2 in range(n): for j in range(0, i2): if arr[i2] > arr[j] and MSIBS[i2] < MSIBS[j] + arr[i2]: MSIBS[i2] = MSIBS[j] + arr[i2] MSDBS = arr[:] for i2 in range(1, n + 1): for j in range(1, i2): if arr[-i2] > arr[-j] and MSDBS[-i2] < MSDBS[-j] + arr[-i2]: MSDBS[-i2] = MSDBS[-j] + arr[-i2] max_sum = float("-Inf") for i2, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i2 + j - k) return max_sum
1
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_rename_variable_naive
def max_sum(arr, n): MSIBS = arr[:] for VAR_0 in range(n): for j in range(0, VAR_0): if arr[VAR_0] > arr[j] and MSIBS[VAR_0] < MSIBS[j] + arr[VAR_0]: MSIBS[VAR_0] = MSIBS[j] + arr[VAR_0] MSDBS = arr[:] for VAR_0 in range(1, n + 1): for j in range(1, VAR_0): if arr[-VAR_0] > arr[-j] and MSDBS[-VAR_0] < MSDBS[-j] + arr[-VAR_0]: MSDBS[-VAR_0] = MSDBS[-j] + arr[-VAR_0] max_sum = float("-Inf") for VAR_0, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, VAR_0 + j - k) return max_sum
1
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_rename_variable_rn
def max_sum(arr, n): MSIBS = arr[:] for Q in range(n): for j in range(0, Q): if arr[Q] > arr[j] and MSIBS[Q] < MSIBS[j] + arr[Q]: MSIBS[Q] = MSIBS[j] + arr[Q] MSDBS = arr[:] for Q in range(1, n + 1): for j in range(1, Q): if arr[-Q] > arr[-j] and MSDBS[-Q] < MSDBS[-j] + arr[-Q]: MSDBS[-Q] = MSDBS[-j] + arr[-Q] max_sum = float("-Inf") for Q, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, Q + j - k) return max_sum
1
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_add_sub_variable
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] - arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_sub_add_variable
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[+i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_lesser_greater_variable
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] > MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_greater_lesser_variable
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] < arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_and_or_variable
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] or MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
242
mbpp
def max_sum(arr, n): MSIBS = arr[:] for i in range(n): for j in range(0, i): if arr[i] > arr[j] and MSIBS[i] < MSIBS[j] + arr[i]: MSIBS[i] = MSIBS[j] + arr[i] MSDBS = arr[:] for i in range(1, n + 1): for j in range(1, i): if arr[-i] > arr[-j] and MSDBS[-i] < MSDBS[-j] + arr[-i]: MSDBS[-i] = MSDBS[-j] + arr[-i] max_sum = float("-Inf") for i, j, k in zip(MSIBS, MSDBS, arr): max_sum = max(max_sum, i + j - k) return max_sum
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
242
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_dead_code_insert
def babylonian_squareroot(number): if number == 0: return 0 g = number / 2.0 g2 = g + 1 if False: return g while g != g2: n = number / g g2 = g g = (g + n) / 2 return g
1
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_for_while_loop
def babylonian_squareroot(number): if number == 0: return 0 g = number / 2.0 g2 = g + 1 while g != g2: n = number / g g2 = g g = (g + n) / 2 return g
1
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_operand_swap
def babylonian_squareroot(number): if 0 == number: return 0 g = number / 2.0 g2 = g + 1 while g != g2: n = number / g g2 = g g = (g + n) / 2 return g
1
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_rename_variable_cb
def babylonian_squareroot(number): if number == 0: return 0 n2 = number / 2.0 g2 = n2 + 1 while n2 != g2: n = number / n2 g2 = n2 n2 = (n2 + n) / 2 return n2
1
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_rename_variable_naive
def babylonian_squareroot(number): if number == 0: return 0 VAR_0 = number / 2.0 g2 = VAR_0 + 1 while VAR_0 != g2: n = number / VAR_0 g2 = VAR_0 VAR_0 = (VAR_0 + n) / 2 return VAR_0
1
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_rename_variable_rn
def babylonian_squareroot(number): if number == 0: return 0 w = number / 2.0 g2 = w + 1 while w != g2: n = number / w g2 = w w = (w + n) / 2 return w
1
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_add_sub_variable
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g - 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_div_mul_variable
def babylonian_squareroot(number): if(number == 0): return 0; g = number*2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_equalto_exclamation_variable
def babylonian_squareroot(number): if(number != 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_exclamation_equalto_variable
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g == g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
243
mbpp
def babylonian_squareroot(number): if(number == 0): return 0; g = number/2.0; g2 = g + 1; while(g != g2): n = number/ g; g2 = g; g = (g + n)/2; return g;
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
243
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_dead_code_insert
def harmonic_sum(n): if n < 2: _i_7 = 0 if _i_7 > _i_7: return 1 / n + (harmonic_sum(n - 1)) return 1 else: return 1 / n + (harmonic_sum(n - 1))
1
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_for_while_loop
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
1
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_operand_swap
def harmonic_sum(n): if 2 > n: return 1 else: return 1 / n + (harmonic_sum(n - 1))
1
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_rename_variable_cb
def harmonic_sum(i): if i < 2: return 1 else: return 1 / i + (harmonic_sum(i - 1))
1
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_rename_variable_naive
def harmonic_sum(VAR_0): if VAR_0 < 2: return 1 else: return 1 / VAR_0 + (harmonic_sum(VAR_0 - 1))
1
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_rename_variable_rn
def harmonic_sum(o): if o < 2: return 1 else: return 1 / o + (harmonic_sum(o - 1))
1
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_add_sub_variable
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n - (harmonic_sum(n - 1))
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_sub_add_variable
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n + 1))
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_div_mul_variable
def harmonic_sum(n): if n < 2: return 1 else: return 1 * n + (harmonic_sum(n - 1))
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_lesser_greater_variable
def harmonic_sum(n): if n > 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
245
mbpp
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
245
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_dead_code_insert
def intersection_array(array_nums1, array_nums2): for _i_0 in range(0): return result result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
1
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_for_while_loop
def intersection_array(array_nums1, array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
1
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_operand_swap
def intersection_array(array_nums1, array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
1
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_rename_variable_cb
def intersection_array(array_nums1, result2): result = list(filter(lambda x: x in array_nums1, result2)) return result
1
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_rename_variable_naive
def intersection_array(array_nums1, array_nums2): result = list(filter(lambda VAR_0: VAR_0 in array_nums1, array_nums2)) return result
1
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_rename_variable_rn
def intersection_array(R67408ej4J9, array_nums2): result = list(filter(lambda x: x in R67408ej4J9, array_nums2)) return result
1
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
246
mbpp
def intersection_array(array_nums1,array_nums2): result = list(filter(lambda x: x in array_nums1, array_nums2)) return result
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
246
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_dead_code_insert
def convert(numbers): import cmath for _i_8 in range(0): return num num = cmath.polar(numbers) return num
1
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_for_while_loop
def convert(numbers): import cmath num = cmath.polar(numbers) return num
1
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_operand_swap
def convert(numbers): import cmath num = cmath.polar(numbers) return num
1
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_rename_variable_cb
def convert(x): import cmath num = cmath.polar(x) return num
1
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_rename_variable_naive
def convert(VAR_0): import cmath num = cmath.polar(VAR_0) return num
1
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_rename_variable_rn
def convert(numbers): import cmath J8b = cmath.polar(numbers) return J8b
1
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
249
mbpp
def convert(numbers): import cmath num = cmath.polar(numbers) return (num)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
249
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_dead_code_insert
def words_ae(text): import re _i_5 = 0 if _i_5 < _i_5: list = re.findall("[ae]w+", text) list = re.findall("[ae]w+", text) return list
1
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_for_while_loop
def words_ae(text): import re list = re.findall("[ae]w+", text) return list
1
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_operand_swap
def words_ae(text): import re list = re.findall("[ae]w+", text) return list
1
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_rename_variable_cb
def words_ae(line): import re list = re.findall("[ae]w+", line) return list
1
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_rename_variable_naive
def words_ae(VAR_0): import re list = re.findall("[ae]w+", VAR_0) return list
1
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_rename_variable_rn
def words_ae(V771): import re list = re.findall("[ae]w+", V771) return list
1
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_add_sub_variable
def words_ae(text): import re list = re.findall("[ae]\w-", text) return list
0
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
251
mbpp
def words_ae(text): import re list = re.findall("[ae]\w+", text) return list
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
251
mbpp