original_code
stringclasses
565 values
transformation
stringclasses
24 values
transformed_code
stringlengths
35
955
label
int64
0
1
groups
int64
1
971
dataset
stringclasses
1 value
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_is_isnot_variable
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is not None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_true_false_variable
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return False lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_false_true_variable
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return True
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_and_or_variable
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) or is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
364
mbpp
def is_tree_balanced(root): class Node: def __init__(self, data): self.data = data self.left = None self.right = None def get_height(root): if root is None: return 0 return max(get_height(root.left), get_height(root.right)) + 1 if root is None: return True lh = get_height(root.left) rh = get_height(root.right) if (abs(lh - rh) <= 1) and is_tree_balanced( root.left) is True and is_tree_balanced( root.right) is True: return True return False
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
364
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_dead_code_insert
def lateralsurface_cuboid(l, w, h): _i_3 = 0 while _i_3 > _i_3: LSA = 2 * h * (l + w) LSA = 2 * h * (l + w) return LSA
1
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_for_while_loop
def lateralsurface_cuboid(l, w, h): LSA = 2 * h * (l + w) return LSA
1
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_operand_swap
def lateralsurface_cuboid(l, w, h): LSA = 2 * h * (l + w) return LSA
1
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_rename_variable_cb
def lateralsurface_cuboid(l, c, h): LSA = 2 * h * (l + c) return LSA
1
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_rename_variable_naive
def lateralsurface_cuboid(l, VAR_0, h): LSA = 2 * h * (l + VAR_0) return LSA
1
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_rename_variable_rn
def lateralsurface_cuboid(K, w, h): LSA = 2 * h * (K + w) return LSA
1
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_add_sub_variable
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l-w) return LSA
0
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_mul_div_variable
def lateralsurface_cuboid(l,w,h): LSA = 2/h*(l+w) return LSA
0
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
366
mbpp
def lateralsurface_cuboid(l,w,h): LSA = 2*h*(l+w) return LSA
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
366
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_dead_code_insert
def heap_assending(nums): _i_6 = 0 if _i_6 > _i_6: return s_result import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
1
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_for_while_loop
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
1
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_operand_swap
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
1
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_rename_variable_cb
def heap_assending(s): import heapq as hq hq.heapify(s) s_result = [hq.heappop(s) for i in range(len(s))] return s_result
1
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_rename_variable_naive
def heap_assending(VAR_0): import heapq as hq hq.heapify(VAR_0) s_result = [hq.heappop(VAR_0) for i in range(len(VAR_0))] return s_result
1
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_rename_variable_rn
def heap_assending(dJ5d): import heapq as hq hq.heapify(dJ5d) s_result = [hq.heappop(dJ5d) for i in range(len(dJ5d))] return s_result
1
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
369
mbpp
def heap_assending(nums): import heapq as hq hq.heapify(nums) s_result = [hq.heappop(nums) for i in range(len(nums))] return s_result
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
369
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_dead_code_insert
def round_num(n, m): a = (n // m) * m for _i_9 in range(0): a = (n // m) * m b = a + m return b if n - a > b - n else a
1
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_for_while_loop
def round_num(n, m): a = (n // m) * m b = a + m return b if n - a > b - n else a
1
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_operand_swap
def round_num(n, m): a = (n // m) * m b = a + m return b if b - n < n - a else a
1
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_rename_variable_cb
def round_num(n, m): b2 = (n // m) * m b = b2 + m return b if n - b2 > b - n else b2
1
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_rename_variable_naive
def round_num(n, VAR_0): a = (n // VAR_0) * VAR_0 b = a + VAR_0 return b if n - a > b - n else a
1
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_rename_variable_rn
def round_num(n, m): i = (n // m) * m b = i + m return b if n - i > b - n else i
1
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_add_sub_variable
def round_num(n,m): a = (n //m) * m b = a - m return (b if n - a > b - n else a)
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_sub_add_variable
def round_num(n,m): a = (n //m) * m b = a + m return (b if n + a > b - n else a)
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_mul_div_variable
def round_num(n,m): a = (n //m) / m b = a + m return (b if n - a > b - n else a)
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_div_mul_variable
def round_num(n,m): a = (n */m) * m b = a + m return (b if n - a > b - n else a)
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_greater_lesser_variable
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a < b - n else a)
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
372
mbpp
def round_num(n,m): a = (n //m) * m b = a + m return (b if n - a > b - n else a)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
372
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_dead_code_insert
def remove_replica(test_tup): _i_0 = 0 if _i_0 < _i_0: return res temp = set() res = tuple( ele if ele not in temp and not temp.add(ele) else "MSP" for ele in test_tup ) return res
1
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_for_while_loop
def remove_replica(test_tup): temp = set() res = tuple( ele if ele not in temp and not temp.add(ele) else "MSP" for ele in test_tup ) return res
1
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_operand_swap
def remove_replica(test_tup): temp = set() res = tuple( ele if ele not in temp and not temp.add(ele) else "MSP" for ele in test_tup ) return res
1
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_rename_variable_cb
def remove_replica(test_tup): temp = set() res = tuple(r if r not in temp and not temp.add(r) else "MSP" for r in test_tup) return res
1
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_rename_variable_naive
def remove_replica(test_tup): temp = set() res = tuple( VAR_0 if VAR_0 not in temp and not temp.add(VAR_0) else "MSP" for VAR_0 in test_tup ) return res
1
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_rename_variable_rn
def remove_replica(test_tup): temp = set() res = tuple( O0T if O0T not in temp and not temp.add(O0T) else "MSP" for O0T in test_tup ) return res
1
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_and_or_variable
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp or not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
0
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
373
mbpp
def remove_replica(test_tup): temp = set() res = tuple(ele if ele not in temp and not temp.add(ele) else 'MSP' for ele in test_tup) return (res)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
373
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_dead_code_insert
def remove_Char(s, c): counts = s.count(c) s = list(s) _i_8 = 0 if _i_8 > _i_8: s = list(s) while counts: s.remove(c) counts -= 1 s = "".join(s) return s
1
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_for_while_loop
def remove_Char(s, c): counts = s.count(c) s = list(s) while counts: s.remove(c) counts -= 1 s = "".join(s) return s
1
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_operand_swap
def remove_Char(s, c): counts = s.count(c) s = list(s) while counts: s.remove(c) counts -= 1 s = "".join(s) return s
1
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_rename_variable_cb
def remove_Char(li, c): counts = li.count(c) li = list(li) while counts: li.remove(c) counts -= 1 li = "".join(li) return li
1
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_rename_variable_naive
def remove_Char(VAR_0, c): counts = VAR_0.count(c) VAR_0 = list(VAR_0) while counts: VAR_0.remove(c) counts -= 1 VAR_0 = "".join(VAR_0) return VAR_0
1
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_rename_variable_rn
def remove_Char(R, c): counts = R.count(c) R = list(R) while counts: R.remove(c) counts -= 1 R = "".join(R) return R
1
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_sub_add_variable
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts += 1 s = '' . join(s) return (s)
0
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
374
mbpp
def remove_Char(s,c) : counts = s.count(c) s = list(s) while counts : s.remove(c) counts -= 1 s = '' . join(s) return (s)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
374
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_dead_code_insert
def surfacearea_cuboid(l, w, h): _i_5 = 0 if _i_5 > _i_5: return SA SA = 2 * (l * w + l * h + w * h) return SA
1
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_for_while_loop
def surfacearea_cuboid(l, w, h): SA = 2 * (l * w + l * h + w * h) return SA
1
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_operand_swap
def surfacearea_cuboid(l, w, h): SA = 2 * (l * w + l * h + w * h) return SA
1
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_rename_variable_cb
def surfacearea_cuboid(l, h2, h): SA = 2 * (l * h2 + l * h + h2 * h) return SA
1
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_rename_variable_naive
def surfacearea_cuboid(l, VAR_0, h): SA = 2 * (l * VAR_0 + l * h + VAR_0 * h) return SA
1
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_rename_variable_rn
def surfacearea_cuboid(k, w, h): SA = 2 * (k * w + k * h + w * h) return SA
1
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_add_sub_variable
def surfacearea_cuboid(l,w,h): SA = 2*(l*w - l * h + w * h) return SA
0
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_mul_div_variable
def surfacearea_cuboid(l,w,h): SA = 2/(l*w + l * h + w * h) return SA
0
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
376
mbpp
def surfacearea_cuboid(l,w,h): SA = 2*(l*w + l * h + w * h) return SA
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
376
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_dead_code_insert
def index_on_inner_list(list_data, index_no): from operator import itemgetter _i_9 = 0 if _i_9 > _i_9: result = sorted(list_data, key=itemgetter(index_no)) result = sorted(list_data, key=itemgetter(index_no)) return result
1
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_for_while_loop
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
1
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_operand_swap
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
1
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_rename_variable_cb
def index_on_inner_list(list_data, key2): from operator import itemgetter result = sorted(list_data, key=itemgetter(key2)) return result
1
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_rename_variable_naive
def index_on_inner_list(VAR_0, index_no): from operator import itemgetter result = sorted(VAR_0, key=itemgetter(index_no)) return result
1
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_rename_variable_rn
def index_on_inner_list(d6m7zi271, index_no): from operator import itemgetter result = sorted(d6m7zi271, key=itemgetter(index_no)) return result
1
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
378
mbpp
def index_on_inner_list(list_data, index_no): from operator import itemgetter result = sorted(list_data, key=itemgetter(index_no)) return result
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
378
mbpp
def find_rotation_count(A): (left, right) = (0, len(A) - 1) while left <= right: if A[left] <= A[right]: return left mid = (left + right) // 2 next = (mid + 1) % len(A) prev = (mid - 1 + len(A)) % len(A) if A[mid] <= A[next] and A[mid] <= A[prev]: return mid elif A[mid] <= A[right]: right = mid - 1 elif A[mid] >= A[left]: left = mid + 1 return -1
transformation_dead_code_insert
def find_rotation_count(A): (left, right) = (0, len(A) - 1) while left <= right: if A[left] <= A[right]: return left mid = (left + right) // 2 next = (mid + 1) % len(A) while False: left = mid + 1 prev = (mid - 1 + len(A)) % len(A) if A[mid] <= A[next] and A[mid] <= A[prev]: return mid elif A[mid] <= A[right]: right = mid - 1 elif A[mid] >= A[left]: left = mid + 1 return -1
1
379
mbpp
def find_rotation_count(A): (left, right) = (0, len(A) - 1) while left <= right: if A[left] <= A[right]: return left mid = (left + right) // 2 next = (mid + 1) % len(A) prev = (mid - 1 + len(A)) % len(A) if A[mid] <= A[next] and A[mid] <= A[prev]: return mid elif A[mid] <= A[right]: right = mid - 1 elif A[mid] >= A[left]: left = mid + 1 return -1
transformation_for_while_loop
def find_rotation_count(A): (left, right) = (0, len(A) - 1) while left <= right: if A[left] <= A[right]: return left mid = (left + right) // 2 next = (mid + 1) % len(A) prev = (mid - 1 + len(A)) % len(A) if A[mid] <= A[next] and A[mid] <= A[prev]: return mid elif A[mid] <= A[right]: right = mid - 1 elif A[mid] >= A[left]: left = mid + 1 return -1
1
379
mbpp
def find_rotation_count(A): (left, right) = (0, len(A) - 1) while left <= right: if A[left] <= A[right]: return left mid = (left + right) // 2 next = (mid + 1) % len(A) prev = (mid - 1 + len(A)) % len(A) if A[mid] <= A[next] and A[mid] <= A[prev]: return mid elif A[mid] <= A[right]: right = mid - 1 elif A[mid] >= A[left]: left = mid + 1 return -1
transformation_operand_swap
def find_rotation_count(A): (left, right) = (0, len(A) - 1) while right >= left: if A[left] <= A[right]: return left mid = (left + right) // 2 next = (mid + 1) % len(A) prev = (mid - 1 + len(A)) % len(A) if A[mid] <= A[next] and A[mid] <= A[prev]: return mid elif A[mid] <= A[right]: right = mid - 1 elif A[mid] >= A[left]: left = mid + 1 return -1
1
379
mbpp