original_code
stringclasses
565 values
transformation
stringclasses
24 values
transformed_code
stringlengths
35
955
label
int64
0
1
groups
int64
1
971
dataset
stringclasses
1 value
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_greater_lesser_variable
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa < sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_equalto_exclamation_variable
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa != sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_or_and_variable
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb and sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
823
mbpp
def check_Type_Of_Triangle(a,b,c): sqa = pow(a,2) sqb = pow(b,2) sqc = pow(c,2) if (sqa == sqa + sqb or sqb == sqa + sqc or sqc == sqa + sqb): return ("Right-angled Triangle") elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): return ("Obtuse-angled Triangle") else: return ("Acute-angled Triangle")
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
823
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_dead_code_insert
def sum_column(list1, C): _i_5 = 0 if _i_5 < _i_5: return result result = sum(row[C] for row in list1) return result
1
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_for_while_loop
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
1
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_operand_swap
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
1
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_rename_variable_cb
def sum_column(list1, C): result = sum(c[C] for c in list1) return result
1
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_rename_variable_naive
def sum_column(list1, VAR_0): result = sum(row[VAR_0] for row in list1) return result
1
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_rename_variable_rn
def sum_column(list1, F): result = sum(row[F] for row in list1) return result
1
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
824
mbpp
def sum_column(list1, C): result = sum(row[C] for row in list1) return result
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
824
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_dead_code_insert
def second_frequent(input): _i_4 = 0 while _i_4 > _i_4: dict = Counter(input) from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return key
1
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_for_while_loop
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return key
1
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_operand_swap
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if second_large == val: return key
1
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_rename_variable_cb
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, value2) in dict.items(): if value2 == second_large: return key
1
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_rename_variable_naive
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) VAR_0 = value[1] for (key, val) in dict.items(): if val == VAR_0: return key
1
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_rename_variable_rn
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (om6, val) in dict.items(): if val == second_large: return om6
1
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_equalto_exclamation_variable
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val != second_large: return (key)
0
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
826
mbpp
def second_frequent(input): from collections import Counter dict = Counter(input) value = sorted(dict.values(), reverse=True) second_large = value[1] for (key, val) in dict.items(): if val == second_large: return (key)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
826
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_dead_code_insert
def count_Pairs(arr, n): _i_2 = 0 if _i_2 < _i_2: return cnt cnt = 0 for i in range(n): for j in range(i + 1, n): if arr[i] == arr[j]: cnt += 1 return cnt
1
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_for_while_loop
def count_Pairs(arr, n): cnt = 0 i = 0 while i < n: for j in range(i + 1, n): if arr[i] == arr[j]: cnt += 1 i += 1 return cnt
1
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_operand_swap
def count_Pairs(arr, n): cnt = 0 for i in range(n): for j in range(i + 1, n): if arr[j] == arr[i]: cnt += 1 return cnt
1
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_rename_variable_cb
def count_Pairs(arr, n): cnt = 0 for j2 in range(n): for j in range(j2 + 1, n): if arr[j2] == arr[j]: cnt += 1 return cnt
1
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_rename_variable_naive
def count_Pairs(arr, VAR_0): cnt = 0 for i in range(VAR_0): for j in range(i + 1, VAR_0): if arr[i] == arr[j]: cnt += 1 return cnt
1
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_rename_variable_rn
def count_Pairs(lTV, n): cnt = 0 for i in range(n): for j in range(i + 1, n): if lTV[i] == lTV[j]: cnt += 1 return cnt
1
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_add_sub_variable
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i - 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
0
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_equalto_exclamation_variable
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] != arr[j]): cnt += 1; return cnt;
0
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
828
mbpp
def count_Pairs(arr,n): cnt = 0; for i in range(n): for j in range(i + 1,n): if (arr[i] == arr[j]): cnt += 1; return cnt;
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
828
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_dead_code_insert
def extract_max(input): _i_4 = 0 if _i_4 < _i_4: numbers = re.findall("d+", input) import re numbers = re.findall("d+", input) numbers = map(int, numbers) return max(numbers)
1
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_for_while_loop
def extract_max(input): import re numbers = re.findall("d+", input) numbers = map(int, numbers) return max(numbers)
1
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_operand_swap
def extract_max(input): import re numbers = re.findall("d+", input) numbers = map(int, numbers) return max(numbers)
1
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_rename_variable_cb
def extract_max(input): import re input2 = re.findall("d+", input) input2 = map(int, input2) return max(input2)
1
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_rename_variable_naive
def extract_max(input): import re VAR_0 = re.findall("d+", input) VAR_0 = map(int, VAR_0) return max(VAR_0)
1
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_rename_variable_rn
def extract_max(input): import re q705r50 = re.findall("d+", input) q705r50 = map(int, q705r50) return max(q705r50)
1
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_add_sub_variable
def extract_max(input): import re numbers = re.findall('\d-',input) numbers = map(int,numbers) return max(numbers)
0
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
829
mbpp
def extract_max(input): import re numbers = re.findall('\d+',input) numbers = map(int,numbers) return max(numbers)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
829
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_dead_code_insert
def get_key(dict): list = [] _i_6 = 0 if _i_6 > _i_6: list.append(key) for key in dict.keys(): list.append(key) return list
1
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_for_while_loop
def get_key(dict): list = [] _key_i = 0 while _key_i < len(dict.keys()): key = dict.keys()[_key_i] list.append(key) _key_i += 1 return list
1
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_operand_swap
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
1
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_rename_variable_cb
def get_key(dict): list = [] for s in dict.keys(): list.append(s) return list
1
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_rename_variable_naive
def get_key(dict): list = [] for VAR_0 in dict.keys(): list.append(VAR_0) return list
1
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_rename_variable_rn
def get_key(dict): list = [] for C38 in dict.keys(): list.append(C38) return list
1
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
830
mbpp
def get_key(dict): list = [] for key in dict.keys(): list.append(key) return list
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
830
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_dead_code_insert
def generate_matrix(n): if n <= 0: return [] matrix = [row[:] for row in [[0] * n] * n] row_st = 0 row_ed = n - 1 col_st = 0 _i_2 = 0 if _i_2 > _i_2: for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = current current += 1 col_ed = n - 1 current = 1 while True: if current > n * n: break for c in range(col_st, col_ed + 1): matrix[row_st][c] = current current += 1 row_st += 1 for r in range(row_st, row_ed + 1): matrix[r][col_ed] = current current += 1 col_ed -= 1 for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = current current += 1 row_ed -= 1 for r in range(row_ed, row_st - 1, -1): matrix[r][col_st] = current current += 1 col_st += 1 return matrix
1
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_for_while_loop
def generate_matrix(n): if n <= 0: return [] matrix = [row[:] for row in [[0] * n] * n] row_st = 0 row_ed = n - 1 col_st = 0 col_ed = n - 1 current = 1 while True: if current > n * n: break c = col_st while c < col_ed + 1: matrix[row_st][c] = current current += 1 c += 1 row_st += 1 for r in range(row_st, row_ed + 1): matrix[r][col_ed] = current current += 1 col_ed -= 1 for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = current current += 1 row_ed -= 1 for r in range(row_ed, row_st - 1, -1): matrix[r][col_st] = current current += 1 col_st += 1 return matrix
1
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_operand_swap
def generate_matrix(n): if 0 >= n: return [] matrix = [row[:] for row in [[0] * n] * n] row_st = 0 row_ed = n - 1 col_st = 0 col_ed = n - 1 current = 1 while True: if current > n * n: break for c in range(col_st, col_ed + 1): matrix[row_st][c] = current current += 1 row_st += 1 for r in range(row_st, row_ed + 1): matrix[r][col_ed] = current current += 1 col_ed -= 1 for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = current current += 1 row_ed -= 1 for r in range(row_ed, row_st - 1, -1): matrix[r][col_st] = current current += 1 col_st += 1 return matrix
1
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_rename_variable_cb
def generate_matrix(n): if n <= 0: return [] matrix = [row[:] for row in [[0] * n] * n] row_st = 0 row_ed = n - 1 col_st = 0 col_ed = n - 1 r2 = 1 while True: if r2 > n * n: break for c in range(col_st, col_ed + 1): matrix[row_st][c] = r2 r2 += 1 row_st += 1 for r in range(row_st, row_ed + 1): matrix[r][col_ed] = r2 r2 += 1 col_ed -= 1 for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = r2 r2 += 1 row_ed -= 1 for r in range(row_ed, row_st - 1, -1): matrix[r][col_st] = r2 r2 += 1 col_st += 1 return matrix
1
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_rename_variable_naive
def generate_matrix(n): if n <= 0: return [] matrix = [row[:] for row in [[0] * n] * n] row_st = 0 row_ed = n - 1 col_st = 0 col_ed = n - 1 VAR_0 = 1 while True: if VAR_0 > n * n: break for c in range(col_st, col_ed + 1): matrix[row_st][c] = VAR_0 VAR_0 += 1 row_st += 1 for r in range(row_st, row_ed + 1): matrix[r][col_ed] = VAR_0 VAR_0 += 1 col_ed -= 1 for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = VAR_0 VAR_0 += 1 row_ed -= 1 for r in range(row_ed, row_st - 1, -1): matrix[r][col_st] = VAR_0 VAR_0 += 1 col_st += 1 return matrix
1
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_rename_variable_rn
def generate_matrix(n): if n <= 0: return [] matrix = [row[:] for row in [[0] * n] * n] row_st = 0 row_ed = n - 1 col_st = 0 col_ed = n - 1 BKF061h = 1 while True: if BKF061h > n * n: break for c in range(col_st, col_ed + 1): matrix[row_st][c] = BKF061h BKF061h += 1 row_st += 1 for r in range(row_st, row_ed + 1): matrix[r][col_ed] = BKF061h BKF061h += 1 col_ed -= 1 for c in range(col_ed, col_st - 1, -1): matrix[row_ed][c] = BKF061h BKF061h += 1 row_ed -= 1 for r in range(row_ed, row_st - 1, -1): matrix[r][col_st] = BKF061h BKF061h += 1 col_st += 1 return matrix
1
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_add_sub_variable
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed-1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_sub_add_variable
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n+1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_mul_div_variable
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]/n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_lesser_greater_variable
def generate_matrix(n): if n>=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_greater_lesser_variable
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current<n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
831
mbpp
def generate_matrix(n): if n<=0: return [] matrix=[row[:] for row in [[0]*n]*n] row_st=0 row_ed=n-1 col_st=0 col_ed=n-1 current=1 while (True): if current>n*n: break for c in range (col_st, col_ed+1): matrix[row_st][c]=current current+=1 row_st+=1 for r in range (row_st, row_ed+1): matrix[r][col_ed]=current current+=1 col_ed-=1 for c in range (col_ed, col_st-1, -1): matrix[row_ed][c]=current current+=1 row_ed-=1 for r in range (row_ed, row_st-1, -1): matrix[r][col_st]=current current+=1 col_st+=1 return matrix
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
831
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_dead_code_insert
def slope(x1, y1, x2, y2): for _i_5 in range(0): return (float)(y2 - y1) / (x2 - x1) return (float)(y2 - y1) / (x2 - x1)
1
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_sub_add_variable
def slope(x1,y1,x2,y2): return (float)(y2+y1)/(x2-x1)
0
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_div_mul_variable
def slope(x1,y1,x2,y2): return (float)(y2-y1)*(x2-x1)
0
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
832
mbpp
def slope(x1,y1,x2,y2): return (float)(y2-y1)/(x2-x1)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
832
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_dead_code_insert
def max_sub_array_sum(a, size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 _i_1 = 0 if _i_1 > _i_1: end = 0 end = 0 s = 0 for i in range(0, size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i + 1 return end - start + 1
1
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_for_while_loop
def max_sub_array_sum(a, size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 i = 0 while i < size: max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i + 1 i += 1 return end - start + 1
1
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_operand_swap
def max_sub_array_sum(a, size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0, size): max_ending_here += a[i] if max_ending_here > max_so_far: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i + 1 return end - start + 1
1
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_rename_variable_cb
def max_sub_array_sum(a, size): from sys import maxsize max_so_far = -maxsize - 1 i2 = 0 start = 0 end = 0 s = 0 for i in range(0, size): i2 += a[i] if max_so_far < i2: max_so_far = i2 start = s end = i if i2 < 0: i2 = 0 s = i + 1 return end - start + 1
1
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_rename_variable_naive
def max_sub_array_sum(a, size): from sys import maxsize max_so_far = -maxsize - 1 VAR_0 = 0 start = 0 end = 0 s = 0 for i in range(0, size): VAR_0 += a[i] if max_so_far < VAR_0: max_so_far = VAR_0 start = s end = i if VAR_0 < 0: VAR_0 = 0 s = i + 1 return end - start + 1
1
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_rename_variable_rn
def max_sub_array_sum(a, size): from sys import maxsize max_so_far = -maxsize - 1 x1179D187l0m9f1 = 0 start = 0 end = 0 s = 0 for i in range(0, size): x1179D187l0m9f1 += a[i] if max_so_far < x1179D187l0m9f1: max_so_far = x1179D187l0m9f1 start = s end = i if x1179D187l0m9f1 < 0: x1179D187l0m9f1 = 0 s = i + 1 return end - start + 1
1
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_add_sub_variable
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here -= a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
0
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_sub_add_variable
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = +maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
0
833
mbpp
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
transformation_lesser_greater_variable
def max_sub_array_sum(a,size): from sys import maxsize max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0,size): max_ending_here += a[i] if max_so_far > max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 return (end - start + 1)
0
833
mbpp