original_code
stringclasses 565
values | transformation
stringclasses 24
values | transformed_code
stringlengths 35
955
| label
int64 0
1
| groups
int64 1
971
| dataset
stringclasses 1
value |
---|---|---|---|---|---|
def sort_even(l: list):
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 37 |
mbpp
|
def sort_even(l: list):
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 37 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_add_sub_variable
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i - 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_mul_div_variable
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 / i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_div_mul_variable
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) */ 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_equalto_exclamation_variable
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) != 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 38 |
mbpp
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 38 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_dead_code_insert
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
for _i_4 in range(0):
return True
if l[i] + l[j] + l[k] == 0:
return True
return False
| 1 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_for_while_loop
|
def triples_sum_to_zero(l: list):
i = 0
while i < len(l):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
i += 1
return False
| 1 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_operand_swap
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if 0 == l[i] + l[j] + l[k]:
return True
return False
| 1 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_rename_variable_cb
|
def triples_sum_to_zero(i2: list):
for i in range(len(i2)):
for j in range(i + 1, len(i2)):
for k in range(j + 1, len(i2)):
if i2[i] + i2[j] + i2[k] == 0:
return True
return False
| 1 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_rename_variable_naive
|
def triples_sum_to_zero(VAR_0: list):
for i in range(len(VAR_0)):
for j in range(i + 1, len(VAR_0)):
for k in range(j + 1, len(VAR_0)):
if VAR_0[i] + VAR_0[j] + VAR_0[k] == 0:
return True
return False
| 1 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_rename_variable_rn
|
def triples_sum_to_zero(U: list):
for i in range(len(U)):
for j in range(i + 1, len(U)):
for k in range(j + 1, len(U)):
if U[i] + U[j] + U[k] == 0:
return True
return False
| 1 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_add_sub_variable
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i - 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_equalto_exclamation_variable
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] != 0:
return True
return False
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_true_false_variable
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return False
return False
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_false_true_variable
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return True
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 40 |
mbpp
|
def triples_sum_to_zero(l: list):
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 40 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_mul_div_variable
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a / h / 2.0
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_div_mul_variable
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h * 2.0
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_greater_lesser_variable
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
<>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_and_or_variable
|
def triangle_area(a, h):
"""Given length of a side or high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 45 |
mbpp
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 45 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_dead_code_insert
|
def fib4(n: int):
for _i_1 in range(0):
results = [0, 0, 2, 0]
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
| 1 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_for_while_loop
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
_ = 4
while _ < n + 1:
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
_ += 1
return results[-1]
| 1 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_operand_swap
|
def fib4(n: int):
results = [0, 0, 2, 0]
if 4 > n:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
| 1 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_rename_variable_cb
|
def fib4(n: int):
n2 = [0, 0, 2, 0]
if n < 4:
return n2[n]
for _ in range(4, n + 1):
n2.append(n2[-1] + n2[-2] + n2[-3] + n2[-4])
n2.pop(0)
return n2[-1]
| 1 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_rename_variable_naive
|
def fib4(n: int):
VAR_0 = [0, 0, 2, 0]
if n < 4:
return VAR_0[n]
for _ in range(4, n + 1):
VAR_0.append(VAR_0[-1] + VAR_0[-2] + VAR_0[-3] + VAR_0[-4])
VAR_0.pop(0)
return VAR_0[-1]
| 1 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_rename_variable_rn
|
def fib4(n: int):
k9ob11y = [0, 0, 2, 0]
if n < 4:
return k9ob11y[n]
for _ in range(4, n + 1):
k9ob11y.append(k9ob11y[-1] + k9ob11y[-2] + k9ob11y[-3] + k9ob11y[-4])
k9ob11y.pop(0)
return k9ob11y[-1]
| 1 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_add_sub_variable
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n - 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_sub_add_variable
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[+1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_lesser_greater_variable
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n > 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 46 |
mbpp
|
def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 46 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_dead_code_insert
|
def median(l: list):
_i_5 = 0
while _i_5 < _i_5:
l = sorted(l)
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
| 1 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_for_while_loop
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
| 1 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_operand_swap
|
def median(l: list):
l = sorted(l)
if 1 == len(l) % 2:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
| 1 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_rename_variable_cb
|
def median(se: list):
se = sorted(se)
if len(se) % 2 == 1:
return se[len(se) // 2]
else:
return (se[len(se) // 2 - 1] + se[len(se) // 2]) / 2.0
| 1 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_rename_variable_naive
|
def median(VAR_0: list):
VAR_0 = sorted(VAR_0)
if len(VAR_0) % 2 == 1:
return VAR_0[len(VAR_0) // 2]
else:
return (VAR_0[len(VAR_0) // 2 - 1] + VAR_0[len(VAR_0) // 2]) / 2.0
| 1 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_rename_variable_rn
|
def median(p: list):
p = sorted(p)
if len(p) % 2 == 1:
return p[len(p) // 2]
else:
return (p[len(p) // 2 - 1] + p[len(p) // 2]) / 2.0
| 1 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_add_sub_variable
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] - l[len(l) // 2]) / 2.0
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_sub_add_variable
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 + 1] + l[len(l) // 2]) / 2.0
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_div_mul_variable
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) */ 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_equalto_exclamation_variable
|
def median(l: list):
l = sorted(l)
if len(l) % 2 != 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 47 |
mbpp
|
def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 47 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_dead_code_insert
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
_i_8 = 0
if _i_8 < _i_8:
return False
return False
return True
| 1 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_for_while_loop
|
def is_palindrome(text: str):
i = 0
while i < len(text):
if text[i] != text[len(text) - 1 - i]:
return False
i += 1
return True
| 1 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_operand_swap
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[len(text) - 1 - i] != text[i]:
return False
return True
| 1 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_rename_variable_cb
|
def is_palindrome(line: str):
for i in range(len(line)):
if line[i] != line[len(line) - 1 - i]:
return False
return True
| 1 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_rename_variable_naive
|
def is_palindrome(VAR_0: str):
for i in range(len(VAR_0)):
if VAR_0[i] != VAR_0[len(VAR_0) - 1 - i]:
return False
return True
| 1 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_rename_variable_rn
|
def is_palindrome(dShR: str):
for i in range(len(dShR)):
if dShR[i] != dShR[len(dShR) - 1 - i]:
return False
return True
| 1 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_sub_add_variable
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) + 1 - i]:
return False
return True
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_exclamation_equalto_variable
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] == text[len(text) - 1 - i]:
return False
return True
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_true_false_variable
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return False
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_false_true_variable
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return True
return True
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 48 |
mbpp
|
def is_palindrome(text: str):
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 48 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_add_sub_variable
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
| 0 | 50 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_sub_add_variable
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 + ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
| 0 | 50 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 50 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 50 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 50 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 50 |
mbpp
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 50 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_dead_code_insert
|
def below_threshold(l: list, t: int):
for e in l:
_i_1 = 0
while _i_1 > _i_1:
return False
if e >= t:
return False
return True
| 1 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_for_while_loop
|
def below_threshold(l: list, t: int):
_e_i = 0
while _e_i < len(l):
e = l[_e_i]
if e >= t:
return False
_e_i += 1
return True
| 1 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_operand_swap
|
def below_threshold(l: list, t: int):
for e in l:
if t <= e:
return False
return True
| 1 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_rename_variable_cb
|
def below_threshold(l: list, t: int):
for r in l:
if r >= t:
return False
return True
| 1 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_rename_variable_naive
|
def below_threshold(l: list, VAR_0: int):
for e in l:
if e >= VAR_0:
return False
return True
| 1 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_rename_variable_rn
|
def below_threshold(l: list, t: int):
for i in l:
if i >= t:
return False
return True
| 1 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_greater_lesser_variable
|
def below_threshold(l: list, t: int):
for e in l:
if e <= t:
return False
return True
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_true_false_variable
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return False
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_false_true_variable
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return True
return True
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_dissimilar_code_injection_0
|
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_dissimilar_code_injection_1
|
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_dissimilar_code_injection_2
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_dissimilar_code_injection_3
|
from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
| 0 | 52 |
mbpp
|
def below_threshold(l: list, t: int):
for e in l:
if e >= t:
return False
return True
|
transformation_dissimilar_code_injection_4
|
from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
| 0 | 52 |
mbpp
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.