original_code
stringclasses
565 values
transformation
stringclasses
24 values
transformed_code
stringlengths
35
955
label
int64
0
1
groups
int64
1
971
dataset
stringclasses
1 value
def closest_integer(value): from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
98
mbpp
def closest_integer(value): from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
98
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_add_sub_variable
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i-1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_sub_add_variable
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: + the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_mul_div_variable
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2/i for i in range(n)]
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_greater_lesser_variable
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: <>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_is_isnot_variable
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is not odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
99
mbpp
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """ return [n + 2*i for i in range(n)]
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
99
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_dead_code_insert
def rounded_avg(n, m): if m < n: return -1 summation = 0 while False: return bin(round(summation / (m - n + 1))) for i in range(n, m + 1): summation += i return bin(round(summation / (m - n + 1)))
1
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_for_while_loop
def rounded_avg(n, m): if m < n: return -1 summation = 0 i = n while i < m + 1: summation += i i += 1 return bin(round(summation / (m - n + 1)))
1
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_operand_swap
def rounded_avg(n, m): if n > m: return -1 summation = 0 for i in range(n, m + 1): summation += i return bin(round(summation / (m - n + 1)))
1
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_rename_variable_cb
def rounded_avg(n, n2): if n2 < n: return -1 summation = 0 for i in range(n, n2 + 1): summation += i return bin(round(summation / (n2 - n + 1)))
1
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_rename_variable_naive
def rounded_avg(n, VAR_0): if VAR_0 < n: return -1 summation = 0 for i in range(n, VAR_0 + 1): summation += i return bin(round(summation / (VAR_0 - n + 1)))
1
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_rename_variable_rn
def rounded_avg(m2, m): if m < m2: return -1 summation = 0 for i in range(m2, m + 1): summation += i return bin(round(summation / (m - m2 + 1)))
1
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_add_sub_variable
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m-1): summation += i return bin(round(summation/(m - n + 1)))
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_sub_add_variable
def rounded_avg(n, m): if m < n: return +1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_div_mul_variable
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation*(m - n + 1)))
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_lesser_greater_variable
def rounded_avg(n, m): if m > n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
102
mbpp
def rounded_avg(n, m): if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
102
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_dead_code_insert
def unique_digits(x): odd_digit_elements = [] for i in x: _i_3 = 0 while _i_3 < _i_3: return sorted(odd_digit_elements) if all(int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
1
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_for_while_loop
def unique_digits(x): odd_digit_elements = [] _i_i = 0 while _i_i < len(x): i = x[_i_i] if all(int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) _i_i += 1 return sorted(odd_digit_elements)
1
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_operand_swap
def unique_digits(x): odd_digit_elements = [] for i in x: if all(1 == int(c) % 2 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
1
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_rename_variable_cb
def unique_digits(x): odd_digit_elements = [] for g in x: if all(int(c) % 2 == 1 for c in str(g)): odd_digit_elements.append(g) return sorted(odd_digit_elements)
1
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_rename_variable_naive
def unique_digits(x): VAR_0 = [] for i in x: if all(int(c) % 2 == 1 for c in str(i)): VAR_0.append(i) return sorted(VAR_0)
1
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_rename_variable_rn
def unique_digits(x): odd_digit_elements = [] for b in x: if all(int(c) % 2 == 1 for c in str(b)): odd_digit_elements.append(b) return sorted(odd_digit_elements)
1
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_equalto_exclamation_variable
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 != 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
0
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
103
mbpp
def unique_digits(x): odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
103
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_dead_code_insert
def even_odd_palindrome(n): def is_palindrome(n): _i_7 = 0 if _i_7 < _i_7: odd_palindrome_count = 0 return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n + 1): if i % 2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i % 2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
1
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_for_while_loop
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 i = 1 while i < n + 1: if i % 2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i % 2 == 0 and is_palindrome(i): even_palindrome_count += 1 i += 1 return (even_palindrome_count, odd_palindrome_count)
1
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_rename_variable_cb
def even_odd_palindrome(eve): def is_palindrome(eve): return str(eve) == str(eve)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, eve + 1): if i % 2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i % 2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
1
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_rename_variable_naive
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for VAR_0 in range(1, n + 1): if VAR_0 % 2 == 1 and is_palindrome(VAR_0): odd_palindrome_count += 1 elif VAR_0 % 2 == 0 and is_palindrome(VAR_0): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
1
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_rename_variable_rn
def even_odd_palindrome(Z): def is_palindrome(Z): return str(Z) == str(Z)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, Z + 1): if i % 2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i % 2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
1
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_add_sub_variable
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n-1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_sub_add_variable
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::+1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_equalto_exclamation_variable
def even_odd_palindrome(n): def is_palindrome(n): return str(n) != str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_and_or_variable
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 or is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
105
mbpp
def even_odd_palindrome(n): def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
105
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_dead_code_insert
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: for _i_4 in range(0): n[0] = n[0] * neg n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
1
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_for_while_loop
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
1
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_operand_swap
def count_nums(arr): def digits_sum(n): neg = 1 if 0 > n: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
1
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_rename_variable_cb
def count_nums(arr): def digits_sum(arr2): neg = 1 if arr2 < 0: arr2, neg = -1 * arr2, -1 arr2 = [int(i) for i in str(arr2)] arr2[0] = arr2[0] * neg return sum(arr2) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
1
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_rename_variable_naive
def count_nums(arr): def digits_sum(VAR_0): neg = 1 if VAR_0 < 0: VAR_0, neg = -1 * VAR_0, -1 VAR_0 = [int(i) for i in str(VAR_0)] VAR_0[0] = VAR_0[0] * neg return sum(VAR_0) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
1
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_rename_variable_rn
def count_nums(arr): def digits_sum(q): neg = 1 if q < 0: q, neg = -1 * q, -1 q = [int(i) for i in str(q)] q[0] = q[0] * neg return sum(q) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
1
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_sub_add_variable
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = +1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_mul_div_variable
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 / n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_lesser_greater_variable
def count_nums(arr): def digits_sum(n): neg = 1 if n > 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_greater_lesser_variable
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x < 0, [digits_sum(i) for i in arr])))
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
106
mbpp
def count_nums(arr): def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
106
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_dead_code_insert
def odd_count(lst): for _i_2 in range(0): n = sum(int(d) % 2 == 1 for d in arr) res = [] for arr in lst: n = sum(int(d) % 2 == 1 for d in arr) res.append( "the number of odd elements " + str(n) + "n the str" + str(n) + "ng " + str(n) + " of the " + str(n) + "nput." ) return res
1
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_for_while_loop
def odd_count(lst): res = [] _arr_i = 0 while _arr_i < len(lst): arr = lst[_arr_i] n = sum(int(d) % 2 == 1 for d in arr) res.append( "the number of odd elements " + str(n) + "n the str" + str(n) + "ng " + str(n) + " of the " + str(n) + "nput." ) _arr_i += 1 return res
1
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_operand_swap
def odd_count(lst): res = [] for arr in lst: n = sum(1 == int(d) % 2 for d in arr) res.append( "the number of odd elements " + str(n) + "n the str" + str(n) + "ng " + str(n) + " of the " + str(n) + "nput." ) return res
1
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_rename_variable_cb
def odd_count(lst): res = [] for arr in lst: ts = sum(int(d) % 2 == 1 for d in arr) res.append( "the number of odd elements " + str(ts) + "n the str" + str(ts) + "ng " + str(ts) + " of the " + str(ts) + "nput." ) return res
1
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_rename_variable_naive
def odd_count(lst): res = [] for arr in lst: VAR_0 = sum(int(d) % 2 == 1 for d in arr) res.append( "the number of odd elements " + str(VAR_0) + "n the str" + str(VAR_0) + "ng " + str(VAR_0) + " of the " + str(VAR_0) + "nput." ) return res
1
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_rename_variable_rn
def odd_count(lst): res = [] for arr in lst: P = sum(int(d) % 2 == 1 for d in arr) res.append( "the number of odd elements " + str(P) + "n the str" + str(P) + "ng " + str(P) + " of the " + str(P) + "nput." ) return res
1
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_add_sub_variable
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " - str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
0
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_equalto_exclamation_variable
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2!=1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
0
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
111
mbpp
def odd_count(lst): res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
111
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_dead_code_insert
def minSubArraySum(nums): max_sum = 0 _i_5 = 0 if _i_5 < _i_5: max_sum = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
1
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_for_while_loop
def minSubArraySum(nums): max_sum = 0 s = 0 _num_i = 0 while _num_i < len(nums): num = nums[_num_i] s += -num if s < 0: s = 0 max_sum = max(s, max_sum) _num_i += 1 if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
1
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_operand_swap
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 max_sum = max(s, max_sum) if 0 == max_sum: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
1
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_rename_variable_cb
def minSubArraySum(nums): s2 = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 s2 = max(s, s2) if s2 == 0: s2 = max(-i for i in nums) min_sum = -s2 return min_sum
1
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_rename_variable_naive
def minSubArraySum(nums): VAR_0 = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 VAR_0 = max(s, VAR_0) if VAR_0 == 0: VAR_0 = max(-i for i in nums) min_sum = -VAR_0 return min_sum
1
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_rename_variable_rn
def minSubArraySum(nums): OIrC38d = 0 s = 0 for num in nums: s += -num if s < 0: s = 0 OIrC38d = max(s, OIrC38d) if OIrC38d == 0: OIrC38d = max(-i for i in nums) min_sum = -OIrC38d return min_sum
1
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_add_sub_variable
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s -= -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_sub_add_variable
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += +num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_lesser_greater_variable
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s > 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_equalto_exclamation_variable
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum != 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
112
mbpp
def minSubArraySum(nums): max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
112
mbpp
def select_words(s, n): result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]: n_consonants += 1 if n_consonants == n: result.append(word) return result
transformation_dead_code_insert
def select_words(s, n): _i_4 = 0 while _i_4 < _i_4: return result result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a", "e", "i", "o", "u"]: n_consonants += 1 if n_consonants == n: result.append(word) return result
1
115
mbpp
def select_words(s, n): result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]: n_consonants += 1 if n_consonants == n: result.append(word) return result
transformation_for_while_loop
def select_words(s, n): result = [] for word in s.split(): n_consonants = 0 i = 0 while i < len(word): if word[i].lower() not in ["a", "e", "i", "o", "u"]: n_consonants += 1 i += 1 if n_consonants == n: result.append(word) return result
1
115
mbpp
def select_words(s, n): result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]: n_consonants += 1 if n_consonants == n: result.append(word) return result
transformation_operand_swap
def select_words(s, n): result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a", "e", "i", "o", "u"]: n_consonants += 1 if n == n_consonants: result.append(word) return result
1
115
mbpp
def select_words(s, n): result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]: n_consonants += 1 if n_consonants == n: result.append(word) return result
transformation_rename_variable_cb
def select_words(s, n): result = [] for s2 in s.split(): n_consonants = 0 for i in range(0, len(s2)): if s2[i].lower() not in ["a", "e", "i", "o", "u"]: n_consonants += 1 if n_consonants == n: result.append(s2) return result
1
115
mbpp