original_code
stringclasses 565
values | transformation
stringclasses 24
values | transformed_code
stringlengths 35
955
| label
int64 0
1
| groups
int64 1
971
| dataset
stringclasses 1
value |
---|---|---|---|---|---|
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_sub_add_variable | def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize+1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_greater_lesser_variable | def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))<1:
return False
return True | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_true_false_variable | def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return False | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_false_true_variable | def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return True
return True | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 126 | mbpp |
def magic_square_test(my_matrix):
iSize = len(my_matrix[0])
sum_list = []
sum_list.extend([sum (lines) for lines in my_matrix])
for col in range(iSize):
sum_list.append(sum(row[col] for row in my_matrix))
result1 = 0
for i in range(0,iSize):
result1 +=my_matrix[i][i]
sum_list.append(result1)
result2 = 0
for i in range(iSize-1,-1,-1):
result2 +=my_matrix[i][i]
sum_list.append(result2)
if len(set(sum_list))>1:
return False
return True | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 126 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_dead_code_insert | def max_occurrences(nums):
for _i_0 in range(0):
dict[i] += 1
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | 1 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_for_while_loop | def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
_i_i = 0
while _i_i < len(nums):
i = nums[_i_i]
dict[i] += 1
_i_i += 1
result = max(dict.items(), key=lambda x: x[1])
return result | 1 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_operand_swap | def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | 1 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_rename_variable_naive | def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda VAR_0: VAR_0[1])
return result | 1 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_rename_variable_rn | def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for M in nums:
dict[M] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | 1 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_add_sub_variable | def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] -= 1
result = max(dict.items(), key=lambda x: x[1])
return result | 0 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 127 | mbpp |
def max_occurrences(nums):
from collections import defaultdict
dict = defaultdict(int)
for i in nums:
dict[i] += 1
result = max(dict.items(), key=lambda x: x[1])
return result | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 127 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_dead_code_insert | def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
_i_9 = 0
while _i_9 < _i_9:
vowels = vowels[:-1]
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | 1 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_for_while_loop | def reverse_vowels(str1):
vowels = ""
_char_i = 0
while _char_i < len(str1):
char = str1[_char_i]
if char in "aeiouAEIOU":
vowels += char
_char_i += 1
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | 1 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_operand_swap | def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | 1 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_rename_variable_cb | def reverse_vowels(str1):
vowels = ""
for word in str1:
if word in "aeiouAEIOU":
vowels += word
result_string = ""
for word in str1:
if word in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += word
return result_string | 1 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_rename_variable_naive | def reverse_vowels(str1):
vowels = ""
for VAR_0 in str1:
if VAR_0 in "aeiouAEIOU":
vowels += VAR_0
result_string = ""
for VAR_0 in str1:
if VAR_0 in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += VAR_0
return result_string | 1 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_rename_variable_rn | def reverse_vowels(str1):
vowels = ""
for SbH2 in str1:
if SbH2 in "aeiouAEIOU":
vowels += SbH2
result_string = ""
for SbH2 in str1:
if SbH2 in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += SbH2
return result_string | 1 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_add_sub_variable | def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels -= char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | 0 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_sub_add_variable | def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[+1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | 0 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 128 | mbpp |
def reverse_vowels(str1):
vowels = ""
for char in str1:
if char in "aeiouAEIOU":
vowels += char
result_string = ""
for char in str1:
if char in "aeiouAEIOU":
result_string += vowels[-1]
vowels = vowels[:-1]
else:
result_string += char
return result_string | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 128 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_dead_code_insert | def tup_string(tup1):
_i_9 = 0
while _i_9 > _i_9:
str = "".join(tup1)
str = "".join(tup1)
return str | 1 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_for_while_loop | def tup_string(tup1):
str = "".join(tup1)
return str | 1 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_operand_swap | def tup_string(tup1):
str = "".join(tup1)
return str | 1 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_rename_variable_cb | def tup_string(line):
str = "".join(line)
return str | 1 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_rename_variable_naive | def tup_string(VAR_0):
str = "".join(VAR_0)
return str | 1 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_rename_variable_rn | def tup_string(v7H3):
str = "".join(v7H3)
return str | 1 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 129 | mbpp |
def tup_string(tup1):
str = ''.join(tup1)
return str | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 129 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_dead_code_insert | def sum_negativenum(nums):
_i_2 = 0
if _i_2 > _i_2:
sum_negativenum = list(filter(lambda nums: nums < 0, nums))
sum_negativenum = list(filter(lambda nums: nums < 0, nums))
return sum(sum_negativenum) | 1 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_for_while_loop | def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums: nums < 0, nums))
return sum(sum_negativenum) | 1 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_operand_swap | def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums: 0 > nums, nums))
return sum(sum_negativenum) | 1 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_rename_variable_cb | def sum_negativenum(x):
sum_negativenum = list(filter(lambda x: x < 0, x))
return sum(sum_negativenum) | 1 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_rename_variable_naive | def sum_negativenum(VAR_0):
sum_negativenum = list(filter(lambda VAR_0: VAR_0 < 0, VAR_0))
return sum(sum_negativenum) | 1 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_rename_variable_rn | def sum_negativenum(UHG2):
sum_negativenum = list(filter(lambda UHG2: UHG2 < 0, UHG2))
return sum(sum_negativenum) | 1 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_lesser_greater_variable | def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums>0,nums))
return sum(sum_negativenum) | 0 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 130 | mbpp |
def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum) | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 130 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_dead_code_insert | def zero_count(nums):
from array import array
if False:
n1 += 1
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1 / n, 2) | 1 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_for_while_loop | def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
_x_i = 0
while _x_i < len(nums):
x = nums[_x_i]
if x == 0:
n1 += 1
else:
None
_x_i += 1
return round(n1 / n, 2) | 1 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_operand_swap | def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if 0 == x:
n1 += 1
else:
None
return round(n1 / n, 2) | 1 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_rename_variable_cb | def zero_count(nums):
from array import array
n = len(nums)
n2 = 0
for x in nums:
if x == 0:
n2 += 1
else:
None
return round(n2 / n, 2) | 1 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_rename_variable_naive | def zero_count(nums):
from array import array
n = len(nums)
VAR_0 = 0
for x in nums:
if x == 0:
VAR_0 += 1
else:
None
return round(VAR_0 / n, 2) | 1 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_rename_variable_rn | def zero_count(E4I4):
from array import array
n = len(E4I4)
n1 = 0
for x in E4I4:
if x == 0:
n1 += 1
else:
None
return round(n1 / n, 2) | 1 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_add_sub_variable | def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 -= 1
else:
None
return round(n1/n,2) | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_div_mul_variable | def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1*n,2) | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_equalto_exclamation_variable | def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x != 0:
n1 += 1
else:
None
return round(n1/n,2) | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 134 | mbpp |
def zero_count(nums):
from array import array
n = len(nums)
n1 = 0
for x in nums:
if x == 0:
n1 += 1
else:
None
return round(n1/n,2) | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 134 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_dead_code_insert | def pancake_sort(nums):
for _i_3 in range(0):
arr_len = len(nums)
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi + 1 : len(nums)]
nums = nums[arr_len - 1 :: -1] + nums[arr_len : len(nums)]
arr_len -= 1
return nums | 1 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_for_while_loop | def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi + 1 : len(nums)]
nums = nums[arr_len - 1 :: -1] + nums[arr_len : len(nums)]
arr_len -= 1
return nums | 1 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_operand_swap | def pancake_sort(nums):
arr_len = len(nums)
while 1 < arr_len:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi + 1 : len(nums)]
nums = nums[arr_len - 1 :: -1] + nums[arr_len : len(nums)]
arr_len -= 1
return nums | 1 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_rename_variable_cb | def pancake_sort(arr):
arr_len = len(arr)
while arr_len > 1:
mi = arr.index(max(arr[0:arr_len]))
arr = arr[mi::-1] + arr[mi + 1 : len(arr)]
arr = arr[arr_len - 1 :: -1] + arr[arr_len : len(arr)]
arr_len -= 1
return arr | 1 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_rename_variable_naive | def pancake_sort(VAR_0):
arr_len = len(VAR_0)
while arr_len > 1:
mi = VAR_0.index(max(VAR_0[0:arr_len]))
VAR_0 = VAR_0[mi::-1] + VAR_0[mi + 1 : len(VAR_0)]
VAR_0 = VAR_0[arr_len - 1 :: -1] + VAR_0[arr_len : len(VAR_0)]
arr_len -= 1
return VAR_0 | 1 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_rename_variable_rn | def pancake_sort(l4F7):
arr_len = len(l4F7)
while arr_len > 1:
mi = l4F7.index(max(l4F7[0:arr_len]))
l4F7 = l4F7[mi::-1] + l4F7[mi + 1 : len(l4F7)]
l4F7 = l4F7[arr_len - 1 :: -1] + l4F7[arr_len : len(l4F7)]
arr_len -= 1
return l4F7 | 1 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_add_sub_variable | def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] - nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_sub_add_variable | def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::+1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_greater_lesser_variable | def pancake_sort(nums):
arr_len = len(nums)
while arr_len < 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 138 | mbpp |
def pancake_sort(nums):
arr_len = len(nums)
while arr_len > 1:
mi = nums.index(max(nums[0:arr_len]))
nums = nums[mi::-1] + nums[mi+1:len(nums)]
nums = nums[arr_len-1::-1] + nums[arr_len:len(nums)]
arr_len -= 1
return nums | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 138 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_dead_code_insert | def max_Abs_Diff(arr, n):
for _i_3 in range(0):
return maxEle - minEle
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle, arr[i])
maxEle = max(maxEle, arr[i])
return maxEle - minEle | 1 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_for_while_loop | def max_Abs_Diff(arr, n):
minEle = arr[0]
maxEle = arr[0]
i = 1
while i < n:
minEle = min(minEle, arr[i])
maxEle = max(maxEle, arr[i])
i += 1
return maxEle - minEle | 1 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_operand_swap | def max_Abs_Diff(arr, n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle, arr[i])
maxEle = max(maxEle, arr[i])
return maxEle - minEle | 1 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_rename_variable_cb | def max_Abs_Diff(n2, n):
minEle = n2[0]
maxEle = n2[0]
for i in range(1, n):
minEle = min(minEle, n2[i])
maxEle = max(maxEle, n2[i])
return maxEle - minEle | 1 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_rename_variable_naive | def max_Abs_Diff(VAR_0, n):
minEle = VAR_0[0]
maxEle = VAR_0[0]
for i in range(1, n):
minEle = min(minEle, VAR_0[i])
maxEle = max(maxEle, VAR_0[i])
return maxEle - minEle | 1 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_rename_variable_rn | def max_Abs_Diff(Ueh, n):
minEle = Ueh[0]
maxEle = Ueh[0]
for i in range(1, n):
minEle = min(minEle, Ueh[i])
maxEle = max(maxEle, Ueh[i])
return maxEle - minEle | 1 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_sub_add_variable | def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle + minEle) | 0 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_dissimilar_code_injection_0 | def min_cost(cost, m, n):
R = 3
C = 3
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]
return tc[m][n] | 0 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_dissimilar_code_injection_1 | def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res) | 0 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_dissimilar_code_injection_2 | def is_not_prime(n):
import math
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:
result = True
return result | 0 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_dissimilar_code_injection_3 | def heap_queue_largest(nums,n):
import heapq as hq
largest_nums = hq.nlargest(n, nums)
return largest_nums | 0 | 142 | mbpp |
def max_Abs_Diff(arr,n):
minEle = arr[0]
maxEle = arr[0]
for i in range(1, n):
minEle = min(minEle,arr[i])
maxEle = max(maxEle,arr[i])
return (maxEle - minEle) | transformation_dissimilar_code_injection_4 | def count_ways(n):
A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):
A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]
return A[n] | 0 | 142 | mbpp |
def ascii_value_string(str1):
for i in range(len(str1)):
return ord(str1[i]) | transformation_dead_code_insert | def ascii_value_string(str1):
for _i_4 in range(0):
return ord(str1[i])
for i in range(len(str1)):
return ord(str1[i]) | 1 | 143 | mbpp |
def ascii_value_string(str1):
for i in range(len(str1)):
return ord(str1[i]) | transformation_for_while_loop | def ascii_value_string(str1):
i = 0
while i < len(str1):
return ord(str1[i])
i += 1 | 1 | 143 | mbpp |
def ascii_value_string(str1):
for i in range(len(str1)):
return ord(str1[i]) | transformation_operand_swap | def ascii_value_string(str1):
for i in range(len(str1)):
return ord(str1[i]) | 1 | 143 | mbpp |
def ascii_value_string(str1):
for i in range(len(str1)):
return ord(str1[i]) | transformation_rename_variable_cb | def ascii_value_string(lines):
for i in range(len(lines)):
return ord(lines[i]) | 1 | 143 | mbpp |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.