content
stringlengths
0
894k
type
stringclasses
2 values
from SpellCorrect import input_processing from Organize_Names import Corpus_Combo, Combined_words,Word_Classfication,import_file,Remov_Num,Remove_nan,Remove_strNum,Clean_Word,Valuable_word from Import_corpus import input_file from Get_Synonyms import Get_SynonymFromlst from Standard_corpus import standarlized_output,descript_corpus from BuiltinAll_corpus import exportCombined,exportDict,inputDict from Classify_word import combined_dict from BuiltinAll_corpus import inputDict def SpellCorrection(translate,input_function,words_list): input_fun=input_processing(translate,input_function,words_list) #all_corpus--> word_list return (input_fun) def Archi_Sector(INPUT_sector,translate): sectors = inputDict(r'C:\Users\DELL\Desktop\RoomCorpus\sectors.txt') Sector = input_processing(translate,INPUT_sector,sectors) return(Sector) def Synonym_Function(correct_function,aimlist,tolerance): Function = Get_SynonymFromlst(aimlist,correct_function,tolerance) return(Function) def Custom_corpus(FilePath,sheetName): Corpus = Corpus_Combo(FilePath,sheetName) return(Corpus) def Buildin_corpus(): Corpus = inputDict(r'C:/Users/DELL/Desktop/RoomCorpus/Corpus_Combo.txt') all_corpus = exportCombined(r'C:\Users\DELL\Desktop\RoomCorpus','All_corpus.txt',ex_Corpus) return(Corpus,all_corpus) def Custom_or_Build(build,Custom_path,Buildin_corpus,BuildinWords): if build=='yes': Custom_corpus = Corpus_Combo(Custom_path,'Sheet1') all_corpus = Combined_words(Custom_corpus) noun_lst = Custom_corpus['noun_n'] return(Custom_corpus,all_corpus,noun_lst) elif build=='no': buildin_corpus = inputDict(Buildin_corpus) all_corpus = inputDict(BuildinWords) noun_lst = buildin_corpus['noun_n'] return(buildin_corpus,all_corpus,noun_lst) else: return('please enter valid content: yes or no') def standard_Dict(build,CustomNoun_path,Roomname_path,tolerance): if build=='yes': combined = combined_dict(CustomNoun_path,Roomname_path,'Sheet1',tolerance) return(combined) elif build=='no': combined = inputDict(r'C:\Users\DELL\Desktop\wuzzynaming\RoomName_standard\Combined_dict.txt') return(combined) else: return('please enter valid content: yes or no') def Abbreviation(FilePath,sheetName): NameFiles=import_file(FilePath,sheetName) Name_nonum=Remove_strNum(NameFiles) Abbreviation = Clean_Word(Name_nonum)[1] return(Abbreviation) def Value_word(FilePath,sheetName,Rank): NameFiles=import_file(FilePath,sheetName) Name_nonum=Remove_strNum(NameFiles) Cleaned_name = Clean_Word(Name_nonum)[0] valuable_words = Valuable_word(Cleaned_name,Rank) return(Abbreviation) def Word_Class(valuable_words): nouns= Word_Classfication(valuable_words)[0] adj= Word_Classfication(valuable_words)[1] verbs= Word_Classfication(valuable_words)[2] adv= Word_Classfication(valuable_words)[3] return(nouns,adj,verbs,adv) def standard(Function,Description,Sector,Ownership,combined_dict): standards = standarlized_output(Function,Description,Sector,Ownership,combined_dict) Function,Description,Sector,Ownership,Property = standards[0],standards[1],standards[2],standards[3],standards[4] return(Function,Description,Sector,Ownership,Property)
python
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : environ.py # Author : Jiayuan Mao # Email : [email protected] # Date : 01/19/2018 # # This file is part of Jacinle. # Distributed under terms of the MIT license. import contextlib from copy import deepcopy from jacinle.utils.meta import dict_deep_keys, dict_deep_update __all__ = ['env', 'load_env', 'has_env', 'get_env', 'set_env', 'with_env'] class Environ(object): __env_ext__ = '.env.pkl' def __init__(self, envs=None): self.envs = dict() if envs is not None: self.load(envs) def load(self, env_spec, incremental=False): new_envs = self.__get_envs_from_spec(env_spec) if incremental: dict_deep_update(self.envs, new_envs) else: self.envs = deepcopy(new_envs) return self def update(self, env_spec): return self.load(env_spec, incremental=True) def dump(self, path, prefix=None): raise NotImplementedError('Not supported yet: "Environ.dump".') def as_dict(self): return deepcopy(self.envs) def as_dict_ref(self): return self.envs def clone(self): new_env = Environ() new_env.envs = deepcopy(self.envs) return new_env def keys(self, is_flattened=True): if is_flattened: return dict_deep_keys(self.envs) return list(self.envs.keys()) def has(self, key): """ Check whether a key is in current env object. :param key: the key. :return: True if the provided key is in current env object. """ return self.get(key, None) is not None def get(self, key, default=None): """ Get a value of a environment provided a key. You can provide a default value, but this value will not affect the env object. :param key: the key, note that dict of dict can (should) be imploded by ``.''. :param default: if the given key is not found in current env object, the default value will be returned. :return: the value if the env contains the given key, otherwise the default value provided. """ subkeys = key.split('.') current = self.envs for subkey in subkeys[0:-1]: if subkey not in current: current[subkey] = dict() current = current[subkey] if subkeys[-1] in current: return current[subkeys[-1]] elif default is None: return default else: current[subkeys[-1]] = default return default def set(self, key, value=None, do_inc=False, do_replace=True, inc_default=0): """ Set an environment value by key-value pair. :param key: the key, note that dict of dict can (should) be imploded by ``.''. :param value: the value. :param do_inc: if True, will perform += instead of = :param do_replace: if True, will set the value regardless of its original value :param inc_default: the default value for the do_inc operation :return: self """ subkeys = key.split('.') current = self.envs for subkey in subkeys[0:-1]: if subkey not in current: current[subkey] = dict() current = current[subkey] if do_inc: if subkeys[-1] not in current: current[subkeys[-1]] = inc_default current[subkeys[-1]] += value elif do_replace or subkeys[-1] not in current: current[subkeys[-1]] = value return self def set_default(self, key, default=None): """ Set an environment value by key-value pair. If the key already exists, it will not be overwritten. :param key: the key, note that dict of dict can (should) be imploded by ``.''. :param default: the ``default'' value. :return: self """ self.set(key, default, do_replace=False) def inc(self, key, inc=1, default=0): """ Increase the environment value provided a key. :param key: the key, note that dict of dict can (should) be imploded by ``.''. :param inc: the number to be increased, :param default: the default value of the accumulator. :return: """ self.set(key, inc, do_inc=True, inc_default=default) return self def __contains__(self, item): return self.has(item) def __getitem__(self, item): return self.get(item, None) def __setitem__(self, key, value): self.set(key, value) return value def __get_envs_from_spec(self, env_spec): if isinstance(env_spec, str) and env_spec.endswith(self.__env_ext__): raise NotImplementedError('Not implemented loading method.') elif isinstance(env_spec, dict): return env_spec elif isinstance(env_spec, object) and (hasattr(env_spec, 'envs') or hasattr(env_spec, '__envs__')): return getattr(env_spec, 'envs', None) or getattr(env_spec, '__envs__') else: raise TypeError('unsupported env spec: {}.'.format(env_spec)) env = Environ() load_env = env.load update_env = env.update has_env = env.has get_env = env.get set_env = env.set @contextlib.contextmanager def with_env(env_spec, incremental=True): if not incremental: backup = env.as_dict_ref() else: backup = env.as_dict() env.load(env_spec, incremental=incremental) yield env.envs = backup
python
import uuid import json from django.core.cache import cache from django.core.mail import send_mail from django.shortcuts import reverse from django.conf import settings def validate_email(user, email): title = '验证你的电子邮箱 | conus 通知推送' token = uuid.uuid4().hex body = ( '请打开下方连接以验证你的电子邮箱:\n' f'{settings.EMAIL_SITE_URL}{reverse("user:validate_email")}?token={token}' ) send_mail(title, body, None, [email]) cache.set(f'user:{user.pk}:validate_email', json.dumps({token: email}))
python
import unittest from braintreehttp.testutils import TestHarness from braintreehttp.serializers import FormPart class FormPartTest(unittest.TestCase): def test_init_lowercase_headers(self): form_part = FormPart({ "key": "value" }, { "content-type": "application/json" }) self.assertTrue("Content-Type" in form_part.headers) self.assertEqual(len(form_part.headers), 1) def test_init_headers_collision(self): form_part = FormPart({ "key": "value" }, { "content-type": "application/json", "CONTENT-TYPE": "application/pdf"}) self.assertTrue("Content-Type" in form_part.headers) self.assertEqual(len(form_part.headers), 1) def test_init_single_character_header(self): form_part = FormPart({ "key": "value" }, { "x": "application/json" }) self.assertTrue("X" in form_part.headers) self.assertEqual(len(form_part.headers), 1) def test_init_multiple_headers(self): form_part = FormPart({ "key": "value" }, { "x": "application/json", "Content-type": "application/pdf", "CONTENT-ENCODING": "gzip" }) self.assertTrue("X" in form_part.headers) self.assertTrue("Content-Type" in form_part.headers) self.assertTrue("Content-Encoding" in form_part.headers) self.assertEqual(len(form_part.headers), 3)
python
#!/usr/bin/python from pathlib import Path import os import shutil from readConfig import ReadConfig from datetime import datetime class Utils: """ 工具类 """ @staticmethod def save_file(file_name, row_list, mode): """ 将 row_list 中的股票数据保存到 file_name 路径文件中 :param file_name: 路径文件名 :param row_list: 存放股票数据的列表 :param mode: 写入模式, w:覆盖写, a:追加 :return: """ path = Path(file_name) with open(str(path), mode, encoding='UTF-8') as f: # a追加写入 for i in row_list: row_result = '' for j in i: result = j.replace("%", '') row_result += ('\t' + result) f.write(row_result.lstrip() + '\n') print(row_result.lstrip()) f.close() @staticmethod def save_date(file_name, data_list, mode): """ 写入日期 :param path: :return: """ path = Path(file_name) # 保存数据并打印数据 with open(str(path), mode, encoding='UTF-8') as f: for i in data_list: f.write(i + '\n') print(i) f.close() @staticmethod def date2weekday(date): """ 接收一个 yyyyMMdd的日期,返回对应的星期 :param date: yyyyMMdd :return: weekday """ week = datetime.strptime(date,"%Y%m%d").weekday() return { 0: "星期一", 1: "星期二", 2: "星期三", 3: "星期四", 4: "星期五", 5: "星期六", 6: "星期日" }.get(week) def print_title(title_list): """ 打印标题 :return: """ for i in title_list: print(i, end='\t') print() def get_stock_data_path(): """ :return: 保存股票数据的根路径 """ config = ReadConfig() path = config.find_path("config.ini") config.__read__(path) stock_path = config.get_stock("path") if not os.path.exists(stock_path): os.makedirs(stock_path) return stock_path @staticmethod def remkdir(directory): """ 如果directory不存在则创建,如果存在删除该目录下所有内容 :param directory: 路径 :return: 创建成功返回true, 否则false """ try: if os.path.exists(directory): shutil.rmtree(directory) os.makedirs(directory) return True except Exception: return False
python
""" Switch based on e.g. a MCP23017 IC, connected to a Raspberry Pi board. It is expected that a server part is running, through a Redis in-memory database. Commands are sent to the Redis database, and responses captured. The server would then process the actions in background. Author: find me on codeproject.com --> JurgenVanGorp """ import smtplib import time import sys import redis from datetime import datetime import logging import voluptuous as vol from homeassistant.components.switch import PLATFORM_SCHEMA, SwitchEntity from homeassistant.const import CONF_NAME import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) ### ### USER EDITABLE CONSTANTS ##################################################################### ### # Email parameters are ONLY needed in case logging is configured in the switch, through the # CONF_VERBOSE_LEVEL parameter. I.e. this can be done on a per-device level. If no logging is # set, the following parameters can be left empty. If logging is configured for debugging # purposes (e.g. verbose_level = 3), emails will be sent on critical actions, allowing proper # debugging. Do mind that the emails will significantly slow down the operation, so handle with care. CONST_EMAIL_SENDER = "[email protected]" CONST_EMAIL_RECEIVER = "" CONST_EMAIL_SMTPSERVER = "uit.telenet.be" # Communications between Clients and the server happen through a Redis in-memory database # so to limit the number of writes on the (SSD or microSD) storage. For larger implementations # dozens to hundreds of requests can happen per second. Writing to disk would slow down the # process, and may damage the storage. # Make sure to have Redis installed in the proper locations, e.g. also in the virtual python # environments. The default is that Redis is installed on localhost (127.0.0.1). REDIS_HOST = 'localhost' REDIS_PORT = 6379 # The COMMAND_TIMEOUT value is the maximum time (in seconds) that is allowed between pushing a # button and the action that must follow. This is done to protect you from delayed actions # whenever the I2C bus is heavily used, or the CPU is overloaded. If you e.g. push a button, # and the I2C is too busy with other commands, the push-button command is ignored when # COMMAND_TIMEOUT seconds have passed. Typically you would push the button again if nothing # happens after one or two seconds. If both commands are stored, the light is switched on and # immediately switched off again. # Recommended minimum value one or two seconds # COMMAND_TIMEOUT = 2 # Recommended maximum value is 10 seconds. Feel free to set higher values, but be prepared that # you can can experience strange behaviour if there is a lot of latency on the bus. COMMAND_TIMEOUT = 1 ### ### PROGRAM INTERNAL CONSTANTS #################################################################### ### DEFAULT_I2C_ADDRESS = 0x20 CONF_INPUT_I2C_ADDRESS = "input_i2c_address" CONF_INPUT_PIN = "input_pin" CONF_OUTPUT_I2C_ADDRESS = "output_i2c_address" CONF_OUTPUT_PIN = "output_pin" CONF_FRIENDLY_NAME = "friendly_name" CONF_VERBOSE_LEVEL = "verbose_level" CONF_RELAY_MODE = "relay_mode" CONF_TIMER_DELAY = "timer_delay" # Acceptable Commands for controlling the I2C bus # These are the commands you need to use to control the DIR register of the MCP23017, or # for setting and clearing pins. IDENTIFY = "IDENTIFY" # Polls an MCP23017 board on the I2C bus (True/False) GETDIRBIT = "GETDBIT" # Read the specific IO pin dir value (1 = input) GETDIRREGISTER = "GETDIRREG" # Read the full DIR register (low:1 or high:2) SETDIRBIT = "SETDBIT" # Set DIR pin to INPUT (1) CLEARDIRBIT = "CLRDBIT" # Clear DIR pin command to OUTPUT (0) GETIOPIN = "GETPIN" # Read the specific IO pin value GETIOREGISTER = "GETIOREG" # Read the full IO register (low:1 or high:2) SETDATAPIN = "SETPIN" # Set pin to High CLEARDATAPIN = "CLRPIN" # Set pin to low TOGGLEPIN = "TOGGLE" # Toggle a pin to the "other" value for TOGGLEDELAY time # The dummy command is sent during initialization of the database and verification if # the database can be written to. Dummy commands are not processed. DUMMY_COMMAND = 'dummycommand' ### END OF CONSTANTS SECTION ######################################################### PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_OUTPUT_I2C_ADDRESS): vol.All(int, vol.Range(min=0x03, max=0x77)), vol.Required(CONF_OUTPUT_PIN): vol.All(int, vol.Range(min=0, max=15)), vol.Optional(CONF_INPUT_I2C_ADDRESS, default=0xFF): vol.All(int, vol.Range(min=0x03, max=0xFF)), vol.Optional(CONF_INPUT_PIN, default=15): vol.All(int, vol.Range(min=0, max=15)), vol.Optional(CONF_NAME, default="MCP23017"): cv.string, vol.Optional(CONF_FRIENDLY_NAME, default="MCP23017"): cv.string, vol.Optional(CONF_VERBOSE_LEVEL, default=0): vol.All(int, vol.Range(min=0, max=3)), vol.Optional(CONF_TIMER_DELAY, default=2.0): vol.All(float, vol.Range(min=1.0, max=604800.0)), vol.Optional(CONF_RELAY_MODE, default="A"): vol.In(["A", "B", "C", "D", "E", "F"]) } ) def setup_platform(hass, config, add_devices, discovery_info=None): # Collect parameters from configuration.yaml name = config.get(CONF_NAME) friendlyname = config.get(CONF_FRIENDLY_NAME) input_i2c_address = config.get(CONF_INPUT_I2C_ADDRESS) input_pin_num = config.get(CONF_INPUT_PIN) output_i2c_address = config.get(CONF_OUTPUT_I2C_ADDRESS) output_pin_num = config.get(CONF_OUTPUT_PIN) verbosity = config.get(CONF_VERBOSE_LEVEL) timer_delay = config.get(CONF_TIMER_DELAY) relay_mode = config.get(CONF_RELAY_MODE) # Present device to hassio add_devices([MCP23017_Relay(input_i2c_address, input_pin_num, output_i2c_address, \ output_pin_num, verbosity, timer_delay, relay_mode, friendlyname, name)]) class mcp23017client(): """ A class for starting an in-memory Redis database communication with the mcp23017server service. """ def __init__(self): # Commands have id datetime.now().strftime("%d-%b-%Y %H:%M:%S.%f")}, i.e. the primary key is a timestamp. # Commands given at exactly the same time, will overwrite each other, but this is not expected to happen. # The commands table is then formatted as (all fields are TEXT, even if formatted as "0xff" !!) # id, command TEXT, boardnr TEXT DEFAULT '0x00', pinnr TEXT DEFAULT '0x00', datavalue TEXT DEFAULT '0x00' self._commands = None # Responses have id datetime.now().strftime("%d-%b-%Y %H:%M:%S.%f")}, i.e. the primary key is a timestamp. # The Responses table is then formatted as (all fields are TEXT, even if formatted as "0xff" !!) # id, command_id TEXT, datavalue TEXT, response TEXT self._responses = None def OpenAndVerifyDatabase(self): """ Opens an existing database, or creates a new one if not yet existing. Then verifies if the Redis database is accessible. """ # First try to open the database itself. try: # Open the shared memory databases. # Redis database [0] is for commands that are sent from the clients to the server. nowTrying = "Commands" self._commands = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=0) # Redis database [1] is for responses from the server so the clients. nowTrying = "Responses" self._responses = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=1) except OSError as err: # Capturing OS error. return "FATAL OS ERROR. Could not open [{}] database. This program is now exiting with error [{}].".format(nowTrying, err) except: # Capturing all other errors. return "FATAL UNEXPECTED ERROR. Could not open [{}] database. This program is now exiting with error [{}].".format(nowTrying, sys.exc_info()[0]) # Do a dummy write to the Commands database, as verification that the database is fully up and running. try: # Remember: fields are # id, command TEXT, boardnr TEXT DEFAULT '0x00', pinnr TEXT DEFAULT '0x00', datavalue TEXT DEFAULT '0x00' id = (datetime.now() - datetime.utcfromtimestamp(0)).total_seconds() datamap = {'command':DUMMY_COMMAND, 'boardnr':0x00, 'pinnr':0xff, 'datavalue':0x00} # Write the info to the Redis database self._commands.hset(id, None, None, datamap) # Set expiration to 1 second, after which Redis will automatically delete the record self._commands.expire(id, 1) except: # Capturing all errors. return "FATAL UNEXPECTED ERROR. Could not read and/or write the [Commands] database. This program is now exiting with error [{}].".format(sys.exc_info()[0]) # Next, do a dummy write to the Responses database, as verification that the database is fully up and running. try: # Remember: fields are # id, command_id TEXT, datavalue TEXT, response TEXT id = (datetime.now() - datetime.utcfromtimestamp(0)).total_seconds() datamap = {'datavalue':0x00, 'response':'OK'} # Write the info to the Redis database self._responses.hset(id, None, None, datamap) # Set expiration to 1 second, after which Redis will automatically delete the record self._responses.expire(id, 1) except: # Capturing all errors. return "FATAL UNEXPECTED ERROR. Could not read and/or write the [Responses] database. This program is now exiting with error [{}].".format(sys.exc_info()[0]) # We got here, so return zero error message. return "" def SendCommand(self, whichCommand, board_id, pin_id): """ Send a new command to the mcp23017server through a Redis database record. The commands will get a time-out, to avoid that e.g. a button pushed now, is only processed hours later. Response times are expected to be in the order of (fractions of) seconds. """ # Prepare new id based on timestamp. Since this is up to the milliseconds, the ID is expected to be unique id = (datetime.now() - datetime.utcfromtimestamp(0)).total_seconds() # Create data map mapping = {'command':whichCommand, 'boardnr':board_id, 'pinnr':pin_id} # Expiration in the Redis database can be set already. Use the software expiration with some grace period. # Expiration must be an rounded integer, or Redis will complain. expiration = round(COMMAND_TIMEOUT + 1) # Now send the command to the Redis in-memory database self._commands.hset(id, None, None, mapping) # Command must self-delete within the expiration period. Redis can take care. self._commands.expire(id, expiration) # The timestamp is also the id of the command (needed for listening to the response) return id def WaitForReturn(self, command_id): """ Wait for a response to come back from the mcp23017server, once the command has been processed on the I2C bus. If the waiting is too long (> COMMAND_TIMEOUT), cancel the operation and return an error. """ answer = None # If no timely answer, then cancel anyway. So, keep track of when we started. checking_time = datetime.now() while answer == None: # request the data from the Redis database, based on the Command ID. datafetch = self._responses.hgetall(command_id) # Verify if a response is available. if len(datafetch) > 0: # Do data verification, to cover for crippled data entries without crashing the software. try: datavalue = datafetch[b'datavalue'].decode('ascii') except: datavalue = 0x00 try: response = datafetch[b'response'].decode('ascii') except: response = "Error Parsing mcp23017server data." answer = (datavalue, response) if (datetime.now() - checking_time).total_seconds() > COMMAND_TIMEOUT: answer = (0x00, "Time-out error trying to get result from server for Command ID {}".format(command_id)) return answer def ProcessCommand(self, whichCommand, board_id, pin_id): """ The ProcessCommand function is a combination of sending the Command to the mcp23017server host, and waiting for the respone back. """ retval = -1 # First send the command to the server command_id = self.SendCommand(whichCommand, board_id, pin_id) # Then wait for the response back response = self.WaitForReturn(command_id) # A good command will result in an "OK" to come back from the server. if response[1].strip().upper() == 'OK': # OK Received, now process the data value that was sent back. retval = response[0] if(isinstance(retval,str)): if len(retval) == 0: retval = 0x00 else: try: if 'x' in retval: retval = int(retval, 16) else: retval = int(retval, 10) except: # wrong type of data received retval = "Error when processing return value. Received value that I could not parse: [{}]".format(response[0]) else: retval = "Error when processing pin '0x{:02X}' on board '0x{:02X}'. Error Received: {}".format(board_id, pin_id, response[1]) return retval class MCP23017_Relay(SwitchEntity): """ Relay for MCP23017 GPIO """ def __init__(self, i2c_in, pin_in, i2c_out, pin_out, verbosity, \ timer_delay, relay_mode, friendlyname, name, invert_logic = False): self._name = name self._friendly_name = friendlyname self._verbose = verbosity self._invert_logic = invert_logic self._state = False self._relay_mode = relay_mode self._timer_delay = timer_delay self._datapipe = mcp23017client() # input and output chips self._i2c_in = i2c_in self._pin_in = pin_in self._i2c_out = i2c_out self._pin_out = pin_out # In case input is same as output, or if input is default 0xff, then chip is output only if (i2c_in==0xff) or ((i2c_in==i2c_out) and (pin_in == pin_out)): self._output_only = True else: self._output_only = False # Initiate data pipe to the Redis database server, and set the proper DIR bits (input vs. output) err_msg = self._datapipe.OpenAndVerifyDatabase() if err_msg == "": self.SetDirBits() else: if self._verbose > 0: self._SendStatusMessage("ERROR initializing: [{}]. ".format(err_msg)) if self._verbose > 0: self._SendStatusMessage("\n\nCompleted Initialization.") @property def name(self): return self._friendly_name @property def is_on(self) -> bool: # The input must always be read from the I2C bus. Reason is that states can also be changed by # human interaction, i.e. not controlled by the Home Assistant software. self._read_bus() return self._state def SetDirBits(self): """ Set the MCP23017 DIR bits, which determine whether a pin is an input (High) or an output (Low). This software handles two possibilities: * PASSIVE OUTPUT - the output is determined by Home Assistant. If Home Assistant tells the output to be high, then it will stay high. This is for e.g. status lights. * INPUT-OUTPUT - the output is toggled (or set) by one MCP23017 pin, and the status of the light is read on another pin. This allows monitoring of the input (e.g. caused by human interaction) and software changing the state through the output pin. """ # In case input is same as output, or if input is default 0xff, then chip is output only if self._output_only: msg_update = self._datapipe.ProcessCommand(CLEARDIRBIT, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Info: Clearing DIR bit for OUTPUT ONLY: [{}] cleared on board [{}]. Update Message is: [{}]".format(self._pin_out, self._i2c_out, msg_update)) else: msg_update = self._datapipe.ProcessCommand(CLEARDIRBIT, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Info: Clearing DIR bit for OUTPUT: [{}] cleared on board [{}]. Update Message is: [{}]".format(self._pin_out, self._i2c_out, msg_update)) msg_update = self._datapipe.ProcessCommand(SETDIRBIT, self._i2c_in, self._pin_in) if self._verbose > 1: self._SendStatusMessage("Info: Setting DIR bit for INPUT: [{}] set on board [{}]. Update Message is: [{}]".format(self._pin_in, self._i2c_in, msg_update)) def turn_on(self): """ Switches output on in case the IC is output only. In case of a toggle output: monitors input if it not switched on already, and toggles output if not. """ self.SetDirBits() if self._output_only: msg_update = self._datapipe.ProcessCommand(SETDATAPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Turned pin [{}] on board [{}] ON. Update Message is: [{}]".format(self._pin_out, self._i2c_out, msg_update)) else: self._read_bus() if self._state: if self._verbose > 1: self._SendStatusMessage("Wanted to turn pin [{}] on board [{}] ON through TOGGLING, but input was already on. Nothing to do.".format(self._pin_out, self._i2c_out)) else: msg_update = self._datapipe.ProcessCommand(TOGGLEPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Turned pin [{}] on board [{}] ON through TOGGLING. Update Message is: [{}]".format(self._pin_out, self._i2c_out, msg_update)) # Re-read the bus state for the specific input self._read_bus() def turn_off(self): """ Switches output off in case the IC is output only. In case of a toggle output: monitors input if it not switched off already, and toggles output if not. """ self.SetDirBits() if self._output_only: msg_update = self._datapipe.ProcessCommand(CLEARDATAPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Turned pin [{}] on board [{}] OFF. Update Message is: [{}]".format(self._pin_out, self._i2c_out, msg_update)) else: self._read_bus() if self._state: msg_update = self._datapipe.ProcessCommand(TOGGLEPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Turned pin [{}] on board [{}] OFF through TOGGLING. Update Message is: [{}]".format(self._pin_out, self._i2c_out, msg_update)) else: if self._verbose > 1: self._SendStatusMessage("Wanted to turn pin [{}] on board [{}] OFF through TOGGLING, but input was already off. Nothing to do.".format(self._pin_out, self._i2c_out)) # Re-read the bus state for the specific input self._read_bus() def toggle(self): """ Toggles output. In case of an output only, the polarity is switched. In case of an input/output configuration, the output is momentarily activated (toggle switch). """ self.SetDirBits() if self._output_only: self._read_bus() if self._state: msg_update = self._datapipe.ProcessCommand(CLEARDATAPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Toggle command for OUTPUT ONLY case: switched pin [{}] on board [{}] OFF.".format(self._pin_out, self._i2c_out)) else: msg_update = self._datapipe.ProcessCommand(SETDATAPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Toggle command for OUTPUT ONLY case: switched pin [{}] on board [{}] ON.".format(self._pin_out, self._i2c_out)) else: msg_update = self._datapipe.ProcessCommand(TOGGLEPIN, self._i2c_out, self._pin_out) if self._verbose > 1: self._SendStatusMessage("Toggle command received for output pin [{}] on board [{}]. Input should now have reversed.".format(self._pin_out, self._i2c_out)) # Re-read the bus state for the specific input self._read_bus() def _read_bus(self): """ Read input pin from the I2C bus in an input/output configuration, or read the output pin in an output-only configuration. """ if self._output_only: self._state = self._datapipe.ProcessCommand(GETIOPIN, self._i2c_out, self._pin_out) else: self._state = self._datapipe.ProcessCommand(GETIOPIN, self._i2c_in, self._pin_in) def _SendStatusMessage(self, extraText = ""): """ Send an email with current status. Dependent of the verbosity level, more or less information is provided. """ dateTimeObj = datetime.now() txtmsg = "Home Assistant Info on: " + dateTimeObj.strftime("%d-%b-%Y -- %H:%M:%S.%f") if extraText != "": txtmsg = txtmsg + "\n" + extraText + "\n" if self._verbose == 1: sendMyEmail(extraText + self._name + " is switched " + \ ("[on]" if self._state else "[off]")) if self._verbose > 2: if self._state: txtmsg = txtmsg + "{} is switched ON.\n\n".format(self._name) else: txtmsg = txtmsg + "{} is switched OFF.\n\n".format(self._name) txtmsg = txtmsg + "Switch details: \n" if self._output_only: txtmsg = txtmsg + "This is an OUTPUT ONLY \n" txtmsg = txtmsg + " * output pin: [{}] on board [{}] \n".format(self._pin_out, self._i2c_out) else: txtmsg = txtmsg + "This is an INPUT DRIVEN OUTPUT \n" txtmsg = txtmsg + " * input pin: [{}] on board [{}] \n".format(self._pin_in, self._i2c_in) txtmsg = txtmsg + " * output pin: [{}] on board [{}] \n".format(self._pin_out, self._i2c_out) txtmsg = txtmsg + "Relay mode = [{}]\n".format(self._relay_mode) sendMyEmail(txtmsg) def sendMyEmail(txtMessage): """ Send an email to an smtp server. """ if CONST_EMAIL_RECEIVER != "": mailsender = CONST_EMAIL_SENDER mailrecipient = CONST_EMAIL_RECEIVER smtpserver = CONST_EMAIL_SMTPSERVER msg = "From: " + mailsender + "\r\nTo: " + mailrecipient + "\r\n\r\n" msg = msg + txtMessage server = smtplib.SMTP(smtpserver, 25) server.set_debuglevel(1) server.sendmail(mailsender, mailrecipient, msg) server.close()
python
import logging import os from rich import print from typing import Dict from sfaira.commands.utils import get_ds from sfaira.consts.utils import clean_doi from sfaira.data import DatasetBase log = logging.getLogger(__name__) class H5adExport: datasets: Dict[str, DatasetBase] doi: str doi_sfaira_repr: str path_cache: str path_data: str path_loader: str path_out: str schema: str def __init__(self, doi, path_cache, path_data, path_loader, path_out, schema): self.doi = doi self.doi_sfaira_repr = clean_doi(self.doi) self.path_cache = path_cache self.path_data = path_data self.path_loader = path_loader self.path_out = path_out if schema not in ["cellxgene"]: raise ValueError(f"Did not recognize schema {schema}") self.schema = schema def write(self): self._load_objects() self._write_h5ads() def _load_objects(self): dsg, _ = get_ds(doi_sfaira_repr=self.doi_sfaira_repr, path_cache=self.path_cache, path_data=self.path_data, path_loader=self.path_loader) dsg.load(load_raw=False, allow_caching=True) if self.schema == "cellxgene": dsg.streamline_features(schema="cellxgene:" + "2.0.0") dsg.streamline_metadata( schema=self.schema.lower(), clean_obs=False, clean_var=False, clean_uns=True, clean_obs_names=False, keep_orginal_obs=False, keep_symbol_obs=True, keep_id_obs=True, ) dsg.collapse_counts() self.datasets = dsg.datasets def _write_h5ads(self): counter = 0 for k, v in self.datasets.items(): fn = v.doi_cleaned_id + ".h5ad" dir_name = v.directory_formatted_doi if not os.path.exists(os.path.join(self.path_out, dir_name)): os.makedirs(os.path.join(self.path_out, dir_name)) fn_out = os.path.join(self.path_out, dir_name, fn) print(f'[bold orange]Sfaira butler: "Preparing {fn_out} for you."') v.adata.write_h5ad(fn_out) counter += 1 print(f'[bold orange]Sfaira butler: "I wrote a total of {counter} .h5ad files."')
python
from typing import Optional, Sequence from kubragen import KubraGen from kubragen.builder import Builder from kubragen.consts import PROVIDER_K3D, PROVIDER_K3S from kubragen.data import ValueData from kubragen.exception import InvalidParamError, InvalidNameError from kubragen.helper import QuotedStr from kubragen.kdatahelper import KDataHelper_Volume from kubragen.object import ObjectItem, Object from kubragen.types import TBuild, TBuildItem from .option import EFKOptions class EFKBuilder(Builder): """ EFK builder. Based on `How To Set Up an Elasticsearch, Fluentd and Kibana (EFK) Logging Stack on Kubernetes <https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes>`_. .. list-table:: :header-rows: 1 * - build - description * - BUILD_ACCESSCONTROL - creates service account, roles, and roles bindings * - BUILD_CONFIG - creates configurations * - BUILD_SERVICE - creates StatefulSet and Services .. list-table:: :header-rows: 1 * - build item - description * - BUILDITEM_SERVICE_ACCOUNT - ServiceAccount * - BUILDITEM_ELASTICSEARCH_SERVICE - Elasticsearch Service * - BUILDITEM_ELASTICSEARCH_STATEFULSET - Elasticsearch StatefulSet * - BUILDITEM_KIBANA_DEPLOYMENT - Kibana Deployment * - BUILDITEM_KIBANA_SERVICE - Kibana Service * - BUILDITEM_FLUENTD_CLUSTER_ROLE - Fluentd Cluster Role * - BUILDITEM_FLUENTD_CLUSTER_ROLE_BINDING - Fluentd Cluster Role Binding * - BUILDITEM_FLUENTD_DAEMONSET - Fluentd Daemonset .. list-table:: :header-rows: 1 * - object name - description - default value * - service-account - ServiceAccount - ```<basename>``` * - elasticsearch-service - Elasticsearch Service - ```<basename>-elasticsearch``` * - elasticsearch-statefulset - Elasticsearch StatefulSet - ```<basename>-elasticsearch``` * - elasticsearch-pod-label-all - Elasticsearch label *app* to be used by selection - ```<basename>-elasticsearch``` * - kibana-service - Kibana Service - ```<basename>-kibana``` * - kibana-deployment - Kibana Deployment - ```<basename>-kibana``` * - kibana-pod-label-all - Kibana label *app* to be used by selection - ```<basename>-kibana``` * - fluentd-cluster-role - Fluentd ClusterRole - ```<basename>-fluentd``` * - fluentd-cluster-role-binding - Fluentd ClusterRoleBinding - ```<basename>-fluentd``` * - fluentd-deployment - Fluentd Deployment - ```<basename>-fluentd``` * - fluentd-pod-label-all - Fluentd label *app* to be used by selection - ```<basename>-fluentd``` """ options: EFKOptions configfile: Optional[str] _namespace: str SOURCE_NAME = 'kg_efk' BUILD_ACCESSCONTROL = TBuild('accesscontrol') BUILD_CONFIG = TBuild('config') BUILD_SERVICE = TBuild('service') BUILDITEM_SERVICE_ACCOUNT = TBuildItem('service-account') BUILDITEM_ELASTICSEARCH_SERVICE = TBuildItem('elasticsearch-service') BUILDITEM_ELASTICSEARCH_STATEFULSET = TBuildItem('elasticsearch-statefulset') BUILDITEM_KIBANA_DEPLOYMENT = TBuildItem('kibana-deployment') BUILDITEM_KIBANA_SERVICE = TBuildItem('kibana-service') BUILDITEM_FLUENTD_CLUSTER_ROLE = TBuildItem('fluentd-cluster-role') BUILDITEM_FLUENTD_CLUSTER_ROLE_BINDING = TBuildItem('fluentd-cluster-role-binding') BUILDITEM_FLUENTD_DAEMONSET = TBuildItem('fluentd-daemonset') def __init__(self, kubragen: KubraGen, options: Optional[EFKOptions] = None): super().__init__(kubragen) if options is None: options = EFKOptions() self.options = options self.configfile = None self._namespace = self.option_get('namespace') if self.option_get('config.authorization.serviceaccount_create') is not False: serviceaccount_name = self.basename() else: serviceaccount_name = self.option_get('config.authorization.serviceaccount_use') if serviceaccount_name == '': serviceaccount_name = None if self.option_get('config.authorization.roles_bind') is not False: if serviceaccount_name is None: raise InvalidParamError('To bind roles a service account is required') self.object_names_init({ 'service-account': serviceaccount_name, 'elasticsearch-service': self.basename('-elasticsearch'), 'elasticsearch-statefulset': self.basename('-elasticsearch'), 'elasticsearch-pod-label-app': self.basename('-elasticsearch'), 'fluentd-cluster-role': self.basename('-fluentd'), 'fluentd-cluster-role-binding': self.basename('-fluentd'), 'fluentd-daemonset': self.basename('-fluentd'), 'fluentd-pod-label-app': self.basename('-fluentd'), }) if self.option_get('enable.kibana'): self.object_names_init({ 'kibana-service': self.basename('-kibana'), 'kibana-deployment': self.basename('-kibana'), 'kibana-pod-label-app': self.basename('-kibana'), }) def option_get(self, name: str): return self.kubragen.option_root_get(self.options, name) def basename(self, suffix: str = ''): return '{}{}'.format(self.option_get('basename'), suffix) def namespace(self): return self._namespace def build_names(self) -> Sequence[TBuild]: return [self.BUILD_ACCESSCONTROL, self.BUILD_CONFIG, self.BUILD_SERVICE] def build_names_required(self) -> Sequence[TBuild]: ret = [self.BUILD_SERVICE] if self.option_get('config.authorization.serviceaccount_create') is not False or \ self.option_get('config.authorization.roles_create') is not False: ret.append(self.BUILD_ACCESSCONTROL) return ret def builditem_names(self) -> Sequence[TBuildItem]: return [ self.BUILDITEM_SERVICE_ACCOUNT, self.BUILDITEM_ELASTICSEARCH_SERVICE, self.BUILDITEM_ELASTICSEARCH_STATEFULSET, self.BUILDITEM_KIBANA_DEPLOYMENT, self.BUILDITEM_KIBANA_SERVICE, self.BUILDITEM_FLUENTD_CLUSTER_ROLE, self.BUILDITEM_FLUENTD_CLUSTER_ROLE_BINDING, self.BUILDITEM_FLUENTD_DAEMONSET, ] def internal_build(self, buildname: TBuild) -> Sequence[ObjectItem]: if buildname == self.BUILD_ACCESSCONTROL: return self.internal_build_accesscontrol() elif buildname == self.BUILD_CONFIG: return self.internal_build_config() elif buildname == self.BUILD_SERVICE: return self.internal_build_service() else: raise InvalidNameError('Invalid build name: "{}"'.format(buildname)) def internal_build_accesscontrol(self) -> Sequence[ObjectItem]: ret = [] if self.option_get('config.authorization.serviceaccount_create') is not False: ret.extend([ Object({ 'apiVersion': 'v1', 'kind': 'ServiceAccount', 'metadata': { 'name': self.object_name('service-account'), 'namespace': self.namespace(), } }, name=self.BUILDITEM_SERVICE_ACCOUNT, source=self.SOURCE_NAME, instance=self.basename()), ]) if self.option_get('config.authorization.roles_create') is not False: ret.extend([ Object({ 'apiVersion': 'rbac.authorization.k8s.io/v1', 'kind': 'ClusterRole', 'metadata': { 'name': self.object_name('fluentd-cluster-role'), }, 'rules': [{ 'apiGroups': [''], 'resources': ['pods', 'namespaces'], 'verbs': ['get', 'list', 'watch'] }] }, name=self.BUILDITEM_FLUENTD_CLUSTER_ROLE, source=self.SOURCE_NAME, instance=self.basename()), ]) if self.option_get('config.authorization.roles_bind') is not False: ret.extend([ Object({ 'kind': 'ClusterRoleBinding', 'apiVersion': 'rbac.authorization.k8s.io/v1', 'metadata': { 'name': self.object_name('fluentd-cluster-role-binding'), }, 'roleRef': { 'kind': 'ClusterRole', 'name': self.object_name('fluentd-cluster-role'), 'apiGroup': 'rbac.authorization.k8s.io' }, 'subjects': [{ 'kind': 'ServiceAccount', 'name': self.object_name('service-account'), 'namespace': self.namespace(), }] }, name=self.BUILDITEM_FLUENTD_CLUSTER_ROLE_BINDING, source=self.SOURCE_NAME, instance=self.basename()) ]) return ret def internal_build_config(self) -> Sequence[ObjectItem]: # Reserve for future use return [] def internal_build_service(self) -> Sequence[ObjectItem]: ret = [] ret.extend([ Object({ 'kind': 'Service', 'apiVersion': 'v1', 'metadata': { 'name': self.object_name('elasticsearch-service'), 'namespace': self.namespace(), 'labels': { 'app': self.object_name('elasticsearch-pod-label-app'), } }, 'spec': { 'selector': { 'app': self.object_name('elasticsearch-pod-label-app'), }, 'clusterIP': 'None', 'ports': [{ 'port': 9200, 'name': 'rest' }, { 'port': 9300, 'name': 'inter-node' }], } }, name=self.BUILDITEM_ELASTICSEARCH_SERVICE, source=self.SOURCE_NAME, instance=self.basename()), Object({ 'apiVersion': 'apps/v1', 'kind': 'StatefulSet', 'metadata': { 'name': self.object_name('elasticsearch-statefulset'), 'namespace': self.namespace(), }, 'spec': { 'serviceName': self.object_name('elasticsearch-service'), 'replicas': self.option_get('config.elasticsearch.replicas'), 'selector': { 'matchLabels': { 'app': self.object_name('elasticsearch-pod-label-app'), } }, 'template': { 'metadata': { 'labels': { 'app': self.object_name('elasticsearch-pod-label-app'), } }, 'spec': { 'volumes': [ KDataHelper_Volume.info(base_value={ 'name': 'data', }, value=self.option_get('kubernetes.volumes.elasticsearch-data')), ], 'containers': [{ 'name': 'elasticsearch', 'image': self.option_get('container.elasticsearch'), 'ports': [{ 'containerPort': 9200, 'name': 'rest', 'protocol': 'TCP' }, { 'containerPort': 9300, 'name': 'inter-node', 'protocol': 'TCP' }], 'volumeMounts': [{ 'name': 'data', 'mountPath': '/usr/share/elasticsearch/data' }], 'env': [{ 'name': 'cluster.name', 'value': self.object_name('elasticsearch-statefulset'), }, { 'name': 'NODE_NAME', 'valueFrom': { 'fieldRef': { 'fieldPath': 'metadata.name' } }, }, { 'name': 'node.name', 'value': QuotedStr('$(NODE_NAME).{}'.format(self.object_name('elasticsearch-service'))), }, { 'name': 'discovery.seed_hosts', 'value': ','.join(['{}-{}.{}'.format( self.object_name('elasticsearch-statefulset'), rpl, self.object_name('elasticsearch-service')) for rpl in range(self.option_get('config.elasticsearch.replicas')) ]), }, { 'name': 'cluster.initial_master_nodes', 'value': ','.join(['{}-{}.{}'.format( self.object_name('elasticsearch-statefulset'), rpl, self.object_name('elasticsearch-service')) for rpl in range(self.option_get('config.elasticsearch.replicas')) ]), }, { 'name': 'ES_JAVA_OPTS', 'value': '-Xms512m ' '-Xmx512m' }], 'resources': ValueData(value=self.option_get('kubernetes.resources.elasticsearch-statefulset'), disabled_if_none=True), }], 'initContainers': [{ 'name': 'fix-permissions', 'image': 'busybox', 'command': [ 'sh', '-c', 'chown -R ' '1000:1000 ' '/usr/share/elasticsearch/data' ], 'securityContext': { 'privileged': True }, 'volumeMounts': [{ 'name': 'data', 'mountPath': '/usr/share/elasticsearch/data' }], }, { 'name': 'increase-vm-max-map', 'image': 'busybox', 'command': [ 'sysctl', '-w', 'vm.max_map_count=262144' ], 'securityContext': { 'privileged': True }, }, { 'name': 'increase-fd-ulimit', 'image': 'busybox', 'command': [ 'sh', '-c', 'ulimit -n ' '65536' ], 'securityContext': { 'privileged': True }, }] } }, } }, name=self.BUILDITEM_ELASTICSEARCH_STATEFULSET, source=self.SOURCE_NAME, instance=self.basename()), Object({ 'apiVersion': 'apps/v1', 'kind': 'DaemonSet', 'metadata': { 'name': self.object_name('fluentd-daemonset'), 'namespace': self.namespace(), 'labels': { 'app': self.object_name('fluentd-pod-label-app'), } }, 'spec': { 'selector': { 'matchLabels': { 'app': self.object_name('fluentd-pod-label-app'), } }, 'template': { 'metadata': { 'labels': { 'app': self.object_name('fluentd-pod-label-app'), } }, 'spec': { 'serviceAccount': self.object_name('service-account'), 'serviceAccountName': self.object_name('service-account'), 'tolerations': [{ 'key': 'node-role.kubernetes.io/master', 'effect': 'NoSchedule' }], 'containers': [{ 'name': 'fluentd', 'image': self.option_get('container.fluentd'), 'env': [{ 'name': 'FLUENT_ELASTICSEARCH_HOST', 'value': '{}.{}.svc.cluster.local'.format(self.object_name('elasticsearch-service'), self.namespace()), }, { 'name': 'FLUENT_ELASTICSEARCH_PORT', 'value': '9200' }, { 'name': 'FLUENT_ELASTICSEARCH_SCHEME', 'value': 'http' }, { 'name': 'FLUENTD_SYSTEMD_CONF', 'value': 'disable' }, ValueData(value={ 'name': 'FLUENT_CONTAINER_TAIL_PARSER_TYPE', 'value': '/^(?<time>.+) (?<stream>stdout|stderr) [^ ]* (?<log>.*)$/', }, enabled=self.kubragen.provider.provider == PROVIDER_K3D or self.kubragen.provider.provider == PROVIDER_K3S)], 'volumeMounts': [{ 'name': 'varlog', 'mountPath': '/var/log' }, { 'name': 'varlibdockercontainers', 'mountPath': '/var/lib/docker/containers', 'readOnly': True }], 'resources': ValueData(value=self.option_get('kubernetes.resources.fluentd-daemonset'), disabled_if_none=True), }], 'terminationGracePeriodSeconds': 30, 'volumes': [{ 'name': 'varlog', 'hostPath': { 'path': '/var/log' } }, { 'name': 'varlibdockercontainers', 'hostPath': { 'path': '/var/lib/docker/containers' } }] } } } }, name=self.BUILDITEM_FLUENTD_DAEMONSET, source=self.SOURCE_NAME, instance=self.basename()), ]) if self.option_get('enable.kibana'): ret.extend([ Object({ 'apiVersion': 'v1', 'kind': 'Service', 'metadata': { 'name': self.object_name('kibana-service'), 'namespace': self.namespace(), 'labels': { 'app': self.object_name('kibana-pod-label-app'), }, }, 'spec': { 'ports': [{ 'port': self.option_get('config.kibana.service_port'), 'targetPort': 5601, }], 'selector': { 'app': self.object_name('kibana-pod-label-app'), } } }, name=self.BUILDITEM_KIBANA_SERVICE, source=self.SOURCE_NAME, instance=self.basename()), Object({ 'apiVersion': 'apps/v1', 'kind': 'Deployment', 'metadata': { 'name': self.object_name('kibana-deployment'), 'namespace': self.namespace(), 'labels': { 'app': self.object_name('kibana-pod-label-app'), } }, 'spec': { # 'replicas': 1, 'selector': { 'matchLabels': { 'app': self.object_name('kibana-pod-label-app'), } }, 'template': { 'metadata': { 'labels': { 'app': self.object_name('kibana-pod-label-app'), } }, 'spec': { 'containers': [{ 'name': 'kibana', 'image': self.option_get('container.kibana'), 'env': [{ 'name': 'ELASTICSEARCH_HOSTS', 'value': 'http://{}:9200'.format(self.object_name('elasticsearch-service')), }], 'ports': [{ 'containerPort': 5601 }], 'livenessProbe': ValueData(value={ 'httpGet': { 'path': '/api/status', 'port': 5601, }, 'initialDelaySeconds': 30, 'timeoutSeconds': 20, }, enabled=self.option_get('config.probes')), 'readinessProbe': ValueData(value={ 'httpGet': { 'path': '/api/status', 'port': 5601, }, 'initialDelaySeconds': 30, 'timeoutSeconds': 20, }, enabled=self.option_get('config.probes')), 'resources': ValueData( value=self.option_get('kubernetes.resources.kibana-deployment'), disabled_if_none=True), }] } } } }, name=self.BUILDITEM_KIBANA_DEPLOYMENT, source=self.SOURCE_NAME, instance=self.basename()), ]) return ret
python
from pathlib import Path import pandas as pd from modules.settings.settings import SettingsManager class PseudoIDManager: """ Class for setting, getting pseudo_id filepaths and getting pseudo_id value """ def __init__(self, l2c: dict, settm: SettingsManager): self._settm = settm self._l2c = l2c self._df_cols = ['pseudo_id', 'internal_lab_id', 'pid_num', 'lab_code', 'submitter', 'tag'] self._submitter = None self._lab_code = None self._file = None self._df = None self._pids = [] self._lids = [] self.init_settings() def init_settings(self): self._set_submitter() self._set_file() self._set_lab_code() self._read_csv() self._set_lids() self._set_pids() def is_ready(self): """ Checks if all required settings have been entered. :return: bool """ return all([self._submitter, self._lab_code, self._file, self._df]) def omitted_settings(self) -> str: """ Returns missing settings :return: string detailing missing required settings """ msg_list = [] if not self._submitter: msg_list.append("submitter") if not self._lab_code: msg_list.append("lab") if not self._file: msg_list.append("pseudo_id_filepath") fields = ",".join(msg_list) return f"The following settings must be entered: {fields}." def generate_pids_from_lids(self, lids: list) -> list: """ Validates list of lids to ensure uniqueness, then generates equal number of unique pids :param lids: list of internal_lab_ids :return: list of generated pids """ print(lids) if not isinstance(lids, list): print("not list") return None size = len(lids) if self._df is None or size == 0: return None if self._lab_code is None: return None pids = [] if self._df.empty: first_num = 1 last_num = first_num + size for i in range(first_num, last_num): pids.append(self._mk_pid(i)) else: last_row = self._df.iloc[-1] first_num = last_row['pid_num'] + 1 last_num = first_num + size for i in range(first_num, last_num): pids.append(self._mk_pid(i)) return pids def write_pidlids_to_csv(self, pidlids: list, tag: str): """ :param tag: tag string (timedate string) :param pidlids: list of pseudo_id and internal_lab_id tuples (pseudo_id, internal_lab_id) :return: """ rows = [] for pidlid in pidlids: pid, lid = pidlid pid_num = self._pid_to_num(pid) lab_code = self._pid_to_lab_code(pid) row = {'lab_code': lab_code, 'pid_num': pid_num, 'pseudo_id': pid, 'internal_lab_id': lid, 'submitter': self._submitter, 'tag': tag} rows.append(row) print(rows) print("in write", self._df) if self._df is not None: self._df = self._df.append(rows, ignore_index=True) print(self._df) self._df.to_csv(self._file, index=False) def validate_lab_code(self) -> bool: if self._df is None: return False lab = self._settm.get_value('select_single', 'lab') lab_code = self._l2c[lab] p_lab_codes = self._df['lab_code'].tolist() if len(p_lab_codes) == 0: return True if str(lab_code) not in p_lab_codes: return False return True def get_file(self): return self._file def _set_lids(self): if self._df is not None: self._lids = [str(lid) for lid in self._df['internal_lab_id'].tolist()] def _set_pids(self): if self._df is not None: self._pids = [str(pid) for pid in self._df['pseudo_id'].tolist()] def _set_file(self): file_str = self._settm.get_value('entered_value', 'pseudo_id_filepath') if file_str is not None: file = Path(file_str) if self._is_valid_file(file): self._file = file def _set_lab_code(self): lab = self._settm.get_value('select_single', 'lab') if lab is not None: self._lab_code = self._l2c[lab] def _set_submitter(self): submitter = self._settm.get_value('entered_value', 'submitter') if submitter is not None: self._submitter = submitter def get_first_pid(self): if self._df is None: return None if not self.validate_lab_code(): return None if self._df.empty: print("df is empty") first_pid = self._mk_pid(1) return first_pid else: print("df is nonempty") last_row = self._df.iloc[-1] num = last_row['pid_num'] + 1 first_pid = self._mk_pid(num) return first_pid def validate_lids(self, lids: list) -> bool: """ Validates a list of internal_lab_ids :param lids: list of internal_lab_ids :return: bool """ res = [] for lid in lids: res.append(self._is_valid_lid(str(lid))) if all(res): return True else: return False def _validate_pidlids(self, pidlids: list) -> bool: """ Validates a list of tuples with internal_lab_id and pseudo_id by checking against previous :param lids: list of internal_lab_ids :return: bool """ res = [] for pidlid in pidlids: pid, lid = pidlid res.append(self._is_valid_lid(lid)) res.append(self._is_valid_pid(pid)) if all(res): return True else: return False def _is_valid_lid(self, lid: str) -> bool: if lid in self._lids: return False return True def _is_valid_pid(self, pid: str) -> bool: if pid in self._pids: return False return True def _mk_pid(self, num: int) -> str: num_str = self._int_zfill(num) return f"{self._lab_code}-{num_str}" def _create_csv(self): if self._file is None: return if self._file.is_file(): return if self._file.parent.is_dir(): _df = pd.DataFrame(columns=self._df_cols) _df.to_csv(self._file, index=False) def _read_csv(self): """ read the csv into a pandas df, perform various validity checks""" if self._file is None: self._df = None return if not self._file.is_file(): self._create_csv() try: self._df = pd.read_csv(self._file) if set(self._df.columns) != set(self._df_cols): print("pseudo_id file is incompatible") self._df = None return except: self._df = None return lab_code_set = set(self._df['lab_code']) if len(lab_code_set) > 1: self._df = None return if len(lab_code_set) == 1 and self._lab_code not in lab_code_set: self._df = None return if not self._df['pid_num'].is_monotonic_increasing: self._df = None return def _write_csv(self): if self._df is not None: self._df.to_csv(self._file, index=False, columns=self._df_cols) def _int_zfill(self, value: int) -> str: number_str = str(value) return number_str.zfill(8) @staticmethod def _pid_to_lab_code(pid: str) -> str: lab_code, _ = pid.split('-') return lab_code @staticmethod def _pid_to_num(pid: str) -> int: _, no_str = pid.split('-') return int(no_str) @staticmethod def _is_valid_file(file: str) -> bool: try: fobj = Path(file) if fobj.parent.is_dir(): return True else: return False except: return False # # if __name__ == '__main__': # # pidm = PseudoIDManager() # print(pidm.get_first_pid()) # # lids = [ # 'test5', # 'test6', # 'test7', # 'test8' # ] # # pids = pidm.generate_pids_from_lids(lids) # print(pids) # # pidlids = list(zip(pids, lids)) # # print(pidlids) # # pidm.write_pidlids_to_csv(pidlids)
python
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import itertools from typing import Optional from openfermion import ops from openfermion.testing.testing_utils import random_interaction_operator if TYPE_CHECKING: import openfermion def random_interaction_operator_term( order: int, real: bool = True, seed: Optional[int] = None, ) -> 'openfermion.InteractionOperator': """Generates a random interaction operator with non-zero coefficients only on terms corresponding to the given number of unique orbitals. The number of orbitals is equal to the given order. Args: order: How many unique orbitals the non-zero terms should correspond to. real: Whether or not the coefficients should be real. Defaults to True. seed: The seed. If None (default), uses np.random. """ n_orbitals = order if order > 4: return ops.InteractionOperator.zero(order) operator = random_interaction_operator(n_orbitals, real=real, seed=seed) operator.constant = 0 for indices in itertools.product(range(n_orbitals), repeat=2): if len(set(indices)) != order: operator.one_body_tensor[indices] = 0 for indices in itertools.product(range(n_orbitals), repeat=4): if len(set(indices)) != order: operator.two_body_tensor[indices] = 0 return operator
python
# -*- coding: utf-8 -*- """ Helpers for our web and worker (scraper) instances """ from werkzeug.contrib.atom import AtomFeed from flask import make_response import json from bson import json_util import datetime import pymongo from conn import db def _get_plans(count=1000, query={}): return list(db.plans.find(query, limit=count).sort( [("year", pymongo.DESCENDING), ("month", pymongo.DESCENDING), ("day", pymongo.DESCENDING)])) def _get_gushim(query={}, fields=None): return list(db.gushim.find(query, fields=fields)) def _get_plan_statistics(): return db.plans.aggregate([ {"$unwind" : "$gushim" }, {"$project": {"gush_id": "$gushim", "status": "$status", "_id": 0}}, {"$group": {"_id": {"gush_id": "$gush_id", "status": "$status"}, "count": {"$sum": 1}}} ]) def _create_response_json(data): """ Convert dictionary to JSON. json_util.default adds automatic mongoDB result support """ r = make_response(json.dumps(data, ensure_ascii=False, default=json_util.default)) r.headers['Access-Control-Allow-Origin'] = "*" r.headers['Content-Type'] = "application/json; charset=utf-8" return r def _create_response_atom_feed(request, plans, feed_title=''): """ Create an atom feed of plans fetched from the DB based on an optional query """ feed = AtomFeed(feed_title, feed_url=request.url, url=request.url_root) for p in plans: formatted = _format_plan(p, request.url_root) feed.add( title=formatted['title'], content=formatted['content'], content_type='html', author="OpenTABA.info", # id=url + '&status=' + p['status'], # ^^ it seems like the &tblView= value keeps changing in the URL, which causes the ID to change and dlvr.it to republish items. id="%s-%s" % (formatted['title'], p['status']), # this is a unique ID (not real URL) so adding status to ensure uniqueness in TBA stages url=formatted['url'], links=formatted['links'], updated=formatted['last_update'] ) return feed def _format_plan(plan, server_root=None): """ Take a plan and format it for atom feed and social networks """ formatted_plan = {} formatted_plan['url'] = plan['details_link'] # special emphasizing for some statuses if plan['status'] in [u'פרסום ההפקדה', u'פרסום בעיתונות להפקדה']: formatted_plan['status'] = u'»»%s««' % plan['status'] else: formatted_plan['status'] = plan['status'] # the plan's content formatted_plan['content'] = plan['essence'] + ' [' + formatted_plan['status'] + ', ' + \ '%02d/%02d/%04d' % (plan['day'], plan['month'], plan['year']) + ', ' + plan['number'] + ']' # the title formatted_plan['title'] = plan['location_string'] # 'not title' is not supposed to happen anymore because every plan currently has a location if not formatted_plan['title']: formatted_plan['title'] = plan['number'] # mavat link - if we have a code and the base url for this server (currently only from the atom feed) we can give a direct link # (through our server). otherwise link to the search page with parameters if plan['mavat_code'] == '' or server_root is None: formatted_plan['links'] = [{'href' : 'http://www.mavat.moin.gov.il/MavatPS/Forms/SV3.aspx?tid=4&tnumb=' + plan['number'], 'rel': 'related', 'title': u'מבא"ת'}] else: formatted_plan['links'] = [{'href': '%splan/%s/mavat' % (server_root, plan['plan_id']), 'rel': 'related', 'title': u'מבא"ת'}] # plan last update formatted_plan['last_update'] = datetime.date(plan['year'], plan['month'], plan['day']) return formatted_plan """ A small class to enable json-serializing of datetime.date objects To use it: json.dumps(json_object, cls=helpers.DateTimeEncoder) """ class DateTimeEncoder(json.JSONEncoder): def default(self, obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: return json.JSONEncoder.default(self, obj)
python
from django.urls import include, path from rest_framework.routers import DefaultRouter from .views import CreatePollViewSet, GetResultViewSet, PollViewSet v1_router = DefaultRouter() v1_router.register('createPoll', CreatePollViewSet, basename='create_poll') v1_router.register('poll', PollViewSet, basename='vote_poll') v1_router.register('getResult', GetResultViewSet, basename='get_result') urlpatterns = [ path('v1/', include(v1_router.urls)), ]
python
# Gumby theft detection program # Created Feb 8, 2018 # Copyright (c) Sambhav Saggi 2018 # All rights reserved # Created for Gregory Calvetti # Output may be wrong #Set some constants DENSITY_THRESH=0.7 #Get ready to compare numbers def takeClosest(list, derp): meme = [] for i in list: meme.append(abs(derp-i)) return meme.index(min(meme)) #Material info baking_soda = { "fire": 1, "vinegar": 2, "iodine": 1, "bromo": 2 } drywall_compound = { "fire": 2, "vinegar": 0, "iodine": 1, "bromo": 0 } corn_starch = { "fire": 2, "vinegar": 0, "iodine": 2, "bromo": 1 } salt = { "fire": 1, "vinegar": 0, "iodine": 1, "bromo": 1 } flour = { "fire": 2, "vinegar": 0, "iodine": 2, "bromo": 1 } sugar = { "fire": 2, "vinegar": 0, "iodine": 0, "bromo": 1 } #Density density={ "copper" : 8.96, "steel" : 7.85, "brass" : 8.73, "aluminum" : 2.7, "none" : 0 } #Evidence evidence = { "num":{"footprint":247,"density":8.9}, "chroma":["blue","red"], "react":{"fire":2,"vinegar":2,"bromo":2,"iodine":2} #0 is no reaction, 1 is some reaction, 2 is violent reaction. Iodine: 0 is none # 1 is yellow, 2 is brown. Bromo: 0 is green, 1 is yellow, 2 is blue } #Suspects suspect_list=["cafe_worker","janitor","handyman","administrator","ccac"] cafe_worker = { "name":"cafe_worker", "powder1":baking_soda, "powder2":flour, "metal1":density["copper"], "metal2":density["steel"], "footprint":244, "chroma":["yellow","blue"] } janitor = { "name":"janitor", "powder1":salt, "powder2":baking_soda, "metal1":density["steel"], "metal2":density["none"], "footprint":286, "chroma":["blue","red"] } handyman = { "name":"handyman", "powder1":drywall_compound, "powder2":sugar, "metal1":density["aluminum"], "metal2":density["steel"], "footprint":265, "chroma":["black",""] } administrator = { "name":"administrator", "powder1":sugar, "powder2":salt, "metal1":density["copper"], "metal2":density["brass"], "footprint":330, "chroma":["blue","orange"] } ccac = { "name":"ccac", "powder1":baking_soda, "powder2":corn_starch, "metal1":density["copper"], "metal2":density["aluminum"], "footprint":265, "chroma":["red","blue"] } #BEGIN THE SEARCH!!!! for i in range(0,5): test_suspect = suspect_list[i] #Cafe Worker if test_suspect == "cafe_worker": cafe_worker_evidence=0 #Powder 1 powder1=cafe_worker["powder1"] if powder1["fire"] == evidence["react"]['fire']: cafe_worker_evidence+=1 if powder1["vinegar"] == evidence["react"]['vinegar']: cafe_worker_evidence+=1 if powder1["iodine"] == evidence["react"]['iodine']: cafe_worker_evidence+=1 if powder1["bromo"] == evidence["react"]['bromo']: cafe_worker_evidence+=1 #Powder 2 powder2=cafe_worker["powder2"] if powder2["fire"] == evidence["react"]['fire']: cafe_worker_evidence+=1 if powder2["vinegar"] == evidence["react"]['vinegar']: cafe_worker_evidence+=1 if powder2["iodine"] == evidence["react"]['iodine']: cafe_worker_evidence+=1 if powder2["bromo"] == evidence["react"]['bromo']: cafe_worker_evidence+=1 #Janitor elif test_suspect == "janitor": janitor_evidence=0 #Powder 1 powder1=janitor["powder1"] if powder1["fire"] == evidence["react"]['fire']: janitor_evidence+=1 if powder1["vinegar"] == evidence["react"]['vinegar']: janitor_evidence+=1 if powder1["iodine"] == evidence["react"]['iodine']: janitor_evidence+=1 if powder1["bromo"] == evidence["react"]['bromo']: janitor_evidence+=1 #Powder 2 powder2=janitor["powder2"] if powder2["fire"] == evidence["react"]['fire']: janitor_evidence+=1 if powder2["vinegar"] == evidence["react"]['vinegar']: janitor_evidence+=1 if powder2["iodine"] == evidence["react"]['iodine']: janitor_evidence+=1 if powder2["bromo"] == evidence["react"]['bromo']: janitor_evidence+=1 #Handyman elif test_suspect == "handyman": handyman_evidence=0 #Powder 1 powder1=handyman["powder1"] if powder1["fire"] == evidence["react"]['fire']: handyman_evidence+=1 if powder1["vinegar"] == evidence["react"]['vinegar']: handyman_evidence+=1 if powder1["iodine"] == evidence["react"]['iodine']: handyman_evidence+=1 if powder1["bromo"] == evidence["react"]['bromo']: handyman_evidence+=1 #Powder 2 powder2=handyman["powder2"] if powder2["fire"] == evidence["react"]['fire']: handyman_evidence+=1 if powder2["vinegar"] == evidence["react"]['vinegar']: handyman_evidence+=1 if powder2["iodine"] == evidence["react"]['iodine']: handyman_evidence+=1 if powder2["bromo"] == evidence["react"]['bromo']: handyman_evidence+=1 #Administrator elif test_suspect == "administrator": administrator_evidence=0 #Powder 1 powder1=administrator["powder1"] if powder1["fire"] == evidence["react"]['fire']: administrator_evidence+=1 if powder1["vinegar"] == evidence["react"]['vinegar']: administrator_evidence+=1 if powder1["iodine"] == evidence["react"]['iodine']: administrator_evidence+=1 if powder1["bromo"] == evidence["react"]['bromo']: administrator_evidence+=1 #Powder 2 powder2=administrator["powder2"] if powder2["fire"] == evidence["react"]['fire']: administrator_evidence+=1 if powder2["vinegar"] == evidence["react"]['vinegar']: administrator_evidence+=1 if powder2["iodine"] == evidence["react"]['iodine']: administrator_evidence+=1 if powder2["bromo"] == evidence["react"]['bromo']: administrator_evidence+=1 #CCAC elif test_suspect == "ccac": ccac_evidence=0 #Powder 1 powder1=ccac["powder1"] if powder1["fire"] == evidence["react"]['fire']: ccac_evidence+=1 if powder1["vinegar"] == evidence["react"]['vinegar']: ccac_evidence+=1 if powder1["iodine"] == evidence["react"]['iodine']: ccac_evidence+=1 if powder1["bromo"] == evidence["react"]['bromo']: ccac_evidence+=1 #Powder 2 powder2=ccac["powder2"] if powder2["fire"] == evidence["react"]['fire']: ccac_evidence+=1 if powder2["vinegar"] == evidence["react"]['vinegar']: ccac_evidence+=1 if powder2["iodine"] == evidence["react"]['iodine']: ccac_evidence+=1 if powder2["bromo"] == evidence["react"]['bromo']: ccac_evidence+=1 # ------Done w/ powders ------- #Begin metals for i in range(0,5): test_suspect = suspect_list[i] #Cafe Worker if test_suspect == "cafe_worker": #Metal 1 metal1=cafe_worker["metal1"] if abs(metal1 - evidence["num"]["density"]) < DENSITY_THRESH: cafe_worker_evidence+=1 #Metal 2 metal2=cafe_worker["metal2"] if abs(metal2 - evidence["num"]["density"]) < DENSITY_THRESH: cafe_worker_evidence+=1 #Janitor elif test_suspect == "janitor": #Metal 1 metal1=janitor["metal1"] if abs(metal1 - evidence["num"]["density"]) < DENSITY_THRESH: janitor_evidence+=1 #Metal 2 metal2=janitor["metal2"] if abs(metal2 - evidence["num"]["density"]) < DENSITY_THRESH: janitor_evidence+=1 #Handyman elif test_suspect == "handyman": #Metal 1 metal1=handyman["metal1"] if abs(metal1 - evidence["num"]["density"]) < DENSITY_THRESH: janitor_evidence+=1 #Metal 2 metal2=handyman["metal2"] if abs(metal2 - evidence["num"]["density"]) < DENSITY_THRESH: handyman_evidence+=1 #Administrator elif test_suspect == "administrator": #Metal 1 metal1=administrator["metal1"] if abs(metal1 - evidence["num"]["density"]) < DENSITY_THRESH: administrator_evidence+=1 #Metal 2 metal2=administrator["metal2"] if abs(metal2 - evidence["num"]["density"]) < DENSITY_THRESH: administrator_evidence+=1 #CCAC elif test_suspect == "ccac": #Metal 1 metal1=ccac["metal1"] if abs(metal1 - evidence["num"]["density"]) < DENSITY_THRESH: ccac_evidence+=1 #Metal 2 metal2=ccac["metal2"] if abs(metal2 - evidence["num"]["density"]) < DENSITY_THRESH: ccac_evidence+=1 # ------Done w/ metals ------- #Begin shoe size shoes=[0,0,0,0,0] for i in range(0,5): test_suspect = suspect_list[i] if test_suspect == "cafe_worker": shoes[i]=cafe_worker["footprint"] elif test_suspect == "janitor": shoes[i]=janitor["footprint"] elif test_suspect == "handyman": shoes[i]=handyman["footprint"] elif test_suspect == "administrator": shoes[i]=administrator["footprint"] elif test_suspect == "ccac": shoes[i]=ccac["footprint"] smallestID=takeClosest(shoes,evidence["num"]["footprint"]) if smallestID == 0: cafe_worker_evidence+=1 elif smallestID == 1: janitor_evidence+=1 elif smallestID == 2: handyman_evidence+=1 elif smallestID == 3: administrator_evidence+=1 elif smallestID == 4: ccac_evidence += 1 # ------Done w/ shoe size ------- #Begin chromotography for i in range(0,5): test_suspect = suspect_list[i] if test_suspect == "cafe_worker": if cafe_worker["chroma"][0] == evidence["chroma"][0]: cafe_worker_evidence+=1 elif cafe_worker["chroma"][1] == evidence["chroma"][0]: cafe_worker_evidence+=1 elif cafe_worker["chroma"][0] == evidence["chroma"][1]: cafe_worker_evidence+=1 elif cafe_worker["chroma"][1] == evidence["chroma"][1]: cafe_worker_evidence+=1 elif test_suspect == "janitor": if janitor["chroma"][0] == evidence["chroma"][0]: janitor_evidence+=1 elif janitor["chroma"][1] == evidence["chroma"][0]: janitor_evidence+=1 elif janitor["chroma"][0] == evidence["chroma"][1]: janitor_evidence+=1 elif janitor["chroma"][1] == evidence["chroma"][1]: janitor_evidence+=1 elif test_suspect == "handyman": if handyman["chroma"][0] == evidence["chroma"][0]: handyman_evidence+=1 elif handyman["chroma"][1] == evidence["chroma"][0]: handyman_evidence+=1 elif handyman["chroma"][0] == evidence["chroma"][1]: handyman_evidence+=1 elif handyman["chroma"][1] == evidence["chroma"][1]: handyman_evidence+=1 elif test_suspect == "administrator": if administrator["chroma"][0] == evidence["chroma"][0]: administrator_evidence+=1 elif administrator["chroma"][1] == evidence["chroma"][0]: administrator_evidence+=1 elif administrator["chroma"][0] == evidence["chroma"][1]: administrator_evidence+=1 elif administrator["chroma"][1] == evidence["chroma"][1]: administrator_evidence+=1 elif test_suspect == "ccac": if ccac["chroma"][0] == evidence["chroma"][0]: ccac_evidence+=1 elif ccac["chroma"][1] == evidence["chroma"][0]: ccac_evidence+=1 elif ccac["chroma"][0] == evidence["chroma"][1]: ccac_evidence+=1 elif ccac["chroma"][1] == evidence["chroma"][1]: ccac_evidence+=1 ################################################################################ #Display results total=10 results=[cafe_worker_evidence,janitor_evidence,handyman_evidence, administrator_evidence,ccac_evidence] suspect_list_proper=["cafe worker","janitor","handyman","administrator", "CCAC teacher"] unranked={ "Cafe worker":cafe_worker_evidence/total*100, "Janitor":janitor_evidence/total*100, "Handyman":handyman_evidence/total*100, "Administrator":administrator_evidence/total*100, "CCAC teacher":ccac_evidence/total*100 } unrankedxy={ "Cafe worker":(str(cafe_worker_evidence/total*100)+"\t%"), "Janitor":(str(janitor_evidence/total*100)+"\t%"), "Handyman":(str(handyman_evidence/total*100)+"\t%"), "Administrator":(str(administrator_evidence/total*100)+"\t%"), "CCAC teacher":(str(ccac_evidence/total*100)+"\t%") } ranked=sorted(unranked, key=unranked.get, reverse=True) ordered_out=["","","","",""] for i in range(0,len(ranked)): ordered_out[i] = ranked[i]+" \t"+unrankedxy[ranked[i]] maxNum = max(results) guilty=suspect_list_proper[results.index(maxNum)] print("It was the "+guilty+"!\n") print("GASP!\n") for i in ordered_out: print(i) #Done
python
from . import command from opensfm.actions import match_features class Command(command.CommandBase): name = 'match_features' help = 'Match features between image pairs' def run_impl(self, dataset, args): match_features.run_dataset(dataset) def add_arguments_impl(self, parser): pass
python
# -*- coding: utf-8 -*- """ Jakob Seidl, Nanoelectronics Group UNSW Sydney """ import pyvisa as visa import pyneMeas.Instruments.Instrument as Instrument import time import math import numpy as np @Instrument.enableOptions class SRS830(Instrument.Instrument): """ SRS830 Lock-In Amplifier >>> myLockin = I.SRS830(GPIBAddress) """ defaultOutput = "sourceLevel" defaultInput = "senseLevel" def __init__(self, address): super(SRS830,self).__init__() self.dev = visa.ResourceManager().open_resource("GPIB0::"+str(address)+"::INSTR") print(self.dev.query("*IDN?")) # Probably should query and check we have the right device self.outputMode = "amplitude" # or "frequency" self.sweepDelay = 0.5 self.type ="SRS830" self.name = 'mySRS830' self.scaleFactor = 1.0 self.input = self._getInput() #AutoRange: self.autoSensitivityEnable = False self.possibleCurrRanges = [9,12,15,18,21,24,26] self.rangeIndex = 6 #random self.rangeDic = { #we shift the lower intervals 30% (-> 0.7*number) downwards so they dont overlap with the bounds when we shift up. 0:[15E-18,1.5E-12], 1:[0.7*1.5E-12,15E-12], 2:[0.7*15E-12,150E-12], 3:[0.7*150E-12,1.5E-9], 4:[0.7*1.5E-9,15E-9], 5:[0.7*15E-9,150E-9], 6:[0.7*150E-9,1.5E-6], } @Instrument.addOptionSetter("name") def _setName(self,instrumentName): self.name = instrumentName @Instrument.addOptionGetter("name") def _getName(self): return self.name @Instrument.addOptionSetter("frequency") def _setFrequency(self,frequency): self.dev.write("FREQ "+str(frequency)) @Instrument.addOptionGetter("frequency") def _getFrequency(self): return float(self.dev.query("FREQ?")) @Instrument.addOptionSetter("amplitude") def _setAmplitude(self,amplitude): self.dev.write("SLVL "+str(amplitude)) @Instrument.addOptionGetter("amplitude") def _getAmplitude(self): return float(self.dev.query("SLVL?")) @Instrument.addOptionGetter("senseLevel") def readXY(self): # This function is a bit more ellaborate since snap return a string comprised of both X and Y values. The function then separates this string, i.e. looks for the separation coma and both exponents... XY = self.dev.query("SNAP?1,2") # ONE could also use OUTP? i (i=1,2,3,4 X,Y,R theta) divideIndex = XY.find(",") X = XY[0:divideIndex] #print(X) Y = XY[divideIndex+1:-1] #print(Y) #Voltage measurements: if self.input == 'A' or self.input =='A-B': # XexpIndex = X.find("e-") YexpIndex = Y.find("e-") if (XexpIndex == -1 or YexpIndex == -1): return [float(X)*(1/self.scaleFactor),float(Y)*(1/self.scaleFactor)] else: XList =list(X) if XList[XexpIndex+2] =="0": XList[XexpIndex+2] ="" Xfinal = float("".join(XList)) YList =list(Y) if YList[YexpIndex+2] =="0": YList[YexpIndex+2] ="" Yfinal = float("".join(YList)) return [(1/self.scaleFactor)*Xfinal,(1/self.scaleFactor)*Yfinal] #Current measurements XexpIndex = X.find("e-") if XexpIndex != -1: # print("Xexp index is "+str(XexpIndex)) XList =list(X) if XList[XexpIndex+2] =="0": XList[XexpIndex+2] ="" Xfinal = float("".join(XList)) else: Xfinal = 0 # we need to do something like this because if the result is already zero or some odd/weird number, the exponent finding process above breaks down YexpIndex = Y.find("e-") if YexpIndex != -1: # print("Yexp index is "+str(YexpIndex)) YList =list(Y) if YList[YexpIndex+2] =="0": YList[YexpIndex+2] ="" Yfinal = float("".join(YList)) else: Yfinal = 0 if self.autoSensitivityEnable: self._autoSensitivity([Xfinal,Yfinal]) return [(1/self.scaleFactor)*Xfinal,(1/self.scaleFactor)*Yfinal] def _autoSensitivity(self,givenValue): R = math.sqrt(givenValue[0]**2+givenValue[1]**2) # print('#############\n') # print('current value is'+str(R)+'\n') # print('current range index is: '+str(self.rangeIndex)+'\n') # print('the boundaries here are: '+str(self.rangeDic[self.rangeIndex][0]) +'and' + str(self.rangeDic[self.rangeIndex][1])+'\n') # print('#############\n') if (self.rangeDic[self.rangeIndex][0] >= R): #and not math.isnan(R) a = self.rangeIndex -1 if a in range(7): self.rangeIndex = a # print(self.rangeIndex) self.dev.write("SENS "+str(self.possibleCurrRanges[self.rangeIndex])) time.sleep(2) elif (R > self.rangeDic[self.rangeIndex][1]): a = self.rangeIndex +1 if a in range(7): self.rangeIndex = a #print(self.rangeIndex) self.dev.write("SENS "+str(self.possibleCurrRanges[self.rangeIndex])) time.sleep(2) else: pass @Instrument.addOptionSetter("sourceLevel") def _setSourceLevel(self,sourceLevel): self.dev.write(("SLVL " if self.outputMode == "amplitude" else "FREQ ") +str(sourceLevel)) time.sleep(self.sweepDelay) @Instrument.addOptionGetter("sourceLevel") def _getSourceLevel(self): return float(self.dev.query(("SLVL?" if self.outputMode == "amplitude" else "FREQ?"))) @Instrument.addOptionSetter("timeConst") def _setTimeConst(self,timeConst): #Index can be between 0 (10 microsec to 19 30ksec) possibleConstants = [10E-6,30E-6,100E-6,300E-6,1E-3,3E-3,10E-3,30E-3,100E-3,300E-3,1,3,10,30,100,300] if float(timeConst) in possibleConstants: #Not including the highest kilosecond integration times since not never used. self.dev.write("OFLT "+str(possibleConstants.index(timeConst))) else: raise ValueError( "\"{}\" is not a valid time Constant for the SRS830.".format(timeConst) + " Valid time constants are: (10,30,100,300)X 1E-6, (1,3,10,30,100,300)X 1E-3 and (1,3,10,30,100,300)X 1E-0 seconds." ) @Instrument.addOptionSetter("senseRange") def _setSenseRange(self,senseRange): possibleSenseRanges = [1E-9,2E-9,5E-9,10E-9,20E-9,50E-9,100E-9,200E-9,500E-9,1E-6,2E-6,5E-6,10E-6,20E-6,50E-6,100E-6,200E-6,500E-6,1E-3,2E-3,5E-3,10E-3,20E-3,50E-3,100E-3,200E-3,500E-3,1] #For voltages !! if senseRange in possibleSenseRanges: sensIndex = possibleSenseRanges.index(senseRange)-1 if self.rangeIndex != sensIndex: #Only change rhe range if it is different than before. This will be helpfull with the auoRange function True self.dev.write("SENS "+str(sensIndex)) time.sleep(0.4) #self.rangeIndex = sensIndex else: pass else: raise ValueError( "\"{}\" is not a valid senseRange for the SRS830.".format(senseRange) + " Valid sensitivities are:\"{}\" Volts or microAmps respectively.".format(possibleSenseRanges) ) @Instrument.addOptionGetter("senseRange") def _getSenseRange(self): possibleSenseRanges = [1E-9,2E-9,5E-9,10E-9,20E-9,50E-9,100E-9,200E-9,500E-9,1E-6,2E-6,5E-6,10E-6,20E-6,50E-6,100E-6,200E-6,500E-6,1E-3,2E-3,5E-3,10E-3,20E-3,50E-3,100E-3,200E-3,500E-3,1] #For voltages !! tempRes = int(self.dev.query('SENS?')) return(possibleSenseRanges[tempRes]) @Instrument.addOptionSetter("input") def _setInput(self,inputSetting): #I1 = I(1E6) and I2 = I(1E8) possibleSettings = ["A","A-B","I1","I2"] if str(inputSetting) in possibleSettings: self.dev.write("ISRC "+str(possibleSettings.index(inputSetting))) self.input = str(inputSetting) @Instrument.addOptionGetter("input") def _getInput(self): possibleSettings = ["A","A-B","I1","I2"] modeIndex = int(self.dev.query("ISRC?")) return possibleSettings[modeIndex] @Instrument.addOptionGetter("scaleFactor") def _getScaleFactor(self): return self.scaleFactor @Instrument.addOptionSetter("scaleFactor") def _setScaleFactor(self,scaleFactor): self.scaleFactor = scaleFactor @Instrument.addOptionSetter("sweepParameter") def _setSweepParameter(self,sweepParameter): if sweepParameter in ("frequency","amplitude"): self.outputMode = str(sweepParameter) else: raise ValueError( "\"{}\" is not a valid sweepParameter for the SRS830.".format(sweepParameter) + " You can either sweep the reference 'frequency' or the sine output 'amplitude'." ) def _getSenseIndex(self): return int(self.dev.query("SENS?")) @Instrument.addOptionGetter("sweepParameter") def _getSweepParameter(self): return self.outputMode @Instrument.addOptionSetter('sweepDelay') def _setSweepDelay(self,delay): self.sweepDelay = delay @Instrument.addOptionGetter('sweepDelay') def _getSweepDelay(self): return self.sweepDelay @Instrument.addOptionSetter("autoSensitivity") def _setAutoSensitivity(self,enable): self.autoSensitivityEnable = True if enable else False @Instrument.addOptionGetter("autoSensitivity") def _getAutoSensitivity(self): return self.autoSensitivityEnable def autoPhase(self): self.dev.write("APHS") time.sleep(3) @Instrument.addOptionSetter("phase") def _setPhase(self,phase): self.dev.write("PHAS "+str(phase)) @Instrument.addOptionGetter("phase") def _getPhase(self): return float(self.dev.query("PHAS?")) def close(self): self.dev.close() def goTo(self,target,stepsize= 0.01,delay=0.2): currentOutput = self.get('sourceLevel') sign = 1 if (target>currentOutput) else -1 sweepArray = np.arange(currentOutput,target+sign*stepsize,sign*stepsize) for point in sweepArray: self.set('sourceLevel',point) time.sleep(delay) self.set('sourceLevel',target)
python
# Copyright (C) 2020-Present the hyssop authors and contributors. # # This module is part of hyssop and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php ''' File created: November 21st 2020 Modified By: hsky77 Last Updated: March 27th 2021 19:31:11 pm ''' from .server import AioHttpView, AioHttpRequest, AioHttpApplication, AioHttpServer, routes Version = '0.0.6'
python
# -*- coding: utf-8 -*- """ lantz.drivers.newport ~~~~~~~~~~~~~~~~~~~~~ :company: Newport. :description: Test and Measurement Equipment. :website: http://www.newport.com/ --- :copyright: 2015, see AUTHORS for more details. :license: GPLv3, """ from .motionesp301 import ESP301, ESP301Axis from .motionsmc100 import SMC100 __all__ = ['ESP301', 'ESP301Axis', 'SMC100']
python
import typing import os import aiohttp from urllib.parse import quote from deta.utils import _get_project_key_id from deta.base import FetchResponse, Util def AsyncBase(name: str): project_key, project_id = _get_project_key_id() return _AsyncBase(name, project_key, project_id) class _AsyncBase: def __init__(self, name: str, project_key: str, project_id: str, host: str = None): if not project_key: raise AssertionError("No Base name provided") host = host or os.getenv("DETA_BASE_HOST") or "database.deta.sh" self._base_url = f"https://{host}/v1/{project_id}/{name}" self.util = Util() self._session = aiohttp.ClientSession( headers={ "Content-type": "application/json", "X-API-Key": project_key, }, raise_for_status=True, ) async def close(self) -> None: await self._session.close() async def get(self, key: str): key = quote(key, safe="") try: async with self._session.get(f"{self._base_url}/items/{key}") as resp: return await resp.json() except aiohttp.ClientResponseError as e: if e.status == 404: return else: raise e async def delete(self, key: str): key = quote(key, safe="") async with self._session.delete(f"{self._base_url}/items/{key}"): return async def insert( self, data: typing.Union[dict, list, str, int, bool], key: str = None ): if not isinstance(data, dict): data = {"value": data} else: data = data.copy() if key: data["key"] = key async with self._session.post( f"{self._base_url}/items", json={"item": data} ) as resp: return await resp.json() async def put( self, data: typing.Union[dict, list, str, int, bool], key: str = None ): if not isinstance(data, dict): data = {"value": data} else: data = data.copy() if key: data["key"] = key async with self._session.put( f"{self._base_url}/items", json={"items": [data]} ) as resp: if resp.status == 207: resp_json = await resp.json() return resp_json["processed"]["items"][0] else: return None async def put_many( self, items: typing.List[typing.Union[dict, list, str, int, bool]] ): if len(items) > 25: raise AssertionError("We can't put more than 25 items at a time.") _items = [] for i in items: if not isinstance(i, dict): _items.append({"value": i}) else: _items.append(i) async with self._session.put( f"{self._base_url}/items", json={"items": _items} ) as resp: return await resp.json() async def fetch( self, query: typing.Union[dict, list] = None, *, limit: int = 1000, last: str = None, ): payload = {} if query: payload["query"] = query if isinstance(query, list) else [query] if limit: payload["limit"] = limit if last: payload["last"] = last async with self._session.post(f"{self._base_url}/query", json=payload) as resp: resp_json = await resp.json() paging = resp_json.get("paging") return FetchResponse( paging.get("size"), paging.get("last"), resp_json.get("items") ) async def update(self, updates: dict, key: str): if key == "": raise ValueError("Key is empty") payload = { "set": {}, "increment": {}, "append": {}, "prepend": {}, "delete": [], } for attr, value in updates.items(): if isinstance(value, Util.Trim): payload["delete"].append(attr) elif isinstance(value, Util.Increment): payload["increment"][attr] = value.val elif isinstance(value, Util.Append): payload["append"][attr] = value.val elif isinstance(value, Util.Prepend): payload["prepend"][attr] = value.val else: payload["set"][attr] = value if not payload: raise ValueError("Provide at least one update action.") key = quote(key, safe="") await self._session.patch(f"{self._base_url}/items/{key}", json=payload)
python
#!/usr/bin/env python3 # Software License Agreement (BSD License) # # Copyright (c) 2018, UFACTORY, Inc. # All rights reserved. # # Author: Vinman <[email protected]> <[email protected]> from ..core.config.x_config import XCONF class APIState(object): NOT_CONNECTED = -1 # 已断开或未连接 NOT_READY = -2 # 未使能或者设置状态 API_EXCEPTION = -3 # 接口异常,可能是参数错误 CMD_NOT_EXIST = -4 # 命令不存在 TCP_LIMIT = -6 # 笛卡尔限位 JOINT_LIMIT = -7 # 关节角度限位 OUT_OF_RANGE = -8 # 超出范围 EMERGENCY_STOP = -9 # 紧急停止 SERVO_NOT_EXIST = -10 # 不存在此ID的关节 CONVERT_FAILED = -11 # 转换Blockly失败 RUN_BLOCKLY_EXCEPTION = -12 # 运行blockly app异常 NORMAL = 0 # 正常 HAS_ERROR = XCONF.UxbusState.ERR_CODE # 有尚未清除的错误 HAS_WARN = XCONF.UxbusState.WAR_CODE # 有尚未清除的警告 RES_TIMEOUT = XCONF.UxbusState.ERR_TOUT # 命令回复超时 RES_LENGTH_ERROR = XCONF.UxbusState.ERR_LENG # TCP长度错误 CMD_NUM_ERROR = XCONF.UxbusState.ERR_NUM # TCP序号错误 CMD_PROT_ERROR = XCONF.UxbusState.ERR_PROT # TCP协议标志错误 FUN_ERROR = XCONF.UxbusState.ERR_FUN # TCP回复指令和发送指令不匹配 NO_TCP = XCONF.UxbusState.ERR_NOTTCP # 写数据异常 STATE_NOT_READY = XCONF.UxbusState.STATE_NOT_READY # 参数错误 RET_IS_INVALID = XCONF.UxbusState.INVALID # 结果无效 OTHER = XCONF.UxbusState.ERR_OTHER # 其它错误 PARAM_ERROR = XCONF.UxbusState.ERR_PARAM # 参数错误 TGPIO_ID_ERR = 20 # 末端IO主机ID错误 MODBUS_BAUD_NOT_SUPPORT = 21 # modbus不支持此波特率 MODBUS_BAUD_NOT_CORRECT = 22 # 末端modbus波特率不正确 MODBUS_ERR_LENG = 23 # modbus回复数据长度错误 TRAJ_RW_FAILED = 31 # 读写轨迹失败(加载轨迹或保存轨迹) TRAJ_RW_TOUT = 32 # 读写轨迹等待超时(加载轨迹或保存轨迹) TRAJ_PLAYBACK_TOUT = 33 # 回放轨迹超时(多种情况) SUCTION_CUP_TOUT = 41 # 等待吸泵设置超时 MODE_IS_NOT_CORRECT = 51 # 模式不正确 WAIT_FINISH_TIMEOUT = 100 # 等待操作完成超时 CHECK_FAILED = 101 # 等待操作完成过程检测状态连续失败次数过多 END_EFFECTOR_HAS_FAULT = 102 # 末端配件有错误 END_EFFECTOR_NOT_ENABLED = 103 # 末端配件未使能
python
from pykgr.package import Package from pykgr.shell import Shell from pykgr.configuration import conf as config from pykgr.environment import Environment from pykgr.builder import Builder from pykgr.package import Package
python
#!/usr/bin/env python # encoding: utf-8 from unittest import TestCase from ycyc.libs.statelib.state import ( FreeState, SequenceState, QSequenceState, StateNotAllowError, EndOfSequenceStateError, SequenceStateFinishedError, ) class TestFreeState(TestCase): def test_usage(self): state = FreeState("init") self.assertEqual(state.state, "init") self.assertEqual(state.exception, None) self.assertEqual(state.last_state, None) with state.processing("init", "state1", "error1"): pass self.assertEqual(state.state, "state1") self.assertEqual(state.exception, None) self.assertEqual(state.last_state, "init") with self.assertRaises(StateNotAllowError): with state.processing("nothing", "", ""): pass self.assertEqual(state.state, "state1") self.assertEqual(state.exception, None) self.assertEqual(state.last_state, "init") with self.assertRaises(ValueError): with state.processing("state1", "state2", "error2"): raise ValueError() self.assertEqual(state.state, "error2") self.assertIsInstance(state.exception, ValueError) self.assertEqual(state.last_state, "state1") with state.processing(("error2", "state3"), "state3", "error3"): pass self.assertEqual(state.state, "state3") self.assertEqual(state.exception, None) self.assertEqual(state.last_state, "error2") with state.processing(("error2", "state3"), "state4", "error4"): pass self.assertEqual(state.state, "state4") self.assertEqual(state.exception, None) self.assertEqual(state.last_state, "state3") class TestSequenceState(TestCase): def test_usage(self): class TSequenceState(SequenceState): __SequenceStates__ = ("init", "state1", "state2", "state3") state = TSequenceState() self.assertEqual(state.state, "init") self.assertEqual(state.index, 0) self.assertEqual(state.exception, None) self.assertEqual(state.last_state, None) self.assertEqual(state.next_state, "state1") self.assertEqual(state.is_finished, False) with state.processing(): pass self.assertEqual(state.state, "state1") self.assertEqual(state.index, 1) self.assertEqual(state.exception, None) self.assertEqual(state.last_state, "init") self.assertEqual(state.next_state, "state2") self.assertEqual(state.is_finished, False) with state.processing(): pass self.assertEqual(state.state, "state2") self.assertEqual(state.index, 2) self.assertEqual(state.exception, None) self.assertEqual(state.last_state, "state1") self.assertEqual(state.next_state, "state3") self.assertEqual(state.is_finished, False) with self.assertRaises(ValueError): with state.processing(): raise ValueError() self.assertEqual(state.state, "error") self.assertEqual(state.index, 2) self.assertIsInstance(state.exception, ValueError) self.assertEqual(state.last_state, "state2") self.assertEqual(state.next_state, "state3") self.assertEqual(state.is_finished, True) with self.assertRaises(SequenceStateFinishedError): with state.processing(): pass self.assertEqual(state.state, "error") self.assertEqual(state.index, 2) self.assertIsInstance(state.exception, ValueError) self.assertEqual(state.last_state, "state2") self.assertEqual(state.next_state, "state3") self.assertEqual(state.is_finished, True)
python
import streamlit as st # https://github.com/streamlit/release-demos/blob/master/0.65/demos/query_params.py query_params = st.experimental_get_query_params() default = query_params["text"][0] if "text" in query_params else "" x = st.text_area('Enter Text', value=default) st.write('The text in uppercase is ', x.upper())
python
from parser import EPL import glob import os import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.lines import Line2D import copy class Experiment: def __init__(self, suppath, file_regex='*-analyzed.txt', parser=EPL): self.suppath = suppath self.parser = parser self.conditions = [] self.animals = [] self.frequency = [] for dirs in glob.glob(suppath + '/*/'): # Get experimental conditions in folders below suppath self.conditions.append(os.path.basename(dirs[0:-1:1])) condition_dict = [] for condition in self.conditions: # loop through experimental conditions and add animal folders to animals list pathlist = glob.glob(self.suppath + condition+'/*/') animallist = [] experiment_classes = [] for animal in pathlist: animallist.append(os.path.basename(animal[0:-1:1])) experiment_path_list = glob.glob(self.suppath + condition + '/' + os.path.basename(animal[0:-1:1]) + '/' + file_regex) animal_classes = [] # if self.frequencies: # Got to do it this way because numpy array is weird # freq_set = True for experiment in experiment_path_list: if not self.frequency: # We need a list of frequencies later in the program. # Sets freq list if it hasent been set yet self.frequency.append(self.parser(experiment).frequency) # Create a list of parsers classes containing data of each animal animal_classes.append(self.parser(experiment)) # Create a list of all animal lists for a single experimental condition experiment_classes.append(animal_classes) # Create a dictionary for a single condition of the form {Animal_ID: [List of animal trials]} condition_dict.append(dict(zip(animallist, experiment_classes))) # Create an dict for the experiment of the form {Condition 1: condition_dict_1, # Condition 2: condition_dict_2} self.experiment_dict = dict(zip(self.conditions, condition_dict)) self.frequency.sort() @staticmethod def list_to_str(original): co = copy.copy(original) new = [] while co: new.append(str(co.pop(0))) return new def get_experiment(self): return self.experiment_dict class ABR(Experiment): def __init__(self, path, ParsingClass): self.path = path self.parse = ParsingClass # Need to do this to generate the experiment dict super().__init__(suppath=path, parser=ParsingClass) self.plot = self.Plot(self.experiment_dict, self.list_to_str) @staticmethod def _write_csvmat_to_file(file, csvmat): """ Necessary backend function for printing csv files Basically transposes csvmat and fills in extra spaces with spaces (' ') necessary because we may want to print to a csv a list of lists with different sizes inside in general we have lists which are the columns of a csv i.e. [Header, 1, 2, 3, 4, 5] we need a way to print all the headers first, then the data in the appropriate columns example: csvmat = [[1, 2], [a, b, c, d], [x, y, z]] csvmat = _write_csvmat_to_file(file, csvmat) csvmat = [[1, a, x], [2, b, y], [ , c, z], [ , d, ]] file.wirte(csvmat) :param file: :param csvmat: :return: """ strmat = [] maxlen = 0 for i in range(len(csvmat)): if maxlen <= len(csvmat[i]): maxlen = len(csvmat[i]) for i in range(maxlen): line = [] for j in range(len(csvmat)): try: line.append(str(csvmat[j][i]) + ',') except: line.append(' ,') strmat.append(line) for i in range(len(strmat)): if i > 0: file.write('\n') for j in range(len(strmat[0])): file.write(strmat[i][j]) def write_agf_csv(self): for f in self.frequency: csvmat = [] strmat = [] # Basically this creates a string that can be transposed later # [Frequency, 1, 2, 3, 4, 5, 6] # This theme is conserved throughout the function csvmat.append(['frequency'] + [str(f)]) # Need to open twice, first "w" or write, is to open a new blank file file = open(str(f) + 'kHz_data.csv', 'w') for condition in self.experiment_dict: csvmat.append(['Condition'] + [condition]) for animal in self.experiment_dict[condition]: for run in self.experiment_dict[condition][animal]: if f == run.frequency: csvmat.append(['Animal'] + [str(run.id)]) csvmat.append(['Level'] + self.list_to_str(run.levels)) csvmat.append(['Amplitudes'] + self.list_to_str(run.amplitudes)) # What im doing here is finding the maximum length of sublists # contained within csvmat # need to do this so I can create a perfectly rectangular list of lists # which would be impossible with two long lists of condition, frequency, and animal # maxlen = 0 # for i in range(len(csvmat)): # if maxlen <= len(csvmat[i]): # maxlen = len(csvmat[i]) # # for i in range(maxlen): # line = [] # for j in range(len(csvmat)): # try: # line.append(str(csvmat[j][i]) + ',') # except: # line.append(' ,') # strmat.append(line) # # for i in range(len(strmat)): # if i > 0: # file.write('\n') # for j in range(len(strmat[0])): # file.write(strmat[i][j]) self._write_csvmat_to_file(file,csvmat) file.close() def write_thr_csv(self): for condition in self.experiment_dict: csvmat = [] csvmat.append(['Condition'] + [condition]) # Need to open twice, first "w" or write, is to open a new blank file file = open(condition + '_Thresholds.csv', 'w') for animal in self.experiment_dict[condition]: csvmat.append([animal]) freq = [] threshold = [] for run in self.experiment_dict[condition][animal]: freq.append(run.frequency) threshold.append(run.threshold) threshold = [y for y, _ in sorted(zip(threshold, freq))] freq.sort() freq = ['Frequency'] + self.list_to_str(freq) threshold = ['Threshold'] + self.list_to_str(threshold) csvmat.append(freq) csvmat.append(threshold) self._write_csvmat_to_file(file, csvmat) file.close() class Plot: def __init__(self, experiment_dict, l2s): self.experiment_dict = experiment_dict self.list_to_string = l2s FREQ = [] for i,condition in enumerate(self.experiment_dict): for animal in self.experiment_dict[condition]: freq = [] thr = [] for run in self.experiment_dict[condition][animal]: freq.append(run.frequency) thr.append(run.threshold) FREQ.append(freq) self.frequency_list, _ = self._mean(FREQ, FREQ) self.frequency_list = sorted(self.frequency_list) @staticmethod def _mean(x: list, y: list): """ Takes in a list of lists of differing sizes containing a possibly different lengths and makes a flattened list of the mean :param self: :param data: :return: """ z = zip(x, y) X = np.array([]) for a in x: for i in a: if not np.any(X == i): X = np.append(X,i) Y = copy.copy(X) for index,val in enumerate(X): m = 0 # mean i = 0 # iteration for a,b in zip(x,y): if len(a) != len(b): raise IndexError('X,Y dimmensions missmatch') if np.any(np.array(a) == val): m += np.array(b)[np.array(a) == val] i += 1 if i > 0: Y[index] = m/i else: Y[index] = m return X.tolist(), Y.tolist() def _var(self, x: list, y: list): """ Takes in a list of lists of differing sizes containing a possibly different lengths and makes a flattened list of the mean :param self: :param data: :return: """ X, Y_mean = self._mean(x,y) Y = np.array(copy.copy(X)) for index, val in enumerate(X): m = 0 # mean i = 0 # iteration for a, b in zip(x, y): if np.any(np.array(a) == val): m += (np.array(b)[np.array(a) == val] - Y_mean[index])**2 i += 1 if i > 1: Y[index] = m / (i-1) elif i == 0 or i == 1: Y[index] = 0 return X, Y.tolist() def _std(self, x: list, y: list): X,Y = self._var(x,y) for i,val in enumerate(Y): Y[i] = val ** 0.5 return X,Y def threshold(self, errbar=False): fig,ax = plt.subplots() fig.set_size_inches(5,4) ax.set_xscale('log') legend_elements = [] for i, condition in enumerate(self.experiment_dict): legend_elements.append(Line2D([0],[0],color='C'+str(i), lw=2, label=str(condition))) THR = [] FREQ = [] for animal in self.experiment_dict[condition]: freq = [] thr = [] for run in self.experiment_dict[condition][animal]: freq.append(run.frequency) thr.append(run.threshold) thr = [y for y, _ in sorted(zip(thr, freq))] freq.sort() THR.append(thr) FREQ.append(freq) ax.plot(freq, thr, '.-', c='C'+str(i), alpha=0.1) FREQ_mean, THR_mean = self._mean(FREQ, THR) _, THR_variance = self._std(FREQ, THR) if errbar: ax.errorbar(FREQ_mean, THR_mean, yerr=THR_variance, c='C'+str(i), linewidth=2) else: plt.fill_between(FREQ_mean, np.array(THR_mean) - np.array(THR_variance), np.array(THR_mean) + np.array(THR_variance), alpha = .2, color = 'C'+str(i)) plt.plot(FREQ_mean,THR_mean, '.-', c='C'+str(i)) ax.set_xscale('log') ax.set_xticks(FREQ_mean) ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) ax.get_xaxis().set_minor_formatter(matplotlib.ticker.NullFormatter()) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.ticklabel_format(style='plain') ax.set_xlabel('Frequency (kHz)') ax.set_ylabel('Threshold (dB)') ax.legend(handles=legend_elements, loc='best',frameon=False) plt.title('Threshold') plt.show() def agf(self, frequency=None, errbar=None): fig,ax = plt.subplots() fig.set_size_inches(5,4) ax.set_xscale('log') legend_elements = [] for i, condition in enumerate(self.experiment_dict): legend_elements.append(Line2D([0],[0],color='C'+str(i), lw=2, label=str(condition))) lvl = [] amp = [] for animal in self.experiment_dict[condition]: for run in self.experiment_dict[condition][animal]: if np.array(run.frequency) == frequency: ax.plot(run.levels, run.amplitudes, '-', c='C'+str(i), alpha=0.1) amp.append(run.amplitudes) lvl.append(run.levels) lvl_mean, amp_mean = self._mean(lvl, amp) _, amp_variance = self._std(lvl, amp) if errbar: ax.errorbar(lvl_mean, amp_mean, yerr=amp_variance, c='C' + str(i), linewidth=2) else: plt.fill_between(lvl_mean, np.array(amp_mean) - np.array(amp_variance), np.array(amp_mean) + np.array(amp_variance), alpha = .2, color = 'C'+str(i)) ax.plot(lvl_mean, amp_mean, '.-', c='C' + str(i), linewidth=2) plt.title('Amplitude Growth Function') ax.set_xticks(lvl_mean) ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) ax.get_xaxis().set_minor_formatter(matplotlib.ticker.NullFormatter()) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xlabel('Level (dB)') ax.set_ylabel('N1P1 Amplidue') ax.legend(handles=legend_elements, loc='best',frameon=False) plt.show()
python
import time import picamerax frames = 60 with picamerax.PiCamera() as camera: camera.resolution = (1024, 768) camera.framerate = 30 camera.start_preview() # Give the camera some warm-up time time.sleep(2) start = time.time() camera.capture_sequence([ 'image%02d.jpg' % i for i in range(frames) ], use_video_port=True) finish = time.time() print('Captured %d frames at %.2ffps' % ( frames, frames / (finish - start)))
python
#----------------------------------------------------------------------------- # Copyright (c) 2013-2019, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- ### **NOTE** This module is used during bootstrap. ### Import *ONLY* builtin modules. ### List of built-in modules: sys.builtin_module_names """ Set up 'os' and 'os.path' module replacement functions for use during import bootstrap. """ import sys _builtin_names = sys.builtin_module_names _mindirlen = 0 # Wrap os.environ, os.listdir(), os.sep # We cannot cache the content of os.listdir(). It was found to cause problems # with programs that dynamically add python modules to be reimported by that # same program (i.e., plugins), because the cache is only built once # at the beginning, and never updated. So, we must really list the directory # again. if 'posix' in _builtin_names: # For Linux, Unix, Mac OS X from posix import environ as os_environ from posix import listdir as os_listdir os_sep = '/' _mindirlen = 1 elif 'nt' in _builtin_names: # For Windows from nt import environ as os_environ from nt import listdir as os_listdir os_sep = '\\' _mindirlen = 3 else: raise ImportError('No os specific module found') # Wrap os.path.join() def os_path_join(a, b, sep=os_sep): if a == '': return b lastchar = a[-1:] if lastchar == '/' or lastchar == sep: return a + b return a + sep + b # Wrap os.path.dirname() def os_path_dirname(a, sep=os_sep, mindirlen=_mindirlen): for i in range(len(a) - 1, -1, -1): c = a[i] if c == '/' or c == sep: if i < mindirlen: return a[:i + 1] return a[:i] return '' # Wrap os.path.basename() if sys.platform.startswith('win'): # Implementation from ntpath.py module # from standard Python 2.7 Library. def os_path_basename(pth): ## Implementation of os.path.splitdrive() if pth[1:2] == ':': d = pth[0:2] p = pth[2:] else: d = '' p = pth ## Implementation of os.path.split() # set i to index beyond p's last slash i = len(p) while i and p[i - 1] not in '/\\': i = i - 1 head, tail = p[:i], p[i:] # now tail has no slashes # Windows implementation is based on split(). We need # to return only tail. return tail else: # Implementation from ntpath.py module # from standard Python 2.7 Library. def os_path_basename(pth): i = pth.rfind('/') + 1 return pth[i:] if 'PYTHONCASEOK' not in os_environ: def caseOk(filename): files = os_listdir(os_path_dirname(filename)) return os_path_basename(filename) in files else: def caseOk(filename): return True
python
#!/usr/bin/env python from flask_babel import _ import os basedir = os.path.abspath(os.path.dirname(__file__)) POSTGRES = { 'user': 'catalog', 'pw': 'catalog', 'db': 'catalog', 'host': 'localhost', 'port': '5432', } class Config(object): """ App configuration """ CLIENT_SECRET_JSON = os.path.join(basedir, 'client_secrets.json') LANGUAGES = ['en', 'es'] SECRET_KEY = os.environ.get('SECRET_KEY') or 'you-will-never-guess' SQLALCHEMY_DATABASE_URI = 'postgresql://%(user)s:%(pw)s@%(host)s:%(port)s/%(db)s' % POSTGRES # noqa SQLALCHEMY_TRACK_MODIFICATIONS = True
python
#!/usr/bin/env python3 """ Simulate 3D aggregate mixing Generate simulated aggregates that can be analyzed by `analyze_3d_aggregate_mixing.py` .. code-block:: bash $ ./simulate_3d_aggregate_mixing.py \\ --num-red 400 \\ --num-green 127 \\ --aggregate-radius 75.3 \\ --neighbor-radius 20 \\ --same-cell-radius 5 \\ --num-batches 16 \\ ../data/sim_uniform_pos Where the options are: * ``num_red``: Number of "red" (mKate) cells to generate * ``num_green``: Number of "green" (GFP) cells to generate * ``aggregate_radius``: um - Radius of the spherical aggregate * ``neighbor_radius``: um - Cells this close or closer are "neighbors" * ``same_cell_radius``: um - Cells this close or closer are "the same cell" * ``num_batches``: Number of aggregates to simulate (to match the number of empirical samples) """ import sys import shutil import pathlib import argparse from typing import Optional # Allow the scripts directory to be used in-place THISDIR = pathlib.Path(__file__).resolve().parent BASEDIR = THISDIR.parent if THISDIR.name == 'scripts' and (BASEDIR / 'cm_microtissue_struct').is_dir(): sys.path.insert(0, str(BASEDIR)) # Our own imports from cm_microtissue_struct.simulation import ( simulate_spheres_in_sphere, split_red_green ) from cm_microtissue_struct.io import save_position_data from cm_microtissue_struct.plotting import plot_3d_sphere_cloud from cm_microtissue_struct.consts import ( NUM_RED, NUM_GREEN, AGGREGATE_RADIUS, SAME_CELL_RADIUS, NEIGHBOR_RADIUS, ) # Main function def simulate_mixing(outdir: pathlib.Path, prefix: Optional[str] = None, distribution: str = 'uniform', num_red: int = NUM_RED, num_green: int = NUM_GREEN, num_batches: int = 1, aggregate_radius: float = AGGREGATE_RADIUS, neighbor_radius: float = NEIGHBOR_RADIUS, same_cell_radius: float = SAME_CELL_RADIUS): """ Simulate mixing two populations in an aggregate :param Path outdir: The base directory to write results to :param str prefix: The prefix for each simulation :param str distribution: The distribution to simulate :param int num_red: The number of "red" cells to generate :param int num_green: The number of "green" cells to generate :param int num_batches: The number of times to run the simulation :param float aggregate_radius: The radius for the overall aggregate :param float neighbor_radius: (UNUSED) Cells closer than this are "neighbors" :param float same_cell_radius: Cells closer than this are the "same cell" (hard shell model) """ if outdir.is_dir(): shutil.rmtree(str(outdir)) outdir.mkdir(parents=True) if prefix is None: prefix = distribution for batch_id in range(1, num_batches+1): print(f'Simulating batch {batch_id} of {num_batches}') green_dir = outdir / f'{prefix}{batch_id:02d}_gfp_statistics' green_file = green_dir / f'{prefix}{batch_id:02d}_gfp_Position.csv' red_dir = outdir / f'{prefix}{batch_id:02d}_spot_statistics' red_file = red_dir / f'{prefix}{batch_id:02d}_spot_Position.csv' plotfile = outdir / f'{prefix}{batch_id:02d}_sphere_plot.png' # Make a mixed sphere with cells uniformly distributed print(f'Simulating {num_red + num_green} spheres') all_points = simulate_spheres_in_sphere(num_red + num_green, particle_radius=same_cell_radius, sphere_radius=aggregate_radius, umin=0.0, umax=1.0, udist='uniform') # Assign cells to be red or green using a selected distribution red_points, green_points = split_red_green(all_points, num_red=num_red, num_green=num_green, udist=distribution) plot_3d_sphere_cloud([red_points, green_points], ['red', 'green'], radii=same_cell_radius, figsize=(16, 16), outfile=plotfile) save_position_data(green_file, green_points) save_position_data(red_file, all_points) # Command line interface def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument('--prefix', help='Prefix for the directories') parser.add_argument("--num-red", type=int, default=NUM_RED, help='Number of "red" (mKate) cells to generate') parser.add_argument("--num-green", type=int, default=NUM_GREEN, help='Number of "green" (GFP) cells to generate') parser.add_argument('--num-batches', type=int, default=3, help='Number of simulations to run') parser.add_argument("--aggregate-radius", type=float, default=AGGREGATE_RADIUS, help='Radius of the spherical aggregate in um') parser.add_argument("--neighbor-radius", type=float, default=NEIGHBOR_RADIUS, help='Cells this close or closer are "neighbors"') parser.add_argument("--same-cell-radius", type=float, default=SAME_CELL_RADIUS, help='Cells this close or closer are "the same cell"') parser.add_argument('-d', '--distribution', default='uniform', choices=('uniform', 'left_triangle', 'right_triangle', 'inside', 'outside')) parser.add_argument('outdir', type=pathlib.Path, help='Directory to write the plots out to') return parser.parse_args(args=args) def main(args=None): args = parse_args(args=args) simulate_mixing(**vars(args)) if __name__ == '__main__': main()
python
from statuscheck.services.bases._statuspageio import BaseStatusPageAPI class ServiceAPI(BaseStatusPageAPI): name = "Epic Games" domain_id = "ft308v428dv3" status_url = "https://status.epicgames.com/" service_url = "http://epicgames.com/"
python
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import unicode_literals from __future__ import division import unittest from tr55.water_quality import get_volume_of_runoff, get_pollutant_load from tr55.tables import POLLUTION_LOADS class TestWaterQuality(unittest.TestCase): def test_volume(self): """ Test the water volume computation. """ cell_res = 30 # meters cell_count = 100 runoff = 0.4 # inches liters = get_volume_of_runoff(runoff, cell_count, cell_res) self.assertEquals(30480, liters, "Did not calculate the correct runoff volume") def test_load(self): """ Test the pollutant load computation. """ nlcd = 24 pollutant = 'tn' emc = POLLUTION_LOADS[nlcd][pollutant] runoff_liters = 1000 expected = ((runoff_liters * emc) / 1000000) * 2.205 load = get_pollutant_load('developed_high', pollutant, runoff_liters) self.assertEquals(expected, load) def test_load_bad_nlcd(self): """ Test that a bad land use value generates an error. """ self.assertRaises(Exception, get_pollutant_load, 'asdf', 'tn', 1000) def test_load_bad_pollutant(self): """ Test that a pollutant name generates an error. """ self.assertRaises(Exception, get_pollutant_load, 'developed_high', 'asdf', 1000)
python
import pytorch_lightning as pl class TeacherForcingAnnealCallback(pl.Callback): def __init__(self, start, end, epochs): assert start >= end self.start = start self.end = end self.epochs = epochs self.slope = float((start - end)) / epochs def on_validation_epoch_end(self, trainer, model): current = model.teacher_forcing_prob new_teacher_forcing_prob = max(self.end, current - self.slope) model.teacher_forcing_prob = new_teacher_forcing_prob @classmethod def add_cli(self, parser): parser.add_argument("--teacher_forcing_start", type=float, default=0.8) parser.add_argument("--teacher_forcing_end", type=float, default=0.0) parser.add_argument("--teacher_forcing_anneal_epochs", type=int, default=8) class TimeMaskedLossCallback(pl.Callback): def __init__(self, start, end, steps): assert start <= end self.start = start self.end = end self.steps = steps self.slope = float((end - start)) / steps self._time_mask = self.start @property def time_mask(self): return round(self._time_mask) def on_train_start(self, trainer, model): if model.time_masked_idx is None: model.time_masked_idx = self.time_mask def on_train_batch_end(self, trainer, model, *args): self._time_mask = min(self.end, self._time_mask + self.slope) model.time_masked_idx = self.time_mask model.log("time_masked_idx", self.time_mask) @classmethod def add_cli(self, parser): parser.add_argument("--time_mask_start", type=int, default=1) parser.add_argument("--time_mask_end", type=int, default=12) parser.add_argument("--time_mask_anneal_steps", type=int, default=1000) parser.add_argument("--time_mask_loss", action="store_true")
python
import datetime import pandas as pd import io import os import boto3 from io import BytesIO from io import StringIO from airflow import DAG from airflow.providers.amazon.aws.operators.redshift_sql import RedshiftSQLOperator from airflow.operators.dummy import DummyOperator from airflow.operators.redshift_to_s3_operator import RedshiftToS3Transfer from airflow.operators.python_operator import PythonOperator from airflow.providers.amazon.aws.transfers.redshift_to_s3 import RedshiftToS3Operator from airflow.models import Variable dt = datetime.datetime.today() s3 = boto3.resource('s3') s3_c = boto3.client("s3") # # def load_raw_data_from_s3_and_save_it_locally(): obj = s3.Object(Variable.get('s3_staging_bucket'), Variable.get('unload_raw_data_to_s3_key')+'/'+Variable.get('unload_raw_data_to_s3_filename')) with BytesIO(obj.get()['Body'].read()) as bio: df = pd.read_csv(bio) print(f':::::::dataframe:\n{df.info()}') df.to_csv(Variable.get('raw_data_file')) print(f':::::::Dataframe was saved locally') return True def put_preprocessed_data_into_s3(): dataframe = pd.read_csv(Variable.get('eliminated_papers_older_than_01_01_2020')) print(f':::::::dataframe:\n{dataframe.info()}') csv_buf = StringIO() dataframe.to_csv(csv_buf, header=True, index=False) csv_buf.seek(0) s3_c.put_object(Bucket=Variable.get('s3_staging_bucket'), Body=csv_buf.getvalue(), Key=Variable.get('intermediate_preprocessed_s3_key')) print(f':::::::Dataframe was saved to s3') return True def put_spacy_preprocessed_data_into_s3(): dataframe = pd.read_csv(Variable.get('spacy_preprocessed')) print(f':::::::dataframe:\n{dataframe.info()}') csv_buf = StringIO() dataframe.to_csv(csv_buf, header=True, index=False) csv_buf.seek(0) s3_c.put_object(Bucket=Variable.get('s3_staging_bucket'), Body=csv_buf.getvalue(), Key=Variable.get('spacy_preprocessed_s3_key')) print(f':::::::Dataframe was saved to s3') return True def load_preprocessed_data_from_s3_and_save_it_locally(): print(f":::::::object located at {Variable.get('spacy_preprocessed_s3_key')}") obj = s3.Object(Variable.get('s3_staging_bucket'), Variable.get('spacy_preprocessed_s3_key')) with BytesIO(obj.get()['Body'].read()) as bio: df = pd.read_csv(bio) print(f':::::::dataframe:\n{df.info()}') df.to_csv(Variable.get('spacy_preprocessed')) print(f":::::::Dataframe was saved locally at {Variable.get('spacy_preprocessed')}") return True
python
import databases import sqlalchemy import logging import os import json from fastapi import FastAPI from sqlalchemy import text logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) db_string = "postgresql://{0}:{1}@{2}/{3}".format(os.getenv("POSTGRES_USER"), os.getenv("POSTGRES_PASSWORD"), os.getenv("DATABASE_URL"), os.getenv("DATABASE")) database = databases.Database(db_string) metadata = sqlalchemy.MetaData() engine = sqlalchemy.create_engine(db_string) metadata.create_all(engine) app = FastAPI() @app.on_event("startup") async def startup(): logger.info("Connecting to database: "+db_string) await database.connect() @app.on_event("shutdown") async def shutdown(): logger.info("Disconnecting from database: " + db_string) await database.disconnect() @app.get("/") def read_root(): return { "Message": "API is up and running", "DATABASE": [os.getenv("DATABASE_URL"), os.getenv("POSTGRES_USER"), os.getenv("POSTGRES_PASSWORD")], "AUTHENTICATION": os.getenv("AUTHENTICATION") } # res1: data1 ---> select data1 as res1, # res2: data2 @app.get("/metrics") def read_item(): with engine.connect() as con: rs = con.execute(text('select id, data1 as res1, data2 as res2 from metrics m where m.id = :val'), {'val': '1000000'}) # metrics = [] for v in rs: for column, value in v.items(): logger.info('column: ' + format(column) + ', value: ' + format(value)) # metrics.__add__({format(column) : format(value)}) return {"metrics": v.items()}
python
#!/usr/bin/env python import socket import warnings import pytest from flask import _request_ctx_stack from ._internal import _determine_scope from ._internal import _make_accept_header from ._internal import _rewrite_server_name from .live_server import LiveServer @pytest.fixture def client(app): """A Flask test client. An instance of :class:`flask.testing.TestClient` by default. """ with app.test_client() as client: yield client @pytest.fixture def client_class(request, client): """Uses to set a ``client`` class attribute to current Flask test client:: @pytest.mark.usefixtures('client_class') class TestView: def login(self, email, password): credentials = {'email': email, 'password': password} return self.client.post(url_for('login'), data=credentials) def test_login(self): assert self.login('[email protected]', 'pass').status_code == 200 """ if request.cls is not None: request.cls.client = client @pytest.fixture(scope=_determine_scope) def live_server(request, app, pytestconfig): """Run application in a separate process. When the ``live_server`` fixture is applied, the ``url_for`` function works as expected:: def test_server_is_up_and_running(live_server): index_url = url_for('index', _external=True) assert index_url == 'http://localhost:5000/' res = urllib2.urlopen(index_url) assert res.code == 200 """ # Set or get a port port = app.config.get("LIVESERVER_PORT", None) if not port: port = pytestconfig.getvalue("live_server_port") if port == 0: # Bind to an open port s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("", 0)) port = s.getsockname()[1] s.close() host = pytestconfig.getvalue("live_server_host") # Explicitly set application ``SERVER_NAME`` for test suite original_server_name = app.config["SERVER_NAME"] or "localhost.localdomain" final_server_name = _rewrite_server_name(original_server_name, str(port)) app.config["SERVER_NAME"] = final_server_name wait = request.config.getvalue("live_server_wait") clean_stop = request.config.getvalue("live_server_clean_stop") server = LiveServer(app, host, port, wait, clean_stop) if request.config.getvalue("start_live_server"): server.start() request.addfinalizer(server.stop) yield server if original_server_name is not None: app.config["SERVER_NAME"] = original_server_name @pytest.fixture def config(app): """An application config.""" return app.config @pytest.fixture def request_ctx(app): """The request context which contains all request relevant information, e.g. `session`, `g`, `flashes`, etc. """ warnings.warn( "In Werzeug 2.0.0, the Client request methods " "(client.get, client.post) always return an instance of TestResponse. This " "class provides a reference to the request object through 'response.request' " "The fixture 'request_ctx' is deprecated and will be removed in the future, using TestResponse.request " "is the prefered way.", DeprecationWarning, stacklevel=2, ) return _request_ctx_stack.top @pytest.fixture(params=["application/json", "text/html"]) def mimetype(request): return request.param @pytest.fixture def accept_mimetype(mimetype): return _make_accept_header(mimetype) @pytest.fixture def accept_json(request): return _make_accept_header("application/json") @pytest.fixture def accept_jsonp(): return _make_accept_header("application/json-p") @pytest.fixture(params=["*", "*/*"]) def accept_any(request): return _make_accept_header(request.param)
python
from Jumpscale import j def main(self): """ to run: kosmos 'j.clients.zdb._tests_run(name="admin")' """ c = j.servers.zdb.test_instance.client_admin_get() c.reset() c.namespaces_list() assert c.namespaces_list() == ["default"] c.namespace_new("test_namespace") assert c.namespace_exists("test_namespace") assert c.namespaces_list() == ["default", "test_namespace"] c.namespace_delete("test_namespace") assert c.namespaces_list() == ["default"] c.namespace_new("test_namespace") c.reset() assert c.namespaces_list() == ["default"] self._log_info("test ok") return "OK"
python
class IdentityHashingService: def hash(self, value): return value
python
class Solution: """ @param s: a string @param words: a list of words @return: all starting indices of substring(s) """ def findSubstring(self, s, words): # write your code here m = len(s) target = len(words) result = [] if m == 0 or target == 0: return result n = len(words[0]) expected = collections.Counter(words) for i in range(n): seen = collections.Counter() count = 0 for j in range(i, m - n + 1, n): word = s[j: j + n] if word not in expected: count = 0 seen.clear() else: count += 1 seen[word] += 1 while seen[word] > expected[word]: deletedWord = s[j - (count - 1)*n: j - (count - 2)*n] seen[deletedWord] -= 1 count -= 1 if count == target: result.append(j - (count - 1)*n) firstWord = s[j - (count - 1)*n: j - (count - 2)*n] seen[firstWord] -= 1 count -= 1 return result
python
import requests import json import logging logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) requests_log.propagate = True auth_server = 'https://api.amazon.com/auth/register' alexa_user_name = '[email protected]"' alexa_password = 'your_password' guardSystemId- '' history_api_endpoint = 'https://alexa.amazon.com/api/smarthome/v1/history/events' guard_api_endpoint = 'https://alexa.amazon.com/api/smarthome/v0/onGuardSystems/' auth_request_body = { "auth_data": { "email_password": { "email": alexa_user_name, "password": alexa_password, } }, "registration_data": { "domain": "Device", "device_name": "ALEGCNGL9K0HMA3LH5OI7P24C53", "app_name": "ALEGCNGL9K0HMA3LH5OI7P24C53", "app_version": "1", "device_model": "XXX", "os_version": "XXX", "device_type": "ALEGCNGL9K0HM", "device_serial": "ALEGCNGL9K0HMA3LH5OI7P24C53" }, "cookies": { "domain": ".amazon.com" }, "requested_token_type": [ "website_cookies", "bearer" ] } class AuthCredentials: def __init__(self, cookies, csrf): self.cookies = cookies self.csrf = csrf def __repr__(self): return '[ cookies = ' + self.cookies + ' csrf = ' + self.csrf + ' ]' def extract_credentials(website_cookies): cookies = '' csrf = '' for website_cookie in website_cookies: name = website_cookie['Name'] value = website_cookie['Value'] cookies = cookies + name + '=' + value + '; ' if 'csrf' == name: csrf = value return AuthCredentials(cookies, csrf) def get_auth_headers(credentials): if credentials is None: return if credentials.csrf != '': headers['Cookie'] = credentials.cookies else: csrf = '1' headers['Cookie'] = 'csrf='+csrf+'; '+credentials.cookies headers['csrf'] = credentials.csrf headers['Origin'] = 'www.amazon.com' return headers headers = { "Content-Type": "application/json", "User-Agent": 'Mozilla/5.0' } resp = requests.post('auth_server', json=body, headers=headers) response = resp.json() # print(json.dumps(response, indent=4)) auth_credentials = extract_credentials(response['response']['success']['tokens']['website_cookies']) # print(auth_credentials) auth_headers = get_auth_headers(auth_credentials) print(auth_headers) history_filters = { 'timestamp': { 'from': "2020-01-03T16:20:50.780Z", 'to': "2020-06-25T16:20:50.780Z" }, 'filter': { 'type': "V1", 'filterExpression': [] }, 'maxResults': 100 } # Alexa history of your activities response = requests.post(history_api_endpoint, json= history_filters, headers=auth_headers, verify=False ) print(json.dumps(response.json(), indent=4)) # Alexa guard information response= requests.get(guard_api_endpoint + guardSystemId, headers=auth_headers) print(json.dumps(response.json(), indent=4))
python
#!/usr/bin/env python a = [66.25, 333, 333, 1, 1234.5] print("\na=", a) print("\na.count(333) = %d, a.count(66.25) = %d, a.count('x') = %d" % (a.count(333), a.count(66.25), a.count('x')) ) print("\na.insert(2, -1) = ", a.insert(2, -1)) print("a = ", a) print("\na.append(333) = ", a.append(333)) print("a = ", a) print("\na.index(333) = ", a.index(333)) print("a = ", a) print("\na.remove(333) = ", a.remove(333)) print("a = ", a) print("\na.reverse() = ", a.reverse()) print("a = ", a) print("\na.sort() = ", a.sort()) print("a = ", a) print("\na.pop() = ", a.pop()) print("a = ", a)
python
'''The doc module provides decorator functions that will modify a functions __apidoc__ object. For example, when using `method('GET')` it will set the value of the functions method as 'get' on its __apidoc__''' from http import HTTPStatus from oapispec.core.utils import merge, not_none def doc(**kwargs): '''A decorator to add documentation metadata to the decorated function''' def wrapper(documented): current_doc = getattr(documented, '__apidoc__', {}) if 'name' not in current_doc: kwargs['name'] = documented.__name__ documented.__apidoc__ = merge(current_doc, kwargs) return documented return wrapper def route(endpoint): ''' A decorator to route resources. ''' return doc(route=endpoint) def hide(func): '''A decorator to hide a resource or a method from specifications''' return doc()(func) def expect(model, description=None): ''' A decorator to Specify the expected input model :param ModelBase inputs: An expect model :param bool validate: whether to perform validation or not ''' return doc(expect=[(model, description)]) def param(name, type=str, location='query', description=None, format=None, required=False, default=None): ''' A decorator to specify one of the expected parameters :param str name: the parameter name :param str description: a small description :param str location: the parameter location `(query|header|formData|body|cookie)` ''' return doc(params={ name: not_none({ 'in': location, 'type': type, 'format': format, 'default': default, 'required': True if required else None, 'description': description }) }) def response(http_status: HTTPStatus, model=None, headers=None): ''' A decorator to specify one of the expected responses :param HTTPStatus http_status: the HTTP status (or any object with a 'value' and 'description' property) :param ModelBase model: an optional response model :param dict<str, header> headers: an optional dict of headers that are returned with this response ''' code = http_status.value description = http_status.description return doc(responses={str(code): (description, model, headers)}) def header(name, description=None, **kwargs): ''' A decorator to specify one of the expected headers :param str name: the HTTP header name :param str description: a description about the header ''' return doc(headers={ name: { 'description': description }, **kwargs }) def produces(mimetypes): '''A decorator to specify the MIME types the API can produce''' return doc(produces=mimetypes) def deprecated(func): '''A decorator to mark a resource or a method as deprecated''' return doc(deprecated=True)(func) def vendor(*args, **kwargs): ''' A decorator to expose vendor extensions. Extensions can be submitted as dict or kwargs. The ``x-`` prefix is optionnal and will be added if missing. See: http://swagger.io/specification/#specification-extensions-128 ''' for arg in args: kwargs.update(arg) return doc(vendor=kwargs) def method(http_method): '''A decorator to set the method for the handler''' return doc(method=http_method.lower()) def namespace(name, description=None): '''A decorator that groups the decorated handler function in a namespace''' return doc(namespace=not_none({ 'name': name, 'description': description }))
python
import itertools import json from collections import defaultdict from django.core.serializers.json import DjangoJSONEncoder from .orm_lookups import get_django_filter from .query import BoundQuery from .types import ASC, DSC def _filter(qs, path_str, filter_): negation = False lookup = filter_.lookup if lookup.startswith("not_"): negation = True lookup = lookup[4:] filter_expression = get_django_filter( filter_.orm_bound_field.type_, path_str, lookup, filter_.parsed ) if negation: return qs.exclude(filter_expression) else: return qs.filter(filter_expression) def _cols_sub_query(bound_query): filters = [ filter_ for filter_ in bound_query.valid_filters if filter_.orm_bound_field.filter_ ] return BoundQuery( bound_query.model_name, bound_query.col_fields, filters, bound_query.limit, bound_query.orm_model, ) def _rows_sub_query(bound_query): filters = [ filter_ for filter_ in bound_query.valid_filters if filter_.orm_bound_field.filter_ ] body_fields = [f for f in bound_query.body_fields if f.direction] return BoundQuery( bound_query.model_name, bound_query.row_fields + body_fields, filters, bound_query.limit, bound_query.orm_model, ) def get_result_queryset(request, bound_query, debug=False): all_fields = {f.queryset_path_str: f for f in bound_query.bound_fields} all_fields.update({f.queryset_path_str: f for f in bound_query.bound_filters}) qs = bound_query.orm_model.get_queryset( request, {f.split("__")[0] for f in all_fields}, debug=debug ) # sql functions and qs annotations for field in all_fields.values(): qs = field.annotate(request, qs, debug=debug) # filter normal and sql function fields (aka __date) for filter_ in bound_query.valid_filters: if filter_.orm_bound_field.filter_: qs = _filter(qs, filter_.orm_bound_field.queryset_path_str, filter_) # nothing to group on, early out with an aggregate if not any(f.group_by for f in bound_query.bound_fields): return [ qs.aggregate( **{ field.queryset_path_str: field.aggregate_clause for field in bound_query.bound_fields + bound_query.bound_filters if field.aggregate_clause } ) ] # group by group_by_fields = [ field.queryset_path_str for field in bound_query.bound_fields if field.group_by ] qs = qs.values(*group_by_fields).distinct() # aggregates aggregate_clauses = { field.queryset_path_str: field.aggregate_clause for field in bound_query.bound_fields + bound_query.bound_filters if field.aggregate_clause } qs = qs.annotate(**aggregate_clauses) # having, aka filter aggregate fields for filter_ in bound_query.valid_filters: if filter_.orm_bound_field.having: qs = _filter(qs, filter_.orm_bound_field.queryset_path_str, filter_) # sort sort_fields = [] for field in bound_query.sort_fields: if field.direction is ASC: sort_fields.append(field.orm_bound_field.queryset_path_str) if field.direction is DSC: sort_fields.append(f"-{field.orm_bound_field.queryset_path_str}") qs = qs.order_by(*sort_fields) return qs[: bound_query.limit] def get_result_list(request, bound_query): return list(get_result_queryset(request, bound_query)) def _get_objs_for_calculated_fields(request, bound_query, orm_models, res): # gather up all the objects to fetch for calculated fields to_load = defaultdict(set) loading_for = defaultdict(set) for field in bound_query.bound_fields: if field.model_name: loading_for[field.model_name].add(field.name) pks = to_load[field.model_name] for row in res: pks.add(row[field.queryset_path_str]) # fetch all the calculated field objects objs = {} for model_name, pks in to_load.items(): objs[model_name] = ( orm_models[model_name] .get_queryset(request, loading_for[model_name]) .in_bulk(pks) ) return objs # dump out the results def _format_table(fields, data, objs): namespace = {"objs": objs, "data": data} field_lines = [] for i, field in enumerate(fields): namespace[f"format_{i}"] = field.get_formatter() value = f"row[{field.queryset_path_str!r}]" if field.model_name: value = f"objs[{field.model_name!r}].get({value})" field_lines.append(f"{field.path_str!r}: format_{i}({value}),") code = ["[None if row is None else {", *field_lines, "} for row in data]"] return eval("\n".join(code), namespace) def _get_fields(row, fields): res = [] for field in fields: v = row[field.queryset_path_str] if isinstance(v, (list, set)): # pragma: postgres v = tuple(v) try: hash(v) except TypeError: v = json.dumps(v, cls=DjangoJSONEncoder) res.append((field.queryset_path_str, v)) return tuple(res) def _get_data_and_all_keys(bound_query, res): data = defaultdict(dict) all_row_keys = set() all_col_keys = set() for row in res: row_key = _get_fields(row, bound_query.bound_row_fields) col_key = _get_fields(row, bound_query.bound_col_fields) data[row_key][col_key] = dict(_get_fields(row, bound_query.bound_body_fields)) all_row_keys.add(row_key) all_col_keys.add(col_key) return data, all_row_keys, all_col_keys def _get_keys(res, fields, all_keys): keys = {} # abuse dict to preserve order while removing duplicates if fields: for row in res: key = _get_fields(row, fields) if key in all_keys: keys[key] = None else: keys[()] = None return keys def _format_grid(data, col_keys, row_keys, fields, objs): body_data = [] for col_key in col_keys: table = [] for row_key in row_keys: table.append(data[row_key].get(col_key, None)) body_data.append(_format_table(fields, table, objs)) return body_data def get_results(request, bound_query, orm_models, with_format_hints): if not bound_query.fields: return {"rows": [], "cols": [], "body": [], "length": 0} res = get_result_list(request, bound_query) if not res: return {"rows": [], "cols": [], "body": [], "length": 0} if bound_query.bound_col_fields and bound_query.bound_row_fields: # need to fetch rows and col titles seperately to get correct sort rows_res = get_result_list(request, _rows_sub_query(bound_query)) cols_res = get_result_list(request, _cols_sub_query(bound_query)) else: rows_res = res cols_res = res objs = _get_objs_for_calculated_fields(request, bound_query, orm_models, res) if bound_query.bound_col_fields or bound_query.bound_body_fields: raw_body_data, raw_row_data, raw_col_data = _get_data_and_all_keys( bound_query, res ) # the raw versions have the subset of correct results # the res versions have the correct ordering col_keys = _get_keys(cols_res, bound_query.bound_col_fields, raw_col_data) row_keys = _get_keys(rows_res, bound_query.bound_row_fields, raw_row_data) body_data = _format_grid( raw_body_data, col_keys, row_keys, bound_query.bound_body_fields, objs ) row_data = _format_table( bound_query.bound_row_fields, [dict(row) for row in row_keys], objs ) col_data = _format_table( bound_query.bound_col_fields, [dict(col) for col in col_keys], objs ) format_hints = {} for fields, data in [ (bound_query.bound_row_fields, row_data), (bound_query.bound_col_fields, col_data), ( bound_query.bound_body_fields, list(itertools.chain.from_iterable(body_data)), ), ]: format_hints.update( {field.path_str: field.get_format_hints(data) for field in fields} ) return { "rows": row_data, "cols": col_data, "body": body_data, "length": len(res), "formatHints": format_hints, } else: row_data = _format_table( bound_query.bound_row_fields, [dict(_get_fields(row, bound_query.bound_row_fields)) for row in res], objs, ) if with_format_hints: format_hints = { field.path_str: field.get_format_hints(row_data) for field in bound_query.bound_row_fields } else: format_hints = None return { "rows": row_data, "cols": [{}] if res else [], "body": [[{}] * len(res)], "length": len(res), "formatHints": format_hints, }
python
""" Unit tests for \ landlab.components.vegetation_dynamics.vegetation_dynamics """ from nose.tools import assert_equal, assert_true, assert_raises, with_setup from numpy.testing import assert_array_almost_equal try: from nose.tools import assert_is_instance except ImportError: from landlab.testing.tools import assert_is_instance import numpy as np from landlab import RasterModelGrid from landlab.components.vegetation_dynamics.vegetation_dynamics \ import Vegetation (_SHAPE, _SPACING, _ORIGIN) = ((20, 20), (10e0, 10e0), (0., 0.)) _ARGS = (_SHAPE, _SPACING, _ORIGIN) def setup_grid(): from landlab import RasterModelGrid grid = RasterModelGrid((20, 20), spacing=10e0) grid['cell']['vegetation__plant_functional_type']= \ np.zeros(grid.number_of_cells, dtype=int) Veg = Vegetation(grid) globals().update({ 'Veg': Vegetation(grid) }) @with_setup(setup_grid) def test_name(): assert_equal(Veg.name, 'Vegetation') @with_setup(setup_grid) def test_input_var_names(): assert_equal(sorted(Veg.input_var_names), ['surface__evapotranspiration', 'surface__potential_evapotranspiration_30day_mean', 'surface__potential_evapotranspiration_rate', 'vegetation__plant_functional_type', 'vegetation__water_stress']) @with_setup(setup_grid) def test_output_var_names(): assert_equal(sorted(Veg.output_var_names), ['vegetation__cover_fraction', 'vegetation__dead_biomass', 'vegetation__dead_leaf_area_index', 'vegetation__live_biomass', 'vegetation__live_leaf_area_index']) @with_setup(setup_grid) def test_var_units(): assert_equal(set(Veg.input_var_names) | set(Veg.output_var_names), set(dict(Veg.units).keys())) assert_equal(Veg.var_units('vegetation__live_leaf_area_index'), 'None') assert_equal(Veg.var_units('vegetation__dead_leaf_area_index'), 'None') assert_equal(Veg.var_units('vegetation__cover_fraction'), 'None') assert_equal(Veg.var_units('surface__evapotranspiration'), 'mm') assert_equal(Veg.var_units('surface__potential_evapotranspiration_rate'), 'mm') assert_equal(Veg.var_units( 'surface__potential_evapotranspiration_30day_mean'), 'mm') assert_equal(Veg.var_units('vegetation__water_stress'), 'None') assert_equal(Veg.var_units('vegetation__live_biomass'), 'g m^-2 d^-1') assert_equal(Veg.var_units('vegetation__dead_biomass'), 'g m^-2 d^-1') assert_equal(Veg.var_units('vegetation__plant_functional_type'), 'None') @with_setup(setup_grid) def test_grid_shape(): assert_equal(Veg.grid.number_of_node_rows, _SHAPE[0]) assert_equal(Veg.grid.number_of_node_columns, _SHAPE[1]) @with_setup(setup_grid) def test_grid_x_extent(): assert_equal(Veg.grid.extent[1], (_SHAPE[1] - 1) * _SPACING[1]) @with_setup(setup_grid) def test_grid_y_extent(): assert_equal(Veg.grid.extent[0], (_SHAPE[0] - 1) * _SPACING[0]) @with_setup(setup_grid) def test_field_getters(): for name in Veg.grid['node']: field = Veg.grid['node'][name] assert_is_instance(field, np.ndarray) assert_equal(field.shape, (Veg.grid.number_of_node_rows * Veg.grid.number_of_node_columns, )) for name in Veg.grid['cell']: field = Veg.grid['cell'][name] assert_is_instance(field, np.ndarray) assert_equal(field.shape, (Veg.grid.number_of_cell_rows * Veg.grid.number_of_cell_columns, )) assert_raises(KeyError, lambda: Veg.grid['not_a_var_name']) @with_setup(setup_grid) def test_field_initialized_to_zero(): for name in Veg.grid['node']: field = Veg.grid['node'][name] assert_array_almost_equal(field, np.zeros(Veg.grid.number_of_nodes)) for name in Veg.grid['cell']: field = Veg.grid['cell'][name] assert_array_almost_equal(field, np.zeros(Veg.grid.number_of_cells))
python
import os #We don't want to show the pygmy version and welcome message. Snif os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" from random import uniform,randint import tqdm """ We import pygame in order to create a patch for the long calculations If the QLearning calculation time or the creation of the path is too long, the application crashes. So we need to create a patch to avoid this This patch is not too resource-intensive and is not necessary if you don't use the graphical interface """ import pygame class Solver: def __init__(self,maze,learning_rate=0.8,discount_factor=0.5,maxstep=1000,epsilon=0.3,interface=True): """ Initiate the solver Hyperparameters : - maze : the maze which is a 2-dimensional array containing only numerical values - learning_rate : the learning rate of the QLearning algorithm, must be between 0 and 1 - discount_factor : the discount factor of the QLearning algorithm, must be between 0 and 1 - maxstep : Number of explorations the agent will perform. An exploration starts at the start and must find the exit. - epsilon : the value of the espilon-greedy method, must be between 0 and 1 - interface : if you are using the solver with an application (True) or not (False) """ self.learning_rate = learning_rate self.discount_factor = discount_factor self.maxstep = int(maxstep) self.epsilon = epsilon #Variable indicating whether an interface is used self.interface = interface """ Maze code : path = 0 start = 1 end = 2 trap = 3 wall = 4 """ self.maze = maze #Create constants of the maze self.length = len(maze) self.width = len(maze[0]) #Explore the maze self.start = None self.end = None self.trap = [] for i in range(self.length): for j in range(self.width): ele = maze[i][j] if ele == 1: self.start = (i,j) elif ele == 2: self.end = (i,j) elif ele == 3: self.trap.append((i,j)) #The maze must have an enter and an exit if self.start==None or self.end==None: print("Maze must have a start (code1) and an end (code 2)") quit() def learning(self): """ Algorithm of QLearning you can find in "Reinforcement learning : An Introduction" of Sutton and Barto """ #Init the QTable self.createQ() #Until all the episodes are completed for i in tqdm.trange(self.maxstep): #Begin the episode at the start of the maze posX = self.start[0] posY = self.start[1] #The episode runs until the agent arrives at his destination while(not(posX==self.end[0] and posY==self.end[1]) and not ((posX,posY) in self.trap)): #Application control if self.interface : #The crash proof patch events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() exit() #The next position of the agent depend on a greedy choice choice = self.greedyChoice(posX,posY) #Update the next position of the agent newX,newY = self.updatePosition(choice,posX,posY) #Test if the new position is the exit if newX==self.end[0] and newY==self.end[1]: reward = 1 #Test of the new position is a trap elif (newX,newY) in self.trap: reward = -1 else: reward = 0 #Coordinates in the QTable of the last and new position t_pos = posX*self.width+posY tpos = newX*self.width+newY #Update the QTable self.Qtable[t_pos][choice] = self.Qtable[t_pos][choice] + self.learning_rate * (reward + self.discount_factor*max(self.Qtable[tpos]) - self.Qtable[t_pos][choice]) #Position of the agent is update posX=newX posY=newY #When the algorithm is over, create the path the agent has to follow from the start to the end path = [] posX = self.start[0] posY = self.start[1] #Create a counter while creating the path count = 0 #Create the path until it finds the exit #OR it reaches a limit : # The Q-Learning might not reach the best solution with the maxstep we fixed so you can't find the best way to the exit while not(posX==self.end[0] and posY==self.end[1]) and count<=self.length*self.width: #Application control if self.interface : #The crash proof patch events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() exit() #Coordinates in the QTable of the position pos = posX*self.width+posY #Take the best direction direction = self.Qtable[pos].index(max(self.Qtable[pos])) #Update the path path.append(direction) #Update the next position posX,posY = self.updatePosition(direction,posX,posY) count+=1 return path,self.start def updatePosition(self,direction,posX,posY): """ Update (x,y) coordinates depend on a direction """ if direction==0: posX-=1 elif direction==1: posX+=1 elif direction==2: posY+=1 elif direction==3: posY-=1 return posX,posY def greedyChoice(self,posX,posY): """ Epsilon-Greedy choice """ #Take the line in QTable correspondint to the position ligne = self.Qtable[posX*self.width+posY] if uniform(0,1)>=self.epsilon: #best choice of the line return ligne.index(max(ligne)) else: #Or take a random position #Not the most elegant way to do it choice = [] for i in range(4): if ligne[i]!=-1: choice.append(i) pos = randint(0,len(choice)-1) return choice[pos] def createQ(self): """ Create the Qtable Globaly, just have to test if the value at a specific position is a wall or not """ self.Qtable = [] for i in range(self.length): for j in range(self.width): ligne = [] #up if i-1<0 or self.maze[i-1][j]==4: ligne.append(-1) else: ligne.append(0) #bottom if i+1>=self.length or self.maze[i+1][j]==4: ligne.append(-1) else: ligne.append(0) #right if j+1>=self.width or self.maze[i][j+1]==4: ligne.append(-1) else: ligne.append(0) #left if j-1<0 or self.maze[i][j-1]==4: ligne.append(-1) else: ligne.append(0) self.Qtable.append(ligne) if __name__ == "__main__": """ Test a maze """ maze = [ [0,0,0,0,0,0,0,4,2], [0,0,0,0,0,4,0,4,0], [0,0,0,0,3,4,0,0,0], [0,0,0,0,0,4,4,4,0], [1,0,0,0,0,0,0,4,3] ] solver = Solver(maze,interface=False) print(solver.learning())
python
# -*- coding: utf-8 -*- import time # from datetime import datetime, timedelta from flask import Blueprint, request, Response, abort from sqlalchemy import func, and_, or_ import os import math import ujson import logging from datetime import datetime from models import FDMEvent, FDMEventType, FDMEventGroup, DataQarSessionIdent, DataQarFile, ConfFleet, ConfAcType from models import ConfOperator, FDMEventSort, FDMEventDetails, FDMEventLog, FDMParam, ConfAfm, ConfSop, FDMParamScale from models import DataQar, User, FrontDataLogging, ConfFDMApi, Flight, FDMEventParticipant, EFSUser, FDMMultilimitEvent, DataQarPhase from models import Program, Task, CoreAirport, FDMCalculatedEvent, DataQarFlightIdent, FDMFlightParticipant, ExportParamName, FDMSystemUser from database import db_session from sqlalchemy.orm import aliased from decorator.auth_decorators import permission_required, login_required, get_user_data from utils import get_int_or_none import datetime import sys import smtplib import dns.resolver from threading import Timer, Thread import time import random from os import environ reload(sys) sys.setdefaultencoding("utf-8") import codecs from collections import OrderedDict restService = Blueprint('restService', __name__, url_prefix='/api') logger = logging.getLogger('WskaznikiBezpieczenstwa') hdlr = logging.FileHandler('.\page-access.log') formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.setLevel(logging.INFO) logger.info("Logger started...") def sendmail(FROM = '', SUBJECT = 'Hi'): TO = [] final_results = [] results = map(lambda fi: { 'email': fi.email, }, db_session.query(User.email) .filter(User.is_active == 1) .all()) for i in results: TO.append(i['email']) print "New event's found. \nSending mail to client" TEXT = 'Hi \nNew event''s appear' print TO TO = [''] #message = "From: %s\nTo: %s\nSubject: %s\n\n%s" % (FROM, TO, SUBJECT, TEXT) for i in TO: message = "From: %s\nTo: %s\nSubject: %s\n\n%s" % (FROM, i, SUBJECT, TEXT) domain = i.split('@')[1] mx = str(dns.resolver.query(domain, 'MX')[0].exchange) server = smtplib.SMTP(mx) server.sendmail(FROM, i, message) server.quit() def checkIncidents(intervall = 10): while True: time.sleep(float(environ['NEW_INCIDENTS_CHECK_INTERVALL'])) results = map(lambda fi: { 'events_nr': fi.events_nr, }, db_session.query(FrontDataLogging.events_nr) .filter(FrontDataLogging.is_notified == -1) .all()) for i in results: if i['events_nr'] > 0: repeat = True; while repeat == True: e = None e = FrontDataLogging.query.filter(FrontDataLogging.is_notified == -1).first() if e == None: repeat = False break; e.is_notified = 0 try: db_session.add(e) db_session.commit() except: abort(400) sendmail() break; @restService.route('/users', methods=['GET']) @login_required() def get_users(): if request.method == 'GET': user = request.args.get('user') logger.info("[%s][Specific Range]", user) results = map(lambda fi: { 'value': fi.ID, 'label': fi.first_name + ' ' + fi.last_name, }, db_session.query(User.ID, User.first_name, User.last_name) .all()) return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/event_list', methods=['GET']) @login_required() def get_all_events(): """ Fetch all event list from database. """ if request.method == 'GET': date_from = request.args.get('date_from') date_to = request.args.get('date_to') user = request.args.get('user') temparray = request.args.get('events_id') temparray1 = request.args.get('programs_id') events_id = ProcessData(temparray) #Transform data programs_id = ProcessData(temparray1) # Transform data assigned_to = request.args.get('assigned_to') status = request.args.get('status') importance = request.args.get('importance') event_with_program = request.args.get('event_with_program') logger.info("[%s][Specific Range] DateFrom: %s, DateTo: %s,", user, date_from, date_to) is_efs = is_efs_connected().response[0] cau = aliased(FDMEvent) war = aliased(FDMEvent) baked_query = db_session.query(FDMEvent.session_id, ConfAcType.model, ConfFleet.ac_reg, DataQarSessionIdent.apt_origin, DataQarSessionIdent.apt_dest, DataQarSessionIdent.block_off, DataQarSessionIdent.block_on, func.count(cau.id).label('cautions'), func.count(war.id).label('warnings'))\ .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id)\ .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id)\ .outerjoin(ConfFleet, DataQarFile.ac_id == ConfFleet.id)\ .outerjoin(ConfAcType, ConfFleet.ac_type == ConfAcType.id)\ .outerjoin(cau, and_(FDMEvent.id == cau.id, cau.severity == 'caution'))\ .outerjoin(war, and_(FDMEvent.id == war.id, war.severity == 'warning')) \ .group_by(FDMEvent.session_id) if event_with_program == 0 or event_with_program == "0": baked_query = baked_query.join(FDMEventParticipant, FDMEvent.id == FDMEventParticipant.event_id) baked_query = baked_query.outerjoin(Flight, Flight.flight_id == FDMEventParticipant.flightlog_flt_id) else: baked_query = baked_query.outerjoin(FDMEventParticipant, FDMEvent.id == FDMEventParticipant.event_id) baked_query = baked_query.outerjoin(Flight, Flight.flight_id == FDMEventParticipant.flightlog_flt_id) if date_from != 'null': baked_query = baked_query.filter(DataQarSessionIdent.block_off > date_from) if date_to != 'null': baked_query = baked_query.filter(DataQarSessionIdent.block_off < date_to) if assigned_to != 'null' and assigned_to != 'all': baked_query = baked_query.filter(FDMEvent.assigned_to == assigned_to) if assigned_to == 'null': baked_query = baked_query.filter(FDMEvent.assigned_to == None) if status != 'null' and status != 'all': baked_query = baked_query.filter(FDMEvent.status == status) if status == 'null': baked_query = baked_query.filter(FDMEvent.status == None) if importance != 'null' and importance != 'all': baked_query = baked_query.filter(FDMEvent.importance == importance) if importance == 'null': baked_query = baked_query.filter(FDMEvent.importance == None) if len(events_id) > 0 and events_id[0] != 0: baked_query = baked_query.filter(FDMEvent.event_type_id.in_(events_id)) if events_id == []: baked_query = baked_query.filter(FDMEvent.event_type_id.in_(events_id)) if len(programs_id) > 0 and programs_id[0] != 0: baked_query = baked_query.filter(or_(Flight.training_task_id.in_(programs_id), FDMEventParticipant.flightlog_flt_id == None)) elif programs_id == []: baked_query = baked_query.filter(or_(Flight.training_task_id.in_(programs_id), FDMEventParticipant.flightlog_flt_id == None)) else: baked_query = baked_query.filter(or_(Flight.training_task_id.in_([]), FDMEventParticipant.flightlog_flt_id == None)) sta = aliased(DataQar) sto = aliased(DataQar) results = map(lambda fi:{ 'session_id': fi.session_id, 'ac_type': fi.model, 'ac_reg': fi.ac_reg, 'airport_departure': fi.apt_origin, 'airport_arrival': fi.apt_dest, 'block_off': fi.block_off, 'block_on': fi.block_on, 'cautions': fi.cautions, 'warnings': fi.warnings, 'events': map(lambda gi:{ 'event_id': gi.id, 'event_group': gi.event_group, 'event_subgroup': gi.event, 'event_type': gi.description, 'event_start': gi.start, 'event_end': gi.end, 'severity': gi.severity, 'assigned_to': gi.assigned_to, 'status': gi.status, 'importance': gi.importance }, db_session.query(FDMEvent.id, FDMEventSort.description.label('event_group'), FDMEventGroup.event, FDMEventType.description, sta.TS.label('start'), sto.TS.label('end'), FDMEvent.severity, (User.first_name + ' ' + User.last_name).label('assigned_to'), FDMEvent.status, FDMEvent.importance) .outerjoin(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) .outerjoin(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) .outerjoin(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) .outerjoin(sta, FDMEvent.start_id == sta.id) .outerjoin(sto, FDMEvent.stop_id == sto.id) .outerjoin(User, FDMEvent.assigned_to == User.ID) .filter(FDMEvent.session_id == fi.session_id, FDMEvent.is_visible == 1) .all() ) }, baked_query.all() ) for entity in results: c = 0 w = 0 for event in entity['events']: if event['severity'] == 'caution': c = c + 1 else: w = w + 1 entity['cautions'] = c entity['warnings'] = w return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/event_details/bars', methods=['GET']) @login_required() def get_event_details_bars(): """ Fetch details of details. """ if request.method == 'GET': event_id = request.args.get('event_id') user = request.args.get('user') logger.info("[%s][Event Details] Event Id: %s", user, event_id) event_id = get_int_or_none(event_id) results = map(lambda fi: { 'param_name': fi.param_name, 'param_unit': fi.param_unit, 'param_full': fi.param_full, 'unit_full': fi.unit_full, 'start': fi.start, 'stop': fi.stop, 'max': fi.max, 'min': fi.min, 'avg': fi.avg, 'var': fi.var, 'caution_limit': fi.caution_limit, 'warning_limit': fi.warning_limit, 'limit_type': fi.limit_type, 'left_border': fi.left_border, 'right_border': fi.right_border, 'value': fi.value, }, db_session.query(FDMEvent.id, FDMParam.param_name, FDMParam.param_unit, FDMParam.param_full, FDMParam.unit_full, func.IF(FDMParamScale.is_start_value, FDMEventDetails.start_value, None).label('start'), func.IF(FDMParamScale.is_stop_value, FDMEventDetails.stop_value, None).label('stop'), func.IF(FDMParamScale.is_max, FDMEventDetails.max, None).label('max'), func.IF(FDMParamScale.is_min, FDMEventDetails.min, None).label('min'), func.IF(FDMParamScale.is_avg, FDMEventDetails.avg, None).label('avg'), func.IF(FDMParamScale.is_var, FDMEventDetails.var, None).label('var'), func.IF(FDMParamScale.is_value, FDMEventDetails.value, None).label('value'), func.coalesce(ConfAfm.caution, ConfSop.caution).label('caution_limit'), func.coalesce(ConfAfm.warning, ConfSop.warning).label('warning_limit'), func.coalesce(ConfAfm.left_border, ConfSop.left_border).label('left_border'), func.coalesce(ConfAfm.right_border, ConfSop.right_border).label('right_border'), FDMParamScale.limit_type, FDMEventDetails.value) .join(FDMEventType, FDMEventType.id == FDMEvent.event_type_id) .join(DataQarSessionIdent, DataQarSessionIdent.session_id == FDMEvent.session_id) .join(DataQarFile, DataQarFile.qar_id == DataQarSessionIdent.qar_id) .join(ConfFleet, ConfFleet.id == DataQarFile.ac_id) .join(FDMEventDetails, FDMEventDetails.event_id == FDMEvent.id) .join(FDMEventLog, and_(FDMEventLog.event_type_id == FDMEvent.event_type_id, FDMEventLog.param_id == FDMEventDetails.param_id)) .join(FDMParam, FDMParam.id == FDMEventLog.param_id) .outerjoin(ConfAfm, and_(ConfAfm.event_type_id == FDMEvent.event_type_id, ConfAfm.param_id == FDMEventDetails.param_id, ConfAfm.ac_type_id == ConfFleet.ac_type, FDMEventType.limit_source == 'afm')) .outerjoin(ConfSop, and_(ConfSop.event_type_id == FDMEvent.event_type_id, ConfSop.param_id == FDMEventDetails.param_id, FDMEventType.limit_source == 'sop')) .join(FDMParamScale, FDMParamScale.log_id == FDMEventLog.id) .filter(FDMEventLog.is_head == True, FDMEvent.id == event_id) .all()) return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/event_group', methods=['GET']) @login_required() def get_groups(): if request.method == 'GET': user = request.args.get('user') logger.info("[%s][Specific Range]", user) results = map(lambda fi: { 'event_group_id': fi.id, 'label': fi.description, 'value': fi.description, 'children': map(lambda gi: { 'event_subgroup_id': gi.id, 'label': gi.event, 'children': map(lambda hi: { 'event_type_id': hi.id, 'label': hi.description, }, db_session.query(FDMEventType.description, FDMEventType.id) .filter(FDMEventType.event_subgroup_id == gi.id) .all()), }, db_session.query(FDMEventGroup.event, FDMEventGroup.id) .filter(FDMEventGroup.event_group_id == fi.id) .all()), }, db_session.query(FDMEventSort.description, FDMEventSort.id) .all()) return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/programs', methods=['GET']) @login_required() def get_programs(): if request.method == 'GET': user = request.args.get('user') logger.info("[%s][Specific Range]", user) results = map(lambda fi: { 'program_id': fi.id, 'label': fi.name, 'value': fi.name, 'description': fi.description, 'children': map(lambda gi: { 'task_id': gi.id, 'description': gi.description, 'label': gi.name }, db_session.query(Task.name, Task.id, Task.description) .filter(Task.program_id == fi.id) .all()), }, db_session.query(Program.description, Program.id, Program.name) .all()) return Response(ujson.dumps(results), mimetype='application/json') def ProcessData(arr): if ((len(arr) != 0) and ('u' not in arr) and ('N' not in arr)): x = '' idarray = [] if arr == u'Nan': return idarray for num in arr: if (num != ','): x += str(num) else: idarray.append(int(x)) x = '' idarray.append(int(x)) final_list = idarray return final_list elif ((len(arr) != 0) and 'u' in arr) or ((len(arr) != 0) and 'N' in arr): return [-1] else: return [] return Response(ujson.dumps(results), mimetype='application/json') def valueSwitch(x, table, alt_offset, war_ias, cau_ias): return { 'TS': table.TS, 'GS': table.GS, 'IAS': table.IAS, 'FLAPS': table.FLAPS, 'E1_OIL_T': table.E1_OIL_T, 'ROLL': table.ROLL, 'PITCH': table.PITCH, 'ALT_GPS': table.ALT_GPS, 'VS': table.VS, 'E1_RPM_1': table.E1_RPM_1, 'ACC_NORM': table.ACC_NORM, 'E1_VOLT_1': table.E1_VOLT_1, 'E1_AMP_1': table.E1_AMP_1, 'E1_OIL_P': table.E1_OIL_P, 'E1_FP': table.E1_FP, 'E1_CHT_1': table.E1_CHT_1, 'E1_CHT_2': table.E1_CHT_2, 'E1_CHT_3': table.E1_CHT_3, 'E1_CHT_4': table.E1_CHT_4, 'TRK': table.TRK, 'HDG_MAG': table.HDG_MAG, 'FQtyL': table.FQtyL, 'FQtyR': table.FQtyR, 'E1_FF_1': table.E1_FF_1, 'HGT': table.HGT, 'ALT_BARO': table.ALT_BARO, 'BARO': table.BARO, 'gradient': table.VS/table.GS, 'tailwind': table.GS - (table.IAS * (1 + (table.ALT_GPS/1000 * 0.02))), 'time': table.TS, 'crosswind': (((table.GS * func.SIN(func.RADIANS(func.IF(func.ABS(table.TRK - table.HDG_MAG) > 180, func.ABS(360 - func.ABS(table.TRK - table.HDG_MAG)),func.ABS(table.TRK - table.HDG_MAG))))) / (func.SQRT(func.POW((table.IAS * (1 + (table.ALT_GPS/1000 * 0.02))),2) + func.POW(table.GS,2) - 2*(table.IAS * (1 + (table.ALT_GPS/1000 * 0.02)))*table.GS*func.COS(func.RADIANS(func.IF(func.ABS(table.TRK - table.HDG_MAG) > 180, func.ABS(360 - func.ABS(table.TRK - table.HDG_MAG)), func.ABS(table.TRK - table.HDG_MAG))))))) * (func.SQRT(func.POW((table.IAS * (1 + (table.ALT_GPS/1000 * 0.02))),2) + func.POW(table.GS,2) - 2*(table.IAS * (1 + (table.ALT_GPS/1000 * 0.02)))*table.GS*func.COS(func.RADIANS(func.IF(func.ABS(table.TRK - table.HDG_MAG) > 180, func.ABS(360 - func.ABS(table.TRK - table.HDG_MAG)), func.ABS(table.TRK - table.HDG_MAG))))))), 'vs_to_hgt': table.VS/(table.HGT - alt_offset), 'roll_to_hgt': table.ROLL/(table.HGT - alt_offset), 'elev': table.ALT_GPS - (table.HGT - alt_offset), # 'duration': , # 'lost_fuel': , # 'lndg_dist': , # 'trk_var': , # 'runup_duration': , # 'fuel_endurance': , # 'elev_rate': , 'alt_dev': func.ABS(table.ALT_GPS - table.ALT_BARO), 'fuel_diff': func.ABS(table.FQtyL - table.FQtyR), # 'end_of_rwy': , # 'nearest_ad': , # 'tcr_to_hgt': , 'caution_ias': FDMMultilimitEvent.limit_caution, 'warning_ias': FDMMultilimitEvent.limit_warning, # 'spd_to_dist_ratio': , 'hgt_corr': table.HGT - alt_offset, 'cycle': table.cycle }.get(x) @restService.route('/event_details/chart', methods=['GET']) @login_required() def get_event_details_chart(): """ Fetch details of details. """ if request.method == 'GET': event_id = request.args.get('event_id') user = request.args.get('user') logger.info("[%s][Event Details] Event Id: %s", user, event_id) event_id = get_int_or_none(event_id) results = db_session.query(FDMEvent.id, FDMParam.param_name, FDMParam.is_primary, FDMParam.calculations, FDMParamScale.is_color_scale, FDMParamScale.limit_type, FDMEvent.start_id, FDMEvent.stop_id, FDMEventDetails.min, FDMEventDetails.max, func.coalesce(ConfAfm.caution, ConfSop.caution).label('caution_limit'), func.coalesce(ConfAfm.warning, ConfSop.warning).label('warning_limit'), ConfFleet.alt_gps_offset, FDMEventLog.is_chart, FDMMultilimitEvent.limit_warning, FDMMultilimitEvent.limit_caution, func.IF(FDMParamScale.is_max == 0, 1, 2).label('critical_value'), FDMParam.param_name_front, FDMParam.param_full, FDMParam.param_unit, FDMEventType.is_every_second, FDMParamScale.is_mirror_reflection, FDMEvent.event_type_id, FDMEventLog.is_abs, FDMParam.is_calculated, FDMParam.id )\ .join(FDMEventLog, FDMEvent.event_type_id == FDMEventLog.event_type_id)\ .join(FDMParam, FDMEventLog.param_id == FDMParam.id)\ .join(FDMEventType, FDMEventType.id == FDMEvent.event_type_id)\ .join(DataQarSessionIdent, DataQarSessionIdent.session_id == FDMEvent.session_id)\ .join(DataQarFile, DataQarFile.qar_id == DataQarSessionIdent.qar_id) \ .join(ConfFleet, ConfFleet.id == DataQarFile.ac_id)\ .outerjoin(FDMParamScale, FDMEventLog.id == FDMParamScale.log_id) \ .outerjoin(FDMEventDetails, and_(FDMEventDetails.event_id == FDMEvent.id, FDMEventDetails.param_id == FDMEventLog.param_id)) \ .outerjoin(ConfAfm, and_(ConfAfm.event_type_id == FDMEvent.event_type_id, ConfAfm.param_id == FDMEventDetails.param_id, ConfAfm.ac_type_id == ConfFleet.ac_type, FDMEventType.limit_source == 'afm'))\ .outerjoin(ConfSop, and_(ConfSop.event_type_id == FDMEvent.event_type_id, ConfSop.param_id == FDMEventDetails.param_id, FDMEventType.limit_source == 'sop'))\ .outerjoin(FDMMultilimitEvent, FDMEvent.start_id == FDMMultilimitEvent.data_qar_id)\ .filter(FDMEvent.id == event_id)\ .order_by(FDMEventLog.order_nr).all() baked_query = db_session.query(DataQar.cycle, DataQar.TS).outerjoin(FDMMultilimitEvent, FDMMultilimitEvent.data_qar_id == DataQar.id) headers = ['id'] results2 = [] coloring_data = [] for entity in results: #Map to DB column """ 0 - event id 1 - column name 2 - if column is primary 3 - does it need special calculation 4 - is color scaled 5 - which way to color 6 - start_id 7 - stop_id 8 - min 9 - max 10 - caution limit 11 - warning limit 12 - alt offset 13 - is in chart 14 - multilimit warning 15 - multilimit caution 16 - is max value 17 - param front name 18 - param description 19 - param unit 20 - is second 21 - mirror reflection 22 - event type id 23 - is abs 24 - is calculated 25 - Param id """ if entity[13]: if entity[24] != 1: baked_query = baked_query.add_columns(valueSwitch(entity[1], DataQar, entity[12], entity[14], entity[15])) h = { 'name': entity[1], 'front_name': entity[17], 'full_name': entity[18], 'param_unit': entity[19], 'is_second': entity[20], 'caution_limit': entity[10], 'warning_limit': entity[11], 'is_mirror_reflection': entity[21], 'is_chart': entity[13], 'event_type_id': entity[22], 'is_abs': entity[23], 'is_calculated': entity[24] } headers.append(h) else: baked_query = db_session.query(DataQar.cycle, DataQar.TS, FDMCalculatedEvent.value).filter(FDMCalculatedEvent.data_qar_id == DataQar.id) \ .filter(FDMCalculatedEvent.param_id == entity[25]) h = { 'name': entity[1], 'front_name': entity[17], 'full_name': entity[18], 'param_unit': entity[19], 'is_second': entity[20], 'caution_limit': entity[10], 'warning_limit': entity[11], 'is_mirror_reflection': entity[21], 'is_chart': entity[13], 'event_type_id': entity[22], 'is_abs': entity[23], 'is_calculated': entity[24] } headers.append(h) results = baked_query.filter(DataQar.id >= results[0][6], DataQar.id <= results[0][7]).order_by(DataQar.id).all() results2.append(tuple(headers)) for item in results: results2.append(item) final_results = [] final_results.append(results2) results3 = db_session.query(FDMMultilimitEvent.limit_warning, FDMMultilimitEvent.limit_caution, FDMMultilimitEvent.limit_type, DataQar.TS, FDMMultilimitEvent.event_type_id) \ .filter(and_(FDMEvent.start_id <= FDMMultilimitEvent.data_qar_id, FDMEvent.stop_id >= FDMMultilimitEvent.data_qar_id)) \ .filter(FDMEvent.id == event_id) \ .filter(FDMMultilimitEvent.data_qar_id == DataQar.id) \ final_results.append(results3) return Response(ujson.dumps(final_results), mimetype='application/json') @restService.route('/event_details/table', methods=['GET']) @login_required() def get_event_details_table(): """ Fetch details of details. """ if request.method == 'GET': event_id = request.args.get('event_id') user = request.args.get('user') logger.info("[%s][Event Details] Event Id: %s", user, event_id) event_id = get_int_or_none(event_id) results = db_session.query(FDMEvent.id, FDMParam.param_name, FDMParam.is_primary, FDMParam.calculations, FDMParamScale.is_color_scale, FDMParamScale.limit_type, FDMEvent.start_id, FDMEvent.stop_id, FDMEventDetails.min, FDMEventDetails.max, func.coalesce(ConfAfm.caution, ConfSop.caution).label('caution_limit'), func.coalesce(ConfAfm.warning, ConfSop.warning).label('warning_limit'), ConfFleet.alt_gps_offset, FDMEventLog.is_details, FDMMultilimitEvent.limit_warning, FDMMultilimitEvent.limit_caution, func.IF(FDMParamScale.is_max == 0, 1, 2).label('critical_value'), FDMParam.param_name_front, FDMParam.param_full, FDMParam.param_unit, FDMEventType.is_every_second, FDMParam.is_calculated, FDMEventLog.is_abs, FDMEvent.session_id, FDMParamScale.id, ConfFleet.rec_type)\ .join(FDMEventLog, FDMEvent.event_type_id == FDMEventLog.event_type_id)\ .join(FDMParam, FDMEventLog.param_id == FDMParam.id)\ .join(FDMEventType, FDMEventType.id == FDMEvent.event_type_id)\ .join(DataQarSessionIdent, DataQarSessionIdent.session_id == FDMEvent.session_id)\ .join(DataQarFile, DataQarFile.qar_id == DataQarSessionIdent.qar_id) \ .join(ConfFleet, ConfFleet.id == DataQarFile.ac_id)\ .outerjoin(FDMParamScale, FDMEventLog.id == FDMParamScale.log_id) \ .outerjoin(FDMEventDetails, and_(FDMEventDetails.event_id == FDMEvent.id, FDMEventDetails.param_id == FDMEventLog.param_id)) \ .outerjoin(ConfAfm, and_(ConfAfm.event_type_id == FDMEvent.event_type_id, ConfAfm.param_id == FDMEventDetails.param_id, ConfAfm.ac_type_id == ConfFleet.ac_type, FDMEventType.limit_source == 'afm'))\ .outerjoin(ConfSop, and_(ConfSop.event_type_id == FDMEvent.event_type_id, ConfSop.param_id == FDMEventDetails.param_id, FDMEventType.limit_source == 'sop'))\ .outerjoin(FDMMultilimitEvent, FDMEvent.start_id == FDMMultilimitEvent.data_qar_id)\ .filter(FDMEvent.id == event_id)\ .order_by(FDMEventLog.order_nr).all() baked_query = db_session.query(DataQar.id).outerjoin(FDMMultilimitEvent, FDMMultilimitEvent.data_qar_id == DataQar.id) headers = ['id'] results2 = [] coloring_data = [] for entity in results: #Map to DB column #array desc: """ 0 - event id 1 - column name 2 - if column is primary 3 - does it need special calculation 4 - is color scaled 5 - which way to color 6 - start_id 7 - stop_id 8 - min 9 - max 10 - caution limit 11 - warning limit 12 - alt offset 13 - is in table 14 - multilimit warning 15 - multilimit caution 16 - is max value 17 - param front name 18 - param description 19 - param unit 20 - is second 21 - is calculated 22 - is abs 23 - event session id 24 - paramscale id 25 - rec type 26 - phase desc """ if entity[13]: if entity[21] != 1: baked_query = baked_query.add_columns(valueSwitch(entity[1], DataQar, entity[12], entity[14], entity[15]) ) h = { 'name': entity[1], 'front_name': entity[17], 'full_name': entity[18], 'param_unit': entity[19], 'is_second': entity[20], 'rec_type': entity[25] } headers.append(h) else: baked_query = db_session.query(DataQar.cycle, DataQar.TS, DataQar.IAS, DataQar.GS, DataQar.ALT_GPS, DataQar.HGT, FDMCalculatedEvent.value, FDMCalculatedEvent.value, FDMCalculatedEvent.param_id).filter( FDMCalculatedEvent.data_qar_id == DataQar.id) h = { 'name': entity[1], 'front_name': entity[17], 'full_name': entity[18], 'param_unit': entity[19], 'is_second': entity[20], 'is_calculated': entity[21], 'rec_type': entity[25] } headers.append(h) if entity[4]: coloring_data.append(entity[1]) coloring_data.append(entity[5]) coloring_data.append(entity[8]) coloring_data.append(entity[9]) coloring_data.append(entity[10]) coloring_data.append(entity[11]) coloring_data.append(entity[16]) coloring_data.append(entity[20]) coloring_data.append(entity[22]) baked_query = baked_query.add_columns(DataQar.cycle, DataQarPhase.description).outerjoin(DataQarPhase, DataQar.PH == DataQarPhase.id) if entity[25] == 2 or entity[25] == 4 or entity[25] == 5 or entity[25] == 3: results = baked_query.filter(DataQar.id >= results[0][6]-60, DataQar.id <= results[0][7]+60).filter( DataQar.session_id == entity[23]).filter(DataQar.cycle == 1).order_by(DataQar.id).all() else: results = baked_query.filter(DataQar.id >= results[0][6] - 240, DataQar.id <= results[0][7] + 240).filter( DataQar.session_id == entity[23]).filter(DataQar.cycle == 1).order_by(DataQar.id).all() results2.append(tuple(headers)) for item in results: results2.append(item) final_results = [] final_results.append(tuple(coloring_data)) final_results.append(results2) results3 = db_session.query(FDMMultilimitEvent.limit_warning, FDMMultilimitEvent.limit_caution, FDMMultilimitEvent.limit_type, DataQar.TS) \ .filter(and_(FDMEvent.start_id <= FDMMultilimitEvent.data_qar_id, FDMEvent.stop_id >= FDMMultilimitEvent.data_qar_id)) \ .filter(FDMEvent.id == event_id) \ .filter(FDMMultilimitEvent.data_qar_id == DataQar.id) \ final_results.append(results3) return Response(ujson.dumps(final_results), mimetype='application/json') @restService.route('/event_details/map', methods=['GET']) @login_required() def get_event_details_map(): """ Fetch details of details. """ if request.method == 'GET': event_id = request.args.get('event_id') user = request.args.get('user') demo_env = os.environ.get('demo_env', 'False') logger.info("[%s][Event Details] Event Id: %s", user, event_id) event_id = get_int_or_none(event_id) results = db_session.query(FDMEvent.id, FDMParam.param_name, FDMParamScale.is_color_scale, FDMEvent.start_id, FDMEvent.stop_id, ConfFleet.alt_gps_offset, FDMParamScale.limit_type, FDMEventDetails.min, FDMEventDetails.max, func.coalesce(ConfAfm.caution, ConfSop.caution).label('caution_limit'), func.coalesce(ConfAfm.warning, ConfSop.warning).label('warning_limit'), FDMMultilimitEvent.limit_warning, FDMMultilimitEvent.limit_caution, func.IF(FDMParamScale.is_max == 0, 1, 2).label('critical_value'), ConfFleet.rec_type) \ .join(FDMEventLog, FDMEvent.event_type_id == FDMEventLog.event_type_id) \ .join(FDMParam, FDMEventLog.param_id == FDMParam.id) \ .join(DataQarSessionIdent, DataQarSessionIdent.session_id == FDMEvent.session_id) \ .join(DataQarFile, DataQarFile.qar_id == DataQarSessionIdent.qar_id) \ .join(ConfFleet, ConfFleet.id == DataQarFile.ac_id) \ .join(FDMEventType, FDMEventType.id == FDMEvent.event_type_id)\ .outerjoin(FDMParamScale, FDMEventLog.id == FDMParamScale.log_id) \ .outerjoin(FDMEventDetails, and_(FDMEventDetails.event_id == FDMEvent.id, FDMEventDetails.param_id == FDMEventLog.param_id)) \ .outerjoin(ConfAfm, and_(ConfAfm.event_type_id == FDMEvent.event_type_id, ConfAfm.param_id == FDMEventDetails.param_id, ConfAfm.ac_type_id == ConfFleet.ac_type, FDMEventType.limit_source == 'afm')) \ .outerjoin(ConfSop, and_(ConfSop.event_type_id == FDMEvent.event_type_id, ConfSop.param_id == FDMEventDetails.param_id, FDMEventType.limit_source == 'sop')) \ .outerjoin(FDMMultilimitEvent, FDMEvent.start_id == FDMMultilimitEvent.data_qar_id)\ .filter(FDMEvent.id == event_id) \ .all() start_id = results[0][3] stop_id = results[0][4] alt_gps_offset = results[0][5] multilimit_warning = results[0][11] multilimit_caution = results[0][12] param_name = '' coloring_data = [] for entry in results: if entry[2]: param_name = entry[1] coloring_data.append(entry[6]) coloring_data.append(entry[7]) coloring_data.append(entry[8]) coloring_data.append(entry[9]) coloring_data.append(entry[10]) coloring_data.append(entry[13]) prev_data_qar = aliased(DataQar) next_data_qar = aliased(DataQar) time_alt = 0 if entry[14] == 4 or entry[14] == 5 or entry[14] == 3 or entry[14] == 2: time_alt = 60 else: time_alt = 240 randLat = random.uniform(0, 1) + 0.75 randLng = random.uniform(0, 1) + 2.5 if (param_name == ''): param_name = 'IAS' results = map(lambda fi: { 'LAT1': fi.LAT1 - (randLat if (demo_env == 'True') else 0), 'LNG1': fi.LNG1 - (randLng if (demo_env == 'True') else 0), 'LAT2': fi.LAT2 - (randLat if (demo_env == 'True') else 0), 'LNG2': fi.LNG2 - (randLng if (demo_env == 'True') else 0), 'value': fi.value, 'time': fi.time, }, db_session.query(prev_data_qar.LAT.label('LAT1'), prev_data_qar.LNG.label('LNG1'), next_data_qar.LAT.label('LAT2'), next_data_qar.LNG.label('LNG2'), valueSwitch(param_name, prev_data_qar, alt_gps_offset, multilimit_warning, multilimit_caution).label('value'), prev_data_qar.TS.label('time')) .join(next_data_qar, next_data_qar.id == prev_data_qar.id + 1) .filter(prev_data_qar.id >= start_id-time_alt, prev_data_qar.id <= stop_id+time_alt) .all()) else: results = map(lambda fi: { 'LAT1': fi.LAT1 - (randLat if (demo_env == 'True') else 0), 'LNG1': fi.LNG1 - (randLng if (demo_env == 'True') else 0), 'LAT2': fi.LAT2 - (randLat if (demo_env == 'True') else 0), 'LNG2': fi.LNG2 - (randLng if (demo_env == 'True') else 0), 'value': fi.value, }, db_session.query(prev_data_qar.LAT.label('LAT1'), prev_data_qar.LNG.label('LNG1'), next_data_qar.LAT.label('LAT2'), next_data_qar.LNG.label('LNG2'), valueSwitch(param_name, prev_data_qar, alt_gps_offset, multilimit_warning, multilimit_caution).label('value')) .join(next_data_qar, next_data_qar.id == prev_data_qar.id + 1) .filter(prev_data_qar.id >= start_id-time_alt, prev_data_qar.id <= stop_id+time_alt) .all()) results2 = [] results2.append(tuple(coloring_data)) results2.append(results) results = results2 return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/event_details/basic_info', methods=['GET', 'PUT']) @login_required() def get_info(): """ Fetch all event list from database. """ if request.method == 'GET': is_efs = is_efs_connected().response[0] user = request.args.get('user') event_id = request.args.get('event_id') logger.info("[%s][Specific Range]", user) sta = aliased(DataQar) sto = aliased(DataQar) if is_efs == 'true': instr = aliased(EFSUser) stud = aliased(EFSUser) results = map(lambda fi: { 'event_id': fi.id, 'event_group': fi.event_group, 'event_subgroup': fi.event, 'event_type': fi.description, 'event_start': fi.start, 'event_end': fi.end, 'severity': fi.severity, 'assigned_to': fi.assigned_to, 'status': fi.status, 'importance': fi.importance, 'student': fi.stud, 'instructor': fi.instr, 'ac_type': fi.model, 'ac_reg': fi.ac_reg, 'airport_departure': fi.apt_origin, 'airport_arrival': fi.apt_dest, 'session_id': fi.session_id }, db_session.query(FDMEvent.id, FDMEventSort.description.label('event_group'), FDMEventGroup.event, FDMEventType.description, sta.TS.label('start'), sto.TS.label('end'), FDMEvent.severity, FDMEvent.assigned_to, FDMEvent.status, FDMEvent.importance, ConfAcType.model, ConfFleet.ac_reg, DataQarSessionIdent.apt_origin, DataQarSessionIdent.apt_dest, (stud.first_name + ' ' + stud.last_name).label('stud'), (instr.first_name + ' ' + instr.last_name).label('instr'), FDMEvent.session_id) .outerjoin(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) .outerjoin(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) .outerjoin(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) .outerjoin(sta, FDMEvent.start_id == sta.id) .outerjoin(sto, FDMEvent.stop_id == sto.id) .outerjoin(FDMEventParticipant, FDMEvent.id == FDMEventParticipant.event_id) .outerjoin(Flight, FDMEventParticipant.flightlog_flt_id == Flight.flight_id) .outerjoin(stud, Flight.trainee_id == stud.ID) .outerjoin(instr, Flight.instructor_id == instr.ID) .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) .outerjoin(ConfFleet, DataQarFile.ac_id == ConfFleet.id) .outerjoin(ConfAcType, ConfFleet.ac_type == ConfAcType.id) .filter(FDMEvent.id == event_id) .all()) else: results = map(lambda fi: { 'event_id': fi.id, 'event_group': fi.event_group, 'event_subgroup': fi.event, 'event_type': fi.description, 'event_start': fi.start, 'event_end': fi.end, 'severity': fi.severity, 'assigned_to': fi.assigned_to, 'status': fi.status, 'importance': fi.importance, 'ac_type': fi.model, 'ac_reg': fi.ac_reg, 'airport_departure': fi.apt_origin, 'airport_arrival': fi.apt_dest, 'session_id': fi.session_id }, db_session.query(FDMEvent.id, FDMEventSort.description.label('event_group'), FDMEventGroup.event, FDMEventType.description, sta.TS.label('start'), sto.TS.label('end'), FDMEvent.severity, FDMEvent.assigned_to, FDMEvent.status, FDMEvent.importance, ConfAcType.model, ConfFleet.ac_reg, DataQarSessionIdent.apt_origin, DataQarSessionIdent.apt_dest, FDMEvent.session_id, FDMEventGroup.id) .outerjoin(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) .outerjoin(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) .outerjoin(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) .outerjoin(sta, FDMEvent.start_id == sta.id) .outerjoin(sto, FDMEvent.stop_id == sto.id) .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) .outerjoin(ConfFleet, DataQarFile.ac_id == ConfFleet.id) .outerjoin(ConfAcType, ConfFleet.ac_type == ConfAcType.id) .filter(FDMEvent.id == event_id) .all()) editable_results = [] not_editable_results = [] header = [] for item in results[0]: o = { 'property': item, 'value': results[0][item] } if item == 'status' or item == 'importance' or item == 'assigned_to': editable_results.append(o) elif item == 'session_id': header.append(o) else: if is_efs == 'true': if item == 'event_type' or item == 'event_id': not_editable_results.insert(0, o) elif item == 'event_end' or item == 'severity': not_editable_results.insert(1, o) elif item == 'event_group' or item == 'event_subgroup': not_editable_results.insert(2, o) elif item == 'event_start': not_editable_results.insert(4, o) elif item == 'airport_departure' or item == 'instructor': not_editable_results.insert(7, o) elif item == 'student': not_editable_results.insert(6, o) elif item == 'ac_reg': not_editable_results.insert(8, o) else: not_editable_results.append(o) else: if item == 'event_type' or item == 'event_id' or item == 'severity' or item == 'event_group': not_editable_results.insert(0, o) elif item == 'event_end': not_editable_results.insert(1, o) elif item == 'event_subgroup': not_editable_results.insert(3, o) elif item == 'event_start': not_editable_results.insert(5, o) elif item == 'airport_departure': not_editable_results.insert(9, o) else: not_editable_results.append(o) final_results = [] final_results.append(editable_results) final_results.append(not_editable_results) final_results.append(header) return Response(ujson.dumps(final_results), mimetype='application/json') if request.method == 'PUT': if not request.json: abort(400) assigned_to = None status = None importance = None event_id = None e = None for item in request.json: if(item['property'] == 'assigned_to'): assigned_to = item['value'] if(item['property'] == 'status'): status = item['value'] if(item['property'] == 'importance'): importance = item['value'] if(item['property'] == 'event_id'): event_id = item['value'] user_data = get_user_data(request) if event_id: e = FDMEvent.query.filter(FDMEvent.id == event_id).first() e.assigned_to = assigned_to e.status = status e.importance = importance e.modify_ts = datetime.datetime.now() e.modify_user = user_data['id'] else: abort(406) try: db_session.add(e) db_session.commit() except: abort(400) return Response(), 204 @restService.route('/event_details/export_flight', methods=['GET']) @login_required() def get_flight_data_to_export(): if request.method == 'GET': event_id = request.args.get('event_id') ac_reg_data = request.args.get('ac_reg') results = db_session.query(DataQar).filter(DataQar.session_id == db_session.query(FDMEvent.session_id)\ .filter(FDMEvent.id == event_id)).all() results2 = db_session.query(ConfFleet.alt_gps_offset).filter(ConfFleet.ac_reg == ac_reg_data).all() for i in results: i.HGT = i.HGT - results2[0][0] i.metadata = None i._decl_class_registry = None i._sa_class_manager = None i._sa_instance_state = None i.query = None return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/event_details/export_event', methods=['GET']) @login_required() def get_event_data_to_export(): if request.method == 'GET': event_id = request.args.get('event_id') ac_reg_data = request.args.get('ac_reg') logger.info("[Event Details] Event Id: %s", event_id) event_id = get_int_or_none(event_id) event_start = db_session.query(FDMEvent.start_id).filter(FDMEvent.id == event_id).first() event_start = get_int_or_none(event_start[0]) event_end = db_session.query(FDMEvent.stop_id).filter(FDMEvent.id == event_id).first() event_end = get_int_or_none(event_end[0]) results = db_session.query(DataQar).filter(DataQar.id >= event_start).filter(DataQar.id <= event_end).all() results2 = db_session.query(ConfFleet.alt_gps_offset).filter(ConfFleet.ac_reg == ac_reg_data).all() for i in results: i.HGT = i.HGT - results2[0][0] i.metadata = None i._decl_class_registry = None i._sa_class_manager = None i._sa_instance_state = None i.query = None return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/event_details/column_name', methods=['GET']) @login_required() def get_file_column_name(): if request.method == 'GET': results = db_session.query(ExportParamName.data_qar_name, ExportParamName.export_name, ExportParamName.param_order).all() return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/system_card', methods=['GET']) @login_required() def get_data_logging(): """ Fetch all event list from database. """ if request.method == 'GET': dataType = request.args.get('dataType') if dataType == 'last_7_days': cau = aliased(FDMEvent) war = aliased(FDMEvent) results1 = map(lambda fi: { 'group_type': fi.all_type, 'group_count': fi.group_count }, db_session.query(FDMEvent.id, FDMEventSort.description.label('all_type'), func.count(FDMEvent.event_type_id).label('group_count')) .outerjoin(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) \ .outerjoin(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) \ .outerjoin(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) \ .outerjoin(DataQar, FDMEvent.stop_id == DataQar.id) .filter(DataQar.TS <= datetime.datetime.now()) \ .filter(DataQar.TS >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ .group_by(FDMEventSort.description) \ .all() \ ) results2 = map(lambda fi: { 'events_nr': fi.events_nr, 'cautions_nr': fi.cautions_nr, 'warnings_nr': fi.warnings_nr, 'operations_nr': fi.operations_nr }, db_session.query(func.count(FDMEvent.session_id.distinct()).label('operations_nr'), func.count(FDMEvent.id).label('events_nr'), func.count(cau.id).label('cautions_nr'), func.count(war.id).label('warnings_nr')) \ .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) \ .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) \ .outerjoin(cau, and_(FDMEvent.id == cau.id, cau.severity == 'caution')) \ .outerjoin(war, and_(FDMEvent.id == war.id, war.severity == 'warning')) \ .outerjoin(DataQar, FDMEvent.stop_id == DataQar.id) \ .filter(DataQar.TS <= datetime.datetime.now()) \ .filter(DataQar.TS >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ ) results3 = map(lambda fi: { 'flights_nr': fi.flights_nr }, db_session.query(func.count(DataQar.flight_id.distinct()).label('flights_nr')) .filter(DataQar.flight_id != 'null') .filter(DataQar.TS <= datetime.datetime.now()) \ .filter(DataQar.TS >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ ) results4 = map(lambda fi: { 'ts': fi.ts }, db_session.query(FrontDataLogging.ts) .order_by(FrontDataLogging.ts) ) ''' results = map(lambda fi: { 'id': fi.id, 'processing_id': fi.processing_id, 'operations_nr': fi.operations_nr, 'events_nr': fi.events_nr, 'cautions_nr': fi.cautions_nr, 'warnings_nr': fi.warnings_nr, 'ua_nr': fi.ua_nr, 'cfit_nr': fi.cfit_nr, 'loc_nr': fi.loc_nr, 'eo_nr': fi.eo_nr, 'mac_nr': fi.mac_nr, 're_nr': fi.re_nr, 'others_nr': fi.others_nr, 'ts': fi.ts, 'flights_nr': fi.flights_nr, }, db_session.query(FrontDataLogging.id, FrontDataLogging.processing_id, FrontDataLogging.operations_nr, FrontDataLogging.events_nr, FrontDataLogging.cautions_nr, FrontDataLogging.warnings_nr, FrontDataLogging.ua_nr, FrontDataLogging.cfit_nr, FrontDataLogging.loc_nr, FrontDataLogging.eo_nr, FrontDataLogging.mac_nr, FrontDataLogging.re_nr, FrontDataLogging.others_nr, FrontDataLogging.ts, FrontDataLogging.flights_nr) .filter(FrontDataLogging.ts <= datetime.datetime.now()) \ .filter(FrontDataLogging.ts >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ .order_by(FrontDataLogging.id.desc()) \ .all() ) ''' if dataType == 'last_month': cau = aliased(FDMEvent) war = aliased(FDMEvent) results1 = map(lambda fi: { 'group_type': fi.all_type, 'group_count': fi.group_count }, db_session.query(FDMEvent.id, FDMEventSort.description.label('all_type'), func.count(FDMEvent.event_type_id).label('group_count')) .outerjoin(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) \ .outerjoin(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) \ .outerjoin(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) \ .outerjoin(DataQar, FDMEvent.stop_id == DataQar.id) .filter(DataQar.TS <= datetime.datetime.now()) \ .filter(DataQar.TS >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ .group_by(FDMEventSort.description) \ .all() \ ) results2 = map(lambda fi: { 'events_nr': fi.events_nr, 'cautions_nr': fi.cautions_nr, 'warnings_nr': fi.warnings_nr, 'operations_nr': fi.operations_nr }, db_session.query(func.count(FDMEvent.session_id.distinct()).label('operations_nr'), func.count(FDMEvent.id).label('events_nr'), func.count(cau.id).label('cautions_nr'), func.count(war.id).label('warnings_nr')) \ .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) \ .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) \ .outerjoin(cau, and_(FDMEvent.id == cau.id, cau.severity == 'caution')) \ .outerjoin(war, and_(FDMEvent.id == war.id, war.severity == 'warning')) \ .outerjoin(DataQar, FDMEvent.stop_id == DataQar.id) \ .filter(DataQar.TS <= datetime.datetime.now()) \ .filter(DataQar.TS >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ ) results3 = map(lambda fi: { 'flights_nr': fi.flights_nr }, db_session.query(func.count(DataQar.flight_id.distinct()).label('flights_nr')) .filter(DataQar.flight_id != 'null') .filter(DataQar.TS <= datetime.datetime.now()) \ .filter(DataQar.TS >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ ) results4 = map(lambda fi: { 'ts': fi.ts }, db_session.query(FrontDataLogging.ts) .order_by(FrontDataLogging.ts) ) ''' results = map(lambda fi: { 'id': fi.id, 'processing_id': fi.processing_id, 'operations_nr': fi.operations_nr, 'events_nr': fi.events_nr, 'cautions_nr': fi.cautions_nr, 'warnings_nr': fi.warnings_nr, 'ua_nr': fi.ua_nr, 'cfit_nr': fi.cfit_nr, 'loc_nr': fi.loc_nr, 'eo_nr': fi.eo_nr, 'mac_nr': fi.mac_nr, 're_nr': fi.re_nr, 'others_nr': fi.others_nr, 'ts': fi.ts, 'flights_nr': fi.flights_nr, }, db_session.query(FrontDataLogging.id, FrontDataLogging.processing_id, func.sum(FrontDataLogging.operations_nr).label('operations_nr'), func.sum(FrontDataLogging.events_nr).label('events_nr'), func.sum(FrontDataLogging.cautions_nr).label('cautions_nr'), func.sum(FrontDataLogging.warnings_nr).label('warnings_nr'), func.sum(FrontDataLogging.ua_nr).label('ua_nr'), func.sum(FrontDataLogging.cfit_nr).label('cfit_nr'), func.sum(FrontDataLogging.loc_nr).label('loc_nr'), func.sum(FrontDataLogging.eo_nr).label('eo_nr'), func.sum(FrontDataLogging.mac_nr).label('mac_nr'), func.sum(FrontDataLogging.re_nr).label('re_nr'), func.sum(FrontDataLogging.others_nr).label('others_nr'), FrontDataLogging.ts, func.sum(FrontDataLogging.flights_nr).label('flights_nr')) .filter(FrontDataLogging.ts <= datetime.datetime.now()) \ .filter(FrontDataLogging.ts >= (datetime.datetime.now() - datetime.timedelta(days=30)) )\ .order_by(FrontDataLogging.id.desc()) \ .all() ) ''' if dataType == 'all': cau = aliased(FDMEvent) war = aliased(FDMEvent) results1 = map(lambda fi: { 'group_type': fi.all_type, 'group_count': fi.group_count }, db_session.query(FDMEvent.id, FDMEventSort.description.label('all_type'), func.count(FDMEvent.event_type_id).label('group_count')) .outerjoin(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) \ .outerjoin(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) \ .outerjoin(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) \ .group_by(FDMEventSort.description) \ .all() \ ) results2 = map(lambda fi: { 'events_nr': fi.events_nr, 'cautions_nr': fi.cautions_nr, 'warnings_nr': fi.warnings_nr, 'operations_nr': fi.operations_nr }, db_session.query(func.count(FDMEvent.session_id.distinct()).label('operations_nr'), func.count(FDMEvent.id).label('events_nr'), func.count(cau.id).label('cautions_nr'), func.count(war.id).label('warnings_nr')) \ .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) \ .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) \ .outerjoin(cau, and_(FDMEvent.id == cau.id, cau.severity == 'caution')) \ .outerjoin(war, and_(FDMEvent.id == war.id, war.severity == 'warning')) \ ) print '######' results3 = map(lambda fi: { 'flights_nr': fi.flights_nr }, db_session.query(func.count(DataQar.flight_id.distinct()).label('flights_nr')) .filter(DataQar.flight_id != 'null') ) results4 = map(lambda fi: { 'ts': fi.ts }, db_session.query(FrontDataLogging.ts) .order_by(FrontDataLogging.ts) ) result = results1+results2+results3+results4 return Response(ujson.dumps(result), mimetype='application/json') @restService.route('/system_card_user_info', methods=['GET']) @login_required() def get_data_logging_user(): """ Fetch all event list from database. """ if request.method == 'GET': dataType = request.args.get('dataType') if dataType == 'all': results1 = map(lambda fi: { 'all_events': fi.all_events }, db_session.query(func.count(FDMEvent.id).label('all_events')) .all() ) results2 = map(lambda fi: { 'new_events': fi.new_events, }, db_session.query(func.count(FDMEvent.id).label('new_events')) .filter(FDMEvent.status == None) .all() ) results3 = map(lambda fi: { 'in_progress': fi.in_progress, }, db_session.query(func.count(FDMEvent.id).label('in_progress')) .filter(FDMEvent.status == "in progress") .all() ) results4 = map(lambda fi: { 'analysed': fi.analysed, }, db_session.query(func.count(FDMEvent.id).label('analysed')) .filter(FDMEvent.status == "analysed") .all() ) if dataType == 'last_7_days': results1 = map(lambda fi: { 'all_events': fi.all_events }, db_session.query(func.count(FDMEvent.id).label('all_events')) .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) \ .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ .all() ) results2 = map(lambda fi: { 'new_events': fi.new_events, }, db_session.query(func.count(FDMEvent.id).label('new_events')) .filter(FDMEvent.status == None) .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ .all() ) results3 = map(lambda fi: { 'in_progress': fi.in_progress, }, db_session.query(func.count(FDMEvent.id).label('in_progress')) .filter(FDMEvent.status == "in progress") .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ .all() ) results4 = map(lambda fi: { 'analysed': fi.analysed, }, db_session.query(func.count(FDMEvent.id).label('analysed')) .filter(FDMEvent.status == "analysed") .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=7))) \ .all() ) if dataType == 'last_month': results1 = map(lambda fi: { 'all_events': fi.all_events }, db_session.query(func.count(FDMEvent.id).label('all_events')) .outerjoin(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) \ .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ .all() ) results2 = map(lambda fi: { 'new_events': fi.new_events, }, db_session.query(func.count(FDMEvent.id).label('new_events')) .filter(FDMEvent.status == None) .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ .all() ) results3 = map(lambda fi: { 'in_progress': fi.in_progress, }, db_session.query(func.count(FDMEvent.id).label('in_progress')) .filter(FDMEvent.status == "in progress") .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ .all() ) results4 = map(lambda fi: { 'analysed': fi.analysed, }, db_session.query(func.count(FDMEvent.id).label('analysed')) .filter(FDMEvent.status == "analysed") .filter(DataQarSessionIdent.block_off <= datetime.datetime.now()) \ .filter(DataQarSessionIdent.block_off >= (datetime.datetime.now() - datetime.timedelta(days=30))) \ .all() ) results = results1 + results2 + results3 + results4 return Response(ujson.dumps(results), mimetype='application/json') @restService.route('/efs_connect', methods=['GET']) @login_required() def is_efs_connected(): if request.method == 'GET': is_access = map(lambda fi: { 'value': fi.value, }, db_session.query(ConfFDMApi.value) ) if is_access[0]['value'] == 'True': results = True else: results = False return Response(ujson.dumps(results), content_type='application/json') @restService.route('/event_stats/data', methods=['GET']) @login_required() def get_events_stats_data(): temparray = request.args.get('events_id') temparray1 = request.args.get('programs_id') events_id = ProcessData(temparray) #Transform data programs_id = ProcessData(temparray1) # Transform data chart_type = request.args.get('chart_type') date_from = request.args.get('date_from') date_to = request.args.get('date_to') student = request.args.get('student') instructor = request.args.get('instructor') ac = request.args.get('ac') apt_dep = request.args.get('apt_dep') apt_arr = request.args.get('apt_arr') severity = request.args.get('severity') time_aggregation = request.args.get('time_aggregation') event_with_program = request.args.get('event_with_program') if request.method == 'GET': is_efs = is_efs_connected().response[0] sta = aliased(DataQar) sto = aliased(DataQar) stud = aliased(EFSUser) instr = aliased(EFSUser) if is_efs == 'true': baked_query = db_session.query(func.count(FDMEvent.id).label('value'), ConfAcType.model, ConfFleet.ac_reg, Flight.trainee_id, Flight.training_prog_id, Flight.instructor_id, Program.name, func.date_format(sta.TS, '%m/%Y').label('month'), func.date_format(sta.TS, '%Y').label('year'), func.date_format(sta.TS, '%d/%m/%Y').label('day'), sta.TS, func.IF(Flight.instructor_id, (instr.first_name + ' ' + instr.last_name), 'None').label('instr'), func.IF(Flight.trainee_id, (stud.first_name + ' ' + stud.last_name),'None').label('stud')) \ .join(FDMEventType, FDMEvent.event_type_id == FDMEventType.id)\ .join(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id)\ .join(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id)\ .join(sta, FDMEvent.start_id == sta.id)\ .join(sto, FDMEvent.stop_id == sto.id)\ .join(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id)\ .join(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id)\ .join(ConfFleet, DataQarFile.ac_id == ConfFleet.id)\ .join(ConfAcType, ConfFleet.ac_type == ConfAcType.id) \ else: baked_query = db_session.query(func.count(FDMEvent.id).label('value'), ConfAcType.model, ConfFleet.ac_reg, func.date_format(sta.TS, '%m/%Y').label('month'), func.date_format(sta.TS, '%Y').label('year'), func.date_format(sta.TS, '%d/%m/%Y').label('day'), sta.TS ) \ .join(FDMEventType, FDMEvent.event_type_id == FDMEventType.id) \ .join(FDMEventGroup, FDMEventType.event_subgroup_id == FDMEventGroup.id) \ .join(FDMEventSort, FDMEventGroup.event_group_id == FDMEventSort.id) \ .join(sta, FDMEvent.start_id == sta.id) \ .join(sto, FDMEvent.stop_id == sto.id) \ .join(DataQarSessionIdent, FDMEvent.session_id == DataQarSessionIdent.session_id) \ .join(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) \ .join(ConfFleet, DataQarFile.ac_id == ConfFleet.id) \ .join(ConfAcType, ConfFleet.ac_type == ConfAcType.id) \ if is_efs == 'true': if event_with_program == 0 or event_with_program == "0": baked_query = baked_query.join(FDMEventParticipant, FDMEvent.id == FDMEventParticipant.event_id) \ .outerjoin(Flight, FDMEventParticipant.flightlog_flt_id == Flight.flight_id) \ .outerjoin(Program, Flight.training_prog_id == Program.id) \ .outerjoin(stud, Flight.trainee_id == stud.ID) \ .outerjoin(instr, Flight.instructor_id == instr.ID) \ else: baked_query = baked_query.outerjoin(FDMEventParticipant, FDMEvent.id == FDMEventParticipant.event_id) \ .outerjoin(Flight, FDMEventParticipant.flightlog_flt_id == Flight.flight_id) \ .outerjoin(Program, Flight.training_prog_id == Program.id) \ .outerjoin(stud, Flight.trainee_id == stud.ID) \ .outerjoin(instr, Flight.instructor_id == instr.ID) \ stud1 = aliased(EFSUser) instr1 = aliased(EFSUser) baked_query_2 = db_session.query(func.Count(DataQarFlightIdent.id).label('flight_time'), func.date_format(DataQarSessionIdent.block_off, '%m/%Y').label('month'), func.date_format(DataQarSessionIdent.block_off, '%d/%m/%Y').label('day'), func.date_format(DataQarSessionIdent.block_off, '%Y').label('year'), ConfAcType.model, ConfFleet.ac_reg ) \ .outerjoin(FDMFlightParticipant, DataQarFlightIdent.flight_id == FDMFlightParticipant.flight_id) \ .outerjoin(DataQarSessionIdent, DataQarFlightIdent.session_id == DataQarSessionIdent.session_id) \ .outerjoin(DataQarFile, DataQarSessionIdent.qar_id == DataQarFile.qar_id) \ .outerjoin(ConfFleet, DataQarFile.ac_id == ConfFleet.id) \ .outerjoin(ConfAcType, ConfFleet.ac_type == ConfAcType.id) \ if is_efs == 'true': baked_query_2 = baked_query_2.add_columns(func.IF(Flight.instructor_id, (instr1.first_name + ' ' + instr1.last_name),'None').label('instr'), func.IF(Flight.trainee_id, (stud1.first_name + ' ' + stud1.last_name),'None').label('stud'), Program.name) \ .outerjoin(Flight, FDMFlightParticipant.flightlog_flt_id == Flight.flight_id) \ .outerjoin(stud1, Flight.trainee_id == stud1.ID).outerjoin(instr1, Flight.instructor_id == instr1.ID) \ .outerjoin(Program, Flight.training_prog_id == Program.id) \ if is_efs == 'false': if chart_type == 'events_per_program' or chart_type == 'events_per_instructor' or chart_type == 'events_per_student': abort(400) if date_from != 'null': baked_query = baked_query.filter(DataQarSessionIdent.block_off > date_from) baked_query_2 = baked_query_2.filter(DataQarSessionIdent.block_off > date_from) if date_to != 'null': baked_query = baked_query.filter(DataQarSessionIdent.block_off < date_to) baked_query_2 = baked_query_2.filter(DataQarSessionIdent.block_off < date_to) if student != 'null': baked_query = baked_query.filter(Flight.trainee_id == student) baked_query_2 = baked_query_2.filter(Flight.trainee_id == student) if instructor != 'null': baked_query = baked_query.filter(Flight.instructor_id == instructor) baked_query_2 = baked_query_2.filter(Flight.instructor_id == instructor) if ac != 'null': baked_query = baked_query.filter(ConfFleet.ac_type == ac) baked_query_2 = baked_query_2.filter(ConfFleet.ac_type == ac) if apt_dep != 'null': baked_query = baked_query.filter(DataQarSessionIdent.apt_origin == apt_dep) baked_query_2 = baked_query_2.filter(DataQarSessionIdent.apt_origin == apt_dep) if apt_arr != 'null': baked_query = baked_query.filter(DataQarSessionIdent.apt_dest == apt_arr) baked_query_2 = baked_query_2.filter(DataQarSessionIdent.apt_dest == apt_arr) if severity != 'null': baked_query = baked_query.filter(FDMEvent.severity == severity) if len(events_id) > 0 and events_id[0] != -1: baked_query = baked_query.filter(FDMEvent.event_type_id.in_(events_id)) if events_id == []: baked_query = baked_query.filter(FDMEvent.event_type_id.in_([])) if is_efs == 'true': if len(programs_id) > 0 and programs_id[0] != -1: baked_query = baked_query.filter(or_(Flight.training_task_id.in_(programs_id), FDMEventParticipant.flightlog_flt_id == None)) if programs_id == []: baked_query = baked_query.filter(or_(Flight.training_task_id.in_([]), FDMEventParticipant.flightlog_flt_id == None)) if chart_type == 'trend_in_time': if time_aggregation == 'day': baked_query = baked_query.group_by(func.date_format(sta.TS, '%d/%m/%Y')).order_by(sta.TS) baked_query_2 = baked_query_2.group_by(func.date_format(DataQarSessionIdent.block_off, '%d/%m/%Y')).order_by(DataQarSessionIdent.block_off) results = map(lambda fi: { 'value': fi.value, 'key': fi.day, }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.day, }, baked_query_2.all() ) elif time_aggregation == 'month': baked_query = baked_query.group_by(func.date_format(sta.TS, '%m/%Y')).order_by(sta.TS) baked_query_2 = baked_query_2.group_by(func.date_format(DataQarSessionIdent.block_off, '%m/%Y')).order_by(DataQarSessionIdent.block_off) results = map(lambda fi: { 'value': fi.value, 'key': fi.month, }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.month, }, baked_query_2.all() ) elif time_aggregation == 'year': baked_query = baked_query.group_by(func.date_format(sta.TS, '%Y')).order_by(sta.TS) baked_query_2 = baked_query_2.group_by(func.date_format(DataQarSessionIdent.block_off, '%Y')).order_by(DataQarSessionIdent.block_off) results = map(lambda fi: { 'value': fi.value, 'key': fi.year, }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.year, }, baked_query_2.all() ) elif chart_type == 'events_per_students': baked_query = baked_query.filter(Flight.trainee_id != None).group_by(Flight.trainee_id).order_by(stud.last_name) baked_query_2 = baked_query_2.filter(Flight.trainee_id != None).group_by(Flight.trainee_id).order_by(stud1.last_name) results = map(lambda fi: { 'value': fi.value, 'key': fi.stud }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.stud, }, baked_query_2.all() ) elif chart_type == 'events_per_instructors': baked_query = baked_query.filter(Flight.instructor_id != None).group_by(Flight.instructor_id).order_by(instr.last_name) baked_query_2 = baked_query_2.filter(Flight.instructor_id != None).group_by(Flight.instructor_id).order_by(instr1.last_name) results = map(lambda fi: { 'value': fi.value, 'key': fi.instr }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.instr, }, baked_query_2.all() ) elif chart_type == 'events_per_ac_type': baked_query = baked_query.group_by(ConfFleet.ac_type).order_by(ConfAcType.model) baked_query_2 = baked_query_2.group_by(ConfFleet.ac_type).order_by(ConfAcType.model) results = map(lambda fi: { 'value': fi.value, 'key': fi.model }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.model, }, baked_query_2.all() ) elif chart_type == 'events_per_ac_reg': baked_query = baked_query.group_by(ConfFleet.ac_reg).order_by(ConfFleet.ac_reg) baked_query_2 = baked_query_2.group_by(ConfFleet.ac_type).order_by(ConfAcType.model) results = map(lambda fi: { 'value': fi.value, 'key': fi.ac_reg }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.ac_reg, }, baked_query_2.all() ) elif chart_type == 'events_per_program': baked_query = baked_query.group_by(Flight.training_prog_id) baked_query_2 = baked_query_2.group_by(Flight.training_prog_id) results = map(lambda fi: { 'value': fi.value, 'key': fi.name }, baked_query.all() ) results2 = map(lambda fi: { 'value2': fi.flight_time, 'key': fi.name, }, baked_query_2.all() ) results = results + results2 return Response(ujson.dumps(results), content_type='application/json') @restService.route('/students', methods=['GET']) @login_required() def get_students(): is_efs = is_efs_connected().response[0] if is_efs == 'true': results = map(lambda fi: { 'value': fi.ID, 'label': fi.user }, db_session.query((EFSUser.first_name + ' ' + EFSUser.last_name).label('user'), EFSUser.ID) .filter(EFSUser.group_id == 18).all()) else: results = None return Response(ujson.dumps(results, ensure_ascii=False), content_type='application/json') @restService.route('/instructors', methods=['GET']) @login_required() def get_instructors(): is_efs = is_efs_connected().response[0] if is_efs == 'true': results = map(lambda fi: { 'value': fi.ID, 'label': fi.user.encode('UTF8') }, db_session.query((EFSUser.first_name + ' ' + EFSUser.last_name).label('user'), EFSUser.ID) .filter(or_(EFSUser.group_id == 19, EFSUser.group_id == 20)).all()) else: results = None return Response(ujson.dumps(results, ensure_ascii=False), content_type='application/json') @restService.route('/airports', methods=['GET']) @login_required() def get_airports(): results = map(lambda fi: { 'value': fi.icao, 'label': fi.icao }, db_session.query(CoreAirport.icao).all()) return Response(ujson.dumps(results), content_type='application/json') @restService.route('/aircrafts', methods=['GET']) @login_required() def get_aircrafts(): results = map(lambda fi: { 'value': fi.id, 'label': fi.model }, db_session.query(ConfAcType.id, ConfAcType.model).all()) return Response(ujson.dumps(results), content_type='application/json')
python
from typing import Tuple import requests from bs4 import BeautifulSoup from hospital_types import ( ScrapedData, AppointmentAvailability, HospitalAvailabilitySchema, ) import aiohttp, asyncio URL: str = "http://netreg.afph.tsgh.ndmctsgh.edu.tw/webreg/calendar_type/5xn1z9fPG5H4JDJEV98dHQ%3D%3D" async def scrape_sanjunzong_penghu() -> ScrapedData: timeout = aiohttp.ClientTimeout(total=5) async with aiohttp.ClientSession(timeout=timeout) as session: async with session.get(URL) as r: return parse_sanjunzong_penghu(await r.text()) def parse_sanjunzong_penghu(html: str) -> ScrapedData: soup = BeautifulSoup(html, "html.parser") weekly_tables = soup.find("table", {"id": "timeTable"}).find_all("tbody") available_links = [] for table in weekly_tables: links = table.find_all("a") available_links = available_links + links availability: HospitalAvailabilitySchema = { "self_paid": AppointmentAvailability.AVAILABLE if available_links else AppointmentAvailability.UNAVAILABLE, "government_paid": AppointmentAvailability.NO_DATA, } return ( 31, availability, )
python
from django.contrib.auth import get_user_model from django.test import TestCase UserModel = get_user_model() class UserModelTest(TestCase): def setUp(self) -> None: self.user = UserModel.objects.create_user( email='[email protected]', ) self.user.set_password = '1234567890Mazen' self.user.save() def test_UserInit(self): self.assertEqual('[email protected]', self.user.email) self.assertFalse(self.user.is_staff) self.assertFalse(self.user.is_superuser)
python
#!/usr/bin/env python ################################################## # Gnuradio Python Flow Graph # Title: FCCH Bursts Detector # Author: Piotr Krysik # # Description: Detects positions of FCCH bursts. At the end of each # detected FCCH burst adds to the stream a tag with key "fcch" and value # which is a frequency offset estimate. The input sampling frequency # should be integer multiply of GSM GMKS symbol rate - 1625000/6 Hz. ################################################## from gnuradio import blocks from gnuradio import gr from gnuradio.filter import firdes import grgsm class fcch_detector(grgsm.hier_block): def __init__(self, OSR=4): grgsm.hier_block.__init__( self, "FCCH bursts detector", gr.io_signature(1, 1, gr.sizeof_gr_complex*1), gr.io_signature(1, 1, gr.sizeof_gr_complex*1), ) ################################################## # Parameters ################################################## self.OSR = OSR ################################################## # Variables ################################################## self.f_symb = f_symb = 1625000.0/6.0 self.samp_rate = samp_rate = f_symb*OSR ################################################## # Blocks ################################################## self.gsm_fcch_burst_tagger_0 = grgsm.fcch_burst_tagger(OSR) self.blocks_threshold_ff_0_0 = blocks.threshold_ff(0, 0, 0) self.blocks_threshold_ff_0 = blocks.threshold_ff(int((138)*samp_rate/f_symb), int((138)*samp_rate/f_symb), 0) self.blocks_multiply_conjugate_cc_0 = blocks.multiply_conjugate_cc(1) self.blocks_moving_average_xx_0 = blocks.moving_average_ff(int((142)*samp_rate/f_symb), 1, int(1e6)) self.blocks_delay_0 = blocks.delay(gr.sizeof_gr_complex*1, int(OSR)) self.blocks_complex_to_arg_0 = blocks.complex_to_arg(1) ################################################## # Connections ################################################## self.connect((self, 0), (self.blocks_multiply_conjugate_cc_0, 0)) self.connect((self.blocks_delay_0, 0), (self.blocks_multiply_conjugate_cc_0, 1)) self.connect((self.blocks_complex_to_arg_0, 0), (self.blocks_threshold_ff_0_0, 0)) self.connect((self, 0), (self.blocks_delay_0, 0)) self.connect((self.blocks_multiply_conjugate_cc_0, 0), (self.blocks_complex_to_arg_0, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.blocks_threshold_ff_0, 0)) self.connect((self.blocks_threshold_ff_0_0, 0), (self.blocks_moving_average_xx_0, 0)) self.connect((self.gsm_fcch_burst_tagger_0, 0), (self, 0)) self.connect((self, 0), (self.gsm_fcch_burst_tagger_0, 0)) self.connect((self.blocks_threshold_ff_0, 0), (self.gsm_fcch_burst_tagger_0, 1)) def get_OSR(self): return self.OSR def set_OSR(self, OSR): self.OSR = OSR self.set_samp_rate(self.f_symb*self.OSR) self.blocks_delay_0.set_dly(int(self.OSR))
python
import logging def get_logger(LEVEL='info', log_file = None,name=None): head = '[%(asctime)-15s] [%(levelname)s] %(message)s' if LEVEL == 'info': logging.basicConfig(level=logging.INFO, format=head) elif LEVEL == 'debug': logging.basicConfig(level=logging.DEBUG, format=head) logger = logging.getLogger(name) if log_file != None: fh = logging.FileHandler(log_file) logger.addHandler(fh) return logger
python
from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets from sklearn.metrics import accuracy_score iris = datasets.load_iris() X, y = iris.data, iris.target knn = KNeighborsClassifier() knn.fit(X, y) accuracy_score(y, knn.predict(X))
python
import random import discord from discord.ext import commands from .inputs import cl, cf, chill, cfe, ur from .utils import COLOR class Coffee(commands.Cog): def __init__(self, client): self.client = client @commands.command(aliases=['ask_out']) async def wannagrabacoffee(self, ctx, *, member: discord.Member): '''Wanna ask someone out on coffee''' embed = discord.Embed( title=f'{member}, Someone wants to grab a coffee with you...*wink *wink', color=COLOR.DEFAULT) embed.add_field(name='This happened....', value=f'{random.choice(cf)}') embed.set_footer(text='not actually') await ctx.send(embed=embed) @commands.command(aliases=['brew']) async def coffee(self, ctx): '''A lovely coffee command (sip, sip)''' op = f'{random.choice(cfe)}' embed = discord.Embed(title='Coffee', description=op, color=COLOR.DEFAULT) embed.set_footer( text=f'Caffeiene Level-{random.choice(cl)}.{random.choice(chill)}') embed.set_image(url=random.choice(ur)) await ctx.send(embed=embed) def setup(client): client.add_cog(Coffee(client))
python
# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from mmf.common.sample import Sample from mmf.models.transformers.heads.itm import ITM from mmf.models.transformers.heads.mlm import MLM from mmf.models.transformers.heads.mlp import MLP from omegaconf import OmegaConf from tests.test_utils import skip_if_no_cuda class TestMLMHead(unittest.TestCase): def setUp(self): self.config = OmegaConf.create( {"type": "mlm", "freeze": False, "vocab_size": 1000, "hidden_size": 768} ) @skip_if_no_cuda def test_forward(self): module = MLM(self.config).to("cuda") sequence_input = torch.rand(size=(1, 64, 768), dtype=torch.float, device="cuda") encoder_output = [sequence_input, sequence_input] processed_sample_list = Sample() processed_sample_list["mlm_labels"] = {} processed_sample_list["mlm_labels"]["combined_labels"] = torch.ones( size=(1, 64), dtype=torch.long, device="cuda" ) output = module(sequence_input, encoder_output, processed_sample_list) self.assertTrue("logits" in output) self.assertTrue("losses" in output and "masked_lm_loss" in output["losses"]) self.assertEqual(output["logits"].shape, torch.Size([64, 1000])) class TestMLPHead(unittest.TestCase): def setUp(self): self.config = OmegaConf.create( {"type": "mlp", "num_labels": 2, "hidden_size": 768} ) def test_forward(self): module = MLP(self.config) sequence_input = torch.ones(size=(1, 64, 768), dtype=torch.float) encoder_output = [sequence_input, sequence_input] processed_sample_list = {} output = module(sequence_input, encoder_output, processed_sample_list) self.assertTrue("scores" in output) self.assertEqual(output["scores"].shape, torch.Size([1, 2])) class TestITMHead(unittest.TestCase): def setUp(self): self.config = OmegaConf.create({"type": "itm", "hidden_size": 768}) def test_forward(self): module = ITM(self.config) sequence_input = torch.ones(size=(1, 64, 768), dtype=torch.float) encoder_output = [sequence_input, sequence_input] processed_sample_list = Sample() processed_sample_list["itm_labels"] = {} processed_sample_list["itm_labels"]["is_correct"] = torch.tensor( False, dtype=torch.long ) output = module(sequence_input, encoder_output, processed_sample_list) self.assertTrue("itm_loss" in output["losses"]) self.assertEqual(output["losses"]["itm_loss"].shape, torch.Size([]))
python
import pandas as pd from sklearn.model_selection import train_test_split class DataLoader: def __init__(self): self.dataset = None self.sensor = None self.target = None def load(self,file,isTest=False): if not isTest: print("loading") self.dataset = pd.read_csv(file) print("loaded") self.target = self.dataset[['target_carbon_monoxide', 'target_benzene', 'target_nitrogen_oxides']] self.sensor = self.dataset[list(self.dataset.columns[1:-3])] self.sensor.columns = ['deg_C', 'rel_h', 'abs_h','s_1', 's_2', 's_3', 's_4', 's_5'] else: print("loading test files") self.dataset = pd.read_csv(file) print("Test files loaded") self.sensor = self.dataset[list(self.dataset.columns[1:])] self.sensor.columns = ['deg_C', 'rel_h', 'abs_h', 's_1', 's_2', 's_3', 's_4', 's_5'] def process(self): col = ['s_1', 's_2', 's_3', 's_4', 's_5'] df = self.sensor[col].values/1000 self.sensor.update(pd.DataFrame(df)) def split(self): if type(self.target) == None: print("This is test data") return X_train, X_test, y_train, y_test = \ train_test_split(self.sensor, self.target, test_size=0.33, random_state=42) return X_train, X_test, y_train, y_test
python
#!/usr/bin/env python3 import sys def isBalanced(expression): if len(expression) & 1: return False parentheses = [] for c in expression: if c == '(' or c == '{' or c == '[': parentheses.append(c) elif c == ')' or c == '}' or c == ']': offset = 1 if c == ')' else 2 if len(parentheses) and chr(ord(parentheses[-1]) + offset) == c: parentheses.pop() else: return False return not parentheses print(*(isBalanced(line.rstrip()) for line in sys.stdin), sep='\n')
python
from collections import defaultdict from dataclasses import dataclass, field from typing import Any, DefaultDict, Optional, Type, TypeVar from discord import Guild from commanderbot.lib import FromDataMixin, GuildID, JsonSerializable, LogOptions from commanderbot.lib.utils import dict_without_ellipsis, dict_without_falsies ST = TypeVar("ST") @dataclass class StacktracerGuildData(JsonSerializable, FromDataMixin): log_options: Optional[LogOptions] = None # @overrides FromDataMixin @classmethod def try_from_data(cls: Type[ST], data: Any) -> Optional[ST]: if isinstance(data, dict): log_options = LogOptions.from_field_optional(data, "log") return cls(log_options=log_options) # @implements JsonSerializable def to_json(self) -> Any: # Omit empty log options. data = dict_without_ellipsis(log=self.log_options or ...) return data def set_log_options( self, log_options: Optional[LogOptions] ) -> Optional[LogOptions]: old_value = self.log_options self.log_options = log_options return old_value def _guilds_defaultdict_factory() -> DefaultDict[GuildID, StacktracerGuildData]: return defaultdict(lambda: StacktracerGuildData()) # @implements StacktracerStore @dataclass class StacktracerData(JsonSerializable, FromDataMixin): """ Implementation of `StacktracerStore` using an in-memory object hierarchy. """ # Global log options configured by bot owners. log_options: Optional[LogOptions] = None # Per-guild log options configured by admins (or owners). guilds: DefaultDict[GuildID, StacktracerGuildData] = field( default_factory=_guilds_defaultdict_factory ) # @overrides FromDataMixin @classmethod def try_from_data(cls: Type[ST], data: Any) -> Optional[ST]: if isinstance(data, dict): # Construct global log options. log_options = LogOptions.from_field_optional(data, "log_options") # Construct guild data. guilds = _guilds_defaultdict_factory() for raw_guild_id, raw_guild_data in data.get("guilds", {}).items(): guild_id = int(raw_guild_id) guilds[guild_id] = StacktracerGuildData.from_data(raw_guild_data) return cls( log_options=log_options, guilds=guilds, ) # @implements JsonSerializable def to_json(self) -> Any: guilds = { str(guild_id): guild_data.to_json() for guild_id, guild_data in self.guilds.items() } # Omit empty guilds. trimmed_guilds = dict_without_falsies(guilds) # Omit empty fields. data = dict_without_ellipsis( log_options=self.log_options or ..., guilds=trimmed_guilds or ..., ) return data # @implements StacktracerStore async def get_global_log_options(self) -> Optional[LogOptions]: return self.log_options # @implements StacktracerStore async def set_global_log_options( self, log_options: Optional[LogOptions] ) -> Optional[LogOptions]: old_value = self.log_options self.log_options = log_options return old_value # @implements StacktracerStore async def get_guild_log_options(self, guild: Guild) -> Optional[LogOptions]: return self.guilds[guild.id].log_options # @implements StacktracerStore async def set_guild_log_options( self, guild: Guild, log_options: Optional[LogOptions] ) -> Optional[LogOptions]: return self.guilds[guild.id].set_log_options(log_options)
python
from flask_restful import Resource, current_app from backend.services.campaign_service import CampaignService from backend.services.organisation_service import OrganisationService from backend.models.postgis.utils import NotFound from backend.services.users.authentication_service import token_auth class OrganisationsCampaignsAPI(Resource): @token_auth.login_required def post(self, organisation_id, campaign_id): """ Assigns a campaign to an organisation --- tags: - campaigns produces: - application/json parameters: - in: header name: Authorization description: Base64 encoded session token required: true type: string default: Token sessionTokenHere== - name: organisation_id in: path description: Unique organisation ID required: true type: integer default: 1 - name: campaign_id in: path description: Unique campaign ID required: true type: integer default: 1 responses: 200: description: Organisation and campaign assigned successfully 401: description: Unauthorized - Invalid credentials 403: description: Forbidden - users have submitted mapping 404: description: Project not found 500: description: Internal Server Error """ try: if OrganisationService.can_user_manage_organisation( organisation_id, token_auth.current_user() ): if CampaignService.campaign_organisation_exists( campaign_id, organisation_id ): message = ( "Campaign {} is already assigned to organisation {}.".format( campaign_id, organisation_id ) ) return {"Error": message, "SubCode": "CampaignAlreadyAssigned"}, 400 CampaignService.create_campaign_organisation( organisation_id, campaign_id ) message = ( "campaign with id {} assigned for organisation with id {}".format( campaign_id, organisation_id ) ) return {"Success": message}, 200 else: return { "Error": "User is not a manager of the organisation", "SubCode": "UserNotPermitted", }, 403 except Exception as e: error_msg = f"Campaign Organisation POST - unhandled error: {str(e)}" current_app.logger.critical(error_msg) return {"Error": error_msg, "SubCode": "InternalServerError"}, 500 def get(self, organisation_id): """ Returns all campaigns related to an organisation --- tags: - campaigns produces: - application/json parameters: - in: header name: Authorization description: Base64 encoded session token required: false type: string default: Token sessionTokenHere== - name: organisation_id in: path description: Unique project ID required: true type: integer default: 1 responses: 200: description: Success 404: description: Organisation not found 500: description: Internal Server Error """ try: campaigns = CampaignService.get_organisation_campaigns_as_dto( organisation_id ) return campaigns.to_primitive(), 200 except NotFound: return {"Error": "No campaign found", "SubCode": "NotFound"}, 404 except Exception as e: error_msg = f"Organisation Campaigns GET - unhandled error: {str(e)}" current_app.logger.critical(error_msg) return {"Error": error_msg, "SubCode": "InternalServerError"}, 500 @token_auth.login_required def delete(self, organisation_id, campaign_id): """ Un-assigns an organization from an campaign --- tags: - campaigns produces: - application/json parameters: - in: header name: Authorization description: Base64 encoded session token required: true type: string default: Token sessionTokenHere== - name: organisation_id in: path description: Unique organisation ID required: true type: integer default: 1 - name: campaign_id in: path description: Unique campaign ID required: true type: integer default: 1 responses: 200: description: Organisation and campaign unassociated successfully 401: description: Unauthorized - Invalid credentials 403: description: Forbidden - users have submitted mapping 404: description: Project not found 500: description: Internal Server Error """ try: if OrganisationService.can_user_manage_organisation( organisation_id, token_auth.current_user() ): CampaignService.delete_organisation_campaign( organisation_id, campaign_id ) return ( {"Success": "Organisation and campaign unassociated successfully"}, 200, ) else: return { "Error": "User is not a manager of the organisation", "SubCode": "UserNotPermitted", }, 403 except NotFound: return { "Error": "Organisation Campaign Not Found", "SubCode": "NotFound", }, 404 except Exception as e: error_msg = f"Organisation Campaigns DELETE - unhandled error: {str(e)}" current_app.logger.critical(error_msg) return {"Error": error_msg, "SubCode": "InternalServerError"}, 500
python
#!/usr/bin/env python #coding: utf-8 __author__ = 'Toshihiro Kamiya <[email protected]>' __status__ = 'experimental' import os.path import re import sys import subprocess UNIZP_COMMAND = "/usr/bin/unzip" def get_class_names_from_jar(jar_file): class_names = [] pat = re.compile(r"^\s*testing:\s*(.+)[.]class\s+OK\s*$") text = subprocess.check_output([UNIZP_COMMAND, "-t", jar_file]) for L in text.split('\n'): L = L.rstrip() m = pat.match(L) if m: class_names.append(m.group(1)) return class_names def gen_dest_dir_name(jar_file): return jar_file + ".files" def main(argv): from argparse import ArgumentParser psr = ArgumentParser(description="Expand a jar file to extract class files and class list") psr.add_argument('jar_file', action='store') args = psr.parse_args(argv[1:]) dest_dir = gen_dest_dir_name(args.jar_file) if os.path.exists(dest_dir): sys.exit("output directory already exists: %s" % dest_dir) os.mkdir(dest_dir) class_names = get_class_names_from_jar(args.jar_file) with open(os.path.join(dest_dir, "class_list"), "wb") as f: for cn in class_names: f.write("%s\n" % cn) subprocess.check_call([UNIZP_COMMAND, args.jar_file, "-d", dest_dir]) if __name__ == '__main__': main(sys.argv)
python
# Copyright 2020 Katteli Inc. # TestFlows.com Open-Source Software Testing Framework (http://testflows.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import testflows.settings as settings from testflows.database.pipeline import WriteToDatabasePipeline from testflows.database.clickhouse import Database, DatabaseConnection from testflows._core.compress import CompressedFile def database_handler(): """Handler to write output messages to database. """ options = {option.key: option.value for option in settings.database} conn = DatabaseConnection( host=options.pop("host", "localhost"), database=options.pop("database", "default"), user=options.pop("user", None), password=options.pop("password", None), port=options.pop("port", 8123) ) database = Database(connection=conn) with CompressedFile(settings.read_logfile, tail=True) as log: log.seek(0) WriteToDatabasePipeline(log, database, tail=True).run()
python
from pathlib import Path import importlib import tensorflow as tf from annoy import AnnoyIndex DEFAULT_CONFIG = { "dataset": "Dataset", "model": "RetreivalModel", "network": "retrieval_basic_factorization", "network_args": { "embedding_dimension": 32, } } class RetrievalModel: def __init__(self, weight_dir,config=DEFAULT_CONFIG): networks_module = importlib.import_module("recommenders.networks") network_fn_ = getattr(networks_module, config["network"]) network_args = config.get("network_args", {}) datasets_module = importlib.import_module("recommenders.datasets") dataset_class_ = getattr(datasets_module, config["dataset"]) dataset_args = config.get("dataset_args", {}) dataset = dataset_class_(**dataset_args) dataset.load_or_generate_data(update_to_latest_db=False) self.query_model, _ = network_fn_(dataset.unique_user_ids, dataset.unique_movie_ids, **network_args) self.query_model.load_weights(weight_dir / 'query') self.index = AnnoyIndex(self.query_model.embedding_dimension, 'dot') self.index.load(str(weight_dir /'candid.annoy')) def predict(self, features, num_candids = 100): query_embedding = self.query_model.predict(features).squeeze() candids = self.index.get_nns_by_vector(query_embedding, num_candids) return candids
python
# Generated by Django 2.1.3 on 2018-12-08 07:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('staf', '0010_process_slug'), ('multiplicity', '0023_referencespacetype_process'), ] operations = [ migrations.RemoveField( model_name='photo', name='topic', ), migrations.AddField( model_name='photo', name='process', field=models.ForeignKey(blank=True, limit_choices_to={'slug__isnull': False}, null=True, on_delete=django.db.models.deletion.CASCADE, to='staf.Process'), ), ]
python
from __future__ import absolute_import, division, print_function try: from threading import local except ImportError: from django.utils._threading_local import local _thread_locals = local() def get_current_request(): """ returns the request object for this thread """ return getattr(_thread_locals, "request", None) def get_current_user(): """ returns the current user, if exist, otherwise returns None """ request = get_current_request() if request: return getattr(request, "user", None) def thread_local_middleware(get_response): # One-time configuration and initialization. def middleware(request): # Code to be executed for each request before # the view (and later middleware) are called. _thread_locals.request = request response = get_response(request) # Code to be executed for each request/response after # the view is called. if hasattr(_thread_locals, "request"): del _thread_locals.request return response return middleware
python
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import scipy.spatial import tensorflow as tf import tensorflow_addons as tfa """ Free parameters to control the synthesis """ _MAX_SS_SIGMA = 5 # control subsurface scattering strength _MAX_BLUR_SIGMA = 10 # control spatially varying blur strength _SV_SIGMA = 0.5 # 1. --> not sv blur on boudary; 0. -> always sv blur """ Common I/O Utils """ def read_float(path, channel=3, itype='jpg', is_linear=False): """Decode an image from string. Return 3 channels. Args: path: a tf string of the image path. channel: scalar, number of channels of the input image. itype: string, the type of the input image. is_linear: a bool, indicates whether or not to convert to linear color space. (undo gamma correction) Returns: A 3D tensor of the read-in image. """ image_string = tf.io.read_file(path) if itype == 'jpg': image = tf.image.decode_jpeg(image_string, channels=channel) elif itype == 'png': image = tf.image.decode_png(image_string, channels=channel) image = tf.image.convert_image_dtype(image, tf.float32) if is_linear: image = srgb_to_rgb(image) return image def srgb_to_rgb(srgb, name='srgb_to_rgb'): """Converts sRGB to linear RGB.""" with tf.name_scope(name): mask = tf.cast(tf.greater(srgb, 0.04045), dtype=srgb.dtype) return (srgb / 12.92 * (1.0 - mask) + tf.pow( (srgb + 0.055) / 1.055, 2.4) * mask) def rgb_to_srgb(rgb, name='rgb_to_srgb'): """Converts linear RGB to sRGB.""" with tf.name_scope(name): mask = tf.cast(tf.greater(rgb, 0.0031308), dtype=tf.float32) return (rgb * 12.92 * (1.0 - mask) + (tf.pow(rgb, 1.0 / 2.4) * 1.055 - 0.055) * mask) def resize_image(image, new_sizeh=None, new_sizew=None, rsz=None): """Customized image resizing op.""" with tf.name_scope('resize_image'): if new_sizeh is None: height = tf.cast(tf.shape(image)[0], tf.float32) width = tf.cast(tf.shape(image)[1], tf.float32) new_sizeh = tf.cast(height * rsz, tf.int32) new_sizew = tf.cast(width * rsz, tf.int32) return tf.compat.v1.image.resize( image, [new_sizeh, new_sizew], method=tf.image.ResizeMethod.BILINEAR, align_corners=False) """ Subsurface scattering approxmiation """ def apply_ss_shadow_map(mask): """Apply subsurface scattering approximation to the shadow mask. Args: mask: A Tensor of shape [H, W, 1]. Returns: A Tensor of shape [H, W, 3] that is applied with wavelength-dependent blur. """ r = tf.random.uniform( shape=(), minval=0.5, maxval=_MAX_SS_SIGMA, dtype=tf.float32) # a global scalar to scale all the blur size shadow_map = wavelength_filter(mask, num_lv=6, scale=r, is_rgb=False) shadow_map = tf.minimum(1., shadow_map/0.6) # a heuristic scalar for more stable normalization return shadow_map def wavelength_filter(input_img, num_lv=6, scale=5, is_rgb=False, name='wavelength_filter'): """Image-based subsurface scattering approximation Parameters from the NVIDIA screen-space subsurface scattering (SS) slide 98. http://developer.download.nvidia.com/presentations/2007/gdc/Advanced_Skin.pdf Args: input_img: a 3D tensor [H, W, C]. num_lv: a scalar that specifies the number of Gaussian filter levels in the SS model. scale: a scalar that is the scale used to calibrate the kernel size into # pixels based on the size of the face in the image. is_rgb: a bool that indicates whether input is grayscale(c=1) or rgb(c=3). name: string, name of the graph. Returns: A 3D tensor after approximated with subsurface scattering. """ with tf.name_scope(name): scale = tf.cast(scale, tf.float32) ss_weights = np.array([[0.042, 0.22, 0.437, 0.635], [0.220, 0.101, 0.355, 0.365], [0.433, 0.119, 0.208, 0], [0.753, 0.114, 0, 0], [1.412, 0.364, 0, 0], [2.722, 0.080, 0, 0]]) ss_weights_norm = np.sum(ss_weights, 0) img_blur_rgb = 0. for lv in range(num_lv): if lv != 0: blur_kernel = ss_weights[lv, 0] * scale else: blur_kernel = ss_weights[lv, 0] * scale rgb_weights = ss_weights[lv, 1:] if not is_rgb: blur_img = gaussian_filter(tf.expand_dims(input_img, 0), blur_kernel)[0] blur_r = blur_img * rgb_weights[0] * 1.2 blur_g = blur_img * rgb_weights[1] blur_b = blur_img * rgb_weights[2] else: blur_r = gaussian_filter( tf.expand_dims(input_img[..., 0, tf.newaxis], 0), blur_kernel)[0] * rgb_weights[0] * 1. / ss_weights_norm[1] blur_g = gaussian_filter( tf.expand_dims(input_img[..., 1, tf.newaxis], 0), blur_kernel)[0] * rgb_weights[1] * 1. / ss_weights_norm[2] blur_b = gaussian_filter( tf.expand_dims(input_img[..., 2, tf.newaxis], 0), blur_kernel)[0] * rgb_weights[2] * 1. / ss_weights_norm[3] img_blur = tf.concat([blur_r, blur_g, blur_b], 2) img_blur_rgb += img_blur return img_blur_rgb def gaussian_filter(image, sigma, pad_mode='REFLECT', name='gaussian_filter'): """Applies Gaussian filter to an image using depthwise conv. Args: image: 4-D Tensor with float32 dtype and shape [N, H, W, C]. sigma: Positive float or 0-D Tensor. pad_mode: String, mode argument for tf.pad. Default is 'REFLECT' for whole-sample symmetric padding. name: A string to name this part of the graph. Returns: Filtered image, has the same shape with the input. """ with tf.name_scope(name): image.shape.assert_has_rank(4) sigma = tf.cast(sigma, tf.float32) sigma.shape.assert_has_rank(0) # sigma is a scalar. channels = tf.shape(image)[3] r = tf.cast(tf.math.ceil(2.0 * sigma), tf.int32) n = tf.range(-tf.cast(r, tf.float32), tf.cast(r, tf.float32) + 1) coeffs = tf.exp(-0.5 * (n / sigma)**2) coeffs /= tf.reduce_sum(coeffs) coeffs_x = tf.tile(tf.reshape(coeffs, (1, -1, 1, 1)), (1, 1, channels, 1)) coeffs_y = tf.reshape(coeffs_x, (2 * r + 1, 1, channels, 1)) padded = tf.pad(image, ((0, 0), (r, r), (r, r), (0, 0)), pad_mode) with tf.device('/cpu:0'): # seems necessary for depthwise_conv2d filtered = tf.nn.depthwise_conv2d( padded, coeffs_x, (1, 1, 1, 1), 'VALID', name='filter_x') filtered = tf.nn.depthwise_conv2d( filtered, coeffs_y, (1, 1, 1, 1), 'VALID', name='filter_y') filtered.set_shape(image.shape) return filtered """ Spatially varying utils """ def apply_disc_filter(input_img, kernel_sz, is_rgb=True): """Apply disc filtering to the input image with a specified kernel size. To handle large kernel sizes, this is operated (and thus approximated) in frequency domain (fft). Args: input_img: a 2D or 3D tensor. [H, W, 1] or [H, W]. kernel_sz: a scalar tensor that specifies the disc kernel size. is_rgb: a bool that indicates whether FFT is grayscale(c=1) or rgb(c=3). Returns: A Tensor after applied disc filter, has the same size as the input tensor. """ if kernel_sz == 0: raise Warning('Input kenrel size is 0.') return input_img disc = create_disc_filter(kernel_sz) offset = kernel_sz - 1 # if len(tf.shape(input_img)) == 2: # padding_img = [[0, kernel_sz], [0, kernel_sz]] # elif len(tf.shape(input_img)) == 3: padding_img = [[0, kernel_sz], [0, kernel_sz], [0, 0]] img_padded = tf.pad(input_img, padding_img, 'constant') paddings = [[0, tf.shape(img_padded)[0] - tf.shape(disc)[0]], [0, tf.shape(img_padded)[1] - tf.shape(disc)[1]]] disc_padded = tf.pad(disc, paddings) # if len(tf.shape(input_img)) == 2: # img_blurred = fft_filter( # img_padded, disc_padded)[offset:offset + tf.shape(input_img)[0], # offset:offset + tf.shape(input_img)[1]] # else: img_blurred = fft3_filter( img_padded, disc_padded, is_rgb=is_rgb)[offset:offset + tf.shape(input_img)[0], offset:offset + tf.shape(input_img)[1]] return img_blurred def create_disc_filter(r): """Create a disc filter of radius r. Args: r: an int of the kernel radius. Returns: disk filter: A 2D Tensor """ x, y = tf.meshgrid(tf.range(-r, r + 1), tf.range(-r, r + 1)) mask = tf.less_equal(tf.pow(x, 2) + tf.pow(y, 2), tf.pow(r, 2)) mask = tf.cast(mask, tf.float32) mask /= tf.reduce_sum(mask) return mask def get_brightness_mask(size, min_val=0.5): """Render per-pixel intensity variation mask within [min_val, 1.]. Args: size: A 2D tensor of target mask size. Returns: A Tensor of shape [H, W, 1] that is generated with perlin noise pattern. """ perlin_map = perlin_collection((size[0], size[1]), [2, 2], 2, tf.random.uniform([], 0.05, 0.25)) perlin_map = perlin_map / (1. / (min_val + 1e-6)) + min_val perlin_map = tf.minimum(perlin_map, 1.) return perlin_map def fft_filter(img, kernel): """Apply FFT to a 2D tensor. Args: img: a 2D tensor of the input image [H, W]. kernel: a 2D tensor of the kernel. Returns: a 2D tensor applied with a filter using FFT. """ with tf.name_scope('fft2d_gray'): img = tf.cast(img, tf.complex64) kernel = tf.cast(kernel, tf.complex64) img_filtered = tf.cast( tf.abs(tf.signal.ifft2d(tf.multiply(tf.signal.fft2d(img), tf.signal.fft2d(kernel)))), tf.float32) return img_filtered def fft3_filter(img, kernel, is_rgb=True): """Apply FFT to a 3D tensor. Args: img: a 3D tensor of the input image [H, W, C]. kernel: a 2D tensor of the kernel. is_rgb: a bool that indicates whether input is rgb or not. Returns: a filtered 3D tensor, has the same size as input. """ with tf.name_scope('fft2d_rgb'): img = tf.cast(img, tf.complex64) kernel = tf.cast(kernel, tf.complex64) if not is_rgb: img_r = fft_filter(img[..., 0], kernel) img_r = tf.expand_dims(img_r, 2) return img_r else: img_r = fft_filter(img[..., 0], kernel) img_g = fft_filter(img[..., 1], kernel) img_b = fft_filter(img[..., 2], kernel) img_filtered = tf.stack([img_r, img_g, img_b], 2) return img_filtered def perlin_collection(size, reso, octaves, persistence): """Generate perlin patterns of varying frequencies. Args: size: a tuple of the target noise pattern size. reso: a tuple that specifies the resolution along lateral and longitudinal. octaves: int, number of octaves to use in the perlin model. persistence: int, persistence applied to every iteration of the generation. Returns: a 2D tensor of the perlin noise pattern. """ noise = tf.zeros(size) amplitude = 1.0 for _ in range(octaves): noise += amplitude * perlin(size, reso) amplitude *= persistence reso[0] *= 2 reso[1] *= 2 return noise def perlin(size, reso): """Generate a perlin noise pattern, with specified frequency along x and y. Theory: https://flafla2.github.io/2014/08/09/perlinnoise.html Args: size: a tuple of integers of the target shape of the noise pattern. reso: reso: a tuple that specifies the resolution along lateral and longitudinal (x and y). Returns: a 2D tensor of the target size. """ ysample = tf.linspace(0.0, reso[0], size[0]) xsample = tf.linspace(0.0, reso[1], size[1]) xygrid = tf.stack(tf.meshgrid(ysample, xsample), 2) xygrid = tf.math.mod(tf.transpose(xygrid, [1, 0, 2]), 1.0) xyfade = (6.0 * xygrid**5) - (15.0 * xygrid**4) + (10.0 * xygrid**3) angles = 2.0 * np.pi * tf.random.uniform([reso[0] + 1, reso[1] + 1]) grads = tf.stack([tf.cos(angles), tf.sin(angles)], 2) gradone = tf.compat.v1.image.resize(grads[0:-1, 0:-1], [size[0], size[1]], 'nearest') gradtwo = tf.compat.v1.image.resize(grads[1:, 0:-1], [size[0], size[1]], 'nearest') gradthr = tf.compat.v1.image.resize(grads[0:-1, 1:], [size[0], size[1]], 'nearest') gradfou = tf.compat.v1.image.resize(grads[1:, 1:], [size[0], size[1]], 'nearest') gradone = tf.reduce_sum(gradone * tf.stack([xygrid[:, :, 0], xygrid[:, :, 1]], 2), 2) gradtwo = tf.reduce_sum(gradtwo * tf.stack([xygrid[:, :, 0] - 1, xygrid[:, :, 1]], 2), 2) gradthr = tf.reduce_sum(gradthr * tf.stack([xygrid[:, :, 0], xygrid[:, :, 1] - 1], 2), 2) gradfou = tf.reduce_sum(gradfou * tf.stack([xygrid[:, :, 0] - 1, xygrid[:, :, 1] - 1], 2), 2) inteone = (gradone * (1.0 - xyfade[:, :, 0])) + (gradtwo * xyfade[:, :, 0]) intetwo = (gradthr * (1.0 - xyfade[:, :, 0])) + (gradfou * xyfade[:, :, 0]) intethr = (inteone * (1.0 - xyfade[:, :, 1])) + (intetwo * xyfade[:, :, 1]) return tf.sqrt(2.0) * intethr def apply_spatially_varying_blur(image, blur_size=2, blurtype='disk'): """Apply spatially-varying blur to an image. Using pyramid to approximate for efficiency Args: image: a 3D image tensor [H, W, C]. blur_size: base value for the blur size in the pyramic. blurtype: type of blur, either 'disk' or 'gaussian'. Returns: a 2D tensor of the target size. """ pyramid = create_pyramid(image, blur_size=blur_size, blurtype=blurtype) image_blurred = apply_pyramid_blend(pyramid) return image_blurred def apply_pyramid_blend(pyramid): """Reconstruct an image using bilinear interpolation between pyramid levels. Args: pyramid: a list of tensors applied with different blur levels. Returns: A reconstructed 3D tensor that is collapsed from the input pyramid. """ num_levels = 3 guidance_perlin_base = perlin_collection( (tf.shape(pyramid[0])[0], tf.shape(pyramid[0])[1]), [2, 2], 1, tf.random.uniform([], 0.05, 0.25)) guidance_perlin_base -= tf.reduce_min(guidance_perlin_base) guidance_perlin_base /= tf.reduce_max(guidance_perlin_base) guidance_blur = tf.clip_by_value(guidance_perlin_base / (1. / num_levels), 0.0, num_levels) image_reconst = pyramid for i in range(int(num_levels) - 2, -1, -1): alpha = tf.clip_by_value(guidance_blur - i, 0., 1.) alpha = tf.expand_dims(alpha, 2) image_reconst[i] = lerp(pyramid[i], image_reconst[i + 1], alpha) return image_reconst[0] def create_pyramid(image, blur_size=2, blurtype='disk'): """Create a pyramid of different levels of disk blur. Args: image: a 2D or 3D tensor of the input image. blur_size: base value for the blur size in the pyramic. blurtype: a string that specifies the kind of blur, either disk or gaussian. Returns: Pyramid: a list of tensors applied with different blur kernels. """ image_pyramid = [] for i in range(3): rsz = np.power(2, i) * blur_size if blurtype == 'disk': input_lv = apply_disc_filter(image, rsz, is_rgb=False) elif blurtype == 'gaussian': input_lv = gaussian_filter(tf.expand_dims(input_lv, 0), blur_size)[0, ...] else: raise ValueError('Unknown blur type.') image_pyramid.append(input_lv) return image_pyramid def lerp(a, b, x): """Linear interpolation between a and b using weight x.""" return a + x * (b - a) def render_shadow_from_mask(mask, segmentation=None): """Render a shadow mask by applying spatially-varying blur. Args: mask: A Tensor of shape [H, W, 1]. segmentation: face segmentation, apply to the generated shadow mask if provided. Returns: A Tensor of shape [H, W, 1] containing the shadow mask. """ mask = tf.expand_dims(mask, 2) disc_filter_sz = tf.random.uniform( shape=(), minval=1, maxval=_MAX_BLUR_SIGMA, dtype=tf.int32) mask_blurred = tf.cond( tf.greater(tf.random.uniform([]), tf.constant(_SV_SIGMA)), lambda: apply_spatially_varying_blur( mask, blur_size=tf.random.uniform( shape=(), minval=1, maxval=3, dtype=tf.int32)), lambda: apply_disc_filter(mask, disc_filter_sz, is_rgb=False)) mask_blurred_norm = tf.math.divide(mask_blurred, tf.reduce_max(mask_blurred)) if segmentation is not None: mask_blurred_seg = mask_blurred_norm * segmentation else: mask_blurred_seg = mask_blurred_norm tf.compat.v1.debugging.assert_greater_equal( tf.reduce_sum(mask_blurred_seg), 0.1, message='Rendered silhouette mask values too small.') # sample drops if this happens return mask_blurred_norm def render_perlin_mask(size, segmentation=None): """Render a shadow mask using perlin noise pattern. Args: size: A 2D tensor of target mask size. segmentation: face segmentation, apply to the generated shadow mask if provided. Returns: A Tensor of shape [H, W, 1] containing the shadow mask. """ with tf.name_scope('render_perlin'): size = tf.cast(size, tf.int32) perlin_map = perlin_collection((size[0], size[1]), [4, 4], 4, tf.random.uniform([], 0.05, 0.85)) perlin_map_thre = tf.cast(tf.greater(perlin_map, 0.15), tf.float32) perlin_shadow_map = render_shadow_from_mask( perlin_map_thre, segmentation=segmentation) return perlin_shadow_map def render_silhouette_mask(silhouette, size, segmentation=None): """Render a shadow mask using silhouette image. The sihouette image is first augmented by applying random rotation and tiling. Then used to render a shadow mask by applying spatially-varying blur. Args: silhouette: Rotation matrices of shape [H, W, 1]. size: A 2D tensor of target mask size. segmentation: face segmentation, apply to the generated shadow mask if provided. Returns: A Tensor of shape [H, W, 1] containing the shadow mask. """ with tf.name_scope('render_silhouette'): silhouette.shape.assert_has_rank(3) tf.compat.v1.assert_equal(silhouette.shape[2], 1) degree = tf.random.uniform(shape=(), minval=0, maxval=360, dtype=tf.float32) silhouette_rot = tfa.image.rotate( silhouette, degree * np.pi / 180., interpolation='BILINEAR') rand_rz_ratio = tf.random.uniform( shape=(), minval=0.3, maxval=0.6, dtype=tf.float32) silhouette_rsz = resize_image(silhouette_rot, rsz=rand_rz_ratio) num_rep_h = tf.math.floordiv( tf.cast(size[0], tf.float32), tf.cast(tf.shape(silhouette_rsz)[0], tf.float32)) + 2 num_rep_h = tf.cast(num_rep_h, tf.int32) num_rep_w = tf.math.floordiv( tf.cast(size[1], tf.float32), tf.cast(tf.shape(silhouette_rsz)[1], tf.float32)) + 2 num_rep_w = tf.cast(num_rep_w, tf.int32) silhouette_solid_tile = tf.tile(silhouette_rsz, [num_rep_h, num_rep_w, 1]) silhouette_solid_tile = silhouette_solid_tile[:size[0], :size[1], 0] silhouette_solid_mask = render_shadow_from_mask( silhouette_solid_tile, segmentation=segmentation) return silhouette_solid_mask """ Color jitter """ def apply_tone_curve(image, gain=(0.5, 0.5, 0.5), is_rgb=False): """Apply tone perturbation to images. Tone curve jitter comes from Schlick's bias and gain. Schlick, Christophe. "Fast alternatives to Perlin’s bias and gain functions." Graphics Gems IV 4 (1994). Args: image: a 3D image tensor [H, W, C]. gain: a tuple of length 3 that specifies the strength of the jitter per color channel. is_rgb: a bool that indicates whether input is grayscale (C=1) or rgb (C=3). Returns: 3D tensor applied with a tone curve jitter, has the same size as input. """ image_max = tf.reduce_max(image) image /= image_max if not is_rgb: mask = tf.cast(tf.greater_equal(image, 0.5), image.dtype) image = getbias(image * 2.0, gain[0]) / 2.0 * (1.0 - mask) + ( getbias(image * 2.0 - 1.0, 1.0 - gain[0]) / 2.0 + 0.5) * mask else: image_r = image[..., 0, tf.newaxis] image_r_mask = tf.cast(tf.greater_equal(image_r, 0.5), image.dtype) image_r = getbias(image_r * 2.0, gain[0]) / 2.0 * (1.0 - image_r_mask) + ( getbias(image_r * 2.0 - 1.0, 1.0 - gain[0]) / 2.0 + 0.5) * image_r_mask image_g = image[..., 1, tf.newaxis] image_g_mask = tf.cast(tf.greater_equal(image_r, 0.5), image.dtype) image_g = getbias(image_g * 2.0, gain[1]) / 2.0 * (1.0 - image_g_mask) + ( getbias(image_g * 2.0 - 1.0, 1.0 - gain[1]) / 2.0 + 0.5) * image_g_mask image_b = image[..., 2, tf.newaxis] image_b_mask = tf.cast(tf.greater_equal(image_r, 0.5), image.dtype) image_b = getbias(image_b * 2.0, gain[2]) / 2.0 * (1.0 - image_b_mask) + ( getbias(image_b * 2.0 - 1.0, 1.0 - gain[2]) / 2.0 + 0.5) * image_b_mask image = tf.concat([image_r, image_g, image_b], 2) return image * image_max def getbias(x, bias): """Bias in Ken Perlin’s bias and gain functions.""" return x / ((1.0 / bias - 2.0) * (1.0 - x) + 1.0 + 1e-6) def get_ctm_ls(image, target): """Use least square to obtain color transfer matrix. Args: image: the source tensor of shape [H, W, 3]. target: target tensor with the same shape as input. Returns: tensor of size 3 by 3 that minimizes |C x image - target|_2. """ image = tf.reshape(image, [-1, 3]) target = tf.reshape(target, [-1, 3]) ctm = tf.linalg.lstsq(image, target, l2_regularizer=0.0, fast=True) return tf.transpose(ctm) def apply_ctm(image, ctm): """Apply a color transfer matrix. Args: image: a tensor that contains the source image of shape [H, W, 3]. ctm: a tensor that contains a 3 by 3 color matrix. Returns: a tensor of the same shape as image. """ shape = tf.shape(image) image = tf.reshape(image, [-1, 3]) image = tf.tensordot(image, ctm, axes=[[-1], [-1]]) return tf.reshape(image, shape) def apply_geometric_augmentation(image): """Randomly apply geometric augmentation.""" processed_images = tf.image.random_flip_left_right(image) return processed_images
python
from rest_framework import serializers from .models import ListModel from utils import datasolve class BinsizeGetSerializer(serializers.ModelSerializer): bin_size = serializers.CharField(read_only=True, required=False) bin_size_w = serializers.FloatField(read_only=True, required=False) bin_size_d = serializers.FloatField(read_only=True, required=False) bin_size_h = serializers.FloatField(read_only=True, required=False) creater = serializers.CharField(read_only=True, required=False) create_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') update_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') class Meta: model = ListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', ] class BinsizePostSerializer(serializers.ModelSerializer): openid = serializers.CharField(read_only=False, required=False, validators=[datasolve.openid_validate]) bin_size = serializers.CharField(read_only=False, required=True, validators=[datasolve.data_validate]) bin_size_w = serializers.FloatField(read_only=False, required=True, validators=[datasolve.data_validate]) bin_size_d = serializers.FloatField(read_only=False, required=True, validators=[datasolve.data_validate]) bin_size_h = serializers.FloatField(read_only=False, required=True, validators=[datasolve.data_validate]) creater = serializers.CharField(read_only=False, required=True, validators=[datasolve.data_validate]) class Meta: model = ListModel exclude = ['is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class BinsizeUpdateSerializer(serializers.ModelSerializer): bin_size = serializers.CharField(read_only=False, required=True, validators=[datasolve.data_validate]) bin_size_w = serializers.FloatField(read_only=False, required=True, validators=[datasolve.data_validate]) bin_size_d = serializers.FloatField(read_only=False, required=True, validators=[datasolve.data_validate]) bin_size_h = serializers.FloatField(read_only=False, required=True, validators=[datasolve.data_validate]) creater = serializers.CharField(read_only=False, required=True, validators=[datasolve.data_validate]) class Meta: model = ListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class BinsizePartialUpdateSerializer(serializers.ModelSerializer): bin_size = serializers.CharField(read_only=False, required=False, validators=[datasolve.data_validate]) bin_size_w = serializers.FloatField(read_only=False, required=False, validators=[datasolve.data_validate]) bin_size_d = serializers.FloatField(read_only=False, required=False, validators=[datasolve.data_validate]) bin_size_h = serializers.FloatField(read_only=False, required=False, validators=[datasolve.data_validate]) creater = serializers.CharField(read_only=False, required=False, validators=[datasolve.data_validate]) class Meta: model = ListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class FileRenderSerializer(serializers.ModelSerializer): bin_size = serializers.CharField(read_only=False, required=False) bin_size_w = serializers.FloatField(read_only=False, required=False) bin_size_d = serializers.FloatField(read_only=False, required=False) bin_size_h = serializers.FloatField(read_only=False, required=False) creater = serializers.CharField(read_only=False, required=False) create_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') update_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') class Meta: model = ListModel ref_name = 'BinSizeFileRenderSerializer' exclude = ['openid', 'is_delete', ]
python
""" https://leetcode.com/problems/logger-rate-limiter/ Tags: Google; Medium; Stack """ from typing import List from operator import add, sub, mul, floordiv def div(op1: int, op2: int) -> int: neg = (op1 < 0 < op2) or (op2 < 0 < op1) ans = floordiv(abs(op1), abs(op2)) return ans * (-1 if neg else 1) class Solution: def evalRPN(self, tokens: List[str]) -> int: stack = [] ops = {'+': add, '-': sub, '*': mul, '/': div} for ch in tokens: if ch in ops: op2 = stack.pop() op1 = stack.pop() stack.append(ops[ch](op1, op2)) else: stack.append(int(ch)) # print(f"{stack} {ch}") return stack[0]
python
# -*- coding: utf-8 -*- from .aapt import Aapt from .minicap import Minicap from .rotation import Rotation from .performance.fps import Fps from .performance.cpu import Cpu from .performance.meminfo import Meminfo from .performance import DeviceWatcher __all__ = ['Aapt', 'Minicap', 'Rotation', 'Fps', 'Cpu', 'Meminfo', 'DeviceWatcher']
python
import numpy, re def encode_onehot(index, size): onehot = numpy.zeros(size, dtype=numpy.int8) onehot[index] = 1 return onehot def prettify_string(string, replace_newline_with_space=True): pretty_string = str(string).strip() if replace_newline_with_space: pretty_string = pretty_string.replace('\n', ' ').replace('\r', ' ') pretty_string = re.sub(' +', ' ', pretty_string) return pretty_string def remove_size_descriptions(text): tailored_text = '' for word in text.lower().split(' '): if is_alphanumeric(word): continue elif ',' in word: valid_word = True for word_part in word.split(','): if is_alphanumeric(word_part): valid_word = False if valid_word is False: continue elif '/' in word: valid_word = True for word_part in word.split('/'): if is_alphanumeric(word_part): valid_word = False if valid_word is False: continue elif '~' in word: valid_word = True for word_part in word.split('~'): if is_alphanumeric(word_part): valid_word = False if valid_word is False: continue tailored_text += word tailored_text += ' ' return tailored_text.strip() def is_alphabet(string): is_alphabet = True for char in string: if not ord('A') <= ord(char) <= ord('z'): is_alphabet = False break return is_alphabet def is_numeric(string): is_numeric = True for char in string: if not ord('0') <= ord(char) <= ord('9'): is_numeric = False break return is_numeric def is_alphanumeric(string): is_alphanumeric = True for char in string: if ord('A') <= ord(char) <= ord('z'): continue elif ord('0') <= ord(char) <= ord('9'): continue is_alphanumeric = False break return is_alphanumeric
python
from unittest import TestCase from ddsc.core.consistency import UploadDetails, ProjectChecker, DSResourceNotConsistentError from mock import Mock, patch, call class TestUploadDetails(TestCase): def test_inconsistent_status(self): mock_dds_file = Mock() mock_dds_file.name = 'file1.dat' mock_dds_file.id = '123' mock_status = Mock(is_consistent=False, initiated_on='2021-01-01', error_on=None) mock_dds_file.get_upload.return_value.status = mock_status upload_details = UploadDetails(mock_dds_file, '/data/file1.dat') self.assertEqual(upload_details.inconsistent(), True) self.assertEqual(upload_details.had_error(), False) self.assertEqual(upload_details.is_bad(), True) self.assertEqual(upload_details.name(), 'file1.dat') self.assertEqual(upload_details.status_str(), 'Inconsistent') self.assertEqual(upload_details.file_id(), '123') self.assertEqual(upload_details.message(), 'started upload at 2021-01-01') def test_error_status(self): mock_dds_file = Mock() mock_dds_file.name = 'file1.dat' mock_dds_file.id = '123' mock_status = Mock(is_consistent=True, initiated_on='2021-01-01', error_on='2021-01-02', error_message='bad data') mock_dds_file.get_upload.return_value.status = mock_status upload_details = UploadDetails(mock_dds_file, '/data/file1.dat') self.assertEqual(upload_details.inconsistent(), False) self.assertEqual(upload_details.had_error(), True) self.assertEqual(upload_details.is_bad(), True) self.assertEqual(upload_details.name(), 'file1.dat') self.assertEqual(upload_details.status_str(), 'Error') self.assertEqual(upload_details.file_id(), '123') self.assertEqual(upload_details.message(), 'bad data') def test_error_ok(self): mock_dds_file = Mock() mock_dds_file.name = 'file1.dat' mock_dds_file.id = '123' mock_status = Mock(is_consistent=True, initiated_on='2021-01-01', error_on=None, error_message=None) mock_dds_file.get_upload.return_value.status = mock_status upload_details = UploadDetails(mock_dds_file, '/data/file1.dat') self.assertEqual(upload_details.inconsistent(), False) self.assertEqual(upload_details.had_error(), False) self.assertEqual(upload_details.is_bad(), False) self.assertEqual(upload_details.name(), 'file1.dat') self.assertEqual(upload_details.status_str(), 'Ok') self.assertEqual(upload_details.file_id(), '123') self.assertEqual(upload_details.message(), '') self.assertEqual(upload_details.remote_path, '/data/file1.dat') class TestProjectChecker(TestCase): def setUp(self): self.config = Mock() self.project = Mock() self.project.name = "Mouse" self.checker = ProjectChecker(self.config, self.project) def test_files_are_ok__good(self): self.project.get_project_files_generator.return_value = [] self.assertEqual(self.checker.files_are_ok(), True) def test_files_are_ok__error(self): self.project.get_project_files_generator.side_effect = DSResourceNotConsistentError(Mock(), Mock(), Mock()) dds_file = Mock() dds_file.name = "file1.txt" dds_file.id = "123" dds_file.get_upload.return_value.status.is_consistent = False dds_file.get_upload.return_value.status.error_on = None dds_file.get_upload.return_value.status.initiated_on = '2021-01-01' self.project.get_path_to_files.return_value.items.return_value = [ ("/data/bad/file1.txt", dds_file) ] self.assertEqual(self.checker.files_are_ok(), False) headers, data = self.checker.get_bad_uploads_table_data() self.assertEqual(headers, ['File', 'Status', 'Message', 'FileID', 'RemotePath']) self.assertEqual(data, [['file1.txt', 'Inconsistent', 'started upload at 2021-01-01', '123', '/data/bad/file1.txt']]) @patch('ddsc.core.consistency.print') @patch('ddsc.core.consistency.UploadDetails') def test_print_bad_uploads_table(self, mock_upload_details, mock_print): mock_upload_details.return_value.is_bad.return_value = True mock_upload_details.return_value.name.return_value = 'file1.txt' mock_upload_details.return_value.status_str.return_value = 'BAD' mock_upload_details.return_value.message.return_value = ' file is bad' mock_upload_details.return_value.file_id.return_value = '123' mock_upload_details.return_value.remote_path = '/data/file1.txt' self.project.get_path_to_files.return_value.items.return_value = [ ('/data/file1.txt', Mock()) ] self.checker.print_bad_uploads_table() mock_print.assert_has_calls([ call("ERROR: Project Mouse is not in a consistent state.\n"), call("Please wait while file uploads are checked.\nThis process can take quite a while."), call('File Status Message FileID RemotePath\n' '--------- -------- ----------- -------- ---------------\n' 'file1.txt BAD file is bad 123 /data/file1.txt'), call('\nNOTE: Inconsistent files should resolve in a few minutes after starting.'), call('\nAn inconsistent file can be deleted by running:\n ddsclient delete -p <ProjectName> ' '--path <RemotePath>'), call() ]) @patch('ddsc.core.consistency.print') @patch('ddsc.core.consistency.time') def test_wait_for_consistency(self, mock_time, mock_print): self.project.get_project_files_generator.side_effect = [ DSResourceNotConsistentError(Mock(), Mock(), Mock()), [] ] self.checker.wait_for_consistency(wait_sec=10) mock_print.assert_has_calls([ call('Checking files for project Mouse'), call('Project not consistent yet. Waiting.'), call('Checking files for project Mouse'), call('Project Mouse is consistent.') ]) mock_time.sleep.assert_called_with(10)
python
# Global Benchmark Database (GBD) # Copyright (C) 2020 Markus Iser, Karlsruhe Institute of Technology (KIT) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from gbd_tool.util import eprint from tatsu import parse import pprint def build_query(query=None, hashes=[], resolve=[], collapse="GROUP_CONCAT", group_by="hash", join_type="LEFT"): statement = "SELECT {} FROM {} {} WHERE {} GROUP BY {}" s_attributes = group_by + ".value" s_from = group_by s_tables = "" s_conditions = "1=1" s_group_by = group_by + ".value" tables = set(resolve) if query is not None and query: ast = parse(GRAMMAR, query) s_conditions = build_where(ast) tables.update(collect_tables(ast)) if len(hashes): s_conditions = s_conditions + " AND hash.hash in ('{}')".format("', '".join(hashes)) if len(resolve): s_attributes = s_attributes + ", " + ", ".join(['{}(DISTINCT({}.value))'.format(collapse, table) for table in resolve]) s_tables = " ".join(['{} JOIN {} ON {}.hash = {}.hash'.format(join_type, table, group_by, table) for table in tables if table != group_by]) return statement.format(s_attributes, s_from, s_tables, s_conditions, s_group_by) def build_where(ast): if ast["q"]: return build_where(ast["q"]) elif ast["qop"]: return "({} {} {})".format(build_where(ast["left"]), ast["qop"], build_where(ast["right"])) elif ast["sop"]: return "{}.value {} \"{}\"".format(ast["left"], ast["sop"], ast["right"]) elif ast["aop"]: return "{} {} {}".format(build_where(ast["left"]), ast["aop"], build_where(ast["right"])) elif ast["bracket_term"]: return "({})".format(build_where(ast["bracket"])) elif ast["top"]: return "{} {} {}".format(build_where(ast["left"]), ast["top"], build_where(ast["right"])) elif ast["value"]: return "CAST({}.value AS FLOAT)".format(ast["value"]) elif ast["constant"]: return ast["constant"] def collect_tables(ast): if ast["q"]: return collect_tables(ast["q"]) elif ast["qop"] or ast["aop"] or ast["top"]: return collect_tables(ast["left"]) | collect_tables(ast["right"]) elif ast["bracket_term"]: return collect_tables(ast["bracket_term"]) elif ast["sop"]: return { ast["left"] } elif ast["value"]: return { ast["value"] } else: return set() GRAMMAR = r''' @@grammar::EXP @@ignorecase::True start = q:query $ ; query = '(' q:query ')' | left:query qop:('and' | 'or') right:query | scon | acon; scon = left:colname sop:('=' | '!=') right:alnum | left:colname sop:('like') right:likean ; acon = left:term aop:('=' | '!=' | '<' | '>' | '<=' | '>=' ) right:term ; term = value:colname | constant:num | '(' left:term top:('+'|'-'|'*'|'/') right:term ')' ; num = /[0-9\.\-]+/ ; alnum = /[a-zA-Z0-9_\.\-\/\?]+/ ; likean = /[\%]?[a-zA-Z0-9_\.\-\/\?]+[\%]?/; colname = /[a-zA-Z][a-zA-Z0-9_]+/ ; '''
python
import pianohat import time from pygame import mixer my_sound_files = [ "/home/pi/Downloads/despacito.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/despacito.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/despacito.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav", "/home/pi/Downloads/Metal.wav"] def handle_note(channel, pressed): if pressed: my_sounds[channel].play(loops=0) print("you pressed key {}".format(channel)) else: print("you released key{}".format(channel)) mixer.init(22050, -16, 2, 512) mixer.set_num_channels(13) my_sounds = [mixer.Sound(sound_file) for sound_file in my_sound_files] pianohat.on_note(handle_note) while True: time.sleep(.001)
python
from django.db import models # Create your models here. class Employee(models.Model): Name = models.CharField(max_length=64) Email = models.CharField(max_length=64) Password = models.CharField(max_length=64) Position = models.CharField(max_length=64) Salary = models.IntegerField() def __str__(self): return f"{self.id}: {self.Name} is {self.Position} with salary of {self.Salary}. Email:{self.Email} and Password:{self.Password}"
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from distutils.core import setup # Use 2to3 build conversion if required try: from distutils.command.build_py import build_py_2to3 as build_py except ImportError: # 2.x from distutils.command.build_py import build_py setup( name="snpy", description="A wrapper-library for working with openSNP data", license="WTFPL", version="0.1", author="Sergei Lebedev", author_email="[email protected]", url="http://github.com/superbobry/snpy/", classifiers=[ "Intended Audience :: Developers", "License :: Public Domain", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Scientific/Engineering :: Bio-Informatics", ], py_modules=["sn"], platforms="any", cmdclass={"build_py": build_py} )
python
# Copyright (C) 2021 ServiceNow, Inc. import pytest from nrcan_p2.data_processing.preprocessing_str import ( add_newline, sentence_tokenize_spacy_sm, sentence_tokenize_spacy_lg, tokenize_spacy_sm, tokenize_spacy_lg, rm_stopwords_spacy, rm_punct, rm_newline ) @pytest.mark.parametrize("input_str,expected", [ ("blah \n blah \n", "blah \n blah \n\n"), ("blah \n blah ", "blah \n blah \n") ] ) def test_add_newline(input_str, expected): result = add_newline(input_str) assert result == expected @pytest.mark.parametrize("input_str,expected", [ ("blah\nblah", "blah blah"), ("blah\n", "blah ") ] ) def test_rm_newline(input_str, expected): result = rm_newline(input_str) assert result == expected @pytest.mark.parametrize("input_str,expected", [ ("blah.! blah-! @?-.,:;=()", "blah blah "), ("blah\n", "blah\n") ] ) def test_rm_punct(input_str, expected): result = rm_punct(input_str) assert result == expected @pytest.mark.parametrize("input_str, expected", [ ("Here is my sentence. Here is another sentence!", "Here is my sentence.\nHere is another sentence!\n") ] ) def test_sentence_tokenize_spacy_sm(input_str, expected): result = sentence_tokenize_spacy_sm(input_str) assert result == expected @pytest.mark.parametrize("input_str, expected", [ ("Here is my sentence. Here is another sentence!", "Here is my sentence.\nHere is another sentence!\n"), ] ) def test_sentence_tokenize_spacy_lg(input_str, expected): result = sentence_tokenize_spacy_lg(input_str) assert result == expected @pytest.mark.parametrize("input_str, expected", [ ("""Here. "This," he said, "is ridiculous." His mother-in-law- A.K. Hawings, an old but sharp woman- did not agree...""", """Here . " This , " he said , " is ridiculous . " His mother - in - law- A.K. Hawings , an old but sharp woman- did not agree ...""") ] ) def test_tokenize_spacy_sm(input_str, expected): result = tokenize_spacy_sm(input_str) assert result.strip() == expected.strip() @pytest.mark.parametrize("input_str, expected", [ ("""Here. "This," he said, "is ridiculous." His mother-in-law- A.K. Hawings, an old but sharp woman- did not agree...""", """Here . " This , " he said , " is ridiculous . " His mother - in - law- A.K. Hawings , an old but sharp woman- did not agree ..."""), ("""Here omg he said.\n And, then he runn-ing,\n that we didn't do it.""", ["""Here omg he said.\n""", """And, then he runn-ing,\n""", """that we didn't do it."""] ) ] ) def test_tokenize_spacy_lg(input_str, expected): result = tokenize_spacy_lg(input_str) assert result.strip() == expected.strip() @pytest.mark.parametrize("input_str, expected", [ ("""Here omg he said we did n't do it We A.J. Patterson. Do. latterly thence we went the two of us""", """omg said A.J. Patterson. Do. went"""), ] ) def test_tokenize_spacy_lg(input_str, expected): result = rm_stopwords_spacy(input_str) assert result.strip() == expected.strip() @pytest.mark.parametrize("input_str, expected", [ ("""Here. "This," he said, "is ridiculous." His mother-in-law- A.K. Hawings, an old but sharp woman- did not agree... He's gotten away with this again, as a goose get's away with doing anything at all. I've got him! But how did you get him? Whither did he run?? Didn't you know? """, # tokenization removes newlines """. " , " said , " ridiculous . " mother - - law- A.K. Hawings , old sharp woman- agree ... gotten away , goose away . got ! ? run ? ? know ? """), ("Here (he said) don't even try, no.", "( said ) try , .") ] ) def test_tokenize_spacy_lg_rm_stopwords(input_str, expected): result = tokenize_spacy_lg(input_str) result = rm_stopwords_spacy(result) assert result.strip() == expected.strip()
python
""" Helper functions and classes around GeoIP lookups, based on Maxmind's `maxminddb <https://pypi.python.org/pypi/maxminddb>`_ and `geoip2 <https://pypi.python.org/pypi/geoip2>`_ Python packages. """ import logging import time import genc from geoip2.database import Reader from geoip2.errors import AddressNotFoundError, GeoIP2Error from maxminddb import InvalidDatabaseError from maxminddb.const import MODE_AUTO from ichnaea.conf import settings from ichnaea.constants import DEGREE_DECIMAL_PLACES from ichnaea.geocode import GEOCODER LOGGER = logging.getLogger(__name__) # The region codes present in the GeoIP data files, extracted from # the CSV files. Accuracy numbers from October 2015 from # https://www.maxmind.com/en/geoip2-city-database-accuracy. # Default value is 0.3 if the website didn't include any data. REGION_SCORE = { "AD": 0.3, "AE": 0.9, "AF": 0.3, "AG": 0.3, "AI": 0.3, "AL": 0.3, "AM": 0.3, "AO": 0.3, "AQ": 0.3, "AR": 0.7, "AS": 0.3, "AT": 0.7, "AU": 0.7, "AW": 0.3, "AX": 0.3, "AZ": 0.3, "BA": 0.3, "BB": 0.3, "BD": 0.3, "BE": 0.8, "BF": 0.3, "BG": 0.7, "BH": 0.3, "BI": 0.3, "BJ": 0.3, "BL": 0.3, "BM": 0.3, "BN": 0.3, "BO": 0.3, "BQ": 0.3, "BR": 0.7, "BS": 0.3, "BT": 0.3, "BW": 0.3, "BY": 0.3, "BZ": 0.3, "CA": 0.8, "CC": 0.3, "CD": 0.3, "CF": 0.3, "CG": 0.3, "CH": 0.7, "CI": 0.3, "CK": 0.3, "CL": 0.8, "CM": 0.3, "CN": 0.6, "CO": 0.6, "CR": 0.9, "CU": 0.3, "CV": 0.3, "CW": 0.3, "CX": 0.3, "CY": 0.3, "CZ": 0.8, "DE": 0.8, "DJ": 0.3, "DK": 0.8, "DM": 0.3, "DO": 0.3, "DZ": 0.3, "EC": 0.8, "EE": 0.8, "EG": 0.7, "ER": 0.3, "ES": 0.8, "ET": 0.3, "FI": 0.5, "FJ": 0.3, "FK": 0.3, "FM": 0.3, "FO": 0.3, "FR": 0.7, "GA": 0.3, "GB": 0.8, "GD": 0.3, "GE": 0.3, "GF": 0.3, "GG": 0.3, "GH": 0.3, "GI": 0.3, "GL": 0.3, "GM": 0.3, "GN": 0.3, "GP": 0.3, "GQ": 0.3, "GR": 0.6, "GS": 0.3, "GT": 0.3, "GU": 0.3, "GW": 0.3, "GY": 0.3, "HK": 0.9, "HN": 0.3, "HR": 0.6, "HT": 0.3, "HU": 0.8, "ID": 0.7, "IE": 0.5, "IL": 0.7, "IM": 0.3, "IN": 0.6, "IO": 0.3, "IQ": 0.3, "IR": 0.3, "IS": 0.8, "IT": 0.6, "JE": 0.3, "JM": 0.3, "JO": 0.3, "JP": 0.8, "KE": 0.3, "KG": 0.3, "KH": 0.3, "KI": 0.3, "KM": 0.3, "KN": 0.3, "KP": 0.3, "KR": 0.7, "KW": 0.3, "KY": 0.3, "KZ": 0.3, "LA": 0.3, "LB": 0.3, "LC": 0.3, "LI": 0.3, "LK": 0.3, "LR": 0.3, "LS": 0.3, "LT": 0.7, "LU": 0.9, "LV": 0.8, "LY": 0.3, "MA": 0.3, "MC": 0.3, "MD": 0.3, "ME": 0.3, "MF": 0.3, "MG": 0.3, "MH": 0.3, "MK": 0.3, "ML": 0.3, "MM": 0.3, "MN": 0.3, "MO": 0.3, "MP": 0.3, "MQ": 0.3, "MR": 0.3, "MS": 0.3, "MT": 0.9, "MU": 0.3, "MV": 0.3, "MW": 0.3, "MX": 0.6, "MY": 0.7, "MZ": 0.3, "NA": 0.3, "NC": 0.3, "NE": 0.3, "NF": 0.3, "NG": 0.3, "NI": 0.3, "NL": 0.8, "NO": 0.8, "NP": 0.3, "NR": 0.3, "NU": 0.3, "NZ": 0.6, "OM": 0.3, "PA": 0.3, "PE": 0.8, "PF": 0.3, "PG": 0.3, "PH": 0.5, "PK": 0.8, "PL": 0.6, "PM": 0.3, "PN": 0.3, "PR": 0.9, "PS": 0.3, "PT": 0.7, "PW": 0.3, "PY": 0.3, "QA": 0.9, "RE": 0.3, "RO": 0.7, "RS": 0.7, "RU": 0.8, "RW": 0.3, "SA": 0.7, "SB": 0.3, "SC": 0.3, "SD": 0.3, "SE": 0.7, "SG": 0.9, "SH": 0.3, "SI": 0.8, "SJ": 0.3, "SK": 0.7, "SL": 0.3, "SM": 0.3, "SN": 0.3, "SO": 0.3, "SR": 0.3, "SS": 0.3, "ST": 0.3, "SV": 0.3, "SX": 0.3, "SY": 0.3, "SZ": 0.3, "TC": 0.3, "TD": 0.3, "TF": 0.3, "TG": 0.3, "TH": 0.8, "TJ": 0.3, "TK": 0.3, "TL": 0.3, "TM": 0.3, "TN": 0.3, "TO": 0.3, "TR": 0.7, "TT": 0.3, "TV": 0.3, "TW": 0.8, "TZ": 0.3, "UA": 0.7, "UG": 0.3, "UM": 0.3, "US": 0.8, "UY": 0.8, "UZ": 0.3, "VA": 0.3, "VC": 0.3, "VE": 0.6, "VG": 0.3, "VI": 0.3, "VN": 0.7, "VU": 0.3, "WF": 0.3, "WS": 0.3, "XK": 0.3, "YE": 0.3, "YT": 0.3, "ZA": 0.7, "ZM": 0.3, "ZW": 0.3, } # The largest subdivision radius in each region, based on # https://en.wikipedia.org/wiki/List_of_country_subdivisions_by_area SUB_RADII = { "AU": 1200000.0, "BR": 1000000.0, "CA": 1400000.0, "CD": 500000.0, "CL": 500000.0, "CN": 1000000.0, "DZ": 600000.0, "EG": 500000.0, "GL": 1600000.0, "ID": 550000.0, "KZ": 550000.0, "LY": 500000.0, "ML": 600000.0, "NE": 600000.0, "RU": 1200000.0, "SA": 650000.0, "SD": 450000.0, "SO": 500000.0, "US": 1200000.0, } SUB_RADIUS = 400000.0 REGION_RADIUS = 5000000.0 """ Usually a per-region radius is calculated. This is the worst case radius returned for GeoIP region based queries, based on data for Russia: ``geocalc.distance(60.0, 100.0, 41.199278, 27.351944) == 5234427 meters`` """ # City selection based on # https://en.wikipedia.org/wiki/List_of_cities_proper_by_population # Radius data based on bbox from http://www.geonames.org/getJSON?id=<num> # from ichnaea.geocalc import distance # round(max(distance(box['north'], box['west'], box['north'], box['east']), # distance(box['north'], box['west'], box['south'], box['west'])) # / 2000.0) * 1000.0 # representing an inner circle inside the bounding box CITY_RADII = { 98182: 39000.0, # Baghdad 108410: 30000.0, # Riyadh 112931: 39000.0, # Tehran 323786: 27000.0, # Ankara 360630: 40000.0, # Cairo 524901: 47000.0, # Moscow 745044: 48000.0, # Istanbul 1172451: 36000.0, # Lahore 1185241: 46000.0, # Dhaka 1275339: 50000.0, # Mumbai 1277333: 33000.0, # Bengaluru 1279233: 28000.0, # Ahmedabad 1566083: 27000.0, # Ho Chi Minh City 1609350: 33000.0, # Bangkok 1642911: 42000.0, # Jakarta 1668341: 40000.0, # Taipei 1701668: 47000.0, # Manila 1792947: 48000.0, # Tianjin 1796236: 68000.0, # Shanghai 1816670: 49000.0, # Beijing 1835848: 46000.0, # Seoul 1850147: 42000.0, # Tokyo 1871859: 26000.0, # Pyongyang 2314302: 40000.0, # Kinshasa 2643743: 40000.0, # London 2950159: 27000.0, # Berlin 3117735: 26000.0, # Madrid 3435910: 50000.0, # Buenos Aires 3448439: 46000.0, # Sao Paulo 3530597: 50000.0, # Mexico City 3688689: 40000.0, # Bogota 3871336: 32000.0, # Santiago 3936456: 40000.0, # Lima 5128581: 41000.0, # New York } CITY_RADIUS = 25000.0 """ Radius returned for GeoIP city based queries. 25km is pure guesswork but should cover most cities, except those explicitly listed in :data:`~ichnaea.geoip.CITY_RADII`. """ GEOIP_GENC_MAP = { "AX": "FI", # Aland Islands -> Finland "PS": "XW", # Palestine -> West Bank "SJ": "XR", # Svalbard and Jan Mayen -> Svalbard "UM": "US", # US Minor Outlying Territories -> US } def configure_geoip(filename=None, mode=MODE_AUTO, raven_client=None, _client=None): """ Configure and return a :class:`~ichnaea.geoip.GeoIPWrapper` instance. If no geoip database file of the correct type can be found, return a :class:`~ichnaea.geoip.GeoIPNull` dummy implementation instead. :param raven_client: A configured raven/sentry client. :type raven_client: :class:`raven.base.Client` :param _client: Test-only hook to provide a pre-configured client. """ filename = settings("geoip_path") if filename is None else filename if _client is not None: return _client if not filename: # No DB file specified in the config if raven_client is not None: try: raise OSError("No geoip filename specified.") except OSError: raven_client.captureException() LOGGER.info("Returning GeoIPNull.") return GeoIPNull() try: db = GeoIPWrapper(filename, mode=mode) if not db.check_extension() and raven_client is not None: try: raise RuntimeError("Maxmind C extension not installed.") except RuntimeError: raven_client.captureException() # Actually initialize the memory cache, by doing one fake look-up db.lookup("127.0.0.1") except (InvalidDatabaseError, IOError, OSError, ValueError): # Error opening the database file, maybe it doesn't exist if raven_client is not None: raven_client.captureException() LOGGER.info("Returning GeoIPNull.") return GeoIPNull() LOGGER.info("GeoIP configured.") return db class GeoIPWrapper(Reader): """ A wrapper around the :class:`geoip2.database.Reader` class with a lookup function which returns `None` instead of raising exceptions. Takes the absolute path to a geoip database on the local filesystem and an additional mode, which defaults to :data:`maxminddb.const.MODE_AUTO`. :raises: :exc:`maxminddb.InvalidDatabaseError` """ lookup_exceptions = ( AddressNotFoundError, GeoIP2Error, InvalidDatabaseError, ValueError, ) def __init__(self, filename, mode=MODE_AUTO): super(GeoIPWrapper, self).__init__(filename, mode=mode) database_type = self.metadata().database_type if database_type not in ("GeoIP2-City", "GeoLite2-City"): message = "Invalid database type, expected City" raise InvalidDatabaseError(message) @property def age(self): """ :returns: The age of the database file in days. :rtype: int """ build_epoch = self.metadata().build_epoch return int(round((time.time() - build_epoch) / 86400, 0)) def ping(self): """ :returns: True if this is a real database with a valid db file. :rtype: bool """ return True def check_extension(self): """ :returns: True if the C extension was installed correctly. :rtype: bool """ for instance in (self.metadata(), self._db_reader): if type(instance).__module__ != "builtins": return False return True def lookup(self, addr): """ Look up information for the given IP address. :param addr: IP address (e.g. '203.0.113.30') :type addr: str :returns: A dictionary with city, region data and location data. :rtype: dict """ try: record = self.city(addr) except self.lookup_exceptions: # The GeoIP database has no data for this IP or is broken. record = None if not record: return None region = record.country city = record.city.geoname_id if record.city else None subs = [] if record.subdivisions: for sub in record.subdivisions: subs.append(sub.iso_code) location = record.location if not (location.latitude and location.longitude and region.iso_code): return None code = GEOIP_GENC_MAP.get(region.iso_code, region.iso_code).upper() radius, region_radius = self.radius(code, location, subs=subs, city=city) score = 0.9 if city: score = REGION_SCORE.get(code, 0.3) return { # Round lat/lon to a standard maximum precision "latitude": round(location.latitude, DEGREE_DECIMAL_PLACES), "longitude": round(location.longitude, DEGREE_DECIMAL_PLACES), "region_code": code, "region_name": genc.region_by_alpha2(code).name, "city": bool(city), "radius": radius, "region_radius": region_radius, "score": score, } def radius(self, code, location, subs=None, city=None, default=REGION_RADIUS): """ Return the best radius guess for the given region code. :param code: A two-letter region code. :type code: str :param subs: A list of ISO subdivision codes. :type code: list :param city: A geoname_id from a city record or None. :type city: int :returns: A tuple of radius/region radius guesses in meters. :rtype: tuple """ region_radius = GEOCODER.region_max_radius(code) if region_radius is None: # No region code or no successful radius lookup region_radius = default # Use region radius as an upper bound for city / subdivision # radius for really small regions. E.g. Vatican City cannot # be larger than the Vatican as a region. radius = region_radius if location.accuracy_radius: radius = min(float(location.accuracy_radius * 1000.0), radius) if subs: radius = min(SUB_RADII.get(code, SUB_RADIUS), radius) if city: radius = min(CITY_RADII.get(city, CITY_RADIUS), radius) return (radius, region_radius) class GeoIPNull(object): """ A dummy implementation of the :class:`~ichnaea.geoip.GeoIPWrapper` API. """ def lookup(self, addr): """ :returns: None """ return None @property def age(self): """ :returns: -1 """ return -1 def close(self): pass def ping(self): """ :returns: False """ return False def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close()
python
#define the main() function def main(): i = 0 x = 119.0 for i in range(120): if((i%2)==0): x += 3. else: x -= 5. s = "%3.2e" % x print(s) if __name__ == "__main__": main()
python
import asyncio from userbot import CMD_HELP, StartTime, bot from userbot.utils import bash, edit_or_reply, zelda_cmd @zelda_cmd(pattern="sxs (.*)") async def amireallysxs(sxs): user = await bot.get_me() capt = str(sxs.pattern_match.group(1).split(" ", 2)[0]) link = str(sxs.pattern_match.group(1).split(" ", 2)[1]) capti = capt.replace(".", " ") thumb = "https://telegra.ph/file/ddb9147429cae2ae6135e.jpg" await sxs.edit("__Please Wait.__") await sxs.edit("__Please Wait..__") await sxs.edit("__Please Wait.__") await sxs.edit("__Please Wait..__") await sxs.edit("__Creating Content...__") await sxs.edit("__Creating Content..__") await sxs.edit("__Creating Content...__") await sxs.edit("⚡") await asyncio.sleep(2) output = ( f"**{capti}**\n\n" f"⬇️ KLIK UNTUK MENONTON ⬇️\n" f"{link}\n\n" f"📍Support Join : @LustsketchID\n" f"📍Free VIP : @VIPLiveRecords\n" ) if thumb: try: logo = thumb await sxs.delete() msg = await bot.send_file(sxs.chat_id, logo, caption=output) await asyncio.sleep(300) # await msg.delete() except BaseException: await sxs.edit( output + "\n\n ***Logo yang diberikan tidak valid." "\nPastikan link diarahkan ke gambar logo**" ) # await asyncio.sleep(100) # await sxs.delete() else: await edit_or_reply(sxs, output) @zelda_cmd(pattern="lsid (.*)") async def amireallylsid(lsid): user = await bot.get_me() capt = str(lsid.pattern_match.group(1).split(" ", 2)[0]) link = str(lsid.pattern_match.group(1).split(" ", 2)[1]) capti = capt.replace(".", " ") thumb = "https://telegra.ph/file/22eda4c6851fd81b3b46a.jpg" await lsid.edit("__Please Wait.__") await lsid.edit("__Please Wait..__") await lsid.edit("__Please Wait.__") await lsid.edit("__Please Wait..__") await lsid.edit("__Creating Content...__") await lsid.edit("__Creating Content..__") await lsid.edit("__Creating Content...__") await lsid.edit("⚡") await asyncio.sleep(2) output = ( f"**{capti}**\n\n" f"⬇️ Your Link\n" f"{link}\n\n" f"📍Support Join : @SexualSins58\n" f"📍Free VIP : @VIPLiveRecords\n" ) if thumb: try: logo = thumb await lsid.delete() msg = await bot.send_file(lsid.chat_id, logo, caption=output) await asyncio.sleep(300) # await msg.delete() except BaseException: await lsid.edit( output + "\n\n ***Logo yang diberikan tidak valid." "\nPastikan link diarahkan ke gambar logo**" ) # await asyncio.sleep(100) # await lsid.delete() else: await edit_or_reply(lsid, output) CMD_HELP.update( { "ch_asupan": f"**Plugin : **`asupan`\ \n\n**KHUSUS UNTUK OWNER BOT. BELUM TERSEDIA UNTUK USER**\ " } )
python
#!/usr/bin/env python from flexbe_core import EventState, Logger import actionlib import rospy from jacobian_control.msg import DoAdaptionAction, DoAdaptionGoal, DoAdaptionResult, DoAdaptionFeedback class HandoverAdaptionExec(EventState): ''' Calls jacobian-control node for adaption. ''' def __init__(self, command=0, topic='/do_adaption', reality_damp=0.3, terminate_dist_override=0.0, terminate_timeout_override=0.0, fixed_orientation=True, terminate=True, use_reference_trajectory=True, joint_speed_limit=0.1): super(HandoverAdaptionExec, self).__init__(outcomes = ['succeeded', 'error']) self._topic = topic #'do_adaption' self._command = command self._reality_damp = reality_damp # 0.5 self._terminate_dist_override = terminate_dist_override # 0.5 self._terminate_timeout_override = terminate_timeout_override # 0.5 self._fixed_orientation = fixed_orientation self._terminate = terminate self._joint_speed_limit = joint_speed_limit self._use_reference_trajectory =use_reference_trajectory self._client = actionlib.SimpleActionClient(self._topic, DoAdaptionAction) Logger.loginfo('Waiting for adaption server ...') self._client.wait_for_server() Logger.loginfo('found adaption server!') self._error = False def execute(self, userdata): # Check if the client failed to send the goal. if self._error: return 'error' if self._client.get_state() is 3: # succeeded rospy.logwarn(self._client.get_state()) return 'succeeded' if self._client.get_state() is 4: # aborted rospy.logwarn(self._client.get_state()) return 'error' def on_enter(self, userdata): # Create the goal. goal = DoAdaptionGoal() goal.command = DoAdaptionGoal.COMMAND_ADAPT goal.reality_damp = self._reality_damp goal.fixed_orientation = self._fixed_orientation goal.terminate = self._terminate goal.terminate_dist_override = self._terminate_dist_override goal.terminate_timeout_override = self._terminate_timeout_override goal.joint_speed_limit = self._joint_speed_limit goal.use_reference_trajectory = self._use_reference_trajectory Logger.loginfo('sending goal: %s' %str(goal)) self._error = False # make sure to reset the error state since a previous state execution might have failed try: self._client.send_goal(goal) except Exception as e: self._error = True def on_exit(self, userdata): self._client.cancel_all_goals() rospy.loginfo('Exit adaption.')
python
from .receipt_parser import parse_receipt # noqa
python
import animal class Bear(animal.Animal): pass
python
from dataclasses import dataclass from minsk.analysis.binding.expression import BoundExpression from minsk.analysis.binding.kind import BoundNodeKind from minsk.analysis.binding.operators.unary import BoundUnaryOperator from minsk.analysis.type import MinskType @dataclass(frozen=True) class BoundUnaryExpression(BoundExpression): operator: BoundUnaryOperator operand: BoundExpression @property def kind(self) -> BoundNodeKind: return BoundNodeKind.UnaryExpression @property def ty(self) -> MinskType: return self.operator.result_type
python
from zeit.cms.i18n import MessageFactory as _ import fb import gocept.form.grouped import requests import urllib import urlparse import zeit.cms.browser.menu import zope.app.appsetup.product import zope.formlib.form import zope.session.interfaces class IFacebookApp(zope.interface.Interface): app_id = zope.schema.TextLine( title=_('Facebook app id')) app_secret = zope.schema.TextLine( title=_('Facebook app secret')) page_name = zope.schema.TextLine( title=_('Facebook page name (e.g. "ZEIT ONLINE")')) class TokenForm(zeit.cms.browser.form.FormBase, gocept.form.grouped.Form): form_fields = zope.formlib.form.FormFields(IFacebookApp) field_groups = (gocept.form.grouped.RemainingFields(_('')),) @zope.formlib.form.action( _('Create'), condition=zope.formlib.form.haveInputWidgets) def redirect_to_facebook(self, action, data): data['redirect_uri'] = self.url( self.context, 'generate-facebook-token') session = zope.session.interfaces.ISession(self.request) session['zeit.push.facebook'].update(data) # Step 1: Get user token. <https://developers.facebook.com # /docs/facebook-login/manually-build-a-login-flow#login> url = 'https://www.facebook.com/dialog/oauth?' + urllib.urlencode({ 'client_id': data['app_id'], 'redirect_uri': data['redirect_uri'], 'scope': 'manage_pages,publish_pages', }) self.request.response.redirect(url, trusted=True) class GenerateToken(zeit.cms.browser.view.Base): def __call__(self): code = self.request.form.get('code') if not code: raise ValueError('Query parameter `code` is missing.') # Step 1b: Convert code to token <https://developers.facebook.com # /docs/facebook-login/manually-build-a-login-flow#confirm> r = requests.get( 'https://graph.facebook.com/oauth/access_token?' + urllib.urlencode({ 'client_id': self.settings['app_id'], 'client_secret': self.settings['app_secret'], 'redirect_uri': self.settings['redirect_uri'], 'code': code, })) if 'error' in r.text: raise ValueError(r.text) result = urlparse.parse_qs(r.text) short_lived_user_token = result['access_token'][0] # Step 2: Exchange for long-lived token. # <https://developers.facebook.com # /docs/facebook-login/access-tokens/#extending> r = requests.get( 'https://graph.facebook.com/oauth/access_token?' + urllib.urlencode({ 'client_id': self.settings['app_id'], 'client_secret': self.settings['app_secret'], 'grant_type': 'fb_exchange_token', 'fb_exchange_token': short_lived_user_token, })) if 'error' in r.text: raise ValueError(r.text) result = urlparse.parse_qs(r.text) long_lived_user_token = result['access_token'][0] # Step 3. Retrieve page access token. <https://developers.facebook.com # /docs/facebook-login/access-tokens/#pagetokens> # # Note: Since we used a long-lived user token, the page token will be # long-lived (~60 days), too. user = fb.graph.api(long_lived_user_token) accounts = user.get_object(cat='single', id='me', fields=['accounts']) self.page_token = [ x['access_token'] for x in accounts['accounts']['data'] if x['name'] == self.settings['page_name']][0] return super(GenerateToken, self).__call__() @property def settings(self): session = zope.session.interfaces.ISession(self.request) return session['zeit.push.facebook'] @property def config_file(self): config = zope.app.appsetup.product.getProductConfiguration( 'zeit.push') return config['facebook-accounts'] class MenuItem(zeit.cms.browser.menu.GlobalMenuItem): title = _("Facebook Tokens") viewURL = '@@facebook-token.html' pathitem = '@@facebook-token.html'
python
import FWCore.ParameterSet.Config as cms from DQMOffline.Trigger.razorHemispheres_cff import * from DQMOffline.Trigger.RazorMonitor_cfi import hltRazorMonitoring # HLT_Rsq0p35_v* Rsq0p35_RazorMonitoring = hltRazorMonitoring.clone() Rsq0p35_RazorMonitoring.FolderName = cms.string('HLT/SUSY/Rsq0p35/') Rsq0p35_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_Rsq0p35_v*") # HLT_Rsq0p35_v* tight Rsq0p35_Tight_RazorMonitoring = hltRazorMonitoring.clone() Rsq0p35_Tight_RazorMonitoring.FolderName = cms.string('HLT/SUSY/Rsq0p35_Tight/') Rsq0p35_Tight_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_Rsq0p35_v*") Rsq0p35_Tight_RazorMonitoring.jetSelection = cms.string("pt>120") # HLT_Rsq0p40_v* Rsq0p40_RazorMonitoring = hltRazorMonitoring.clone() Rsq0p40_RazorMonitoring.FolderName = cms.string('HLT/SUSY/Rsq0p40/') Rsq0p40_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_Rsq0p40_v*") # HLT_Rsq0p40_v* tight Rsq0p40_Tight_RazorMonitoring = hltRazorMonitoring.clone() Rsq0p40_Tight_RazorMonitoring.FolderName = cms.string('HLT/SUSY/Rsq0p40_Tight/') Rsq0p40_Tight_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_Rsq0p40_v*") Rsq0p40_Tight_RazorMonitoring.jetSelection = cms.string("pt>120") # HLT_RsqMR300_Rsq0p09_MR200_v* RsqMR300_Rsq0p09_MR200_RazorMonitoring = hltRazorMonitoring.clone() RsqMR300_Rsq0p09_MR200_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR300_Rsq0p09_MR200/') RsqMR300_Rsq0p09_MR200_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR300_Rsq0p09_MR200_v*") # HLT_RsqMR300_Rsq0p09_MR200_v* tight RsqMR300_Rsq0p09_MR200_Tight_RazorMonitoring = hltRazorMonitoring.clone() RsqMR300_Rsq0p09_MR200_Tight_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR300_Rsq0p09_MR200_Tight/') RsqMR300_Rsq0p09_MR200_Tight_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR300_Rsq0p09_MR200_v*") RsqMR300_Rsq0p09_MR200_Tight_RazorMonitoring.jetSelection = cms.string("pt>120") # HLT_RsqMR320_Rsq0p09_MR200_v* RsqMR320_Rsq0p09_MR200_RazorMonitoring = hltRazorMonitoring.clone() RsqMR320_Rsq0p09_MR200_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR320_Rsq0p09_MR200/') RsqMR320_Rsq0p09_MR200_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR320_Rsq0p09_MR200_v*") # HLT_RsqMR320_Rsq0p09_MR200_v* tight RsqMR320_Rsq0p09_MR200_Tight_RazorMonitoring = hltRazorMonitoring.clone() RsqMR320_Rsq0p09_MR200_Tight_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR320_Rsq0p09_MR200_Tight/') RsqMR320_Rsq0p09_MR200_Tight_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR320_Rsq0p09_MR200_v*") RsqMR320_Rsq0p09_MR200_Tight_RazorMonitoring.jetSelection = cms.string("pt>120") # HLT_RsqMR300_Rsq0p09_MR200_4jet_v* RsqMR300_Rsq0p09_MR200_4jet_RazorMonitoring = hltRazorMonitoring.clone() RsqMR300_Rsq0p09_MR200_4jet_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR300_Rsq0p09_MR200_4jet/') RsqMR300_Rsq0p09_MR200_4jet_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR300_Rsq0p09_MR200_4jet_v*") # HLT_RsqMR300_Rsq0p09_MR200_4jet_v* tight RsqMR300_Rsq0p09_MR200_4jet_Tight_RazorMonitoring = hltRazorMonitoring.clone() RsqMR300_Rsq0p09_MR200_4jet_Tight_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR300_Rsq0p09_MR200_4jet_Tight/') RsqMR300_Rsq0p09_MR200_4jet_Tight_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR300_Rsq0p09_MR200_4jet_v*") RsqMR300_Rsq0p09_MR200_4jet_Tight_RazorMonitoring.jetSelection = cms.string("pt>120") # HLT_RsqMR320_Rsq0p09_MR200_4jet_v* RsqMR320_Rsq0p09_MR200_4jet_RazorMonitoring = hltRazorMonitoring.clone() RsqMR320_Rsq0p09_MR200_4jet_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR320_Rsq0p09_MR200_4jet/') RsqMR320_Rsq0p09_MR200_4jet_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR320_Rsq0p09_MR200_4jet_v*") # HLT_RsqMR320_Rsq0p09_MR200_4jet_v* tight RsqMR320_Rsq0p09_MR200_4jet_Tight_RazorMonitoring = hltRazorMonitoring.clone() RsqMR320_Rsq0p09_MR200_4jet_Tight_RazorMonitoring.FolderName = cms.string('HLT/SUSY/RsqMR320_Rsq0p09_MR200_4jet_Tight/') RsqMR320_Rsq0p09_MR200_4jet_Tight_RazorMonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_RsqMR320_Rsq0p09_MR200_4jet_v*") RsqMR320_Rsq0p09_MR200_4jet_Tight_RazorMonitoring.jetSelection = cms.string("pt>120") susyHLTRazorMonitoring = cms.Sequence( cms.ignore(hemispheresDQM)+ #for razor triggers cms.ignore(caloHemispheresDQM)+ #for razor triggers Rsq0p35_RazorMonitoring+ Rsq0p35_Tight_RazorMonitoring+ Rsq0p40_RazorMonitoring+ Rsq0p40_Tight_RazorMonitoring+ RsqMR300_Rsq0p09_MR200_RazorMonitoring+ RsqMR300_Rsq0p09_MR200_Tight_RazorMonitoring+ RsqMR320_Rsq0p09_MR200_RazorMonitoring+ RsqMR320_Rsq0p09_MR200_Tight_RazorMonitoring+ RsqMR300_Rsq0p09_MR200_4jet_RazorMonitoring+ RsqMR300_Rsq0p09_MR200_4jet_Tight_RazorMonitoring+ RsqMR320_Rsq0p09_MR200_4jet_RazorMonitoring+ RsqMR320_Rsq0p09_MR200_4jet_Tight_RazorMonitoring )
python
project = 'matador-test' environments = { 'test': {'dbms': 'oracle', 'connection': 'user@instance'} } credentials = { 'test': {'user': 'test_user', 'password': 'test_password'} }
python
events = ["evt1", "evt2", "evt3"] def my_pop(): if events: evt = events.pop(0) print(evt) print(events) my_pop() my_pop() my_pop() my_pop()
python
"Models for managing site sections and ad placements." from __future__ import unicode_literals from django.conf import settings from django.core.cache import cache from django.db import models from django.utils.encoding import python_2_unicode_compatible from .conf import SECTION_CACHE_KEY, PLACEMENTS_KEY_FORMAT from .validators import validate_pattern @python_2_unicode_compatible class Section(models.Model): "A grouping of site urls." name = models.CharField(max_length=100) slug = models.SlugField(max_length=100, unique=True) pattern = models.CharField(max_length=200, validators=[validate_pattern, ]) priority = models.PositiveSmallIntegerField(default=0) def __str__(self): return self.name def retrieve_all_sections(): "Get all sections from the cache or query the database." sections = cache.get(SECTION_CACHE_KEY, None) if sections is None: sections = Section.objects.order_by('-priority') if settings.ADCODE_CACHE_TIMEOUT: sections = list(sections) cache.set(SECTION_CACHE_KEY, sections, settings.ADCODE_CACHE_TIMEOUT) return sections @python_2_unicode_compatible class Size(models.Model): "Common Ad size." name = models.CharField(max_length=100) width = models.PositiveSmallIntegerField() height = models.PositiveSmallIntegerField() def __str__(self): return '{name} {width}x{height}'.format( name=self.name, width=self.width, height=self.height) @python_2_unicode_compatible class Placement(models.Model): "Ad to be rendered in given sections." name = models.CharField(max_length=100) slug = models.SlugField(max_length=100, unique=True) remote_id = models.CharField(max_length=200, blank=True, default='') size = models.ForeignKey(Size, related_name='placements', on_delete=models.CASCADE) sections = models.ManyToManyField(Section, blank=True, related_name='placements') def __str__(self): return '{} ({})'.format(self.name, self.size) @property def placeholder(self): size = {'width': self.width, 'height': self.height} return settings.ADCODE_PLACEHOLDER_TEMPLATE.format(**size) @property def width(self): return self.size.width @property def height(self): return self.size.height def retrieve_section_placements(section): "Get all placements for the section from the cache or query the database." cache_key = PLACEMENTS_KEY_FORMAT.format(section.pk) placements = cache.get(cache_key, None) if placements is None: placements = Placement.objects.filter(sections=section).select_related('size') if settings.ADCODE_CACHE_TIMEOUT: placements = list(placements) cache.set(cache_key, placements, settings.ADCODE_CACHE_TIMEOUT) return placements
python
from .base_regularizer import BaseRegularizer from .center_invariant_regularizer import CenterInvariantRegularizer from .regular_face_regularizer import RegularFaceRegularizer from .lp_regularizer import LpRegularizer from .zero_mean_regularizer import ZeroMeanRegularizer from .sparse_centers_regularizer import SparseCentersRegularizer
python
#!/usr/bin/env python """circuits Hello World""" from circuits import Component, Event class hello(Event): """hello Event""" class App(Component): def hello(self): """Hello Event Handler""" print("Hello World!") def started(self, component): """Started Event Handler This is fired internally when your application starts up and can be used to trigger events that only occur once during startup. """ self.fire(hello()) # Fire hello Event raise SystemExit(0) # Terminate the Application App().run()
python
#!/usr/bin/env python # Very useful script because I know the DMC steps start from s005 import re import sys import argparse #import numpy as np import autorunner @autorunner.dmc_dat() def common(x): return x # this style is not optimal but fine for now regardless @autorunner.qmcpack_output() def output_capturer(x): return x def resolve(regex_match): if regex_match: return regex_match.group(0) return '' def sort_by_series(x): return resolve(re.search(r'\.s[0-9]+\.', filename)).strip('.').strip('s') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('files', nargs='*', default=common()) parser.add_argument('-e', '--equil', nargs='*', type=int, default=None) args = parser.parse_args() if not args.equil: args.equil = [0] * len(args.files) assert len(args.files) == len(args.equil) # divide files by number of twists scalar = {} equil_scalar = {} for e, filename in zip(args.equil, args.files): twist = resolve(re.search(r'tw[0-9]+', filename)) scalar.setdefault(twist, []) equil_scalar.setdefault(twist, []) scalar[twist].append(filename) equil_scalar[twist].append(e) # (TEMP) calculate the total of multiple runs qmcout = [] for filename in output_capturer(): # I don't think we need to separate since we need ALL values #twist = resolve(re.search(r'tw[0-9]+', filename)) #qmcout.setdefault(twist, []) #qmcout[twist].append(filename) qmcout.append(filename) print(scalar) for twist in scalar.keys(): filename_list = scalar[twist] eq_length_list = equil_scalar[twist] filename_list.sort(key=sort_by_series) out_name = re.sub(r'\.s[0-9]+\.', r'.s000.', filename_list[0]) out_string = '' # dirty quick method with open(filename_list[0]) as header_ref: # separate the header out_string += header_ref.readlines()[0] for eq_length, filename in zip(eq_length_list, filename_list): with open(filename, 'r') as something: some_list = [ x.strip() for x in something.readlines() if not '#' in x ] some_list = some_list[eq_length:] out_string += '\n'.join(some_list).strip() + '\n' with open(out_name, 'w') as something: something.write(out_string) print("written to: "+out_name)
python
# Generated by Django 4.0.4 on 2022-04-21 02:30 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cheese', fields=[ ('slug', models.SlugField(max_length=200, primary_key=True, serialize=False)), ('name', models.CharField(max_length=200, unique=True)), ('description', models.TextField(blank=True)), ('country_of_origin', models.CharField(max_length=200)), ('type', models.CharField(max_length=200)), ('fat_content', models.FloatField(blank=True, null=True)), ('last_updated', models.DateField(auto_now=True)), ], options={ 'ordering': ['name'], 'get_latest_by': 'last_updated', }, ), ]
python
import os from PIL import Image wnid = 'n03082979' image_dir = './downloaded_images/{}/{}_urlimages'.format(wnid, wnid) for filename in os.listdir(image_dir): # if filename.endswith('.png'): try: filepath = os.path.join(image_dir, filename) img = Image.open(filepath) # open the image file img.verify() # verify that it is, in fact an image except (IOError, SyntaxError) as e: print('Bad file, removing: {}'.format(filename)) # print out the names of corrupt files os.remove(filepath)
python
# INTERSECTION OF TWO ARRAYS LEETCODE SOLUTION: # creating a class. class Solution(object): # creating a function to solve the problem. def intersection(self, nums1, nums2): # returning the intersection between the two arrays. return list(set(nums1).intersection(set(nums2)))
python
import enum import math import time import warnings from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union, cast import torch import torch.nn as nn import torch.nn.functional as F import torch.optim from torch import Tensor from . import functional as rtdlF ModuleType = Union[str, Callable[..., nn.Module]] _INTERNAL_ERROR_MESSAGE = 'Internal error. Please, open an issue.' def _is_glu_activation(activation: ModuleType): return ( isinstance(activation, str) and activation.endswith('GLU') or activation in [ReGLU, GEGLU] ) def _all_or_none(values): return all(x is None for x in values) or all(x is not None for x in values) class ReGLU(nn.Module): """The ReGLU activation function from [shazeer2020glu]. Examples: .. testcode:: module = ReGLU() x = torch.randn(3, 4) assert module(x).shape == (3, 2) References: * [shazeer2020glu] Noam Shazeer, "GLU Variants Improve Transformer", 2020 """ def forward(self, x: Tensor) -> Tensor: return rtdlF.reglu(x) class GEGLU(nn.Module): """The GEGLU activation function from [shazeer2020glu]. Examples: .. testcode:: module = GEGLU() x = torch.randn(3, 4) assert module(x).shape == (3, 2) References: * [shazeer2020glu] Noam Shazeer, "GLU Variants Improve Transformer", 2020 """ def forward(self, x: Tensor) -> Tensor: return rtdlF.geglu(x) class _TokenInitialization(enum.Enum): UNIFORM = 'uniform' NORMAL = 'normal' @classmethod def from_str(cls, initialization: str) -> '_TokenInitialization': try: return cls(initialization) except ValueError: valid_values = [x.value for x in _TokenInitialization] raise ValueError(f'initialization must be one of {valid_values}') def apply(self, x: Tensor, d: int) -> None: d_sqrt_inv = 1 / math.sqrt(d) if self == _TokenInitialization.UNIFORM: # used in the paper "Revisiting Deep Learning Models for Tabular Data"; # is equivalent to `nn.init.kaiming_uniform_(x, a=math.sqrt(5))` (which is # used by torch to initialize nn.Linear.weight, for example) nn.init.uniform_(x, a=-d_sqrt_inv, b=d_sqrt_inv) elif self == _TokenInitialization.NORMAL: nn.init.normal_(x, std=d_sqrt_inv) class NumericalFeatureTokenizer(nn.Module): """Transforms continuous features to tokens (embeddings). See `FeatureTokenizer` for the illustration. For one feature, the transformation consists of two steps: * the feature is multiplied by a trainable vector * another trainable vector is added Note that each feature has its separate pair of trainable vectors, i.e. the vectors are not shared between features. Examples: .. testcode:: x = torch.randn(4, 2) n_objects, n_features = x.shape d_token = 3 tokenizer = NumericalFeatureTokenizer(n_features, d_token, True, 'uniform') tokens = tokenizer(x) assert tokens.shape == (n_objects, n_features, d_token) """ def __init__( self, n_features: int, d_token: int, bias: bool, initialization: str, ) -> None: """ Args: n_features: the number of continuous (scalar) features d_token: the size of one token bias: if `False`, then the transformation will include only multiplication. **Warning**: :code:`bias=False` leads to significantly worse results for Transformer-like (token-based) architectures. initialization: initialization policy for parameters. Must be one of :code:`['uniform', 'normal']`. Let :code:`s = d ** -0.5`. Then, the corresponding distributions are :code:`Uniform(-s, s)` and :code:`Normal(0, s)`. In [gorishniy2021revisiting], the 'uniform' initialization was used. References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ super().__init__() initialization_ = _TokenInitialization.from_str(initialization) self.weight = nn.Parameter(Tensor(n_features, d_token)) self.bias = nn.Parameter(Tensor(n_features, d_token)) if bias else None for parameter in [self.weight, self.bias]: if parameter is not None: initialization_.apply(parameter, d_token) @property def n_tokens(self) -> int: """The number of tokens.""" return len(self.weight) @property def d_token(self) -> int: """The size of one token.""" return self.weight.shape[1] def forward(self, x: Tensor) -> Tensor: x = self.weight[None] * x[..., None] if self.bias is not None: x = x + self.bias[None] return x class CategoricalFeatureTokenizer(nn.Module): """Transforms categorical features to tokens (embeddings). See `FeatureTokenizer` for the illustration. The module efficiently implements a collection of `torch.nn.Embedding` (with optional biases). Examples: .. testcode:: # the input must contain integers. For example, if the first feature can # take 3 distinct values, then its cardinality is 3 and the first column # must contain values from the range `[0, 1, 2]`. cardinalities = [3, 10] x = torch.tensor([ [0, 5], [1, 7], [0, 2], [2, 4] ]) n_objects, n_features = x.shape d_token = 3 tokenizer = CategoricalFeatureTokenizer(cardinalities, d_token, True, 'uniform') tokens = tokenizer(x) assert tokens.shape == (n_objects, n_features, d_token) """ category_offsets: Tensor def __init__( self, cardinalities: List[int], d_token: int, bias: bool, initialization: str, ) -> None: """ Args: cardinalities: the number of distinct values for each feature. For example, :code:`cardinalities=[3, 4]` describes two features: the first one can take values in the range :code:`[0, 1, 2]` and the second one can take values in the range :code:`[0, 1, 2, 3]`. d_token: the size of one token. bias: if `True`, for each feature, a trainable vector is added to the embedding regardless of feature value. The bias vectors are not shared between features. initialization: initialization policy for parameters. Must be one of :code:`['uniform', 'normal']`. Let :code:`s = d ** -0.5`. Then, the corresponding distributions are :code:`Uniform(-s, s)` and :code:`Normal(0, s)`. In the paper [gorishniy2021revisiting], the 'uniform' initialization was used. References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ super().__init__() assert cardinalities, 'cardinalities must be non-empty' assert d_token > 0, 'd_token must be positive' initialization_ = _TokenInitialization.from_str(initialization) category_offsets = torch.tensor([0] + cardinalities[:-1]).cumsum(0) self.register_buffer('category_offsets', category_offsets, persistent=False) self.embeddings = nn.Embedding(sum(cardinalities), d_token) self.bias = nn.Parameter(Tensor(len(cardinalities), d_token)) if bias else None for parameter in [self.embeddings.weight, self.bias]: if parameter is not None: initialization_.apply(parameter, d_token) @property def n_tokens(self) -> int: """The number of tokens.""" return len(self.category_offsets) @property def d_token(self) -> int: """The size of one token.""" return self.embeddings.embedding_dim def forward(self, x: Tensor) -> Tensor: x = self.embeddings(x + self.category_offsets[None]) if self.bias is not None: x = x + self.bias[None] return x class FeatureTokenizer(nn.Module): """Combines `NumericalFeatureTokenizer` and `CategoricalFeatureTokenizer`. The "Feature Tokenizer" module from [gorishniy2021revisiting]. The module transforms continuous and categorical features to tokens (embeddings). In the illustration below, the red module in the upper brackets represents `NumericalFeatureTokenizer` and the green module in the lower brackets represents `CategoricalFeatureTokenizer`. .. image:: ../images/feature_tokenizer.png :scale: 33% :alt: Feature Tokenizer Examples: .. testcode:: n_objects = 4 n_num_features = 3 n_cat_features = 2 d_token = 7 x_num = torch.randn(n_objects, n_num_features) x_cat = torch.tensor([[0, 1], [1, 0], [0, 2], [1, 1]]) # [2, 3] reflects cardinalities fr tokenizer = FeatureTokenizer(n_num_features, [2, 3], d_token) tokens = tokenizer(x_num, x_cat) assert tokens.shape == (n_objects, n_num_features + n_cat_features, d_token) References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko "Revisiting Deep Learning Models for Tabular Data", 2021 """ def __init__( self, n_num_features: int, cat_cardinalities: List[int], d_token: int, ) -> None: """ Args: n_num_features: the number of continuous features. Pass :code:`0` if there are no numerical features. cat_cardinalities: the number of unique values for each feature. See `CategoricalFeatureTokenizer` for details. Pass an empty list if there are no categorical features. d_token: the size of one token. """ super().__init__() assert n_num_features >= 0, 'n_num_features must be non-negative' assert ( n_num_features or cat_cardinalities ), 'at least one of n_num_features or cat_cardinalities must be positive/non-empty' self.initialization = 'uniform' self.num_tokenizer = ( NumericalFeatureTokenizer( n_features=n_num_features, d_token=d_token, bias=True, initialization=self.initialization, ) if n_num_features else None ) self.cat_tokenizer = ( CategoricalFeatureTokenizer( cat_cardinalities, d_token, True, self.initialization ) if cat_cardinalities else None ) @property def n_tokens(self) -> int: """The number of tokens.""" return sum( x.n_tokens for x in [self.num_tokenizer, self.cat_tokenizer] if x is not None ) @property def d_token(self) -> int: """The size of one token.""" return ( self.cat_tokenizer.d_token # type: ignore if self.num_tokenizer is None else self.num_tokenizer.d_token ) def forward(self, x_num: Optional[Tensor], x_cat: Optional[Tensor]) -> Tensor: """Perform the forward pass. Args: x_num: continuous features. Must be presented if :code:`n_num_features > 0` was passed to the constructor. x_cat: categorical features (see `CategoricalFeatureTokenizer.forward` for details). Must be presented if non-empty :code:`cat_cardinalities` was passed to the constructor. Returns: tokens Raises: AssertionError: if the described requirements for the inputs are not met. """ assert ( x_num is not None or x_cat is not None ), 'At least one of x_num and x_cat must be presented' assert _all_or_none( [self.num_tokenizer, x_num] ), 'If self.num_tokenizer is (not) None, then x_num must (not) be None' assert _all_or_none( [self.cat_tokenizer, x_cat] ), 'If self.cat_tokenizer is (not) None, then x_cat must (not) be None' x = [] if self.num_tokenizer is not None: x.append(self.num_tokenizer(x_num)) if self.cat_tokenizer is not None: x.append(self.cat_tokenizer(x_cat)) return x[0] if len(x) == 1 else torch.cat(x, dim=1) class CLSToken(nn.Module): """[CLS]-token for BERT-like inference. To learn about the [CLS]-based inference, see [devlin2018bert]. When used as a module, the [CLS]-token is appended **to the end** of each item in the batch. Examples: .. testcode:: batch_size = 2 n_tokens = 3 d_token = 4 cls_token = CLSToken(d_token, 'uniform') x = torch.randn(batch_size, n_tokens, d_token) x = cls_token(x) assert x.shape == (batch_size, n_tokens + 1, d_token) assert (x[:, -1, :] == cls_token.expand(len(x))).all() References: * [devlin2018bert] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 2018 """ def __init__(self, d_token: int, initialization: str) -> None: """ Args: d_token: the size of token initialization: initialization policy for parameters. Must be one of :code:`['uniform', 'normal']`. Let :code:`s = d ** -0.5`. Then, the corresponding distributions are :code:`Uniform(-s, s)` and :code:`Normal(0, s)`. In the paper [gorishniy2021revisiting], the 'uniform' initialization was used. References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko "Revisiting Deep Learning Models for Tabular Data", 2021 """ super().__init__() initialization_ = _TokenInitialization.from_str(initialization) self.weight = nn.Parameter(Tensor(d_token)) initialization_.apply(self.weight, d_token) def expand(self, *leading_dimensions: int) -> Tensor: """Expand (repeat) the underlying [CLS]-token to a tensor with the given leading dimensions. A possible use case is building a batch of [CLS]-tokens. See `CLSToken` for examples of usage. Note: Under the hood, the `torch.Tensor.expand` method is applied to the underlying :code:`weight` parameter, so gradients will be propagated as expected. Args: leading_dimensions: the additional new dimensions Returns: tensor of the shape :code:`(*leading_dimensions, len(self.weight))` """ if not leading_dimensions: return self.weight new_dims = (1,) * (len(leading_dimensions) - 1) return self.weight.view(*new_dims, -1).expand(*leading_dimensions, -1) def forward(self, x: Tensor) -> Tensor: """Append self **to the end** of each item in the batch (see `CLSToken`).""" return torch.cat([x, self.expand(len(x), 1)], dim=1) def _make_nn_module(module_type: ModuleType, *args) -> nn.Module: if isinstance(module_type, str): if module_type == 'ReGLU': return ReGLU() elif module_type == 'GEGLU': return GEGLU() else: try: cls = getattr(nn, module_type) except AttributeError as err: raise ValueError( f'Failed to construct the module {module_type} with the arguments {args}' ) from err return cls(*args) else: return module_type(*args) class MLP(nn.Module): """The MLP model used in [gorishniy2021revisiting]. The following scheme describes the architecture: .. code-block:: text MLP: (in) -> Block -> ... -> Block -> Linear -> (out) Block: (in) -> Linear -> Activation -> Dropout -> (out) Examples: .. testcode:: x = torch.randn(4, 2) module = MLP.make_baseline(x.shape[1], [3, 5], 0.1, 1) assert module(x).shape == (len(x), 1) References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ class Block(nn.Module): """The main building block of `MLP`.""" def __init__( self, *, d_in: int, d_out: int, bias: bool, activation: ModuleType, dropout: float, ) -> None: super().__init__() self.linear = nn.Linear(d_in, d_out, bias) self.activation = _make_nn_module(activation) self.dropout = nn.Dropout(dropout) def forward(self, x: Tensor) -> Tensor: return self.dropout(self.activation(self.linear(x))) def __init__( self, *, d_in: int, d_layers: List[int], dropouts: Union[float, List[float]], activation: Union[str, Callable[[], nn.Module]], d_out: int, ) -> None: """ Note: `make_baseline` is the recommended constructor. """ super().__init__() if isinstance(dropouts, float): dropouts = [dropouts] * len(d_layers) assert len(d_layers) == len(dropouts) self.blocks = nn.Sequential( *[ MLP.Block( d_in=d_layers[i - 1] if i else d_in, d_out=d, bias=True, activation=activation, dropout=dropout, ) for i, (d, dropout) in enumerate(zip(d_layers, dropouts)) ] ) self.head = nn.Linear(d_layers[-1] if d_layers else d_in, d_out) @classmethod def make_baseline( cls: Type['MLP'], d_in: int, d_layers: List[int], dropout: float, d_out: int, ) -> 'MLP': """Create a "baseline" `MLP`. This variation of MLP was used in [gorishniy2021revisiting]. Features: * :code:`Activation` = :code:`ReLU` * all linear layers except for the first one and the last one are of the same dimension * the dropout rate is the same for all dropout layers Args: d_in: the input size d_layers: the dimensions of the linear layers. If there are more than two layers, then all of them except for the first and the last ones must have the same dimension. Valid examples: :code:`[]`, :code:`[8]`, :code:`[8, 16]`, :code:`[2, 2, 2, 2]`, :code:`[1, 2, 2, 4]`. Invalid example: :code:`[1, 2, 3, 4]`. dropout: the dropout rate for all hidden layers d_out: the output size Returns: MLP References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ assert isinstance(dropout, float), 'In this constructor, dropout must be float' if len(d_layers) > 2: assert len(set(d_layers[1:-1])) == 1, ( 'In this constructor, if d_layers contains more than two elements, then' ' all elements except for the first and the last ones must be equal.' ) return MLP( d_in=d_in, d_layers=d_layers, # type: ignore dropouts=dropout, activation='ReLU', d_out=d_out, ) def forward(self, x: Tensor) -> Tensor: x = self.blocks(x) x = self.head(x) return x class ResNet(nn.Module): """The ResNet model used in [gorishniy2021revisiting]. The following scheme describes the architecture: .. code-block:: text ResNet: (in) -> Linear -> Block -> ... -> Block -> Head -> (out) |-> Norm -> Linear -> Activation -> Dropout -> Linear -> Dropout ->| | | Block: (in) ------------------------------------------------------------> Add -> (out) Head: (in) -> Norm -> Activation -> Linear -> (out) Examples: .. testcode:: x = torch.randn(4, 2) module = ResNet.make_baseline( d_in=x.shape[1], n_blocks=2, d_main=3, d_hidden=4, dropout_first=0.25, dropout_second=0.0, d_out=1 ) assert module(x).shape == (len(x), 1) References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ class Block(nn.Module): """The main building block of `ResNet`.""" def __init__( self, *, d_main: int, d_hidden: int, bias_first: bool, bias_second: bool, dropout_first: float, dropout_second: float, normalization: ModuleType, activation: ModuleType, skip_connection: bool, ) -> None: super().__init__() self.normalization = _make_nn_module(normalization, d_main) self.linear_first = nn.Linear(d_main, d_hidden, bias_first) self.activation = _make_nn_module(activation) self.dropout_first = nn.Dropout(dropout_first) self.linear_second = nn.Linear(d_hidden, d_main, bias_second) self.dropout_second = nn.Dropout(dropout_second) self.skip_connection = skip_connection def forward(self, x: Tensor) -> Tensor: x_input = x x = self.normalization(x) x = self.linear_first(x) x = self.activation(x) x = self.dropout_first(x) x = self.linear_second(x) x = self.dropout_second(x) if self.skip_connection: x = x_input + x else: x = x_input * x return x class Head(nn.Module): """The final module of `ResNet`.""" def __init__( self, *, d_in: int, d_out: int, bias: bool, normalization: ModuleType, activation: ModuleType, ) -> None: super().__init__() self.normalization = _make_nn_module(normalization, d_in) self.activation = _make_nn_module(activation) self.linear = nn.Linear(d_in, d_out, bias) def forward(self, x: Tensor) -> Tensor: if self.normalization is not None: x = self.normalization(x) x = self.activation(x) x = self.linear(x) return x def __init__( self, *, d_in: int, n_blocks: int, d_main: int, d_hidden: int, dropout_first: float, dropout_second: float, normalization: ModuleType, activation: ModuleType, d_out: int, ) -> None: """ Note: `make_baseline` is the recommended constructor. """ super().__init__() self.first_layer = nn.Linear(d_in, d_main) if d_main is None: d_main = d_in self.blocks = nn.Sequential( *[ ResNet.Block( d_main=d_main, d_hidden=d_hidden, bias_first=True, bias_second=True, dropout_first=dropout_first, dropout_second=dropout_second, normalization=normalization, activation=activation, skip_connection=True, ) for _ in range(n_blocks) ] ) self.blocks2 = nn.Sequential( *[ ResNet.Block( d_main=d_main, d_hidden=d_hidden, bias_first=True, bias_second=True, dropout_first=dropout_first, dropout_second=dropout_second, normalization=normalization, activation=activation, skip_connection=False, ) for _ in range(n_blocks) ] ) self.head = ResNet.Head( d_in=d_main*2, d_out=d_out, bias=True, normalization=normalization, activation=activation, ) @classmethod def make_baseline( cls: Type['ResNet'], *, d_in: int, n_blocks: int, d_main: int, d_hidden: int, dropout_first: float, dropout_second: float, d_out: int, ) -> 'ResNet': """Create a "baseline" `ResNet`. This variation of ResNet was used in [gorishniy2021revisiting]. Features: * :code:`Activation` = :code:`ReLU` * :code:`Norm` = :code:`BatchNorm1d` Args: d_in: the input size n_blocks: the number of Blocks d_main: the input size (or, equivalently, the output size) of each Block d_hidden: the output size of the first linear layer in each Block dropout_first: the dropout rate of the first dropout layer in each Block. dropout_second: the dropout rate of the second dropout layer in each Block. References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ return cls( d_in=d_in, n_blocks=n_blocks, d_main=d_main, d_hidden=d_hidden, dropout_first=dropout_first, dropout_second=dropout_second, normalization='BatchNorm1d', activation='ReLU', d_out=d_out, ) def forward(self, x: Tensor) -> Tensor: x = self.first_layer(x) x1 = self.blocks(x) x2 = self.blocks2(x) x = torch.cat([x1, x2], dim=-1) x = self.head(x) return x class MultiheadAttention(nn.Module): """Multihead Attention (self-/cross-) with optional 'linear' attention. To learn more about Multihead Attention, see [devlin2018bert]. See the implementation of `Transformer` and the examples below to learn how to use the compression technique from [wang2020linformer] to speed up the module when the number of tokens is large. Examples: .. testcode:: n_objects, n_tokens, d_token = 2, 3, 12 n_heads = 6 a = torch.randn(n_objects, n_tokens, d_token) b = torch.randn(n_objects, n_tokens * 2, d_token) module = MultiheadAttention( d_token=d_token, n_heads=n_heads, dropout=0.2, bias=True, initialization='kaiming' ) # self-attention x, attention_stats = module(a, a, None, None) assert x.shape == a.shape assert attention_stats['attention_probs'].shape == (n_objects * n_heads, n_tokens, n_tokens) assert attention_stats['attention_logits'].shape == (n_objects * n_heads, n_tokens, n_tokens) # cross-attention assert module(a, b, None, None) # Linformer self-attention with the 'headwise' sharing policy k_compression = torch.nn.Linear(n_tokens, n_tokens // 4) v_compression = torch.nn.Linear(n_tokens, n_tokens // 4) assert module(a, a, k_compression, v_compression) # Linformer self-attention with the 'key-value' sharing policy kv_compression = torch.nn.Linear(n_tokens, n_tokens // 4) assert module(a, a, kv_compression, kv_compression) References: * [devlin2018bert] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 2018 * [wang2020linformer] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma "Linformer: Self-Attention with Linear Complexity", 2020 """ def __init__( self, *, d_token: int, n_heads: int, dropout: float, bias: bool, initialization: str, ) -> None: """ Args: d_token: the token size. Must be a multiple of :code:`n_heads`. n_heads: the number of heads. If greater than 1, then the module will have an addition output layer (so called "mixing" layer). dropout: dropout rate for the attention map. The dropout is applied to *probabilities* and do not affect logits. bias: if `True`, then input (and output, if presented) layers also have bias. `True` is a reasonable default choice. initialization: initialization for input projection layers. Must be one of :code:`['kaiming', 'xavier']`. `kaiming` is a reasonable default choice. Raises: AssertionError: if requirements for the inputs are not met. """ super().__init__() if n_heads > 1: assert d_token % n_heads == 0, 'd_token must be a multiple of n_heads' assert initialization in ['kaiming', 'xavier'] self.W_q = nn.Linear(d_token, d_token, bias) self.W_k = nn.Linear(d_token, d_token, bias) self.W_v = nn.Linear(d_token, d_token, bias) self.W_out = nn.Linear(d_token, d_token, bias) if n_heads > 1 else None self.n_heads = n_heads self.dropout = nn.Dropout(dropout) if dropout else None for m in [self.W_q, self.W_k, self.W_v]: # the "xavier" branch tries to follow torch.nn.MultiheadAttention; # the second condition checks if W_v plays the role of W_out; the latter one # is initialized with Kaiming in torch if initialization == 'xavier' and ( m is not self.W_v or self.W_out is not None ): # gain is needed since W_qkv is represented with 3 separate layers (it # implies different fan_out) nn.init.xavier_uniform_(m.weight, gain=1 / math.sqrt(2)) if m.bias is not None: nn.init.zeros_(m.bias) if self.W_out is not None: nn.init.zeros_(self.W_out.bias) def _reshape(self, x: Tensor) -> Tensor: batch_size, n_tokens, d = x.shape d_head = d // self.n_heads return ( x.reshape(batch_size, n_tokens, self.n_heads, d_head) .transpose(1, 2) .reshape(batch_size * self.n_heads, n_tokens, d_head) ) def forward( self, x_q: Tensor, x_kv: Tensor, key_compression: Optional[nn.Linear], value_compression: Optional[nn.Linear], ) -> Tuple[Tensor, Dict[str, Tensor]]: """Perform the forward pass. Args: x_q: query tokens x_kv: key-value tokens key_compression: Linformer-style compression for keys value_compression: Linformer-style compression for values Returns: (tokens, attention_stats) """ assert _all_or_none( [key_compression, value_compression] ), 'If key_compression is (not) None, then value_compression must (not) be None' q, k, v = self.W_q(x_q), self.W_k(x_kv), self.W_v(x_kv) for tensor in [q, k, v]: assert tensor.shape[-1] % self.n_heads == 0, _INTERNAL_ERROR_MESSAGE if key_compression is not None: k = key_compression(k.transpose(1, 2)).transpose(1, 2) v = value_compression(v.transpose(1, 2)).transpose(1, 2) # type: ignore batch_size = len(q) d_head_key = k.shape[-1] // self.n_heads d_head_value = v.shape[-1] // self.n_heads n_q_tokens = q.shape[1] q = self._reshape(q) k = self._reshape(k) attention_logits = q @ k.transpose(1, 2) / math.sqrt(d_head_key) attention_probs = F.softmax(attention_logits, dim=-1) if self.dropout is not None: attention_probs = self.dropout(attention_probs) x = attention_probs @ self._reshape(v) x = ( x.reshape(batch_size, self.n_heads, n_q_tokens, d_head_value) .transpose(1, 2) .reshape(batch_size, n_q_tokens, self.n_heads * d_head_value) ) if self.W_out is not None: x = self.W_out(x) return x, { 'attention_logits': attention_logits, 'attention_probs': attention_probs, } class Transformer(nn.Module): """Transformer with extra features. This module is the backbone of `FTTransformer`.""" WARNINGS = {'first_prenormalization': True, 'prenormalization': True} class FFN(nn.Module): """The Feed-Forward Network module used in every `Transformer` block.""" def __init__( self, *, d_token: int, d_hidden: int, bias_first: bool, bias_second: bool, dropout: float, activation: ModuleType, ): super().__init__() self.linear_first = nn.Linear( d_token, d_hidden * (2 if _is_glu_activation(activation) else 1), bias_first, ) self.activation = _make_nn_module(activation) self.dropout = nn.Dropout(dropout) self.linear_second = nn.Linear(d_hidden, d_token, bias_second) def forward(self, x: Tensor) -> Tensor: x = self.linear_first(x) x = self.activation(x) x = self.dropout(x) x = self.linear_second(x) return x class Head(nn.Module): """The final module of the `Transformer` that performs BERT-like inference.""" def __init__( self, *, d_in: int, bias: bool, activation: ModuleType, normalization: ModuleType, d_out: int, ): super().__init__() self.normalization = _make_nn_module(normalization, d_in) self.activation = _make_nn_module(activation) self.linear = nn.Linear(d_in, d_out, bias) def forward(self, x: Tensor) -> Tensor: x = x[:, -1] x = self.normalization(x) x = self.activation(x) x = self.linear(x) return x def __init__( self, *, d_token: int, n_blocks: int, attention_n_heads: int, attention_dropout: float, attention_initialization: str, attention_normalization: str, ffn_d_hidden: int, ffn_dropout: float, ffn_activation: str, ffn_normalization: str, residual_dropout: float, prenormalization: bool, first_prenormalization: bool, last_layer_query_idx: Union[None, List[int], slice], n_tokens: Optional[int], kv_compression_ratio: Optional[float], kv_compression_sharing: Optional[str], head_activation: ModuleType, head_normalization: ModuleType, d_out: int, ) -> None: super().__init__() if isinstance(last_layer_query_idx, int): raise ValueError( 'last_layer_query_idx must be None, list[int] or slice. ' f'Do you mean last_layer_query_idx=[{last_layer_query_idx}] ?' ) if not prenormalization: assert ( not first_prenormalization ), 'If `prenormalization` is False, then `first_prenormalization` must be False' assert _all_or_none([n_tokens, kv_compression_ratio, kv_compression_sharing]), ( 'If any of the following arguments is (not) None, then all of them must (not) be None: ' 'n_tokens, kv_compression_ratio, kv_compression_sharing' ) assert kv_compression_sharing in [None, 'headwise', 'key-value', 'layerwise'] if not prenormalization: if self.WARNINGS['prenormalization']: warnings.warn( 'prenormalization is set to False. Are you sure about this? ' 'The training can become less stable. ' 'You can turn off this warning by tweaking the ' 'rtdl.Transformer.WARNINGS dictionary.', UserWarning, ) assert ( not first_prenormalization ), 'If prenormalization is False, then first_prenormalization is ignored and must be set to False' if ( prenormalization and first_prenormalization and self.WARNINGS['first_prenormalization'] ): warnings.warn( 'first_prenormalization is set to True. Are you sure about this? ' 'For example, the vanilla FTTransformer with ' 'first_prenormalization=True performs SIGNIFICANTLY worse. ' 'You can turn off this warning by tweaking the ' 'rtdl.Transformer.WARNINGS dictionary.', UserWarning, ) time.sleep(3) def make_kv_compression(): assert ( n_tokens and kv_compression_ratio ), _INTERNAL_ERROR_MESSAGE # for mypy # https://github.com/pytorch/fairseq/blob/1bba712622b8ae4efb3eb793a8a40da386fe11d0/examples/linformer/linformer_src/modules/multihead_linear_attention.py#L83 return nn.Linear(n_tokens, int(n_tokens * kv_compression_ratio), bias=False) self.shared_kv_compression = ( make_kv_compression() if kv_compression_ratio and kv_compression_sharing == 'layerwise' else None ) self.prenormalization = prenormalization self.last_layer_query_idx = last_layer_query_idx self.blocks = nn.ModuleList([]) for layer_idx in range(n_blocks): layer = nn.ModuleDict( { 'attention': MultiheadAttention( d_token=d_token, n_heads=attention_n_heads, dropout=attention_dropout, bias=True, initialization=attention_initialization, ), 'ffn': Transformer.FFN( d_token=d_token, d_hidden=ffn_d_hidden, bias_first=True, bias_second=True, dropout=ffn_dropout, activation=ffn_activation, ), 'attention_residual_dropout': nn.Dropout(residual_dropout), 'ffn_residual_dropout': nn.Dropout(residual_dropout), 'output': nn.Identity(), # for hooks-based introspection } ) if layer_idx or not prenormalization or first_prenormalization: layer['attention_normalization'] = _make_nn_module( attention_normalization, d_token ) layer['ffn_normalization'] = _make_nn_module(ffn_normalization, d_token) if kv_compression_ratio and self.shared_kv_compression is None: layer['key_compression'] = make_kv_compression() if kv_compression_sharing == 'headwise': layer['value_compression'] = make_kv_compression() else: assert ( kv_compression_sharing == 'key-value' ), _INTERNAL_ERROR_MESSAGE self.blocks.append(layer) self.head = Transformer.Head( d_in=d_token, d_out=d_out, bias=True, activation=head_activation, # type: ignore normalization=head_normalization if prenormalization else 'Identity', ) def _get_kv_compressions(self, layer): return ( (self.shared_kv_compression, self.shared_kv_compression) if self.shared_kv_compression is not None else (layer['key_compression'], layer['value_compression']) if 'key_compression' in layer and 'value_compression' in layer else (layer['key_compression'], layer['key_compression']) if 'key_compression' in layer else (None, None) ) def _start_residual(self, layer, stage, x): assert stage in ['attention', 'ffn'], _INTERNAL_ERROR_MESSAGE x_residual = x if self.prenormalization: norm_key = f'{stage}_normalization' if norm_key in layer: x_residual = layer[norm_key](x_residual) return x_residual def _end_residual(self, layer, stage, x, x_residual): assert stage in ['attention', 'ffn'], _INTERNAL_ERROR_MESSAGE x_residual = layer[f'{stage}_residual_dropout'](x_residual) x = x + x_residual if not self.prenormalization: x = layer[f'{stage}_normalization'](x) return x def forward(self, x: Tensor) -> Tensor: assert ( x.ndim == 3 ), 'The input must have 3 dimensions: (n_objects, n_tokens, d_token)' for layer_idx, layer in enumerate(self.blocks): layer = cast(nn.ModuleDict, layer) query_idx = ( self.last_layer_query_idx if layer_idx + 1 == len(self.blocks) else None ) x_residual = self._start_residual(layer, 'attention', x) x_residual, _ = layer['attention']( x_residual if query_idx is None else x_residual[:, query_idx], x_residual, *self._get_kv_compressions(layer), ) if query_idx is not None: x = x[:, query_idx] x = self._end_residual(layer, 'attention', x, x_residual) x_residual = self._start_residual(layer, 'ffn', x) x_residual = layer['ffn'](x_residual) x = self._end_residual(layer, 'ffn', x, x_residual) x = layer['output'](x) x = self.head(x) return x class FTTransformer(nn.Module): """The FT-Transformer model proposed in [gorishniy2021revisiting]. Transforms features to tokens with `FeatureTokenizer` and applies `Transformer` [vaswani2017attention] to the tokens. The following illustration provides a high-level overview of the architecture: .. image:: ../images/ft_transformer.png :scale: 25% :alt: FT-Transformer The following illustration demonstrates one Transformer block for :code:`prenormalization=True`: .. image:: ../images/transformer_block.png :scale: 25% :alt: PreNorm Transformer block Examples: .. testcode:: x_num = torch.randn(4, 3) x_cat = torch.tensor([[0, 1], [1, 0], [0, 2], [1, 1]]) module = FTTransformer.make_baseline( n_num_features=3, cat_cardinalities=[2, 3], d_token=8, n_blocks=2, attention_dropout=0.2, ffn_d_hidden=6, ffn_dropout=0.2, residual_dropout=0.0, d_out=1, ) x = module(x_num, x_cat) assert x.shape == (4, 1) module = FTTransformer.make_default( n_num_features=3, cat_cardinalities=[2, 3], d_out=1, ) x = module(x_num, x_cat) assert x.shape == (4, 1) To learn more about the baseline and default parameters: .. testcode:: baseline_parameters = FTTransformer.get_baseline_transformer_subconfig() default_parameters = FTTransformer.get_default_transformer_config() References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 * [vaswani2017attention] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, "Attention Is All You Need", 2017 """ def __init__( self, feature_tokenizer: FeatureTokenizer, transformer: Transformer ) -> None: """ Note: `make_baseline` and `make_default` are the recommended constructors. """ super().__init__() if transformer.prenormalization: assert 'attention_normalization' not in transformer.blocks[0], ( 'In the prenormalization setting, FT-Transformer does not ' 'allow using the first normalization layer ' 'in the first transformer block' ) self.feature_tokenizer = feature_tokenizer self.cls_token = CLSToken( feature_tokenizer.d_token, feature_tokenizer.initialization ) self.transformer = transformer @classmethod def get_baseline_transformer_subconfig( cls: Type['FTTransformer'], ) -> Dict[str, Any]: """Get the baseline subset of parameters for the backbone.""" return { 'attention_n_heads': 8, 'attention_initialization': 'kaiming', 'ffn_activation': 'ReGLU', 'attention_normalization': 'LayerNorm', 'ffn_normalization': 'LayerNorm', 'prenormalization': True, 'first_prenormalization': False, 'last_layer_query_idx': None, 'n_tokens': None, 'kv_compression_ratio': None, 'kv_compression_sharing': None, 'head_activation': 'ReLU', 'head_normalization': 'LayerNorm', } @classmethod def get_default_transformer_config( cls: Type['FTTransformer'], *, n_blocks: int = 3 ) -> Dict[str, Any]: """Get the default parameters for the backbone. Note: The configurations are different for different values of:code:`n_blocks`. """ assert 1 <= n_blocks <= 6 grid = { 'd_token': [96, 128, 192, 256, 320, 384], 'attention_dropout': [0.1, 0.15, 0.2, 0.25, 0.3, 0.35], 'ffn_dropout': [0.0, 0.05, 0.1, 0.15, 0.2, 0.25], } arch_subconfig = {k: v[n_blocks - 1] for k, v in grid.items()} # type: ignore baseline_subconfig = cls.get_baseline_transformer_subconfig() # (4 / 3) for ReGLU/GEGLU activations results in almost the same parameter count # as (2.0) for element-wise activations (e.g. ReLU or GELU; see the "else" branch) ffn_d_hidden_factor = ( (4 / 3) if _is_glu_activation(baseline_subconfig['ffn_activation']) else 2.0 ) return { 'n_blocks': n_blocks, 'residual_dropout': 0.0, 'ffn_d_hidden': int(arch_subconfig['d_token'] * ffn_d_hidden_factor), **arch_subconfig, **baseline_subconfig, } @classmethod def _make( cls, n_num_features, cat_cardinalities, transformer_config, ): feature_tokenizer = FeatureTokenizer( n_num_features=n_num_features, cat_cardinalities=cat_cardinalities, d_token=transformer_config['d_token'], ) if transformer_config['d_out'] is None: transformer_config['head_activation'] = None if transformer_config['kv_compression_ratio'] is not None: transformer_config['n_tokens'] = feature_tokenizer.n_tokens + 1 return FTTransformer( feature_tokenizer, Transformer(**transformer_config), ) @classmethod def make_baseline( cls: Type['FTTransformer'], *, n_num_features: int, cat_cardinalities: Optional[List[int]], d_token: int, n_blocks: int, attention_dropout: float, ffn_d_hidden: int, ffn_dropout: float, residual_dropout: float, last_layer_query_idx: Union[None, List[int], slice] = None, kv_compression_ratio: Optional[float] = None, kv_compression_sharing: Optional[str] = None, d_out: int, ) -> 'FTTransformer': """Create a "baseline" `FTTransformer`. This variation of FT-Transformer was used in [gorishniy2021revisiting]. See `get_baseline_transformer_subconfig` to learn the values of other parameters. See `FTTransformer` for usage examples. Tip: `get_default_transformer_config` can serve as a starting point for choosing hyperparameter values. Args: n_num_features: the number of continuous features cat_cardinalities: the cardinalities of categorical features (see `CategoricalFeatureTokenizer` to learn more about cardinalities) d_token: the token size for each feature. Must be a multiple of :code:`n_heads=8`. n_blocks: the number of Transformer blocks attention_dropout: the dropout for attention blocks (see `MultiheadAttention`). Usually, positive values work better (even when the number of features is low). ffn_d_hidden: the *input* size for the *second* linear layer in `Transformer.FFN`. Note that it can be different from the output size of the first linear layer, since activations such as ReGLU or GEGLU change the size of input. For example, if :code:`ffn_d_hidden=10` and the activation is ReGLU (which is always true for the baseline and default configurations), then the output size of the first linear layer will be set to :code:`20`. ffn_dropout: the dropout rate after the first linear layer in `Transformer.FFN`. residual_dropout: the dropout rate for the output of each residual branch of all Transformer blocks. last_layer_query_idx: indices of tokens that should be processed by the last Transformer block. Note that for most cases there is no need to apply the last Transformer block to anything except for the [CLS]-token. Hence, runtime and memory can be saved by setting :code:`last_layer_query_idx=[-1]`, since the :code:`-1` is the position of [CLS]-token in FT-Transformer. Note that this will not affect the result in any way. kv_compression_ratio: apply the technique from [wang2020linformer] to speed up attention modules when the number of features is large. Can actually slow things down if the number of features is too low. Note that this option can affect task metrics in unpredictable way. Overall, use this option with caution. See `MultiheadAttention` for some examples and the implementation of `Transformer` to see how this option is used. kv_compression_sharing: weight sharing policy for :code:`kv_compression_ratio`. Must be one of :code:`[None, 'headwise', 'key-value', 'layerwise']`. See [wang2020linformer] to learn more about sharing policies. :code:`headwise` and :code:`key-value` are reasonable default choices. If :code:`kv_compression_ratio` is `None`, then this parameter also must be `None`. Otherwise, it must not be `None` (compression parameters must be shared in some way). d_out: the output size. References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 * [wang2020linformer] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma "Linformer: Self-Attention with Linear Complexity", 2020 """ transformer_config = cls.get_baseline_transformer_subconfig() for arg_name in [ 'n_blocks', 'd_token', 'attention_dropout', 'ffn_d_hidden', 'ffn_dropout', 'residual_dropout', 'last_layer_query_idx', 'kv_compression_ratio', 'kv_compression_sharing', 'd_out', ]: transformer_config[arg_name] = locals()[arg_name] return cls._make(n_num_features, cat_cardinalities, transformer_config) @classmethod def make_default( cls: Type['FTTransformer'], *, n_num_features: int, cat_cardinalities: Optional[List[int]], n_blocks: int = 3, last_layer_query_idx: Union[None, List[int], slice] = None, kv_compression_ratio: Optional[float] = None, kv_compression_sharing: Optional[str] = None, d_out: int, ) -> 'FTTransformer': """Create the default `FTTransformer`. With :code:`n_blocks=3` (default) it is the FT-Transformer variation that is referred to as "default FT-Transformer" in [gorishniy2021revisiting]. See `FTTransformer` for usage examples. See `FTTransformer.make_baseline` for parameter descriptions. Note: The second component of the default FT-Transformer is the default optimizer, which can be created with the `make_default_optimizer` method. Note: According to [gorishniy2021revisiting], the default FT-Transformer is effective in the ensembling mode (i.e. when predictions of several default FT-Transformers are averaged). For a single FT-Transformer, it is still possible to achieve better results by tuning hyperparameter for the `make_baseline` constructor. References: * [gorishniy2021revisiting] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko, "Revisiting Deep Learning Models for Tabular Data", 2021 """ transformer_config = cls.get_default_transformer_config(n_blocks=n_blocks) for arg_name in [ 'last_layer_query_idx', 'kv_compression_ratio', 'kv_compression_sharing', 'd_out', ]: transformer_config[arg_name] = locals()[arg_name] return cls._make(n_num_features, cat_cardinalities, transformer_config) def optimization_param_groups(self) -> List[Dict[str, Any]]: """The replacement for :code:`.parameters()` when creating optimizers. Example:: optimizer = AdamW( model.optimization_param_groups(), lr=1e-4, weight_decay=1e-5 ) """ no_wd_names = ['feature_tokenizer', 'normalization', '.bias'] assert isinstance( getattr(self, no_wd_names[0], None), FeatureTokenizer ), _INTERNAL_ERROR_MESSAGE assert ( sum(1 for name, _ in self.named_modules() if no_wd_names[1] in name) == len(self.transformer.blocks) * 2 - int('attention_normalization' not in self.transformer.blocks[0]) # type: ignore + 1 ), _INTERNAL_ERROR_MESSAGE def needs_wd(name): return all(x not in name for x in no_wd_names) return [ {'params': [v for k, v in self.named_parameters() if needs_wd(k)]}, { 'params': [v for k, v in self.named_parameters() if not needs_wd(k)], 'weight_decay': 0.0, }, ] def make_default_optimizer(self) -> torch.optim.AdamW: """Make the optimizer for the default FT-Transformer.""" return torch.optim.AdamW( self.optimization_param_groups(), lr=1e-4, weight_decay=1e-5, ) def forward(self, x_num: Optional[Tensor], x_cat: Optional[Tensor]) -> Tensor: x = self.feature_tokenizer(x_num, x_cat) x = self.cls_token(x) x = self.transformer(x) return x
python
#coding: utf8 from rust.core import db as models class Permission(models.Model): """ 资源权限 """ resource = models.CharField(default='', max_length=128) # 资源名 method = models.CharField(default='GET', max_length=32) # 方法名 created_at = models.DateTimeField(auto_now_add=True) # 更新时间 class Meta(object): table_name = 'rust_permission' class PermissionGroup(models.Model): """ 权限组 """ name = models.CharField(default='', max_length=512, unique=True) # 组名 desc = models.CharField(default='', max_length=1024) #描述 class Meta(object): table_name = 'rust_permission_group' class PermissionGroupHasPermission(models.Model): """ 权限组拥有的权限 """ group_id = models.IntegerField(default=0) permission_id = models.IntegerField(default=0) class Meta(object): table_name = 'rust_permission_group_has_permission' class PermissionGroupHasUser(models.Model): """ 权限组中的用户 """ group_id = models.IntegerField(default=0) user_id = models.IntegerField(default=0) updated_at = models.DateTimeField(null=False) class Meta(object): table_name = 'rust_permission_group_has_user' class UserLimitedPermission(models.Model): """ 用户禁止访问的资源及方法 """ user_id = models.IntegerField(default=0) permission_id = models.IntegerField(default=0) updated_at = models.DateTimeField() # 更新时间 class Meta(object): table_name = 'rust_user_limited_permission'
python
from phoopy.kernel import Bundle from os import path class AppBundle(Bundle): def service_path(self): return path.join(self.get_bundle_dir(), 'config', 'services.yml') # pragma: no cover
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Collection of tests for :mod:`orion.core.utils.working_dir`.""" import os import shutil from pathlib import Path import pytest from orion.core.utils.working_dir import SetupWorkingDir class ExperimentStub: def __init__(self, working_dir=None): self.name = "exp-name" self.version = 1 self.working_dir = working_dir def test_exp_with_new_working_dir(tmp_path): """Check if a permanent directory is created.""" tmp_path = os.path.join(tmp_path, "orion") experiment = ExperimentStub(tmp_path) assert not os.path.exists(tmp_path) with SetupWorkingDir(experiment): assert os.path.exists(tmp_path) assert experiment.working_dir == tmp_path assert os.path.exists(tmp_path) shutil.rmtree(tmp_path) def test_exp_with_existing_working_dir(tmp_path): """Check if an existing permanent directory is not overwritten.""" tmp_path = os.path.join(tmp_path, "orion") experiment = ExperimentStub(tmp_path) os.makedirs(tmp_path) assert os.path.exists(tmp_path) file_path = os.path.join(tmp_path, "some_file") Path(file_path).touch() assert os.path.exists(file_path) with SetupWorkingDir(experiment): assert os.path.exists(tmp_path) assert experiment.working_dir == tmp_path assert os.path.exists(tmp_path) assert os.path.exists(file_path) shutil.rmtree(tmp_path) def test_exp_with_no_working_dir(): """Check if a permanent directory is deleted.""" experiment = ExperimentStub(None) with SetupWorkingDir(experiment): assert experiment.working_dir is not None assert os.path.exists(experiment.working_dir) tmp_path = experiment.working_dir assert experiment.working_dir is None assert not os.path.exists(tmp_path)
python
#!/usr/bin/python import matplotlib.pyplot as plt from matplotlib import * import sys, getopt import copy import time import datetime import random import sys import os import re def get_data(file_list, type, start, finish, nice): mapped_reqs, running_reqs, refused_reqs = [], [], [] mapped_requests_dict = dict() mapped_requests_dict["request_list"] = [] mapped_requests_dict["incoming_time"] = [] mapped_requests_dict["name"] = "" running_requests_dict = dict() running_requests_dict["request_list"] = [] running_requests_dict["incoming_time"] = [] running_requests_dict["name"] = "" refused_requests_dict = dict() refused_requests_dict["request_list"] = [] refused_requests_dict["incoming_time"] = [] refused_requests_dict["name"] = "" file_list_iter = 0 unfinished_test_count = False for element in file_list: start_time, data_point_count = 0, 0 name = "" if isinstance(element, basestring) or len(element) == 1: if not isinstance(element, basestring): element = str(element[0]) for line in open(element): if start_time == 0: start_time = datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f') if "| Orchestrator:" in line: name = line[line.find("| Orchestrator:")+15:] if "| What to optimize:" in line: name += "_" + line[line.find("| What to optimize:")+19:] if "| When to optimize:" in line: name += "_" + line[line.find("| When to optimize:")+19:] if "| Optimize strategy:" in line: name += "_" + line[line.find("| Optimize strategy:")+20:] if "Mapped service_requests count:" in line: data_point_count += 1 if start <= data_point_count <= finish: if "Mapped service_requests count:" in line: count = line[line.find("Mapped service_requests count:")+31:] mapped_requests_dict["request_list"].append(int(count)) sec = ((datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f')) - start_time).total_seconds() mapped_requests_dict["incoming_time"].append(sec) elif "Running service_requests count:" in line: count = line[line.find("Running service_requests count:")+32:] running_requests_dict["request_list"].append(int(count)) sec = ((datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f')) - start_time).total_seconds() running_requests_dict["incoming_time"].append(sec) elif "Refused service_requests count:" in line: count = line[line.find("Refused service_requests count:")+32:] refused_requests_dict["request_list"].append(int(count)) sec = ((datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f')) - start_time).total_seconds() refused_requests_dict["incoming_time"].append(sec) mapped_requests_dict["name"] = (name+"_"+str(file_list[file_list_iter])).replace("\n", "") mapped_reqs.append(copy.copy(mapped_requests_dict)) mapped_requests_dict["name"] = "" mapped_requests_dict["request_list"] = [] mapped_requests_dict["incoming_time"] = [] running_requests_dict["name"] = (name+"_"+str(file_list[file_list_iter])).replace("\n", "") running_reqs.append(copy.copy(running_requests_dict)) running_requests_dict["name"] = "" running_requests_dict["request_list"] = [] running_requests_dict["incoming_time"] = [] refused_requests_dict["name"] = (name+"_"+str(file_list[file_list_iter])).replace("\n", "") refused_reqs.append(copy.copy(refused_requests_dict)) refused_requests_dict["name"] = "" refused_requests_dict["request_list"] = [] refused_requests_dict["incoming_time"] = [] else: start_time, data_point_count = 0, 0 name = "" mapped_reqs_to_avg, running_reqs_to_avg, refused_reqs_to_avg = [], [], [] for file in element: mapped_requests_dict["name"] = "" mapped_requests_dict["request_list"] = [] mapped_requests_dict["incoming_time"] = [] running_requests_dict["name"] = "" running_requests_dict["request_list"] = [] running_requests_dict["incoming_time"] = [] refused_requests_dict["name"] = "" refused_requests_dict["request_list"] = [] refused_requests_dict["incoming_time"] = [] data_point_count = 0 for line in open(file): if start_time == 0: start_time = datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f') if "| Orchestrator:" in line: name = line[line.find("| Orchestrator:") + 15:] if "| What to optimize:" in line: name += "_" + line[line.find("| What to optimize:") + 19:] if "| When to optimize:" in line: name += "_" + line[line.find("| When to optimize:") + 19:] if "| Optimize strategy:" in line: name += "_" + line[line.find("| Optimize strategy:") + 20:] if "Mapped service_requests count:" in line: data_point_count += 1 if start <= data_point_count <= finish: if "Mapped service_requests count:" in line: count = line[line.find("Mapped service_requests count:") + 31:] mapped_requests_dict["request_list"].append(int(count)) sec = ((datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f')) - start_time).total_seconds() mapped_requests_dict["incoming_time"].append(sec) elif "Running service_requests count:" in line: count = line[line.find("Running service_requests count:") + 32:] running_requests_dict["request_list"].append(int(count)) sec = ((datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f')) - start_time).total_seconds() running_requests_dict["incoming_time"].append(sec) elif "Refused service_requests count:" in line: count = line[line.find("Refused service_requests count:") + 32:] refused_requests_dict["request_list"].append(int(count)) sec = ((datetime.datetime.strptime(line[:22], '%Y-%m-%d %H:%M:%S,%f')) - start_time).total_seconds() refused_requests_dict["incoming_time"].append(sec) mapped_requests_dict["name"] = (name + "_AVG_" + str(file_list[file_list_iter])).replace("\n", "") mapped_reqs_to_avg.append(copy.copy(mapped_requests_dict)) running_requests_dict["name"] = (name + "_AVG_" + str(file_list[file_list_iter])).replace("\n", "") running_reqs_to_avg.append(copy.copy(running_requests_dict)) refused_requests_dict["name"] = (name + "_AVG_" + str(file_list[file_list_iter])).replace("\n", "") refused_reqs_to_avg.append(copy.copy(refused_requests_dict)) mapped_requests_dict["name"] = "" mapped_requests_dict["request_list"] = [] mapped_requests_dict["incoming_time"] = [] running_requests_dict["name"] = "" running_requests_dict["request_list"] = [] running_requests_dict["incoming_time"] = [] refused_requests_dict["name"] = "" refused_requests_dict["request_list"] = [] refused_requests_dict["incoming_time"] = [] # Get the longest list len longest_list = len(mapped_reqs_to_avg[0]["request_list"]) for x in range(0, len(mapped_reqs_to_avg)): if len(mapped_reqs_to_avg[x]["request_list"]) > longest_list: longest_list = len(mapped_reqs_to_avg[x]["request_list"]) # Average dicts avg_mapped_requests_dict = dict() avg_mapped_requests_dict["request_list"] = [] avg_mapped_requests_dict["incoming_time"] = [] avg_mapped_requests_dict["name"] = "" avg_running_requests_dict = dict() avg_running_requests_dict["request_list"] = [] avg_running_requests_dict["incoming_time"] = [] avg_running_requests_dict["name"] = "" avg_refused_requests_dict = dict() avg_refused_requests_dict["request_list"] = [] avg_refused_requests_dict["incoming_time"] = [] avg_refused_requests_dict["name"] = "" inc_summa, req_summa, log_file_counter = 0, 0, 0 for i in range(0, longest_list): for m in mapped_reqs_to_avg: try: inc_summa += m["incoming_time"][i] req_summa += m["request_list"][i] log_file_counter += 1 except: unfinished_test_count = True # in this case, the current test is shorter than the others pass avg_mapped_requests_dict["incoming_time"].append(round(inc_summa / log_file_counter, 2)) avg_mapped_requests_dict["request_list"].append(int(req_summa / log_file_counter)) avg_mapped_requests_dict["name"] = mapped_reqs_to_avg[0]["name"] inc_summa, req_summa, log_file_counter = 0, 0, 0 for i in range(0, longest_list): for m in running_reqs_to_avg: try: inc_summa += m["incoming_time"][i] req_summa += m["request_list"][i] log_file_counter += 1 except: # in this case, the current test is shorter than the others pass avg_running_requests_dict["incoming_time"].append(round(inc_summa / log_file_counter, 2)) avg_running_requests_dict["request_list"].append(int(req_summa / log_file_counter)) avg_running_requests_dict["name"] = running_reqs_to_avg[0]["name"] inc_summa, req_summa, log_file_counter = 0, 0, 0 for i in range(0, longest_list): for m in refused_reqs_to_avg: try: inc_summa += m["incoming_time"][i] req_summa += m["request_list"][i] log_file_counter += 1 except: # in this case, the current test is shorter than the others pass avg_refused_requests_dict["incoming_time"].append(round(inc_summa / log_file_counter, 2)) avg_refused_requests_dict["request_list"].append(int(req_summa / log_file_counter)) avg_refused_requests_dict["name"] = refused_reqs_to_avg[0]["name"] inc_summa, req_summa, log_file_counter = 0, 0, 0 mapped_reqs.append(copy.copy(avg_mapped_requests_dict)) running_reqs.append(copy.copy(avg_running_requests_dict)) refused_reqs.append(copy.copy(avg_refused_requests_dict)) file_list_iter += 1 if unfinished_test_count: print ('\x1b[1;33;0m' + 'There are one or more unfinished tests!!!' + '\x1b[0m') return mapped_reqs, running_reqs, refused_reqs def separate_and_avg(log_files): # Separate try: result = [] if "[" in log_files: avg_log_files = log_files.split(",") # where are [ and ] characters: start = [i for i, s in enumerate(avg_log_files) if '[' in s] end = [i for i, s in enumerate(avg_log_files) if ']' in s] if len(start) != len(end): print("The number of [ and ] is not equal!!") raise # delete special characters: avg_log_files = ([s.replace('[', '') for s in avg_log_files]) avg_log_files = ([s.replace(']', '') for s in avg_log_files]) # merge those items in the list that were in the same parentheses correction = 0 for k in range(0, len(start)): avg_log_files[(start[k]-correction):(end[k]+1-correction)] = \ [','.join(avg_log_files[(start[k]-correction):(end[k]+1-correction)])] correction += end[k] - start[k] for element in avg_log_files: while "." in element: tmp_element = [] element = element.split(",") for i in element: if i!='': tmp_element.append(i) element = tmp_element result.append(element) print "result::" for x in result: print x return result else: return log_files.split(",") except Exception as e: print e print "Separate file error!" def main(argv): mapped_online_req_list = None mapped_offline_req_list = None mapped_hybrid_req_list = None running_online_req_list = None running_offline_req_list = None running_hybrid_req_list = None refused_online_req_list = None refused_offline_req_list = None refused_hybrid_req_list = None start_count = 0 finish_count = float('inf') path = "" nice, nolegend = False, False format = "png" mark_every = 50 marker_size = 4 try: opts, args = getopt.getopt(argv, "hs:f:", ["online_log_files=", "offline_log_files=", "hybrid_log_files=", "dir=", "nice", "format=", "nolegend", "markersize=", "markevery=", "s=", "f="]) except getopt.GetoptError: print 'Invalid argument!!! create_plots.py ' \ '--online_log_files=<online_log_file1,[online_log_file2,online_log_file3],' \ 'online_log_file4 ...> --offline_log_files=<offline_log_file1,offline_log_file2,...> ' \ '--hybrid_log_files=<hybrid_log_file1,hybrid_log_file2,...> ' \ '--dir=<directory name> --s=<start of interval> --f=<end of interval> --nice --format=<pdf or png> ' \ '--nolegend --markersize=<recommended:5> --markevery=<recommended:40-70>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'create_plots.py ' \ '--online_log_files=<online_log_file1,[online_log_file2,online_log_file3],' \ 'online_log_file4 ...> --offline_log_files=<offline_log_file1,offline_log_file2,...> ' \ '--hybrid_log_files=<hybrid_log_file1,hybrid_log_file2,...> ' \ '--dir=<directory name> --s=<start of interval> --f=<end of interval> --nice --format=<pdf or png> ' \ '--nolegend --markersize=<recommended:5> --markevery=<recommended:40-70>' sys.exit() elif opt in ("--online_log_files="): online_log_files = arg elif opt in ("--offline_log_files="): offline_log_files = arg elif opt in ("--hybrid_log_files="): hybrid_log_files = arg elif opt in ("--dir="): path = arg elif opt in ("--s="): start_count = int(arg) elif opt in ("--f="): finish_count = int(arg) elif opt in ("--nice"): nice = True elif opt in ("--nolegend"): nolegend = True elif opt in ("--format="): if arg == "pdf" or arg == "png": format = arg else: print 'Invalid format! Only pdf or png!' sys.exit() elif opt in ("--markersize="): marker_size = int(arg) elif opt in ("--markevery="): mark_every = int(arg) else: print 'Bad parameters! Use python create_plots.py --help' sys.exit() print "argument:::::" print (sys.argv) print "arg0" + sys.argv[0] print "arg1" + sys.argv[1] print "arg2" + sys.argv[2] try: online_files = separate_and_avg(online_log_files) mapped_online_req_list, running_online_req_list, refused_online_req_list = \ get_data(online_files, "Online", start_count, finish_count, nice) except Exception as e: print e print "The program runs without online log file." try: offline_files = separate_and_avg(offline_log_files) mapped_offline_req_list, running_offline_req_list, refused_offline_req_list = \ get_data(offline_files, "Offline", start_count, finish_count, nice) except Exception as e: print e print "The program runs without offline log file." try: hybrid_files = separate_and_avg(hybrid_log_files) mapped_hybrid_req_list, running_hybrid_req_list, refused_hybrid_req_list = \ get_data(hybrid_files, "Hybrid", start_count, finish_count, nice) except Exception as e: print e print "The program runs without hybrid log file." if path == "": raise ValueError("Have to give a saving directory! Example: --dir=test100") if not os.path.exists(path): os.mkdir(path) if path[:-1] != "/": path = path + "/" colors_ls = ['red', 'blue', 'green', 'yellow', 'skyblue', 'yellowgreen', 'black', 'orange', 'magenta', 'slategray'] lines_ls = [[8, 4, 2, 4, 2, 4], [4, 2], [], [8, 4, 4, 2], [8, 4, 2, 4], [5, 2, 10, 5], []] markers_ls = ['o', 'v', '+', 's', '*', '', '|', 'x'] colors_iter = iter(['red', 'blue', 'green', 'yellow', 'skyblue', 'yellowgreen', 'black', 'orange', 'magenta', 'slategray']) lines_iter = iter([[8, 4, 2, 4, 2, 4], [4, 2], [], [8, 4, 4, 2], [8, 4, 2, 4], [5, 2, 10, 5], []]) markers_iter = iter(['o', 'v', '+', 's', '*', '', '|', 'x']) on_act_colors, on_act_lines, on_act_marker, off_act_colors, off_act_lines, off_act_marker, hy_act_colors, \ hy_act_lines, hy_act_marker = [], [], [], [], [], [], [], [], [] # Create mapped picture if mapped_online_req_list is not None: for element in mapped_online_req_list: try: color = colors_iter.next() except: color = random.choice(colors_ls) try: line = lines_iter.next() except: line = random.choice(lines_ls) try: marker = markers_iter.next() except: marker = random.choice(markers_ls) finally: on_act_marker.append(marker) on_act_colors.append(color) on_act_lines.append(line) label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) if mapped_offline_req_list is not None: for element in mapped_offline_req_list: try: color = colors_iter.next() except: color = random.choice(colors_ls) try: line = lines_iter.next() except: line = random.choice(lines_ls) try: marker = markers_iter.next() except: marker = random.choice(markers_ls) finally: off_act_marker.append(marker) off_act_colors.append(color) off_act_lines.append(line) label = element["name"].replace('/', '_').replace('-', '_').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) if mapped_hybrid_req_list is not None: for element in mapped_hybrid_req_list: try: color = colors_iter.next() except: color = random.choice(colors_ls) try: line = lines_iter.next() except: line = random.choice(lines_ls) try: marker = markers_iter.next() except: marker = random.choice(markers_ls) finally: hy_act_marker.append(marker) hy_act_colors.append(color) hy_act_lines.append(line) label = element["name"].replace('/', '_').replace('-', '_').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) plt.grid('on') plt.title('Accepted incoming service requests') plt.ylabel('Accepted requests count') plt.xlabel('Incoming requests') plt.xticks() if start_count != 0 or finish_count != float('inf'): plt.xlim(xmin=start_count, xmax=finish_count) lgd = plt.legend(loc='upper left', bbox_to_anchor=(0, -0.1), numpoints=1) if nolegend: plt.legend().set_visible(False) plt.savefig(path + "mapped_requests" + str(time.ctime()).replace(' ', '_').replace(':', '-') + "." + format, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.clf() # Create mapped picture with time axis if mapped_online_req_list is not None: i = 0 for element in mapped_online_req_list: color = on_act_colors[i] line = on_act_lines[i] marker = on_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if mapped_offline_req_list is not None: i = 0 for element in mapped_offline_req_list: color = off_act_colors[i] line = off_act_lines[i] marker = off_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if mapped_hybrid_req_list is not None: i = 0 for element in mapped_hybrid_req_list: color = hy_act_colors[i] line = hy_act_lines[i] marker = hy_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 plt.grid('on') plt.title('Accepted incoming service requests') plt.ylabel('Accepted requests count') plt.xlabel('Sec') lgd = plt.legend(loc='upper left', bbox_to_anchor=(0, -0.1), numpoints=1) #TODO: fix zoom with time axis too if nolegend: plt.legend().set_visible(False) plt.savefig(path + "mapped_requests_with_time_axis_" + str(time.ctime()).replace(' ', '_').replace(':', '-') + "." + format, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.clf() # Create Running picture if running_online_req_list is not None: i = 0 for element in running_online_req_list: color = on_act_colors[i] line = on_act_lines[i] marker = on_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if running_offline_req_list is not None: i = 0 for element in running_offline_req_list: color = off_act_colors[i] line = off_act_lines[i] marker = off_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if running_hybrid_req_list is not None: i = 0 for element in running_hybrid_req_list: color = hy_act_colors[i] line = hy_act_lines[i] marker = hy_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 plt.grid('on') plt.title('Currently running (mapped) requests in the NFFG') plt.ylabel('Requests count') plt.xlabel('Incoming requests') lgd = plt.legend(loc='upper left', bbox_to_anchor=(0, -0.1), numpoints=1) if start_count != 0 or finish_count != float('inf'): plt.xlim(xmin=start_count, xmax=finish_count) if nolegend: plt.legend().set_visible(False) plt.savefig(path + "running_requests" + str(time.ctime()). \ replace(' ', '_').replace(':', '-') + "." + format, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.clf() # Create Running picture with time axis if running_online_req_list is not None: i = 0 for element in running_online_req_list: color = on_act_colors[i] line = on_act_lines[i] marker = on_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if running_offline_req_list is not None: i = 0 for element in running_offline_req_list: color = off_act_colors[i] line = off_act_lines[i] marker = off_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if running_hybrid_req_list is not None: i = 0 for element in running_hybrid_req_list: color = hy_act_colors[i] line = hy_act_lines[i] marker = hy_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 plt.grid('on') plt.title('Currently running (mapped) requests in the NFFG') plt.ylabel('Requests count') plt.xlabel('Sec') lgd = plt.legend(loc='upper left', bbox_to_anchor=(0, -0.1), numpoints=1) if nolegend: plt.legend().set_visible(False) # TODO: fix zoom with time axis too plt.savefig(path + "running_requests_with_time_axis" + str(time.ctime()). \ replace(' ', '_').replace(':', '-') + "." + format, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.clf() # Create refused picture if refused_online_req_list is not None: i = 0 for element in refused_online_req_list: color = on_act_colors[i] line = on_act_lines[i] marker = on_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if refused_offline_req_list is not None: i = 0 for element in refused_offline_req_list: color = off_act_colors[i] line = off_act_lines[i] marker = off_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if refused_hybrid_req_list is not None: i = 0 for element in refused_hybrid_req_list: color = hy_act_colors[i] line = hy_act_lines[i] marker = hy_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(range(0, len(element["request_list"])), element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 plt.title('Refused requests during the simulation') plt.ylabel('Refused requests count') plt.xlabel('Incoming requests') lgd = plt.legend(loc='upper left', bbox_to_anchor=(0, -0.1), numpoints=1) if start_count != 0 or finish_count != float('inf'): plt.xlim(xmin=start_count, xmax=finish_count) if nolegend: plt.legend().set_visible(False) plt.grid('on') plt.savefig(path + "refused_requests" + str(time.ctime()). \ replace(' ', '_').replace(':', '-') + "." + format, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.clf() # Create refused picture with time if refused_online_req_list is not None: i = 0 for element in refused_online_req_list: color = on_act_colors[i] line = on_act_lines[i] marker = on_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if refused_offline_req_list is not None: i = 0 for element in refused_offline_req_list: color = off_act_colors[i] line = off_act_lines[i] marker = off_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 if refused_hybrid_req_list is not None: i = 0 for element in refused_hybrid_req_list: color = hy_act_colors[i] line = hy_act_lines[i] marker = hy_act_marker[i] label = element["name"].replace('/', '_').replace('-', '').replace('.', '_') plt.plot(element["incoming_time"], element["request_list"], color=color, label=label[:80], dashes=line, marker=marker, markersize=marker_size, markevery=mark_every) i += 1 plt.grid('on') plt.title('Refused requests during the simulation') plt.ylabel('Refused requests count') plt.xlabel('Sec') lgd = plt.legend(loc='upper left', bbox_to_anchor=(0, -0.1), numpoints=1) if nolegend: plt.legend().set_visible(False) # TODO: fix zoom with time axis too plt.savefig(path + "refused_requests_with_time_axis" + str(time.ctime()). \ replace(' ', '_').replace(':', '-') + "." + format, bbox_extra_artists=(lgd,), bbox_inches='tight') print('\x1b[1;32;0m' + 'Creating plots are DONE :)' + '\x1b[0m') if __name__ == "__main__": main(sys.argv[1:])
python
from pyexcel.renderer import Renderer from pyexcel_echarts.options import MANAGER DEFAULT_TITLE = 'pyexcel via pyechars' class Chart(Renderer): def render_sheet(self, sheet, chart_type='bar', mode='embed', title=DEFAULT_TITLE, subtitle="", width=800, height=400, title_pos="auto", title_top="auto", title_color="#000", subtitle_color="#aaa", title_text_size=18, subtitle_text_size=12, background_color="#fff", **keywords): charter = MANAGER.get_a_plugin( chart_type, mode=mode, title=title, subtitle=subtitle, width=width, height=height, title_pos=title_pos, title_top=title_top, title_color=title_color, title_text_size=title_text_size, subtitle_color=subtitle_color, subtitle_text_size=subtitle_text_size, background_color=background_color) charter.render_sheet( sheet, **keywords) self._stream.write(str(charter)) def render_book(self, book, chart_type='bar', mode='embed', title=DEFAULT_TITLE, subtitle="", width=800, height=400, title_pos="auto", title_top="auto", title_color="#000", subtitle_color="#aaa", title_text_size=18, subtitle_text_size=12, background_color="#fff", **keywords): charter = MANAGER.get_a_plugin( chart_type, mode=mode, title=title, subtitle=subtitle, width=width, height=height, title_pos=title_pos, title_top=title_top, title_color=title_color, title_text_size=title_text_size, subtitle_color=subtitle_color, subtitle_text_size=subtitle_text_size, background_color=background_color) charter.render_book(book, **keywords) self._stream.write(str(charter))
python
class Solution: def largestDivisibleSubset(self, nums: List[int]) -> List[int]: S = {-1: set()} for x in sorted(nums): S[x] = max((S[d] for d in S if x % d == 0), key=len) | {x} return list(max(S.values(), key=len))
python
# coding=utf-8 """execution.py - This module provides classes that execute commands. """ import os import sys import signal import subprocess from .config import Config from .base import PluginManager from .log import LogManager class ExecutionManager(PluginManager): """This class is used to execute commands for scripts running. """ def __init__(self, configManager: Config) -> None: super().__init__('execution', configManager) self.force = getattr(self, 'force', True) self.executable = getattr(self, 'executable', str(sys.executable)) def exec_command(self, command: str, log_manager: LogManager = None) -> int: """Execute the command and output to a log file or not. Args: command (str): Target command. log_manager (LogManager): Class `LogManager` instance. Returns: int:Status code returned by executing the command. """ if log_manager: with open(log_manager.path, 'a') as log: # The child process calls the system command and prints the error message to a log file. ret = subprocess.call(command, shell=True, stdout=log, stderr=log) else: ret = subprocess.call(command, shell=True) return ret def kill(self): """Force kill process to end execution. Notes: The kill operation on Linux system and Windows system may be different. """ try: os.kill(os.getpid(), signal.SIGKILL) except: os.kill(os.getpid(), signal.CTRL_BREAK_EVENT)
python
# -*- encoding: utf-8 -*- import numpy as np def get_seq_graph(edge): dy, dx = np.array([-1,0,1,1,1,0,-1,-1]), np.array([-1,-1,-1,0,1,1,1,0]) def get_neighbors(node): Y, X = node[0]+dy, node[1]+dx neighbors = edge[Y, X] Y, X = Y[neighbors], X[neighbors] return zip(Y,X) graph = {} Y, X = edge.nonzero() for node in zip(Y,X): graph[node] = get_neighbors(node) seq = [] first_el = (Y[0], X[0]) seq.append(first_el) ext_el = first_el act_el = graph[ext_el][0] while (first_el != ext_el) or (len(seq)==1): ind_el = np.where(np.array(graph[(ext_el)])!=act_el) ind_el_uq = np.unique(ind_el[0]) if len(ind_el_uq)==1: ind_el = ind_el_uq[0] else: acum_dist = [] for ind in ind_el_uq: dist_ = (graph[(ext_el)][ind][0]-ext_el[0])**2+(graph[(ext_el)][ind][1]-ext_el[1])**2 acum_dist.append(dist_) min_dist = acum_dist.index(min(acum_dist)) ind_el = ind_el_uq[min_dist] act_el = ext_el ext_el = graph[(act_el)][ind_el] seq.append(ext_el) lst1, lst2 = zip(*seq) return (np.array(lst1), np.array(lst2))
python
from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable from PIL import Image import numpy as np import matplotlib.pyplot as plt import torch.nn.functional as F def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: weight_shape = list(m.weight.data.size()) fan_in = np.prod(weight_shape[1: 4]) fan_out = np.prod(weight_shape[2: 4]) * weight_shape[0] w_bound = np.sqrt(6. / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) m.bias.data.fill_(0.0) elif classname.find('Linear') != -1: weight_shape = list(m.weight.data.size()) fan_in = weight_shape[1] fan_out = weight_shape[0] w_bound = np.sqrt(6.0 / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) m.bias.data.fill_(0.0) elif classname.find('BatchNorm') != -1: m.weight.data.fill_(1.0) m.bias.data.fill_(0.0) elif classname.find('LSTMCell') != -1: m.bias_ih.data.fill_(0.0) m.bias_hh.data.fill_(0.0) class STN3d(nn.Module): def __init__(self, num_points = 2500): super(STN3d, self).__init__() self.num_points = num_points self.conv1 = torch.nn.Conv1d(4, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, 1024, 1) self.mp1 = torch.nn.MaxPool1d(num_points) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 9) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) def forward(self, x): # x --> 3 * 3 batchsize = x.shape[0] if batchsize > 1: x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = self.mp1(x) x = x.view(-1, 1024) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) else: x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = self.mp1(x) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) iden = Variable(torch.eye(3)).view(1, -1).repeat(batchsize, 1) if x.is_cuda: device = torch.device('cuda:%d' % x.get_device()) iden = iden.to(device=device) x = x + iden x = x.view(-1, 3, 3) return x class PointNetfeat(nn.Module): def __init__(self, num_points=2500, global_feat=True): super(PointNetfeat, self).__init__() self.stn = STN3d(num_points=num_points) self.conv1 = torch.nn.Conv1d(4, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, 1024, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.mp1 = torch.nn.MaxPool1d(num_points) self.num_points = num_points self.global_feat = global_feat def forward(self, x): trans = self.stn(x) x = torch.cat([torch.bmm(trans, x[:, :3, :]), x[:, 3, :].unsqueeze(1)], dim=1) if x.shape[0] > 1: x = F.relu(self.bn1(self.conv1(x))) pointfeat = x x = F.relu(self.bn2(self.conv2(x))) x = self.bn3(self.conv3(x)) else: x = F.relu(self.conv1(x)) pointfeat = x x = F.relu(self.conv2(x)) x = self.conv3(x) x = self.mp1(x) x = x.view(-1, 1024) if self.global_feat: return x, trans else: x = x.view(-1, 1024, 1).repeat(1, 1, self.num_points) return torch.cat([x, pointfeat], 1), trans class end_layer(nn.Module): def __init__(self, in_channels=1024, out_channels=1): super(end_layer, self).__init__() self.fc1 = nn.Linear(in_channels, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, out_channels) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.apply(weights_init) def forward(self, x): if x.size()[0] == 1: x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) else: x = F.relu(self.bn1(self.fc1(x))) x = F.relu(self.bn2(self.fc2(x))) return self.fc3(x) class PointNetActorCritic(nn.Module): def __init__(self, num_points=2500, num_actions=4): super(PointNetActorCritic, self).__init__() self.num_points = num_points self.feat = PointNetfeat(num_points, global_feat=True) self.lstm = nn.LSTMCell(1024, 1024) self.critic_linear = end_layer(in_channels=1024, out_channels=1) self.actor_linear = end_layer(in_channels=1024, out_channels=num_actions) self.apply(weights_init) self.train() def forward(self, inputs): x, (hx, cx) = inputs x, _ = self.feat(x) hx, cx = self.lstm(x, (hx, cx)) x = hx return self.critic_linear(x), self.actor_linear(x), (hx, cx) if __name__ == '__main__': sim_data = Variable(torch.rand(10, 4, 2500)) # trans = STN3d() # out = trans(sim_data) # print('stn', out.size()) # pointfeat = PointNetfeat(global_feat=True) # out, _ = pointfeat(sim_data) # print('global feat', out.size()) # pointfeat = PointNetfeat(global_feat=False) # out, _ = pointfeat(sim_data) # print('point feat', out.size()) cls = PointNetActorCritic(num_actions=4) hx, cx = Variable(torch.zeros(10, 1024)), Variable(torch.zeros(10, 1024)) if torch.cuda.is_available(): sim_data = sim_data.cuda() cls = cls.cuda() hx, cx = hx.cuda(), cx.cuda() v, q, (hx ,cx) = cls((sim_data, (hx, cx))) print(v.shape, q.shape, hx.shape, cx.shape) print(v) print(q)
python
import numpy as np # 对一维数组的切片 origin = np.arange(1,100) print(origin) print(origin[0:2]) print(origin[:12:4]) print(origin[:12:]) print(origin[5:]) print(origin[::-1]) #倒序 # 二维数组切片 origin = np.random.random((3,4)) print(origin) print(origin[-2:,:2]) print(origin[::-2,::-1])
python
""" Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from io import StringIO from unittest.mock import patch from django.core.management import call_command from django.test import TestCase from logging import getLogger logger = getLogger("test") class DataBCTest(TestCase): # Minio and the file system are mocked out - so that we don't create any artifacts during this test. @patch('gwells.management.commands.export_databc.open') @patch('gwells.management.commands.export_databc.Minio') @patch('gwells.management.commands.export_databc.os') def test_export_no_exceptions(self, fake_os, fake_minio, fake_open): # This is a very simple test, that just checks to see that the export can be run without any # exceptions. This should catch most of the situations that could cause an export to fail. out = StringIO() call_command('export_databc', stdout=out) self.assertIn('GeoJSON export complete.', out.getvalue()) class ImportLicencesTest(TestCase): """ tests functions used by `./manage.py import_licences` """ fixtures = ['gwells-codetables', 'wellsearch-codetables', 'wellsearch', 'registries', 'registries-codetables'] def test_import_using_fixture_file(self): out = StringIO() TEST_LICENCES = os.path.join(os.path.dirname(__file__), 'import_licences_test_licences.csv') call_command('import_licences', '-d', filename=TEST_LICENCES, stdout=out) val = out.getvalue() self.assertIn('Licence import complete with 0 errors.', val)
python