content
stringlengths
0
894k
type
stringclasses
2 values
#!/usr/bin/env python """ .. module:: converters :synopsis: Converters for handling various types of content. """ import docutils import docutils.core import markdown import os content_types = ["markdown", "ReST"] # Content converters. def convertMDtoHTML(markdown_text): return markdown.markdown(markdown_text) def convertReSTtoHTML(rest_text): return docutils.core.publish_string(rest_text, writer_name = 'html') def getHTMLConverter(content_type): if (content_type == "markdown"): return convertMDtoHTML elif (content_type == "ReST"): return convertReSTtoHTML else: raise ContentTypeException(content_type) def getLinkConverter(content_type): if (content_type == "markdown"): return linkConverterMD elif (content_type == "ReST"): return linkConverterReST else: raise ContentTypeException(content_type) def linkConverterMD(link_name, link_url, is_image): extension = os.path.splitext(link_name)[1] if is_image: return "![" + link_name + "](" + link_url + ")" else: return "[" + link_name + "](" + link_url + ")" def linkConverterReST(link_name, link_url, is_image): extension = os.path.splitext(link_name)[1] if is_image: return ".. figure:: " + link_url else: return "`" + link_name + " <" + link_url + ">`_" class ContentTypeException(Exception): def __init__(self, message): message = "Error no converter exists for " + message Exception.__init__(self, message)
python
import logging def get_logger(): logger = logging.getLogger("ddns_server") logger.setLevel(logging.INFO) log_file = logging.FileHandler("log.log") log_file.setLevel(logging.INFO) log_stream = logging.StreamHandler() log_stream.setLevel(logging.INFO) formatter = logging.Formatter("[%(asctime)s] %(levelname)s : %(message)s") log_file.setFormatter(formatter) log_stream.setFormatter(formatter) logger.addHandler(log_file) logger.addHandler(log_stream) return logger
python
import imagehash import pandas as pd import os from PIL import Image from collections import defaultdict from square_crop import square_crop directory_path = '/Users/Ziyu/OneDrive - Clarivate Analytics/Desktop/lego_images/' data_path = '/Users/Ziyu/OneDrive - Clarivate Analytics/Desktop/lego/image_hashes_2.csv' data_dict = defaultdict(list) for image_name in os.listdir(directory_path): image_path = directory_path + image_name with Image.open(image_path) as image: image = square_crop(image) ahash = imagehash.average_hash(image) dhash = imagehash.dhash(image) phash = imagehash.phash(image) whash = imagehash.whash(image) data_dict['image_name'].append(image_name) data_dict['ahash'].append(ahash) data_dict['dhash'].append(dhash) data_dict['phash'].append(phash) data_dict['whash'].append(whash) print('Finished No. %s' % image_name) data = pd.DataFrame(data_dict) data.to_csv(data_path)
python
#!/usr/bin/python # Import the CGI module import MySQLdb import cgi import cgitb cgitb.enable() # Test with: http://192.168.0.100:8000/cgi-bin/AddingDataXml.py?operanda=2&operandb=3&answer=5 # Required header that tells the browser how to render the HTML. def getHeader(): return """Content-Type: text/xml\n <?xml version='1.0'?> <additions>""" def getClose(): return "</additions>" # Define function to generate HTML form. def generate_form(operanda, operandb, answer): xml = getHeader() sql = "insert into additions (operanda, operandb, answer) values ({0}, {1}, {2});".format(operanda, operandb, answer) insertData(sql) xml += "<addition>" xml += "<operanda>" + operanda + "</operanda>" xml += "<operandb>" + operandb + "</operandb>" xml += "<answer>" + answer + "</answer>" xml += "</addition>" xml += "</additions>" print xml def insertData(sql): db = MySQLdb.connect(host="localhost", user="charlie", passwd="bar", db="charlie") cursor = db.cursor() cursor.execute(sql) db.commit() cursor.close() db.close() def generateError(error): xml = getHeader() xml += "<addition>" + str(error) + "</addition>" xml += getClose() print xml; def runAction(): form = cgi.FieldStorage() if (form.has_key("answer") and form.has_key("operanda") and form.has_key("operandb")): generate_form(form["operanda"].value, form["operandb"].value, form["answer"].value) else: generateError(form.list); runAction()
python
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 import logging from myuw.dao.registration import get_schedule_by_term from myuw.dao.instructor_schedule import get_instructor_schedule_by_term from myuw.dao.term import get_current_quarter, get_current_summer_term from myuw.dao.building import get_building_by_code from restclients_core.exceptions import DataFailureException from dateutil.relativedelta import * from datetime import timedelta import math import copy logger = logging.getLogger(__name__) def get_schedule_json(visual_schedule, term, summer_term=None): response = {} schedule_periods = [] period_id = 0 for period in visual_schedule: period_data = period.json_data() if period.meetings_trimmed_front: period_data['disabled_days'] = \ _get_disabled_days(period.start_date, True) if period.meetings_trimmed_back: period_data['disabled_days'] = \ _get_disabled_days(period.end_date, False) if period.is_finals: period_data['id'] = 'finals' else: period_data['id'] = period_id schedule_periods.append(period_data) period_id += 1 for section in period_data["sections"]: for meeting in section["meetings"]: if 'building' in meeting: building_code = meeting["building"] building = get_building_by_code(building_code) if building is not None: meeting["latitude"] = building.latitude meeting["longitude"] = building.longitude response['periods'] = schedule_periods # Add term data for schedule response['term'] = { 'year': term.year, 'quarter': term.quarter, 'first_day_quarter': term.first_day_quarter, 'last_day_instruction': term.last_day_instruction, 'aterm_last_date': term.aterm_last_date, 'bterm_first_date': term.bterm_first_date, 'last_final_exam_date': term.last_final_exam_date, 'summer_term': summer_term } response['off_term_trimmed'] = _get_off_term_trimmed(visual_schedule) return response def _get_disabled_days(date, is_before): disabled_days = {'sunday': False, 'monday': False, 'tuesday': False, 'wednesday': False, 'thursday': False, 'friday': False, 'saturday': False} day_index = date.weekday() if day_index == 6: day_index = 0 else: day_index += 1 if is_before: if day_index > 0: disabled_days['sunday'] = True if day_index > 1: disabled_days['monday'] = True if day_index > 2: disabled_days['tuesday'] = True if day_index > 3: disabled_days['wednesday'] = True if day_index > 4: disabled_days['thursday'] = True if day_index > 5: disabled_days['friday'] = True else: if day_index < 6: disabled_days['saturday'] = True if day_index < 5: disabled_days['friday'] = True if day_index < 4: disabled_days['thursday'] = True if day_index < 3: disabled_days['wednesday'] = True if day_index < 2: disabled_days['tuesday'] = True if day_index < 1: disabled_days['monday'] = True return disabled_days def _get_off_term_trimmed(visual_schedule): seen_sections = {} trimmed_sections = [] for period in visual_schedule: for section in period.sections: if hasattr(section, 'real_end_date'): section_slug = '{} {} {}'.format(section.curriculum_abbr, section.course_number, section.section_id) seen_sections[section_slug] = section for slug, section in seen_sections.items(): trimmed_sections.append({'section': slug, 'end_date': section.real_end_date}) return trimmed_sections def get_future_visual_schedule(request, term, summer_term=None): schedule = _get_combined_future_schedule(request, term, summer_term) if schedule is None or len(schedule.sections) == 0: return None vs = get_visual_schedule_from_schedule(request, schedule, summer_term) return vs def get_current_visual_schedule(request): schedule = _get_combined_schedule(request) if schedule is None or len(schedule.sections) == 0: return None, None, None summer_term = None if schedule.term.is_summer_quarter(): summer_term = schedule.summer_term vs = get_visual_schedule_from_schedule(request, schedule, summer_term) return vs, schedule.term, summer_term def get_visual_schedule_from_schedule(request, schedule, summer_term): visual_schedule = _get_visual_schedule_from_schedule( schedule, request, summer_term) if summer_term and _is_split_summer(schedule): visual_schedule = _trim_summer_term(visual_schedule, summer_term) return visual_schedule def _get_combined_schedule(request): try: student_schedule = get_schedule_by_term(request) _set_student_sections(student_schedule) except DataFailureException: student_schedule = None try: instructor_schedule = get_instructor_schedule_by_term(request) _set_instructor_sections(instructor_schedule) except DataFailureException: instructor_schedule = None return __combine_schedules(student_schedule, instructor_schedule) def _get_combined_future_schedule(request, term, summer_term): try: student_schedule = get_schedule_by_term( request, term=term, summer_term=summer_term) _set_student_sections(student_schedule) except DataFailureException: student_schedule = None try: instructor_schedule = get_instructor_schedule_by_term( request, term=term, summer_term=summer_term) _set_instructor_sections(instructor_schedule) except DataFailureException: instructor_schedule = None return __combine_schedules(student_schedule, instructor_schedule) def __combine_schedules(student_schedule, instructor_schedule): if (student_schedule is None or len(student_schedule.sections) == 0): return instructor_schedule schedule = student_schedule if instructor_schedule is not None: schedule.sections += instructor_schedule.sections return schedule def _set_instructor_sections(instructor_schedule): for section in instructor_schedule.sections: section.is_teaching = True return instructor_schedule def _set_student_sections(student_schedule): for section in student_schedule.sections: section.is_teaching = False return student_schedule def _get_visual_schedule_from_schedule(schedule, request, summer_term): # common courses default to term start/end dates _add_dates_to_sections(schedule) if _is_split_summer(schedule): _adjust_off_term_dates(schedule) a_bounds, b_bounds = get_summer_schedule_bounds(schedule) a_weeks = _get_weeks_from_bounds(a_bounds) for week in a_weeks: week.summer_term = "A-term" a_weeks = _add_sections_to_weeks(schedule.sections, a_weeks) a_consolidated = _consolidate_weeks(a_weeks) trim_summer_meetings(a_consolidated) a_consolidated[-1].meetings_trimmed_back = True b_weeks = _get_weeks_from_bounds(b_bounds) for week in b_weeks: week.summer_term = "B-term" b_weeks = _add_sections_to_weeks(schedule.sections, b_weeks) b_consolidated = _consolidate_weeks(b_weeks) trim_summer_meetings(b_consolidated) b_consolidated[0].meetings_trimmed_front = True consolidated = a_consolidated + b_consolidated else: try: # find sections beyond term bounds = get_schedule_bounds(schedule) weeks = _get_weeks_from_bounds(bounds) weeks = _add_qtr_start_data_to_weeks(weeks, schedule) weeks = _add_sections_to_weeks(schedule.sections, weeks) weeks = trim_section_meetings(weeks) weeks = trim_weeks_no_meetings(weeks) consolidated = _consolidate_weeks(weeks) except AttributeError: return None _add_weekend_meeting_data(consolidated) consolidated = _remove_empty_periods(consolidated) _adjust_period_dates(consolidated) finals = _get_finals_period(schedule) if len(finals.sections) > 0: consolidated.append(finals) return consolidated def _add_qtr_start_data_to_weeks(weeks, schedule): if schedule.term.quarter != "summer": qtr_start = schedule.term.first_day_quarter for week in weeks: if week.start_date < qtr_start < week.end_date: week.qtr_start = schedule.term.first_day_quarter return weeks def _remove_empty_periods(schedule): periods = [] for period in schedule: try: if len(period.sections) > 0: periods.append(period) except AttributeError: pass return periods def _adjust_off_term_dates(schedule): qtr_end_date = schedule.term.last_day_instruction for section in schedule.sections: if section.end_date > qtr_end_date: section.real_end_date = section.end_date section.end_date = qtr_end_date def _adjust_period_dates(schedule): i = 0 for period in schedule: i += 1 # modify start date if period.qtr_start: period.start_date = period.qtr_start else: if period.meetings_trimmed_front: try: new_start = _get_earliest_start_from_period(period) period.start_date = new_start except TypeError: # section has no meetings, leave date alone pass if not period.meets_sunday and not period.meetings_trimmed_front: period.start_date = period.start_date + timedelta(days=1) # modify end date if period.meetings_trimmed_back: try: new_end = _get_latest_end_from_period(period) period.end_date = new_end except TypeError: # section has no meetings, leave date alone pass if not period.meets_saturday and not period.meetings_trimmed_back: period.end_date = period.end_date - timedelta(days=1) def _get_earliest_start_from_period(period): """ return the earliest date in the period """ earliest_meeting = None # week day for section in period.sections: for meeting in section.meetings: if meeting.wont_meet(): # if a section has a NON mtg set start date to section start return section.start_date earliest_section_meeting = _get_earliest_meeting_day(meeting) if earliest_section_meeting is not None: if earliest_meeting is None: earliest_meeting = earliest_section_meeting elif earliest_section_meeting < earliest_meeting: earliest_meeting = earliest_section_meeting start_day = period.start_date.weekday() # Treat sunday as 'first' day if start_day == 6: days_to_add = earliest_meeting + 1 else: days_to_add = earliest_meeting - start_day start_date = (period.start_date + timedelta(days=days_to_add)) return start_date def _get_latest_end_from_period(period): latest_meeting = None for section in period.sections: for meeting in section.meetings: if meeting.wont_meet(): # if a section has a NON mtg set end date to section end return section.end_date latest_section_meeting = _get_latest_meeting_day(meeting) if latest_meeting is None: latest_meeting = latest_section_meeting elif latest_meeting < latest_section_meeting: latest_meeting = latest_section_meeting end_day = period.end_date.weekday() days_to_subtract = end_day - latest_meeting end_date = period.end_date - timedelta(days=days_to_subtract) return end_date def _get_earliest_meeting_day(meeting): day_index = None if meeting.meets_saturday: day_index = 5 if meeting.meets_friday: day_index = 4 if meeting.meets_thursday: day_index = 3 if meeting.meets_wednesday: day_index = 2 if meeting.meets_tuesday: day_index = 1 if meeting.meets_monday: day_index = 0 if meeting.meets_sunday: day_index = 6 return day_index def _get_latest_meeting_day(meeting): day_index = None if meeting.meets_sunday: day_index = 6 if meeting.meets_monday: day_index = 0 if meeting.meets_tuesday: day_index = 1 if meeting.meets_wednesday: day_index = 2 if meeting.meets_thursday: day_index = 3 if meeting.meets_friday: day_index = 4 if meeting.meets_saturday: day_index = 5 return day_index def _get_finals_period(schedule): finals = SchedulePeriod() finals.is_finals = True finals.sections = copy.deepcopy(schedule.sections) return finals def trim_weeks_no_meetings(weeks): trimmed_weeks = copy.copy(weeks) for week in weeks: non_meeting_sections = [] for section in week.sections: is_non_meeting = True for meeting in section.meetings: if meeting.wont_meet() or not meeting.no_meeting(): is_non_meeting = False if is_non_meeting: non_meeting_sections.append(section) if len(non_meeting_sections) == len(week.sections): trimmed_weeks.remove(week) return trimmed_weeks def trim_section_meetings(weeks): for week in weeks: front_trim_count = 0 back_trim_count = 0 for section in week.sections: if section.start_date > week.start_date: trimmed = _trim_section_before(section, section.start_date) if trimmed: front_trim_count += 1 if section.end_date < week.end_date: trimmed = _trim_section_after(section, section.end_date) if trimmed: back_trim_count += 1 if front_trim_count > 0: week.meetings_trimmed = True week.meetings_trimmed_front = True if back_trim_count > 0: week.meetings_trimmed = True week.meetings_trimmed_back = True return weeks def get_summer_schedule_bounds(schedule): a_start = schedule.term.first_day_quarter # set start to first sunday if a_start.strftime('%w') != 0: days_to_remove = int(a_start.strftime('%w')) a_start -= relativedelta(days=days_to_remove) b_end = schedule.term.last_day_instruction # set end to last saturday if b_end.strftime('%w') != 6: days_to_add = 6 - int(b_end.strftime('%w')) b_end += relativedelta(days=days_to_add) a_bounds = a_start, schedule.term.aterm_last_date b_bounds = schedule.term.bterm_first_date, b_end return a_bounds, b_bounds def trim_summer_meetings(weeks): if weeks[0].summer_term == "A-term": week_to_trim = weeks[-1] week_to_trim.sections = _trim_sections_after(week_to_trim.sections, week_to_trim.end_date) if weeks[0].summer_term == "B-term": week_to_trim = weeks[0] week_to_trim.sections = _trim_sections_before(week_to_trim.sections, week_to_trim.start_date) return weeks def _trim_sections_after(sections, date): cutoff_day = int(date.strftime('%w')) for section in sections: if section.summer_term == "A-term" and section.end_date > date: # preserve a-term course meetings that goes beyond term last day continue for meeting in section.meetings: if cutoff_day <= 5: meeting.meets_saturday = False if cutoff_day <= 4: meeting.meets_friday = False if cutoff_day <= 3: meeting.meets_thursday = False if cutoff_day <= 2: meeting.meets_wednesday = False if cutoff_day <= 1: meeting.meets_tuesday = False if cutoff_day <= 0: meeting.meets_monday = False return sections def _trim_sections_before(sections, date): cutoff_day = int(date.strftime('%w')) for section in sections: if section.summer_term == "B-term" and section.start_date < date: # preserve b-term course meetings that occurs before term 1st day continue for meeting in section.meetings: if cutoff_day >= 1: meeting.meets_sunday = False if cutoff_day >= 2: meeting.meets_monday = False if cutoff_day >= 3: meeting.meets_tuesday = False if cutoff_day >= 4: meeting.meets_wednesday = False if cutoff_day >= 5: meeting.meets_thursday = False if cutoff_day >= 6: meeting.meets_friday = False return sections def _trim_section_after(section, date): cutoff_day = int(date.strftime('%w')) trimmed = False for meeting in section.meetings: if cutoff_day <= 5: if meeting.meets_saturday: trimmed = True meeting.meets_saturday = False if cutoff_day <= 4: if meeting.meets_friday: trimmed = True meeting.meets_friday = False if cutoff_day <= 3: if meeting.meets_thursday: trimmed = True meeting.meets_thursday = False if cutoff_day <= 2: if meeting.meets_wednesday: trimmed = True meeting.meets_wednesday = False if cutoff_day <= 1: if meeting.meets_tuesday: trimmed = True meeting.meets_tuesday = False if cutoff_day <= 0: if meeting.meets_monday: trimmed = True meeting.meets_monday = False return trimmed def _trim_section_before(section, date): cutoff_day = int(date.strftime('%w')) trimmed = False for meeting in section.meetings: if cutoff_day >= 1: if meeting.meets_sunday: trimmed = True meeting.meets_sunday = False if cutoff_day >= 2: if meeting.meets_monday: trimmed = True meeting.meets_monday = False if cutoff_day >= 3: if meeting.meets_tuesday: trimmed = True meeting.meets_tuesday = False if cutoff_day >= 4: if meeting.meets_wednesday: trimmed = True meeting.meets_wednesday = False if cutoff_day >= 5: if meeting.meets_thursday: trimmed = True meeting.meets_thursday = False if cutoff_day >= 6: if meeting.meets_friday: trimmed = True meeting.meets_friday = False return trimmed def _is_split_summer(schedule): if schedule.term.quarter != 'summer': return False for section in schedule.sections: if section.summer_term != "Full-term": return True def _add_weekend_meeting_data(weeks): for week in weeks: try: for section in week.sections: for meeting in section.meetings: if meeting.meets_saturday: week.meets_saturday = True if meeting.meets_sunday: week.meets_sunday = True except AttributeError: pass return weeks def _add_sections_to_weeks(sections, weeks): for week in weeks: for section in sections: if section.start_date <= week.end_date \ and section.end_date >= week.start_date: # make a copy of section as we'll modify meetings per week week.sections.append(copy.deepcopy(section)) return weeks def _consolidate_weeks(weeks): consolidated_weeks = [] prev_week = None for week in weeks: if prev_week is None: prev_week = week else: will_merge = True # Don't merge last week of A-term if week.summer_term == "A-term" \ and weeks.index(week) == len(weeks) - 1: will_merge = False # Don't merge 2nd week of B term with 1st elif week.summer_term == "B-term" and weeks.index(week) == 1: will_merge = False else: # Merge weeks with same sections if _section_lists_are_same(prev_week.sections, week.sections): will_merge = True else: will_merge = False if week.meetings_trimmed or prev_week.meetings_trimmed: will_merge = False if will_merge: prev_week.end_date = week.end_date else: consolidated_weeks.append(prev_week) prev_week = week # Append last week block consolidated_weeks.append(prev_week) return consolidated_weeks def _section_lists_are_same(list1, list2): if len(list1) is not len(list2): return False for l1_section in list1: found_match = False for l2_section in list2: if _sections_are_same(l1_section, l2_section): found_match = True if not found_match: return False return True def _sections_are_same(section1, section2): return (section1.curriculum_abbr == section2.curriculum_abbr) \ and (section1.course_number == section2.course_number) \ and (section1.section_id == section2.section_id) def _get_weeks_from_bounds(bounds): start, end = bounds periods = [] # weeks between start>end dates, including first day schedule_length = math.ceil(((end-start).days + 1)/7.0) while schedule_length > 0: period = SchedulePeriod() period.start_date = start start_day = int(start.strftime('%w')) end_offset = 6-start_day end_date = (start + timedelta(days=end_offset)) # handle case where week ends midweek if end_date > end: end_date = end period.end_date = end_date periods.append(period) next_start_offset = 7-start_day start = (start + timedelta(days=next_start_offset)) schedule_length -= 1 return periods def get_schedule_bounds(schedule): start = None end = None for section in schedule.sections: if start is None: start = section.start_date elif start > section.start_date: start = section.start_date if end is None: end = section.end_date elif end < section.end_date: end = section.end_date # set start to first sunday if int(start.strftime('%w')) != 0: days_to_remove = int(start.strftime('%w')) start = start - relativedelta(days=days_to_remove) # set end to last saturday if int(end.strftime('%w')) != 6: days_to_add = 6 - int(end.strftime('%w')) end += relativedelta(days=days_to_add) return start, end def _add_dates_to_sections(schedule): """ Adds term start/end dates to sections that do not have them (ie non-PCE) """ for section in schedule.sections: if section.start_date is None: if section.summer_term == "B-term": section.start_date = schedule.term.bterm_first_date else: section.start_date = schedule.term.first_day_quarter if section.end_date is None: if section.summer_term == "A-term": section.end_date = schedule.term.aterm_last_date else: section.end_date = schedule.term.last_day_instruction return schedule def _trim_summer_term(schedule, summer_term): term_periods = [] for period in schedule: if period.summer_term is not None: if period.summer_term.lower() == summer_term: term_periods.append(period) return term_periods class SchedulePeriod(): def __init__(self): self.start_date = None self.end_date = None self.sections = [] self.meets_saturday = False self.meets_sunday = False self.is_finals = False self.qtr_start = None # sections will be either A term OR B term, full term classes will # be split into corresponding A and B term pieces self.summer_term = None self.meetings_trimmed = False self.meetings_trimmed_front = False self.meetings_trimmed_back = False def json_data(self): section_data = [] for section in self.sections: section_json = section.json_data() try: section_json['color_id'] = section.color_id except AttributeError: pass section_json['is_teaching'] = section.is_teaching section_data.append(section_json) data = {'start_date': self.start_date, 'end_date': self.end_date, 'meets_saturday': self.meets_saturday, 'meets_sunday': self.meets_sunday, 'sections': section_data} return data
python
#coding:utf-8 import scapy_http.http as HTTP from scapy.all import * from scapy.error import Scapy_Exception import time import re import os from xmlrpclib import ServerProxy count=0 pt = re.compile('(GET|POST).*(HTTP)') ag = re.compile('(User-Agent:).*') s = ServerProxy("http://localhost:8888") def getURL(data): url = data.strip('GET') url = url.strip('POST') url = url.strip('HTTP') url = url.replace('%','%25') return url.strip() def afterRPC(msg, attack_ip, request, time): res = int(msg[0]['res']) url = msg[0]['url'] if res ==0: print "检测到恶意请求,将被记录" print "攻击者:" + attack_ip match = ag.match(request) if match: print "yes" print match.group() data = time+'|'+attack_ip+'|'+url+'|'+time+'||' os.system('echo "' + data +'" >> log.txt') #f = open('log.txt','a+') #f.write(data) #f.flush() #f.close() def pktTCP(pkt): global count count=count+1 #print count if HTTP.HTTPRequest or HTTP.HTTPResponse in pkt: src=pkt[IP].src srcport=pkt[IP].sport dst=pkt[IP].dst dstport=pkt[IP].dport res_payload=str(pkt[TCP].payload) if HTTP.HTTPRequest in pkt: log_time = str(time.strftime('%Y-%m-%d-%H:%M:%S',time.localtime(time.time()))) print log_time print "HTTP Request:" #print res_payload match = pt.match(res_payload) if match: data = str(match.group()) print data url = getURL(data) print url afterRPC(s.rpc_ai_waf(url), src, res_payload, log_time) if HTTP.HTTPResponse in pkt: #print "HTTP Response:" #try: # headers,body= str(test).split("\r\n\r\n", 1) # print headers #except Exception,e: # print e print "======================================================================" else: print pkt[IP].src,pkt[IP].sport,'->',pkt[TCP].flags print 'other' sniff(filter='tcp and port 80',prn=pktTCP,iface='eth0')
python
# coding=utf-8 import unittest from rozipparser.codeparser import CodeParser class TestSmallLocalityParsing(unittest.TestCase): def test_number_of_codes(self): parser = CodeParser("rozipparser/tests/inputs/small_locality_input.xlsx") codes = parser.get_codes() self.assertEqual(len(codes), 9) def test_code_correctness(self): parser = CodeParser("rozipparser/tests/inputs/small_locality_input.xlsx") codes = parser.get_codes() first_code = codes[0] self.assertEqual(first_code.county, u"Ilfov") self.assertEqual(first_code.locality, u"Buftea") self.assertIsNone(first_code.sector) self.assertIsNone(first_code.street) self.assertIsNone(first_code.house_number) self.assertEqual(first_code.zip, u"070000") self.assertIsNone(first_code.street_type)
python
# coding: utf-8 """ Server API Reference for Server API (REST/Json) OpenAPI spec version: 1.4.58 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class VideoCategory(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, id=None, id_category=None, id_media_source=None, filename=None, cover=None, thumbnail=None, date_add=None, date_upd=None): """ VideoCategory - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'id': 'int', 'id_category': 'int', 'id_media_source': 'int', 'filename': 'str', 'cover': 'str', 'thumbnail': 'str', 'date_add': 'str', 'date_upd': 'str' } self.attribute_map = { 'id': 'id', 'id_category': 'id_category', 'id_media_source': 'id_media_source', 'filename': 'filename', 'cover': 'cover', 'thumbnail': 'thumbnail', 'date_add': 'date_add', 'date_upd': 'date_upd' } self._id = id self._id_category = id_category self._id_media_source = id_media_source self._filename = filename self._cover = cover self._thumbnail = thumbnail self._date_add = date_add self._date_upd = date_upd @property def id(self): """ Gets the id of this VideoCategory. :return: The id of this VideoCategory. :rtype: int """ return self._id @id.setter def id(self, id): """ Sets the id of this VideoCategory. :param id: The id of this VideoCategory. :type: int """ self._id = id @property def id_category(self): """ Gets the id_category of this VideoCategory. :return: The id_category of this VideoCategory. :rtype: int """ return self._id_category @id_category.setter def id_category(self, id_category): """ Sets the id_category of this VideoCategory. :param id_category: The id_category of this VideoCategory. :type: int """ self._id_category = id_category @property def id_media_source(self): """ Gets the id_media_source of this VideoCategory. :return: The id_media_source of this VideoCategory. :rtype: int """ return self._id_media_source @id_media_source.setter def id_media_source(self, id_media_source): """ Sets the id_media_source of this VideoCategory. :param id_media_source: The id_media_source of this VideoCategory. :type: int """ self._id_media_source = id_media_source @property def filename(self): """ Gets the filename of this VideoCategory. :return: The filename of this VideoCategory. :rtype: str """ return self._filename @filename.setter def filename(self, filename): """ Sets the filename of this VideoCategory. :param filename: The filename of this VideoCategory. :type: str """ self._filename = filename @property def cover(self): """ Gets the cover of this VideoCategory. :return: The cover of this VideoCategory. :rtype: str """ return self._cover @cover.setter def cover(self, cover): """ Sets the cover of this VideoCategory. :param cover: The cover of this VideoCategory. :type: str """ self._cover = cover @property def thumbnail(self): """ Gets the thumbnail of this VideoCategory. :return: The thumbnail of this VideoCategory. :rtype: str """ return self._thumbnail @thumbnail.setter def thumbnail(self, thumbnail): """ Sets the thumbnail of this VideoCategory. :param thumbnail: The thumbnail of this VideoCategory. :type: str """ self._thumbnail = thumbnail @property def date_add(self): """ Gets the date_add of this VideoCategory. :return: The date_add of this VideoCategory. :rtype: str """ return self._date_add @date_add.setter def date_add(self, date_add): """ Sets the date_add of this VideoCategory. :param date_add: The date_add of this VideoCategory. :type: str """ self._date_add = date_add @property def date_upd(self): """ Gets the date_upd of this VideoCategory. :return: The date_upd of this VideoCategory. :rtype: str """ return self._date_upd @date_upd.setter def date_upd(self, date_upd): """ Sets the date_upd of this VideoCategory. :param date_upd: The date_upd of this VideoCategory. :type: str """ self._date_upd = date_upd def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
python
import cv2 import numpy as np img = cv2.imread('prof.jpeg', cv2.IMREAD_COLOR) img = cv2.resize(img, (500, 500)) # perfom a filter with a kernel # its like blurring it removes edges and averages blur1 = cv2.blur(img, (3,3)) # well in this case they are the same # Gaussian filter creation cv2.getGaussianKernel(). blur2 = cv2.GaussianBlur(img,(5,5),0) median = cv2.medianBlur(img, 5) cv2.imshow('img', img) cv2.imshow('blur1', blur1) cv2.imshow('blur2', blur2) cv2.imshow('median', median)
python
from django import template from ..models import Category register = template.Library() @register.simple_tag def title(): return 'وبلاگ جنگویی' @register.simple_tag def brand_name(): return 'جنگو وب' @register.inclusion_tag('blog/partial/category_navbar.html') def category_navbar(): return { 'categories' : Category.objects.available() } @register.inclusion_tag('blog/partial/category_tags.html') def article_category_tags(article): return { 'categories' : article.category.available() }
python
import random def generate_email(): prefix = 'ak' + str(''.join([random.choice(list('qwertyuio')) for x in range(5)])) return f"{prefix}@mail.ru" def generate_name(): prefix = 'Pug_' + str(''.join([random.choice(list('123456789')) for x in range(2)])) return prefix def test_login(app): admin_form = app.forms.open_admin_form() admin_form.login_as_admin() def test_task_7(app): admin_form = app.forms.open_admin_form() admin_form.login_as_admin() admin_form.click_all_menu_buttons() def test_task_8(app): store_form = app.forms.open_store_form() store_form.verify_products_has_one_sticker() def test_task_9_verify_sort_in_all_countries_list(app): """Проверяет сортировку всех стран""" admin_form = app.forms.open_admin_form() admin_form.login_as_admin() admin_form.open_countries_tab() admin_form.verify_sort_for_all_country() admin_form.verify_sort_zones_in_country() def test_task_9_verify_sort_for_zone_list_in_country(app): """Проверяет сортировку зон в карточке страны""" admin_form = app.forms.open_admin_form() admin_form.login_as_admin() admin_form.open_countries_tab() admin_form.verify_sort_zones_in_country() def test_task_9_verify_sort_zones_in_geo_zone(app): """Проверяет сортировку зон в карточке страны на вкладке Geo zone""" admin_form = app.forms.open_admin_form() admin_form.login_as_admin() admin_form.open_geo_zones_tab() admin_form.verify_sort_zones_in_geo_zone() def test_task_10_verify_fields(app): """Проверки на главной странице и на странице товара совпадают текст названия товара, акционная и обычная цена""" store_form = app.forms.open_store_form() store_form.verify_product() def test_task_10_verify_product_style_on_main_page(app): """Проверки стилей акционной и обычной цен продукта на главной странице""" store_form = app.forms.open_store_form() store_form.verify_regular_price_is_through() store_form.verify_regular_price_color_is_gray() store_form.verify_campaign_price_color_is_red() store_form.verify_campaign_price_color_is_bold() def test_task_10_verify_product_style_in_product_card(app): """Проверки стилей акционной и обычной цен продукта в карточке продукта""" store_form = app.forms.open_store_form() store_form.open_duck_card() store_form.verify_regular_price_color_is_gray_in_card() store_form.verify_regular_price_is_through_in_card() store_form.verify_campaign_price_color_is_red_in_card() store_form.verify_campaign_price_color_is_bold_in_card() def test_task_10_verify_text_size_on_main_page(app): """Проверка размера цен продукта на главной странице""" store_form = app.forms.open_store_form() store_form.verify_size_of_prices() def test_task_10_verify_text_size_in_product_card(app): """Проверка размера цен продукта в карточке продукта""" store_form = app.forms.open_store_form() store_form.open_duck_card() store_form.verify_size_of_prices_in_card() def test_task_11(app): email = generate_email() password = "Qwe12345" new_user_form = app.forms.open_new_user_form() new_user_form.create_user(email, password) app.forms.store_form.logout() app.forms.store_form.login(email, password) def test_task_12(app): product_name = generate_name() admin_form = app.forms.open_admin_form() admin_form.login_as_admin() new_product_form = app.forms.open_new_product_form() new_product_form.fill_form(product_name) admin_form.verify_product_presents(product_name) def test_task_13(app): store_form = app.forms.open_store_form() product_cart = store_form.open_first_product_card() product_cart.add_product_to_cart() store_form = app.forms.open_store_form() product_cart = store_form.open_first_product_card() product_cart.add_product_to_cart() store_form = app.forms.open_store_form() product_cart = store_form.open_first_product_card() product_cart.add_product_to_cart() cart_form = app.forms.open_cart() cart_form.remove_all_products() def test_task_14(app): admin_form = app.forms.open_admin_form() admin_form.login_as_admin() admin_form.open_countries_tab() admin_form.open_new_country_form() admin_form.open_all_external_links() def test_task_17(app): admin_form = app.forms.open_admin_form() admin_form.login_as_admin() admin_form.open_catalog_tab() admin_form.get_browser_log()
python
# coding: utf-8 ################################################################################ # CS 224W (Fall 2017) - HW1 # Code for Problem 1 # Author: [email protected] # Last Updated: Oct 8, 2017 ################################################################################ import snap import numpy as np import matplotlib.pyplot as plt # Setup erdosRenyi = None smallWorld = None collabNet = None SUCCESS = -1 FAILURE = -2 Rnd = snap.TRnd(42) Rnd.Randomize() # Problem 1.1 def genErdosRenyi(N=5242, E=14484): """ :param - N: number of nodes :param - E: number of edges return type: snap.PUNGraph return: Erdos-Renyi graph with N nodes and E edges """ ############################################################################ # TODO: Your code here! assert N >= 0 and E >= 0 Graph = snap.TUNGraph.New(N, E) # Verify the requested number of edges is reasonable, otherwise we # could run into an infinite loop. assert(N*(N-1)/2 >= E) nodes = [Graph.AddNode(node) for node in xrange(N)] edges = 0 while edges < E: srcID = Graph.GetRndNId(Rnd) dstID = Graph.GetRndNId(Rnd) if srcID != dstID and Graph.AddEdge(srcID, dstID) == SUCCESS: edges += 1 ############################################################################ return Graph def genCircle(N=5242): """ :param - N: number of nodes return type: snap.PUNGraph return: Circle graph with N nodes and N edges. Imagine the nodes form a circle and each node is connected to its two direct neighbors. """ ############################################################################ # TODO: Your code here! # Given the above definition, we assume that: # N = 1 -> we have a single node with a self-loop # N = 2 -> We have two nodes with a single edge between them # (rather than 2). assert N >= 0 Graph = snap.TUNGraph.New(N, N) for node in xrange(N): Graph.AddNode(node) for node in xrange(N): Graph.AddEdge(node, (node + 1) % N) assert Graph.GetEdges() == N ############################################################################ return Graph def connectNbrOfNbr(Graph, N=5242): """ :param - Graph: snap.PUNGraph object representing a circle graph on N nodes :param - N: number of nodes return type: snap.PUNGraph return: Graph object with additional N edges added by connecting each node to the neighbors of its neighbors """ ############################################################################ # TODO: Your code here! # Modifications to the graph happen in place, so collect a list of # new edges to add. We do not assume any particular ordering of the # nodes. newEdges = [] for node in Graph.Nodes(): src = node.GetId() # Each node in a circle graph should have 2 neighbors. neighbors = [Graph.GetNI(node.GetNbrNId(i)) for i in xrange(node.GetDeg())] assert len(neighbors) == 2 for neighbor in neighbors: assert neighbor.GetDeg() == 2 candidateDest = [neighbor.GetNbrNId(i) for i in xrange(neighbor.GetDeg()) if neighbor.GetNbrNId(i) != src] # Only one more edge should be added. assert len(candidateDest) == 1 dst = candidateDest[0] newEdges.append((min(src, dst), max(src, dst))) # Clear duplicates. newEdges = list(set(newEdges)) assert len(newEdges) == N for (srcID, dstID) in newEdges: Graph.AddEdge(srcID, dstID) assert Graph.GetNodes() == N assert Graph.GetEdges() == 2*N ############################################################################ return Graph def connectRandomNodes(Graph, M=4000): """ :param - Graph: snap.PUNGraph object representing an undirected graph :param - M: number of edges to be added return type: snap.PUNGraph return: Graph object with additional M edges added by connecting M randomly selected pairs of nodes not already connected. """ ############################################################################ # TODO: Your code here! E = Graph.GetEdges() N = Graph.GetNodes() assert (N * (N - 1) / 2 - E) >= M edges = 0 while edges < M: srcID = Graph.GetRndNId(Rnd) dstID = Graph.GetRndNId(Rnd) if srcID != dstID and Graph.AddEdge(srcID, dstID) == SUCCESS: edges += 1 assert Graph.GetNodes() == N assert Graph.GetEdges() == (E + M) ############################################################################ return Graph def genSmallWorld(N=5242, E=14484): """ :param - N: number of nodes :param - E: number of edges return type: snap.PUNGraph return: Small-World graph with N nodes and E edges """ Graph = genCircle(N) Graph = connectNbrOfNbr(Graph, N) Graph = connectRandomNodes(Graph, 4000) return Graph def loadCollabNet(path): """ :param - path: path to edge list file return type: snap.PUNGraph return: Graph loaded from edge list at `path` and self edges removed Do not forget to remove the self edges! """ ############################################################################ # TODO: Your code here! Graph = snap.LoadEdgeList(snap.PUNGraph, path, 0, 1, "\t") for node in Graph.Nodes(): Graph.DelEdge(node.GetId(), node.GetId()) assert Graph.GetNodes() == 5242 assert Graph.GetEdges() == 14484 ############################################################################ return Graph def getDataPointsToPlot(Graph): """ :param - Graph: snap.PUNGraph object representing an undirected graph return values: X: list of degrees Y: list of frequencies: Y[i] = fraction of nodes with degree X[i] """ ############################################################################ # TODO: Your code here! degreeDistribution = snap.TIntPrV() snap.GetDegCnt(Graph, degreeDistribution) N = float(Graph.GetNodes()) X, Y = [], [] for item in degreeDistribution: X.append(item.GetVal1()) Y.append(float(item.GetVal2()) / N) ############################################################################ return X, Y def Q1_1(): """ Code for HW1 Q1.1 """ global erdosRenyi, smallWorld, collabNet erdosRenyi = genErdosRenyi(5242, 14484) smallWorld = genSmallWorld(5242, 14484) collabNet = loadCollabNet("data/ca-GrQc.txt") plt.close() x_erdosRenyi, y_erdosRenyi = getDataPointsToPlot(erdosRenyi) plt.loglog(x_erdosRenyi, y_erdosRenyi, color='y', label='Erdos Renyi Network') x_smallWorld, y_smallWorld = getDataPointsToPlot(smallWorld) plt.loglog(x_smallWorld, y_smallWorld, linestyle='dashed', color='r', label='Small World Network') x_collabNet, y_collabNet = getDataPointsToPlot(collabNet) plt.loglog(x_collabNet, y_collabNet, linestyle='dotted', color='b', label='Collaboration Network') plt.xlabel('Node Degree (log)') plt.ylabel('Proportion of Nodes with a Given Degree (log)') plt.title( 'Degree Distribution of Erdos Renyi, Small World, ' + 'and Collaboration Networks') plt.legend() plt.savefig("output/erdo_small_collab_log_logdegree_distribution", dpi=600) plt.show() # Execute code for Q1.1 Q1_1() # Problem 1.2 # Find max degree of all 3 graphs for plotting (add 2 for padding) maxdeg = max([erdosRenyi.GetNI((snap.GetMxDegNId(erdosRenyi))).GetDeg(), smallWorld.GetNI((snap.GetMxDegNId(smallWorld))).GetDeg(), collabNet.GetNI((snap.GetMxDegNId(collabNet))).GetDeg()]) + 2 # Erdos Renyi def calcQk(Graph, maxDeg=maxdeg): """ :param Graph - snap.PUNGraph object representing an undirected graph :param maxDeg - maximum degree(+1) for which q_k needs to be calculated return type: np.array return: array q_k of dimension maxDeg representing the excess degree distribution """ ############################################################################ # TODO: Your code here! degreeDistribution = snap.TIntPrV() snap.GetDegCnt(Graph, degreeDistribution) q_k_p = np.zeros(maxDeg) for item in degreeDistribution: degree = item.GetVal1() if (degree > 0): q_k_p[degree - 1] = degree * item.GetVal2() q_k = q_k_p / np.sum(q_k_p) ############################################################################ return q_k def calcExpectedDegree(Graph): """ :param Graph - snap.PUNGraph object representing an undirected graph return type: float return: expected degree of Graph """ ############################################################################ # TODO: Your code here! ed = 0.0 degreeDistribution = snap.TIntPrV() snap.GetDegCnt(Graph, degreeDistribution) N = float(Graph.GetNodes()) for item in degreeDistribution: ed += float(item.GetVal1()) * float(item.GetVal2()) / N ############################################################################ return ed def calcExpectedExcessDegree(Graph, qk): """ :param Graph - snap.PUNGraph object representing an undirected graph :param qk - np.array of dimension maxdeg representing excess degree distribution of `Graph return type: float return: expected excess degree of `Graph """ ############################################################################ # TODO: Your code here! eed = 0.0 eed = np.average([i for i in xrange(len(qk))], weights=qk) ############################################################################ return eed def Q1_2_a(): """ Code for Q1.2a """ qk_erdosRenyi = calcQk(erdosRenyi, maxdeg) qk_smallWorld = calcQk(smallWorld, maxdeg) qk_collabNet = calcQk(collabNet, maxdeg) plt.close() plt.loglog(range(maxdeg), qk_erdosRenyi, color='y', label='Erdos Renyi Network') plt.loglog(range(maxdeg), qk_smallWorld, linestyle='dashed', color='r', label='Small World Network') plt.loglog(range(maxdeg), qk_collabNet, linestyle='dotted', color='b', label='Collaboration Network') plt.xlabel('k Degree') plt.ylabel('Excess Degree Distribution') plt.title( 'Excess Degree Distribution of Erdos Renyi, Small World, ' + 'and Collaboration Networks') plt.legend() plt.savefig( "output/erdo_small_collab_log_log_excess_degree_distribution", dpi=600) plt.show() # Calculate Expected Degree ed_erdosRenyi = calcExpectedDegree(erdosRenyi) ed_smallWorld = calcExpectedDegree(smallWorld) ed_collabNet = calcExpectedDegree(collabNet) print 'Expected Degree for Erdos Renyi: %f' % ed_erdosRenyi print 'Expected Degree for Small World: %f' % ed_smallWorld print 'Expected Degree for Collaboration Network: %f' % ed_collabNet # Calculate Expected Excess Degree eed_erdosRenyi = calcExpectedExcessDegree(erdosRenyi, qk_erdosRenyi) eed_smallWorld = calcExpectedExcessDegree(smallWorld, qk_smallWorld) eed_collabNet = calcExpectedExcessDegree(collabNet, qk_collabNet) print 'Expected Excess Degree for Erdos Renyi: %f' % (eed_erdosRenyi) print 'Expected Excess Degree for Small World: %f' % (eed_smallWorld) print 'Expected Excess Degree for Collaboration Network: %f' % (eed_collabNet) # Execute code for Q1.2a Q1_2_a() # Problem 1.3 - Clustering Coefficient def calcClusteringCoefficient(Graph): """ :param - Graph: snap.PUNGraph object representing an undirected graph return type: float returns: clustering coeffient of `Graph """ ############################################################################ # TODO: Your code here! C = 0.0 total = 0.0 for node in Graph.Nodes(): ki = node.GetDeg() numConnectedNeighbors = 0.0 if ki >= 2: neighborIDs = [node.GetNbrNId(i) for i in xrange(node.GetDeg())] for neighborID in neighborIDs: neighbor = Graph.GetNI(neighborID) candidates = [neighbor.GetNbrNId(i) for i in xrange(neighbor.GetDeg())] for candidate in candidates: if node.IsNbrNId(candidate): numConnectedNeighbors += 1 total += numConnectedNeighbors / (ki * (ki - 1)) C = total / float(Graph.GetNodes()) # Sanity check. assert abs(C - snap.GetClustCf(Graph)) < 1e-8 ############################################################################ return C def Q1_3(): """ Code for Q1.3 """ C_erdosRenyi = calcClusteringCoefficient(erdosRenyi) C_smallWorld = calcClusteringCoefficient(smallWorld) C_collabNet = calcClusteringCoefficient(collabNet) print('Clustering Coefficient for Erdos Renyi Network: %f' % C_erdosRenyi) print('Clustering Coefficient for Small World Network: %f' % C_smallWorld) print('Clustering Coefficient for Collaboration Network: %f' % C_collabNet) # Execute code for Q1.3 Q1_3()
python
import os def cpr(parentFile, pasteDir, names): parentFileContent = open(parentFile, "rb").read() extension = os.path.splitext(parentFile)[1] for name in names: name = str(name) currentDir = os.path.join(pasteDir, name)+extension currentFile = open(currentDir, "wb") currentFile.write(parentFileContent) currentFile.close() def xor(a, b): return a | b def tupleRange(a, b): xList = [] yList = [] for x in zip(range(a[0], b[0]+1)): xList.append(x[0]) for y in zip(range(a[1], b[1]+1)): yList.append(y[0]) tuples = [] lastX = 0 lastY = 0 endAt = max(len(xList), len(yList)) index = 0 while True: try: lastX = xList[index] except: pass try: lastY = yList[index] except: pass tuples.append((lastX, lastY)) if index >= endAt: break index += 1 return tuples def genProps(sides, name, p_id, path, tiles, method, metadata): try: f = open(os.path.join(path, name)+".properties", "x") except: f = open(os.path.join(path, name)+".properties", "w") f.write(f"method={method}\n") f.write(f"tiles=0-{str(tiles)}\n") if sides != "": f.write(f"sides={sides}\n") else: pass f.write(f"matchBlocks={p_id}\n") if sides != 0: f.write(f"metadata={metadata}") else: pass f.close() class Side(): def __init__(self, l, r, u, d): self.x1 = l self.y1 = r self.x2 = u self.y2 = d class Map(): def __init__(self, pattern = [ [1,1,1], [1,0,1], [1,1,1] ]): self.pat = pattern def __add__(self, other): newPattern = [[0,0,0], [0,0,0], [0,0,0]] for x1, x2, indX in zip(self.pat, other.pat, range(len(other.pat))): for y1, y2, indY in zip(x1, x2, range(len(x2))): newPattern[indX][indY] = xor(y1, y2) return Map(newPattern) def __repr__(self): string = "" for x1 in self.pat: string += "\n" for y1 in x1: string += f"{y1}" return string @property def T(self): return self.pat[0][1] @property def B(self): return self.pat[2][1] @property def R(self): return self.pat[1][2] @property def L(self): return self.pat[1][0] @property def TR(self): return self.pat[0][2] @property def BR(self): return self.pat[2][2] @property def TL(self): return self.pat[0][0] @property def BL(self): return self.pat[2][0] class Top(Map): def __init__(self): super().__init__([ [1,1,1], [0,0,0], [0,0,0] ]) class Down(Map): def __init__(self): super().__init__([ [0,0,0], [0,0,0], [1,1,1] ]) class Left(Map): def __init__(self): super().__init__([ [1,0,0], [1,0,0], [1,0,0] ]) class Right(Map): def __init__(self): super().__init__([ [0,0,1], [0,0,1], [0,0,1] ]) class TopLeft(Map): def __init__(self): super().__init__([ [1,0,0], [0,0,0], [0,0,0] ]) class DownLeft(Map): def __init__(self): super().__init__([ [0,0,0], [0,0,0], [1,0,0] ]) class TopRight(Map): def __init__(self): super().__init__([ [0,0,1], [0,0,0], [0,0,0] ]) class DownRight(Map): def __init__(self): super().__init__([ [0,0,0], [0,0,0], [0,0,1] ])
python
import time import bisect import dgl import torch import numpy as np from tqdm import tqdm # Count motif 1 def count_motif_1_1(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr == dst) src_out_ngr_2, src_out_timestamp_2 = src_out_ngr[mask_2], src_out_timestamp[mask_2] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] for i, node_i in enumerate(src_out_ngr_2): left_margin_3, right_margin_3 = src_out_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == dst) g.edata['motif_count'][eid][0] += torch.sum(mask_3) def count_motif_1_2(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr == dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] for i, node_i in enumerate(src_out_ngr_1): left_margin_3, right_margin_3 = pivot, src_out_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == dst) g.edata['motif_count'][eid][1] += torch.sum(mask_3) def count_motif_1_3(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_2, right_margin_2 = src_in_timestamp_1[i], pivot mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == dst) g.edata['motif_count'][eid][2] += torch.sum(mask_2) # Count motif 2 def count_motif_2_1(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr == dst) src_out_ngr_3, src_out_timestamp_3 = src_out_ngr[mask_3], src_out_timestamp[mask_3] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] for i, node_i in enumerate(src_out_ngr_3): left_margin_2, right_margin_2 = pivot, src_out_timestamp_3[i] mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == dst) g.edata['motif_count'][eid][3] += torch.sum(mask_2) def count_motif_2_2(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid].item() left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_3, right_margin_3 = pivot, src_in_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == dst) g.edata['motif_count'][eid][4] += torch.sum(mask_3) def count_motif_2_3(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid].item() left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr == dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] for i, node_i in enumerate(src_out_ngr_1): left_margin_2, right_margin_2 = src_out_timestamp_1[i], pivot mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == dst) g.edata['motif_count'][eid][5] += torch.sum(mask_2) # Count motif 3 def count_motif_3_1(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == dst) src_in_ngr_2, src_in_timestamp_2 = src_in_ngr[mask_2], src_in_timestamp[mask_2] for i, node_i in enumerate(src_in_ngr_2): left_margin_3, right_margin_3 = src_in_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == dst) g.edata['motif_count'][eid][6] += torch.sum(mask_3) def count_motif_3_2(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_3, right_margin_3 = pivot, src_in_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(src_out_timestamp > pivot, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr == dst) g.edata['motif_count'][eid][7] += torch.sum(mask_3) def count_motif_3_3(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_2, right_margin_2 = src_in_timestamp_1[i], pivot mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr == dst) g.edata['motif_count'][eid][8] += torch.sum(mask_2) # Count motif 4 def count_motif_4_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr == dst) src_out_ngr_2, src_out_timestamp_2 = src_out_ngr[mask_2], src_out_timestamp[mask_2] for i, node_i in enumerate(src_out_ngr_2): left_margin_3, right_margin_3 = src_out_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr != node_i) g.edata['motif_count'][eid][9] += torch.sum(mask_3) def count_motif_4_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr == dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_3, right_margin_3 = pivot, src_out_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr != node_i) g.edata['motif_count'][eid][10] += torch.sum(mask_3) def count_motif_4_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_2, right_margin_2 = src_out_timestamp_1[i], pivot mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr == node_i) g.edata['motif_count'][eid][11] += torch.sum(mask_2) # Count motif 5 def count_motif_5_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr == dst) src_out_ngr_3, src_out_timestamp_3 = src_out_ngr[mask_3], src_out_timestamp[mask_3] for i, node_i in enumerate(src_out_ngr_3): left_margin_2, right_margin_2 = pivot, src_out_timestamp_3[i] mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr != node_i) g.edata['motif_count'][eid][12] += torch.sum(mask_2) def count_motif_5_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_3, right_margin_3 = pivot, src_out_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr == node_i) g.edata['motif_count'][eid][13] += torch.sum(mask_3) def count_motif_5_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr == dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_2, right_margin_2 = src_out_timestamp_1[i], pivot mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr != node_i) g.edata['motif_count'][eid][14] += torch.sum(mask_2) # Count motif 6 def count_motif_6_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr != dst) src_out_ngr_2, src_out_timestamp_2 = src_out_ngr[mask_2], src_out_timestamp[mask_2] for i, node_i in enumerate(src_out_ngr_2): left_margin_3, right_margin_3 = src_out_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr == node_i) g.edata['motif_count'][eid][15] += torch.sum(mask_3) def count_motif_6_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_3, right_margin_3 = pivot, src_out_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr == dst) g.edata['motif_count'][eid][16] += torch.sum(mask_3) def count_motif_6_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_2, right_margin_2 = src_out_timestamp_1[i], pivot mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr == dst) src_out_ngr_2 = src_out_ngr[mask_2] g.edata['motif_count'][eid][17] += torch.sum(mask_2) # Count motif 7 def count_motif_7_1(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == dst) src_in_ngr_2, src_in_timestamp_2 = src_in_ngr[mask_2], src_in_timestamp[mask_2] for i, node_i in enumerate(src_in_ngr_2): left_margin_3, right_margin_3 = src_in_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr != dst) g.edata['motif_count'][eid][18] += torch.sum(mask_3) def count_motif_7_2(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] for i, node_i in enumerate(src_in_ngr_1): left_margin_3, right_margin_3 = pivot, src_in_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(dst_out_timestamp > left_margin_3, dst_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, dst_out_ngr != src) g.edata['motif_count'][eid][19] += torch.sum(mask_3) def count_motif_7_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_2, right_margin_2 = src_out_timestamp_1[i], pivot mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == node_i) g.edata['motif_count'][eid][20] += torch.sum(mask_2) # Count motif 8 def count_motif_8_1(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == dst) src_in_ngr_3, src_in_timestamp_3 = src_in_ngr[mask_3], src_in_timestamp[mask_3] for i, node_i in enumerate(src_in_ngr_3): left_margin_2, right_margin_2 = pivot, src_in_timestamp_3[i], mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr != dst) g.edata['motif_count'][eid][21] += torch.sum(mask_2) def count_motif_8_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr != dst) src_in_ngr_3, src_in_timestamp_3 = src_in_ngr[mask_3], src_in_timestamp[mask_3] src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] for i, node_i in enumerate(src_in_ngr_3): if not g.has_edges_between(src, node_i): continue left_margin_1, right_margin_1 = src_in_timestamp_3[i] - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr == node_i) g.edata['motif_count'][eid][22] += torch.sum(mask_1) def count_motif_8_3(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_2, right_margin_2 = src_in_timestamp_1[i], pivot mask_2 = torch.logical_and(dst_out_timestamp > left_margin_2, dst_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, dst_out_ngr != src) g.edata['motif_count'][eid][23] += torch.sum(mask_2) # Count motif 9 def count_motif_9_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr != dst) src_in_ngr_3, src_in_timestamp_3 = src_in_ngr[mask_3], src_in_timestamp[mask_3] for i, node_i in enumerate(src_in_ngr_3): if not g.has_edges_between(src, node_i): continue left_margin_2, right_margin_2 = pivot, src_in_timestamp_3[i], mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr == node_i) g.edata['motif_count'][eid][24] += torch.sum(mask_2) def count_motif_9_2(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == dst) src_in_ngr_3, src_in_timestamp_3 = src_in_ngr[mask_3], src_in_timestamp[mask_3] src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] for i, node_i in enumerate(src_in_ngr_3): left_margin_1, right_margin_1 = src_in_timestamp_3[i] - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) g.edata['motif_count'][eid][25] += torch.sum(mask_1) def count_motif_9_3(g, threshold_time, eid): src, dst = g.find_edges(eid) if not g.has_edges_between(dst, src): return dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot - threshold_time, pivot mask_2 = torch.logical_and(src_in_timestamp >= left_margin_2, src_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == dst) src_in_ngr_2, src_in_timestamp_2 = src_in_ngr[mask_2], src_in_timestamp[mask_2] for i, node_i in enumerate(src_in_ngr_2): left_margin_1, right_margin_1 = pivot - threshold_time, src_in_timestamp_2[i] mask_1 = torch.logical_and(dst_out_timestamp >= left_margin_1, dst_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, dst_out_ngr != src) g.edata['motif_count'][eid][26] += torch.sum(mask_1) # Count motif 10 def count_motif_10_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] if len(src_in_ngr) == 0 or len(dst_out_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(dst_out_timestamp > left_margin_2, dst_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, dst_out_ngr != src) dst_out_ngr_2, dst_out_timestamp_2 = dst_out_ngr[mask_2], dst_out_timestamp[mask_2] for i, node_i in enumerate(dst_out_ngr_2): left_margin_3, right_margin_3 = dst_out_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(src_in_timestamp > left_margin_3, src_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_in_ngr == node_i) g.edata['motif_count'][eid][27] += torch.sum(mask_3) def count_motif_10_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] if len(src_in_ngr) == 0 or len(dst_out_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(dst_out_timestamp > left_margin_3, dst_out_timestamp < right_margin_3) mask_3 = torch.logical_and(mask_3, dst_out_ngr != src) dst_out_ngr_3, dst_out_timestamp_3 = dst_out_ngr[mask_3], dst_out_timestamp[mask_3] for i, node_i in enumerate(dst_out_ngr_3): left_margin_1, right_margin_1 = dst_out_timestamp_3[i] - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr == node_i) g.edata['motif_count'][eid][28] += torch.sum(mask_1) def count_motif_10_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] if len(src_in_ngr) == 0 or len(dst_out_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(dst_out_timestamp >= left_margin_1, dst_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, dst_out_ngr != src) dst_out_ngr_1, dst_out_timestamp_1 = dst_out_ngr[mask_1], dst_out_timestamp[mask_1] for i, node_i in enumerate(dst_out_ngr_1): left_margin_2, right_margin_2 = dst_out_timestamp_1[i], pivot mask_2 = torch.logical_and(src_in_timestamp > left_margin_2, src_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, src_in_ngr == node_i) g.edata['motif_count'][eid][29] += torch.sum(mask_2) # Count motif 11 def count_motif_11_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] if len(src_out_ngr) == 0 or len(dst_out_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_2, right_margin_2 = pivot, pivot + threshold_time mask_2 = torch.logical_and(src_out_timestamp > left_margin_2, src_out_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, src_out_ngr != dst) src_out_ngr_2, src_out_timestamp_2 = src_out_ngr[mask_2], src_out_timestamp[mask_2] for i, node_i in enumerate(src_out_ngr_2): left_margin_3, right_margin_3 = src_out_timestamp_2[i], pivot + threshold_time mask_3 = torch.logical_and(dst_out_timestamp > left_margin_3, dst_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, dst_out_ngr == node_i) g.edata['motif_count'][eid][30] += torch.sum(mask_3) def count_motif_11_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] dst_in_timestamp = g.edata['timestamp'][g.in_edges(dst, form='eid')] dst_in_ngr = g.in_edges(dst)[0] if len(src_out_ngr) == 0 or len(dst_in_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_3, right_margin_3 = pivot, src_out_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(dst_in_timestamp > left_margin_3, dst_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, dst_in_ngr == node_i) g.edata['motif_count'][eid][31] += torch.sum(mask_3) def count_motif_11_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] dst_in_timestamp = g.edata['timestamp'][g.in_edges(dst, form='eid')] dst_in_ngr = g.in_edges(dst)[0] if len(src_in_ngr) == 0 or len(dst_in_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr != dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_2, right_margin_2 = src_in_timestamp_1[i], pivot mask_2 = torch.logical_and(dst_in_timestamp > left_margin_2, dst_in_timestamp <= right_margin_2) mask_2 = torch.logical_and(mask_2, dst_in_ngr == node_i) g.edata['motif_count'][eid][32] += torch.sum(mask_2) # Count motif 12 def count_motif_12_1(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] dst_out_timestamp = g.edata['timestamp'][g.out_edges(dst, form='eid')] dst_out_ngr = g.out_edges(dst)[1] if len(src_out_ngr) == 0 or len(dst_out_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_3, right_margin_3 = pivot, pivot + threshold_time mask_3 = torch.logical_and(src_out_timestamp > left_margin_3, src_out_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, src_out_ngr != dst) src_out_ngr_3, src_out_timestamp_3 = src_out_ngr[mask_3], src_out_timestamp[mask_3] for i, node_i in enumerate(src_out_ngr_3): left_margin_2, right_margin_2 = pivot, src_out_timestamp_3[i] mask_2 = torch.logical_and(dst_out_timestamp > left_margin_2, dst_out_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, dst_out_ngr == node_i) g.edata['motif_count'][eid][33] += torch.sum(mask_2) def count_motif_12_2(g, threshold_time, eid): src, dst = g.find_edges(eid) src_in_timestamp = g.edata['timestamp'][g.in_edges(src, form='eid')] src_in_ngr = g.in_edges(src)[0] dst_in_timestamp = g.edata['timestamp'][g.in_edges(dst, form='eid')] dst_in_ngr = g.in_edges(dst)[0] if len(src_in_ngr) == 0 or len(dst_in_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_in_timestamp >= left_margin_1, src_in_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_in_ngr != dst) src_in_ngr_1, src_in_timestamp_1 = src_in_ngr[mask_1], src_in_timestamp[mask_1] for i, node_i in enumerate(src_in_ngr_1): left_margin_3, right_margin_3 = pivot, src_in_timestamp_1[i] + threshold_time mask_3 = torch.logical_and(dst_in_timestamp > left_margin_3, dst_in_timestamp <= right_margin_3) mask_3 = torch.logical_and(mask_3, dst_in_ngr == node_i) g.edata['motif_count'][eid][34] += torch.sum(mask_3) def count_motif_12_3(g, threshold_time, eid): src, dst = g.find_edges(eid) src_out_timestamp = g.edata['timestamp'][g.out_edges(src, form='eid')] src_out_ngr = g.out_edges(src)[1] dst_in_timestamp = g.edata['timestamp'][g.in_edges(dst, form='eid')] dst_in_ngr = g.in_edges(dst)[0] if len(src_out_ngr) == 0 or len(dst_in_ngr) == 0: return pivot = g.edata['timestamp'][eid] left_margin_1, right_margin_1 = pivot - threshold_time, pivot mask_1 = torch.logical_and(src_out_timestamp >= left_margin_1, src_out_timestamp < right_margin_1) mask_1 = torch.logical_and(mask_1, src_out_ngr != dst) src_out_ngr_1, src_out_timestamp_1 = src_out_ngr[mask_1], src_out_timestamp[mask_1] for i, node_i in enumerate(src_out_ngr_1): left_margin_2, right_margin_2 = src_out_timestamp_1[i], pivot mask_2 = torch.logical_and(dst_in_timestamp > left_margin_2, dst_in_timestamp < right_margin_2) mask_2 = torch.logical_and(mask_2, dst_in_ngr == node_i) g.edata['motif_count'][eid][35] += torch.sum(mask_2) def count_homogeneous_graph(g, threshold_time): func_ls = [count_motif_1_1, count_motif_1_2, count_motif_1_3, count_motif_2_1, count_motif_2_2, count_motif_2_3, count_motif_3_1, count_motif_3_2, count_motif_3_3, count_motif_4_1, count_motif_4_2, count_motif_4_3, count_motif_5_1, count_motif_5_2, count_motif_5_3, count_motif_6_1, count_motif_6_2, count_motif_6_3, count_motif_7_1, count_motif_7_2, count_motif_7_3, count_motif_8_1, count_motif_8_2, count_motif_8_3, count_motif_9_1, count_motif_9_2, count_motif_9_3, count_motif_10_1, count_motif_10_2, count_motif_10_3, count_motif_11_1, count_motif_11_2, count_motif_11_3, count_motif_12_1, count_motif_12_2, count_motif_12_3] g.edata['motif_count'] = torch.zeros(g.number_of_edges(), 36) for eid in tqdm(range(g.num_edges())): for f in func_ls: f(g, threshold_time, eid)
python
# coding: utf8 from pycropml.transpiler.main import Main source = u"""def test(int a): cdef list g=[14,15,12,12] cdef int i a=12 for i in g: a=a+i return a """ output_cs=u"""using System; using System.Collections.Generic; public class Program { static int test(int a) { List<int> g= new List<int>{14, 15, 12, 12}; int i; a = 12; foreach(int i in g) { a = a + i; } return a; } }""" output_py=u"""def test(a): g = [14, 15, 12, 12] a = 12 for i in g: a = a + i return a""" languages=["py","cs"] output={"py":output_py, "cs":output_cs} def test_for_statement(): for lang in languages: test=Main(source, lang) test.parse() test.to_ast(source) code=test.to_source() print(code) assert(code==output[lang]) if __name__=='__main__': test_for_statement()
python
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import posixpath import sys try: import pycurl # pycurl is not necessary for testcases, mock it except ImportError: from mock.mock import MagicMock pycurl = MagicMock() import cStringIO import StringIO import pdb try: import json except ImportError: import simplejson as json from ambari_client.core.http_utils import uri_encoding __docformat__ = "epytext" LOG = logging.getLogger(__name__) class HttpClient(object): """ Basic HTTP client for rest APIs. """ def __init__(self, host_url, user_name , password ): """ @param host_url: The base url to the API. """ self._host_url = host_url.rstrip('/') self._headers = { } self.c = pycurl.Curl() if user_name is not None: self.c.setopt(pycurl.HTTPAUTH, pycurl.HTTPAUTH_BASIC) userpass = user_name + ':' if password is not None: userpass += password LOG.debug( "pycurl.USERPWD value = "+str(userpass)) self.c.setopt(pycurl.USERPWD, userpass) def set_headers(self, headers): """ Add headers to the request """ self._headers = headers return self @property def host_url(self): return self._host_url def _get_headers(self, headers): res = self._headers.copy() if headers: res.update(headers) return res def invoke(self, http_method, path, payload=None, headers=None): """ Submit an HTTP request. @param http_method: GET, POST, PUT, DELETE @param path: The path of the resource. @param payload: The payload to attach to the body of the request. @param headers: The headers to set for this request. @return: The result of REST request """ #pdb.set_trace() LOG.debug ("invoke : http_method = "+str(http_method)) # Prepare URL and params url = self._normalize(path) if http_method in ("GET", "DELETE"): if payload is not None: self.logger.warn( "GET http_method does not pass any payload. Path '%s'" % (path,)) payload = None buf = cStringIO.StringIO() self.c.setopt(pycurl.WRITEFUNCTION, buf.write) self.c.setopt(pycurl.SSL_VERIFYPEER, 0) LOG.debug ("invoke : url = "+str(url)) # set http_method if http_method == "GET": self.c.setopt(pycurl.HTTPGET, 1) elif http_method == "HEAD": self.c.setopt(pycurl.HTTPGET, 1) self.c.setopt(pycurl.NOBODY, 1) elif http_method == "POST": self.c.setopt(pycurl.POST, 1) elif http_method == "PUT": self.c.setopt(pycurl.UPLOAD, 1) else: self.c.setopt(pycurl.CUSTOMREQUEST, http_method) if http_method in ('POST','PUT'): LOG.debug( "data..........."+str(payload)) data = json.dumps(payload) data= data.decode('unicode-escape') LOG.debug( data) data = self._to_bytestring(data) LOG.debug( data) content = StringIO.StringIO(data) LOG.debug( content) content_length = len(data) LOG.debug( "content_length........."+str(content_length)) if http_method == 'POST': self.c.setopt(pycurl.POSTFIELDSIZE, content_length) else: self.c.setopt(pycurl.INFILESIZE, content_length) self.c.setopt(pycurl.READFUNCTION, content.read) self.c.setopt(self.c.URL, url) headers = self._get_headers(headers) self.c.setopt(pycurl.HTTPHEADER, ["%s: %s" % pair for pair in sorted(headers.iteritems())]) LOG.debug ("invoke : pycurl.EFFECTIVE_URL = "+self.c.getinfo(pycurl.EFFECTIVE_URL)) try: self.c.perform() except Exception, ex: LOG.debug (sys.stderr, str(ex)) raise ex contents_type= self.c.getinfo(pycurl.CONTENT_TYPE) LOG.debug ("invoke : pycurl.CONTENT_TYPE = "+contents_type) code = self.c.getinfo(pycurl.RESPONSE_CODE) LOG.debug ("invoke : pycurl.RESPONSE_CODE = "+str(code)) response = buf.getvalue() buf.close() LOG.debug ("invoke : COMPLETED ") return response , code , contents_type def _to_bytestring(self ,s): # if not isinstance(s, basestring): # raise TypeError("value should be a str or unicode") if isinstance(s, unicode): return s.encode('utf-8') return s def _normalize(self, path): res = self._host_url if path: res += posixpath.normpath('/' + path.lstrip('/')) return uri_encoding(res)
python
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2018-10-16 07:07 from __future__ import unicode_literals from django.db import migrations import jsonfield.fields class Migration(migrations.Migration): dependencies = [ ('cart', '0005_auto_20180111_0700'), ] operations = [ migrations.AddField( model_name='cartline', name='package_offer_data', field=jsonfield.fields.JSONField(blank=True, default={}, verbose_name='package_offer_data'), ), ]
python
from tkinter import * import sys # Medicine Menu def mclickedbtn1(): print("Hello") def mclickedbtn2(): print("Hello") def mclickedbtn3(): print("Hello") def mclickedbtn4(): print("Hello") def clickedbtn1(): medicine_menu_window = Tk() medicine_menu_window.geometry('350x200') medicine_menu_window.title("Pharmacy Management Software") lbl = Label(medicine_menu_window, text="Medicine Menu!") lbl.grid(column=0, row=0) lbl2 = Label(medicine_menu_window, text="What would you like to do!") lbl2.grid(column=0, row=1) btn1 = Button(medicine_menu_window, text="Add New Medicine",fg="red", command=mclickedbtn1) btn1.grid(column=0, row=2) btn2 = Button(medicine_menu_window, text="Search Medicine",fg="red", command=mclickedbtn2) btn2.grid(column=0, row=3) btn3 = Button(medicine_menu_window, text="Update Medicine",fg="red", command=mclickedbtn3) btn3.grid(column=0, row=4) btn4 = Button(medicine_menu_window, text="Medicines to be purchased",fg="red", command=mclickedbtn4) btn4.grid(column=0, row=5) btn4 = Button(medicine_menu_window, text="Return to main menu",fg="red", command=mclickedbtn4) btn4.grid(column=0, row=6) medicine_menu_window.mainloop() #Customer Menu def clickedbtn2(): c_menu_window = Tk() c_menu_window.geometry('350x200') c_menu_window.title("Pharmacy Management Software") lbl = Label(c_menu_window, text="Customer Menu!") lbl.grid(column=0, row=0) lbl2 = Label(c_menu_window, text="What would you like to do!") lbl2.grid(column=0, row=1) btn1 = Button(c_menu_window, text="Search Customer",fg="red", command=mclickedbtn1) btn1.grid(column=0, row=2) btn2 = Button(c_menu_window, text="New Customer",fg="red", command=mclickedbtn2) btn2.grid(column=0, row=3) btn3 = Button(c_menu_window, text="Update Customer Info",fg="red", command=mclickedbtn3) btn3.grid(column=0, row=4) btn4 = Button(c_menu_window, text="Return to main menu",fg="red", command=mclickedbtn4) btn4.grid(column=0, row=5) c_menu_window.mainloop() #Supplier Menu def clickedbtn3(): s_menu_window = Tk() s_menu_window.geometry('350x200') s_menu_window.title("Pharmacy Management Software") lbl = Label(s_menu_window, text="Supplier Menu!") lbl.grid(column=0, row=0) lbl2 = Label(s_menu_window, text="What would you like to do!") lbl2.grid(column=0, row=1) btn1 = Button(s_menu_window, text="Search Supplier",fg="red", command=mclickedbtn1) btn1.grid(column=0, row=2) btn2 = Button(s_menu_window, text="New Supplier",fg="red", command=mclickedbtn2) btn2.grid(column=0, row=3) btn3 = Button(s_menu_window, text="Update Supplier Info",fg="red", command=mclickedbtn3) btn3.grid(column=0, row=4) btn4 = Button(s_menu_window, text="Return to main menu",fg="red", command=mclickedbtn4) btn4.grid(column=0, row=5) s_menu_window.mainloop() #Report Menu def clickedbtn4(): r_menu_window = Tk() r_menu_window.geometry('350x200') r_menu_window.title("Pharmacy Management Software") lbl = Label(r_menu_window, text="Supplier Menu!") lbl.grid(column=0, row=0) lbl2 = Label(r_menu_window, text="What would you like to do!") lbl2.grid(column=0, row=1) btn1 = Button(r_menu_window, text="Day Sales",fg="red", command=mclickedbtn1) btn1.grid(column=0, row=2) btn2 = Button(r_menu_window, text="Month Sales",fg="red", command=mclickedbtn2) btn2.grid(column=0, row=3) btn3 = Button(r_menu_window, text="Day Purchase",fg="red", command=mclickedbtn3) btn3.grid(column=0, row=4) btn3 = Button(r_menu_window, text="Month Purchase",fg="red", command=mclickedbtn3) btn3.grid(column=0, row=5) btn3 = Button(r_menu_window, text="Profit Report",fg="red", command=mclickedbtn3) btn3.grid(column=0, row=6) btn4 = Button(r_menu_window, text="Return to main menu",fg="red", command=mclickedbtn4) btn4.grid(column=0, row=7) r_menu_window.mainloop() #Invoicing Menu def clickedbtn5(): r_menu_window = Tk() r_menu_window.geometry('350x200') r_menu_window.title("Pharmacy Management Software") lbl = Label(r_menu_window, text="Invoice Menu!") lbl.grid(column=0, row=0) lbl2 = Label(r_menu_window, text="What would you like to do!") lbl2.grid(column=0, row=1) btn1 = Button(r_menu_window, text="Supplier Invoice",fg="red", command=mclickedbtn1) btn1.grid(column=0, row=2) btn2 = Button(r_menu_window, text="Customer Invoice",fg="red", command=mclickedbtn2) btn2.grid(column=0, row=3) btn4 = Button(r_menu_window, text="Return to main menu",fg="red", command=mclickedbtn4) btn4.grid(column=0, row=4) r_menu_window.mainloop() #Main Menu window = Tk() window.geometry('350x200') window.title("Pharmacy Management Software") lbl = Label(window, text="Welcome to Pharmacy Management Software!") lbl.grid(column=0, row=0) lbl2 = Label(window, text="What would you like to do!") lbl2.grid(column=0, row=1) btn1 = Button(window, text="Medicine Menu",fg="red", command=clickedbtn1) btn1.grid(column=0, row=2) btn2 = Button(window, text="Customer Menu",fg="red", command=clickedbtn2) btn2.grid(column=0, row=3) btn3 = Button(window, text="Supplier Menu",fg="red", command=clickedbtn3) btn3.grid(column=0, row=4) btn4 = Button(window, text="Report Menu",fg="red", command=clickedbtn4) btn4.grid(column=0, row=5) btn5 = Button(window, text="Invoicing Menu",fg="red", command=clickedbtn5) btn5.grid(column=0, row=6) window.mainloop()
python
# coding: utf-8 # # Explore offset vector # # We want to know what the offset vector is capturing. Theoretically it should be capturing the "essence of gene A" since it is defined by taking the samples with the highest expression of gene A and the lowest expression of gene A. # # We want to test if this offset vector is capturing genes in group A and B # In[1]: import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib_venn import venn2 randomState = 123 from numpy.random import seed seed(randomState) # In[2]: # Load data base_dir = os.path.join(os.path.dirname(os.getcwd()), "data") analysis_name = "sim_AB_2775_300_v2" offset_gene_file = os.path.join(os.path.dirname(os.getcwd()), "data", analysis_name, "offset_gene_space.txt") offset_vae_file = os.path.join(os.path.dirname(os.getcwd()), "encoded", analysis_name, "offset_latent_space_vae.txt") A_file = os.path.join(base_dir, analysis_name, "geneSetA.txt") B_file = os.path.join(base_dir, analysis_name, "geneSetB.txt") weight_file = os.path.join(os.path.dirname(os.getcwd()), "data", analysis_name, "VAE_weight_matrix.txt") # In[3]: # Read gene space offset offset_gene_space = pd.read_table(offset_gene_file, header=0, index_col=0) offset_gene_space # In[4]: # Read VAE space offset offset_vae_space = pd.read_table(offset_vae_file, header=0, index_col=0) offset_vae_space # In[5]: # Read genes in set A geneSetA = pd.read_table(A_file, header=0, index_col=0) geneSetA_ls = [l[0] for l in geneSetA.values.tolist()] geneSetA_set = set(geneSetA_ls) # In[6]: # Read genes in set B geneSetB = pd.read_table(B_file, header=0, index_col=0) geneSetB_ls = [l[0] for l in geneSetB.values.tolist()] geneSetB_set = set(geneSetB_ls) # In[7]: # Read weight matrix weight = pd.read_table(weight_file, header=0, index_col=0).T weight.head(5) # ## Explore gene space offset # # 1. What genes are most highly weighted? # 2. What percentage of these genes are in gene set A and B? # In[8]: # Distribution of weights in offset vector sns.distplot(offset_gene_space) # In[9]: # Get gene ids with the highest weight from the offset vector percentile = 95 threshold = np.percentile(offset_gene_space, percentile) print("Threshold cutoff is {}".format(threshold)) highest_genes = offset_gene_space.T[offset_gene_space.T[0] > threshold].index # In[10]: # Compare the overlap of genes in set A and highest weighted genes in offset venn2([set(highest_genes), geneSetA_set], set_labels = ('High weight offset genes', 'Group A genes')) plt.show() # In[11]: # Compare the overlap of genes in set B and highest weighted genes in offset venn2([set(highest_genes), geneSetB_set], set_labels = ('High weight offset genes', 'Group B genes')) plt.show() # ## Explore latent space (VAE) offset # 1. Which feature has the highest value? # 2. Are genes in set A and B highly weighted # In[12]: # Distribution of weights in offset vector sns.distplot(offset_vae_space) # In[13]: # Get latent feature with the max and min value max_feature = offset_vae_space.T.idxmax()[0] min_feature = offset_vae_space.T.idxmin()[0] print("Max feature is {} and min feature is {}".format(max_feature, min_feature)) # ### Genes in feature that corresponds to max offset score # In[14]: # Get gene weights for max latent feature genes_max_feature = weight[int(max_feature)] sns.distplot(genes_max_feature) # In[15]: # Get gene ids with the highest positive weight from the max feature selected percentile = 95 threshold = np.percentile(genes_max_feature, percentile) print("Threshold cutoff is {}".format(threshold)) highest_genes = genes_max_feature[genes_max_feature > threshold].index # In[16]: # Get gene ids with the highest negative weight from the max feature selected percentile = 5 threshold = np.percentile(genes_max_feature, percentile) print("Threshold cutoff is {}".format(threshold)) lowest_genes = genes_max_feature[genes_max_feature < threshold].index # In[17]: # Compare the overlap of genes in set A and highest positive weighted genes in the max feature venn2([set(highest_genes), geneSetA_set], set_labels = ('High positive weight genes in feature {}'.format(max_feature), 'Group A genes')) plt.show() # In[18]: # Output intersected sets intersect_highpos_geneA = geneSetA_set.intersection(set(highest_genes)) intersect_highpos_geneA_df = pd.DataFrame(list(intersect_highpos_geneA), columns=['gene id']) intersect_file = os.path.join(base_dir, analysis_name, "intersect_feature{}_highpos_geneA.txt".format(max_feature)) intersect_highpos_geneA_df.to_csv(intersect_file, sep='\t') # In[19]: # Compare the overlap of genes in set B and highest positive weighted genes in the max feature venn2([set(highest_genes), geneSetB_set], set_labels = ('High positive weight genes in feature {}'.format(max_feature), 'Group B genes')) plt.show() # In[20]: # Output intersected sets intersect_highpos_geneB = geneSetB_set.intersection(set(highest_genes)) intersect_highpos_geneB_df = pd.DataFrame(list(intersect_highpos_geneB), columns=['gene id']) intersect_file = os.path.join(base_dir, analysis_name, "intersect_feature{}_highpos_geneB.txt".format(max_feature)) intersect_highpos_geneB_df.to_csv(intersect_file, sep='\t') # In[21]: # Compare the overlap of genes in set A and highest negative weighted genes in the max feature venn2([set(lowest_genes), geneSetA_set], set_labels = ('High negative weight genes in feature {}'.format(max_feature), 'Group A genes')) plt.show() # In[22]: # Compare the overlap of genes in set B and highest negative weighted genes in the max feature venn2([set(lowest_genes), geneSetB_set], set_labels = ('High negative weight genes in feature {}'.format(max_feature), 'Group B genes')) plt.show() # In[23]: # Output intersected sets intersect_highneg_geneB = geneSetB_set.intersection(set(lowest_genes)) intersect_highneg_geneB_df = pd.DataFrame(list(intersect_highneg_geneB), columns=['gene id']) intersect_file = os.path.join(base_dir, analysis_name, "intersect_feature{}_highneg_geneB.txt".format(max_feature)) intersect_highneg_geneB_df.to_csv(intersect_file, sep='\t') # ### Genes in feature that corresponds to minimum offset score # In[24]: # Get gene weights for min latent feature genes_min_feature = weight[int(min_feature)] sns.distplot(genes_min_feature) # In[25]: # Get gene ids with the highest positive weight from the min feature selected percentile = 95 threshold = np.percentile(genes_min_feature, percentile) print("Threshold cutoff is {}".format(threshold)) highest_genes = genes_min_feature[genes_min_feature > threshold].index # In[26]: # Get gene ids with the highest negative weight from the min feature selected percentile = 5 threshold = np.percentile(genes_min_feature, percentile) print("Threshold cutoff is {}".format(threshold)) lowest_genes = genes_min_feature[genes_min_feature < threshold].index # In[27]: # Compare the overlap of genes in set A and highest positive weighted genes in the min feature venn2([set(highest_genes), geneSetA_set], set_labels = ('High positive weight genes in feature {}'.format(min_feature), 'Group A genes')) plt.show() # In[28]: # Compare the overlap of genes in set B and highest positive weighted genes in the min feature venn2([set(highest_genes), geneSetB_set], set_labels = ('High positive weight genes in feature {}'.format(min_feature), 'Group B genes')) plt.show() # In[29]: # Output intersected sets intersect_highpos_geneB = geneSetB_set.intersection(set(highest_genes)) intersect_highpos_geneB_df = pd.DataFrame(list(intersect_highpos_geneB), columns=['gene id']) intersect_file = os.path.join(base_dir, analysis_name, "intersect_feature{}_highpos_geneB.txt".format(min_feature)) intersect_highpos_geneB_df.to_csv(intersect_file, sep='\t') # In[30]: # Compare the overlap of genes in set A and highest negative weighted genes in the min feature venn2([set(lowest_genes), geneSetA_set], set_labels = ('High negative weight genes in feature {}'.format(min_feature), 'Group A genes')) plt.show() # In[31]: # Output intersected sets intersect_highneg_geneA = geneSetA_set.intersection(set(lowest_genes)) intersect_highneg_geneA_df = pd.DataFrame(list(intersect_highneg_geneA), columns=['gene id']) intersect_file = os.path.join(base_dir, analysis_name, "intersect_feature{}_highneg_geneA.txt".format(min_feature)) intersect_highneg_geneA_df.to_csv(intersect_file, sep='\t') # In[32]: # Compare the overlap of genes in set B and highest negative weighted genes in the min feature venn2([set(lowest_genes), geneSetB_set], set_labels = ('High negative weight genes in feature {}'.format(min_feature), 'Group B genes')) plt.show() # In[33]: # Output intersected sets intersect_highneg_geneB = geneSetB_set.intersection(set(lowest_genes)) intersect_highneg_geneB_df = pd.DataFrame(list(intersect_highneg_geneB), columns=['gene id']) intersect_file = os.path.join(base_dir, analysis_name, "intersect_feature{}_highneg_geneB.txt".format(min_feature)) intersect_highneg_geneB_df.to_csv(intersect_file, sep='\t') # Observation: # # Notice that the overlap of the high weight genes in the min features and max feature are very similar -- why is this?
python
import os import platform import click import kungfu.yijinjing.journal as kfj import pyyjj @click.group(invoke_without_command=True) @click.option('-H', '--home', type=str, help="kungfu home folder, defaults to APPDATA/kungfu/app, where APPDATA defaults to %APPDATA% on windows, " "~/.config or $XDG_CONFIG_HOME (if set) on linux, ~/Library/Application Support on mac") @click.option('-l', '--log_level', type=click.Choice(['trace', 'debug', 'info', 'warning', 'error', 'critical']), default='warning', help='logging level') @click.option('-n', '--name', type=str, help='name for the process, defaults to command if not set') @click.pass_context def kfc(ctx, home, log_level, name): if not home: osname = platform.system() user_home = os.path.expanduser('~') if osname == 'Linux': xdg_config_home = os.getenv('XDG_CONFIG_HOME') home = xdg_config_home if xdg_config_home else os.path.join(user_home, '.config') if osname == 'Darwin': home = os.path.join(user_home, 'Library', 'Application Support') if osname == 'Windows': home = os.getenv('APPDATA') home = os.path.join(home, 'kungfu', 'app') os.environ['KF_HOME'] = ctx.home = home os.environ['KF_LOG_LEVEL'] = ctx.log_level = log_level # have to keep locator alive from python side # https://github.com/pybind/pybind11/issues/1546 ctx.locator = kfj.Locator(home) ctx.system_config_location = pyyjj.location(pyyjj.mode.LIVE, pyyjj.category.SYSTEM, 'etc', 'kungfu', ctx.locator) if ctx.invoked_subcommand is None: click.echo(kfc.get_help(ctx)) else: ctx.name = name if name else ctx.invoked_subcommand pass def pass_ctx_from_parent(ctx): ctx.home = ctx.parent.home ctx.log_level = ctx.parent.log_level ctx.locator = ctx.parent.locator ctx.system_config_location = ctx.parent.system_config_location ctx.name = ctx.parent.name def execute(): kfc(auto_envvar_prefix='KF')
python
#!/usr/bin/env python # coding: utf-8 # # Gaussian Mixture Model # # GMM runs on 5 features by default: beam, gate, time, velocity, and spectral # width. It performs well overall, even on clusters that are not well-separated # in space and time. However, it will often create clusters that are too high # variance,causing it to pull in scattered points that do not look like they # should be clustered together - see the fanplots in cluster.ipynb. It is also # slow, taking 5-10 minutes for one day of data. # # Parameters for each algorithm are set to default values (shown below), but can # be modified using the class constructor. # # ### Optional arguments for GMM class constructor # # n_clusters=30 # The number of GMM clusters to create. # # cov='full' # The covariance matrix to use for GMM. # See this post for more details: # https://stats.stackexchange.com/questions/326671/different-covariance-types-for-gaussian-mixture-models # # features=['beam', 'gate', 'time', 'vel', 'wid'] # Names of the features for GMM to run on. Can also include 'elv'. # # BoxCox=False # If BoxCox=True, 'wid' and 'vel' will be BoxCox transformed to # convert them from an exponential distribution to a Gaussian. # In[1]: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib as mpl import sys sys.path.insert(0, '..') from algorithms.gmm import GMM import datetime import numpy as np import itertools start_time = datetime.datetime(2017, 4, 4) end_time = datetime.datetime(2017, 4, 5) gmm = GMM(start_time, end_time, 'cvw', cov='full', n_clusters=10, BoxCox=True, load_model=False, save_model=False) print(gmm.runtime) # In[2]: #get_ipython().run_line_magic('matplotlib', 'inline') # Make RTI plots to compare AJ's threshold with traditional threshold #gmm.plot_rti(14, 'Ribiero') # Slooow # Make fanplots of the individual clusters over some time period #fanplot_start = datetime.datetime(2017, 4, 4, 4, 0, 0) #fanplot_end = datetime.datetime(2017, 4, 4, 4, 0, 0) #gmm.plot_fanplots(fanplot_start, fanplot_end) # In[ ]: #lowest_bic = np.infty #bic = [] #n_components_range = range(1, 31) #cv_types = ['spherical', 'full'] #for cv_type in cv_types: # for n_components in n_components_range: # # Fit a Gaussian mixture with EM # gmm = GMM(start_time, end_time, 'cvw', cov=cv_type, n_clusters=n_components, BoxCox=True, load_model=False, save_model=False) # bic.append(gmm._bic) # if bic[-1] < lowest_bic: # lowest_bic = bic[-1] # best_gmm = gmm #bic = np.array(bic) #color_iter = itertools.cycle(['navy','darkorange']) #clf = best_gmm #bars = [] # Plot the BIC scores #plt.figure(figsize=(5, 3)) #spl = plt.subplot(1, 1, 1) #for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): # xpos = np.array(n_components_range) + .2 * (i - 2) # bars.append(plt.bar(xpos, bic[i * len(n_components_range): # (i + 1) * len(n_components_range)], # width=.2, color=color)) #plt.xticks(n_components_range[::3]) #plt.yscale("log") #plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) #plt.title('BIC score per model') #xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ # .2 * np.floor(bic.argmin() / len(n_components_range)) #plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) #spl.set_xlabel('Number of components') #spl.legend([b[0] for b in bars], cv_types) #plt.savefig("../plots/bic.png", bbox_inches="tight")
python
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2017-12-05 07:47 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('projects', '0055_merge_20171205_0847'), ] operations = [ migrations.CreateModel( name='CustomProjectField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('value', models.CharField(blank=True, max_length=5000, null=True)), ], ), migrations.CreateModel( name='CustomProjectFieldSettings', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('description', models.CharField(blank=True, max_length=200, null=True)), ('sequence', models.PositiveIntegerField(db_index=True, default=0, editable=False)), ('project_settings', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='extra_fields', to='projects.ProjectPlatformSettings')), ], options={ 'ordering': ['sequence'], }, ), migrations.AlterField( model_name='projectsearchfilter', name='name', field=models.CharField(choices=[(b'location', 'Location'), (b'theme', 'Theme'), (b'skills', 'Skill'), (b'date', 'Date'), (b'status', 'Status'), (b'type', 'Type'), (b'category', 'Category')], max_length=100), ), migrations.AddField( model_name='customprojectfield', name='field', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projects.CustomProjectFieldSettings'), ), migrations.AddField( model_name='customprojectfield', name='project', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projects.Project', verbose_name=b'extra'), ), ]
python
from pathlib import Path from fhir.resources.codesystem import CodeSystem from oops_fhir.utils import CodeSystemConcept __all__ = ["AuditEventSourceType"] _resource = CodeSystem.parse_file(Path(__file__).with_suffix(".json")) class AuditEventSourceType: """ Audit Event Source Type The type of process where the audit event originated from. Status: active - Version: 4.0.1 Copyright None http://terminology.hl7.org/CodeSystem/security-source-type """ one = CodeSystemConcept( { "code": "1", "definition": "End-user display device, diagnostic device.", "display": "User Device", } ) """ User Device End-user display device, diagnostic device. """ two = CodeSystemConcept( { "code": "2", "definition": "Data acquisition device or instrument.", "display": "Data Interface", } ) """ Data Interface Data acquisition device or instrument. """ three = CodeSystemConcept( { "code": "3", "definition": "Web Server process or thread.", "display": "Web Server", } ) """ Web Server Web Server process or thread. """ four = CodeSystemConcept( { "code": "4", "definition": "Application Server process or thread.", "display": "Application Server", } ) """ Application Server Application Server process or thread. """ five = CodeSystemConcept( { "code": "5", "definition": "Database Server process or thread.", "display": "Database Server", } ) """ Database Server Database Server process or thread. """ six = CodeSystemConcept( { "code": "6", "definition": "Security server, e.g. a domain controller.", "display": "Security Server", } ) """ Security Server Security server, e.g. a domain controller. """ seven = CodeSystemConcept( { "code": "7", "definition": "ISO level 1-3 network component.", "display": "Network Device", } ) """ Network Device ISO level 1-3 network component. """ eight = CodeSystemConcept( { "code": "8", "definition": "ISO level 4-6 operating software.", "display": "Network Router", } ) """ Network Router ISO level 4-6 operating software. """ nine = CodeSystemConcept( { "code": "9", "definition": "Other kind of device (defined by DICOM, but some other code/system can be used).", "display": "Other", } ) """ Other Other kind of device (defined by DICOM, but some other code/system can be used). """ class Meta: resource = _resource
python
from fastapi_tag.base import model __all__ = ["model"]
python
#!/usr/bin/env python """ plot energy usage by PM jobs """ __author__ = "Jan Balewski" __email__ = "[email protected]" import numpy as np import time from pprint import pprint from toolbox.Plotter_Backbone import Plotter_Backbone from toolbox.Util_IOfunc import read_one_csv from toolbox.Util_Misc import smoothF import argparse def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("-v","--verbosity",type=int,choices=[0, 1, 2],help="increase output verbosity", default=1, dest='verb') parser.add_argument("-j", "--jobId",default='65244', help=" job ID") parser.add_argument("-o", "--outPath", default='out/',help="output path for plots and tables") parser.add_argument( "--smoothWindow", default=10, type=int,help=" smooth the data using a window with requested size (bins)") parser.add_argument( "-X","--noXterm", dest='noXterm', action='store_true', default=False, help="disable X-term for batch mode") args = parser.parse_args() args.prjName='cosmoHpo' #PM args.sourcePath='/pscratch/sd/b/balewski/tmp_digitalMind/neuInv/benchmark/september/' args.formatVenue='prod' for arg in vars(args): print( 'myArg:',arg, getattr(args, arg)) return args #...!...!.................... def ana_one_job(jobId,table): tL=[]; eL={'node_ene_J':[],'cpu_ene_J':[],'memory_ene_J':[]} for k in range(4): eL['gpu%d_ene_J'%k]=[] for rec in table: #print('rec',rec) t=float(rec['unix_millisec'])/1000. tL.append(t) for x in eL: eL[x].append( float(rec[x])) #print('t',t,'eL',eL) N=len(tL) eL['4gpu_energy']=[] # sume GPU energy for i in range(N): sum=0 for k in range(4): sum+=eL['gpu%d_ene_J'%k][i] eL['4gpu_energy'].append(sum) #... convert list to NP arrays for x in eL: eL[x]=np.array(eL[x]) if args.smoothWindow>0: for x in eL: eL[x]=smoothF(eL[x],args.smoothWindow) #..... convert energy to power tL=np.array(tL) tL-=tL[0] pL={x:[0] for x in eL} for i in range(1,N): dt=tL[i]-tL[i-1] #print(i,dt) for x in eL: pL[x].append( (eL[x][i]- eL[x][i-1])/dt) eT={} for x in eL: eT[x]= eL[x][-1]- eL[x][0] elaT=tL[-1]-tL[0] outD={'elaT':elaT,'tot_ene':eT,'jobId':jobId,'hostname':rec['hostname']} pprint(outD) outD['power']=pL outD['time']=tL return outD #............................ #............................ #............................ class Plotter_EnergyUse(Plotter_Backbone): def __init__(self, args): Plotter_Backbone.__init__(self,args) #...!...!.................... def one_job(self,jobD,figId=5): nrow,ncol=1,1 # grid is (yN,xN) - y=0 is at the top, so dumm figId=self.smart_append(figId) self.plt.figure(figId,facecolor='white', figsize=(10,6)) ax=self.plt.subplot(nrow,ncol,1) tit='jobId=%s, node=%s'%(jobD['jobId'],jobD['hostname']) T=jobD['time'] #for k in range(1,4): jobD['power'].pop('gpu%d_ene_J'%k) for name in jobD['power']: Y=jobD['power'][name] ene=jobD['tot_ene'][name] /3600. dLab='%s: %.1f'%(name,ene) #print(T,Y) ax.plot(T,Y,label=dLab) ax.legend(loc='best', title='total used energy: (Wh)') ax.set(xlabel='wall time (sec)',ylabel='power (W)', title=tit) ax.grid(True) return #if j==0: ax.text(0.1,0.85,'n=%d'%len(lossV),transform=ax.transAxes) #================================= #================================= # M A I N #================================= #================================= args=get_parser() stockD={} jobId=args.jobId inpF=args.sourcePath+'%s/log.energy_%s.csv'%(jobId,jobId) table,label=read_one_csv(inpF) jobD=ana_one_job(jobId,table) plot=Plotter_EnergyUse(args) plot.one_job(jobD) plot.display_all('aa')
python
# -*- coding: utf-8 -*- # ============================================================================= # MIT License # # Copyright (c) 2018 Charles Jekel # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ============================================================================= import numpy as np import math # Define a function that deterimines the circle of best fit for a two # dimensional data set. Simply supply the X and Y data vectors of the data # set, and the function returns the x and y center points of the circle, as # well as the radius of the circle # Usage: xCenter, yCenter, r = circleFit(X,Y) def circleFit(X,Y): # convert the input vectors to numpy arrays X = np.array(X) Y = np.array(Y) # assemble the A matrix A = np.zeros((len(X),3)) A[:,0] = X*2 A[:,1] = Y*2 A[:,2] = 1 # assemble the f matrix f = np.zeros((len(X),1)) f[:,0] = (X*X) + (Y*Y) C, residules, rank, singval = np.linalg.lstsq(A,f) # solve for r r = math.sqrt((C[0]*C[0])+(C[1]*C[1])+C[2]) return C[0], C[1], r;
python
# Script to get the system's info from __future__ import print_function import platform import multiprocessing as mp ''' Functions: ------------------------------------------------------ sysinfo(display = True, return_info = False) Gets the details about the system ------------------------------------------------------ ''' # Function to get the system's information def sysinfo(display = True, return_info = False): # ---------------------------------------------------- # INPUT: # ---------------------------------------------------- # display : bool : condition to print details # return_info : bool : condition to return details # ---------------------------------------------------- # OUTPUT: # ---------------------------------------------------- # info : dict : stores the information of the system # ---------------------------------------------------- # Dictionary storing the information info = { 'python_version' : platform.python_version(), 'compiler' : platform.python_compiler(), 'os' : platform.system(), 'verison' : platform.release(), 'machine' : platform.machine(), 'processor' : platform.processor(), 'cores' : mp.cpu_count(), 'interpreter' : platform.architecture()[0] } # Displays the system details if display: print('> Python version :', info['python_version']) print('> Compiler :', info['compiler']) print('> Operating System :', info['os']) print('> Version :', info['verison']) print('> Machine :', info['machine']) print('> Processor :', info['processor']) print('> CPU count :', info['cores']) print('> Interpreter :', info['interpreter']) # Returns the system info if return_info: return info if __name__ == '__main__': sysinfo()
python
import LevelBuilder from sprites import * def render(name,bg): lb = LevelBuilder.LevelBuilder(name+".plist",background=bg) lb.addObject(Hero.HeroSprite(x=42, y=245,width=32,height=32)) lb.addObject(Beam.BeamSprite(x=42, y=287,width=17,height=14,angle='0',restitution=0.2,static='true',friction=0.5,density=20 ).setName('HeroHook')) lb.addObject(Joints.DistanceJoint(body1='Hero',body2='HeroHook',damping='0.2',freq='5' )) lb.addObject(Friend.FriendSprite(classname = 'AccelFriendSprite', x=460, y=16,width=32,height=32,angle='0',restitution=0.2,static='false',friction=0.5,density=20 ).setName('Friend')) lb.addObject(Star.StarSprite(x=364, y=264,width=32,height=32)) lb.addObject(Beam.BeamSprite(x=239, y=239,width=282,height=14,angle='0',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.addObject(Beam.BeamSprite(x=306, y=99,width=282,height=14,angle='14',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.addObject(Beam.BeamSprite(x=252, y=-1,width=282,height=14,angle='-10',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.addObject(Beam.BeamSprite(x=271, y=169,width=229,height=14,angle='0',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.addObject(Beam.BeamSprite(x=394, y=172,width=33,height=14,angle='15',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.addObject(Beam.BeamSprite(x=239, y=293,width=282,height=14,angle='2',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.addObject(Enemy.EnemySprite(x=375, y=310,width=8,height=8,angle='0',restitution=0.2,static='false',friction=0.5,density=20 )) lb.addObject(Beam.BeamSprite(x=-21, y=12,width=282,height=14,angle='5',restitution=0.2,static='true',friction=0.5,density=20 ).setName('Beam')) lb.render()
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys class UnsupportedPythonError(Exception): pass __minimum_python_version__ = "3.6" if sys.version_info < tuple((int(val) for val in __minimum_python_version__.split('.'))): raise UnsupportedPythonError(f"pyvib does not support Python < {__minimum_python_version__}") __version__ = "0.2.dev1" # this indicates whether or not we are in the package's setup.py # see https://github.com/astropy/astropy/blob/master/astropy/__init__.py#L63 try: _PYVIB_SETUP_ except NameError: import builtins builtins._PYVIB_SETUP_ = False if not _PYVIB_SETUP_: pass #from pyvib.utils.config import load_config, print_config #from pyvib.utils.sysinfo import system_info # Load user configuration #config = load_config() #__all__ = ['config', 'system_info']
python
# Generated by Django 2.1.5 on 2019-02-07 23:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hyperion', '0003_userprofile_url'), ] operations = [ migrations.AddField( model_name='userprofile', name='github', field=models.URLField(blank=True), ), ]
python
import random from evennia import TICKER_HANDLER from evennia import CmdSet, Command, DefaultRoom from evennia import utils, create_object, search_object from evennia import syscmdkeys, default_cmds from evennia.contrib.text_sims.objects import LightSource, TutorialObject # the system error-handling module is defined in the settings. We load the # given setting here using utils.object_from_module. This way we can use # it regardless of if we change settings later. from django.conf import settings _SEARCH_AT_RESULT = utils.object_from_module(settings.SEARCH_AT_RESULT) # for the @detail command we inherit from MuxCommand, since # we want to make use of MuxCommand's pre-parsing of '=' in the # argument. class CmdTutorialSetDetail(default_cmds.MuxCommand): """ sets a detail on a room Usage: @detail <key> = <description> @detail <key>;<alias>;... = description Example: @detail walls = The walls are covered in ... @detail castle;ruin;tower = The distant ruin ... This sets a "detail" on the object this command is defined on (TutorialRoom for this tutorial). This detail can be accessed with the TutorialRoomLook command sitting on TutorialRoom objects (details are set as a simple dictionary on the room). This is a Builder command. We custom parse the key for the ;-separator in order to create multiple aliases to the detail all at once. """ key = "@detail" locks = "cmd:perm(Builders)" help_category = "TutorialWorld" def func(self): """ All this does is to check if the object has the set_detail method and uses it. """ if not self.args or not self.rhs: self.caller.msg("Usage: @detail key = description") return if not hasattr(self.obj, "set_detail"): self.caller.msg("Details cannot be set on %s." % self.obj) return for key in self.lhs.split(";"): # loop over all aliases, if any (if not, this will just be # the one key to loop over) self.obj.set_detail(key, self.rhs) self.caller.msg("Detail set: '%s': '%s'" % (self.lhs, self.rhs)) class TutorialRoomCmdSet(CmdSet): """ Implements the simple tutorial cmdset. This will overload the look command in the default CharacterCmdSet since it has a higher priority (ChracterCmdSet has prio 0) """ key = "tutorial_cmdset" priority = 1 def at_cmdset_creation(self): "add the tutorial-room commands" self.add(CmdTutorialSetDetail()) ##### All rooms are derived from this ###### class TutorialRoom(DefaultRoom): def at_object_creation(self): "Called when room is first created" self.db.desc = "Hello from the Baseroom." self.cmdset.add_default(TutorialRoomCmdSet) def at_object_receive(self, new_arrival, source_location): """ When an object enter a tutorial room we tell other objects in the room about it by trying to call a hook on them. The Mob object uses this to cheaply get notified of enemies without having to constantly scan for them. Args: new_arrival (Object): the object that just entered this room. source_location (Object): the previous location of new_arrival. """ if new_arrival.has_player and not new_arrival.is_superuser: # this is a character for obj in self.contents_get(exclude=new_arrival): if hasattr(obj, "at_new_arrival"): obj.at_new_arrival(new_arrival) def return_detail(self, detailkey): """ This looks for an Attribute "obj_details" and possibly returns the value of it. Args: detailkey (str): The detail being looked at. This is case-insensitive. """ details = self.db.details if details: return details.get(detailkey.lower(), None) def set_detail(self, detailkey, description): """ This sets a new detail, using an Attribute "details". Args: detailkey (str): The detail identifier to add (for aliases you need to add multiple keys to the same description). Case-insensitive. description (str): The text to return when looking at the given detailkey. """ if not self.db.details: self.db.details = {} # to keep the descriptions of the room separate from object details if detailkey.startswith('desc'): if 'desc' not in self.db.details: self.db.details['desc'] = {} self.db.details['desc'][detailkey.lower()] = description else: self.db.details[detailkey.lower()] = description def return_appearance(self, looker): """ This formats a description. It is the hook a 'look' command should call. Args: looker (Object): Object doing the looking. """ if not looker: return # # get and identify all objects # visible = (con for con in self.contents if con != looker and # con.access(looker, "view")) # exits, users, things = [], [], [] # for con in visible: # key = con.key # if con.destination: # exits.append(key) # elif con.has_player: # users.append("{c%s{n" % key) # else: # things.append(key) # get description, build string string = "{c%s{n\n" % self.key if self.db.details: randIndex = random.randint(0, len(self.db.details['desc'])-1) desc = self.db.details['desc'].values()[randIndex] else: desc = self.db.desc return desc
python
#coding=utf8 import itchat import re import sys from itchat.content import * global author global isDisturbOn global visit global username def messageProccess(msg): if not msg["FromUserName"] == author: if msg["Type"] == "Text": if re.search("#sinon", msg["Text"]) == None: if isDisturbOn: donotDisturb(msg["FromUserName"]) else: notice(msg["NickName"]) else: sinonService(msg["FromUserName"], msg["Text"]) else: if isDisturbOn: donotDisturb(msg["FromUserName"]) else: notice(msg["NickName"]) def notice(name): print "%s send a message to you." % name def remoteControl(text): if text == "-h": itchat.send("-s Stop auto reply\n-d Turn on the Don't disturb\n -f Turn off the Don't disturb", "filehelper") elif text == "-s": itchat.logout() elif text == "-d": isDisturbOn = True itchat.send("Turn on the Don't disturb", "filehelper") elif text == "-f": isDisturbOn = False itchat.send("Turn off the Don't disturb", "filehelper") def sinonService(name, text): itchat.send("woops!There is no function can be used yet~", name) def donotDisturb(name): if not visit.get(name, False): visit[name] = True itchat.send("@img@%s" % "sinon.jpg", name) itchat.send("Sorry!%s can't reply you immediately!\nI'm auto-reply bot called sinon. Send #sinon and chat with me!(If you are in a group please @Fa1sePRoMiSe first.)\nsinon's github:https://github.com/NeilKleistGao/SinonChatBot\nWechatAPI github:https://github.com/littlecodersh/itchat\nImage is from Pixiv:https://www.pixiv.net/member_illust.php?mode=medium&illust_id=66989215" % username, name) @itchat.msg_register([TEXT, MAP, CARD, SHARING, PICTURE, RECORDING, ATTACHMENT, VIDEO], isGroupChat = False) def autoRecieve(msg): if msg["ToUserName"] == "filehelper" and msg["Type"] == "Text": remoteControl(msg["Text"]) else: messageProccess(msg) @itchat.msg_register([TEXT, MAP, CARD, SHARING, PICTURE, RECORDING, ATTACHMENT, VIDEO], isGroupChat = True) def autoRecieveInGroup(msg): if msg["isAt"]: messageProccess(msg) visit = {} username = "Fa1sePRoMiSe" isDisturbOn = True if len(sys.argv) == 2: username = sys.argv[1] elif len(sys.argv) == 3: username = sys.argv[1] isDisturbOn = sys.argv[2] itchat.auto_login(hotReload=True) author = itchat.search_friends(nickName=username)[0]["UserName"] itchat.send("You have started Sinon on your PC.Please enter -h for help.", "filehelper") itchat.run()
python
import os from setuptools import setup from gitissius import gitissius setup( name = "Gitissius", version = gitissius.VERSION, author = "Giorgos Logiotatidis", author_email = "[email protected]", description = "Distributed bug tracking for Git.", license = "Mixed", keywords = "bug, tracking, git, distributed", url="http://github.com/glogiotatidis/gitissius", packages=['gitissius', 'gitissius.commands'], classifiers = [ "Topic :: Software Development :: Bug Tracking", "Development Status :: 4 - Beta", "License :: Freely Distributable", "License :: OSI Approved :: GNU General Public License (GPL)" ], entry_points = { 'console_scripts': ['git-issius = gitissius.gitissius:main'] }, data_files = [ ('gitissius', ['README.org', 'LICENSE']), ] )
python
""" Plot ENSO from 2015-2018 using daily oisstv2 Data : 18 March 2018 Author : Zachary M. Labe """ from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset import datetime import cmocean ### Directory and time directoryfigure = './Figures/' directorydata = './Data/' now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr currentdoy = now.timetuple().tm_yday data = Dataset(directorydata + 'sst.day.anom.2015.v2.nc') sst15 = data.variables['anom'][180:] data.close() data = Dataset(directorydata + 'sst.day.anom.2016.nc') sst16 = data.variables['anom'][:] data.close() data = Dataset(directorydata + 'sst.day.anom.2017.nc') sst17 = data.variables['anom'][:] data.close() data = Dataset(directorydata + 'sst.day.anom.2018.nc') sst18 = data.variables['anom'][:] lat = data.variables['lat'][:] lon = data.variables['lon'][:] data.close() lon2,lat2 = np.meshgrid(lon,lat) sstnn = np.append(sst15,sst16,axis=0) sstn = np.append(sstnn,sst17,axis=0) sst = np.append(sstn,sst18,axis=0) def groupedAvg(myArray, N): result = np.cumsum(myArray, 0)[N-1::N]/float(N) result[1:] = result[1:] - result[:-1] return result smooth = groupedAvg(sst,10) # 10-day mean year15 = np.repeat(np.array([2015]),18) year16 = np.repeat(np.array([2016]),36) year17 = np.repeat(np.array([2017]),36) year18 = np.repeat(np.array([2018]),9) year1 = np.append(year15,year16) year2 = np.append(year1,year17) years = np.append(year2,year18) ########################################################################### ########################################################################### ########################################################################### ### Create plot plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) plt.rc('savefig',facecolor='black') plt.rc('axes',edgecolor='dimgrey') plt.rc('xtick',color='dimgrey') plt.rc('ytick',color='dimgrey') plt.rc('axes',labelcolor='white') plt.rc('axes',facecolor='black') def plot_rec(bmap, lower_left, upper_left, lower_right, upper_right): xs = [lower_left[0], upper_left[0], upper_right[0],lower_right[0], lower_left[0]] ys = [lower_left[1], upper_left[1], upper_right[1],lower_right[1], lower_left[1]] if np.nanmax(xs)==240: l=3.3 aa = 0.8 else: l=1.4 aa = 0.6 bmap.plot(xs, ys, latlon = True,color='k',alpha=aa,linewidth=l) llcrnrlon = 270 urcrnrlon = 280 llcrnrlat = -10 urcrnrlat = 0 lower_left1 = (llcrnrlon, llcrnrlat) lower_right1= (urcrnrlon, llcrnrlat) upper_left1 = (llcrnrlon, urcrnrlat) upper_right1= (urcrnrlon, urcrnrlat) llcrnrlon = 210 urcrnrlon = 270 llcrnrlat = -5 urcrnrlat = 5 lower_left2 = (llcrnrlon, llcrnrlat) lower_right2= (urcrnrlon, llcrnrlat) upper_left2 = (llcrnrlon, urcrnrlat) upper_right2= (urcrnrlon, urcrnrlat) llcrnrlon = 190 urcrnrlon = 240 llcrnrlat = -5 urcrnrlat = 5 lower_left3 = (llcrnrlon, llcrnrlat) lower_right3= (urcrnrlon, llcrnrlat) upper_left3 = (llcrnrlon, urcrnrlat) upper_right3= (urcrnrlon, urcrnrlat) llcrnrlon = 160 urcrnrlon = 210 llcrnrlat = -5 urcrnrlat = 5 lower_left4 = (llcrnrlon, llcrnrlat) lower_right4= (urcrnrlon, llcrnrlat) upper_left4 = (llcrnrlon, urcrnrlat) upper_right4= (urcrnrlon, urcrnrlat) barlim=np.arange(-3,4,3) for i in range(smooth.shape[0]): fig = plt.figure(figsize=(9,5)) ax = plt.subplot(111) m = Basemap(projection='merc',llcrnrlat=-17,urcrnrlat=17,\ llcrnrlon=180,urcrnrlon=290,resolution='l') m.drawcoastlines() m.fillcontinents(color='k',lake_color='k') m.drawmapboundary(fill_color='k') cs=m.contourf(lon2,lat2,smooth[i],np.arange(-3,3.02,0.1),latlon=True, extend='both') cs.set_cmap(cmocean.cm.balance) cbar = plt.colorbar(cs,drawedges=False,orientation='horizontal', pad = 0.04,fraction=0.047,extend='both') cbar.set_ticks(barlim) cbar.set_ticklabels(list(map(str,barlim))) cbar.ax.tick_params(axis='x', size=.001) cbar.ax.tick_params(labelsize=13) cbar.set_label(r'\textbf{%s}' % years[i],color='darkgrey', fontsize=30) ### Draw ENSO boxes plot_rec(m, lower_left1, upper_left1, lower_right1, upper_right1) plot_rec(m, lower_left2, upper_left2, lower_right2, upper_right2) plot_rec(m, lower_left3, upper_left3, lower_right3, upper_right3) plot_rec(m, lower_left4, upper_left4, lower_right4, upper_right4) plt.title(r'\textbf{SEA SURFACE TEMPERATURE ANOMALIES}',color='darkgrey', fontsize=30) plt.annotate(r'\textbf{DATA}: NOAA OISSTv2 [\textbf{BASE: 1971-2000}]', textcoords='axes fraction',xy=(0,0),xytext=(0.76,-0.08), fontsize=5,color='darkgrey',ha='left',va='center') plt.annotate(r'\textbf{SOURCE}: http://www.esrl.noaa.gov/psd/', textcoords='axes fraction',xy=(0,0),xytext=(0.76,-0.11), fontsize=5,color='darkgrey',ha='left',va='center') plt.annotate(r'\textbf{GRAPHIC}: Zachary Labe (@ZLabe)', textcoords='axes fraction',xy=(0,0),xytext=(0.76,-0.14), fontsize=5,color='darkgrey',ha='left',va='center') plt.annotate(r'\textbf{$^\circ$C}', textcoords='axes fraction',xy=(0,0),xytext=(0.2,-0.11), fontsize=20,color='darkgrey',ha='left',va='center') plt.subplots_adjust(bottom=0.2) if i < 10: plt.savefig(directoryfigure + 'sstq_00%s.png' % (i), dpi=170) elif i < 100: plt.savefig(directoryfigure + 'sstq_0%s.png' % (i), dpi=170) elif i==98: plt.savefig(directoryfigure + 'sstq_991.png', dpi=170) plt.savefig(directoryfigure + 'sstq_992.png', dpi=170) plt.savefig(directoryfigure + 'sstq_993.png', dpi=170) plt.savefig(directoryfigure + 'sstq_994.png', dpi=170) plt.savefig(directoryfigure + 'sstq_995.png', dpi=170) plt.savefig(directoryfigure + 'sstq_996.png', dpi=170) plt.savefig(directoryfigure + 'sstq_997.png', dpi=170) plt.savefig(directoryfigure + 'sstq_998.png', dpi=170) plt.savefig(directoryfigure + 'sstq_999.png', dpi=170) else: plt.savefig(directoryfigure + 'sstq_%s.png' % (i), dpi=170)
python
# -*- coding: utf-8 -*- """ Guney's network proposed in A Deep Neural Network for SSVEP-based Brain-Computer Interfaces. Modified from https://github.com/osmanberke/Deep-SSVEP-BCI.git """ from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from .base import compute_same_pad2d, _narrow_normal_weight_zero_bias, compute_out_size, SkorchNet @SkorchNet class GuneyNet(nn.Module): """ Guney's network for decoding SSVEP. They used two stages to train the network. The first stage is with all training data in the dataset. lr: 1e-4, batch_size: 100, l2_regularization: 1e-3, epochs: 1000 The second stage is a fine-tuning process with each subject's training data. lr: 1e-4, batch_size: full size, l2_regularization: 1e-3, epochs: 1000 spatial_dropout=time1_dropout=0.6 """ def __init__(self, n_channels, n_samples, n_classes, n_bands, n_spatial_filters=120, spatial_dropout=0.1, time1_kernel=2, time1_stride=2, n_time1_filters=120, time1_dropout=0.1, time2_kernel=10, n_time2_filters=120, time2_dropout=0.95): # super(GuneyNet, self).__init__() super().__init__() self.n_channels = n_channels self.n_samples = n_samples self.n_classes = n_classes self.n_bands = n_bands self.model = nn.Sequential(OrderedDict([ ('band_layer', nn.Conv2d(n_bands, 1, (1, 1), bias=False)), ('spatial_layer', nn.Conv2d(1, n_spatial_filters, (n_channels, 1))), ('spatial_dropout', nn.Dropout(spatial_dropout)), ('time1_layer', nn.Conv2d(n_spatial_filters, n_time1_filters, (1, time1_kernel), stride=(1, time1_stride))), ('time1_dropout', nn.Dropout(time1_dropout)), ('relu', nn.ReLU()), ('same_padding', nn.ConstantPad2d( compute_same_pad2d( (1, compute_out_size(n_samples, time1_kernel, stride=time1_stride)), (1, time2_kernel), stride=(1, 1)), 0)), ('time2_layer', nn.Conv2d(n_time1_filters, n_time2_filters, (1, time2_kernel), stride=(1, 1))), ('time2_dropout', nn.Dropout(time2_dropout)), ('flatten', nn.Flatten()), ('fc_layer', nn.Linear( n_time2_filters*compute_out_size(n_samples, time1_kernel, stride=time1_stride), n_classes)) ])) self.reset_parameters() @torch.no_grad() def reset_parameters(self): _narrow_normal_weight_zero_bias(self) nn.init.ones_(self.model[0].weight) # MATLAB uses xavier_uniform_ with varaiance 2/(input+output) # perhaps this is a mistake in Help document nn.init.xavier_normal_(self.model[-1].weight, gain=1) def forward(self, X): # X: (n_batch, n_bands, n_channels, n_samples) out = self.model(X) return out
python
import numpy as np import itertools import torch class TestAugmentor(object): """Test Augmentor. Args: mode (str): inference mode ('min', 'max', 'mean'). num_aug (int): number of data augmentations: 4-fold, 16-fold """ def __init__(self, mode='min', num_aug=4): self.mode = mode self.num_aug = num_aug assert num_aug in [4, 16], "TestAugmentor.num_aug should be either 4 or 16!" def __call__(self, model, data): out = None cc = 0 if self.num_aug == 4: opts = itertools.product((False, ), (False, ), (False, True), (False, True)) else: opts = itertools.product((False, True), (False, True), (False, True), (False, True)) for xflip, yflip, zflip, transpose in opts: volume = data.clone() # b,c,z,y,x if xflip: volume = torch.flip(volume, [4]) if yflip: volume = torch.flip(volume, [3]) if zflip: volume = torch.flip(volume, [2]) if transpose: volume = torch.transpose(volume, 3, 4) # aff: 3*z*y*x vout = model(volume).detach().cpu() if transpose: # swap x-/y-affinity vout = torch.transpose(vout, 3, 4) if zflip: vout = torch.flip(vout, [2]) if yflip: vout = torch.flip(vout, [3]) if xflip: vout = torch.flip(vout, [4]) # cast to numpy array vout = vout.numpy() if out is None: if self.mode == 'min': out = np.ones(vout.shape, dtype=np.float32) elif self.mode == 'max': out = np.zeros(vout.shape, dtype=np.float32) elif self.mode == 'mean': out = np.zeros(vout.shape, dtype=np.float32) if self.mode == 'min': out = np.minimum(out, vout) elif self.mode == 'max': out = np.maximum(out, vout) elif self.mode == 'mean': out += vout cc+=1 if self.mode == 'mean': out = out/cc return out def update_name(self, name): extension = "_" if self.num_aug == 4: extension += "tz" else: extension += "tzyx" # Update the suffix of the output filename to indicate # the use of test-time data augmentation. name_list = name.split('.') new_filename = name_list[0] + extension + "." + name_list[1] return new_filename
python
""" Cciss - Files ``/proc/driver/cciss/cciss*`` =========================================== Reads the ``/proc/driver/cciss/cciss*`` files and converts them into a dictionary in the *data* property. Example: >>> cciss = shared[Cciss] >>> cciss.data['Logical drives'] '1' >>> 'IRQ' in cciss.data True >>> cciss.model 'HP Smart Array P220i Controller' >>> cciss.firmware_version '3.42' """ from .. import Parser, parser from insights.specs import Specs @parser(Specs.cciss) class Cciss(Parser): ''' Class for parsing the content of ``/etc/device/cciss*`` Raw Data:: cciss0: HP Smart Array P220i Controller Board ID: 0x3355103c Firmware Version: 3.42 IRQ: 82 Logical drives: 1 Sector size: 8192 Current Q depth: 0 Current # commands on controller: 0 Max Q depth since init: 84 Max # commands on controller since init: 111 Max SG entries since init: 128 Sequential access devices: 0 cciss/c0d0: 299.96GB RAID 1(1+0) Output:: data = { "Sequential access devices": "0", "Current Q depth": "0", "cciss0": "HP Smart Array P220i Controller", "Board ID": "0x3355103c", "IRQ": "82", "cciss/c0d0": "299.96GB RAID 1(1+0)", "Logical drives": "1", "Current # commands on controller": "0", "Sector size": "8192", "Firmware Version": "3.42", "Max # commands on controller since init": "111", "Max SG entries since init": "128", "Max Q depth since init": "84" } ''' def parse_content(self, content): self.device = self.file_name self.data = {} for line in content: if line.strip(): key, val = line.split(":", 1) self.data[key.strip()] = val.strip() @property def firmware_version(self): '''Return the Firmware Version.''' return self.data.get('Firmware Version') @property def model(self): '''Return the full model name of the cciss device.''' return self.data.get(self.device)
python
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import super from future import standard_library standard_library.install_aliases() import logging import os import errno from .BaseDispatch import BaseDispatch try: import matplotlib.pyplot as plt import numpy as np IMPORTED = True except Exception as e: logging.warning('Failed to import numpy or matplotlib. Are you sure they are properly installed?') logging.warning('You can ignore this warning if you do not plan to use Matplotlib') logging.warning(e) IMPORTED = False class MatplotlibDispatch(BaseDispatch): """Display events via Matplotlib backend. This class requires some heavy dependencies, and so trying to run it without Matplotlib and Numpy installed will result in pass-thru behavior Arguments --------- task_params : dict Dictionary of the task json specification, including name and ID number img_folder : string Folder to save output images to """ def __init__(self, task_params, img_folder): super().__init__() # Data will be a dictionary of lists self._data = {} self.task_params = task_params self._img_folder = img_folder self._legend_keys = [] def setup_display(self, time_axis, attributes, show_windows=False): if IMPORTED: super().setup_display(time_axis, attributes) # Setup data for item in self._attributes: if item != self._time_axis: self._data[item] = [] # Setup plotting plt.figure(figsize=(12, 10)) if show_windows: plt.ion() plt.show() else: logging.error('You need Matplotlib and Numpy to run the MatplotlibDispatch, please install them') def train_event(self, event): """Plot a basic training and testing curve via Matplotlib Arguments --------- event : TrainingEvent.TrainingEvent Event to add to Matplotlib plot """ if IMPORTED: super().train_event(event) time = event.attributes[event.time_axis] for item in event.attributes: if item != event.time_axis: val = event.attributes[item] self._data[item].append([time, val]) # Convert to numpy arrays np_data = [] mins = {} maxes = {} for key in self._data: if self._data[key]: data = np.array(self._data[key]) mins[key] = np.min(data, axis=0)[1] maxes[key] = np.max(data, axis=0)[1] np_data.append(data[:, 0]) np_data.append(data[:, 1]) plt.clf() plt.plot(*np_data) self._legend_keys = [] for k in self._data.keys(): text = "{} (".format(k.title()) if k in maxes: text += "Max: {:0.4f} ".format(float(maxes[k])) if k in mins: text += "Min: {:0.4f}".format(float(mins[k])) text += ")" self._legend_keys.append(text) ax = plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height*0.9]) plt.legend(self._legend_keys, bbox_to_anchor=(0.5, -0.05), loc='upper center', ncol=2, borderaxespad=0.) plt.title(self.task_params['title']) plt.grid(True, which='both') plt.draw() else: logging.error('Improper requirements, skipping train event') def train_finish(self): """Save our output figure to PNG format, as defined by the save path `img_folder`""" if IMPORTED: filename = self.task_params['title'].replace(' ', '_') save_path = os.path.join(self._img_folder, filename) logging.info('Finished training! Saving output image to {0}'.format(save_path)) logging.info('\'{}\' Final Extremes: {}'.format(self.task_params['title'], self._legend_keys)) try: fold = os.path.basename(self._img_folder) logging.info("Creating folder {}".format(fold)) os.makedirs(fold) except OSError as e: if e.errno != errno.EEXIST: raise plt.savefig(save_path, bbox_inches='tight', format='png') plt.close() else: logging.error('Improper requirements, skipping train finish')
python
from nintendo import account api = account.AccountAPI() pid = api.get_pid("Kinnay-WiiU") mii = api.get_mii(pid) print("NNID:", mii.nnid) print("PID:", pid) #Same as mii.pid print("Name:", mii.name) info = mii.data print("Mii:") print("\tBirthday: %i-%i" %(info.birth_day, info.birth_month)) print("\tCreator name:", info.creator_name) print("\tMii color:", info.color) print("\tMii size: %i%%" %(info.size / 128 * 100)) print("\tMii weight: %i%%" %(info.fatness / 128 * 100)) print("\tGender:", ["Male", "Female"][info.gender]) print("\t----------") print("\tBlush style:", info.blush_type) print("\tFace style:", info.face_style) print("\tFace color:", info.face_color) print("\tFace shape:", info.face_type) print("\t----------") print("\tHair style:", info.hair_type) print("\tHair color:", info.hair_color) print("\tHair mirrored:", ["No", "Yes"][info.hair_mirrored]) print("\t----------") print("\tEye style:", info.eye_type) print("\tEye color:", info.eye_color) print("\tEye size:", info.eye_scale) print("\tEye thickness:", info.eye_thickness) print("\tEye height:", info.eye_height) print("\tEye distance:", info.eye_distance) print("\tEye rotation:", info.eye_rotation) print("\t----------") print("\tEyebrow style:", info.eyebrow_type) print("\tEyebrow color:", info.eyebrow_color) print("\tEyebrow size:", info.eyebrow_scale) print("\tEyebrow thickness:", info.eyebrow_thickness) print("\tEyebrow height:", info.eyebrow_height) print("\tEyebrow distance:", info.eyebrow_distance) print("\tEyebrow rotation:", info.eyebrow_rotation) print("\t----------") print("\tNose style:", info.nose_type) print("\tNose size:", info.nose_scale) print("\tNose height:", info.nose_height) print("\t----------") print("\tMouth style:", info.mouth_type) print("\tMouth color:", info.mouth_color) print("\tMouth size:", info.mouth_scale) print("\tMouth thickness:", info.mouth_thickness) print("\tMouth height:", info.mouth_height) print("\t----------") print("\tMustache style:", info.mustache_type) if info.mustache_type: print("\tMustache height:", info.mustache_height) print("\tMustache size:", info.mustache_scale) print("\tBeard style:", info.beard_type) if info.beard_type: print("\tBeard color:", info.beard_color) print("\t----------") print("\tGlasses style:", info.glass_type) if info.glass_type: print("\tGlasses color:", info.glass_color) print("\tGlasses size:", info.glass_scale) print("\tGlasses height:", info.glass_height) print("\t----------") print("\tMole:", ["No", "Yes"][info.mole_enabled]) if info.mole_enabled: print("\tMole size:", info.mole_scale) print("\tMole X:", info.mole_xpos) print("\tMole Y:", info.mole_ypos) print("Images:") for url in mii.images.values(): print("\t%s" %url)
python
from unittest.mock import patch from pytest import fixture @fixture(autouse=True) def environ(): environ = { "slack_access_token": "slack-access-token", "slack_signing_secret": "slack-signing-secret", } with patch.dict("os.environ", environ, clear=True): yield environ @fixture def settings(environ): from fastapi_slack import Settings return Settings()
python
import cv2 import numpy as np from operator import floordiv vc = cv2.VideoCapture(0) cv2.namedWindow("top") cv2.namedWindow("bottom") if vc.isOpened(): rval, frame = vc.read() height = len(frame) width = len(frame[0]) else: rval = False lights = (16,9) history = 5 top = np.zeros((lights[0], 1, 3), dtype = "uint8") bottom = np.zeros((lights[0], 1, 3), dtype = "uint8") left = np.zeros((lights[1]-2, 1, 3), dtype = "uint8") right = np.zeros((lights[1]-2, 1, 3), dtype = "uint8") topHistory = np.zeros((lights[0], history, 3), dtype = "uint8") bottomHistory = np.zeros((lights[0], history, 3), dtype = "uint8") leftHistory = np.zeros((lights[1]-2, history, 3), dtype = "uint8") rightHistory = np.zeros((lights[1]-2, history, 3), dtype = "uint8") currIndex = 0 prevIndex = history - 1 while rval: rval, frame = vc.read() smaller = cv2.resize(frame, lights) for x in range(0,lights[0]-1): top[x][0] = top[x][0] - topHistory[x][currIndex] bottom[x][0] = bottom[x][0] - bottomHistory[x][currIndex] topHistory[x][currIndex] = smaller[0][x] / history bottomHistory[x][currIndex] = smaller[lights[1]-1][x] / history top[x][0] = top[x][0] + topHistory[x][currIndex] bottom[x][0] = bottom[x][0] + bottomHistory[x][currIndex] for y in range(1,lights[1]-2): left[y][0] = left[y][0] - leftHistory[y][currIndex] right[y][0] = right[y][0] - rightHistory[y][currIndex] leftHistory[y][currIndex] = smaller[y][0] / history rightHistory[y][currIndex] = smaller[y][lights[0]-1] / history left[y][0] = left[y][0] + leftHistory[y][currIndex] right[y][0] = right[y][0] + rightHistory[y][currIndex] prevIndex = currIndex currIndex = currIndex + 1 if currIndex >= history: currIndex = 0 topLarger = cv2.resize(cv2.transpose(top), (width, int(height/lights[1])), interpolation=cv2.INTER_AREA) cv2.imshow("top",topLarger) bottomLarger = cv2.resize(cv2.transpose(bottom), (width, int(height/lights[1])), interpolation=cv2.INTER_AREA) cv2.imshow("bottom",bottomLarger) key = cv2.waitKey(15) if key == 27: # ESC key break cv2.destroyAllWindows()
python
""" If you use this code, please cite one of the SynthSeg papers: https://github.com/BBillot/SynthSeg/blob/master/bibtex.bib Copyright 2020 Benjamin Billot Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # python imports import numpy as np import tensorflow as tf import keras.layers as KL from keras.models import Model # third-party imports from ext.lab2im import utils from ext.lab2im import layers from ext.lab2im import edit_tensors as l2i_et def metrics_model(input_model, label_list, metrics='dice'): # get prediction last_tensor = input_model.outputs[0] input_shape = last_tensor.get_shape().as_list()[1:] # check shapes n_labels = input_shape[-1] label_list = np.unique(label_list) assert n_labels == len(label_list), 'label_list should be as long as the posteriors channels' # get GT and convert it to probabilistic values labels_gt = input_model.get_layer('labels_out').output labels_gt = layers.ConvertLabels(label_list)(labels_gt) labels_gt = KL.Lambda(lambda x: tf.one_hot(tf.cast(x, dtype='int32'), depth=n_labels, axis=-1))(labels_gt) labels_gt = KL.Reshape(input_shape)(labels_gt) # make sure the tensors have the right keras shape last_tensor._keras_shape = tuple(last_tensor.get_shape().as_list()) labels_gt._keras_shape = tuple(labels_gt.get_shape().as_list()) if metrics == 'dice': last_tensor = layers.DiceLoss()([labels_gt, last_tensor]) elif metrics == 'wl2': last_tensor = layers.WeightedL2Loss(target_value=5)([labels_gt, last_tensor]) else: raise Exception('metrics should either be "dice or "wl2, got {}'.format(metrics)) # create the model and return model = Model(inputs=input_model.inputs, outputs=last_tensor) return model class IdentityLoss(object): """Very simple loss, as the computation of the loss as been directly implemented in the model.""" def __init__(self, keepdims=True): self.keepdims = keepdims def loss(self, y_true, y_predicted): """Because the metrics is already calculated in the model, we simply return y_predicted. We still need to put y_true in the inputs, as it's expected by keras.""" loss = y_predicted tf.debugging.check_numerics(loss, 'Loss not finite') return loss
python
"""Multiply SOIL13 and SOIL14 by 10 to change units from % to g/kg""" import pyiem.cscap_utils as util def main(): """Go Main Go""" config = util.get_config() spr_client = util.get_spreadsheet_client(config) drive = util.get_driveclient(config) # Fake last conditional to make it easy to reprocess one site... res = ( drive.files() .list(q=("title contains 'Soil Texture Data'"), maxResults=999) .execute() ) HEADERS = [ "uniqueid", "plotid", "depth", "tillage", "rotation", "soil6", "nitrogen", "drainage", "rep", "subsample", "landscape", "notes", "herbicide", "sampledate", ] sz = len(res["items"]) for i, item in enumerate(res["items"]): if item["mimeType"] != "application/vnd.google-apps.spreadsheet": continue spreadsheet = util.Spreadsheet(spr_client, item["id"]) spreadsheet.get_worksheets() for year in spreadsheet.worksheets: print( '%3i/%3i sheet "%s" for "%s"' % (i + 1, sz, year, item["title"]) ) lf = spreadsheet.worksheets[year].get_list_feed() for rownum, entry in enumerate(lf.entry): dirty = False data = entry.to_dict() for key in ["soil13", "soil14"]: if key not in data: continue value = data[key] if rownum == 1 and value == "%": print("updating % to g/kg") entry.set_value(key, "g/kg") dirty = True continue if rownum >= 2: try: newvalue = float(value) * 10.0 except Exception: continue print("%s updating %s to %s" % (key, value, newvalue)) entry.set_value(key, "%.4f" % (newvalue,)) dirty = True if dirty: util.exponential_backoff(spr_client.update, entry) if __name__ == "__main__": main()
python
##!/usr/bin/python import numpy as np import pylab as plt import seaborn as sns sns.set_context('poster') plt.subplot(1,1,1) data = np.genfromtxt(fname='energy.dat') #data = np.loadtxt('traj.dat') #for x in range(1,data.shape[-1]): plt.plot(data[:,0],data[:,1],label='kinetic') plt.plot(data[:,0],data[:,2],label='potential') plt.plot(data[:,0],data[:,3],label='quantum potential') plt.plot(data[:,0],data[:,4],label='total') #plt.figure(1) #plt.plot(x,y1,'-') #plt.plot(x,y2,'g-') plt.xlabel('time') plt.ylabel('$x_i$') #plt.title('traj') plt.legend() plt.show()
python
import nxutils import networkx as nx # TODO: Update this to remove dependency on static zipcode # if we ever need to use this code zipCode = '02138' prefix = 'neighborhood' n = nxutils.NXUtils(prefix, zipCode) n.buildNetwork() DG = n.getNetwork() fullCycles = nx.simple_cycles(DG) print('Number of cycles for all stress') print(len(list(fullCycles))) MG = n.getStressNetwork(2) stressCycles = len(list(nx.simple_cycles(SG))) print('Number of cycles for medium stress') print(fullCycles) SG = n.getStressNetwork(1) stressCycles = len(list(nx.simple_cycles(SG))) print('Number of cycles for low stress') print(fullCycles)
python
# This file was auto generated; Do not modify, if you value your sanity! import ctypes try: # 2 from can_settings import can_settings from swcan_settings import swcan_settings except: from ics.structures.can_settings import can_settings from ics.structures.swcan_settings import swcan_settings # flags class flags(ctypes.Structure): _pack_ = 2 _fields_ = [ ('disableUsbCheckOnBoot', ctypes.c_uint32, 1), # [Bitfield] ('enableLatencyTest', ctypes.c_uint32, 1), # [Bitfield] ('reserved', ctypes.c_uint32, 30), # [Bitfield] ] # Extra names go here: # End of extra names class s_vivid_can_settings(ctypes.Structure): _pack_ = 2 _anonymous_ = ("flags",) _fields_ = [ ('ecu_id', ctypes.c_uint32), ('can1', can_settings), ('swcan1', swcan_settings), ('lsftcan1', can_settings), ('network_enables', ctypes.c_uint16), ('network_enabled_on_boot', ctypes.c_uint16), ('iso15765_separation_time_offset', ctypes.c_uint16), ('perf_en', ctypes.c_uint16), ('pwr_man_timeout', ctypes.c_uint32), ('pwr_man_enable', ctypes.c_uint16), ('can_switch_mode', ctypes.c_uint16), ('termination_enables', ctypes.c_uint16), ('flags', flags), ] # Extra names go here: SVividCANSettings = s_vivid_can_settings # End of extra names
python
"""Optimization methods."""
python
# -*- coding: utf-8 -*- """Build functions to wrap mlflow models. Existing implementation returns a synchronous/blocking function. This decision was taken because applying ML models is probably CPU-bound. Not having unnecessary asynchronous code also makes testing simpler. Current supports only the pyfunc flavour. Copyright (C) 2022, Auto Trader UK """ from typing import Any, Callable, List import pandas as pd from mlflow.pyfunc import PyFuncModel # type: ignore from pydantic import BaseModel import fastapi_mlflow._mlflow_types as _mlflow_types def build_predictor(model: PyFuncModel) -> Callable[[List[BaseModel]], Any]: """Build and return a function that wraps the mlflow model. Currently supports only the `pyfunc`_ flavour of mlflow. :param model: PyFuncModel :return: Function suitable for mounting as a FastAPI endpoint or route. Example:: model = load_model("/Users/me/path/to/local/model") predictor = build_predictor(model) .. _pyfunc: https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html """ request_type: Any = _mlflow_types.build_input_model( model.metadata.get_input_schema() ) return_type: Any = _mlflow_types.build_output_model( model.metadata.get_output_schema() ) def predictor(request: List[request_type]) -> List[return_type]: df = pd.DataFrame([row.dict() for row in request], dtype=object) return [return_type(prediction=row) for row in model.predict(df)] return predictor
python
# Generated by Django 4.0.2 on 2022-02-04 17:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mainapp', '0001_initial'), ] operations = [ migrations.RenameField( model_name='products', old_name='product_type', new_name='category', ), ]
python
""" Copyright 2019 IBM Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ WAW implement deprecation mechanism using package 'deprecation'. To deprecete a function (or any other piece of code), see example of code: import deprecation from _version import __version__ @deprecation.deprecated( deprecated_in='2.2', removed_in='2.6', current_version=__version__, details='Use the function_test.py script / main function with version 2.2 instead (--version 2.2).') def main(argv): ... Pytest prints warning and list of tests using deprecated code (__version__ >= deprecated_in). In case of using unsupported code (__version__ >= removed_in), tests fail. When tests fail because of unsupported code, unsupported code has to be removed (it is time to remove it) and tests should be removed or updated to newer version of code (supported version if exists) - only in case such tests do not already exist. When changing __version__, it is also necessary to change it in README.md (url https://img.shields.io/badge/WAW-<__version__>-BLUE.svg) """ __version__ = '2.2'
python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) from paddle import fluid import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) try: from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.cli import ArgsParser import ppdet.utils.checkpoint as checkpoint from ppdet.utils.export_utils import save_infer_model, dump_infer_config from ppdet.utils.check import check_config, check_version, check_py_func, enable_static_mode except ImportError as e: if sys.argv[0].find('static') >= 0: logger.error("Importing ppdet failed when running static model " "with error: {}\n" "please try:\n" "\t1. run static model under PaddleDetection/static " "directory\n" "\t2. run 'pip uninstall ppdet' to uninstall ppdet " "dynamic version firstly.".format(e)) sys.exit(-1) else: raise e def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_version() main_arch = cfg.architecture # Use CPU for exporting inference model instead of GPU place = fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['use_dataloader'] = False feed_vars, _ = model.build_inputs(**inputs_def) # postprocess not need in exclude_nms, exclude NMS in exclude_nms mode test_fetches = model.test(feed_vars, exclude_nms=FLAGS.exclude_nms) infer_prog = infer_prog.clone(True) check_py_func(infer_prog) exe.run(startup_prog) checkpoint.load_params(exe, infer_prog, cfg.weights) dump_infer_config(FLAGS, cfg) save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog) if __name__ == '__main__': enable_static_mode() parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output", help="Directory for storing the output model files.") parser.add_argument( "--exclude_nms", action='store_true', default=False, help="Whether prune NMS for benchmark") FLAGS = parser.parse_args() main()
python
import time from multiprocessing import Queue from queue import Full import numpy as np from .sampler import Sampler class FakeSampler(Sampler): def __init__(self, instance: np.ndarray, sample_queue: Queue, num_of_samples: int = 1000): super(FakeSampler, self).__init__() self.instance = instance self.sample_queue = sample_queue self.num_of_samples = num_of_samples def run(self): while True: if self.sample_queue.full(): time.sleep(0.1) continue for _ in range(self.num_of_samples): try: self.sample_queue.put((np.ones_like(self.instance), 1), block=True) except Full: break
python
# Copyright (c) 2013 Yubico AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from setuptools import setup, find_packages import re VERSION_PATTERN = re.compile(r"(?m)^__version__\s*=\s*['\"](.+)['\"]$") def get_version(): """Return the current version as defined by yubico/yubico_version.py.""" with open('pyhsm/__init__.py', 'r') as f: match = VERSION_PATTERN.search(f.read()) return match.group(1) setup( name='pyhsm', version=get_version(), description='Python code for talking to a YubiHSM', author='Dain Nilsson', author_email='[email protected]', url='https://github.com/Yubico/python-pyhsm', license='BSD 2 clause', packages=find_packages(exclude=['test']), entry_points={ 'console_scripts': [ # tools 'yhsm-daemon = pyhsm.stick_daemon:main [daemon]', 'yhsm-decrypt-aead = pyhsm.tools.decrypt_aead:main', 'yhsm-generate-keys = pyhsm.tools.generate_keys:main', 'yhsm-keystore-unlock = pyhsm.tools.keystore_unlock:main', 'yhsm-linux-add-entropy = pyhsm.tools.linux_add_entropy:main', # ksm 'yhsm-yubikey-ksm = pyhsm.ksm.yubikey_ksm:main [db,daemon]', 'yhsm-import-keys = pyhsm.ksm.import_keys:main', 'yhsm-db-export = pyhsm.ksm.db_export:main [db]', 'yhsm-db-import = pyhsm.ksm.db_import:main [db]', # validation server 'yhsm-validation-server = pyhsm.val.validation_server:main', 'yhsm-validate-otp = pyhsm.val.validate_otp:main', 'yhsm-init-oath-token = pyhsm.val.init_oath_token:main' ] }, test_suite='test.test_init', tests_require=[], install_requires=[ 'pyserial >= 2.3', 'pycrypto >= 2.1' ], extras_require={ 'db': ['sqlalchemy'], 'daemon': ['python-daemon'] }, classifiers=[ 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Application', ] )
python
import os.path as P def relative_path(this_file , rel_path): return P.join(P.dirname(this_file) , rel_path)
python
import pytest from qualipy.filters import * PATTERN = 'tests/images/pattern.jpg' NON_PATTERN = 'tests/images/lama.jpg' def test_recognizes_pattern(): assert Pattern().predict(PATTERN) def test_doesnt_recognize_normal_image(): assert not Pattern().predict(NON_PATTERN) def test_setting_threshold(): assert not Pattern(threshold=1).predict(PATTERN) def test_inverting_threshold(): assert Pattern(1.01, invert_threshold=True).predict(PATTERN) def test_can_return_float(): assert type(Pattern().predict(PATTERN, return_boolean=False)) != bool def test_wrong_path_type_raises_exception(): with pytest.raises(TypeError): assert Pattern().predict(0)
python
from . import backup import logging from .config import DropboxOfflineBackupConfig def start(): logging.getLogger('').setLevel(logging.DEBUG) console = logging.StreamHandler() file_handler = logging.FileHandler(DropboxOfflineBackupConfig().config['DropboxBackup']['LogFile']) formatter = logging.Formatter( fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') console.setFormatter(formatter) file_handler.setFormatter(formatter) console.setLevel(logging.DEBUG) file_handler.setLevel(logging.INFO) logging.getLogger('').addHandler(console) logging.getLogger('').addHandler(file_handler) dropbox_logger = logging.getLogger("dropbox") dropbox_logger.setLevel(logging.WARNING) requests_logger = logging.getLogger("requests") requests_logger.setLevel(logging.WARNING) backup.DropboxOfflineBackup()
python
#! /usr/bin/python3 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # import os import re import time import commonl.testing import tcfl.tc srcdir = os.path.dirname(__file__) ttbd = commonl.testing.test_ttbd( config_files = [ # strip to remove the compiled/optimized version -> get source os.path.join(srcdir, "conf_%s" % os.path.basename(__file__.rstrip('cd'))) ], errors_ignore = [ "Traceback" ]) @tcfl.tc.target(ttbd.url_spec + " and t0") class _test(tcfl.tc.tc_c): """ Exercise the power/sequence call """ def eval(self, target): try: target.power.sequence() raise tcfl.tc.failed_e( "sequence() didn't raise TypeError on having no arguments") except TypeError as e: self.report_pass("sequence() complains ok about no arguments") for bad_argument in [ # yeah, there might be a smarter way to define this # ugly list 1, 'some string', dict(), 2.0, True, False, [ ( 'wait' ) ], [ ( 'wait', None ) ], # turns out True and False map to 1 and 0 in Python... #[ ( 'wait', True ) ], #[ ( 'wait', False ) ], [ ( 'wait', 'string' ) ], [ ( 'wait', [ ] ) ], [ ( 'wait', dict() ) ], [ ( 'wait', {} ) ], [ ( 'wait', () ) ], # on operation [ ( 'on' ) ], [ ( 'on', None ) ], [ ( 'on', True ) ], [ ( 'on', False ) ], [ ( 'on', [ ] ) ], [ ( 'on', dict() ) ], [ ( 'on', {} ) ], [ ( 'on', () ) ], [ ( 'on', 1 ) ], [ ( 'on', 1.0 ) ], # off operation [ ( 'off' ) ], [ ( 'off', None ) ], [ ( 'off', True ) ], [ ( 'off', False ) ], [ ( 'off', [ ] ) ], [ ( 'off', dict() ) ], [ ( 'off', {} ) ], [ ( 'off', () ) ], [ ( 'off', 1 ) ], [ ( 'off', 1.0 ) ], # cycle operation [ ( 'cycle' ) ], [ ( 'cycle', None ) ], [ ( 'cycle', True ) ], [ ( 'cycle', False ) ], [ ( 'cycle', [ ] ) ], [ ( 'cycle', dict() ) ], [ ( 'cycle', {} ) ], [ ( 'cycle', () ) ], [ ( 'cycle', 1 ) ], [ ( 'cycle', 1.0 ) ], # other things [ ( 'invalid', None ) ], [ ( 'invalid', True ) ], [ ( 'invalid', False ) ], [ ( 'invalid', [ ] ) ], [ ( 'invalid', dict() ) ], [ ( 'invalid', {} ) ], [ ( 'invalid', () ) ], [ ( 'invalid', 1 ) ], [ ( 'invalid', 1.0 ) ], ]: try: target.power.sequence(bad_argument) raise tcfl.tc.failed_e( "sequence() didn't raise error on bad argument %s" % bad_argument) except tcfl.tc.error_e as e: self.report_pass( "server's sequence() complains ok about bad argument %s" % bad_argument, dict(exception = e)) # "t0: power/sequence: remote call failed: 400: t0: t0: sequence #0: invalid type: expected list; got <type 'unicode'>" # -> # "invalid type: expected list; got <type 'unicode'>" # # so we can ignore it in the server's error log, which # doesn't contain the part we are removing (added by # the client) ttbd.errors_ignore.append( re.sub("^.*remote call failed.*sequence", "", str(e.args[0]))) # now test basic operation ts0 = time.time() target.power.sequence([ ( 'wait', 3 ) ]) ts = time.time() if ts - ts0 < 3: raise tcfl.tc.failed_e( "wait 3s took less than 3 seconds (%.1fs)" % ts-ts0) if ts - ts0 > 3.5: raise tcfl.tc.failed_e( "wait 3s took less than 3.5 seconds (%.1fs)" % ts-ts0) # now test basic operation ts0 = time.time() target.power.sequence([ ( 'wait', 3 ) ]) ts = time.time() if ts - ts0 < 3: raise tcfl.tc.failed_e( "wait 3s took less than 3 seconds (%.1fs)" % ts-ts0) if ts - ts0 > 3.5: raise tcfl.tc.failed_e( "wait 3s took less than 3.5 seconds (%.1fs)" % ts-ts0) target.power.sequence([ ( 'on', 'power0' ) ]) state, substate, components = target.power.list() assert components['power0']['state'] == True, components target.power.sequence([ ( 'off', 'power0' ) ]) state, substate, components = target.power.list() assert components['power0']['state'] == False, components target.power.sequence([ ( 'cycle', 'power0' ) ]) state, substate, components = target.power.list() assert components['power0']['state'] == True, components target.power.sequence([ ( 'off', 'all' ) ]) state, substate, components = target.power.list() assert state == False, ( state, substate, components ) assert substate == 'full', ( state, substate, components ) target.power.sequence([ ( 'on', 'all' ) ]) state, substate, components = target.power.list() assert state == True, ( state, substate, components ) assert substate == 'full', ( state, substate, components ) target.power.sequence([ ( 'off', 'all' ), ( 'wait', 1 ), ( 'on', 'power0' ), ( 'on', 'power1' ), ( 'on', 'power2' ), ( 'off', 'power1' ), ]) state, substate, components = target.power.list() assert components['power0']['state'] == True, components assert components['power1']['state'] == False, components assert components['power2']['state'] == True, components def teardown_90_scb(self): ttbd.check_log_for_issues(self)
python
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/FamilyMemberHistory Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ import io import json import os import unittest import pytest from .. import familymemberhistory from ..fhirdate import FHIRDate from .fixtures import force_bytes @pytest.mark.usefixtures("base_settings") class FamilyMemberHistoryTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get("FHIR_UNITTEST_DATADIR") or "" with io.open(os.path.join(datadir, filename), "r", encoding="utf-8") as handle: js = json.load(handle) self.assertEqual("FamilyMemberHistory", js["resourceType"]) return familymemberhistory.FamilyMemberHistory(js) def testFamilyMemberHistory1(self): inst = self.instantiate_from("familymemberhistory-example.json") self.assertIsNotNone( inst, "Must have instantiated a FamilyMemberHistory instance" ) self.implFamilyMemberHistory1(inst) js = inst.as_json() self.assertEqual("FamilyMemberHistory", js["resourceType"]) inst2 = familymemberhistory.FamilyMemberHistory(js) self.implFamilyMemberHistory1(inst2) def implFamilyMemberHistory1(self, inst): self.assertEqual( force_bytes(inst.condition[0].code.coding[0].code), force_bytes("315619001") ) self.assertEqual( force_bytes(inst.condition[0].code.coding[0].display), force_bytes("Myocardial Infarction"), ) self.assertEqual( force_bytes(inst.condition[0].code.coding[0].system), force_bytes("http://snomed.info/sct"), ) self.assertEqual( force_bytes(inst.condition[0].code.text), force_bytes("Heart Attack") ) self.assertTrue(inst.condition[0].contributedToDeath) self.assertEqual( force_bytes(inst.condition[0].note[0].text), force_bytes( "Was fishing at the time. At least he went doing someting he loved." ), ) self.assertEqual(force_bytes(inst.condition[0].onsetAge.code), force_bytes("a")) self.assertEqual( force_bytes(inst.condition[0].onsetAge.system), force_bytes("http://unitsofmeasure.org"), ) self.assertEqual( force_bytes(inst.condition[0].onsetAge.unit), force_bytes("yr") ) self.assertEqual(inst.condition[0].onsetAge.value, 74) self.assertEqual(inst.date.date, FHIRDate("2011-03-18").date) self.assertEqual(inst.date.as_json(), "2011-03-18") self.assertEqual(force_bytes(inst.id), force_bytes("father")) self.assertEqual(force_bytes(inst.identifier[0].value), force_bytes("12345")) self.assertEqual( force_bytes(inst.instantiatesUri[0]), force_bytes("http://example.org/family-member-history-questionnaire"), ) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual( force_bytes(inst.meta.tag[0].display), force_bytes("test health data") ) self.assertEqual( force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason"), ) self.assertEqual( force_bytes(inst.relationship.coding[0].code), force_bytes("FTH") ) self.assertEqual( force_bytes(inst.relationship.coding[0].display), force_bytes("father") ) self.assertEqual( force_bytes(inst.relationship.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-RoleCode"), ) self.assertEqual(force_bytes(inst.sex.coding[0].code), force_bytes("male")) self.assertEqual(force_bytes(inst.sex.coding[0].display), force_bytes("Male")) self.assertEqual( force_bytes(inst.sex.coding[0].system), force_bytes("http://hl7.org/fhir/administrative-gender"), ) self.assertEqual(force_bytes(inst.status), force_bytes("completed")) self.assertEqual( force_bytes(inst.text.div), force_bytes( '<div xmlns="http://www.w3.org/1999/xhtml">Father died of a heart attack aged 74</div>' ), ) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) def testFamilyMemberHistory2(self): inst = self.instantiate_from("familymemberhistory-example-mother.json") self.assertIsNotNone( inst, "Must have instantiated a FamilyMemberHistory instance" ) self.implFamilyMemberHistory2(inst) js = inst.as_json() self.assertEqual("FamilyMemberHistory", js["resourceType"]) inst2 = familymemberhistory.FamilyMemberHistory(js) self.implFamilyMemberHistory2(inst2) def implFamilyMemberHistory2(self, inst): self.assertEqual( force_bytes(inst.condition[0].code.coding[0].code), force_bytes("371041009") ) self.assertEqual( force_bytes(inst.condition[0].code.coding[0].display), force_bytes("Embolic Stroke"), ) self.assertEqual( force_bytes(inst.condition[0].code.coding[0].system), force_bytes("http://snomed.info/sct"), ) self.assertEqual( force_bytes(inst.condition[0].code.text), force_bytes("Stroke") ) self.assertEqual(force_bytes(inst.condition[0].onsetAge.code), force_bytes("a")) self.assertEqual( force_bytes(inst.condition[0].onsetAge.system), force_bytes("http://unitsofmeasure.org"), ) self.assertEqual( force_bytes(inst.condition[0].onsetAge.unit), force_bytes("yr") ) self.assertEqual(inst.condition[0].onsetAge.value, 56) self.assertEqual(force_bytes(inst.id), force_bytes("mother")) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual( force_bytes(inst.meta.tag[0].display), force_bytes("test health data") ) self.assertEqual( force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason"), ) self.assertEqual( force_bytes(inst.relationship.coding[0].code), force_bytes("MTH") ) self.assertEqual( force_bytes(inst.relationship.coding[0].display), force_bytes("mother") ) self.assertEqual( force_bytes(inst.relationship.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-RoleCode"), ) self.assertEqual(force_bytes(inst.status), force_bytes("completed")) self.assertEqual( force_bytes(inst.text.div), force_bytes( '<div xmlns="http://www.w3.org/1999/xhtml">Mother died of a stroke aged 56</div>' ), ) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated"))
python
# -*- coding: utf-8 -*- # Time : 2021/7/25 13:59 # Author : QIN2DIM # Github : https://github.com/QIN2DIM # Description: import json import os from datetime import datetime from bs4 import BeautifulSoup from selenium.common.exceptions import ( StaleElementReferenceException, WebDriverException, ) from selenium.webdriver import Chrome from src.BusinessCentralLayer.setting import logger, SERVER_DIR_DATABASE, TIME_ZONE_CN from src.BusinessLogicLayer.cluster.master import ActionMasterGeneral class SSPanelParser(ActionMasterGeneral): def __init__(self, url, silence=False, assault=True, anti_slider=True): super(SSPanelParser, self).__init__( url, silence, assault, anti_slider=anti_slider, ) self.obj_parser = {} self.cache_db_name = "parser_cache" self.cache_db_path = self.create_cache_db(database_dir=SERVER_DIR_DATABASE) def create_cache_db(self, database_dir=None): database_dir = "database" if database_dir is None else database_dir if not os.path.exists(database_dir): os.mkdir(database_dir) cache_db = os.path.join(database_dir, self.cache_db_name) if not os.path.exists(cache_db): os.mkdir(cache_db) return cache_db def capture_cache(self, signs, flow): output_path = os.path.join(self.cache_db_path, signs) with open(output_path, "w", encoding="utf8") as f: f.write(flow) def parse(self, **kwargs): """ :return: """ api: Chrome = kwargs.get("api") self.obj_parser.update({"parse_url": self.register_url}) # ---------------------------------------- # 解析可用流量和可用时长 # 优先调用,等待流体动画加载完成[耗时任务] # 以保证后续解析无需等待 # ---------------------------------------- fluid = set() fluid_density = [] i = 0 while True: try: i += 1 card_body = api.find_elements_by_xpath("//div[@class='card-body']")[:2] card_body = [tag.text.strip() for tag in card_body] fluid.update(card_body) fluid_density.append(len(fluid)) # 流体释放 if len(fluid_density) < 10 or len(fluid) < 3: continue # 流体相对均衡 if max(fluid_density[:10]) == min(fluid_density[:10]): self.obj_parser.update( {"time": card_body[0], "flow": card_body[-1]} ) break except StaleElementReferenceException: pass # 存储cookie with open("123.json", "w", encoding="utf8") as f: f.write(json.dumps(api.get_cookies())) # 读取cookie # cookie_json = " ".join([f"{i['name']}={i['value']};" for i in json.loads(f.read())]) # ---------------------------------------- # 解析站点名称 # ---------------------------------------- try: parse_name = api.find_element_by_xpath( "//aside//div[@class='sidebar-brand']" ).text.strip() self.obj_parser.update({"parse_name": parse_name}) except WebDriverException: logger.error( f"<SSPanelParserError> Site name resolution failed -- {self.register_url}" ) # ---------------------------------------- # 解析站点公告 # ---------------------------------------- reference_links = {} try: card_body = api.find_elements_by_xpath("//div[@class='card-body']")[4] self.obj_parser.update({"desc": card_body.text.strip()}) related_href = card_body.find_elements_by_tag_name("a") for tag in related_href: href = tag.get_attribute("href") if href: href = href.strip() if "https" not in href: href = f"{self.register_url}{href}" href_desc = tag.text.strip() if tag.text else href reference_links.update({href: href_desc}) self.obj_parser.update({"reference_links": reference_links}) except WebDriverException: logger.error( f"<SSPanelParserError> Site announcement parsing error -- {self.register_url}" ) # ---------------------------------------- # 解析[链接导入] # ---------------------------------------- subscribes = {} support = [] try: # 清洗订阅链接 soup = BeautifulSoup(api.page_source, "html.parser") for i in soup.find_all("a"): if i.get("data-clipboard-text"): subscribes.update({i.get("data-clipboard-text"): i.text.strip()}) # 识别支持的订阅类型 buttons = api.find_elements_by_xpath("//div[@class='card'][2]//a") for tag in buttons: support_ = tag.get_attribute("class") if support_: support_ = [ i for i in [i for i in support_.split() if i.startswith("btn-")] if i not in [ "btn-icon", "btn-primary", "btn-lg", "btn-round", "btn-progress", ] ] if len(support_) == 1: class_name = support_[0].replace("btn-", "") support.append(class_name) # 残差补全 for tag in subscribes.values(): if "surge" in tag.lower(): support.append("surge") if "ssr" in tag.lower(): support.append("ssr") self.obj_parser.update( {"subscribes": subscribes, "support": list(set(support))} ) except WebDriverException: logger.error( f"<SSPanelParserError> Site subscription resolution failed -- {self.register_url}" ) self.obj_parser.update( { "email": self.email, "password": self.password, "recently_login": datetime.now(tz=TIME_ZONE_CN), } ) return self.obj_parser def parse_by_login(self, **kwargs) -> dict: return self.seep("login", self.parse, **kwargs) def parse_by_register(self, **kwargs): return self.seep("register", self.parse, **kwargs) def refresh_cookie(self, **kwargs): def get_cookie(): cookies = kwargs.get("api") return json.dumps(cookies.get_cookies()) if cookies else {} return self.seep("login", get_cookie, **kwargs) def seep(self, method, business, **kwargs): # 获取任务设置 api = self.set_spider_option() # 执行核心业务逻辑 try: self.get_html_handle(api=api, url=self.register_url, wait_seconds=45) if method == "login": self.sign_in(api, **kwargs) elif method == "register": self.sign_up(api) self.wait(api, 40, "//div[@class='card-body']") kwargs.setdefault("api", api) return business(**kwargs) finally: api.quit()
python
import stweet as st def test_return_tweets_objects(): phrase = '#koronawirus' search_tweets_task = st.SearchTweetsTask( all_words=phrase, tweets_count=200 ) tweets_collector = st.CollectorTweetOutput() result = st.TweetSearchRunner( search_tweets_task=search_tweets_task, tweet_outputs=[tweets_collector] ).run() scrapped_tweets = tweets_collector.get_scrapped_tweets() assert isinstance(result, st.SearchTweetsResult) assert result.downloaded_count == len(scrapped_tweets) assert result.downloaded_count > 0 assert all([phrase in it.full_text for it in scrapped_tweets if phrase in it.full_text]) is True
python
import lmfit import numpy as np from uncertainties import ufloat from scipy.stats import sem from collections import OrderedDict from pycqed.analysis import fitting_models as fit_mods from pycqed.analysis import analysis_toolbox as a_tools import pycqed.analysis_v2.base_analysis as ba from pycqed.analysis.tools.plotting import SI_val_to_msg_str from pycqed.utilities.general import format_value_string from copy import deepcopy from pycqed.analysis.tools.data_manipulation import \ populations_using_rate_equations class Single_Qubit_TimeDomainAnalysis(ba.BaseDataAnalysis): def process_data(self): ''' This takes care of rotating and normalizing the data if required. this should work for several input types. - I/Q values (2 quadratures + cal points) - weight functions (1 quadrature + cal points) - counts (no cal points) There are several options possible to specify the normalization using the options dict. cal_points (tuple) of indices of the calibration points zero_coord, one_coord ''' cal_points = self.options_dict.get('cal_points', None) zero_coord = self.options_dict.get('zero_coord', None) one_coord = self.options_dict.get('one_coord', None) # FIXME THIS IS A HACK related to recent issue self.data_dict = self.raw_data_dict if cal_points is None: # default for all standard Timedomain experiments cal_points = [list(range(-4, -2)), list(range(-2, 0))] if len(self.raw_data_dict['measured_values']) == 1: # if only one weight function is used rotation is not required self.proc_data_dict['corr_data'] = a_tools.normalize_data_v3( self.raw_data_dict['measured_values'][0], cal_zero_points=cal_points[0], cal_one_points=cal_points[1]) else: self.proc_data_dict['corr_data'], zero_coord, one_coord = \ a_tools.rotate_and_normalize_data( data=self.raw_data_dict['measured_values'][0:2], zero_coord=zero_coord, one_coord=one_coord, cal_zero_points=cal_points[0], cal_one_points=cal_points[1]) # This should be added to the hdf5 datafile but cannot because of the # way that the "new" analysis works. # self.add_dataset_to_analysisgroup('Corrected data', # self.proc_data_dict['corr_data']) class Idling_Error_Rate_Analyisis(ba.BaseDataAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): post_sel_th = self.options_dict.get('post_sel_th', 0.5) raw_shots = self.raw_data_dict['measured_values'][0][0] post_sel_shots = raw_shots[::2] data_shots = raw_shots[1::2] data_shots[np.where(post_sel_shots > post_sel_th)] = np.nan states = ['0', '1', '+'] self.proc_data_dict['xvals'] = np.unique(self.raw_data_dict['xvals']) for i, state in enumerate(states): self.proc_data_dict['shots_{}'.format(state)] = data_shots[i::3] self.proc_data_dict['yvals_{}'.format(state)] = \ np.nanmean(np.reshape(self.proc_data_dict['shots_{}'.format(state)], (len(self.proc_data_dict['xvals']), -1), order='F'), axis=1) def prepare_plots(self): # assumes that value names are unique in an experiment states = ['0', '1', '+'] for i, state in enumerate(states): yvals = self.proc_data_dict['yvals_{}'.format(state)] xvals = self.proc_data_dict['xvals'] self.plot_dicts['Prepare in {}'.format(state)] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': xvals, 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': yvals, 'ylabel': 'Counts', 'yrange': [0, 1], 'xrange': self.options_dict.get('xrange', None), 'yunit': 'frac', 'setlabel': 'Prepare in {}'.format(state), 'do_legend': True, 'title': (self.raw_data_dict['timestamps'][0]+' - ' + self.raw_data_dict['timestamps'][-1] + '\n' + self.raw_data_dict['measurementstring'][0]), 'legend_pos': 'upper right'} if self.do_fitting: for state in ['0', '1', '+']: self.plot_dicts['fit_{}'.format(state)] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['fit {}'.format(state)]['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'fit |{}>'.format(state), 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['fit_text'] = { 'ax_id': 'main', 'box_props': 'fancy', 'xpos': 1.05, 'horizontalalignment': 'left', 'plotfn': self.plot_text, 'text_string': self.proc_data_dict['fit_msg']} def analyze_fit_results(self): fit_msg = '' states = ['0', '1', '+'] for state in states: fr = self.fit_res['fit {}'.format(state)] fit_msg += 'Prep |{}> :\n\t' fit_msg += format_value_string('$N_1$', fr.params['N1'], end_char='\n\t') fit_msg += format_value_string('$N_2$', fr.params['N2'], end_char='\n') self.proc_data_dict['fit_msg'] = fit_msg def prepare_fitting(self): self.fit_dicts = OrderedDict() states = ['0', '1', '+'] for i, state in enumerate(states): yvals = self.proc_data_dict['yvals_{}'.format(state)] xvals = self.proc_data_dict['xvals'] mod = lmfit.Model(fit_mods.idle_error_rate_exp_decay) mod.guess = fit_mods.idle_err_rate_guess.__get__( mod, mod.__class__) # Done here explicitly so that I can overwrite a specific guess guess_pars = mod.guess(N=xvals, data=yvals) vary_N2 = self.options_dict.get('vary_N2', True) if not vary_N2: guess_pars['N2'].value = 1e21 guess_pars['N2'].vary = False # print(guess_pars) self.fit_dicts['fit {}'.format(states[i])] = { 'model': mod, 'fit_xvals': {'N': xvals}, 'fit_yvals': {'data': yvals}, 'guess_pars': guess_pars} # Allows fixing the double exponential coefficient class Grovers_TwoQubitAllStates_Analysis(ba.BaseDataAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, close_figs: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, close_figs=close_figs, extract_only=extract_only, do_fitting=True) self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() normalize_to_cal_points = self.options_dict.get( 'normalize_to_cal_points', True) cal_points = [ [[-4, -3], [-2, -1]], [[-4, -2], [-3, -1]], ] for idx in [0, 1]: yvals = list(self.raw_data_dict['measured_values_ord_dict'].values())[ idx][0] self.proc_data_dict['ylabel_{}'.format(idx)] = \ self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] if normalize_to_cal_points: yvals = a_tools.normalize_data_v3(yvals, cal_zero_points=cal_points[idx][0], cal_one_points=cal_points[idx][1]) self.proc_data_dict['yvals_{}'.format(idx)] = yvals y0 = self.proc_data_dict['yvals_0'] y1 = self.proc_data_dict['yvals_1'] p_success = ((y0[0]*y1[0]) + (1-y0[1])*y1[1] + (y0[2])*(1-y1[2]) + (1-y0[3])*(1-y1[3]))/4 print(y0[0]*y1[0]) print((1-y0[1])*y1[1]) print((y0[2])*(1-y1[2])) print((1-y0[3])*(1-y1[3])) self.proc_data_dict['p_success'] = p_success def prepare_plots(self): # assumes that value names are unique in an experiment for i in [0, 1]: yvals = self.proc_data_dict['yvals_{}'.format(i)] xvals = self.raw_data_dict['xvals'][0] ylabel = self.proc_data_dict['ylabel_{}'.format(i)] self.plot_dicts['main_{}'.format(ylabel)] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['xvals'][0], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_{}'.format(i)], 'ylabel': ylabel, 'yunit': self.proc_data_dict['yunit'], 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': False, 'legend_pos': 'upper right'} self.plot_dicts['limit_text'] = { 'ax_id': 'main_{}'.format(ylabel), 'box_props': 'fancy', 'xpos': 1.05, 'horizontalalignment': 'left', 'plotfn': self.plot_text, 'text_string': 'P succes = {:.3f}'.format(self.proc_data_dict['p_success'])} class FlippingAnalysis(Single_Qubit_TimeDomainAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = True self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'measurementstring': 'measurementstring', 'sweep_points': 'sweep_points', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} # This analysis makes a hardcoded assumption on the calibration points self.options_dict['cal_points'] = [list(range(-4, -2)), list(range(-2, 0))] self.numeric_params = [] if auto: self.run_analysis() def prepare_fitting(self): self.fit_dicts = OrderedDict() # Even though we expect an exponentially damped oscillation we use # a simple cosine as this gives more reliable fitting and we are only # interested in extracting the frequency of the oscillation cos_mod = lmfit.Model(fit_mods.CosFunc) guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.raw_data_dict['sweep_points'][:-4], data=self.proc_data_dict['corr_data'][:-4]) # This enforces the oscillation to start at the equator # and ensures that any over/under rotation is absorbed in the # frequency guess_pars['amplitude'].value = 0.5 guess_pars['amplitude'].vary = True guess_pars['offset'].value = 0.5 guess_pars['offset'].vary = True self.fit_dicts['cos_fit'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.raw_data_dict['sweep_points'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['corr_data'][:-4]}, 'guess_pars': guess_pars} # In the case there are very few periods we fall back on a small # angle approximation to extract the drive detuning poly_mod = lmfit.models.PolynomialModel(degree=1) # the detuning can be estimated using on a small angle approximation # c1 = d/dN (cos(2*pi*f N) ) evaluated at N = 0 -> c1 = -2*pi*f poly_mod.set_param_hint('frequency', expr='-c1/(2*pi)') guess_pars = poly_mod.guess(x=self.raw_data_dict['sweep_points'][:-4], data=self.proc_data_dict['corr_data'][:-4]) # Constraining the line ensures that it will only give a good fit # if the small angle approximation holds guess_pars['c0'].vary = True guess_pars['c0'].value = 0.5 self.fit_dicts['line_fit'] = { 'model': poly_mod, 'fit_xvals': {'x': self.raw_data_dict['sweep_points'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['corr_data'][:-4]}, 'guess_pars': guess_pars} def analyze_fit_results(self): sf_line = self._get_scale_factor_line() sf_cos = self._get_scale_factor_cos() self.proc_data_dict['scale_factor'] = self.get_scale_factor() msg = 'Scale fact. based on ' if self.proc_data_dict['scale_factor'] == sf_cos: msg += 'cos fit\n' else: msg += 'line fit\n' msg += 'cos fit: {:.4f}\n'.format(sf_cos) msg += 'line fit: {:.4f}'.format(sf_line) self.raw_data_dict['scale_factor_msg'] = msg # TODO: save scale factor to file def get_scale_factor(self): """ Returns the scale factor that should correct for the error in the pulse amplitude. """ # Model selection based on the Bayesian Information Criterion (BIC) # as calculated by lmfit if (self.fit_dicts['line_fit']['fit_res'].bic < self.fit_dicts['cos_fit']['fit_res'].bic): scale_factor = self._get_scale_factor_line() else: scale_factor = self._get_scale_factor_cos() return scale_factor def _get_scale_factor_cos(self): # 1/period of the oscillation corresponds to the (fractional) # over/under rotation error per gate frequency = self.fit_dicts['cos_fit']['fit_res'].params['frequency'] # the square is needed to account for the difference between # power and amplitude scale_factor = (1+frequency)**2 phase = np.rad2deg( self.fit_dicts['cos_fit']['fit_res'].params['phase']) % 360 # phase ~90 indicates an under rotation so the scale factor # has to be larger than 1. A phase ~270 indicates an over # rotation so then the scale factor has to be smaller than one. if phase > 180: scale_factor = 1/scale_factor return scale_factor def _get_scale_factor_line(self): # 2/period (ref is 180 deg) of the oscillation corresponds # to the (fractional) over/under rotation error per gate frequency = self.fit_dicts['line_fit']['fit_res'].params['frequency'] scale_factor = (1+2*frequency)**2 # no phase sign check is needed here as this is contained in the # sign of the coefficient return scale_factor def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['sweep_points'], 'xlabel': self.raw_data_dict['xlabel'], 'xunit': self.raw_data_dict['xunit'], # does not do anything yet 'yvals': self.proc_data_dict['corr_data'], 'ylabel': 'Excited state population', 'yunit': '', 'setlabel': 'data', 'title': (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring']), 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'line fit', 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['cos_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['text_msg'] = { 'ax_id': 'main', 'ypos': 0.15, 'plotfn': self.plot_text, 'box_props': 'fancy', 'text_string': self.raw_data_dict['scale_factor_msg']} class Intersect_Analysis(Single_Qubit_TimeDomainAnalysis): """ Analysis to extract the intercept of two parameters. relevant options_dict parameters ch_idx_A (int) specifies first channel for intercept ch_idx_B (int) specifies second channel for intercept if same as first it will assume data was taken interleaved. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True, normalized_probability=False): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.normalized_probability = normalized_probability self.params_dict = {'xlabel': 'sweep_name', 'xvals': 'sweep_points', 'xunit': 'sweep_unit', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx_A" and "ch_idx_B" specified in the options dict. If ch_idx_A and ch_idx_B are the same it will unzip the data. """ self.proc_data_dict = deepcopy(self.raw_data_dict) # The channel containing the data must be specified in the options dict ch_idx_A = self.options_dict.get('ch_idx_A', 0) ch_idx_B = self.options_dict.get('ch_idx_B', 0) self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][ch_idx_A] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][ch_idx_A] if ch_idx_A == ch_idx_B: yvals = list(self.raw_data_dict['measured_values_ord_dict'].values())[ ch_idx_A][0] self.proc_data_dict['xvals_A'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_B'] = self.raw_data_dict['xvals'][0][1::2] self.proc_data_dict['yvals_A'] = yvals[::2] self.proc_data_dict['yvals_B'] = yvals[1::2] else: self.proc_data_dict['xvals_A'] = self.raw_data_dict['xvals'][0] self.proc_data_dict['xvals_B'] = self.raw_data_dict['xvals'][0] self.proc_data_dict['yvals_A'] = list(self.raw_data_dict ['measured_values_ord_dict'].values())[ch_idx_A][0] self.proc_data_dict['yvals_B'] = list(self.raw_data_dict ['measured_values_ord_dict'].values())[ch_idx_B][0] def prepare_fitting(self): self.fit_dicts = OrderedDict() self.fit_dicts['line_fit_A'] = { 'model': lmfit.models.PolynomialModel(degree=2), 'fit_xvals': {'x': self.proc_data_dict['xvals_A']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_A']}} self.fit_dicts['line_fit_B'] = { 'model': lmfit.models.PolynomialModel(degree=2), 'fit_xvals': {'x': self.proc_data_dict['xvals_B']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_B']}} def analyze_fit_results(self): fr_0 = self.fit_res['line_fit_A'].best_values fr_1 = self.fit_res['line_fit_B'].best_values c0 = (fr_0['c0'] - fr_1['c0']) c1 = (fr_0['c1'] - fr_1['c1']) c2 = (fr_0['c2'] - fr_1['c2']) poly_coeff = [c0, c1, c2] poly = np.polynomial.polynomial.Polynomial([fr_0['c0'], fr_0['c1'], fr_0['c2']]) ic = np.polynomial.polynomial.polyroots(poly_coeff) self.proc_data_dict['intersect_L'] = ic[0], poly(ic[0]) self.proc_data_dict['intersect_R'] = ic[1], poly(ic[1]) if (((np.min(self.proc_data_dict['xvals'])) < ic[0]) and (ic[0] < (np.max(self.proc_data_dict['xvals'])))): self.proc_data_dict['intersect'] = self.proc_data_dict['intersect_L'] else: self.proc_data_dict['intersect'] = self.proc_data_dict['intersect_R'] def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_A'], 'xlabel': self.proc_data_dict['xlabel'][0], 'xunit': self.proc_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_A'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'A', 'title': (self.proc_data_dict['timestamps'][0] + ' \n' + self.proc_data_dict['measurementstring'][0]), 'do_legend': True, 'legend_pos': 'upper right'} if self.normalized_probability: self.plot_dicts['main']['yrange'] = (0, 1) self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_B'], 'xlabel': self.proc_data_dict['xlabel'][0], 'xunit': self.proc_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_B'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'B', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit_A'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_A']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit A', 'do_legend': True} self.plot_dicts['line_fit_B'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_B']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit B', 'do_legend': True} ic, ic_unit = SI_val_to_msg_str( self.proc_data_dict['intersect'][0], self.proc_data_dict['xunit'][0][0], return_type=float) self.plot_dicts['intercept_message'] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': [self.proc_data_dict['intersect'][0]], 'yvals': [self.proc_data_dict['intersect'][1]], 'line_kws': {'alpha': .5, 'color': 'gray', 'markersize': 15}, 'marker': 'o', 'setlabel': 'Intercept: {:.3f} {}'.format(ic, ic_unit), 'do_legend': True} def get_intersect(self): return self.proc_data_dict['intersect'] class CZ_1QPhaseCal_Analysis(ba.BaseDataAnalysis): """ Analysis to extract the intercept for a single qubit phase calibration experiment N.B. this is a less generic version of "Intersect_Analysis" and should be deprecated (MAR Dec 2017) """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx" in options dict and then splits the data for th """ self.proc_data_dict = OrderedDict() # The channel containing the data must be specified in the options dict ch_idx = self.options_dict['ch_idx'] yvals = list(self.raw_data_dict['measured_values_ord_dict'].values())[ ch_idx][0] self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][ch_idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][ch_idx] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] self.proc_data_dict['yvals_off'] = yvals[::2] self.proc_data_dict['yvals_on'] = yvals[1::2] def prepare_fitting(self): self.fit_dicts = OrderedDict() self.fit_dicts['line_fit_off'] = { 'model': lmfit.models.PolynomialModel(degree=1), 'fit_xvals': {'x': self.proc_data_dict['xvals_off']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_off']}} self.fit_dicts['line_fit_on'] = { 'model': lmfit.models.PolynomialModel(degree=1), 'fit_xvals': {'x': self.proc_data_dict['xvals_on']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_on']}} def analyze_fit_results(self): fr_0 = self.fit_res['line_fit_off'].best_values fr_1 = self.fit_res['line_fit_on'].best_values ic = -(fr_0['c0'] - fr_1['c0'])/(fr_0['c1'] - fr_1['c1']) self.proc_data_dict['zero_phase_diff_intersect'] = ic def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_off'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, 'yrange': (0, 1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_on'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit_off'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_off']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ off', 'do_legend': True} self.plot_dicts['line_fit_on'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_on']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ on', 'do_legend': True} ic, ic_unit = SI_val_to_msg_str( self.proc_data_dict['zero_phase_diff_intersect'], self.raw_data_dict['xunit'][0][0], return_type=float) self.plot_dicts['intercept_message'] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': [self.proc_data_dict['zero_phase_diff_intersect']], 'yvals': [np.mean(self.proc_data_dict['xvals_on'])], 'line_kws': {'alpha': 0}, 'setlabel': 'Intercept: {:.1f} {}'.format(ic, ic_unit), 'do_legend': True} def get_zero_phase_diff_intersect(self): return self.proc_data_dict['zero_phase_diff_intersect'] class Oscillation_Analysis(ba.BaseDataAnalysis): """ Very basic analysis to determine the phase of a single oscillation that has an assumed period of 360 degrees. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, label: str='', ch_idx: int=0, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.ch_idx = ch_idx self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() idx = self.ch_idx normalize_to_cal_points = self.options_dict.get( 'normalize_to_cal_points', False) cal_points = [ [[-4, -3], [-2, -1]], [[-4, -2], [-3, -1]], ] yvals = list( self.raw_data_dict['measured_values_ord_dict'].values())[idx][0] if normalize_to_cal_points: yvals = a_tools.normalize_data_v3( yvals, cal_zero_points=cal_points[idx][0], cal_one_points=cal_points[idx][1]) self.proc_data_dict['yvals'] = yvals self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] def prepare_fitting(self): self.fit_dicts = OrderedDict() cos_mod = lmfit.Model(fit_mods.CosFunc) cos_mod.guess = fit_mods.Cos_guess.__get__(cos_mod, cos_mod.__class__) if not (self.options_dict.get('normalize_to_cal_points', False)): t = self.raw_data_dict['xvals'][0] data = self.proc_data_dict['yvals'] else: t = self.raw_data_dict['xvals'][0][:-4] data = self.proc_data_dict['yvals'][:-4] self.fit_dicts['cos_fit'] = { 'model': cos_mod, 'guess_dict': {'frequency': {'value': 1/360, 'vary': False}}, 'fit_xvals': {'t': t}, 'fit_yvals': {'data': data}} def analyze_fit_results(self): fr = self.fit_res['cos_fit'].best_values self.proc_data_dict['phi'] = np.rad2deg(fr['phase']) def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['xvals'][0], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['cos_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit', 'do_legend': True} class Conditional_Oscillation_Analysis(ba.BaseDataAnalysis): """ Analysis to extract quantities from a conditional oscillation. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, label: str='', options_dict: dict=None, extract_only: bool=False, cal_points='gef', close_figs: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, close_figs=close_figs, extract_only=extract_only, do_fitting=True) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} # either "gef" or "ge" self.cal_points = cal_points self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx_osc" and "ch_idx_spec" in the options dict and then splits the data for the off and on cases """ self.proc_data_dict = OrderedDict() # values stored in quantities of interest will be saved in the data file self.proc_data_dict['quantities_of_interest'] = {} qoi = self.proc_data_dict['quantities_of_interest'] # The channel containing the data must be specified in the options dict ch_idx_spec = self.options_dict.get('ch_idx_spec', 0) ch_idx_osc = self.options_dict.get('ch_idx_osc', 1) qoi['ch_idx_osc'] = ch_idx_osc qoi['ch_idx_spec'] = ch_idx_spec normalize_to_cal_points = self.options_dict.get( 'normalize_to_cal_points', True) if self.cal_points == 'gef': # calibration point indices are when ignoring the f-state cal pts cal_points = [ [[-7, -6], [-5, -4], [-2, -1]], # oscillating qubit [[-7, -5], [-6, -4], [-3, -1]], # spec qubits ] elif self.cal_points == 'ge': # calibration point indices are when ignoring the f-state cal pts cal_points = [ [[-4, -3], [-2, -1]], # oscillating qubits [[-4, -2], [-3, -1]], # spec qubit ] for idx, type_str in zip([ch_idx_osc, ch_idx_spec], ['osc', 'spec']): yvals = list(self.raw_data_dict['measured_values_ord_dict'].values())[ idx][0] self.proc_data_dict['ylabel_{}'.format( type_str)] = self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] # This is in case of readout crosstalk making a difference between on and off cases cals_osc_qubit = cal_points[0] idx_cal_off = [c[1] for c in cals_osc_qubit] idx_cal_on = [c[0] for c in cals_osc_qubit] yvals_off = np.concatenate((yvals[:cals_osc_qubit[0][0]:2], yvals[idx_cal_off])) yvals_on = np.concatenate((yvals[1:cals_osc_qubit[0][0]:2], yvals[idx_cal_on])) if normalize_to_cal_points: yvals_off = a_tools.normalize_TD_data( data=yvals_off, data_zero=yvals[cals_osc_qubit[0][1]], data_one=yvals[cals_osc_qubit[1][1]]) yvals_on = a_tools.normalize_TD_data( data=yvals_on, data_zero=yvals[cals_osc_qubit[0][0]], data_one=yvals[cals_osc_qubit[1][0]]) self.proc_data_dict['yvals_{}_off'.format( type_str)] = yvals_off self.proc_data_dict['yvals_{}_on'.format( type_str)] = yvals_on self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] else: self.proc_data_dict['yvals_{}_off'.format( type_str)] = yvals[::2] self.proc_data_dict['yvals_{}_on'.format( type_str)] = yvals[1::2] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] V0 = np.mean(yvals[cal_points[idx][0]]) V1 = np.mean(yvals[cal_points[idx][1]]) if self.cal_points != 'gef': V2 = V1#np.mean(yvals[cal_points[idx][2]]) else: V2 = V1 self.proc_data_dict['V0_{}'.format(type_str)] = V0 self.proc_data_dict['V1_{}'.format(type_str)] = V1 self.proc_data_dict['V2_{}'.format(type_str)] = V2 if type_str == 'osc': # The offset in the oscillation is the leakage indicator SI = [np.mean(self.proc_data_dict[ 'yvals_{}_on'.format(type_str)])] # The mean of the oscillation SI is the same as SX SX = SI P0, P1, P2, M_inv = populations_using_rate_equations( SI, SX, V0, V1, V2) # Leakage based on the average of the oscillation qoi['leak_avg'] = P2[0] # list with 1 elt... def prepare_fitting(self): self.fit_dicts = OrderedDict() cos_mod0 = lmfit.Model(fit_mods.CosFunc) cos_mod0.guess = fit_mods.Cos_guess.__get__( cos_mod0, cos_mod0.__class__) self.fit_dicts['cos_fit_off'] = { 'model': cos_mod0, 'guess_dict': {'frequency': {'value': 1/360, 'vary': False}}, 'fit_xvals': {'t': self.proc_data_dict['xvals_off'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['yvals_osc_off'][:-4]}} cos_mod1 = lmfit.Model(fit_mods.CosFunc) cos_mod1.guess = fit_mods.Cos_guess.__get__( cos_mod1, cos_mod1.__class__) self.fit_dicts['cos_fit_on'] = { 'model': cos_mod1, 'guess_dict': {'frequency': {'value': 1/360, 'vary': False}}, 'fit_xvals': {'t': self.proc_data_dict['xvals_on'][:-3]}, 'fit_yvals': {'data': self.proc_data_dict['yvals_osc_on'][:-3]}} def analyze_fit_results(self): qoi = self.proc_data_dict['quantities_of_interest'] fr_0 = self.fit_res['cos_fit_off'] fr_1 = self.fit_res['cos_fit_on'] phi0 = ufloat(np.rad2deg(fr_0.params['phase'].value), np.rad2deg(fr_0.params['phase'].stderr if fr_0.params['phase'].stderr is not None else np.nan)) phi1 = ufloat(np.rad2deg(fr_1.params['phase'].value), np.rad2deg(fr_1.params['phase'].stderr if fr_1.params['phase'].stderr is not None else np.nan)) qoi['phi_0'] = phi0 qoi['phi_1'] = phi1 qoi['phi_cond'] = (phi0-phi1) % 360 qoi['osc_amp_0'] = ufloat(fr_0.params['amplitude'].value, fr_0.params['amplitude'].stderr if fr_0.params['amplitude'].stderr is not None else np.nan) qoi['osc_amp_1'] = ufloat(fr_1.params['amplitude'].value, fr_1.params['amplitude'].stderr if fr_1.params['amplitude'].stderr is not None else np.nan) qoi['osc_offs_0'] = ufloat(fr_0.params['offset'].value, fr_0.params['offset'].stderr if fr_0.params['offset'].stderr is not None else np.nan) qoi['osc_offs_1'] = ufloat(fr_1.params['offset'].value, fr_1.params['offset'].stderr if fr_1.params['offset'].stderr is not None else np.nan) qoi['offs_diff'] = qoi['osc_offs_1'] - qoi['osc_offs_0'] spec_on = ufloat(np.mean(self.proc_data_dict['yvals_spec_on'][:-3]), sem(self.proc_data_dict['yvals_spec_on'][:-3])) spec_off = ufloat(np.mean(self.proc_data_dict['yvals_spec_off'][:-3]), sem(self.proc_data_dict['yvals_spec_off'][:-3])) qoi['missing_fraction'] = spec_on-spec_off def prepare_plots(self): self._prepare_main_oscillation_figure() self._prepare_spectator_qubit_figure() def _prepare_main_oscillation_figure(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_osc_off'], 'ylabel': self.proc_data_dict['ylabel_osc'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_osc_on'], 'ylabel': self.proc_data_dict['ylabel_osc'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['cos_fit_off'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_off']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ off', 'do_legend': True} self.plot_dicts['cos_fit_on'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_on']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ on', 'do_legend': True} # offset as a guide for the eye y = self.fit_res['cos_fit_off'].params['offset'].value self.plot_dicts['cos_off_offset'] = { 'plotfn': self.plot_matplot_ax_method, 'ax_id': 'main', 'func': 'axhline', 'plot_kws': { 'y': y, 'color': 'C0', 'linestyle': 'dotted'} } qoi = self.proc_data_dict['quantities_of_interest'] phase_message = ( 'Phase diff.: {} deg\n' 'Phase off: {} deg\n' 'Phase on: {} deg\n\n' 'Offs. diff.: {} %\n' 'Osc. offs. off: {} \n' 'Osc. offs. on: {}\n\n' 'Osc. amp. off: {} \n' 'Osc. amp. on: {} '.format( qoi['phi_cond'], qoi['phi_0'], qoi['phi_1'], qoi['offs_diff']*100, qoi['osc_offs_0'], qoi['osc_offs_1'], qoi['osc_amp_0'], qoi['osc_amp_1'])) self.plot_dicts['phase_message'] = { 'ax_id': 'main', 'ypos': 0.9, 'xpos': 1.45, 'plotfn': self.plot_text, 'box_props': 'fancy', 'line_kws': {'alpha': 0}, 'text_string': phase_message} def _prepare_spectator_qubit_figure(self): self.plot_dicts['spectator_qubit'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_spec_off'], 'ylabel': self.proc_data_dict['ylabel_spec'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['spec_on'] = { 'plotfn': self.plot_line, 'ax_id': 'spectator_qubit', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_spec_on'], 'ylabel': self.proc_data_dict['ylabel_spec'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: leak_msg = ( 'Missing fraction: {} % '.format( self.proc_data_dict['quantities_of_interest'] ['missing_fraction']*100)) self.plot_dicts['leak_msg'] = { 'ax_id': 'spectator_qubit', 'ypos': 0.7, 'xpos': 1.05, 'plotfn': self.plot_text, 'box_props': 'fancy', 'line_kws': {'alpha': 0}, 'horizontalalignment': 'left', 'text_string': leak_msg} # offset as a guide for the eye y = self.fit_res['cos_fit_on'].params['offset'].value self.plot_dicts['cos_on_offset'] = { 'plotfn': self.plot_matplot_ax_method, 'ax_id': 'main', 'func': 'axhline', 'plot_kws': { 'y': y, 'color': 'C1', 'linestyle': 'dotted'} }
python
def zk_demo(cfg,V,F,ZMvtk) : #function max_abs_diff = demo( V,F,ZMvtk ) # num_vertices = 3 # num_vertices = 3; num_facets = cfg.size(F,0) #! # num_facets = size(F,1); N = 20 # N = 20; %code will only work upto order 20 (can be fixed later) # # % ZERNIKE MOMENTS G = cfg.geometric_moments_orig(V,F,N,num_facets,num_vertices) # G=geometric_moments_orig(V,F,N,num_facets,num_vertices); Z = cfg.zernike(G,N) # Z=zernike(G,N); Descriptors = cfg.feature_extraction(Z,N) # Descriptors=feature_extraction(Z,N); # ZM= reformat_zernike(Z,N); # # %compare to your code # max_abs_diff = max(abs(abs(ZM) - abs(ZMvtk))); %error should be around 1e-8 return Descriptors
python
from django.urls import path from . import api_views, views urlpatterns = [ path('', views.firework_home, name='fireworks-home'), path('add/', views.add_firework, name='fireworks-add'), path('categories', views.category, name='fireworks-categories'), path('category/<slug:category_slug>/', views.category, name='fireworks-category'), path('category/<slug:category_slug>/<slug:firework_slug>/', views.firework_detail, name='fireworks-detail'), path('favorites/<int:pk>/', views.favorites, name='fireworks-favorites'), path('manufacturer/<slug:manufacturer_slug>/', views.manufacturer, name='fireworks-manufacturer'), path('manufacturers/', views.manufacturers, name='fireworks-manufacturers'), ]
python
from pydantic import BaseModel from starlette.requests import Request from fastapi.security.base import SecurityBase from fastapi.security.utils import get_authorization_scheme_param from typing import Optional from starlette.status import HTTP_403_FORBIDDEN, HTTP_401_UNAUTHORIZED from fastapi.exceptions import HTTPException class AuthFlowsModel(BaseModel): pass class AuthFlows(BaseModel): token: Optional[AuthFlowsModel] = None class Auth(SecurityBase): def __init__( self, *, scheme_name: Optional[str] = None, auto_error: Optional[bool] = True ): self.model = AuthFlows() self.scheme_name = scheme_name or self.__class__.__name__ self.auto_error = auto_error async def __call__(self, request: Request) -> Optional[str]: authorization: str = request.headers.get("Authorization") if not authorization: if self.auto_error: raise HTTPException(status_code=HTTP_403_FORBIDDEN, detail="Not authenticated") else: return None return authorization class BearerAuth(Auth): def __init__( self, scheme_name: Optional[str] = None, auto_error: bool = True, ): super().__init__(scheme_name=scheme_name, auto_error=auto_error) async def __call__(self, request: Request) -> Optional[str]: authorization: str = request.headers.get("Authorization") scheme, param = get_authorization_scheme_param(authorization) if not authorization or scheme.lower() != "bearer": if self.auto_error: raise HTTPException( status_code=HTTP_401_UNAUTHORIZED, detail="Not authenticated", headers={"WWW-Authenticate": "Bearer"}, ) else: return None return param
python
print(1)<caret>
python
""" Copyright 2013 Steven Diamond This file is part of CVXPY. CVXPY is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. CVXPY is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with CVXPY. If not, see <http://www.gnu.org/licenses/>. """ from cvxpy.atoms.affine.trace import trace from cvxpy.expressions.variable import Variable def normNuc_canon(expr, args): A = args[0] m, n = A.shape # Create the equivalent problem: # minimize (trace(U) + trace(V))/2 # subject to: # [U A; A.T V] is positive semidefinite X = Variable((m+n, m+n), PSD=True) constraints = [] # Fix X using the fact that A must be affine by the DCP rules. # X[0:rows,rows:rows+cols] == A constraints.append(X[0:m, m:m+n] == A) trace_value = 0.5 * trace(X) return trace_value, constraints
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import torch from torchknickknacks import metrics x1 = torch.rand(100,) x2 = torch.rand(100,) r = metrics.pearson_coeff(x1, x2) x = torch.rand(100, 30) r_pairs = metrics.pearson_coeff_pairs(x)
python
# Based off of https://github.com/getninjas/celery-executor/ # # Apache Software License 2.0 # # Copyright (c) 2018, Alan Justino da Silva # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from os import environ as env from concurrent.futures import as_completed from concurrent.futures._base import (RUNNING, FINISHED, CANCELLED, CANCELLED_AND_NOTIFIED) from threading import Lock, Thread import time from logging import NullHandler, StreamHandler from logging.handlers import SocketHandler from terra.executor.base import BaseFuture, BaseExecutor from terra import settings from terra.logger import getLogger logger = getLogger(__name__) class CeleryExecutorFuture(BaseFuture): def __init__(self, asyncresult): self._ar = asyncresult super().__init__() def __del__(self): self._ar.forget() del self._ar def cancel(self): """Cancel the future if possible. Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it is running or has already completed. """ logger.debug4(f'Canceling task {self._ar.id}') with self._condition: if self._state in [RUNNING, FINISHED, CANCELLED, CANCELLED_AND_NOTIFIED]: return super().cancel() # Not running and not cancelled. May be possible to cancel! self._ar.ready() # Triggers an update check if self._ar.state != 'REVOKED': self._ar.revoke() self._ar.ready() # Celery task should be REVOKED now. Otherwise may be not possible # revoke it. if self._ar.state == 'REVOKED': result = super().cancel() if not result: # pragma: no cover logger.error('Please open an issue on Github: Upstream ' 'implementation changed?') else: # Is not running nor revoked nor finished :/ # The revoke() had not produced effect: Task is probable not on a # worker, then not revoke-able. # Setting as RUNNING to inhibit super() from cancelling the Future, # then putting back. initial_state = self._state self._state = RUNNING result = super().cancel() if result: # pragma: no cover logger.error('Please open an issue on Github: Upstream ' 'implementation changed?') self._state = initial_state return result class CeleryExecutor(BaseExecutor): """ Executor implementation using celery tasks. Parameters ---------- predelay Will trigger before the `.apply_async` internal call postdelay Will trigger before the `.apply_async` internal call applyasync_kwargs Options passed to the `.apply_async()` call retry_kwargs Options passed to the `.retry()` call on errors retry_queue Sugar to set an alternative queue specially for errors update_delay Delay time between checks for Future state changes """ # This is only true when using prefork, eventlet, gevent, and solo are # single process multiprocess = True def __init__(self, predelay=None, postdelay=None, applyasync_kwargs=None, retry_kwargs=None, retry_queue='', update_delay=0.1, max_workers=None): # Options about calling the Task self._predelay = predelay self._postdelay = postdelay self._applyasync_kwargs = applyasync_kwargs or {} self._retry_kwargs = retry_kwargs or {} if retry_queue: self._retry_kwargs['queue'] = retry_queue self._retry_kwargs.setdefault('max_retries', 1) self._retry_kwargs.setdefault('max_retries', 0) # Options about managing this Executor flow self._update_delay = update_delay self._shutdown = False self._shutdown_lock = Lock() self._futures = set() self._monitor_started = False self._monitor_stopping = False self._monitor = Thread(target=self._update_futures) self._monitor.daemon = True def _update_futures(self): while True: time.sleep(self._update_delay) # Not-so-busy loop if self._monitor_stopping: return for fut in tuple(self._futures): if fut._state in (FINISHED, CANCELLED_AND_NOTIFIED): # This Future is set and done. Nothing else to do. self._futures.remove(fut) continue ar = fut._ar ar.ready() # Just trigger the AsyncResult state update check if ar.state == 'REVOKED': logger.warning('Celery task "%s" cancelled.', ar.id) if not fut.cancelled(): if not fut.cancel(): # pragma: no cover logger.error('Future was not running but failed to be cancelled') fut.set_running_or_notify_cancel() # Future is CANCELLED -> CANCELLED_AND_NOTIFIED elif ar.state in ('RUNNING', 'RETRY'): logger.debug4('Celery task "%s" running.', ar.id) if not fut.running(): fut.set_running_or_notify_cancel() # Future is RUNNING elif ar.state == 'SUCCESS': logger.debug4('Celery task "%s" resolved.', ar.id) fut.set_result(ar.get(disable_sync_subtasks=False)) # Future is FINISHED elif ar.state == 'FAILURE': logger.error('Celery task "%s" resolved with error.', ar.id) exc = ar.result exc = type(exc)( f'{str(exc)}\n\nThe task stack trace:\n\n{ar.traceback}') fut.set_exception(exc) # Future is FINISHED # else: # ar.state in [RECEIVED, STARTED, REJECTED, RETRY] # pass def submit(self, fn, *args, **kwargs): """ """ # Original python comment has * and isn't napoleon compatible with self._shutdown_lock: if self._shutdown: raise RuntimeError('cannot schedule new futures after shutdown') if not self._monitor_started: self._monitor.start() self._monitor_started = True # metadata = { # 'retry_kwargs': self._retry_kwargs.copy() # } if self._predelay: self._predelay(fn, *args, **kwargs) # asyncresult = _celery_call.apply_async((fn, metadata) + args, kwargs, # **self._applyasync_kwargs) asyncresult = fn.apply_async(args, kwargs) if self._postdelay: self._postdelay(asyncresult) future = CeleryExecutorFuture(asyncresult) self._futures.add(future) return future def shutdown(self, wait=True): logger.debug1('Shutting down celery tasks...') with self._shutdown_lock: self._shutdown = True for fut in tuple(self._futures): fut.cancel() if wait: for _ in as_completed(self._futures): pass self._monitor_stopping = True try: self._monitor.join() except RuntimeError: # pragma: no cover # Thread never started. Cannot join pass @staticmethod def configuration_map(service_info): from terra.compute import compute service_name = env['TERRA_CELERY_SERVICE'] class ServiceClone: def __init__(self, service_info): self.compose_service_name = service_name if hasattr(service_info, 'justfile'): self.justfile = service_info.justfile if hasattr(service_info, 'compose_files'): self.compose_files = service_info.compose_files self.env = env # .copy() self.volumes = [] service_clone = ServiceClone(service_info) if hasattr(compute, 'config'): config = compute.config(service_clone) else: config = None volume_map = compute.get_volume_map(config, service_clone) return volume_map @staticmethod def configure_logger(sender, **kwargs): if settings.terra.zone == 'task': # pragma: no cover # This won't ever be reached because the task_controller will configure # the logger, and then fork. sender.main_log_handler = NullHandler() elif settings.terra.zone == 'task_controller': # Setup log file for use in configure if settings.logging.log_file: os.makedirs(os.path.dirname(settings.logging.log_file), exist_ok=True) sender._log_file = settings.logging.log_file else: sender._log_file = os.devnull os.makedirs(settings.processing_dir, exist_ok=True) sender._log_file = open(sender._log_file, 'a') sender.main_log_handler = StreamHandler(stream=sender._log_file) sender.root_logger.addHandler(sender.main_log_handler) @staticmethod def reconfigure_logger(sender, pre_run_task=False, post_settings_context=False, **kwargs): if settings.terra.zone == 'task': if pre_run_task: if sender.main_log_handler: sender.main_log_handler.close() try: sender.root_logger.removeHandler(sender.main_log_handler) except ValueError: pass sender.main_log_handler = SocketHandler( settings.logging.server.hostname, settings.logging.server.port) sender.root_logger.addHandler(sender.main_log_handler) if post_settings_context: # when the celery task is done, its logger is automatically # reconfigured; use that opportunity to close the stream if sender.main_log_handler: sender.main_log_handler.close() try: sender.root_logger.removeHandler(sender.main_log_handler) except ValueError: pass sender.main_log_handler = NullHandler() sender.root_logger.addHandler(sender.main_log_handler) elif settings.terra.zone == 'task_controller': if settings.logging.log_file: os.makedirs(os.path.dirname(settings.logging.log_file), exist_ok=True) log_file = settings.logging.log_file else: log_file = os.devnull if log_file != sender._log_file.name: os.makedirs(settings.processing_dir, exist_ok=True) sender._log_file.close() sender._log_file = open(log_file, 'a')
python
import os import sys import json from pathlib import Path import shutil import argparse from wikiutils import split_wiki, sample_docs, cleanup_paths, save_stats parser = argparse.ArgumentParser() parser.add_argument("-l", "--lang", required=True, help="language of the wiki-dump to download / preprocess", type=str) parser.add_argument("-n", "--number_docs", default=160000, help="number of documents to randomly sample into docs_lm", type=int) parser.add_argument("-m", "--min_doc_length", default=1800, help="minimum document length (characters) of sampled documents", type=int) parser.add_argument("--mirror", default='dumps.wikimedia.org', help="wikipedia mirror - default dumps.wikimedia.org", type=str) parser.add_argument('--cleanup', default=False, action='store_true') args = parser.parse_args() lang = args.lang min_doc_length = args.min_doc_length number_docs = args.number_docs mirror = args.mirror cleanup = args.cleanup name = f'{lang}wiki' xml_name = f'{name}-latest-pages-articles.xml' zip_name = f'{xml_name}.bz2' path_data = Path('/data') path_wiki = path_data/name path_docs = path_data/name/'docs'/'all' path_dump = path_data/name/'dump' path_extract = path_dump/'extract' path_lm = path_data/name/'docs'/'sampled' # CLEANUP - if --cleanup is set remove directorys and EXIT! if cleanup: paths = [path_docs, path_extract] cleanup_paths(paths) sys.exit(f'Exiting after clean up!') if not path_wiki.exists(): os.mkdir(path_wiki) os.mkdir(path_wiki/'docs') if not path_data.exists(): os.mkdir(path_data) else: print(f'{path_data} already exists') # DOWNLOAD wikipedia dump if not (path_dump/xml_name).exists(): if not path_dump.exists(): print(f'creating {path_dump}') os.mkdir(path_dump) # xml does not exist -> download? if not (path_dump/zip_name).exists(): print(f'downloading {zip_name}') # zip does not exist -> download! os.system(f'wget --no-check-certificate -P {path_dump.absolute()}/ https://{mirror}/{name}/latest/{name}-latest-pages-articles.xml.bz2') print(f'unpacking {zip_name}') os.system(f'bzip2 -d {path_dump}/{zip_name}') # EXTRACT with wikiextractor if not path_extract.exists(): print(f'creating {path_extract}') print('running wikiextractor') os.system(f'wikiextractor --no-templates -b 100G -q -o /data/{name}/dump/extract/ /data/{name}/dump/{name}-latest-pages-articles.xml') else: print(f'{path_extract} exists - not extracting') # SPLIT wiki print('splitting wiki') if not path_docs.exists(): print(f'creating {path_docs}') split_wiki(path_extract, path_docs, lang) else: print(f'path {path_docs} exists - not splitting') # SAMPLE n-docs n_words = 0 n_docs = 0 print(f'sampling {number_docs} docs') if not path_lm.exists(): print(f'creating {path_lm}') os.mkdir(path_lm) n_words, n_docs = sample_docs(path_docs, path_lm, min_doc_length, number_docs) else: print(f'{path_lm} exists - skipping sampling documents!') save_stats(path_wiki/'docs', n_docs, n_words, min_doc_length) print(f'sucessfully prepared {name} - {path_lm}, number of docs {n_docs}/{number_docs} with {n_words} words / tokens!')
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings import uuidfield.fields class Migration(migrations.Migration): dependencies = [ ('schedule', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='EventLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('action', models.CharField(default=b'log', max_length=b'100', choices=[(b'acknowledge', b'acknowledge'), (b'resolve', b'resolve'), (b'silence_service', b'silence service'), (b'silence_incident', b'silence incident'), (b'forward', b'forward'), (b'log', b'log'), (b'notified', b'notified'), (b'notification_failed', b'notification failed'), (b'trigger', b'trigger')])), ('data', models.TextField()), ('occurred_at', models.DateTimeField()), ], options={ 'verbose_name': 'eventlog', 'verbose_name_plural': 'eventlog', }, ), migrations.CreateModel( name='Incident', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('incident_key', models.CharField(max_length=200)), ('event_type', models.CharField(max_length=15)), ('description', models.CharField(max_length=200)), ('details', models.TextField()), ('occurred_at', models.DateTimeField()), ], options={ 'verbose_name': 'incidents', 'verbose_name_plural': 'incidents', }, ), migrations.CreateModel( name='IncidentSilenced', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('silenced', models.BooleanField(default=False)), ('silenced_until', models.DateTimeField()), ('incident', models.ForeignKey(to='openduty.Incident')), ], ), migrations.CreateModel( name='SchedulePolicy', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=80)), ('repeat_times', models.IntegerField()), ], options={ 'verbose_name': 'schedule_policy', 'verbose_name_plural': 'schedule_policies', }, ), migrations.CreateModel( name='SchedulePolicyRule', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('position', models.IntegerField()), ('escalate_after', models.IntegerField()), ('schedule', models.ForeignKey(blank=True, to='schedule.Calendar', null=True)), ('schedule_policy', models.ForeignKey(related_name='rules', to='openduty.SchedulePolicy')), ('user_id', models.ForeignKey(blank=True, to=settings.AUTH_USER_MODEL, null=True)), ], options={ 'verbose_name': 'schedule_policy_rule', 'verbose_name_plural': 'schedule_policy_rules', }, ), migrations.CreateModel( name='Service', fields=[ ('name', models.CharField(unique=True, max_length=80)), ('id', uuidfield.fields.UUIDField(primary_key=True, serialize=False, editable=False, max_length=32, blank=True, unique=True)), ('retry', models.IntegerField(null=True, blank=True)), ('escalate_after', models.IntegerField(null=True, blank=True)), ('notifications_disabled', models.BooleanField(default=False)), ('policy', models.ForeignKey(blank=True, to='openduty.SchedulePolicy', null=True)), ], options={ 'verbose_name': 'service', 'verbose_name_plural': 'service', }, ), migrations.CreateModel( name='ServiceSilenced', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('silenced', models.BooleanField(default=False)), ('silenced_until', models.DateTimeField()), ('service', models.ForeignKey(to='openduty.Service')), ], ), migrations.CreateModel( name='ServiceTokens', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=80)), ('service_id', models.ForeignKey(to='openduty.Service')), ], options={ 'verbose_name': 'service_tokens', 'verbose_name_plural': 'service_tokens', }, ), migrations.CreateModel( name='Token', fields=[ ('key', models.CharField(max_length=40, serialize=False, primary_key=True)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('phone_number', models.CharField(max_length=50)), ('pushover_user_key', models.CharField(max_length=50)), ('pushover_app_key', models.CharField(max_length=50)), ('slack_room_name', models.CharField(max_length=50)), ('prowl_api_key', models.CharField(max_length=50, blank=True)), ('prowl_application', models.CharField(max_length=256, blank=True)), ('prowl_url', models.CharField(max_length=512, blank=True)), ('user', models.OneToOneField(related_name='profile', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='servicetokens', name='token_id', field=models.ForeignKey(to='openduty.Token'), ), migrations.AddField( model_name='incident', name='service_key', field=models.ForeignKey(to='openduty.Service'), ), migrations.AddField( model_name='eventlog', name='incident_key', field=models.ForeignKey(to='openduty.Incident', blank=True), ), migrations.AddField( model_name='eventlog', name='service_key', field=models.ForeignKey(to='openduty.Service'), ), migrations.AddField( model_name='eventlog', name='user', field=models.ForeignKey(related_name='users', default=None, blank=True, to=settings.AUTH_USER_MODEL, null=True), ), migrations.AlterUniqueTogether( name='incident', unique_together=set([('service_key', 'incident_key')]), ), ]
python
from .base import Dashboard
python
from django import forms from django.contrib import messages class InputForm(forms.Form): query = forms.CharField(max_length=200)
python
#!/usr/bin/python import base64 import binascii # CONSTANTS WORDLISTFILE = r'OSPD4.txt' SET1CH4INPUTFILE = r'4.txt' SET1CH6INPUTFILE = r'6.txt' # Functions def hextobase64(hexstring): bin = binascii.unhexlify(hexstring) return base64.b64encode(bin).decode() def xor(binary1, binary2): return ''.join(chr(ord(a) ^ ord(b)) for a, b in zip(binary1, binary2)) def xor_key(data, key): l = len(key) buff = [] for idx, val in enumerate(data): buff.append(chr(ord(val) ^ ord(key[idx % l]))) return ''.join(buff) def readwordlist(filepath): words = [] f = open(filepath, 'r') for line in f: words.append(str.split(line, ' ')[0].lower()) if f: f.close() return words def scoresentence(sentence, words): score = 0 for word in sentence.split(' '): for w in words: if w.lower() == word.lower(): score += 1 break return score def findsinglebytexorcipher(hexstring, words): highscore = {} for i in range(ord('A'), ord('Z') + 1): result = '' for j in range(0, len(hexstring), 2): result += xor_key(binascii.unhexlify(hexstring[j:j+2]), chr(i)) score = scoresentence(result, words) highscore[i] = (score, result, chr(i)) result = [] for score in highscore.items(): if score[1][0] > 0: result.append(score) return result def detectsinglecharacterxor(words): result = [] f = open(SET1CH4INPUTFILE, 'r') i = 1 for line in f: print i , i += 1 r = findsinglebytexorcipher(line.replace('\n', ''), words) if len(r) > 0: result.append(r) for res in r: print 'FOUND!' print 'Key: %s' % res[1][2] print 'Result: %s' % res[1][1] if f: f.close() return result def hammingdistance(str1, str2): assert len(str1) == len(str2) return sum(ch1 != ch2 for ch1, ch2 in zip(bin(int(binascii.hexlify(str1), 16)), bin(int(binascii.hexlify(str2), 16)))) def b64filetobinary(filepath): f = open(SET1CH6INPUTFILE, 'r') l = '' for line in f: l += line.replace('\n', '') if f: f.close() return base64.b64decode(l) def tryguesskeysize(data): for keysize in range(2, 40): #while len(data) > index + keysize * 2: distance = 0 for index in range(0, keysize * 4, keysize): distance += hammingdistance(data[index:index+keysize], data[index+keysize:index+keysize*2]) print 'Key: %d, distance: %d' % (keysize, distance / keysize) def breakrepeatingkeyxor(data, keysize): # Main if __name__ == '__main__': print ''' Set 1: Challange 1: Convert hex to base 64 ''' inputset1ch1 = r'49276d206b696c6c696e6720796f757220627261696e206c696b65206120706f69736f6e6f7573206d757368726f6f6d' expectedresultset1ch1 = r'SSdtIGtpbGxpbmcgeW91ciBicmFpbiBsaWtlIGEgcG9pc29ub3VzIG11c2hyb29t' assert expectedresultset1ch1 == hextobase64(inputset1ch1) print 'Result: OK' print ''' Set 1: Challange 2: Fixed XOR ''' input1set1ch2 = r'1c0111001f010100061a024b53535009181c' input2set1ch2 = r'686974207468652062756c6c277320657965' expectedresultset1ch2 = r'746865206b696420646f6e277420706c6179' assert expectedresultset1ch2 == binascii.hexlify(xor(binascii.unhexlify(input1set1ch2), binascii.unhexlify(input2set1ch2))) print 'Result: OK' print ''' Set 1: Challange 3: Single-byte XOR cipher ''' words = readwordlist(WORDLISTFILE) #inputset1ch3 = r'1b37373331363f78151b7f2b783431333d78397828372d363c78373e783a393b3736' #for res in findsinglebytexorcipher(inputset1ch3, words): # print 'Key: %s' % res[1][2] # print 'Result: %s' % res[1][1] print ''' Set 1: Challange 4: Detect single-character XOR ''' #for res in detectsinglecharacterxor(words): # print 'Key: %s' % res[1][2] # print 'Result: %s' % res[1][1] print ''' Set 1: Challange 5: Implement repeating-key XOR ''' input1set1ch5 = r'''Burning 'em, if you ain't quick and nimble I go crazy when I hear a cymbal''' input2set1ch5 = r'ICE' expectedresultset1ch5 = r'0b3637272a2b2e63622c2e69692a23693a2a3c6324202d623d63343c2a26226324272765272a282b2f20430a652e2c652a3124333a653e2b2027630c692b20283165286326302e27282f' #print binascii.hexlify(xor_key(input1set1ch5, input2set1ch5)) #print expectedresultset1ch5 print ''' Set 1: Challange 6: Break repeating-key XOR ''' input1set1ch6 = r'this is a test' input2set1ch6 = r'wokka wokka!!!' assert 37 == hammingdistance(input1set1ch6, input2set1ch6) data = b64filetobinary(SET1CH6INPUTFILE) #tryguesskeysize(data) #breakrepeatingkeyxor(data, 3) breakrepeatingkeyxor(data, 5) #breakrepeatingkeyxor(data, 8)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 import unittest from mock import mock from conans.client.tools.oss import detected_architecture class DetectedArchitectureTest(unittest.TestCase): def test_various(self): # x86 with mock.patch("platform.machine", mock.MagicMock(return_value='i386')): self.assertEqual('x86', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='i686')): self.assertEqual('x86', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='x86_64')): self.assertEqual('x86_64', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='amd64')): self.assertEqual('x86_64', detected_architecture()) # ARM with mock.patch("platform.machine", mock.MagicMock(return_value='aarch64_be')): self.assertEqual('armv8', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='armv8b')): self.assertEqual('armv8', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='armv7l')): self.assertEqual('armv7', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='armv6l')): self.assertEqual('armv6', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='arm')): self.assertEqual('armv6', detected_architecture()) # PowerPC with mock.patch("platform.machine", mock.MagicMock(return_value='ppc64le')): self.assertEqual('ppc64le', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='ppc64')): self.assertEqual('ppc64', detected_architecture()) # MIPS with mock.patch("platform.machine", mock.MagicMock(return_value='mips')): self.assertEqual('mips', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='mips64')): self.assertEqual('mips64', detected_architecture()) # SPARC with mock.patch("platform.machine", mock.MagicMock(return_value='sparc')): self.assertEqual('sparc', detected_architecture()) with mock.patch("platform.machine", mock.MagicMock(return_value='sparc64')): self.assertEqual('sparcv9', detected_architecture())
python
import pytest import shutil from accident_prediction_montreal.weather import get_weather_station_id_df from accident_prediction_montreal.utils import init_spark @pytest.fixture(scope='session') def spark(): return init_spark() def test_get_weather_station_id_df(spark): acc_sample = spark.read.parquet('tests/data/preprocessed_accidents_sample.parquet') acc_sample = acc_sample.limit(200) get_weather_station_id_df(spark, acc_sample, cache_file='/tmp/test.parquet') shutil.rmtree('/tmp/test.parquet')
python
# -*- coding: utf-8 -*- import sys import argparse from kits.parse_articles import parse_articles from config.conf import conf from config.conf import enviroment from kits.log import get_logger def initialize(): parser = argparse.ArgumentParser() parser.add_argument("-e", "--env", action="store", dest="env", help="enviroment of server. prod|test|dev") # parser.add_argument("-p", "--port", action="store", dest="port", default=6003, # help="port of running iplive node") args = parser.parse_args() if args.env not in ["dev", "prod"]: print("enviroment not support") sys.exit() env = enviroment[args.env] conf['env'] = env if 'logger' not in conf: conf['logger'] = get_logger("blog", on_screen=True, level=env['level']) parse_articles()
python
#!/usr/bin/env python # encoding: utf-8 # PYTHON_ARGCOMPLETE_OK # from __future__ imports must occur at the beginning of the file from __future__ import unicode_literals from __future__ import print_function from __future__ import division from .bypy import main if __name__ == "__main__": main() # vim: tabstop=4 noexpandtab shiftwidth=4 softtabstop=4 ff=unix fileencoding=utf-8
python
""" Define a new function using the @qgsfunction decorator. The function accept the following parameters :param [any]: Define any parameters you want to pass to your function before the following arguments. :param feature: The current feature :param parent: The QgsExpression object :param context: If there is an argument called ``context`` found at the last position, this variable will contain a ``QgsExpressionContext`` object, that gives access to various additional information like expression variables. E.g. ``context.variable('layer_id')`` :returns: The result of the expression. The @qgsfunction decorator accepts the following arguments: :param args: Defines the number of arguments. With ``args='auto'`` the number arguments will automatically be extracted from the signature. :param group: The name of the group under which this expression function will be listed. :param usesgeometry: Set this to False if your function does not access feature.geometry(). Defaults to True. :param referenced_columns: An array of attribute names that are required to run this function. Defaults to [QgsFeatureRequest.ALL_ATTRIBUTES]. """ from qgis.core import * from qgis.gui import * import hashlib import os @qgsfunction(args='auto', group='Custom') def my_md5sum(value1, feature, parent, context): """ Calculates the sum of the two parameters value1 and value2. <h2>Example usage:</h2> <ul> <li>my_sum(5, 8) -> 13</li> <li>my_sum("field1", "field2") -> 42</li> </ul> """ print(value1) print(context.variable('project_home')) project_home = context.variable('project_home') relative_filename = value1 fullpath = os.path.join(project_home, relative_filename) print(fullpath) filehash = hashlib.md5() return 'Hallo Stefan'
python
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from datetime import datetime class CommonRealDateUtils: """A utility for managing real life date and time. .. note:: This utility is used to handle the Real Time and not the Game Time. """ @staticmethod def get_current_date_time() -> datetime: """get_current_date_time() Retrieve the current date and time. :return: The current real date and time. :rtype: datetime """ return datetime.now() @staticmethod def get_current_date_string() -> str: """get_current_date_string() Retrieve the current date as a pre-formatted string. :return: The string representation of the current real date. :rtype: str """ return str(datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'))
python
import logging from .utils import get_logging_level class Client(object): """ This object autheticates the account to the api """ def __init__(self, auth, **kwargs): """ Initializes Client object. Args: auth (tuple): Authentication object api (str): Api endpath """ self.auth = auth self.protocol = kwargs.get('protocol', 'https') self.domain = kwargs.get('domain', 'api.sumologic.com') self.api = kwargs.get('api', '/api/v1') api_path = '%s' % self.api self.url = '%s://%s%s' % (self.protocol, self.domain, api_path) # setup debug logging self._debug_mode = kwargs.get('debug', False) self.log = logging.getLogger(__name__) self.log.addHandler(logging.StreamHandler()) self.log.setLevel(get_logging_level(self._debug_mode)) def get_url(self): """ Returns full api url """ return self.url def get_auth(self): """ Returns api auth details """ return self.auth
python
from django.shortcuts import render from .models import Salas,Rentals from django.db.models import Q from django.shortcuts import get_object_or_404 from .forms import RentalForm def salas_home_view(request,*args,**kargs): hora_inicial = request.GET.get('inicio',None) hora_fim = request.GET.get('fim',None) salas = Salas.objects.all() salas_ocupadas = [] get_flag = 1; if (hora_inicial and hora_fim): query_set = Rentals.objects.filter((Q(data_inicio__gte=hora_inicial) & Q(data_inicio__lt=hora_fim))|(Q(data_final__gt=hora_inicial) & Q(data_final__lte=hora_fim))) get_flag = 0; for instance in query_set: salas_ocupadas.append(instance.sala.nome) return render(request,"salas_home_page.html",{'salas_query':salas, 'salas_ocupadas_lista':salas_ocupadas, 'get_flag': get_flag}) def salas_rental_view(request,sala_slug): #VALIDACOES FALTA sala = get_object_or_404(Salas, nome=sala_slug.upper()) my_form = RentalForm() dados_form = {} if request.method == 'POST': my_form = RentalForm(request.POST) if my_form.is_valid(): dados_form = my_form.cleaned_data dados_form['sala'] = sala dados_form['user_rental'] = request.user.username # date=dados['date'] # time = dados['time'] # datetime = date + time # novo = Rentals(date=datetime) Rentals.objects.create(**dados_form) else: print(my_form.errors) return render(request,"rentals.html",{'form':my_form, 'sala':sala})
python
from typing import MutableSequence class WrappingList(MutableSequence): def __init__(self, l=[]): if type(l) is not list: raise ValueError() self._inner_list = l def __len__(self): return len(self._inner_list) def __delitem__(self, index): index = self.__validindex(index) self._inner_list.__delitem__(index) def insert(self, index, value): index = self.__validindex(index) self._inner_list.insert(index, value) def __setitem__(self, index, value): index = self.__validindex(index) self._inner_list.__setitem__(index, value) def __getitem__(self, index): index = self.__validindex(index) return self._inner_list.__getitem__(index) def __validindex(self, index): return index % len(self._inner_list) lst = [0,2,3,41,2] wlst = WrappingList(lst) for i in range(-10, 10): print(wlst[i])
python
import numpy as np from scipy.special import erf class GELU: def __call__(self, x: np.ndarray, approximate: bool = True) -> np.ndarray: if approximate: return x * 0.5 * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3)))) return x * 0.5 * (1.0 + erf(x / np.sqrt(2.0))) def gradient(self, x: np.ndarray, approximate: bool = True) -> np.ndarray: if approximate: return 0.5 * np.tanh(0.0356774 * np.power(x, 3) + 0.797885 * x) + (0.0535161 * np.power(x, 3) + 0.398942 * x) * np.power(1 / np.cosh(x), 2) * (0.0356774 * np.power(x, 3) + 0.797885 * x) + 0.5 return 0.5 * (1.0 + erf(x / np.sqrt(2.0))) + x * 1 / np.sqrt(2 * np.pi) * np.exp(-0.5 * np.power(x, 2))
python
import sys import os import pty import subprocess import shlex import selectors import multiprocessing as mp def run(cmd, input_lines=[]): """Run an interactive given command with input and capture all IO. Parameters ---------- cmd: str The command to run input_lines: list List of str with each line of text to be entered into the running cmd """ q = mp.Queue() try: (child_pid, fd) = pty.fork() except OSError as e: print(str(e)) if child_pid == 0: sys.stdout.flush() try: subprocess.run(shlex.split(cmd)) except subprocess.SubprocessError: print("Couldn't spawn subprocess...") f = open(os.devnull, "w") sys.stdout = f q.put("FINISHED") return else: data = b"" sel = selectors.DefaultSelector() sel.register(fd, selectors.EVENT_READ) line_pos = 0 while True: # Block until new event sel.select() # Read all available data while True: events = sel.select(-1) # No more events, stop reading if len(events) == 0: break read_data = os.read(fd, 1024) if read_data: data += read_data # Write if we have something to write # otherwise skip to final read only mode if line_pos <= len(input_lines) - 1: os.write(fd, (input_lines[line_pos] + "\n").encode("utf-8")) line_pos += 1 else: break # Wait for child process to signal end q.get(block=True) while True: events = sel.select(-1) # No more events, stop reading if len(events) == 0: break read_data = os.read(fd, 1024) if read_data: data += read_data return data.decode("utf-8")
python
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Jan 3 14:52:19 2017 @author: Falaize """ from __future__ import absolute_import import sys from PyQt5.QtWidgets import QApplication from widgets import PyphsGui import os path = os.path.join('pyphs_gui', 'tests', 'rlc.net') os.chdir('..') def runner(path=None): app = QApplication(sys.argv) sys.argv e = PyphsGui(path) e.show() e.raise_() sys.exit(app.exec_()) return True if __name__ is '__main__': # app = QApplication(sys.argv) e = PyphsGui(path) e.show() e.raise_() # sys.exit(app.exec_())
python
# Copyright 2014 Baidu, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the # License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions # and limitations under the License. """ This module provides models for BES-SDK. """ class Billing(object): """ Billing Class """ def __init__(self, payment_type, time): self.paymentType = payment_type self.time = time class Module(object): """ Module Class """ def __init__(self, type=None, instance_num=None, version=None, slot_type=None, desire_instance_num=None): if type is not None: self.type = type if instance_num is not None: self.instanceNum = instance_num if version is not None: self.version = version if slot_type is not None: self.slotType = slot_type if desire_instance_num is not None: self.desireInstanceNum = desire_instance_num
python
#******************************************************************************* # # Filename : EDMNaming.py # Description : Getting the reduced name of a dataset and others # Author : Yi-Mu "Enoch" Chen [ [email protected] ] # #*******************************************************************************
python
# Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import bson from st2common.models.db.executionstate import ActionExecutionStateDB from st2common.persistence.executionstate import ActionExecutionState from st2common.exceptions.db import StackStormDBObjectNotFoundError from st2tests import DbTestCase class ActionExecutionStateTests(DbTestCase): def test_state_crud(self): saved = ActionExecutionStateTests._create_save_actionstate() retrieved = ActionExecutionState.get_by_id(saved.id) self.assertDictEqual(saved.query_context, retrieved.query_context) self.assertEqual(saved.query_module, retrieved.query_module) ActionExecutionStateTests._delete(model_objects=[retrieved]) try: retrieved = ActionExecutionState.get_by_id(saved.id) except StackStormDBObjectNotFoundError: retrieved = None self.assertIsNone(retrieved, 'managed to retrieve after failure.') @staticmethod def _create_save_actionstate(): created = ActionExecutionStateDB() created.query_context = {'id': 'some_external_service_id'} created.query_module = 'dummy.modules.query1' created.execution_id = bson.ObjectId() return ActionExecutionState.add_or_update(created) @staticmethod def _delete(model_objects=[]): for model_object in model_objects: model_object.delete()
python
# -*- coding: utf-8 -*- from rest_framework import viewsets, mixins from .models import Pet, Birth, Breed from .serializers import PetSerializer, BreedSerializer, BirthSerializer class PetViewSet(mixins.CreateModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet): queryset = Pet.objects serializer_class = PetSerializer class BirthViewSet(mixins.ListModelMixin, viewsets.GenericViewSet): queryset = Birth.objects serializer_class = BirthSerializer class BreedViewSet(mixins.ListModelMixin, viewsets.GenericViewSet): queryset = Breed.objects serializer_class = BreedSerializer
python
""" Tests Input.__init__() and classes in input_classes.py Note that this is more of a regression test than a unit test. Compares with previously computed results.""" import os import numpy as np import pytest import astropy.units as u from astropy.time import Time from nexoclom.solarsystem import SSObject from nexoclom import Input, __file__ as basefile basepath = os.path.dirname(basefile) if __name__ == '__main__': inputpath = os.path.join('test_data', 'inputfiles') else: inputpath = os.path.join(basepath, 'modelcode', 'tests', 'test_data', 'inputfiles') @pytest.mark.modelcode def test_geometry(): inputfile01 = os.path.join(inputpath, 'Geometry.01.input') geometry01 = Input(inputfile01).geometry result = {'planet': SSObject('Jupiter'), 'startpoint': 'Io', 'objects': {SSObject('Jupiter'), SSObject('Io'), SSObject('Europa')}, 'type': 'geometry without starttime', 'phi': (1*u.rad, 2*u.rad), 'subsolarpoint': (3.14*u.rad, 0*u.rad), 'taa': 1.57*u.rad} assert geometry01.__dict__ == result inputfile02 = os.path.join(inputpath, 'Geometry.02.input') geometry02 = Input(inputfile02).geometry result = {'planet': SSObject('Jupiter'), 'startpoint': 'Io', 'objects': {SSObject('Jupiter'), SSObject('Io')}, 'type': 'geometry with starttime', 'time': Time('2022-03-08T19:53:21')} assert geometry02.__dict__ == result inputfile03 = os.path.join(inputpath, 'Geometry.03.input') geometry03 = Input(inputfile03).geometry result = {'planet':SSObject('Mercury'), 'startpoint': 'Mercury', 'objects': {SSObject('Mercury')}, 'type': 'geometry without starttime', 'subsolarpoint': (0 * u.rad, 0 * u.rad), 'phi': None, 'taa': 3.14 * u.rad} assert geometry03.__dict__ == result assert geometry01 == geometry01 assert geometry01 != geometry02 assert geometry01 != geometry03 @pytest.mark.modelcode def test_SurfaceInteraction(): # sticktype = 'constant' inputfile01 = os.path.join(inputpath, 'SurfaceInteraction.01.input') interaction01 = Input(inputfile01).surfaceinteraction result = {'sticktype': 'constant', 'stickcoef': 1., 'accomfactor': None} assert interaction01.__dict__ == result inputfile02 = os.path.join(inputpath, 'SurfaceInteraction.02.input') interaction02 = Input(inputfile02).surfaceinteraction result = {'sticktype': 'constant', 'stickcoef': 0.5, 'accomfactor': 0.2} assert interaction02.__dict__ == result assert interaction01 == interaction01 assert interaction01 != interaction02 # sticktype = 'temperature dependent inputfile03 = os.path.join(inputpath, 'SurfaceInteraction.03.input') interaction03 = Input(inputfile03).surfaceinteraction result = {'sticktype': 'temperature dependent', 'accomfactor': 0.2, 'A': (1.57014, -0.006262, 0.1614157)} assert interaction03.__dict__ == result inputfile04 = os.path.join(inputpath, 'SurfaceInteraction.04.input') interaction04 = Input(inputfile04).surfaceinteraction result = {'sticktype':'temperature dependent', 'accomfactor':0.5, 'A': (1., 0.001, 0.2)} assert interaction04.__dict__ == result inputfile05 = os.path.join(inputpath, 'SurfaceInteraction.05.input') interaction05 = Input(inputfile05).surfaceinteraction result = {'sticktype':'surface map', 'stick_mapfile': 'default', 'coordinate_system': 'solar-fixed', 'subsolarlon': None, 'accomfactor':0.5} assert interaction05.__dict__ == result inputfile06 = os.path.join(inputpath, 'SurfaceInteraction.06.input') interaction06 = Input(inputfile06).surfaceinteraction result = {'sticktype':'surface map', 'stick_mapfile': 'Orbit3576.Ca.pkl', 'coordinate_system': 'solar-fixed', 'subsolarlon': None, 'accomfactor':0.5} assert interaction06.__dict__ == result @pytest.mark.modelcode def test_Forces(): inputfile01 = os.path.join(inputpath, 'Forces.01.input') forces01 = Input(inputfile01).forces result = {'gravity': True, 'radpres': True} assert forces01.__dict__ == result inputfile02 = os.path.join(inputpath, 'Forces.02.input') forces02 = Input(inputfile02).forces result = {'gravity': False, 'radpres': True} assert forces02.__dict__ == result inputfile03 = os.path.join(inputpath, 'Forces.03.input') forces03 = Input(inputfile03).forces result = {'gravity': True, 'radpres': False} assert forces03.__dict__ == result @pytest.mark.modelcode def test_SpatialDist(): inputfile01 = os.path.join(inputpath, 'Spatial.01.input') spatial01 = Input(inputfile01).spatialdist result = {'type': 'uniform', 'longitude': (0*u.rad, 2*np.pi*u.rad), 'latitude': (-np.pi/2*u.rad, np.pi/2*u.rad), 'exobase': 1.} assert spatial01.__dict__ == pytest.approx(result) inputfile02 = os.path.join(inputpath, 'Spatial.02.input') spatial02 = Input(inputfile02).spatialdist result = {'type':'uniform', 'longitude':(0*u.rad, 3.14*u.rad), 'latitude':(0*u.rad, 0.79*u.rad), 'exobase':2.1} assert spatial02.__dict__ == pytest.approx(result) if __name__ == '__main__': # test_geometry() # test_SurfaceInteraction() # test_Forces() test_SpatialDist()
python
import argparse import os import numpy as np import torch from mmcv.runner import Sequential from tensorflow.python.training import py_checkpoint_reader from mmcls.models.backbones.efficientnet import EfficientNet def tf2pth(v): if v.ndim == 4: return np.ascontiguousarray(v.transpose(3, 2, 0, 1)) elif v.ndim == 2: return np.ascontiguousarray(v.transpose()) return v def read_ckpt(ckpt): reader = py_checkpoint_reader.NewCheckpointReader(ckpt) weights = { n: torch.as_tensor(tf2pth(reader.get_tensor(n))) for (n, _) in reader.get_variable_to_shape_map().items() } return weights def map_key(weight): m = dict() has_expand_conv = set() is_MBConv = set() max_idx = 0 name = None for k, v in weight.items(): seg = k.split('/') if len(seg) == 1: continue if 'edgetpu' in seg[0]: name = 'e' + seg[0][21:].lower() else: name = seg[0][13:] if seg[2] == 'tpu_batch_normalization_2': has_expand_conv.add(seg[1]) if seg[1].startswith('blocks_'): idx = int(seg[1][7:]) + 1 max_idx = max(max_idx, idx) if 'depthwise' in k: is_MBConv.add(seg[1]) model = EfficientNet(name) idx2key = [] for idx, module in enumerate(model.layers): if isinstance(module, Sequential): for j in range(len(module)): idx2key.append('{}.{}'.format(idx, j)) else: idx2key.append('{}'.format(idx)) for k, v in weight.items(): if 'Exponential' in k or 'RMS' in k: continue seg = k.split('/') if len(seg) == 1: continue if seg[2] == 'depthwise_conv2d': v = v.transpose(1, 0) if seg[1] == 'stem': prefix = 'backbone.layers.{}'.format(idx2key[0]) mapping = { 'conv2d/kernel': 'conv.weight', 'tpu_batch_normalization/beta': 'bn.bias', 'tpu_batch_normalization/gamma': 'bn.weight', 'tpu_batch_normalization/moving_mean': 'bn.running_mean', 'tpu_batch_normalization/moving_variance': 'bn.running_var', } suffix = mapping['/'.join(seg[2:])] m[prefix + '.' + suffix] = v elif seg[1].startswith('blocks_'): idx = int(seg[1][7:]) + 1 prefix = '.'.join(['backbone', 'layers', idx2key[idx]]) if seg[1] not in is_MBConv: mapping = { 'conv2d/kernel': 'conv1.conv.weight', 'tpu_batch_normalization/gamma': 'conv1.bn.weight', 'tpu_batch_normalization/beta': 'conv1.bn.bias', 'tpu_batch_normalization/moving_mean': 'conv1.bn.running_mean', 'tpu_batch_normalization/moving_variance': 'conv1.bn.running_var', 'conv2d_1/kernel': 'conv2.conv.weight', 'tpu_batch_normalization_1/gamma': 'conv2.bn.weight', 'tpu_batch_normalization_1/beta': 'conv2.bn.bias', 'tpu_batch_normalization_1/moving_mean': 'conv2.bn.running_mean', 'tpu_batch_normalization_1/moving_variance': 'conv2.bn.running_var', } else: base_mapping = { 'depthwise_conv2d/depthwise_kernel': 'depthwise_conv.conv.weight', 'se/conv2d/kernel': 'se.conv1.conv.weight', 'se/conv2d/bias': 'se.conv1.conv.bias', 'se/conv2d_1/kernel': 'se.conv2.conv.weight', 'se/conv2d_1/bias': 'se.conv2.conv.bias' } if seg[1] not in has_expand_conv: mapping = { 'conv2d/kernel': 'linear_conv.conv.weight', 'tpu_batch_normalization/beta': 'depthwise_conv.bn.bias', 'tpu_batch_normalization/gamma': 'depthwise_conv.bn.weight', 'tpu_batch_normalization/moving_mean': 'depthwise_conv.bn.running_mean', 'tpu_batch_normalization/moving_variance': 'depthwise_conv.bn.running_var', 'tpu_batch_normalization_1/beta': 'linear_conv.bn.bias', 'tpu_batch_normalization_1/gamma': 'linear_conv.bn.weight', 'tpu_batch_normalization_1/moving_mean': 'linear_conv.bn.running_mean', 'tpu_batch_normalization_1/moving_variance': 'linear_conv.bn.running_var', } else: mapping = { 'depthwise_conv2d/depthwise_kernel': 'depthwise_conv.conv.weight', 'conv2d/kernel': 'expand_conv.conv.weight', 'conv2d_1/kernel': 'linear_conv.conv.weight', 'tpu_batch_normalization/beta': 'expand_conv.bn.bias', 'tpu_batch_normalization/gamma': 'expand_conv.bn.weight', 'tpu_batch_normalization/moving_mean': 'expand_conv.bn.running_mean', 'tpu_batch_normalization/moving_variance': 'expand_conv.bn.running_var', 'tpu_batch_normalization_1/beta': 'depthwise_conv.bn.bias', 'tpu_batch_normalization_1/gamma': 'depthwise_conv.bn.weight', 'tpu_batch_normalization_1/moving_mean': 'depthwise_conv.bn.running_mean', 'tpu_batch_normalization_1/moving_variance': 'depthwise_conv.bn.running_var', 'tpu_batch_normalization_2/beta': 'linear_conv.bn.bias', 'tpu_batch_normalization_2/gamma': 'linear_conv.bn.weight', 'tpu_batch_normalization_2/moving_mean': 'linear_conv.bn.running_mean', 'tpu_batch_normalization_2/moving_variance': 'linear_conv.bn.running_var', } mapping.update(base_mapping) suffix = mapping['/'.join(seg[2:])] m[prefix + '.' + suffix] = v elif seg[1] == 'head': seq_key = idx2key[max_idx + 1] mapping = { 'conv2d/kernel': 'backbone.layers.{}.conv.weight'.format(seq_key), 'tpu_batch_normalization/beta': 'backbone.layers.{}.bn.bias'.format(seq_key), 'tpu_batch_normalization/gamma': 'backbone.layers.{}.bn.weight'.format(seq_key), 'tpu_batch_normalization/moving_mean': 'backbone.layers.{}.bn.running_mean'.format(seq_key), 'tpu_batch_normalization/moving_variance': 'backbone.layers.{}.bn.running_var'.format(seq_key), 'dense/kernel': 'head.fc.weight', 'dense/bias': 'head.fc.bias' } key = mapping['/'.join(seg[2:])] if name.startswith('e') and 'fc' in key: v = v[1:] m[key] = v return m if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('infile', type=str, help='Path to the ckpt.') parser.add_argument('outfile', type=str, help='Output file.') args = parser.parse_args() assert args.outfile outdir = os.path.dirname(os.path.abspath(args.outfile)) if not os.path.exists(outdir): os.makedirs(outdir) weights = read_ckpt(args.infile) weights = map_key(weights) torch.save(weights, args.outfile)
python
import requests import re from bs4 import BeautifulSoup import pandas as pd import sys from PyQt4.QtGui import QApplication from PyQt4.QtCore import QUrl from PyQt4.QtWebKit import QWebPage import bs4 as bs import urllib.request import os import datetime path_of_brandwise = 'C:\\LavaWebScraper\\BrandWiseFiles\\' ############## VARIABLES NEEDED : DO NOT CHANGE THE VARIABLE NAMES. JUST FILL IN THEIR VALUES WHEREVER REQUIRED. #################### base_url = 'http://www.karbonnmobiles.com/smart-phones' country = 'INDIA' company = 'KARBONN' model_list = [] usp = [] display_list = [] memory_list = [] processor_list = [] camera_list = [] battery_list = [] thickness_list = [] extras_links = [] records = [] href = [] specs_list = [] #################################################################################################################################### r=requests.get(base_url) soup=BeautifulSoup(r.text,'html.parser') results=soup.find_all('h3',attrs={'class':'product_name'}) for i in range(len(results)): href.append('http://www.karbonnmobiles.com' + results[i].find('a')['href']) model_list.append(results[i].find('a').text) specs=soup.find_all('div', attrs={'class':'product_info'}) for i in range(len(specs)): spec=specs[i].find('p') sp_list = [] sp = spec.text spp = sp.split('\n') for s in spp: sp_list.append(s.replace('<br>',' ').replace('\n', ' ').replace('\r',' ').strip().strip('\n')) specs_list.append(sp_list) for i in range(len(specs_list)): cc = '' for j in range(len(specs_list[i])): if 'Processor' in specs_list[i][j]: processor_list.append(specs_list[i][j]) if 'Display' in specs_list[i][j]: display_list.append(specs_list[i][j]) if 'Battery' in specs_list[i][j] or 'battery' in specs_list[i][j]: battery_list.append(specs_list[i][j]) if 'camera' in specs_list[i][j] or 'Camera' in specs_list[i][j]: cc = cc + specs_list[i][j] + ' || ' if cc!='': camera_list.append(cc) if len(processor_list)==i: processor_list.append('Not Available') if len(display_list)==i: display_list.append('Not Available') if len(battery_list)==i: battery_list.append('Not Available') if len(camera_list)==i: camera_list.append('Not Available') thickness_list.append('Not Available') memory_list.append('Not Available') print(len(processor_list)) print(len(display_list)) print(len(battery_list)) print(len(camera_list)) print(len(thickness_list)) print(len(memory_list)) extras_links = href for i in range(len(href)): usp.append('Not Available') ############# WRITING TO CSV : DO NOT MAKE ANY CHANGES TO THIS PART EXCEPT WRITING THE FILE NAME. ################################### for i in range(len(model_list)): records.append((country, company, model_list[i], usp[i], display_list[i], camera_list[i], memory_list[i], battery_list[i], thickness_list[i], processor_list[i], extras_links[i])) df = pd.DataFrame(records, columns = ['COUNTRY', 'COMPANY', 'MODEL', 'USP', 'DISPLAY', 'CAMERA', 'MEMORY', 'BATTERY', 'THICKNESS', 'PROCESSOR', 'EXTRAS/ LINKS']) df.to_csv(os.path.join(path_of_brandwise, str(datetime.date.today())+ '-karbonn' +'.csv'), index=False, encoding='utf-8') #####################################################################################################################################
python
#!/usr/bin/env python3 import argparse import sys import os import stat import httplib2 from oauth2client.service_account import ServiceAccountCredentials import apiclient SCOPE = 'https://www.googleapis.com/auth/androidpublisher' SCRIPT_VERSION = '2021-08-22' def print_info(): print('publisher.py: %s' % SCRIPT_VERSION) print('') def build_service(service_account_email, key_file): print('WARNING: build_service will be removed. use build_service_from_p12') return build_service_from_p12(service_account_email, key_file) def build_service_from_p12(service_account_email, key_file): print('setup credentials and building service') # build service acount using p12 file, based on # https://stackoverflow.com/a/35666374/1016377 credentials = ServiceAccountCredentials.from_p12_keyfile( service_account_email, key_file, scopes=[SCOPE]) http = httplib2.Http() http = credentials.authorize(http) return apiclient.discovery.build('androidpublisher', 'v3', http=http) def build_service_from_json_file(json_key_file): print('setup credentials and building service from %s' % json_key_file) credentials = ServiceAccountCredentials.from_json_keyfile_name(json_key_file, scopes=[SCOPE]) http = httplib2.Http() http = credentials.authorize(http) return apiclient.discovery.build('androidpublisher', 'v3', http=http) def create_edit(service, package_name): request = service.edits().insert(body={}, packageName=package_name) result = request.execute() edit_id = result['id'] print('setup edit: %s' % (edit_id)) return edit_id def update_track(service, package_name, edit_id, track, version): print('update track %s' % (track)) request = service.edits().tracks().update( editId=edit_id, track=track, packageName=package_name, body={ u'track': track, u'releases': [{ u'name': version['name'], u'versionCodes': [version['code']], u'releaseNotes': [{ u'language': u'en-GB', u'text': version['notes'] }], u'status': u'completed', }] }) response = request.execute() print('setup with: %s' % (str(response['releases']))) def validate_and_commit_edit(service, package_name, edit_id): response = service.edits().validate(editId=edit_id, packageName=package_name).execute() print('validated %s' % (response)) response = service.edits().commit(editId=edit_id, packageName=package_name).execute() print('commited %s' % (response)) def upload_bundle(service, package_name, edit_id, aab_file): print('uploading %s' % (aab_file)) request = service.edits().bundles().upload( editId=edit_id, packageName=package_name, media_body=aab_file, media_mime_type='application/octet-stream', ) response = request.execute() print('uploaded, %s' % (response)) # running as cli def __run_from_cli_args(flags): if flags.authentication_type == 'p12': service = build_service_from_p12(flags.p12_service_account_email, flags.p12_key_path) elif flags.authentication_type == 'json': service = build_service_from_json_file(flags.json_key_file) else: raise ValueError('Unknown authentication type %s' % flags.authentication_type) edit_id = create_edit(service, flags.package_name) if flags.upload_aab: upload_bundle(service, flags.package_name, edit_id, flags.upload_aab) update_track(service, flags.package_name, edit_id, flags.track, version={ 'name': flags.play_console_release_name, 'code': flags.version_code, 'notes': flags.release_notes, }) validate_and_commit_edit(service, flags.package_name, edit_id) if __name__ == '__main__': parser = argparse.ArgumentParser(add_help=True) # authentication and app details auth_params = parser.add_mutually_exclusive_group(required=True) auth_params.add_argument('--p12', nargs=2, metavar=('[email protected]', 'p12keyfile'), help='Use a service account email and p12 key file for authentication') auth_params.add_argument('--json', nargs=1, metavar=('json-key-file'), help='Use a json key file for authentication') parser.add_argument('package_name', metavar='package-name', help='Android package name (applicationId, reverse domain name)') # release details release = parser.add_argument_group('release') release.add_argument('version_code', metavar='version-code', type=int, help='Android Version Code (int)') release.add_argument('--track', default='internal', help='The Play Store track that should be updated (default: "internal")') release.add_argument('--play-console-release-name', metavar='release-name', help='The name of the release in the Play store console ' + '(default: same as the version code)') release.add_argument('--release-notes-file', metavar='file', type=argparse.FileType('r'), default=sys.stdin, help='Read release notes from file. (default: read from stdin)') # upload bundle release.add_argument('--upload-aab', metavar='aab-file', help='The path to a bundle (*.aab) file that to upload ' + 'as part of the release') print_info() args = parser.parse_args() if not args.play_console_release_name: args.play_console_release_name = str(args.version_code) # authentication type if args.p12: args.p12_service_account_email, args.p12_key_path = args.p12 args.p12 = None args.authentication_type = 'p12' if not os.path.isfile(args.p12_key_path): raise Exception('p12 key file not found: %s' % args.p12_key_path) elif args.json: args.json_key_file = args.json[0] args.json = None args.authentication_type = 'json' if not os.path.isfile(args.json_key_file): raise Exception('json key file not found: %s' % args.json_key_file) if args.release_notes_file == sys.stdin: mode = os.fstat(sys.stdin.fileno()).st_mode if stat.S_ISFIFO(mode) or stat.S_ISREG(mode): pass # piped or redirected else: print("Enter release notes:") args.release_notes = args.release_notes_file.read() args.release_notes_file.close() if args.upload_aab: # using a file type causes issues on ci, so check file exist here if not os.path.isfile(args.upload_aab): raise Exception('File not found for --upload-aab: %s' % args.upload_aab) __run_from_cli_args(args)
python
"""Base register module""" def pad_zeroes(addr, n_zeroes): """Padds the address with zeroes""" if len(addr) < n_zeroes: return pad_zeroes("0" + addr, n_zeroes) return addr def int_addr(addr): """Gets the integer representation of an address""" return int(addr[1:]) def next_addr(addr, i): """Gets address after the current + i""" str_addr = pad_zeroes(str(int_addr(addr) + i), len(addr[1:])) return addr[0] + str_addr class Register(object): """Represents the register of a simulator""" def __init__(self, is_16bit, initial_address): self._is_16bit = is_16bit self._register_size = 8 if self._is_16bit: self._register_size = 16 self._current_bit_address = "" self._current_address = initial_address; self._size_of_current_register_address = 0; self._register_map = {} self.move_to_next_bit_address() self.move_to_next_address(1); self.mark_address(initial_address, self._size_of_current_register_address) @property def current_address(self): """Gets the current constant address of the register.""" return self._current_address @property def is_16bit(self): """Gets whether the device is 16-bit (or else 8-bit)""" return self._is_16bit @property def current_bit_address(self): """Gets the current bit address""" return self._current_bit_address def get_register_letter(self): """Gets the letter representing the register (R, K, or S) """ return self._current_address[0] def mark_address(self, addr, size): """Marks address as being used in simulator""" i = 0 while i < size: self._register_map[addr] = True i += 1 def is_address_in_use(self, addr): """Returns value which determines if register address in use""" return self._register_map.get(addr) def next_address_avoid_collision(self, start_addr): """Finds the next address recursively which does not collide with any other address""" i = self._size_of_current_register_address while self.is_address_in_use(next_addr(start_addr, i)): i += 1 return next_addr(start_addr, i) def next_address(self): """Returns the next address after the current""" return self.next_address_avoid_collision(self._current_address) def move_to_next_address(self, size_of_current): """Moves the register's current address to the next available. size_of_current specifies how many bytes/words to skip""" self._size_of_current_register_address = size_of_current self._current_address = self.next_address() self.mark_address(self._current_address, size_of_current) def move_to_next_bit_address(self): """Moves to next available bit address position""" self._current_bit_address = self.next_bit_address() self.mark_address(self._current_bit_address.split('.')[0], self._size_of_current_register_address) def get_array(self, array_size): """Gets an array address""" return "{0}[{1}]".format(self._current_address, array_size) def next_bit_address(self): """Gets the next boolean address""" if self._current_bit_address == "": if self._is_16bit: return "{0}.{1}".format( self.next_address(), "00") return "{0}.{1}".format( self.next_address(), "0") if self._is_16bit: bool_half = int(self._current_bit_address.split(".")[1]) if bool_half < 4: register_half = self._current_bit_address.split(".")[0] return "{0}.{1}".format( register_half, pad_zeroes(str(bool_half + 1), 2)) self.move_to_next_address(self._size_of_current_register_address) return "{0}.{1}".format( self.next_address(), "00") bool_half = int(self._current_bit_address.split(".")[1]) if bool_half < 3: register_half = self._current_bit_address.split(".")[0] return "{0}.{1}".format( register_half, bool_half + 1) self.move_to_next_address(self._size_of_current_register_address) return "{0}.{1}".format( self.next_address(), "0")
python
from . import views from django.urls import path urlpatterns = [ path('', views.BlogHome.as_view(), name='blog'), ]
python
# Time: O(n) # Space: O(1) # Two pointers solution class Solution(object): def numSubarraysWithSum(self, A, S): """ :type A: List[int] :type S: int :rtype: int """ result = 0 left, right, sum_left, sum_right = 0, 0, 0, 0 for i, a in enumerate(A): sum_left += a while left < i and sum_left > S: sum_left -= A[left] left += 1 sum_right += a while right < i and \ (sum_right > S or (sum_right == S and not A[right])): sum_right -= A[right] right += 1 if sum_left == S: result += right-left+1 return result
python
from pytest import raises import pandas as pd from agape.mapping import dictify, gene2symbol class TestDictify(object): def setup_method(self): self.df = pd.DataFrame({"A": [0, 1], "B": ["x", "y"]}) self.key = "A" self.value = "B" def test_returns_dict(self): assert isinstance(dictify(self.df, self.key, self.value), dict) def test_df_equals_dict(self): d = dictify(self.df, self.key, self.value) assert all(self.df[self.key].values == list(d.keys())) assert all(self.df[self.value].values == list(d.values())) def test_raises_keyerror(self): with raises(KeyError): dictify(self.df, self.key, "C") class TestGene2Symbol(object): def test_returns_dict(self): d = gene2symbol("ID", "Symbol") assert isinstance(d, dict) def test_raises_keyerror(self): with raises(KeyError): gene2symbol("ID", "NOTAKEY")
python
from . import api from . import core from .core import Stream, NameSpace, DataFeed
python
############################################################################## # Copyright by The HDF Group. # # All rights reserved. # # # # This file is part of HSDS (HDF5 Scalable Data Service), Libraries and # # Utilities. The full HSDS copyright notice, including # # terms governing use, modification, and redistribution, is contained in # # the file COPYING, which can be found at the root of the source code # # distribution tree. If you do not have access to this file, you may # # request a copy from [email protected]. # ############################################################################## import asyncio import unittest import sys import numpy as np sys.path.append('../../../hsds/util') sys.path.append('../../../hsds') # sys.path.append('../../chunkread') from idUtil import getRootObjId from storUtil import releaseStorageClient from chunkread import get_app, read_hyperslab import config class ReadHyperslabTest(unittest.TestCase): def __init__(self, *args, **kwargs): super(ReadHyperslabTest, self).__init__(*args, **kwargs) # main async def read_hyperslab_test(self, app, params): arr = await read_hyperslab(app, params) self.assertEqual(arr.shape, (10,10)) self.assertEqual(arr.dtype, np.dtype('>i4')) self.assertEqual(list(arr[1,:]), list(range(10))) self.assertEqual(list(arr[:,1]), list(range(10))) params["slices"]=((slice(1,2,1),slice(0,4,1))) arr = await read_hyperslab(app, params) self.assertEqual(arr.shape, (1,4)) self.assertEqual(arr.dtype, np.dtype('>i4')) self.assertEqual(list(arr[0,:]), list(range(4))) await releaseStorageClient(app) def testReadHyperslab(self): dset_id = config.get("dset111_id") print("dset_id:", dset_id) # these are the properties of the /g1/g1.1/dset1.1.1. dataset in tall.h5 dset_json = {"id": dset_id} dset_json["root"] = getRootObjId(dset_id) dset_json["type"] = {"class": "H5T_INTEGER", "base": "H5T_STD_I32BE"} dset_json["shape"] = {"class": "H5S_SIMPLE", "dims": [10, 10], "maxdims": [10, 10]} dset_json["layout"] = {"class": "H5D_CHUNKED", "dims": [10, 10]} chunk_id = 'c' + dset_id[1:] + "_0_0" params = {} params["dset_json"] = dset_json params["chunk_id"] = chunk_id params["bucket"] = config.get("bucket") loop = asyncio.get_event_loop() app = get_app(loop=loop) loop.run_until_complete(self.read_hyperslab_test(app, params)) loop.close() if __name__ == '__main__': #setup test files unittest.main()
python
"""Test Refiners can be constructed with various configurations""" import os from copy import deepcopy import pytest from dxtbx.model.experiment_list import ExperimentListFactory from libtbx import phil from dials.algorithms.refinement import DialsRefineConfigError, RefinerFactory from dials.algorithms.refinement.refiner import _trim_scans_to_observations, phil_scope from dials.array_family import flex from dials.util.slice import slice_reflections @pytest.mark.parametrize( "detector_parameterisation_choice", ["automatic", "single", "multiple", "hierarchical"], ) def test_multi_panel_parameterisations( dials_regression, detector_parameterisation_choice ): data_dir = os.path.join( dials_regression, "refinement_test_data", "cspad_refinement" ) exp_file = os.path.join(data_dir, "cspad_refined_experiments_step6_level2_300.json") ref_file = os.path.join(data_dir, "cspad_reflections_step7_300.pickle") reflections = flex.reflection_table.from_file(ref_file) experiments = ExperimentListFactory.from_json_file(exp_file, check_format=False) # Set refinement parameters params = phil_scope.fetch(source=phil.parse("")).extract() params.refinement.parameterisation.detector.panels = ( detector_parameterisation_choice ) # Construct refiner if detector_parameterisation_choice == "single": with pytest.raises(DialsRefineConfigError): # Cannot create a single panel parameterisation for a multi-panel detector RefinerFactory.from_parameters_data_experiments( params, reflections, experiments ) else: refiner = RefinerFactory.from_parameters_data_experiments( params, reflections, experiments ) assert refiner.experiment_type == "stills" def test_trim_scans_to_observations(dials_data): # Use 4 scan data for this test data_dir = dials_data("l_cysteine_dials_output") experiments = ExperimentListFactory.from_json_file( (data_dir / "indexed.expt").strpath, check_format=False ) reflections = flex.reflection_table.from_file((data_dir / "indexed.refl").strpath) # Check the image and oscillation range are what we expect image_ranges = [e.sequence.get_image_range() for e in experiments] osc_ranges = [e.sequence.get_oscillation_range() for e in experiments] for a, b in zip(image_ranges, [(1, 1700), (1, 1700), (1, 1700), (1, 1800)]): assert a == b for a, b in zip( osc_ranges, [(-145.0, 25.0), (-145.0, 25.0), (-145.0, 25.0), (0.0, 180.0)] ): assert a == pytest.approx(b) # If image range unchanged, nothing should happen trim_expt = _trim_scans_to_observations(deepcopy(experiments), reflections) new_im_ranges = [e.sequence.get_image_range() for e in trim_expt] for a, b in zip(image_ranges, new_im_ranges): assert a == b # Slice 20 images off head and tail sliced_ranges = [(r[0] + 20, r[1] - 20) for r in image_ranges] sliced = slice_reflections(reflections, sliced_ranges) # Now trimmed scans should have array ranges equal to their min, max # shoebox z coords trim_expt = _trim_scans_to_observations(deepcopy(experiments), sliced) new_array_ranges = [e.sequence.get_array_range() for e in trim_expt] for i, e in enumerate(trim_expt): refs = sliced.select(sliced["id"] == i) bb = refs["shoebox"].bounding_boxes() z_min, z_max = bb.parts()[4:] assert new_array_ranges[i] == (min(z_min), max(z_max)) # Oscillation ranges should be trimmed so that the associated angle is the # same in the original and trimmed scans new_osc_ranges = [e.sequence.get_oscillation_range() for e in trim_expt] for exp, r1, r2 in zip(experiments, new_array_ranges, new_osc_ranges): assert exp.sequence.get_angle_from_array_index(r1[0]) == pytest.approx(r2[0]) assert exp.sequence.get_angle_from_array_index(r1[1]) == pytest.approx(r2[1]) # Now delete shoebox data. Trimmed scans will be wider than the observed # range by >0.5 deg at each end del sliced["shoebox"] trim_expt = _trim_scans_to_observations(deepcopy(experiments), sliced) new_array_ranges = [e.sequence.get_array_range() for e in trim_expt] for i, e in enumerate(trim_expt): refs = sliced.select(sliced["id"] == i) z = refs["xyzobs.px.value"].parts()[2] im_width = e.sequence.get_oscillation()[1] assert ((min(z) - new_array_ranges[i][0]) / im_width) > 0.5 assert ((new_array_ranges[i][1] - max(z)) / im_width) > 0.5 # Oscillation ranges should be trimmed so that the associated angle is the # same in the original and trimmed scans new_osc_ranges = [e.sequence.get_oscillation_range() for e in trim_expt] for exp, r1, r2 in zip(experiments, new_array_ranges, new_osc_ranges): assert exp.sequence.get_angle_from_array_index(r1[0]) == pytest.approx(r2[0]) assert exp.sequence.get_angle_from_array_index(r1[1]) == pytest.approx(r2[1])
python