content
stringlengths
0
894k
type
stringclasses
2 values
import logging from clx.analytics import detector_utils as du log = logging.getLogger(__name__) class DetectorDataset(object): """ Wrapper class is used to hold the partitioned datframes and number of the records in all partitions. """ def __init__(self, df, batch_size): """This function instantiates partitioned datframes and number of the records in all partitions. :param df: domains dataframe. :type df: cudf.DataFrame :param batch_size: Number of records in the dataframe. :type batch_size: int """ self.__partitioned_dfs, self.__dataset_len = self.__get_partitioned_dfs( df, batch_size ) @property def partitioned_dfs(self): return self.__partitioned_dfs @property def dataset_len(self): return self.__dataset_len # https://github.com/rapidsai/cudf/issues/2861 # https://github.com/rapidsai/cudf/issues/1473 # Workaround for partitioning dataframe into small batches def __get_partitioned_dfs(self, df, batch_size): """Partition one dataframe to multiple small dataframes based on a given batch size. :param df: Contains domains and it's types. :type df: cudf.DataFrame :param batch_size: Number of records has to be in each partitioned dataframe. :type batch_size: int """ dataset_len = df["domain"].count() df = du.str2ascii(df, dataset_len) prev_chunk_offset = 0 partitioned_dfs = [] while prev_chunk_offset < dataset_len: curr_chunk_offset = prev_chunk_offset + batch_size chunk = df.iloc[prev_chunk_offset:curr_chunk_offset:1] partitioned_dfs.append(chunk) prev_chunk_offset = curr_chunk_offset return partitioned_dfs, dataset_len
python
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from dataclasses import dataclass import os from datasets import registry as datasets_registry from foundations import desc from foundations import hparams from foundations.step import Step from lottery.desc import LotteryDesc from platforms.platform import get_platform @dataclass class TrainingDesc(desc.Desc): """The hyperparameters necessary to describe a training run.""" model_hparams: hparams.ModelHparams dataset_hparams: hparams.DatasetHparams training_hparams: hparams.TrainingHparams @staticmethod def name_prefix(): return 'train' @staticmethod def add_args(parser: argparse.ArgumentParser, defaults: LotteryDesc = None): hparams.DatasetHparams.add_args(parser, defaults=defaults.dataset_hparams if defaults else None) hparams.ModelHparams.add_args(parser, defaults=defaults.model_hparams if defaults else None) hparams.TrainingHparams.add_args(parser, defaults=defaults.training_hparams if defaults else None) @staticmethod def create_from_args(args: argparse.Namespace) -> 'TrainingDesc': dataset_hparams = hparams.DatasetHparams.create_from_args(args) model_hparams = hparams.ModelHparams.create_from_args(args) training_hparams = hparams.TrainingHparams.create_from_args(args) return TrainingDesc(model_hparams, dataset_hparams, training_hparams) def str_to_step(self, s: str) -> Step: return Step.from_str(s, datasets_registry.iterations_per_epoch(self.dataset_hparams)) @property def end_step(self): iterations_per_epoch = datasets_registry.iterations_per_epoch(self.dataset_hparams) return Step.from_str(self.training_hparams.training_steps, iterations_per_epoch) @property def train_outputs(self): datasets_registry.num_classes(self.dataset_hparams) def run_path(self, replicate, experiment='main'): return os.path.join(get_platform().root, self.hashname, f'replicate_{replicate}', experiment) @property def display(self): return '\n'.join([self.dataset_hparams.display, self.model_hparams.display, self.training_hparams.display])
python
import logging import numpy as np import paddle from ..common import get_logger from .var_group import * from .pruning_plan import * from .filter_pruner import FilterPruner __all__ = ['L1NormFilterPruner'] _logger = get_logger(__name__, logging.INFO) class L1NormFilterPruner(FilterPruner): def __init__(self, model, input_shape, sen_file=None): super(L1NormFilterPruner, self).__init__( model, input_shape, sen_file=sen_file) def cal_mask(self, var_name, pruned_ratio, group): value = group[var_name]['value'] pruned_dims = group[var_name]['pruned_dims'] reduce_dims = [ i for i in range(len(value.shape)) if i not in pruned_dims ] l1norm = np.mean(np.abs(value), axis=tuple(reduce_dims)) sorted_idx = l1norm.argsort() pruned_num = int(round(len(sorted_idx) * pruned_ratio)) pruned_idx = sorted_idx[:pruned_num] mask_shape = [value.shape[i] for i in pruned_dims] mask = np.ones(mask_shape, dtype="int32") mask[pruned_idx] = 0 return mask
python
# Component to translate alias values into strings import os, re, logging, json from pathlib import Path, PosixPath, WindowsPath _ValAliases = {} # Keeps track of classes which have been registered def addAliasClass(aliasClass, tag=None): '''Add a class to the supported alias list so that the ValAlias.makeAlias method can generate the aliases as needed from text. Args: - aliasClass (type): The class to add to the list of supported aliases. Must be a subclass of the ValAlias class - [tag=None (str|None)]: The text string (should be lowercase) which indicates this class. If not specified, the TAG value of the aliasClass is used instead Raises: - ValueError: - The provided aliasClass is not a subclass of a ValAlias - A nalias class is already associated with the given tag - No tag was specified ''' # Ensure the alias class is indeed an alias class if not isinstance(aliasClass, type): raise ValueError('Provided alias class is not a class') if not issubclass(aliasClass, ValAlias): raise ValueError('Provided alias class "{0:s}" is not a subclass of a ValAlias'.format(str(aliasClass))) # If we do not have a tag, get the tag of the alias class if tag is None: try: tag = aliasClass.TAG except AttributeError: raise ValueError('No tag provided when adding alias class "{0:s}"'.format(str(aliasClass))) # Convert tag to string tag = str(tag) # Ensure we are not adding a duplicate entry if tag in _ValAliases: raise ValueError('Cannot track alias class "{0:s}" with tag "{1:s}" as another alias class ("{2:s}") with that tag already exists'.format( str(aliasClass), tag, str(_ValAliases[tag]))) # Add the entry logging.info('Adding alias class {0:s} under tag "{1:s}"'.format(aliasClass.__name__, tag)) _ValAliases[tag] = aliasClass class ValAlias(object): '''Class to handle parsing an alias spec in a value string Alias specs follow the given format: {alias_name:options} Where - alias_name (str): The name of the alias to use - options (str): An options string specifying the options for the alias Please note that escaped braces like \\{ and \\} will be ignored and treated as braces literals Attributes: - type (str): The main type of the alias - subtypes (list<str>): Qualifiers to the main type - parameters (dict<str,*>): Dictionary of parameters the alias uses to evaluate itself - file (Path): The file which defined this alias ''' @staticmethod def makeAliasDictionary(file): '''Create an alias dictionary from an alias dictionary .json file Args: - file (str|Path): The path to the file to create the dictionary from Returns: - dict<ValAlias>: The aliases contained in the file, indexed by their names Raises: - FileNotFoundError: The provided file could not be found - ValueError: - The provided file format does not match an alias dictionary file - One or more alias definitions is not formed correctly ''' # Ensure we have the file file = Path(file) if not file.is_file(): raise FileNotFoundError('Could not find file "{0:s}" for making an alias dictionary'.format(str(file))) # Open and parse the file ret = {} with open(file, 'r') as json_file: aliases = json.load(json_file) for alias_name in aliases: ret[alias_name] = ValAlias.makeAlias(aliases[alias_name], file) # Return output dictionary return ret @staticmethod def makeAlias(definition, file): '''Create an alias from a given definition Args: - definition (dict<str,str>): The definition of the alias. Can contain: - 'type': (str) (required) The main type of the alias - 'subtypes': (list<str>) (optional) Qualifiers to the main type for the alias - other: (*) (optional) Parameters the alias uses to evaluate itself - file (str|Path): The absolute file path to the file the alias is defined in. Return: - ValAlias: An alias object Raises: - ValueError: - No alias of the given type has been found - The alias cannot be created from the given dictionary ''' # Ensure we can find the relevant class if not 'type' in definition: raise ValueError('Definition for alias does not specify type') if not definition['type'] in _ValAliases: raise ValueError('Could not find alias of type "{0:s}" in list of supported aliases'.format(definition['type'])) # Make and return the alias return _ValAliases[definition['type']](definition, file) @staticmethod def evaluateAliases(value, aliases, parents=None): '''Parse a value string, replacing aliases with their desired values Args: - value (str): The string to replace aliases for - aliases (list<dict<str,ValAlias>>): The alias dictionaries to use. If an alias is used across multiple dictionaries, the last dictionary to define that alias will be used. - parents=[] (list<str>): A history of aliases whose evaluation depends on the given value being evaluated Return: - (str): The value string with aliases replaced Raises: - ValueError: An issue occurred trying to evaluate an alias - NotImplementedError: One of the provided aliases cannot be evaluated ''' # Need to make this list so we can traverse it backwards alias_iterations = [] if parents is None: parents = [] # Debug log parentstr = '' for parent in parents: parentstr += parent + ' ' parentstr = parentstr[:-1] logging.debug('Evaluating aliase "{0:s}" [{1:s}]'.format(value, parentstr)) # Get each alias option and iterate though alias_pattern = re.compile(r"(?<!\\)\{([^:\}]+)(:([^\{\}]+))?(?<!\\)\}", re.MULTILINE) alias_strings = alias_pattern.finditer(value) for alias_m in alias_strings: # Get the name / options from the match alias_name = value[alias_m.start(1):alias_m.end(1)] alias_options = value[alias_m.start(3):alias_m.end(3)] # Check for circular dependency if alias_name in parents: raise ValueError('A circular dependency exists while evaluating alias "{0:s}"'.format(alias_name)) new_parents = parents.copy() new_parents.append(alias_name) # Find the matching alias alias = None for alias_dict in aliases: if alias_name in alias_dict: alias = alias_dict[alias_name] # Throw exception if we could not find the right alias if alias is None: raise ValueError('Could not find alias named "{0:s}" in provided alias dictionaries'.format(alias_name)) # Otherwise evaluate the alias converted_value = alias.evaluate(alias_options, aliases, new_parents) # Add it to the list alias_iterations.append((converted_value, alias_m)) # Going backwards, replace the values in the string for (converted_value,alias_m) in reversed(alias_iterations): value = value[:alias_m.start(0)] + converted_value + value[alias_m.end(0):] logging.debug(value) # Return logging.debug(value) return value.replace('\\{', '{').replace('\\}', '}') def __init__(self, definition, file): '''Fill out the basic attributes of the alias Args: - definition (dict<str,str>): The definition of the alias. Can contain: - 'type': (str) (required) The main type of the alias - 'subtypes': (list<str>) (optional) Qualifiers to the main type for the alias - other: (*) (optional) Parameters the alias uses to evaluate itself - file (str|Path): The absolute file path to the file the alias is defined in. Raises: - ValueError: The provided dictionary does not have a 'type' entry ''' # Save the file self.file = Path(file) # Ensure we have a type if not 'type' in definition: raise ValueError('Cannot make alias without a specified type') self.type = definition['type'] # Save details self.subtypes = [] self.parameters = {} for parameter in definition: pvalue = definition[parameter] if parameter == 'type': # We've already saved the type continue elif parameter == 'subtypes': # Get the subtypes; either append (for a single value) or copy list if not isinstance(pvalue, list): self.subtypes.append(pvalue) else: self.subtypes = pvalue else: # Copy over remaining parameters self.parameters[parameter] = pvalue def evaluate(self, options, other_aliases, parents): '''Extract the string value an alias evaluates to TODO: Check to make sure that infinite alias recursion is not possible. Arguments: - options (str): The string text for a given option - other_aliases (list<dict<str,ValAlias>>): The other aliases available for use when defining values. This is useful for recursive aliases. - parents (list<str>): A history of aliases whose evaluation depends on the given value being evaluated Return: - str: The value the alias evaluates to Raises: - ValueError: - The alias does not have enough options to evaluate - The alias's options are not in the correct format for the alias - An issue occurred evaluating the alias - A circular dependency exists in this evaluation - NotImplementedError: this type of alias cannot be evaluated ''' raise NotImplementedError('Cannot evaluate alias of base value alias class') class StringAlias(ValAlias): '''Class to handle a basic string replacement alias Attributes: - value (str): The string value this alias evaluates to ''' TAG = 'string' def __init__(self, definition, file): '''Fill out the basic attributes of the alias Subtypes: Parameters: - value (str): The value Args: - definition (dict<str,str>): The definition of the alias. Can contain: - 'type': (str) (required) The main type of the alias - 'subtypes': (list<str>) (optional) Qualifiers to the main type for the alias - other: (*) (optional) Parameters the alias uses to evaluate itself - file (str|Path): The absolute file path to the file the alias is defined in. Raises: - ValueError: The alias cannot be created from the given dictionary ''' # Call the base constructor super(StringAlias, self).__init__(definition, file) # Ensure we have a value if not 'value' in self.parameters: raise ValueError('Cannot make a string alias without a value parameter') # Set the value self.value = self.parameters['value'] def evaluate(self, options, other_aliases, parents): '''Extract the string value an alias evaluates to TODO: Check to make sure that infinite alias recursion is not possible. Arguments: - options (str): The string text for a given option - other_aliases (list<dict<str,ValAlias>>): The other aliases available for use when defining values. This is useful for recursive aliases. - parents (list<str>): A history of aliases whose evaluation depends on the given value being evaluated Return: - str: The value the alias evaluates to Raises: - ValueError: - The alias does not have enough options to evaluate - The alias's options are not in the correct format for the alias - An issue occurred evaluating the alias - A circular dependency exists in this evaluation - NotImplementedError: this type of alias cannot be evaluated ''' return ValAlias.evaluateAliases(self.value, other_aliases, parents) addAliasClass(StringAlias) class PathAlias(ValAlias): '''Alias to represent a path Attributes: - path (Path): The path to use for evaluation ''' TAG = 'path' def __init__(self, definition, file): '''Fill out the basic attributes of the alias Subtypes: abs|rel, [dir|file] Where the subtypes mean - abs: The path should be evaluated as an absolute file - rel: The path should be treated as a relative path - dir: The path is a directory - file: The path is a file Parameters: - value (str): The string value of the path Args: - definition (dict<str,str>): The definition of the alias. Can contain: - 'type': (str) (required) The main type of the alias - 'subtypes': (list<str>) (optional) Qualifiers to the main type for the alias - other: (*) (optional) Parameters the alias uses to evaluate itself - file (str|Path): The absolute file path to the file the alias is defined in. Raises: - ValueError: The alias cannot be created from the given dictionary ''' # Call the base constructor super(PathAlias, self).__init__(definition, file) # Ensure we have a value if not 'value' in self.parameters: raise ValueError('Cannot make a path alias without a value parameter') # Get the path self.path = Path(self.parameters['value']) # Make absolute if required, evaluated relative to definition file if 'abs' in self.subtypes: if not self.path.is_absolute(): self.path = self.file.parent.joinpath(self.path) def evaluate(self, options, other_aliases, parents): '''Extract the string value an alias evaluates to TODO: Check to make sure that infinite alias recursion is not possible. Arguments: - options (str): The string text for a given option - other_aliases (list<dict<str,ValAlias>>): The other aliases available for use when defining values. This is useful for recursive aliases. - parents (list<str>): A history of aliases whose evaluation depends on the given value being evaluated Return: - str: The value the alias evaluates to Raises: - ValueError: - The alias does not have enough options to evaluate - The alias's options are not in the correct format for the alias - An issue occurred evaluating the alias - A circular dependency exists in this evaluation - NotImplementedError: this type of alias cannot be evaluated ''' # Get the output string output = ValAlias.evaluateAliases(str(self.path), other_aliases, parents) # Add slash for directories if a slash is not already there if 'dir' in self.subtypes: if not output[-1] == '/' and not output[-1] == '\\': output += '/' if isinstance(self.path, PosixPath) else '\\' return output addAliasClass(PathAlias)
python
import json import multiprocessing import os import shutil from typing import Dict, List, Tuple import cv2 import numpy as np from flask import request from tensorpack.utils import logger from tqdm import tqdm from werkzeug import FileStorage from werkzeug.utils import secure_filename from zipfile import ZipFile from mot.object_detection.query_server import \ localizer_tensorflow_serving_inference from mot.tracker.object_tracking import ObjectTracking from mot.tracker.video_utils import read_folder, split_video SERVING_URL = "http://localhost:8501" # the url where the tf-serving container exposes the model UPLOAD_FOLDER = 'tmp' # folder used to store images or videos when sending files FPS = 4 RESOLUTION = (1024, 768) CLASS_NAMES = ["bottles", "others", "fragments"] SUM_THRESHOLD = 0.6 # the sum of scores for all classes must be greater than this value # for the prediction to be kept CLASS_TO_THRESHOLD = {"bottles": 0.4, "others": 0.3, "fragments": 0.3} CPU_COUNT = min(int(multiprocessing.cpu_count() / 2), 32) def handle_post_request(upload_folder: str = UPLOAD_FOLDER) -> Dict[str, np.array]: """This method is the first one to be called when a POST request is coming. It analyzes the incoming format (file or JSON) and then call the appropiate methods to do the prediction. If you want to make a prediction by sending the data as a JSON, it has to be in this format: ```json {"image":[[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]]]} ``` or ```json {"video": TODO} ``` Arguments: - *upload_folder*: Where the files are temporarly stored Returns: - *Dict[str, np.array]*: The predictions of the TF serving module Raises: - *NotImplementedError*: If the format of data isn't handled yet """ if "file" in request.files: return handle_file(request.files['file'], upload_folder, **request.form) data = json.loads(request.data.decode("utf-8")) if "image" in data: image = np.array(data["image"]) return {"detected_trash": predict_and_format_image(image)} if "video" in data: raise NotImplementedError("video") raise ValueError( "Error during the reading of JSON. Keys {} aren't valid ones.".format(data.keys()) + "For an image, send a JSON such as {'image': [0, 0, 0]}." + "Sending videos over JSON isn't implemented yet." ) def handle_file( file: FileStorage, upload_folder: str = UPLOAD_FOLDER, fps: int = FPS, resolution: Tuple[int, int] = RESOLUTION, **kwargs ) -> Dict[str, np.array]: """Make the prediction if the data is coming from an uploaded file. Arguments: - *file*: The file, can be either an image or a video, or a zipped folder - *upload_folder*: Where the files are temporarly stored Returns: - for an image: a json of format ```json { "image": filename, "detected_trash": [ { "box": [1, 1, 2, 20], "label": "fragments", "score": 0.92 }, { "box": [10, 10, 25, 20], "label": "bottles", "score": 0.75 } ] } ``` - for a video or a zipped file: a json of format ```json { "video_length": 132, "fps": 2, "video_id": "GOPRO1234.mp4", "detected_trash": [ { "label": "bottles", "id": 0, "frame_to_box": { 23: [0, 0, 1, 10], 24: [1, 1, 4, 13] } }, { "label": "fragments", "id": 1, "frame_to_box": { 12: [10, 8, 9, 15] } } ] } ``` Raises: - *NotImplementedError*: If the format of data isn't handled yet """ if kwargs: logger.warning("Unused kwargs: {}".format(kwargs)) filename = secure_filename(file.filename) full_filepath = os.path.join(upload_folder, filename) if not os.path.isdir(upload_folder): os.mkdir(upload_folder) if os.path.isfile(full_filepath): os.remove(full_filepath) file.save(full_filepath) file_type = file.mimetype.split("/")[0] # mimetype is for example 'image/png' and we only want the image if file_type == "image": image = cv2.imread(full_filepath) # cv2 opens in BGR os.remove(full_filepath) # remove it as we don't need it anymore try: detected_trash = predict_and_format_image(image) except ValueError as e: return {"error": str(e)} return {"image": filename, "detected_trash": detected_trash} elif file_type in ["video", "application"]: folder = None if file.mimetype == "application/zip": # zip case ZipFile(full_filepath).extractall(upload_folder) dirname = None with ZipFile(full_filepath, 'r') as zipObj: listOfFileNames = zipObj.namelist() for fileName in listOfFileNames: dirname = os.path.dirname(fileName) zipObj.extract(fileName, upload_folder) folder = os.path.join(upload_folder, dirname) else: # video case: splitting video and saving frames folder = os.path.join(upload_folder, "{}_split".format(filename)) if os.path.isdir(folder): shutil.rmtree(folder) os.mkdir(folder) logger.info("Splitting video {} to {}.".format(full_filepath, folder)) split_video(full_filepath, folder, fps=fps, resolution=resolution) print("folder:", folder, "uplaod_folder:", upload_folder, "file.filename:", file.filename) image_paths = read_folder(folder) if len(image_paths) == 0: raise ValueError("No output image") # making inference on frames logger.info("{} images to analyze on {} CPUs.".format(len(image_paths), CPU_COUNT)) try: with multiprocessing.Pool(CPU_COUNT) as p: inference_outputs = list( tqdm( p.imap(process_image, image_paths), total=len(image_paths), ) ) except ValueError as e: return {"error": str(e)} logger.info("Finish analyzing video {}.".format(full_filepath)) # tracking objects logger.info("Starting tracking.") object_tracker = ObjectTracking(filename, image_paths, inference_outputs, fps=fps) tracks = object_tracker.compute_tracks() logger.info("Tracking finished.") return object_tracker.json_result(tracks) else: raise NotImplementedError(file_type) def process_image(image_path: str) -> Dict[str, object]: """Function used to open and predict on an image. It is suposed to be used in multiprocessing. Arguments: - *image_path* Returns: - *Dict[str, object]*: Predictions for this image path ```python predictions = { 'output/boxes:0': [[0, 0, 1, 1], [0, 0, 10, 10], [10, 10, 15, 100]], 'output/labels:0': [3, 1, 2], # the labels start at 1 since 0 is for background 'output/scores:0': [0.98, 0.87, 0.76] # sorted in descending order } ``` """ image = cv2.imread(image_path) # cv2 opens in BGR return localizer_tensorflow_serving_inference(image, SERVING_URL, return_all_scores=True) def predict_and_format_image( image: np.ndarray, class_names: List[str] = CLASS_NAMES, class_to_threshold: Dict[str, float] = CLASS_TO_THRESHOLD ) -> List[Dict[str, object]]: """Make prediction on an image and return them in a human readable format. Arguments: - *image*: An numpy array in BGR - *class_names*: The list of class names without background - *class_to_threshold*: A dict assigning class names to threshold. If a class name isn't in this dict, no threshold will be applied, which means that all predictions for this class will be kept. Returns: - *List[Dict[str, object]]*: List of dicts such as: ```python3 { "box": [1, 1, 2, 20], "label": "fragments", "score": 0.92 } ``` """ class_names = ["BG"] + class_names outputs = localizer_tensorflow_serving_inference(image, SERVING_URL, return_all_scores=False) detected_trash = [] for box, label, score in zip( outputs["output/boxes:0"], outputs["output/labels:0"], outputs["output/scores:0"] ): if keep_prediction(class_names, label, class_to_threshold, score): trash_json = { "box": [round(coord, 2) for coord in box], "label": class_names[label], "score": score, } detected_trash.append(trash_json) return detected_trash def keep_prediction(class_names, label, class_to_threshold, score): if isinstance(score, list): # we have scores for all classes if np.array(score).sum() < SUM_THRESHOLD: return False return True return class_names[label] not in class_to_threshold or score >= class_to_threshold[ class_names[label]]
python
import numpy def print_table(table, path): f = open(path, 'w') for row in range(len(table)): for col in range(len(table[row])): f.write(str(table[row][col])) f.write(' ') print(table[row][col], end=' ') if col == len(table[row])-1: print("\n") f.write('\n') S0_Box = ( (0x3e,0x72,0x5b,0x47,0xca,0xe0,0x00,0x33,0x04,0xd1,0x54,0x98,0x09,0xb9,0x6d,0xcb), (0x7b,0x1b,0xf9,0x32,0xaf,0x9d,0x6a,0xa5,0xb8,0x2d,0xfc,0x1d,0x08,0x53,0x03,0x90), (0x4d,0x4e,0x84,0x99,0xe4,0xce,0xd9,0x91,0xdd,0xb6,0x85,0x48,0x8b,0x29,0x6e,0xac), (0xcd,0xc1,0xf8,0x1e,0x73,0x43,0x69,0xc6,0xb5,0xbd,0xfd,0x39,0x63,0x20,0xd4,0x38), (0x76,0x7d,0xb2,0xa7,0xcf,0xed,0x57,0xc5,0xf3,0x2c,0xbb,0x14,0x21,0x06,0x55,0x9b), (0xe3,0xef,0x5e,0x31,0x4f,0x7f,0x5a,0xa4,0x0d,0x82,0x51,0x49,0x5f,0xba,0x58,0x1c), (0x4a,0x16,0xd5,0x17,0xa8,0x92,0x24,0x1f,0x8c,0xff,0xd8,0xae,0x2e,0x01,0xd3,0xad), (0x3b,0x4b,0xda,0x46,0xeb,0xc9,0xde,0x9a,0x8f,0x87,0xd7,0x3a,0x80,0x6f,0x2f,0xc8), (0xb1,0xb4,0x37,0xf7,0x0a,0x22,0x13,0x28,0x7c,0xcc,0x3c,0x89,0xc7,0xc3,0x96,0x56), (0x07,0xbf,0x7e,0xf0,0x0b,0x2b,0x97,0x52,0x35,0x41,0x79,0x61,0xa6,0x4c,0x10,0xfe), (0xbc,0x26,0x95,0x88,0x8a,0xb0,0xa3,0xfb,0xc0,0x18,0x94,0xf2,0xe1,0xe5,0xe9,0x5d), (0xd0,0xdc,0x11,0x66,0x64,0x5c,0xec,0x59,0x42,0x75,0x12,0xf5,0x74,0x9c,0xaa,0x23), (0x0e,0x86,0xab,0xbe,0x2a,0x02,0xe7,0x67,0xe6,0x44,0xa2,0x6c,0xc2,0x93,0x9f,0xf1), (0xf6,0xfa,0x36,0xd2,0x50,0x68,0x9e,0x62,0x71,0x15,0x3d,0xd6,0x40,0xc4,0xe2,0x0f), (0x8e,0x83,0x77,0x6b,0x25,0x05,0x3f,0x0c,0x30,0xea,0x70,0xb7,0xa1,0xe8,0xa9,0x65), (0x8d,0x27,0x1a,0xdb,0x81,0xb3,0xa0,0xf4,0x45,0x7a,0x19,0xdf,0xee,0x78,0x34,0x60) ) S1_Box = ( (0x55,0xc2,0x63,0x71,0x3b,0xc8,0x47,0x86,0x9f,0x3c,0xda,0x5b,0x29,0xaa,0xfd,0x77), (0x8c,0xc5,0x94,0x0c,0xa6,0x1a,0x13,0x00,0xe3,0xa8,0x16,0x72,0x40,0xf9,0xf8,0x42), (0x44,0x26,0x68,0x96,0x81,0xd9,0x45,0x3e,0x10,0x76,0xc6,0xa7,0x8b,0x39,0x43,0xe1), (0x3a,0xb5,0x56,0x2a,0xc0,0x6d,0xb3,0x05,0x22,0x66,0xbf,0xdc,0x0b,0xfa,0x62,0x48), (0xdd,0x20,0x11,0x06,0x36,0xc9,0xc1,0xcf,0xf6,0x27,0x52,0xbb,0x69,0xf5,0xd4,0x87), (0x7f,0x84,0x4c,0xd2,0x9c,0x57,0xa4,0xbc,0x4f,0x9a,0xdf,0xfe,0xd6,0x8d,0x7a,0xeb), (0x2b,0x53,0xd8,0x5c,0xa1,0x14,0x17,0xfb,0x23,0xd5,0x7d,0x30,0x67,0x73,0x08,0x09), (0xee,0xb7,0x70,0x3f,0x61,0xb2,0x19,0x8e,0x4e,0xe5,0x4b,0x93,0x8f,0x5d,0xdb,0xa9), (0xad,0xf1,0xae,0x2e,0xcb,0x0d,0xfc,0xf4,0x2d,0x46,0x6e,0x1d,0x97,0xe8,0xd1,0xe9), (0x4d,0x37,0xa5,0x75,0x5e,0x83,0x9e,0xab,0x82,0x9d,0xb9,0x1c,0xe0,0xcd,0x49,0x89), (0x01,0xb6,0xbd,0x58,0x24,0xa2,0x5f,0x38,0x78,0x99,0x15,0x90,0x50,0xb8,0x95,0xe4), (0xd0,0x91,0xc7,0xce,0xed,0x0f,0xb4,0x6f,0xa0,0xcc,0xf0,0x02,0x4a,0x79,0xc3,0xde), (0xa3,0xef,0xea,0x51,0xe6,0x6b,0x18,0xec,0x1b,0x2c,0x80,0xf7,0x74,0xe7,0xff,0x21), (0x5a,0x6a,0x54,0x1e,0x41,0x31,0x92,0x35,0xc4,0x33,0x07,0x0a,0xba,0x7e,0x0e,0x34), (0x88,0xb1,0x98,0x7c,0xf3,0x3d,0x60,0x6c,0x7b,0xca,0xd3,0x1f,0x32,0x65,0x04,0x28), (0x64,0xbe,0x85,0x9b,0x2f,0x59,0x8a,0xd7,0xb0,0x25,0xac,0xaf,0x12,0x03,0xe2,0xf2) ) def LAT_dot( a , b ): a = "{0:08b}".format(a) b = "{0:08b}".format(b) out = 0 if a[0]=='1' and b[0]=='1': out = 1 for i in range(1,8): if a[i]=='1' and b[i]=='1': out = out^1 else: out = out ^ 0 return out LAT0 = numpy.zeros( (256,256) ) LAT0 = LAT0.astype(int) LAT1 = numpy.zeros( (256,256) ) LAT1 = LAT1.astype(int) def compute_LAT(s_box, LAT): DOT = numpy.zeros( (256,256) ) DOT = DOT.astype(int) sbox_val = [] for p2 in range(256): col = p2 >> 4 row = p2 & 15 sbox_val.append( s_box[row][col] ) for p1 in range(256): for p2 in range(256): DOT[p1][p2] = LAT_dot(p1,p2) for a in range(256): for b in range(256): for i in range(256): LAT[a][b] += DOT[a][i]^(DOT[b,sbox_val[i]]) LAT[a][b] = 256 - LAT[a][b] LAT[a][b] = LAT[a][b] - 128 #compute S0 LAT print('*************************ZUC S0 LAT******************') compute_LAT(S0_Box, LAT0) print_table(LAT0, './ZUC_S0_LAT.txt') print('\n') #compute S1 LAT print('*************************ZUC S1 LAT******************') compute_LAT(S1_Box, LAT1) print_table(LAT1, './ZUC_S1_LAT.txt')
python
# -*- coding: utf-8 -*- # created: 2021-06-30 # creator: [email protected] import asyncio import logging import threading from abc import abstractmethod from datetime import datetime import paho.mqtt.client as mqtt from gcommon.server.server_config import ServerConfig from gcommon.utils import gtime logger = logging.getLogger("mqtt") class MqttConfig(ServerConfig): pass class MqttObserverBase(object): mqtt_listener = None def set_mqtt_listener(self, listener): self.mqtt_listener = listener @abstractmethod def on_mqtt_connected(self, _client, _user_data, _flags, rc): print(_client) @staticmethod def on_mqtt_message(self, _client, _user_data, message): print(message.payload) class MqttListener(threading.Thread): def __init__(self, config: MqttConfig, observer: MqttObserverBase): threading.Thread.__init__(self) # daemon thread, 在按下 ctrl-c 之后程序可以退出 self.daemon = True self.observer = observer self.config = config client_id = "rcs" + gtime.date_str_by_minute() self.client = mqtt.Client(client_id=client_id) # asyncio loop self.loop = asyncio.get_running_loop() def run(self) -> None: """注意:所有回调函数都在独立线程中执行""" self.client.on_connect = self.on_connect self.client.on_message = self.on_message self.client.on_subscribe = self.on_subscribe # 建立连接 if self.config.enable_ssl: self.client.tls_set() self.client.connect(self.config.server_address, self.config.server_port, 60) self.client.username_pw_set(self.config.username, self.config.password) self.client.loop_forever() def on_subscribe_v5(self, client, userdata, mid, reasonCodes, properties): pass def on_subscribe(self, client, userdata, mid, granted_qos): pass def on_connect(self, client, userdata, flags, rc): logger.info('Connected with result code: %s, msg: %s', str(rc), mqtt.error_string(rc)) if rc != mqtt.MQTT_ERR_SUCCESS: return # client.subscribe('robot/') assert client == self.client # self.client.subscribe("robot/+/topic/task_status") self.loop.call_soon_threadsafe(self.observer.on_mqtt_connected, client, userdata, flags, rc) def subscribe(self, topic, qos=0, options=None, properties=None): result, mid = self.client.subscribe(topic, qos, options, properties) if result != mqtt.MQTT_ERR_SUCCESS: logger.error('cannot subscribe topic: %s, code: %s, msg: %s', topic, result, mqtt.error_string(result)) return False return True def unsubscribe(self, topic, properties=None): self.client.unsubscribe(topic, properties) @abstractmethod def on_message(self, client, userdata, message): logger.info(message.topic + " " + str(message.payload)) self.loop.call_soon_threadsafe(self.observer.on_mqtt_message, client, userdata, message)
python
from scipy.optimize import minimize from numpy.random import random import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm, ticker from matplotlib.colors import LogNorm import numpy as np from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import pyplot import timeit def beale(x): f1 = 1.5 - x[0] * ( 1.0 - x[1] ) f2 = 2.25 - x[0] * ( 1.0 - x[1] ** 2 ) f3 = 2.625 - x[0] * ( 1.0 - x[1] ** 3 ) f = f1 ** 2 + f2 ** 2 + f3 ** 2 return f # Plot the function fig = plt.figure() ax = Axes3D(fig, azim = -128, elev = 43) s = .1 X = np.arange(-5, 5.+s, s) Y = np.arange(-5, 5.+s, s) X, Y = np.meshgrid(X, Y) Z = beale(2, [X, Y]) #ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet, linewidth=0, edgecolor='none') ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm=LogNorm(), cmap = cm.jet, linewidth=0, edgecolor='none') plt.xlabel("x") plt.ylabel("y") plt.title("Beale's") plt.savefig(beale.png) ######################################### x0s = [] for i in range(0, 30): x0 = (random(2)-1)*20 x0s.append(x0) iters = [] feval = [] sol = [] objective = [] times= [] for i in range(0, 30): start_time = timeit.default_timer() output = minimize(beale, x0s[i], method='L-BFGS-B', options= {'disp': True}) times.append(timeit.default_timer() - start_time) iters.append(output.nit) feval.append(output.nfev) sol.append(output.x) objective.append(output.fun) ##################################### delta = 0.05 s = 0.05 X = np.arange(-3, 5, delta) Y = np.arange(-3, 3, delta) X, Y = np.meshgrid(X, Y) Z = beale([X, Y]) levels = np.arange(10, 300, 10) #plt.contour(X, Y, Z, levels=levels, norm=LogNorm()) plt.contour(X, Y, Z, levels=[0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 60, 63, 66, 70, 75, 80, 100]) plt.title('Isolines') plt.xlabel('X1') plt.ylabel('X2') xs = [] ys = [] def bstop(xk): xs.append(np.copy(xk)) ys.append(beale(xk)) xs = [np.array([-1, -1])] ys = [beale(xs[0])] minimize(beale, [-1, -1], method='BFGS', callback=bstop, options= {'disp': True}) linex = [-1] liney = [-1] for i in xs: linex.append(i[0]) liney.append(i[1]) bfgs_y = list(ys) bfgs, = plt.plot(linex, liney, '-o', label='BFGS') xs = [np.array([-1, -1])] ys = [beale(xs[0])] minimize(beale, [-1, -1], method='L-BFGS-B', callback=bstop, options= {'disp': True}) linex = [-1] liney = [-1] for i in xs: linex.append(i[0]) liney.append(i[1]) lbfgsb_y = list(ys) lbfgsb, = plt.plot(linex, liney, '-s', label='L-BFGS-B') xs = [ np.array([-1, -1]), np.array([0, -2.076923e-01]), np.array([1.101268e+00, -9.677930e-01]), np.array([8.970397e-01, -5.260371e-01]), np.array([1.085339e+00, -5.058077e-01]), np.array([1.832440e+00, -2.907016e-01]), np.array([2.198566e+00, -5.155961e-02]), np.array([2.692337e+00, 3.684094e-01]), np.array([2.789503e+00, 4.511403e-01]), np.array([2.795133e+00, 4.487888e-01]), np.array([2.818547e+00, 4.483392e-01]), np.array([2.840796e+00, 4.519267e-01]), np.array([2.885289e+00, 4.612113e-01]), np.array([2.923265e+00, 4.707860e-01]), np.array([2.980495e+00, 4.865466e-01]), np.array([3.024381e+00, 4.997452e-01]), np.array([3.043476e+00, 5.064746e-01]), np.array([3.047318e+00, 5.090894e-01]), np.array([3.042225e+00, 5.097113e-01]), np.array([3.030713e+00, 5.080590e-01]), np.array([3.016008e+00, 5.050824e-01]), np.array([3.006359e+00, 5.026518e-01]), np.array([2.999553e+00, 5.005949e-01]), np.array([2.997714e+00, 4.997436e-01]), np.array([2.998416e+00, 4.996591e-01]), np.array([2.999443e+00, 4.998514e-01]), np.array([2.999928e+00, 4.999741e-01]), np.array([3.000001e+00, 4.999987e-01]) ] ys = [ 3.870312e+01, 1.420312e+01, 5.474402e+00, 5.132615e+00, 4.056161e+00, 1.634935e+00, 8.440893e-01, 5.062609e-02, 1.015695e-02, 8.785395e-03, 6.671388e-03, 5.511229e-03, 3.959797e-03, 2.900633e-03, 1.691332e-03, 1.011259e-03, 6.995383e-04, 4.831696e-04, 2.805545e-04, 1.529509e-04, 7.094062e-05, 3.357103e-05, 1.152309e-05, 3.063215e-06, 4.650093e-07, 5.222919e-08, 2.294078e-09, 4.511352e-11, 1.837179e-13 ] linex = [] liney = [] for i in xs: linex.append(i[0]) liney.append(i[1]) powell_y = list(ys) powell, = plt.plot(linex, liney, '-^', label='DFP') plt.legend(handles=[bfgs, lbfgsb, powell]) plt.title('Isolines') plt.xlabel('x1') plt.ylabel('x2') plt.figure() b, = plt.plot(bfgs_y, '-o', label='BFGS') l, = plt.plot(lbfgsb_y, '-s', label='L-BFGS-B') p, = plt.plot(powell_y, '-^', label='DFP') pyplot.yscale('log') plt.grid(True) plt.title('Objective') plt.legend(handles=[b, l, p]) plt.xlabel('Number of Iterations') plt.ylabel('Objective')
python
# Generated by Django 3.0.11 on 2020-11-11 20:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('posts', '0003_auto_20201111_1505'), ] operations = [ migrations.AlterField( model_name='language', name='listing', field=models.ManyToManyField(blank=True, related_name='languages', to='posts.Post'), ), migrations.AlterField( model_name='tool', name='listing', field=models.ManyToManyField(blank=True, related_name='tools', to='posts.Post'), ), ]
python
## Written by Daniel Buscombe, ## MARDA Science ## [email protected] ##> Release v1.3 (July 2020) ###=================================================== # import libraries import sys, getopt, json, os # set to False if you wish to use cpu (not recommended) ##True or False USE_GPU = True # PREDICT = False # # ##OS # if PREDICT == True: # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if USE_GPU == True: ##use the first available GPU os.environ['CUDA_VISIBLE_DEVICES'] = '0' else: ## to use the CPU (not recommended): os.environ['CUDA_VISIBLE_DEVICES'] = '-1' from numpy import any as npany from sedinet_infer import * #============================================================== if __name__ == '__main__': argv = sys.argv[1:] try: opts, args = getopt.getopt(argv,"h:c:") except getopt.GetoptError: print('python sedinet_train.py -c configfile.json') sys.exit(2) for opt, arg in opts: if opt == '-h': print( 'Example usage: python sedinet_train.py -c config/config_9percentiles.json' ) sys.exit() elif opt in ("-c"): configfile = arg # load the user configs with open(os.getcwd()+os.sep+configfile) as f: config = json.load(f) ###=================================================== ## user defined variables: proportion of data to use for training (a.k.a. the "train/test split") train_csvfile = config["train_csvfile"] #csvfile containing image names and class values test_csvfile = config["test_csvfile"] #csvfile containing image names and class values res_folder = config["res_folder"] #folder containing csv file and that will contain model outputs name = config["name"] #name prefix for output files #convert imagery to greyscale or not dropout = config["dropout"] #dropout factor scale = config["scale"] #do scaling on variable greyscale = config['greyscale'] try: numclass = config['numclass'] except: numclass = 0 try: greyscale = config['greyscale'] except: greyscale = True #output variables vars = [k for k in config.keys() if not npany([k.startswith('base'), k.startswith('MIN_LR'), k.startswith('DO_AUG'), k.startswith('SHALLOW'), k.startswith('MAX_LR'), k.startswith('res_folder'), k.startswith('train_csvfile'), k.startswith('csvfile'), k.startswith('test_csvfile'), k.startswith('name'), k.startswith('greyscale'), k.startswith('aux_in'), k.startswith('dropout'), k.startswith('N'), k.startswith('scale'), k.startswith('numclass')])] vars = sorted(vars) auxin = [k for k in config.keys() if k.startswith('aux_in')] if len(auxin) > 0: auxin = config[auxin[0]] ##at least for now, just one 'auxilliary' ## (numerical/categorical) input in addition to imagery if len(vars) ==1: mode = 'miso' elif len(vars) >1: mode = 'mimo' else: if len(vars) ==1: mode = 'siso' elif len(vars) >1: mode = 'simo' print("Mode: %s" % (mode)) ###================================================== train_csvfile = res_folder+os.sep+train_csvfile test_csvfile = res_folder+os.sep+test_csvfile if (mode=='siso' or mode=='simo'): run_training_siso_simo(vars, train_csvfile, test_csvfile, name, res_folder, mode, greyscale, dropout, numclass, scale) # if (mode=='miso' or mode=='mimo'): # run_training_miso_mimo(vars, train_csvfile, test_csvfile, # name, res_folder, mode, greyscale, # auxin, dropout, numclass, scale)
python
"""Expected errors.""" import inspect import sys UNREPRODUCIBLE_SUGGESTION_TEXT = ( 'Here are things you can try:\n' '- Run outside XVFB (e.g. you will be able to see the launched program ' 'on screen.) with `--disable-xvfb`, which is especially useful for ' 'Chrome.\n' '- Run with the downloaded build by adding `--build download`.\n' '- Run `build/install-build-deps.sh` to ensure all dependencies are ' 'installed.\n' '- Run with more number of trials by adding `-i 10`, ' 'which is especially good for gesture-related testcases.\n' '- Use gdb to debug by adding `--enable-debug`.') def get_class(exit_code): """Get class name given an exit code.""" code_to_klass = {} for _, obj in inspect.getmembers(sys.modules[__name__]): if inspect.isclass(obj) and obj != ExpectedException: if obj.EXIT_CODE not in code_to_klass: code_to_klass[obj.EXIT_CODE] = obj else: raise Exception( '%s and %s have the same exit code.' % ( code_to_klass[obj.EXIT_CODE].__name__, obj.__name__)) return code_to_klass.get(exit_code, UnknownExitCodeError) class ExpectedException(Exception): """A general Exception to extend from.""" def __init__(self, message, exit_code, extras=None): super(ExpectedException, self).__init__(message) self.extras = extras self.exit_code = exit_code class UnknownExitCodeError(ExpectedException): """Represents an unknown exit code error.""" EXIT_CODE = 256 class MinimizationNotFinishedError(ExpectedException): """Raise when the minimize_task failed or hasn't finished yet. When the minimization is not finished, we won't find 'Running command: ' in the stacktrace.""" MESSAGE = ( 'The testcase hasn\'t been minimized yet or cannot be minimized.\n' 'If the testcase is new, please wait for a few more hours.\n' 'If we can\'t minimize the testcase, it means the testcase is ' 'unreproducible and, thus, not supported by this tool.\n' 'If this testcase was found by AFL or libFuzzer, you can use the "-f"' 'flag to force this tool to try to reproduce the testcase.' ) EXIT_CODE = 42 def __init__(self): super(MinimizationNotFinishedError, self).__init__( self.MESSAGE, self.EXIT_CODE) class SanitizerNotProvidedError(ExpectedException): """An error to notify when a sanitizer isn't passed to a Definition""" MESSAGE = 'A sanitizer must be provided with each Definition.' EXIT_CODE = 43 def __init__(self): super(SanitizerNotProvidedError, self).__init__( self.MESSAGE, self.EXIT_CODE) class ClusterFuzzError(ExpectedException): """An exception to deal with clusterfuzz.com's errors. Makes the response dict available for inspection later on when the exception is dealt with.""" MESSAGE = ( "Error calling clusterfuzz.com's API.\n" 'User: {identity}\n' "Response: {response}") EXIT_CODE = 44 def __init__(self, status_code, response, identity): super(ClusterFuzzError, self).__init__( self.MESSAGE.format(response=str(response), identity=identity), self.EXIT_CODE) self.status_code = status_code self.response = response self.identity = identity class PermissionsTooPermissiveError(ExpectedException): """An exception to deal with file permissions errors. Stores the filename and the current permissions..""" MESSAGE = ('File permissions too permissive to open {filename}\n' 'Current permissions: {permission}\nExpected user access only' '\nYou can run "chmod 600 {filename}filename" to fix this issue') EXIT_CODE = 45 def __init__(self, filename, current_permissions): super(PermissionsTooPermissiveError, self).__init__( self.MESSAGE.format(filename=filename, permission=current_permissions), self.EXIT_CODE) self.filename = filename self.current_permissions = current_permissions class GomaNotInstalledError(ExpectedException): """An exception to tell people GOMA isn not installed.""" MESSAGE = ('Either goma is not installed, or $GOMA_DIR is not set.' ' Please set up goma before continuing. ' 'See go/ma to learn more.\n\n' "If you wouldn't like to use goma, " 'please re-run with --disable-goma.') EXIT_CODE = 46 def __init__(self): super(GomaNotInstalledError, self).__init__(self.MESSAGE, self.EXIT_CODE) class JobTypeNotSupportedError(ExpectedException): """An exception raised when user tries to run an unsupported build type.""" # pylint: disable=line-too-long MESSAGE = ( 'Unfortunately, the job {job_type} is not yet supported.' 'If you believe that the crash will occur on Linux as well, please go ' 'to https://clusterfuzz.com/upload-testcase?upload=true&testcaseId={testcase_id} ' 'and choose a corresponding Linux job type. Ask us for help at ' '[email protected].') # pylint: enable=line-too-long EXIT_CODE = 47 def __init__(self, job_type, testcase_id): super(JobTypeNotSupportedError, self).__init__( self.MESSAGE.format(job_type=job_type, testcase_id=testcase_id), self.EXIT_CODE) class NotInstalledError(ExpectedException): """An exception raised to tell the user to install the required binary.""" MESSAGE = ( '{binary} is not found. Please install it or ensure the path is ' 'correct.\n' 'Most of the time you can install it with `apt-get install {binary}`.') EXIT_CODE = 48 def __init__(self, binary): super(NotInstalledError, self).__init__( self.MESSAGE.format(binary=binary), self.EXIT_CODE) class GsutilNotInstalledError(ExpectedException): """An exception raised to tell the user to install the required binary.""" MESSAGE = ( 'gsutil is not installed. Please install it. See:' 'https://cloud.google.com/storage/docs/gsutil_install') EXIT_CODE = 49 def __init__(self): super(GsutilNotInstalledError, self).__init__(self.MESSAGE, self.EXIT_CODE) class BadJobTypeDefinitionError(ExpectedException): """An exception raised when a job type description is malformed.""" MESSAGE = ( 'The definition for the {job_type} job type is incorrectly formatted or' ' missing crucial information.') EXIT_CODE = 50 def __init__(self, job_type): super(BadJobTypeDefinitionError, self).__init__( self.MESSAGE.format(job_type=job_type), self.EXIT_CODE) class UnreproducibleError(ExpectedException): """An exception raised when the crash cannot be reproduced.""" MESSAGE = ( 'The crash cannot be reproduced after trying {count} times.\n' + UNREPRODUCIBLE_SUGGESTION_TEXT) EXIT_CODE = 51 def __init__(self, count, crash_signatures): crash_signatures = [ {'type': s.crash_type, 'state': s.crash_state_lines, 'output': s.output[:100000]} for s in list(crash_signatures)[:10] ] super(UnreproducibleError, self).__init__( message=self.MESSAGE.format(count=count), exit_code=self.EXIT_CODE, extras={'signatures': crash_signatures}) class DirtyRepoError(ExpectedException): """An exception raised when the repo is dirty. Therefore, we cannot checkout to a wanted sha.""" MESSAGE = ( "We can't run the checkout command because {source_dir} has " 'uncommitted changes.\n ' 'please commit or stash these changes and re-run this tool.') EXIT_CODE = 52 def __init__(self, source_dir): super(DirtyRepoError, self).__init__( self.MESSAGE.format(source_dir=source_dir), self.EXIT_CODE) class CommandFailedError(ExpectedException): """An exception raised when the command doesn't return 0.""" MESSAGE = '`{cmd}` failed with the return code {returncode}.' EXIT_CODE = 53 def __init__(self, command, returncode, stderr): super(CommandFailedError, self).__init__( self.MESSAGE.format(cmd=command, returncode=returncode), self.EXIT_CODE, extras={'stderr': stderr[:100000]}) class KillProcessFailedError(ExpectedException): """An exception raised when the process cannot be killed.""" MESSAGE = '`{command}` (pid={pid}) cannot be killed.' EXIT_CODE = 54 def __init__(self, command, pid): super(KillProcessFailedError, self).__init__( self.MESSAGE.format(command=command, pid=pid), self.EXIT_CODE) class UserRespondingNoError(ExpectedException): """An exception raised when the user decides not to proceed.""" MESSAGE = 'User responding "no" to "{question}"' EXIT_CODE = 55 def __init__(self, question): super(UserRespondingNoError, self).__init__( self.MESSAGE.format(question=question), self.EXIT_CODE) class InvalidTestcaseIdError(ExpectedException): """An exception when the testcase id is invalid.""" MESSAGE = ( 'The testcase ID ({testcase_id}) is invalid.\n' "Please double-check if there's a typo.\n" 'Also, can you access ' 'https://clusterfuzz.com/testcase-detail/{testcase_id} ?') EXIT_CODE = 56 def __init__(self, testcase_id): super(InvalidTestcaseIdError, self).__init__( self.MESSAGE.format(testcase_id=str(testcase_id)), self.EXIT_CODE) class UnauthorizedError(ExpectedException): """An exception when the user cannot access the testcase.""" MESSAGE = ( "You ({identity}) aren't allowed to access the testcase ID " '({testcase_id}). Can you access ' 'https://clusterfuzz.com/testcase-detail/{testcase_id} ?') EXIT_CODE = 57 def __init__(self, testcase_id, identity): super(UnauthorizedError, self).__init__( self.MESSAGE.format(identity=identity, testcase_id=str(testcase_id)), self.EXIT_CODE) class DifferentStacktraceError(ExpectedException): """An exception raised when the resulting crash is different.""" MESSAGE = ( 'The original crash cannot be reproduced after trying {count} times.\n' 'But it seems we get a different stacktrace. Could you check if the ' 'stacktrace is good enough?\n\n' + UNREPRODUCIBLE_SUGGESTION_TEXT) EXIT_CODE = 58 def __init__(self, count, crash_signatures): crash_signatures = [ {'type': s.crash_type, 'state': s.crash_state_lines, 'output': s.output[:50000]} for s in list(crash_signatures)[:10] ] super(DifferentStacktraceError, self).__init__( message=self.MESSAGE.format(count=count), exit_code=self.EXIT_CODE, extras={'signatures': crash_signatures}) class GdbNotSupportedOnAndroidError(ExpectedException): """An exception raised when debug is enabled on Android.""" MESSAGE = "--enable-debug (or gdb) isn't supported in Android." EXIT_CODE = 59 def __init__(self): super(GdbNotSupportedOnAndroidError, self).__init__( message=self.MESSAGE, exit_code=self.EXIT_CODE) class BootFailed(ExpectedException): """An exception is raised after device failed to complete boot.""" MESSAGE = ( 'Device failed to finish boot. Please inspect logcat output to ' 'identify the issue.') EXIT_CODE = 60 def __init__(self): super(BootFailed, self).__init__( message=self.MESSAGE, exit_code=self.EXIT_CODE) class NoAndroidDeviceIdError(ExpectedException): """An exception is raised after installing ASAN on Android""" MESSAGE = 'Please set the target Android device ID as the env {env_name}.' EXIT_CODE = 61 def __init__(self, env_name): super(NoAndroidDeviceIdError, self).__init__( message=self.MESSAGE.format(env_name=env_name), exit_code=self.EXIT_CODE) class GclientManagedEnabledException(ExpectedException): """An exception is raised when .gclient contains managed=True.""" # pylint: disable=line-too-long MESSAGE = ( 'Please disabled `managed` in {dot_gclient_path}. `managed=True` has ' 'been deprecated, and it checkouts repo to a wrong SHA. See: ' 'https://www.chromium.org/developers/how-tos/get-the-code/gclient-managed-mode' ) # pylint: enable=line-too-long EXIT_CODE = 62 def __init__(self, dot_gclient_path): super(GclientManagedEnabledException, self).__init__( message=self.MESSAGE.format(dot_gclient_path=dot_gclient_path), exit_code=self.EXIT_CODE)
python
import tensorflow as tf import fire import json import os import numpy as np import tensorflow as tf from tensorflow.python.training.input import batch import model, sample, encoder import model import numpy as np import tensorflow as tf from tensorflow.contrib.training import HParams def interact_model( model_name='124M', seed=None, nsamples=1, batch_size=1, length=None, temperature=1, top_k=0, top_p=1, models_dir='models', ): """ Interactively run the model :model_name=124M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=1 : Number of samples to return total :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :models_dir : path to parent folder containing model subfolders (i.e. contains the <model_name> folder) """ models_dir = os.path.expanduser(os.path.expandvars(models_dir)) if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 enc = encoder.get_encoder(model_name, models_dir) hparams = model.default_hparams() with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = hparams.n_ctx // 2 elif length > hparams.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) with tf.Session(graph=tf.Graph()) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.set_random_seed(seed) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) print("hparams :",hparams,'\n', "length :", length,'\n', "context :", context,'\n', "batch_size :",batch_size,'\n', "temperature :", temperature,'\n', "top_k :",top_k,'\n', "top_p :",top_p,'\n') ''' hparams : [('n_ctx', 1024), ('n_embd', 768), ('n_head', 12), ('n_layer', 12), ('n_vocab', 50257)] length : 512 context : Tensor("Placeholder:0", shape=(1, ?), dtype=int32) batch_size : 1 temperature : 1 top_k : 0 top_p : 1 ''' saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) saver.restore(sess, ckpt) while True: raw_text = input("Model prompt >>> ") while not raw_text: print('Prompt should not be empty!') raw_text = input("Model prompt >>> ") context_tokens = enc.encode(raw_text) generated = 0 for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] for i in range(batch_size): generated += 1 text = enc.decode(out[i]) print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) print(text) print("=" * 80) if __name__ == '__main__': fire.Fire(interact_model) ################################################################################ def default_hparams(): return HParams( n_vocab=0, n_ctx=1024, n_embd=768, n_head=12, n_layer=12, ) def shape_list(x): """Deal with dynamic shape in tensorflow cleanly.""" static = x.shape.as_list() dynamic = tf.shape(x) return [dynamic[i] if s is None else s for i, s in enumerate(static)] def softmax(x, axis=-1): x = x - tf.reduce_max(x, axis=axis, keepdims=True) ex = tf.exp(x) return ex / tf.reduce_sum(ex, axis=axis, keepdims=True) def gelu(x): return 0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3)))) def norm(x, scope, *, axis=-1, epsilon=1e-5): """Normalize to mean = 0, std = 1, then do a diagonal affine transform.""" with tf.variable_scope(scope): n_state = x.shape[-1].value g = tf.get_variable('g', [n_state], initializer=tf.constant_initializer(1)) b = tf.get_variable('b', [n_state], initializer=tf.constant_initializer(0)) u = tf.reduce_mean(x, axis=axis, keepdims=True) s = tf.reduce_mean(tf.square(x-u), axis=axis, keepdims=True) x = (x - u) * tf.rsqrt(s + epsilon) x = x*g + b return x def split_states(x, n): """Reshape the last dimension of x into [n, x.shape[-1]/n].""" *start, m = shape_list(x) return tf.reshape(x, start + [n, m//n]) def merge_states(x): """Smash the last two dimensions of x into a single dimension.""" *start, a, b = shape_list(x) return tf.reshape(x, start + [a*b]) def conv1d(x, scope, nf, *, w_init_stdev=0.02): with tf.variable_scope(scope): *start, nx = shape_list(x) w = tf.get_variable('w', [1, nx, nf], initializer=tf.random_normal_initializer(stddev=w_init_stdev)) b = tf.get_variable('b', [nf], initializer=tf.constant_initializer(0)) c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf]))+b, start+[nf]) return c def attention_mask(nd, ns, *, dtype): """1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:,None] j = tf.range(ns) m = i >= j - ns + nd return tf.cast(m, dtype) def attn(x, scope, n_state, *, past, hparams): assert x.shape.ndims == 3 # Should be [batch, sequence, features] assert n_state % hparams.n_head == 0 if past is not None: assert past.shape.ndims == 5 # Should be [batch, 2, heads, sequence, features], where 2 is [k, v] def split_heads(x): # From [batch, sequence, features] to [batch, heads, sequence, features] return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3]) def merge_heads(x): # Reverse of split_heads return merge_states(tf.transpose(x, [0, 2, 1, 3])) def mask_attn_weights(w): # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = attention_mask(nd, ns, dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w*b - tf.cast(1e10, w.dtype)*(1-b) return w def multihead_attn(q, k, v): # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype)) w = mask_attn_weights(w) w = softmax(w) a = tf.matmul(w, v) return a with tf.variable_scope(scope): c = conv1d(x, 'c_attn', n_state*3) q, k, v = map(split_heads, tf.split(c, 3, axis=2)) present = tf.stack([k, v], axis=1) if past is not None: pk, pv = tf.unstack(past, axis=1) k = tf.concat([pk, k], axis=-2) v = tf.concat([pv, v], axis=-2) a = multihead_attn(q, k, v) a = merge_heads(a) a = conv1d(a, 'c_proj', n_state) return a, present def mlp(x, scope, n_state, *, hparams): with tf.variable_scope(scope): nx = x.shape[-1].value h = gelu(conv1d(x, 'c_fc', n_state)) h2 = conv1d(h, 'c_proj', nx) return h2 def block(x, scope, *, past, hparams): with tf.variable_scope(scope): nx = x.shape[-1].value a, present = attn(norm(x, 'ln_1'), 'attn', nx, past=past, hparams=hparams) x = x + a m = mlp(norm(x, 'ln_2'), 'mlp', nx*4, hparams=hparams) x = x + m return x, present def past_shape(*, hparams, batch_size=None, sequence=None): return [batch_size, hparams.n_layer, 2, hparams.n_head, sequence, hparams.n_embd // hparams.n_head] def expand_tile(value, size): """Add a new axis of given size.""" value = tf.convert_to_tensor(value, name='value') ndims = value.shape.ndims return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims) def positions_for(tokens, past_length): batch_size = tf.shape(tokens)[0] nsteps = tf.shape(tokens)[1] return expand_tile(past_length + tf.range(nsteps), batch_size) def model(hparams, X, past=None, scope='model', reuse=False): with tf.variable_scope(scope, reuse=reuse): results = {} batch, sequence = shape_list(X) wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd], initializer=tf.random_normal_initializer(stddev=0.01)) wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) past_length = 0 if past is None else tf.shape(past)[-2] h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length)) # Transformer presents = [] pasts = tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer assert len(pasts) == hparams.n_layer for layer, past in enumerate(pasts): h, present = block(h, 'h%d' % layer, past=past, hparams=hparams) presents.append(present) results['present'] = tf.stack(presents, axis=1) h = norm(h, 'ln_f') # Language model loss. Do tokens <n predict token n? h_flat = tf.reshape(h, [batch*sequence, hparams.n_embd]) logits = tf.matmul(h_flat, wte, transpose_b=True) print(logits) logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab]) results['logits'] = logits return results ########################################################################### def top_k_logits(logits, k): if k == 0: # no 절단 return logits def _top_k(): values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1, tf.newaxis] print(min_values) # tf.newaxis : size(차원) 변경 return tf.where( # tf.where(bool type 텐서, true일 때 출력값, false일 때 출력값) # x, y가 없으면 참 요소의 좌표(2D 텐서)를 반환한다. logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, # -100억 # tf.ones_like : 모든 요소가 1로 설정된 tensor와 동일한 유형 및 모양의 tensor를 리턴한다. logits, ) # tf.cond : tf.equal이면 logits 동작이 실행되고, _top_k()는 실행되지 않는다. return tf.cond( tf.equal(k, 0), # k == 0 lambda: logits, lambda: _top_k(), ) def top_p_logits(logits, p): """핵심 sampling""" batch, _ = logits.shape.as_list() sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) # 내림차순으로 logits을 정렬, sort() = sort(axis=-1) cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) # tf.cumsum : 누적 합계를 수행 (ex. ([a, b, c]) # [a, a + b, a + b + c] ) indices = tf.stack([ # indices = index의 복수 # tf.stack : (a,b,c)shape에서 N텐서의 길이가 주어졌을 때, axis=0이면 (n,a,b,c) / axis = 1 이면 (a,n,b,c)가 된다 tf.range(0, batch), # number of indices to include tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0), # cast : 텐서를 새로운 형태로 캐스팅하는데 사용한다. # cumulative_probs가 p보다 작거나 같도록 하여 boolean형태로 나타낸다 # reduce_sum : 텐서의 차원들을 탐색하며 개체들의 총합을 계산한다. # cast에서 나온 값에서 -1을 해주고 열 단위로 더해준다. # tf.maximum : 최댓값 반환 ], axis=-1) min_values = tf.gather_nd(sorted_logits, indices) return tf.where( logits < min_values, tf.ones_like(logits) * -1e10, logits, ) def sample_sequence(*, hparams, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, top_p=1): if start_token is None: assert context is not None, 'Specify exactly one of start_token and context!' # start_token이 none인 경우 # start token 이나 context 중 하나를 정확히 지정해야 한다. else: assert context is None, 'Specify exactly one of start_token and context!' context = tf.fill([batch_size, 1], start_token) # [batch size, 1] shape에서 start_token으로 다 채워준다. print("냐냐 :", context) def step(hparams, tokens, past=None): lm_output = model.model(hparams=hparams, X=tokens, past=past, reuse=tf.AUTO_REUSE) # reuse=tf.AUTO_REUSE : 변수가 없는 경우 변수를 생성하고 그렇지 않은 경우 반환한다. logits = lm_output['logits'][:, :, :hparams.n_vocab] presents = lm_output['present'] presents.set_shape(model.past_shape(hparams=hparams, batch_size=batch_size)) return { 'logits': logits, 'presents': presents, } with tf.name_scope('sample_sequence'): # 이름 범위 def body(past, prev, output): next_outputs = step(hparams, prev, past=past) logits = next_outputs['logits'][:, -1, :] / tf.to_float(temperature) logits = top_k_logits(logits, k=top_k) logits = top_p_logits(logits, p=top_p) samples = tf.multinomial(logits, num_samples=1, output_dtype=tf.int32) # tf.multinomial : 다항분포로부터 샘플을 뽑아준다. return [ next_outputs['presents'] if past is None else tf.concat([past, next_outputs['presents']], axis=-2), samples, tf.concat([output, samples], axis=1) ] past, prev, output = body(None, context, context) def cond(*args): # *args : 여러개의 인자를 함수에 전달할 때 쓰인다. return True _, _, tokens = tf.while_loop( cond=cond, body=body, maximum_iterations=length - 1, loop_vars=[ past, prev, output ], shape_invariants=[ tf.TensorShape(model.past_shape(hparams=hparams, batch_size=batch_size)), tf.TensorShape([batch_size, None]), tf.TensorShape([batch_size, None]), ], back_prop=False, ) return tokens sample_sequence( hparams= [('n_ctx', 1024), ('n_embd', 768), ('n_head', 12), ('n_layer', 12), ('n_vocab', 50257)], length= 512, context= tf.Tensor("Placeholder:0", shape=(1, )), batch_size = 1, temperature = 1, top_k = 0, top_p = 1)
python
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.cloud.datacatalog_v1.types import common from google.protobuf import timestamp_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.datacatalog.v1", manifest={"SearchResultType", "SearchCatalogResult",}, ) class SearchResultType(proto.Enum): r"""The different types of resources that can be returned in search. """ SEARCH_RESULT_TYPE_UNSPECIFIED = 0 ENTRY = 1 TAG_TEMPLATE = 2 ENTRY_GROUP = 3 class SearchCatalogResult(proto.Message): r"""A result that appears in the response of a search request. Each result captures details of one entry that matches the search. Attributes: search_result_type (google.cloud.datacatalog_v1.types.SearchResultType): Type of the search result. This field can be used to determine which Get method to call to fetch the full resource. search_result_subtype (str): Sub-type of the search result. This is a dot-delimited description of the resource's full type, and is the same as the value callers would provide in the "type" search facet. Examples: ``entry.table``, ``entry.dataStream``, ``tagTemplate``. relative_resource_name (str): The relative resource name of the resource in URL format. Examples: - ``projects/{project_id}/locations/{location_id}/entryGroups/{entry_group_id}/entries/{entry_id}`` - ``projects/{project_id}/tagTemplates/{tag_template_id}`` linked_resource (str): The full name of the cloud resource the entry belongs to. See: https://cloud.google.com/apis/design/resource_names#full_resource_name. Example: - ``//bigquery.googleapis.com/projects/projectId/datasets/datasetId/tables/tableId`` modify_time (google.protobuf.timestamp_pb2.Timestamp): Last-modified timestamp of the entry from the managing system. integrated_system (google.cloud.datacatalog_v1.types.IntegratedSystem): Output only. This field indicates the entry's source system that Data Catalog integrates with, such as BigQuery or Cloud Pub/Sub. user_specified_system (str): This field indicates the entry's source system that Data Catalog does not integrate with. fully_qualified_name (str): Fully Qualified Name of the resource. There are two main forms of FQNs: {system}:{project}.{dot-separated path to resource} for non-regionalized resources {system}:{project}.{location id}.{dot-separated path to resource} for regionalized resources Examples: - dataproc_metastore:projectId.locationId.instanceId.databaseId.tableId - bigquery:table.project_id.dataset_id.table_id """ search_result_type = proto.Field(proto.ENUM, number=1, enum="SearchResultType",) search_result_subtype = proto.Field(proto.STRING, number=2,) relative_resource_name = proto.Field(proto.STRING, number=3,) linked_resource = proto.Field(proto.STRING, number=4,) modify_time = proto.Field(proto.MESSAGE, number=7, message=timestamp_pb2.Timestamp,) integrated_system = proto.Field( proto.ENUM, number=8, oneof="system", enum=common.IntegratedSystem, ) user_specified_system = proto.Field(proto.STRING, number=9, oneof="system",) fully_qualified_name = proto.Field(proto.STRING, number=10,) __all__ = tuple(sorted(__protobuf__.manifest))
python
from datetime import date, datetime from typing import Any, Dict from dateutil import relativedelta from django.db.models import Sum, Count from em.models import Account, Transaction class AccountHelper(object): date_fmt = '%m-%Y' day_fmt = '%Y-%m-%d' @staticmethod def get_spendings(overall_expns, **filters): spendings = list() account_labels = list() account_values = list() # print(Transaction.objects.filter(date=date.today()).annotate(Sum('amount'))) #.aggregate(expense=Sum('amount')).get('expense')) # print(Transaction.objects.values('account__name', 'account').filter(date=date.today()).annotate(Sum('amount'))) #.aggregate(expense=Sum('amount')).get('expense')) spendings = Transaction.objects.values('account__name', 'account').filter(**filters).annotate(spendings=Sum('amount')) if spendings: for spending in spendings: account_labels.append(spending.get('account__name')) account_values.append(spending.get('spendings')) return spendings, account_labels, account_values # if overall_expns: # for account in Account.objects.all(): # amount = Transaction.objects\ # .filter(account=account, **filters)\ # .aggregate(amount=Sum('amount')).get('amount') # if amount: # spendings.append({ # 'account': account, # 'spendings': amount, # 'percentage': int((amount / overall_expns) * 100) # }) # account_labels.append(account.name) # account_values.append(amount) # return spendings, account_labels, account_values @staticmethod def get_account_details(context: Dict[Any, Any], **kwargs): ref_month = kwargs.get('ref_month') account: Account = context.get('account') # today = date.today() # print(today.day, account.statement_date, today.day > account.statement_date) filters = dict() dt = datetime.strptime(ref_month, AccountHelper.date_fmt) if ref_month else date.today() if kwargs.get('from_dt') and kwargs.get('to_dt'): from_dt, to_dt = ( datetime.strptime(kwargs.get('from_dt'), AccountHelper.day_fmt), datetime.strptime(kwargs.get('to_dt'), AccountHelper.day_fmt) ) filters.update(date__range = [from_dt, to_dt]) context['selected_range'] = f"{kwargs.get('from_dt')} - {kwargs.get('to_dt')}" else: context['selected_range'] = datetime.strftime(dt, '%m-%Y') filters = dict( date__month=dt.month, date__year=dt.year ) context['prev_month'] = dt - relativedelta.relativedelta(months=1) context['next_month'] = dt + relativedelta.relativedelta(months=1) context['cur_month'] = dt context['spendings'] = Transaction.objects\ .filter(account=account, **filters)\ .aggregate(spendings=Sum('amount'))\ .get('spendings') context['transactions'] = Transaction.objects.filter(account=account, **filters).order_by("-date") return context @staticmethod def get_act_statments(account): statement_dates = { "Kotak": 15, "Citi Credit": 20, "HDFC Nayana": 20, } dt = statement_dates.get(account) statments = dict() if dt: # st_dt = date.today() - relativedelta.relativedelta(days=i) for i in range(5): ref_dt = date.today() - relativedelta.relativedelta(months=i) to_dt = date(ref_dt.year, ref_dt.month, dt) from_dt = to_dt - relativedelta.relativedelta(months=1) from_dt = from_dt + relativedelta.relativedelta(days=1) # ?fromDate=2021-03-16&toDate=2021-04-14 qp = f'?fromDate={from_dt.strftime("%Y-%m-%d")}&toDate={to_dt.strftime("%Y-%m-%d")}' statments[f'{from_dt.strftime("%b")}-{to_dt.strftime("%b")}'] = qp return statments
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from .type_convert import anything_to_string from .type_convert import anything_to_bytes from .spamc_header import SpamcHeader from .spamc_body import SpamcBody class SpamcProtocol(SpamcHeader, SpamcBody): def __init__(self): super().__init__() def create_request(self): request_body = b'' if self.is_have_header(b'Compress') == True: request_body = self.zlib_compress_data(self.body) else: request_body = self.body self.set_content_length(len(request_body)) request = ( b'%(headers)b\r\n' b'%(body)b' ) return request % { b'headers': self.create_header_request(), b'body': self.body } def create_simple_request(self, input_method, input_message): self.set_method(input_method) self.body = input_message return self.create_request() @staticmethod def split_spamd_message(input_message): try: bytes_header, sep, bytes_body = input_message.partition(b'\r\n\r\n') return bytes_header, bytes_body except Exception as err: raise RuntimeError('Protocol Error') def load_from_response(self, input_message): bytes_header, bytes_body = self.split_spamd_message(input_message) self.parse_header_bytes(bytes_header) if self.get_content_length() != len(bytes_body): return False if self.is_have_header(b'Compress') == True: response_body = self.zlib_decompress_data(bytes_body) else: response_body = bytes_body self.body = response_body return True def is_full_response(self, input_message, is_check_length=True): if input_message.startswith(b'SPAMD') == False: raise RuntimeError('Protocol Error') try: bytes_header, bytes_body = self.split_spamd_message(input_message) self.parse_header_bytes(bytes_header) if is_check_length == True: if self.is_have_header(b'Content-length') == False: return False if self.get_content_length() != len(bytes_body): return False return True except Exception as err: return False if __name__ == '__main__': pass
python
#!/usr/bin/python # # coveragePlot.py # # This program generates genomic coverage plots # Chiu Laboratory # University of California, San Francisco # January, 2014 # # Copyright (C) 2014 Charles Y Chiu - All Rights Reserved # SURPI has been released under a modified BSD license. # Please see license file for details. import matplotlib matplotlib.use('Agg') from pylab import * from pylab import figure, show, legend from matplotlib import pyplot as plt from distutils.version import LooseVersion import numpy as np import sys, os import re def smart_truncate1(text, max_length=100, suffix='...'): """Returns a string of at most `max_length` characters, cutting only at word-boundaries. If the string was truncated, `suffix` will be appended. """ if len(text) > max_length: pattern = r'^(.{0,%d}\S)\s.*' % (max_length-len(suffix)-1) return re.sub(pattern, r'\1' + suffix, text) else: return text if len(sys.argv) < 3: print "usage: coveragePlot.py <data file .map/.report> <title of plot> <log y-axes Y/N/B=both>" sys.exit(-1) dataFile = sys.argv[1] mpl_version=matplotlib.__version__ # print "Installed version is: %s." % mpl_version #load function is deprecated as of matplotlib v1.3.1, replaced with if (LooseVersion(mpl_version) >= LooseVersion('1.3.1') ): data = np.loadtxt(dataFile) else: data = mlab.load(dataFile) outputFile = os.path.splitext(dataFile)[0]+".ps" reportFile = os.path.splitext(dataFile)[0]+".report" with open(reportFile) as f: reportContent = f.readlines() reportText = "" logPlot = sys.argv[3] for line in reportContent: stripped_line = line.rstrip('\r\n\t ') reportText = reportText + smart_truncate1(stripped_line, max_length=100, suffix='...') + "\n" print "Loaded " + dataFile hold(True) if logPlot=='N': fig=plt.figure(figsize=[8.5,4.5]) ax = fig.add_subplot(111) fig.text(0.1,0.0,reportText, fontsize=9) color ='k-' plot(data[:,0],data[:,1],color) xlabel("base position",fontsize=8) ylabel("fold coverage",fontsize=8) title_text = sys.argv[2] suptitle(title_text,fontsize=9) xMin, xMax, yMin, yMax = min(data[:,0]),max(data[:,0]),min(data[:,1]),max(data[:,1]) # add a 10% buffer to yMax yMax *= 1.1 axis([xMin,xMax,yMin,yMax]) gcf().subplots_adjust(bottom=0.60) plt.show() if logPlot=='B': fig=plt.figure(figsize=[8.5,4.5]) ax1 = fig.add_subplot(211) color ='k-' plot(data[:,0],data[:,1],color) xlabel("base position",fontsize=8) ylabel("fold coverage",fontsize=8) xMin, xMax, yMin, yMax = min(data[:,0]),max(data[:,0]),min(data[:,1]),max(data[:,1]) yMax *= 1.1 axis([xMin,xMax,yMin,yMax]) plt.show() ax2 = fig.add_subplot(212) ax2.set_yscale('symlog') fig.text(0.1,0.0,reportText, fontsize=9) color ='k-' plot(data[:,0],data[:,1],color) xlabel("base position",fontsize=8) ylabel("fold coverage",fontsize=8) title_text = sys.argv[2] suptitle(title_text,fontsize=9) xMin, xMax, yMin, yMax = min(data[:,0]),max(data[:,0]),min(data[:,1]),max(data[:,1]) yMax *= 1.1 axis([xMin,xMax,yMin,yMax]) gcf().subplots_adjust(bottom=0.40) plt.show() if logPlot=='Y': fig=plt.figure(figsize=[8.5,4.5]) ax = fig.add_subplot(111) ax.set_yscale('symlog') fig.text(0.1,0.0,reportText, fontsize=9) color ='k-' plot(data[:,0],data[:,1],color) xlabel("base position",fontsize=8) ylabel("fold coverage",fontsize=8) title_text = sys.argv[2] suptitle(title_text,fontsize=9) xMin, xMax, yMin, yMax = min(data[:,0]),max(data[:,0]),min(data[:,1]),max(data[:,1]) yMax *= 1.1 axis([xMin,xMax,yMin,yMax]) gcf().subplots_adjust(bottom=0.60) plt.show() savefig(outputFile)
python
# ******************************************************************************* # Copyright (C) 2020-2021 INAF # # This software is distributed under the terms of the BSD-3-Clause license # # Authors: # Ambra Di Piano <[email protected]> # ******************************************************************************* import os from os.path import isfile, expandvars from sagsci.tools.utils import * from sagsci.tools.photometry import * # observation and target obs_crab = 'data/crab_test_sim.fits' target = {'ra': 83.6331, 'dec': 22.0145} pointing = {'ra': 83.6331, 'dec': 22.5145} # configuration erange = [(0.03, 50)] trange = [0, 100] # livetime in seconds (s) radius = 0.2 # photometry region in degrees (deg) spectral_index = -2.48 # slope of the power-law spectrum irf = expandvars('$CTOOLS/share/caldb/data/cta/prod3b-v2/bcf/South_z20_0.5h/irf_file.fits') # we need to add "radius" to the target dictionary target['rad'] = radius # init photometry phm = Photometrics({'events_filename': obs_crab}) # remove duplicate files offregionsfile = obs_crab.replace('.fits', '_off.reg') if isfile(offregionsfile): os.remove(obs_crab.replace('.fits', '_off.reg')) # compute regions off_regions = phm.find_off_regions(algo='cross', src=target, pnt=pointing, rad=target['rad'], save=offregionsfile) for e in erange: print(f'Target = {target} TeV') print(f'Energy range = {e} s') print(f'Time range = {trange} deg') on, off, alpha, excess, sigma, err_note = phm.counting(src=target, rad=target['rad'], off_regions=off_regions, e_min=e[0], e_max=e[1], t_min=trange[0], t_max=trange[1], draconian=False) print(f'on counts = {on} cts') print(f'excess counts = {excess} cts') print(f'significance = {sigma} cts') exposure = get_aeff_in_region(target=target, pointing=pointing, trange=trange, erange=e, irf=irf, index=spectral_index) print(f'aeff = {exposure} cm2') livetime = trange[1]-trange[0] print(f'livetime = {livetime} s') # compute flux flux = on / exposure / livetime print(f'flux = {flux} ph/cm2/s') print(f'\n{"-"*50}\n')
python
#!/usr/bin/python # -*- coding: utf-8 -*- import sys class Calculator: def __init__(self, number1, number2): self.number1 = int(number1) self.number2 = int(number2) def add(self): print(self.number1 + self.number2) return self.number1 + self.number2 def subtract(self): print(self.number1 - self.number2) return self.number1 - self.number2 def multiply(self): print(self.number1 * self.number2) return self.number1 * self.number2 def divide(self): assert self.number2 > 0,"No soy tan inteligente como para dividir entre 0" print(self.number1 / self.number2) return self.number1 / self.number2 def execute(self,operation): if operation == 'sumar': return self.add() if operation == 'restar': return self.subtract() if operation == 'multiplicar': return self.multiply() if operation == 'dividir': return self.divide() else: print("Invalid operation") if __name__ == "__main__": operation = sys.argv[1] number1 = sys.argv[2] number2 = sys.argv[3] calculator = Calculator(number1,number2) calculator.execute(operation)
python
from flask import Blueprint bp = Blueprint('auth', __name__) from diploma.auth import auth, emails, forms, routes
python
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # """ This is the example of input record for the test_tranform_data. """ input_test_data = [ { "targetingCriteria": { "include": { "and": [ { "or": { "urn:li:adTargetingFacet:titles": [ "urn:li:title:100", "urn:li:title:10326", "urn:li:title:10457", "urn:li:title:10738", "urn:li:title:10966", "urn:li:title:11349", "urn:li:title:1159", ] } }, {"or": {"urn:li:adTargetingFacet:locations": ["urn:li:geo:103644278"]}}, {"or": {"urn:li:adTargetingFacet:interfaceLocales": ["urn:li:locale:en_US"]}}, ] }, "exclude": { "or": { "urn:li:adTargetingFacet:facet_Key1": [ "facet_test1", "facet_test2", ], "urn:li:adTargetingFacet:facet_Key2": [ "facet_test3", "facet_test4", ], } }, }, "changeAuditStamps": { "created": {"time": 1629581275000}, "lastModified": {"time": 1629664544760}, }, "dateRange": { "start": {"month": 8, "day": 13, "year": 2021}, "end": {"month": 8, "day": 13, "year": 2021}, }, "variables": { "data": { "com.linkedin.ads.SponsoredUpdateCreativeVariables": { "activity": "urn:li:activity:1234", "directSponsoredContent": 0, "share": "urn:li:share:1234", } } }, } ] """ This is the expected output from the `transform_data` method. """ output_test_data = [ { "targetingCriteria": { "include": { "and": [ { "type": "urn:li:adTargetingFacet:titles", "values": [ "urn:li:title:100", "urn:li:title:10326", "urn:li:title:10457", "urn:li:title:10738", "urn:li:title:10966", "urn:li:title:11349", "urn:li:title:1159", ], }, { "type": "urn:li:adTargetingFacet:locations", "values": ["urn:li:geo:103644278"], }, { "type": "urn:li:adTargetingFacet:interfaceLocales", "values": ["urn:li:locale:en_US"], }, ] }, "exclude": { "or": [ { "type": "urn:li:adTargetingFacet:facet_Key1", "values": ["facet_test1", "facet_test2"], }, { "type": "urn:li:adTargetingFacet:facet_Key2", "values": ["facet_test3", "facet_test4"], }, ] }, }, "variables": { "type": "com.linkedin.ads.SponsoredUpdateCreativeVariables", "values": [ {"key": "activity", "value": "urn:li:activity:1234"}, {"key": "directSponsoredContent", "value": 0}, {"key": "share", "value": "urn:li:share:1234"}, ], }, "created": "2021-08-21 21:27:55", "lastModified": "2021-08-22 20:35:44", "start_date": "2021-08-13", "end_date": "2021-08-13", } ]
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from mm.utils.opengl import Render from mm.utils.mesh import generateFace from mm.models import MeshModel import numpy as np import matplotlib.pyplot as plt from skimage import io, img_as_float if __name__ == '__main__': # Load the first image from the video frame = 0 img = io.imread('../data/obama/orig/%05d.png' % (frame + 1)) img = img_as_float(img) width = img.shape[1] height = img.shape[0] # Load the 3DMM parameters that fit the 3DMM to each video frame param = np.load('../data/obama/paramRTS2Orig.npy') # Load the mesh model m = MeshModel('../models/bfm2017.npz') # Generate the vertex coordinates from the mesh model and the parameters vertexCoords = generateFace(param[frame, :], m).T # Use the mean vertex colors just for illustrative purposes vertexColors = m.texMean.T # Concatenate the vertex coordinates and colors-- this is how they will be inputted into the Render object meshData = np.r_[vertexCoords, vertexColors] # Initialize an OpenGL Render object and render the 3DMM with the corresponding video frame in the background r = Render(width, height, meshData, m.face, indexed = False, img = img) r.render() # Grab the rendering from the video card rendering = r.grabRendering() # You can also get other parameters from the video card, such as the pixels where the 3DMM is rendered on, the index of the triangular face that contributes to the color of each pixel of these pixels, and the barycentric coordinates of such a triangular face such that the barycentric combination of the three vertex attributes (e.g. color) for this triangular face forms the color in the rendered pixel rendering, pixelCoord, pixelFaces, pixelBarycentricCoords = r.grabRendering(return_info = True) # Plot the rendering plt.figure() plt.imshow(rendering) # Loop through some frames in the video to render some more 3DMMs for frame in range(1, 52, 10): img = io.imread('../data/obama/orig/%05d.png' % (frame + 1)) img = img_as_float(img) vertexCoords = generateFace(param[frame, :], m).T meshData = np.r_[vertexCoords, vertexColors] # Update the video card with the new mesh data for the current frame r.updateVertexBuffer(meshData) # Erase the current rendering to prepare for the new rendering r.resetFramebufferObject() # And then render and plot the rendering r.render() rendering = r.grabRendering() plt.figure() plt.imshow(rendering)
python
import copy from cantoolz.module import CANModule class ecu_switch(CANModule): name = "CAN Switch" help = """ This module emulating CAN Switch. Init params (example): { 'Cabin': { # From Cabin interface 'OBD2':[ # To OBD2 allowed next ID 0x81, # Left door status 0x82 # Right door status ], }, 'Engine': { 'OBD2': [ 0x79, 0x709 ], 'Cabin':[ 0x79 ] }, 'OBD2': { 'Engine':[ 0x701 ], } } """ _active = True def do_init(self, params): self._rules = params # Effect (could be fuzz operation, sniff, filter or whatever) def do_effect(self, can_msg, args): current_rule = self._rules.get(args['pipe'], {}) if can_msg.CANData and args['action'] == "read": # READ for route_to, allowed_id in current_rule.items(): if can_msg.CANFrame.frame_id in allowed_id: buffer = self._rules[route_to].get('buffer', []) buffer.append(copy.deepcopy(can_msg.CANFrame)) self._rules[route_to].update({'buffer': buffer}) elif args['action'] == "write" and not can_msg.CANData: # Write buffer_len = len(current_rule.get('buffer', [])) if buffer_len > 0: can_msg.CANFrame = self._rules[args['pipe']]['buffer'].pop(0) can_msg.CANData = True can_msg.bus = self._bus return can_msg
python
from collections import defaultdict start, end = 357253, 892942 num_digits = 6 def solve(start, end, strict=False): length = end - start count = 0 for i in range(length): number = start + i previous = number % 10 consecutives = defaultdict(int) for j in range(1, num_digits): p = 10 ** j digit = number // p % 10 if digit > previous: break if previous == digit: consecutives[digit] += 1 previous = digit else: if (strict and 1 in consecutives.values()) or (not strict and consecutives): count += 1 return count if __name__ == "__main__": # Part I print(solve(start, end)) # Part II print(solve(start, end, strict=True))
python
# ----------------------------------------------------------------------------- # NDN Repo getfile client. # # @Author [email protected] # @Date 2019-10-24 # ----------------------------------------------------------------------------- import os import sys sys.path.insert(1, os.path.join(sys.path[0], '..')) import asyncio as aio import logging from ndn.app import NDNApp from ndn.encoding import Name, NonStrictName from ..utils.concurrent_fetcher import concurrent_fetcher class GetfileClient(object): """ This client fetches a file from the repo, and save it to working directory. """ def __init__(self, app: NDNApp, repo_name): """ A client to retrieve files from the remote repo. :param app: NDNApp. :param repo_name: NonStrictName. Routable name to remote repo. """ self.app = app self.repo_name = repo_name async def fetch_file(self, name_at_repo: NonStrictName): """ Fetch a file from remote repo, and write to the current working directory. :param name_at_repo: NonStrictName. The name with which this file is stored in the repo. """ semaphore = aio.Semaphore(10) b_array = bytearray() async for (_, _, content, _) in concurrent_fetcher(self.app, name_at_repo, 0, None, semaphore): b_array.extend(content) if len(b_array) > 0: filename = Name.to_str(name_at_repo) filename = filename.strip().split('/')[-1] logging.info(f'Fetching completed, writing to file {filename}') with open(filename, 'wb') as f: f.write(b_array)
python
import attr import logging from typing import Callable from mmds.exceptions import PackageNotFoundError try: from PIL import Image except: raise PackageNotFoundError("pillow", by="rgbs modality.") from .ts import TimeSeriesModality logger = logging.getLogger(__name__) dumb_image = Image.new("RGB", (32, 32)) @attr.define class RgbsModality(TimeSeriesModality): """A rgb sequence modality for video.""" transform: Callable aggragate: Callable @property def duration(self): return len(self.paths) / self.sample_rate def _fetch_impl(self, *, info={}): paths = self._slice(self.paths, info.get("t0"), info.get("t1")) frames = list(map(self.transform, map(self._load_pil, paths))) return self.aggragate(frames) def _pad(self, x, n): return x + [None] * n @staticmethod def _load_pil(path): if path is None: return dumb_image try: image = Image.open(path) except: logger.warning(f"Open {path} failed, use an empty picture instead.") image = dumb_image return image
python
all_teams = ["ANC", "APO", "CSU", "GUC", "LTI", "MIN", "MRL", "NAI", "POS", "RI1", "RAK", "SOS", "ZJU"] semi_teams = ["APO", "CSU", "GUC", "MIN", "MRL", "POS", "SOS", "ZJU"] team_names = { # "BAS" : "Baseline (no agents)", "ANC" : "anct_rescue2013", "APO" : "Apollo-Rescue", "CSU" : "CSU-YUNLU", "GUC" : "GUC_ArtSapience", "LTI" : "LTI-Agent-Rescue", "MIN" : "MinERS", "MRL" : "MRL", "NAI" : "NAITO-Rescue2013", "POS" : "Poseidon", "RI1" : "Ri-one", "RAK" : "RoboAKUT", "SOS" : "S.O.S.", "ZJU" : "ZJUBase" } day1 = {'name' : "Day 1", 'shortname' : "Day1", 'maps' : ["Berlin1", "Eindhoven1", "Kobe1", "Paris1", "VC1"], 'teams' : all_teams} day2 = {'name' : "Day 2", 'shortname' : "Day2", 'maps' : ["Mexico1", "Kobe2", "Eindhoven2", "Istanbul1", "Paris2"], 'teams' : all_teams, 'merge_with' : day1, 'highlight' : 8} semi = {'name' : "Semifinals", 'shortname' : "Semifinals", 'maps' : ["VC2", "Berlin2", "Kobe3", "Istanbul2", "Mexico2", "Eindhoven3", "Paris3", "Eindhoven4"], 'teams' : semi_teams, 'highlight' : 4} # final = {'name' : "Finals", # 'shortname' : "final", # 'maps' : ["Eindhoven1"], # 'teams' : all_teams, # 'merge_with' : day3, # 'show_ranks' : 1} rounds = [day1, day2, semi] # semi_teams = ["RAK", "SBC", "POS", "IAM", "MRL", "RI1", "SEU", "RMA"] # final_teams = ["POS", "IAM", "SEU", "RMA"] # day1 = {'name' : "Preliminaries Day 1", # 'shortname' : "Preliminary1", # 'maps' : ["VC1", "Paris1", "Kobe1", "Berlin1", "Istanbul1"], # 'teams' : all_teams} # day2 = {'name' : "Preliminaries Day 2", # 'shortname' : "Preliminary2", # 'maps' : ["Kobe2", "Paris2", "Istanbul2", "Berlin2", "VC2"], # 'teams' : all_teams # 'merge_with' : day1 # 'highlight' : 8} # semi = {'name' : "Semifinals", # 'shortname' : "Semifinals", # 'maps' : ["Kobe2", "Paris2", "Istanbul2", "Berlin2", "VC2"], # 'teams' : semi_teams, # 'highlight' : 4} # final = {'name' : "Finals", # 'shortname' : "Finals", # 'maps' : ["Kobe2", "Paris2", "Istanbul2", "Berlin2", "VC2"], # 'teams' : ["Paris5", "Berlin5", "Kobe4", "Istanbul5", "VC5"], # 'show_ranks' : 3} # rounds = [day1, day2, semi, final] log_location = "logs/2013" add_downloads = True
python
import warnings class AppPlatformError(Exception): """ Raised by :meth:`Client.request()` for requests that: - Return a non-200 HTTP response, or - Connection refused/timeout or - Response timeout or - Malformed request - Have a malformed/missing header in the response. """ def __init__(self, exc_message, status_code, error_code=None): super(AppPlatformError, self).__init__(exc_message) self.status_code = status_code self.error_code = error_code class ServerError(AppPlatformError): """ For 500-level responses from the server """ class ClientError(AppPlatformError): """ For 400-level responses from the server """ class InputNotUnderstoodError(Exception): """ Raised if a method is called in a way that cannot be understood """ class AllRetriesFailedError(Exception): """Raised when the retry manager does not successfully make a request""" class InvalidModelCategoryError(Exception): """ Raised when method specific for model category was called from wrong model """ class AsyncTimeoutError(Exception): """ Raised when an asynchronous operation did not successfully get resolved within a specified time limit """ class AsyncFailureError(Exception): """ Raised when querying an asynchronous status resulted in an exceptional status code (not 200 and not 303) """ class ProjectAsyncFailureError(AsyncFailureError): """ When an AsyncFailureError occurs during project creation or finalizing the project settings for modeling. This exception will have the attributes ``status_code`` indicating the unexpected status code from the server, and ``async_location`` indicating which asynchronous status object was being polled when the failure happened. """ def __init__(self, exc_message, status_code, async_location): super(ProjectAsyncFailureError, self).__init__(exc_message) self.status_code = status_code self.async_location = async_location class AsyncProcessUnsuccessfulError(Exception): """ Raised when querying an asynchronous status showed that async process was not successful """ class AsyncModelCreationError(Exception): """ Raised when querying an asynchronous status showed that model creation was not successful """ class AsyncPredictionsGenerationError(Exception): """ Raised when querying an asynchronous status showed that predictions generation was not successful """ class PendingJobFinished(Exception): """ Raised when the server responds with a 303 for the pending creation of a resource. """ class JobNotFinished(Exception): """ Raised when execution was trying to get a finished resource from a pending job, but the job is not finished """ class DuplicateFeaturesError(Exception): """ Raised when trying to create featurelist with duplicating features """ class DataRobotDeprecationWarning(DeprecationWarning): """ Raised when using deprecated functions or using functions in a deprecated way """ pass class IllegalFileName(Exception): """ Raised when trying to use a filename we can't handle. """ class JobAlreadyRequested(ClientError): """ Raised when the requested model has already been requested. """ warnings.filterwarnings('default', category=DataRobotDeprecationWarning)
python
import setuptools from glob import glob setuptools.setup( name="noteboard-extension", version='0.1.0', url="https://github.com/yuvipanda/noteboard", author="Yuvi Panda", description="Simple Jupyter extension to emit events about current notebooks to a noteboard server", data_files=[ ('share/jupyter/nbextensions/noteboard', glob('*.js')) ], packages=setuptools.find_packages() )
python
import os.path as osp import numpy as np class Dataset(object): def __init__(self, ids, labels, is_train=True, name='default'): self._ids = list(ids) self._labels = labels self.name = name self.is_train = is_train def get_data(self, id): activity = np.load(id) label = self._labels[id] return activity, label def get_data_ROI(self, id): activity = np.load(id) activity = activity/255.*2-1 label = self._labels[id] return activity, label @property def ids(self): return self._ids def __len__(self): return len(self.ids) def __repr__(self): return 'Dataset (%s, %d examples)' % ( self.name, len(self) ) def create_default_splits(path, is_train=True): train_ids, train_labels = get_activity_path_and_label(osp.join(path, 'train')) val_ids, val_labels = get_activity_path_and_label(osp.join(path, 'val')) test_ids, test_labels = get_activity_path_and_label(osp.join(path, 'test')) dataset_train = Dataset(train_ids, train_labels, name='train', is_train=True) dataset_val = Dataset(val_ids, val_labels, name='val', is_train=False) dataset_test = Dataset(test_ids, test_labels, name='test', is_train=False) return dataset_train, dataset_val, dataset_test def get_activity_path_and_label(path): ids = [] labels = {} with open(osp.join(path, 'label.txt')) as f: lines = [line.strip() for line in f.readlines()] for line in lines: newline = list(filter(str.strip, line.split(' '))) id = osp.join(path, newline[0]) ids.append(id) labels[id] = np.array([float(n) for n in newline[1:]]) rs = np.random.RandomState(123) rs.shuffle(ids) return ids, labels
python
import cv2 as cv import numpy as np import matplotlib.pyplot as plt #color spaces --> rgb spaces,grayscal img = cv.imread('photos/dog.jpg') cv.imshow('Dog',img) # plt.imshow(img) # plt.show() # point to note --> there is conversion of colour spaces in matplotlib # BGR to grayscale --> gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) cv.imshow('Grayscale',gray) #BGR to HSV --> hsv =cv.cvtColor(img,cv.COLOR_BGR2HSV_FULL) cv.imshow('HSV',hsv) #BGR to L*A*B lab =cv.cvtColor(img,cv.COLOR_BGR2LAB) cv.imshow('Lab',lab) #BGR to RGB rgb = cv.cvtColor(img,cv.COLOR_BGR2RGB) cv.imshow('RGB',rgb) plt.imshow(rgb) plt.show() #cann't convert hsv to BGR # HSV to BGR hsv_bgr =cv.cvtColor(img,cv.COLOR_HSV2BGR) cv.imshow('HSV-> BGR',hsv_bgr) cv.waitKey(0)
python
from rest_framework import serializers from users.models.organizations import Organization class OrganizationSerializer(serializers.ModelSerializer): class Meta: model = Organization fields = ('id', 'name', 'domain')
python
import sys from data_wrapper.settings import MESSAGES class DataWrapper: def __init__(self, db=None, params=None, environment=None): if db: if db.lower() == 'mongodb': from data_wrapper.mongodb_wrapper import MongodbDbWrapper self.db = True self.my_data = MongodbDbWrapper(params) elif db.lower() == 'mysql': from data_wrapper.mysql_wrapper import MysqlDbWrapper self.db = True self.my_data = MysqlDbWrapper(params, environment) else: print(MESSAGES["WRONG_DATABASE"]) sys.exit() else: self.db = False self.my_data = {} def __setitem__(self, key, value): if not self.db and key not in self.my_data: self.my_data[key] = value self.my_data.__setitem__(key, value) def __getitem__(self, item): if not self.db and item not in self.my_data: self.my_data[item] = [] return self.my_data[item] def __delitem__(self, key): self.my_data.__delitem__(key)
python
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import re import shutil import subprocess import sys import tempfile from telemetry.internal.util import binary_manager class MinidumpSymbolizer(object): def __init__(self, os_name, arch_name, dump_finder, build_dir): """Abstract class for handling all minidump symbolizing code. Args: os_name: The OS of the host (if running the test on a device), or the OS of the test machine (if running the test locally). arch_name: The arch name of the host (if running the test on a device), or the OS of the test machine (if running the test locally). dump_finder: The minidump_finder.MinidumpFinder instance that is being used to find minidumps for the test. build_dir: The directory containing Chromium build artifacts to generate symbols from. """ self._os_name = os_name self._arch_name = arch_name self._dump_finder = dump_finder self._build_dir = build_dir def SymbolizeMinidump(self, minidump): """Gets the stack trace from the given minidump. Args: minidump: the path to the minidump on disk Returns: None if the stack could not be retrieved for some reason, otherwise a string containing the stack trace. """ if self._os_name == 'win': cdb = self._GetCdbPath() if not cdb: logging.warning('cdb.exe not found.') return None # Move to the thread which triggered the exception (".ecxr"). Then include # a description of the exception (".lastevent"). Also include all the # threads' stacks ("~*kb30") as well as the ostensibly crashed stack # associated with the exception context record ("kb30"). Note that stack # dumps, including that for the crashed thread, may not be as precise as # the one starting from the exception context record. # Specify kb instead of k in order to get four arguments listed, for # easier diagnosis from stacks. output = subprocess.check_output([cdb, '-y', self.browser_directory, '-c', '.ecxr;.lastevent;kb30;~*kb30;q', '-z', minidump]) # The output we care about starts with "Last event:" or possibly # other things we haven't seen yet. If we can't find the start of the # last event entry, include output from the beginning. info_start = 0 info_start_match = re.search("Last event:", output, re.MULTILINE) if info_start_match: info_start = info_start_match.start() info_end = output.find('quit:') return output[info_start:info_end] stackwalk = binary_manager.FetchPath( 'minidump_stackwalk', self._arch_name, self._os_name) if not stackwalk: logging.warning('minidump_stackwalk binary not found.') return None # We only want this logic on linux platforms that are still using breakpad. # See crbug.com/667475 if not self._dump_finder.MinidumpObtainedFromCrashpad(minidump): with open(minidump, 'rb') as infile: minidump += '.stripped' with open(minidump, 'wb') as outfile: outfile.write(''.join(infile.read().partition('MDMP')[1:])) symbols_dir = tempfile.mkdtemp() try: self._GenerateBreakpadSymbols(symbols_dir, minidump) return subprocess.check_output([stackwalk, minidump, symbols_dir], stderr=open(os.devnull, 'w')) finally: shutil.rmtree(symbols_dir) def GetSymbolBinaries(self, minidump): """Returns a list of paths to binaries where symbols may be located. Args: minidump: The path to the minidump being symbolized. """ raise NotImplementedError() def GetBreakpadPlatformOverride(self): """Returns the platform to be passed to generate_breakpad_symbols.""" return None def _GenerateBreakpadSymbols(self, symbols_dir, minidump): """Generates Breakpad symbols for use with stackwalking tools. Args: symbols_dir: The directory where symbols will be written to. minidump: The path to the minidump being symbolized. """ logging.info('Dumping Breakpad symbols.') generate_breakpad_symbols_command = binary_manager.FetchPath( 'generate_breakpad_symbols', self._arch_name, self._os_name) if not generate_breakpad_symbols_command: logging.warning('generate_breakpad_symbols binary not found') return for binary_path in self.GetSymbolBinaries(minidump): cmd = [ sys.executable, generate_breakpad_symbols_command, '--binary=%s' % binary_path, '--symbols-dir=%s' % symbols_dir, '--build-dir=%s' % self._build_dir, ] if self.GetBreakpadPlatformOverride(): cmd.append('--platform=%s' % self.GetBreakpadPlatformOverride()) try: subprocess.check_output(cmd) except subprocess.CalledProcessError as e: logging.error(e.output) logging.warning('Failed to execute "%s"', ' '.join(cmd)) return
python
# ------------------------------------------------------------------------------ # Portions of this code are from # OpenPCDet (https://github.com/open-mmlab/OpenPCDet) # Licensed under the Apache License. # ------------------------------------------------------------------------------ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from det3d.core.bbox import box_torch_ops from .target_assigner.proposal_target_layer import ProposalTargetLayer def limit_period(val, offset=0.5, period=np.pi): return val - torch.floor(val / period + offset) * period class RoIHeadTemplate(nn.Module): def __init__(self, num_class, model_cfg): super().__init__() self.model_cfg = model_cfg self.num_class = num_class self.proposal_target_layer = ProposalTargetLayer(roi_sampler_cfg=self.model_cfg.TARGET_CONFIG) self.forward_ret_dict = None def make_fc_layers(self, input_channels, output_channels, fc_list): fc_layers = [] pre_channel = input_channels for k in range(0, fc_list.__len__()): fc_layers.extend([ nn.Conv1d(pre_channel, fc_list[k], kernel_size=1, bias=False), nn.BatchNorm1d(fc_list[k]), nn.ReLU() ]) pre_channel = fc_list[k] if self.model_cfg.DP_RATIO >= 0 and k == 0: fc_layers.append(nn.Dropout(self.model_cfg.DP_RATIO)) fc_layers.append(nn.Conv1d(pre_channel, output_channels, kernel_size=1, bias=True)) fc_layers = nn.Sequential(*fc_layers) return fc_layers def assign_targets(self, batch_dict): batch_size = batch_dict['batch_size'] with torch.no_grad(): targets_dict = self.proposal_target_layer.forward(batch_dict) rois = targets_dict['rois'] # (B, N, 7 + C) gt_of_rois = targets_dict['gt_of_rois'] # (B, N, 7 + C + 1) targets_dict['gt_of_rois_src'] = gt_of_rois.clone().detach() roi_ry = limit_period(rois[:, :, 6], offset=0.5, period=np.pi*2) gt_of_rois[:, :, :6] = gt_of_rois[:, :, :6] - rois[:, :, :6] gt_of_rois[:, :, 6] = gt_of_rois[:, :, 6] - roi_ry gt_of_rois = box_torch_ops.rotate_points_along_z( points=gt_of_rois.view(-1, 1, gt_of_rois.shape[-1]), angle=-roi_ry.view(-1) ).view(batch_size, -1, gt_of_rois.shape[-1]) if rois.shape[-1] == 9: # rotate velocity gt_of_rois[:, :, 7:-1] = gt_of_rois[:, :, 7:-1] - rois[:, :, 7:] """ roi_vel = gt_of_rois[:, :, 7:-1] roi_vel = torch.cat([roi_vel, torch.zeros([roi_vel.shape[0], roi_vel.shape[1], 1]).to(roi_vel)], dim=-1) gt_of_rois[:, :, 7:-1] = box_torch_ops.rotate_points_along_z( points=roi_vel.view(-1, 1, 3), angle=-roi_ry.view(-1) ).view(batch_size, -1, 3)[..., :2] """ # flip orientation if rois have opposite orientation heading_label = gt_of_rois[:, :, 6] % (2 * np.pi) # 0 ~ 2pi opposite_flag = (heading_label > np.pi * 0.5) & (heading_label < np.pi * 1.5) heading_label[opposite_flag] = (heading_label[opposite_flag] + np.pi) % (2 * np.pi) # (0 ~ pi/2, 3pi/2 ~ 2pi) flag = heading_label > np.pi heading_label[flag] = heading_label[flag] - np.pi * 2 # (-pi/2, pi/2) heading_label = torch.clamp(heading_label, min=-np.pi / 2, max=np.pi / 2) gt_of_rois[:, :, 6] = heading_label targets_dict['gt_of_rois'] = gt_of_rois return targets_dict def get_box_reg_layer_loss(self, forward_ret_dict): loss_cfgs = self.model_cfg.LOSS_CONFIG code_size = forward_ret_dict['rcnn_reg'].shape[-1] reg_valid_mask = forward_ret_dict['reg_valid_mask'].view(-1) gt_boxes3d_ct = forward_ret_dict['gt_of_rois'][..., 0:code_size] rcnn_reg = forward_ret_dict['rcnn_reg'] # (rcnn_batch_size, C) rcnn_batch_size = gt_boxes3d_ct.view(-1, code_size).shape[0] fg_mask = (reg_valid_mask > 0) fg_sum = fg_mask.long().sum().item() tb_dict = {} if loss_cfgs.REG_LOSS == 'L1': reg_targets = gt_boxes3d_ct.view(rcnn_batch_size, -1) rcnn_loss_reg = F.l1_loss( rcnn_reg.view(rcnn_batch_size, -1), reg_targets, reduction='none' ) # [B, M, 7] rcnn_loss_reg = rcnn_loss_reg * rcnn_loss_reg.new_tensor(\ loss_cfgs.LOSS_WEIGHTS['code_weights']) rcnn_loss_reg = (rcnn_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(fg_sum, 1) rcnn_loss_reg = rcnn_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight'] tb_dict['rcnn_loss_reg'] = rcnn_loss_reg.detach() else: raise NotImplementedError return rcnn_loss_reg, tb_dict def get_box_cls_layer_loss(self, forward_ret_dict): loss_cfgs = self.model_cfg.LOSS_CONFIG rcnn_cls = forward_ret_dict['rcnn_cls'] rcnn_cls_labels = forward_ret_dict['rcnn_cls_labels'].view(-1) if loss_cfgs.CLS_LOSS == 'BinaryCrossEntropy': rcnn_cls_flat = rcnn_cls.view(-1) batch_loss_cls = F.binary_cross_entropy(torch.sigmoid(rcnn_cls_flat), rcnn_cls_labels.float(), reduction='none') cls_valid_mask = (rcnn_cls_labels >= 0).float() rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0) elif loss_cfgs.CLS_LOSS == 'CrossEntropy': batch_loss_cls = F.cross_entropy(rcnn_cls, rcnn_cls_labels, reduction='none', ignore_index=-1) cls_valid_mask = (rcnn_cls_labels >= 0).float() rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0) else: raise NotImplementedError rcnn_loss_cls = rcnn_loss_cls * loss_cfgs.LOSS_WEIGHTS['rcnn_cls_weight'] tb_dict = {'rcnn_loss_cls': rcnn_loss_cls.detach()} return rcnn_loss_cls, tb_dict def get_loss(self, tb_dict=None): tb_dict = {} if tb_dict is None else tb_dict rcnn_loss = 0 rcnn_loss_cls, cls_tb_dict = self.get_box_cls_layer_loss(self.forward_ret_dict) rcnn_loss += rcnn_loss_cls tb_dict.update(cls_tb_dict) rcnn_loss_reg, reg_tb_dict = self.get_box_reg_layer_loss(self.forward_ret_dict) rcnn_loss += rcnn_loss_reg tb_dict.update(reg_tb_dict) tb_dict['rcnn_loss'] = rcnn_loss.item() return rcnn_loss, tb_dict def generate_predicted_boxes(self, batch_size, rois, cls_preds, box_preds): """ Args: batch_size: rois: (B, N, 7) cls_preds: (BN, num_class) box_preds: (BN, code_size) Returns: """ code_size = box_preds.shape[-1] # batch_cls_preds: (B, N, num_class or 1) batch_cls_preds = cls_preds.view(batch_size, -1, cls_preds.shape[-1]) batch_box_preds = box_preds.view(batch_size, -1, code_size) roi_ry = rois[:, :, 6].view(-1) roi_xyz = rois[:, :, 0:3].view(-1, 3) local_rois = rois.clone().detach() local_rois[:, :, 0:3] = 0 batch_box_preds = (batch_box_preds + local_rois).view(-1, code_size) batch_box_preds = box_torch_ops.rotate_points_along_z( batch_box_preds.unsqueeze(dim=1), roi_ry ).squeeze(dim=1) batch_box_preds[:, 0:3] += roi_xyz batch_box_preds = batch_box_preds.view(batch_size, -1, code_size) return batch_cls_preds, batch_box_preds
python
import typing def printBinary(n: int) -> None: if n > 1: printBinary(n // 2) print(n % 2, end = "") def main() -> None: N = int(input("Input an integer:\n")) printBinary(N) return None main()
python
# Authors: David Alexander, Lance Hepler from __future__ import absolute_import, division, print_function from GenomicConsensus.arrow.utils import allSingleBaseMutations from GenomicConsensus.variants import Variant from GenomicConsensus.quiver.diploid import variantsFromAlignment import numpy as np import ConsensusCore2 as cc # IUPAC reference: # http://www.bioinformatics.org/sms/iupac.html _packIupac = { ("A", "G") : "R" , ("G", "A") : "R" , ("C", "T") : "Y" , ("T", "C") : "Y" , ("G", "C") : "S" , ("C", "G") : "S" , ("A", "T") : "W" , ("T", "A") : "W" , ("G", "T") : "K" , ("T", "G") : "K" , ("A", "C") : "M" , ("C", "A") : "M" } _unpackIupac = { "R" : ("A", "G") , "Y" : ("C", "T") , "S" : ("G", "C") , "W" : ("A", "T") , "K" : ("G", "T") , "M" : ("A", "C") } def packIUPAC(bases): return _packIupac[bases] def unpackIUPAC(iupacCode): return _unpackIupac[iupacCode] def isHeterozygote(base): return (base in _unpackIupac) def packMuts(cssBase, mut1, mut2): # Turn two muts (with same Start, End, LengthDiff) into a single mutation to # IUPAC. The no-op mutation is coded as None. # # Example1: (_, Subs A, Subs T) -> Subs W # Example2: (_, Ins A, Ins T) -> Ins W # Example3: (A, None, Subs T) -> Subs W # nonNullMut = mut1 or mut2 start = nonNullMut.Start() mutType = nonNullMut.Type() newBase1 = mut1.Bases() if mut1 else cssBase newBase2 = mut2.Bases() if mut2 else cssBase newBasePacked = packIUPAC((newBase1, newBase2)) return cc.Mutation(mutType, start, newBasePacked) def scoresForPosition(ai, pos): muts = allSingleBaseMutations(str(ai), positions=[pos]) noMutScore = [0] * ai.NumReads() mutScores_ = [ ai.ReadLLs(mut) for mut in muts ] mutScores = np.column_stack([noMutScore] + mutScores_).astype(np.float32) return mutScores def variantsFromConsensus(refWindow, refSequenceInWindow, cssSequenceInWindow, cssQvInWindow=None, siteCoverage=None, aligner="affine", ai=None): """ Compare the consensus and the reference in this window, returning a list of variants. Uses the integrator to identify heterozygous variants. """ assert (cssQvInWindow is None) == (siteCoverage is None) # Both or none refId, refStart, refEnd = refWindow if ai is not None: # # Hunting diploid variants: # 1. find confident heterozygous sites; # 2. build a "diploid consensus" using IUPAC encoding # for het sites; mark cssQv accordingly # 3. align diploid consensus to reference # 4. extract and decorate variants # assert str(ai) == cssSequenceInWindow iupacMutations = [] # List of (Mutation, confidence) for pos in xrange(0, ai.Length()): ds = cc.IsSiteHeterozygous(scoresForPosition(ai, pos), 40) if ds: muts = [None] + list(allSingleBaseMutations(cssSequenceInWindow, positions=[pos])) mut0 = muts[ds.Allele0] mut1 = muts[ds.Allele1] cssBase = cssSequenceInWindow[pos] packedMut = packMuts(cssBase, mut0, mut1) iupacMutations.append((packedMut, 40)) # Create diploidCss by applying mutations, meanwhile updating the # confidence vector accordingly. diploidCss = cc.ApplyMutations([pair[0] for pair in iupacMutations], cssSequenceInWindow) diploidQv = list(cssQvInWindow) if cssQvInWindow is not None else None runningLengthDiff = 0 for (mut, conf) in iupacMutations: start = mut.Start() + runningLengthDiff end = mut.End() + runningLengthDiff diploidQv[start:end] = [conf] assert len(diploidCss) == len(diploidQv) cssSequenceInWindow = diploidCss cssQvInWindow = diploidQv vars = variantsFromAlignment(refWindow, refSequenceInWindow, cssSequenceInWindow, cssQvInWindow, siteCoverage) return vars
python
"""Tests for the /sessions/.../commands routes.""" import pytest from datetime import datetime from decoy import Decoy, matchers from fastapi import FastAPI from fastapi.testclient import TestClient from httpx import AsyncClient from typing import Callable, Awaitable from tests.helpers import verify_response from opentrons.protocol_engine import ( CommandStatus, commands as pe_commands, errors as pe_errors, ) from robot_server.service.json_api import ResponseModel from robot_server.sessions.session_models import BasicSession, SessionCommandSummary from robot_server.sessions.engine_store import EngineStore from robot_server.sessions.router.base_router import get_session as real_get_session from robot_server.sessions.router.commands_router import ( commands_router, CommandNotFound, ) @pytest.fixture def get_session(decoy: Decoy) -> Callable[..., Awaitable[ResponseModel]]: """Get a mock version of the get_session route handler.""" return decoy.mock(func=real_get_session) @pytest.fixture(autouse=True) def setup_app( get_session: Callable[..., Awaitable[ResponseModel]], app: FastAPI, ) -> None: """Setup the FastAPI app with commands routes and dependencies.""" app.dependency_overrides[real_get_session] = get_session app.include_router(commands_router) async def test_get_session_commands( decoy: Decoy, get_session: Callable[..., Awaitable[ResponseModel]], async_client: AsyncClient, ) -> None: """It should return a list of all commands in a session.""" command_summary = SessionCommandSummary( id="command-id", commandType="moveToWell", status=CommandStatus.RUNNING, ) session_response = BasicSession( id="session-id", createdAt=datetime(year=2021, month=1, day=1), actions=[], commands=[command_summary], ) decoy.when( await get_session( sessionId="session-id", session_view=matchers.Anything(), session_store=matchers.Anything(), engine_store=matchers.Anything(), ), ).then_return( ResponseModel(data=session_response) # type: ignore[arg-type] ) response = await async_client.get("/sessions/session-id/commands") verify_response(response, expected_status=200, expected_data=[command_summary]) def test_get_session_command_by_id( decoy: Decoy, engine_store: EngineStore, client: TestClient, ) -> None: """It should return full details about a command by ID.""" command = pe_commands.MoveToWell( id="command-id", status=CommandStatus.RUNNING, createdAt=datetime(year=2022, month=2, day=2), data=pe_commands.MoveToWellData(pipetteId="a", labwareId="b", wellName="c"), ) decoy.when(engine_store.engine.state_view.commands.get("command-id")).then_return( command ) response = client.get("/sessions/session-id/commands/command-id") verify_response(response, expected_status=200, expected_data=command) def test_get_session_command_missing_command( decoy: Decoy, engine_store: EngineStore, client: TestClient, ) -> None: """It should 404 if you attempt to get a non-existent command.""" key_error = pe_errors.CommandDoesNotExistError("oh no") decoy.when(engine_store.engine.state_view.commands.get("command-id")).then_raise( key_error ) response = client.get("/sessions/session-id/commands/command-id") verify_response( response, expected_status=404, expected_errors=CommandNotFound(detail=str(key_error)), )
python
import discord from discord.ext import commands import steam from steam import WebAPI, SteamID import keys ##TODO: convert to psql or something import pickle import asyncio import os import re ## Used to track the worst players in MM class PlayerTracker(commands.Cog): ## Init def __init__(self, bot): self.bot = bot self.fileLock = asyncio.Lock() self.filePath = "{0}/trackerDB.pickle".format(os.getcwd()) self.loadDatabase() self.urlRegex = r"\.com/players/(\d+)" self.api = WebAPI(keys.STEAM_WEBAPI) ## Adds name and comments to the tracker @commands.command(help="Add a player to the MM Tracker") async def add(self, ctx, name : str, *, description : str): print("adding {0} as {1}".format(name, description)) self.database.setdefault(name.lower(), {"name" : name, "description" : []}) self.database[name.lower()]["description"].append(description) await self.saveDatabase() await ctx.message.add_reaction('✅') ## searches the tracker for player matches based on query ## this is a rudimentary case insensitive substring search @commands.command(help="Search the MM Tracker for players") async def search(self, ctx, *, name : str): nameL = name.lower() out = [] async with self.fileLock: for k in self.database: if nameL in k: out.append(self.database[k]["name"]) await ctx.send("\n".join(out)) ## display a player and their comments @commands.command(help="Display information about a specific player in the MM Tracker") async def display(self, ctx, *, name : str): async with self.fileLock: if name.lower() in self.database: user = self.database[name.lower()] desc = " **-** {0}".format("\n **-** ".join(user["description"])) embed = discord.Embed() embed.color = discord.Colour.purple() embed.title = user["name"] embed.add_field(name="Comments", value=desc) embed.set_footer(text="Added {0} times".format(len(user["description"]))) if("id" in user and not user["id"] is None): await self.steamEmbed(embed, user["id"]) await ctx.send(embed=embed) else: await ctx.send("`{0}` not found".format(name)) async def steamEmbed(self, embed, steamId): profile = await self.getProfile(steamId) embed.set_thumbnail(url=profile["avatarfull"]) embed.url = profile["profileurl"] embed.description = embed.title embed.title = profile["personaname"] ##75419738 ## associate an actual steam profile @commands.command(help="Associate a steam profile with a given MM Tracker profile.\n <identifier> can be a Steam ID 32/64, Steam Profile url, or DotaBuff/Opendota link.") async def addProfile(self, ctx, name : str, identifier : str): if name.lower() in self.database: user = self.database[name.lower()] identifier = self.resolveIdentifier(identifier) try: self.api.ISteamUser.GetPlayerSummaries(steamids=identifier) except: await ctx.send("Error retrieving Steam profile.") return user["id"] = SteamID(identifier).as_64 await self.saveDatabase() await ctx.message.add_reaction('✅') else: await ctx.send("`{0}` not found".format(name)) def resolveIdentifier(self, identifier): m = re.search(self.urlRegex, identifier) if(m): return(int(m.group(1))) ident = steam.steamid.steam64_from_url(identifier) if(ident): return(ident) try: int(identifier) return(identifier) except Exception as e: pass return async def getProfile(self, steamId): return(self.api.ISteamUser.GetPlayerSummaries(steamids=SteamID(steamId).as_64)["response"]["players"][0]) ## Load the tracker database (TODO: convert to psql) def loadDatabase(self): self.database = {} if(os.path.isfile(self.filePath)): with open(self.filePath, "rb") as f: self.database = pickle.load(f) ## Save the tracker database (TODO: convert to psql) async def saveDatabase(self): async with self.fileLock: with open(self.filePath, "wb") as f: pickle.dump(self.database, f) def setup(bot): bot.add_cog(PlayerTracker(bot))
python
__all__ = ['ioc_api', 'ioc_common', 'ioc_et', 'xmlutils']
python
import modin.pandas as pd import swifter # Do not remove - this modified bindings for modin import sys, os import datetime import csv import random import h5py import numpy as np import ipaddress import datetime as datetime def write_single_graph(f, graph_id, x, edge_index, y, attrs=None, **kwargs): ''' store into hdf5 file ''' f.create_dataset(f'{graph_id}/x', data=x, dtype = 'float32') f.create_dataset(f'{graph_id}/edge_index', data=edge_index, dtype = 'int64') f.create_dataset(f'{graph_id}/y', data=y, dtype = 'uint8') for key in kwargs: f.create_dataset(f'{graph_id}/{key}', data=kwargs[key]) if attrs is not None: for key in attrs: f[f'{graph_id}'].attrs[key] = attrs[key] return None def ip2int(ip): ''' convert x.x.x.x into a number ''' try: ip = ip.split(',')[0] ip = ipaddress.ip_address(ip) ip = int(ip) return ip except: return random.randint(0, 1<<32) def search_dict(IP, IP_dict): ''' use a dictionary to renumber the IPs into 0,1,2,... ''' if IP not in IP_dict: IP_dict[IP] = len(IP_dict) return IP_dict[IP] def prepare_background_(f, start_time, stop_time, NPARTS=30): #read data df = pd.read_csv(f, sep = '@')#, nrows = 10000)# df.columns = ["time", "srcIP", "dstIP"] # contains per-minute logs #filter time df['time'] = df['time'].swifter.set_npartitions(NPARTS).apply(lambda x: datetime.datetime.strptime(x[:21], "%b %d, %Y %H:%M:%S")) if start_time is not None: start_time_formated = datetime.datetime.strptime(start_time, "%Y%m%d%H%M%S") df = df[ df.time >= start_time_formated] if stop_time is not None: stop_time_formated = datetime.datetime.strptime(stop_time, "%Y%m%d%H%M%S") df = df[ df.time < stop_time_formated] #transform time and IP address into formal type df["srcIP"] = df["srcIP"].swifter.set_npartitions(NPARTS).apply(ip2int) df["dstIP"] = df["dstIP"].swifter.set_npartitions(NPARTS).apply(ip2int) #aggregate nodes according to /20, build dictionary df['srcIP'] = df['srcIP'].swifter.set_npartitions(NPARTS).apply(lambda x: x >> 12) df['dstIP'] = df['dstIP'].swifter.set_npartitions(NPARTS).apply(lambda x: x >> 12) # Drop time column and get rid of duplicates # Convert to pandas to drop (faster) df = df._to_pandas() df = df.drop(columns=['time']) df = df.drop_duplicates() # shared dictionary, using across threads will mess it up #renumber into 0, 1, 2, .. IP_dict = {} df["srcIP"] = df["srcIP"].apply(lambda x : search_dict(x, IP_dict)) df["dstIP"] = df["dstIP"].apply(lambda x : search_dict(x, IP_dict)) #write into h5py files num_nodes = len(IP_dict) num_edges = df.shape[0] edge_index = np.array(df[["srcIP", "dstIP"]]).T return edge_index, num_nodes, num_edges def prepare_background(f, dst_dir, dst_name, graph_id, start_time, stop_time): ''' Transform txt files into standard hdf5 format arg = [txt_file_name, subgroup of graphs] ''' edge_index, num_nodes, num_edges = prepare_background_(f, start_time, stop_time) f_h5py = h5py.File(os.path.join(dst_dir,dst_name), 'a') write_single_graph(f_h5py, graph_id = graph_id, x = np.ones([num_nodes, 1]), edge_index = edge_index, y = np.zeros(num_nodes), attrs={'num_nodes': num_nodes, 'num_edges': num_edges, 'num_evils':0}) f_h5py.close() if __name__ == '__main__': # prepare_background('equinix-nyc.dirA.20181220-131256.UTC.anon.pcap', '.', 'tmp.hdf5', 0, '20181220081256', '20181220081257') prepare_background('/p/adversarialml/as9rw/datasets/raw_botnet/temp.tmp', '/p/adversarialml/as9rw/datasets/raw_botnet', 'tmp.hdf5', 0, None, None)
python
# Class to generate batches of image data to be fed to model # inclusive of both original data and augmented data # https://gist.github.com/devxpy/a73744bab1b77a79bcad553cbe589493 # example # train_gen = PersonDataGenerator( # train_df, # batch_size=32, # aug_list=[ # ImageDataGenerator(rotation_range=45), # ImageDataGenerator(horizontal_flip=True), # ImageDataGenerator(vertical_flip=True), # ], # incl_orig=True, # Whether to include original images # ) from __future__ import division import os import os.path as path import numpy as np import keras import cv2 from keras.preprocessing.image import ImageDataGenerator, img_to_array class PersonDataGenerator(keras.utils.Sequence): def __init__(self, df, batch_size=32, shuffle=True, aug_list=[], incl_orig=True): """ Ground truth data batch generator """ self.df = df self.batch_size=batch_size self.shuffle = shuffle self.on_epoch_end() self.aug_list = aug_list self.incl_orig = incl_orig self.orig_len = int(np.floor(self.df.shape[0] / self.batch_size)) # Label columns per attribute self._gender_cols_ = [col for col in df.columns if col.startswith("gender")] self._imagequality_cols_ = [col for col in df.columns if col.startswith("imagequality")] self._age_cols_ = [col for col in df.columns if col.startswith("age")] self._weight_cols_ = [col for col in df.columns if col.startswith("weight")] self._carryingbag_cols_ = [col for col in df.columns if col.startswith("carryingbag")] self._footwear_cols_ = [col for col in df.columns if col.startswith("footwear")] self._emotion_cols_ = [col for col in df.columns if col.startswith("emotion")] self._bodypose_cols_ = [col for col in df.columns if col.startswith("bodypose")] def __len__(self): """ Number of batches in the Sequence(i.e per epoch). """ if self.incl_orig: delta = 1 else: delta = 0 return self.orig_len * (len(self.aug_list) + delta) def __getitem__(self, index): """ Gets batches of images - generates sets of images based on augementation strategies, can include original images as well - Original images will be rescaled while generating batches fetch batches of image data and targets """ if not self.incl_orig : index += self.orig_len - 1 if index > self.orig_len - 1: aug = self.aug_list[index // self.orig_len - 1] index %= self.orig_len else: aug = None batch_slice = slice(index * self.batch_size, (index + 1) * self.batch_size) items = self.df.iloc[batch_slice] images = np.stack([cv2.imread(item["image_path"]) for _, item in items.iterrows()]) if aug is not None: images = aug.flow(images, shuffle=False).next() target = { "gender_output" : items[self._gender_cols_].values, "image_quality_output" : items[self._imagequality_cols_].values, "age_output" : items[self._age_cols_].values, "weight_output" : items[self._weight_cols_].values, "bag_output" : items[self._carryingbag_cols_].values, "pose_output" : items[self._bodypose_cols_].values, "footwear_output" : items[self._footwear_cols_].values, "emotion_output" : items[self._emotion_cols_].values, } return images, target def on_epoch_end(self): """ Shuffles/sample the df and thereby updates indexes after each epoch Method called at the end of every epoch. """ if self.shuffle == True: self.df = self.df.sample(frac=1).reset_index(drop=True)
python
from ._abstract import AbstractSearcher from ._result import RecipeLink, SearchResult import urllib.parse from typing import List class NyTimes(AbstractSearcher): def __init__(self): AbstractSearcher.__init__(self) @classmethod def host(cls): return "https://cooking.nytimes.com" def build_url(self, keyword, index): query = urllib.parse.quote_plus(keyword) return f'https://cooking.nytimes.com/search?q={query}&page={index}' def parse_results(self, soup) -> List[RecipeLink]: # Simple HTML lookups. recipes = soup.find_all('article', class_='recipe-card') results : List[RecipeLink] = [] for recipe in recipes: title_block = recipe.find('div', class_='card-info-wrapper').find('a', class_='card-link') link = self.parse_link(title_block.get('href')) title = title_block.find('h3').string results.append(RecipeLink(title.strip(), link, self.host())) return results
python
import json import requests import time import hmac import hashlib from requests.exceptions import HTTPError SDK_VERSION = '1.0.0' CLOCK_DRIFT = 300 class HTTPClient(object): def request(self, method, url, headers, data=None, auth=None): raise NotImplementedError('subclass must implement request') class RequestsClient(HTTPClient): def request(self, method, url, headers, data=None, auth=None): return requests.request(method, url, headers=headers, data=data, auth=auth) class UnexpectedResponse(Exception): def __init__(self, status, reason, message): self.status = status self.reason = reason self.message = message @staticmethod def from_response(data): return UnexpectedResponse(data.get('status'), data.get('reason'), data.get('message')) class HostedTransactionResponse(object): def __init__(self, tokens, hosted_url): self.tokens = tokens self.hosted_url = hosted_url class Tokens(object): def __init__(self, refresh_token, access_token, client_token, expiry, transaction_id, response): self.access_token = access_token self.client_token = client_token self.refresh_token = refresh_token self.expiry = expiry self.transaction_id = transaction_id self.response = response def refresh(self, access_token, client_token, expiry, transaction_id): self.access_token = access_token self.client_token = client_token self.expiry = expiry self.transaction_id = transaction_id def needs_refresh(self): return self.access_token is None or self.expiry is None or self.expiry < time.time() @staticmethod def from_refresh(refresh_token): return Tokens(refresh_token, None, None, None, None, None) class Client(object): def __init__(self, api_secret=None, **kwargs): self.api_secret = api_secret self.api_host = kwargs.get('api_host', 'https://api.berbix.com') self.http_client = kwargs.get('http_client', RequestsClient()) if self.api_secret is None: self.api_secret = kwargs.get('client_secret') if self.api_secret is None: raise ValueError( 'api_secret must be provided when instantiating the Berbix client') def __fetch_tokens(self, path, payload): try: headers = { 'Content-Type': 'application/json', 'User-Agent': 'BerbixPython/' + SDK_VERSION, } result = self.http_client.request( method='POST', url='{}{}'.format(self.api_host, path), headers=headers, data=json.dumps(payload), auth=(self.api_secret, '')) if result.status_code < 200 or result.status_code >= 300: raise UnexpectedResponse.from_response( json.loads(result.content)) data = json.loads(result.content) return Tokens( data.get('refresh_token'), data.get('access_token'), data.get('client_token'), data.get('expires_in') + time.time(), data.get('transaction_id'), data) except HTTPError as err: raise err def create_transaction(self, **kwargs): payload = {} if 'email' in kwargs: payload['email'] = kwargs['email'] if 'phone' in kwargs: payload['phone'] = kwargs['phone'] if 'customer_uid' in kwargs: payload['customer_uid'] = str(kwargs['customer_uid']) else: raise ValueError( 'customer_uid must be provided when creating a transaction') if 'template_key' in kwargs: payload['template_key'] = kwargs['template_key'] else: raise ValueError( 'template_key must be provided when creating a transaction') if 'hosted_options' in kwargs: payload['hosted_options'] = kwargs['hosted_options'] return self.__fetch_tokens('/v0/transactions', payload) def create_hosted_transaction(self, **kwargs): if 'hosted_options' not in kwargs: kwargs['hosted_options'] = {} tokens = self.__fetch_tokens('/v0/transactions', kwargs) return HostedTransactionResponse(tokens, tokens.response['hosted_url']) def refresh_tokens(self, tokens): return self.__fetch_tokens('/v0/tokens', { 'refresh_token': tokens.refresh_token, 'grant_type': 'refresh_token', }) def refresh_if_necessary(self, tokens): if tokens.needs_refresh(): refreshed = self.refresh_tokens(tokens) tokens.refresh(refreshed.access_token, refreshed.client_token, refreshed.expiry, refreshed.transaction_id) def __token_auth_request(self, method, tokens, path, payload=None): self.refresh_if_necessary(tokens) try: headers = { 'Authorization': 'Bearer {0}'.format(tokens.access_token), 'User-Agent': 'BerbixPython/' + SDK_VERSION, } data = None if payload != None: data = json.dumps(payload) headers["Content-Type"] = "application/json" result = self.http_client.request( method=method, url='{}{}'.format(self.api_host, path), headers=headers, data=data) if result.status_code < 200 or result.status_code >= 300: raise UnexpectedResponse.from_response( json.loads(result.content)) elif result.status_code == 204: return return json.loads(result.content) except HTTPError as err: raise err def fetch_transaction(self, tokens): return self.__token_auth_request('GET', tokens, '/v0/transactions') def delete_transaction(self, tokens): return self.__token_auth_request('DELETE', tokens, '/v0/transactions') def update_transaction(self, tokens, **kwargs): payload = {} if 'action' in kwargs: payload['action'] = kwargs['action'] if 'note' in kwargs: payload['note'] = kwargs['note'] return self.__token_auth_request('PATCH', tokens, '/v0/transactions', payload) def override_transaction(self, tokens, **kwargs): payload = {} if 'response_payload' in kwargs: payload['response_payload'] = kwargs['response_payload'] if 'flags' in kwargs: payload['flags'] = kwargs['flags'] if 'override_fields' in kwargs: payload['override_fields'] = kwargs['override_fields'] return self.__token_auth_request('PATCH', tokens, '/v0/transactions/override', payload) def validate_signature(self, secret, body, header): parts = header.split(',') # Version (parts[0]) is currently unused timestamp = parts[1] signature = parts[2] if int(timestamp) < time.time() - CLOCK_DRIFT: return False message = '{},{},{}'.format(timestamp, secret, body).encode('ascii') digest = hmac.new( str.encode(secret), msg=message, digestmod=hashlib.sha256 ).hexdigest() return digest == signature
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import subprocess if subprocess.Popen(['./problem']).wait() != 0: print("Wow, you\'ve crushed this") flagfile = open('flag') if not flagfile: print("Flag is missing, tell admin") else: print(flagfile.read())
python
""" Sudo2 is for Loomgild.py """ import time from time import sleep # Command Functions def help(): print("Hello!") print("Welcome to Loomgild, a script that imitates a command line.") print("This is one of the few commands that you can use.") print("We will now load the commands you can use..") print("\n") sleep(2.00) print("Sys commands: exit") print("Core commands: none") print("Utility commands: help") print("Misc commands: none") def output(): prompt1 = input("Please provide the input to output: ") print(prompt1) def output_h(): print("Description: A command that outputs the user's input.") print("Usage: output") print("Tags: input, interactive")
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Script to hold temporary routines created during the beamtime. Everything added here is star (*) imported into the IPython shell after the ``SplitAndDelay`` object has succesfully instantiated. Therefore, it is recommended to run the specific unit-test to quickly ensure your inserted code is syntactically correct. More specifically, it will test if this script is importable. Of course this will not guarantee that the code works as intended, but it will pick up on any 'easy' mistakes, like a mismatched parenthesi. To run the test, in the top level directory, first source the snd environment: source snd_env.sh Then run the pytest script with the following command: python run_tests.py hxrsnd/tests/test_scripts.py The script will run (at least) one test and if your code was written correctly, it will pass. """ # Imports from the Python standard library go here import logging # Imports from the third-party modules go here import numpy as np from ophyd import Component as Cmp from ophyd import Device, EpicsSignal from ophyd.sim import hw from ophyd.status import wait as status_wait # Imports from the HXRSnD module go here import snd_devices # Imports from other SLAC modules go here # Default logger logger = logging.getLogger(__name__) ############################################################################### # Good Design Practices # ############################################################################### # # Replace all print() statements with logger.info() statements # # ############################################################################### # The Main reason for this is the IPython shell will log everything you log in # log files IFF you use the logger methods, while also printing to the console. # Even better, is if you include various logger levels. To use the logger, # simply make the following substitution: # print("text") --> logger.info("text") # It is that simple, that the message will now be archived in the info level # (HXRSnD/logs/info.log) and debug level (HXRSnD/logs/debug.log) log files. # # Leave Comments # # ############################################################################### # This seems like it may not be that important, but the purpose of this file is # to temporarily hold scripts developed during beamtime to then be migrated by # us (PCDS) into the module. By leaving comments, you make it easier for # everyone to understand what the code is doing. ############################################################################### # Insert Code Below # ############################################################################### hw = hw() # Fake hardware for testing fake_motor = hw.motor class NotepadScanStatus(Device): istep = Cmp(EpicsSignal, ":ISTEP") isscan = Cmp(EpicsSignal, ":ISSCAN") nshots = Cmp(EpicsSignal, ":NSHOTS") nsteps = Cmp(EpicsSignal, ":NSTEPS") var0 = Cmp(EpicsSignal, ":SCANVAR00") var1 = Cmp(EpicsSignal, ":SCANVAR01") var2 = Cmp(EpicsSignal, ":SCANVAR02") var0_max = Cmp(EpicsSignal, ":MAX00") var1_max = Cmp(EpicsSignal, ":MAX01") var2_max = Cmp(EpicsSignal, ":MAX02") var0_min = Cmp(EpicsSignal, ":MIN00") var1_min = Cmp(EpicsSignal, ":MIN01") var2_min = Cmp(EpicsSignal, ":MIN02") def clean_fields(self): for sig_name in self.signal_names: sig = getattr(self, sig_name) val = sig.value if isinstance(val, (int, float)): sig.put(0) elif isinstance(val, str): sig.put('') notepad_scan_status = NotepadScanStatus('XCS:SCAN', name='xcs_scan_status') def ascan(motor, start, stop, num, events_per_point=360, record=False, controls=None, **kwargs): """ Quick re-implementation of old python for the transition """ daq = snd_devices.daq events = events_per_point status = notepad_scan_status status.clean_fields() if controls is None: controls = {} start_pos = motor.position def get_controls(motor, extra_controls): out_arr = {motor.name: motor} out_arr.update(extra_controls) return out_arr try: scan_controls = get_controls(motor, controls) daq.configure(record=record, controls=scan_controls) status.isscan.put(1) status.nshots.put(events_per_point) status.nsteps.put(num) status.var0.put(motor.name) status.var0_max.put(max((start, stop))) status.var0_min.put(min((start, stop))) for i, step in enumerate(np.linspace(start, stop, num)): logger.info('Beginning step {}'.format(step)) try: mstat = motor.set(step, verify_move=False, **kwargs) except TypeError: mstat = motor.set(step, **kwargs) status.istep.put(i) status_wait(mstat) scan_controls = get_controls(motor, controls) daq.begin(events=events, controls=scan_controls) logger.info('Waiting for {} events ...'.format(events)) daq.wait() finally: logger.info('DONE!') status.clean_fields() daq.end_run() daq.disconnect() try: motor.set(start_pos, verify_move=False, **kwargs) except TypeError: motor.set(start_pos, **kwargs)
python
from random import randint while True: print("----------\n[j] para jogar o dado\n[e] para fechar") res = str(input().replace(" ", "").lower()) if res == "j": print(f"\nvalor do dado: {randint(1, 6)}") if res == "e": break print("----------\n")
python
import contextlib import logging import os from pathlib import Path import shutil from subprocess import CalledProcessError, check_output import sys from tempfile import NamedTemporaryFile from typing import cast from spython.main import Client from lm_zoo import errors from lm_zoo.backends import ContainerBackend from lm_zoo.constants import STATUS_CODES from lm_zoo.models import Model, SingularityModel L = logging.getLogger(__name__) @contextlib.contextmanager def modified_environ(*remove, **update): """ Temporarily updates the ``os.environ`` dictionary in-place. The ``os.environ`` dictionary is updated in-place so that the modification is sure to work in all situations. :param remove: Environment variables to remove. :param update: Dictionary of environment variables and values to add/update. """ # https://stackoverflow.com/a/34333710/176075 env = os.environ update = update or {} remove = remove or [] # List of environment variables being updated or removed. stomped = (set(update.keys()) | set(remove)) & set(env.keys()) # Environment variables and values to restore on exit. update_after = {k: env[k] for k in stomped} # Environment variables and values to remove on exit. remove_after = frozenset(k for k in update if k not in env) try: env.update(update) [env.pop(k, None) for k in remove] yield finally: env.update(update_after) [env.pop(k) for k in remove_after] def is_cuda_available(): """ Hacky method to check whether CUDA is available for use on this host. """ if shutil.which("nvidia-smi") is None: return False try: output = check_output(["nvidia-smi", "-L"]) has_gpus = bool(output.strip()) return has_gpus except CalledProcessError: return False class SingularityBackend(ContainerBackend): @classmethod def is_compatible(cls, model): return len(set(model.platforms) & {"singularity", "shub", "library"}) > 0 def image_exists(self, model): # TODO library, shub result = Client.inspect(model.reference) if result.get("return_code", 0) != 0: return False return True def pull_image(self, model, progress_stream=sys.stderr): if len(set(model.platforms) & {"shub", "library"}) == 0: if "singularity" in model.platforms: # It's a local image. Just check that it exists, and raise if # not. if not self.image_exists(model): raise ValueError("Could not find local Singularity image at %s" % (model.reference,)) else: raise ValueError("Only know how to pull from shub:// and library://" " . This Singularity model does not come from " "either repository.") return Client.pull(image="%s://%s" % (model.repository, model.reference)) def run_command(self, model: Model, command_str, mounts=None, environment=None, stdin=None, stdout=sys.stdout, stderr=sys.stderr, raise_errors=True): model = cast(SingularityModel, model) if mounts is None: mounts = [] if environment is None: environment = {} # Support custom checkpoint loading if model.checkpoint is not None: host_checkpoint_path = Path(model.checkpoint).absolute() # Mount given checkpoint read-only within the guest guest_checkpoint_path = "/opt/lmzoo_checkpoint" mounts.append((host_checkpoint_path, guest_checkpoint_path, "ro")) # Update relevant environment variable environment["LMZOO_CHECKPOINT_PATH"] = guest_checkpoint_path binds = ["%s:%s:%s" % (host, guest, mode) for host, guest, mode in mounts] # TODO make configurable nv = is_cuda_available() command = command_str.split(" ") if stdin is not None: stdin_f = NamedTemporaryFile("w") stdin_f.write(stdin.read()) stdin_f.flush() binds.append("%s:/host_stdin:ro" % stdin_f.name) command = ["sh", "-c", 'cat /host_stdin | %s' % " ".join(command)] # TODO no separate stderr support :( manually reroute stderr for now command.append("2>/dev/null") # Prepare environment variables for export environment = {"SINGULARITYENV_%s" % key: value for key, value in environment.items()} try: with modified_environ(**environment): exec_options = [] # Maximally isolate container from host -- this resolves some # parallel execution issues we've observed in the past. exec_options.append("--containall") result = Client.execute(image=model.reference, command=command, nv=nv, bind=binds, stream=True, options=exec_options) for line in result: stdout.write(line) except CalledProcessError as e: if raise_errors: if e.returncode == STATUS_CODES["unsupported_feature"]: feature = command_str.split(" ")[0] raise errors.UnsupportedFeatureError(feature=feature, model=str(model)) else: raise if stdin is not None: stdin_f.close() return result
python
#importamos la libreria forms: from django import forms #creamos una lista de las posibles opciones del select: from .pqrsf import PQRSF_CHOICES #creamos la estructura dl formulario class ContactFrom(forms.Form): """creamos los campos""" email = forms.EmailField(label="correo electrónico", widget=forms.EmailInput(attrs={'class':'form-control'}), required=True) tipom = forms.ChoiseField(choices = PQRSF_CHOICES, label="Tipo de atencion requerida", initial='', widget=forms.Select(attrs={'class':'form-control'}), required=True) nombre = forms.CharField(label="nombre", required=True, widget=forms.TextInput(attrs={'class':'form-control'})) msj = forms.CharField(label="Mensaje", widget=forms.Textarea(attrs={'class':'form-control', 'rows':'3'}), required=True)
python
def test_load(session, inline): inline("PASS")
python
TAG_MAP = { ('landuse', 'forest'): {"TYPE": "forest", "DRAW_TYPE": "plane"}, ('natural', 'wood'): {"TYPE": "forest", "SUBTYPE": "natural", "DRAW_TYPE": "plane"} } def find_type(tags): keys = list(tags.items()) return [TAG_MAP[key] for key in keys if key in TAG_MAP]
python
from twilio.twiml.voice_response import VoiceResponse, Dial def generate_wait(): twiml_response = VoiceResponse() wait_message = ( 'Thank you for calling. Please wait in line for a few seconds.' ' An agent will be with you shortly.' ) wait_music = 'http://com.twilio.music.classical.s3.amazonaws.com/BusyStrings.mp3' twiml_response.say(wait_message) twiml_response.play(wait_music) return str(twiml_response) def generate_connect_conference(call_sid, wait_url, start_on_enter, end_on_exit): twiml_response = VoiceResponse() dial = Dial() dial.conference( call_sid, start_conference_on_enter=start_on_enter, end_conference_on_exit=end_on_exit, wait_url=wait_url, ) return str(twiml_response.append(dial))
python
import pandas as pd import matplotlib.pyplot as plt import numpy as np from helper import find_csv grid = plt.GridSpec(2, 2, wspace=0.4, hspace=0.3) ax1 = plt.subplot(grid[0,0]) ax2= plt.subplot(grid[0,1]) ax3= plt.subplot(grid[1,:]) for i in find_csv(): df = pd.read_csv(i,header=None) df_forward = df[:int(len(df)/2)] forward_peak = df_forward[0].iloc[df_forward[1].idxmin()] df_backward = df[int(len(df)/2):] df_backward = df_backward.reset_index(drop=True) #Use drop to discard the old index backward_peak = df_backward[0].iloc[df_backward[1].idxmax()] #ax1.axvline(x=forward_peak,alpha=0.7) #ax2.axvline(x=backward_peak,alpha=0.7) df_forward.plot(x=0,y=1, ax=ax1) df_backward.plot(x=0,y=1,ax=ax2) df.plot(x=0,y=1,ax=ax3) ax1.legend(find_csv(),loc=0) ax2.legend(find_csv(),loc=0) ax3.legend(find_csv(),loc=0) ax1.set_title('Forward scan') ax2.set_title('Reverse Scan') ax3.set_title('CV') plt.show()
python
import bpy from bpy.props import * from bpy.types import Node, NodeSocket from arm.logicnode.arm_nodes import * class SetMaterialRgbParamNode(Node, ArmLogicTreeNode): '''Set material rgb param node''' bl_idname = 'LNSetMaterialRgbParamNode' bl_label = 'Set Material RGB Param' bl_icon = 'GAME' def init(self, context): self.inputs.new('ArmNodeSocketAction', 'In') self.inputs.new('NodeSocketShader', 'Material') self.inputs.new('NodeSocketString', 'Node') self.inputs.new('NodeSocketColor', 'Color') self.outputs.new('ArmNodeSocketAction', 'Out') add_node(SetMaterialRgbParamNode, category='Action')
python
#!/usr/bin/env python # encoding: utf-8 from smisk.mvc import * from smisk.serialization import data import datetime, time # Importing the serializers causes them to be registered import my_xml_serializer import my_text_serializer # Some demo data DEMO_STRUCT = dict( string = "Doodah", items = ["A", "B", 12, 32.1, [1, 2, 3]], float = 0.1, integer = 728, dict = dict( str = "<hello & hi there!>", unicode = u'M\xe4ssig, Ma\xdf', true_value = True, false_value = False, ), data = data("<binary gunk>"), more_data = data("<lots of binary gunk>" * 10), date = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())), ) # Our controller tree class root(Controller): def __call__(self, *args, **params): '''Return some data ''' return DEMO_STRUCT def echo(self, *va, **kw): '''Returns the structure received ''' if not kw and va: kw['arguments'] = va return kw if __name__ == '__main__': from smisk.config import config config.loads('"logging": {"levels":{"":DEBUG}}') main()
python
#!/usr/bin/env python """Stp - Stock Patterns Usage: stp_mgr stp_mgr insider """ from docopt import docopt import stp print(stp.__file__) from stp import feed from stp.feed.insidertrading import data import sys def insider(): records = data.get_records() for record in records: print(record) def main(): args = docopt(__doc__) if args["insider"]: insider() if __name__ == "__main__": main()
python
# -------------------------------------------------------- # CRPN # Written by Linjie Deng # -------------------------------------------------------- import yaml import caffe import numpy as np from fast_rcnn.config import cfg from fast_rcnn.nms_wrapper import nms from quad.quad_convert import whctrs, mkanchors, quad_2_aabb, obb_2_quad, dual_roi from quad.quad_2_obb import quad_2_obb DEBUG = False class Corner(object): # Corner property def __init__(self, name): self.name = name # position self.pos = None # probability self.prb = None # class of link direction self.cls = None class ProposalLayer(caffe.Layer): # Corner-based Region Proposal Network # Input: prob map of each corner # Output: quadrilateral region proposals def setup(self, bottom, top): # top: (ind, x1, y1, x2, y2, x3, y3, x4, y4) layer_params = yaml.load(self.param_str) self._feat_stride = layer_params['feat_stride'] num_rois = 2 if cfg.DUAL_ROI else 1 top[0].reshape(num_rois, 9) if len(top) > 1: top[1].reshape(num_rois, 5) def forward(self, bottom, top): # params cfg_key = self.phase # either 'TRAIN' or 'TEST' if cfg_key == 0: cfg_ = cfg.TRAIN else: cfg_ = cfg.TEST # corner params pt_thres = cfg_.PT_THRESH pt_max_num = cfg.PT_MAX_NUM pt_nms_range = cfg.PT_NMS_RANGE pt_nms_thres = cfg.PT_NMS_THRESH # proposal params ld_interval = cfg.LD_INTERVAL ld_um_thres = cfg.LD_UM_THRESH # rpn params # min_size = cfg_.RPN_MIN_SIZE nms_thresh = cfg_.RPN_NMS_THRESH pre_nms_topN = cfg_.RPN_PRE_NMS_TOP_N post_nms_topN = cfg_.RPN_POST_NMS_TOP_N im_info = bottom[0].data[0, :] score_tl = bottom[1].data[0, :].transpose((1, 2, 0)) score_tr = bottom[2].data[0, :].transpose((1, 2, 0)) score_br = bottom[3].data[0, :].transpose((1, 2, 0)) score_bl = bottom[4].data[0, :].transpose((1, 2, 0)) scores = np.concatenate([score_tl[:, :, :, np.newaxis], score_tr[:, :, :, np.newaxis], score_br[:, :, :, np.newaxis], score_bl[:, :, :, np.newaxis]], axis=3) map_info = scores.shape[:2] # 1. sample corner candidates from prob maps tl, tr, br, bl = _corner_sampling(scores, pt_thres, pt_max_num, pt_nms_range, pt_nms_thres) # 2. assemble corner candidates into proposals proposals = _proposal_sampling(tl, tr, br, bl, map_info, ld_interval, ld_um_thres) # 3. filter proposals = filter_quads(proposals) scores = proposals[:, 8] proposals = proposals[:, :8] # 3. rescale quads into raw image space proposals = proposals * self._feat_stride # 4. quadrilateral non-max surpression order = scores.ravel().argsort()[::-1] if pre_nms_topN > 0: order = order[:pre_nms_topN] proposals = proposals[order, :] scores = scores[order] keep = nms(np.hstack((proposals, scores[:, np.newaxis])).astype(np.float32, copy=False), nms_thresh) proposals = proposals[keep, :] scores = scores[keep] if post_nms_topN > 0: proposals = proposals[:post_nms_topN, :] scores = scores[:post_nms_topN] if proposals.shape[0] == 0: # add whole image to avoid error print 'NO PROPOSALS!' proposals = np.array([[0, 0, im_info[1], 0, im_info[1], im_info[0], 0, im_info[0]]]) scores = np.array([0.0]) # output # top[0]: quads(x1, y1, x2, y2, x3, y3, x4, y4) # top[1]: rois(xmin, ymin, xmax, ymax, theta) # top[2]: scores batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32) blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False))) top[0].reshape(*blob.shape) top[0].data[...] = blob if len(top) > 1: if cfg.DUAL_ROI: rois = quad_2_obb(np.array(proposals, dtype=np.float32)) rois = dual_roi(rois) else: rois = quad_2_obb(np.array(proposals, dtype=np.float32)) batch_inds = np.zeros((rois.shape[0], 1), dtype=np.float32) blob = np.hstack((batch_inds, rois.astype(np.float32, copy=False))) top[1].reshape(*blob.shape) top[1].data[...] = blob if len(top) > 2: scores = np.vstack((scores, scores)).transpose() top[2].reshape(*scores.shape) top[2].data[...] = scores def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass def _map_2_corner(pred_map, thresh, max_num, nms_range, nms_thres): pos_map = 1 - pred_map[:, :, 0] pts_cls = np.argmax(pred_map[:, :, 1:], 2) + 1 ctr_y, ctr_x = np.where(pos_map >= thresh) ctr_pts = np.vstack((ctr_x, ctr_y)).transpose() ws = np.ones(ctr_x.shape) * nms_range hs = np.ones(ctr_y.shape) * nms_range anchors = np.hstack((mkanchors(ws, hs, ctr_x, ctr_y), get_value(ctr_pts, pos_map))) keep = nms(anchors, nms_thres) if max_num > 0: keep = keep[:max_num] pos = ctr_pts[keep, :] prb = pos_map cls = pts_cls return pos, prb, cls def _corner_sampling(maps, thresh, max_num, nms_range, nms_thres): tl = Corner('top_left') tl.pos, tl.prb, tl.cls = _map_2_corner(maps[:, :, :, 0], thresh, max_num, nms_range, nms_thres) tr = Corner('top_right') tr.pos, tr.prb, tr.cls = _map_2_corner(maps[:, :, :, 1], thresh, max_num, nms_range, nms_thres) br = Corner('bot_right') br.pos, br.prb, br.cls = _map_2_corner(maps[:, :, :, 2], thresh, max_num, nms_range, nms_thres) bl = Corner('bot_left') bl.pos, bl.prb, bl.cls = _map_2_corner(maps[:, :, :, 3], thresh, max_num, nms_range, nms_thres) return tl, tr, br, bl def _gen_diags(a, b, theta_invl=15, max_diff=1): max_label = round(360.0 / theta_invl) idx_a = np.arange(0, a.pos.shape[0]) idx_b = np.arange(0, b.pos.shape[0]) idx_a, idx_b = np.meshgrid(idx_a, idx_b) idx_a = idx_a.ravel() idx_b = idx_b.ravel() diag_pos = np.hstack((a.pos[idx_a, :], b.pos[idx_b, :])) # keep = np.where((diag_pos[:, 0] != diag_pos[:, 2]) | (diag_pos[:, 1] != diag_pos[:, 3]))[0] diag_pos = diag_pos[keep, :] prac_label = compute_link(diag_pos[:, 0:2], diag_pos[:, 2:4], theta_invl) pred_label = get_value(diag_pos[:, 0:2], a.cls) diff_label_a = diff_link(prac_label, pred_label, max_label) # prac_label = np.mod(prac_label + max_label / 2, max_label) pred_label = get_value(diag_pos[:, 2:4], b.cls) diff_label_b = diff_link(prac_label, pred_label, max_label) keep = np.where((diff_label_a <= max_diff) & (diff_label_b <= max_diff))[0] diag_pos = diag_pos[keep, :] diag_prb = np.hstack((get_value(diag_pos[:, 0:2], a.prb), get_value(diag_pos[:, 2:4], b.prb))) return diag_pos, diag_prb def _gen_trias(diag_pos, diag_prb, c, theta_invl=15, max_diff=1): max_label = 360 / theta_invl idx_a = np.arange(0, diag_pos.shape[0]) idx_b = np.arange(0, c.pos.shape[0]) idx_a, idx_b = np.meshgrid(idx_a, idx_b) idx_a = idx_a.ravel() idx_b = idx_b.ravel() tria_pos = np.hstack((diag_pos[idx_a, :], c.pos[idx_b, :])) tria_prb = np.hstack((diag_prb[idx_a, :], get_value(c.pos[idx_b, :], c.prb))) # areas = compute_tria_area(tria_pos[:, 0:2], tria_pos[:, 2:4], tria_pos[:, 4:6]) keep = np.where(areas != 0)[0] tria_pos = tria_pos[keep, :] tria_prb = tria_prb[keep, :] ws, hs, ctr_x, ctr_y = whctrs(tria_pos[:, 0:4]) prac_theta = compute_theta(tria_pos[:, 4:6], np.vstack((ctr_x, ctr_y)).transpose()) prac_label = np.floor(prac_theta / theta_invl) + 1 pred_label = get_value(tria_pos[:, 4:6], c.cls) diff_label = diff_link(prac_label, pred_label, max_label) keep = np.where(diff_label <= max_diff)[0] tria_pos = tria_pos[keep, :] tria_prb = tria_prb[keep, :] prac_theta = prac_theta[keep] # prac_theta = np.mod(prac_theta + 180.0, 360.0) / 180.0 * np.pi len_diag = np.sqrt(np.sum(np.square(tria_pos[:, 0:2] - tria_pos[:, 2:4]), axis=1)) / 2. dist_x = len_diag * np.cos(prac_theta[:, 0]) dist_y = len_diag * np.sin(prac_theta[:, 0]) ws, hs, ctr_x, ctr_y = whctrs(tria_pos[:, 0:4]) tria_pos[:, 4:6] = np.vstack((ctr_x + dist_x, ctr_y - dist_y)).astype(np.int32, copy=False).transpose() return tria_pos, tria_prb def _get_last_one(tria, d): map_shape = d.prb.shape[:2] ws, hs, ctr_x, ctr_y = whctrs(tria[:, 0:4]) pos = np.vstack((2 * ctr_x - tria[:, 4], 2 * ctr_y - tria[:, 5])).transpose() pos[:, 0] = np.maximum(np.minimum(pos[:, 0], map_shape[1] - 1), 0) pos[:, 1] = np.maximum(np.minimum(pos[:, 1], map_shape[0] - 1), 0) pos = np.array(pos, dtype=np.int32) prb = get_value(pos, d.prb) return pos, prb def _clip_trias(tria_pos, tria_prb, c, map_info): tria_pos[:, 4] = np.maximum(np.minimum(tria_pos[:, 4], map_info[1] - 1), 0) tria_pos[:, 5] = np.maximum(np.minimum(tria_pos[:, 5], map_info[0] - 1), 0) tria_prb[:, 2:] = get_value(tria_pos[:, 4:6], c.prb) return tria_pos, tria_prb def _proposal_sampling(tl, tr, br, bl, map_info, theta_invl=15, max_diff=1): # DIAG: [top_left, bot_right] diag_pos, diag_prb = _gen_diags(tl, br, theta_invl, max_diff) # TRIA: [DIAG, top_right] tria_pos, tria_prb = _gen_trias(diag_pos, diag_prb, tr, theta_invl, max_diff) # QUAD: [TRIA, bot_left] temp_pos, temp_prb = _get_last_one(tria_pos, bl) # refine top_right tria_pos, tria_prb = _clip_trias(tria_pos, tria_prb, tr, map_info) # assemble score = compute_score(np.hstack((tria_prb, temp_prb))) quads = np.hstack((tria_pos[:, 0:2], tria_pos[:, 4:6], tria_pos[:, 2:4], temp_pos)) quads = np.hstack((quads, score[:, np.newaxis])) # TRIA: [DIAG, bot_left] tria_pos, tria_prb = _gen_trias(diag_pos, diag_prb, bl, theta_invl, max_diff) # QUAD: [TRIA, top_right] temp_pos, temp_prb = _get_last_one(tria_pos, tr) # refine bot_left tria_pos, tria_prb = _clip_trias(tria_pos, tria_prb, bl, map_info) # assemble score = compute_score(np.hstack((tria_prb, temp_prb))) quad = np.hstack((tria_pos[:, 0:2], temp_pos, tria_pos[:, 2:4], tria_pos[:, 4:6])) quad = np.hstack((quad, score[:, np.newaxis])) quads = np.vstack((quads, quad)) # DIAG: [bot_left, top_right] diag_pos, diag_prb = _gen_diags(bl, tr, theta_invl, max_diff) # TRIA: [DIAG, top_left] tria_pos, tria_prb = _gen_trias(diag_pos, diag_prb, tl, theta_invl, max_diff) # QUAD: [TRIA, bot_right] temp_pos, temp_prb = _get_last_one(tria_pos, br) # refine top_left tria_pos, tria_prb = _clip_trias(tria_pos, tria_prb, tl, map_info) # assemble score = compute_score(np.hstack((tria_prb, temp_prb))) quad = np.hstack((tria_pos[:, 4:6], tria_pos[:, 2:4], temp_pos, tria_pos[:, 0:2])) quad = np.hstack((quad, score[:, np.newaxis])) quads = np.vstack((quads, quad)) # TRIA: [DIAG, bor_right] tria_pos, tria_prb = _gen_trias(diag_pos, diag_prb, br, theta_invl, max_diff) # QUAD: [TRIA, top_left] temp_pos, temp_prb = _get_last_one(tria_pos, tl) # refine bor_right tria_pos, tria_prb = _clip_trias(tria_pos, tria_prb, br, map_info) # assemble score = compute_score(np.hstack((tria_prb, temp_prb))) quad = np.hstack((tria_pos[:, 0:2], temp_pos, tria_pos[:, 2:4], tria_pos[:, 4:6])) quad = np.hstack((quad, score[:, np.newaxis])) quads = np.vstack((quads, quad)) return quads def get_value(pts, maps): vals = maps[pts[:, 1], pts[:, 0]] return vals[:, np.newaxis] def compute_score(scores): score = scores[:, 0] * scores[:, 1] * scores[:, 2] * scores[:, 3] return score def compute_theta(p1, p2): dx = p2[:, 0] - p1[:, 0] dy = p2[:, 1] - p1[:, 1] val = dx / np.sqrt(dx * dx + dy * dy) val = np.maximum(np.minimum(val, 1), -1) theta = np.arccos(val) / np.pi * 180 idx = np.where(dy > 0)[0] theta[idx] = 360 - theta[idx] return theta[:, np.newaxis] def compute_link(p1, p2, interval): theta = compute_theta(p1, p2) label = np.floor(theta / interval) + 1 return label def diff_link(t1, t2, max_orient): dt = np.abs(t2 - t1) dt = np.minimum(dt, max_orient - dt) return dt def compute_tria_area(p1, p2, p3): area = (p2[:, 0] - p1[:, 0]) * (p3[:, 1] - p1[:, 1]) - \ (p2[:, 1] - p1[:, 1]) * (p3[:, 0] - p1[:, 0]) return area def filter_quads(quads): area_1 = compute_tria_area(quads[:, 0:2], quads[:, 2:4], quads[:, 4:6]) area_2 = compute_tria_area(quads[:, 0:2], quads[:, 2:4], quads[:, 6:8]) area_3 = compute_tria_area(quads[:, 0:2], quads[:, 4:6], quads[:, 6:8]) area_4 = compute_tria_area(quads[:, 2:4], quads[:, 4:6], quads[:, 6:8]) areas = area_1 * area_2 * area_3 * area_4 keep = np.where(areas != 0)[0] quads = quads[keep, :] return quads
python
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from yandex.cloud.access import access_pb2 as yandex_dot_cloud_dot_access_dot_access__pb2 from yandex.cloud.containerregistry.v1 import registry_pb2 as yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__pb2 from yandex.cloud.containerregistry.v1 import registry_service_pb2 as yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2 from yandex.cloud.operation import operation_pb2 as yandex_dot_cloud_dot_operation_dot_operation__pb2 class RegistryServiceStub(object): """A set of methods for managing Registry resources. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Get = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/Get', request_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.GetRegistryRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__pb2.Registry.FromString, ) self.List = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/List', request_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.ListRegistriesRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.ListRegistriesResponse.FromString, ) self.Create = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/Create', request_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.CreateRegistryRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) self.Update = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/Update', request_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.UpdateRegistryRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) self.Delete = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/Delete', request_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.DeleteRegistryRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) self.ListAccessBindings = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/ListAccessBindings', request_serializer=yandex_dot_cloud_dot_access_dot_access__pb2.ListAccessBindingsRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_access_dot_access__pb2.ListAccessBindingsResponse.FromString, ) self.SetAccessBindings = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/SetAccessBindings', request_serializer=yandex_dot_cloud_dot_access_dot_access__pb2.SetAccessBindingsRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) self.UpdateAccessBindings = channel.unary_unary( '/yandex.cloud.containerregistry.v1.RegistryService/UpdateAccessBindings', request_serializer=yandex_dot_cloud_dot_access_dot_access__pb2.UpdateAccessBindingsRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) class RegistryServiceServicer(object): """A set of methods for managing Registry resources. """ def Get(self, request, context): """Returns the specified Registry resource. To get the list of available Registry resources, make a [List] request. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def List(self, request, context): """Retrieves the list of Registry resources in the specified folder. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Create(self, request, context): """Creates a registry in the specified folder. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Update(self, request, context): """Updates the specified registry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Delete(self, request, context): """Deletes the specified registry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListAccessBindings(self, request, context): """access Lists access bindings for the specified registry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SetAccessBindings(self, request, context): """Sets access bindings for the specified registry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateAccessBindings(self, request, context): """Updates access bindings for the specified registry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_RegistryServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'Get': grpc.unary_unary_rpc_method_handler( servicer.Get, request_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.GetRegistryRequest.FromString, response_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__pb2.Registry.SerializeToString, ), 'List': grpc.unary_unary_rpc_method_handler( servicer.List, request_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.ListRegistriesRequest.FromString, response_serializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.ListRegistriesResponse.SerializeToString, ), 'Create': grpc.unary_unary_rpc_method_handler( servicer.Create, request_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.CreateRegistryRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), 'Update': grpc.unary_unary_rpc_method_handler( servicer.Update, request_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.UpdateRegistryRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), 'Delete': grpc.unary_unary_rpc_method_handler( servicer.Delete, request_deserializer=yandex_dot_cloud_dot_containerregistry_dot_v1_dot_registry__service__pb2.DeleteRegistryRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), 'ListAccessBindings': grpc.unary_unary_rpc_method_handler( servicer.ListAccessBindings, request_deserializer=yandex_dot_cloud_dot_access_dot_access__pb2.ListAccessBindingsRequest.FromString, response_serializer=yandex_dot_cloud_dot_access_dot_access__pb2.ListAccessBindingsResponse.SerializeToString, ), 'SetAccessBindings': grpc.unary_unary_rpc_method_handler( servicer.SetAccessBindings, request_deserializer=yandex_dot_cloud_dot_access_dot_access__pb2.SetAccessBindingsRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), 'UpdateAccessBindings': grpc.unary_unary_rpc_method_handler( servicer.UpdateAccessBindings, request_deserializer=yandex_dot_cloud_dot_access_dot_access__pb2.UpdateAccessBindingsRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'yandex.cloud.containerregistry.v1.RegistryService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
python
#----------------------------------------------------------------------- #Copyright 2019 Centrum Wiskunde & Informatica, Amsterdam # #Author: Daniel M. Pelt #Contact: [email protected] #Website: http://dmpelt.github.io/msdnet/ #License: MIT # #This file is part of MSDNet, a Python implementation of the #Mixed-Scale Dense Convolutional Neural Network. #----------------------------------------------------------------------- """ Module for defining and processing validation sets. """ from . import store from . import operations from . import loss import abc import numpy as np class Validation(abc.ABC): """Base class for processing a validation set.""" @abc.abstractmethod def validate(self, n): """Compute validation metrics. :param n: :class:`.network.Network` to validate with :return: True if validation metric is lower than best validation error encountered, False otherwise. """ pass @abc.abstractmethod def to_dict(self): """Compute validation metrics.""" pass @abc.abstractmethod def load_dict(self, dct): """Return a dictionary containing all network variables and parameters. :return: all network variables and parameters """ pass @classmethod @abc.abstractmethod def from_dict(cls, dct): """Initialize Validation object from dictionary. :param dct: dictionary with all parameters """ pass @classmethod def from_file(cls, fn): """Initialize Validation object from file. :param fn: filename """ dct = store.get_dict(fn, 'validation') return cls.from_dict(dct) def to_file(self, fn): """Save all Validation object parameters to file. :param fn: filename """ store.store_dict(fn, 'validation', self.to_dict()) class LossValidation(Validation): """Validation object that computes simple difference metrics. :param data: list of :class:`.data.DataPoint` objects to validate with. :param keep: (optional) whether to keep the best, worst, and typical result in memory. """ def __init__(self, data, loss=None, keep=True): self.d = data self.keep = keep self.best = np.Inf self.loss = loss def errorfunc(self, output, target, msk): """Error function used for validation. :param output: network output image. :param target: target image. :param mask: mask image to indicate where to compute error function for. :return: error function value. """ lv = self.loss.lossvalue(output, target, msk) if msk is None: npix = target.size else: npix = target.shape[0]*(msk>0).sum() return lv/npix def getbest(self): """Return the input, target, and network output for best result. :return: list of images (input, target, network output) """ d = self.d[self.idx[0]] out = [] out.append(d.input) out.append(d.target) if self.keep: out.append(self.outputs[0]) else: out.append(self.n.forward(d.input)) return out def getworst(self): """Return the input, target, and network output for worst result. :return: list of images (input, target, network output) """ d = self.d[self.idx[1]] out = [] out.append(d.input) out.append(d.target) if self.keep: out.append(self.outputs[1]) else: out.append(self.n.forward(d.input)) return out def getmedian(self): """Return the input, target, and network output for median result. :return: list of images (input, target, network output) """ d = self.d[self.idx[2]] out = [] out.append(d.input) out.append(d.target) if self.keep: out.append(self.outputs[2]) else: out.append(self.n.forward(d.input)) return out def validate(self, n): self.n = n errs = np.zeros(len(self.d)) if self.keep: self.outputs = [0,0,0] low = np.Inf high = -np.Inf self.idx = [0,0,0] for i,d in enumerate(self.d): out = self.n.forward(d.input) err = self.errorfunc(out, d.target, d.mask) errs[i] = err if err<low: low = err self.idx[0] = i if self.keep: self.outputs[0] = out if err>high: high = err self.idx[1] = i if self.keep: self.outputs[1] = out median = np.argsort(errs)[errs.shape[0]//2] self.idx[2] = median if self.keep: if median==self.idx[0]: self.outputs[2] = self.outputs[0] elif median==self.idx[1]: self.outputs[2] = self.outputs[1] else: self.outputs[2] = self.n.forward(self.d[median].input) error = errs.mean() self.curerr = error if error<self.best: self.best = error return True return False def to_dict(self): dct = {} dct['best'] = self.best dct['keep'] = self.keep return dct def load_dict(self, dct): self.best = dct['best'] self.keep = dct['keep'] @classmethod def from_dict(cls, dct): v = cls(None, None) v.load_dict(dct) return v # For backwards compatibility, uses L2 norm class MSEValidation(LossValidation): def __init__(self, data, keep=True): super().__init__(data, loss=loss.L2Loss(), keep=keep)
python
import numpy as np from utils.misc import arr2grid from planner.astar import AStar from planner.dijkstra import Dijkstra from planner.bestfirst import BestFirst from planner.breadthfirst import BreadthFirst from planner.bi_astar import BiAStar from planner.bi_dijkstra import BiDijkstra from planner.bi_bestfirst import BiBestFirst # e.g [[1, 0, 1], # [1, 0, 1], # [1, 1, 1]] img = np.array([[1,1,1],[1,0,1],[1,0,1]]) # convert array to networkx graph grid = arr2grid(img, diagonal=True) source = (2,0) target = (2,2) #target = [(1,1),(2,2),(2,1)] rp = BiAStar() route = rp.multi_plan([((2,0), (2,2)), ((2,0), (0,0))], graph=grid) #route = rp.plan(source, target, grid) print(route)
python
#!/usr/bin/env python3 # coding: utf8 # Author: Lenz Furrer, 2017 ''' Formatter base classes. ''' import os import io from lxml import etree class Formatter: ''' Base class for all formatters. ''' ext = None binary = False # text or binary format? def __init__(self, config, fmt_name): self.config = config self.fmt_name = fmt_name def export(self, content): ''' Write this content to disk. ''' open_params = self._get_open_params(content) try: f = open(**open_params) except FileNotFoundError: # An intermediate directory didn't exist. # Create it and try again. # (Use exist_ok because of race conditions -- another # worker might have created it in the meantime.) os.makedirs(os.path.dirname(open_params['file']), exist_ok=True) f = open(**open_params) with f: self.write(f, content) def write(self, stream, content): ''' Write this content to an open file. ''' raise NotImplementedError() def dump(self, content): ''' Serialise the content to str or bytes. ''' raise NotImplementedError() def _get_open_params(self, content): path = self.config.get_out_path(content.id_, content.basename, self.fmt_name, self.ext) if self.binary: return dict(file=path, mode='wb') else: return dict(file=path, mode='w', encoding='utf8') class MemoryFormatter(Formatter): ''' Abstract formatter with a primary dump method. Subclasses must override dump(), on which write() is based. ''' def write(self, stream, content): stream.write(self.dump(content)) class StreamFormatter(Formatter): ''' Abstract formatter with a primary write method. Subclasses must override write(), on which dump() is based. ''' def dump(self, content): if self.binary: buffer = io.BytesIO() else: buffer = io.StringIO() self.write(buffer, content) return buffer.getvalue() class XMLMemoryFormatter(MemoryFormatter): ''' Formatter for XML-based output. Subclasses must define a method _dump() which returns an lxml.etree.Element node. ''' ext = 'xml' binary = True def dump(self, content): node = self._dump(content) return self._tostring(node) def _dump(self, content): raise NotImplementedError() @staticmethod def _tostring(node, **kwargs): kwargs.setdefault('encoding', "UTF-8") kwargs.setdefault('xml_declaration', True) kwargs.setdefault('pretty_print', True) return etree.tostring(node, **kwargs)
python
# 첫 도착지 # 짝수: 1 -> 2 # 홀수: 1 -> 3 # 두번째 도착지 # 짝수: 1 -> 3 # 홀수: 1 -> 2 # 3번째 도착지 # 작은 아이가 두번째 아이에게 얹힌다. (마지막을 제외하고 다시 뭉친다.) # 4번째 # 3번째로 큰 아이가 빈 곳으로 간다. # 5번째 # 작은 아이가 두번째 + 3번째 아이에게 얹힌다. (마지막을 제외하고 다시 뭉친다.) import sys n = int(sys.stdin.readline()) count = 0 # 매개변수 : 총 개수, 시작, 목표, other,...? def hanoi(total, start, destination, other, count): # base Case - 남은 원반의 개수가 없을 시 종료한다. if total == 1: count += 1 return print(start , '->' , destination) hanoi(total-1, start, other, destination) print(start ,'-->', destination) hanoi(total-1, other, destination, start) print(start, '--->', destination) hanoi(n, 1, 3, 2, 0)
python
from __future__ import unicode_literals from .common import InfoExtractor class YouJizzIE(InfoExtractor): _VALID_URL = r'https?://(?:\w+\.)?youjizz\.com/videos/(?:[^/#?]+)?-(?P<id>[0-9]+)\.html(?:$|[?#])' _TESTS = [{ 'url': 'http://www.youjizz.com/videos/zeichentrick-1-2189178.html', 'md5': '78fc1901148284c69af12640e01c6310', 'info_dict': { 'id': '2189178', 'ext': 'mp4', 'title': 'Zeichentrick 1', 'age_limit': 18, } }, { 'url': 'http://www.youjizz.com/videos/-2189178.html', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) # YouJizz's HTML5 player has invalid HTML webpage = webpage.replace('"controls', '" controls') age_limit = self._rta_search(webpage) video_title = self._html_search_regex( r'<title>\s*(.*)\s*</title>', webpage, 'title') info_dict = self._parse_html5_media_entries(url, webpage, video_id)[0] info_dict.update({ 'id': video_id, 'title': video_title, 'age_limit': age_limit, }) return info_dict
python
# see https://docs.python.org/3/reference/expressions.html#operator-precedence # '|' is the least binding numeric operator # '^' # OK: 1 | (2 ^ 3) = 1 | 1 = 1 # BAD: (1 | 2) ^ 3 = 3 ^ 3 = 0 print(1 | 2 ^ 3) # '&' # OK: 3 ^ (2 & 1) = 3 ^ 0 = 3 # BAD: (3 ^ 2) & 1 = 1 & 1 = 1 print(3 ^ 2 & 1) # '<<', '>>' # OK: 2 & (3 << 1) = 2 & 6 = 2 # BAD: (2 & 3) << 1 = 2 << 1 = 4 print(2 & 3 << 1) # OK: 6 & (4 >> 1) = 6 & 2 = 2 # BAD: (6 & 4) >> 1 = 2 >> 1 = 1 print(6 & 4 >> 1) # '+', '-' # OK: 1 << (1 + 1) = 1 << 2 = 4 # BAD: (1 << 1) + 1 = 2 + 1 = 3 print(1 << 1 + 1) # '*', '/', '//', '%' # OK: 2 + (2 * 2) = 2 + 4 = 6 # BAD: (2 + 2) * 2 = 4 * 2 = 8 print(2 + 2 * 2) # '+x', '-x', '~x' # '**' # OK: -(2**2) = -4 # BAD: (-2)**2 = 4 print(-2**2) # OK: 2**(-1) = 0.5 print(2**-0) # (expr...) print((2 + 2) * 2)
python
import sys import os def jeff(): print('quick attack the enemy press a to attack b to block c for super ') bob=10 alice=60 turn1=0 turn2=2 spr=5 mod1=0 mod2=0 speed=0 c1=print('bob health is ',bob) c2=print('alice health is ',alice) print(c1,c2) while(alice>0): print(spr,'spr is') print('bob health is ',bob) print('alice health is ',alice) a4=input("a to attack b to block c for super h for gaining health ") if a4=='a': print('bob attacks alice') alice-=5 turn1+=1 spr+=1 mod1=turn1%2 print('bob health is ',bob) print('alice health is ',alice) if mod1 > 0: print("Alice counter attacks") bob-=1 spr+=1 speed-=1 print('bob health is ',bob) print('alice health is ',alice) else: print("successful attack") print('bob health is ',bob) print('alice health is ',alice) elif bob < 0: print('''game over Bob died press 1 to continue anything else to quit''') a5= input("1 or quit") if a5 == '1' : jeff() else: sys.exit(0) #break elif a4=='b': print('Bob blocks') if speed=='0': print('Block unsucessful') bob-=2 print('bob health is ',bob) print('alice health is ',alice) speed+=1 turn2+=1 spr+=1 mod2=turn1%2 print('bob health is ',bob) print('alice health is ',alice) if mod2>0: print('Bob counterattacks') alice-=10 spr+=1 print('bob health is ',bob) print('alice health is ',alice) elif(a4=='c'): if spr != 0 :#have to be un quoted print('super attack') alice-=15 spr=0 speed=0 print(spr,'spr is') else: print("No super attack charge up") print("alice attacks") bob-=1 speed+=1 turn1+=1 turn2+=1 else: print("please select a proper option") turn1+=1 mod1=turn1%2 if mod1 >0 : print('recovered 2 HP') bob+=2 mod1=turn2 turn1=turn2 turn2=mod1 print('bob health is ',bob) print('alice health is ',alice) jeff() a3=input("QUICK DRAW YOU gun and shoot 1 for left and 2 for right") if a3 == '1': print("you died") elif a3 == '2': print("You killed rebel leader and escaped the facility") else: print("a swordsman appeared and killed the guard and took your character out") a = """ A rebellion is rising i neeed your help Then you followed him """ print(a) print("game over")
python
wild = "https://image.ibb.co/dPStdz/wild.png" wild_plus_four = "https://image.ibb.co/jKctdz/wild_4.png" red = { '0': 'https://image.ibb.co/gnmtB8/red_0.png', '1': 'https://image.ibb.co/hvRFPT/red_1.png', '2': 'https://image.ibb.co/f9xN4T/red_2.png', '3': 'https://image.ibb.co/hDB4Jo/red_3.png', '4': 'https://image.ibb.co/m5RFPT/red_4.png', '5': 'https://image.ibb.co/bSVLr8/red_5.png', '6': 'https://image.ibb.co/dkRFPT/red_6.png', '7': 'https://image.ibb.co/grPfr8/red_7.png', '8': 'https://image.ibb.co/jxM4Jo/red_8.png', '9': 'https://image.ibb.co/j6vydo/red_9.png', 'skip': 'https://image.ibb.co/cHBDTo/red_skip.png', 'reverse': 'https://image.ibb.co/mdoGg8/red_reverse.png', '+2': 'https://image.ibb.co/hORDTo/red_2.png', } green = { '0': 'https://image.ibb.co/gXUS4T/green_0.png', '1': 'https://image.ibb.co/iDZGyo/green_1.png', '2': 'https://image.ibb.co/f1RUJo/green_2.png', '3': 'https://image.ibb.co/h6fBW8/green_3.png', '4': 'https://image.ibb.co/mE8byo/green_4.png', '5': 'https://image.ibb.co/fgOn4T/green_5.png', '6': 'https://image.ibb.co/iAU5r8/green_7.png', '7': 'https://image.ibb.co/naituT/green_7.png', '8': 'https://image.ibb.co/fyMJB8/green_8.png', '9': 'https://image.ibb.co/iqjido/green_9.png', 'skip': 'https://image.ibb.co/btj6g8/green_skip.png', 'reverse': 'https://image.ibb.co/jDeTuT/green_reverse.png', '+2': 'https://image.ibb.co/b0gmg8/green_2.png', } blue = { '0': 'https://image.ibb.co/im3vPT/blue_0.png', '1': 'https://image.ibb.co/k4Aydo/blue_1.png', '2': 'https://image.ibb.co/efuPJo/blue_2.png', '3': 'https://image.ibb.co/fyqLr8/blue_3.png', '4': 'https://image.ibb.co/kbOJdo/blue_4.png', '5': 'https://image.ibb.co/mHnuJo/blue_5.png', '6': 'https://image.ibb.co/bW81yo/blue_6.png', '7': 'https://image.ibb.co/dLwodo/blue_7.png', '8': 'https://image.ibb.co/nqyejT/blue_8.png', '9': 'https://image.ibb.co/kRrMyo/blue_9.png', 'skip': 'https://image.ibb.co/buExM8/blue_skip.png', 'reverse': 'https://image.ibb.co/cuQ418/blue_reverse.png', '+2': 'https://image.ibb.co/nx2TTo/blue_2.png', } yellow = { '0': 'https://image.ibb.co/kf5ZjT/yellow_0.png', '1': 'https://image.ibb.co/d6o9Jo/yellow_1.png', '2': 'https://image.ibb.co/ghf0PT/yellow_2.png', '3': 'https://image.ibb.co/eHZido/yellow_3.png', '4': 'https://image.ibb.co/d9tLPT/yellow_4.png', '5': 'https://image.ibb.co/b6CEjT/yellow_5.png', '6': 'https://image.ibb.co/bzFZjT/yellow_6.png', '7': 'https://image.ibb.co/eD0ZjT/yellow_7.png', '8': 'https://image.ibb.co/mfa0PT/yellow_8.png', '9': 'https://image.ibb.co/h4JLPT/yellow_9.png', 'skip': 'https://image.ibb.co/btpmET/yellow_skip.png', 'reverse': 'https://image.ibb.co/kbt2oo/yellow_reverse.png', '+2': 'https://image.ibb.co/dvVtuT/yellow_2.png', }
python
# License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). # Copyright 2020 Tecnativa - Pedro M. Baeza from odoo import api, fields, models class SaleOrder(models.Model): _inherit = "sale.order" type_id = fields.Many2one( comodel_name="sale.order.type", string="Type", compute="_compute_sale_type_id", store=True, readonly=True, states={ "draft": [("readonly", False)], "sent": [("readonly", False)], }, default=lambda so: so._default_type_id(), ondelete="restrict", copy=True, ) @api.model def _default_type_id(self): return self.env["sale.order.type"].search([], limit=1) @api.depends("partner_id", "company_id") def _compute_sale_type_id(self): for record in self: if not record.partner_id: record.type_id = self.env["sale.order.type"].search( [("company_id", "in", [self.env.company.id, False])], limit=1 ) else: sale_type = ( record.partner_id.with_company(record.company_id).sale_type or record.partner_id.commercial_partner_id.with_company( record.company_id ).sale_type ) if sale_type: record.type_id = sale_type @api.onchange("type_id") def onchange_type_id(self): # TODO: To be changed to computed stored readonly=False if possible in v14? vals = {} for order in self: order_type = order.type_id # Order values vals = {} if order_type.payment_term_id: vals.update({"payment_term_id": order_type.payment_term_id}) if order_type.pricelist_id: vals.update({"pricelist_id": order_type.pricelist_id}) if vals: order.update(vals) @api.model def create(self, vals): if vals.get("name", "/") == "/" and vals.get("type_id"): sale_type = self.env["sale.order.type"].browse(vals["type_id"]) if sale_type.sequence_id: vals["name"] = sale_type.sequence_id.next_by_id() return super(SaleOrder, self).create(vals) def _prepare_invoice(self): res = super(SaleOrder, self)._prepare_invoice() if self.type_id.journal_id: res["journal_id"] = self.type_id.journal_id.id if self.type_id: res["sale_type_id"] = self.type_id.id return res
python
import importlib from functools import partial from multiprocessing import Process, Queue from flask import Flask, request app = Flask("serverfull") bees = ["a", "b"] # TODO: get this from somewhere workers = {} def bee_loop(handler, inq, outq): request = inq.get() print("Got request") outq.put(handler(request)) def generic_handler(bee_path): _, inq, outq = workers[bee_path] print(f"Putting {request.args}") inq.put(request.args) return outq.get() for bee in bees: bee_path = f"bees.{bee}" print(f"Importing {bee_path}") bee_mod = importlib.import_module(bee_path) bee_mod = importlib.reload(bee_mod) # TODO: be smarter, but who cares print(f"/bees/{bee} => {bee_mod.handler}") inq = Queue() outq = Queue() proc = Process(target=bee_loop, args=(bee_mod.handler, inq, outq)) proc.start() workers[bee_path] = [proc, inq, outq] app.add_url_rule(f"/bees/{bee}", f"bee.{bee}", partial(generic_handler, (bee_path)))
python
import numpy as np import cv2 cap = cv2.VideoCapture(0) facedetection = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') while True: ret, frame = cap.read() gry = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face = facedetection.detectMultiScale(gry,1.3,5) for (x,y,w,h) in face: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0), 5) cv2.imshow('frame',frame) if cv2.waitKey(1) == ord('q'): break cap.release() cv2.destroyAllWindows()
python
# Copyright 2017 VMware Inc. All rights reserved. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function from __future__ import division from __future__ import absolute_import import copy from congress import exception from congress.library_service import library_service from congress.tests import base class TestLibraryService(base.SqlTestCase): def setUp(self): super(TestLibraryService, self).setUp() self.library = library_service.LibraryService('lib-test') self.library.delete_all_policies() # clear pre-loaded library policies self.policy1 = {'name': 'policy1', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': 'testname'}]} self.policy2 = {'name': 'policy2', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': 'testname'}]} self.policy1_meta = copy.deepcopy(self.policy1) self.policy2_meta = copy.deepcopy(self.policy2) del self.policy1_meta['rules'] del self.policy2_meta['rules'] def test_create_policy_no_name(self): self.assertRaises(exception.InvalidPolicyInput, self.library.create_policy, {'rules': []}) def test_create_policy_no_rules(self): self.assertRaises(exception.InvalidPolicyInput, self.library.create_policy, {'name': 'policy1'}) def test_create_policy_other_schema_violations(self): # name too long (255 limit) policy_item = { 'name': 'policy2', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{ 'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': '111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111111' '11111111111111111111111111111'}]} self.assertRaises(exception.InvalidPolicyInput, self.library.create_policy, policy_item) # comment too long (255 limit) policy_item = { 'name': 'policy2', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{ 'rule': 'p(x) :- q(x)', 'comment': '111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111111' '11111111111111111111111111111', 'name': 'testname'}]} self.assertRaises(exception.InvalidPolicyInput, self.library.create_policy, policy_item) # rule item missing 'rule' property policy_item = { 'name': 'policy2', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{ 'comment': 'test comment', 'name': 'testname'}]} self.assertRaises(exception.InvalidPolicyInput, self.library.create_policy, policy_item) def test_create_policy_bad_name(self): self.assertRaises(exception.PolicyException, self.library.create_policy, {'name': 'disallowed-hyphen', 'rules': []}) def test_create_policy_default(self): res = self.library.create_policy({'name': 'policy1', 'rules': []}) self.assertEqual(res, {'id': res['id'], 'abbreviation': 'polic', 'kind': 'nonrecursive', 'name': 'policy1', 'description': '', 'rules': []}) def test_create_policy(self): policy_obj = self.library.create_policy(self.policy1) self.policy1['id'] = policy_obj['id'] self.assertEqual(policy_obj, self.policy1) def test_create_policy_duplicate(self): self.library.create_policy({'name': 'policy1', 'rules': []}) self.assertRaises(KeyError, self.library.create_policy, {'name': 'policy1', 'rules': []}) res = self.library.get_policies() self.assertEqual(len(res), 1) def test_get_policy_empty(self): res = self.library.get_policies() self.assertEqual(res, []) self.assertRaises(KeyError, self.library.get_policy, 'nosuchpolicy') self.assertRaises(KeyError, self.library.get_policy_by_name, 'nosuchpolicy') def test_create_get_policy(self): policy_obj = self.library.create_policy(self.policy1) self.policy1['id'] = policy_obj['id'] self.policy1_meta['id'] = policy_obj['id'] res = self.library.get_policies() self.assertEqual(res, [self.policy1]) res = self.library.get_policy(policy_obj['id']) self.assertEqual(res, self.policy1) res = self.library.get_policy_by_name(policy_obj['name']) self.assertEqual(res, self.policy1) res = self.library.get_policies(include_rules=True) self.assertEqual(res, [self.policy1]) res = self.library.get_policy(policy_obj['id'], include_rules=False) self.assertEqual(res, self.policy1_meta) res = self.library.get_policy_by_name(policy_obj['name'], include_rules=False) self.assertEqual(res, self.policy1_meta) self.assertRaises(KeyError, self.library.get_policy, 'no_such_policy') self.assertRaises(KeyError, self.library.get_policy_by_name, 'no_such_policy') def test_delete_policy(self): self.assertRaises(KeyError, self.library.delete_policy, 'policy1') policy_obj = self.library.create_policy(self.policy1) self.policy1['id'] = policy_obj['id'] policy_obj = self.library.create_policy(self.policy2) self.policy2['id'] = policy_obj['id'] res = self.library.get_policies() self.assertEqual(len(res), 2) self.assertTrue(all(p in res for p in [self.policy1, self.policy2])) self.assertRaises(KeyError, self.library.delete_policy, 'no_such_policy') res = self.library.delete_policy(self.policy1['id']) self.assertEqual(res, self.policy1) res = self.library.get_policies() self.assertEqual(len(res), 1) self.assertEqual(res[0], self.policy2) res = self.library.delete_policy(self.policy2['id']) self.assertEqual(res, self.policy2) res = self.library.get_policies() self.assertEqual(len(res), 0) def test_delete_policies(self): self.library.delete_all_policies() res = self.library.get_policies() self.assertEqual(len(res), 0) self.library.create_policy( {'name': 'policy1', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': 'testname'}]}) self.library.create_policy( {'name': 'policy2', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': 'testname'}]}) self.library.delete_all_policies() res = self.library.get_policies() self.assertEqual(len(res), 0) def test_replace_policy(self): policy1 = self.library.create_policy( {'name': 'policy1', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': 'testname'}]}) policy2 = self.library.create_policy( {'name': 'policy2', 'abbreviation': 'abbr', 'kind': 'database', 'description': 'descrip', 'rules': [{'rule': 'p(x) :- q(x)', 'comment': 'test comment', 'name': 'testname'}]}) replacement_policy = { "name": "new_name", "description": "new test policy2 description", "kind": "nonrecursive", "abbreviation": "newab", "rules": [{"rule": "r(x) :- c(x)", "comment": "test comment", "name": "test name"}] } # update non-existent item self.assertRaises(KeyError, self.library.replace_policy, 'no_such_id', replacement_policy) # update existing item self.library.replace_policy(policy2['id'], replacement_policy) replacement_policy_w_id = copy.deepcopy(replacement_policy) replacement_policy_w_id['id'] = policy2['id'] ret = self.library.get_policies() self.assertEqual(len(ret), 2) self.assertTrue(all(p in ret for p in [policy1, replacement_policy_w_id]))
python
# -*- coding: UTF-8 -*- """ Automatized configuration and execution of Inspect peptide identification for a list of spectrum files and a list of reference proteomes. Specifications of posttranslational modifications can either be directly passed by the user or assigned to the dataset by its filename (if dataset group is already known). @author: Anke Penzlin, June 2013 """ import re import os import sys import optparse #from InspectParser_FDRcut import parseInspect from simulation_based_similarity import prepDB, run_inspect def runInspect_config(spectra, DBs, spec_path, db_path="/data/NG4/anke/proteome/", inspect_dir = "/home/franziska/bin/Inspect/", conf = "/data/NG4/anke/Inspect/config_Inspect_py.txt", user_mods=""): """ run Inspect for each pair of spectrum dataset and proteome database using modifications according to the dataset in the configuration file. """ rngDB = range(len(DBs)) # 3 for example rngSpc = range(len(spectra)) # 2 for example simMat = [ [0 for i in rngDB] for j in rngSpc ] # initializing output: [[0, 0, 0], [0, 0, 0]] for i in rngSpc: specs = spec_path+spectra[i]+".mgf" for j in rngDB: db_j = db_path+DBs[j]+"_decoy.trie" # create trie if necessary (.trie and .index created simultaneously) if not os.path.exists(db_j): # a prepare decoyDB input for Inspect (def) go_on = prepDB(db_path+DBs[j]+"_decoy.fasta", path=inspect_dir) # Convert a protein database into concatenated format. if not go_on: return inspect_out = specs[:-4] +"_"+DBs[j]+"_InspectOut.txt" # -4 to remove file extension: .mgf # prepare configfile for InspecT conf_out = open(conf,'w') conf_out.write("spectra,"+specs+"\n") conf_out.write("instrument,FT-Hybrid\n") conf_out.write("protease,Trypsin\n") conf_out.write("DB,"+db_j+"\n") if not user_mods == "": conf_out.write(user_mods) elif re.search("Lacto_131",spectra[i]): conf_out.write("mod,46.0916,C,fix\n") conf_out.write("mod,15.994915,M\n") conf_out.write("# iTraq\n") conf_out.write("mod,144.1544,K,fix\n") conf_out.write("mod,144.1544,*,nterminal\n") print "modifications according to acc. nr. 13105-13162" sys.stdout.flush() elif re.search("Shigelladys",spectra[i]): conf_out.write("mod,46.0916,C,fix\n") conf_out.write("mod,15.994915,M\n") print "modifications according to http://www.biomedcentral.com/1471-2180/11/147#sec2" sys.stdout.flush() else: conf_out.write("# Protecting group on cysteine\n") conf_out.write("mod,57.021464,C,fix\n") if re.search("Bacicer_113",spectra[i]): conf_out.write("mod,15.994915,M\n") print "modifications according to acc. nr. 11339-11362" sys.stdout.flush() elif re.search("Bacisub_175",spectra[i]): conf_out.write("mod,15.994915,M\n") conf_out.write("mod,119.1423,C\n") conf_out.write("mod,396.37,C\n") print "modifications according to acc. nr. 17516-17659" sys.stdout.flush() elif re.search("Ecoli_12",spectra[i]): conf_out.write("mod,32,M,opt\n") print "modifications according to acc. nr. 12189-12199" sys.stdout.flush() elif re.search("Strepyo_1923",spectra[i]): conf_out.write("mod,15.994915,M\n") conf_out.write("mod,79.9799,STY\n") print "modifications according to acc. nr. 19230/19231" sys.stdout.flush() elif re.search("CPXV_",spectra[i]): conf_out.write("mod,15.994915,M\n")#oxidation conf_out.write("mod,42.010565,*,nterminal\n")#acetylation print "modifications according to standard configuration (for pox)" elif re.search("MSSim",spectra[i]): conf_out.write("mod,0.984016,NQ\n") conf_out.write("mod,15.994915,M\n") print "modifications according to (simulation) standard configuration" sys.stdout.flush() else: # conf_out.write("mod,15.994915,M\n")#oxidation # conf_out.write("mod,42.010565,*,nterminal\n")#acetylation #conf_out.write("mod,0.984016,NQ\n") print "modifications according to (unspecified) standard configuration" sys.stdout.flush() conf_out.write("mods,2\n") if re.search("Shigelladys",spectra[i]): conf_out.write("PMTolerance,1.4\n") conf_out.write("IonTolerance,0.5\n") conf_out.write("MultiCharge,3\n") else: conf_out.write("ParentPPM,10\n") conf_out.write("IonTolerance,0.8\n") conf_out.close() # run Inspect: match spectra against database if re.search( "Ecoli_12", spectra[i] ): AA_file = inspect_dir + "AminoAcidMasses_15N.txt" if os.path.exists(AA_file): run_inspect(conf, inspect_out, inspect_dir, "-a "+AA_file) print "amino acid masses according to 15N (because of special e.coli data set)." sys.stdout.flush() else: run_inspect(conf, inspect_out, inspect_dir) print "WARNING: file containing amino acid masses according to 15N not found!\nDatabase search using usual file disregarding special e.coli data set)." sys.stdout.flush() else: run_inspect(conf, inspect_out, inspect_dir) # # evaluate results from Inspect to calculate an FDR-matrix # simMat[i][j] = parseInspect(inspect_out)[2] for line in simMat: print line if __name__=="__main__": usage = """%prog SPECTRA DB_LIST -s SPEC_DIR -d DB_DIR run InsPecT (for multiple spectrum datasets and references), using known modification options (assigned by filename), and calculate FDR-corrected identification counts from InsPecT output. SPECTRA: ','-separated spectrum-filenames (mgf-format) without file extension DB_LIST: ','-separated proteome-filenames (fasta-format) without file extension Using the easy mode (--easy) to have a quick understand of this function. """ # configure the parser optparser = optparse.OptionParser(usage=usage) optparser.add_option('-s', '--specdir', type='string', dest='spec_dir', default="/data/NG4/anke/spectra/", help='directory of specFiles (absolute path!). [default: %default]') optparser.add_option('-d', '--dbdir', type='string', dest='db_dir', default="/data/NG4/anke/proteome/", help='directory of proteinDBs (absolute path!). [default: %default]') optparser.add_option('-c', '--configfile', type='string', dest='config', default="/data/NG4/anke/Inspect/config_Inspect_py.txt", help='a txt-file for Inspect configuration, will be written. [default: %default]') optparser.add_option('-m', '--mods', type='string', dest='mods', default="", help='a string containing all modifications in question, modification choice by filename if "". [default: %default]') optparser.add_option('-i', '--inspect_dir', type='string', dest='ins_dir', default="/home/franziska/bin/Inspect", help='directory of Inspect.exe. [default: %default]') optparser.add_option('-e', '--easy', type='string', dest='easy', default=None, help='For the beginner, setting the value to True to run this script. Use true or True to activate.') # parse options and arguments options, args = optparser.parse_args() if not options.easy: if len(args) == 2: spectra = args[0].split(',') db_list = args[1].split(',') else: optparser.print_help() sys.exit(1) '''db_path = options.db_dir spec_path = options.spec_dir configfile = options.config # Inspect configuration file mods = options.mods inspect_dir = options.ins_dir''' runInspect_config(spectra=spectra, DBs=db_list, spec_path=options.spec_dir, db_path=options.db_dir, inspect_dir=options.ins_dir, conf=options.config, user_mods=options.mods) # Easy mode if (options.easy).lower() == 'true': runInspect_config( spectra=['example'], DBs=['species1', 'species2'], spec_path='../data/spectra/', db_path='../data/reference/', inspect_dir='./inspect/', conf='./config_files/config_Inspect_py.txt', user_mods='')
python
from django.db import models # Create your models here. class TipoElectrodomestico(models.Model): nombre = models.CharField(max_length=200) foto = models.ImageField(null =True, blank=True) def __str__(self): #Identificar un objeto return self.nombre def numProductos(self): pass class Producto(models.Model): nombre = models.CharField(max_length=200) tipo = models.ForeignKey(TipoElectrodomestico, on_delete=models.CASCADE) precio = models.IntegerField() descripcion = models.TextField() foto = models.ImageField(blank = True, null=True) calificacion = models.FloatField(default=0) marca = models.CharField(max_length=20, default="") ref = models.CharField(max_length=100, default="") @property #=> convierte un método en un atributo def tipoEl(self): #infoTipo = {"nombre": "Televisores", "id":2, "foto":None} from Productos.serializers import TipoSerial return TipoSerial(self.tipo).data def __str__(self): return self.nombre @property def calcularCalificacion(self): comentarios = self.comentario_set.all() calificacion = 0 for comentario in comentarios: calificacion += comentario.calificacion return calificacion/len(comentarios) class Comentario(models.Model): usuario = models.CharField(max_length=100) producto = models.ForeignKey(Producto, on_delete=models.CASCADE) calificacion = models.FloatField() fecha = models.DateField(auto_now_add=True) #16/09/2021 #DateTimeField() 16/09/2021 - 3:13:40 p.m. #TimeField() contenido = models.TextField() def __str__(self): return self.usuario + " - " + self.producto.nombre
python
# Copyright 2021 Lucas Fidon and Suprosanna Shit """ Data loader for a single case. This is typically used for inference. """ import torch from monai.data import Dataset, DataLoader def single_case_dataloader(inference_transform, input_path_dict): """ :param inference_transform :param input_path_dict: dict; keys=image_keys, values=paths :return: """ data_dicts = [input_path_dict] ds = Dataset( data=data_dicts, transform=inference_transform, ) loader = DataLoader( ds, batch_size=1, # image-level batch to the sliding window method, not the window-level batch num_workers=0, # you can set it to a value higher than 0 to activate parallel preprocessing; for me it leads to an error... pin_memory=torch.cuda.is_available(), ) return loader
python
import apache_beam as beam from apache_beam.options.pipeline_options import PipelineOptions import threading import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) class WriteToCallback(beam.PTransform): def __init__(self, callback, lock): self._callback = callback self._lock = lock def expand(self, pcoll): return pcoll | beam.io.iobase.Write(_CallbackSink(self._callback, self._lock)) class _CallbackSink(beam.io.iobase.Sink): def __init__(self, callback, lock): self._callback = callback self._lock = lock def initialize_write(self): pass def open_writer(self, init_result, uid): return _CallbackWriter(self._callback, self._lock) def finalize_write(self, init_result, writer_results): pass class _CallbackWriter(beam.io.iobase.Writer): def __init__(self, callback, lock): self._callback = callback self._lock = lock self._working_data = [] def write(self, record): self._working_data.append(record) def close(self): with self._lock: self._callback(self._working_data) def make_dump_to_list(visible_list): def dump(internal_list): logging.info("Dumping %s" % internal_list) visible_list.extend(internal_list) return dump input = [1, 2, 3] visible_list = [] lock = threading.Lock() p = beam.Pipeline(options=PipelineOptions()) data = p | 'CreateInput' >> beam.Create(input) data | 'DumpToList' >> WriteToCallback( make_dump_to_list(visible_list), lock) result = p.run() result.wait_until_finish() logging.info("Pipeline finished.") logging.info("Input: %s", input) with lock: logging.info("Visible output: %s", visible_list) assert input == visible_list
python
from sys import path path.append('/home/joerojas/Desarrollo/Curso-Basico-Python/101_misModulos/modules') import modulo2 zeroes = [0 for i in range(5)] ones = [1 for i in range(5)] print(modulo2.suma(zeroes)) print(modulo2.producto(ones))
python
''' Classes from the 'LinkPresentation' framework. ''' try: from rubicon.objc import ObjCClass except ValueError: def ObjCClass(name): return None def _Class(name): try: return ObjCClass(name) except NameError: return None LPMultipleMetadataPresentationTransformer = _Class('LPMultipleMetadataPresentationTransformer') LPLinkHTMLTextGenerator = _Class('LPLinkHTMLTextGenerator') LPLinkMetadataStoreTransformer = _Class('LPLinkMetadataStoreTransformer') LPTestingOverrides = _Class('LPTestingOverrides') LPResources = _Class('LPResources') LPAnimatedImageTranscoder = _Class('LPAnimatedImageTranscoder') LPLinkMetadataObserver = _Class('LPLinkMetadataObserver') LPPresentationSpecializations = _Class('LPPresentationSpecializations') LPYouTubeURLComponents = _Class('LPYouTubeURLComponents') LPStatistics = _Class('LPStatistics') LPLinkMetadataPresentationTransformer = _Class('LPLinkMetadataPresentationTransformer') LPYouTubePlayerScriptMessageHandler = _Class('LPYouTubePlayerScriptMessageHandler') LPiTunesMediaURLComponents = _Class('LPiTunesMediaURLComponents') LPAudio = _Class('LPAudio') LPAudioProperties = _Class('LPAudioProperties') LPLinkViewComponents = _Class('LPLinkViewComponents') LPMessagesPayload = _Class('LPMessagesPayload') RichLinkAttachmentSubstituter = _Class('RichLinkAttachmentSubstituter') LPTheme = _Class('LPTheme') LPThemeParametersObserver = _Class('LPThemeParametersObserver') LPTapToLoadViewStyle = _Class('LPTapToLoadViewStyle') LPCaptionBarStyle = _Class('LPCaptionBarStyle') LPMusicPlayButtonStyle = _Class('LPMusicPlayButtonStyle') LPVideoViewStyle = _Class('LPVideoViewStyle') LPVideoPlayButtonStyle = _Class('LPVideoPlayButtonStyle') LPGlyphStyle = _Class('LPGlyphStyle') LPImageViewStyle = _Class('LPImageViewStyle') LPButtonStyle = _Class('LPButtonStyle') LPShadowStyle = _Class('LPShadowStyle') LPCaptionBarAccessoryStyle = _Class('LPCaptionBarAccessoryStyle') LPVerticalTextStackViewStyle = _Class('LPVerticalTextStackViewStyle') LPTextRowStyle = _Class('LPTextRowStyle') LPTextViewStyle = _Class('LPTextViewStyle') LPPadding = _Class('LPPadding') LPSize = _Class('LPSize') LPPointUnit = _Class('LPPointUnit') LPStreamingAudioPlayer = _Class('LPStreamingAudioPlayer') LPVideo = _Class('LPVideo') LPVideoAttachmentSubstitute = _Class('LPVideoAttachmentSubstitute') LPVideoProperties = _Class('LPVideoProperties') LPEventTimeline = _Class('LPEventTimeline') LPEvent = _Class('LPEvent') LPiTunesMediaStorefrontMappings = _Class('LPiTunesMediaStorefrontMappings') LPAppLinkPresentationProperties = _Class('LPAppLinkPresentationProperties') LPMetadataProviderSpecializationContext = _Class('LPMetadataProviderSpecializationContext') LPWebLinkPresentationProperties = _Class('LPWebLinkPresentationProperties') LPCardHeadingPresentationProperties = _Class('LPCardHeadingPresentationProperties') LPFullScreenVideoController = _Class('LPFullScreenVideoController') LPMetadataProvider = _Class('LPMetadataProvider') LPMIMETypeRegistry = _Class('LPMIMETypeRegistry') LPiTunesMediaMovieBundleUnresolvedMetadata = _Class('LPiTunesMediaMovieBundleUnresolvedMetadata') LPiTunesMediaMovieUnresolvedMetadata = _Class('LPiTunesMediaMovieUnresolvedMetadata') LPiTunesMediaTVShowUnresolvedMetadata = _Class('LPiTunesMediaTVShowUnresolvedMetadata') LPiTunesMediaTVSeasonUnresolvedMetadata = _Class('LPiTunesMediaTVSeasonUnresolvedMetadata') LPiTunesMediaTVEpisodeUnresolvedMetadata = _Class('LPiTunesMediaTVEpisodeUnresolvedMetadata') LPiTunesMediaPodcastUnresolvedMetadata = _Class('LPiTunesMediaPodcastUnresolvedMetadata') LPiTunesMediaPodcastEpisodeUnresolvedMetadata = _Class('LPiTunesMediaPodcastEpisodeUnresolvedMetadata') LPiTunesMediaAudioBookUnresolvedMetadata = _Class('LPiTunesMediaAudioBookUnresolvedMetadata') LPiTunesMediaBookUnresolvedMetadata = _Class('LPiTunesMediaBookUnresolvedMetadata') LPiTunesMediaSoftwareUnresolvedMetadata = _Class('LPiTunesMediaSoftwareUnresolvedMetadata') LPiTunesMediaRadioUnresolvedMetadata = _Class('LPiTunesMediaRadioUnresolvedMetadata') LPiTunesMediaPlaylistUnresolvedMetadata = _Class('LPiTunesMediaPlaylistUnresolvedMetadata') LPiTunesMediaArtistUnresolvedMetadata = _Class('LPiTunesMediaArtistUnresolvedMetadata') LPiTunesMediaMusicVideoUnresolvedMetadata = _Class('LPiTunesMediaMusicVideoUnresolvedMetadata') LPiTunesMediaAlbumUnresolvedMetadata = _Class('LPiTunesMediaAlbumUnresolvedMetadata') LPiTunesMediaSongUnresolvedMetadata = _Class('LPiTunesMediaSongUnresolvedMetadata') LPiTunesMediaAsset = _Class('LPiTunesMediaAsset') LPMediaPlaybackManager = _Class('LPMediaPlaybackManager') LPiTunesMediaOffer = _Class('LPiTunesMediaOffer') LPiTunesMediaLookupItemArtwork = _Class('LPiTunesMediaLookupItemArtwork') LPiTunesStoreInformation = _Class('LPiTunesStoreInformation') LPSettings = _Class('LPSettings') LPSharingMetadataWrapper = _Class('LPSharingMetadataWrapper') LPImagePresentationProperties = _Class('LPImagePresentationProperties') LPCaptionBarPresentationProperties = _Class('LPCaptionBarPresentationProperties') LPCaptionRowPresentationProperties = _Class('LPCaptionRowPresentationProperties') LPCaptionPresentationProperties = _Class('LPCaptionPresentationProperties') LPCaptionButtonPresentationProperties = _Class('LPCaptionButtonPresentationProperties') LPVideoViewConfiguration = _Class('LPVideoViewConfiguration') LPApplicationCompatibilityQuirks = _Class('LPApplicationCompatibilityQuirks') LPURLSuffixChecker = _Class('LPURLSuffixChecker') LPFetcherGroup = _Class('LPFetcherGroup') LPFetcherGroupTask = _Class('LPFetcherGroupTask') LPFetcherConfiguration = _Class('LPFetcherConfiguration') LPLinkMetadataStatusTransformer = _Class('LPLinkMetadataStatusTransformer') LPAssociatedApplicationMetadata = _Class('LPAssociatedApplicationMetadata') LPSpecializationMetadata = _Class('LPSpecializationMetadata') LPSummarizedLinkMetadata = _Class('LPSummarizedLinkMetadata') LPAppStoreStoryMetadata = _Class('LPAppStoreStoryMetadata') LPWalletPassMetadata = _Class('LPWalletPassMetadata') LPBusinessChatMetadata = _Class('LPBusinessChatMetadata') LPSharingStatusMetadata = _Class('LPSharingStatusMetadata') LPApplePhotosStatusMetadata = _Class('LPApplePhotosStatusMetadata') LPApplePhotosMomentMetadata = _Class('LPApplePhotosMomentMetadata') LPAppleTVMetadata = _Class('LPAppleTVMetadata') LPAppleNewsMetadata = _Class('LPAppleNewsMetadata') LPFileMetadata = _Class('LPFileMetadata') LPMapCollectionPublisherMetadata = _Class('LPMapCollectionPublisherMetadata') LPMapCollectionMetadata = _Class('LPMapCollectionMetadata') LPMapMetadata = _Class('LPMapMetadata') LPiCloudFamilyInvitationMetadata = _Class('LPiCloudFamilyInvitationMetadata') LPGameCenterInvitationMetadata = _Class('LPGameCenterInvitationMetadata') LPiCloudSharingMetadata = _Class('LPiCloudSharingMetadata') LPiTunesMediaMovieBundleMetadata = _Class('LPiTunesMediaMovieBundleMetadata') LPiTunesMediaMovieMetadata = _Class('LPiTunesMediaMovieMetadata') LPAppleMusicTVShowMetadata = _Class('LPAppleMusicTVShowMetadata') LPiTunesMediaTVSeasonMetadata = _Class('LPiTunesMediaTVSeasonMetadata') LPiTunesMediaTVEpisodeMetadata = _Class('LPiTunesMediaTVEpisodeMetadata') LPiTunesMediaPodcastMetadata = _Class('LPiTunesMediaPodcastMetadata') LPiTunesMediaPodcastEpisodeMetadata = _Class('LPiTunesMediaPodcastEpisodeMetadata') LPiTunesMediaAudioBookMetadata = _Class('LPiTunesMediaAudioBookMetadata') LPiTunesMediaBookMetadata = _Class('LPiTunesMediaBookMetadata') LPiTunesMediaSoftwareMetadata = _Class('LPiTunesMediaSoftwareMetadata') LPiTunesMediaRadioMetadata = _Class('LPiTunesMediaRadioMetadata') LPiTunesMediaPlaylistMetadata = _Class('LPiTunesMediaPlaylistMetadata') LPiTunesUserProfileMetadata = _Class('LPiTunesUserProfileMetadata') LPiTunesMediaArtistMetadata = _Class('LPiTunesMediaArtistMetadata') LPiTunesMediaMusicVideoMetadata = _Class('LPiTunesMediaMusicVideoMetadata') LPiTunesMediaAlbumMetadata = _Class('LPiTunesMediaAlbumMetadata') LPiTunesMediaSongMetadata = _Class('LPiTunesMediaSongMetadata') LPAudioMetadata = _Class('LPAudioMetadata') LPVideoMetadata = _Class('LPVideoMetadata') LPArtworkMetadata = _Class('LPArtworkMetadata') LPImageMetadata = _Class('LPImageMetadata') LPIconMetadata = _Class('LPIconMetadata') LPLinkMetadata = _Class('LPLinkMetadata') LPPlaceholderLinkMetadata = _Class('LPPlaceholderLinkMetadata') LPLinkHTMLGenerator = _Class('LPLinkHTMLGenerator') LPApplicationIdentification = _Class('LPApplicationIdentification') LPImageRemoteURLRepresentation = _Class('LPImageRemoteURLRepresentation') LPImage = _Class('LPImage') LPImageAttachmentSubstitute = _Class('LPImageAttachmentSubstitute') LPImageProperties = _Class('LPImageProperties') LPMetadataProviderSpecialization = _Class('LPMetadataProviderSpecialization') LPAppleMapsMetadataProviderSpecialization = _Class('LPAppleMapsMetadataProviderSpecialization') LPFileMetadataProviderSpecialization = _Class('LPFileMetadataProviderSpecialization') LPiCloudSharingMetadataProviderSpecialization = _Class('LPiCloudSharingMetadataProviderSpecialization') LPAppStoreStoryMetadataProviderSpecialization = _Class('LPAppStoreStoryMetadataProviderSpecialization') LPAppleTVMetadataProviderSpecialization = _Class('LPAppleTVMetadataProviderSpecialization') LPApplePhotosMetadataProviderSpecialization = _Class('LPApplePhotosMetadataProviderSpecialization') LPiTunesMediaMetadataProviderSpecialization = _Class('LPiTunesMediaMetadataProviderSpecialization') LPAppleNewsMetadataProviderSpecialization = _Class('LPAppleNewsMetadataProviderSpecialization') LPRedditMetadataProviderSpecialization = _Class('LPRedditMetadataProviderSpecialization') LPStreamingMediaMetadataProviderSpecialization = _Class('LPStreamingMediaMetadataProviderSpecialization') LPInlineMediaPlaybackInformation = _Class('LPInlineMediaPlaybackInformation') LPLinkMetadataPreviewTransformer = _Class('LPLinkMetadataPreviewTransformer') LPFetcherResponse = _Class('LPFetcherResponse') LPFetcherClipMetadataResponse = _Class('LPFetcherClipMetadataResponse') LPFetcherErrorResponse = _Class('LPFetcherErrorResponse') LPFetcherURLResponse = _Class('LPFetcherURLResponse') LPFetcherStringResponse = _Class('LPFetcherStringResponse') LPFetcherJSONResponse = _Class('LPFetcherJSONResponse') LPFetcherImageResponse = _Class('LPFetcherImageResponse') LPFetcherAccessibilityEnabledImageResponse = _Class('LPFetcherAccessibilityEnabledImageResponse') LPFetcherAudioResponse = _Class('LPFetcherAudioResponse') LPFetcherAccessibilityEnabledAudioResponse = _Class('LPFetcherAccessibilityEnabledAudioResponse') LPFetcherVideoResponse = _Class('LPFetcherVideoResponse') LPFetcherAccessibilityEnabledVideoResponse = _Class('LPFetcherAccessibilityEnabledVideoResponse') LPFetcher = _Class('LPFetcher') LPAssociatedApplicationMetadataFetcher = _Class('LPAssociatedApplicationMetadataFetcher') LPURLFetcher = _Class('LPURLFetcher') LPMediaAssetFetcher = _Class('LPMediaAssetFetcher') LPCSSResolver = _Class('LPCSSResolver') LPCSSVariable = _Class('LPCSSVariable') LPHTMLComponent = _Class('LPHTMLComponent') LPEmailCompatibleHTMLCaptionBarRowComponent = _Class('LPEmailCompatibleHTMLCaptionBarRowComponent') LPHTMLTextComponent = _Class('LPHTMLTextComponent') LPEmailCompatibleHTMLVerticalTextStackComponent = _Class('LPEmailCompatibleHTMLVerticalTextStackComponent') LPEmailCompatibleHTMLQuoteComponent = _Class('LPEmailCompatibleHTMLQuoteComponent') LPHTMLImageComponent = _Class('LPHTMLImageComponent') LPHTMLTapToLoadComponent = _Class('LPHTMLTapToLoadComponent') LPEmailCompatibleHTMLCaptionBarItemComponent = _Class('LPEmailCompatibleHTMLCaptionBarItemComponent') LPEmailCompatibleHTMLTextComponent = _Class('LPEmailCompatibleHTMLTextComponent') LPEmailCompatibleHTMLLinkComponent = _Class('LPEmailCompatibleHTMLLinkComponent') LPHTMLVideoComponent = _Class('LPHTMLVideoComponent') LPHTMLLinkComponent = _Class('LPHTMLLinkComponent') LPHTMLImageContainerComponent = _Class('LPHTMLImageContainerComponent') LPEmailCompatibleHTMLTableComponent = _Class('LPEmailCompatibleHTMLTableComponent') LPHTMLCaptionBarAccessoryComponent = _Class('LPHTMLCaptionBarAccessoryComponent') LPHTMLMultipleImageComponent = _Class('LPHTMLMultipleImageComponent') LPHTMLIconComponent = _Class('LPHTMLIconComponent') LPHTMLHorizontalCaptionPairComponent = _Class('LPHTMLHorizontalCaptionPairComponent') LPHTMLCaptionBarComponent = _Class('LPHTMLCaptionBarComponent') LPHTMLGlyphComponent = _Class('LPHTMLGlyphComponent') LPEmailCompatibleHTMLInnerLinkComponent = _Class('LPEmailCompatibleHTMLInnerLinkComponent') LPHTMLVerticalTextStackComponent = _Class('LPHTMLVerticalTextStackComponent') LPEmailCompatibleHTMLImageComponent = _Class('LPEmailCompatibleHTMLImageComponent') LPEmailCompatibleHTMLIconComponent = _Class('LPEmailCompatibleHTMLIconComponent') LPHTMLQuoteComponent = _Class('LPHTMLQuoteComponent') LPEmailCompatibleHTMLCaptionBarComponent = _Class('LPEmailCompatibleHTMLCaptionBarComponent') LPActionDisablingCALayerDelegate = _Class('LPActionDisablingCALayerDelegate') LPiTunesMediaLookupTask = _Class('LPiTunesMediaLookupTask') LPHighlightGestureRecognizer = _Class('LPHighlightGestureRecognizer') LPYouTubePlayerView = _Class('LPYouTubePlayerView') LPLinkView = _Class('LPLinkView') LPPlayButtonShapeView = _Class('LPPlayButtonShapeView') LPAnimationMaskView = _Class('LPAnimationMaskView') LPFlippedView = _Class('LPFlippedView') LPComponentView = _Class('LPComponentView') LPTapToLoadView = _Class('LPTapToLoadView') LPCaptionBarButtonView = _Class('LPCaptionBarButtonView') LPDomainNameIndicator = _Class('LPDomainNameIndicator') LPCaptionBarView = _Class('LPCaptionBarView') LPPlayButtonView = _Class('LPPlayButtonView') LPCaptionBarAccessoryView = _Class('LPCaptionBarAccessoryView') LPTextView = _Class('LPTextView') LPImageView = _Class('LPImageView') LPImageStackView = _Class('LPImageStackView') LPVerticalTextStackView = _Class('LPVerticalTextStackView') LPIndeterminateProgressSpinnerView = _Class('LPIndeterminateProgressSpinnerView') LPMultipleImageView = _Class('LPMultipleImageView') LPHorizontalCaptionPairView = _Class('LPHorizontalCaptionPairView') LPVideoView = _Class('LPVideoView') LPYouTubeVideoView = _Class('LPYouTubeVideoView') LPStreamingVideoView = _Class('LPStreamingVideoView') LPPlayButtonControl = _Class('LPPlayButtonControl') LPPlaceholderPlayButtonControl = _Class('LPPlaceholderPlayButtonControl') LPStreamingAudioPlayButtonControl = _Class('LPStreamingAudioPlayButtonControl') LPiTunesPlayButtonControl = _Class('LPiTunesPlayButtonControl') LPAVPlayerViewController = _Class('LPAVPlayerViewController')
python
### Worker threads and payloads for sending web requests from enum import Enum from threading import Thread import requests from requests.adapters import HTTPAdapter from bs4 import BeautifulSoup as bs from urllib.parse import urljoin # The Worker class is reused for both stages of execution, so it needs to be able to differentiate itself. class WorkerType(Enum): CSS_SCRAPER = 1 CSS_GETTER = 2 class HTTPWorker(Thread): """Worker thread to send GET requests to all websites, gathering their styling""" def __init__(self, request_queue, type): Thread.__init__(self) # Request queue to store links self.queue = request_queue # Different worker types have different payloads to execute on their data self.type = type if type == WorkerType.CSS_SCRAPER: self.payload = scrape_style elif type == WorkerType.CSS_GETTER: self.payload = scrape_urls else: # If somehow something else is passed in, throw an error raise TypeError("Invalid Worker Type") self.results = {} # Initialising HTTP session to get websites, with a real-looking useragent and 5 maximum retries to keep it quick self.session = requests.Session() self.session.mount("https://", HTTPAdapter(max_retries=3)) self.session.mount("https://", HTTPAdapter(max_retries=3)) self.session.headers["User-Agent"] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36 Edg/100.0.1185.50" def run(self): # Each worker thread remains alive until there are no links left while not self.queue.empty(): content = self.queue.get() try: # Slightly different handling is required for different types due to datatypes # Could probably be fixed if self.type == WorkerType.CSS_SCRAPER: response = self.payload(self.session,content) self.results[content] = response elif self.type == WorkerType.CSS_GETTER: response = self.payload(self.session, content) self.results[content[0]] = response except: continue finally: # Mark the website as complete even if error occurs so other threads to not try to get it repeatedly self.queue.task_done() def join(self,timeout=None): # Gracefull exit thread by closing http session, would probably be done automatically anyway self.session.close() Thread.join(self, timeout) ### PAYLOADS FUNCTIONS ### def scrape_style(session, url): # Returns tuple of external css links and code from <style> tags print("Getting "+url) html = session.get(url,timeout=3).text # Using beautifulsoup to parse html and extra style/link tags soup = bs(html,'html.parser') css_files = [] css_tags = [] # Grab all in-html styling #!TODO Implement some inline styling, not sure if many websites use this for css in soup.find_all("style"): css_tags.append(css.text) for css in soup.find_all("link"): if css.attrs.get("href"): css_url=urljoin(url, css.attrs.get("href")) if "css" in css_url.lower(): css_files.append(css_url) # Return both results in a tuple, the function that receives the results can deal with that return (css_files,css_tags) def scrape_urls(session,data): # Simply request all external stylesheets and add contents to one long string for processing later print("Getting external styles for "+data[0]) res = "" for url in data[1]: res += session.get(url, timeout=3).text + "\n" return res
python
import os from datetime import datetime from flask import Flask, request, flash, url_for, redirect, \ render_template, abort, send_from_directory from doctor_api.app import doctor_api_bp from patient_api.app import patient_api_bp app = Flask(__name__) app.config.from_pyfile('flaskapp.cfg') app.register_blueprint(doctor_api_bp, url_prefix='/doctor-api') app.register_blueprint(patient_api_bp, url_prefix='/patient-api') @app.route('/') def index(): return render_template('index.html') @app.route('/<path:resource>') def serveStaticResource(resource): return send_from_directory('static/', resource) @app.route("/test") def test(): return "<strong>It's Alive!</strong>" if __name__ == '__main__': app.run(app.config['IP'], app.config['PORT'], debug=True)
python
# -*- coding: utf-8 -*- # trump-net (c) Ian Dennis Miller from flask_security import ConfirmRegisterForm from flask_wtf.recaptcha import RecaptchaField class ExtendedRegisterForm(ConfirmRegisterForm): recaptcha = RecaptchaField() def validate(self): rv = ConfirmRegisterForm.validate(self) if not rv: return False return True
python
from crestdsl.model import * # bad practice, but used for the evaluation of commands from .simulator import Simulator import logging logger = logging.getLogger(__name__) import io try: import colored from colored import stylize color_enabled = True except ImportError: color_enabled = False except io.UnsupportedOperation: color_enabled = False logger.error("There is an error in the 'colored' package. They use 'fileno'. I guess we have to wait for a fix.") import random import sys class InteractiveSimulator(Simulator): """ This is a simulator will stop every time two transitions are enabled in the same entity at the same time and prompt the user for what to do. Next to choosing a transition,uUsers can perform various actions (e.g. inspect variables, plot the system or stop the simulation. """ def select_transition_to_trigger(self, entity): """ Override the (random) transition selection procedure. This one asks the user for input.""" transitions_from_current_state = [t for t in get_transitions(entity) if t.source is entity.current] enabled_transitions = [t for t in transitions_from_current_state if self._get_transition_guard_value(t)] if len(enabled_transitions) == 1: return enabled_transitions[0] elif len(enabled_transitions) > 1: if color_enabled: return self.prompt_transition_selection(entity, enabled_transitions) else: return self.prompt_transition_selection_no_colored(entity, enabled_transitions) else: return None def prompt_transition_selection_no_colored(self, entity, enabled_transitions): pad = 1 if len(enabled_transitions) <= 10 else 2 transitions_texts = [idx.rjust(pad) + f" ... {trans._name} (transition to '{trans.target._name}')" for idx, trans in enumerate(enabled_transitions)] transitions_list = "\n".join(transitions_texts) longtext = f""" Non-Determinism detected There are multiple enabled transitions in entity: {str(entity)} (Current time: {self.global_time} -- Current automaton state: {entity.current._name}) Choose one of the following transitions by entering the according number: {transitions_list} Other commands: r ... choose a transition randomly p ... plot the system pe ... plot the entity in which non-determinism occurs q! ... to exit the script (not recommended in Jupyter mode) Any other input will be interpreted. This means you can use it to e.g. inspect ports values. The entity {str(entity)} is bound to the variable 'entity'. Example: entity.my_port.value will print the value of port my_port. """ print(longtext) while True: prompt = "Your choice: " userinput = input(prompt).strip() # read input if userinput == "p": self.plot() elif userinput == "pe": self.plot(entity=entity) elif userinput == "r": return random.choice(enabled_transitions) elif userinput == "q!": sys.exit() elif userinput in [str(idx) for idx in range(len(enabled_transitions))]: choice = int(userinput) return enabled_transitions[choice] # <<<<< This is the exit of the function, otherwise we're trapped !! else: try: print(eval(userinput)) except: text = f"I don't understand the input: " + \ userinput + \ f" (Please try again!)" print(text) def prompt_transition_selection(self, entity, enabled_transitions): pad = 1 if len(enabled_transitions) <= 10 else 2 transitions_texts = [stylize(idx, colored.attr("bold")).rjust(pad) + f" ... {trans._name} (transition to '{trans.target._name}')" for idx, trans in enumerate(enabled_transitions)] transitions_list = "\n".join(transitions_texts) longtext = f""" {stylize(' Non-Determinism detected ', colored.fg('black') + colored.bg('dark_orange') + colored.attr('bold'))} There are multiple enabled transitions in entity: {stylize(' '+str(entity)+' ', colored.fg('black') + colored.bg('yellow_1') + colored.attr('bold'))} (Current time: {stylize(self.global_time, colored.attr("bold"))} -- Current automaton state: {stylize(entity.current._name, colored.attr("bold"))}) {stylize('Choose one of the following transitions by entering the according number:', colored.attr('underlined'))} {transitions_list} {stylize('Other commands:', colored.attr('underlined'))} {stylize('r', colored.attr("bold"))} ... choose a transition randomly {stylize('p', colored.attr("bold"))} ... plot the system {stylize('pe', colored.attr("bold"))} ... plot the entity in which non-determinism occurs {stylize('q!', colored.attr("bold"))} ... to exit the script (not recommended in Jupyter mode) {stylize('Any other input will be interpreted.', colored.attr('underlined'))} This means you can use it to e.g. inspect ports values. The entity {stylize(str(entity), colored.attr('bold'))} is bound to the variable {stylize('entity', colored.attr('bold'))}. {stylize('Example:', colored.attr('underlined'))} entity.my_port.value will print the value of port my_port. """ print(longtext) while True: prompt = "Your choice: " userinput = input(prompt).strip() # read input if userinput == "p": self.plot() elif userinput == "pe": self.plot(entity=entity) elif userinput == "r": return random.choice(enabled_transitions) elif userinput == "q!": sys.exit() elif userinput in [str(idx) for idx in range(len(enabled_transitions))]: choice = int(userinput) return enabled_transitions[choice] # <<<<< This is the exit of the function, otherwise we're trapped !! else: try: print(eval(userinput)) except: text = stylize(f"I don't understand the input: ", colored.fg("red") + colored.attr("bold")) + \ userinput + \ stylize(f" (Please try again!)", colored.fg("red") + colored.attr("bold")) print(text)
python
# # Constant Price Market Making Simulator # # simulate different liquidity provision and trading strategies # from typing import Tuple import csv import numpy as np import pandas as pd from numpy.random import binomial, default_rng # TODO: switch to decimal type and control quantization. numeric errors will kill us quickly class CPMM(object): def __init__(self, fee_fraction = 0, fee_to_liquidity_fraction = 0) -> None: # assert(fee_fraction >= fee_to_liquidity_fraction) # amount of initial liquidity provided self.initial_liquidity = 0 # total amount of liquidity self.liquidity = 0 # total amount of collateral token self.lp_token = 0 # yes tokens in the pool self.lp_yes = 0 # no tokens in the pool self.lp_no = 0 # outstanding tokens held by LP self.outstanding_yes = 0 self.outstanding_no = 0 self.fee_pool = 0 self.history = [] self.fee_fraction = fee_fraction self.fee_to_liquidity_fraction = fee_to_liquidity_fraction # how much from the fee is reinvested to liqudity provision def create_event(self, intial_liquidity, initial_yes_to_no = 1) -> Tuple[int, float]: assert(initial_yes_to_no > 0) self.initial_liquidity = intial_liquidity rv = self._add_liquidity(intial_liquidity, initial_yes_to_no) n_p = self.lp_yes / self.lp_no # print(f"invariant P {initial_yes_to_no} {n_p}") assert(abs(initial_yes_to_no - n_p) < 0.000001) return rv def add_liquidity(self, amount) -> Tuple[int, float]: assert(self.lp_token > 0) # yes to no must be invariant when liquidity is added p = self.lp_yes / self.lp_no rv = self._add_liquidity(amount, p) n_p = self.lp_yes / self.lp_no # assert invariant, we use float and disregard rounding so must be within e ~ 0 # print(f"invariant P {p} {n_p}") assert(abs(p - n_p) < 0.000001) return rv def _add_liquidity(self, amount, yes_to_no) -> Tuple[int, float]: # print("adding liquidity:", amount) self.liquidity += amount self.lp_token += amount # get token type from the ratio type = 1 if yes_to_no >= 1 else 0 if type: # more into YES bucket, NO is returned old_lp_no = self.lp_no self.lp_no = (amount + self.lp_yes) / yes_to_no self.lp_yes += amount tokens_return = amount + old_lp_no - self.lp_no self.outstanding_no += tokens_return else: # more into NO bucket, YES is returned old_lp_yes = self.lp_yes self.lp_yes = (amount + self.lp_no) * yes_to_no self.lp_no += amount tokens_return = amount + old_lp_yes - self.lp_yes self.outstanding_yes += tokens_return entry = ["add", "liquidity", amount, 0, yes_to_no, 0, tokens_return, self.lp_yes, self.lp_no, self.lp_token, self.liquidity, self.fee_pool, 0 ,0] self._add_history(entry) # should return amount of outcome token return (type, amount) # def remove_liquidity(amount): def buy_token(self, type, original_amount) -> Tuple[int, float]: #yes=1 | no = 0 # take fee before any operation and store in fee_pool fee = original_amount * self.fee_fraction amount = original_amount - fee self.fee_pool += fee # adding fee_to_liquidity fraction to liquidity fee pool # note: liquidity is provided before buy such that added liquidity is available for current transaction if (self.fee_to_liquidity_fraction > 0): reinvest_fee = fee * self.fee_to_liquidity_fraction self.add_liquidity(reinvest_fee) # keep invariant k = (self.lp_yes * self.lp_no) # add liquidity self.lp_token += amount if type: tokens_return, x = self.calc_buy(type, amount) buy_price_yes = amount / tokens_return # calc slippage slippage_yes = self.calc_slippage(type, amount) assert (slippage_yes > 0), f"slippage_yes {slippage_yes} <= 0" # remove returned token form the pool, keep all no tokens self.lp_yes += x self.lp_no += amount entry = ["buy", "yes", original_amount, fee, buy_price_yes, slippage_yes, tokens_return, self.lp_yes, self.lp_no, self.lp_token, self.liquidity, self.fee_pool, 0, 0] else: tokens_return, x = self.calc_buy(type, amount) buy_price_no = amount / tokens_return slippage_no = self.calc_slippage(type, amount) assert (slippage_no > 0), f"slippage_no {slippage_no} <= 0" # remove returned token form the pool, keep all yes tokens self.lp_no += x self.lp_yes += amount entry = ["buy", "no", original_amount, fee, buy_price_no, slippage_no, tokens_return, self.lp_yes, self.lp_no, self.lp_token, self.liquidity, self.fee_pool, 0, 0] # assert invariant, we use float and disregard rounding so must be within e ~ 0 inv_div = abs(k - (self.lp_yes * self.lp_no)) # use variable epsilon - float numbers suck due to scaling inv_eps = min(self.lp_no, self.lp_yes) / 100000000 if inv_div > inv_eps : print(f"invariant K {k} {self.lp_yes * self.lp_no} == {inv_div}, lp_yes {self.lp_yes} lp_no {self.lp_no} eps {inv_eps}") assert(inv_div < inv_eps) impermanent_loss = self.calc_impermanent_loss() assert(impermanent_loss >= 0) # outstanding yes/no token may be converted at event outcome to reward or immediately traded outstanding_token = self.calc_outstanding_token() # impermanent loss at last position in history entry entry[-2] = impermanent_loss entry[-1] = outstanding_token[1] self._add_history(entry) return (type, tokens_return) def calc_withdrawable_liquidity(self) -> float: # collateral taken from the pool and tokens returned when adding liquidity return min(self.lp_yes + self.outstanding_yes, self.lp_no + self.outstanding_no) def calc_payout(self) -> float: # how big is reward after all liquidity is removed return self.lp_token - self.calc_withdrawable_liquidity() def calc_outstanding_token(self) -> Tuple[int, float]: # outcome tokens going to LP on top of removed liquidity withdraw_token = self.calc_withdrawable_liquidity() total_yes = self.lp_yes + self.outstanding_yes total_no = self.lp_no + self.outstanding_no if total_yes > total_no: outstanding_token = (1, total_yes - withdraw_token) else: outstanding_token = (0, total_no - withdraw_token) return outstanding_token def calc_impermanent_loss(self) -> float: withdraw_token = self.calc_withdrawable_liquidity() return self.liquidity - withdraw_token def calc_buy(self, type, amount) -> Tuple[float, float]: k = (self.lp_yes * self.lp_no) if type: x = k / (self.lp_no + amount) - self.lp_yes else: x = k / (self.lp_yes + amount) - self.lp_no # (tokens returned to the user, amm pool delta) return amount - x, x def calc_marginal_price(self, type) -> float: pool_total = (self.lp_no + self.lp_yes) return (self.lp_no if type else self.lp_yes) / pool_total def calc_slippage(self, type, amount) -> float: tokens_return, _ = self.calc_buy(type, amount) buy_price = amount / tokens_return marginal_price = self.calc_marginal_price(type) return (buy_price - marginal_price) / buy_price @staticmethod def calc_british_odds(returned_tokens, amount) -> float: # british odds https://www.investopedia.com/articles/investing/042115/betting-basics-fractional-decimal-american-moneyline-odds.asp # shows the reward on top of stake as a decimal fraction to the stake # (TODO: we could use Fraction class of python for nice odds representation) # may be negative when due to cpmm inefficiencies return (returned_tokens - amount) / amount # def sell_token(type, amount): # def get_buy_price_yes(): # def get_sell_price_yes(): _csv_headers = [ "activity", "type", "amount", "fee", "token_buy_sell_price", "slippage", "returned tokens", "lp_yes", "lp_no", "lp_token", "liquidity", "fee_pool", "impermanent_loss", "loss_outstanding_tokens" ] @property def history_as_dataframe(self) -> pd.DataFrame: return pd.DataFrame(data=self.history, columns=CPMM._csv_headers) def save_history(self, name) -> None: df = self.history_as_dataframe with open(name, "wt") as f: df.to_csv(f, index=False, quoting=csv.QUOTE_NONNUMERIC) def _add_history(self, entry) -> None: # check entry size assert(len(entry) == len(CPMM._csv_headers)) self.history.append(entry) def run_experiment(name, cpmm: CPMM, n, prior_dist, betting_dist): # TODO: must have realistic model for betting behavior, for example # total bets volume cannot cross % of liquidity # individual bet cannot have slippage > 1% etc. bet_outcomes = prior_dist(n) bet_amounts = betting_dist(n) print(f"{name}: bet outcomes N/Y {np.bincount(bet_outcomes)}") for b, amount in zip(bet_outcomes, bet_amounts): cpmm.buy_token(b, amount) # print(cpmm.history) cpmm.save_history(f"{name}.csv") def main(): rng = default_rng() # experiment 1 # 1000 rounds, initial liquidity 50:50 1000 EVNT, betters prior 50:50, bets integer uniform range [1, 100] cpmm = CPMM() cpmm.create_event(1000) run_experiment( "experiment1", cpmm, 1000, lambda size: rng.binomial(1, 0.5, size), lambda size: rng.integers(1, 100, endpoint=True, size=size) ) # experiment 2 # 1000 rounds, initial liquidity 50:50 1000 EVNT, betters prior 70:30, bets integer uniform range [1, 100] cpmm = CPMM() cpmm.create_event(1000) run_experiment( "experiment2", cpmm, 1000, lambda size: rng.binomial(1, 0.7, size), lambda size: rng.integers(1, 100, endpoint=True, size=size) ) # experiment 3 # 1000 rounds, initial liquidity 50:50 1000 EVNT, betters prior 70:30, bets integer uniform range [1, 100] # fee 2% taken and not added to liquidity pool cpmm = CPMM(fee_fraction=0.02) cpmm.create_event(1000) run_experiment( "experiment3", cpmm, 1000, lambda size: rng.binomial(1, 0.7, size), lambda size: rng.integers(1, 100, endpoint=True, size=size) ) # experiment 4 # 1000 rounds, initial liquidity 50:50 1000 EVNT, betters prior 50:50, bets integer uniform range [1, 100] # fee 2% taken and 50% added to liquidity pool cpmm = CPMM(fee_fraction=0.02, fee_to_liquidity_fraction=0.5) cpmm.create_event(1000) run_experiment( "experiment4", cpmm, 1000, lambda size: rng.binomial(1, 0.5, size), lambda size: rng.integers(1, 100, endpoint=True, size=size) ) # experiment 5 # 1000 rounds, initial liquidity 1:3 1000 EVNT, betters prior 50:50, bets integer uniform range [1, 100] # fee 2% taken and 50% added to liquidity pool cpmm = CPMM(fee_fraction=0.02, fee_to_liquidity_fraction=0.5) cpmm.create_event(1000) run_experiment( "experiment5", cpmm, 1000, lambda size: rng.binomial(1, 0.5, size), lambda size: rng.integers(1, 100, endpoint=True, size=size) ) if __name__ == "__main__": main()
python
load("@bazel_gazelle//:deps.bzl", "go_repository") def load_external_go_repositories(): ########## Server request handling ############### go_repository( name = "com_github_andybalholm_brotli", importpath = "github.com/andybalholm/brotli", commit = "1d750214c25205863625bb3eb8190a51b2cef26d", # Sep 22, 2021 ) go_repository( name = "com_github_valyala_bytebufferpool", importpath = "github.com/valyala/bytebufferpool", commit = "18533face0dfe7042f8157bba9010bd7f8df54b1", # Nov 4, 2020 ) go_repository( name = "com_github_klauspost_compress", importpath = "github.com/klauspost/compress", tag = "v1.14.2", # Jan 25, 2022 ) go_repository( name = "com_github_valyala_fasthttp", importpath = "github.com/valyala/fasthttp", tag = "v1.33.0", ) go_repository( name = "com_github_buaazp_fasthttprouter", importpath = "github.com/buaazp/fasthttprouter", tag = "979d6e516ec324575737805deabe0303794c58bd", # Jan 9, 2019 ) ########## Logging ############### go_repository( name = "org_uber_go_atomic", importpath = "go.uber.org/atomic", tag = "v1.9.0", # Jul 15, 2021 ) go_repository( name = "org_uber_go_multierr", importpath = "go.uber.org/multierr", tag = "v1.7.0", # May 6, 2021 ) go_repository( name = "org_uber_go_zap", importpath = "go.uber.org/zap", tag = "v1.21.0", # Feb 7, 2022 )
python
from datapackage_pipelines.wrapper import ingest, spew from datapackage_pipelines.utilities.resources import PROP_STREAMING from nli_z3950.load_marc_data import get_marc_records_schema, parse_record from pymarc.marcxml import parse_xml_to_array import datetime, json def get_resource(parameters, stats): stats['search_rows'] = 0 for filenum in parameters['filenums']: filepath = parameters['files-path-template'].format(filenum=filenum) search_id = 'neaman{}'.format(filenum) with open(filepath) as f: for record_num, record in enumerate(parse_xml_to_array(f)): row = parse_record(record) migdar_id = '{}-{}'.format(search_id, record_num) row.update(migdar_id=migdar_id, first_ccl_query='neaman{}.xml'.format(filenum), last_query_datetime=datetime.datetime.now(), json=json.loads(row['json'])) stats['search_rows'] += 1 yield row def get_resources(resources, parameters, stats): for resource in resources: yield resource yield get_resource(parameters, stats) def get_datapackage(datapackage): schema = get_marc_records_schema() schema['fields'] += [{'name': 'migdar_id', 'type': 'string'}, {'name': 'first_ccl_query', 'type': 'string'}, {'name': 'last_query_datetime', 'type': 'datetime'}, {'name': 'json', 'type': 'object'}] datapackage['resources'].append({'name': 'search_haifa_files', 'path': 'search_haifa_files.csv', PROP_STREAMING: True, 'schema': schema}) return datapackage def main(): parameters, datapackage, resources, stats = ingest() + ({},) spew(get_datapackage(datapackage), get_resources(resources, parameters, stats), stats) if __name__ == '__main__': main()
python
import os import sqlite3 class DatabaseRepository: def __init__(self, database_file, schema_file): db_is_new = not os.path.exists(database_file) self.connection = sqlite3.connect(database_file, check_same_thread=False) if db_is_new: with open(schema_file, 'rt') as f: schema = f.read() self.connection.executescript(schema) def close_db(self): self.connection.commit() self.connection.close()
python
"""Utility methods for interacting with Kubernetes API server. This module is merged into the `metalk8s_kubernetes` execution module, by virtue of its `__virtualname__`. """ from __future__ import absolute_import from salt.exceptions import CommandExecutionError import salt.utils.files import salt.utils.templates import salt.utils.yaml MISSING_DEPS = [] try: import kubernetes.client from kubernetes.client.rest import ApiException except ImportError: MISSING_DEPS.append("kubernetes.client") try: import kubernetes.config except ImportError: MISSING_DEPS.append("kubernetes.config") try: from urllib3.exceptions import HTTPError except ImportError: MISSING_DEPS.append("urllib3") __virtualname__ = "metalk8s_kubernetes" def __virtual__(): if MISSING_DEPS: return False, "Missing dependencies: {}".format(", ".join(MISSING_DEPS)) return __virtualname__ def get_kubeconfig(**kwargs): """ Get the kubeconfig and context from args or directly pillar or from salt-master configuration. Pillar value from `metalk8s.api_server.kubeconfig` and `metalk8s.api_server.context` Salt master config from `kubernetes.kubeconfig` and `kubernetes.context` CLI Examples: .. code-block:: bash salt-call metalk8s_kubernetes.get_kubeconfig kubeconfig="/etc/kubernetes/admin.conf" salt-call metalk8s_kubernetes.get_kubeconfig Code Example: .. code-block:: python kubeconfig, context = __salt__['metalk8s_kubernetes.get_kubeconfig'](**kwargs) """ pillar_dict = __pillar__.get("metalk8s", {}).get("api_server", {}) kubeconfig = ( kwargs.get("kubeconfig") or pillar_dict.get("kubeconfig") or __salt__["config.option"]("kubernetes.kubeconfig") ) context = ( kwargs.get("context") or pillar_dict.get("context") or __salt__["config.option"]("kubernetes.context") or None ) return kubeconfig, context def get_version_info(**kwargs): """Retrieve the API server version information, as a dict. The result contains various version details to be as exhaustive as possible. CLI Example: salt '*' metalk8s_kubernetes.get_version_info """ kubeconfig, context = get_kubeconfig(**kwargs) api_client = kubernetes.config.new_client_from_config( config_file=kubeconfig, context=context ) api_instance = kubernetes.client.VersionApi(api_client=api_client) try: version_info = api_instance.get_code() except (ApiException, HTTPError) as exc: raise CommandExecutionError("Failed to get version info") from exc return version_info.to_dict() def ping(**kwargs): """Check connection with the API server. Returns True if a request could be made, False otherwise. CLI Example: salt '*' metalk8s_kubernetes.ping """ try: get_version_info(**kwargs) except CommandExecutionError: return False return True def read_and_render_yaml_file(source, template, context=None, saltenv="base"): """ Read a yaml file and, if needed, renders that using the specifieds templating. Returns the python objects defined inside of the file. """ sfn = __salt__["cp.cache_file"](source, saltenv) if not sfn: raise CommandExecutionError("Source file '{0}' not found".format(source)) if not context: context = {} with salt.utils.files.fopen(sfn, "r") as src: contents = src.read() if template: if template in salt.utils.templates.TEMPLATE_REGISTRY: data = salt.utils.templates.TEMPLATE_REGISTRY[template]( contents, from_str=True, to_str=True, context=context, saltenv=saltenv, grains=__grains__, pillar=__pillar__, salt=__salt__, opts=__opts__, ) if not data["result"]: # Failed to render the template raise CommandExecutionError( "Failed to render file path with error: " "{0}".format(data["data"]) ) contents = data["data"].encode("utf-8") else: raise CommandExecutionError( "Unknown template specified: {0}".format(template) ) return salt.utils.yaml.safe_load(contents) def get_service_endpoints(service, namespace, kubeconfig): error_tpl = "Unable to get kubernetes endpoints for {} in namespace {}" try: endpoint = __salt__["metalk8s_kubernetes.get_object"]( name=service, kind="Endpoints", apiVersion="v1", namespace=namespace, kubeconfig=kubeconfig, ) if not endpoint: raise CommandExecutionError("Endpoint not found") except CommandExecutionError as exc: raise CommandExecutionError(error_tpl.format(service, namespace)) from exc try: result = [] for address in endpoint["subsets"][0]["addresses"]: # Extract hostname, ip and node_name res_ep = { k: v for k, v in address.items() if k in ["hostname", "ip", "node_name"] } # Add ports info to result dict res_ep["ports"] = { port["name"]: port["port"] for port in endpoint["subsets"][0]["ports"] } result.append(res_ep) except (AttributeError, IndexError, KeyError, TypeError) as exc: raise CommandExecutionError(error_tpl.format(service, namespace)) from exc return result
python
import logging.config import configparser import metrics from datetime import datetime import urllib.request from unittest import mock from requests import request from aiohttp.web import Response from jiracollector import JiraCollector import pytest config = configparser.ConfigParser() config.read('metrics.ini') logging.config.fileConfig(config.get('logging' ,'config_file'), defaults=None, disable_existing_loggers=True) logger = logging.getLogger() # Asserts that "happy-path" works, i.e the returned metrics from JiraCollector # is correctly converted and internal metrics are added to the cached metrics @mock.patch('jiracollector.JiraCollector.__init__',mock.Mock(return_value=None)) @mock.patch('jiracollector.JiraCollector.collect') def test_collect_metrics(mock_collector): metrics_dict = { "jira_total_done{project_name=\"BIP\"}":"42" } mock_collector.return_value = metrics_dict metrics.serviceIsReady = False metrics.collectJiraMetrics() assert metrics.serviceIsReady == True assert metrics.cachedMetrics == "jira_total_done{project_name=\"BIP\"} 42\njira_total_number_of_metrics 1\njira_total_execution_time_seconds 0\n" # Asserts that an exception is raised if init or collect from Jiracollector raises an exception @mock.patch('jiracollector.JiraCollector.__init__',side_effect=mock.Mock(side_effect=Exception("Just for testing exception Exception")), ) def test_collect_metrics_raises_exception_if_exception_from_jiracollector(mock_collector): metrics.serviceIsReady = False with pytest.raises(Exception): metrics.collectJiraMetrics() @mock.patch('requests.request') def test_alive_always_returns_200(mock_request): response = metrics.alive(mock_request) assert response.status == 200 @mock.patch('requests.request') def test_ready_returns_503_or_200_depending_on_serviceIsReady(mock_request): response = metrics.ready(mock_request) assert response.status == 503 metrics.serviceIsReady = True response = metrics.ready(mock_request) assert response.status == 200
python
""" MIT License mift - Copyright (c) 2021 Control-F Author: Mike Bangham (Control-F) Permission is hereby granted, free of charge, to any person obtaining a copy of this software, 'mift', and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from PyQt5.QtCore import pyqtSignal, QThread import os from os.path import join as pj from os.path import basename, abspath import zipfile import tarfile import logging from src.utils import resource_path class ExtractArchiveThread(QThread): finishedSignal = pyqtSignal(str) progressSignal = pyqtSignal(str) def __init__(self, parent, files_to_extract, save_dir, archive, maintain_dir_structure=False, key_dir=None): QThread.__init__(self, parent) self.files_to_extract = files_to_extract self.save_dir = save_dir self.archive = archive self.maintain_dir_structure = maintain_dir_structure self.key_dir = key_dir def run(self): os.makedirs(self.save_dir, exist_ok=True) if zipfile.is_zipfile(self.archive): self.progressSignal.emit('Archive is zipfile, processing members...') with zipfile.ZipFile(self.archive, 'r') as zip_obj: archive_members = zip_obj.namelist() if not self.maintain_dir_structure: for file_member in self.files_to_extract: # get the index of the file in the archive members file_idxs = [i for i, archive_member in enumerate(archive_members) if file_member in archive_member] if file_idxs: self.progressSignal.emit('Found {} to extract from the archive. ' 'Extracting...'.format(len(file_idxs))) for idx in file_idxs: if len(basename(archive_members[idx])) != 0: file = pj(self.save_dir, '{}'.format(basename(archive_members[idx]))) with open(file, 'wb') as file_out: zip_fmem = zip_obj.read(archive_members[idx]) file_out.write(zip_fmem) else: self.progressSignal.emit('Extracting files with base dir: {}/'.format(self.key_dir)) for archive_member in archive_members: if self.key_dir in archive_member: if archive_member.endswith('/'): os.makedirs(self.save_dir+'/'+archive_member, exist_ok=True) else: file = abspath(self.save_dir+'/{}'.format(archive_member)) try: with open(file, 'wb') as file_out: zip_fmem = zip_obj.read(archive_member) file_out.write(zip_fmem) except: logging.error('cant copy file: {}'.format(file)) else: self.progressSignal.emit('Archive is tarfile, processing members...') if not self.maintain_dir_structure: with tarfile.open(self.archive, 'r') as tar_obj: archive_members = tar_obj.getnames() for file_member in self.files_to_extract: # get the index of the file in the archive members file_idxs = [i for i, archive_member in enumerate(archive_members) if file_member in archive_member] if file_idxs: self.progressSignal.emit('Found {} to extract from the archive. ' 'Extracting...'.format(len(file_idxs))) for idx in file_idxs: if len(basename(archive_members[idx])) != 0: file = pj(self.save_dir, '{}'.format(basename(archive_members[idx]))) with open(file, 'wb') as file_out: tar_fmem = tar_obj.extractfile(archive_members[idx]) file_out.write(tar_fmem.read()) else: self.progressSignal.emit('Extracting files with base dir: {}/'.format(self.key_dir)) with tarfile.open(self.archive, 'r') as tar_obj: for member in tar_obj: if self.key_dir in member.name: if member.isdir(): os.makedirs(self.save_dir+'/'+member.name.replace(':', ''), exist_ok=True) else: file = self.save_dir+'/{}'.format(member.name.replace(':', '')) try: with open(file, 'wb') as file_out: tar_fmem = tar_obj.extractfile(member) file_out.write(tar_fmem.read()) except: logging.error('cant copy file: {}'.format(file)) self.finishedSignal.emit('Archive processed!')
python
from constant_sum import * if __name__ == "__main__": t = 56 n = 510 s = 510 for i in range(500): l = (T_len(t,n-i,s)) if l>0: print(log(l,2),t, n-i, s, t*n - s+i, t*n ) #for b in range(t, 1, -1): # p = 0 # k = min(n*(t - b + 1), s) # #k = s # print("b\ts\tlen\tbj\tbj") # for i in range(0, k+1): # aux = T_len(b-1, n, s- i) # p += aux # bjota = bj(i, b-1, n, s) # zjota = zj(i, b-1, n, s) # print("%d\t%d\t%d\t%d\t%d\t%d"%(b-1, s-i, aux, p, bjota, zjota)) """ t(45,145,952) Cv = 952 Cs = Cg = vs t(45, 72, 1006) Cv = 1006 Cs = Cg = """
python
from .statement_base import Statement import sasoptpy class DropStatement(Statement): @sasoptpy.class_containable def __init__(self, *elements): super().__init__() for i in elements: self.elements.append(i) self.keyword = 'drop' def append(self, element): pass def _defn(self): s = f'{self.keyword} ' cons = [] for c in self.elements: cons.extend(c._get_name_list()) s += ' '.join(cons) + ';' return s @classmethod def model_drop_constraint(cls, _, c): if sasoptpy.core.util.is_droppable(c): st = DropStatement(c) return st @classmethod def drop_constraint(cls, *constraints): if all([sasoptpy.core.util.is_droppable(c) for c in constraints]): st = DropStatement(*constraints) class RestoreStatement(DropStatement): def __init__(self, *elements): super().__init__(*elements) self.keyword = 'restore' @classmethod def restore_constraint(cls, *constraints): if all([sasoptpy.core.util.is_droppable(c) for c in constraints]): st = RestoreStatement(*constraints)
python
R = int(input()) print(2*3.141592653589793*R)
python
import numpy as np import pandas as pd import sys from typing import Literal from arch import arch_model import warnings from sklearn.exceptions import ConvergenceWarning with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ConvergenceWarning) def get_rolling_vol_forecasts(return_series, model, horizon : int=21, fitting_end_date : str = "2021-01-01", #type_forecast : Literal['rolling','recursive'] = 'rolling' ): print(f"\nFitting rolling {model.volatility} model with a {model.distribution}.") index = return_series.index start_loc = 0 end_loc = np.where(index > fitting_end_date)[0].min() n_forecasts = 2+ np.where(index == index[-1])[0].min() - end_loc # find number of forecasts to make forecasts = {} print(f"Number of forecasts: {n_forecasts}") for i in range(n_forecasts): sys.stdout.write(".") sys.stdout.flush() #if type_forecast == 'rolling': res = model.fit(first_obs=i, last_obs=i + end_loc, disp="off") #else: # res = model.fit(last_obs=i + end_loc, disp="off") temp = np.sqrt(res.forecast(horizon=horizon, reindex=False).variance) fcast = temp.iloc[0] forecasts[fcast.name] = fcast vol_forecasts = pd.DataFrame(forecasts).T.multiply(np.sqrt(252)) return vol_forecasts
python
from django.templatetags.static import static as get_static_url from django.shortcuts import redirect from .exceptions import UnknownMessageTypeError from .models import Dispatch from .signals import sig_unsubscribe_failed, sig_mark_read_failed def _generic_view(message_method, fail_signal, request, message_id, dispatch_id, hashed, redirect_to=None): if redirect_to is None: redirect_to = '/' try: dispatch = Dispatch.objects.select_related('message').get(pk=dispatch_id) if int(message_id) != dispatch.message_id: raise ValueError() message = dispatch.message except (Dispatch.DoesNotExist, ValueError): pass else: try: message_type = message.get_type() expected_hash = message_type.get_dispatch_hash(dispatch_id, message_id) method = getattr(message_type, message_method) return method( request, message, dispatch, hash_is_valid=(expected_hash == hashed), redirect_to=redirect_to ) except UnknownMessageTypeError: pass fail_signal.send(None, request=request, message=message_id, dispatch=dispatch_id) return redirect(redirect_to) def unsubscribe(request, message_id, dispatch_id, hashed, redirect_to=None): """Handles unsubscribe request. :param Request request: :param int message_id: :param int dispatch_id: :param str hashed: :param str redirect_to: :return: """ return _generic_view( 'handle_unsubscribe_request', sig_unsubscribe_failed, request, message_id, dispatch_id, hashed, redirect_to=redirect_to ) def mark_read(request, message_id, dispatch_id, hashed, redirect_to=None): """Handles mark message as read request. :param Request request: :param int message_id: :param int dispatch_id: :param str hashed: :param str redirect_to: :return: """ if redirect_to is None: redirect_to = get_static_url('img/sitemessage/blank.png') return _generic_view( 'handle_mark_read_request', sig_mark_read_failed, request, message_id, dispatch_id, hashed, redirect_to=redirect_to )
python
""" Modules for prediciting topological properties """
python
""" Class of water block """ import os from .block import Block import math class CurrentWaterRight(Block): """ Represents the block of water """ def __init__( self, settings: any, path: str = 'advancing_hero/images/blocks/water3.png', ): super().__init__(os.path.abspath(path), settings, settings.WATER, interactable=True) def player_interaction(self, player, *args, **kwargs): super().player_interaction(player) player.in_water = True player.speed = player.speed_base dx = 1 dy = 0 for tile in player.stage.tile_list: # Check only blocks which are on screen and are interactable if tile[1].bottom > 0 and tile[ 1].top < player.settings.screen_height and tile[ 2].is_interactable: # Then check if it's solid. We do it on that order in case # the block changes the player's speed. if tile[2].is_solid and (dx or dy): # Check collision in x direction delta_x = 1 * dx / math.sqrt(dx * dx + dy * dy) delta_y = 1 * dy / math.sqrt(dx * dx + dy * dy) if tile[1].colliderect(player.rect.x + delta_x, player.rect.y, player.rect.width, player.rect.height): dx = 0 # Check for collision in y direction if tile[1].colliderect(player.rect.x, player.rect.y + delta_y, player.rect.width, player.rect.height): dy = 0 if dx or dy: player.rect.x += 1 * dx / math.sqrt(dx * dx + dy * dy) player.rect.y += 1 * dy / math.sqrt(dx * dx + dy * dy) if player.rect.bottom > player.settings.screen_height: player.rect.bottom = player.settings.screen_height if player.rect.top < 0: player.rect.top = 0 if player.rect.right > player.settings.screen_width: player.rect.right = player.settings.screen_width if player.rect.left < 0: player.rect.left = 0 class CurrentWaterLeft(Block): """ Represents the block of water """ def __init__( self, settings: any, path: str = 'advancing_hero/images/blocks/water3.png', ): super().__init__(os.path.abspath(path), settings, settings.WATER, interactable=True) def player_interaction(self, player, *args, **kwargs): super().player_interaction(player) player.in_water = True player.speed = player.speed_base dx = -1 dy = 0 for tile in player.stage.tile_list: # Check only blocks which are on screen and are interactable if tile[1].bottom > 0 and tile[ 1].top < player.settings.screen_height and tile[ 2].is_interactable: # Then check if it's solid. We do it on that order in case # the block changes the player's speed. if tile[2].is_solid and (dx or dy): # Check collision in x direction delta_x = 1 * dx / math.sqrt(dx * dx + dy * dy) delta_y = 1 * dy / math.sqrt(dx * dx + dy * dy) if tile[1].colliderect(player.rect.x + delta_x, player.rect.y, player.rect.width, player.rect.height): dx = 0 # Check for collision in y direction if tile[1].colliderect(player.rect.x, player.rect.y + delta_y, player.rect.width, player.rect.height): dy = 0 if dx or dy: player.rect.x += 1 * dx / math.sqrt(dx * dx + dy * dy) player.rect.y += 1 * dy / math.sqrt(dx * dx + dy * dy) if player.rect.bottom > player.settings.screen_height: player.rect.bottom = player.settings.screen_height if player.rect.top < 0: player.rect.top = 0 if player.rect.right > player.settings.screen_width: player.rect.right = player.settings.screen_width if player.rect.left < 0: player.rect.left = 0 class CurrentWaterDown(Block): """ Represents the block of water """ def __init__( self, settings: any, path: str = 'advancing_hero/images/blocks/water3.png', ): super().__init__(os.path.abspath(path), settings, settings.WATER, interactable=True) def player_interaction(self, player, *args, **kwargs): super().player_interaction(player) player.in_water = True player.speed = player.speed_base dy = 1 dx = 0 for tile in player.stage.tile_list: # Check only blocks which are on screen and are interactable if tile[1].bottom > 0 and tile[ 1].top < player.settings.screen_height and tile[ 2].is_interactable: # Then check if it's solid. We do it on that order in case # the block changes the player's speed. if tile[2].is_solid and (dx or dy): # Check collision in x direction delta_x = 1 * dx / math.sqrt(dx * dx + dy * dy) delta_y = 1 * dy / math.sqrt(dx * dx + dy * dy) if tile[1].colliderect(player.rect.x + delta_x, player.rect.y, player.rect.width, player.rect.height): dx = 0 # Check for collision in y direction if tile[1].colliderect(player.rect.x, player.rect.y + delta_y, player.rect.width, player.rect.height): dy = 0 if dx or dy: player.rect.x += 1 * dx / math.sqrt(dx * dx + dy * dy) player.rect.y += 1 * dy / math.sqrt(dx * dx + dy * dy) if player.rect.bottom > player.settings.screen_height: player.rect.bottom = player.settings.screen_height if player.rect.top < 0: player.rect.top = 0 if player.rect.right > player.settings.screen_width: player.rect.right = player.settings.screen_width if player.rect.left < 0: player.rect.left = 0 class CurrentWaterUp(Block): """ Represents the block of water """ def __init__( self, settings: any, path: str = 'advancing_hero/images/blocks/water3.png', ): super().__init__(os.path.abspath(path), settings, settings.WATER, interactable=True) def player_interaction(self, player, *args, **kwargs): super().player_interaction(player) player.in_water = True player.speed = player.speed_base dy = -1 dx = 0 for tile in player.stage.tile_list: # Check only blocks which are on screen and are interactable if tile[1].bottom > 0 and tile[ 1].top < player.settings.screen_height and tile[ 2].is_interactable: # Then check if it's solid. We do it on that order in case # the block changes the player's speed. if tile[2].is_solid and (dx or dy): # Check collision in x direction delta_x = 1 * dx / math.sqrt(dx * dx + dy * dy) delta_y = 1 * dy / math.sqrt(dx * dx + dy * dy) if tile[1].colliderect(player.rect.x + delta_x, player.rect.y, player.rect.width, player.rect.height): dx = 0 # Check for collision in y direction if tile[1].colliderect(player.rect.x, player.rect.y + delta_y, player.rect.width, player.rect.height): dy = 0 if dx or dy: player.rect.x += 1 * dx / math.sqrt(dx * dx + dy * dy) player.rect.y += 1 * dy / math.sqrt(dx * dx + dy * dy) if player.rect.bottom > player.settings.screen_height: player.rect.bottom = player.settings.screen_height if player.rect.top < 0: player.rect.top = 0 if player.rect.right > player.settings.screen_width: player.rect.right = player.settings.screen_width if player.rect.left < 0: player.rect.left = 0
python
# Importar las dependencias de flask from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for # Importar clave/ayudantes de encriptacion from werkzeug import check_password_hash, generate_password_hash # Importar FireBase from firebase import firebase # Importar el objeto de base de datos desde el modulo principal de la aplicacion from app import db # Importar modulo de formulario from app.mod_auth.forms import LoginForm # Importar modulo de usuario (i.e. User) from app.mod_auth.models import User # Definir la coneccion a los nodos de FireBase firebase = firebase.FirebaseApplication('https://ecclesiapp-fe5b2.firebaseio.com', None) # Definir el blueprint: 'auth', establecer el prefijo de la url: app.url/auth mod_auth = Blueprint('auth', __name__, url_prefix='/auth') # Establecer las rutas y metodos aceptados @mod_auth.route('/signin/', methods=['GET', 'POST']) def signin(): # Si el formulario de acceso es mandado form = LoginForm(request.form) # Verificar el formulario de acceso if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and check_password_hash(user.password, form.password.data): session['user_id'] = user.id flash('Welcome %s' % user.name) return redirect(url_for('auth.home')) flash('Wrong email or password', 'error-message') return render_template("auth/signin.html", form=form) @mod_auth.route('/nada/', methods=['GET', 'POST']) def nada(): passwd = "1234" pw_hash = generate_password_hash(passwd) return pw_hash @mod_auth.route('/fbase/', methods=['GET', 'POST']) def fbase(): # Obtener el contendo de la refencia departamentos = firebase.get('/departamentos/MANAGUA/2/nombre', None) return str(departamentos) @mod_auth.route('/mysql/', methods=['GET', 'POST']) def mysql(): mysql = Nube_Actividad.query.all() return str(mysql)
python
def ErrorHandler(function): def wrapper(*args, **kwargs): try: return function(*args, **kwargs) except Exception as e: # pragma: no cover pass return wrapper
python
import pandas as pd import numpy as np import tensorflow as tf from math import floor from dataset.date_format import START_CODE, INPUT_FNS, OUTPUT_VOCAB, encodeInputDateStrings, encodeOutputDateStrings, dateTupleToYYYYDashMMDashDD def generateOrderedDates(minYear: str, maxYear: str) -> list: daterange = pd.date_range(minYear, maxYear) dates = [] for single_date in daterange: date: list = single_date.strftime("%Y-%m-%d").split('-') for index, value in enumerate(date): date[index] = int(date[index]) dates.append(date) return dates def dateTuplesToTensor(dateTuples, dec_output_one_hot = True): # Encoder Input inputs = [] for _, fn in enumerate(INPUT_FNS): for _, dateTuple in enumerate(dateTuples): formatedDate = fn(dateTuple) inputs.append(formatedDate) encoderInput = encodeInputDateStrings(inputs) # Decoder Input isoDates = [] for _, dateTuple in enumerate(dateTuples): isoDates.append(dateTupleToYYYYDashMMDashDD(dateTuple)) decoderInput = encodeOutputDateStrings(isoDates).astype("float32") if not dec_output_one_hot: decoderOutput = decoderInput decoderOutput = np.tile(decoderOutput, (len(INPUT_FNS), 1)).astype("int32") # Remove Last column decoderInput = decoderInput[..., :-1] # Create a single column with start code shift = np.full((decoderInput.shape[0], 1), START_CODE, dtype='float32') # Concat the tensors decoderInput = np.concatenate((shift, decoderInput), axis=1) # Tile to match the encoderInput decoderInput = np.tile(decoderInput, (len(INPUT_FNS), 1)) if dec_output_one_hot: # Decoder Output decoderOutput = tf.one_hot( encodeOutputDateStrings(isoDates), len(OUTPUT_VOCAB) ) # Tile to match the encoderInput decoderOutput = np.tile(decoderOutput, (len(INPUT_FNS), 1, 1)).astype("int32") return encoderInput, decoderInput, decoderOutput def generateDataSet(minYear="1950-01-01", maxYear="2050-01-01", trainSplit=0.25, validationSplit=0.15, dec_output_one_hot = True): dateTuples = generateOrderedDates(minYear, maxYear) np.random.shuffle(dateTuples) numTrain = floor(len(dateTuples)*trainSplit) numValidation = floor(len(dateTuples)*validationSplit) trainEncoderInput, trainDecoderInput, trainDecoderOutput = dateTuplesToTensor( dateTuples[0:numTrain], dec_output_one_hot) valEncoderInput, valDecoderInput, valDecoderOutput = dateTuplesToTensor( dateTuples[numTrain:numTrain+numValidation], dec_output_one_hot) testDateTuples = dateTuples[numTrain+numValidation: len(dateTuples)] return trainEncoderInput, trainDecoderInput, trainDecoderOutput, valEncoderInput, valDecoderInput, valDecoderOutput, testDateTuples
python
from __future__ import division, print_function, absolute_import # LIBTBX_SET_DISPATCHER_NAME iota.single_image # LIBTBX_PRE_DISPATCHER_INCLUDE_SH export PHENIX_GUI_ENVIRONMENT=1 # LIBTBX_PRE_DISPATCHER_INCLUDE_SH export BOOST_ADAPTBX_FPE_DEFAULT=1 ''' Author : Lyubimov, A.Y. Created : 05/31/2018 Last Changed: 01/30/2019 Description : IOTA Single Image: can process single image using DIALS, with an array of options (i.e. anything from only spotfinding, to indexing, space group determination, refinement, integration) ''' import os import time from iota.components.iota_init import initialize_single_image from iota.components.iota_base import ProcessingBase def parse_command_args(): """ Parses command line arguments (only options for now) """ parser = argparse.ArgumentParser(prog='iota.single_image') parser.add_argument('path', type=str, nargs = '?', default = None, help = 'Path to data file') # parser.add_argument('--backend', type=str, default='dials', # help='Backend for processing') parser.add_argument('--paramfile', type=str, default=None, help='Parameter file for processing') parser.add_argument('--output_file', type=str, default=None, help='Output filename') parser.add_argument('--output_dir', type=str, default=None, help='Output directory (for BluIce)') parser.add_argument('--termfile', type=str, default='.stop', help='Termination signal filename') parser.add_argument('--index', type=int, default=1, help='Numerical index of the image') parser.add_argument('--min_bragg', type=int, default=10, help='Minimum spots for successful spotfinding result') parser.add_argument('--nproc', type=int, default=1, help='Number of processors') parser.add_argument('--action', type=str, default='spotfinding', help='Code for how far to go; available codes: ' 'spotfind, index, integrate') parser.add_argument('--verbose', action = 'store_true', help='Print information to stdout') return parser class SingleImageProcessor(ProcessingBase): def __init__(self, *args, **kwargs): ProcessingBase.__init__(self, *args, **kwargs) def process(self): file_wait_start = time.time() errors = [] n_spots = 0 n_overloads = 0 res = (99, 99) n_rings = 0 avg_I = 0 score = 0 sg = None uc = None lres = 999 hres = 999 img = self.params.input[0] img_object = None while True: elapsed = time.time() - file_wait_start if elapsed > 30: errors.append('{} does not exist'.format(img)) print('DEBUG: ELAPSED = ', time.time() - file_wait_start) break if os.path.isfile(img): input_entry = (1, img) img_object = self.import_and_process(input_entry) n_spots = img_object.final['spots'] score = img_object.final['indexed'] hres = img_object.final['res'] lres = img_object.final['lres'] sg = img_object.final['sg'] uc = ' '.join([ '{:.2f}'.format(img_object.final['a']), '{:.2f}'.format(img_object.final['b']), '{:.2f}'.format(img_object.final['c']), '{:.2f}'.format(img_object.final['alpha']), '{:.2f}'.format(img_object.final['beta']), '{:.2f}'.format(img_object.final['gamma']) ]) errors.extend(img_object.errors) break if img_object: if self.verbose: print ('SPOTS FOUND: {}'.format(n_spots)) print ('INDEXING: {} INDEXED SPOTS'.format(score)) if res[0] != 999: print ('RESOLUTION: {:.2f} - {:.2f}'.format(lres, hres)) if sg and uc: print ('BRAVAIS LATTICE: {}'.format(sg)) print ('UNIT CELL: {}'.format(uc)) print ('TOTAL PROCESSING TIME: {:.2f} SEC' ''.format(time.time() - file_wait_start)) if errors: for e in errors: print (e) # info = [self.index, len(observed), self.img, sg, uc] if self.info.obj_list_file: with open(self.info.obj_list_file, 'a') as outf: info_line = '{} {} {} {} {}'.format(0, n_spots, img, sg, uc) outf.write('{}\n'.format(info_line)) if self.verbose: if errors: err = errors[0] print_errors = True else: err = '' print_errors = False print ('\n__RESULTS__') print ('{} {} {} {:.2f} {} {} {} {} {{{}}}' .format(n_spots, n_overloads, score, res[1], n_rings, 0, avg_I, 0, err)) if print_errors: print ("__ERRORS__") for e in errors: print (e) # ============================================================================ # if __name__ == "__main__": import argparse args, unk_args = parse_command_args().parse_known_args() info, iparams = initialize_single_image(img=os.path.abspath(args.path), paramfile=args.paramfile, output_file=args.output_file, output_dir=args.output_dir, min_bragg=args.min_bragg) interceptor = SingleImageProcessor.for_single_image(info, iparams, action_code=args.action, verbose=args.verbose) if args.output_dir is not None: if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) interceptor.start()
python
import requests from bs4 import BeautifulSoup import urllib.request import pytesseract from PIL import Image from PIL import ImageEnhance def shibie(filepath): # 打开图片 img = Image.open(filepath) img = img.convert('RGB') enhancer = ImageEnhance.Color(img) enhancer = enhancer.enhance(0) enhancer = ImageEnhance.Brightness(enhancer) enhancer = enhancer.enhance(2) enhancer = ImageEnhance.Contrast(enhancer) enhancer = enhancer.enhance(8) enhancer = ImageEnhance.Sharpness(enhancer) img = enhancer.enhance(20) # 处理图片,提高图片的识别率 # 转化为灰度图片 img = img.convert('L') # img.show() # 对图片进行二值化处理 threshold = 140 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) out = img.point(table, '1') # out.show() # exit() # 将图片转化为RGB模式 img = img.convert('RGB') print(pytesseract.image_to_string(img)) return pytesseract.image_to_string(img) i = 0 while 1: # 创建一个会话 s = requests.Session() # 发送get请求 deng_url = 'https://so.gushiwen.org/user/login.aspx?from=http://so.gushiwen.org/user/collect.aspx' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36', } r = s.get(deng_url, headers=headers) # 生产soup对象 soup = BeautifulSoup(r.text, 'lxml') # 获取验证码的url image_src = 'https://so.gushiwen.org' + soup.find('img', id='imgCode')['src'] # 将这个图片下载到本地 r = s.get(image_src, headers=headers) with open('code1.png', 'wb') as fp: fp.write(r.content) # 获取页面中隐藏的两个数据 view_state = soup.find('input', id='__VIEWSTATE')['value'] view_generator = soup.find('input', id='__VIEWSTATEGENERATOR')['value'] code = shibie('code1.png') # 抓包,抓取post请求,然后通过代码模拟发送post请求 post_url = 'https://so.gushiwen.org/user/login.aspx?from=http%3a%2f%2fso.gushiwen.org%2fuser%2fcollect.aspx' data = { '__VIEWSTATE': view_state, '__VIEWSTATEGENERATOR': view_generator, 'from': 'http://so.gushiwen.org/user/collect.aspx', 'email': 'pwd': 'code': code, 'denglu': '登录', } r = s.post(url=post_url, headers=headers, data=data) i += 1 print('这是第%s次登录' % i) # print(r.text) if '退出登录' in r.text: break print('登录成功')
python
import random import uuid from datetime import timedelta import re from discord import AllowedMentions, ButtonStyle, Embed from squid.bot import CommandContext, SquidPlugin, command from squid.bot.errors import CommandFailed from squid.utils import now, parse_time, s from .views import GiveawayView class Giveaways(SquidPlugin): def __init__(self, bot): self.bot = bot self.link_re = re.compile( r"https:\/\/discord.com\/channels\/(\d*)\/(\d*)\/(\d*)" ) @command() def giveaway(self, ctx: CommandContext): """Create, Manage, and End Giveaways""" ... @giveaway.subcommand(name="start") def start( self, ctx: CommandContext, # Required time: str, winners: int, prize: str, # Optional amari: int = 0, mee6: int = 0, required_roles: str = "", bypass_roles: str = "", blacklist_roles: str = "", booster: bool = None, dank_lottery: int = None, ): """Starts a giveaway""" if len(time) <= 1: raise CommandFailed("Invalid time format") if time.isdigit(): time += "s" delta = parse_time(time) if delta > timedelta(weeks=8): raise CommandFailed( "Time too long!\nYou cannot set a giveaway for more than 8 weeks" ) store_key = uuid.uuid4().hex stamp = int((now() + delta).timestamp()) requirements = { v: self.bot.requirements[v].convert(ctx, k) for v, k in { "required_roles": required_roles, "bypass_roles": bypass_roles, "blacklist_roles": blacklist_roles, "amari": amari, "mee6": mee6, "booster": booster, "danklottery": dank_lottery, }.items() if k } description = ctx.setting( "description", time=f"<t:{stamp}:R>", stamp=str(stamp), requirements="\n".join( [self.bot.requirements[k].display(v) for k, v in requirements.items()] ), **requirements, prize=prize, winners=winners, host=f"<@{ctx.author.id}>", donor=f"<@{ctx.author.id}>", channel_id=ctx.channel_id, ) message = ctx.send( embed=Embed( title=prize, description=description, timestamp=now() + delta, color=self.bot.colors["primary"], ).set_footer(text=f"{int(winners)} winner{s(winners)} | Ends at "), view=GiveawayView( key=store_key, style=ButtonStyle.secondary, label="Join", ), ) with ctx.bot.db as db: db.giveaways.insert_one( { "host_id": str(ctx.author.id), "message_id": str(message["id"]), "channel_id": str(ctx.channel_id), "guild_id": str(ctx.guild_id), "store_key": store_key, "end": now() + delta, "winners": int(winners), "start": now(), "active": True, "prize": prize, "requirements": requirements, "data": {}, } ) return ctx.respond( embed=Embed( description=f"Started a giveaway for `{delta}`", color=self.bot.colors["primary"], ), ephemeral=True, ) @giveaway.subcommand(name="end") def end(self, ctx: CommandContext, link: str): """ Stop a giveaway """ match = self.link_re.match(link) if not match: raise CommandFailed("Invalid link") _, channel_id, message_id = match.groups() with ctx.bot.db as db: x = db.giveaways.find_one_and_update( { "guild_id": str(ctx.guild_id), "channel_id": str(channel_id), "message_id": str(message_id), }, {"$set": {"end": now()}}, ) if x and x["active"]: return ctx.respond( embed=Embed( description=f"Stopped giveaway for `{x['prize']}`", color=self.bot.colors["primary"], ), ephemeral=True, ) elif x and x["active"]: return ctx.respond( embed=Embed( description=f"giveaway for `{x['prize']}` already ended", color=self.bot.colors["secondary"], ), ephemeral=True, ) else: raise CommandFailed("I cannot find that giveaway") @giveaway.subcommand(name="reroll") def reroll(self, ctx: CommandContext, giveaway_id: str, amount: int = 1) -> None: """Rerolls a giveaway""" if not giveaway_id.isdigit(): raise CommandFailed("Invalid giveaway ID") with ctx.bot.db as db: doc = db.giveaways.find_one({"message_id": giveaway_id}) if doc["active"]: raise CommandFailed("Giveaway is still active") elif "users" not in doc: raise CommandFailed("Giveaway has no entrants or is still ending") users = doc.get("users", []) random.seed(f'{doc["message_id"]}{self.bot.http.token}') random.shuffle(users) next_val = doc.get("next_user_seed_input", 0) winners = [] print(users) while users and len(winners) < amount: user = users[int(next_val % len(users))] next_val += 1 winners.append(user) if next_val != 0: db.giveaways.find_one_and_update( {"_id": doc["_id"]}, {"$set": {"next_user_seed_input": next_val}}, ) if winners: winner_str = ", ".join([f"<@{i}>" for i in winners]) else: winner_str = None reroll_message = ctx.setting( "reroll_message", host=f"<@{ctx.author.id}>", reroller=ctx.author, reroll_channel=ctx.channel, server=ctx.guild, channel=ctx.channel, link=f"https://discordapp.com/channels/{ctx.guild_id}/{doc['channel_id']}/{doc['message_id']}", winners=(winner_str or "Nobody"), prize=doc["prize"], ) return ctx.respond( content=reroll_message, allowed_mentions=AllowedMentions.none() ) def setup(bot): bot.add_plugin(Giveaways(bot)) bot.add_handler(GiveawayView)
python