content
stringlengths
0
894k
type
stringclasses
2 values
from . import Plugin class CatchallPlugin(Plugin): priority = -5 """ Turns metrics that aren't matched by any other plugin in something a bit more useful (than not having them at all) Another way to look at it is.. plugin:catchall is the list of targets you can better organize ;) Note that the assigned tags (i.e. source tags) are best guesses. We can't know for sure! (this description goes for all catchall plugins) """ targets = [ { 'match': '^(?P<n1>[^\.=]+)\.?(?P<n2>[^\.=]*)\.?(?P<n3>[^\.=]*)\.?(?P<n4>[^\.=]*)\.?(?P<n5>[^\.=]*)\.?(?P<n6>[^\.=]*)\.?(?P<n7>[^\.=]*)$', 'target_type': 'unknown', 'configure': [ lambda self, target: self.add_tag(target, 'what', 'unknown'), lambda self, target: self.add_tag(target, 'source', 'unknown') ] }, ] # vim: ts=4 et sw=4:
python
import sys import logging import numpy as np import sympy as sp import ANNarchy_future.api as api import ANNarchy_future.parser as parser class Symbol(sp.core.Symbol): """Subclass of sp.core.Symbol allowing to store additional attributes. """ def __new__(self, name, method='euler'): obj = sp.core.Symbol.__new__(self, name) self.method = method return obj class PreNeuron(object): """ Placeholder for presynaptic attributes. """ pass class PostNeuron(object): """ Placeholder for postsynaptic attributes. """ pass class StandaloneObject(object): """ Mimicks a Neuron or Synapse in standalone mode. """ def __init__(self, attributes): self.attributes = attributes class Equations(object): """Context to define equations. It should be primarily used inside a `Neuron` or `Synapse` class, but can also be used in a standalone mode by providing a list of attributes: ```python with Equations(symbols=['tau', 'v', 'r']) as n: n.dv_dt = (n.cast(0.04) - n.v)/n.tau n.r = sp.tanh(n.v) print(n) ``` """ def __init__(self, symbols : list = None, method : str ='euler', neuron = None, synapse = None ): """Creates the Equations context. Args: symbols: list of attributes when in standalone mode. method: numerical method (euler, midpoint, exponential, rk4, event-driven) neuron: Neuron instance (passed by the population). synapse: Synapse instance (passed by the projection). """ # Logger self._logger = logging.getLogger(__name__) self._logger.debug("Equations() created.") # Standalone mode if neuron is None and synapse is None and symbols is not None: self.object = StandaloneObject(symbols) self.object._random_variables = {} self._logger.info("Custom symbols: " + str(symbols)) elif neuron is not None: self.object = neuron if not hasattr(neuron, '_random_variables'): self.object._random_variables = {} elif synapse is not None: self.object = synapse if not hasattr(synapse, '_random_variables'): self.object._random_variables = {} else: self._logger.error("Equations() requires one argument among `symbols`, `neuron` or `synapse`.") sys.exit(1) # Numerical method self.method = method # Built-in symbols self.symbols = parser.symbols_dict.copy() # List of tuples (name, Equation) self.equations = [] # List of random variables self.random_variables = {} # Start recording assignments self._started = False ########################################################################### # Context management ########################################################################### def __enter__(self): if isinstance(self.object, api.Neuron): for attr in self.object.attributes: # Symbol symbol = sp.Symbol(attr) self.symbols[attr] = symbol setattr(self, attr, symbol) if attr in self.object._parser.variables: # Add derivative symbol = sp.Symbol("d" + attr + "/dt") self.symbols['d'+attr+'_dt'] = symbol setattr(self, 'd'+attr+'_dt', symbol) self._logger.debug("Neuron symbols: " + str(self.symbols)) elif isinstance(self.object, api.Synapse): for attr in self.object.attributes: # Symbol symbol = sp.Symbol(attr) self.symbols[attr] = symbol setattr(self, attr, symbol) if attr in self.object._parser.variables: # Add derivative symbol = sp.Symbol("d" + attr + "/dt") self.symbols['d'+attr+'_dt'] = symbol setattr(self, 'd'+attr+'_dt', symbol) self.pre = PreNeuron() self.post = PostNeuron() for attr in self.object.pre_attributes: # Symbol symbol = sp.Symbol("pre."+attr) self.symbols["pre."+attr] = symbol setattr(self.pre, attr, symbol) for attr in self.object.post_attributes: # Symbol symbol = sp.Symbol("post."+attr) self.symbols["post."+attr] = symbol setattr(self.post, attr, symbol) self._logger.debug("Synapse symbols: " + str(self.symbols)) else: # Custom set of variables for attr in self.object.attributes: # Symbol symbol = sp.Symbol(attr) self.symbols[attr] = symbol setattr(self, attr, symbol) # Derivative if needed symbol = sp.Symbol("d" + attr + "/dt") self.symbols['d'+attr+'_dt'] = symbol setattr(self, 'd'+attr+'_dt', symbol) self._started = True return self def __exit__(self, exc_type, exc_value, traceback): self._logger.info(str(self)) def __str__(self): string = "" for name, dist in self.random_variables.items(): string += name + " = " + dist.human_readable() + "\n" for name, eq in self.equations: string += sp.ccode(self.symbols[name]) + " = " + sp.ccode(eq) + "\n" return string def __getattribute__(self, name): return object.__getattribute__(self, name) def __setattr__(self, name, value): # After __enter__(), track modifications to the variables if hasattr(self, '_started') and self._started: # Do not assign equations to symbols, just store them if name in self.symbols.keys(): self.equations.append((name, value)) else: object.__setattr__(self, name, value) else: object.__setattr__(self, name, value) ########################################################################### # Built-in vocabulary ########################################################################### @property def t(self): "Current time in ms." return self.symbols['t'] @property def dt(self): "Step size in ms." return self.symbols['dt'] def ite(self, cond, then, els): """If-then-else ternary operator. Equivalent to: ```python def ite(cond, then, els): if cond: return then else: return els ``` Args: cond: condition. then: returned value when cond is true. else: returned value when cond is false. """ return sp.Piecewise((then, cond), (els, True)) def clip(self, val:sp.Symbol, min:sp.Symbol, max:sp.Symbol = None): """Sets the lower and upper bounds of a variable. Equivalent to: ```python def clip(val, min, max): if val < min: return min elif val > max: return max else: return val ``` Args: val: variable. min: lower bound. max: upper bound. """ if min is None and max is None: # Do nothing return val elif min is not None and max is None: # Lower bound return sp.Piecewise((min, val<min), (val, True)) elif min is None and max is not None: # Upper bound return sp.Piecewise((max, val>max), (val, True)) else: # Two-sided clip return sp.Piecewise((min, val<min), (max, val>max), (val, True)) def cast(self, val:float) -> sp.Symbol: """Cast floating point numbers to symbols in order to avoid numerical errors. Args: val (float): """ return sp.Symbol(str(float(val))) ########################################################################### # Random distributions ########################################################################### def Uniform(self, min:float, max:float): """ Uniform distribution between `min` and `max`. Args: min: lower bound. max: upper bound. """ name = "__rand__" + str(len(self.object._random_variables)) obj = parser.RandomDistributions.Uniform(name, min, max) self.random_variables[name] = obj self.object._random_variables[name] = obj return sp.Symbol(name) def Normal(self, mu:float, sigma:float): """ Normal distribution with mean `mu` and standard deviation `sigma`. Args: mu: mean. sigma: standard deviation. """ name = "__rand__" + str(len(self.object._random_variables)) obj = parser.RandomDistributions.Normal(name, mu, sigma) self.random_variables[name] = obj self.object._random_variables[name] = obj return sp.Symbol(name)
python
from juriscraper.OpinionSite import OpinionSite from datetime import datetime import re class Site(OpinionSite): def __init__(self, *args, **kwargs): super(Site, self).__init__(*args, **kwargs) self.court_id = self.__module__ self.url = "http://www.courts.state.va.us/scndex.htm" def _get_case_names(self): path = "//p[./a[contains(./@href, '.pdf')]]/b/text()" return list(self.html.xpath(path)) def _get_docket_numbers(self): path = "//p[./a[contains(./@href, '.pdf')]]/a/text()" return [ doc.strip() for doc in self.html.xpath(path) if doc.strip().isdigit() ] def _get_case_dates(self): dates = [] path = "//p[./a[contains(./@href, '.pdf')]]/text()" pattern = r"^\s*\d{2}/\d{2}/\d{4}" for s in self.html.xpath(path): date_str = re.findall(pattern, s) if len(date_str): dates.append( datetime.strptime(date_str[0].strip(), "%m/%d/%Y").date() ) return dates def _get_download_urls(self): path = "//p[./a[contains(./@href, '.pdf')]]/a[2]/@href" urls = [url for url in self.html.xpath(path) if url.endswith(".pdf")] return urls def _get_precedential_statuses(self): return ["Published"] * len(self.case_names)
python
from django.conf.urls import patterns, include, url from django.contrib import admin from core.views import JobList, JobDetail, JobCreate admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'emplea_do.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^$', JobList.as_view()), url(r'^job/new/$', JobCreate.as_view()), url(r'^job/(?P<pk>\d+)/$', JobDetail.as_view()), url(r'^admin/', include(admin.site.urls)), )
python
import RPi.GPIO as GPIO import time from pathlib import Path import os import sys relay_signal = 4 # GPIO setup GPIO.setmode(GPIO.BCM) GPIO.setup(relay_signal, GPIO.OUT) # pulls the signal pin high signalling the relay switch to close def garage_btn_down(pin): GPIO.output(pin, GPIO.HIGH) # Close OSC # pulls the signal pin low signalling the relay switch to open def garage_btn_up(pin): GPIO.output(pin, GPIO.LOW) # Open OSC # presses the garage door button for 1 second def press_button(): garage_btn_down(relay_signal) time.sleep(1) garage_btn_up(relay_signal) # returns true if garage_is_open status file exists def garage_is_open(): return os.path.exists('/home/pi/garage_is_open') # returns true if garage_is_moving status file exists def garage_is_moving(): return os.path.exists('/home/pi/garage_is_moving') # reverses the garage while in motion def reverse_door(): press_button() print("garage button pressed (stopping)") press_button() print("garage button pressed (reversing)") # main entry point if __name__ == '__main__': try: if "--open" in sys.argv: if not garage_is_open() and not garage_is_moving(): press_button() print("garage button pressed (opening)") Path('/home/pi/garage_is_moving').touch() elif not garage_is_open() and garage_is_moving(): reverse_door() else: print("ignoring since garage is already open or in transit") elif "--close" in sys.argv: if garage_is_open() and not garage_is_moving(): Path('/home/pi/garage_is_moving').touch() press_button() print("garage button pressed (closing)") else: print("ignoring since garage is already closed or in transit") except KeyboardInterrupt: pass finally: GPIO.cleanup()
python
# Common libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Restrict minor warnings import warnings warnings.filterwarnings('ignore') # Import test and train data df_train = pd.read_csv('../input/train.csv') df_Test = pd.read_csv('../input/test.csv') df_test = df_Test # From both train and test data df_train = df_train.drop(['Soil_Type7', 'Soil_Type15','Soil_Type8', 'Soil_Type25'], axis = 1) df_test = df_test.drop(['Soil_Type7', 'Soil_Type15','Soil_Type8', 'Soil_Type25'], axis = 1) # Also drop 'Id' df_train = df_train.iloc[:,1:] df_test = df_test.iloc[:,1:] # Taking only non-categorical values Size = 10 X_temp = df_train.iloc[:,:Size] X_test_temp = df_test.iloc[:,:Size] r,c = df_train.shape X_train = np.concatenate((X_temp,df_train.iloc[:,Size:c-1]),axis=1) y_train = df_train.Cover_Type.values r,c = df_test.shape X_test = np.concatenate((X_test_temp, df_test.iloc[:,Size:c]), axis = 1) from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # Setting parameters x_data, x_test_data, y_data, y_test_data = train_test_split(X_train, y_train, test_size = 0.3) rf_para = [{'n_estimators':[50, 100], 'max_depth':[5,10,15], 'max_features':[0.1, 0.3], \ 'min_samples_leaf':[1,3], 'bootstrap':[True, False]}] from sklearn.grid_search import GridSearchCV, RandomizedSearchCV rfc = GridSearchCV(RandomForestClassifier(), param_grid=rf_para, cv = 10, n_jobs=-1) rfc.fit(x_data, y_data) rfc.best_params_ rfc.grid_scores_ print ('Best accuracy obtained: {}'.format(rfc.best_score_)) print ('Parameters:') for key, value in rfc.best_params_.items(): print('\t{}:{}'.format(key,value)) # Best params: {'max_features': 0.3, 'n_estimators': 100, 'bootstrap': False, 'max_depth': 15, 'min_samples_leaf': 1} RFC = RandomForestClassifier(n_estimators=100, max_depth=10, max_features=0.3, bootstrap=True, min_samples_leaf=1,\ n_jobs=-1) RFC.fit(X_train, y_train) # y_pred = RFC.predict(X_test) from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(model,title, X, y,n_jobs = 1, ylim = None, cv = None,train_sizes = np.linspace(0.1, 1, 5)): # Figrue parameters plt.figure(figsize=(10,8)) plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training Examples') plt.ylabel('Score') train_sizes, train_score, test_score = learning_curve(model, X, y, cv = cv, n_jobs=n_jobs, train_sizes=train_sizes) # Calculate mean and std train_score_mean = np.mean(train_score, axis=1) train_score_std = np.std(train_score, axis=1) test_score_mean = np.mean(test_score, axis=1) test_score_std = np.std(test_score, axis=1) plt.grid() plt.fill_between(train_sizes, train_score_mean - train_score_std, train_score_mean + train_score_std,\ alpha = 0.1, color = 'r') plt.fill_between(train_sizes, test_score_mean - test_score_std, test_score_mean + test_score_std,\ alpha = 0.1, color = 'g') plt.plot(train_sizes, train_score_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_score_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc = "best") return plt # Plotting Learning Curve title = 'Learning Curve(Random Forest)' model = RFC cv = ShuffleSplit(n_splits=50, test_size=0.2,random_state=0) plot_learning_curve(model,title,X_train, y_train, n_jobs=-1,ylim=None,cv=cv) plt.show() from xgboost.sklearn import XGBClassifier from sklearn.metrics import accuracy_score from sklearn.cross_validation import StratifiedKFold from scipy.stats import randint, uniform cv = StratifiedKFold(y_train, n_folds=10, shuffle=True) params_dist_grid = { 'max_depth': [1, 5, 10], 'gamma': [0, 0.5, 1], 'n_estimators': randint(1, 1001), # uniform discrete random distribution 'learning_rate': uniform(), # gaussian distribution 'subsample': uniform(), # gaussian distribution 'colsample_bytree': uniform(), # gaussian distribution 'reg_lambda':uniform(), 'reg_alpha':uniform() } xgbc_fixed = {'booster':['gbtree'], 'silent':1} bst_gridd = RandomizedSearchCV(estimator=XGBClassifier(*xgbc_fixed), param_distributions=params_dist_grid,\ scoring='accuracy', cv=cv, n_jobs=-1) # bst_gridd.fit(X_train, y_train) # bst_gridd.grid_scores_ # print ('Best accuracy obtained: {}'.format(bst_gridd.best_score_)) # print ('Parameters:') # for key, value in bst_gridd.best_params_.items(): # print('\t{}:{}'.format(key,value)) # Best parameters selected using code in above cell # Splitting the train data to test the best parameters from sklearn.model_selection import train_test_split seed = 123 x_data, x_test_data, y_data, y_test_data = train_test_split(X_train, y_train, test_size = 0.3,random_state=seed) eval_set = [(x_test_data, y_test_data)] XGBC = XGBClassifier(silent=1,n_estimators=641,learning_rate=0.2,max_depth=10,gamma=0.5,nthread=-1,\ reg_alpha = 0.05, reg_lambda= 0.35, max_delta_step = 1, subsample = 0.83, colsample_bytree = 0.6) # Calculating error XGBC.fit(x_data, y_data, early_stopping_rounds=100, eval_set=eval_set, eval_metric='merror', verbose=True) pred = XGBC.predict(x_test_data) accuracy = accuracy_score(y_test_data, pred); print ('accuracy:%0.2f%%'%(accuracy*100)) xgbc_pred= XGBC.predict(X_test) # saving to a csv file to make submission solution = pd.DataFrame({'Id':df_Test.Id, 'Cover_Type':xgbc_pred}, columns = ['Id','Cover_Type']) solution.to_csv('Xgboost_sol.csv', index=False)
python
# -*- coding: utf-8 -*- """ Gromov-Wasserstein transport method =================================== """ # Author: Erwan Vautier <[email protected]> # Nicolas Courty <[email protected]> # # License: MIT License import numpy as np from .bregman import sinkhorn from .utils import dist def square_loss(a, b): """ Returns the value of L(a,b)=(1/2)*|a-b|^2 """ return 0.5 * (a - b)**2 def kl_loss(a, b): """ Returns the value of L(a,b)=a*log(a/b)-a+b """ return a * np.log(a / b) - a + b def tensor_square_loss(C1, C2, T): """ Returns the value of \mathcal{L}(C1,C2) \otimes T with the square loss function as the loss function of Gromow-Wasserstein discrepancy. Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space T : A coupling between those two spaces The square-loss function L(a,b)=(1/2)*|a-b|^2 is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : f1(a)=(a^2)/2 f2(b)=(b^2)/2 h1(a)=a h2(b)=b Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space T : ndarray, shape (ns, nt) Coupling between source and target spaces Returns ------- tens : ndarray, shape (ns, nt) \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.asarray(T, dtype=np.float64) def f1(a): return (a**2) / 2 def f2(b): return (b**2) / 2 def h1(a): return a def h2(b): return b tens = -np.dot(h1(C1), T).dot(h2(C2).T) tens -= tens.min() return tens def tensor_kl_loss(C1, C2, T): """ Returns the value of \mathcal{L}(C1,C2) \otimes T with the square loss function as the loss function of Gromow-Wasserstein discrepancy. Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space T : A coupling between those two spaces The square-loss function L(a,b)=(1/2)*|a-b|^2 is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : f1(a)=a*log(a)-a f2(b)=b h1(a)=a h2(b)=log(b) Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space T : ndarray, shape (ns, nt) Coupling between source and target spaces Returns ------- tens : ndarray, shape (ns, nt) \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.asarray(T, dtype=np.float64) def f1(a): return a * np.log(a + 1e-15) - a def f2(b): return b def h1(a): return a def h2(b): return np.log(b + 1e-15) tens = -np.dot(h1(C1), T).dot(h2(C2).T) tens -= tens.min() return tens def update_square_loss(p, lambdas, T, Cs): """ Updates C according to the L2 Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) masses in the targeted barycenter lambdas : list of float list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : list of S ndarray, shape(ns,ns) Metric cost matrices Returns ---------- C : ndarray, shape (nt,nt) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.divide(tmpsum, ppt) def update_kl_loss(p, lambdas, T, Cs): """ Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) weights in the targeted barycenter lambdas : list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : list of S ndarray, shape(ns,ns) Metric cost matrices Returns ---------- C : ndarray, shape (ns,ns) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.exp(np.divide(tmpsum, ppt)) def gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9, verbose=False, log=False): """ Returns the gromov-wasserstein coupling between the two measured similarity matrices (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW = arg\min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) s.t. \GW 1 = p \GW^T 1= q \GW\geq 0 Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) distribution in the source space q : ndarray, shape (nt,) distribution in the target space loss_fun : string loss function used for the solver either 'square_loss' or 'kl_loss' epsilon : float Regularization term >0 max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- T : ndarray, shape (ns, nt) coupling between the two spaces that minimizes : \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.outer(p, q) # Initialization cpt = 0 err = 1 while (err > tol and cpt < max_iter): Tprev = T if loss_fun == 'square_loss': tens = tensor_square_loss(C1, C2, T) elif loss_fun == 'kl_loss': tens = tensor_kl_loss(C1, C2, T) T = sinkhorn(p, q, tens, epsilon) if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations err = np.linalg.norm(T - Tprev) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt += 1 if log: return T, log else: return T def gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9, verbose=False, log=False): """ Returns the gromov-wasserstein discrepancy between the two measured similarity matrices (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW_Dist = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) distribution in the source space q : ndarray, shape (nt,) distribution in the target space loss_fun : string loss function used for the solver either 'square_loss' or 'kl_loss' epsilon : float Regularization term >0 max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gw_dist : float Gromov-Wasserstein distance """ if log: gw, logv = gromov_wasserstein( C1, C2, p, q, loss_fun, epsilon, max_iter, tol, verbose, log) else: gw = gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, max_iter, tol, verbose, log) if loss_fun == 'square_loss': gw_dist = np.sum(gw * tensor_square_loss(C1, C2, gw)) elif loss_fun == 'kl_loss': gw_dist = np.sum(gw * tensor_kl_loss(C1, C2, gw)) if log: return gw_dist, logv else: return gw_dist def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon, max_iter=1000, tol=1e-9, verbose=False, log=False, init_C=None): """ Returns the gromov-wasserstein barycenters of S measured similarity matrices (Cs)_{s=1}^{s=S} The function solves the following optimization problem: .. math:: C = argmin_C\in R^NxN \sum_s \lambda_s GW(C,Cs,p,ps) Where : Cs : metric cost matrix ps : distribution Parameters ---------- N : Integer Size of the targeted barycenter Cs : list of S np.ndarray(ns,ns) Metric cost matrices ps : list of S np.ndarray(ns,) sample weights in the S spaces p : ndarray, shape(N,) weights in the targeted barycenter lambdas : list of float list of the S spaces' weights loss_fun : tensor-matrix multiplication function based on specific loss function update : function(p,lambdas,T,Cs) that updates C according to a specific Kernel with the S Ts couplings calculated at each iteration epsilon : float Regularization term >0 max_iter : int, optional Max number of iterations tol : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True init_C : bool, ndarray, shape(N,N) random initial value for the C matrix provided by user Returns ------- C : ndarray, shape (N, N) Similarity matrix in the barycenter space (permutated arbitrarily) """ S = len(Cs) Cs = [np.asarray(Cs[s], dtype=np.float64) for s in range(S)] lambdas = np.asarray(lambdas, dtype=np.float64) # Initialization of C : random SPD matrix (if not provided by user) if init_C is None: xalea = np.random.randn(N, 2) C = dist(xalea, xalea) C /= C.max() else: C = init_C cpt = 0 err = 1 error = [] while(err > tol and cpt < max_iter): Cprev = C T = [gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun, epsilon, max_iter, 1e-5, verbose, log) for s in range(S)] if loss_fun == 'square_loss': C = update_square_loss(p, lambdas, T, Cs) elif loss_fun == 'kl_loss': C = update_kl_loss(p, lambdas, T, Cs) if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations err = np.linalg.norm(C - Cprev) error.append(err) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt += 1 return C
python
# coding: utf-8 """ Cloudbreak API Cloudbreak is a powerful left surf that breaks over a coral reef, a mile off southwest the island of Tavarua, Fiji. Cloudbreak is a cloud agnostic Hadoop as a Service API. Abstracts the provisioning and ease management and monitoring of on-demand clusters. SequenceIQ's Cloudbreak is a RESTful application development platform with the goal of helping developers to build solutions for deploying Hadoop YARN clusters in different environments. Once it is deployed in your favourite servlet container it exposes a REST API allowing to span up Hadoop clusters of arbitary sizes and cloud providers. Provisioning Hadoop has never been easier. Cloudbreak is built on the foundation of cloud providers API (Amazon AWS, Microsoft Azure, Google Cloud Platform, Openstack), Apache Ambari, Docker lightweight containers, Swarm and Consul. For further product documentation follow the link: <a href=\"http://hortonworks.com/apache/cloudbreak/\">http://hortonworks.com/apache/cloudbreak/</a> OpenAPI spec version: 2.9.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class BaseImageResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'hdp_stacks': 'list[StackDetailsJson]', 'hdf_stacks': 'list[StackDetailsJson]', '_date': 'str', 'description': 'str', 'os': 'str', 'os_type': 'str', 'uuid': 'str', 'version': 'str', 'repo': 'dict(str, str)', 'images': 'dict(str, dict(str, str))', 'stack_details': 'StackDetailsJson', 'default_image': 'bool', 'package_versions': 'dict(str, str)' } attribute_map = { 'hdp_stacks': 'hdpStacks', 'hdf_stacks': 'hdfStacks', '_date': 'date', 'description': 'description', 'os': 'os', 'os_type': 'osType', 'uuid': 'uuid', 'version': 'version', 'repo': 'repo', 'images': 'images', 'stack_details': 'stackDetails', 'default_image': 'defaultImage', 'package_versions': 'packageVersions' } def __init__(self, hdp_stacks=None, hdf_stacks=None, _date=None, description=None, os=None, os_type=None, uuid=None, version=None, repo=None, images=None, stack_details=None, default_image=False, package_versions=None): """ BaseImageResponse - a model defined in Swagger """ self._hdp_stacks = None self._hdf_stacks = None self.__date = None self._description = None self._os = None self._os_type = None self._uuid = None self._version = None self._repo = None self._images = None self._stack_details = None self._default_image = None self._package_versions = None if hdp_stacks is not None: self.hdp_stacks = hdp_stacks if hdf_stacks is not None: self.hdf_stacks = hdf_stacks if _date is not None: self._date = _date if description is not None: self.description = description if os is not None: self.os = os if os_type is not None: self.os_type = os_type if uuid is not None: self.uuid = uuid if version is not None: self.version = version if repo is not None: self.repo = repo if images is not None: self.images = images if stack_details is not None: self.stack_details = stack_details if default_image is not None: self.default_image = default_image if package_versions is not None: self.package_versions = package_versions @property def hdp_stacks(self): """ Gets the hdp_stacks of this BaseImageResponse. :return: The hdp_stacks of this BaseImageResponse. :rtype: list[StackDetailsJson] """ return self._hdp_stacks @hdp_stacks.setter def hdp_stacks(self, hdp_stacks): """ Sets the hdp_stacks of this BaseImageResponse. :param hdp_stacks: The hdp_stacks of this BaseImageResponse. :type: list[StackDetailsJson] """ self._hdp_stacks = hdp_stacks @property def hdf_stacks(self): """ Gets the hdf_stacks of this BaseImageResponse. :return: The hdf_stacks of this BaseImageResponse. :rtype: list[StackDetailsJson] """ return self._hdf_stacks @hdf_stacks.setter def hdf_stacks(self, hdf_stacks): """ Sets the hdf_stacks of this BaseImageResponse. :param hdf_stacks: The hdf_stacks of this BaseImageResponse. :type: list[StackDetailsJson] """ self._hdf_stacks = hdf_stacks @property def _date(self): """ Gets the _date of this BaseImageResponse. :return: The _date of this BaseImageResponse. :rtype: str """ return self.__date @_date.setter def _date(self, _date): """ Sets the _date of this BaseImageResponse. :param _date: The _date of this BaseImageResponse. :type: str """ self.__date = _date @property def description(self): """ Gets the description of this BaseImageResponse. :return: The description of this BaseImageResponse. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this BaseImageResponse. :param description: The description of this BaseImageResponse. :type: str """ self._description = description @property def os(self): """ Gets the os of this BaseImageResponse. :return: The os of this BaseImageResponse. :rtype: str """ return self._os @os.setter def os(self, os): """ Sets the os of this BaseImageResponse. :param os: The os of this BaseImageResponse. :type: str """ self._os = os @property def os_type(self): """ Gets the os_type of this BaseImageResponse. :return: The os_type of this BaseImageResponse. :rtype: str """ return self._os_type @os_type.setter def os_type(self, os_type): """ Sets the os_type of this BaseImageResponse. :param os_type: The os_type of this BaseImageResponse. :type: str """ self._os_type = os_type @property def uuid(self): """ Gets the uuid of this BaseImageResponse. :return: The uuid of this BaseImageResponse. :rtype: str """ return self._uuid @uuid.setter def uuid(self, uuid): """ Sets the uuid of this BaseImageResponse. :param uuid: The uuid of this BaseImageResponse. :type: str """ self._uuid = uuid @property def version(self): """ Gets the version of this BaseImageResponse. :return: The version of this BaseImageResponse. :rtype: str """ return self._version @version.setter def version(self, version): """ Sets the version of this BaseImageResponse. :param version: The version of this BaseImageResponse. :type: str """ self._version = version @property def repo(self): """ Gets the repo of this BaseImageResponse. :return: The repo of this BaseImageResponse. :rtype: dict(str, str) """ return self._repo @repo.setter def repo(self, repo): """ Sets the repo of this BaseImageResponse. :param repo: The repo of this BaseImageResponse. :type: dict(str, str) """ self._repo = repo @property def images(self): """ Gets the images of this BaseImageResponse. :return: The images of this BaseImageResponse. :rtype: dict(str, dict(str, str)) """ return self._images @images.setter def images(self, images): """ Sets the images of this BaseImageResponse. :param images: The images of this BaseImageResponse. :type: dict(str, dict(str, str)) """ self._images = images @property def stack_details(self): """ Gets the stack_details of this BaseImageResponse. :return: The stack_details of this BaseImageResponse. :rtype: StackDetailsJson """ return self._stack_details @stack_details.setter def stack_details(self, stack_details): """ Sets the stack_details of this BaseImageResponse. :param stack_details: The stack_details of this BaseImageResponse. :type: StackDetailsJson """ self._stack_details = stack_details @property def default_image(self): """ Gets the default_image of this BaseImageResponse. :return: The default_image of this BaseImageResponse. :rtype: bool """ return self._default_image @default_image.setter def default_image(self, default_image): """ Sets the default_image of this BaseImageResponse. :param default_image: The default_image of this BaseImageResponse. :type: bool """ self._default_image = default_image @property def package_versions(self): """ Gets the package_versions of this BaseImageResponse. :return: The package_versions of this BaseImageResponse. :rtype: dict(str, str) """ return self._package_versions @package_versions.setter def package_versions(self, package_versions): """ Sets the package_versions of this BaseImageResponse. :param package_versions: The package_versions of this BaseImageResponse. :type: dict(str, str) """ self._package_versions = package_versions def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, BaseImageResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
python
"""initialize the connection and wait for a message directed at it""" from irc import * from decision import * import os import random channel = "#bitswebteam" server = "irc.freenode.net" nickname = "EisBot" irc = IRC() irc.connect(server, channel, nickname) while 1: text = irc.get_text() print text if "PRIVMSG" in text and channel in text and "@choose" in text: irc.send(channel, decision.decide(text)) elif "PRIVMSG" in text and channel in text and "@adventure" in text: irc.send(channel, "The adventure begins!..") adventure.start()
python
import pickle import argparse import cv2 from tqdm import tqdm from lib.config import Config def parse_args(): parser = argparse.ArgumentParser(description="Tool to generate qualitative results videos") parser.add_argument("--pred", help=".pkl file to load predictions from") parser.add_argument("--cfg", default="config.yaml", help="Config file") parser.add_argument("--cover", default="tusimple_cover.png", help="Cover image file") parser.add_argument("--out", default="video.avi", help="Output filename") parser.add_argument("--view", action="store_true", help="Show predictions instead of creating video") return parser.parse_args() def add_cover_img(video, cover_path, frames=90): cover = cv2.imread(cover_path) for _ in range(frames): video.write(cover) def create_video(filename, width, height, fps=30): fourcc = cv2.VideoWriter_fourcc(*'MP42') video = cv2.VideoWriter(filename, fourcc, float(fps), (width, height)) return video def main(): args = parse_args() cfg = Config(args.cfg) dataset = cfg.get_dataset('test') height, width = cfg['datasets']['test']['parameters']['img_size'] print('Using resolution {}x{}'.format(width, height)) if not args.view: video = create_video(args.out, width, height) # add_cover_img(video, args.cover) with open(args.pred, "rb") as pred_file: predictions = pickle.load(pred_file) for idx, pred in tqdm(zip(range(len(dataset)), predictions), total=len(dataset)): if idx < 2200: continue if idx > 3000: break det_pred, cls_pred = pred assert det_pred.shape[0] == 1 # batch size == 1 frame = dataset.draw_annotation(idx, pred=det_pred[0].cpu().numpy(), cls_pred=cls_pred[0].cpu().numpy() if cls_pred is not None else None) assert frame.shape[:2] == (height, width) if args.view: cv2.imshow('frame', frame) cv2.waitKey(0) else: video.write(frame) if not args.view: video.release() print('Video saved as {}'.format(args.out)) if __name__ == '__main__': main()
python
# Copyright (c) 2008, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # author: Wim Meeussen import threading import rclpy import tf2_py as tf2 import tf2_ros from tf2_msgs.srv import FrameGraph # TODO(vinnamkim): It seems rosgraph is not ready # import rosgraph.masterapi from time import sleep from rclpy.duration import Duration from rclpy.task import Future class Buffer(tf2.BufferCore, tf2_ros.BufferInterface): """ Standard implementation of the :class:`tf2_ros.BufferInterface` abstract data type. Inherits from :class:`tf2_ros.buffer_interface.BufferInterface` and :class:`tf2.BufferCore`. Stores known frames and offers a ROS service, "tf_frames", which responds to client requests with a response containing a :class:`tf2_msgs.FrameGraph` representing the relationship of known frames. """ def __init__(self, cache_time = None, node = None): """ Constructor. :param cache_time: (Optional) How long to retain past information in BufferCore. :param node: (Optional) If node create a tf2_frames service, It responses all frames as a yaml """ if cache_time is not None: tf2.BufferCore.__init__(self, cache_time) else: tf2.BufferCore.__init__(self) tf2_ros.BufferInterface.__init__(self) self._new_data_callbacks = [] self._callbacks_to_remove = [] self._callbacks_lock = threading.RLock() if node is not None: self.srv = node.create_service(FrameGraph, 'tf2_frames', self.__get_frames) def __get_frames(self, req, res): return FrameGraph.Response(frame_yaml=self.all_frames_as_yaml()) def set_transform(self, *args, **kwargs): super().set_transform(*args, **kwargs) self._call_new_data_callbacks() def set_transform_static(self, *args, **kwargs): super().set_transform_static(*args, **kwargs) self._call_new_data_callbacks() def _call_new_data_callbacks(self): with self._callbacks_lock: for callback in self._new_data_callbacks: callback() # Remove callbacks after to avoid modifying list being iterated on for callback in self._callbacks_to_remove: self._new_data_callbacks.remove(callback) self._callbacks_to_remove.clear() def _remove_callback(self, callback): with self._callbacks_lock: # Actually remove the callback later self._callbacks_to_remove.append(callback) def lookup_transform(self, target_frame, source_frame, time, timeout=Duration()): """ Get the transform from the source frame to the target frame. :param target_frame: Name of the frame to transform into. :param source_frame: Name of the input frame. :param time: The time at which to get the transform. (0 will get the latest) :param timeout: (Optional) Time to wait for the target frame to become available. :return: The transform between the frames. :rtype: :class:`geometry_msgs.msg.TransformStamped` """ self.can_transform(target_frame, source_frame, time, timeout) return self.lookup_transform_core(target_frame, source_frame, time) async def lookup_transform_async(self, target_frame, source_frame, time): """ Get the transform from the source frame to the target frame asyncronously. :param target_frame: Name of the frame to transform into. :param source_frame: Name of the input frame. :param time: The time at which to get the transform. (0 will get the latest) :return: the transform :rtype: :class:`geometry_msgs.msg.TransformStamped` """ await self.wait_for_transform_async(target_frame, source_frame, time) return self.lookup_transform_core(target_frame, source_frame, time) def lookup_transform_full(self, target_frame, target_time, source_frame, source_time, fixed_frame, timeout=Duration()): """ Get the transform from the source frame to the target frame using the advanced API. :param target_frame: Name of the frame to transform into. :param target_time: The time to transform to. (0 will get the latest) :param source_frame: Name of the input frame. :param source_time: The time at which source_frame will be evaluated. (0 will get the latest) :param fixed_frame: Name of the frame to consider constant in time. :param timeout: (Optional) Time to wait for the target frame to become available. :return: The transform between the frames. :rtype: :class:`geometry_msgs.msg.TransformStamped` """ self.can_transform_full(target_frame, target_time, source_frame, source_time, fixed_frame, timeout) return self.lookup_transform_full_core(target_frame, target_time, source_frame, source_time, fixed_frame) async def lookup_transform_full_async(self, target_frame, target_time, source_frame, source_time, fixed_frame): """ Get the transform from the source frame to the target frame using the advanced API asyncronously. :param target_frame: Name of the frame to transform into. :param target_time: The time to transform to. (0 will get the latest) :param source_frame: Name of the input frame. :param source_time: The time at which source_frame will be evaluated. (0 will get the latest) :param fixed_frame: Name of the frame to consider constant in time. :return: the transform :rtype: :class:`geometry_msgs.msg.TransformStamped` """ await self.wait_for_transform_full_async(target_frame, target_time, source_frame, source_time, fixed_frame) return self.lookup_transform_full_core(target_frame, target_time, source_frame, source_time, fixed_frame) def can_transform(self, target_frame, source_frame, time, timeout=Duration(), return_debug_tuple=False): """ Check if a transform from the source frame to the target frame is possible. :param target_frame: Name of the frame to transform into. :param source_frame: Name of the input frame. :param time: The time at which to get the transform. (0 will get the latest) :param timeout: (Optional) Time to wait for the target frame to become available. :param return_debug_type: (Optional) If true, return a tuple representing debug information. :return: True if the transform is possible, false otherwise. :rtype: bool """ clock = rclpy.clock.Clock() if timeout != Duration(): start_time = clock.now() # TODO(vinnamkim): rclpy.Rate is not ready # See https://github.com/ros2/rclpy/issues/186 # r = rospy.Rate(20) while (clock.now() < start_time + timeout and not self.can_transform_core(target_frame, source_frame, time)[0] and (clock.now() + Duration(seconds=3.0)) >= start_time): # big jumps in time are likely bag loops, so break for them # r.sleep() sleep(0.02) core_result = self.can_transform_core(target_frame, source_frame, time) if return_debug_tuple: return core_result return core_result[0] def can_transform_full(self, target_frame, target_time, source_frame, source_time, fixed_frame, timeout=Duration(), return_debug_tuple=False): """ Check if a transform from the source frame to the target frame is possible (advanced API). Must be implemented by a subclass of BufferInterface. :param target_frame: Name of the frame to transform into. :param target_time: The time to transform to. (0 will get the latest) :param source_frame: Name of the input frame. :param source_time: The time at which source_frame will be evaluated. (0 will get the latest) :param fixed_frame: Name of the frame to consider constant in time. :param timeout: (Optional) Time to wait for the target frame to become available. :param return_debug_type: (Optional) If true, return a tuple representing debug information. :return: True if the transform is possible, false otherwise. :rtype: bool """ clock = rclpy.clock.Clock() if timeout != Duration(): start_time = clock.now() # TODO(vinnamkim): rclpy.Rate is not ready # See https://github.com/ros2/rclpy/issues/186 # r = rospy.Rate(20) while (clock.now() < start_time + timeout and not self.can_transform_full_core(target_frame, target_time, source_frame, source_time, fixed_frame)[0] and (clock.now() + Duration(seconds=3.0)) >= start_time): # big jumps in time are likely bag loops, so break for them # r.sleep() sleep(0.02) core_result = self.can_transform_full_core(target_frame, target_time, source_frame, source_time, fixed_frame) if return_debug_tuple: return core_result return core_result[0] def wait_for_transform_async(self, target_frame, source_frame, time): """ Wait for a transform from the source frame to the target frame to become possible. :param target_frame: Name of the frame to transform into. :param source_frame: Name of the input frame. :param time: The time at which to get the transform. (0 will get the latest) :return: A future that becomes true when the transform is available :rtype: rclpy.task.Future """ fut = rclpy.task.Future() if self.can_transform_core(target_frame, source_frame, time)[0]: # Short cut, the transform is available fut.set_result(True) return fut def _on_new_data(): try: if self.can_transform_core(target_frame, source_frame, time)[0]: fut.set_result(True) except BaseException as e: fut.set_exception(e) self._new_data_callbacks.append(_on_new_data) fut.add_done_callback(lambda _: self._remove_callback(_on_new_data)) return fut def wait_for_transform_full_async(self, target_frame, target_time, source_frame, source_time, fixed_frame): """ Wait for a transform from the source frame to the target frame to become possible. :param target_frame: Name of the frame to transform into. :param target_time: The time to transform to. (0 will get the latest) :param source_frame: Name of the input frame. :param source_time: The time at which source_frame will be evaluated. (0 will get the latest) :param fixed_frame: Name of the frame to consider constant in time. :return: A future that becomes true when the transform is available :rtype: rclpy.task.Future """ fut = rclpy.task.Future() if self.can_transform_full_core(target_frame, target_time, source_frame, source_time, fixed_frame)[0]: # Short cut, the transform is available fut.set_result(True) return fut def _on_new_data(): try: if self.can_transform_full_core(target_frame, target_time, source_frame, source_time, fixed_frame)[0]: fut.set_result(True) except BaseException as e: fut.set_exception(e) self._new_data_callbacks.append(_on_new_data) fut.add_done_callback(lambda _: self._remove_callback(_on_new_data)) return fut
python
#!/usr/bin/env python """ Copyright (c) 2018 Keitaro AB Use of this source code is governed by an MIT license that can be found in the LICENSE file or at https://opensource.org/licenses/MIT. """ """ Executable module for checking github version updates for repositories from repositories.txt and alerting the slack channel in case of new unrecorded one """ import urllib.request import json import os import etcd3 def check_version(repositories): """ For list of repositories, check their versions and recorded ones :param repositories: :return: """ for repository in repositories: # user/repository name_path = get_name_path(repository) # github api url for requesting tag list url = get_api_url(name_path) # get the tag list tags = get_tags(url) check_records(name_path, tags[0]) def get_repositories(): """ Parse repository list from file :return: """ repositories = [] with open('/app/repositories.txt', 'r') as file: content = file.readlines() repositories = [row.strip() for row in content if row.strip()[0] != '#'] return repositories def alert_slack(repository, new_version): """ Alerts the slack channel with formatting and content of message :param repository: :param new_version: :param slack_hook: :return: """ slack_hook = os.environ.get('SLACK_HOOK') slack_channel = os.environ.get('SLACK_CHANNEL', '#random') request_dict = dict() request_dict['attachments'] = [] attachment = dict() attachment['fallback'] = "New version ({}) found for {}!".format(new_version, repository) attachment['color'] = '#4286f4' attachment['title'] = "New version found for {}!".format(repository) attachment['fields'] = [ { 'title': "Repository: _*{}*_".format(repository), 'value': "New version: `{}`".format(new_version) }, { 'value': "Url: https://github.com/{}/releases/tag/{}".format(repository, new_version) } ] request_dict['attachments'].append(attachment) request_dict['channel'] = slack_channel request_dict['link_names'] = 1 request_dict['username'] = 'version-check-bot' request_dict['icon_emoji'] = ':arrow_up:' # convert dict to json, and encode it with utf-8 request_data = json.dumps(request_dict).encode('utf-8') request = urllib.request.Request(slack_hook, request_data, {'Content-type': 'application/json'}, method="POST") response = urllib.request.urlopen(request) # TODO: parse response return response def get_tags(url): """ Function for obtaining tags from url :param url: :return tags: """ reader = urllib.request.urlopen(url) json_raw = reader.read() reader.close() json_parsed = json.loads(json_raw) tags = [] for tag_object in json_parsed: tag = tag_object['ref'].split('/')[-1] # skip beta and alpha tags, and the minio bad first old tag if 'beta' not in tag and 'alpha' not in tag and 'release-1434511043' not in tag: tags.append(tag) return sorted(tags, reverse=True) def get_name_path(url): """ Function for getting the repository name from given github url :param url: :return: """ # remove trailing slash if url[-1] == '/': url = url[:-1] url_split = url.split('/') if len(url_split) > 2: return url_split[-1] + '/' + url_split[-2] # if only user/repo is given instead of full url return url def get_api_url(for_repository): """ Get the api url for GET request to obtain tags :param for_repository: :return: """ api_url = 'https://api.github.com/repos/{}/git/refs/tags'.format(for_repository) return api_url def etcd_client(): """ Creates an etcd client instance with connection :return: returns an etcd client instance """ host = os.environ.get('ETCD_HOST') port = os.environ.get('ETCD_PORT') etcd = etcd3.client(host=host, port=port) return etcd def check_records(repository, version): """ Checks if there is a record for the repository with that version, if not, sends an alert :param repository: :param version: :return: """ etcd = etcd_client() records = [(x[1].key.decode('utf-8'), x[0].decode('utf-8')) for x in etcd.get_prefix('/version-check')] etcd_key_path = '/version-check/{}'.format(repository) # get recorded version recorded_version_bytes = etcd.get(etcd_key_path)[0] # if none found, send alert and update records if recorded_version_bytes is None: alert_slack(repository, version) etcd.put(etcd_key_path, version) return True # decode the bytes recorded_version = recorded_version_bytes.decode('utf-8') # if the recorded version is different, update and send alert if recorded_version != version: alert_slack(repository, version) etcd.put(etcd_key_path, version) return True return False if __name__ == '__main__': check_version(get_repositories())
python
from enum import Enum class Order(Enum): ASC = "ASC" DESC = "DESC" class DatabaseType(Enum): PSYCOPG2 = "PSYCOPG2" SQLITE3 = "SQLITE3" class Fetch(Enum): ONE = "ONE" ALL = "ALL"
python
# -*- coding:utf-8 -*- import threading local_value = threading.local() def test_put_thread(value): local_value.value = value test_read_thread() def test_read_thread(): print(local_value.value + " in thread: %s" % threading.current_thread().name) t1 = threading.Thread(target=test_put_thread, args=("张三",), name='Thread-A') t2 = threading.Thread(target=test_put_thread, args=("李四",), name='Thread-B') t1.start() t2.start() t1.join() t2.join()
python
from flask import (Blueprint, render_template, redirect, request, url_for, abort, flash) from itsdangerous import URLSafeTimedSerializer from app import app, models, db from app.models import Survey, SurveyOptions from app.forms import survey as survey_forms from sqlalchemy import func # Create a survey blueprint surveybp = Blueprint('surveybp', __name__, url_prefix='/survey') # Function to Create a New Survey @surveybp.route('/create_survey', methods=['GET','POST']) def create_survey(): form = survey_forms.CreateSurvey() if form.validate_on_submit(): # Create a survey with options survey_name=form.survey_name.data, created_by_user_id=form.created_by_user_id.data, survey_options_list=[] survey_options_list.append(form.option1.data) survey_options_list.append(form.option2.data) if form.option3.data: survey_options_list.append(form.option3.data) if form.option4.data: survey_options_list.append(form.option4.data) if form.option5.data: survey_options_list.append(form.option5.data) if form.option6.data: survey_options_list.append(form.option6.data) if form.option7.data: survey_options_list.append(form.option7.data) if form.option8.data: survey_options_list.append(form.option8.data) # Get max survey_id so we can add survey and options to respective db tables max_survey_id = db.session.query(func.max(Survey.id)).scalar() new_survey = Survey(id=max_survey_id+1, survey_name=survey_name, created_by_user_id=created_by_user_id) db.session.add(new_survey) for option in survey_options_list: new_survey_option = SurveyOptions(survey_id=max_survey_id+1, option_name=option) db.session.add(new_survey_option) # Insert the survey and survey_options into the database db.session.commit() flash('Added survey to database!', 'positive') return redirect(url_for('index')) return render_template('survey/create_survey.html', form=form, title='Create Survey')
python
# coding: utf-8 import os import sys from threading import Thread sys.path.append(os.path.join(os.path.dirname(__file__), '../util')) from pluginbase import PluginBase class NotifierBase(PluginBase): def __init__(self): self.modtype = 'notifier' super().__init__() def start_notification(self, event_id, message, datapaths=[]): """this method is diretry called by home-recorder""" self.notifier_thread = Thread(target=self.notify, args=(event_id, message, datapaths)) self.notifier_thread.start() def join(self, timeout=None): self.notifier_thread.join(timeout) def notify(self, event_id, message, datapaths): """ notify() is called indirectly by home-recorder for notifing events and errors. Override this method in your notifier. Arguments are: - event_id: Unique id of the event. - message: message string to be notified. - datapaths: A list of abs paths. """ pass
python
# -*- coding: utf-8 -*- # Copyright (c) 2017, FinByz Tech Pvt. Ltd. and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.model.document import Document from frappe.utils import add_days class TruckPartsInventory(Document): def validate(self): if self.truck_part == "Battery" or self.truck_part == "Tyre": if not self.serial_number: frappe.throw(_("Please specify serial number")) def before_save(self): exp_life = frappe.db.get_value("Item", self.truck_part, 'lifespan') self.expected_life = exp_life if self.manufacturing_date: self.expected_end_life = add_days(self.manufacturing_date, self.expected_life) else: self.expected_end_life = add_days(self.purchase_date, self.expected_life)
python
import pygame import json class Spritesheet: # Takes in Spritesheet file name. Assumes a png and a json file exist def __init__(self, filename): self.filename = filename self.sprite_sheet = pygame.image.load(filename).convert() self.meta_data = self.filename.replace('png', 'json') with open(self.meta_data) as f: self.data = json.load(f) f.close() # helper function for parse sprite def get_sprite(self, x, y, w, h): sprite = pygame.Surface((w, h)) sprite.set_colorkey((0,0,0)) sprite.blit(self.sprite_sheet,(0, 0),(x, y, w, h)) return sprite # Takes in Sprite name and returns the selected sprite from the spritesheet def parse_sprite(self, name): sprite = self.data['frames'][name]['frame'] x, y, w, h = sprite["x"], sprite["y"], sprite["w"], sprite["h"] image = self.get_sprite(x, y, w, h) return image
python
""" This configuration file contains common data for parametrizing various tests such as isotherms. """ PRESSURE_PARAM = [ (1, {}), # Standard return (100000, { 'pressure_unit': 'Pa' }), # Unit specified (0.128489, { 'pressure_mode': 'relative' }), # Mode relative (12.8489, { 'pressure_mode': 'relative%' }), # Mode relative% (0.128489, { 'pressure_unit': 'Pa', 'pressure_mode': 'relative' }), # Mode and unit specified (3, { 'limits': (2.3, 5.0) }), # Range specified ] LOADING_PARAM = [ (1, {}), # Standard return (0.001, { 'loading_unit': 'mol' }), # Loading unit specified (0.876484, { 'loading_basis': 'volume_gas', 'loading_unit': 'cm3' }), # Loading basis specified (1000, { 'material_unit': 'kg' }), # Adsorbent unit specified (2, { 'material_basis': 'volume', 'material_unit': 'cm3', }), # Adsorbent basis specified (0.0280135, { 'loading_basis': 'fraction', }), # Fractional weight (will be 1/1000 mol * 28.01 g/mol) (2.80134, { 'loading_basis': 'percent', }), # Percent weight (0.01, { 'loading_basis': 'fraction', 'material_basis': 'molar', 'material_unit': 'mmol', }), # Fractional molar (will be 1/1000 mol * 10 g/mol) (0.081274, { 'loading_basis': 'fraction', 'material_basis': 'volume', 'material_unit': 'cm3', }), # Fractional volume ( 56.02696, { 'loading_basis': 'mass', 'loading_unit': 'kg', 'material_basis': 'volume', 'material_unit': 'm3', } ), # All specified (3.0, { 'limits': (2.3, 5.0) }), # Range specified ] PRESSURE_AT_PARAM = [ (1, 1, {}), # Standard return (1, 1, { 'branch': 'ads' }), # Branch specified (1, 100000, { 'pressure_unit': 'Pa' }), # Pressure unit specified (2, 0.256978, { 'pressure_mode': 'relative' }), # Pressure mode specified (0.002, 2, { 'loading_unit': 'mol' }), # Loading unit specified (0.02808, 1.00237, { 'loading_basis': 'mass', 'loading_unit': 'g' }), # Loading mode specified (1000, 1, { 'material_unit': 'kg' }), # Loading basis specified (2, 1, { 'material_basis': 'volume', 'material_unit': 'cm3' }), # Adsorbent basis specified ( 0.1, 0.229334, { 'pressure_mode': 'relative', 'pressure_unit': 'Pa', 'loading_basis': 'mass', 'loading_unit': 'g', 'material_basis': 'volume', 'material_unit': 'cm3', } ), # All specified ] LOADING_AT_PARAM = [ (1, 1, {}), # Standard return (1, 1, { 'branch': 'ads' }), # Branch specified (100000, 1, { 'pressure_unit': 'Pa' }), # Pressure unit specified (0.256978, 2, { 'pressure_mode': 'relative' }), # Pressure mode specified (2, 0.002, { 'loading_unit': 'mol' }), # Loading unit specified (1.00237, 0.02808, { 'loading_basis': 'mass', 'loading_unit': 'g' }), # Loading mode specified (1, 1000, { 'material_unit': 'kg' }), # Loading basis specified (1, 2, { 'material_basis': 'volume', 'material_unit': 'cm3' }), # Adsorbent basis specified ( 0.229334, 0.1, { 'pressure_unit': 'Pa', 'pressure_mode': 'relative', 'loading_basis': 'mass', 'loading_unit': 'g', 'material_basis': 'volume', 'material_unit': 'cm3', } ), # All specified ]
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import platform import sys if platform.system() != 'Linux': sys.exit(-1) from .killer import Killer from .utils import load_config parser = argparse.ArgumentParser(description='ssh key killer') parser.add_argument('-c', '--config', dest='config', metavar='config', default="/etc/ssh-key-killer/", type=str, help="a config file or a directory contains config files") parser.add_argument('--verify', action="store_true", help="verify the config file") args = parser.parse_args() if args.verify: load_config(args.config) else: Killer(configfile=args.config).invalid()
python
# coding: utf-8 ''' @Date : 2021-05-05 @Author : Zekang Li @Mail : [email protected] @Homepage: zekangli.com ''' import torch import string import torch.nn as nn from transformers import * SPECIAL_TOKENS = ["<bos>", "<eos>", "<info>", "<speaker1>", "<speaker2>", "<empty>", "<pad>"] SPECIAL_TOKENS_DICT = {'bos_token': "<bos>", 'eos_token': "<eos>", 'additional_special_tokens': ["<info>", "<speaker1>", "<speaker2>", "<empty>"], 'pad_token': "<pad>"} def tokenize(obj,tokenizer): if isinstance(obj, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) if isinstance(obj, dict): return dict((n, tokenize(o, tokenizer)) for n, o in obj.items()) return list(tokenize(o, tokenizer) for o in obj) def build_input_from_dialogue(conv, tokenizer): bos, eos, info, speaker1, speaker2, empty, pad = [x[0] for x in tokenize(SPECIAL_TOKENS, tokenizer)] sentence_index = [0] conv_seq = [] label_seq = [] token_type_seq = [] for i in range(len(conv)): if len(conv_seq) + len(conv[i][:128]) + 10 > 1000: break if i % 2 == 0: speaker = 0 conv_seq.append(speaker1) else: speaker = 1 conv_seq.append(speaker2) label_seq.append(-100) token_type_seq.append(speaker) conv_seq.extend(conv[i][:128]) label_seq.extend(conv[i][:128]) token_type_seq.extend([speaker]*len(conv[i][:128])) conv_seq.append(eos) label_seq.append(eos) token_type_seq.append(speaker) conv_seq.append(empty) label_seq.append(-100) token_type_seq.append(speaker) sentence_index.append(len(conv_seq)-1) conv_seq = torch.LongTensor(conv_seq) label_seq = torch.LongTensor(label_seq) sentence_index = torch.LongTensor(sentence_index) token_type_seq = torch.LongTensor(token_type_seq) return conv_seq, label_seq, sentence_index, token_type_seq def norm(a): mean = torch.mean(a, dim=1).unsqueeze(1) std = torch.std(a, dim=1).unsqueeze(1) return (a - mean) / std def add_punc(text): r = "" for i in text: if i in string.punctuation: r += " " r += i else: r += i return r.replace(" ", " ") class FlowScore: def __init__(self, model_path): self.cuda = "cuda" if torch.cuda.is_available() else "cpu" self.model = torch.load(model_path, map_location=self.cuda) self.model.planing_model.device = self.cuda self.tokenizer = GPT2Tokenizer.from_pretrained("./models/") self.tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT) self.model.eval() self.cos = nn.CosineSimilarity(dim=2, eps=1e-9) def score(self, dialogue): with torch.no_grad(): conv_seq, _, sentence_index, token_type_seq = build_input_from_dialogue(tokenize(dialogue, self.tokenizer), self.tokenizer) conv_seq = conv_seq.unsqueeze(0).cuda() sentence_index = sentence_index.unsqueeze(0).cuda() token_type_seq = token_type_seq.unsqueeze(0).cuda() conv_hidden_state = self.model.speak_model(conv_seq, token_type_ids=token_type_seq)[0] sentence_hidden = conv_hidden_state.index_select(1, sentence_index[0]) output, loss_plan = self.model.planing_model(sentence_hidden) sentence_hidden_delta = sentence_hidden[:, 1:, :] - sentence_hidden[:, :-1, :] output_delta = output[:, :-1, :] - sentence_hidden[:, :-1, :] sentence_hidden_len = torch.sqrt(torch.sum(sentence_hidden_delta ** 2, dim=-1)) output_len = torch.sqrt(torch.sum(output_delta ** 2, dim=-1)) min_len = torch.min(sentence_hidden_len, output_len) x = self.cos(sentence_hidden_delta, output_delta) * (min_len ** 2 / (sentence_hidden_len * output_len)) DPKS_score = torch.pow(2, -torch.mean(torch.log(((x + 1) / 2)[0, 3::2]))) return DPKS_score.item()
python
import os import json, decimal import boto3 from boto3.dynamodb.conditions import Key, Attr tableName = os.environ.get('ACCESS_TABLE_NAME') def handler(event, context): client = boto3.resource('dynamodb') table = client.Table(tableName) print(table.table_status) print(event) username = event['requestContext']['authorizer']['claims']['cognito:username'] res = table.scan(FilterExpression=Key('shared_user').eq(username)) data = res['Items'] while 'LastEvaluatedKey' in res: res = table.scan(ExclusiveStartKey=res['LastEvaluatedKey']) data.extend(res['Items']) usersWithAccess = [] for entry in data: usersWithAccess.append(entry['username']) body = { 'users_with_access': usersWithAccess } response = { "statusCode": 200, "body": json.dumps(body), "headers": { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*" } } print(response) return response
python
A_0219_9 = {0: {'A': 0.2420334938061355, 'C': -0.12964532145406094, 'E': -0.30716253311729963, 'D': -0.20136070573849837, 'G': 0.09315559829464488, 'F': 0.414085377622071, 'I': -0.11091042509341746, 'H': -0.40154576951031906, 'K': -0.11190222068525454, 'M': -0.16860437072777687, 'L': 0.20901824078912526, 'N': 0.032287878091663676, 'Q': 0.11764813950492131, 'P': -0.4510381206036012, 'S': -0.2651472265026922, 'R': -0.4731550123861466, 'T': -0.28413749083180867, 'W': 0.2955906501791419, 'V': -0.09635304020464032, 'Y': 0.7408657058985775}, 1: {'A': -0.41943263805417924, 'C': -0.6061935504333876, 'E': -0.6076150068101372, 'D': -0.607213243223602, 'G': -0.42689370995900866, 'F': -0.26210331331656417, 'I': -0.10967350782637802, 'H': -0.6288986336633852, 'K': -0.6139266374902476, 'M': 1.190384146568963, 'L': 1.4017298248353962, 'N': -0.6067032731427604, 'Q': 0.05055904458391644, 'P': -0.6281390090418096, 'S': -0.607352492311383, 'R': -0.6344244536958641, 'T': -0.4094068917461391, 'W': -0.607724675232467, 'V': -0.3341434179358044, 'Y': -0.5821559530728522}, 2: {'A': 0.03151441917923293, 'C': -0.5230670093085569, 'E': -0.43100928136539085, 'D': 0.09133983002015222, 'G': -0.10854506054292079, 'F': -0.039475930714978576, 'I': -0.25845810564074134, 'H': 0.05885721963591881, 'K': -0.3618581378273778, 'M': 0.9018137470311799, 'L': 0.2321708275679429, 'N': 0.07831164228003454, 'Q': 0.22144506774368122, 'P': 0.05214050830759903, 'S': 0.08094336297852421, 'R': -0.558514130048989, 'T': -0.15441584094409533, 'W': 0.18996836396566266, 'V': -0.5017537954964252, 'Y': 0.369764095683107}, 3: {'A': -0.28626087976730247, 'C': -0.025125042713760825, 'E': 0.47178602649403406, 'D': 0.7623297880080667, 'G': 0.3136472556573316, 'F': -0.3657171680025016, 'I': -0.21747542126833005, 'H': -0.5194043975409929, 'K': -0.293285801247425, 'M': -0.22636485330335548, 'L': -0.1553118171029022, 'N': -0.0979392609940178, 'Q': 0.17191291166213873, 'P': 0.05158066081625252, 'S': 0.10243891992817417, 'R': -0.3305725976478324, 'T': -0.2792916406115506, 'W': -0.31829212874127993, 'V': -0.47387241520285656, 'Y': -0.40070222297241603}, 4: {'A': -0.0664630090303782, 'C': 0.08906413209160546, 'E': -0.01631783995225214, 'D': 0.2811505654670672, 'G': 0.2699699503925373, 'F': -0.23462556888397043, 'I': -0.29073835177154284, 'H': -0.3009509959974252, 'K': -0.14121867364784013, 'M': 0.0678370240476132, 'L': -0.24882748064831306, 'N': 0.18968866265159356, 'Q': -0.37324808981501906, 'P': -0.09042667420234526, 'S': 0.09594153430999246, 'R': -0.5370676695087087, 'T': 0.18691516307466047, 'W': 0.7048833323442629, 'V': 0.08399414782445343, 'Y': 0.5009958670368024}, 5: {'A': 0.07878350356281144, 'C': 0.2795393513032944, 'E': -0.09436084459364735, 'D': -0.009535790747915907, 'G': -0.03321434575342667, 'F': -0.25484921353296797, 'I': 0.35957002643872255, 'H': -0.06394434795697493, 'K': -0.1414000989242711, 'M': -0.028836961840174796, 'L': 0.1073770390964023, 'N': -0.12028478909114225, 'Q': 0.07539197454994266, 'P': -0.1708262132646714, 'S': 0.2049606141156023, 'R': -0.5078537547759676, 'T': 0.07290481680957006, 'W': -0.29945826510496754, 'V': 0.1495075300850585, 'Y': 0.013283264778613241}, 6: {'A': 0.01411226130059054, 'C': 0.06692290277721402, 'E': -0.06340146779041687, 'D': 0.1746866532150916, 'G': -0.25992464000755505, 'F': 0.5009868235293345, 'I': 0.06355712998714634, 'H': 0.35077213192757506, 'K': -0.26925800741860245, 'M': -0.013849751311046675, 'L': -0.32758688479932485, 'N': -0.22385598526874687, 'Q': -0.06336166705835866, 'P': 0.47510097331107193, 'S': -0.2906131684624784, 'R': -0.47252967044892613, 'T': -0.11343812404340384, 'W': 0.221827025663051, 'V': -0.2039985639445891, 'Y': 0.29109835352637226}, 7: {'A': -0.2214844136003379, 'C': 0.253972043605802, 'E': -0.11180878646892282, 'D': 0.04866386625383542, 'G': 0.21129609322137066, 'F': 0.09675763577527521, 'I': -0.478466495950241, 'H': -0.22278119575014163, 'K': 0.0024895662503172412, 'M': -0.08637762364986003, 'L': -0.16451622726927184, 'N': 0.14658405355475607, 'Q': -0.22460008840640644, 'P': 0.06863736746483798, 'S': 0.02806708910872769, 'R': 0.17046998008080952, 'T': 0.12640810468428135, 'W': -0.325349814172603, 'V': -0.051103104718504995, 'Y': 0.4213757307211304}, 8: {'A': 0.48788428252771016, 'C': -0.02730369832594655, 'E': -0.6113264720739239, 'D': -0.6061935504333876, 'G': -4.0, 'F': -0.553306353566414, 'I': 0.3385355359756546, 'H': -0.612884043508607, 'K': -0.6261305872802506, 'M': 0.006175759526607426, 'L': 0.1606962734073028, 'N': -0.5384273463457844, 'Q': -0.530233857024553, 'P': -4.0, 'S': -0.22209665774387793, 'R': -0.6118447637583928, 'T': 0.3905794756125614, 'W': -0.6207885684222972, 'V': 1.2769558604632072, 'Y': -0.6997587692314469}, -1: {'slope': 0.10404992803361, 'intercept': -0.3897501239679909}}
python
# from typing import Dict # import os # from unittest import TestCase, main # # import json # # from monolithcaching import CacheManager # # # class TestCacheManager(TestCase): # # @staticmethod # def get_meta_data(meta_data_path: str) -> Dict: # with open(meta_data_path) as json_file: # meta = json.load(json_file) # return meta # # def test_cache(self): # test = CacheManager() # test.create_cache() # # cache_directory_check = test.worker.base_dir # meta_file_path = test.worker.base_dir + "meta.json" # meta_data = self.get_meta_data(meta_data_path=meta_file_path) # # self.assertEqual(True, os.path.isdir(cache_directory_check)) # self.assertEqual(test.worker.base_dir, test.worker.base_dir) # self.assertEqual(None, test.worker._existing_cache) # self.assertEqual(True, os.path.isfile(meta_file_path)) # self.assertEqual({}, meta_data) # # test.insert_meta(key="one", value=1) # test.insert_meta(key="two", value=2) # # self.assertEqual({"one": 1, "two": 2}, self.get_meta_data(meta_data_path=meta_file_path)) # self.assertEqual({"one": 1, "two": 2}, test.meta) # # existing_cach_path = test.cache_path # del test # # if os.environ.get("CI") is None: # self.assertEqual(False, os.path.isdir(existing_cach_path)) # # def test_lock(self): # test = CacheManager() # test.create_cache() # # self.assertEqual({}, test.meta) # test.lock_cache() # self.assertEqual({"locked": True}, test.meta) # existing_cach_path = test.cache_path # # del test # # new_test = CacheManager() # new_test.create_cache(existing_cache=existing_cach_path) # self.assertEqual({"locked": True}, new_test.meta) # self.assertEqual(True, new_test.worker._locked) # self.assertEqual(True, os.path.isdir(existing_cach_path)) # new_test.unlock_cache() # self.assertEqual({"locked": False}, new_test.meta) # self.assertEqual(False, new_test.worker._locked) # self.assertEqual(True, os.path.isdir(existing_cach_path)) # # del new_test # # if os.environ.get("CI") is None: # self.assertEqual(False, os.path.isdir(existing_cach_path)) # # # if __name__ == "__main__": # main()
python
def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ traversal1 = l1 traversal2 = l2 dummy = head = ListNode(0) carry = 0 while traversal1 != None or traversal2 != None or carry != 0: if traversal1: carry += traversal1.val traversal1 = traversal1.next if traversal2: carry += traversal2.val traversal2 = traversal2.next head.next = ListNode(carry % 10) head = head.next carry = carry / 10 return dummy.next
python
# coding=utf-8 import json from common import constant from common import errcode from common.mylog import logger from dao.question.question_dao import QuestionDao from dao.question.user_question_map_dao import UserQuestionMapDao from handlers.base.base_handler import BaseHandler from myutil import tools class GetQuestionListByCategoryHandler(BaseHandler): methods = ['POST'] def __init__(self): expect_request_para = { "category_id": None, "page_num": None, "page_size": None, "common_param": None, } need_para = ( "category_id", "page_num", "page_size", "common_param", ) super(GetQuestionListByCategoryHandler, self).__init__(expect_request_para, need_para) def _parse_and_check_parameters(self): """ 参数校验 :return: """ if not super(GetQuestionListByCategoryHandler, self)._parse_and_check_parameters(): self.ret_code = errcode.PARAMETER_ERROR self.ret_msg = "param error!" return False self.category_id = tools.str_to_int(self.para_map["category_id"], 0) if self.category_id <= 0: self.ret_code = errcode.PARAMETER_ERROR self.ret_msg = "category param error!" return False self.page_num = tools.str_to_int(self.para_map["page_num"], 0) if self.page_num <= 0: self.ret_code = errcode.PARAMETER_ERROR self.ret_msg = "page_num param error!" return False self.page_size = tools.str_to_int(self.para_map["page_size"], 0) if self.page_size <= 0: self.ret_code = errcode.PARAMETER_ERROR self.ret_msg = "page_size param error!" return False if self.user_type == constant.USER_SOURCE_LOGIN_USER: self.uid = self.rid else: self.uid = self.tid return True def _process_imp(self): question_list = QuestionDao.get_by_category(self.category_id, self.page_num, self.page_size) # 将答案json规范 for question_item in question_list: try: question_item["answer"] = json.loads(question_item["answer"]) except Exception, ex: logger.error(ex, exc_info=1) question_item["answer"] = [] continue # 用户获取的答案记录在案 UserQuestionMapDao.insert(self.user_type, self.uid, question_item["id"]) self.ret_code = errcode.NO_ERROR self.ret_msg = 'ok' self.ret_data = { "questions": question_list } return
python
import pytest from ethereum import tester from functools import ( reduce ) from fixtures import ( MAX_UINT, fake_address, token_events, owner_index, owner, wallet_address, get_bidders, fixture_decimals, contract_params, get_token_contract, token_contract, create_contract, print_logs, create_accounts, txnCost, test_bytes, event_handler, ) from utils_logs import LogFilter @pytest.fixture() def proxy_contract(chain, create_contract): AuctionProxy = chain.provider.get_contract_factory('Proxy') proxy_contract = create_contract(AuctionProxy, []) print_logs(proxy_contract, 'Payable', 'Proxy') return proxy_contract @pytest.fixture() def proxy_erc223_contract(chain, create_contract): AuctionProxy = chain.provider.get_contract_factory('ProxyERC223') proxy_erc223_contract = create_contract(AuctionProxy, []) return proxy_erc223_contract @pytest.mark.parametrize('decimals', fixture_decimals) def test_token_init( chain, web3, wallet_address, get_token_contract, proxy_contract, decimals): (A, B, C, D, E) = web3.eth.accounts[:5] auction = proxy_contract multiplier = 10**(decimals) initial_supply = 5000 * multiplier # Transaction fails when auction address is invalid with pytest.raises(TypeError): token = get_token_contract([ 0, wallet_address, initial_supply ], {'from': E}, decimals=decimals) with pytest.raises(TypeError): token = get_token_contract([ proxy_contract.address, 0, wallet_address, initial_supply ], {'from': E}, decimals=decimals) with pytest.raises(TypeError): token = get_token_contract([ fake_address, wallet_address, initial_supply ], {'from': E}, decimals=decimals) # Test max uint - 2 as supply (has to be even) token = get_token_contract([ proxy_contract.address, wallet_address, MAX_UINT - 1 ], {'from': E}, decimals=decimals) with pytest.raises(TypeError): token = get_token_contract([ proxy_contract.address, wallet_address, MAX_UINT + 1 ], {'from': E}, decimals=decimals) # Transaction fails if initial_supply == 0 with pytest.raises(tester.TransactionFailed): token = get_token_contract([ proxy_contract.address, wallet_address, 0 ], {'from': E}, decimals=decimals) with pytest.raises(TypeError): token = get_token_contract([ proxy_contract.address, wallet_address, -2 ], {'from': E}, decimals=decimals) # Fails when supply is an odd number; auction and wallet addresses # are assigned a different number of tokens with pytest.raises(tester.TransactionFailed): token = get_token_contract([ proxy_contract.address, wallet_address, 10000001, ], {'from': E}, decimals=decimals) token = get_token_contract([ proxy_contract.address, wallet_address, initial_supply ], {'from': E}, decimals=decimals) assert token.call().decimals() == decimals @pytest.mark.parametrize('decimals', fixture_decimals) def test_token_variable_access( chain, web3, wallet_address, get_token_contract, proxy_contract, decimals): owner = web3.eth.coinbase (A, B, C) = web3.eth.accounts[1:4] multiplier = 10**(decimals) initial_supply = 3000 * multiplier token = get_token_contract([ proxy_contract.address, wallet_address, initial_supply ], {'from': owner}, decimals=decimals) assert token.call().name() == 'Yobicash Token' assert token.call().symbol() == 'YBC' assert token.call().decimals() == decimals assert token.call().totalSupply() == initial_supply def test_token_balanceOf( chain, web3, wallet_address, token_contract, proxy_contract, contract_params): token = token_contract(proxy_contract.address) multiplier = 10**(contract_params['decimals']) supply = contract_params['supply'] * multiplier half_balance = supply // 2 assert token.call().balanceOf(proxy_contract.address) == half_balance assert token.call().balanceOf(wallet_address) == half_balance def transfer_tests( bidders, balances, multiplier, token, event_handler): (A, B, C) = bidders ev_handler = event_handler(token) with pytest.raises(TypeError): token.transact({'from': A}).transfer(0, 10) with pytest.raises(TypeError): token.transact({'from': A}).transfer(fake_address, 10) with pytest.raises(TypeError): token.transact({'from': A}).transfer(B, MAX_UINT + 1) with pytest.raises(TypeError): token.transact({'from': A}).transfer(B, -5) with pytest.raises(tester.TransactionFailed): balance_A = token.call().balanceOf(A) token.transact({'from': A}).transfer(B, balance_A + 1) with pytest.raises(tester.TransactionFailed): balance_B = token.call().balanceOf(B) token.transact({'from': A}).transfer(B, MAX_UINT + 1 - balance_B) txn_hash = token.transact({'from': A}).transfer(B, 0) ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(A) == balances[0] assert token.call().balanceOf(B) == balances[1] txn_hash = token.transact({'from': A}).transfer(B, 120) ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(A) == balances[0] - 120 assert token.call().balanceOf(B) == balances[1] + 120 txn_hash = token.transact({'from': B}).transfer(C, 66) ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(B) == balances[1] + 120 - 66 assert token.call().balanceOf(C) == balances[2] + 66 ev_handler.check() def transfer_erc223_tests( bidders, balances, multiplier, token, proxy, token_erc223, proxy_erc223, event_handler): (A, B, C) = bidders ev_handler = event_handler(token_erc223) test_data = test_bytes() # 32 bytes test_data2 = test_bytes(value=20) assert not test_data == test_data2 balance_A = token.call().balanceOf(A) balance_proxy = token.call().balanceOf(proxy.address) balance_proxy_erc223 = token.call().balanceOf(proxy_erc223.address) with pytest.raises(TypeError): token.transact({'from': A}).transfer(B, balance_A, 0) # Make sure it fails when internal call of transfer(to, value) fails with pytest.raises(tester.TransactionFailed): token.transact({'from': A}).transfer(B, balance_A + 1, test_data) with pytest.raises(tester.TransactionFailed): token.transact({'from': A}).transfer(proxy_erc223.address, balance_A + 1, test_data) # Receiver contracts without a tokenFallback with pytest.raises(tester.TransactionFailed): token.transact({'from': A}).transfer(proxy.address, balance_A, test_data) # TODO FIXME erc223 transfer event not handled correctly txn_hash = token.transact({'from': A}).transfer(proxy_erc223.address, balance_A, test_data) # ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(A) == 0 assert token.call().balanceOf(proxy_erc223.address) == balance_proxy_erc223 + balance_A # Arbitrary tests to see if the tokenFallback function from the proxy is called assert proxy_erc223.call().sender() == A assert proxy_erc223.call().value() == balance_A balance_B = token.call().balanceOf(B) balance_proxy_erc223 = token.call().balanceOf(proxy_erc223.address) txn_hash = token.transact({'from': B}).transfer(proxy_erc223.address, 0, test_data2) # ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(B) == balance_B assert token.call().balanceOf(proxy_erc223.address) == balance_proxy_erc223 assert proxy_erc223.call().sender() == B assert proxy_erc223.call().value() == 0 txn_hash = token.transact({'from': A}).transfer(proxy_erc223.address, 0) # ev_handler.add(txn_hash, token_events['transfer']) txn_hash = token.transact({'from': A}).transfer(proxy.address, 0) # ev_handler.add(txn_hash, token_events['transfer']) ev_handler.check() @pytest.mark.parametrize('decimals', fixture_decimals) def test_token_transfer( chain, web3, wallet_address, get_bidders, get_token_contract, token_contract, proxy_contract, proxy_erc223_contract, decimals, event_handler): (A, B, C) = get_bidders(3) multiplier = 10**(decimals) token = get_token_contract([ proxy_contract.address, wallet_address, 5000 * multiplier, ], decimals=decimals) assert token.call().decimals() == decimals token.transact({'from': wallet_address}).transfer(A, 3000) token.transact({'from': wallet_address}).transfer(B, 2000) token.transact({'from': wallet_address}).transfer(C, 1000) transfer_tests( (A, B, C), [3000, 2000, 1000], multiplier, token, event_handler) token_erc223 = token_contract(proxy_erc223_contract.address) token_erc223.transact({'from': wallet_address}).transfer(A, 3000) token_erc223.transact({'from': wallet_address}).transfer(B, 2000) token_erc223.transact({'from': wallet_address}).transfer(C, 1000) transfer_erc223_tests( (A, B, C), [3000, 2000, 1000], multiplier, token, proxy_contract, token_erc223, proxy_erc223_contract, event_handler) @pytest.mark.parametrize('decimals', fixture_decimals) def test_token_approve( web3, wallet_address, get_token_contract, proxy_contract, decimals, event_handler): (A, B, C) = web3.eth.accounts[1:4] multiplier = 10**(decimals) token = get_token_contract([ proxy_contract.address, wallet_address, 5000 * multiplier ], decimals=decimals) assert token.call().decimals() == decimals ev_handler = event_handler(token) token.transact({'from': wallet_address}).transfer(A, 3000) token.transact({'from': wallet_address}).transfer(B, 2000) token.transact({'from': wallet_address}).transfer(C, 1000) with pytest.raises(TypeError): token.transact({'from': A}).approve(0, B) with pytest.raises(TypeError): token.transact({'from': A}).approve(fake_address, B) with pytest.raises(TypeError): token.transact({'from': A}).approve(B, -3) # We can approve more than we have # with pytest.raises(tester.TransactionFailed): txn_hash = token.transact({'from': A}).approve(B, 3000 + 1) ev_handler.add(txn_hash, token_events['approve']) txn_hash = token.transact({'from': A}).approve(A, 300) ev_handler.add(txn_hash, token_events['approve']) assert token.call().allowance(A, A) == 300 with pytest.raises(tester.TransactionFailed): txn_hash = token.transact({'from': A}).approve(B, 300) txn_hash = token.transact({'from': A}).approve(B, 0) txn_hash = token.transact({'from': A}).approve(B, 300) ev_handler.add(txn_hash, token_events['approve']) txn_hash = token.transact({'from': B}).approve(C, 650) ev_handler.add(txn_hash, token_events['approve']) assert token.call().allowance(A, B) == 300 assert token.call().allowance(B, C) == 650 ev_handler.check() @pytest.mark.parametrize('decimals', fixture_decimals) def test_token_allowance( web3, wallet_address, get_bidders, get_token_contract, proxy_contract, decimals): (A, B) = get_bidders(2) multiplier = 10**(decimals) token = get_token_contract([ proxy_contract.address, wallet_address, 5000 * multiplier ], decimals=decimals) assert token.call().decimals() == decimals token.transact({'from': wallet_address}).transfer(A, 3000) token.transact({'from': wallet_address}).transfer(B, 2000) with pytest.raises(TypeError): token.call().allowance(0, B) with pytest.raises(TypeError): token.call().allowance(fake_address, B) with pytest.raises(TypeError): token.call().allowance(A, 0) with pytest.raises(TypeError): token.call().allowance(A, fake_address) assert token.call().allowance(A, B) == 0 assert token.call().allowance(B, A) == 0 token.transact({'from': A}).approve(B, 300) assert token.call().allowance(A, B) == 300 @pytest.mark.parametrize('decimals', fixture_decimals) def test_token_transfer_from( chain, web3, wallet_address, get_bidders, get_token_contract, proxy_contract, decimals, event_handler): (A, B, C) = get_bidders(3) multiplier = 10**(decimals) token = get_token_contract([ proxy_contract.address, wallet_address, 5000 * multiplier ], decimals=decimals) assert token.call().decimals() == decimals ev_handler = event_handler(token) token.transact({'from': wallet_address}).transfer(A, 3000) token.transact({'from': wallet_address}).transfer(B, 2000) token.transact({'from': wallet_address}).transfer(C, 1000) txn_hash = token.transact({'from': B}).approve(A, 300) ev_handler.add(txn_hash, token_events['approve']) assert token.call().allowance(B, A) == 300 with pytest.raises(TypeError): token.transact({'from': A}).transferFrom(0, C, 10) with pytest.raises(TypeError): token.transact({'from': A}).transferFrom(B, 0, 10) with pytest.raises(TypeError): token.transact({'from': A}).transferFrom(fake_address, C, 10) with pytest.raises(TypeError): token.transact({'from': A}).transferFrom(B, fake_address, 10) with pytest.raises(TypeError): token.transact({'from': A}).transferFrom(B, C, MAX_UINT + 1) with pytest.raises(TypeError): token.transact({'from': A}).transferFrom(B, C, -5) with pytest.raises(tester.TransactionFailed): allowance_B = token.call().allowance(B, A) token.transact({'from': A}).transferFrom(B, C, allowance_B + 1) # We can allow more than the balance, but we cannot transfer more with pytest.raises(tester.TransactionFailed): balance_B = token.call().balanceOf(B) token.transact({'from': B}).approve(A, balance_B + 10) token.transact({'from': A}).transferFrom(B, C, balance_B + 10) # Test for overflow with pytest.raises(tester.TransactionFailed): balance_B = token.call().balanceOf(B) overflow = MAX_UINT + 1 - balance_B token.transact({'from': B}).approve(A, overflow) token.transact({'from': A}).transferFrom(B, C, overflow) with pytest.raises(tester.TransactionFailed): txn_hash = token.transact({'from': B}).approve(A, 300) txn_hash = token.transact({'from': B}).approve(A, 0) txn_hash = token.transact({'from': B}).approve(A, 300) ev_handler.add(txn_hash, token_events['approve']) assert token.call().allowance(B, A) == 300 balance_A = token.call().balanceOf(A) balance_B = token.call().balanceOf(B) balance_C = token.call().balanceOf(C) txn_hash = token.transact({'from': A}).transferFrom(B, C, 0) ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(A) == balance_A assert token.call().balanceOf(B) == balance_B assert token.call().balanceOf(C) == balance_C txn_hash = token.transact({'from': A}).transferFrom(B, C, 150) ev_handler.add(txn_hash, token_events['transfer']) assert token.call().balanceOf(A) == balance_A assert token.call().balanceOf(B) == balance_B - 150 assert token.call().balanceOf(C) == balance_C + 150 ev_handler.check() @pytest.mark.parametrize('decimals', fixture_decimals) def test_burn( chain, web3, wallet_address, get_bidders, get_token_contract, proxy_contract, decimals, txnCost, event_handler): decimals = 18 eth = web3.eth (A, B) = get_bidders(2) multiplier = 10**(decimals) initial_supply = 5000 * multiplier token = get_token_contract([ proxy_contract.address, wallet_address, initial_supply ], decimals=decimals) assert token.call().decimals() == decimals ev_handler = event_handler(token) token.transact({'from': wallet_address}).transfer(A, 3000) token.transact({'from': wallet_address}).transfer(B, 2000) with pytest.raises(TypeError): token.transact({'from': B}).burn(-3) with pytest.raises(TypeError): token.transact({'from': B}).burn(MAX_UINT + 1) with pytest.raises(tester.TransactionFailed): token.transact({'from': B}).burn(0) with pytest.raises(tester.TransactionFailed): token.transact({'from': B}).burn(2000 + 1) # Balance should not change besides transaction costs tokens_B = token.call().balanceOf(B) balance_B = eth.getBalance(B) burnt = 250 txn_hash = token.transact({'from': B}).burn(burnt) txn_cost = txnCost(txn_hash) ev_handler.add(txn_hash, token_events['burn']) assert token.call().totalSupply() == initial_supply - burnt assert token.call().balanceOf(B) == tokens_B - burnt assert balance_B == eth.getBalance(B) + txn_cost tokens_B = token.call().balanceOf(B) balance_B = eth.getBalance(B) total_supply = token.call().totalSupply() txn_hash = token.transact({'from': B}).burn(tokens_B) txn_cost = txnCost(txn_hash) assert token.call().totalSupply() == total_supply - tokens_B assert token.call().balanceOf(B) == 0 assert balance_B == eth.getBalance(B) + txn_cost ev_handler.check() def test_event_handler(token_contract, proxy_contract, event_handler): token = token_contract(proxy_contract.address) ev_handler = event_handler(token) fake_txn = 0x0343 # Add fake events with no transactions ev_handler.add(fake_txn, token_events['deploy']) ev_handler.add(fake_txn, token_events['setup']) ev_handler.add(fake_txn, token_events['transfer']) ev_handler.add(fake_txn, token_events['approve']) ev_handler.add(fake_txn, token_events['burn']) # This should fail with pytest.raises(Exception): ev_handler.check(1)
python
import progressbar def test_with(): with progressbar.ProgressBar(max_value=10) as p: for i in range(10): p.update(i) def test_with_stdout_redirection(): with progressbar.ProgressBar(max_value=10, redirect_stdout=True) as p: for i in range(10): p.update(i) def test_with_extra_start(): with progressbar.ProgressBar(max_value=10) as p: p.start() p.start()
python
#!/usr/bin/env python # # Copyright 2016 Steve Kyle. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Serengeti TAXII Client Script """ import sys import os from datetime import datetime import warnings import glob from . import args from . import config from . import service def main(*args, **kwargs): """Client Entry Point""" parser = args.get_arg_parser() args = parser.parse_args() config = config.read_config() config.merge_args(args) request = config.get_request() response = service.handler(request) print(response) if __name__ == '__main__': main()
python
from .find_maximum_value_binary_tree import find_maximum_value, BST def test_find_maximum_value_tree_with_one_value(): one_value = BST([5]) assert find_maximum_value(one_value) == 5 def test_find_maximum_value_tree_with_two_values(): one_value = BST([10, 2]) assert find_maximum_value(one_value) == 10 def test_find_maximum_value_balanced(): balanced = BST([10, 7, 3, 16, 12, 8, 20]) assert find_maximum_value(balanced) == 20 def test_find_maximum_value_left(): left = BST([10, 8, 6, 4]) assert find_maximum_value(left) == 10 def test_find_maximum_value_right(): right = BST([1, 3, 5, 7, 9]) assert find_maximum_value(right) == 9
python
import matplotlib.pyplot as plt import networkx as nx import os import random import warnings from matplotlib.backends import backend_gtk3 from settings import OUTPUT_DIR warnings.filterwarnings('ignore', module=backend_gtk3.__name__) RESTART_PROBABILITY = 0.15 STEPS_MULTIPLIER = 100 def random_walk_sample(graph, n): selected_nodes = set() while len(selected_nodes) < n: last_node = random.choice(list(graph.nodes)) selected_nodes.add(last_node) for i in range(STEPS_MULTIPLIER * n): last_node = random.choice(list(graph.neighbors(last_node))) selected_nodes.add(last_node) if len(selected_nodes) >= n: break subgraph = graph.subgraph(selected_nodes) return subgraph def save_graph_figure(graph, name): plt.title(name, fontsize=16) nx.draw(graph, node_size=100) plt.savefig(os.path.join(OUTPUT_DIR, '%s.png' % name)) plt.close('all')
python
from collections import KeysView def find(iterable: list or KeysView, key=lambda x: x): for elem in iterable: if key(elem): return elem return None def index(iterable: list, key=lambda x: x) -> int: x = 0 for elem in iterable: if key(elem): return x x += 1 return -1
python
from django.apps import AppConfig class CalToolConfig(AppConfig): name = 'cal_tool'
python
# # # 0=================================0 # | Kernel Point Convolutions | # 0=================================0 # # # ---------------------------------------------------------------------------------------------------------------------- # # Callable script to start a training on MyhalCollision dataset # # ---------------------------------------------------------------------------------------------------------------------- # # Hugues THOMAS - 06/03/2020 # # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Common libs import sys import time import signal import os os.environ.update(OMP_NUM_THREADS='1', OPENBLAS_NUM_THREADS='1', NUMEXPR_NUM_THREADS='1', MKL_NUM_THREADS='1',) import numpy as np import torch # Dataset from slam.PointMapSLAM import pointmap_slam, detect_short_term_movables, annotation_process from slam.dev_slam import bundle_slam, pointmap_for_AMCL from torch.utils.data import DataLoader from datasets.MyhalCollision import MyhalCollisionDataset, MyhalCollisionSlam, MyhalCollisionSampler, \ MyhalCollisionCollate from utils.config import Config from utils.trainer import ModelTrainer from models.architectures import KPCollider from os.path import exists, join from os import makedirs # ---------------------------------------------------------------------------------------------------------------------- # # Config Class # \******************/ # class MyhalCollisionConfig(Config): """ Override the parameters you want to modify for this dataset """ #################### # Dataset parameters #################### # Dataset name dataset = 'MyhalCollision' # Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset). num_classes = None # Type of task performed on this dataset (also overwritten) dataset_task = '' # Number of CPU threads for the input pipeline input_threads = 16 ######################### # Architecture definition ######################### # Define layers (only concerning the 3D architecture) architecture = ['simple', 'resnetb_strided', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb_strided', 'resnetb', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary'] ###################### # Collision parameters ###################### # Number of propagating layer n_2D_layers = 30 # Total time propagated T_2D = 3.0 # Size of 2D convolution grid dl_2D = 0.12 # Power of the loss for the 2d predictions (use smaller prop loss when shared weights) power_2D_init_loss = 1.0 power_2D_prop_loss = 50.0 neg_pos_ratio = 1.0 loss2D_version = 2 # Specification of the 2D networks composition init_2D_levels = 4 # 3 init_2D_resnets = 3 # 2 prop_2D_resnets = 3 # 2 # Path to a pretrained 3D network. if empty, ignore, if 'todo', then only train 3D part of the network. #pretrained_3D = 'Log_2021-01-27_18-53-05' pretrained_3D = '' # Detach the 2D network from the 3D network when backpropagating gradient detach_2D = False # Share weights for 2D network TODO: see if not sharing makes a difference shared_2D = False # Trainable backend 3D network apply_3D_loss = True #frozen_layers = ['encoder_blocks', 'decoder_blocks', 'head_mlp', 'head_softmax'] # Use visibility mask for training use_visibility = False ################### # KPConv parameters ################### # Radius of the input sphere in_radius = 8.0 val_radius = 8.0 n_frames = 3 in_features_dim = n_frames max_in_points = -1 max_val_points = -1 # Choice of input features first_features_dim = 100 # Number of batch batch_num = 6 val_batch_num = 6 # Number of kernel points num_kernel_points = 15 # Size of the first subsampling grid in meter first_subsampling_dl = 0.06 # Radius of convolution in "number grid cell". (2.5 is the standard value) conv_radius = 2.5 # Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out deform_radius = 6.0 # Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value) KP_extent = 1.2 # Behavior of convolutions in ('constant', 'linear', 'gaussian') KP_influence = 'linear' # Aggregation function of KPConv in ('closest', 'sum') aggregation_mode = 'sum' # Can the network learn modulations modulated = False # Batch normalization parameters use_batch_norm = True batch_norm_momentum = 0.02 # Deformable offset loss # 'point2point' fitting geometry by penalizing distance from deform point to input points # 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented) deform_fitting_mode = 'point2point' deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations repulse_extent = 1.2 # Distance of repulsion for deformed kernel points ##################### # Training parameters ##################### # Maximal number of epochs max_epoch = 1000 # Learning rate management learning_rate = 1e-2 momentum = 0.98 lr_decays = {i: 0.1 ** (1 / 120) for i in range(1, max_epoch)} grad_clip_norm = 100.0 # Number of steps per epochs epoch_steps = 500 # Number of validation examples per epoch validation_size = 30 # Number of epoch between each checkpoint checkpoint_gap = 20 # Augmentations augment_scale_anisotropic = False augment_symmetries = [False, False, False] augment_rotation = 'vertical' augment_scale_min = 0.99 augment_scale_max = 1.01 augment_noise = 0.001 augment_color = 1.0 # Do we nee to save convergence saving = True saving_path = None # ---------------------------------------------------------------------------------------------------------------------- # # Main Call # \***************/ # if __name__ == '__main__': # NOT_NOW_TODO: Optimize online predictions # > Try to parallelise the batch preprocessing for a single input frame. # > Use OMP for neighbors processing # > Use the polar coordinates to get neighbors???? (avoiding tree building time) # > cpp extension for conversion into a 2D lidar_range_scan # ############################ # Initialize the environment ############################ # Set which gpu is going to be used (auto for automatic choice) GPU_ID = 'auto' # Automatic choice (need pynvml to be installed) if GPU_ID == 'auto': print('\nSearching a free GPU:') for i in range(torch.cuda.device_count()): a = torch.cuda.list_gpu_processes(i) print(torch.cuda.list_gpu_processes(i)) a = a.split() if a[1] == 'no': GPU_ID = a[0][-1:] # Safe check no free GPU if GPU_ID == 'auto': print('\nNo free GPU found!\n') a = 1/0 else: print('\nUsing GPU:', GPU_ID, '\n') # Set GPU visible device os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID chosen_gpu = int(GPU_ID) ################### # Training sessions ################### # Day used as map map_day = '2020-10-02-13-39-05' train_days_RandBounce = ['2021-05-15-23-15-09', '2021-05-15-23-33-25', '2021-05-15-23-54-50', '2021-05-16-00-44-53', '2021-05-16-01-09-43', '2021-05-16-20-37-47', '2021-05-16-20-59-49', '2021-05-16-21-22-30', '2021-05-16-22-26-45', '2021-05-16-22-51-06', '2021-05-16-23-34-15', '2021-05-17-01-21-44', '2021-05-17-01-37-09', '2021-05-17-01-58-57', '2021-05-17-02-34-27', '2021-05-17-02-56-02', '2021-05-17-03-54-39', '2021-05-17-05-26-10', '2021-05-17-05-41-45'] train_days_RandWand = ['2021-05-17-14-04-52', '2021-05-17-14-21-56', '2021-05-17-14-44-46', '2021-05-17-15-26-04', '2021-05-17-15-50-45', '2021-05-17-16-14-26', '2021-05-17-17-02-17', '2021-05-17-17-27-02', '2021-05-17-17-53-42', '2021-05-17-18-46-44', '2021-05-17-19-02-37', '2021-05-17-19-39-19', '2021-05-17-20-14-57', '2021-05-17-20-48-53', '2021-05-17-21-36-22', '2021-05-17-22-16-13', '2021-05-17-22-40-46', '2021-05-17-23-08-01', '2021-05-17-23-48-22', '2021-05-18-00-07-26', '2021-05-18-00-23-15', '2021-05-18-00-44-33', '2021-05-18-01-24-07'] train_days_RandFlow = ['2021-06-02-19-55-16', '2021-06-02-20-33-09', '2021-06-02-21-09-48', '2021-06-02-22-05-23', '2021-06-02-22-31-49', '2021-06-03-03-51-03', '2021-06-03-14-30-25', '2021-06-03-14-59-20', '2021-06-03-15-43-06', '2021-06-03-16-48-18', '2021-06-03-18-00-33', '2021-06-03-19-07-19', '2021-06-03-19-52-45', '2021-06-03-20-28-22', '2021-06-03-21-32-44', '2021-06-03-21-57-08'] ###################### # Automatic Annotation ###################### # Choose the dataset between train_days_RandBounce, train_days_RandWand, or train_days_RandFlow train_days = np.array(train_days_RandBounce) # Validation sessions val_inds = [0, 1, 2] train_inds = [i for i in range(len(train_days)) if i not in val_inds] # Check if we need to redo annotation (only if there is no collison folder) redo_annot = False for day in train_days: annot_path = join('../Data/Simulation/collisions', day) if not exists(annot_path): redo_annot = True break # train_days = ['2020-10-20-16-30-49'] # redo_annot = True if redo_annot: # Initiate dataset slam_dataset = MyhalCollisionSlam(day_list=train_days, map_day=map_day) # Create a refined map from the map_day. # UNCOMMENT THIS LINE if you are using your own data for the first time # COMMENT THIS LINE if you already have a nice clean map of the environment as a point cloud # like this one: Data/Simulation/slam_offline/2020-10-02-13-39-05/map_update_0001.ply # slam_dataset.refine_map() # Groundtruth annotation annotation_process(slam_dataset, on_gt=False) # TODO: Loop closure for aligning days together when not simulation # Annotation of preprocessed 2D+T point clouds for SOGM generation slam_dataset.collision_annotation() print('annotation finished') ############## # Prepare Data ############## print() print('Data Preparation') print('****************') # Initialize configuration class config = MyhalCollisionConfig() # Override with configuration from previous 3D network if given if config.pretrained_3D and config.pretrained_3D != 'todo': # Check if path exists previous_path = os.path.join('results', config.pretrained_3D) if not exists(previous_path): raise ValueError('Given path for previous 3D network does not exist') # Load config prev_config = MyhalCollisionConfig() prev_config.load(previous_path) # List of params we should not overwrite: kept_params = ['n_2D_layers', 'T_2D', 'dl_2D', 'power_2D_init_loss', 'power_2D_prop_loss', 'neg_pos_ratio', 'init_2D_levels', 'init_2D_resnets', 'prop_2D_resnets', 'pretrained_3D', 'detach_2D', 'shared_2D', 'apply_3D_loss', 'frozen_layers', 'max_epoch', 'learning_rate', 'momentum', 'lr_decays', 'grad_clip_norm', 'epoch_steps', 'validation_size', 'checkpoint_gap', 'saving', 'saving_path', 'input_threads'] for attr_name, attr_value in vars(config).items(): if attr_name not in kept_params: setattr(config, attr_name, getattr(prev_config, attr_name)) # Get path from argument if given if len(sys.argv) > 1: config.saving_path = sys.argv[1] ############### # Previous chkp ############### # Choose here if you want to start training from a previous snapshot (None for new training) # Choose index of checkpoint to start from. If None, uses the latest chkp chkp_idx = None chosen_chkp = None if config.pretrained_3D and config.pretrained_3D != 'todo': # Check if path exists chkp_path = os.path.join('results', config.pretrained_3D, 'checkpoints') if not exists(chkp_path): raise ValueError('Given path for previous 3D network does contain any checkpoints') # Find all snapshot in the chosen training folder chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp'] # Find which snapshot to restore if chkp_idx is None: chosen_chkp = 'current_chkp.tar' else: chosen_chkp = np.sort(chkps)[chkp_idx] chosen_chkp = os.path.join('results', config.pretrained_3D, 'checkpoints', chosen_chkp) ##################### # Init input pipeline ##################### # Initialize datasets (dummy validation) training_dataset = MyhalCollisionDataset(config, train_days[train_inds], chosen_set='training', balance_classes=True) test_dataset = MyhalCollisionDataset(config, train_days[val_inds], chosen_set='validation', balance_classes=False) # Initialize samplers training_sampler = MyhalCollisionSampler(training_dataset) test_sampler = MyhalCollisionSampler(test_dataset) # Initialize the dataloader training_loader = DataLoader(training_dataset, batch_size=1, sampler=training_sampler, collate_fn=MyhalCollisionCollate, num_workers=config.input_threads, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=1, sampler=test_sampler, collate_fn=MyhalCollisionCollate, num_workers=config.input_threads, pin_memory=True) # Calibrate max_in_point value if config.max_in_points < 0: config.max_in_points = 1e9 training_loader.dataset.max_in_p = 1e9 training_sampler.calib_max_in(config, training_loader, untouched_ratio=0.9, verbose=True) if config.max_val_points < 0: config.max_val_points = 1e9 test_loader.dataset.max_in_p = 1e9 test_sampler.calib_max_in(config, test_loader, untouched_ratio=0.95, verbose=True) # Calibrate samplers training_sampler.calibration(training_loader, verbose=True) test_sampler.calibration(test_loader, verbose=True) # debug_timing(training_dataset, training_loader) # debug_timing(test_dataset, test_loader) # debug_class_w(training_dataset, training_loader) print('\nModel Preparation') print('*****************') # Define network model t1 = time.time() net = KPCollider(config, training_dataset.label_values, training_dataset.ignored_labels) debug = False if debug: print('\n*************************************\n') print(net) print('\n*************************************\n') for param in net.parameters(): if param.requires_grad: print(param.shape) print('\n*************************************\n') print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad)) print('\n*************************************\n') # Freeze layers if necessary if config.frozen_layers: for name, child in net.named_children(): if name in config.frozen_layers: for param in child.parameters(): if param.requires_grad: param.requires_grad = False child.eval() # Define a trainer class trainer = ModelTrainer(net, config, chkp_path=chosen_chkp, gpu_id=chosen_gpu) print('Done in {:.1f}s\n'.format(time.time() - t1)) print('\nStart training') print('**************') # Training trainer.train(net, training_loader, test_loader, config) print('Forcing exit now') os.kill(os.getpid(), signal.SIGINT)
python
#!/usr/bin/env python """Split large file into multiple pieces for upload to S3. S3 only supports 5Gb files for uploading directly, so for larger CloudBioLinux box images we need to use boto's multipart file support. This parallelizes the task over available cores using multiprocessing. Usage: s3_multipart_upload.py <file_to_transfer> <bucket_name> [<s3_key_name>] if <s3_key_name> is not specified, the filename will be used. --norr -- Do not use reduced redundancy storage. --public -- Make uploaded files public. --cores=n -- Number of cores to use for upload Files are stored at cheaper reduced redundancy storage by default. """ import os import sys import glob import subprocess import contextlib import functools import multiprocessing from multiprocessing.pool import IMapIterator from optparse import OptionParser import boto def main(transfer_file, bucket_name, s3_key_name=None, use_rr=True, make_public=True, cores=None): if s3_key_name is None: s3_key_name = os.path.basename(transfer_file) conn = boto.connect_s3() bucket = conn.lookup(bucket_name) if bucket is None: bucket = conn.create_bucket(bucket_name) mb_size = os.path.getsize(transfer_file) / 1e6 if mb_size < 50: _standard_transfer(bucket, s3_key_name, transfer_file, use_rr) else: _multipart_upload(bucket, s3_key_name, transfer_file, mb_size, use_rr, cores) s3_key = bucket.get_key(s3_key_name) if make_public: s3_key.set_acl("public-read") def upload_cb(complete, total): sys.stdout.write(".") sys.stdout.flush() def _standard_transfer(bucket, s3_key_name, transfer_file, use_rr): print " Upload with standard transfer, not multipart", new_s3_item = bucket.new_key(s3_key_name) new_s3_item.set_contents_from_filename(transfer_file, reduced_redundancy=use_rr, cb=upload_cb, num_cb=10) print def map_wrap(f): @functools.wraps(f) def wrapper(*args, **kwargs): return apply(f, *args, **kwargs) return wrapper def mp_from_ids(mp_id, mp_keyname, mp_bucketname): """Get the multipart upload from the bucket and multipart IDs. This allows us to reconstitute a connection to the upload from within multiprocessing functions. """ conn = boto.connect_s3() bucket = conn.lookup(mp_bucketname) mp = boto.s3.multipart.MultiPartUpload(bucket) mp.key_name = mp_keyname mp.id = mp_id return mp @map_wrap def transfer_part(mp_id, mp_keyname, mp_bucketname, i, part): """Transfer a part of a multipart upload. Designed to be run in parallel. """ mp = mp_from_ids(mp_id, mp_keyname, mp_bucketname) print " Transferring", i, part with open(part) as t_handle: mp.upload_part_from_file(t_handle, i+1) os.remove(part) def _multipart_upload(bucket, s3_key_name, tarball, mb_size, use_rr=True, cores=None): """Upload large files using Amazon's multipart upload functionality. """ def split_file(in_file, mb_size, split_num=5): prefix = os.path.join(os.path.dirname(in_file), "%sS3PART" % (os.path.basename(s3_key_name))) # require a split size between 5Mb (AWS minimum) and 250Mb split_size = int(max(min(mb_size / (split_num * 2.0), 250), 5)) if not os.path.exists("%saa" % prefix): cl = ["split", "-b%sm" % split_size, in_file, prefix] subprocess.check_call(cl) return sorted(glob.glob("%s*" % prefix)) mp = bucket.initiate_multipart_upload(s3_key_name, reduced_redundancy=use_rr) with multimap(cores) as pmap: for _ in pmap(transfer_part, ((mp.id, mp.key_name, mp.bucket_name, i, part) for (i, part) in enumerate(split_file(tarball, mb_size, cores)))): pass mp.complete_upload() @contextlib.contextmanager def multimap(cores=None): """Provide multiprocessing imap like function. The context manager handles setting up the pool, worked around interrupt issues and terminating the pool on completion. """ if cores is None: cores = max(multiprocessing.cpu_count() - 1, 1) def wrapper(func): def wrap(self, timeout=None): return func(self, timeout=timeout if timeout is not None else 1e100) return wrap IMapIterator.next = wrapper(IMapIterator.next) pool = multiprocessing.Pool(cores) yield pool.imap pool.terminate() if __name__ == "__main__": parser = OptionParser() parser.add_option("-r", "--norr", dest="use_rr", action="store_false", default=True) parser.add_option("-p", "--public", dest="make_public", action="store_true", default=False) parser.add_option("-c", "--cores", dest="cores", default=multiprocessing.cpu_count()) (options, args) = parser.parse_args() if len(args) < 2: print __doc__ sys.exit() kwargs = dict(use_rr=options.use_rr, make_public=options.make_public, cores=int(options.cores)) main(*args, **kwargs)
python
#!/usr/bin/env python # coding: utf-8 ################################################################################################### # # File : frame_study.py # # Auhtor : P.Antilogus # # Version : 22 Feb 2019 # # Goal : this python file read raw data image , and can be used for specific sensor diagnostic like : # - cte # - overscan # - noise # # Example : see notebooks using this package # # Remark : it is under the process to be cleaned - simplified ...but this is not my top priority today ;-) # try: import pyfits except : import astropy.io.fits as pyfits import numpy as np import glob import os import sys import matplotlib.pyplot as plt import matplotlib import time import pickle matplotlib.rcParams['axes.formatter.useoffset'] = False # def image_area(image) : # input : image ==> fits image # output : image section coordinate to be used in python table: ymin , ymax ,xmin, xmax # -use pyfits to open the file # -extract the image area to be used in python table from the DATASEC keyword # r=image[1].header['DATASEC'][1:-1].split(',') x=r[0].split(':') y=r[1].split(':') # return int(y[0])-1,int(y[1]),int(x[0])-1,int(x[1]) # class Ifile : # Handel ( select et all ) file list from LSST ccd test bench def __init__(self,dirall=['/Users/antilog/scratch/20160901'],Pickle=False,root_for_pickle='/sps/lsst/DataBE/lpnws5203',fkey={},verbose=False,Slow=True,single_t=False,nskip=0,nkeep=-1): # dirall : a list of directory/file to read in : the file header will be used to select or not the file if fkey is set or the file will be read from the content of the pickle file (if Pickle is True ) , fkey will also be used for selection. # fkey : {'selection_name' : {'fits_header_name':{'key':value} , ... } : a triple dictionary of { 'selection_name' : {header : {key:value}} } , to select a file self.nkept=0 self.all_file=[] self.clap=[] self.selection=[] self.fkey=fkey self.directory=sorted(dirall) self.stat={} self.nseen=0 # loop on header if Pickle : self.all_file_from_pickle(dirall=dirall,root_for_pickle=root_for_pickle,fkey=fkey,verbose=verbose,Slow=Slow,single_t=single_t,nskip=nskip,nkeep=nkeep) else : self.all_file_from_dir(dirall=dirall,fkey=fkey,verbose=verbose,Slow=Slow,single_t=single_t,nskip=nskip,nkeep=nkeep) return def all_file_from_dir(self,dirall,fkey,verbose,Slow,single_t,nskip,nkeep): # dirname : can be a directory name or a file with * at the moment it ends by .fz # ex : /Users/antilog/scratch/REB_DATA/20160513/linearity # or : /Users/antilog/scratch/REB_DATA/20160513/linearity/reb3*.fz # fkey : dictionary key word for image selection # verbose : if True , print messages about each selected file ( default= False ) # single_t : keep only one file per exposure time (default False ) self.all_file=[] old_time=[0.] fits_is_open=False # # fill all_file from the header of the files in dirall . for dirname in self.directory : # have we allready all the needed file ? if nkeep> 0 and self.nkept==nkeep : break # build the list of file for this directory if (len(os.path.splitext(dirname)[1])>0) : file_list=glob.glob(dirname) else : file_list=glob.glob("%s/*.fz" % (dirname)) file_list.sort() # loop on files to select them if needed for filenamed in file_list : # keep=True if len(fkey)==0 : selection='Main' else : fits_is_open=False dname, fname=os.path.split((filenamed)) # is there any extra selection based on Header , key , value ? for selection, sel_id in fkey.items() : local_keep=False # select of file name if any if 'first' in sel_id.keys() : if fname < sel_id['first'] : continue if 'last' in sel_id.keys() : if fname > sel_id['last'] : continue local_keep=True if 'key' in sel_id.keys() : if not(fits_is_open) : fitsfile=pyfits.open(filenamed) fits_is_open=True for header, key_cur in sel_id['key'].items() : if not ( local_keep ) : break for key, value in key_cur.items() : if ( key in fitsfile[header].header ) : if ( fitsfile[header].header[key]!=value ): local_keep=False break else : local_keep=False break # this file is ok for the current selection , remark : a file is selected in the first selection that is compatible with if local_keep : break keep=local_keep # if (keep and single_t ) : if not(fits_is_open) : fitsfile=pyfits.open(filenamed) fits_is_open=True new_time=fitsfile[0].header['EXPTIME'] if new_time in old_time : keep=False else : old_time.append(new_time) if (keep) : self.nseen+=1 if self.nseen>nskip : if not(fits_is_open) : fitsfile=pyfits.open(filenamed) fits_is_open=True self.all_file.append(datafile(fitsfile,Slow)) self.selection.append(selection) # to be updated with a call to clap #self.clap.append(new_time) if verbose : print ('%d : Selected %s File %s ' % (self.nkept,selection,filenamed) ) self.nkept+=1 if self.nkept==nkeep and nkeep > 0 : # we selected the number of files requested fitsfile.close() break if fits_is_open : fitsfile.close() del fitsfile fits_is_open=False return def all_file_from_pickle(self,dirall,root_for_pickle,fkey,verbose,Slow,single_t,nskip,nkeep): old_time=[0.] # fill all_file from the header of the files in dirall . for dirname in self.directory : # have we allready all the needed file ? if nkeep> 0 and self.nkept==nkeep : break # build the list of file for this directory if (len(os.path.splitext(dirname)[1])>0) : file_list=glob.glob(dirname) else : file_list=glob.glob("%s/*.pkl" % (dirname)) file_list.sort() # loop on files to select them if needed for pickle_file in file_list : # open the pickle file input=open(pickle_file,'rb') file=pickle.load(input) # for i_cur in range(len(file)) : #filename=file[i_cur].filename dname=file[i_cur].dir fname=file[i_cur].filename clap=file[i_cur].clap keep=True if len(fkey)==0 : selection='Main' else : # # is there any extra selection based on Header , key , value ? for selection, sel_id in fkey.items() : local_keep=False # select of file name if any if 'first' in sel_id.keys() : if fname < sel_id['first'] : continue if 'last' in sel_id.keys() : if fname > sel_id['last'] : continue local_keep=True # test key (=) key+ (=>) key- (<=) if 'key' in sel_id.keys() : for header, key_cur in sel_id['key'].items() : if not ( local_keep ) : break for key, value in key_cur.items() : if ( key in file[i_cur].header[header] ) : if (file[i_cur].header[header][key] is None) or ( file[i_cur].header[header][key]!=value ): local_keep=False break else : local_keep=False break # this file is ok for the current selection , remark : a file is selected in the first selection that is compatible with if not(local_keep) : continue # if 'key+' in sel_id.keys() : for header, key_cur in sel_id['key+'].items() : if not ( local_keep ) : break for key, value in key_cur.items() : if ( key in file[i_cur].header[header] ) : if (file[i_cur].header[header][key] is None) or ( file[i_cur].header[header][key]<value ): local_keep=False break else : local_keep=False break # this file is ok for the current selection , remark : a file is selected in the first selection that is compatible with if not(local_keep) : continue # if 'key-' in sel_id.keys() : for header, key_cur in sel_id['key-'].items() : if not ( local_keep ) : break for key, value in key_cur.items() : if ( key in file[i_cur].header[header] ) : if (file[i_cur].header[header][key] is None) or ( file[i_cur].header[header][key]>value ): local_keep=False break else : local_keep=False break # this file is ok for the current selection , remark : a file is selected in the first selection that is compatible with if local_keep : break keep=local_keep # if (keep and single_t ) : new_time=file[i_cur].header['Primary']['EXPTIME'] if new_time in old_time : keep=False else : old_time.append(new_time) if (keep) : self.nseen+=1 if self.nseen>nskip : fitsfile=pyfits.open(root_for_pickle+'/'+dname+'/'+fname) self.all_file.append(datafile(fitsfile,Slow)) fitsfile.close() # self.clap.append(clap) self.selection.append(selection) if verbose : print ('%d : Selected %s File %s ' % (self.nkept,selection,fname) ) self.nkept+=1 if self.nkept==nkeep and nkeep > 0 : # we selected the number of files requested break return def plot(self,plt_name='',on_screen=False) : # define last to plot : # fig=plt.figure(figsize=(15,15)) title="Noise estimation from Overscan : %s " % (plt_name) fig.suptitle(title) iplt=1 ax=fig.add_subplot(3,3,iplt) iplt+=1 return class datafile : def __init__(self, fitsfile,Slow=True): ''' Construct all the necessary attributes for the datafile object. Parameters : fitsfile (list of str ) : list of file to process , they should be all from the same raft-sensor Slow (boll) : computed extended image properties or not ( Default : True ) remark for CTE analysis alone , Slow can be set to False , will be faster ''' # self.Image=[] self.Hdu=[] self.HduMax=0 self.fft=[] self.w=[] self.Mean=[] self.Std=[] self.Median=[] self.MedPScan=[] self.StdPScan=[] self.MeanSScan=[] self.MedSScan=[] self.StdSScan=[] self.StdSScanOS=[] self.MeanPScan=[] self.StdPScanOS=[] self.Mean_col=[] self.Std_col=[] self.Mean_line=[] self.Median_line=[] self.Std_line=[] self.Std_l60=[] self.Attenuator=0. self.CCD_COND={} self.Range=0. self.PreExp=0. self.PostExp=0. # image area first_line,first_p_over,first_col,first_s_over=image_area(fitsfile) self.first_col=first_col self.first_s_over=first_s_over self.first_line=first_line self.first_p_over=first_p_over # try : self.exptime=float(fitsfile[0].header['EXPTIME']) except : # Paris test bench key value for exposure time is different self.exptime=float(fitsfile[0].header['EXPOSURE']) try : self.ccdslot=(fitsfile[0].header['CCDSLOT']).strip() self.raftbay=(fitsfile[0].header['RAFTBAY']).strip() except : self.ccdslot='' self.raftbay='' self.fluxs_last=[] self.fluxp_last=[] self.fluxs_last_std=[] #self.fluxs_last_var=[] self.fluxp_last_std=[] self.fluxp_used=[] # self.over4_col_std=[] self.over4_line_std=[] # # # self.Date=JdUtc(fitsfile[0].header['DATE']).Jd for i in range(len(fitsfile)): for i in range(1,min(17,len(fitsfile))): if ( fitsfile[i].header['XTENSION'].strip()=='IMAGE' ) : self.Hdu.append(i) self.HduMax=i # Remark : for the moment we don't which REB slice we are looki # for e2v and BNL data it's [8:] # self.Channel.append(int(fitsfile[i].header['EXTNAME'][8:])) # for Paris data it's [5:] #self.Channel.append(int(fitsfile[i].header['EXTNAME'][5:])) # self.Image.append(np.copy(fitsfile[i].data)) self.Image.append(fitsfile[i].header['EXTNAME'].strip()) # image # Mean and noise self.Median.append(np.median(fitsfile[i].data[first_line:first_p_over,first_col:first_s_over])) if Slow : self.Mean.append(fitsfile[i].data[first_line:first_p_over,first_col:first_s_over].mean()) self.Std.append(fitsfile[i].data[first_line:first_p_over,first_col:first_s_over].std()) # line OverScan self.MedPScan.append(np.median(fitsfile[i].data[first_p_over+5:,first_col:first_s_over])) self.MeanPScan.append(fitsfile[i].data[first_p_over+5:,first_col:first_s_over].mean()) self.StdPScan.append(fitsfile[i].data[first_p_over+5:,first_col:first_s_over].std()) # Serial over-scan + 1 to remove CTE / xxshoot self.MedSScan.append(np.median(fitsfile[i].data[:,first_s_over+5:])) self.MeanSScan.append(fitsfile[i].data[:,first_s_over+5:].mean()) self.StdSScan.append(fitsfile[i].data[:,first_s_over+5:].std()) # information for 2D diagmostic of the overscan : does the overscan is flat in function of the column ? line ? # --- data in the overscan corner ( pixels are overscan in line and column ) self.over4_col_std.append(fitsfile[i].data[first_p_over:,first_s_over:].std(axis=1).mean()) self.over4_line_std.append(fitsfile[i].data[first_p_over:,first_s_over:].std(axis=0).mean()) if Slow : # Same but bias subtrracted mean_line=np.median(fitsfile[i].data[first_p_over:,:],axis=0) mean_column=np.median(fitsfile[i].data[:,first_s_over:],axis=1) last_l=len(fitsfile[i].data[:,0]) last_s=len(fitsfile[i].data[0,:]) rawl=np.zeros((last_l-first_p_over,last_s)) raws=np.zeros((last_l,last_s-first_s_over)) for l in range(first_p_over,last_l) : rawl[l-first_p_over,:]=fitsfile[i].data[l,:]-mean_line self.StdPScanOS.append((rawl[:,first_col:].std(axis=1)).mean()) # for c in range(first_s_over,last_s) : raws[:,c-first_s_over]=fitsfile[i].data[:,c]-mean_column self.StdSScanOS.append((raws[first_line:,:].std(axis=0)).mean()) # average allong the column and line #self.Mean_col.append(fitsfile[i].data[first_line:first_p_over,:].mean(axis=0)) #self.Mean_line.append(fitsfile[i].data[:,first_col:first_s_over].mean(axis=1)) #self.Median_line.append(np.median(fitsfile[i].data[:,first_col:first_s_over],axis=1)) #self.Std_col.append(fitsfile[i].data[first_line:first_p_over,:].std(axis=0)) #self.Std_line.append(fitsfile[i].data[:,first_col:first_s_over].std(axis=1)) #self.Std_l60.append(fitsfile[i].data[:60,first_col:first_s_over].std()) # For CTE Serie # # REMARK : The size cut ( 28 , line +/- 10 ... ) are hard wired and used in CTE part of the code to compute statistic !!!! # self.fluxs_last.append(fitsfile[i].data[first_line+10:first_p_over-10,first_s_over-1:first_s_over+28].mean(axis=0)-fitsfile[i].data[first_line+10:first_p_over-10,first_s_over+15:].mean()) # self.fluxs_last_std.append(fitsfile[i].data[first_line+10:first_p_over-10,first_s_over-1:first_s_over+28].std(axis=0)/np.sqrt(float(first_p_over-10-first_line-10))) # #self.fluxs_last_var.append(fitsfile[i].data[first_line+100:first_p_over-100,first_s_over-1:first_s_over+28].std(axis=0)**2-fitsfile[i].data[first_line+100:first_p_over-100,first_s_over+15:].std()**2) # For CTE // # # fluxp=np.array([ fitsfile[i].data[first_p_over-1:first_p_over+28,icol] - np.median(fitsfile[i].data[first_p_over+5:,icol ]) for icol in range(first_col+10,first_s_over-10) ]) overscan_offset= np.median(fitsfile[i].data[first_p_over+5:,first_col+10:first_s_over-10],axis=0) # # we do a median per slice , to kill outlier , but keep a statistical precision < 1 adu ...still not that precise compared to a mean #self.fluxp_last.append((np.median(fluxp[0:100],axis=0)+np.median(fluxp[100:200],axis=0)+np.median(fluxp[200:300],axis=0)+np.median(fluxp[300:400],axis=0)+np.median(fluxp[400:500],axis=0))/5.) # the correct version : kill outlier ( there is outlier in case of blooming column ) : to speed up we just kill based on the last physical column self.fluxp_last.append(np.zeros((29))) self.fluxp_last_std.append(np.zeros((29))) self.fluxp_used.append(np.zeros((29))) # last_line=fitsfile[i].data[first_p_over-1,first_col+10:first_s_over-10]-overscan_offset last_line_median=np.median(last_line) last_line_std=5*last_line.std() column_ok=[icol for icol in range(len(last_line)) if np.abs(last_line[icol]-last_line_median) < last_line_std ] # for j in range(29): fluxp_truncated=(fitsfile[i].data[first_p_over-1+j,first_col+10:first_s_over-10]-overscan_offset)[column_ok] self.fluxp_last[-1][j]=np.mean(fluxp_truncated) self.fluxp_last_std[-1][j]=np.std(fluxp_truncated)/np.sqrt(len(fluxp_truncated)) self.fluxp_used[-1][j]=len(fluxp_truncated) #fluxp=np.array([ fitsfile[i].data[first_p_over-1:first_p_over+28,icol] - np.median(fitsfile[i].data[first_p_over+5:,icol ]) for icol in range(first_col+10,first_s_over-10) ]) #self.fluxp_last.append(np.median(fluxp,axis=0)) # self.fluxp_last.append(np.median(fitsfile[i].data[first_p_over-1:first_p_over+28,first_col+10:first_s_over-10],axis=1)-np.median(fitsfile[i].data[first_p_over-1:first_p_over+28,first_s_over+5:first_s_over+15])) else: # last image section read break return class cte : def __init__(self, all_file, gain=[0.704650434205,0.68883578783,0.688459358774,0.696697494642,0.689209827484,0.696579402812,0.698973006751,0.689613072912,0.682880384357,0.696206655845,0.690349506621,0.691506176017,0.690763478766,0.689762341309,0.694801544092,0.850025229184 ],serie=True): # nb_f_max=len(all_file) # self.cte_flux=np.zeros((16,nb_f_max)) self.cte_time=np.zeros((nb_f_max)) self.cte_ftime=np.zeros((nb_f_max)) self.cte_flux_s=np.zeros((16,nb_f_max)) self.cte_y=np.zeros((16,nb_f_max,28)) self.cte_y_s=np.zeros((16,nb_f_max,28)) self.cte_y_std=np.zeros((16,nb_f_max,28)) self.cte_y_s_std=np.zeros((16,nb_f_max,28)) self.ylev=np.zeros((16,nb_f_max)) self.ylev_std=np.zeros((16,nb_f_max)) self.nb_file=np.zeros((nb_f_max)) self.serie=serie self.cte_noise_s=np.zeros((16,nb_f_max)) self.cte_noise_s_std=np.zeros((16,nb_f_max)) self.overscan_std=np.zeros((16,nb_f_max)) self.over8_18=np.zeros((16,nb_f_max)) self.over8_18_std=np.zeros((16,nb_f_max)) # pixel number in unit of CCD self.i_f=0 # if nb_f_max==0 : return # self.first_file=all_file[0] # cte_noise_std=np.zeros((16,nb_f_max,28)) # for f in all_file : im_flux=np.median(np.array(f.Median)) if self.i_f>0 and f.exptime in self.cte_time[0:self.i_f] : all_cur=np.flatnonzero(self.cte_time[0:self.i_f] == f.exptime) # Attention could be that we have the same exposure time but not the same flux (extra filter) found_cur=-1 for cur_cur in all_cur : ratio=max(self.cte_ftime[cur_cur]/im_flux,im_flux/self.cte_ftime[cur_cur]) if ratio<1.1 : found_cur=cur_cur if found_cur > -1 : i_cur=found_cur else: i_cur=self.i_f self.cte_ftime[i_cur]=im_flux self.cte_time[i_cur]=f.exptime self.i_f+=1 else : i_cur=self.i_f self.cte_ftime[i_cur]=im_flux self.cte_time[i_cur]=f.exptime self.i_f+=1 for ch in range(f.HduMax) : if serie : # CTE serie if ch==0 : # print ('%s ,time %f, Channel %d, flux %f (flux last col %f) , image %f , signal dispersion %f , scan serie %f , scan serie dispersion %f ' % (f.filename,f.exptime,ch,f.Mean[ch]-f.MeanSScan[ch],f.fluxs_last[ch][0],f.Mean[ch], f.Std[ch],f.MeanSScan[ch],f.StdSScan[ch])) self.first=f.first_s_over # what matter in the CTE def is how many transfer you did for the last column read , which is the size of the pre-scan + size of the image (in the past we subtracted the prescan which is an error) self.nb_pixel=f.first_s_over self.nb_file[i_cur]+=1 flux_last=f.fluxs_last[ch][0] # self.cte_y[ch,i_cur,:]+=f.fluxs_last[ch][1:] self.cte_y_std[ch,i_cur,:]+=(f.fluxs_last_std[ch][1:])**2 cte_noise_std[ch,i_cur,:]+=(f.fluxs_last_std[ch][1:])**2*(float(f.first_p_over-10-f.first_line-10)) self.overscan_std[ch,i_cur]+=(f.over4_col_std[ch])**2 else : # CTE // if ch==0 : # print ('%s ,time % f, Channel %d, flux %f (flux last line %f) , image %f , signal dispersion %f , scan // %f , scan // dispersion %f ' % (f.filename,f.exptime,ch,f.Mean[ch]-f.MedPScan[ch],f.fluxp_last[ch][0],f.Mean[ch], f.Std[ch],f.MedPScan[ch],f.StdPScan[ch])) self.first=f.first_p_over self.nb_pixel=f.first_p_over self.nb_file[i_cur]+=1 flux_last=f.fluxp_last[ch][0] # self.cte_y[ch,i_cur,:]+=f.fluxp_last[ch][1:] self.cte_y_std[ch,i_cur,:]+=f.fluxp_last_std[ch][1:]**2 cte_noise_std[ch,i_cur,:]+=(f.fluxp_last_std[ch][1:])**2*f.fluxp_used[ch][1:] self.overscan_std[ch,i_cur]+=(f.over4_line_std[ch])**2 #if flux_last==0. : flux_last=1e-6 self.cte_flux[ch,i_cur]+=flux_last # self.i_f+=1 #fl=np.argsort(self.cte_flux,axis=1) ft=np.argsort(self.cte_ftime[0:self.i_f]) l_ft=len(ft) #print('order in time ',ft) self.lmax=np.zeros((16),dtype=np.int16) # we take the number of amplifiers from the last file read for ch in range(f.HduMax) : l_k=0 cte_sig=np.zeros((l_ft)) #for l in fl[ch,:] : for l in ft[:] : # protection against divide by 0 improbable ? if self.cte_flux[ch,l]==0 : self.cte_flux[ch,l]=1.0e-6 self.cte_y_s[ch,l_k,:]=self.cte_y[ch,l,:]*gain[ch]/self.nb_file[l] # remark that the 1/n below ...it's because sqrt(1/n) **2 is needed to get the error on the mean , and not the dispersion . ... self.cte_y_s_std[ch,l_k,:]=np.sqrt(self.cte_y_std[ch,l,:])*gain[ch]/self.nb_file[l] self.cte_noise_s[ch,l_k]=np.sqrt(cte_noise_std[ch,l,2:].mean(axis=0)/(self.nb_file[l]))*gain[ch] self.cte_flux_s[ch,l_k]=self.cte_flux[ch,l]*gain[ch]/self.nb_file[l] self.cte_noise_s_std[ch,l_k]=np.sqrt(cte_noise_std[ch,l,2:].std(axis=0)/(self.nb_file[l])/(26))*gain[ch] l_k+=1 for l in range(1,l_ft) : if self.cte_flux_s[ch,l]<self.cte_flux_s[ch,self.lmax[ch]] and self.cte_flux_s[ch,self.lmax[ch]] > 100000 : self.lmax[ch]=l break self.lmax[ch]=l if len(self.cte_flux_s[ch,:])==1 : self.lmax[ch]=1 self.ylev[ch,0:self.lmax[ch]]=(self.cte_y_s[ch,0:self.lmax[ch],0]+self.cte_y_s[ch,0:self.lmax[ch],1])/self.cte_flux_s[ch,0:self.lmax[ch]]/float(self.nb_pixel) #self.ylev_std[ch,0:self.lmax[ch]]=self.ylev[ch,0:self.lmax[ch]]*np.sqrt((self.cte_y_s_std[ch,0:self.lmax[ch],0]/self.cte_y_s[ch,0:self.lmax[ch],0])**2+(self.cte_y_s_std[ch,0:self.lmax[ch],1]/self.cte_y_s[ch,0:self.lmax[ch],1])**2) self.ylev_std[ch,0:self.lmax[ch]]=np.sqrt(self.cte_y_s_std[ch,0:self.lmax[ch],0]**2+self.cte_y_s_std[ch,0:self.lmax[ch],1]**2)/self.cte_flux_s[ch,0:self.lmax[ch]]/float(self.nb_pixel) # re-order and normalize Overscan data self.overscan_std[ch,0:l_ft]=np.sqrt(self.overscan_std[ch,ft]/self.nb_file[ft])*gain[ch] # overscan stability self.over8_18[ch,0:self.lmax[ch]]=(self.cte_y_s[ch,0:self.lmax[ch],8:18]).mean(axis=1) self.over8_18_std[ch,0:self.lmax[ch]]=np.sqrt(np.sum(self.cte_y_s_std[ch,0:self.lmax[ch],8:18]**2,axis=1))/10. return def print_cte(self,ccd_name,nf=0): if self.serie : print('Serial CTE for %s ----------------------------------------------------------------' % (ccd_name) ) else : print(' // CTE for %s ----------------------------------------------------------------' % (ccd_name) ) # print('Ch | flux | 1-CTE | Signal in Overscan | Overscan Noise Noise in |') print(' | | | ov 1 ov 2 ov 8 to 18 | overscan corner |') for n in range(nf,self.i_f) : print('---------------------------------------------------------------------------------------------------------') for ch in range(16) : if n>=self.lmax[ch] : print('%02d | % 6.0f | saturation (no eval) | % 6.02f % 6.02f % 6.02f+/-%5.02f | % 5.02f+/-%5.02f % 5.02f |' % ( ch, self.cte_flux_s[ch,n], self.cte_y_s[ch,n,0], self.cte_y_s[ch,n,1], self.over8_18[ch,n],self.over8_18_std[ch,n], self.cte_noise_s[ch,n],self.cte_noise_s_std[ch,n], self.overscan_std[ch,n])) else : print('%02d | % 6.0f | %9.3g+/-%9.3g | % 6.02f % 6.02f % 6.02f+/-%5.02f | % 5.02f+/-%5.02f % 5.02f |' % ( ch, self.cte_flux_s[ch,n], self.ylev[ch,n],self.ylev_std[ch,n], self.cte_y_s[ch,n,0], self.cte_y_s[ch,n,1], self.over8_18[ch,n],self.over8_18_std[ch,n], self.cte_noise_s[ch,n],self.cte_noise_s_std[ch,n], self.overscan_std[ch,n]) ) print('---------------------------------------------------------------------------------------------------------') return def plot_cte(self,ch,ccd_name,nf=0,on_screen=False,root_dir='.',unit='e-') : ''' plot_cte(self,ch,ccd_name,nf=0,on_screen=False,root_dir='.') Plot the CTE results from cte class per channel Parameters: ch (int) : channel index ( = hdu number -1 in data file ) to plot ccd_name (str) : ccd name : extra sting used in caption to identify this plot serie ( remark the ccd name itself , from file header is automaticaly added , this is more to identify run ( or test level in plots label nf (int) : index of first flux entry to plot (default=0) on_screen (bool) : do we plot on display (or just save png on disk ) (default=False) root_dir (str) : top directory to save directory tree with plots (default = '.' , directory used to save the plots will be ./raft_name/ccd_name/ch/ ) unit (str) : unit of flux used ( e- or ADU ) ''' # root_plt=os.path.join(root_dir,self.first_file.raftbay,self.first_file.ccdslot,str(self.first_file.Hdu[ch])) label_header=ccd_name+' '+self.first_file.raftbay+' '+self.first_file.ccdslot+' '+self.first_file.Image[ch]+' (hdu='+str(self.first_file.Hdu[ch])+')' # create the directorty os.makedirs(root_plt,exist_ok=True) # xx=[max(np.min(self.cte_flux_s[:,nf:self.lmax[ch]])*.9,10.),min(2.0e5,np.max(self.cte_flux_s[:,nf:self.lmax[ch]])*1.1)] # pix_col=['b','c'] pix_sym=['<','>'] fig=plt.figure(figsize=(10,12)) x=range(self.first,self.first+28) if self.serie : title="CTI Serial : "+label_header yv=5.0e-6 else : title="CTI // : "+label_header yv=3.0e-6 yy=[yv,yv] fig.suptitle(title,y=0.94) #fig.tight_layout() iplt=1 ax=fig.add_subplot(3,3,iplt) ax.xaxis.set_label_position('top') ax.xaxis.tick_top() iplt+=1 #ylev=(self.cte_y_s[ch,nf:self.lmax[ch],0]+self.cte_y_s[ch,nf:self.lmax[ch],1])/self.cte_flux_s[ch,nf:self.lmax[ch]]/float(self.nb_pixel) label='%02d' % self.first_file.Hdu[ch] #plt.plot(self.cte_flux_s[ch,nf:self.lmax[ch]],self.ylev[ch,nf:self.lmax[ch]],'o',color='r',label=label) plt.errorbar(self.cte_flux_s[ch,nf:self.lmax[ch]],self.ylev[ch,nf:self.lmax[ch]], yerr=self.ylev_std[ch,nf:self.lmax[ch]],fmt='o', ecolor='r',label=label) #print(self.ylev[ch,nf:self.lmax[ch]]) #print(self.ylev_std[ch,nf:self.lmax[ch]]) plt.plot(xx,yy,'g') if self.serie : plt.xlabel('<flux> of last column in '+unit) else : plt.xlabel('<flux> of last line in '+unit) plt.xlim(xx[0],xx[1]) y_min=min(max(int(np.min(self.ylev[ch,nf:self.lmax[ch]])*500)/100.,1.e-8),1e-7) y_max=5e-5 plt.ylim(y_min,y_max) plt.ylabel('1-CTE') plt.xscale('log') if (abs(y_max/y_min>80.)) : plt.yscale('log') # plt.locator_params(axis="both", tight=True, nbins=10) plt.legend() ax=fig.add_subplot(3,3,iplt) ax.xaxis.set_label_position('top') ax.xaxis.tick_top() iplt+=1 y_min=1. y_max=0 for pix in range(2) : ylev=self.cte_y_s[ch,nf:self.lmax[ch],pix]/self.cte_flux_s[ch,nf:self.lmax[ch]]/float(self.nb_pixel) # label="pix + %d " % (pix+1) y_min=min(y_min,np.min(ylev)) y_max=max(0.,np.max(ylev)) plt.plot(self.cte_flux_s[ch,nf:self.lmax[ch]],ylev,pix_sym[pix],color=pix_col[pix],label=label) plt.plot(xx,yy,'g') if self.serie : plt.xlabel('<flux> of last column in '+unit) else : plt.xlabel('<flux> of last line in '+unit) #plt.ylabel('1-CTE') y_min=min(max(y_min*.5,1.e-8),5e-7) y_max=max(y_max*1.5,1e-5) plt.ylim(y_min,y_max) plt.xscale('log') if (y_max/y_min>80.) : plt.yscale('log') plt.xlim(xx[0],xx[1]) plt.legend() ax=fig.add_subplot(3,3,iplt) ax.xaxis.set_label_position('top') ax.xaxis.tick_top() ax.yaxis.set_label_position("right") ax.yaxis.tick_right() iplt+=1 y_min=0. y_max=0. for pix in range(2) : label="pix + %d " % (pix+1) plt.plot(self.cte_flux_s[ch,nf:self.lmax[ch]],self.cte_y_s[ch,nf:self.lmax[ch],pix],pix_sym[pix],color=pix_col[pix],label=label) y_min=min(-1.,np.min(self.cte_y_s[ch,nf:self.lmax[ch],0:1])) y_max=max(1.,np.max(self.cte_y_s[ch,nf:self.lmax[ch],0:1])*1.1) if self.serie : plt.xlabel('<flux> of last column in '+unit) else : plt.xlabel('<flux> of last line in '+unit) plt.ylabel('signal in overscan pixel(s) in '+unit) plt.xscale('log') if y_max > 10. : plt.yscale('symlog') plt.plot([xx[0],xx[1]],[0.,0.],'--',color='black') # plt.ylim(y_min,y_max) plt.xlim(xx[0],xx[1]) plt.legend(loc=2) #plt.xticks(ticks_flux) # ax=fig.add_subplot(3,3,iplt) iplt+=1 # xx=[self.cte_flux_s[ch,nf]*0.9,self.cte_flux_s[ch,self.lmax[ch]-1]*1.1] yy=[0.,0.] plt.plot(xx,yy,'b--') plt.errorbar(self.cte_flux_s[ch,nf:self.lmax[ch]], self.over8_18[ch,nf:self.lmax[ch]],yerr=self.over8_18_std[ch,nf:self.lmax[ch]],fmt='o',color='r', ecolor='r',label='Signal Overscan[8:18]') if self.serie : plt.xlabel('<flux> of last column in '+unit) plt.ylabel('signal in '+unit+' in serial Overscan') else : plt.xlabel('<flux> of last line in '+unit) plt.ylabel('signal in '+unit+' in // Overscan') plt.xscale('log') plt.ylim(min(np.min(self.over8_18[ch,nf:self.lmax[ch]])*1.2,-0.5),min(10.,max(0.5,np.max(self.over8_18[ch,nf:max(nf+1,self.lmax[ch]-1)])*1.5))) plt.legend(loc=2) ax=fig.add_subplot(3,3,iplt) ax.yaxis.set_label_position("right") iplt+=1 plt.plot(self.cte_flux_s[ch,nf:self.lmax[ch]],self.overscan_std[ch,nf:self.lmax[ch]],'<',label='Corner Noise') plt.errorbar(self.cte_flux_s[ch,nf:self.lmax[ch]], self.cte_noise_s[ch,nf:self.lmax[ch]],yerr=self.cte_noise_s_std[ch,nf:self.lmax[ch]],fmt='o',color='r', ecolor='r',label='Frame Noise') try : mean_noiseV=np.array([self.cte_noise_s[ch,ii] for ii in range(nf,self.lmax[ch]) if self.cte_flux_s[ch,ii] > 1000 and self.cte_flux_s[ch,ii] < 50000]) if len(mean_noiseV)>0 : mean_noise=mean_noiseV.mean() xx=[self.cte_flux_s[ch,nf],self.cte_flux_s[ch,self.lmax[ch]-1]] yy=[mean_noise,mean_noise] plt.plot(xx,yy,'b--') except : pass if self.serie : plt.xlabel('<flux> of last column in '+unit) plt.ylabel('Noise from Serial Overscan in '+unit) else : plt.xlabel('<flux> of last line in '+unit) plt.ylabel('Noise from // Overscan in '+unit) plt.xscale('log') ymin_cc=3. ymax_cc=max(min(30.,np.max(self.cte_noise_s[ch,nf:max(nf+1,self.lmax[ch]-2)])*1.2),10.) #print(ymax_cc,np.max(self.cte_noise_s[ch,nf:max(nf+1,self.lmax[ch]-5)])*1.5) plt.ylim(ymin_cc,ymax_cc) #if ymax_cc > 20 : plt.legend(loc=2) #else : # plt.legend(loc=3) # ax=fig.add_subplot(3,3,iplt) iplt+=1 flux=0. l_last=nf #lmax=len(self.cte_flux_s[ch,:]) count=0 im=0 # y_min=0. y_max=0. #max_plt=max(int((self.lmax[ch]-nf)/4)+1,9) for l in range(nf,self.lmax[ch]) : if ((self.cte_flux_s[ch,l_last]/self.cte_flux_s[ch,l] < 0.9 ) and ( l_last < l )) : # first test to only plot result for point different enough , second test to be sure that we have already selected something , third test (l<lamx[ch] ) to avoid to plot too saturated guy if im>1 : if self.serie : label="%5.1f %s in last Col. " % (self.cte_flux_s[ch,l_last:self.lmax[ch]].mean(axis=0),unit) else : label="%5.1f %s in last Line" % (self.cte_flux_s[ch,l_last:self.lmax[ch]].mean(axis=0),unit) else : label="%5.1f" % (self.cte_flux_s[ch,l_last:l].mean(axis=0)) yplt=self.cte_y_s[ch,l_last:l,:].mean(axis=0) y_min=min(max(min(np.min(yplt)*1.2,0.),-10.),y_min) y_max=max(min(np.max(yplt)*1.2,100.),y_max) plt.plot(x,yplt,label=label) l_last=l count+=1 if count == 9 and im<2 and l < self.lmax[ch]-1 : count = 0 #plt.yscale('log') if self.serie : plt.xlabel('column number (serial overscan)') else : plt.xlabel('line number (// overscan)') if im==0 or im==1 : plt.ylabel('Overscan Signal in '+unit) ymax=max(y_max,y_min+1.) plt.ylim(y_min,y_max) if im==0 : plt.plot([x[0],x[-1]],[0.,0.],'--',color='black') if y_max>80. : plt.yscale('symlog') plt.xlim(self.first,self.first+27) if im == 0 : ax.yaxis.set_label_position("right") ax.yaxis.tick_right() # plt.legend(bbox_to_anchor=(1.05, 1),loc=2, borderaxespad=0.) #else : plt.legend(loc=1) ax=fig.add_subplot(3,3,iplt) iplt+=1 y_min=0 y_max=0 im+=1 if count !=0 or l==nf : if self.serie : plt.xlabel('column number (serial overscan)') else : plt.xlabel('line number (// overscan)') if im<2 : plt.ylabel('Overscan Signal in '+unit) if self.serie : label="%5.1f %s in last Col. " % (self.cte_flux_s[ch,l_last:self.lmax[ch]].mean(axis=0),unit) else : label="%5.1f %s in last Line" % (self.cte_flux_s[ch,l_last:self.lmax[ch]].mean(axis=0),unit) yplt=self.cte_y_s[ch,l_last:self.lmax[ch],:].mean(axis=0) y_min=min(max(min(np.min(yplt)*1.2,0.),-10.),y_min) y_max=max(min(np.max(yplt)*1.2,100.),y_max) plt.plot(x,yplt,label=label) plt.xlim(self.first,self.first+27) plt.ylim(y_min,y_max) #plt.ylim(-10.,min(np.max(yplt)*1.2,100.)) if y_max>80. : plt.yscale('symlog') plt.legend(bbox_to_anchor=(1.05, 1),loc=2, borderaxespad=0.) #plt.legend() # Overscan noise #ax=fig.add_subplot(3,3,iplt) #iplt+=1 # if on_screen : plt.show() if self.serie : plotfile=root_plt+'/cte_serial.png' else : plotfile=root_plt+'/cte_parallel.png' fig.savefig(plotfile) if not(on_screen) : plt.close(fig) return def cte_example(): get_ipython().magic('matplotlib inline') print (' file =',sys.argv[1:-1],' TESTTYPE=',sys.argv[-1]) selection=sys.argv[-1] file=Ifile(dirall=sys.argv[1:-1],fkey={'IMGTYPE':'Acquisition','TESTTYPE':sys.argv[-1]}) # plt.interactive(1) #file=Ifile(dirall=['/Users/antilog/scratch/e2v_190/20170314102625/*.fits'],fkey={}) # cte_data=cte(allfile=file.allfile,gain=[0.704650434205,0.68883578783,0.688459357874,0.696697494642,0.689209827484,0.696579402812,0.698973006751,0.689613072912,0.682880384357,0.696206655845,0.690349506621,0.691506176017,0.690763478766,0.689762341309,0.694801544092,0.850025229184 ]) for ch in range(16) : cte_data.plot_extra(ch=ch,ccd_name=selection,nf=0,on_screen=True) def fft_noise(h_all,channel=range(1,17),fplot=True,mean=False,start=1,int_pixel=1.8e-6,int_line=30.e-6,verbose=0,legend=True,xboundary=(20,500),yboundary=(30,2000),label='',color_v=None,two=True,axes=None,index=None) : cmap=plt.get_cmap('nipy_spectral') colors=[cmap(j)[:3] for j in np.linspace(0,1,17)] if color_v != None : color_val=color_v else : color_val=channel # nb_l=yboundary[1]-yboundary[0] nb_c=xboundary[1]-xboundary[0] nb_file=len(h_all) nb_channel=len(channel) freq_x = np.fft.rfftfreq(nb_c, d=int_pixel)[start:] freqf_x = np.flipud(1./np.fft.rfftfreq(nb_c,1)[start:]) noise=np.zeros((nb_channel)) # # image area first_line,first_p_over,first_col,first_s_over=image_area(h_all[0]) first_good_overs=first_s_over+2 first_good_overp=first_p_over+2 # for ich in range(nb_channel) : ch=int(channel[ich]) for i_h in range(nb_file) : h=h_all[i_h] # if i_h==0 : (n_y,n_x)=np.shape(h[1].data) #delta time between 2 pixels from 2 # lines delta_line=int_pixel*n_x+int_line freq_y = np.fft.rfftfreq(nb_l, d=delta_line)[start:] freqf_y = np.flipud(1./np.fft.rfftfreq(nb_l,d=delta_line/int_pixel)[start:]) freq=np.append(freq_y,freq_x) freqf=np.append(freqf_x,freqf_y) # mean_line=np.median(h[ch].data[yboundary[0]:yboundary[1],:],axis=0) mean_column=np.median(h[ch].data[:,xboundary[0]:xboundary[1]],axis=1) if (ich==0 and i_h==0) or ( not(mean) and i_h==0 ) : ff_x=np.zeros((int(nb_c/2))) ff_y=np.zeros((int(nb_l/2))) for l in range(yboundary[0],yboundary[1]) : raw=h[ch].data[l,:]-mean_line to_fft=raw[xboundary[0]:xboundary[1]]-raw[first_good_overs:].mean() ff_x+=np.absolute(np.fft.rfft(to_fft))[start:] for c in range(xboundary[0],xboundary[1]) : raw=h[ch].data[:,c]-mean_column to_fft=raw[yboundary[0]:yboundary[1]]-raw[first_good_overp:].mean() ff_y+=np.absolute(np.fft.rfft(to_fft))[start:] noise[ich]+=(h[ch].data[yboundary[0]:yboundary[1],first_good_overs:].std())**2 if verbose>1 : print ('channel %d noise %3.3f Overscan dispersion = %3.3f '%(ch,h[ch].data[yboundary[0]:yboundary[1],first_good_overs:].std(),(h[ch].data[yboundary[0]:yboundary[1],first_good_overs:].mean(axis=1)).std())) if (i_h==nb_file-1) and ( ich==len(channel)-1 or not(mean) ) : if mean : # en fait on doit / par le nombr d bin de la fft , pas du signal ...facteur 2 ? ff_xn=ff_x/nb_l/nb_c/nb_file/nb_channel/2. ff_yn=ff_y/nb_l/nb_c/nb_file/nb_channel xnorm=np.append(ff_yn,ff_xn) label_ch=label+'<'+','.join(map(str,channel))+'>' else : ff_xn=ff_x/nb_l/nb_c/nb_file/2. ff_yn=ff_y/nb_l/nb_c/nb_file xnorm=np.append(ff_yn,ff_xn) label_ch=label+'%d' % (ch) if fplot : if two : if index!=None : axes[index[0]].plot(freq_x,ff_xn,label=label_ch,color=colors[color_val[ich]]) axes[index[1]].plot(freq_y,ff_yn,label=label_ch,color=colors[color_val[ich]]) else : plt.plot(freq_x,ff_xn,label=label_ch,color=colors[color_val[ich]]) plt.plot(freq_y,ff_yn,label=label_ch,color=colors[color_val[ich]]) else : if index!=None : axes[index[0]].plot(freq,xnorm,label=label_ch,color=colors[color_val[ich]]) else : plt.plot(freq,xnorm,label=label_ch,color=colors[color_val[ich]]) else : if two : ff_xnf=np.flipud(ff_xn) ff_ynf=np.flipud(ff_yn) if index!=None : axes[index[0]].plot(freqf_x,ff_xnf,label=label_ch,color=colors[color_val[ich]]) axes[index[1]].plot(freqf_y,ff_ynf,label=label_ch,color=colors[color_val[ich]]) else : plt.plot(freqf_x,ff_xnf,label=label_ch,color=colors[color_val[ich]]) plt.plot(freqf_y,ff_ynf,label=label_ch,color=colors[color_val[ich]]) else : xnormf=np.flipud(xnorm) if index!=None : axes[index[0]].plot(freqf,xnormf,label=label_ch,color=colors[color_val[ich]]) else : plt.plot(freqf,xnormf,label=label_ch,color=colors[color_val[ich]]) if verbose : argsort=np.argsort(xnorm) sort=np.sort(xnorm) ff_mean=np.mean(xnorm) ff_sum=np.sum(xnorm) # do a quick and durty bias on the sigma ... ff_sig=xnorm.std() #for i in range(1,len(argsort)) : # if xnorm[argsort[-i]] < ff_mean+3*ff_sig : break #ff_sig=sort[0:-i].std() # print(' sum(fft) %g <fft level> %g fft dispersion %g ' % (ff_sum,ff_mean,ff_sig)) if not(fplot) : xnormf=np.flipud(xnorm) for i in range(1,len(argsort)) : if xnorm[argsort[-i]] < ff_mean+2*ff_sig : break if i>1 and ( ( argsort[-i]+1 in argsort[-i+1:] ) or ( argsort[-i]-1 in argsort[-i+1:] )) : continue print (' fft bin %d , delta(pixels) %f (%6.1f Hz) : %g ' % (argsort[-i]+1,freqf[-argsort[-i]-1],freq[argsort[-i]],xnorm[argsort[-i]])) # if legend : if fplot : plt.xlabel('Noise in Hz') else : plt.xlabel('Noise Period in Pixel(s)') plt.legend(bbox_to_anchor=(1.05, 1),loc=2, borderaxespad=0.) #plt.xscale('log') #plt.yscale('log') noise=np.sqrt(noise/nb_file) return freq,xnorm,noise def for_ever(top_dir='/data/frames',do_fft=False,do_cte=False,xboundary=(20,500),yboundary=(30,2000),gain=[1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.]) : filename_old='' old_dir='' while True : dir=top_dir+'/'+time.strftime('%Y%m%d') #dir=top_dir files = glob.glob(dir+'/*.fz') if dir != old_dir : print (' Scan Dir %s ========================================' % (dir) ) old_dir=dir if files: _,new_file =os.path.split( max(files, key=os.path.getctime) ) if new_file != filename_old : filename=dir+'/'+new_file # so it's a new file , but it could be not fully written time.sleep(5) all_file=Ifile(dirall=[filename],single_t=False) filename_old=new_file print ('%s -------------------------------------------------------------------------' % (new_file) ) print ('Ch | mean median med. - std | <ov //> std std | <ov S.> std std |') print (' | image image S_over image | ov // Fix//o | ov S. Fix S. |') for ch in range(16) : print ('%02d | % 6.0f % 6.0f % 6.0f % 8.02f | % 6.0f % 8.02f % 8.02f | % 6.0f % 8.02f % 8.02f |' % (ch, all_file.all_file[0].Mean[ch], all_file.all_file[0].Median[ch], all_file.all_file[0].Median[ch]-all_file.all_file[0].MeanSScan[ch], all_file.all_file[0].Std[ch], all_file.all_file[0].MeanPScan[ch], all_file.all_file[0].StdPScan[ch], all_file.all_file[0].StdPScanOS[ch], all_file.all_file[0].MeanSScan[ch], all_file.all_file[0].StdSScan[ch], all_file.all_file[0].StdSScanOS[ch]) ) print ('----------------------------------------------------------------------------------------------------') if do_cte : cte_s=cte(all_file=all_file.all_file,gain=gain,serie=True) ccd=new_file cte_s.print_cte(ccd_name=ccd,nf=0) #for ch in range(16) : # cte_s.plot_cte(ch=ch,ccd_name=ccd,nf=0,on_screen=True) # plt.show() cte_p=cte(all_file=all_file.all_file,gain=gain,serie=False) cte_p.print_cte(ccd_name=ccd,nf=0) #for ch in range(16) : # cte_p.plot_cte(ch=ch,ccd_name=ccd,nf=0,on_screen=True) # plt.show() if do_fft : fitsfile=pyfits.open(filename) fft_it([fitsfile],channel=range(1,9),xboundary=xboundary,yboundary=yboundary) fft_it([fitsfile],channel=range(9,17),xboundary=xboundary,yboundary=yboundary) plt.show() fitsfile.close() time.sleep(2) return
python
#!/usr/bin/python # # Copyright 2012 Sonya Huang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import csv, re, xlrd from usa import config, eia, dbsetup from common import fileutils, sqlhelper from common.dbconnect import db # tables by measurement pricetable = "%s.seds_price" % config.EIA_SCHEMA usetable = "%s.seds_use_btu" % config.EIA_SCHEMA # we need to parse three files before we can populate the yearly # tables data = {} def parse_measurement(filename, measurement, tracker): filepath = fileutils.getcache(filename) with open(filepath) as f: csvf = csv.reader(f) header = next(csvf) for stryear in header[2:]: year = int(stryear) if year not in data: data[year] = {} for row in csvf: if len(row) == len(header): if row[0] == "US": msn = row[1][:4] for i in range(2, len(row)): year = int(header[i]) value = row[i].strip() if len(value): if msn not in data[year]: data[year][msn] = {measurement: value} else: data[year][msn][measurement] = value source = msn[0:2] sector = msn[2:4] insert_values = [year, source, sector, float(value)] if measurement == "price": tracker.insert_row(pricetable, insert_values) elif measurement == "use_btu": tracker.insert_row(usetable, insert_values) def create_consolidated_tables(): allsources = eia.fossilfuels + eia.elec_sources + \ eia.nuclear + eia.renewables allsectors = ["TC", "AC", "CC", "IC", "RC"] + eia.elec_sectors for year in config.STUDY_YEARS: strings = { "renewables": sqlhelper.set_repr(eia.renewables), "elec_sources": sqlhelper.set_repr(eia.elec_sources), "elec_sectors": sqlhelper.set_repr(eia.elec_sectors), "allsources": sqlhelper.set_repr(allsources), "allsectors": sqlhelper.set_repr(allsectors), "from_table": "%s.seds_us_%d" % (config.EIA_SCHEMA, year), "tablename": "%s.seds_short_%d" % (config.EIA_SCHEMA, year), } db.execute("DROP TABLE IF EXISTS %(tablename)s CASCADE" % strings) db.execute(""" SELECT source, sector, case when sum(use_btu) = 0 then 0 else sum(ex) / sum(use_btu) end as price, sum(use_btu) as use_btu, sum(ex) as ex INTO %(tablename)s FROM (SELECT case when source in %(renewables)s then 'RE' when source in %(elec_sources)s then 'ES' else source end as source, case when sector in %(elec_sectors)s then 'EI' else sector end as sector, price, use_btu, ex FROM %(from_table)s WHERE source in %(allsources)s AND sector in %(allsectors)s) e GROUP by source, sector order by source, sector""" % strings) def doparse(): tracker = dbsetup.MultiTableStateTracker() tracker.create_table(pricetable, ["year", "source", "sector", "price"], ["int", "char(2)", "char(2)", "float"], cascade=True) tracker.create_table(usetable, ["year", "source", "sector", "use_btu"], ["int", "char(2)", "char(2)", "float"], cascade=True) tracker.warmup() parse_measurement("eia/pr_all.csv", "price", tracker) parse_measurement("eia/use_all_btu.csv", "use_btu", tracker) parse_measurement("eia/ex_all.csv", "ex", tracker) tracker.flush() # tables by year years = sorted(data) for year in years: tablename = "eia.seds_us_%d" % year tracker.create_table(tablename, ["source", "sector", "price", "use_btu", "ex"], ["char(2)", "char(2)", "float", "float", "float"], cascade=True) tracker.warmup() msns = sorted(data[year]) for msn in msns: values = data[year][msn] source = msn[0:2] sector = msn[2:4] insert_values = [source, sector] for field in ("price", "use_btu", "ex"): next_value = 0 # this will turn out to help our calculations if field in values: # convert expenditures to the same units as io table if field == "ex": next_value = float(values[field]) * 1000 else: next_value = float(values[field]) insert_values.append(next_value) tracker.insert_row(tablename, insert_values) tracker.flush() create_consolidated_tables()
python
class Solution(object): def lengthOfLongestSubstringTwoDistinct(self, s): """ :type s: str :rtype: int """ if not s: return 0 c = s[0] maxlen = 0 chars = set([c]) llen = 0 start = 0 end = 0 for i, cc in enumerate(s): if cc == c: end += 1 llen += 1 elif cc in chars: c = cc start = i - 1 end = i llen += 1 elif len(chars) == 1: c = cc chars.add(cc) start = i - 1 end = i llen += 1 else: if llen > maxlen: maxlen = llen chars = set([c, cc]) c = cc llen = end - start + 1 start = i - 1 end = i # print cc, c, start, end, llen, chars if llen > maxlen: maxlen = llen return maxlen
python
import sys from sqlalchemy import create_engine import pandas as pd import numpy as np import re from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import PorterStemmer, WordNetLemmatizer from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import GridSearchCV from sklearn.feature_extraction.text import TfidfVectorizer import joblib import nltk nltk.download(['punkt','stopwords']) from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.multioutput import MultiOutputClassifier from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report from nltk.stem.porter import * def load_data(database_filepath): ## """ Load Data Function Arguments: database_filepath -> path to SQLite db Output: X -> feature DataFrame Y -> label DataFrame category_names -> used for data visualization (app) """ ## engine = create_engine(f'sqlite:///{database_filepath}') df = pd.read_sql_table('InsertTableName',engine) X = df['message'] Y = df.iloc[:, 4:] del Y['child_alone'] return X , Y , Y.columns.values def tokenize(text):. ## """ Tokenize function Arguments: text -> list of text messages (english) Output: clean_tokens -> tokenized text, clean for ML modeling """ ## lemmatizer = WordNetLemmatizer() # Convert to lowercase text = text.lower() # Remove punctuation characters text = re.sub(r"[^a-zA-Z0-9]", " ", text) # Split text into words using NLTK words = word_tokenize(text) # Remove stop words words = [w for w in words if w not in stopwords.words("english")] # Reduce words to their root form stemmed = [PorterStemmer().stem(w) for w in words] clean = [lemmatizer.lemmatize(t) for t in stemmed] return clean def build_model(): ## """ Build Model function This function output is a Scikit ML Pipeline that process text messages according to NLP best-practice and apply a classifier. """ ## pipeline = Pipeline([ ('vect', TfidfVectorizer(tokenizer=tokenize)), ('clf', MultiOutputClassifier(estimator=LogisticRegression())) ]) parameters = {'clf__estimator__C': [0.1,1,10]} cv = GridSearchCV(pipeline, parameters,cv=5) return cv def evaluate_model(model, X_test, Y_test, category_names): ## """ Evaluate Model function This function applies ML pipeline to a test set and prints out model performance Arguments: model -> Scikit ML Pipeline X_test -> test features Y_test -> test labels category_names -> label names (multi-output) """ ## y_pred = pd.DataFrame(model.predict(X_test),columns=Y_test.columns.get_values()) print(classification_report(np.hstack(Y_test), np.hstack(y_pred))) pass def save_model(model, model_filepath): ## """ Save Model function This function saves trained model as Pickle file, to be loaded later. Arguments: model -> GridSearchCV or Scikit Pipelin object model_filepath -> destination path to save .pkl file """ ## joblib.dump(model,f'{model_filepath}') pass def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
python
#!/usr/bin/env python # -*- coding: utf-8 # Copyright 2017-2019 The FIAAS Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from k8s.models.autoscaler import HorizontalPodAutoscaler from mock import create_autospec from requests import Response from utils import TypeMatcher from fiaas_deploy_daemon import ExtensionHookCaller from fiaas_deploy_daemon.deployer.kubernetes.autoscaler import should_have_autoscaler, AutoscalerDeployer from fiaas_deploy_daemon.specs.models import AutoscalerSpec, ResourcesSpec, ResourceRequirementSpec, \ LabelAndAnnotationSpec LABELS = {"autoscaler_deployer": "pass through"} AUTOSCALER_API = '/apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/' def test_default_spec_should_create_no_autoscaler(app_spec): assert should_have_autoscaler(app_spec) is False def test_autoscaler_enabled_and_1_replica_gives_no_autoscaler(app_spec): app_spec = app_spec._replace( autoscaler=AutoscalerSpec(enabled=True, min_replicas=1, max_replicas=1, cpu_threshold_percentage=50)) assert should_have_autoscaler(app_spec) is False def test_autoscaler_enabled_and_2_max_replicas_and_no_requested_cpu_gives_no_autoscaler(app_spec): app_spec = app_spec._replace( autoscaler=AutoscalerSpec(enabled=True, min_replicas=1, max_replicas=2, cpu_threshold_percentage=50)) assert should_have_autoscaler(app_spec) is False def test_autoscaler_enabled_and_2_max_replicas_and__requested_cpu_gives_autoscaler(app_spec): app_spec = app_spec._replace( autoscaler=AutoscalerSpec(enabled=True, min_replicas=1, max_replicas=2, cpu_threshold_percentage=50)) app_spec = app_spec._replace(resources=ResourcesSpec(limits=[], requests=ResourceRequirementSpec(cpu=1, memory=1))) assert should_have_autoscaler(app_spec) class TestAutoscalerDeployer(object): @pytest.fixture def extension_hook(self): return create_autospec(ExtensionHookCaller, spec_set=True, instance=True) @pytest.fixture def deployer(self, owner_references, extension_hook): return AutoscalerDeployer(owner_references, extension_hook) @pytest.mark.usefixtures("get") def test_new_autoscaler(self, deployer, post, app_spec, owner_references, extension_hook): app_spec = app_spec._replace( autoscaler=AutoscalerSpec(enabled=True, min_replicas=2, max_replicas=4, cpu_threshold_percentage=50)) app_spec = app_spec._replace( resources=ResourcesSpec(limits=[], requests=ResourceRequirementSpec(cpu=1, memory=1))) expected_autoscaler = { 'metadata': pytest.helpers.create_metadata('testapp', labels=LABELS), 'spec': { "scaleTargetRef": { "kind": "Deployment", "name": "testapp", "apiVersion": "apps/v1" }, "minReplicas": 2, "maxReplicas": 4, "targetCPUUtilizationPercentage": 50 }, } mock_response = create_autospec(Response) mock_response.json.return_value = expected_autoscaler post.return_value = mock_response deployer.deploy(app_spec, LABELS) pytest.helpers.assert_any_call(post, AUTOSCALER_API, expected_autoscaler) owner_references.apply.assert_called_once_with(TypeMatcher(HorizontalPodAutoscaler), app_spec) extension_hook.apply.assert_called_once_with(TypeMatcher(HorizontalPodAutoscaler), app_spec) @pytest.mark.usefixtures("get") def test_new_autoscaler_with_custom_labels_and_annotations(self, deployer, post, app_spec, owner_references, extension_hook): app_spec = app_spec._replace( autoscaler=AutoscalerSpec(enabled=True, min_replicas=2, max_replicas=4, cpu_threshold_percentage=50)) app_spec = app_spec._replace( resources=ResourcesSpec(limits=[], requests=ResourceRequirementSpec(cpu=1, memory=1))) labels = LabelAndAnnotationSpec(deployment={}, horizontal_pod_autoscaler={"custom": "label"}, ingress={}, service={}, pod={}, status={}) annotations = LabelAndAnnotationSpec(deployment={}, horizontal_pod_autoscaler={"custom": "annotation"}, ingress={}, service={}, pod={}, status={}) app_spec = app_spec._replace(labels=labels, annotations=annotations) expected_autoscaler = { 'metadata': pytest.helpers.create_metadata('testapp', labels={"autoscaler_deployer": "pass through", "custom": "label"}, annotations={"custom": "annotation"}), 'spec': { "scaleTargetRef": { "kind": "Deployment", "name": "testapp", "apiVersion": "apps/v1" }, "minReplicas": 2, "maxReplicas": 4, "targetCPUUtilizationPercentage": 50 } } mock_response = create_autospec(Response) mock_response.json.return_value = expected_autoscaler post.return_value = mock_response deployer.deploy(app_spec, LABELS) pytest.helpers.assert_any_call(post, AUTOSCALER_API, expected_autoscaler) owner_references.apply.assert_called_once_with(TypeMatcher(HorizontalPodAutoscaler), app_spec) extension_hook.apply.assert_called_once_with(TypeMatcher(HorizontalPodAutoscaler), app_spec) def test_no_autoscaler_gives_no_post(self, deployer, delete, post, app_spec): deployer.deploy(app_spec, LABELS) delete.assert_called_with(AUTOSCALER_API + app_spec.name) pytest.helpers.assert_no_calls(post) def test_no_autoscaler_gives_no_put(self, deployer, delete, put, app_spec): deployer.deploy(app_spec, LABELS) delete.assert_called_with(AUTOSCALER_API + app_spec.name) pytest.helpers.assert_no_calls(put)
python
# -*- coding: utf-8 -*- # # michael a.g. aïvázis <[email protected]> # (c) 1998-2022 all rights reserved # support import qed # custom properties def selectors(default={}, **kwds): """ A map from selector names to their legal values """ # build the trait descriptor and return it return qed.properties.dict( schema=qed.properties.tuple(schema=qed.properties.str(), default=()), default=default, **kwds) # end of file
python
#!/usr/bin/env python import numpy from numpy.random import RandomState from sklearn.datasets import make_friedman1 from sklearn.model_selection import train_test_split from typing import Union from backprop.network import Network _demo_problem_num_train_samples: int = 1000 _demo_problem_num_test_samples: int = 100 _demo_num_uninformative_columns: int = 0 _random_state = 0 def demo_backprop( num_train_samples: int = _demo_problem_num_train_samples, num_test_samples: int = _demo_problem_num_test_samples, num_uninformative_columns: int = _demo_num_uninformative_columns, random_state: Union[int, None, RandomState] =_random_state ): random_state = random_state if isinstance(random_state, RandomState) \ else RandomState(random_state) # make training and test data sets for demo inputs_train, inputs_test, outputs_train, outputs_test = make_test_problem( n_train_samples=num_train_samples, n_test_samples=num_test_samples, n_uninformative=num_uninformative_columns, random_state=random_state ) # build network num_inputs = inputs_train.shape[1] num_outputs = outputs_train.shape[1] num_hidden = 2 * num_inputs * num_outputs # make a network with a single hidden layer with num_hidden nodes network = Network(num_inputs, num_hidden, num_outputs, random_state=random_state) # to make two hidden layers, could do: # network = Network(num_inputs, num_hidden, num_hidden, num_outputs) # train network on training set network.train_online(inputs=inputs_train, correct_outputs=outputs_train) # predict results on test set predict_test = network.predict(inputs_test) # calculate error err = ((predict_test - outputs_test)**2).sum(axis=1).mean(axis=0) print('Cross-validated error: %.3g' % err) def make_test_problem( n_train_samples: int = _demo_problem_num_train_samples, n_test_samples: int = _demo_problem_num_test_samples, n_uninformative: int = 0, random_state: Union[int, None, RandomState] = _random_state ) -> (numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray): n_samples = n_train_samples + n_test_samples assert n_uninformative >= 0 n_features = 5 + n_uninformative inputs, outputs = make_friedman1( n_samples=n_samples, n_features=n_features, random_state=random_state ) if inputs.ndim == 1: inputs = numpy.reshape(inputs, inputs.shape + (1,)) if outputs.ndim == 1: outputs = numpy.reshape(outputs, outputs.shape + (1,)) inputs_train, inputs_test, outputs_train, outputs_test = train_test_split( inputs, outputs, train_size=n_train_samples, test_size=n_test_samples, random_state=random_state ) return inputs_train, inputs_test, outputs_train, outputs_test if __name__ == "__main__": demo_backprop()
python
# Copyright 2020 Board of Trustees of the University of Illinois. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import utils.datasetutils as datasetutils class Capability(): def __init__(self, injson): self.name = None self.description = None self.isOpenSource = None self.apiDocUrl = None self.deploymentDetails = None self.apiBaseUrl = None self.version = None self.healthCheckUrl = None self.status = None self.dataDeletionEndpointDetails = None self.contacts = None # self.creationDate = None # self.lastModifiedDate = None self, restjson = datasetutils.update_capability_dataset_from_json(self, injson) def set_name(self, name): self.name = name def get_name(self): return self.name def set_description(self, description): self.description = description def get_description(self): return self.description def set_is_open_source(self, isOpenSource): self.isOpenSource = isOpenSource def get_is_open_source(self): return self.isOpenSource def set_api_doc_url(self, apiDocUrl): self.apiDocUrl = apiDocUrl def get_api_doc_url(self): return self.apiDocUrl def set_deployment_details(self, deploymentDetails): self.deploymentDetails = deploymentDetails def get_deployment_details(self): return self.deploymentDetails def set_docker_image_name(self, dockerImageName): self.dockerImageName = dockerImageName def get_docker_image_name(self): return self.dockerImageName def set_environment_variables(self, environmentVariables): self.environmentVariables = environmentVariables def get_environment_variables(self): return self.environmentVariables def set_database_details(self, databaseDetails): self.databaseDetails = databaseDetails def get_database_details(self): return self.databaseDetails def set_version(self, version): self.version = version def get_version(self): return self.version def set_health_check_url(self, healthCheckUrl): self.healthCheckUrl = healthCheckUrl def get_health_check_url(self): return self.healthCheckUrl def set_auth_method(self, authMethod): self.authMethod = authMethod def get_auth_method(self): return self.authMethod def set_status(self, status): self.status = status def get_status(self): return self.status def set_data_deletion_endpoint_details(self, dataDeletionEndpointDetails): self.dataDeletionEndpointDetails = dataDeletionEndpointDetails def get_data_deletion_endpoint_details(self): return self.dataDeletionEndpointDetails def set_contacts(self, contacts): self.contacts = contacts def get_contacts(self): return self.contacts # def set_creation_date(self, creationDate): # self.creationDate = creationDate # # def get_creation_date(self): # return self.creationDate # # def set_last_modified_date(self, lastModifiedDate): # self.lastModifiedDate = lastModifiedDate # # def get_last_modified_date(self): # return self.lastModifiedDate
python
import numpy as np from mrcnn import utils def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): """Given the anchors and GT boxes, compute overlaps and identify positive anchors and deltas to refine them to match their corresponding GT boxes. anchors: [num_anchors, (y1, x1, y2, x2)] gt_class_ids: [num_gt_boxes] Integer class IDs. gt_boxes: [num_gt_boxes, IMAGE_SOURCES, (y1, x1, y2, x2)] Returns: rpn_match: [N] (int32) matches between anchors and GT boxes. 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_bbox: [N, IMAGE_SOURCES, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. """ n_boxes, n_image_source = gt_boxes.shape[:2] # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, n_image_source, 4)) # master boxes master_gt_boxes = gt_boxes[:, 0, :] # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. # crowd_ix = np.where(gt_class_ids < 0)[0] # if crowd_ix.shape[0] > 0: # # Filter out crowds from ground truth class IDs and boxes # non_crowd_ix = np.where(gt_class_ids > 0)[0] # crowd_boxes = master_gt_boxes[crowd_ix] # gt_class_ids = gt_class_ids[non_crowd_ix] # master_gt_boxes = master_gt_boxes[non_crowd_ix] # # Compute overlaps with crowd boxes [anchors, crowds] # crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) # crowd_iou_max = np.amax(crowd_overlaps, axis=1) # no_crowd_bool = (crowd_iou_max < 0.001) # else: # # All anchors don't intersect a crowd # no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) # Compute overlaps [num_anchors, num_gt_boxes] overlaps = utils.compute_overlaps(anchors, master_gt_boxes) # Match anchors to GT Boxes # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. # If an anchor overlaps a GT box with IoU < 0.3 then it's negative. # Neutral anchors are those that don't match the conditions above, # and they don't influence the loss function. # However, don't keep any GT box unmatched (rare, but happens). Instead, # match it to the closest anchor (even if its max IoU is < 0.3). # # 1. Set negative anchors first. They get overwritten below if a GT box is # matched to them. Skip boxes in crowd areas. anchor_iou_argmax = np.argmax(overlaps, axis=1) anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] # rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 rpn_match[anchor_iou_max < 0.3] = -1 # 2. Set an anchor for each GT box (regardless of IoU value). # If multiple anchors have the same IoU match all of them gt_iou_argmax = np.argwhere(overlaps == np.max(overlaps, axis=0))[:,0] rpn_match[gt_iou_argmax] = 1 # 3. Set anchors with high overlap as positive. rpn_match[anchor_iou_max >= 0.7] = 1 # Subsample to balance positive and negative anchors # Don't let positives be more than half the anchors ids = np.where(rpn_match == 1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) if extra > 0: # Reset the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # Same for negative proposals ids = np.where(rpn_match == -1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - np.sum(rpn_match == 1)) if extra > 0: # Rest the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # For positive anchors, compute shift and scale needed to transform them # to match the corresponding GT boxes. ids = np.where(rpn_match == 1)[0] ix = 0 # index into rpn_bbox # TODO: use box_refinement() rather than duplicating the code here for i, a in zip(ids, anchors[ids]): # Anchor a_h = a[2] - a[0] a_w = a[3] - a[1] a_center_y = a[0] + 0.5 * a_h a_center_x = a[1] + 0.5 * a_w for idx_image_source in range(n_image_source): # Closest gt box (it might have IoU < 0.7) gt = gt_boxes[anchor_iou_argmax[i], idx_image_source] # Convert coordinates to center plus width/height. # GT Box gt_h = gt[2] - gt[0] gt_w = gt[3] - gt[1] gt_center_y = gt[0] + 0.5 * gt_h gt_center_x = gt[1] + 0.5 * gt_w # Compute the bbox refinement that the RPN should predict. rpn_bbox[ix, idx_image_source] = [ (gt_center_y - a_center_y) / a_h, (gt_center_x - a_center_x) / a_w, np.log(gt_h / a_h), np.log(gt_w / a_w), ] # Normalize rpn_bbox[ix, idx_image_source] /= config.RPN_BBOX_STD_DEV ix += 1 return rpn_match, rpn_bbox
python
from django import forms from django.contrib import admin from django.utils.safestring import mark_safe from .models import Episode, ShowDate from .tasks import generate_peaks class ShowsCommonModelAdminMixin: save_on_top = True list_filter = ("published", "show_code") list_display_links = ("show_code", "display_name") @admin.display(description="Name", ordering="name", empty_value=mark_safe("<em>Untitled</em>")) def display_name(self, obj): return obj.name or None def get_fields(self, request, obj=None): fields = list(super().get_fields(request, obj=obj)) if obj is None: for field in self.get_readonly_fields(request, obj=obj): fields.remove(field) return fields class EpisodeAdminModelForm(forms.ModelForm): name_from_ffprobe = forms.BooleanField( label="Generate name from file's metadata.", required=False, help_text=( 'Attempt to extract name from metadata on save. Will attempt to do so in <strong>"artist - title"</strong>' " format." ), ) class EpisodeAdmin(ShowsCommonModelAdminMixin, admin.ModelAdmin): form = EpisodeAdminModelForm fields = ( "show_code", "published", "slug", "asset_url", "name", "name_from_ffprobe", "description", "date", "duration", "guid", "has_peaks", ) readonly_fields = ("guid", "has_peaks") list_display = ("published", "show_code", "display_name", "date", "date", "duration", "has_peaks") @admin.display(description="Peaks", boolean=True) def has_peaks(self, obj): return bool(obj.peaks) def save_model(self, request, obj, form, change): if form.cleaned_data["name_from_ffprobe"]: obj.name = " - ".join(filter(None, (obj.ffprobe.artist, obj.ffprobe.title))) super().save_model(request, obj, form, change) generate_peaks(obj) class ShowDateAdmin(ShowsCommonModelAdminMixin, admin.ModelAdmin): fields = ("show_code", "published", "name", "dates", "start_time", "duration", "end_time") list_display = ("published", "show_code", "display_name", "start_time", "end_time", "duration") readonly_fields = ("end_time",) admin.site.register(Episode, EpisodeAdmin) admin.site.register(ShowDate, ShowDateAdmin)
python
""" Events emitted by the artist model """ from dataclasses import dataclass from typing import List, Optional from OpenCast.domain.event.event import Event, ModelId @dataclass class ArtistCreated(Event): name: str ids: List[ModelId] thumbnail: Optional[str] @dataclass class ArtistThumbnailUpdated(Event): thumbnail: str @dataclass class ArtistDeleted(Event): ids: List[ModelId] @dataclass class ArtistVideosUpdated(Event): ids: List[ModelId]
python
from unittest import TestCase from lie2me import Field class CommonTests(object): def get_instance(self): return self.Field() def test_submitting_empty_value_on_required_field_returns_error(self): field = self.get_instance() field.required = True value, error = field.submit(field.empty_value()) self.assertTrue(error) def test_submitting_empty_value_on_optional_field_does_not_return_error(self): field = self.get_instance() field.required = False value, error = field.submit(field.empty_value()) self.assertFalse(error) def test_field_is_required_by_default(self): field = self.get_instance() value, error = field.submit(field.empty_value()) self.assertTrue(error) def test_field_with_default_is_not_required(self): field = self.get_instance() field.default = self.valid_default value, error = field.submit(field.empty_value()) self.assertFalse(error) def test_field_instance_can_overwrite_specific_messages(self): field = self.get_instance() field.messages = {'required': 'Lorem ipsum'} value, error = field.submit(None) self.assertIn('Lorem ipsum', str(error))
python
import os import sys from RLTest import Env from redisgraph import Graph, Node, Edge sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from base import FlowTestsBase redis_graph = None male = ["Roi", "Alon", "Omri"] female = ["Hila", "Lucy"] class testGraphMixLabelsFlow(FlowTestsBase): def __init__(self): self.env = Env() global redis_graph redis_con = self.env.getConnection() redis_graph = Graph("G", redis_con) self.populate_graph() def populate_graph(self): redis_graph nodes = {} # Create entities for m in male: node = Node(label="male", properties={"name": m}) redis_graph.add_node(node) nodes[m] = node for f in female: node = Node(label="female", properties={"name": f}) redis_graph.add_node(node) nodes[f] = node for n in nodes: for m in nodes: if n == m: continue edge = Edge(nodes[n], "knows", nodes[m]) redis_graph.add_edge(edge) redis_graph.commit() # Connect a single node to all other nodes. def test_male_to_all(self): query = """MATCH (m:male)-[:knows]->(t) RETURN m,t ORDER BY m.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(male) * (len(male + female)-1))) def test_male_to_male(self): query = """MATCH (m:male)-[:knows]->(t:male) RETURN m,t ORDER BY m.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(male) * (len(male)-1))) def test_male_to_female(self): query = """MATCH (m:male)-[:knows]->(t:female) RETURN m,t ORDER BY m.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(male) * len(female))) def test_female_to_all(self): query = """MATCH (f:female)-[:knows]->(t) RETURN f,t ORDER BY f.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(female) * (len(male + female)-1))) def test_female_to_male(self): query = """MATCH (f:female)-[:knows]->(t:male) RETURN f,t ORDER BY f.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(female) * len(male))) def test_female_to_female(self): query = """MATCH (f:female)-[:knows]->(t:female) RETURN f,t ORDER BY f.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(female) * (len(female)-1))) def test_all_to_female(self): query = """MATCH (f)-[:knows]->(t:female) RETURN f,t ORDER BY f.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(male) * len(female)) + (len(female) * (len(female)-1))) def test_all_to_male(self): query = """MATCH (f)-[:knows]->(t:male) RETURN f,t ORDER BY f.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(male) * (len(male)-1)) + len(female) * len(male)) def test_all_to_all(self): query = """MATCH (f)-[:knows]->(t) RETURN f,t ORDER BY f.name""" actual_result = redis_graph.query(query) self.env.assertEquals(len(actual_result.result_set), (len(male+female) * (len(male+female)-1)))
python
import io import logging from typing import List, Union LOG = logging.getLogger(__name__) class FileHelper: """Encapsulates file related functions.""" def __init__(self, filepath, line_idx, contents): self.filepath = filepath self.line_idx = line_idx self.contents = contents @classmethod def read_file(cls, fpath: str) -> List[str]: """Reads a file from FS. Returns a lis of strings from it. :param fpath: File path """ with io.open(fpath, encoding='utf-8') as f: data = f.read().splitlines() return data def write(self): """Writes updated contents back to a file.""" LOG.debug(f'Writing `{self.filepath}` ...') with io.open(self.filepath, 'w', encoding='utf-8') as f: f.write('\n'.join(self.contents)) def line_replace(self, value: str, offset: int = 0): """Replaces a line in file. :param value: New line. :param offset: Offset from line_idx """ target_idx = self.line_idx + offset self.contents[target_idx] = value def insert(self, value: Union[List[str], str], offset: int = 1): """Inserts a line (or many) into file. :param value: New line(s). :param offset: Offset from line_idx """ target_idx = self.line_idx + offset if not isinstance(value, list): value = [value] self.contents[target_idx:target_idx] = value def iter_after(self, offset: int) -> str: """Generator. Yields lines after line_idx :param offset: """ target_idx = self.line_idx + offset for line in self.contents[target_idx:]: yield line
python
#!/usr/bin/python import sys import tarfile import json import gzip import pandas as pd import botometer from pandas.io.json import json_normalize ## VARIABLE INITIATION #system argument # arg 1 = 'rs' or 'sn' # arg 2 = hour file 6,7 or 8 ? # arg 3 = start row # arg 4 = end row # arg 5 = key selection, 1,2,3,4 # sn 7 : total row 33277 # sn 8 : total row 53310 # rs 7 : 7230 # rs 8 : 10493 mashape_key = "QRraJnMT9KmshkpJ7iu74xKFN1jtp1IyBBijsnS5NGbEuwIX54" if(int(sys.argv[5])==1): twitter_app_auth = { 'consumer_key': 'qngvt8PPer3irSHHkx71gqpJg', 'consumer_secret': 'bAH258rRds9uWAi38kSwxgbJ1x0rAspasQACgOruuK4qnKsXld', 'access_token': '218041595-yrk9WyMnTjh4PBidhApb0DwryK83Wzr32IWi6bP4', 'access_token_secret': 'GCmOzFmzrOoAv59lCpKRQrC9e7H1P0449iaBW1rI66saS', } elif (int(sys.argv[5])==2): twitter_app_auth = { 'consumer_key': 'xQkTg8KSU7HlEEvaD8EJA', 'consumer_secret': 'TMFRBmvGdGJtzwFJ3fyluPWszl5qCDuwBUqy0AGj0g', 'access_token': '218041595-JUmLw0xEtnJVrqn03DCirlZpnL1Z7taWwKYZYUPN', 'access_token_secret': 'cIdkjvTghunH6GGLRIjQW06ghyOFkX1w7jnurcJPVyIQw', } elif (int(sys.argv[5])==3): twitter_app_auth = { 'consumer_key': 'sPzHpcj4jMital75nY7dfd4zn', 'consumer_secret': 'rTGm68zdNmLvnTc22cBoFg4eVMf3jLVDSQLOwSqE9lXbVWLweI', 'access_token': '4258226113-4UnHbbbxoRPz10thy70q9MtEk9xXfJGOpAY12KW', 'access_token_secret': '549HdasMEW0q2uV05S5s4Uj5SdCeEWT8dNdLNPiAeeWoX', } elif (int(sys.argv[5])==4): twitter_app_auth = { 'consumer_key': 'wZnIRW0aMRmHuQ3Rh5c2v7al4', 'consumer_secret': 'ugFcKDc0WP7ktDw3Ch1ZddWknckkfFiH9ZvIKFDwg7k8ivDyFB', 'access_token': '218041595-JSRBUY3CJ55km9Jb0QnJA6lQnyRoPfvpq6lNAsak', 'access_token_secret': 'ck1wTLfMP5CeLAfnbkS3U7oKxY6e0xu9C7fosq3fNH8gO', } else: twitter_app_auth = { 'consumer_key': 'kcnlkVFRADdxaWNtWNAy3LquT', 'consumer_secret': 'bAH258rRds9uWAi38kSwxgbJ1x0rAspasQACgOruuK4qnKsXld', 'access_token': '218041595-yrk9WyMnTjh4PBidhApb0DwryK83Wzr32IWi6bP4', 'access_token_secret': 'GCmOzFmzrOoAv59lCpKRQrC9e7H1P0449iaBW1rI66saS', } bom = botometer.Botometer(wait_on_ratelimit=True, mashape_key=mashape_key, **twitter_app_auth) if(sys.argv[1]=='rs'): input_file="data/distinct_userlist_rs_201606230"+sys.argv[2]+".csv" else: input_file="data/distinct_userlist_201606230"+sys.argv[2]+".csv" bot_data = pd.read_csv(input_file, index_col = 0, names =['screen_name']) print(len(bot_data)) distinct_uname=[] for i in bot_data.values: distinct_uname.append((str('@'+i).replace("['","")).replace("']",'')) botoresult = pd.DataFrame() for screen_name, result in bom.check_accounts_in(distinct_uname[int(sys.argv[3]):int(sys.argv[4])]): botoresult=botoresult.append(result, ignore_index=True) output_bot=pd.concat([botoresult.user.apply(pd.Series), botoresult.scores.apply(pd.Series), botoresult.categories.apply(pd.Series)], axis=1) print("bot result :",len(botoresult)) print("bot output :",len(output_bot)) output_file="data/outputbot_201606230"+sys.argv[2]+"_"+sys.argv[1]+"_"+sys.argv[6]+".csv" output_bot.to_csv(output_file, sep=',', encoding='utf-8')
python
from analyzers.utility_functions import auth from parsers.Parser import Parser class HthParser(Parser): __url = "https://fantasy.premierleague.com/api/leagues-h2h-matches/league/{}/?page={}&event={}" __HUGE_HTH_LEAGUE = 19824 def __init__(self, team_id, leagues, current_event): super().__init__(team_id) self.__leagues = leagues self.__current_event = current_event """ self.__leagues is a dictionary: - keys are leagues codes - values are strings = names of these leagues result is a dictionary: - keys are opponent ids - values are strings = names of the league where the match is going to be played """ def get_opponents_ids(self): result = {} session = auth() for key, value in self.__leagues.items(): # Ignoring this league because there's an issue with it if key == self.__HUGE_HTH_LEAGUE: continue (opponent_id, (my_points, opponent_points)) = self.__get_opponent_id(session=session, league_code=key) # Regular match if opponent_id is not None: result[opponent_id] = value # H2H league with odd number of players: # In this case, opponent is league's average score # opponent_id[1] = average score else: result["AVERAGE"] = (my_points, opponent_points, value) return result # TO-DO: Issue with HUGE H2H leagues # Example league: 19824 def __get_opponent_id(self, session, league_code, page_cnt=1): new_url = self.__url.format(league_code, page_cnt, self.__current_event) response = session.get(new_url).json() # has_next = response["has_next"] data = response["results"] opponent_id = -1 points = -1 for element in data: match = [element["entry_1_entry"], element["entry_2_entry"]] points = [element["entry_1_points"], element["entry_2_points"]] if match[0] == self._id: opponent_id = match[1] elif match[1] == self._id: opponent_id = match[0] points.reverse() if opponent_id != -1: result = (opponent_id, points) return result else: return self.__get_opponent_id(session, league_code, page_cnt + 1)
python
import numpy as np from math import log2 from scamp_filter.Item import Item as I from termcolor import colored def approx(target, depth=5, max_coeff=-1, silent=True): coeffs = {} total = 0.0 current = 256 for i in range(-8, depth): if total == target: break # if the error is smaller than half the current coefficient, we go further away from target if abs(total - target) > 1/2*current: # decide which direction brings us closer to the target if abs((total-current)-target) > abs(total + current - target): coeffs[current] = 1 total += current else: coeffs[current] = -1 total -= current current /= 2 if max_coeff > 0 and len(coeffs) >= max_coeff: break if not silent: print("Target: %.5f\n" % target) print("Error: %.5f\n" % (total-target)) print(coeffs) return total, coeffs def print_filter(filter): print('----------------------') for row in filter: for item in row: print('%5s'%str(item), end=' ') print('') print('----------------------') def approx_filter(filter, depth=4, max_coeff=-1, verbose=0): if verbose>1: print(colored('>> Input filter', 'yellow')) print_filter(filter) if verbose>0: print(colored('>> Approximating Filter', 'magenta')) pre_goal = [] h, w = filter.shape approximated_filter = np.zeros(filter.shape) for (y, x), val in np.ndenumerate(filter): a, coeffs = approx(val, depth, silent=True, max_coeff=max_coeff) approximated_filter[y, x] = a pre_goal = pre_goal + [I(int(-log2(c)), x-w//2, h//2-y) if weight == 1 else -I(int(-log2(c)), x-w//2, h//2-y) for c, weight in coeffs.items()] if verbose>1: print(colored('>> Approximated filter', 'yellow')) print_filter(approximated_filter) return pre_goal, approximated_filter
python
########################################################### # Re-bindings for unpickling # # We want to ensure class # sage.modular.congroup_element.CongruenceSubgroupElement still exists, so we # can unpickle safely. # ########################################################### from sage.modular.arithgroup.arithgroup_element import ArithmeticSubgroupElement CongruenceSubgroupElement = ArithmeticSubgroupElement
python
"""Impementation for print_rel_notes.""" def print_rel_notes( name, repo, version, outs = None, setup_file = "", deps_method = "", toolchains_method = "", org = "bazelbuild", changelog = None, mirror_host = None): tarball_name = ":%s-%s.tar.gz" % (repo, version) # Must use Label to get a path relative to the rules_pkg repository, # instead of the calling BUILD file. print_rel_notes_helper = Label("//pkg/releasing:print_rel_notes") tools = [print_rel_notes_helper] cmd = [ "LC_ALL=C.UTF-8 $(location %s)" % str(print_rel_notes_helper), "--org=%s" % org, "--repo=%s" % repo, "--version=%s" % version, "--tarball=$(location %s)" % tarball_name, ] if setup_file: cmd.append("--setup_file=%s" % setup_file) if deps_method: cmd.append("--deps_method=%s" % deps_method) if toolchains_method: cmd.append("--toolchains_method=%s" % toolchains_method) if changelog: cmd.append("--changelog=$(location %s)" % changelog) # We should depend on a changelog as a tool so that it is always built # for the host configuration. If the changelog is generated on the fly, # then we would have to run commands against our revision control # system. That only makes sense locally on the host, because the # revision history is never exported to a remote build system. tools.append(changelog) if mirror_host: cmd.append("--mirror_host=%s" % mirror_host) cmd.append(">$@") native.genrule( name = name, srcs = [ tarball_name, ], outs = outs or [name + ".txt"], cmd = " ".join(cmd), tools = tools, )
python
#!/usr/bin/env python # Run VGG benchmark series. # Prepares and runs multiple tasks on multiple GPUs: one task per GPU. # Waits if no GPUs available. For GPU availability check uses "nvidia-smi dmon" command. # 2018 (C) Peter Bryzgalov @ CHITECH Stair Lab import multigpuexec import time import os import datetime # Set GPU range gpus = range(0, 1) # Change hostname host = "p3.2xlarge" # Set number of runs runs = 1 # Set mini-batch sizes batchsizes = [7, 8, 9] + range(10, 200, 10) + range(200, 501, 50) # Log algos # batchsizes = [10, 20, 50, 100, 150, 200, 400, 500] # Set algorithms backfilterconvalgos = ["cudnn"] algods = ["cudnn"] # Data gradient algorithm algofwds = ["cudnn"] benchmark = "VGG" template = "VGG.dnntemplate" datasetsize = 50000 date = datetime.datetime.today().strftime('%Y%m%d') nvprof = False with_memory = False debuginfo = False debuginfo_option = "" if debuginfo: debuginfo_option = " --debug" tasks = [] command = "./run_dnnmark_template.sh -b test_{} --template {}".format(benchmark, template) logdir = "logs/{}/dnnmark_{}_microseries_{}/".format(host, benchmark, date) if not os.path.exists(logdir): os.makedirs(logdir) print "Logdir", logdir logfile_base = "dnnmark_{}_{}".format(host, benchmark) for batch in batchsizes: for algod in algods: for algo in backfilterconvalgos: for algofwd in algofwds: algod_opt = " --algod {}".format(algod) logname = "{}_bs{}_algos{}-{}-{}".format(logfile_base, batch, algofwd, algo, algod) for run in range(runs): logfile = os.path.join(logdir, "{}_{:02d}.log".format(logname, run)) if os.path.isfile(logfile): print "file", logfile, "exists." else: command_pars = command + " -n {} --algo {} --algod {} --algofwd {} -d {}{}".format( batch, algo, algod, algofwd, datasetsize, debuginfo_option) task = {"comm": command_pars, "logfile": logfile, "batch": batch, "nvsmi": with_memory} tasks.append(task) if nvprof: iterations = 10 # print "BS: {}, Iterations: {}".format(batch,iterations) nvlogname = "{}_iter{}".format(logname, iterations) command_pars = command + " -n {} -d {} --algo {} --algod {} --algofwd {} --iter {} --warmup 0".format( batch, datasetsize, algo, algod, algofwd, iterations) logfile = os.path.join(logdir, "{}_%p.nvprof".format(nvlogname)) if os.path.isfile(logfile): print "file", logfile, "exists." else: profcommand = "nvprof -u s --profile-api-trace none --unified-memory-profiling off --profile-child-processes --csv --log-file {} {}".format( logfile, command_pars) task = {"comm": profcommand, "logfile": logfile, "batch": batch, "nvsmi": False} tasks.append(task) print "Have", len(tasks), "tasks" gpu = -1 for i in range(0, len(tasks)): gpu = multigpuexec.getNextFreeGPU(gpus, start=gpu + 1, c=1, d=1, nvsmi=tasks[i]["nvsmi"], mode="dmon", debug=False) gpu_info = multigpuexec.getGPUinfo(gpu) f = open(tasks[i]["logfile"], "w+") f.write(tasks[i]["comm"] + "\n") f.write("b{}\n".format(tasks[i]["batch"])) f.write("GPU{}: {}\n".format(gpu, gpu_info)) f.close() print time.strftime("[%d %H:%M:%S]"), multigpuexec.runTask(tasks[i], gpu, nvsmi=tasks[i]["nvsmi"], delay=0, debug=False) print tasks[i]["logfile"] print "{}/{} tasks".format(i + 1, len(tasks)) time.sleep(1)
python
from distutils.core import Extension, setup import numpy as np setup( name="numpy_ctypes_example", version="1.0", description="numpy ctypes example", author="Mateen Ulhaq", author_email="[email protected]", maintainer="[email protected]", url="https://github.com/YodaEmbedding/experiments", ext_modules=[ Extension( name="lib", sources=["lib.c"], extra_compile_args=["-Ofast", "-march=native"], include_dirs=[np.get_include()], ), ], )
python
""" Copyright 2015 Paul T. Grogan, Massachusetts Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Test cases for L{ofspy.context}. """ import unittest from ..federation import Federation from ..simulator import Simulator from ..context import Context from ..surface import Surface from ..orbit import Orbit from ..demand import Demand from ..valueSchedule import ValueSchedule class ContextTestCase(unittest.TestCase): def setUp(self): self.default = Context(seed=0) self.locs = [] for s in range(6): self.locs.append(Surface(s, name='SUR{0}'.format(s+1))) self.locs.append(Orbit(s, 'LEO', name='LEO{0}'.format(s+1))) self.locs.append(Orbit(s, 'MEO', name='MEO{0}'.format(s+1))) self.locs.append(Orbit(s, 'GEO', name='GEO{0}'.format(s+1))) self.evts = [] for d in range(8): self.evts.append(Demand(None, 'SAR', 1, ValueSchedule([(1,500),(4,400)], -50), name='SAR1.{0}'.format(d+1))) for d in range(12): self.evts.append(Demand(None, 'SAR', 1, ValueSchedule([(2,450),(5,350)], -100), name='SAR2.{0}'.format(d+1))) for d in range(23): self.evts.append(Demand(None, 'SAR', 1, ValueSchedule([(3,400),(6,300)], -150), name='SAR3.{0}'.format(d+1))) for d in range(8): self.evts.append(Demand(None, 'VIS', 1, ValueSchedule([(1,600),(4,500)], -50), name='VIS1.{0}'.format(d+1))) for d in range(17): self.evts.append(Demand(None, 'VIS', 1, ValueSchedule([(2,500),(5,400)], -100), name='VIS2.{0}'.format(d+1))) for d in range(8): self.evts.append(Demand(None, 'VIS', 1, ValueSchedule([(3,450),(6,350)], -150), name='VIS3.{0}'.format(d+1))) self.default = Context(locations=self.locs, events=self.evts, federations=[Federation()], seed=0) self.sim = Simulator(entities=[self.default], initTime=0, timeStep=1, maxTime=3) def tearDown(self): self.default = None self.locs = None self.evts = None def test_propagate(self): self.assertEqual(self.default.propagate(self.locs[0], 0), self.locs[0]) self.assertEqual(self.default.propagate(self.locs[0], 1), self.locs[0]) self.assertEqual(self.default.propagate(self.locs[0], 2), self.locs[0]) self.assertEqual(self.default.propagate(self.locs[1], 0), self.locs[1]) self.assertEqual(self.default.propagate(self.locs[1], 1), self.locs[9]) self.assertEqual(self.default.propagate(self.locs[1], 2), self.locs[17]) self.assertEqual(self.default.propagate(self.locs[1], 3), self.locs[1]) self.assertEqual(self.default.propagate(self.locs[1], 4), self.locs[9]) self.assertEqual(self.default.propagate(self.locs[1], -1), self.locs[17]) self.assertEqual(self.default.propagate(self.locs[2], 0), self.locs[2]) self.assertEqual(self.default.propagate(self.locs[2], 1), self.locs[6]) self.assertEqual(self.default.propagate(self.locs[2], 2), self.locs[10]) self.assertEqual(self.default.propagate(self.locs[3], 0), self.locs[3]) self.assertEqual(self.default.propagate(self.locs[3], 1), self.locs[3]) self.assertEqual(self.default.propagate(self.locs[3], 2), self.locs[3]) def test_init(self): self.assertEqual(self.default.currentEvents, []) self.assertEqual(self.default.futureEvents, []) self.assertEqual(self.default.pastEvents, []) self.default.init(self.sim) self.assertEqual(self.default.currentEvents, []) self.assertNotEqual(self.default.futureEvents, []) self.assertEqual(len(self.default.futureEvents), len(self.default.events)) self.assertEqual(self.default.pastEvents, []) def test_tick(self): self.default.init(self.sim) self.default.tick(self.sim) def test_tock(self): self.default.init(self.sim) self.default.tick(self.sim) self.default.tock() self.assertEqual(len(self.default.currentEvents), 6) self.assertEqual(len(self.default.futureEvents), len(self.default.events) - 6)
python
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=invalid-overridden-method import functools from typing import ( # pylint: disable=unused-import Union, Optional, Any, IO, Iterable, AnyStr, Dict, List, Tuple, TYPE_CHECKING, ) try: from urllib.parse import urlparse, quote, unquote # pylint: disable=unused-import except ImportError: from urlparse import urlparse # type: ignore from urllib2 import quote, unquote # type: ignore from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.async_paging import AsyncItemPaged from .._shared.base_client_async import AsyncStorageAccountHostsMixin from .._shared.request_handlers import add_metadata_headers, serialize_iso from .._shared.response_handlers import ( return_response_headers, process_storage_error, return_headers_and_deserialized, ) from .._deserialize import deserialize_queue_properties, deserialize_queue_creation from .._generated.version import VERSION from .._generated.aio import AzureQueueStorage from .._generated.models import StorageErrorException, SignedIdentifier from .._generated.models import QueueMessage as GenQueueMessage from .._models import QueueMessage, AccessPolicy from ._models import MessagesPaged from .._shared.policies_async import ExponentialRetry from .._queue_client import QueueClient as QueueClientBase if TYPE_CHECKING: from datetime import datetime from azure.core.pipeline.policies import HTTPPolicy from .._models import QueueSasPermissions, QueueProperties class QueueClient(AsyncStorageAccountHostsMixin, QueueClientBase): """A client to interact with a specific Queue. :param str account_url: The URL to the storage account. In order to create a client given the full URI to the queue, use the :func:`from_queue_url` classmethod. :param queue_name: The name of the queue. :type queue_name: str :param credential: The credentials with which to authenticate. This is optional if the account URL already has a SAS token. The value can be a SAS token string, an instance of a AzureSasCredential from azure.core.credentials, an account shared access key, or an instance of a TokenCredentials class from azure.identity. :keyword str api_version: The Storage API version to use for requests. Default value is '2019-07-07'. Setting to an older version may result in reduced feature compatibility. :keyword str secondary_hostname: The hostname of the secondary endpoint. :keyword message_encode_policy: The encoding policy to use on outgoing messages. Default is not to encode messages. Other options include :class:`TextBase64EncodePolicy`, :class:`BinaryBase64EncodePolicy` or `None`. :keyword message_decode_policy: The decoding policy to use on incoming messages. Default value is not to decode messages. Other options include :class:`TextBase64DecodePolicy`, :class:`BinaryBase64DecodePolicy` or `None`. .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_create_queue_client] :end-before: [END async_create_queue_client] :language: python :dedent: 16 :caption: Create the queue client with url and credential. .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_create_queue_client_from_connection_string] :end-before: [END async_create_queue_client_from_connection_string] :language: python :dedent: 8 :caption: Create the queue client with a connection string. """ def __init__( self, account_url, # type: str queue_name, # type: str credential=None, # type: Optional[Any] **kwargs # type: Any ): # type: (...) -> None kwargs["retry_policy"] = kwargs.get("retry_policy") or ExponentialRetry(**kwargs) loop = kwargs.pop('loop', None) super(QueueClient, self).__init__( account_url, queue_name=queue_name, credential=credential, loop=loop, **kwargs ) self._client = AzureQueueStorage(self.url, pipeline=self._pipeline, loop=loop) # type: ignore self._client._config.version = kwargs.get('api_version', VERSION) # pylint: disable=protected-access self._loop = loop @distributed_trace_async async def create_queue(self, **kwargs): # type: (Optional[Any]) -> None """Creates a new queue in the storage account. If a queue with the same name already exists, the operation fails with a `ResourceExistsError`. :keyword dict(str,str) metadata: A dict containing name-value pairs to associate with the queue as metadata. Note that metadata names preserve the case with which they were created, but are case-insensitive when set or read. :keyword int timeout: The server timeout, expressed in seconds. :return: None or the result of cls(response) :rtype: None :raises: StorageErrorException .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_hello_world_async.py :start-after: [START async_create_queue] :end-before: [END async_create_queue] :language: python :dedent: 12 :caption: Create a queue. """ metadata = kwargs.pop('metadata', None) timeout = kwargs.pop('timeout', None) headers = kwargs.pop("headers", {}) headers.update(add_metadata_headers(metadata)) # type: ignore try: return await self._client.queue.create( # type: ignore metadata=metadata, timeout=timeout, headers=headers, cls=deserialize_queue_creation, **kwargs ) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def delete_queue(self, **kwargs): # type: (Optional[Any]) -> None """Deletes the specified queue and any messages it contains. When a queue is successfully deleted, it is immediately marked for deletion and is no longer accessible to clients. The queue is later removed from the Queue service during garbage collection. Note that deleting a queue is likely to take at least 40 seconds to complete. If an operation is attempted against the queue while it was being deleted, an :class:`HttpResponseError` will be thrown. :keyword int timeout: The server timeout, expressed in seconds. :rtype: None .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_hello_world_async.py :start-after: [START async_delete_queue] :end-before: [END async_delete_queue] :language: python :dedent: 16 :caption: Delete a queue. """ timeout = kwargs.pop('timeout', None) try: await self._client.queue.delete(timeout=timeout, **kwargs) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def get_queue_properties(self, **kwargs): # type: (Optional[Any]) -> QueueProperties """Returns all user-defined metadata for the specified queue. The data returned does not include the queue's list of messages. :keyword int timeout: The timeout parameter is expressed in seconds. :return: User-defined metadata for the queue. :rtype: ~azure.storage.queue.QueueProperties .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_get_queue_properties] :end-before: [END async_get_queue_properties] :language: python :dedent: 16 :caption: Get the properties on the queue. """ timeout = kwargs.pop('timeout', None) try: response = await self._client.queue.get_properties( timeout=timeout, cls=deserialize_queue_properties, **kwargs ) except StorageErrorException as error: process_storage_error(error) response.name = self.queue_name return response # type: ignore @distributed_trace_async async def set_queue_metadata(self, metadata=None, **kwargs): # type: (Optional[Dict[str, Any]], Optional[Any]) -> None """Sets user-defined metadata on the specified queue. Metadata is associated with the queue as name-value pairs. :param metadata: A dict containing name-value pairs to associate with the queue as metadata. :type metadata: dict(str, str) :keyword int timeout: The server timeout, expressed in seconds. .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_set_queue_metadata] :end-before: [END async_set_queue_metadata] :language: python :dedent: 16 :caption: Set metadata on the queue. """ timeout = kwargs.pop('timeout', None) headers = kwargs.pop("headers", {}) headers.update(add_metadata_headers(metadata)) # type: ignore try: return await self._client.queue.set_metadata( # type: ignore timeout=timeout, headers=headers, cls=return_response_headers, **kwargs ) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def get_queue_access_policy(self, **kwargs): # type: (Optional[Any]) -> Dict[str, Any] """Returns details about any stored access policies specified on the queue that may be used with Shared Access Signatures. :keyword int timeout: The server timeout, expressed in seconds. :return: A dictionary of access policies associated with the queue. :rtype: dict(str, ~azure.storage.queue.AccessPolicy) """ timeout = kwargs.pop('timeout', None) try: _, identifiers = await self._client.queue.get_access_policy( timeout=timeout, cls=return_headers_and_deserialized, **kwargs ) except StorageErrorException as error: process_storage_error(error) return {s.id: s.access_policy or AccessPolicy() for s in identifiers} @distributed_trace_async async def set_queue_access_policy(self, signed_identifiers, **kwargs): # type: (Dict[str, AccessPolicy], Optional[Any]) -> None """Sets stored access policies for the queue that may be used with Shared Access Signatures. When you set permissions for a queue, the existing permissions are replaced. To update the queue's permissions, call :func:`~get_queue_access_policy` to fetch all access policies associated with the queue, modify the access policy that you wish to change, and then call this function with the complete set of data to perform the update. When you establish a stored access policy on a queue, it may take up to 30 seconds to take effect. During this interval, a shared access signature that is associated with the stored access policy will throw an :class:`HttpResponseError` until the access policy becomes active. :param signed_identifiers: SignedIdentifier access policies to associate with the queue. This may contain up to 5 elements. An empty dict will clear the access policies set on the service. :type signed_identifiers: dict(str, ~azure.storage.queue.AccessPolicy) :keyword int timeout: The server timeout, expressed in seconds. .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_set_access_policy] :end-before: [END async_set_access_policy] :language: python :dedent: 16 :caption: Set an access policy on the queue. """ timeout = kwargs.pop('timeout', None) if len(signed_identifiers) > 15: raise ValueError( "Too many access policies provided. The server does not support setting " "more than 15 access policies on a single resource." ) identifiers = [] for key, value in signed_identifiers.items(): if value: value.start = serialize_iso(value.start) value.expiry = serialize_iso(value.expiry) identifiers.append(SignedIdentifier(id=key, access_policy=value)) signed_identifiers = identifiers # type: ignore try: await self._client.queue.set_access_policy(queue_acl=signed_identifiers or None, timeout=timeout, **kwargs) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def send_message( # type: ignore self, content, # type: Any **kwargs # type: Optional[Any] ): # type: (...) -> QueueMessage """Adds a new message to the back of the message queue. The visibility timeout specifies the time that the message will be invisible. After the timeout expires, the message will become visible. If a visibility timeout is not specified, the default value of 0 is used. The message time-to-live specifies how long a message will remain in the queue. The message will be deleted from the queue when the time-to-live period expires. If the key-encryption-key field is set on the local service object, this method will encrypt the content before uploading. :param obj content: Message content. Allowed type is determined by the encode_function set on the service. Default is str. The encoded message can be up to 64KB in size. :keyword int visibility_timeout: If not specified, the default value is 0. Specifies the new visibility timeout value, in seconds, relative to server time. The value must be larger than or equal to 0, and cannot be larger than 7 days. The visibility timeout of a message cannot be set to a value later than the expiry time. visibility_timeout should be set to a value smaller than the time-to-live value. :keyword int time_to_live: Specifies the time-to-live interval for the message, in seconds. The time-to-live may be any positive number or -1 for infinity. If this parameter is omitted, the default time-to-live is 7 days. :keyword int timeout: The server timeout, expressed in seconds. :return: A :class:`~azure.storage.queue.QueueMessage` object. This object is also populated with the content although it is not returned from the service. :rtype: ~azure.storage.queue.QueueMessage .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_send_messages] :end-before: [END async_send_messages] :language: python :dedent: 16 :caption: Send messages. """ visibility_timeout = kwargs.pop('visibility_timeout', None) time_to_live = kwargs.pop('time_to_live', None) timeout = kwargs.pop('timeout', None) self._config.message_encode_policy.configure( require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, resolver=self.key_resolver_function ) encoded_content = self._config.message_encode_policy(content) new_message = GenQueueMessage(message_text=encoded_content) try: enqueued = await self._client.messages.enqueue( queue_message=new_message, visibilitytimeout=visibility_timeout, message_time_to_live=time_to_live, timeout=timeout, **kwargs ) queue_message = QueueMessage(content=content) queue_message.id = enqueued[0].message_id queue_message.inserted_on = enqueued[0].insertion_time queue_message.expires_on = enqueued[0].expiration_time queue_message.pop_receipt = enqueued[0].pop_receipt queue_message.next_visible_on = enqueued[0].time_next_visible return queue_message except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def receive_message(self, **kwargs): # type: (Optional[Any]) -> QueueMessage """Removes one message from the front of the queue. When the message is retrieved from the queue, the response includes the message content and a pop_receipt value, which is required to delete the message. The message is not automatically deleted from the queue, but after it has been retrieved, it is not visible to other clients for the time interval specified by the visibility_timeout parameter. If the key-encryption-key or resolver field is set on the local service object, the message will be decrypted before being returned. :keyword int visibility_timeout: If not specified, the default value is 0. Specifies the new visibility timeout value, in seconds, relative to server time. The value must be larger than or equal to 0, and cannot be larger than 7 days. The visibility timeout of a message cannot be set to a value later than the expiry time. visibility_timeout should be set to a value smaller than the time-to-live value. :keyword int timeout: The server timeout, expressed in seconds. :return: Returns a message from the Queue. :rtype: ~azure.storage.queue.QueueMessage .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START receive_one_message] :end-before: [END receive_one_message] :language: python :dedent: 12 :caption: Receive one message from the queue. """ visibility_timeout = kwargs.pop('visibility_timeout', None) timeout = kwargs.pop('timeout', None) self._config.message_decode_policy.configure( require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, resolver=self.key_resolver_function) try: message = await self._client.messages.dequeue( number_of_messages=1, visibilitytimeout=visibility_timeout, timeout=timeout, cls=self._config.message_decode_policy, **kwargs ) wrapped_message = QueueMessage._from_generated( # pylint: disable=protected-access message[0]) if message != [] else None return wrapped_message except StorageErrorException as error: process_storage_error(error) @distributed_trace def receive_messages(self, **kwargs): # type: (Optional[Any]) -> AsyncItemPaged[QueueMessage] """Removes one or more messages from the front of the queue. When a message is retrieved from the queue, the response includes the message content and a pop_receipt value, which is required to delete the message. The message is not automatically deleted from the queue, but after it has been retrieved, it is not visible to other clients for the time interval specified by the visibility_timeout parameter. If the key-encryption-key or resolver field is set on the local service object, the messages will be decrypted before being returned. :keyword int messages_per_page: A nonzero integer value that specifies the number of messages to retrieve from the queue, up to a maximum of 32. If fewer are visible, the visible messages are returned. By default, a single message is retrieved from the queue with this operation. `by_page()` can be used to provide a page iterator on the AsyncItemPaged if messages_per_page is set. `next()` can be used to get the next page. :keyword int visibility_timeout: If not specified, the default value is 0. Specifies the new visibility timeout value, in seconds, relative to server time. The value must be larger than or equal to 0, and cannot be larger than 7 days. The visibility timeout of a message cannot be set to a value later than the expiry time. visibility_timeout should be set to a value smaller than the time-to-live value. :keyword int timeout: The server timeout, expressed in seconds. :return: Returns a message iterator of dict-like Message objects. :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.storage.queue.QueueMessage] .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_receive_messages] :end-before: [END async_receive_messages] :language: python :dedent: 16 :caption: Receive messages from the queue. """ messages_per_page = kwargs.pop('messages_per_page', None) visibility_timeout = kwargs.pop('visibility_timeout', None) timeout = kwargs.pop('timeout', None) self._config.message_decode_policy.configure( require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, resolver=self.key_resolver_function ) try: command = functools.partial( self._client.messages.dequeue, visibilitytimeout=visibility_timeout, timeout=timeout, cls=self._config.message_decode_policy, **kwargs ) return AsyncItemPaged(command, results_per_page=messages_per_page, page_iterator_class=MessagesPaged) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def update_message( self, message, pop_receipt=None, content=None, **kwargs ): # type: (Any, int, Optional[str], Optional[Any], Any) -> QueueMessage """Updates the visibility timeout of a message. You can also use this operation to update the contents of a message. This operation can be used to continually extend the invisibility of a queue message. This functionality can be useful if you want a worker role to "lease" a queue message. For example, if a worker role calls :func:`~receive_messages()` and recognizes that it needs more time to process a message, it can continually extend the message's invisibility until it is processed. If the worker role were to fail during processing, eventually the message would become visible again and another worker role could process it. If the key-encryption-key field is set on the local service object, this method will encrypt the content before uploading. :param message: The message object or id identifying the message to update. :type message: str or ~azure.storage.queue.QueueMessage :param str pop_receipt: A valid pop receipt value returned from an earlier call to the :func:`~receive_messages` or :func:`~update_message` operation. :param obj content: Message content. Allowed type is determined by the encode_function set on the service. Default is str. :keyword int visibility_timeout: Specifies the new visibility timeout value, in seconds, relative to server time. The new value must be larger than or equal to 0, and cannot be larger than 7 days. The visibility timeout of a message cannot be set to a value later than the expiry time. A message can be updated until it has been deleted or has expired. The message object or message id identifying the message to update. :keyword int timeout: The server timeout, expressed in seconds. :return: A :class:`~azure.storage.queue.QueueMessage` object. For convenience, this object is also populated with the content, although it is not returned by the service. :rtype: ~azure.storage.queue.QueueMessage .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_update_message] :end-before: [END async_update_message] :language: python :dedent: 16 :caption: Update a message. """ visibility_timeout = kwargs.pop('visibility_timeout', None) timeout = kwargs.pop('timeout', None) try: message_id = message.id message_text = content or message.content receipt = pop_receipt or message.pop_receipt inserted_on = message.inserted_on expires_on = message.expires_on dequeue_count = message.dequeue_count except AttributeError: message_id = message message_text = content receipt = pop_receipt inserted_on = None expires_on = None dequeue_count = None if receipt is None: raise ValueError("pop_receipt must be present") if message_text is not None: self._config.message_encode_policy.configure( self.require_encryption, self.key_encryption_key, self.key_resolver_function ) encoded_message_text = self._config.message_encode_policy(message_text) updated = GenQueueMessage(message_text=encoded_message_text) else: updated = None # type: ignore try: response = await self._client.message_id.update( queue_message=updated, visibilitytimeout=visibility_timeout or 0, timeout=timeout, pop_receipt=receipt, cls=return_response_headers, queue_message_id=message_id, **kwargs ) new_message = QueueMessage(content=message_text) new_message.id = message_id new_message.inserted_on = inserted_on new_message.expires_on = expires_on new_message.dequeue_count = dequeue_count new_message.pop_receipt = response["popreceipt"] new_message.next_visible_on = response["time_next_visible"] return new_message except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def peek_messages(self, max_messages=None, **kwargs): # type: (Optional[int], Optional[Any]) -> List[QueueMessage] """Retrieves one or more messages from the front of the queue, but does not alter the visibility of the message. Only messages that are visible may be retrieved. When a message is retrieved for the first time with a call to :func:`~receive_messages`, its dequeue_count property is set to 1. If it is not deleted and is subsequently retrieved again, the dequeue_count property is incremented. The client may use this value to determine how many times a message has been retrieved. Note that a call to peek_messages does not increment the value of dequeue_count, but returns this value for the client to read. If the key-encryption-key or resolver field is set on the local service object, the messages will be decrypted before being returned. :param int max_messages: A nonzero integer value that specifies the number of messages to peek from the queue, up to a maximum of 32. By default, a single message is peeked from the queue with this operation. :keyword int timeout: The server timeout, expressed in seconds. :return: A list of :class:`~azure.storage.queue.QueueMessage` objects. Note that next_visible_on and pop_receipt will not be populated as peek does not pop the message and can only retrieve already visible messages. :rtype: list(:class:`~azure.storage.queue.QueueMessage`) .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_peek_message] :end-before: [END async_peek_message] :language: python :dedent: 16 :caption: Peek messages. """ timeout = kwargs.pop('timeout', None) if max_messages and not 1 <= max_messages <= 32: raise ValueError("Number of messages to peek should be between 1 and 32") self._config.message_decode_policy.configure( require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, resolver=self.key_resolver_function ) try: messages = await self._client.messages.peek( number_of_messages=max_messages, timeout=timeout, cls=self._config.message_decode_policy, **kwargs ) wrapped_messages = [] for peeked in messages: wrapped_messages.append(QueueMessage._from_generated(peeked)) # pylint: disable=protected-access return wrapped_messages except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def clear_messages(self, **kwargs): # type: (Optional[Any]) -> None """Deletes all messages from the specified queue. :keyword int timeout: The server timeout, expressed in seconds. .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_clear_messages] :end-before: [END async_clear_messages] :language: python :dedent: 16 :caption: Clears all messages. """ timeout = kwargs.pop('timeout', None) try: await self._client.messages.clear(timeout=timeout, **kwargs) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def delete_message(self, message, pop_receipt=None, **kwargs): # type: (Any, Optional[str], Any) -> None """Deletes the specified message. Normally after a client retrieves a message with the receive messages operation, the client is expected to process and delete the message. To delete the message, you must have the message object itself, or two items of data: id and pop_receipt. The id is returned from the previous receive_messages operation. The pop_receipt is returned from the most recent :func:`~receive_messages` or :func:`~update_message` operation. In order for the delete_message operation to succeed, the pop_receipt specified on the request must match the pop_receipt returned from the :func:`~receive_messages` or :func:`~update_message` operation. :param message: The message object or id identifying the message to delete. :type message: str or ~azure.storage.queue.QueueMessage :param str pop_receipt: A valid pop receipt value returned from an earlier call to the :func:`~receive_messages` or :func:`~update_message`. :keyword int timeout: The server timeout, expressed in seconds. .. admonition:: Example: .. literalinclude:: ../samples/queue_samples_message_async.py :start-after: [START async_delete_message] :end-before: [END async_delete_message] :language: python :dedent: 16 :caption: Delete a message. """ timeout = kwargs.pop('timeout', None) try: message_id = message.id receipt = pop_receipt or message.pop_receipt except AttributeError: message_id = message receipt = pop_receipt if receipt is None: raise ValueError("pop_receipt must be present") try: await self._client.message_id.delete( pop_receipt=receipt, timeout=timeout, queue_message_id=message_id, **kwargs ) except StorageErrorException as error: process_storage_error(error)
python
from utils.QtCore import * class CustomAddCoinBtn (QPushButton): def __init__( self ): super().__init__() self.setCursor(Qt.PointingHandCursor) self.setText('Add coin') self.setObjectName('add_coin_btn') self.setSizePolicy(QSizePolicy.Policy.Fixed, QSizePolicy.Policy.Fixed) self.setStyleSheet(f''' QPushButton {{ margin-left: 20px; color: #777777; font: 600 12pt "Segoe UI"; }} QPushButton:hover {{ color: #252525; }} ''') def mousePressEvent(self, event): if event.button() == Qt.LeftButton: return self.clicked.emit() def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: return self.released.emit()
python
from typing import Callable, List import numpy as np from qcodes.instrument.base import Instrument from qcodes.instrument.parameter import Parameter from qcodes.instrument.channel import InstrumentChannel, ChannelList from qcodes.utils import validators as vals from .SD_Module import SD_Module, keysightSD1, SignadyneParameter, with_error_check # Functions to log method calls from the SD_AIN class import re, sys, types def logmethod(value): def method_wrapper(self, *args, **kwargs): input_str = ', '.join(map(str, args)) if args and kwargs: input_str += ', ' + ', '.join( [f'{key}={val}' for key, val in kwargs.items()]) method_str = f'{value.__name__}({input_str})' if not hasattr(self, '_method_calls'): self._method_calls = [] self._method_calls += [method_str] return value(self, *args, **kwargs) return method_wrapper def logclass(cls): namesToCheck = cls.__dict__.keys() for name in namesToCheck: # unbound methods show up as mere functions in the values of # cls.__dict__,so we have to go through getattr value = getattr(cls, name) if isinstance(value, types.FunctionType): setattr(cls, name, logmethod(value)) return cls model_channels = {'M3300A': 8} class DigitizerChannel(InstrumentChannel): """Signadyne digitizer channel Args: parent: Parent Signadyne digitizer Instrument name: channel name (e.g. 'ch1') id: channel id (e.g. 1) **kwargs: Additional kwargs passed to InstrumentChannel """ def __init__(self, parent: Instrument, name: str, id: int, **kwargs): super().__init__(parent=parent, name=name, **kwargs) self.SD_AIN = self._parent.SD_AIN self.id = id # For channelInputConfig self.add_parameter( 'full_scale', unit='V', initial_value=1, vals=vals.Numbers(0, 3), # self.SD_AIN.channelMinFullScale(), # self.SD_AIN.channelMaxFullScale()), set_function=self.SD_AIN.channelInputConfig, set_args=['full_scale', 'impedance', 'coupling'], docstring=f'The full scale voltage for ch{self.id}' ) # For channelTriggerConfig self.add_parameter( 'impedance', initial_value='50', val_mapping={'high': 0, '50': 1}, get_function=self.SD_AIN.channelImpedance, set_function=self.SD_AIN.channelInputConfig, set_args=['full_scale', 'impedance', 'coupling'], docstring=f'The input impedance of ch{self.id}. Note that for ' f'high input impedance, the measured voltage will not be ' f'the actual voltage' ) self.add_parameter( 'coupling', initial_value='AC', val_mapping={'DC': 0, 'AC': 1}, get_function=self.SD_AIN.channelCoupling, set_function=self.SD_AIN.channelInputConfig, set_args=['full_scale', 'impedance', 'coupling'], docstring=f'The coupling of ch{self.id}' ) # For channelPrescalerConfig self.add_parameter( 'prescaler', initial_value=0, vals=vals.Ints(0, 4095), get_function=self.SD_AIN.channelPrescalerConfig, set_function=self.SD_AIN.channelPrescalerConfig, docstring=f'The sampling frequency prescaler for ch{self.id}. ' f'Sampling rate will be max_sampling_rate/(prescaler+1)' ) # For DAQ config self.add_parameter( 'points_per_cycle', initial_value=0, vals=vals.Ints(), set_function=self.SD_AIN.DAQconfig, set_args=['points_per_cycle', 'n_cycles', 'trigger_delay_samples', 'trigger_mode'], docstring=f'The number of points per cycle for ch{self.id}' ) self.add_parameter( 'n_cycles', initial_value=-1, vals=vals.Ints(), set_function=self.SD_AIN.DAQconfig, set_args=['points_per_cycle', 'n_cycles', 'trigger_delay_samples', 'trigger_mode'], docstring=f'The number of cycles to collect on DAQ {self.id}' ) self.add_parameter( 'trigger_mode', initial_value='auto', val_mapping={'auto': 0, 'software': 1, 'digital': 2, 'analog': 3}, set_function=self.SD_AIN.DAQconfig, set_args=['points_per_cycle', 'n_cycles', 'trigger_delay_samples', 'trigger_mode'], docstring=f'The trigger mode for ch{self.id}' ) self.add_parameter( 'trigger_delay_samples', initial_value=0, vals=vals.Numbers(), set_parser=int, set_function=self.SD_AIN.DAQconfig, set_args=['points_per_cycle', 'n_cycles', 'trigger_delay_samples', 'trigger_mode'], docstring=f'The trigger delay (in samples) for ch{self.id}. ' f'Can be negative' ) # For channelTriggerConfig self.add_parameter( 'analog_trigger_edge', initial_value='rising', val_mapping={'rising': 1, 'falling': 2, 'both': 3}, set_function=self.SD_AIN.channelTriggerConfig, set_args=['analog_trigger_edge', 'analog_trigger_threshold'], docstring=f'The analog trigger edge for ch{self.id}.' f'This is only used when the channel is set as the analog' f'trigger channel' ) self.add_parameter( 'analog_trigger_threshold', initial_value=0, vals=vals.Numbers(-3, 3), set_function=self.SD_AIN.channelTriggerConfig, set_args=['analog_trigger_edge', 'analog_trigger_threshold'], docstring=f'the value in volts for the trigger threshold' ) self.add_parameter( 'analog_trigger_mask', initial_value=0, vals=vals.Ints(), set_function=self.SD_AIN.DAQanalogTriggerConfig, docstring='the trigger mask you are using. Each bit signifies ' 'which analog channel to trigger on. The channel trigger' ' behaviour must be configured separately (trigger_edge ' 'and trigger_threshold). Needs to be double checked, but ' 'it seems multiple analog trigger channels can be used.' ) # For DAQ trigger Config self.add_parameter( 'digital_trigger_mode', initial_value='rising', val_mapping={'active_high': 1, 'active_low': 2, 'rising': 3, 'falling': 4}, set_function=self.SD_AIN.DAQdigitalTriggerConfig, set_args=['digital_trigger_source', 'digital_trigger_mode'], docstring='The digital trigger mode. Can be `active_high`, ' '`active_low`, `rising`, `falling`' ) self.add_parameter( 'digital_trigger_source', initial_value='trig_in', val_mapping={'trig_in': 0, **{f'pxi{k}': 4000+k for k in range(8)}}, set_function=self.SD_AIN.DAQdigitalTriggerConfig, set_args=['digital_trigger_source', 'digital_trigger_mode'], docstring='the trigger source you are using. Can be trig_in ' '(external IO) or pxi0 to pxi7' ) # For DAQ read self.add_parameter( 'n_points', initial_value=0, vals=vals.Ints(), set_cmd=None, docstring='the number of points to be read from specified DAQ' ) self.add_parameter( 'timeout', unit='s', initial_value=-1, vals=vals.Numbers(min_value=0), set_cmd=None, docstring=f'The read timeout in seconds. 0 means infinite.' f'Warning: setting to 0 will freeze the digitizer until' f'acquisition has completed.' ) self.add_parameter( 'data_multiplier', initial_value=1, vals=vals.Numbers(), set_cmd=None, docstring=f'Value to multiply all acquisition data by' ) def add_parameter(self, name: str, parameter_class: type=SignadyneParameter, **kwargs): """Use SignadyneParameter by default""" super().add_parameter(name=name, parameter_class=parameter_class, parent=self, **kwargs) @with_error_check def start(self): """ Start acquiring data or waiting for a trigger on the specified DAQ Acquisition data can then be read using `daq_read` Raises: AssertionError if DAQstart was unsuccessful """ return self.SD_AIN.DAQstart(self.id) @with_error_check def read(self) -> np.ndarray: """ Read from the specified DAQ. Channel acquisition must first be started using `daq_start` Uses channel parameters `n_points` and `timeout` Returns: Numpy array with acquisition data Raises: AssertionError if DAQread was unsuccessful """ value = self.SD_AIN.DAQread(self.id, self.n_points(), int(self.timeout() * 1e3)) # ms if not isinstance(value, int): # Scale signal from int to volts, why are we checking for non-int? int_min, int_max = -0x8000, 0x7FFF v_min, v_max = -self.full_scale(), self.full_scale() relative_value = (value.astype(float) - int_min) / (int_max - int_min) scaled_value = v_min + (v_max-v_min) * relative_value else: scaled_value = value scaled_value *= self.data_multiplier() return scaled_value @with_error_check def stop(self): """ Stop acquiring data on the specified DAQ Raises: AssertionError if DAQstop was unsuccessful """ return self.SD_AIN.DAQstop(self.id) @with_error_check def flush(self): """ Flush the DAQ channel Raises: AssertionError if DAQflush was unsuccessful """ return self.SD_AIN.DAQflush(self.id) @with_error_check def trigger(self): """ Manually trigger the specified DAQ Raises: AssertionError if DAQtrigger was unsuccessful """ return self.SD_AIN.DAQtrigger(self.id) class SD_DIG(SD_Module): """Qcodes driver for a generic Keysight Digitizer of the M32/33XX series. This driver is written with the M3300A in mind. This driver makes use of the Python library provided by Keysight as part of the SD1 Software package (v.2.01.00). Args: name: the name of the digitizer card model: Digitizer model (e.g. 'M3300A'). Used to retrieve number of channels if not specified chassis: Signadyne chassis (usually 0). slot: module slot in chassis (starting at 1) channels: the number of input channels the specified card has triggers: the number of pxi trigger inputs the specified card has """ def __init__(self, name: str, model: str, chassis: int, slot: int, channels: int = None, triggers: int = 8, **kwargs): super().__init__(name, model, chassis, slot, triggers, **kwargs) if channels is None: channels = model_channels[self.model] # Create instance of keysight SD_AIN class # We wrap it in a logclass so that any method call is recorded in # self.SD_AIN._method_calls self.SD_AIN = logclass(keysightSD1.SD_AIN)() # store card-specifics self.n_channels = channels # Open the device, using the specified chassis and slot number self.initialize(chassis=chassis, slot=slot) # for triggerIOconfig self.add_parameter( 'trigger_direction', label='Trigger direction for trigger port', val_mapping={'out': 0, 'in': 1}, set_cmd=self.SD_AIN.triggerIOconfig, docstring='The trigger direction for digitizer trigger port' ) # for clockSetFrequency self.add_parameter( 'system_frequency', label='System clock frequency', vals=vals.Numbers(), set_cmd=None, initial_value=100e6, # clockGetFrequency seems to give issues # set_cmd=self.SD_AIN.clockSetFrequency, # get_cmd=self.SD_AIN.clockGetFrequency, docstring='The frequency of internal CLKsys in Hz' ) # for clockGetSyncFrequency self.add_parameter( 'sync_frequency', label='Clock synchronization frequency', vals=vals.Ints(), get_cmd=self.SD_AIN.clockGetSyncFrequency, docstring='The frequency of internal CLKsync in Hz' ) self.add_parameter('trigger_io', label='trigger io', get_function=self.SD_AIN.triggerIOread, set_function=self.SD_AIN.triggerIOwrite, docstring='The trigger input value, 0 (OFF) or 1 (ON)', val_mapping={'off': 0, 'on': 1}) channels = ChannelList(self, name='channels', chan_type=DigitizerChannel) for ch in range(self.n_channels): channel = DigitizerChannel(self, name=f'ch{ch}', id=ch) setattr(self, f'ch{ch}', channel) channels.append(channel) self.add_submodule('channels', channels) def add_parameter(self, name: str, parameter_class: type=SignadyneParameter, **kwargs): """Use SignadyneParameter by default""" super().add_parameter(name=name, parameter_class=parameter_class, parent=self, **kwargs) def initialize(self, chassis: int, slot: int): """Open connection to digitizer Args: chassis: Signadyne chassis number (usually 1) slot: Module slot in chassis Returns: Name of digitizer Raises: AssertionError if connection to digitizer was unsuccessful """ digitizer_name = self.SD_AIN.getProductNameBySlot(chassis, slot) assert isinstance(digitizer_name, str), \ f'No SD_DIG found at chassis {chassis}, slot {slot}' result_code = self.SD_AIN.openWithSlot(digitizer_name, chassis, slot) assert result_code > 0, f'Could not open SD_DIG error code {result_code}' return digitizer_name @with_error_check def start_channels(self, channels: List[int]): """ Start acquiring data or waiting for a trigger on the specified DAQs Args: channels: list of channels to start Raises: AssertionError if DAQstartMultiple was unsuccessful """ # DAQ channel mask, where LSB is for DAQ_0, bit 1 is for DAQ_1 etc. channel_mask = sum(2**channel for channel in channels) return self.SD_AIN.DAQstartMultiple(channel_mask) @with_error_check def stop_channels(self, channels: List[int]): """ Stop acquiring data on the specified DAQs Args: channels: List of DAQ channels to stop Raises: AssertionError if DAQstopMultiple was unsuccessful """ # DAQ channel mask, where LSB is for DAQ_0, bit 1 is for DAQ_1 etc. channel_mask = sum(2**channel for channel in channels) return self.SD_AIN.DAQstopMultiple(channel_mask) @with_error_check def trigger_channels(self, channels): """ Manually trigger the specified DAQs Args: channels: List of DAQ channels to trigger Raises: AssertionError if DAQtriggerMultiple was unsuccessful """ # DAQ channel mask, where LSB is for DAQ_0, bit 1 is for DAQ_1 etc. channel_mask = sum(2**channel for channel in channels) return self.SD_AIN.DAQtriggerMultiple(channel_mask) @with_error_check def flush_channels(self, channels: List[int]): """ Flush the specified DAQ channels Args: channels: List of DAQ channels to flush Raises: AssertionError if DAQflushMultiple was unsuccessful """ # DAQ channel mask, where LSB is for DAQ_0, bit 1 is for DAQ_1 etc. channel_mask = sum(2**channel for channel in channels) return self.SD_AIN.DAQflushMultiple(channel_mask) @with_error_check def reset_clock_phase(self, trigger_behaviour: int, trigger_source: int, skew: float = 0.0): """ Reset the clock phase between CLKsync and CLKsys Args: trigger_behaviour: trigger_source: the PXI trigger number skew: the skew between PXI_CLK10 and CLKsync in multiples of 10ns Raises: AssertionError if clockResetPhase was unsuccessful """ return self.SD_AIN.clockResetPhase(trigger_behaviour, trigger_source, skew)
python
# -*- coding: utf-8 -*- from urllib import request import sys, os import time, types, json import os.path as op import win32api, win32con, win32gui # default_encoding = 'utf-8' # if sys.getdefaultencoding() != default_encoding: # reload(sys) # sys.setdefaultencoding(default_encoding) TRY_TIMES = 1 DEFAULT_PIC_PATH = "" if DEFAULT_PIC_PATH == "": DEFAULT_PIC_PATH = os.path.expanduser("~") + "\\Pictures\\Bing" def schedule(a,b,c): per = 100.0 * a * b / c if per > 100 : print("\r100.00%") return print("\r%.2f%%" % per, end="") def get_pic_URL(): bing_json = '' req = request.Request( url = 'http://cn.bing.com/HPImageArchive.aspx?format=js&idx=0&n=1' ) i = TRY_TIMES while True: try: bing_json = request.urlopen(req).read() except request.HTTPError as e: print(e) i = i - 1 if i == 0: break time.sleep(5) else : break if bing_json: bing_dic = json.loads(bing_json) if bing_dic != None: return "http://cn.bing.com%s" % bing_dic['images'][0]['url'] print("无法获取URL!") return "" def set_wallpaper(pic_path): if sys.platform == 'win32': k = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, 'Control Panel\Desktop', 0, win32con.KEY_ALL_ACCESS) curpath = win32api.RegQueryValueEx(k, 'Wallpaper')[0] if curpath == pic_path: pass else: # win32api.RegSetValueEx(k, "WallpaperStyle", 0, win32con.REG_SZ, "2")#2 for tile,0 for center # win32api.RegSetValueEx(k, "TileWallpaper", 0, win32con.REG_SZ, "0") win32gui.SystemParametersInfo(win32con.SPI_SETDESKWALLPAPER, pic_path, 1+2) win32api.RegCloseKey(k) else: curpath = commands.getstatusoutput('gsettings get org.gnome.desktop.background picture-uri')[1][1:-1] if curpath == pic_path: pass else: commands.getstatusoutput('DISPLAY=:0 gsettings set org.gnome.desktop.background picture-uri "%s"' % (picpath)) try: print("开始运行。") localtime = time.localtime(time.time()) url = get_pic_URL() if url != '': print("URL:" + url) pic_name = url.split('/')[-1].split('&')[0].split('OHR.')[-1] pic_name = "%04d.%02d.%02d.%s" % (localtime.tm_year, localtime.tm_mon, localtime.tm_mday, pic_name) pic_path = "%s\\%s" % (DEFAULT_PIC_PATH, pic_name) if os.path.exists(pic_path): print("图片已存在!") exit() print("图片名:" + pic_name) print("开始下载...") try: request.urlretrieve(url, pic_path, schedule) set_wallpaper(pic_path) print("成功") except Exception as e: print(e) exit() except KeyboardInterrupt: pass
python
from django.shortcuts import render from django.urls import reverse, reverse_lazy from django.views.generic import ListView, DetailView, DeleteView from django.views.generic.edit import CreateView, UpdateView from django.contrib.auth.mixins import PermissionRequiredMixin from .models import AdvThreatEvent, NonAdvThreatEvent from .models import AdvThreatSource, NonAdvThreatSource from .models import Vulnerability, RiskCondition from .models import Impact, RiskResponse # Create your views here. def index(request): return render(request, 'risk/index.html') def at_index(request): return render(request, 'risk/at_index.html') def nt_index(request): return render(request, 'risk/nt_index.html') def help_index(request): return render(request, 'risk/help_index.html') def help_adv_threat(request): return render(request, 'risk/help_adv_threat.html') def help_nonadv_threat(request): return render(request, 'risk/help_nonadv_threat.html') class ATEIndexView(ListView): model = AdvThreatEvent template_name = 'risk/ate_index.html' context_object_name = 'ate_list' permission_required = 'risk.view_advthreatevent' def get_queryset(self): return AdvThreatEvent.objects.order_by('-assigned_risk') class NTEIndexView(ListView): model = NonAdvThreatEvent template_name = 'risk/nte_index.html' context_object_name = 'nte_list' permission_required = 'risk.view_nonadvthreatevent' def get_queryset(self): return NonAdvThreatEvent.objects.order_by('-assigned_risk') class ATSIndexView(ListView): model = AdvThreatSource template_name = 'risk/ats_index.html' context_object_name = 'ats_list' permission_required = 'risk.view_advthreatsource' class NTSIndexView(ListView): model = NonAdvThreatSource template_name = 'risk/nts_index.html' context_object_name = 'nts_list' permission_required = 'risk.view_nonadvthreatsource' class VulnIndexView(ListView): model = Vulnerability template_name = 'risk/vuln_index.html' context_object_name = 'vuln_list' permission_required = 'risk.view_vulnerability' class CondIndexView(ListView): model = RiskCondition template_name = 'risk/cond_index.html' context_object_name = 'cond_list' permission_required = 'risk.view_riskcondition' class ImpactIndexView(ListView): model = Impact template_name = 'risk/impact_index.html' context_object_name = 'impact_list' permission_required = 'risk.view_impact' class ResponseIndexView(ListView): model = RiskResponse template_name = 'risk/response_index.html' context_object_name = 'response_list' permission_required = 'risk.view_riskresponse' class ATEDetailView(DetailView): model = AdvThreatEvent template_name = 'risk/ate_detail.html' context_object_name = 'ate' permission_required = 'risk.view_advthreatevent' class NTEDetailView(DetailView): model = NonAdvThreatEvent template_name = 'risk/nte_detail.html' context_object_name = 'nte' permission_required = 'risk.view_nonadvthreatevent' class ATSDetailView(DetailView): model = AdvThreatSource template_name = 'risk/ats_detail.html' context_object_name = 'ats' permission_required = 'risk.view_advthreatsource' class NTSDetailView(DetailView): model = NonAdvThreatSource template_name = 'risk/nts_detail.html' context_object_name = 'nts' permission_required = 'risk.view_nonadvthreatsource' class VulnDetailView(DetailView): model = Vulnerability template_name = 'risk/vuln_detail.html' context_object_name = 'vuln' permission_required = 'risk.view_vulnerability' class CondDetailView(DetailView): model = RiskCondition template_name = 'risk/cond_detail.html' context_object_name = 'cond' permission_required = 'risk.view_riskcondition' class ImpactDetailView(DetailView): model = Impact template_name = 'risk/impact_detail.html' context_object_name = 'impact' permission_required = 'risk.view_impact' class ResponseDetailView(DetailView): model = RiskResponse template_name = 'risk/response_detail.html' context_object_name = 'response' permission_required = 'risk.view_riskresponse' class ATECreateView(PermissionRequiredMixin, CreateView): model = AdvThreatEvent permission_required = 'risk.add_advthreatevent' fields = ['name', 'desc', 'event_type', 'sources', 'relevance', 'info_source', 'tier', 'likelihood_initiation', 'likelihood_impact', 'vulnerabilities', 'impacts', 'responses', 'assigned_risk'] def get_success_url(self): return reverse_lazy('risk:ate_detail', args=(self.object.id,)) class NTECreateView(PermissionRequiredMixin, CreateView): model = NonAdvThreatEvent permission_required = 'risk.add_nonadvthreatevent' fields = ['name', 'desc', 'event_type', 'sources', 'relevance', 'info_source', 'tier', 'likelihood_initiation', 'likelihood_impact', 'risk_conditions', 'impacts', 'responses', 'assigned_risk'] def get_success_url(self): return reverse_lazy('risk:nte_detail', args=(self.object.id,)) class ATSCreateView(PermissionRequiredMixin, CreateView): model = AdvThreatSource permission_required = 'risk.add_advthreatsource' fields = ['name', 'desc', 'source_type', 'info_source', 'tier', 'in_scope', 'capability', 'intent', 'targeting'] def get_success_url(self): return reverse_lazy('risk:ats_detail', args=(self.object.id,)) class NTSCreateView(PermissionRequiredMixin, CreateView): model = NonAdvThreatSource permission_required = 'risk.add_nonadvthreatsource' fields = ['name', 'desc', 'source_type', 'info_source', 'tier', 'in_scope', 'range_of_effect'] def get_success_url(self): return reverse_lazy('risk:nts_detail', args=(self.object.id,)) class VulnCreateView(PermissionRequiredMixin, CreateView): model = Vulnerability permission_required = 'risk.add_vulnerability' fields = ['name', 'desc', 'vuln_type', 'severity', 'info_source', 'tier'] def get_success_url(self): return reverse_lazy('risk:vuln_detail', args=(self.object.id,)) class CondCreateView(PermissionRequiredMixin, CreateView): model = RiskCondition permission_required = 'risk.add_riskcondition' fields = ['name', 'desc', 'condition_type', 'pervasiveness', 'info_source', 'tier'] def get_success_url(self): return reverse_lazy('risk:cond_detail', args=(self.object.id,)) class ImpactCreateView(PermissionRequiredMixin, CreateView): model = Impact permission_required = 'risk.add_impact' fields = ['name', 'desc', 'impact_type', 'info_source', 'tier', 'severity', 'impact_tier'] def get_success_url(self): return reverse_lazy('risk:impact_detail', args=(self.object.id,)) class ResponseCreateView(PermissionRequiredMixin, CreateView): model = RiskResponse permission_required = 'risk.add_riskresponse' fields = ['name', 'desc', 'response_type', 'effectiveness', 'status'] def get_success_url(self): return reverse_lazy('risk:response_detail', args=(self.object.id,)) class ATEUpdateView(PermissionRequiredMixin, UpdateView): model = AdvThreatEvent permission_required = 'change_advthreatevent' template_name = 'risk/advthreatevent_update_form.html' fields = ['name', 'desc', 'event_type', 'sources', 'relevance', 'info_source', 'tier', 'likelihood_initiation', 'likelihood_impact', 'vulnerabilities', 'impacts', 'responses', 'assigned_risk'] def get_success_url(self): return reverse_lazy('risk:ate_detail', args=(self.object.id,)) class NTEUpdateView(PermissionRequiredMixin, UpdateView): model = NonAdvThreatEvent permission_required = 'change_nonadvthreatevent' template_name = 'risk/nonadvthreatevent_update_form.html' fields = ['name', 'desc', 'event_type', 'sources', 'relevance', 'info_source', 'tier', 'likelihood_initiation', 'likelihood_impact', 'risk_conditions', 'impacts', 'responses', 'assigned_risk'] def get_success_url(self): return reverse_lazy('risk:nte_detail', args=(self.object.id,)) class ATSUpdateView(PermissionRequiredMixin, UpdateView): model = AdvThreatSource permission_required = 'change_advthreatsource' template_name = 'risk/advthreatsource_update_form.html' fields = ['name', 'desc', 'source_type', 'info_source', 'tier', 'in_scope', 'capability', 'intent', 'targeting'] def get_success_url(self): return reverse_lazy('risk:ats_detail', args=(self.object.id,)) class NTSUpdateView(PermissionRequiredMixin, UpdateView): model = NonAdvThreatSource permission_required = 'change_nonadvthreatsource' template_name = 'risk/nonadvthreatsource_update_form.html' fields = ['name', 'desc', 'source_type', 'info_source', 'tier', 'in_scope', 'range_of_effect'] def get_success_url(self): return reverse_lazy('risk:nts_detail', args=(self.object.id,)) class VulnUpdateView(PermissionRequiredMixin, UpdateView): model = Vulnerability permission_required = 'change_vulnerability' template_name = 'risk/vulnerability_update_form.html' fields = ['name', 'desc', 'vuln_type', 'severity', 'info_source', 'tier'] def get_success_url(self): return reverse_lazy('risk:vuln_detail', args=(self.object.id,)) class CondUpdateView(PermissionRequiredMixin, UpdateView): model = RiskCondition permission_required = 'change_riskconditions' template_name = 'risk/riskcondition_update_form.html' fields = ['name', 'desc', 'condition_type', 'pervasiveness', 'info_source', 'tier'] def get_success_url(self): return reverse_lazy('risk:cond_detail', args=(self.object.id,)) class ImpactUpdateView(PermissionRequiredMixin, UpdateView): model = Impact permission_required = 'change_impact' template_name = 'risk/impact_update_form.html' fields = ['name', 'desc', 'impact_type', 'info_source', 'tier', 'severity', 'impact_tier'] def get_success_url(self): return reverse_lazy('risk:impact_detail', args=(self.object.id,)) class ResponseUpdateView(PermissionRequiredMixin, UpdateView): model = RiskResponse permission_required = 'change_riskresponse' template_name = 'risk/riskresponse_update_form.html' fields = ['name', 'desc', 'response_type', 'effectiveness', 'status'] def get_success_url(self): return reverse_lazy('risk:response_detail', args=(self.object.id,)) class ATEDeleteView(PermissionRequiredMixin, DeleteView): model = AdvThreatEvent permission_required = 'delete_advthreatevent' template_name = 'risk/ate_delete.html' context_object_name = 'ate' def get_success_url(self): return reverse('risk:ate_index') class NTEDeleteView(PermissionRequiredMixin, DeleteView): model = NonAdvThreatEvent permission_required = 'delete_nonadvthreatevent' template_name = 'risk/nte_delete.html' context_object_name = 'nte' def get_success_url(self): return reverse('risk:nte_index') class ATSDeleteView(PermissionRequiredMixin, DeleteView): model = AdvThreatSource permission_required = 'delete_advthreatsource' template_name = 'risk/ats_delete.html' context_object_name = 'ats' def get_success_url(self): return reverse('risk:ats_index') class NTSDeleteView(PermissionRequiredMixin, DeleteView): model = NonAdvThreatSource permission_required = 'delete_nonadvthreatsource' template_name = 'risk/nts_delete.html' context_object_name = 'nts' def get_success_url(self): return reverse('risk:nts_index') class VulnDeleteView(PermissionRequiredMixin, DeleteView): model = Vulnerability permission_required = 'delete_vulnerability' template_name = 'risk/vuln_delete.html' context_object_name = 'vuln' def get_success_url(self): return reverse('risk:vuln_index') class CondDeleteView(PermissionRequiredMixin, DeleteView): model = RiskCondition permission_required = 'delete_riskcondition' template_name = 'risk/cond_delete.html' context_object_name = 'cond' def get_success_url(self): return reverse('risk:cond_index') class ImpactDeleteView(PermissionRequiredMixin, DeleteView): model = Impact permission_required = 'delete_impact' template_name = 'risk/impact_delete.html' context_object_name = 'impact' def get_success_url(self): return reverse('risk:impact_index') class ResponseDeleteView(PermissionRequiredMixin, DeleteView): model = RiskResponse permission_required = 'delete_riskresponse' template_name = 'risk/response_delete.html' context_object_name = 'response' def get_success_url(self): return reverse('risk:response_index')
python
# -*- coding: utf-8 -*- # @COPYRIGHT_begin # # Copyright [2010-2014] Institute of Nuclear Physics PAN, Krakow, Poland # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @COPYRIGHT_end """@package src.clm.urls """ from django.conf.urls import patterns, include, url from clm.utils.decorators import decorated_functions from clm.views.guest.user import * from clm.views.guest.cluster import * from clm.views.guest.message import * from clm.views.guest.news import * from clm.views.admin_clm.cluster import * from clm.views.admin_clm.news import * from clm.views.admin_clm.user import * from clm.views.admin_cm.user import * from clm.views.admin_cm.admin import * from clm.views.admin_cm.cluster import * from clm.views.admin_cm.farm import * from clm.views.admin_cm.node import * from clm.views.admin_cm.storage import * from clm.views.admin_cm.template import * from clm.views.admin_cm.vm import * from clm.views.admin_cm.network import * from clm.views.admin_cm.iso_image import * from clm.views.admin_cm.storage_image import * from clm.views.admin_cm.system_image import * from clm.views.admin_cm.monia import * from clm.views.admin_cm.public_ip import * from clm.views.user.ctx import * from clm.views.user.group import * from clm.views.user.iso_image import * from clm.views.user.storage_image import * from clm.views.user.system_image import * from clm.views.user.key import * from clm.views.user.message import * from clm.views.user.template import * from clm.views.user.user import * from clm.views.user.vm import * from clm.views.user.farm import * from clm.views.user.public_ip import * from clm.views.user.network import * from clm.views.user.admin import * from clm.views.user.monia import * global decorated_functions urlpatterns = patterns('',) for fun in decorated_functions: urlpatterns += patterns('', url(r'^%s/%s/' % (fun.__module__.replace('clm.views.', '').replace('.', '/'), fun.__name__), fun) ) # TODO: Remove it when it will be logged somewhere f = open('/tmp/log-clm', 'w') for u in urlpatterns: f.write(str(u) + '\n') f.close()
python
import os from optparse import make_option from django.core.management import call_command, BaseCommand from django.conf import settings from fixture_generator.base import get_available_fixtures from django.db.models.loading import get_app class Command(BaseCommand): """ Regenerate fixtures for all applications. """ option_list = BaseCommand.option_list + ( make_option("--format", default="json", dest="format", help="Specifies the output serialization format for fixtures."), make_option("--indent", default=4, dest="indent", type="int", help="Specifies the indent level to use when pretty-printing output"), make_option("--not-natural", default=True, dest="use_natural_keys", action="store_false", help="Don't use natural keys."), make_option("--databases", dest="dbs", default="", help="Comma separeted list of databases to dump. All databases are used by default") ) args = '<app app ... app>' def handle(self, *apps, **options): fixtures = get_available_fixtures(apps or settings.INSTALLED_APPS) for fixture in fixtures.itervalues(): if not isinstance(fixture.export, basestring): continue print fixture app = get_app(fixture.app) destdir = os.path.dirname(app.__file__) if app.__file__.rsplit('.', 1)[0].endswith("__init__"): destdir = os.path.dirname(destdir) destdir = os.path.join(destdir, "fixtures") call_command("generate_fixture", fixture.label, prefix=fixture.export, dest_dir=destdir, **options)
python
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. """ Builtin tools that come with pyiron base. """ from abc import ABC from pyiron_base.job.factory import JobFactory __author__ = "Liam Huber" __copyright__ = ( "Copyright 2021, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "Liam Huber" __email__ = "[email protected]" __status__ = "production" __date__ = "Sep 7, 2021" class Toolkit(ABC): def __init__(self, project): self._project = project class BaseTools(Toolkit): def __init__(self, project): super().__init__(project) self._job = JobFactory(project) @property def job(self) -> JobFactory: return self._job
python
# -*- coding: utf-8 -*- from yandex_checkout import ReceiptItem from yandex_checkout.domain.common.receipt_type import ReceiptType from yandex_checkout.domain.common.request_object import RequestObject from yandex_checkout.domain.models.receipt_customer import ReceiptCustomer from yandex_checkout.domain.models.settlement import Settlement class ReceiptRequest(RequestObject): __type = None __send = None __customer = None __tax_system_code = None __items = None __settlements = None __payment_id = None __refund_id = None @property def type(self): return self.__type @type.setter def type(self, value): self.__type = str(value) @property def send(self): return self.__send @send.setter def send(self, value): if isinstance(value, bool): self.__send = value else: raise TypeError('Invalid send value type in receipt_request') @property def customer(self): return self.__customer @customer.setter def customer(self, value): if isinstance(value, dict): self.__customer = ReceiptCustomer(value) elif isinstance(value, ReceiptCustomer): self.__customer = value else: raise TypeError('Invalid customer value type in receipt_request') @property def tax_system_code(self): return self.__tax_system_code @tax_system_code.setter def tax_system_code(self, value): if isinstance(value, int): self.__tax_system_code = value else: raise TypeError('Invalid tax_system_code value type in receipt_request') @property def items(self): return self.__items @items.setter def items(self, value): if isinstance(value, list): items = [] for item in value: if isinstance(item, dict): items.append(ReceiptItem(item)) elif isinstance(item, ReceiptItem): items.append(item) else: raise TypeError('Invalid item type in receipt.items') self.__items = items else: raise TypeError('Invalid items value type in receipt_request') @property def settlements(self): return self.__settlements @settlements.setter def settlements(self, value): if isinstance(value, list): items = [] for item in value: if isinstance(item, dict): items.append(Settlement(item)) elif isinstance(item, Settlement): items.append(item) else: raise TypeError('Invalid settlement type in receipt.settlements') self.__settlements = items else: raise TypeError('Invalid settlements value type in receipt_request') @property def payment_id(self): return self.__payment_id @payment_id.setter def payment_id(self, value): self.__refund_id = None self.__payment_id = str(value) @property def refund_id(self): return self.__refund_id @refund_id.setter def refund_id(self, value): self.__payment_id = None self.__refund_id = str(value) def validate(self): if self.type is None: self.__set_validation_error('Receipt type not specified') if self.send is None: self.__set_validation_error('Receipt send not specified') if self.customer is not None: email = self.customer.email phone = self.customer.phone if not email and not phone: self.__set_validation_error('Both email and phone values are empty in customer') else: self.__set_validation_error('Receipt customer not specified') if not self.has_items(): self.__set_validation_error('Receipt items not specified') if not self.has_settlements(): self.__set_validation_error('Receipt settlements not specified') if self.type is ReceiptType.PAYMENT and self.payment_id is None: self.__set_validation_error('Receipt payment_id not specified') if self.type is ReceiptType.REFUND and self.refund_id is None: self.__set_validation_error('Receipt refund_id not specified') def has_items(self): return bool(self.items) def has_settlements(self): return bool(self.settlements) def __set_validation_error(self, message): raise ValueError(message)
python
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Skywater 130 PDK support rules. These rules generate PDK providers for downstream tools. """ load("//pdk:build_defs.bzl", "CornerInfo", "StandardCellInfo") def _skywater_corner_impl(ctx): # Choose user supplied root, or default to build directory. standard_cell_root = ctx.attr.standard_cell_root # Choose the build target name as the corner first unless overwritten. corner = ctx.attr.corner if ctx.attr.corner else ctx.attr.name corner_suffix = "" args = ctx.actions.args() if ctx.attr.with_leakage: corner_suffix = "_pwrlkg" args.add("--leakage") if ctx.attr.with_ccsnoise: corner_suffix = "_ccsnoise" args.add("--ccsnoise") timing_output = ctx.actions.declare_file("timing/{}__{}{}.lib".format( ctx.attr.standard_cell_name, corner, corner_suffix, )) args.add_all("-o", [timing_output.dirname]) args.add(standard_cell_root) args.add(corner) ctx.actions.run( outputs = [timing_output], inputs = ctx.files.srcs, arguments = [args], executable = ctx.executable._liberty_tool, ) return [ DefaultInfo(files = depset([timing_output])), CornerInfo( liberty = timing_output, with_ccsnoise = ctx.attr.with_ccsnoise, with_leakage = ctx.attr.with_leakage, corner_name = corner, ), ] def _skywater_cell_library_impl(ctx): corners = dict([(dep[CornerInfo].corner_name, dep[CornerInfo]) for dep in ctx.attr.process_corners]) return [ DefaultInfo(files = depset([])), StandardCellInfo(corners = corners, default_corner = corners.get(ctx.attr.default_corner, None)), ] skywater_cell_library = rule( implementation = _skywater_cell_library_impl, attrs = { "srcs": attr.label_list(allow_files = True), "process_corners": attr.label_list( providers = [CornerInfo], ), "default_corner": attr.string(mandatory = True), }, ) skywater_corner = rule( implementation = _skywater_corner_impl, attrs = { "srcs": attr.label_list( allow_files = True, allow_empty = False, ), "corner": attr.string( default = "", doc = "The selected process corner to generate liberty files for.", ), "standard_cell_root": attr.string( default = "", doc = "The root directory of the standard cell variants.", mandatory = True, ), "with_ccsnoise": attr.bool( default = False, doc = "Wheter to generate ccsnoise.", ), "standard_cell_name": attr.string( mandatory = True, doc = "The name of the standar cell variant ex. sky130_fd_sc_hd", ), "with_leakage": attr.bool( default = False, doc = "Wheter to generate leakage", ), "_liberty_tool": attr.label( default = Label("@com_google_skywater_pdk//:liberty"), executable = True, cfg = "exec", ), }, )
python
from flaky import flaky from .. import SemparseTestCase from allennlp.models.archival import load_archive from allennlp.predictors import Predictor class TestAtisParserPredictor(SemparseTestCase): @flaky def test_atis_parser_uses_named_inputs(self): inputs = {"utterance": "show me the flights to seattle"} archive_path = self.FIXTURES_ROOT / "atis" / "serialization" / "model.tar.gz" archive = load_archive(archive_path) predictor = Predictor.from_archive(archive, "atis-parser") result = predictor.predict_json(inputs) action_sequence = result.get("best_action_sequence") if action_sequence: # An untrained model will likely get into a loop, and not produce at finished states. # When the model gets into a loop it will not produce any valid SQL, so we don't get # any actions. This basically just tests if the model runs. assert len(action_sequence) > 1 assert all([isinstance(action, str) for action in action_sequence]) predicted_sql_query = result.get("predicted_sql_query") assert predicted_sql_query is not None @flaky def test_atis_parser_predicted_sql_present(self): inputs = {"utterance": "show me flights to seattle"} archive_path = self.FIXTURES_ROOT / "atis" / "serialization" / "model.tar.gz" archive = load_archive(archive_path) predictor = Predictor.from_archive(archive, "atis-parser") result = predictor.predict_json(inputs) predicted_sql_query = result.get("predicted_sql_query") assert predicted_sql_query is not None @flaky def test_atis_parser_batch_predicted_sql_present(self): inputs = [{"utterance": "show me flights to seattle"}] archive_path = self.FIXTURES_ROOT / "atis" / "serialization" / "model.tar.gz" archive = load_archive(archive_path) predictor = Predictor.from_archive(archive, "atis-parser") result = predictor.predict_batch_json(inputs) predicted_sql_query = result[0].get("predicted_sql_query") assert predicted_sql_query is not None
python
# Generated by Django 3.2.3 on 2021-05-29 21:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('discordbot', '0021_auto_20210529_2045'), ] operations = [ migrations.AddField( model_name='member', name='settings', field=models.JSONField(default=dict, verbose_name='Settings'), ), ]
python
# Author: Jintao Huang # Time: 2020-5-24 import torch.nn as nn from .utils import FrozenBatchNorm2d default_config = { # backbone "pretrained_backbone": True, "backbone_norm_layer": nn.BatchNorm2d, "backbone_freeze": ["conv_first", "layer1", "layer2"], # "backbone_freeze": [""], # freeze backbone all # anchor: "anchor_scales": (1., 2 ** (1 / 3.), 2 ** (2 / 3.)), # scales on a single feature "anchor_aspect_ratios": ((1., 1.), (0.7, 1.4), (1.4, 0.7)), # H, W # focal loss "alpha": 0.25, "gamma": 2, # 1.5 # other: "other_norm_layer": nn.BatchNorm2d, } config_dict = { # resolution[% 128 == 0], backbone, fpn_channels, fpn_num_repeat, regressor_classifier_num_repeat, # anchor_base_scale(anchor_size / stride)(基准尺度) 'efficientdet_d0': (512, 'efficientnet_b0', 64, 3, 3, 4.), # 'efficientdet_d1': (640, 'efficientnet_b1', 88, 4, 3, 4.), # 'efficientdet_d2': (768, 'efficientnet_b2', 112, 5, 3, 4.), # 'efficientdet_d3': (896, 'efficientnet_b3', 160, 6, 4, 4.), # 'efficientdet_d4': (1024, 'efficientnet_b4', 224, 7, 4, 4.), # 'efficientdet_d5': (1280, 'efficientnet_b5', 288, 7, 4, 4.), 'efficientdet_d6': (1280, 'efficientnet_b6', 384, 8, 5, 4.), # 'efficientdet_d7': (1536, 'efficientnet_b6', 384, 8, 5, 5.) } # 官方配置 official configuration # config_dict = { # # resolution[% 128 == 0], backbone, fpn_channels, fpn_num_repeat, regressor_classifier_num_repeat, # # anchor_base_scale(anchor_size / stride)(基准尺度) # 'efficientdet_d0': (512, 'efficientnet_b0', 64, *2, 3, 4.), # # 'efficientdet_d1': (640, 'efficientnet_b1', 88, *3, 3, 4.), # # 'efficientdet_d2': (768, 'efficientnet_b2', 112, *4, 3, 4.), # # 'efficientdet_d3': (896, 'efficientnet_b3', 160, *5, 4, 4.), # # 'efficientdet_d4': (1024, 'efficientnet_b4', 224, *6, 4, 4.), # # 'efficientdet_d5': (1280, 'efficientnet_b5', 288, 7, 4, 4.), # 'efficientdet_d6': (*1408, 'efficientnet_b6', 384, 8, 5, 4.), # # 'efficientdet_d7': (1536, 'efficientnet_b6', 384, 8, 5, 5.) # }
python
# TOO EASY T = int(input()) for _ in range(T): lower, upper = map(int, input().split()) n = int(input()) # a < num <= b for _ in range(n): mid = (lower+upper)//2 print(mid) res = input() if res == "TOO_SMALL": lower = mid + 1 elif res == "TOO_BIG": upper = mid - 1 else: break
python
# -*- coding: utf-8 -*- from odoo import _, api, fields, models class Trainer(models.Model): _name = "bista.trainer" _description = "Bista Training Management System - Trainer" _rec_name = "name" profile_image = fields.Binary(string="Profile Image", attachement=True) first_name = fields.Char(string="First Name", required=True) last_name = fields.Char(string="Last Name") name = fields.Char(string="Name", compute="_get_name", store=True) @api.depends('first_name', 'last_name') def _get_name(self): for record in self: if record.last_name: record.name = record.first_name + ' ' + record.last_name else: record.name = record.first_name class TrainerNotes(models.Model): _name = "bista.trainer.note" _description = "Bista Training Management System - Trainer Notes" _rec_name = "subject" added_by = fields.Many2one('res.users', string="Added By") subject = fields.Char(string="Subject", required=True) date = fields.Date( string="Date", default=lambda self: fields.datetime.today()) note = fields.Char(string="Note")
python
#coding: utf-8 #!python3 # 5) Solicite o preço de uma mercadoria e o percentual de desconto. Exiba o valor do desconto # e o preço a pagar: p_produto = float(input('Valor produto: ')) p_desconto = float(input('Percentual de desconto: ')) p_produto_atual = p_produto - (p_produto*p_desconto/100) print('Preço atual: ', p_produto_atual)
python
# Generated by Django 2.2.16 on 2020-10-02 08:37 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('routes', '0047_source_id_nullable'), ('routes', '0048_athlete_activities_imported'), ] operations = [ ]
python
#!/usr/bin/env python3 import unittest import numpy as np from selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver def run_cruise_simulation(cruise, t_end=100.): man = Maneuver( '', duration=t_end, initial_speed=float(0.), lead_relevancy=True, initial_distance_lead=100, cruise_values=[cruise], prob_lead_values=[0.0], breakpoints=[0.], ) valid, output = man.evaluate() assert valid return output[-1,3] class TestCruiseSpeed(unittest.TestCase): def test_cruise_speed(self): for speed in np.arange(5, 40, 5): print(f'Testing {speed} m/s') cruise_speed = float(speed) simulation_steady_state = run_cruise_simulation(cruise_speed) self.assertAlmostEqual(simulation_steady_state, cruise_speed, delta=.01, msg=f'Did not reach {speed} m/s') if __name__ == "__main__": unittest.main()
python
from __future__ import print_function from mmstage import MicroManagerStage
python
# Copyright: 2006-2011 Brian Harring <[email protected]> # License: GPL2/BSD """ exceptions thrown by the MergeEngine """ __all__ = ("ModificationError", "BlockModification", "TriggerUnknownCset", ) class ModificationError(Exception): """Base Exception class for modification errors""" def __init__(self, trigger, msg): self.trigger = trigger self.msg = msg Exception.__init__(self, "%s: modification error: %s" % (self.trigger, self.msg)) class BlockModification(ModificationError): """Merging cannot proceed""" def __str__(self): return "Modification was blocked by %s: %s" % ( self.trigger.__class__.__name__, self.msg) class TriggerUnknownCset(ModificationError): """Trigger's required content set isn't known""" def __init__(self, trigger, csets): if not isinstance(csets, (tuple, list)): csets = (csets,) ModificationError.__init__(self, "%s: trigger %r unknown cset: %r" % (self.__class__, trigger, csets)) self.trigger, self.csets = trigger, csets
python
# Generated by Django 2.1.7 on 2019-04-16 15:14 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('materials', '0068_auto_20190415_2140'), ] operations = [ migrations.RenameField( model_name='dataset', old_name='experimental', new_name='is_experimental', ), ]
python
# -*- coding: utf-8 -*- """ flask_security.recoverable ~~~~~~~~~~~~~~~~~~~~~~~~~~ Flask-Security recoverable module :copyright: (c) 2012 by Matt Wright. :license: MIT, see LICENSE for more details. """ from flask import current_app as app from werkzeug.local import LocalProxy from werkzeug.security import safe_str_cmp from .signals import password_reset, reset_password_instructions_sent from .utils import config_value, encrypt_password, get_token_status, md5, \ send_mail, url_for_security # Convenient references _security = LocalProxy(lambda: app.extensions['security']) _datastore = LocalProxy(lambda: _security.datastore) def send_reset_password_instructions(user): """Sends the reset password instructions email for the specified user. :param user: The user to send the instructions to """ token = generate_reset_password_token(user) reset_link = url_for_security( 'reset_password', token=token, _external=True ) send_mail(config_value('EMAIL_SUBJECT_PASSWORD_RESET'), user.email, 'reset_instructions', user=user, reset_link=reset_link) reset_password_instructions_sent.send( app._get_current_object(), user=user, token=token ) def send_password_reset_notice(user): """Sends the password reset notice email for the specified user. :param user: The user to send the notice to """ if config_value('SEND_PASSWORD_RESET_NOTICE_EMAIL'): send_mail(config_value('EMAIL_SUBJECT_PASSWORD_NOTICE'), user.email, 'reset_notice', user=user) def generate_reset_password_token(user): """Generates a unique reset password token for the specified user. :param user: The user to work with """ password_hash = md5(user.password) if user.password else None data = [str(user.id), password_hash] return _security.reset_serializer.dumps(data) def reset_password_token_status(token): """Returns the expired status, invalid status, and user of a password reset token. For example:: expired, invalid, user, data = reset_password_token_status('...') :param token: The password reset token """ expired, invalid, user, data = get_token_status( token, 'reset', 'RESET_PASSWORD', return_data=True ) if not invalid: if user.password: password_hash = md5(user.password) if not safe_str_cmp(password_hash, data[1]): invalid = True return expired, invalid, user def update_password(user, password): """Update the specified user's password :param user: The user to update_password :param password: The unencrypted new password """ user.password = encrypt_password(password) _datastore.put(user) send_password_reset_notice(user) password_reset.send(app._get_current_object(), user=user)
python
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from sklearn.metrics import classification_report,accuracy_score,f1_score,precision_score,recall_score from scikitplot.metrics import plot_confusion_matrix class eval_metrics(): def __init__(self,targets,preds,classes): try: self.targets = targets.cpu().numpy() self.preds = preds.cpu().numpy() self.classes = classes self.num_classes = len(self.classes) except: self.targets = targets self.preds = preds self.classes = classes self.num_classes = len(self.classes) def plot_conf_matx(self,normalized=False): fig, axs = plt.subplots(figsize=(16, 12)) plot_confusion_matrix(self.targets, self.preds, ax=axs,normalize=normalized) tick_marks = np.arange(self.num_classes) plt.xticks(tick_marks, self.classes, rotation=45) plt.yticks(tick_marks, self.classes) plt.savefig(os.path.join(os.getcwd(),'confusion_matrix.png')) return fig def accuracy(self): return accuracy_score(self.targets,self.preds,normalize=True) def f1_score_weighted(self): return f1_score(self.targets,self.preds,average='weighted') def precision_weighted(self): return precision_score(self.targets,self.preds,average='weighted') def recall_weighted(self): return recall_score(self.targets,self.preds,average='weighted') def classify_report(self): return classification_report(self.targets,self.preds, target_names=self.classes)
python
#!/usr/bin/python # -*- coding: utf-8 -*- import unittest import itertools from saliency_map import * from utils import OpencvIo class GaussianPyramidTest(unittest.TestCase): def setUp(self): oi = OpencvIo() src = oi.imread('./images/fruit.jpg') self.__gp = GaussianPyramid(src) def test_get_intensity(self): its = self.__gp._GaussianPyramid__get_intensity(10, 20, 30) self.assertEqual(20, its) self.assertNotEqual(type(1), type(its)) def test_get_colors(self): real = self.__gp._GaussianPyramid__get_colors(0.9, 0.9, 0.9, 0.9, 10) self.assertEqual([0.0, 0.0, 0.0, 0.0], real) class FeatureMapTest(unittest.TestCase): def setUp(self): oi = OpencvIo() src = oi.imread('./images/fruit.jpg') gp = GaussianPyramid(src) self.__fm = FeatureMap(gp.maps) def test_scale_diff(self): c, s = np.zeros((4, 6)), np.zeros((2, 3)) expect = np.ones((4, 6)) for y, x in itertools.product(xrange(len(s)), xrange(len(s[0]))): s[y][x] = (-1) ** x self.assertTrue(np.array_equal(expect, self.__fm._FeatureMap__scale_diff(c, s))) def test_scale_color_diff(self): c1, s1 = np.zeros((4, 6)), np.zeros((2, 3)) c2, s2 = np.zeros((4, 6)), np.zeros((2, 3)) expect = np.ones((4, 6)) for y, x in itertools.product(xrange(len(s1)), xrange(len(s1[0]))): s1[y][x] = (-1) ** x real = self.__fm._FeatureMap__scale_color_diff((c1, s1), (c2, s2)) self.assertTrue(np.array_equal(expect, real)) class ConspicuityMapTest(unittest.TestCase): def setUp(self): oi = OpencvIo() src = oi.imread('./images/fruit.jpg') gp = GaussianPyramid(src) fm = FeatureMap(gp.maps) self.__cm = ConspicuityMap(fm.maps) def test_scale_add(self): srcs = [np.ones((4, 6)), np.zeros((2, 3))] expect = np.ones((4, 6)) self.assertTrue(np.array_equal(expect, self.__cm._ConspicuityMap__scale_add(srcs))) class SaliencyMapTest(unittest.TestCase): def setUp(self): self.sm = SaliencyMap() def suite(): suite = unittest.TestSuite() suite.addTests(unittest.makeSuite(GaussianPyramidTest)) suite.addTests(unittest.makeSuite(FeatureMapTest)) suite.addTests(unittest.makeSuite(ConspicuityMapTest)) suite.addTests(unittest.makeSuite(SaliencyMapTest)) return suite
python
# MODULE: TypeRig / Core / Ojects # ----------------------------------------------------------- # (C) Vassil Kateliev, 2017-2020 (http://www.kateliev.com) # (C) Karandash Type Foundry (http://www.karandash.eu) #------------------------------------------------------------ # www.typerig.com # No warranties. By using this you agree # that you use it at your own risk! __version__ = '0.26.0' from collection import * from cubicbezier import * from line import * from matrix import * from point import * from array import * from transform import * from utils import *
python
from pyomac.clustering.cluster_utils import ( ModalSet, IndexedModalSet, indexed_modal_sets_from_sequence, modal_sets_from_lists, modal_clusters, single_set_statistics, filter_clusters, plot_indexed_clusters )
python
# TextChart - Roll The Dice import pygwidgets from Constants import * class TextView(): def __init__(self, window, oModel): self.window = window self.oModel = oModel totalText = ['Roll total', ''] for rollTotal in range(MIN_TOTAL, MAX_TOTAL_PLUS_1): totalText.append(rollTotal) self.oTotalDisplay = pygwidgets.DisplayText(self.window, (200, 135), totalText, fontSize=36, width=120, justified='right') self.oCountDisplay = pygwidgets.DisplayText(self.window, (320, 135), fontSize=36, width=120, justified='right') self.oPercentDisplay = pygwidgets.DisplayText(self.window, (440, 135), fontSize=36, width=120, justified='right') def update(self): nRounds, resultsDict, percentsDict = self.oModel.getRoundsRollsPercents() countList = ['Count', ''] # extra empty string for a blank line percentList = ['Percent', ''] for rollTotal in range(MIN_TOTAL, MAX_TOTAL_PLUS_1): count = resultsDict[rollTotal] percent = percentsDict[rollTotal] countList.append(count) # Build percent as a string with one decimal digit percent = '{:.1%}'.format(percent) percentList.append(percent) self.oCountDisplay.setValue(countList) self.oPercentDisplay.setValue(percentList) def draw(self): self.oTotalDisplay.draw() self.oCountDisplay.draw() self.oPercentDisplay.draw()
python
""" Exercise 1 Write a function that takes a string as an argument and displays the letters backward, one per line. """ def backwards(word): x = len(word) - 1 while x >= 0: print(word[x]) x -= 1 backwards("hello")
python
# with open('./space.text', 'w') as message: # message.write('我是写入的数据\n') # message.write('我再写一段文字哦\n') # message.write('继续写入\n') with open('./space.text', 'a') as msg: msg.write('附加一段文字\n') msg.write('继续附加一段\n')
python
import modeli, dobi_zneske from bottle import * import hashlib # racunaje md5 import json,requests import pandas as pd secret = "to skrivnost je zelo tezko uganiti 1094107c907cw982982c42" def get_administrator(): username = request.get_cookie('administrator', secret=secret) return username def get_user(auto_login = True): """Poglej cookie in ugotovi, kdo je prijavljeni uporabnik, vrni njegov username in ime. Če ni prijavljen, presumeri na stran za prijavo ali vrni None (advisno od auto_login). """ # Dobimo username iz piškotka username = request.get_cookie('username', secret=secret) # Preverimo, ali ta uporabnik obstaja if username is not None: r = modeli.mail(username) if r is not None: # uporabnik obstaja, vrnemo njegove podatke return r # Če pridemo do sem, uporabnik ni prijavljen, naredimo redirect, če ni administratorjevega coockie-ja if auto_login and not get_administrator(): redirect('/prijava') else: return None def password_md5(s): """Vrni MD5 hash danega UTF-8 niza. Gesla vedno spravimo v bazo kodirana s to funkcijo.""" h = hashlib.md5() h.update(s.encode('utf-8')) return h.hexdigest() @get('/') def glavniMenu(): valute = modeli.seznam_valut() data = requests.get(r'https://www.bitstamp.net/api/v2/order_book/ethbtc') data = data.json() bids = pd.DataFrame() bids['quantity'] = [i[1] for i in data['bids']] bids['price'] = [i[0] for i in data['bids']] asks = pd.DataFrame() asks['price'] = [i[0] for i in data['asks']] asks['quantity'] = [i[1] for i in data['asks']] asks.price = asks.price.apply(float) asks.quantity = asks.quantity.apply(float) bids.price = bids.price.apply(float) bids.quantity = bids.quantity.apply(float) bids_dict = {x[1]:x[0] for x in bids.itertuples(index=False)} asks_dict = {x[0]:x[1] for x in asks.itertuples(index=False)} bidask = dict() bidask['asks'] = asks_dict bidask['bids'] = bids_dict data['asks'] = [{'price':float(i[0]), 'amount':float(i[1])} for i in data['asks']][:100] data['bids'] = [{'price':float(i[0]), 'amount':float(i[1])} for i in data['bids']][:100] return template('glavni.html', mail=None, geslo=None,ime=None,priimek=None, valute=valute,napaka_registriraj=None,napaka_prijava=None, orderbook=data) @get('/static/<filename:path>') def static(filename): return static_file(filename, root='static') @get('/oseba/<id_st>') def oOsebi(id_st): mail=get_user() admin = get_administrator() uporabnik = modeli.podatki(id_st) vsota = 0 if admin or (uporabnik is not None and mail[0] == uporabnik[3]): id, ime, priimek, mail, geslo = uporabnik valute = modeli.seznam_valut() lastnistvo = modeli.vsi_podatki(id_st) for _, _ , _, nova_vrednost, kol, _ in lastnistvo: vsota+=nova_vrednost*kol vsota = round(vsota,2) zasluzek = modeli.zasluzek(id) return template('oseba.html', id=id, ime = ime, priimek=priimek, mail=mail,valute=valute,kolicina=None,lastnistvo=lastnistvo, zasluzek=zasluzek, vsota=vsota) abort(404,"Not found: '/oseba/{0}'".format(id_st)) @post('/kupi') def nakup(): mail = get_user() admin = get_administrator() id = request.forms.id ime = request.forms.k vrednost = request.forms.vrednost kolicina = request.forms.kolicina modeli.kupi_valuto(id, ime, vrednost, kolicina) redirect('/oseba/'+str(id)) return template('oseba.html', id=id, ime = ime, kolicina=kolicina,vrednost=vrednost,k=k) @post('/prodaj') def prodaj(): mail = get_user() admin = get_administrator() id = request.forms.id ime = request.forms.valut vred = request.forms.vredn kol = float(request.forms.kol) kolicina = float(request.forms.kolicina) kolicina = min(kol, kolicina) modeli.prodaj_valuto(id, ime, kolicina, vred) redirect('/oseba/'+str(id)) return template('oseba.html', id=id, ime = ime, kol=kol, vred=vred, kolicina=kolicina) @get('/administrator') def administrator(): if get_administrator(): valute = modeli.seznam_valut() return template('administrator.html', valute=valute) abort(404, "Not found: '/administrator'") @get('/administrator/osebe') def administrator_osebe(): if get_administrator(): sez = {} rezultat = modeli.podatki_vsi() for el in rezultat: sez[el[0]]=modeli.zasluzek(el[0]) return template('seznam_oseb.html', rezultat=rezultat,zasluzek=sez) abort(404,"Not found: '/administrator/osebe") @get('/administrator/valute') def administrator_valute(): if get_administrator(): rezultat = modeli.seznam_valut() return template('seznam_valut.html', rezultat=rezultat) abort(404,"Not found: '/administrator/valute") @get('/isci') def isci(): id_st = request.query.iskalniNiz rezultat = modeli.podatki(id_st) if rezultat is not None: return template('isci.html', rezultat = rezultat) @get('/registracija') def glavni_r(): return template('registriraj.html', ime = None, priimek = None, mail = None, napaka_registriraj=None, geslo = None) @post('/registracija') def dodaj(): ime = request.forms.ime priimek = request.forms.priimek mail = request.forms.mail geslo = password_md5(request.forms.geslo) if ime and priimek and mail and geslo: je_v_bazi = modeli.mail_v_bazi(mail) if je_v_bazi or mail=="admin@admin": redirect('/registracija') return template('registriraj.html', ime=None, priimek=None, mail=None, geslo=None, napaka_registriraj = 'Uporabnik obstaja') modeli.dodaj_osebo(ime, priimek, mail, geslo) id_1 = modeli.id_st(mail) response.set_cookie('username', mail, path='/', secret=secret) redirect('/oseba/'+str(id_1)) return template('registriraj.html', ime = ime, priimek = priimek, mail = mail, geslo = geslo, napaka_registriraj=None) #redirect('/registracija') redirect('/#registracija') return template('registriraj.html', ime=None, priimek=None, mail=None, geslo=None, napaka_registriraj = 'Neveljavna registracija') @get('/oseba/<id>/spremeni') def spremen(id): if get_user() is not None: return template('spremeni.html', ime = None, priimek = None, mail = get_user()[0], staro_geslo = None, geslo = None, napaka=None) return template('spremeni.html', ime = None, priimek = None, mail = None, staro_geslo = None, geslo = None, napaka=None) @post('/spremeni') def spremeni(): mail = None or get_user()[0] id = modeli.id_st(mail) ime = request.forms.ime or modeli.ime(id) priimek = request.forms.priimek or modeli.priimek(id) staro_geslo = request.forms.staro_geslo geslo = password_md5(request.forms.geslo) if password_md5(staro_geslo) == modeli.geslo(id): modeli.spremeni_osebo(id, ime, priimek, mail, geslo) modeli.spremeni_osebo(id, ime, priimek, mail, modeli.geslo(id)) response.set_cookie('username', mail, path='/', secret=secret) redirect('/oseba/'+str(id)) return template('spremeni.html', ime = ime, priimek = priimek, staro_geslo = staro_geslo, mail = mail, geslo = geslo, napaka=None) @get('/administrator/luzerji') def luzerji(): if get_administrator(): rezultat = modeli.lozerji() return template('loserji.html', lastnistvo=rezultat) abort(404,"Not found: '/administrator/luzerji") @get('/prijava') def glavni(): return template('prijava.html', mail = None, napaka_prijava=None, geslo = None) @post('/prijava') def glavni_p(): mail = request.forms.mail geslo = password_md5(request.forms.geslo) if mail == "admin@admin" and geslo == password_md5("admin"): response.set_cookie('administrator', mail, path='/', secret=secret) redirect('/administrator') return template('prijava.html', mail = mail, napaka_prijava=None, geslo = geslo) id_s = modeli.id_st(mail) podatki = modeli.podatki(id_s) if podatki is not None: _, _, _, email, psw = podatki if email == mail and geslo == psw: response.set_cookie('username', mail, path='/', secret=secret) redirect('/oseba/'+str(id_s)) return template('prijava.html', mail = mail, napaka_prijava=None, geslo = geslo) else: redirect('/#prijava') return template('prijava.html', mail=None, geslo=None, napaka_prijava='Neveljavna prijava') else: redirect('/#prijava') return template('prijava.html', mail = None, geslo = None, napaka_prijava = 'Izpolni polja') @get('/zapri_racun') def odstrani_g(): return template('zapri_racun.html',mail=None,geslo=None,napaka=None) @post('/zapri_racun') def odstrani(): mail = request.forms.mail geslo = password_md5(request.forms.geslo) id = modeli.id_st(mail) podatki = modeli.podatki(id) if podatki is not None: id_s, _, _, email, psw = podatki if email == mail and geslo == psw and id==id_s: modeli.zapri_racun(id) redirect('/') return template('zapri_racun.html', mail=mail, geslo=geslo,napaka=None) redirect('/zapri_racun') return template('zapri_racun.html', mail=mail, geslo=geslo, napaka='Nepravilno mail/geslo') return template('zapri_racun.html', mail=None, geslo=None, napaka=None) @post('/administrator/zapri_racun_admin') def zapri_racun_admin(): id = request.forms.id modeli.zapri_racun(id) redirect('/administrator/luzerji') @post('/administrator/zapri_racun_adm') def zapri_racun_adm(): id = request.forms.id modeli.zapri_racun(id) redirect('/administrator/osebe') @post('/administrator/zbrisi_valute') def zbrisi_valuto(): id = request.forms.id modeli.zbrisi_valuto(id) redirect('/administrator/valute') @post('/odstrani_valute') def zbrisi_valute(): modeli.zbrisi_valute() redirect('/administrator/valute') @post('/zbrisi_osebe') def zbrisi_osebe(): modeli.zbrisi_vse_osebe() redirect('/administrator/osebe') @get('/dodaj_valute') def dodaj_valute(): if get_administrator(): rezultat = modeli.seznam_valut() redirect('/administrator/valute') return template('seznam_valut.html', rezultat=rezultat) abort(404,"Not found: '/dodaj_valute") @post('/dodaj_valute') def dodaj_valute(): if get_administrator(): modeli.dodaj_valute() rezultat = modeli.seznam_valut() redirect('/administrator/valute') return template('seznam_valut.html', rezultat=rezultat) @get('/dodaj_nove_valute') def dodaj_valute(): if get_administrator(): rezultat = modeli.seznam_valut() redirect('/administrator/valute') return template('seznam_valut.html', rezultat=rezultat) abort(404,"Not found: '/dodaj_nove_valute") @post('/dodaj_nove_valute') def dodaj_nove_valute(): if get_administrator(): modeli.dodaj_nove_valute() rezultat = modeli.seznam_valut() redirect('/administrator/valute') return template('seznam_valut.html', rezultat=rezultat) @get('/oseba/<id>/zgodovina') def zgodovina(id): mail = get_user() uporabnik = modeli.podatki(id) if get_administrator() or uporabnik is not None and mail[0] == uporabnik[3]: zgodovina_transakcij = modeli.vrni_zgodovino(id) zasluzek = modeli.zasluzek(id) return template('zgodovina.html',zasluzek=zasluzek,lastnistvo=zgodovina_transakcij) else: odjava() @get('/odjavi') def odjava(): response.delete_cookie('username') redirect('/') @get('/odjava') def odjavi(): response.delete_cookie('administrator') redirect('/') # poženemo strežnik na portu 8080, glej http://localhost:8080/ run(host='localhost', port=8080,debug=True, reloader=False) #problem reloader idle
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys filepath = sys.argv[1] path, filename = os.path.split(filepath) filename, ext = os.path.splitext(filename) for i in os.listdir(os.getcwd()+'/'+path): file_i, ext = os.path.splitext(i) if i.startswith(filename+'_segmented') and ext == '.ttl': # print 'Converting {0} to dot format'.format(file_i) os.system('~/.virtualenvs/tc/bin/rdf2dot {2}/{0} > {2}/{1}'.format(i, file_i+'.dot', os.getcwd()+'/'+path))
python
from datetime import datetime, timedelta import pendulum import prefect from prefect import task, Flow from prefect.schedules import CronSchedule import pandas as pd from io import BytesIO import zipfile import requests schedule = CronSchedule( cron="*/30 * * * *", start_date=pendulum.datetime(2021, 3, 12, 17, 00, tz='America/Sao_Paulo') ) @task def get_raw_data(): url = 'http://download.inep.gov.br/microdados/microdados_enem_2019.zip' filebytes = BytesIO( requests.get(url).content ) logger = prefect.context.get('logger') logger.info('Dados obtidos') # Extrair o conteudo do zipfile myzip = zipfile.ZipFile(filebytes) myzip.extractall() path = './DADOS/' return path @task def aplica_filtros(path): enade = pd.read_csv(path + 'MICRODADOS_ENEM_2019.csv', sep=';', decimal=',', nrows=1000) logger = prefect.context.get('logger') logger.info(f'Colunas do df sao: {enade.columns}') enade = enade.loc[ (enade.NU_IDADE > 20) & (enade.NU_IDADE < 40) & (enade.NT_GER > 0) ] return enade @task def constroi_idade_centralizada(df): idade = df[['NU_IDADE']] idade['idadecent'] = idade.NU_IDADE - idade.NU_IDADE.mean() return idade[['idadecent']] @task def constroi_idade_cent_quad(df): idadecent = df.copy() idadecent['idade2'] = idadecent.idadecent ** 2 return idadecent[['idade2']] @task def constroi_est_civil(df): filtro = df[['QE_I01']] filtro['estcivil'] = filtro.QE_I01.replace({ 'A': 'Solteiro', 'B': 'Casado', 'C': 'Separado', 'D': 'Viuvo', 'E': 'Outro' }) return filtro[['estcivil']] @task def constroi_cor(df): filtro = df[['QE_I02']] filtro['cor'] = filtro.QE_I02.replace({ 'A': 'Branca', 'B': 'Preta', 'C': 'Amarela', 'D': 'Parda', 'E': 'Indigena', 'F': '', ' ': '' }) return filtro[['cor']] @task def constroi_escopai(df): filtro = df[['QE_I_04']] filtro['escopai'] = filtro.QE_I04.replace({ 'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5 }) return filtro[['escopai']] @task def constroi_escomae(df): filtro = df[['QE_I_05']] filtro['escomae'] = filtro.QE_I05.replace({ 'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5 }) return filtro[['escomae']] @task def constroi_renda(df): filtro = df[['QE_I_08']] filtro['renda'] = filtro.QE_I08.replace({ 'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6 }) return filtro[['renda']] @task def join_data(df, idadecent, idadequadrado, estcivil, cor, escopai, escomae, renda): final = pd.concat([df, idadecent, idadequadrado, estcivil, cor, escopai, escomae, renda], axis=1) logger = prefect.context.get('logger') logger.info(final.head().to_json()) final.to_csv('enade_tratato.csv', index=False) with Flow('Enade', schedule) as flow: path = get_raw_data() filtro = aplica_filtros(path) idadecent = constroi_idade_centralizada(filtro) idadequadrado = constroi_idade_cent_quad(idadecent) estcivil = constroi_est_civil(filtro) cor = constroi_cor(filtro) escomae = constroi_escomae(filtro) escopai = constroi_escopai(filtro) renda = constroi_renda(filtro) j = join_data(filtro, idadecent, idadequadrado, estcivil, cor, escomae, escopai, renda) # prefect create project IGTI --description "Projetos do bootcamp de engenharia de dados do IGTI" flow.register(project_name='IGTI', idempotency_key=flow.serialized_hash()) # prefect auth create-token -n my-runner-token -s RUNNER flow.run_agent(token='dE5zGVFdfzZpNj6bTBcweg')
python
import ROOT as root qMap_Ag_C0_V0 = root.TProfile2D("qMap_Ag_C0_V0","qMap_Ag_C0 (V0)",52,0,52,80,0,80,0,0); qMap_Ag_C0_V0.SetBinEntries(3585,29768); qMap_Ag_C0_V0.SetBinEntries(3586,79524); qMap_Ag_C0_V0.SetBinEntries(3639,83953); qMap_Ag_C0_V0.SetBinEntries(3640,124982); qMap_Ag_C0_V0.SetBinEntries(3641,14345); qMap_Ag_C0_V0.SetBinEntries(3693,31598); qMap_Ag_C0_V0.SetBinEntries(3694,91098); qMap_Ag_C0_V0.SetBinContent(3585,3245287); qMap_Ag_C0_V0.SetBinContent(3586,1.615629e+07); qMap_Ag_C0_V0.SetBinContent(3639,2.731302e+07); qMap_Ag_C0_V0.SetBinContent(3640,3.14566e+08); qMap_Ag_C0_V0.SetBinContent(3641,1444064); qMap_Ag_C0_V0.SetBinContent(3693,3763256); qMap_Ag_C0_V0.SetBinContent(3694,2.928397e+07); qMap_Ag_C0_V0.SetBinError(3585,174261.7); qMap_Ag_C0_V0.SetBinError(3586,278676.5); qMap_Ag_C0_V0.SetBinError(3639,960499.6); qMap_Ag_C0_V0.SetBinError(3640,4324021); qMap_Ag_C0_V0.SetBinError(3641,12124.33); qMap_Ag_C0_V0.SetBinError(3693,148045.1); qMap_Ag_C0_V0.SetBinError(3694,865776); qMap_Ag_C0_V0.SetMinimum(0); qMap_Ag_C0_V0.SetEntries(455268); qMap_Ag_C0_V0.SetStats(0); qMap_Ag_C0_V0.SetContour(20); qMap_Ag_C0_V0.SetContourLevel(0,0); qMap_Ag_C0_V0.SetContourLevel(1,125.8445); qMap_Ag_C0_V0.SetContourLevel(2,251.689); qMap_Ag_C0_V0.SetContourLevel(3,377.5335); qMap_Ag_C0_V0.SetContourLevel(4,503.3781); qMap_Ag_C0_V0.SetContourLevel(5,629.2226); qMap_Ag_C0_V0.SetContourLevel(6,755.0671); qMap_Ag_C0_V0.SetContourLevel(7,880.9116); qMap_Ag_C0_V0.SetContourLevel(8,1006.756); qMap_Ag_C0_V0.SetContourLevel(9,1132.601); qMap_Ag_C0_V0.SetContourLevel(10,1258.445); qMap_Ag_C0_V0.SetContourLevel(11,1384.29); qMap_Ag_C0_V0.SetContourLevel(12,1510.134); qMap_Ag_C0_V0.SetContourLevel(13,1635.979); qMap_Ag_C0_V0.SetContourLevel(14,1761.823); qMap_Ag_C0_V0.SetContourLevel(15,1887.668); qMap_Ag_C0_V0.SetContourLevel(16,2013.512); qMap_Ag_C0_V0.SetContourLevel(17,2139.357); qMap_Ag_C0_V0.SetContourLevel(18,2265.201); qMap_Ag_C0_V0.SetContourLevel(19,2391.046); ci = root.TColor.GetColor("#000099"); qMap_Ag_C0_V0.SetLineColor(ci); qMap_Ag_C0_V0.GetXaxis().SetTitle("col"); qMap_Ag_C0_V0.GetXaxis().SetRange(17,29); qMap_Ag_C0_V0.GetXaxis().SetNdivisions(508); qMap_Ag_C0_V0.GetXaxis().SetLabelFont(42); qMap_Ag_C0_V0.GetXaxis().SetLabelSize(0.05); qMap_Ag_C0_V0.GetXaxis().SetTitleSize(0.05); qMap_Ag_C0_V0.GetXaxis().SetTitleOffset(1.1); qMap_Ag_C0_V0.GetXaxis().SetTitleFont(42); qMap_Ag_C0_V0.GetYaxis().SetTitle("row"); qMap_Ag_C0_V0.GetYaxis().SetRange(55,76); qMap_Ag_C0_V0.GetYaxis().SetLabelFont(42); qMap_Ag_C0_V0.GetYaxis().SetLabelSize(0.05); qMap_Ag_C0_V0.GetYaxis().SetTitleSize(0.05); qMap_Ag_C0_V0.GetYaxis().SetTitleOffset(1.1); qMap_Ag_C0_V0.GetYaxis().SetTitleFont(42); qMap_Ag_C0_V0.GetZaxis().SetLabelFont(42); qMap_Ag_C0_V0.GetZaxis().SetLabelSize(0.035); qMap_Ag_C0_V0.GetZaxis().SetTitleSize(0.035); qMap_Ag_C0_V0.GetZaxis().SetTitleFont(42);
python
from . import start_watcher def main(): start_watcher()
python
from .market import Market, TradeException import time import hmac import urllib.parse import urllib.request import requests import hashlib import config import database from datetime import datetime class PrivateBter(Market): url = "https://bter.com/api/1/private/" def __init__(self): super().__init__() self.key = config.bter_key self.secret = config.bter_secret self.min_tx_volume = 0.001 try: self.get_balances() except Exception: self.s_coin_balance = 0 self.p_coin_balance = 0 def query(self, method, req={}): # generate POST data string req["nonce"] = int(time.time()) post_data = urllib.parse.urlencode(req) # sign it sign = hmac.new(self.secret.encode("ascii"), post_data.encode("ascii"), hashlib.sha512).hexdigest() # extra headers for request headers = {"Sign": sign, "Key": self.key} full_url = self.url + method try: res = requests.post(full_url, data=req, headers=headers) except Exception as e: raise Exception("Error sending request to %s - %s" % (self.name, e)) try: value = res.json() except Exception as e: raise Exception("Unable to decode response from %s - %s" % (self.name, e)) return value def get_open_orders(self): # Might not be necessary response = self.query('orderlist', {}) if not response["result"]: raise TradeException(response["msg"]) return response def _buy(self, amount, price): """Create a buy limit order""" currency_pair = self.p_coin.lower() + "_" + self.s_coin.lower() req = {"pair": currency_pair, "type": "BUY", "rate": price, "amount": amount} response = self.query("placeorder", req) if not response["result"]: raise TradeException(response["msg"]) order_id = response['order_id'] # Check open order list to see if the most recent open order matches this order: # match by price and primary coin type. If we find it output the real order id, # otherwise return the dummy order id returned from the order request. time.sleep(10) open_orders = self.get_open_orders()['orders'] open_orders.sort(key=lambda x: x['id'], reverse=True) if open_orders and float(open_orders[0]['sell_amount']) == (price * 1000) and \ open_orders[0]['buy_type'] == self.p_coin: order_id = open_orders[0]['id'] return order_id def _sell(self, amount, price): """Create a sell limit order""" currency_pair = self.p_coin.lower() + "_" + self.s_coin.lower() req = {"pair": currency_pair, "type": "SELL", "rate": price, "amount": amount} response = self.query("placeorder", req) if not response["result"]: raise TradeException(response["msg"]) order_id = response['order_id'] # Check open order list to see if the most recent open order matches this order: # match by price and primary coin type. If we find it output the real order id, # otherwise return the dummy order id returned from the order request. time.sleep(10) open_orders = self.get_open_orders()['orders'] open_orders.sort(key=lambda x: x['id'], reverse=True) if open_orders and float(open_orders[0]['buy_amount']) == (price * 1000) and \ open_orders[0]['sell_type'] == self.p_coin: order_id = open_orders[0]['id'] return order_id def update_order_status(self): if not self.open_orders: return response = self.query('orderlist') remaining_open_orders = [] completed_order_ids = [] for open_order in self.open_orders: found_order = [found_order for found_order in response['orders'] if found_order['id'] == open_order['order_id']] if not found_order: completed_order_ids.append(open_order['order_id']) else: remaining_open_orders.append(open_order) if completed_order_ids: self.open_orders = remaining_open_orders database.order_completed(self.name, completed_order_ids) def get_balances(self): """Get balance of primary coin and secondary coin""" try: res = self.query("getfunds") if self.p_coin in res["available_funds"]: self.p_coin_balance = float(res["available_funds"][self.p_coin]) else: self.p_coin_balance = 0 if self.s_coin in res["available_funds"]: self.s_coin_balance = float(res["available_funds"][self.s_coin]) else: self.s_coin_balance = 0 except Exception: raise Exception("Error getting balance")
python
import rlkit.misc.hyperparameter as hyp from rlkit.launchers.launcher_util import run_experiment import os from rlkit.misc.asset_loader import sync_down def experiment(variant): from rlkit.core import logger demo_path = sync_down(variant['demo_path']) off_policy_path = sync_down(variant['off_policy_path']) logdir = logger.get_snapshot_dir() os.system('python -m BEAR.main' + ' --demo_data='+demo_path+ ' --off_policy_data='+off_policy_path+ ' --eval_freq='+variant['eval_freq']+ ' --algo_name='+variant['algo_name']+ ' --env_name='+variant['env_name']+ ' --log_dir='+logdir+ ' --lagrange_thresh='+variant['lagrange_thresh']+ ' --distance_type='+variant['distance_type']+ ' --mode='+variant['mode']+ ' --num_samples_match='+variant['num_samples_match']+ ' --lamda='+variant['lambda_']+ ' --version='+variant['version']+ ' --mmd_sigma='+variant['mmd_sigma']+ ' --kernel_type='+variant['kernel_type']+ ' --use_ensemble_variance='+variant['use_ensemble_variance']) if __name__ == "__main__": variant = dict( demo_path='demos/ant_action_noise_15.npy', off_policy_path='demos/ant_off_policy_15_demos_100.npy', eval_freq='1000', algo_name='BEAR', env_name='Ant-v2', lagrange_thresh='10.0', distance_type='MMD', mode='auto', num_samples_match='5', lambda_='0.0', version='0.0', mmd_sigma='10.0', kernel_type='laplacian', use_ensemble_variance='"False"', ) search_space = { 'mmd_sigma':['10.0', '20.0'], 'num_samples_match':['5', '10', '20'], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) n_seeds = 1 mode = 'local' exp_name = 'test' # n_seeds = 1 # mode = 'ec2' # exp_name = 'ant_bear_sweep_v1' for exp_id, variant in enumerate(sweeper.iterate_hyperparameters()): for _ in range(n_seeds): run_experiment( experiment, exp_name=exp_name, mode=mode, unpack_variant=False, variant=variant, num_exps_per_instance=1, use_gpu=False, gcp_kwargs=dict( preemptible=False, ), )
python
# Generated by Django 3.2.7 on 2021-09-27 02:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterField( model_name='profile', name='user_type', field=models.CharField(choices=[('user', 'User'), ('admin', 'Admin')], default='user', max_length=200), ), ]
python
# encoding: utf-8 """ route.py Created by Thomas Mangin on 2015-06-22. Copyright (c) 2009-2017 Exa Networks. All rights reserved. License: 3-clause BSD. (See the COPYRIGHT file) """ from exabgp.protocol.family import SAFI from exabgp.bgp.message.update.nlri.qualifier import RouteDistinguisher from exabgp.configuration.core import Section from exabgp.configuration.flow.match import ParseFlowMatch from exabgp.configuration.flow.then import ParseFlowThen from exabgp.configuration.flow.scope import ParseFlowScope from exabgp.configuration.static.mpls import route_distinguisher from exabgp.configuration.flow.parser import flow from exabgp.configuration.flow.parser import next_hop class ParseFlowRoute(Section): syntax = ( 'route give-me-a-name {\n' ' (optional) rd 255.255.255.255:65535|65535:65536|65536:65535;\n' ' next-hop 1.2.3.4; (to use with redirect-to-nexthop)\n' ' %s\n' ' %s\n' ' %s\n' '}\n' % ( '\n '.join(ParseFlowMatch.syntax.split('\n')), '\n '.join(ParseFlowScope.syntax.split('\n')), '\n '.join(ParseFlowThen.syntax.split('\n')), ) ) known = { 'rd': route_distinguisher, 'route-distinguisher': route_distinguisher, 'next-hop': next_hop, } action = { 'rd': 'nlri-set', 'route-distinguisher': 'nlri-set', 'next-hop': 'nlri-nexthop', } assign = { 'rd': 'rd', 'route-distinguisher': 'rd', } name = 'flow/route' def __init__(self, tokeniser, scope, error, logger): Section.__init__(self, tokeniser, scope, error, logger) def clear(self): pass def pre(self): self.scope.append_route(flow(None)) return True def post(self): route = self.scope.get_route() if route.nlri.rd is not RouteDistinguisher.NORD: route.nlri.safi = SAFI.flow_vpn return True def _check(self, change): self.logger.debug('warning: no check on flows are implemented', 'configuration') return True
python
'''This file provides editor completions while working on DFHack using ycmd: https://github.com/Valloric/ycmd ''' # pylint: disable=import-error,invalid-name,missing-docstring,unused-argument import os import ycm_core def DirectoryOfThisScript(): return os.path.dirname(os.path.abspath(__file__)) # We need to tell YouCompleteMe how to compile this project. We do this using # clang's "Compilation Database" system, which essentially just dumps a big # json file into the build folder. # More details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # # We don't use clang, but luckily CMake supports generating a database on its # own, using: # set( CMAKE_EXPORT_COMPILE_COMMANDS 1 ) for potential_build_folder in ['build', 'build-osx']: if os.path.exists(DirectoryOfThisScript() + os.path.sep + potential_build_folder + os.path.sep + 'compile_commands.json'): database = ycm_core.CompilationDatabase(potential_build_folder) break else: raise RuntimeError("Can't find dfhack build folder: not one of build, build-osx") def MakeRelativePathsInFlagsAbsolute(flags, working_directory): if not working_directory: return list(flags) new_flags = [] make_next_absolute = False path_flags = ['-isystem', '-I', '-iquote', '--sysroot='] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith('/'): new_flag = os.path.join(working_directory, flag) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith(path_flag): path = flag[len(path_flag):] new_flag = path_flag + os.path.join(working_directory, path) break if new_flag: new_flags.append(new_flag) return new_flags def IsHeaderFile(filename): extension = os.path.splitext(filename)[1] return extension in ['.h', '.hxx', '.hpp', '.hh'] SOURCE_EXTENSIONS = ['.cpp', '.cxx', '.cc', '.c', '.m', '.mm'] def PotentialAlternatives(header): dirname, filename = os.path.split(header) basename, _ = os.path.splitext(filename) source_dirs = [dirname] if dirname.endswith(os.path.sep + 'include'): # if we're in a folder 'include', also look in its parent parent = os.path.abspath(os.path.join(dirname, os.path.pardir)) source_dirs.append(parent) # and ../src (used by lua dependency) source_dirs.append(os.path.join(parent, 'src')) include_idx = dirname.rfind(os.path.sep + 'include' + os.path.sep) if include_idx != -1: # we're in a subfolder of a parent '/include/' # .../include/subdir/path # look in .../subdir/path source_dirs.append( dirname[:include_idx] + os.path.sep + dirname[include_idx + len('include') + 2*len(os.path.sep):] ) for source_dir in source_dirs: for ext in SOURCE_EXTENSIONS: yield source_dir + os.path.sep + basename + ext def GetCompilationInfoForFile(filename): # The compilation_commands.json file generated by CMake does not have entries # for header files. So we do our best by asking the db for flags for a # corresponding source file, if any. If one exists, the flags for that file # should be good enough. if IsHeaderFile(filename): for alternative in PotentialAlternatives(filename): if os.path.exists(alternative): compilation_info = database.GetCompilationInfoForFile( alternative ) if compilation_info.compiler_flags_: return compilation_info return None else: return database.GetCompilationInfoForFile(filename) def FlagsForFile(filename, **kwargs): # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = GetCompilationInfoForFile(filename) if not compilation_info: return None final_flags = MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_ ) return { 'flags': final_flags, 'do_cache': True }
python
from twisted.trial import unittest from signing.persistence import Persistence class PersistenceTests(unittest.TestCase): def setUp(self): self.persistence = Persistence() def test_set_get(self): d = self.persistence.set('somekey', 'somefield', 'somevalue') d.addCallback(lambda _: self.persistence.get('somekey', 'somefield')) return d.addCallback(self.assertEquals, 'somevalue') def test_update(self): d = self.persistence.set('updatekey', 'updatefield', 'firstvalue') d.addCallback(lambda _: self.persistence.set('updatekey', 'updatefield', 'secondvalue')) d.addCallback(lambda _: self.persistence.get('updatekey', 'updatefield')) return d.addCallback(self.assertEquals, 'secondvalue') def test_delete(self): d = self.persistence.set('deletekey', 'deletefield', 'somevalue') d.addCallback(lambda _: self.persistence.delete('deletekey', 'deletefield')) d.addCallback(lambda _: self.persistence.get('deletekey', 'deletefield')) return d.addCallback(self.assertEquals, None) def test_getAll(self): d = self.persistence.set('getallkey', 'getallfield', 'getallvalue') d.addCallback(lambda _: self.persistence.set('getallkey', 'getallfield2', 'getallvalue2')) d.addCallback(lambda _: self.persistence.get_all('getallkey')) return d.addCallback(lambda result: self.assertTrue('getallfield' in result and 'getallfield2' in result)) def test_deleteAll(self): d = self.persistence.set('deleteall_key', 'deleteall_field', 'deleteall_value') d.addCallback(lambda _: self.persistence.delete('deleteall_key')) d.addCallback(lambda _: self.persistence.get_all('deleteall_key')) return d.addCallback(self.assertEquals, [])
python
""" Module storing the `~halotools.sim_manager.CachedHaloCatalog`, the class responsible for retrieving halo catalogs from shorthand keyword inputs such as ``simname`` and ``redshift``. """ import os from warnings import warn from copy import deepcopy import numpy as np from astropy.table import Table from ..utils.python_string_comparisons import _passively_decode_string, compare_strings_py23_safe try: import h5py _HAS_H5PY = True except ImportError: _HAS_H5PY = False warn("Most of the functionality of the " "sim_manager sub-package requires h5py to be installed,\n" "which can be accomplished either with pip or conda. ") from ..sim_manager import sim_defaults, supported_sims from ..utils import broadcast_host_halo_property, add_halo_hostid from .halo_table_cache import HaloTableCache from .ptcl_table_cache import PtclTableCache from .halo_table_cache_log_entry import get_redshift_string from ..custom_exceptions import HalotoolsError, InvalidCacheLogEntry __all__ = ('CachedHaloCatalog', ) class CachedHaloCatalog(object): """ Container class for the halo catalogs and particle data that are stored in the Halotools cache log. `CachedHaloCatalog` is used to retrieve halo catalogs from shorthand keyword inputs such as ``simname``, ``halo_finder`` and ``redshift``. The halos are stored in the ``halo_table`` attribute in the form of an Astropy `~astropy.table.Table`. If available, another `~astropy.table.Table` storing a random downsampling of dark matter particles is stored in the ``ptcl_table`` attribute. See the Examples section below for details on how to access and manipulate this data. For a list of available snapshots provided by Halotools, see :ref:`supported_sim_list`. For information about the subhalo vs. host halo nomenclature conventions used throughout Halotools, see :ref:`rockstar_subhalo_nomenclature`. For a thorough discussion of the meaning of each column in the Rockstar halo catalogs, see the appendix of `Rodriguez Puebla et al 2016 <http://arxiv.org/abs/1602.04813>`_. """ acceptable_kwargs = ('ptcl_version_name', 'fname', 'simname', 'halo_finder', 'redshift', 'version_name', 'dz_tol', 'update_cached_fname', 'preload_halo_table') def __init__(self, *args, **kwargs): """ Parameters ------------ simname : string, optional Nickname of the simulation used as a shorthand way to keep track of the halo catalogs in your cache. The simnames of the Halotools-provided catalogs are 'bolshoi', 'bolplanck', 'consuelo' and 'multidark'. Default is set by the ``default_simname`` variable in the `~halotools.sim_manager.sim_defaults` module. halo_finder : string, optional Nickname of the halo-finder used to generate the hlist file from particle data. Default is set by the ``default_halo_finder`` variable in the `~halotools.sim_manager.sim_defaults` module. redshift : float, optional Redshift of the halo catalog. Default is set by the ``default_redshift`` variable in the `~halotools.sim_manager.sim_defaults` module. version_name : string, optional Nickname of the version of the halo catalog. Default is set by the ``default_version_name`` variable in the `~halotools.sim_manager.sim_defaults` module. ptcl_version_name : string, optional Nicknake of the version of the particle catalog associated with the halos. This argument is typically only used if you have cached your own particles via the `~halotools.sim_manager.UserSuppliedPtclCatalog` class. Default is set by the ``default_version_name`` variable in the `~halotools.sim_manager.sim_defaults` module. fname : string, optional Absolute path to the location on disk storing the hdf5 file of halo data. If passing ``fname``, do not pass the metadata keys ``simname``, ``halo_finder``, ``version_name`` or ``redshift``. update_cached_fname : bool, optional If the hdf5 file storing the halos has been relocated to a new disk location after storing the data in cache, the ``update_cached_fname`` input can be used together with the ``fname`` input to update the cache log with the new disk location. See :ref:`relocating_simulation_data_instructions` for further instructions. dz_tol : float, optional Tolerance within to search for a catalog with a matching redshift. Halo catalogs in cache with a redshift that differs by greater than ``dz_tol`` will be ignored. Default is 0.05. Examples --------- If you followed the instructions in the :ref:`download_default_halos` section of the :ref:`getting_started` guide, then you can load the default halo catalog into memory by calling the `~halotools.sim_manager.CachedHaloCatalog` with no arguments: >>> halocat = CachedHaloCatalog() # doctest: +SKIP The halos are stored in the ``halo_table`` attribute in the form of an Astropy `~astropy.table.Table`. >>> halos = halocat.halo_table # doctest: +SKIP As with any Astropy `~astropy.table.Table`, the properties of the halos can be accessed in the same manner as a Numpy structured array or python dictionary: >>> array_of_masses = halocat.halo_table['halo_mvir'] # doctest: +SKIP >>> x_positions = halocat.halo_table['halo_x'] # doctest: +SKIP Note that all keys of a cached halo catalog begin with the substring ``halo_``. This is a bookkeeping device used to help the internals of Halotools differentiate between halo properties and the properties of mock galaxies populated into the halos with ambiguously similar names. The ``simname``, ``halo_finder``, ``version_name`` and ``redshift`` keyword arguments fully specify the halo catalog that will be loaded. Omitting any of them will select the corresponding default value set in the `~halotools.sim_manager.sim_defaults` module. >>> halocat = CachedHaloCatalog(redshift = 1, simname = 'multidark') # doctest: +SKIP If you forget which catalogs you have stored in cache, you have two options for how to remind yourself. First, you can use the `~halotools.sim_manager.HaloTableCache` class: >>> from halotools.sim_manager import HaloTableCache >>> cache = HaloTableCache() >>> for entry in cache.log: print(entry) # doctest: +SKIP Alternatively, you can simply use a text editor to open the cache log, which is stored as ASCII data in the following location on your machine: $HOME/.astropy/cache/halotools/halo_table_cache_log.txt See also ---------- :ref:`halo_catalog_analysis_quickstart` :ref:`halo_catalog_analysis_tutorial` """ self._verify_acceptable_constructor_call(*args, **kwargs) assert _HAS_H5PY, "Must have h5py package installed to use CachedHaloCatalog objects" try: dz_tol = kwargs['dz_tol'] except KeyError: dz_tol = 0.05 self._dz_tol = dz_tol try: update_cached_fname = kwargs['update_cached_fname'] except KeyError: update_cached_fname = False self._update_cached_fname = update_cached_fname self.halo_table_cache = HaloTableCache() self._disallow_catalogs_with_known_bugs(**kwargs) self.log_entry = self._determine_cache_log_entry(**kwargs) self.simname = self.log_entry.simname self.halo_finder = self.log_entry.halo_finder self.version_name = self.log_entry.version_name self.redshift = self.log_entry.redshift self.fname = self.log_entry.fname self._bind_additional_metadata() try: preload_halo_table = kwargs['preload_halo_table'] except KeyError: preload_halo_table = False if preload_halo_table is True: _ = self.halo_table del _ self._set_publication_list(self.simname) def _set_publication_list(self, simname): try: simclass = supported_sims.supported_sim_dict[simname] simobj = simclass() self.publications = simobj.publications except (KeyError, AttributeError): self.publications = [] def _verify_acceptable_constructor_call(self, *args, **kwargs): """ """ try: assert len(args) == 0 except AssertionError: msg = ("\nCachedHaloCatalog only accepts keyword arguments, not position arguments. \n") raise HalotoolsError(msg) for key in list(kwargs.keys()): try: assert key in self.acceptable_kwargs except AssertionError: msg = ("\nCachedHaloCatalog got an unexpected keyword ``" + key + "``\n" "The only acceptable keywords are listed below:\n\n") for acceptable_key in self.acceptable_kwargs: msg += "``" + acceptable_key + "``\n" raise HalotoolsError(msg) def _determine_cache_log_entry(self, **kwargs): """ """ try: self.ptcl_version_name = kwargs['ptcl_version_name'] self._default_ptcl_version_name_choice = False except KeyError: self.ptcl_version_name = sim_defaults.default_ptcl_version_name self._default_ptcl_version_name_choice = True if 'fname' in kwargs: fname = kwargs['fname'] if not os.path.isfile(fname): msg = ("\nThe ``fname`` you passed to the CachedHaloCatalog " "constructor is a non-existent path.\n") raise HalotoolsError(msg) try: assert 'simname' not in kwargs except AssertionError: msg = ("\nIf you specify an input ``fname``, " "do not also specify ``simname``.\n") raise HalotoolsError(msg) try: assert 'halo_finder' not in kwargs except AssertionError: msg = ("\nIf you specify an input ``fname``, " "do not also specify ``halo_finder``.\n") raise HalotoolsError(msg) try: assert 'redshift' not in kwargs except AssertionError: msg = ("\nIf you specify an input ``fname``, " "do not also specify ``redshift``.\n") raise HalotoolsError(msg) try: assert 'version_name' not in kwargs except AssertionError: msg = ("\nIf you specify an input ``fname``, " "do not also specify ``version_name``.\n") raise HalotoolsError(msg) return self._retrieve_matching_log_entry_from_fname(fname) else: try: simname = str(kwargs['simname']) self._default_simname_choice = False except KeyError: simname = sim_defaults.default_simname self._default_simname_choice = True try: halo_finder = str(kwargs['halo_finder']) self._default_halo_finder_choice = False except KeyError: halo_finder = sim_defaults.default_halo_finder self._default_halo_finder_choice = True try: version_name = str(kwargs['version_name']) self._default_version_name_choice = False except KeyError: version_name = sim_defaults.default_version_name self._default_version_name_choice = True try: redshift = float(kwargs['redshift']) self._default_redshift_choice = False except KeyError: redshift = sim_defaults.default_redshift self._default_redshift_choice = True return self._retrieve_matching_log_entry_from_metadata( simname, halo_finder, version_name, redshift) def _retrieve_matching_log_entry_from_fname(self, fname): """ """ log_entry = self.halo_table_cache.determine_log_entry_from_fname(fname, overwrite_fname_metadata=False) if not compare_strings_py23_safe(log_entry.fname, fname): if self._update_cached_fname is True: old_fname = deepcopy(log_entry.fname) log_entry = ( self.halo_table_cache.determine_log_entry_from_fname(fname, overwrite_fname_metadata=self._update_cached_fname) ) self.halo_table_cache.update_cached_file_location( fname, old_fname) else: msg = ("\nThe ``fname`` you passed as an input to the " "CachedHaloCatalog class \ndoes not match the ``fname`` " "stored as metadata in the hdf5 file.\n" "This means that at some point you manually relocated the catalog on disk \n" "after storing its location in cache, " "but you did not yet update the Halotools cache log. \n" "When possible, try to keep your halo catalogs " "at a fixed disk location \n" "as this helps ensure reproducibility. \n" "If the ``fname`` you passed to CachedHaloCatalog is the " "new location you want to store the catalog, \n" "then you can update the cache by calling the CachedHaloCatalog \n" "constructor again and setting the ``update_cached_fname`` variable to True.\n") raise HalotoolsError(msg) return log_entry def _retrieve_matching_ptcl_cache_log_entry(self): """ """ ptcl_table_cache = PtclTableCache() if len(ptcl_table_cache.log) == 0: msg = ("\nThe Halotools cache log has no record of any particle catalogs.\n" "If you have never used Halotools before, " "you should read the Getting Started guide on halotools.readthedocs.io.\n" "If you have previously used the package before, \n" "try running the halotools/scripts/rebuild_ptcl_table_cache_log.py script.\n") raise HalotoolsError(msg) gen0 = ptcl_table_cache.matching_log_entry_generator( simname=self.simname, version_name=self.ptcl_version_name, redshift=self.redshift, dz_tol=self._dz_tol) gen1 = ptcl_table_cache.matching_log_entry_generator( simname=self.simname, version_name=self.ptcl_version_name) gen2 = ptcl_table_cache.matching_log_entry_generator(simname=self.simname) matching_entries = list(gen0) msg = ("\nYou tried to load a cached particle catalog " "with the following characteristics:\n\n") if self._default_simname_choice is True: msg += ("simname = ``" + str(self.simname) + "`` (set by sim_defaults.default_simname)\n") else: msg += "simname = ``" + str(self.simname) + "``\n" if self._default_ptcl_version_name_choice is True: msg += ("ptcl_version_name = ``" + str(self.ptcl_version_name) + "`` (set by sim_defaults.default_version_name)\n") else: msg += "ptcl_version_name = ``" + str(self.ptcl_version_name) + "``\n" if self._default_redshift_choice is True: msg += ("redshift = ``" + str(self.redshift) + "`` (set by sim_defaults.default_redshift)\n") else: msg += "redshift = ``" + str(self.redshift) + "``\n" msg += ("\nThere is no matching catalog in cache " "within dz_tol = "+str(self._dz_tol)+" of these inputs.\n" ) if len(matching_entries) == 0: suggestion_preamble = ("\nThe following entries in the cache log " "most closely match your inputs:\n\n") alt_list1 = list(gen1) # discard the redshift requirement if len(alt_list1) > 0: msg += suggestion_preamble for entry in alt_list1: msg += str(entry) + "\n\n" else: alt_list2 = list(gen2) # discard the version_name requirement if len(alt_list2) > 0: msg += suggestion_preamble for entry in alt_list2: msg += str(entry) + "\n\n" else: msg += "There are no simulations matching your input simname.\n" raise InvalidCacheLogEntry(msg) elif len(matching_entries) == 1: log_entry = matching_entries[0] return log_entry else: msg += ("There are multiple entries in the cache log \n" "within dz_tol = "+str(self._dz_tol)+" of your inputs. \n" "Try using the exact redshift and/or decreasing dz_tol.\n" "Now printing the matching entries:\n\n") for entry in matching_entries: msg += str(entry) + "\n" raise InvalidCacheLogEntry(msg) def _retrieve_matching_log_entry_from_metadata(self, simname, halo_finder, version_name, redshift): """ """ if len(self.halo_table_cache.log) == 0: msg = ("\nThe Halotools cache log is empty.\n" "If you have never used Halotools before, " "you should read the Getting Started guide on halotools.readthedocs.io.\n" "If you have previously used the package before, \n" "try running the halotools/scripts/rebuild_halo_table_cache_log.py script.\n") raise HalotoolsError(msg) gen0 = self.halo_table_cache.matching_log_entry_generator( simname=simname, halo_finder=halo_finder, version_name=version_name, redshift=redshift, dz_tol=self._dz_tol) gen1 = self.halo_table_cache.matching_log_entry_generator( simname=simname, halo_finder=halo_finder, version_name=version_name) gen2 = self.halo_table_cache.matching_log_entry_generator( simname=simname, halo_finder=halo_finder) gen3 = self.halo_table_cache.matching_log_entry_generator( simname=simname) matching_entries = list(gen0) msg = ("\nYou tried to load a cached halo catalog " "with the following characteristics:\n\n") if self._default_simname_choice is True: msg += ("simname = ``" + str(simname) + "`` (set by sim_defaults.default_simname)\n") else: msg += "simname = ``" + str(simname) + "``\n" if self._default_halo_finder_choice is True: msg += ("halo_finder = ``" + str(halo_finder) + "`` (set by sim_defaults.default_halo_finder)\n") else: msg += "halo_finder = ``" + str(halo_finder) + "``\n" if self._default_version_name_choice is True: msg += ("version_name = ``" + str(version_name) + "`` (set by sim_defaults.default_version_name)\n") else: msg += "version_name = ``" + str(version_name) + "``\n" if self._default_redshift_choice is True: msg += ("redshift = ``" + str(redshift) + "`` (set by sim_defaults.default_redshift)\n") else: msg += "redshift = ``" + str(redshift) + "``\n" msg += ("\nThere is no matching catalog in cache " "within dz_tol = "+str(self._dz_tol)+" of these inputs.\n" ) if len(matching_entries) == 0: suggestion_preamble = ("\nThe following entries in the cache log " "most closely match your inputs:\n\n") alt_list1 = list(gen1) # discard the redshift requirement if len(alt_list1) > 0: msg += suggestion_preamble for entry in alt_list1: msg += str(entry) + "\n\n" else: alt_list2 = list(gen2) # discard the version_name requirement if len(alt_list2) > 0: msg += suggestion_preamble for entry in alt_list2: msg += str(entry) + "\n\n" else: alt_list3 = list(gen3) # discard the halo_finder requirement if len(alt_list3) > 0: msg += suggestion_preamble for entry in alt_list3: msg += str(entry) + "\n\n" else: msg += "There are no simulations matching your input simname.\n" raise InvalidCacheLogEntry(msg) elif len(matching_entries) == 1: log_entry = matching_entries[0] return log_entry else: msg += ("There are multiple entries in the cache log \n" "within dz_tol = "+str(self._dz_tol)+" of your inputs. \n" "Try using the exact redshift and/or decreasing dz_tol.\n" "Now printing the matching entries:\n\n") for entry in matching_entries: msg += str(entry) + "\n" raise InvalidCacheLogEntry(msg) @property def halo_table(self): """ Astropy `~astropy.table.Table` object storing a catalog of dark matter halos. You can access the array storing, say, halo virial mass using the following syntax: >>> halocat = CachedHaloCatalog() # doctest: +SKIP >>> mass_array = halocat.halo_table['halo_mvir'] # doctest: +SKIP To see what halo properties are available in the catalog: >>> print(halocat.halo_table.keys()) # doctest: +SKIP """ try: return self._halo_table except AttributeError: if self.log_entry.safe_for_cache is True: self._halo_table = Table.read(_passively_decode_string(self.fname), path='data') self._add_new_derived_columns(self._halo_table) return self._halo_table else: raise InvalidCacheLogEntry(self.log_entry._cache_safety_message) def _add_new_derived_columns(self, t): if 'halo_hostid' not in list(t.keys()): add_halo_hostid(t) if 'halo_mvir_host_halo' not in list(t.keys()): broadcast_host_halo_property(t, 'halo_mvir') def _bind_additional_metadata(self): """ Create convenience bindings of all metadata to the `CachedHaloCatalog` instance. """ if not os.path.isfile(self.log_entry.fname): msg = ("The following input fname does not exist: \n\n" + self.log_entry.fname + "\n\n") raise InvalidCacheLogEntry(msg) f = h5py.File(self.log_entry.fname, 'r') for attr_key in list(f.attrs.keys()): if attr_key == 'redshift': setattr(self, attr_key, float(get_redshift_string(f.attrs[attr_key]))) elif attr_key == 'Lbox': self.Lbox = np.empty(3) self.Lbox[:] = f.attrs['Lbox'] else: setattr(self, attr_key, f.attrs[attr_key]) f.close() matching_sim = self._retrieve_supported_sim() if matching_sim is not None: for attr in matching_sim._attrlist: if hasattr(self, attr): try: a = _passively_decode_string(getattr(self, attr)) b = _passively_decode_string(getattr(matching_sim, attr)) assert np.all(a == b) except AssertionError: msg = ("The ``" + attr + "`` metadata of the hdf5 file \n" "is inconsistent with the corresponding attribute of the \n" + matching_sim.__class__.__name__ + " class in the " "sim_manager.supported_sims module.\n" "Double-check the value of this attribute in the \n" "NbodySimulation sub-class you added to the supported_sims module. \n" ) raise HalotoolsError(msg) else: setattr(self, attr, getattr(matching_sim, attr)) def _retrieve_supported_sim(self): """ """ matching_sim = None for clname in supported_sims.__all__: try: cl = getattr(supported_sims, clname) obj = cl() if isinstance(obj, supported_sims.NbodySimulation): if compare_strings_py23_safe(self.simname, obj.simname): matching_sim = obj except TypeError: pass return matching_sim @property def ptcl_table(self): """ Astropy `~astropy.table.Table` object storing a collection of ~1e6 randomly selected dark matter particles. """ try: return self._ptcl_table except AttributeError: try: ptcl_log_entry = self.ptcl_log_entry except AttributeError: self.ptcl_log_entry = ( self._retrieve_matching_ptcl_cache_log_entry() ) ptcl_log_entry = self.ptcl_log_entry if ptcl_log_entry.safe_for_cache is True: self._ptcl_table = Table.read(_passively_decode_string(ptcl_log_entry.fname), path='data') return self._ptcl_table else: raise InvalidCacheLogEntry(ptcl_log_entry._cache_safety_message) def _disallow_catalogs_with_known_bugs(self, simname=sim_defaults.default_simname, version_name=sim_defaults.default_version_name, **kwargs): """ """ if (simname == 'bolplanck') and ('halotools_alpha_version' in version_name): msg = ("The ``{0}`` version of the ``{1}`` simulation \n" "is known to be spatially incomplete and should not be used.\n" "See https://github.com/astropy/halotools/issues/598.\n" "You can either download the original ASCII data and process it yourself, \n" "or use version_name = ``halotools_v0p4`` instead.\n") raise HalotoolsError(msg.format(version_name, simname))
python
import unittest, os import cuisine USER = os.popen("whoami").read()[:-1] class Text(unittest.TestCase): def testEnsureLine( self ): some_text = "foo" some_text = cuisine.text_ensure_line(some_text, "bar") assert some_text == 'foo\nbar' some_text = cuisine.text_ensure_line(some_text, "bar") assert some_text == 'foo\nbar' class Users(unittest.TestCase): def testUserCheck( self ): user_data = cuisine.user_check(USER) print "USER_DATA", user_data class Files(unittest.TestCase): def testB( self ): cuisine.file_read("/etc/passwd") def testC( self ): pass class Packages(unittest.TestCase): def testInstall( self ): pass #with cuisine.mode_sudo(): # cuisine.package_ensure("tmux") class SSHKeys(unittest.TestCase): def testKeygen( self ): if cuisine.ssh_keygen(USER): print "SSH keys already there" else: print "SSH keys created" def testAuthorize( self ): key = "ssh-dss XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX= user@cuisine""" cuisine.ssh_authorize(USER, key) # FIXME: Should check that the key is present, and only one if __name__ == "__main__": # We bypass fabric as we want the tests to be run locally cuisine.mode_local() unittest.main() # EOF
python
import math import numpy as np from utils.functions.math.coordinate_trans import coordinate_transformation_in_angle def circle_make(center_x, center_y, radius): ''' Create circle matrix(2D) Parameters ------- center_x : float in meters the center position of the circle coordinate x center_y : float in meters the center position of the circle coordinate y radius : float in meters Returns ------- circle x : numpy.ndarray circle y : numpy.ndarray ''' point_num = 100 circle_xs = [] circle_ys = [] for i in range(point_num + 1): circle_xs.append(center_x + radius * math.cos(i*2*math.pi/point_num)) circle_ys.append(center_y + radius * math.sin(i*2*math.pi/point_num)) return np.array(circle_xs), np.array(circle_ys) def circle_make_with_angles(center_x, center_y, radius, angle): ''' Create circle matrix with angle line matrix(2D) Parameters ------- center_x : float in meters the center position of the circle coordinate x center_y : float in meters the center position of the circle coordinate y radius : float in meters angle : float in radians Returns ------- circle xs : numpy.ndarray circle ys : numpy.ndarray angle line xs : numpy.ndarray angle line ys : numpy.ndarray ''' point_num = 100 circle_xs = [] circle_ys = [] for i in range(point_num + 1): circle_xs.append(center_x + radius * math.cos(i*2*math.pi/point_num)) circle_ys.append(center_y + radius * math.sin(i*2*math.pi/point_num)) angle_line_xs = [center_x, center_x + math.cos(angle) * radius] angle_line_ys = [center_y, center_y + math.sin(angle) * radius] return np.array(circle_xs), np.array(circle_ys), np.array(angle_line_xs), np.array(angle_line_ys) def square_make_with_angles(center_x, center_y, size, angle): ''' Create square matrix with angle line matrix(2D) Parameters ------- center_x : float in meters the center x position of the square center_y : float in meters the center y position of the square size : float in meters the square's half-size angle : float in radians Returns ------- square xs : numpy.ndarray lenght is 5 (counterclockwise from right-up) square ys : numpy.ndarray length is 5 (counterclockwise from right-up) angle line xs : numpy.ndarray angle line ys : numpy.ndarray ''' # start with the up right points # create point in counterclockwise square_xys = np.array([[size, size], [-size, size], [-size, -size], [size, -size], [size, size]]) trans_points = coordinate_transformation_in_angle(square_xys.T, -angle) # this is inverse type trans_points += np.array([[center_x], [center_y]]) square_xs = trans_points[0, :] square_ys = trans_points[1, :] angle_line_xs = [center_x, center_x + math.cos(angle) * size] angle_line_ys = [center_y, center_y + math.sin(angle) * size] return square_xs, square_ys, np.array(angle_line_xs), np.array(angle_line_ys)
python