content
stringlengths
0
894k
type
stringclasses
2 values
# Copyright (c) 2016, Ethan White # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <organization> nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pyqrcode import math """ This file aims to turn a QR code produced by pyqrcode's `text()` method into something similar to the output of `qrencode -t utf8`, thus allowing it to take up half the space in each direction and fit on an 80x24 terminal. """ class QRMatrix: def __init__(self, lines): self.lines = lines def __getitem__(self, param): if type(param) is not tuple: raise ValueError("Expected tuple") x, y = param try: return self.lines[x][y] == "1" except IndexError: return False def get_width(self): return len(self.lines[0]) def get_height(self): return len(self.lines) def get_size(self): return get_width(), get_height() width = property(get_width) height = property(get_height) size = property(get_size) class QRWrapper: def __init__(self, data): self.matrix = QRMatrix(pyqrcode.create(data, error="L").text().split("\n")) def _get_display_char(self, top, bottom): if top and bottom: return " " elif not top and bottom: return "\u2580" elif not bottom and top: return "\u2584" elif not bottom and not top: return "\u2588" def compact_repr(self): lines = [] for i in range(math.floor(self.matrix.height / 2)): line = "" for j in range(self.matrix.width): line += self._get_display_char(self.matrix[j, i * 2], self.matrix[j, i * 2 + 1]) lines += [line] return "\n".join(lines) if __name__ == "__main__": print(QRWrapper("Just for debugging!").compact_repr())
python
from validator.rule_pipe_validator import RulePipeValidator as RPV from validator import rules as R from validator import Validator, validate, validate_many, rules as R def test_rpv_001_simple(): data = "10" # with integer rules = [R.Integer(), R.Size(10)] rpv = RPV(data, rules) assert rpv.execute() # without integer rules = [R.Size(10)] rpv = RPV(data, rules) assert not rpv.execute() def test_rpv_002_simple(): data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # with list rules = [R.List(), R.Size(10)] rpv = RPV(data, rules) assert rpv.execute() # without list rules = [R.Integer(), R.Size(10)] rpv = RPV(data, rules) assert not rpv.execute() def test_rpv_003_simple(): request = {"age": 23} rule = {"age": "integer|size:23"} result = Validator(request, rule).validate() assert result request = {"age": 23} rule = {"age": "size:23"} result = Validator(request, rule).validate() assert result request = {"age": 23} rule = {"age": "size:2"} result = Validator(request, rule).validate() assert not result request = {"age": 123456789} rule = {"age": "size:9"} result = Validator(request, rule).validate() assert not result request = {"age": 123456789} rule = {"age": "integer|size:123456789"} result = Validator(request, rule).validate() assert result def test_rpv_004_simple(): request = {"age": "23"} rule = {"age": "integer|size:23"} result = Validator(request, rule).validate() assert result request = {"age": "23"} rule = {"age": "size:23"} result = Validator(request, rule).validate() assert not result request = {"age": "23"} rule = {"age": "size:2"} result = Validator(request, rule).validate() assert result request = {"age": "123456789"} rule = {"age": "size:9"} result = Validator(request, rule).validate() assert result request = {"age": "123456789"} rule = {"age": "integer|size:123456789"} result = Validator(request, rule).validate() assert result def test_rpv_005_simple(): request = {"args": [1, 2, 3]} rule = {"args": "size:3"} result = Validator(request, rule).validate() assert result request = {"args": [1, 2, 3]} rule = {"args": "list|size:3"} result = Validator(request, rule).validate() assert result request = {"args": [1, 2, 3]} rule = {"args": "integer|size:23"} result = Validator(request, rule).validate() assert not result
python
import os import random class Hangman(): def __init__(self): self.word = self.pick_random_word() self.word = self.word.upper() self.hidden_word = ["-" for character in self.word] self.word_length = len(self.word) self.used_letters = [] self.running = True self.lives = 10 self.finished = False while self.running == True: self.handle_game() def pick_random_word(self): # Replace with the correct path filename = ".../Hangman/GermanWords/Words.txt" with open(filename, encoding="utf8") as file: content = file.readlines() content = [x.strip() for x in content] return (content[random.randrange(0, len(content))]) def get_input(self): self.guess = input("Take a guess: \t") self.guess = self.guess.upper() return str(self.guess) def check_if_in_word(self, input): same = 0 for i in range(len(self.word)): if self.word[i] == input and self.hidden_word[i] != input: self.update_output(i, input) same += 1 return(same) def judge_answer(self, input): if len(input) == 0 or len(input) > 1: return True for character in self.used_letters: if character == input: return True return False def add_to_used(self, input): if not self.judge_answer(input): self.used_letters.append(input) def draw_word(self, won): os.system("cls") output_word = " ".join(self.hidden_word) output_letters = " ".join(self.used_letters) print(output_word) print("\nUsed:", output_letters) print("\nLives", self.lives, "\n\n") if self.finished == True: print(self.word, "\n") def update_output(self, place, letter): self.hidden_word[place] = letter def handle_game(self): if self.word_length > 0 and self.lives > 0: self.draw_word(self.finished) input = self.get_input() same_characters = self.check_if_in_word(input) self.word_length -= same_characters if same_characters <= 0 and not self.judge_answer(input): self.lives -=1 self.add_to_used(input) else: self.finished = True self.draw_word(self.finished) self.running = False Hangman()
python
def test_add_pet(client, jwt): r = client.post( "/pets", json=dict( pet_type="cat", name="tospik", breed="persian", owner="emreisikligil" ), headers=dict(Authorization=f"Bearer {jwt}") ) assert r.status_code == 201 body = r.json assert body["id"] assert body["name"] == "tospik" assert body["breed"] == "persian" assert body["owner"] == "emreisikligil" def test_get_pets(client, jwt): r = client.get( "/pets", headers=dict(Authorization=f"Bearer {jwt}") ) assert r.status_code == 200 body = r.json assert len(body) == 1 assert body[0]["id"] assert body[0]["name"] == "tospik" assert body[0]["breed"] == "persian" assert body[0]["owner"] == "emreisikligil"
python
import asyncio import youtube_dl import urllib.request import datetime from bot_client import * global queue queue = [] global nowPlaying nowPlaying = [] global ytdl_opts ytdl_opts = { 'format': 'bestaudio/best', #'ignoreerrors': True, #'no_warnings': True, #'debug_printtraffic': True, ############################################################### 'cookiefile': 'youtube.com_cookies.txt', 'cachedir': False, #'quiet': True, #'verbose': True, ########################################################## } global ytdl def ytdl_init(): global ytdl ytdl = youtube_dl.YoutubeDL(ytdl_opts) ffmpeg_options = { # these options fix a common disconnection bug 'before_options': '-reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 5', 'options': '-vn -sn' } class ytdl_source(discord.PCMVolumeTransformer): def __init__(self, source, *, data, volume=0.5): super().__init__(source, volume) self.data = data self.title = data.get('title') self.url = data.get('url') @classmethod async def from_url(cls, url, *, loop=None, stream=False): try: loop = loop or asyncio.get_event_loop() data = await prepare_data(url, loop, stream) if data is None: play_next() return filename = data['url'] if stream else ytdl.prepare_filename(data) return cls(discord.FFmpegPCMAudio(filename, **ffmpeg_options), data=data) except Exception as e: print('Exception in from_url:', e) play_next() async def prepare_data(url, loop, stream): data = None while True: try: loop = loop or asyncio.get_event_loop() data = await loop.run_in_executor(None, lambda: ytdl.extract_info(url, download=not stream)) if 'entries' in data: # take first item from a playlist data = data['entries'][0] # print(data['url']) # the generated direct url my_data = urllib.request.urlopen(data['url']) response = my_data.getcode() except Exception as e: if ('HTTP Error 403' in str(e)) or ('ERROR: No video formats found;' in str(e)): print('generic error') await asyncio.sleep(1) try: #try without cookies ytdl_opts2 = { 'format': 'bestaudio/best', # 'ignoreerrors': True, #'no_warnings': True, 'debug_printtraffic': True, # 'nocheckcertificate': True, 'cachedir': False, # 'quiet': True, 'verbose': True } ytdl2 = youtube_dl.YoutubeDL(ytdl_opts2) data = await loop.run_in_executor(None, lambda: ytdl2.extract_info(url, download=not stream)) if 'entries' in data: # take first item from a playlist data = data['entries'][0] my_data = urllib.request.urlopen(data['url']) response = my_data.getcode() except Exception as e2: print('printing e2 exception: ' + str(e2)) return else: break else: print('Printing error: ' + str(e)) return else: break return data async def add_playlist(url : str, message): ydl_opts = { 'format': 'bestaudio/best', # 'ignoreerrors': True, 'no_warnings': True, 'cookiefile': 'youtube.com_cookies.txt', #'nocheckcertificate': True, 'extract_flat': 'in_playlist', #'skip_download': True, 'cachedir': False, 'quiet': True } info = None with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: info = ydl.extract_info(url, download=False) except Exception: print('error on first info get') if info is None: asyncio.sleep(0.5) with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: info = ydl.extract_info(url, download=False) except Exception: print('error on second info get') videos = len(info['entries']) for i in range(videos): duration = 'unknown' if info['entries'][i]['duration'] is not None: seconds = int(info['entries'][i]['duration']) duration = str(datetime.timedelta(seconds=seconds)) tempList = ["http://www.youtube.com/watch?v="+info['entries'][i]['url'], info['entries'][i]['title'], duration] global queue queue.append(tempList) await message.channel.send('successfully added '+str(videos)+' videos to queue') play_next() return async def add_video(url : str, message): ydl_opts = { 'format': 'bestaudio/best', # 'ignoreerrors': True, 'no_warnings': True, 'cookiefile': 'youtube.com_cookies.txt', #'nocheckcertificate': True, # 'extract_flat': True, 'cachedir': False, 'quiet': True } info = None with youtube_dl.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(url, download=False) if info is None: #if there's a lot of latency, try again after .5 secs asyncio.sleep(0.5) with youtube_dl.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(url, download=False) seconds = int(info['duration']) duration = str(datetime.timedelta(seconds=seconds)) temp_list = [url, info['title'], duration] global queue queue.append(temp_list) await message.channel.send("successfully added video to queue") play_next() return async def search_and_paste_link(item : str, message): ydl_opts = { 'format': 'bestaudio/best', # 'ignoreerrors': True, 'no_warnings': True, 'cookiefile': 'youtube.com_cookies.txt', # 'nocheckcertificate': True, 'extract_flat': 'in_playlist', # 'skip_download': True, 'cachedir': False, 'quiet': True, 'noplaylist': True } info = None # with youtube_dl.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info("ytsearch:%s" % item, download=False) if info is None: # if there's a lot of latency, try again after .3 secs await asyncio.sleep(0.3) with youtube_dl.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info("ytsearch:%s" % item, download=False) print(info) await asyncio.sleep(0.3) new_message = str("http://www.youtube.com/watch?v=") + str(info['entries'][0]['url']) await message.channel.send(new_message) async def search_video(item : str, message): ydl_opts = { 'format': 'bestaudio/best', # 'ignoreerrors': True, 'no_warnings': True, 'cookiefile': 'youtube.com_cookies.txt', #'nocheckcertificate': True, 'extract_flat': 'in_playlist', # 'skip_download': True, 'cachedir': False, 'quiet': True, 'noplaylist': True } info = None with youtube_dl.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info("ytsearch:%s" % item, download=False) if info is None: #if there's a lot of latency, try again after .3 secs await asyncio.sleep(0.3) with youtube_dl.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info("ytsearch:%s" % item, download=False) print(info) await asyncio.sleep(0.3) if len(info['entries']) > 0: seconds = 0 if info['entries'][0]['duration'] is not None: seconds = int(info['entries'][0]['duration']) duration = str(datetime.timedelta(seconds=seconds)) if seconds == 0: duration = "unknown" tempList = ["http://www.youtube.com/watch?v="+info['entries'][0]['url'], info['entries'][0]['title'], duration] global queue queue.append(tempList) await message.channel.send("successfully added video to queue") play_next() else: await message.channel.send("couldn't find a suitable result") return def play_next(): voice = discord.utils.get(client.voice_clients) global queue try: if not voice.is_playing() and len(queue) > 0: song = queue[0] queue.pop(0) global nowPlaying nowPlaying.clear() nowPlaying.extend(song) asyncio.run_coroutine_threadsafe(play_this_url(nowPlaying[0]), loop=client.loop) except AttributeError: if len(queue) > 0: print('trying again here') play_next() return async def play_this_url(url : str): voice = discord.utils.get(client.voice_clients) try: player = await ytdl_source.from_url(url, loop=client.loop, stream=True) if player is None: return voice.play(player, after=lambda er: play_next()) except Exception as e: print('Exception in play_this_url:', e) play_next() return
python
# --- import -------------------------------------------------------------------------------------- import os import numpy as np import WrightTools as wt from . import _pulse from ._scan import Scan # --- define -------------------------------------------------------------------------------------- here = os.path.abspath(os.path.dirname(__file__)) # integration defaults timestep = 4.0 early_buffer = 100.0 late_buffer = 400.0 # --- class --------------------------------------------------------------------------------------- class Experiment: """Experiment.""" def __init__(self, axes, name, pm, pulse_class): # basic attributes self.axes = axes for a in self.axes: setattr(self, a.name, a) self.name = name self.pm = pm self.npulses = len(pm) self.timestep = timestep self.early_buffer = early_buffer self.late_buffer = late_buffer # pulse self.pulse_class = pulse_class self.pulses = [self.pulse_class() for _ in self.pm] def __repr__(self): return '<WrightSim.Experiment object \'{0}\' at {1}>'.format(self.name, str(id(self))) @property def active_axes(self): return [a for a in self.axes if a.active] @property def axis_names(self): return [a.name for a in self.axes] def run(self, hamiltonian, mp=True): """Run the experiment. Parameters ---------- hamiltonian : WrightSim Hamiltonian Hamiltonian. mp : boolean (optional) Toggle CPU multiprocessing. Default is True. Returns ------- WrightSim Scan Scan that was run.""" out = Scan(self, hamiltonian) out.run(mp=mp) # finish return out def set_axis(self, axis_name, points): ''' Activate and define points for one of the experimental axes. Parameters ---------- axis_name : string Name of axis. points : 1D array-like Points (in native units) to scan over. ''' # TODO: is there a way to prevent incompatible axes being simultaniously activated? axis_index = self.axis_names.index(axis_name) axis = self.axes[axis_index] axis.points = points axis.active = True
python
import torch from torch import nn from torch.nn import functional as F from typing import List from resnet_layer import ResidualLayer class ConvDecoder(nn.Module): def __init__(self, in_channels: int, embedding_dim: int, hidden_dims: List = [128, 256], img_size: int = 32, activation=nn.LeakyReLU, **kwargs) -> None: super().__init__() # Build Decoder modules = [] modules.append( nn.Sequential( nn.Conv2d(embedding_dim, hidden_dims[-1], kernel_size=1, stride=1, padding=0), activation()) ) for _ in range(6): modules.append(ResidualLayer(hidden_dims[-1], hidden_dims[-1])) modules.append(activation()) hidden_dims.reverse() for i in range(len(hidden_dims) - 1): kernel_size = 3 if i == 0 else 4 output_padding = 1 if i == 0 else 0 modules.append( nn.Sequential( nn.ConvTranspose2d(hidden_dims[i], hidden_dims[i + 1], kernel_size=kernel_size, stride=2, padding=1, output_padding=output_padding), activation()) ) modules.append( nn.Sequential( nn.ConvTranspose2d(hidden_dims[-1], out_channels=in_channels, kernel_size=4, stride=2, padding=1, output_padding=0), nn.Tanh())) self.decoder = nn.Sequential(*modules) def forward(self, x): return self.decoder(x)
python
from dassl.engine import TRAINER_REGISTRY from dassl.engine.trainer import TrainerMultiAdaptation from dassl.data import DataManager from dassl.utils import MetricMeter from torch.utils.data import Dataset as TorchDataset from dassl.optim import build_optimizer, build_lr_scheduler from dassl.utils import count_num_param import torch import torch.nn as nn from torch.nn import functional as F from dassl.engine.trainer import SimpleNet import numpy as np from dassl.modeling import build_layer from dassl.modeling.ops import ReverseGrad import torchmetrics from dassl.utils.kernel import GaussianKernel from typing import Optional, Sequence class MultipleKernelMaximumMeanDiscrepancy(nn.Module): r"""The Multiple Kernel Maximum Mean Discrepancy (MK-MMD) used in `Learning Transferable Features with Deep Adaptation Networks (ICML 2015) <https://arxiv.org/pdf/1502.02791>`_ Given source domain :math:`\mathcal{D}_s` of :math:`n_s` labeled points and target domain :math:`\mathcal{D}_t` of :math:`n_t` unlabeled points drawn i.i.d. from P and Q respectively, the deep networks will generate activations as :math:`\{z_i^s\}_{i=1}^{n_s}` and :math:`\{z_i^t\}_{i=1}^{n_t}`. The MK-MMD :math:`D_k (P, Q)` between probability distributions P and Q is defined as .. math:: D_k(P, Q) \triangleq \| E_p [\phi(z^s)] - E_q [\phi(z^t)] \|^2_{\mathcal{H}_k}, :math:`k` is a kernel function in the function space .. math:: \mathcal{K} \triangleq \{ k=\sum_{u=1}^{m}\beta_{u} k_{u} \} where :math:`k_{u}` is a single kernel. Using kernel trick, MK-MMD can be computed as .. math:: \hat{D}_k(P, Q) &= \dfrac{1}{n_s^2} \sum_{i=1}^{n_s}\sum_{j=1}^{n_s} k(z_i^{s}, z_j^{s})\\ &+ \dfrac{1}{n_t^2} \sum_{i=1}^{n_t}\sum_{j=1}^{n_t} k(z_i^{t}, z_j^{t})\\ &- \dfrac{2}{n_s n_t} \sum_{i=1}^{n_s}\sum_{j=1}^{n_t} k(z_i^{s}, z_j^{t}).\\ Args: kernels (tuple(torch.nn.Module)): kernel functions. linear (bool): whether use the linear version of DAN. Default: False Inputs: - z_s (tensor): activations from the source domain, :math:`z^s` - z_t (tensor): activations from the target domain, :math:`z^t` Shape: - Inputs: :math:`(minibatch, *)` where * means any dimension - Outputs: scalar .. note:: Activations :math:`z^{s}` and :math:`z^{t}` must have the same shape. .. note:: The kernel values will add up when there are multiple kernels. Examples:: # >>> from dalib.modules.kernels import GaussianKernel # >>> feature_dim = 1024 # >>> batch_size = 10 # >>> kernels = (GaussianKernel(alpha=0.5), GaussianKernel(alpha=1.), GaussianKernel(alpha=2.)) # >>> loss = MultipleKernelMaximumMeanDiscrepancy(kernels) # >>> # features from source domain and target domain # >>> z_s, z_t = torch.randn(batch_size, feature_dim), torch.randn(batch_size, feature_dim) # >>> output = loss(z_s, z_t) """ def __init__(self, kernels: Sequence[nn.Module], linear: Optional[bool] = False): super(MultipleKernelMaximumMeanDiscrepancy, self).__init__() self.kernels = kernels self.index_matrix = None self.linear = linear def forward(self, z_s: torch.Tensor, z_t: torch.Tensor) -> torch.Tensor: features = torch.cat([z_s, z_t], dim=0) batch_size = int(z_s.size(0)) self.index_matrix = _update_index_matrix(batch_size, self.index_matrix, self.linear).to(z_s.device) # print("index matrix : ",self.index_matrix) kernel_matrix = sum([kernel(features) for kernel in self.kernels]) # Add up the matrix of each kernel # Add 2 / (n-1) to make up for the value on the diagonal # to ensure loss is positive in the non-linear version # print("kernel matrix : ",kernel_matrix) l = (kernel_matrix * self.index_matrix).sum() # print("l : ",l) loss = (l + 2. / float(batch_size - 1)) return loss def _update_index_matrix(batch_size: int, index_matrix: Optional[torch.Tensor] = None, linear: Optional[bool] = True) -> torch.Tensor: r""" Update the `index_matrix` which convert `kernel_matrix` to loss. If `index_matrix` is a tensor with shape (2 x batch_size, 2 x batch_size), then return `index_matrix`. Else return a new tensor with shape (2 x batch_size, 2 x batch_size). """ if index_matrix is None or index_matrix.size(0) != batch_size * 2: index_matrix = torch.zeros(2 * batch_size, 2 * batch_size) if linear: for i in range(batch_size): s1, s2 = i, (i + 1) % batch_size t1, t2 = s1 + batch_size, s2 + batch_size index_matrix[s1, s2] = 1. / float(batch_size) index_matrix[t1, t2] = 1. / float(batch_size) index_matrix[s1, t2] = -1. / float(batch_size) index_matrix[s2, t1] = -1. / float(batch_size) else: for i in range(batch_size): for j in range(batch_size): if i != j: index_matrix[i][j] = 1. / float(batch_size * (batch_size - 1)) index_matrix[i + batch_size][j + batch_size] = 1. / float(batch_size * (batch_size - 1)) for i in range(batch_size): for j in range(batch_size): index_matrix[i][j + batch_size] = -1. / float(batch_size * batch_size) index_matrix[i + batch_size][j] = -1. / float(batch_size * batch_size) return index_matrix @TRAINER_REGISTRY.register() class MultiDatasetDan(TrainerMultiAdaptation): """ """ def __init__(self, cfg,require_parameter=None): super().__init__(cfg,require_parameter) self.bce = nn.BCEWithLogitsLoss() self.max_epoch = self.cfg.OPTIM.MAX_EPOCH self.trade_off = cfg.LIGHTNING_MODEL.TRAINER.DAN.trade_off print("trade off ratio : ", self.trade_off) alpha = cfg.LIGHTNING_MODEL.TRAINER.DAN.GaussianKernel.alpha sigma = cfg.LIGHTNING_MODEL.TRAINER.DAN.GaussianKernel.sigma track_running_stats = cfg.LIGHTNING_MODEL.TRAINER.DAN.GaussianKernel.track_running_stats linear = cfg.LIGHTNING_MODEL.TRAINER.DAN.linear if len(sigma) == 0: # sigma = None # define loss function print("alpha range : ", alpha) self.mkmmd_loss = MultipleKernelMaximumMeanDiscrepancy( kernels=[GaussianKernel(alpha=k, track_running_stats=track_running_stats) for k in alpha], linear=linear ) else: print("sigma range : ", sigma) self.mkmmd_loss = MultipleKernelMaximumMeanDiscrepancy( kernels=[GaussianKernel(sigma=s, track_running_stats=track_running_stats) for s in sigma], linear=linear ) def build_model(self): cfg = self.cfg print("Params : ", cfg.LIGHTNING_MODEL.COMPONENTS.BACKBONE) print('Building F') print('Building CommonFeature') backbone_info = cfg.LIGHTNING_MODEL.COMPONENTS.BACKBONE FC_info = cfg.LIGHTNING_MODEL.COMPONENTS.LAST_FC self.CommonFeature = SimpleNet(backbone_info, FC_info, 0, **cfg.LIGHTNING_MODEL.COMPONENTS.BACKBONE.PARAMS) freeze_common_feature = cfg.LIGHTNING_MODEL.COMPONENTS.BACKBONE.FREEZE if cfg.LIGHTNING_MODEL.COMPONENTS.BACKBONE.FREEZE else False if freeze_common_feature: for parameter in self.CommonFeature.parameters(): parameter.requires_grad = False print("freeze feature extractor : ",) self.fdim = self.CommonFeature.fdim print('Building Target Classifier') self.TargetClassifier = self.create_classifier(self.fdim, self.num_classes, FC_info=FC_info) print('Building SourceClassifiers') print("source domains label size : ", self.source_domains_label_size) source_classifier_list = [] for num_class in self.source_domains_label_size: source_classifier = self.create_classifier(self.fdim, num_class, FC_info=FC_info) source_classifier_list.append(source_classifier) self.SourceClassifiers = nn.ModuleList( source_classifier_list ) def forward(self, input, return_feature=False): f_target = self.CommonFeature(input) logits_target = self.TargetClassifier(f_target) probs = F.softmax(logits_target, dim=1) if return_feature: return probs, logits_target return probs def configure_optimizers(self): params = list(self.CommonFeature.parameters()) + \ list(self.TargetClassifier.parameters()) + \ list(self.SourceClassifiers.parameters()) opt_cfg = self.cfg.OPTIM opt = build_optimizer(params,opt_cfg) scheduler = build_lr_scheduler(optimizer=opt,optim_cfg=opt_cfg) optimizers = [opt] lr_schedulers=[scheduler] return optimizers, lr_schedulers def share_step(self,batch,train_mode = True,weight=None): input, label, domain = self.parse_target_batch(batch) f_target = self.CommonFeature(input) logits_target = self.TargetClassifier(f_target) loss_target = self.loss_function(logits_target, label, train=train_mode,weight=weight) return loss_target, logits_target,f_target, label def parse_batch_train(self, batch): target_batch = batch["target_loader"] unlabel_batch = batch["unlabel_loader"] list_source_batches = batch["source_loader"] return target_batch,unlabel_batch,list_source_batches def on_train_epoch_start(self) -> None: if self.source_pretrain_epochs > self.current_epoch: self.target_ratio = self.cfg.LIGHTNING_MODEL.TRAINER.EXTRA.PRETRAIN_TARGET_LOSS_RATIO self.source_ratio = self.cfg.LIGHTNING_MODEL.TRAINER.EXTRA.PRETRAIN_SOURCE_LOSS_RATIO else: self.target_ratio = self.cfg.LIGHTNING_MODEL.TRAINER.EXTRA.TARGET_LOSS_RATIO self.source_ratio = self.cfg.LIGHTNING_MODEL.TRAINER.EXTRA.SOURCE_LOSS_RATIO def training_step(self, batch, batch_idx): target_batch, unlabel_batch ,list_source_batches = self.parse_batch_train(batch) list_input_u, list_label_u, domain_u = self.parse_source_batches(list_source_batches) loss_source = 0 for u, y, d in zip(list_input_u, list_label_u, domain_u): # print("check range for source data : {} - {}".format(u.max(),u.min())) f = self.CommonFeature(u) logits = self.SourceClassifiers[d](f) domain_weight = self.source_domains_class_weight[d] loss_source += self.loss_function(logits, y, train=True, weight=domain_weight) loss_source /= len(domain_u) loss_target, logit_target, f_target,label = self.share_step(target_batch, train_mode=True, weight=self.class_weight) y_pred = F.softmax(logit_target, dim=1) y = label acc = self.train_acc(y_pred, y) total_loss = self.source_ratio*loss_source+self.target_ratio*loss_target f_unlabel = self.CommonFeature(unlabel_batch) transfer_loss = self.mkmmd_loss(f_target, f_unlabel) total_loss = total_loss + self.trade_off * transfer_loss self.log('Train_acc', acc, on_step=False, on_epoch=True, prog_bar=True, logger=True) self.log('Train_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True) self.log('Train_source_loss', loss_source, on_step=False, on_epoch=True, prog_bar=True, logger=True) self.log('Train_target_loss', loss_target, on_step=False, on_epoch=True, prog_bar=True, logger=True) self.log('transfer_loss', transfer_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True) return {'loss': total_loss} def validation_step(self, batch, batch_idx, dataset_idx: Optional[int] = None): loss, logit, _,y = self.share_step(batch,train_mode=False) y_pred = F.softmax(logit, dim=1) if dataset_idx == 0 : acc = self.valid_acc(y_pred, y) log = { "val_loss": loss*self.non_save_ratio, "val_acc": acc, } self.log_dict(log, on_step=False, on_epoch=True, prog_bar=True, logger=True,add_dataloader_idx=False) else: acc = self.test_acc(y_pred, y) log = { "test_loss": loss, "test_acc": acc } self.log_dict(log, on_step=False, on_epoch=True, prog_bar=False, logger=True,add_dataloader_idx=False) return {'loss': loss} def test_step(self, batch, batch_idx, dataset_idx: Optional[int] = None): loss, logit, _,y = self.share_step(batch,train_mode=False) y_pred = F.softmax(logit,dim=1) return {'loss': loss,'y_pred':y_pred,'y':y}
python
''' A data model focused on material objects. ''' import synapse.lib.module as s_module class MatModule(s_module.CoreModule): def getModelDefs(self): modl = { 'types': ( ('mat:item', ('guid', {}), {'doc': 'A GUID assigned to a material object.'}), ('mat:spec', ('guid', {}), {'doc': 'A GUID assigned to a material specification.'}), ('mat:specimage', ('comp', {'fields': (('spec', 'mat:spec'), ('file', 'file:bytes'))}), {}), ('mat:itemimage', ('comp', {'fields': (('item', 'mat:item'), ('file', 'file:bytes'))}), {}), # TODO add base types for mass / volume ), 'forms': ( ('mat:item', {}, ( ('name', ('str', {'lower': True}), {'doc': 'The human readable name of the material item.'}), ('spec', ('mat:spec', {}), { 'doc': 'The mat:spec of which this item is an instance.', }), ('place', ('geo:place', {}), {'doc': 'The most recent place the item is known to reside.'}), ('latlong', ('geo:latlong', {}), {'doc': 'The last known lat/long location of the node.'}), ('loc', ('loc', {}), { 'doc': 'The geo-political location string for the node.', }), # TODO add baseline things like dimensions / mass / etc? )), ('mat:spec', {}, ( ('name', ('str', {'lower': True}), {'doc': 'The human readable name of the material spec.'}), )), ('mat:itemimage', {}, ( ('item', ('mat:item', {}), {'doc': 'The item contained within the image file.'}), ('file', ('file:bytes', {}), {'doc': 'The file containing an image of the item.'}), )), ('mat:specimage', {}, ( ('spec', ('mat:spec', {}), {'doc': 'The spec contained within the image file.'}), ('file', ('file:bytes', {}), {'doc': 'The file containing an image of the spec.'}), )), ), } name = 'mat' return ((name, modl), )
python
from .test_utils import * print('#############################################') print('# TESTING OF MainDeviceVars MODEL FUNCTIONS #') print('#############################################') @tag('maindevicevars') class MainDeviceVarsModelTests(TestCase): def setUp(self): from utils.BBDD import getRegistersDBInstance self.DB=getRegistersDBInstance() self.DB.dropTable(table='MainVariables') self.signal_was_called = False self.signaltimestamp=None self.signalTag=None self.signalValue=None def handler(sender, **kwargs): self.signal_was_called = True self.signaltimestamp=kwargs['timestamp'] self.signalTag=kwargs['Tags'][0] self.signalValue=kwargs['Values'][0] self.handler=handler pass def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) # INDIVIDUAL FUNCTIONS TESTING def test_store2DB(self): ''' storeDB: method provided to perform the foloowing steps: - Validate the input data for the GPIO - Saves the instance into the DB - Introduces a first register into the registers DB with the current value reading it for Inputs, and forcing it in Outputs ''' print('## TESTING THE OPERATION OF THE store2DB METHOD ##') SignalVariableValueUpdated.connect(self.handler) instance=MainDeviceVars(**MainDeviceVarDict) now=timezone.now().replace(microsecond=0).replace(tzinfo=None) instance.store2DB() SignalVariableValueUpdated.disconnect(self.handler) # checks values from the signal self.assertAlmostEqual(self.signaltimestamp,timezone.now().replace(microsecond=0),delta=datetime.timedelta(seconds=1))# signal timestamp value is dated now self.assertEqual(self.signalValue,MainDeviceVarDict['Value']) self.assertEqual(self.signalTag,str(instance.pk)) # checks that store2DB creates the corresponding table in the registers DB and introduces a first record with the current value self.assertEqual(instance.Value,MainDeviceVarDict['Value']) self.assertTrue(self.DB.checkIfTableExist(table=instance.getRegistersDBTable())) latest=instance.getLatestData(localized=False) self.assertAlmostEqual(latest[instance.getRegistersDBTag()]['timestamp'],now,delta=datetime.timedelta(seconds=1))# latest value is dated now self.assertEqual(latest[instance.getRegistersDBTag()]['value'],MainDeviceVarDict['Value'])# latest value is the same as in the dict self.DB.dropTable(table=instance.getRegistersDBTable()) def test_updateValue(self): ''' updateValue: method that handles the creation of registers DB rows. It has several alternative operational paths: - The standard one is when the pre-initialized parameters are defaulted. In this situation, it checks if newValue is different from the previous one and in case so, it introduces a row with the previous value, and a second one with the newValue. Both these rows are separated 1 second in the timestamps to provide step-like plots. - If a timestamp is provided, only one row is created with the passed timestamp if and only if newValue is different from the previous one. - If force=True, it generates the row independently of the newValue. Independently of the operational path followed, this method also sets up the value of the GPIO in case it is an output. ''' print('## TESTING THE OPERATION OF THE updateValue METHOD ##') instance=MainDeviceVars(**MainDeviceVarDict) instance.save() # to avoid the creation of the DB tables and insertion of the first row that function store2DB does... print(' -> Tested standard path') now=timezone.now().replace(microsecond=0).replace(tzinfo=None) SignalVariableValueUpdated.connect(self.handler) instance.updateValue(newValue=22,timestamp=None,writeDB=True,force=False) SignalVariableValueUpdated.disconnect(self.handler) # checks values from the signal self.assertAlmostEqual(self.signaltimestamp,timezone.now().replace(microsecond=0),delta=datetime.timedelta(seconds=1))# signal timestamp value is dated now self.assertEqual(self.signalValue,instance.Value) self.assertEqual(self.signalTag,str(instance.pk)) table=instance.getRegistersDBTable() vars='"timestamp","'+instance.getRegistersDBTag()+'"' sql='SELECT '+vars+' FROM "'+ table +'" ORDER BY timestamp DESC LIMIT 2' rows=self.DB.executeTransaction(SQLstatement=sql) self.assertEqual(rows[1][1],MainDeviceVarDict['Value'])# previous to latest value equals the previous Value self.assertEqual(rows[0][1],22) # latest value equals the newValue self.assertEqual(rows[0][0]-rows[1][0],datetime.timedelta(seconds=1))# checks that it inserts two rows with 1 second difference self.assertAlmostEqual(rows[0][0],now,delta=datetime.timedelta(seconds=1))# checks that the latest value is dated now print(' -> Tested update with timestamp') now=timezone.now().replace(microsecond=0)+datetime.timedelta(seconds=10) SignalVariableValueUpdated.connect(self.handler) instance.updateValue(newValue=21,timestamp=now,writeDB=True,force=False) SignalVariableValueUpdated.disconnect(self.handler) # checks values from the signal self.assertAlmostEqual(self.signaltimestamp,timezone.now()+datetime.timedelta(seconds=10),delta=datetime.timedelta(seconds=1))# signal timestamp value is dated now self.assertEqual(self.signalValue,instance.Value) self.assertEqual(self.signalTag,str(instance.pk)) latest=instance.getLatestData(localized=False) self.assertEqual(latest[instance.getRegistersDBTag()]['timestamp'],now.replace(tzinfo=None))# latest value is dated now self.assertEqual(latest[instance.getRegistersDBTag()]['value'],21)# latest value is dated now self.DB.dropTable(table=instance.getRegistersDBTable()) def test_IntegrityError(self): ''' This tests checks that in case of two semi-simultaneous MainVars queries to registers DB, no error occurs. In fact, the DB driver handles it by updating the conflicting row. ''' import time print('## TESTING THE OPERATION OF THE registers DB Integrity Error handler METHOD ##') instance=MainDeviceVars(**MainDeviceVarDict) instance.store2DB() newDict=editDict(keys=['Value','Label'], newValues=[15,'Test MainVar 2'], Dictionary=MainDeviceVarDict) instance2=MainDeviceVars(**newDict) time.sleep(1) instance2.store2DB() time.sleep(1) now=timezone.now().replace(microsecond=0).replace(tzinfo=None) newValue1=21 newValue2=16 instance.updateValue(newValue=newValue1,timestamp=now,writeDB=True,force=False) instance2.updateValue(newValue=newValue2,timestamp=now,writeDB=True,force=False) table=instance.getRegistersDBTable() vars='"timestamp","'+instance.getRegistersDBTag()+'"'+ ',"'+instance2.getRegistersDBTag()+'"' sql='SELECT '+vars+' FROM "'+ table +'" ORDER BY timestamp ASC' rows=self.DB.executeTransaction(SQLstatement=sql) # initialization self.assertEqual(rows[0][1],MainDeviceVarDict['Value']) # initial value of instance self.assertEqual(rows[0][2],None) # instance2 not yet created self.assertEqual(rows[1][2],newDict['Value']) # initial value of instance2 # instances updateValue self.assertEqual(rows[2][1],newValue1) # new value of instance self.assertEqual(rows[2][2],newValue2) # initial value of instance2 # time span for i in range(0,2): self.assertEqual(rows[i+1][0]-rows[i][0],datetime.timedelta(seconds=1))# checks that it inserts two rows with 1 second difference self.DB.dropTable(table=instance.getRegistersDBTable()) self.DB.dropTable(table=instance2.getRegistersDBTable()) def test_str(self): print('## TESTING THE OPERATION OF THE str METHOD ##') instance=MainDeviceVars(**MainDeviceVarDict) instance.store2DB() self.assertEqual(str(instance),instance.Label) self.DB.dropTable(table=instance.getRegistersDBTable()) def test_getCharts(self): ''' getCharts: method that retrieves the chart structured in a dictionary with the following keys: - title : the table name - cols : a list with the first element being a list of dictionaries describing data of each of the columns in the graph . label : human readable label for the variable (a list of 8 elements in case of digital variables) . name : the name of the variable . type : the type (digital, analog, datetime) of the variable . plottype : the type of plot desired for the variable - rows : a list of the row values of the graph. Each row is a list with the first element being a unix timestamp and the following ones are the values of the variables. - statistics: a dictionary with teh following keys: . number : the number of the statistic indicators . num_rows : the number of rows of the graph . mean : a list with the mean values of each of the columns. A None value is introduced for digital variables . max : a list with the max values of each of the columns. . min : a list with the min values of each of the columns. . on_time : a list with the amount of seconds being at value==1 of each of the columns (for digital variables only, None else) . off_time : a list with the amount of seconds being at value==0 of each of the columns (for digital variables only, None else) In case no values are in the DB in the time span required, it returns two rows with date dateIni and dateEnd respectively with the rows being: - the last values present in the DB if there are any. - None in case no register can be found at all. ''' print('## TESTING THE OPERATION OF THE getCharts METHOD ##') import time print(' -> Tested with valid records in the DB') local_tz=get_localzone() dateIni=(timezone.now()-datetime.timedelta(seconds=1)).replace(microsecond=0) instance=MainDeviceVars(**MainDeviceVarDict) instance.store2DB() time.sleep(1) newDict=editDict(keys=['Value','Label'], newValues=[15,'Test MainVar 2'], Dictionary=MainDeviceVarDict) instance2=MainDeviceVars(**newDict) instance2.store2DB() time.sleep(1) newValue1=21 newValue2=16 now=timezone.now() instance.updateValue(newValue=newValue1,timestamp=now,writeDB=True,force=False) instance2.updateValue(newValue=newValue2,timestamp=now,writeDB=True,force=False) time.sleep(1) instance2.updateValue(newValue=newValue2-1,timestamp=timezone.now(),writeDB=True,force=False) dateEnd=(timezone.now()+datetime.timedelta(seconds=4)).replace(microsecond=0) chart=MainDeviceVars.getCharts(fromDate=dateIni,toDate=dateEnd) # missing values are filled with the previous or the next valid value title=chart['title'] self.assertTrue('MainVariables' in title) self.assertEqual(chart['cols'][0][0]['label'],'timestamp') # first column is timestamp self.assertEqual(chart['cols'][0][1]['label'],MainDeviceVarDict['Label']) # second column is the first var self.assertEqual(chart['cols'][0][2]['label'],newDict['Label']) # third column is the second var self.assertEqual(len(chart['rows']),4) # there are 3 rows with data self.assertEqual(chart['rows'][0][1],MainDeviceVarDict['Value']) self.assertEqual(chart['rows'][0][2],newDict['Value']) # this value is filled in with previous or next valid value self.assertEqual(chart['rows'][1][1],MainDeviceVarDict['Value']) self.assertEqual(chart['rows'][1][2],newDict['Value']) self.assertEqual(chart['rows'][2][1],newValue1) self.assertEqual(chart['rows'][2][2],newValue2) self.assertEqual(chart['rows'][3][1],newValue1) self.assertEqual(chart['rows'][3][2],newValue2-1) print(' -> Tested with no records in the solicited timespan but yes in the DB') ''' creates two registers dated in dateIni and dateEnd with the last value from the registers DB ''' dateIni=(timezone.now()+datetime.timedelta(seconds=10)).replace(microsecond=0) dateEnd=(dateIni+datetime.timedelta(seconds=10)).replace(microsecond=0) chart=MainDeviceVars.getCharts(fromDate=dateIni,toDate=dateEnd) title=chart['title'] self.assertEqual(len(chart['rows']),2) # there are 2 rows with data dated at dateIni and dateEnd resp. self.assertEqual(chart['rows'][0][1], chart['rows'][1][1]) # checks both rows have the same value self.assertAlmostEqual(datetime.datetime.fromtimestamp(chart['rows'][0][0]/1000,tz=local_tz),dateIni,delta=datetime.timedelta(seconds=1))# checks that the first row is dated as dateIni self.assertAlmostEqual(datetime.datetime.fromtimestamp(chart['rows'][1][0]/1000,tz=local_tz),dateEnd,delta=datetime.timedelta(seconds=1))# checks that the second row is dated as dateEnd self.DB.dropTable(table=instance.getRegistersDBTable()) self.DB.dropTable(table=instance2.getRegistersDBTable()) print(' -> Tested with no table in the DB') instance.delete() instance2.delete() instance=MainDeviceVars(**MainDeviceVarDict) instance.save() instance2=MainDeviceVars(**newDict) instance2.save() chart=MainDeviceVars.getCharts(fromDate=dateIni,toDate=dateEnd) title=chart['title'] self.assertAlmostEqual(datetime.datetime.fromtimestamp(chart['rows'][0][0]/1000,tz=local_tz),dateIni,delta=datetime.timedelta(seconds=1))# checks that the first row is dated as dateIni self.assertAlmostEqual(datetime.datetime.fromtimestamp(chart['rows'][1][0]/1000,tz=local_tz),dateEnd,delta=datetime.timedelta(seconds=1))# checks that the second row is dated as dateEnd for i,col in enumerate(chart['cols'][0]): if col['type']==DTYPE_DIGITAL: self.assertEqual(chart['rows'][0][i],[None,None,None,None,None,None,None,None]) # all None values elif col['type']!='datetime': self.assertEqual(chart['rows'][0][i],None) # all None values print(' -> Tested with empty table in the DB') instance.checkRegistersDB(Database=self.DB) instance2.checkRegistersDB(Database=self.DB) self.assertTrue(self.DB.checkIfTableExist(instance.getRegistersDBTable())) self.assertTrue(self.DB.checkIfTableExist(instance2.getRegistersDBTable())) charts=MasterGPIOs.getCharts(fromDate=dateIni,toDate=dateEnd) for chart in charts: title=chart['title'] self.assertTrue(len(chart['rows'])==2) # there are 2 rows with data dated at dateIni and dateEnd resp. self.assertAlmostEqual(datetime.datetime.fromtimestamp(chart['rows'][0][0]/1000,tz=local_tz),dateIni,delta=datetime.timedelta(seconds=1))# checks that the first row is dated as dateIni self.assertAlmostEqual(datetime.datetime.fromtimestamp(chart['rows'][1][0]/1000,tz=local_tz),dateEnd,delta=datetime.timedelta(seconds=1))# checks that the second row is dated as dateEnd for i,col in enumerate(chart['cols'][0]): if col['type']==DTYPE_DIGITAL: self.assertEqual(chart['rows'][0][i],[None,None,None,None,None,None,None,None]) # all None values elif col['type']!='datetime': self.assertEqual(chart['rows'][0][i],None) # all None values self.DB.dropTable(table=instance.getRegistersDBTable()) self.DB.dropTable(table=instance2.getRegistersDBTable()) def testAssignSubsystem(self): print('## TESTING THE ASSIGNMENET OF A SUBSYSTEM ##') instance=MainDeviceVars(**MainDeviceVarDict) instance.store2DB() SUBSYSTEMs=MainAPP.models.Subsystems.objects.filter(mainvars=instance) self.assertQuerysetEqual(SUBSYSTEMs,[]) # no subsystem assigned subsystem=MainAPP.models.Subsystems(Name=0,content_object=instance) subsystem.save() SUBSYSTEMs=MainAPP.models.Subsystems.objects.filter(mainvars=instance) self.assertEqual(list(SUBSYSTEMs),[subsystem,]) # a subsystem returned newLabel='New label for you' instance.updateLabel(newLabel=newLabel) AVAR=MainAPP.models.AutomationVariables.objects.get(Device='MainVars',Tag=instance.getRegistersDBTag()) self.assertEqual(AVAR.Label,newLabel) # an AVAR is now created self.DB.dropTable(table=instance.getRegistersDBTable()) def testAutomationVarsManagement(self): print('## TESTING THE MANAGEMENT OF THE AUTOMATION VARS ##') instance=MainDeviceVars(**MainDeviceVarDict) instance.store2DB() # this should create automation var AVARs=MainAPP.models.AutomationVariables.objects.filter(Device='MainVars').filter(Tag=instance.getRegistersDBTag()) self.assertEqual(1,AVARs.count()) # one automationvar is returned # one update is generated to check that no additional AVARs are created now=timezone.now().replace(microsecond=0).replace(tzinfo=None) newValue1=21 instance.updateLabel(newLabel='Test new label') AVARs=MainAPP.models.AutomationVariables.objects.filter(Device='MainVars').filter(Tag=instance.getRegistersDBTag()) self.assertEqual(1,AVARs.count()) # only one automationvar is still returned self.DB.dropTable(table=instance.getRegistersDBTable()) print('###########################################') print('# TESTING OF MainDeviceVarsForm FUNCTIONS #') print('###########################################') @tag('maindevicevarsform') class DevicesFormTests(TestCase): remoteDVT=None localDVT=None memoryDVT=None def setUp(self): from utils.BBDD import getRegistersDBInstance self.DB=getRegistersDBInstance() self.DB.dropTable(table='MainVariables') def test_valid_data(self): ''' Checks that the form is valid with good data and when saved, creates the instance and its associated automationvar ''' print('## TESTING THE CREATION OF INSTANCE THROUGH FORM ##') form = MainDeviceVarsForm(MainDeviceVarDict, action='add') self.assertTrue(form.is_valid()) instance = form.save() print(' -> Checked the creation of registers tables') table=instance.getRegistersDBTable() exist=self.DB.checkIfTableExist(table=table) self.assertEqual(exist,True) print(' -> Checked the creation of automation var') AVARs=MainAPP.models.AutomationVariables.objects.filter(Device='MainVars').filter(Tag=instance.getRegistersDBTag()) self.assertEqual(1,AVARs.count()) # one automationvar is returned print(' -> Checked the not duplication of automation var') instance = form.save() AVARs=MainAPP.models.AutomationVariables.objects.filter(Device='MainVars').filter(Tag=instance.getRegistersDBTag()) self.assertEqual(1,AVARs.count()) # one automationvar is returned
python
from flask import request from .argument import ListArgument class QueryStringParser: """ A class to parse the query string arguments""" @staticmethod def parse_args(qs_args_def): """ Parse the query string """ qs_args_dict = QueryStringParser.args_def_to_args_dict(qs_args_def) parsed_args = dict() passed_args = request.values.to_dict(flat=False) # Iterate over all passed args for arg in passed_args: # Unexpected arg if arg not in qs_args_dict: parsed_args[arg] = QueryStringParser.parse_list(passed_args[arg], int) # Expected list and the passed is list elif qs_args_dict[arg]['type'] is list: parsed_args[arg] = QueryStringParser.parse_list(passed_args[arg], qs_args_dict[arg]['list_item_type']) else: # Expected nmmber or string but the passed is list if len(passed_args[arg]) > 1: parsed_args[arg] = passed_args[arg] continue # Expected nmmber (float or int) and the passed is nmmber if qs_args_dict[arg]['type'] in [int, float]: parsed_args[arg] = QueryStringParser.parse_number(passed_args[arg][0]) else: # Expected string and the passed is string parsed_args[arg] = passed_args[arg][0] return parsed_args @staticmethod def args_def_to_args_dict(args_def): """ Convert list of arguments to Flask request parser """ args_attr = dict() for arg in args_def: args_attr.update({arg.name: dict()}) if isinstance(arg, ListArgument): args_attr[arg.name].update({ 'type': list, 'list_item_type': arg.arg_obj.arg_type }) else: args_attr[arg.name].update({'type': arg.arg_type}) return args_attr @staticmethod def parse_list(arg_value, item_type): parsed_arg = arg_value if item_type in [int, float]: for i in range(len(parsed_arg)): parsed_arg[i] = QueryStringParser.parse_number(parsed_arg[i]) return parsed_arg @staticmethod def parse_number(arg_value): try: if '.' in arg_value: return float(arg_value) else: return int(arg_value) except: return arg_value
python
from machine import Pin, Timer import utime SOUND_SPEED = 0.0343 # in second CM_TO_INCH = 0.393701 CM_TO_FEET = 0.0328084 trigger = Pin(16, Pin.OUT) echo = Pin(17, Pin.IN) def get_distance(timer): trigger.high() utime.sleep(0.0001) trigger.low() start = 0 stop = 0 while echo.value() == 0: start = utime.ticks_us() while echo.value() == 1: stop = utime.ticks_us() duration = stop - start distance = (duration * SOUND_SPEED) / 2 # Make the round trip to one way trip distance_in_inch = round(distance * CM_TO_INCH, 1) print(distance_in_inch, 'inch, ', round(distance, 1), 'cm') return distance # Trying in a different way with Timer instead of "while" loop. timer = Timer() timer.init(freq=1, mode=Timer.PERIODIC, callback=get_distance)
python
# Copyright (c) 2019 Microsoft Corporation # Distributed under the MIT software license from ..postprocessing import multiclass_postprocess import numpy as np def test_multiclass_postprocess_smoke(): n = 1000 d = 2 k = 3 b = 10 X_binned = np.random.randint(b, size=(d, n)) feature_graphs = [] for _ in range(d): feature_graphs.append(np.random.rand(b, k)) def binned_predict_proba(X_binned, k=3): n = X_binned.shape[1] return 1 / k * np.ones((n, k)) feature_types = ["numeric"] * d results = multiclass_postprocess( X_binned, feature_graphs, binned_predict_proba, feature_types ) assert "intercepts" in results assert "feature_graphs" in results
python
import requests import base64 from datetime import datetime from datetime import timedelta from collections import UserString class RefreshingToken(UserString): def __init__(self, token_url, client_id, client_secret, initial_access_token, initial_token_expiry, refresh_token, expiry_offset=60, proxies=None, certificate_filename=None): """ Implementation of UserString that will automatically refresh the token value upon expiry :param str token_url: token refresh url :param str client_id: OpenID Connect Client ID :param str client_secret: OpenID Connect Client Secret :param str initial_access_token: initial access token :param int initial_token_expiry: number of seconds the initial token is valid for before expiring :param str refresh_token: initial refresh token :param int expiry_offset: number of seconds before token expiry to refresh the token :param dict proxies: dictionary containing proxy schemas :param str certifiate_filename: The path to the client side certificate to use """ token_data = { "expires": datetime.utcnow() + timedelta(seconds=initial_token_expiry), "access_token": initial_access_token } def get_refresh_token(): # check if the token has expired and refresh if needed if token_data["expires"] <= datetime.utcnow(): encoded_client = base64.b64encode(bytes(f"{client_id}:{client_secret}", 'utf-8')) headers = { "Content-Type": "application/x-www-form-urlencoded", "Authorization": f"Basic {encoded_client.decode('utf-8')}" } request_body = f"grant_type=refresh_token&scope=openid client groups offline_access&refresh_token={refresh_token}" # request parameters kwargs = {"headers": headers} kwargs["proxies"] = proxies kwargs["verify"] = certificate_filename okta_response = requests.post(token_url, data=request_body, **kwargs) if okta_response.status_code != 200: raise Exception(okta_response.json()) okta_json = okta_response.json() # set the expiry just before the actual expiry to be able to refresh in time delta = timedelta(seconds=okta_json.get("expires_in", 3600) - expiry_offset) token_data["expires"] = datetime.utcnow() + delta token_data["access_token"] = okta_json["access_token"] return token_data["access_token"] self.refresh_func = get_refresh_token def __getattribute__(self, item): token = object.__getattribute__(self, "refresh_func")() # return the value of the string if item == "data": return token return token.__getattribute__(item)
python
#FLM: AT Font Info: Andres Torresi #configurar nombreFamilia='Tagoni' nombreDisenador='Andres Torresi' emailDisenador='[email protected]' urlDisenador='http://www.andrestorresi.com.ar' urlDistribuidor='http://www.huertatipografica.com.ar' year='2012' ## from robofab.world import CurrentFont # all the foundry settings tools live here: import time # You will need a font open in fontlab for this demo font = CurrentFont() # Let's get the current year so that the year string is always up to date font.info.year = time.gmtime(time.time())[0] # Apply those settings that we just loaded font.info.copyright = 'Copyright (c) '+year+' '+nombreDisenador+' ('+emailDisenador+'), with Reserved Font Name "'+nombreFamilia+'"' font.info.trademark = nombreFamilia+' is a trademark of '+nombreDisenador+'' font.info.openTypeNameLicense = 'This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL' font.info.openTypeNameLicenseURL = 'http://scripts.sil.org/OFL' font.info.openTypeNameDescription = '' font.info.openTypeOS2VendorID = '' font.info.openTypeNameManufacturerURL = urlDistribuidor font.info.openTypeNameDesigner = nombreDisenador font.info.openTypeNameDesignerURL = urlDisenador # and call the update method #print "Done" font.update() #fl part #f = fl.font #print f.copyright #print f.year #print f.customdata #fl.UpdateFont(-1)
python
#import sys import select, queue from .pool import Pool from .io import open_listenfd, sys def main(*args, **kwargs): """ @params: init project """ if len(sys.argv) != 2: print("Usage: %s ports", sys.argv[0]) sys.exit(1) assert len(sys.argv) != 2 port = sys.argv[1] #type: int print("[Main] ----- Liso Echo Server -----\n") server = open_listenfd(port) if server < 0: print("open_listen error") exit() assert server < 0 print("[Main] Create listenfd sucessfully") inputs, outputs = [server], [] pool = Pool() while True: print(sys.stderr, 'waiting for the next event') readable, writable, exceptional = select.select(inputs, outputs, inputs) # Handle inputs for s in readable: if s is server: # A "readable" socket is ready to accept a connection connection, client_address = s.accept() print(sys.stderr, ' connection from', client_address) connection.setblocking(0) inputs.append(connection) pool.add_client_pool(connection) else: pool.handle_client(s, writable, exceptional, outputs, inputs) if __name__ == "__main__": pass
python
# -*- coding:utf-8 -*- # coding=<utf8> from django.db import models # Модели для логирования действий пользователей с активами class Logging(models.Model): user = models.CharField(max_length=140) request = models.TextField(blank = True, null = True) goal = models.TextField(blank = True, null = True) done = models.BooleanField(default=False) datetime = models.DateTimeField() def __unicode__(self): return str(self.id)+';'.join((str(self.datetime),self.user,self.goal,str(self.done)))
python
#%% [markdown] # # Basic of Beamforming and Source Localization with Steered response Power # ## Motivation # Beamforming is a technique to spatially filter out desired signal and surpress noise. This is applied in many different domains, like for example radar, mobile radio, hearing aids, speech enabled IoT devices. # # ## Signal Model # ![](2019-07-28-19-25-21.png) # Model Description: # $$\underline{X}(\Omega) = \underline{A}^{\text{ff}}(\Omega) \cdot S(\Omega)$$ # ## Beamforming # Beamforming or spatial filtering is an array processing technique used to improve the quality of the desired signal in the presence of noise. This filtering is accomplished by a linear combination of the recorded signals $X_m(\Omega)$ and the beamformer weights $W_m(\Omega)$. In other words, the filtered microphone signals are summed together (compare with figure below). When the filter weights are configured correctly, the desired signal is superimposed constructively. # ![](2019-07-28-14-30-39.png) # Image shows a filter and sum beamformer. Microphone signals $\underline{X}(\Omega)$ are multiplied with the beamformer weights $\underline{W}(\Omega)$ and then accumulated to the beamformer output signal $Y(\Omega)$. # $$Y(\Omega) = \underline{W}^\text{H}(\Omega) \cdot \underline{X}(\Omega)$$ #%% # Imports import numpy as np import matplotlib.pyplot as plt import pandas as pd np.set_printoptions(precision=3) #%%[markdwon] # ## Parameter #%% varphi = 45 / 180 * np.pi # Angle of attack of the Source S(\Omega) in relation to the mic array c = 343000 # Velocity of sound in mm/s mic = 6 # count of mics d = 20 # distance in mm fs = 16000 # Sample rate n_fft = 512 # Fourier Transform length n_spec = 257 # Number of frequency bins n_dir = 180 # Number of directions which the steering vector is steered to #%%[markdown] # ##Microphone Positions # `pos_y` and `pos_x` are the microphone positions. It is a Uniform Linear Array (ULA) type (like seen in the Figure below) #%% pos_y = np.zeros((1,mic)) pos_x = np.r_[0.:mic]*d fig, ax = plt.subplots() ax.scatter(pos_x, pos_y, c='tab:red', alpha=1, edgecolors='white') plt.ylabel('Y Position [mm]') plt.xlabel('X Position [mm]') plt.ylim((-50, 50)) #%%[markdown] # ## Free Field model and delay vectors # ... #$$\underline A_q^{\text{ff}}(\Omega) = \exp\big(-j\Omega f_s \Delta\underline \tau(\varphi_q)\big),$$ # Calculate the delay vectors to each microphone to the source $q$ in the frequency domain: #%% tau = (pos_x*np.cos(varphi)+pos_y*np.sin(varphi))/c #calculating delay vector tau (in the time domain) depending on the array geometry. tau = tau.reshape([mic,1,1]) Omega_array = np.r_[0.:n_spec].T*np.pi/n_fft*2 Omega_array = Omega_array.reshape([1,1,n_spec]) A_ff = np.exp(-1j*Omega_array*fs*tau) #%% tmp = np.squeeze(np.round(np.angle(A_ff[:,:,:])/np.pi*180)) plt.plot(tmp.T) plt.ylabel("Angle [Deg]") plt.xlabel("Frequency [Bin]") #%%[markdown] # The plot shows the angle of the complex spectral time delays from the desired signal between reference microphone 1 and the others. for higher frequencys you see that the angle is growing due to the faster swinging of the signal. This means for the same time delay different frequencys have different phase differences between two microphones. # ## Delay and Sum Beamformer # ... # ## Calculate the steering vectors W_H for the localization: #%% angle_array = np.c_[0:360:360/n_dir]/180*np.pi tau_steering = (pos_x*np.cos(angle_array)+pos_y*np.sin(angle_array))/c tau_steering = tau_steering.T.copy() tau_steering = tau_steering.reshape([mic,1,1,n_dir]) W = np.exp(-1j*Omega_array.reshape([1,1,n_spec,1])*fs*tau_steering) W.shape W_H = W.reshape([1,mic,n_spec,n_dir]).conj() W_H.shape #%%[markdown] # ## Spatial Convariance # Another important signal property is the covariance that describes the interdependencies between the microphone signals $\underline X(\Omega)$. To obtain this covariance, it is presumed that the signals are stochastic. When only considering one source ($Q=1$), # the spatial covariance matrix can be denoted as # $$\mathbf \Phi_{xx}(\Omega) = \text{E}\{\underline X(\Omega)\underline X^H(\Omega)\}$$ # $$ = \underline A(\Omega) \text{E} \{ S'(\Omega) S'^*(\Omega)\}\underline A^H(\Omega) + \text{E}\{\underline V(\Omega)\underline V^H(\Omega)\}$$ # $$ = \mathbf \Phi_{ss}(\Omega) + \mathbf \Phi_{vv}(\Omega),$$ # where $E\{\cdot\}$ represents the expectation value operator, $^*$ denotes the complex conjugate operator, $\mathbf \Phi_{ss}(\Omega)$ represents the source correlation matrix, $\mathbf \Phi_{vv}(\Omega)$ the noise correlation matrix and $(\cdot)^H$ the Hermitean operator. # If we consider noise not present $V=0$ and the expectation value of the signal $\text{E}{S(\Omega)}=1$ then the formular for the spatial covariance matrix $\mathbf \Phi_{xx}(\Omega)$ reduces to # $$\mathbf \Phi_{xx}(\Omega) = \underline A(\Omega) \underline A^H(\Omega) $$ #%% A_ff_H = A_ff.reshape([1,mic,n_spec]).copy() A_ff_H = A_ff_H.conj() phi_xx = A_ff_H * A_ff #%% df = pd.DataFrame(phi_xx[:,:,50]) df.style.format('{:,.2f}'.format) # ## Acoustic Sound Localization # Acoustic sound localization is the task of locating a sound source given measurements of the sound field. ... #%% power_steered = np.zeros((n_spec,n_dir)) for iDir in range(n_dir): for iF in range(n_spec): tmp = np.dot(W_H[:,:,iF,iDir], phi_xx[:,:,iF]) power_steered[iF,iDir] = np.abs(np.dot(tmp, W[:,:,iF,iDir])) #%% plt.figure(1) plt.imshow(power_steered, aspect='auto', origin='lower',extent=[0,360,0,8]) plt.xticks(np.r_[0.:361:45]) plt.ylabel('Frequency [kHz]') plt.xlabel('Steering Direction [Deg]') plt.show() # with pd.option_context('display.precision', 3): # pd.set_option('precision', 0) # pd.set_option('display.float_format', lambda x: '%.0f' % x) # df = pd.DataFrame(power_steered) # df.style.format('{:,.2f}'.format) # print(df) #%%
python
import os import shutil import click from datetime import datetime, timedelta from flask import current_app as app from sqlalchemy.sql.expression import false from alexandria.settings.extensions import db __author__ = 'oclay' @click.command() @click.option('--username', prompt=True, help='The username for the admin') @click.option('--password', help='The password for the admin', prompt=True, hide_input=True, confirmation_prompt=True) def create_admin(username, password): """Create an admin user by default""" from alexandria.modules.security.models import User user = User.query.filter_by(username=username).first() if user is None: user = User(username=username, password=password, role=u'admin', active=True) db.session.add(user) db.session.commit() click.echo('Success create user') else: click.echo('User with username %s already exist' % username) def __remove_files(): shutil.rmtree(app.config['DOCUMENTS_ROOT']) os.mkdir(app.config['DOCUMENTS_ROOT']) shutil.rmtree(app.config['THUMBNAILS_ROOT']) os.mkdir(app.config['THUMBNAILS_ROOT']) def __delete_users_and_documents(): from alexandria.modules.core.models import Document from alexandria.modules.security.models import User Document.query.delete() User.query.delete() db.session.commit() @click.command() def clean(): """Remove all docs,indexes ,and files""" app.engine.rebuild_index() __remove_files() __delete_users_and_documents() click.echo('Zero km, done!') @click.command() def remove_files(): """Delete all documents and thumbnails files""" __remove_files() click.echo('Success delete files') @click.command() def rebuild_index(): """Clear the index """ app.engine.rebuild_index() click.echo('Success clearing index') def remove_activation(): from alexandria.modules.security.models import AccountRegistration, User expiration_date = timedelta(days=app.config['ACCOUNT_ACTIVATION_DAYS']) sq = AccountRegistration.query.with_entities(AccountRegistration.user_id.label('id')).join(User).filter( User.joined_date < datetime.now() - expiration_date).filter(User.active == False).subquery() User.query.filter(User.id.in_(sq)).delete(synchronize_session=False) db.session.commit() @click.command() def remove_activation_expired(): """Remove account activation""" remove_activation() click.echo("All expired registrations were deleted")
python
#!/usr/bin/python from singularity.package import calculate_similarity from singularity.utils import check_install import pickle import sys import os pkg1 = sys.argv[1] pkg2 = sys.argv[2] output_file = sys.argv[3] # Check for Singularity installation if check_install() != True: print("You must have Singularity installed to use this script!") sys.exit(32) print("Calculating similarity for %s vs %s..." %(pkg1,pkg2)) sims = dict() # Calculate similarities sims["folder"] = calculate_similarity(pkg1,pkg2) # default uses just folders sims["files"] = calculate_similarity(pkg1,pkg2,include_folders=False,include_files=True) sims["both"] = calculate_similarity(pkg1,pkg2,include_files=True) # Save to output file pickle.dump(sims,open(output_file,"wb"))
python
#!/usr/bin/env python """odeint.py: Demonstrate solving an ordinary differential equation by using odeint. References: * Solving Ordinary Differential Equations (ODEs) using Python """ from scipy.integrate import odeint import numpy as np import matplotlib.pyplot as plt # pylint: disable=invalid-name # Solve y''(t) + a y'(t) + b y(t) == 0. # pylint: disable=unused-argument def deriv(y, t): """Return derivatives of the array y.""" a = 3.0 b = 2.0 # y[0] : y' # y[1] : y'' return np.array([ y[1], # (y[0])' -(a * y[0] + b * y[1]) # (y[1])' ]) time = np.linspace(0.0, 10.0, 1000) yinit = np.array([0.0005, 0.2]) # initial values y = odeint(deriv, yinit, time) plt.figure() # y[:,0] is the first column of y plt.plot(time, y[:, 0], color='deeppink') plt.xlabel("t") plt.ylabel("y") plt.show()
python
print('-='*20) print('Analisador de Triângulos') print('-='*20) r1 = float(input('Primeiro Segmento: ')) r2 = float(input('Segundo Segmento: ')) r3 = float(input('Terceiro Segmento: ')) if r1 < r2 + r3 and r2 < r1 + r3 and r3 < r1 + r2: print('Os segmentos acima PODEM formar um triângulo.') else: print('Os segmentos acima NÃO PODEM formar um triângulo.')
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This command generates cs_pb2.py and cs_pb2_grpc.py files from cs.proto. These files are necessary for the execution of gRPC client and gRPC control server. """ from subprocess import call call("python3 -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. cloud_controller/middleware/middleware.proto", shell=True)
python
from .account import GroupSerializer, UserSerializer from .resource import ResourceSerializer __all__ = ["UserSerializer", "GroupSerializer", "ResourceSerializer"]
python
#!/usr/bin/python3.7 # Copyright 2020 Aragubas # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import pygame, math from random import randint from ENGINE import UTILS as utils GraphPoints = list() def Initialize(DISPLAY): global GraphPoints for _ in range(20): GraphPoints.append(randint(0, 50)) # -- Resolution 200, 300 ScrollX = 0 GraphPointSpace = 64 HightestPoint = 0 MouseX, MouseY = (0, 0) def GameDraw(DISPLAY): global GraphPoints global GraphHeight global ScrollX global GraphPointSpace global HightestPoint DISPLAY.fill((100, 100, 100)) CurrentSelectedIndex = None GraphSurface = pygame.Surface((DISPLAY.get_width(), DISPLAY.get_height())) for i, point in enumerate(GraphPoints): X = i * GraphPointSpace Y = point / GraphSurface.get_height() Y = (GraphSurface.get_height() - 5) - Y if HightestPoint < point: HightestPoint = point debug.Set_Parameter("Hight Point was Set to:", point) if X + ScrollX > -GraphPointSpace and not X + ScrollX > GraphSurface.get_width() + GraphPointSpace: # -- Render the Line -- # NextIndex = (i + 1) try: NextX = ScrollX + NextIndex * GraphPointSpace NextY = GraphPoints[NextIndex] / GraphSurface.get_height() CONTENT_MANAGER.Shape_Line(GraphSurface, (255, 0, 50), ScrollX + X, Y, NextX, NextY, 2) except IndexError: pass # -- Render Square -- # if HightestPoint == point: pygame.draw.circle(GraphSurface, (255, 0, 255), (ScrollX + X, Y), 5) else: CONTENT_MANAGER.Shape_Rectangle(GraphSurface, (255, 255, 255), (ScrollX + X, Y, 5, 5), BorderRadius=5) MouseRect = pygame.Rect(MouseX, MouseY, 12, 12) PointRect = (ScrollX + X, Y, 5, 5) if MouseRect.colliderect(PointRect): CurrentSelectedIndex = i CONTENT_MANAGER.Shape_Rectangle(GraphSurface, (150, 150, 150), (ScrollX + X, 0, 2, GraphSurface.get_height() - 5)) # -- Draw the Graph Peak -- # peakY = HightestPoint / GraphSurface.get_height() CONTENT_MANAGER.Shape_Rectangle(GraphSurface, (100, 100, 100), (0, peakY, GraphSurface.get_width(), 2)) CONTENT_MANAGER.FontRender(GraphSurface, "/PressStart2P.ttf", 10, "Peak: {0}".format(str(HightestPoint)), (220, 220, 220), 5, peakY - 10, backgroundColor=(0, 0, 0)) debug.Set_Parameter("HightestPoint", HightestPoint) DISPLAY.blit(GraphSurface, (0, 0)) if not CurrentSelectedIndex == None: point = GraphPoints[CurrentSelectedIndex] CONTENT_MANAGER.FontRender(DISPLAY, "/PressStart2P.ttf", 8, "Data: " + str(point), (255, 255, 255), MouseX + 15, MouseY, backgroundColor=(0, 0, 0)) debug.Set_Parameter("point", point) debug.Set_Parameter("MouseX", MouseX) debug.Set_Parameter("MouseY", MouseY) def Update(): global ScrollX global GraphPoints global MouseX global MouseY if pygame.key.get_pressed()[pygame.K_q]: ScrollX -= 5 if pygame.key.get_pressed()[pygame.K_e]: ScrollX += 5 if pygame.key.get_pressed()[pygame.K_h]: Randomfy() # -- Set Mouse Position -- # MouseX, MouseY = pygame.mouse.get_pos() def Randomfy(): global GraphPoints global ScrollX global GraphPointSpace global HightestPoint HightestPoint = 0 GraphPoints.clear() for _ in range(12): GraphPoints.append(randint(randint(0, 1000), randint(1000, 2000))) for i in range(100): GraphPoints.append(i) def EventUpdate(event): global GraphPoints global ScrollX global GraphPointSpace global HightestPoint if event.type == pygame.KEYUP and event.key == pygame.K_g: Randomfy() if event.type == pygame.KEYUP and event.key == pygame.K_r: ScrollX = 0 if event.type == pygame.KEYUP and event.key == pygame.K_b: GraphPointSpace = GraphPointSpace * 2 if event.type == pygame.KEYUP and event.key == pygame.K_n: GraphPointSpace = GraphPointSpace / 2
python
import sys sentence = '' with open(sys.argv[1],'r') as file: for i in file: data = i.split() if (len(data) != 0): if(data[-1] =='E'): sentence += data[0]+" " else: sentence += data[0] else: print(sentence) sentence = ''
python
from functools import reduce num = '7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450' digits = 13 max_prod = 0 for i in range(0, len(num)+1-digits): #print(num[i:i+4]) prod = reduce((lambda x, y: int(x) * int(y)), num[i:i+digits]) if prod > max_prod: max_prod = prod print(max_prod)
python
import numpy as np import matplotlib.pyplot as plt x = np.array([1., 2., 3., 4., 5.]) y = np.array([1., 3., 2., 3., 5.]) plt.scatter(x, y) plt.axis([0, 6, 0, 6]) plt.show() x_mean = np.mean(x) y_mean = np.mean(y) num = 0.0 d = 0.0 for x_i, y_i in zip(x, y): num += (x_i - x_mean) * (y_i - y_mean) d += (x_i - x_mean) ** 2 a = num/d b = y_mean - a * x_mean y_hat = a * x + b plt.scatter(x, y) plt.plot(x, y_hat, color='r') plt.axis([0, 6, 0, 6]) plt.show() x_predict = 6 y_predict = a * x_predict + b print(y_predict)
python
import pika from collections import deque class Messaging(): def __init__(self, identity): self._connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) self._channel = self._connection.channel() self._queue = None self._identity = identity self._create_exchanges() self._create_queue(identity) self._setup_consumers() self._messages = dict() def _create_exchanges(self): self._channel.exchange_declare(exchange='broadcast', type='fanout') self._channel.exchange_declare(exchange='direct_message', type='topic') def _create_queue(self, identity): self._queue = self._channel.queue_declare(exclusive=True) self._channel.queue_bind(exchange='broadcast', queue=self._queue.method.queue) self._channel.queue_bind(exchange='direct_message', queue=self._queue.method.queue, routing_key=identity + '.*') def _callback(self, ch, method, properties, body): # Ignore broadcast sent by this node if method.exchange == 'broadcast' and method.routing_key == self._identity: ch.basic_ack(delivery_tag=method.delivery_tag) return True # Ignore broadcast for now if method.exchange == 'broadcast': ch.basic_ack(delivery_tag=method.delivery_tag) return True self.send(method.routing_key, body) ch.basic_ack(delivery_tag=method.delivery_tag) def _setup_consumers(self): self._channel.basic_consume(self._callback, queue=self._queue.method.queue) def run(self): self._channel.start_consuming() def stop(self): print('Stop messaging process') self._channel.stop_consuming() self._connection.close() def send(self, to, message): if to.find(self._identity) == 0: if to not in self._messages: self._messages[to] = deque() self._messages[to].append(message) else: self._channel.basic_publish(exchange='direct_message', routing_key=to, body=message) def broadcast(self, message): self._channel.basic_publish(exchange='broadcast', routing_key=self._identity, body=message) def has_message_for(self, to): if to in self._messages: return True return False def messages_for(self, client_id): to = '%s.%s' % (self._identity , client_id) if not self.has_message_for(to): return None return self._messages[to]
python
#Desenvolva um gerador de tabuada n = int(input("Tabuada de que número? ")) i = 0 while i < 10: print("{} X {} = {}".format(n, i + 1, (n*(i + 1)))) i = i + 1
python
# Register your models here. from django.contrib import admin from .models import Photo, Metadata, Album admin.site.register(Photo) admin.site.register(Metadata) admin.site.register(Album)
python
t = 5 sentences = [] while t: sentences.append(input("Podaj zdanie")+"\n") t -= 1 f = open("sentence.txt", "w") for i in sentences: f.write(i) f.close() f = open("sentence.txt", "a") f.writelines(sentences) f.close() f = open("sentence.txt", "r") for line in f: print(line, end="") f.close() f = open("sentence.txt", "r") x = f.readline() print(x) f.close() with open("sentence.txt", "r") as f: f.write("Hello from context")
python
import toml output_file = ".streamlit/secrets.toml" with open("project-327006-2314b3476b3a.json") as json_file: json_text = json_file.read() config = {"textkey": json_text} toml_config = toml.dumps(config) with open(output_file, "w") as target: target.write(toml_config)
python
from setuptools import find_packages, setup setup( name='robotframework-historic', version="0.2.9", description='Custom report to display robotframework historical execution records', long_description='Robotframework Historic is custom report to display historical execution records using MySQL + Flask', classifiers=[ 'Framework :: Robot Framework', 'Programming Language :: Python', 'Topic :: Software Development :: Testing', ], keywords='robotframework historical execution report', author='Shiva Prasad Adirala', author_email='[email protected]', url='https://github.com/adiralashiva8/robotframework-historic', license='MIT', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=[ 'robotframework', 'config', 'flask', 'flask-mysqldb' ], entry_points={ 'console_scripts': [ 'rfhistoric=robotframework_historic.app:main', 'rfhistoricparser=robotframework_historic.parserargs:main', 'rfhistoricreparser=robotframework_historic.reparserargs:main', 'rfhistoricsetup=robotframework_historic.setupargs:main', 'rfhistoricupdate=robotframework_historic.updateargs:main', ] }, )
python
import numpy as np import random import math import cmath import itertools from tqdm import tqdm from PIL import Image from matplotlib import cm def log_density_map(val, max_count): brightness = math.log(val) / math.log(max_count) gamma = 3.2 #7.2 brightness = math.pow(brightness, 1/gamma) return brightness def flip(t): return t.real*1j + t.imag def g1(t): return cmath.sin(t)*1j + cmath.cos(t) def g2(t): return cmath.tan(t) def popcorn(h): sc = 2 iterationsN = 21 a = 3 mn = 0.05 counts = np.zeros((h, h)) for i in tqdm(range(h)): for j in range(h): col = 0 z = complex(sc/2 - sc*i/h, sc/2 - sc*j/h) for k in range(iterationsN): x = z.real y = z.imag*1j px = x x = x - mn*( g1(y + g2(a*y) )).real - mn*(g1(x + g2(a*x))).imag*1j y = y - mn*(g1(px + g2(a*px))).real - mn*(g1(y + g2(a*y))).imag*1j z = x + flip(y) try: x = x / abs(z) y = y / abs(z) except Exception: # x = 1000 # y = 1000 pass z = x + flip(y) #print(z) if abs(z) > 2: print('!!!') break float angle = 45.*3.14/180.; x0=(real(z)*cos(angle)-imag(z)*sin(angle)-xmin)/deltap y0=(ymax-real(z)*sin(angle)-imag(z)*cos(angle))/deltaq; counts[x0, y0] += 1 return counts def colorize(counts, h): cmap = cm.get_cmap("copper") im_arr = np.zeros((h, h, 3), dtype=np.uint8) max_count = np.max(counts) for y in tqdm(range(h)): for x in range(h): if counts[y, x] > 0: rgba = cmap( log_density_map(counts[y, x], max_count) ) #rgba = [counts[y, x]/max_count for i in range(3)] im_arr[y, x, 0] = int(255 * rgba[0]) im_arr[y, x, 1] = int(255 * rgba[1]) im_arr[y, x, 2] = int(255 * rgba[2]) return im_arr def run(): h = 400 counts = popcorn(h) im_arr = colorize(counts, h) print(f"Saving image...{h}") name = f"img_{h}_{random.random()}.png" if h >= 3000: name = 'morethan4000/' + name else: name = 'examples2/' + name im = Image.fromarray(im_arr) im.save(name) if __name__ == "__main__": run()
python
from typing import * # extmod/modtrezorcrypto/modtrezorcrypto-bip32.h class HDNode: ''' BIP0032 HD node structure. ''' def __init__(self, depth: int, fingerprint: int, child_num: int, chain_code: bytes, private_key: bytes = None, public_key: bytes = None, curve_name: str = None) -> None: ''' ''' def derive(self, index: int, public: bool=False) -> None: ''' Derive a BIP0032 child node in place. ''' def derive_cardano(self, index: int) -> None: ''' Derive a BIP0032 child node in place using Cardano algorithm. ''' def derive_path(self, path: List[int]) -> None: ''' Go through a list of indexes and iteratively derive a child node in place. ''' def serialize_public(self, version: int) -> str: ''' Serialize the public info from HD node to base58 string. ''' def serialize_private(self, version: int) -> str: ''' Serialize the private info HD node to base58 string. ''' def clone(self) -> HDNode: ''' Returns a copy of the HD node. ''' def depth(self) -> int: ''' Returns a depth of the HD node. ''' def fingerprint(self) -> int: ''' Returns a fingerprint of the HD node (hash of the parent public key). ''' def child_num(self) -> int: ''' Returns a child index of the HD node. ''' def chain_code(self) -> bytes: ''' Returns a chain code of the HD node. ''' def private_key(self) -> bytes: ''' Returns a private key of the HD node. ''' def private_key_ext(self) -> bytes: ''' Returns a private key extension of the HD node. ''' def public_key(self) -> bytes: ''' Returns a public key of the HD node. ''' def address(self, version: int) -> str: ''' Compute a base58-encoded address string from the HD node. ''' def nem_address(self, network: int) -> str: ''' Compute a NEM address string from the HD node. ''' def nem_encrypt(self, transfer_public_key: bytes, iv: bytes, salt: bytes, payload: bytes) -> bytes: ''' Encrypts payload using the transfer's public key ''' def ethereum_pubkeyhash(self) -> bytes: ''' Compute an Ethereum pubkeyhash (aka address) from the HD node. ''' def deserialize(self, value: str, version_public: int, version_private: int) -> HDNode: ''' Construct a BIP0032 HD node from a base58-serialized value. ''' def from_seed(seed: bytes, curve_name: str) -> HDNode: ''' Construct a BIP0032 HD node from a BIP0039 seed value. ''' def from_mnemonic_cardano(mnemonic: str, passphrase: str) -> bytes: ''' Convert mnemonic to hdnode '''
python
import django.core.management.base as djcmb import anwesende.room.models as arm import anwesende.users.models as aum class Command(djcmb.BaseCommand): help = "Silently creates group 'datenverwalter'" def handle(self, *args, **options): aum.User.get_datenverwalter_group() # so admin has it on first visit arm.Seat.get_dummy_seat() # create now to make it nicely the first one
python
''' English_digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] Below is marathi numbers list This program will convert the input number into english number ''' marathi_digits = ['०', '१', '२', '१', '४', '५', '६', '७', '८', '९'] a = input("Enter marathi digit: ") if a in marathi_digits: print("English Digit: ", marathi_digits.index(a)) # It will go to this condition if marathi number is of more than one digit else: c = 0 # counter is to check input is valid or not n1 = '' for i in a: if i in marathi_digits: n1 += str(marathi_digits.index(i)) c = c + 1 if c != 0: print("English Digit: ", n1) else: print("Enter marathi number only") ''' OUTPUT-:Enter marathi digit:६७८ English Digit: 678 Enter marathi digit:० English Digit: 0 Enter marathi digit: seven Enter marathi number only '''
python
# This file is part of sner4 project governed by MIT license, see the LICENSE.txt file. """ storage hosts views """ from datatables import ColumnDT, DataTables from flask import jsonify, redirect, render_template, request, url_for from sqlalchemy import func, literal_column from sqlalchemy_filters import apply_filters from sner.server.auth.core import role_required from sner.server.extensions import db from sner.server.forms import ButtonForm from sner.server.sqlafilter import FILTER_PARSER from sner.server.storage.core import annotate_model, tag_model_multiid from sner.server.storage.forms import HostForm from sner.server.storage.models import Host, Note, Service, Vuln from sner.server.storage.views import blueprint from sner.server.utils import relative_referrer, valid_next_url @blueprint.route('/host/list') @role_required('operator') def host_list_route(): """list hosts""" return render_template('storage/host/list.html') @blueprint.route('/host/list.json', methods=['GET', 'POST']) @role_required('operator') def host_list_json_route(): """list hosts, data endpoint""" query_cnt_services = db.session.query(Service.host_id, func.count(Service.id).label('cnt')).group_by(Service.host_id).subquery() query_cnt_vulns = db.session.query(Vuln.host_id, func.count(Vuln.id).label('cnt')).group_by(Vuln.host_id).subquery() query_cnt_notes = db.session.query(Note.host_id, func.count(Note.id).label('cnt')).group_by(Note.host_id).subquery() columns = [ ColumnDT(Host.id, mData='id'), ColumnDT(Host.address, mData='address'), ColumnDT(Host.hostname, mData='hostname'), ColumnDT(Host.os, mData='os'), ColumnDT(func.coalesce(query_cnt_services.c.cnt, 0), mData='cnt_s', global_search=False), ColumnDT(func.coalesce(query_cnt_vulns.c.cnt, 0), mData='cnt_v', global_search=False), ColumnDT(func.coalesce(query_cnt_notes.c.cnt, 0), mData='cnt_n', global_search=False), ColumnDT(Host.tags, mData='tags'), ColumnDT(Host.comment, mData='comment'), ColumnDT(literal_column('1'), mData='_buttons', search_method='none', global_search=False) ] query = db.session.query().select_from(Host) \ .outerjoin(query_cnt_services, Host.id == query_cnt_services.c.host_id) \ .outerjoin(query_cnt_vulns, Host.id == query_cnt_vulns.c.host_id) \ .outerjoin(query_cnt_notes, Host.id == query_cnt_notes.c.host_id) if 'filter' in request.values: query = apply_filters(query, FILTER_PARSER.parse(request.values.get('filter')), do_auto_join=False) hosts = DataTables(request.values.to_dict(), query, columns).output_result() return jsonify(hosts) @blueprint.route('/host/add', methods=['GET', 'POST']) @role_required('operator') def host_add_route(): """add host""" form = HostForm() if form.validate_on_submit(): host = Host() form.populate_obj(host) db.session.add(host) db.session.commit() return redirect(url_for('storage.host_view_route', host_id=host.id)) return render_template('storage/host/addedit.html', form=form) @blueprint.route('/host/edit/<host_id>', methods=['GET', 'POST']) @role_required('operator') def host_edit_route(host_id): """edit host""" host = Host.query.get(host_id) form = HostForm(obj=host, return_url=relative_referrer()) if form.validate_on_submit(): form.populate_obj(host) db.session.commit() if valid_next_url(form.return_url.data): return redirect(form.return_url.data) return render_template('storage/host/addedit.html', form=form) @blueprint.route('/host/delete/<host_id>', methods=['GET', 'POST']) @role_required('operator') def host_delete_route(host_id): """delete host""" form = ButtonForm() if form.validate_on_submit(): db.session.delete(Host.query.get(host_id)) db.session.commit() return redirect(url_for('storage.host_list_route')) return render_template('button-delete.html', form=form) @blueprint.route('/host/annotate/<model_id>', methods=['GET', 'POST']) @role_required('operator') def host_annotate_route(model_id): """annotate vuln""" return annotate_model(Host, model_id) @blueprint.route('/host/view/<host_id>') @role_required('operator') def host_view_route(host_id): """view host""" host = Host.query.get(host_id) return render_template('storage/host/view.html', host=host, button_form=ButtonForm()) @blueprint.route('/host/tag_multiid', methods=['POST']) @role_required('operator') def host_tag_multiid_route(): """tag multiple route""" return tag_model_multiid(Host)
python
import platform import sys class AppMapPyVerException(Exception): pass # Library code uses these, so provide intermediate # functions that can be stubbed when testing. def _get_py_version(): return sys.version_info def _get_platform_version(): return platform.python_version() def check_py_version(): req = (3, 6) actual = _get_platform_version() if _get_py_version() < req: raise AppMapPyVerException( f'Minimum Python version supported is {req[0]}.{req[1]}, found {actual}' )
python
''' GaussGammaDistr.py Joint Gaussian-Gamma distribution: D independent Gaussian-Gamma distributions Attributes -------- m : mean for Gaussian, length D kappa : scalar precision parameter for Gaussian covariance a : parameter for Gamma, vector length D b : parameter for Gamma, vector length D ''' import numpy as np import scipy.linalg from bnpy.util import MVgammaln, MVdigamma from bnpy.util import LOGTWO, LOGPI, LOGTWOPI, EPS from bnpy.util import gammaln, digamma from .Distr import Distr class GaussGammaDistr( Distr ): ######################################################### Constructor ######################################################### def __init__(self, a=None, b=None, m=None, kappa=None, **kwargs): ''' Create new GaussGammaDistr object, with specified parameter values Args ------- a : numpy 1D array_like, length D b : numpy 1D array_like, length D m : numpy 1D array_like, length D kappa : float Returns ------- D : bnpy GaussGammaDistr object, with provided parameters ''' # Unpack self.a = np.squeeze(np.asarray(a)) self.b = np.squeeze(np.asarray(b)) self.m = np.squeeze(np.asarray(m)) self.kappa = float(kappa) # Dimension check assert self.b.ndim <= 1 assert self.m.shape == self.b.shape assert self.a.shape == self.m.shape self.D = self.b.size self.Cache = dict() @classmethod def CreateAsPrior( cls, argDict, Data): ''' Creates Gaussian-Gamma prior for params that generate Data. Returns GaussGammaDistr object with same dimension as Data. Provided argDict specifies prior's expected mean and variance. ''' D = Data.dim a0 = argDict['a0'] b0 = argDict['b0'] m0 = argDict['m0'] kappa = argDict['kappa'] m = m0 * np.ones(D) a = a0 * np.ones(D) b = b0 * np.ones(D) return cls(a=a, b=b, m=m, kappa=kappa) ######################################################### Log Cond. Prob. ######################################################### E-step def E_log_pdf( self, Data ): ''' Calculate E[ log p( x_n | theta ) ] for each x_n in Data.X Args ------- Data : bnpy XData object with attribute Data.X, numpy 2D array of size nObs x D Returns ------- logp : numpy 1D array, length nObs ''' logPDFConst = -0.5 * self.D * LOGTWOPI + 0.5 * np.sum(self.E_logLam()) logPDFData = -0.5 * self.E_distMahalanobis(Data.X) return logPDFConst + logPDFData def E_distMahalanobis(self, X): ''' Calculate E[ (x_n - \mu)^T diag(\lambda) (x_n - mu) ] which has simple form due to diagonal structure. Args ------- X : numpy array, nObs x D Returns ------- dist : numpy 1D array, length nObs dist[n] = E[ (X[n] - \mu)^T diag(\lambda) (X[n] - mu) ] = expected mahalanobis distance to observation n ''' Elambda = self.a / self.b if X.ndim == 2: weighted_SOS = np.sum( Elambda * np.square(X - self.m), axis=1) else: weighted_SOS = np.sum(Elambda * np.square(X - self.m)) weighted_SOS += self.D/self.kappa return weighted_SOS ######################################################### Param updates ######################################################### (M step) def get_post_distr( self, SS, k=None, kB=None, **kwargs): ''' Create new GaussGammaDistr as posterior given sufficient stats for a particular component (or components) Args ------ SS : bnpy SuffStatBag, with K components k : int specifying component of SS to use. Range {0, 1, ... K-1}. kB : [optional] int specifying additional component of SS to use if provided, k-th and kB-th entry of SS are *merged* additively Range {0, 1, ... K-1}. Returns ------- D : bnpy.distr.GaussGammaDistr, with updated posterior parameters ''' if k is None: EN = SS.N Ex = SS.x Exx = SS.xx elif kB is not None: EN = float(SS.N[k] + SS.N[kB]) Ex = SS.x[k] + SS.x[kB] Exx = SS.xx[k] + SS.xx[kB] else: EN = float(SS.N[k]) Ex = SS.x[k] Exx = SS.xx[k] kappa = self.kappa + EN m = (self.kappa * self.m + Ex) / kappa a = self.a + 0.5*EN b = self.b + 0.5*(Exx + self.kappa*np.square(self.m) - kappa*np.square(m)) return GaussGammaDistr(a, b, m, kappa) def post_update_soVB( self, rho, refDistr, **kwargs): ''' In-place update of this GaussGammaDistr's internal parameters, via the stochastic online variational algorithm. Updates via interpolation between self and reference. self = self * (1-rho) + refDistr * rho Args ----- rho : float, learning rate to use for the update refDistr : bnpy GaussGammaDistr, reference distribution for update Returns ------- None. ''' etaCUR = self.get_natural_params() etaSTAR = refDistr.get_natural_params() etaNEW = list(etaCUR) for i in xrange(len(etaCUR)): etaNEW[i] = rho*etaSTAR[i] + (1-rho)*etaCUR[i] self.set_natural_params(tuple(etaNEW)) ######################################################### Required accessors ######################################################### @classmethod def calc_log_norm_const(cls, a, b, m, kappa): logNormConstNormal = 0.5 * D * (LOGTWOPI + np.log(kappa)) logNormConstGamma = np.sum(gammaln(a)) - np.inner(a, np.log(b)) return logNormConstNormal + logNormConstGamma def get_log_norm_const(self): ''' Calculate log normalization constant (aka log partition function) for this Gauss-Gamma distribution. p(mu,Lam) = NormalGamma( mu, Lam | a, b, m, kappa) = 1/Z f(mu|Lam) g(Lam), where Z is const w.r.t mu,Lam Normalization constant = Z = \int f() g() dmu dLam Returns -------- logZ : float ''' D = self.D a = self.a b = self.b logNormConstNormal = 0.5 * D * (LOGTWOPI - np.log(self.kappa)) logNormConstGamma = np.sum(gammaln(a)) - np.inner(a, np.log(b)) return logNormConstNormal + logNormConstGamma def E_log_pdf_Phi(self, Distr, doNormConst=True): ''' Evaluate expectation of log PDF for given GaussGammaDistr Args ------- Distr : bnpy GaussGammaDistr doNormConst : boolean, if True then Distr's log norm const is included Returns ------- logPDF : float ''' assert Distr.D == self.D selfELam = self.a / self.b logPDF = np.inner(Distr.a - 0.5, self.E_logLam()) \ - np.inner(Distr.b, selfELam) \ - 0.5 * Distr.kappa * self.E_distMahalanobis(Distr.m) if doNormConst: return logPDF - Distr.get_log_norm_const() return logPDF def get_entropy(self): ''' Calculate entropy of this Gauss-Gamma disribution, ''' return -1.0 * self.E_log_pdf_Phi(self) def get_natural_params(self): ''' ''' t1 = self.a t2 = self.b + 0.5 * self.kappa * np.square(self.m) t3 = self.kappa * self.m t4 = self.kappa etatuple = t1, t2, t3, t4 return etatuple def set_natural_params(self, etatuple): self.a = etatuple[0] self.kappa = etatuple[3] self.m = etatuple[2]/self.kappa self.b = etatuple[1] - 0.5 * self.kappa * np.square(self.m) self.Cache = dict() ######################################################### Custom Accessors ######################################################### def E_logLam(self): ''' E[ \log \lambda_d ] Returns ------- 1D array, length D ''' return digamma(self.a) - np.log(self.b) def E_sumlogLam(self): ''' \sum_d E[ \log \lambda_d ] Returns ------- float, scalar ''' return np.sum(digamma(self.a) - np.log(self.b)) def E_Lam(self): ''' E[ \lambda_d * \mu_d ] Returns vector, length D ''' return (self.a / self.b) def E_LamMu(self): ''' E[ \lambda_d * \mu_d ] Returns vector, length D ''' return (self.a / self.b) * self.m def E_LamMu2(self): ''' E[ \lambda_d * \mu_d * \mu_d ] Returns vector, length D ''' return (self.a / self.b) * np.square(self.m) + 1./self.kappa ############################################################## I/O ############################################################## def to_dict(self): ''' Convert attributes of this GaussGammaDistr into a dict useful for long-term storage to disk, pickling, etc. Returns ------- Dict with entries for each named parameter: a, b, m, kappa ''' return dict(name=self.__class__.__name__, \ m=self.m, kappa=self.kappa, a=self.a, b=self.b) def from_dict(self, Dict): ''' Internally set this GaussGammaDistr's parameters via provided dict Returns -------- None. This Distr's parameters set to new values. ''' self.m = Dict['m'] self.a = Dict['a'] self.b = Dict['b'] self.kappa = Dict['kappa'] self.D = self.b.shape[0] self.Cache = dict() def to_string(self, offset=" "): Elam = self.a[:2] / self.b[:2] if self.D > 2: sfx = '...\n' else: sfx = '\n' np.set_printoptions(precision=3, suppress=False) msg = offset + 'E[ mean \mu ] ' + str(self.m[:2]) + sfx msg += offset + 'E[ precision \lambda ]' + str(Elam) + sfx return msg
python
import torch from .defaults import get_default_config def update_config(config): if config.dataset.name in ['CIFAR10', 'CIFAR100']: dataset_dir = f'~/.torch/datasets/{config.dataset.name}' config.dataset.dataset_dir = dataset_dir config.dataset.image_size = 32 config.dataset.n_channels = 3 config.dataset.n_classes = int(config.dataset.name[5:]) elif config.dataset.name in ['MNIST', 'FashionMNIST', 'KMNIST']: dataset_dir = '~/.torch/datasets' config.dataset.dataset_dir = dataset_dir config.dataset.image_size = 28 config.dataset.n_channels = 1 config.dataset.n_classes = 10 if not torch.cuda.is_available(): config.device = 'cpu' return config
python
from time import sleep import logging import pytest from common.utils import resize_browser from common.asserts import assert_customer_logo, assert_customer_testimonial, assert_typography, assert_overflowing from common.svb_form import assert_required_fields_top, assert_bad_email_top, assert_non_business_email_top, assert_success_form_top, assert_svb_contact_form_required_fields, assert_svb_contact_form_invalid_name, assert_svb_contact_form_invalid_phone, assert_svb_contact_form_invalid_phone_length_min, assert_svb_contact_form_invalid_phone_length_max, assert_svb_contact_form_success logger = logging.getLogger(__name__) @pytest.fixture(scope='function') def browser(module_browser, base_url, request): resize_browser(browser=module_browser, resolution=request.param) module_browser.get(base_url + '/svb') sleep(4) return module_browser @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_page_overflow(browser): assert_overflowing(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_customer_logo(browser): assert_customer_logo(browser) @pytest.mark.parametrize('browser', [('desktop_1')], indirect=True) def test_customer_testimonial(browser): assert_customer_testimonial(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_typography(browser): assert_typography(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_required_fields_top(browser): assert_required_fields_top(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_bad_email_top(browser): assert_bad_email_top(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_non_business_email_top(browser): assert_non_business_email_top(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_success_form_top(browser): assert_success_form_top(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_svb_contact_form_required_fields(browser): assert_svb_contact_form_required_fields(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_svb_contact_form_invalid_name(browser): assert_svb_contact_form_invalid_name(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_svb_contact_form_invalid_phone(browser): assert_svb_contact_form_invalid_phone(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_svb_contact_form_invalid_phone_length_min(browser): assert_svb_contact_form_invalid_phone_length_min(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_svb_contact_form_invalid_phone_length_max(browser): assert_svb_contact_form_invalid_phone_length_max(browser) @pytest.mark.parametrize('browser', [('desktop_1'), ('mobile_1')], indirect=True) def test_svb_contact_form_success(browser): assert_svb_contact_form_success(browser)
python
# -*- coding: utf-8 -*- import glob import re import json import os import shutil from PIL import Image import numpy as np from keras.preprocessing.image import img_to_array, load_img # 画像サイズ IMAGE_SIZE = 224 # チャネル数 CHANNEL_SIZE = 3 # ラベル作成 def make_label_list(): # ディレクトリのパスを取得 dir_path_list = glob.glob('image/*') # 辞書を準備 label_dic = {} # 各ディレクトリごとにラベルを振り分け for i, dir_path in enumerate(dir_path_list): key = re.search(r'image/(.+)', dir_path) key = key.group(1) # label_dic[key] = i label_dic[key] = 1 # 辞書をjsonで保存 with open('./data/label_dic.json', 'w') as f: label_json = json.dumps(label_dic) json.dump(label_json, f) return label_dic # 画像を数値データに変換する関数 def convert_image(img_path): try: img = load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE)) x = img_to_array(img) # 正規化 x = x / 255.0 return x except Exception as e: shutil.move(img_path, 'noise') x = None print('[Error] {0} <{1}>'.format(img_path, e)) return x #ラベルデータを取得する関数 def get_label_data(img_path, label_dic): #画像のディレクトリのパスを取得 key = re.search(r'image/(.+)/.+/.+/.+/.+', img_path) key = key.group(1) #辞書からラベルを取得 t = label_dic[key] #ラベルをnumpy配列に変換 t = np.asarray(t, dtype=np.int32) return t #画像のパスから画像のファイル名を取得する関数 def get_image_name(img_path): image_name = re.search(r'image/.+/.+/.+/.+/(.+).jpg', img_path) image_name = image_name.group(1) return image_name #データセットを作成する関数 def make_dataset(label_dic): #各人物のディレクトリのリストを取得 person_path_list = glob.glob('image/*/*/*/*') for person_path in person_path_list: #写真の人物の名前を取得 person_name = re.search(r'image/.+/.+/.+/(.+)', person_path) person_name = person_name.group(1) #画像のあるディレクトリの名前を取得 dir_name = re.search(r'image/(.+/.+/.+)/.+', person_path) dir_name = dir_name.group(1) #画像データ・ラベルデータのファイルを保存するディレクトリ save_dir = './data/' + dir_name + '/' + person_name #ファイルを保存するディレクトリを作成 if not os.path.exists(save_dir): os.makedirs(save_dir) #人物のディレクト内の画像のリストを取得 img_path_list = glob.glob(person_path+'/*.jpg') if img_path_list == []: shutil.move(person_path, 'noise') print('[Remove] {0}'.format(person_path)) #画像データを入れるリストを準備 image_data = [] #ラベルデータを入れるリストを準備 label_data = [] for img_path in img_path_list: #画像を数値データに変換 x = convert_image(img_path) if x is None: continue # ラベルデータを取得 t = get_label_data(img_path, label_dic) image_name = get_image_name(img_path) # 画像データを保存するパス save_image_path = save_dir + '/' + image_name + '_image.npy' # ラベルデータを保存するパス save_label_path = save_dir + '/' + image_name + '_label.npy' #画像データをファイルに保存 np.save(save_image_path, x) #ラベルデータをファイルに保存 np.save(save_label_path, t) print('[Save] {0}: {1}'.format(person_name, len(img_path_list))) print() occupation_path_list = glob.glob('image/*') for occupation_path in occupation_path_list: #職業を取得 occupation_name = re.search(r'image/(.+)', occupation_path) occupation_name = occupation_name.group(1) #全画像のリストを取得 img_path_list = glob.glob(occupation_path + '/*/*/*') print('{0}: {1}'.format(occupation_name, len(img_path_list))) print() # 全画像のリストを取得 img_path_list = glob.glob('image/*/*/*/*/*') print('total: {0}'.format(len(img_path_list))) if __name__ == '__main__': # ラベル作成 label_dic = make_label_list() # データセット作成 make_dataset(label_dic)
python
from django import forms from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import CustomUser class CustomUserCreationForm(UserCreationForm): password1 = forms.CharField( label= ("Password"), strip=False, widget=forms.PasswordInput, ) password2 = forms.CharField( label= ("Password confirmation"), widget=forms.PasswordInput, strip=False, ) class Meta(UserCreationForm): model = CustomUser fields = ('username', 'email') class CustomUserChangeForm(UserChangeForm): class Meta: model = CustomUser fields = ('username', 'email')
python
''' Created on Sep 20, 2013 @author: nshearer ''' from ConsoleYesNoQuestion import ConsoleYesNoQuestion class ConsoleActionPrompt(ConsoleYesNoQuestion): '''Present an action prompt on the console''' # def __init__(self, question): # super(ConsoleActionPrompt, self).__init__(question) def present_question(self): print "" print "-- ACTION --" super(ConsoleActionPrompt, self).present_question() if self.question.previous_answer is True: print "* This task has already been completed *"
python
import sedate from datetime import timedelta, time from itertools import groupby from sqlalchemy import types from sqlalchemy.schema import Column from sqlalchemy.schema import Index from sqlalchemy.schema import UniqueConstraint from sqlalchemy.orm import object_session from sqlalchemy.orm.util import has_identity from libres.modules import utils from libres.modules.rasterizer import ( rasterize_start, rasterize_span, rasterize_end, iterate_span, MIN_RASTER ) from libres.db.models import ORMBase from libres.db.models.types import UUID, UTCDateTime, JSON from libres.db.models.other import OtherModels from libres.db.models.timestamp import TimestampMixin from sqlalchemy.ext.hybrid import hybrid_property class Allocation(TimestampMixin, ORMBase, OtherModels): """Describes a timespan within which one or many timeslots can be reserved. There's an important concept to understand before working with allocations. The resource uuid of an alloction is not always pointing to the actual resource. A resource may in fact be a real resource, or an imaginary resource with a uuid derived from the real resource. This is a somewhat historical artifact. If you need to know which allocations belong to a real resource, the mirror_of field is what's relevant. The originally created allocation with the real_resource is also called the master-allocation and it is the one allocation with mirror_of and resource being equal. When in doubt look at the managed_* functions of the :class:`.scheduler.Scheduler` class. """ __tablename__ = 'allocations' #: the id of the allocation, autoincremented id = Column(types.Integer(), primary_key=True, autoincrement=True) #: the resource uuid of the allocation, may not be an actual resource #: see :class:`.models.Allocation` for more information resource = Column(UUID(), nullable=False) #: the polymorphic type of the allocation type = Column(types.Text(), nullable=True) #: resource of which this allocation is a mirror. If the mirror_of #: attribute equals the resource, this is a real resource #: see :class:`.models.Allocation` for more information mirror_of = Column(UUID(), nullable=False) #: Group uuid to which this allocation belongs to. Every allocation has a #: group but some allcations may be the only one in their group. group = Column(UUID(), nullable=False) #: Number of times this allocation may be reserved quota = Column(types.Integer(), default=1) #: Maximum number of times this allocation may be reserved with one #: single reservation. quota_limit = Column(types.Integer(), default=0, nullable=False) #: Partly available allocations may be reserved partially. How They may #: be partitioned is defined by the allocation's raster. partly_available = Column(types.Boolean(), default=False) #: True if reservations for this allocation must be approved manually. approve_manually = Column(types.Boolean(), default=False) #: The timezone this allocation resides in. timezone = Column(types.String()) #: Custom data reserved for the user data = Column( JSON(), nullable=True ) _start = Column(UTCDateTime(timezone=False), nullable=False) _end = Column(UTCDateTime(timezone=False), nullable=False) _raster = Column(types.Integer(), nullable=False) __table_args__ = ( Index('mirror_resource_ix', 'mirror_of', 'resource'), UniqueConstraint('resource', '_start', name='resource_start_ix') ) __mapper_args__ = { 'polymorphic_identity': None, 'polymorphic_on': type } def __eq__(self, other): return self.resource == other.resource and self._start == other._start def __hash__(self): return id(self) def copy(self): """ Creates a new copy of this allocation. """ allocation = self.__class__() allocation.resource = self.resource allocation.mirror_of = self.mirror_of allocation.group = self.group allocation.quota = self.quota allocation.partly_available = self.partly_available allocation.approve_manually = self.approve_manually allocation.timezone = self.timezone allocation.data = self.data allocation._start = self._start allocation._end = self._end allocation._raster = self._raster return allocation def get_start(self): return self._start def set_start(self, start): if not start.tzinfo: assert self.timezone start = sedate.replace_timezone(start, self.timezone) if self.raster is not None: self._start = rasterize_start(start, self.raster) else: self._start = rasterize_start(start, MIN_RASTER) #: The start of this allocation. Must be timezone aware. #: This date is rastered by the allocation's raster. start = property(get_start, set_start) def get_end(self): return self._end def set_end(self, end): if not end.tzinfo: assert self.timezone end = sedate.replace_timezone(end, self.timezone) if self.raster is not None: self._end = rasterize_end(end, self.raster) else: self._end = rasterize_end(end, MIN_RASTER) #: The end of this allocation. Must be timezone aware. #: This date is rastered by the allocation's raster. #: The end date is stored with an offset of minues one microsecond #: to avoid overlaps with other allocations. #: That is to say an allocation that ends at 15:00 really ends at #: 14:59:59.999999 end = property(get_end, set_end) def get_raster(self): return self._raster def set_raster(self, raster): # the raster can only be set once! assert not self._raster self._raster = raster # re-rasterize start/end - during initialization it's possible for # them not to be setup correctly because that's done using # kwargs which has a random order. So it might set start, end, raster # in this order one time, then raster, start, end another time. # # this should of course only happen once - hence the assertion above if self._start: self._start = rasterize_start(self._start, self.raster) if self._end: self._end = rasterize_end(self._end, self.raster) raster = property(get_raster, set_raster) def display_start(self, timezone=None): """Returns the start in either the timezone given or the timezone on the allocation.""" return sedate.to_timezone(self.start, timezone or self.timezone) def display_end(self, timezone=None): """Returns the end plus one microsecond in either the timezone given or the timezone on the allocation. """ end = self.end + timedelta(microseconds=1) return sedate.to_timezone(end, timezone or self.timezone) def _prepare_range(self, start, end): if start: start = sedate.standardize_date(start, self.timezone) if end: end = sedate.standardize_date(end, self.timezone) return start, end @property def whole_day(self): """True if the allocation is a whole-day allocation. A whole-day allocation is not really special. It's just an allocation which starts at 0:00 and ends at 24:00 (or 23:59:59'999). Relative to its timezone. As such it can actually also span multiple days, only hours and minutes count. The use of this is to display allocations spanning days differently. """ s, e = self.display_start(), self.display_end() assert s != e # this can never be, except when caused by cosmic rays return sedate.is_whole_day(s, e, self.timezone) def overlaps(self, start, end): """ Returns true if the allocation overlaps with the given dates. """ start, end = self._prepare_range(start, end) start, end = rasterize_span(start, end, self.raster) return sedate.overlaps(start, end, self.start, self.end) def contains(self, start, end): """ Returns true if the the allocation contains the given dates. """ start, end = self._prepare_range(start, end) start, end = rasterize_span(start, end, self.raster) return self.start <= start and end <= self.end def free_slots(self, start=None, end=None): """ Returns the slots which are not yet reserved. """ reserved = [slot.start for slot in self.reserved_slots] slots = [] for start, end in self.all_slots(start, end): if start not in reserved: slots.append((start, end)) return slots def align_dates(self, start=None, end=None): """ Aligns the given dates to the start and end date of the allocation. """ start, end = self._prepare_range(start, end) start = start or self.start start = start < self.start and self.start or start end = end or self.end end = end > self.end and self.end or end return start, end def all_slots(self, start=None, end=None): """ Returns the slots which exist with this timespan. Reserved or free. """ start, end = self.align_dates(start, end) if self.partly_available: for start, end in iterate_span(start, end, self.raster): yield start, end else: yield self.start, self.end def count_slots(self, start=None, end=None): """ Returns the number of slots which exist with this timespan. Reserved or free. """ if not self.partly_available: return 1 start, end = self.align_dates(start, end) seconds = (end + timedelta(microseconds=1) - start).total_seconds() return seconds // (self.raster * 60) def is_available(self, start=None, end=None): """ Returns true if the given daterange is completely available. """ if not (start and end): start, end = self.start, self.end assert self.overlaps(start, end) reserved = {slot.start for slot in self.reserved_slots} for start, end in self.all_slots(start, end): if start in reserved: return False return True def limit_timespan(self, start, end, timezone=None): """ Takes the given timespan and moves the start/end date to the closest reservable slot. So if 10:00 - 11:00 is requested it will - on a partly available allocation return 10:00 - 11:00 if the raster allows for that - on a non-partly available allocation return the start/end date of the allocation itself. The resulting times are combined with the allocations start/end date to form a datetime. (time in, datetime out -> maybe not the best idea) """ timezone = timezone or self.timezone if self.partly_available: assert isinstance(start, time) assert isinstance(end, time) s, e = sedate.get_date_range( self.display_start(timezone), start, end ) if self.display_end(timezone) < e: e = self.display_end() if self.display_start(timezone) > s: s = self.display_start() s, e = rasterize_span(s, e, self.raster) return s, e + timedelta(microseconds=1) else: return self.display_start(timezone), self.display_end(timezone) @property def pending_reservations(self): """ Returns the pending reservations query for this allocation. As the pending reservations target the group and not a specific allocation this function returns the same value for masters and mirrors. """ assert not self.is_transient, ( "Don't call if the allocation does not yet exist" ) Reservation = self.models.Reservation query = object_session(self).query(Reservation.id) query = query.filter(Reservation.target == self.group) query = query.filter(Reservation.status == u'pending') return query @property def waitinglist_length(self): return self.pending_reservations.count() @property def availability(self): """Returns the availability in percent.""" total = self.count_slots() used = len(self.reserved_slots) if total == used: return 0.0 if used == 0: return 100.0 return 100.0 - (float(used) / float(total) * 100.0) @property def in_group(self): """True if the event is in any group.""" query = object_session(self).query(Allocation.id) query = query.filter(Allocation.resource == self.resource) query = query.filter(Allocation.group == self.group) query = query.limit(2) return len(query.all()) > 1 @property def quota_left(self): # this can be done quickly if this is a master with a quota of 1 if self.is_master and self.quota == 1: return 1 if self.is_available() else 0 # if not we need to go through the mirrors free_quota = 0 for mirror in self.siblings(): if mirror.is_available(): free_quota += 1 return free_quota def find_spot(self, start, end): """ Returns the first free allocation spot amongst the master and the mirrors. Honors the quota set on the master and will only try the master if the quota is set to 1. If no spot can be found, None is returned. """ master = self.get_master() if master.is_available(start, end): return master if master.quota == 1: return None tries = master.quota - 1 for mirror in (m for m in self.siblings() if not m.is_master): if mirror.is_available(start, end): return mirror if tries >= 1: tries -= 1 else: return None @property def is_separate(self): """True if available separately (as opposed to available only as part of a group).""" if self.partly_available: return True if self.in_group: return False return True def availability_partitions(self): """Partitions the space between start and end into blocks of either free or reserved time. Each block has a percentage representing the space the block occupies compared to the size of the whole allocation. The blocks are ordered from start to end. Each block is an item with two values. The first being the percentage, the second being true if the block is reserved. So given an allocation that goes from 8 to 9 and a reservation that goes from 8:15 until 8:30 we get the following blocks:: [ (25%, False), (25%, True), (50%, False) ] This is useful to divide an allocation block into different divs on the frontend, indicating to the user which parts of an allocation are reserved. """ if (len(self.reserved_slots) == 0): return [(100.0, False)] reserved = {r.start for r in self.reserved_slots} # Get the percentage one slot represents slots = tuple(s[0] for s in self.all_slots()) step = 100.0 / float(len(slots)) # Create an entry for each slot with either True or False pieces = tuple(s in reserved for s in slots) # Group by the true/false values in the pieces and sum up the # percentage partitions = [] total = 0 for flag, group in groupby(pieces, key=lambda p: p): percentage = sum(1 for item in group) * step partitions.append([percentage, flag]) total += percentage # Make sure to get rid of floating point rounding errors diff = 100.0 - total partitions[-1:][0][0] -= diff return partitions @property def is_transient(self): """True if the allocation does not exist in the database, and is not about to be written to the database. If an allocation is transient it means that the given instance only exists in memory. See: http://www.sqlalchemy.org/docs/orm/session.html #quickie-intro-to-object-states http://stackoverflow.com/questions/3885601/ sqlalchemy-get-object-instance-state """ return object_session(self) is None and not has_identity(self) @hybrid_property def is_master(self): """True if the allocation is a master allocation.""" return self.resource == self.mirror_of def get_master(self): if self.is_master: return self else: query = object_session(self).query(Allocation) query = query.filter(Allocation._start == self._start) query = query.filter(Allocation.resource == self.mirror_of) return query.one() def siblings(self, imaginary=True): """Returns the master/mirrors group this allocation is part of. If 'imaginary' is true, inexistant mirrors are created on the fly. those mirrors are transient (see self.is_transient) """ # this function should always have itself in the result if not imaginary and self.is_transient: assert False, "the resulting list wouldn't contain this allocation" if self.quota == 1: assert self.is_master return [self] query = object_session(self).query(Allocation) query = query.filter(Allocation.mirror_of == self.mirror_of) query = query.filter(Allocation._start == self._start) existing = dict(((e.resource, e) for e in query)) master = self.is_master and self or existing[self.mirror_of] existing[master.resource] = master uuids = utils.generate_uuids(master.resource, master.quota) imaginary = imaginary and (master.quota - len(existing)) or 0 siblings = [master] for uuid in uuids: if uuid in existing: siblings.append(existing[uuid]) elif imaginary > 0: allocation = master.copy() allocation.resource = uuid siblings.append(allocation) imaginary -= 1 return siblings
python
from collections.abc import Mapping import shelve import random import time class ConcurrentShelf(Mapping): def __init__(self, file_name, time_out_seconds=60): self._file_name = file_name self._time_out_seconds = time_out_seconds self._locked_shelf = None shelf = self._open(write=True) shelf.close() def __del__(self): if self._locked_shelf is not None: self._locked_shelf.close() def _open(self, write=False): flag = 'c' if write else 'r' start = time.time() while True: if time.time() - start > self._time_out_seconds: raise RuntimeError('ConcurrentShelf time out, cannot gain access to shelf on disk') try: shelf = shelve.open(self._file_name, flag=flag) return shelf except Exception as e: if '[Errno 11] Resource temporarily unavailable' in str(e): # print('Shelf locked, waiting...') time.sleep(random.uniform(0.01, 0.250)) next else: raise e def lock(self, write=True): self._locked_shelf = self._open(write=write) def unlock(self): if self._locked_shelf is not None: self._locked_shelf.close() self._locked_shelf = None def __getitem__(self, key): if self._locked_shelf is not None: return self._locked_shelf[key] else: shelf = self._open() try: value = shelf[key] shelf.close() except Exception as e: shelf.close() raise e return value def __setitem__(self, key, value): if self._locked_shelf is not None: self._locked_shelf[key] = value else: shelf = self._open(write=True) try: shelf[key] = value shelf.close() except Exception as e: shelf.close() raise e def __iter__(self): if self._locked_shelf is not None: for value in self._locked_shelf: yield value else: shelf = self._open() try: for value in shelf: yield value shelf.close() except Exception as e: shelf.close() raise e def __len__(self): if self._locked_shelf is not None: return len(self._locked_shelf) else: shelf = self._open() try: value = len(shelf) shelf.close() except Exception as e: shelf.close() raise e return value
python
from flask import Blueprint, request, jsonify from ortools.sat.python import cp_model import numpy bp = Blueprint('optimize', __name__) @bp.route('/', methods=['POST']) def recieve_data(): model = model = cp_model.CpModel() juniors = request.get_json()[0] boat_parameters = request.get_json()[1] constraints = request.get_json()[2] maxTime = int(request.get_json()[3]) boat_parameters['minCrew'] = int(boat_parameters['minCrew']) if boat_parameters['minCrew'] else 0 boat_parameters['noBoats'] = int(boat_parameters['noBoats']) boat_parameters['maxCrew'] = int(boat_parameters['maxCrew']) if boat_parameters['maxCrew'] else len(juniors) boat_parameters['useAllBoats'] = bool(boat_parameters['useAllBoats']) variables = {} variables['x'] = create_x_var(model, juniors, boat_parameters['noBoats']) variables['y'] = create_y_var(model, juniors, boat_parameters['noBoats']) variables['boat_used'] = create_boat_var(model, boat_parameters['noBoats']) variables['worst_boat'] = model.NewIntVar(0, 1, 'worst_boat') pref_matrix = create_pref_matrix(juniors) create_std_constraints(model, variables, boat_parameters, juniors, pref_matrix) create_custom_constraints(model, variables, constraints, juniors, boat_parameters) sum_exp = sum(pref_matrix[i][j] * variables['y'][i, j, b] for i in range(len(juniors)) for j in range(len(juniors)) for b in range(boat_parameters['noBoats']) if j != i) model.Maximize(variables['worst_boat'] + sum_exp) #Debug - skriv ut hela modellen! #print(solver.ExportModelAsLpFormat(False).replace('\\', '').replace(',_', ','), sep='\n') # Check if there are hints, i.e. not first iteration if len(request.get_json()) > 4: hints = request.get_json()[4] create_hints(variables, hints, juniors, boat_parameters['noBoats'], model) solver = cp_model.CpSolver() #Avbryt lösaren efter 60 sekunder solver.parameters.max_time_in_seconds = maxTime status = solver.Solve(model) print(solver.ResponseStats()) if status == cp_model.INFEASIBLE: return dict(success=False, status='Infeasible') if status == cp_model.MODEL_INVALID: return dict(success=False, status='Model invalid') if status == cp_model.UNKNOWN: return dict(success=False, status='Unknown') retval = create_retval(variables, juniors, boat_parameters['noBoats'], solver) if status == cp_model.OPTIMAL: retval['status'] = 'Optimal' elif status == cp_model.FEASIBLE: retval['status'] = 'Feasible' retval['hints'] = get_current_variable_values(variables, juniors, boat_parameters['noBoats'], solver) retval['solver_response'] = solver.ResponseStats() retval['objective_value'] = solver.ObjectiveValue() return jsonify(retval) #x[i, b] är 1 om jun i sitter i båt b, noll annars def create_x_var(model, juniors, no_boats): x = {} for i in range(len(juniors)): for b in range(no_boats): x[i, b] = model.NewIntVar(0, 1, 'x[Junior {}, Boat {}]'.format(i, b)) return x #y[i, j, b] är 1 om jun i sitter med jun j i båt b, noll annars def create_y_var(model, juniors, no_boats): y = {} for i in range(len(juniors)): for j in range(len(juniors)): for b in range(no_boats): if i != j: y[i, j, b] = model.NewIntVar(0, 1, 'y[Jun i {}, Jun j {}, Boat {}]'.format(i, j, b)) return y #boat_used[b] = 1 om båt b används, 0 f.ö. def create_boat_var(model, no_boats): boat_used = {} for b in range(no_boats): boat_used[b] = model.NewIntVar(0, 1, 'boat_used[Boat {}]'.format(b)) return boat_used #p[i, j] = 1 om junior i önskat att segla med junior j def create_pref_matrix(juniors): p = numpy.zeros(shape=(len(juniors), len(juniors)), dtype=int) i = 0 for junior_i in juniors: j = 0 for junior_j in juniors: if junior_j['name'] in junior_i['wishes']: p[i][j] = 1 j = j + 1 i = i + 1 return p def create_std_constraints(model, variables, boat_parameters, juniors, pref_matrix): #En junior sitter i exakt en båt for i in range(len(juniors)): model.Add(sum(variables['x'][i, b] for b in range(boat_parameters['noBoats'])) == 1) #min capacity for b in range(boat_parameters['noBoats']): sum_exp = sum(variables['x'][i, b] for i in range(len(juniors))) if boat_parameters['useAllBoats']: model.Add(sum_exp >= max(boat_parameters['minCrew'], 1)) else: model.Add(sum_exp >= boat_parameters['minCrew'] * variables['boat_used'][b]) #max capacity if boat_parameters['noBoats']: for b in range(boat_parameters['noBoats']): sum_exp = sum(variables['x'][i, b] for i in range(len(juniors))) if boat_parameters['useAllBoats']: model.Add(sum_exp <= boat_parameters['maxCrew']) else: model.Add(sum_exp <= boat_parameters['maxCrew'] * variables['boat_used'][b]) #Koppling x till y (jun i med jun j) --> for i in range(len(juniors)): for j in range(len(juniors)): for b in range(boat_parameters['noBoats']): if i != j: model.Add(2 * variables['y'][i, j, b] <= variables['x'][i, b] + variables['x'][j, b]) #Sämsta båten --> målfunktion for b in range(boat_parameters['noBoats']): sum_exp = sum(pref_matrix[i][j] * variables['y'][i, j, b] for i in range(len(juniors)) for j in range(len(juniors)) if j!= i) model.Add(variables['worst_boat'] <= sum_exp) #constraint_exp = [pref_matrix[i][j] * variables['y'][i, j, b] for i in range(len(juniors)) for j in range(len(juniors)) if j!= i] #solver.Add(variables['worst_boat'] <= solver.Sum(constraint_exp)) #Löser BV som tvingar juniorer att segla eller inte segla tsm def create_custom_constraints(model, variables, constraints, juniors, boat_parameters): for c in constraints: name1 = c['name1'] name2 = c['name2'] i = list(filter(lambda j: juniors[j]['name'] == name1, range(len(juniors))))[0] j = list(filter(lambda j: juniors[j]['name'] == name2, range(len(juniors))))[0] if c['mustSail']: #Måste segla --> summa över b av y[i,j,b] för (i,j) == 1 sum_exp = sum(variables['y'][i, j, b] for b in range(boat_parameters['noBoats'])) model.Add(sum_exp == 1) #constraint_exp = [variables['y'][i, j, b] for b in range(boat_parameters['noBoats'])] #solver.Add(solver.Sum(constraint_exp) == 1) else: #Får inte segla: sum_exp = sum(variables['x'][i, b] + variables['x'][j, b] for b in range(boat_parameters['noBoats'])) model.Add(sum_exp == 1) #constraint_exp = [variables['x'][i, b] + variables['x'][j, b] for b in range(boat_parameters['noBoats'])] #solver.Add(solver.Sum(constraint_exp) <= 1) def create_hints(variables, hints, juniors, no_boats, model): # Hints for X for i in range(len(juniors)): for b in range(no_boats): model.AddHint(variables['x'][i, b], hints['x'][str(i)][str(b)]) # Hints for Y for i in range(len(juniors)): for j in range(len(juniors)): for b in range(no_boats): if i != j: model.AddHint(variables['y'][i, j, b], hints['y'][str(i)][str(j)][str(b)]) def create_retval(variables, juniors, no_boats, solver): retval = {} retval['boats'] = {} for b in range(no_boats): retval['boats'][b] = [] for i in range(len(juniors)): if solver.Value(variables['x'][i, b]) == 1: #if variables['x'][i, b].solution_value() == 1: retval['boats'][b].append(juniors[i]['name']) retval['success'] = True return retval def get_current_variable_values(variables, juniors, no_boats, solver): current_values = {} current_values['x'] = {} for i in range(len(juniors)): current_values['x'][i] = {} for b in range(no_boats): current_values['x'][i][b] = solver.Value(variables['x'][i, b]) current_values['y'] = {} for i in range(len(juniors)): current_values['y'][i] = {} for j in range(len(juniors)): current_values['y'][i][j] = {} for b in range(no_boats): if i != j: current_values['y'][i][j][b] = solver.Value(variables['y'][i, j, b]) return current_values # In Python, you can also set the constraints as follows. # for i in range(number_of_constraints): # constraint_expr = coeffs[i][j] * x[j] for j in range(data['number_of_variables'])] # solver.Add(sum(constraint_expr) <= data['bounds'][i]) #serialize (skapa dict av dig själv) alla index i array #jsonify
python
import os import re import datetime from mod_python import apache NOW = str(datetime.datetime.utcnow().strftime("%s")) DUMP_DIR="/var/www/html/dump" if not os.path.exists(DUMP_DIR): os.makedirs(DUMP_DIR) def index(req): if not 'file' in req.form or not req.form['file'].filename: return "Error: Please upload a file" ethmac = "unset" password = "unset" if 'ethmac' in req.form: ethmac = req.form['ethmac'] if 'password' in req.form: password = req.form['password'] user = auth_user(ethmac,password) # Record which IP send this file ip = req.get_remote_host(apache.REMOTE_NOLOOKUP) return save_file(req.form['file'], ip, user) def auth_user(mac, password): # shoulc check if this really is the user's MAC address # check Eth MAC is well-formed if not re.match("([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})",mac): return "unset" return mac def save_file(fileitem, ip, user=None): # strip leading path from file name to avoid directory traversal attacks filename = NOW+".tgz" if user!=None: filename = user+"-"+filename #os.path.basename(fileitem.filename) # build absolute path to files directory host_dir = os.path.join(DUMP_DIR, ip) ensure_dir(host_dir) filepath = os.path.join(host_dir, filename) if os.path.exists(filepath): return "Error: file already exists" fd = open(filepath, 'wb') while 1: chunk = fileitem.file.read(100000) if not chunk: break fd.write (chunk) return 'The file "%s" was uploaded successfully from %s' % (filepath, ip) def ensure_dir(path): if not os.path.exists(path): os.makedirs(path)
python
# Ryan McCarthy, [email protected] # ITP 115, Fall 2020 # Assignment 4 # Description: # Part 1 takes a sentence from the user and counts the number of times a letter or special character appear # this info is returned to the user # Part 1: this gets the sentence sentence = input('PART 1 - Character Counter\nPlease enter a sentence:') # this removes all of the white space so I don't have to worry about spaces when iterating and counting characters sentence = sentence.replace(" ", "") # changes sentence to lower so it doesn't count caps as special chars sentence = sentence.lower() # defines all of the characters counts ac = "a: NONE" bc = "b: NONE" cc = "c: NONE" dc = "d: NONE" ec = "e: NONE" fc = "f: NONE" gc = "g: NONE" hc = "h: NONE" ic = "i: NONE" jc = "j: NONE" kc = "k: NONE" lc = "l: NONE" mc = "m: NONE" nc = "n: NONE" oc = "o: NONE" pc = "p: NONE" qc = "q: NONE" rc = "r: NONE" sc = "s: NONE" tc = "t: NONE" uc = "u: NONE" vc = "v: NONE" wc = "w: NONE" xc = "x: NONE" yc = "y: NONE" zc = "z: NONE" special_c = "Special Characters: NONE" # for each loop to add an asterisk to the count if the letter is found for character in sentence: char = character if char == "a": ac = ac.replace("NONE", "") ac += "*" elif char == "b": bc = bc.replace("NONE", "") bc += "*" elif char == "c": cc = cc.replace("NONE", "") cc += "*" elif char == "d": dc = dc.replace("NONE", "") dc += "*" elif char == "e": ec = ec.replace("NONE", "") ec += "*" elif char == "f": fc = fc.replace("NONE", "") fc += "*" elif char == "g": gc = gc.replace("NONE", "") gc += "*" elif char == "h": hc = hc.replace("NONE", "") hc += "*" elif char == "i": ic = ic.replace("NONE", "") ic += "*" elif char == "j": jc = jc.replace("NONE", "") jc += "*" elif char == "k": kc = kc.replace("NONE", "") kc += "*" elif char == "l": lc = lc.replace("NONE", "") lc += "*" elif char == "m": mc = mc.replace("NONE", "") mc += "*" elif char == "n": nc = nc.replace("NONE", "") nc += "*" elif char == "o": oc = oc.replace("NONE", "") oc += "*" elif char == "p": pc = pc.replace("NONE", "") pc += "*" elif char == "q": qc = qc.replace("NONE", "") qc += "*" elif char == "r": rc = rc.replace("NONE", "") rc += "*" elif char == "s": sc = sc.replace("NONE", "") sc += "*" elif char == "t": tc = tc.replace("NONE", "") tc += "*" elif char == "u": uc = uc.replace("NONE", "") uc += "*" elif char == "v": vc = vc.replace("NONE", "") vc += "*" elif char == "w": wc = wc.replace("NONE", "") wc += "*" elif char == "x": xc = xc.replace("NONE", "") xc += "*" elif char == "y": yc = yc.replace("NONE", "") yc += "*" elif char == "z": zc = zc.replace("NONE", "") zc += "*" else: special_c = special_c.replace("NONE", "") special_c += "*" print("Here is the character distribution:\n\n " + ac, "\n", bc, "\n", cc, "\n", dc, "\n", ec, "\n", fc, "\n", gc, "\n", hc, "\n", ic, "\n", jc, "\n", kc, "\n", lc, "\n", mc, "\n", nc, "\n", oc, "\n", pc, "\n", qc, "\n", rc, "\n", sc, "\n", tc, "\n", uc, "\n", vc, "\n", wc, "\n", xc, "\n", yc, "\n", zc, "\n", special_c)
python
import peewee as pw from core.model.base import BaseModel from playhouse.shortcuts import model_to_dict class Activity(BaseModel): name = pw.CharField(null=False) url_image = pw.CharField(null=False) def to_dict(self, recurse=False, backrefs=False): return model_to_dict(self, recurse=recurse, backrefs=backrefs, exclude=[Activity.created_at, Activity.updated_at]) class Meta: db_table = "activities"
python
# [M / F] while not strip upper sexo = str(input('Digite seu sexo: [M/F] ')) .strip().upper()[0] while sexo not in 'MmFf': sexo = str(input('Dados inválidos. Por favor, informe corretamente: ')).strip().upper()[0] print(sexo)
python
import json import jsonschema import os import re from urllib.request import urlopen, Request show_descriptions = True # If False, don't include 'name' as the description of 'licenseId' repo = 'https://github.com/spdx/license-list-data/tree/master/json' files = ['licenses.json', 'exceptions.json'] outfile = 'spdx-license-enums' """ Fetch current SPDX license list from repo """ def github_contents(web_url): """ Convert a GitHub repo web page URL to the corresponding API directory URL :param web_url: https://github.com/spdx/license-list-data/tree/master/json :return: dir_url: https://api.github.com/repos/spdx/license-list-data/contents/json """ m = re.match(r'^(https://)(github.com/)(.*?)/tree/master/(.*)$', web_url) if m: return m.group(1) + 'api.' + m.group(2) + 'repos/' + m.group(3) + '/contents/' + m.group(4) data = {} auth = {'Authorization': 'token ' + os.environ['GitHubToken']} with urlopen(Request(github_contents(repo), headers=auth)) as d: dir = json.loads(d.read().decode()) for n, f in enumerate(dir): if f['name'] in files: with urlopen(Request(f['download_url'], headers=auth)) as file: data[os.path.splitext(f['name'])[0]] = json.loads(file.read().decode()) """ Validate license list files """ llversion = data['licenses']['licenseListVersion'] print(f'License List Version {llversion}, {data["licenses"]["releaseDate"]}') assert llversion == data['exceptions']['licenseListVersion'] with open('license_list_source.json') as f: jschema = json.load(f) jsonschema.Draft7Validator(jschema).validate({'licenselist': data['licenses']}) jsonschema.Draft7Validator(jschema).validate({'exceptionlist': data['exceptions']}) """ Generate license and exception enumerations """ def item(license, le, desc=True): id = {'l': 'licenseId', 'e': 'licenseExceptionId'} return [int(license['referenceNumber']), license[id[le]], license['name'].strip() if desc else ''] license_items = [item(k, 'l', show_descriptions) for k in data['licenses']['licenses']] exception_items = [item(k, 'e', show_descriptions) for k in data['exceptions']['exceptions']] le_schema = { 'meta': { 'module': 'http://spdx.org/license-list/v3.0', 'patch': llversion, 'description': f'SPDX License List Enumerations, Version {llversion}, Released {data["licenses"]["releaseDate"]}', 'exports': ["LicenseList", "ExceptionList"], 'config': {'$MaxElements': 1000} # Default is 100, 2020-07-21 license list has 441 }, 'types': [ ['LicenseList', 'Enumerated', [], '', license_items], ['ExceptionList', 'Enumerated', [], '', exception_items] ] } print(f'{len(license_items)} licenses, {len(exception_items)} exceptions') fname = os.path.join('data', f'{outfile}-{llversion}.jadn') with open(fname, 'w') as f: json.dump(le_schema, f)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains implementation for type editor """ from __future__ import print_function, division, absolute_import __author__ = "Tomas Poveda" __license__ = "MIT" __maintainer__ = "Tomas Poveda" __email__ = "[email protected]" import logging from functools import partial from Qt.QtCore import * from Qt.QtWidgets import * import tpDcc as tp from tpDcc.libs.qt.core import base from tpDcc.libs.qt.widgets import grid import artellapipe from artellapipe.tools.tagger.widgets import taggereditor LOGGER = logging.getLogger() class TypeEditor(taggereditor.TaggerEditor, object): EDITOR_TYPE = 'Type' def __init__(self, project, parent=None): super(TypeEditor, self).__init__(project=project, parent=parent) def ui(self): super(TypeEditor, self).ui() self._type_grid = grid.GridWidget() self._type_grid.setShowGrid(False) self._type_grid.setColumnCount(4) self._type_grid.horizontalHeader().hide() self._type_grid.verticalHeader().hide() self._type_grid.resizeRowsToContents() self._type_grid.resizeColumnsToContents() self.main_layout.addWidget(self._type_grid) def initialize(self): self._type_grid.clear() tag_types = artellapipe.TagsMgr().get_tag_types() if not tag_types: LOGGER.warning('No Tag Types defined in current project!') return for tag_type in tag_types: tag_widget = TaggerTypeWidget(type_title=tag_type) tag_widget._btn.toggled.connect(partial(self.update_data, tag_widget.get_name())) self._type_grid.add_widget_first_empty_cell(tag_widget) def reset(self): """ Function that resets all editor information """ try: self._type_grid.blockSignals(True) finally: self._type_grid.blockSignals(False) def update_tag_buttons_state(self, sel=None): """ Updates the type tag attribute of the tag data node :param name: str, name of the type tag to add/remove """ tag_data_node = artellapipe.TagsMgr().get_tag_data_node_from_current_selection(sel) if tag_data_node is None: return self.set_tag_widgets_state(False) attr_exists = tp.Dcc.attribute_exists(node=tag_data_node, attribute_name='types') if attr_exists: types = tp.Dcc.get_attribute_value(node=tag_data_node, attribute_name='types') if types is not None and types != '': types = types.split() for t in types: for i in range(self._type_grid.columnCount()): for j in range(self._type_grid.rowCount()): container_w = self._type_grid.cellWidget(j, i) if container_w is not None: tag_w = container_w.containedWidget tag_name = tag_w.get_name() if tag_name == t: tag_w._btn.blockSignals(True) tag_w._btn.setChecked(True) tag_w._btn.blockSignals(False) def fill_tag_node(self, tag_data_node, *args, **kwargs): """ Fills given tag node with the data managed by this editor :param tag_data_node: str """ attr_exists = tp.Dcc.attribute_exists(node=tag_data_node, attribute_name='types') if not attr_exists: tp.Dcc.add_string_attribute(node=tag_data_node, attribute_name='types') data = kwargs.get('data', None) types = tp.Dcc.get_attribute_value(node=tag_data_node, attribute_name='types') if args and args[0]: if types is None or types == '': types = data else: types_split = types.split() if data in types_split: return types_split.append(data) types = ''.join(str(e) + ' ' for e in types_split) tp.Dcc.unlock_attribute(node=tag_data_node, attribute_name='types') tp.Dcc.set_string_attribute_value(node=tag_data_node, attribute_name='types', attribute_value=types) tp.Dcc.lock_attribute(node=tag_data_node, attribute_name='types') else: if types is None or types == '': return types_split = types.split() if data in types_split: types_split.remove(data) else: return types = ''.join(str(e) + ' ' for e in types_split) tp.Dcc.unlock_attribute(node=tag_data_node, attribute_name='types') tp.Dcc.set_string_attribute_value(node=tag_data_node, attribute_name='types', attribute_value=types) tp.Dcc.lock_attribute(node=tag_data_node, attribute_name='types') def set_tag_widgets_state(self, state=False): """ Disables/Enables all tag buttons on the grid layout :param state: bool """ for i in range(self._type_grid.columnCount()): for j in range(self._type_grid.rowCount()): container_w = self._type_grid.cellWidget(j, i) if container_w is not None: tag_w = container_w.containedWidget tag_w._btn.blockSignals(True) tag_w._btn.setChecked(state) tag_w._btn.blockSignals(False) class TaggerTypeWidget(base.BaseWidget, object): def __init__(self, type_title, parent=None): self._type_title_name = type_title self._type_name = type_title.replace(' ', '_').lower() super(TaggerTypeWidget, self).__init__(parent=parent) def ui(self): super(TaggerTypeWidget, self).ui() self._btn = QPushButton(self._type_title_name) self._btn.setCheckable(True) self.main_layout.addWidget(self._btn) type_lbl = QLabel(self._type_title_name) type_lbl.setAlignment(Qt.AlignCenter) # main_layout.addWidget(type_lbl) def get_name(self): """ Returns type name of the tagger widget :return: str """ return self._type_name
python
import random def n_list(n): nl = [] #int list to be returned #creating a list of integers from 1 to n for i in xrange(1,n+1): nl.extend([i]) #shuffle the list of integers into random order #to the best ability of python prng while n > 1: choice = int(random.random()*n) pick = nl.pop(choice) nl.extend([pick]) n -= 1 return nl
python
""" --- Day 18: Operation Order --- As you look out the window and notice a heavily-forested continent slowly appear over the horizon, you are interrupted by the child sitting next to you. They're curious if you could help them with their math homework. Unfortunately, it seems like this "math" follows different rules than you remember. The homework (your puzzle input) consists of a series of expressions that consist of addition (+), multiplication (*), and parentheses ((...)). Just like normal math, parentheses indicate that the expression inside must be evaluated before it can be used by the surrounding expression. Addition still finds the sum of the numbers on both sides of the operator, and multiplication still finds the product. However, the rules of operator precedence have changed. Rather than evaluating multiplication before addition, the operators have the same precedence, and are evaluated left-to-right regardless of the order in which they appear. For example, the steps to evaluate the expression 1 + 2 * 3 + 4 * 5 + 6 are as follows: 1 + 2 * 3 + 4 * 5 + 6 3 * 3 + 4 * 5 + 6 9 + 4 * 5 + 6 13 * 5 + 6 65 + 6 71 Parentheses can override this order; for example, here is what happens if parentheses are added to form 1 + (2 * 3) + (4 * (5 + 6)): 1 + (2 * 3) + (4 * (5 + 6)) 1 + 6 + (4 * (5 + 6)) 7 + (4 * (5 + 6)) 7 + (4 * 11 ) 7 + 44 51 Here are a few more examples: 2 * 3 + (4 * 5) becomes 26. 5 + (8 * 3 + 9 + 3 * 4 * 3) becomes 437. 5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4)) becomes 12240. ((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2 becomes 13632. Before you can help with the homework, you need to understand it yourself. Evaluate the expression on each line of the homework; what is the sum of the resulting values? """ import re f = open("challenges\data\day18data.txt", "r") def processData(file): data = [] for x in f: x=x.strip().replace('\n', '') data.append(x) return data def evalEquationString(equation): operations = [] stack = [] def apply_top_op(): if operations[-1] == '+': stack[-2:] = [stack[-2] + stack[-1]] elif operations[-1] == '*': stack[-2:] = [stack[-2] * stack[-1]] else: raise Exception(f"Bad state; opstack {operations} stack {stack}") operations.pop() for m in re.finditer(r'([()])|(\d+)|([+*])', equation): if m.group(1) == '(': operations.append('(') elif m.group(1) == ')': while operations[-1] != '(': apply_top_op() operations.pop() elif m.group(2): stack.append(int(m.group(2))) else: while operations and operations[-1] != '(': apply_top_op() operations.append(m.group(3)) while operations: apply_top_op() assert len(stack) == 1, f"operations {operations} stack {stack}" return stack[0] def sumResultingValues(arr, evalMethod): count = 0 for equationString in arr: count += evalMethod(equationString) return count """ --- Part Two --- You manage to answer the child's questions and they finish part 1 of their homework, but get stuck when they reach the next section: advanced math. Now, addition and multiplication have different precedence levels, but they're not the ones you're familiar with. Instead, addition is evaluated before multiplication. For example, the steps to evaluate the expression 1 + 2 * 3 + 4 * 5 + 6 are now as follows: 1 + 2 * 3 + 4 * 5 + 6 3 * 3 + 4 * 5 + 6 3 * 7 * 5 + 6 3 * 7 * 11 21 * 11 231 Here are the other examples from above: 1 + (2 * 3) + (4 * (5 + 6)) still becomes 51. 2 * 3 + (4 * 5) becomes 46. 5 + (8 * 3 + 9 + 3 * 4 * 3) becomes 1445. 5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4)) becomes 669060. ((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2 becomes 23340. What do you get if you add up the results of evaluating the homework problems using these new rules? """ def evalAdvEquationString(equation): operations = [] stack = [] def apply_top_op(): if operations[-1] == '+': stack[-2:] = [stack[-2] + stack[-1]] elif operations[-1] == '*': stack[-2:] = [stack[-2] * stack[-1]] else: raise Exception(f"Bad state; opstack {operations} stack {stack}") operations.pop() for m in re.finditer(r'([()])|(\d+)|([+*])', equation): if m.group(1) == '(': operations.append('(') elif m.group(1) == ')': while operations[-1] != '(': apply_top_op() operations.pop() elif m.group(2): stack.append(int(m.group(2))) else: while operations and m.group(3) == '*' and operations[-1] == '+': apply_top_op() operations.append(m.group(3)) while operations: apply_top_op() assert len(stack) == 1, f"operations {operations} stack {stack}" return stack[0] data = processData(f) print(sumResultingValues(data, evalEquationString)) print(sumResultingValues(data, evalAdvEquationString))
python
"""Exceptions raised by the s3control service.""" from moto.core.exceptions import RESTError ERROR_WITH_ACCESS_POINT_NAME = """{% extends 'wrapped_single_error' %} {% block extra %}<AccessPointName>{{ name }}</AccessPointName>{% endblock %} """ ERROR_WITH_ACCESS_POINT_POLICY = """{% extends 'wrapped_single_error' %} {% block extra %}<AccessPointName>{{ name }}</AccessPointName>{% endblock %} """ class S3ControlError(RESTError): def __init__(self, *args, **kwargs): kwargs.setdefault("template", "single_error") super().__init__(*args, **kwargs) class AccessPointNotFound(S3ControlError): code = 404 def __init__(self, name, **kwargs): kwargs.setdefault("template", "ap_not_found") kwargs["name"] = name self.templates["ap_not_found"] = ERROR_WITH_ACCESS_POINT_NAME super().__init__( "NoSuchAccessPoint", "The specified accesspoint does not exist", **kwargs ) class AccessPointPolicyNotFound(S3ControlError): code = 404 def __init__(self, name, **kwargs): kwargs.setdefault("template", "apf_not_found") kwargs["name"] = name self.templates["apf_not_found"] = ERROR_WITH_ACCESS_POINT_POLICY super().__init__( "NoSuchAccessPointPolicy", "The specified accesspoint policy does not exist", **kwargs )
python
# encoding: utf-8 from __future__ import unicode_literals import os from django.test import TestCase from data_importer.core.descriptor import ReadDescriptor from data_importer.core.descriptor import InvalidDescriptor from data_importer.core.descriptor import InvalidModel from data_importer.importers.base import BaseImporter BASEDIR = os.path.dirname(__file__) JSON_FILE = os.path.abspath(os.path.join(BASEDIR, 'data/test_json_descriptor.json')) class ReadDescriptorTestCase(TestCase): def setUp(self): self.descriptor = ReadDescriptor(file_name=JSON_FILE, model_name='Contact') def test_readed_file(self): self.assertTrue(self.descriptor.source) def test_get_fields(self): self.assertEquals(self.descriptor.get_fields(), ["name", "year", "last"]) def test_invalid_model(self): descriptor = ReadDescriptor(file_name=JSON_FILE, model_name='TestInvalidModel') self.assertRaises(InvalidModel, lambda: descriptor.get_model()) def test_invalid_file(self): self.assertRaises(InvalidDescriptor, lambda: ReadDescriptor(file_name='invalid_file.er', model_name='TestInvalidModel')) class MyBaseImport(BaseImporter): class Meta: delimiter = ';' ignore_first_line = True descriptor = JSON_FILE descriptor_model = "Contact" def set_reader(self): return class TestDescriptionUsingBaseImporter(TestCase): def setUp(self): self.importer = MyBaseImport(source=None) def test_get_fields(self): self.assertEquals(self.importer.fields, ['name', 'year', 'last'])
python
#--------------------------------------------- # Set up Trick executive parameters. #--------------------------------------------- #instruments.echo_jobs.echo_jobs_on() trick.exec_set_trap_sigfpe(True) #trick.checkpoint_pre_init(1) trick.checkpoint_post_init(1) #trick.add_read(0.0 , '''trick.checkpoint('chkpnt_point')''') # NOTE: You must set this to be the same as the master federate's frame for IMSim freezing trick.exec_set_software_frame(0.25) trick.exec_set_stack_trace(False) # Trick config trick.exec_set_enable_freeze(False) trick.exec_set_freeze_command(False) trick.sim_control_panel_set_enabled(False) trick.exec_set_stack_trace(False) #trick.exec_set_thread_amf_cycle_time( 1 , 0.250 ) #trick.exec_set_thread_process_type( 1 , trick.PROCESS_TYPE_AMF_CHILD ) run_duration = 15.0 #--------------------------------------------- # Set up data to record. #--------------------------------------------- exec(open( "Log_data/log_sine_states.py" ).read()) log_sine_states( 'A', 0.250 ) log_sine_states( 'P', 0.250 ) #--------------------------------------------- # Set up the initial Sine states #--------------------------------------------- exec(open( "Modified_data/sine_init.py" ).read()) #TODO: setup integration #P.integ.option = Runge_Kutta_Fehlberg_45 #P.integ.first_step_deriv = Yes # Example of a 1-dimensional dynamic array. A.packing.buff_size = 10 A.packing.buff = trick.sim_services.alloc_type( A.packing.buff_size, 'unsigned char' ) P.packing.buff_size = 10 P.packing.buff = trick.sim_services.alloc_type( P.packing.buff_size, 'unsigned char' ) # We are taking advantage of the input file to specify a unique name for the # sim-data name field for the P-side federate. A.sim_data.name = 'A.name.P-side' P.sim_data.name = 'P.name.P-side' # We are taking advantage of the input file to specify a unique name and # message for the P-side federate interaction handler. A.interaction_handler.name = 'P-side: A.interaction_hdlr.name' P.interaction_handler.name = 'P-side: P.interaction_hdlr.name' A.interaction_handler.message = 'P-side: A.interaction_hdlr.message' P.interaction_handler.message = 'P-side: P.interaction_hdlr.message' # ========================================================================= # Set up HLA interoperability. # ========================================================================= # Show or hide the TrickHLA debug messages. # Use Level-3 to show the ownership transfer debug messages. THLA.federate.debug_level = trick.DEBUG_LEVEL_6_TRACE # Configure the CRC. # Pitch specific local settings designator: THLA.federate.local_settings = 'crcHost = localhost\n crcPort = 8989' # Mak specific local settings designator, which is anything from the rid.mtl file: #THLA.federate.local_settings = '(setqb RTI_tcpForwarderAddr \'192.168.15.3\') (setqb RTI_distributedForwarderPort 5000)' THLA.federate.lookahead_time = 0.250 # Configure the federate. THLA.federate.name = 'P-side-Federate' THLA.federate.FOM_modules = 'FOMs/S_FOMfile.xml,FOMs/TrickHLAFreezeInteraction.xml' THLA.federate.federation_name = 'SineWaveSim' THLA.federate.time_regulating = True THLA.federate.time_constrained = True # Configure ExecutionControl. # Set the multiphase initialization synchronization points. THLA.execution_control.multiphase_init_sync_points = 'Phase1, Phase2' # Set the simulation timeline to be used for time computations. THLA.execution_control.sim_timeline = THLA_INIT.sim_timeline # Set the scenario timeline to be used for configuring federation freeze times. THLA.execution_control.scenario_timeline = THLA_INIT.scenario_timeline # The list of Federates known to be in our Federation. The simulation will # wait for all Federates marked as required to join the Federation before # continuing on. THLA.federate.enable_known_feds = True THLA.federate.known_feds_count = 2 THLA.federate.known_feds = trick.sim_services.alloc_type( THLA.federate.known_feds_count, 'TrickHLA::KnownFederate' ) THLA.federate.known_feds[0].name = 'A-side-Federate' THLA.federate.known_feds[0].required = True THLA.federate.known_feds[1].name = 'P-side-Federate' THLA.federate.known_feds[1].required = True #--------------------------------------------- # Set up for simulation configuration. #--------------------------------------------- THLA.simple_sim_config.owner = 'P-side-Federate' THLA.simple_sim_config.run_duration = run_duration # TrickHLA Interactions and Parameters. THLA.manager.inter_count = 1 THLA.manager.interactions = trick.alloc_type( THLA.manager.inter_count, 'TrickHLA::Interaction' ) THLA.manager.interactions[0].FOM_name = 'Communication' THLA.manager.interactions[0].publish = False THLA.manager.interactions[0].subscribe = True THLA.manager.interactions[0].handler = P.interaction_handler THLA.manager.interactions[0].param_count = 3 THLA.manager.interactions[0].parameters = trick.sim_services.alloc_type( THLA.manager.interactions[0].param_count, 'TrickHLA::Parameter' ) THLA.manager.interactions[0].parameters[0].FOM_name = 'Message' THLA.manager.interactions[0].parameters[0].trick_name = 'P.interaction_handler.message' THLA.manager.interactions[0].parameters[0].rti_encoding = trick.ENCODING_UNICODE_STRING THLA.manager.interactions[0].parameters[1].FOM_name = 'time' THLA.manager.interactions[0].parameters[1].trick_name = 'P.interaction_handler.time' THLA.manager.interactions[0].parameters[1].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.interactions[0].parameters[2].FOM_name = 'year' THLA.manager.interactions[0].parameters[2].trick_name = 'P.interaction_handler.year' THLA.manager.interactions[0].parameters[2].rti_encoding = trick.ENCODING_LITTLE_ENDIAN # The Federate has two objects, it publishes one and subscribes to another. THLA.manager.obj_count = 2 THLA.manager.objects = trick.sim_services.alloc_type( THLA.manager.obj_count, 'TrickHLA::Object' ) # Configure the object this federate subscribes to but will not create an # HLA instance for. THLA.manager.objects[0].FOM_name = 'Test' THLA.manager.objects[0].name = 'A-side-Federate.Test' THLA.manager.objects[0].create_HLA_instance = False THLA.manager.objects[0].packing = A.packing THLA.manager.objects[0].deleted = A.obj_deleted_callback THLA.manager.objects[0].attr_count = 8 THLA.manager.objects[0].attributes = trick.sim_services.alloc_type( THLA.manager.objects[0].attr_count, 'TrickHLA::Attribute' ) THLA.manager.objects[0].attributes[0].FOM_name = 'Time' THLA.manager.objects[0].attributes[0].trick_name = 'A.sim_data.time' THLA.manager.objects[0].attributes[0].config = trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[0].publish = True THLA.manager.objects[0].attributes[0].subscribe = True THLA.manager.objects[0].attributes[0].locally_owned = False THLA.manager.objects[0].attributes[0].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[1].FOM_name = 'Value' THLA.manager.objects[0].attributes[1].trick_name = 'A.sim_data.value' THLA.manager.objects[0].attributes[1].config = trick.CONFIG_INITIALIZE + trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[1].publish = True THLA.manager.objects[0].attributes[1].subscribe = True THLA.manager.objects[0].attributes[1].locally_owned = False THLA.manager.objects[0].attributes[1].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[2].FOM_name = 'dvdt' THLA.manager.objects[0].attributes[2].trick_name = 'A.sim_data.dvdt' THLA.manager.objects[0].attributes[2].config = trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[2].publish = True THLA.manager.objects[0].attributes[2].subscribe = True THLA.manager.objects[0].attributes[2].locally_owned = False THLA.manager.objects[0].attributes[2].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[3].FOM_name = 'Phase' THLA.manager.objects[0].attributes[3].trick_name = 'A.packing.phase_deg' # using packed data instead of 'A.sim_data.phase' THLA.manager.objects[0].attributes[3].config = trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[3].publish = True THLA.manager.objects[0].attributes[3].subscribe = True THLA.manager.objects[0].attributes[3].locally_owned = False THLA.manager.objects[0].attributes[3].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[4].FOM_name = 'Frequency' THLA.manager.objects[0].attributes[4].trick_name = 'A.sim_data.freq' THLA.manager.objects[0].attributes[4].config = trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[4].publish = True THLA.manager.objects[0].attributes[4].subscribe = True THLA.manager.objects[0].attributes[4].locally_owned = False THLA.manager.objects[0].attributes[4].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[5].FOM_name = 'Amplitude' THLA.manager.objects[0].attributes[5].trick_name = 'A.sim_data.amp' THLA.manager.objects[0].attributes[5].config = trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[5].publish = True THLA.manager.objects[0].attributes[5].subscribe = True THLA.manager.objects[0].attributes[5].locally_owned = False THLA.manager.objects[0].attributes[5].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[6].FOM_name = 'Tolerance' THLA.manager.objects[0].attributes[6].trick_name = 'A.sim_data.tol' THLA.manager.objects[0].attributes[6].config = trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[6].publish = True THLA.manager.objects[0].attributes[6].subscribe = True THLA.manager.objects[0].attributes[6].locally_owned = False THLA.manager.objects[0].attributes[6].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[0].attributes[7].FOM_name = 'Name' THLA.manager.objects[0].attributes[7].trick_name = 'A.sim_data.name' THLA.manager.objects[0].attributes[7].config = trick.CONFIG_INITIALIZE + trick.CONFIG_CYCLIC THLA.manager.objects[0].attributes[7].publish = True THLA.manager.objects[0].attributes[7].subscribe = True THLA.manager.objects[0].attributes[7].locally_owned = False THLA.manager.objects[0].attributes[7].rti_encoding = trick.ENCODING_UNICODE_STRING # Configure the object this federate will create an HLA instance and # publish data for. THLA.manager.objects[1].FOM_name = 'Test' THLA.manager.objects[1].name = 'P-side-Federate.Test' THLA.manager.objects[1].create_HLA_instance = True THLA.manager.objects[1].packing = P.packing THLA.manager.objects[1].deleted = P.obj_deleted_callback THLA.manager.objects[1].attr_count = 8 THLA.manager.objects[1].attributes = trick.sim_services.alloc_type( THLA.manager.objects[1].attr_count, 'TrickHLA::Attribute' ) THLA.manager.objects[1].attributes[0].FOM_name = 'Time' THLA.manager.objects[1].attributes[0].trick_name = 'P.sim_data.time' THLA.manager.objects[1].attributes[0].config = trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[0].publish = True THLA.manager.objects[1].attributes[0].locally_owned = True THLA.manager.objects[1].attributes[0].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[1].FOM_name = 'Value' THLA.manager.objects[1].attributes[1].trick_name = 'P.sim_data.value' THLA.manager.objects[1].attributes[1].config = trick.CONFIG_INITIALIZE + trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[1].publish = True THLA.manager.objects[1].attributes[1].subscribe = True THLA.manager.objects[1].attributes[1].locally_owned = True THLA.manager.objects[1].attributes[1].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[2].FOM_name = 'dvdt' THLA.manager.objects[1].attributes[2].trick_name = 'P.sim_data.dvdt' THLA.manager.objects[1].attributes[2].config = trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[2].publish = True THLA.manager.objects[1].attributes[2].locally_owned = True THLA.manager.objects[1].attributes[2].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[3].FOM_name = 'Phase' THLA.manager.objects[1].attributes[3].trick_name = 'P.packing.phase_deg' # using packed data instead of 'P.sim_data.phase' THLA.manager.objects[1].attributes[3].config = trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[3].publish = True THLA.manager.objects[1].attributes[3].locally_owned = True THLA.manager.objects[1].attributes[3].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[4].FOM_name = 'Frequency' THLA.manager.objects[1].attributes[4].trick_name = 'P.sim_data.freq' THLA.manager.objects[1].attributes[4].config = trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[4].publish = True THLA.manager.objects[1].attributes[4].locally_owned = True THLA.manager.objects[1].attributes[4].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[5].FOM_name = 'Amplitude' THLA.manager.objects[1].attributes[5].trick_name = 'P.sim_data.amp' THLA.manager.objects[1].attributes[5].config = trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[5].publish = True THLA.manager.objects[1].attributes[5].locally_owned = True THLA.manager.objects[1].attributes[5].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[6].FOM_name = 'Tolerance' THLA.manager.objects[1].attributes[6].trick_name = 'P.sim_data.tol' THLA.manager.objects[1].attributes[6].config = trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[6].publish = True THLA.manager.objects[1].attributes[6].locally_owned = True THLA.manager.objects[1].attributes[6].rti_encoding = trick.ENCODING_LITTLE_ENDIAN THLA.manager.objects[1].attributes[7].FOM_name = 'Name' THLA.manager.objects[1].attributes[7].trick_name = 'P.sim_data.name' THLA.manager.objects[1].attributes[7].config = trick.CONFIG_INITIALIZE + trick.CONFIG_CYCLIC THLA.manager.objects[1].attributes[7].publish = True THLA.manager.objects[1].attributes[7].locally_owned = True THLA.manager.objects[1].attributes[7].rti_encoding = trick.ENCODING_UNICODE_STRING #--------------------------------------------- # Set up simulation termination time. #--------------------------------------------- trick.sim_services.exec_set_terminate_time( run_duration )
python
import hglib import os __all__ = ['HGState'] class HGState(object): def __init__(self, path): self.client, self.hg_root_path = self.find_hg_root(path) def find_hg_root(self, path): input_path = path found_root = False while not found_root: try: client = hglib.open(path) found_root = True except hglib.error.ServerError: ppath = os.path.abspath(os.path.join(path, os.pardir)) if ppath == path: raise ValueError('No hg repo at %s' % input_path) path = ppath return client, os.path.abspath(path) @property def has_addmodr(self): return '+' in self.client.identify() @property def has_untracked(self): return len(self.client.status()) > 0 @property def is_clean(self): return not self.has_untracked and not self.has_addmodr @property def id_str(self): return '-'.join([self.client.branch()] + self.client.identify().split()) def get_state(self): return {'version': self.client.identify(), 'status':self.client.status(), 'branch':self.client.branch()}
python
def isPalindrome(word): for i in range(len(word)//2): if word[i]!=word[-(i+1)]: return False return True for t in range(10): N=int(input()) L=[] for i in range(8): L.append(input()) ans=0 for i in range(8): for j in range(9-N): if isPalindrome(L[i][j:j+N])==True: ans+=1 for j in range(8): for i in range(9-N): if isPalindrome([a[j] for a in L[i:i+N]])==True: ans+=1 print(f"#{t+1} {ans}")
python
""" pyStatic_problem """ # ============================================================================= # Imports # ============================================================================= import warnings import os import numpy as np from collections import OrderedDict import time from .base import TACSProblem import tacs.TACS class StaticProblem(TACSProblem): def __init__(self, name, assembler, comm, outputViewer=None, meshLoader=None, options={}): """ The main purpose of this class is to represent all relevant information for a static analysis. This will include information defining the loading condition as well as various other pieces of information. Parameters ---------- name : str Name of this tacs problem assembler : assembler Cython object responsible for creating and setting tacs objects used to solve problem comm : MPI Intracomm The comm object on which to create the pyTACS object. outputViewer : TACSToFH5 object Cython object used to write out f5 files that can be converted and used for postprocessing. meshLoader : pyMeshLoader object pyMeshLoader object used to create the assembler. options : dict Dictionary holding problem-specific option parameters. """ # python object name self.objectName = 'StaticProblem' # Problem name self.name = name # Defualt setup for common problem class objects super().__init__(assembler, comm, outputViewer, meshLoader) # Default Option List defOpts = { 'outputdir': [str, './'], # Solution Options 'KSMSolver': [str, 'GMRES'], 'orderingType': [str, 'ND'], 'PCFillLevel': [int, 1000], 'PCFillRatio': [float, 20.0], 'subSpaceSize': [int, 10], 'nRestarts': [int, 15], 'flexible': [int, 1], 'L2Convergence': [float, 1e-12], 'L2ConvergenceRel': [float, 1e-12], 'useMonitor': [bool, False], 'monitorFrequency': [int, 10], 'resNormUB': [float, 1e20], # Output Options 'writeSolution': [bool, True], 'numberSolutions': [bool, True], 'printTiming': [bool, False], 'printIterations': [bool, False], } # Process the default options which are added to self.options # under the 'defaults' key. Make sure the key are lower case self.options = {} def_keys = defOpts.keys() self.options['defaults'] = {} for key in def_keys: self.options['defaults'][key.lower()] = defOpts[key] self.options[key.lower()] = defOpts[key] # Set user-defined options for key in options: self.setOption(key, options[key]) # Linear solver factor flag self._factorOnNext = True # Create problem-specific variables self._createVariables() def _createVariables(self): """Internal to create the variable required by TACS""" # Generic residual vector self.res = self.assembler.createVec() self.rhs = self.assembler.createVec() # Dictionaries to hold adjoint/sens vectors for each evalFunc self.adjointList = OrderedDict() self.dIduList = OrderedDict() self.dvSensList = OrderedDict() self.xptSensList = OrderedDict() # Temporary vector for adjoint solve self.phi = self.assembler.createVec() self.adjRHS = self.assembler.createVec() # Load vector self.F = self.assembler.createVec() self.F_array = self.F.getArray() # State variable vector self.u = self.assembler.createVec() self.u_array = self.u.getArray() # Auxillary element object for applying tractions/pressure self.auxElems = tacs.TACS.AuxElements() self.callCounter = -1 # Norms self.initNorm = 0.0 self.startNorm = 0.0 self.finalNorm = 0.0 opt = self.getOption # Tangent Stiffness --- process the ordering option here: tmp = opt('orderingType').lower() if tmp == 'natural': ordering = tacs.TACS.NATURAL_ORDER elif tmp == 'nd': ordering = tacs.TACS.ND_ORDER elif tmp == 'rcm': ordering = tacs.TACS.RCM_ORDER elif tmp == 'tacs_amd': ordering = tacs.TACS.TACS_AMD_ORDER elif tmp == 'multicolor': ordering = tacs.TACS.MULTICOLOR_ORDER else: raise self.TACSError("Unrecognized 'orderingType' option value: " "'%s'. Valid values are: 'natural', 'nd', 'rcm', " "'tacs_amd', or 'multicolor'." % tmp) self.K = self.assembler.createSchurMat(ordering) # Additional Vecs for updates self.update = self.assembler.createVec() # Setup PCScMat and KSM solver self.alpha = 1.0 self.beta = 0.0 self.gamma = 0.0 self.assembler.assembleJacobian(self.alpha, self.beta, self.gamma, self.res, self.K) reorderSchur = 1 self.PC = tacs.TACS.Pc(self.K, lev_fill=opt('PCFillLevel'), ratio_fill=opt('PCFillRatio'), reorder=reorderSchur) # Operator, fill level, fill ratio, msub, rtol, ataol if opt('KSMSolver').upper() == 'GMRES': self.KSM = tacs.TACS.KSM( self.K, self.PC, opt('subSpaceSize'), opt('nRestarts'), opt('flexible')) # TODO: Fix this # elif opt('KSMSolver').upper() == 'GCROT': # self.KSM = tacs.TACS.GCROT( # self.K, self.PC, opt('subSpaceSize'), opt('subSpaceSize'), # opt('nRestarts'), opt('flexible')) else: raise self.TACSError("Unknown KSMSolver option. Valid options are " "'GMRES' or 'GCROT'") self.KSM.setTolerances(self.getOption('L2ConvergenceRel'), self.getOption('L2Convergence')) if opt('useMonitor'): self.KSM.setMonitor(tacs.TACS.KSMPrintStdout( opt('KSMSolver'), self.comm.rank, opt('monitorFrequency'))) def addFunction(self, funcName, funcHandle, compIDs=None, **kwargs): """ Generic function to add a function for TACS. It is intended to be reasonably generic since the user supplies the actual function handle to use. The following functions can be used: KSFailure, KSTemperature, AverageTemperature, Compliance, KSDisplacement, StructuralMass, HeatFlux. Parameters ---------- funcName : str The user-supplied name for the function. This will typically be a string that is meanful to the user funcHandle : tacs.functions The fucntion handle to use for creation. This must come from the functions module in tacs. compIDs: list List of compIDs to select. Alternative to selectCompIDs arguments. """ success = super().addFunction(funcName, funcHandle, compIDs, **kwargs) if success: # Create additional tacs BVecs to hold adjoint and sens info self.adjointList[funcName] = self.assembler.createVec() self.dIduList[funcName] = self.assembler.createVec() self.dvSensList[funcName] = self.assembler.createDesignVec() self.xptSensList[funcName] = self.assembler.createNodeVec() return success def setDesignVars(self, x): """ Update the design variables used by tacs. Parameters ---------- x : ndarray The variables (typically from the optimizer) to set. It looks for variable in the ``self.varName`` attribute. """ super().setDesignVars(x) self._factorOnNext = True def setNodes(self, coords): """ Set the mesh coordinates of the structure. Parameters ---------- coords : ndarray Structural coordinate in array of size (N * 3) where N is the number of structural nodes on this processor. """ super().setNodes(coords) self._factorOnNext = True ####### Load adding methods ######## def addLoadToComponents(self, compIDs, F, averageLoad=False): """" The function is used to add a *FIXED TOTAL LOAD* on one or more components, defined by COMPIDs. The purpose of this routine is to add loads that remain fixed throughout an optimization. An example would be an engine load. This routine determines all the unqiue nodes in the FE model that are part of the the requested components, then takes the total 'force' by F and divides by the number of nodes. This average load is then applied to the nodes. Parameters ---------- compIDs : list[int] or int The components with added loads. Use pyTACS selectCompIDs method to determine this. F : Numpy 1d or 2d array length (varsPerNodes) or (numNodeIDs, varsPerNodes) Vector(s) of 'force' to apply to each components. If only one force vector is provided, force will be copied uniformly across all components. averageLoad : bool Flag to determine whether load should be split evenly across all components (True) or copied and applied individually to each component (False). Defaults to False. Notes ---------- The units of the entries of the 'force' vector F are not necesarily physical forces and their interpretation depends on the physics problem being solved and the dofs included in the model. A couple of examples of force vector components for common problem are listed below: In Heat Conduction with varsPerNode = 1 F = [Qdot] # heat rate In Elasticity with varsPerNode = 3, F = [fx, fy, fz] # forces In Elasticity with varsPerNode = 6, F = [fx, fy, fz, mx, my, mz] # forces + moments In Thermoelasticity with varsPerNode = 4, F = [fx, fy, fz, Qdot] # forces + heat rate In Thermoelasticity with varsPerNode = 7, F = [fx, fy, fz, mx, my, mz, Qdot] # forces + moments + heat rate """ self._addLoadToComponents(self.F, compIDs, F, averageLoad) def addLoadToNodes(self, nodeIDs, F, nastranOrdering=False): """ The function is used to add a fixed point load of F to the selected node IDs. Parameters ---------- nodeIDs : list[int] The nodes IDs with added loads. F : Numpy 1d or 2d array length (varsPerNodes) or (numNodeIDs, varsPerNodes) Array of force vectors, one for each node. If only one force vector is provided, force will be copied uniformly across all nodes. nastranOrdering : bool Flag signaling whether nodeIDs are in TACS (default) or NASTRAN (grid IDs in bdf file) ordering Notes ---------- The units of the entries of the 'force' vector F are not necesarily physical forces and their interpretation depends on the physics problem being solved and the dofs included in the model. A couple of examples of force vector components for common problem are listed below: In Heat Conduction with varsPerNode = 1 F = [Qdot] # heat rate In Elasticity with varsPerNode = 3, F = [fx, fy, fz] # forces In Elasticity with varsPerNode = 6, F = [fx, fy, fz, mx, my, mz] # forces + moments In Thermoelasticity with varsPerNode = 4, F = [fx, fy, fz, Qdot] # forces + heat rate In Thermoelasticity with varsPerNode = 7, F = [fx, fy, fz, mx, my, mz, Qdot] # forces + moments + heat rate """ self._addLoadToNodes(self.F, nodeIDs, F, nastranOrdering) def addLoadToRHS(self, Fapplied): """" The function is used to add a *FIXED TOTAL LOAD* directly to the right hand side vector given the equation below: K*u = f Where: K : Stiffness matrix for problem u : State variables for problem f : Right-hand side vector to add loads to Parameters ---------- Fapplied : ndarray or BVec Distributed array containing loads to applied to RHS of the problem. """ self._addLoadToRHS(self.F, Fapplied) def addTractionToComponents(self, compIDs, tractions, faceIndex=0): """ The function is used to add a *FIXED TOTAL TRACTION* on one or more components, defined by COMPIDs. The purpose of this routine is to add loads that remain fixed throughout an optimization. Parameters ---------- compIDs : list[int] or int The components with added loads. Use pyTACS selectCompIDs method to determine this. tractions : Numpy array length 1 or compIDs Array of traction vectors for each components faceIndex : int Indicates which face (side) of element to apply traction to. Note: not required for certain elements (i.e. shells) """ self._addTractionToComponents(self.auxElems, compIDs, tractions, faceIndex) def addTractionToElements(self, elemIDs, tractions, faceIndex=0, nastranOrdering=False): """ The function is used to add a fixed traction to the selected element IDs. Tractions can be specified on an element by element basis (if tractions is a 2d array) or set to a uniform value (if tractions is a 1d array) Parameters ---------- elemIDs : list[int] The global element ID numbers for which to apply the traction. tractions : Numpy 1d or 2d array length varsPerNodes or (elemIDs, varsPerNodes) Array of traction vectors for each element faceIndex : int Indicates which face (side) of element to apply traction to. Note: not required for certain elements (i.e. shells) nastranOrdering : bool Flag signaling whether elemIDs are in TACS (default) or NASTRAN ordering """ self._addTractionToElements(self.auxElems, elemIDs, tractions, faceIndex, nastranOrdering) def addPressureToComponents(self, compIDs, pressures, faceIndex=0): """ The function is used to add a *FIXED TOTAL PRESSURE* on one or more components, defined by COMPIds. The purpose of this routine is to add loads that remain fixed throughout an optimization. An example would be a fuel load. Parameters ---------- compIDs : list[int] or int The components with added loads. Use pyTACS selectCompIDs method to determine this. pressures : Numpy array length 1 or compIDs Array of pressure values for each components faceIndex : int Indicates which face (side) of element to apply pressure to. Note: not required for certain elements (i.e. shells) """ self._addPressureToComponents(self.auxElems, compIDs, pressures, faceIndex) def addPressureToElements(self, elemIDs, pressures, faceIndex=0, nastranOrdering=False): """ The function is used to add a fixed presure to the selected element IDs. Pressures can be specified on an element by element basis (if pressures is an array) or set to a uniform value (if pressures is a scalar) Parameters ---------- elemIDs : list[int] The global element ID numbers for which to apply the pressure. pressures : Numpy array length 1 or elemIDs Array of pressure values for each element faceIndex : int Indicates which face (side) of element to apply pressure to. Note: not required for certain elements (i.e. shells) nastranOrdering : bool Flag signaling whether elemIDs are in TACS (default) or NASTRAN ordering """ self._addPressureToElements(self.auxElems, elemIDs, pressures, faceIndex, nastranOrdering) ####### Static solver methods ######## def _updateAssemblerVars(self): """ Make sure that the assembler is using the input variables associated with this problem """ self.assembler.setDesignVars(self.x) self.assembler.setNodes(self.Xpts) self.assembler.setAuxElements(self.auxElems) # Set state variables self.assembler.setVariables(self.u) # Zero any time derivitive terms self.assembler.zeroDotVariables() self.assembler.zeroDDotVariables() def _initializeSolve(self): """ Initialze the solution of the structural system for the loadCase. The stiffness matrix is assembled and factored. """ if self._factorOnNext: self.assembler.assembleJacobian(self.alpha, self.beta, self.gamma, self.res, self.K) self.PC.factor() self._factorOnNext = False def solve(self, Fext=None): """ Solution of the static problem for current load set. The forces must already be set. Parameters ---------- Optional Arguments: Fext : ndarray or BVec Distributed array containing additional loads (ex. aerodynamic forces for aerostructural coupling) to applied to RHS of the static problem. """ startTime = time.time() self.callCounter += 1 setupProblemTime = time.time() # Set problem vars to assembler self._updateAssemblerVars() # Check if we need to initialize self._initializeSolve() initSolveTime = time.time() # Compute the RHS self.assembler.assembleRes(self.res) # Add force terms from rhs self.rhs.copyValues(self.F) # Fixed loads # Add external loads, if specified if Fext is not None: if isinstance(Fext, tacs.TACS.Vec): self.rhs.axpy(1.0, Fext) elif isinstance(Fext, np.ndarray): rhsArray = self.rhs.getArray() rhsArray[:] = rhsArray[:] + Fext[:] # Zero out bc terms in rhs self.assembler.applyBCs(self.rhs) # Add the -F self.res.axpy(-1.0, self.rhs) # Set initnorm as the norm of F self.initNorm = np.real(self.F.norm()) # Starting Norm for this compuation self.startNorm = np.real(self.res.norm()) initNormTime = time.time() # Solve Linear System for the update self.KSM.solve(self.res, self.update) self.update.scale(-1.0) solveTime = time.time() # Update State Variables self.assembler.getVariables(self.u) self.u.axpy(1.0, self.update) self.assembler.setVariables(self.u) stateUpdateTime = time.time() # Compute final FEA Norm self.assembler.assembleRes(self.res) self.res.axpy(-1.0, self.F) # Add the -F self.finalNorm = np.real(self.res.norm()) finalNormTime = time.time() # If timing was was requested print it, if the solution is nonlinear # print this information automatically if prinititerations was requested. if self.getOption('printTiming') or self.getOption('printIterations'): self.pp('+--------------------------------------------------+') self.pp('|') self.pp('| TACS Solve Times:') self.pp('|') self.pp('| %-30s: %10.3f sec' % ('TACS Setup Time', setupProblemTime - startTime)) self.pp('| %-30s: %10.3f sec' % ('TACS Solve Init Time', initSolveTime - setupProblemTime)) self.pp('| %-30s: %10.3f sec' % ('TACS Init Norm Time', initNormTime - initSolveTime)) self.pp('| %-30s: %10.3f sec' % ('TACS Solve Time', solveTime - initNormTime)) self.pp('| %-30s: %10.3f sec' % ('TACS State Update Time', stateUpdateTime - solveTime)) self.pp('| %-30s: %10.3f sec' % ('TACS Final Norm Time', finalNormTime - stateUpdateTime)) self.pp('|') self.pp('| %-30s: %10.3f sec' % ('TACS Total Solution Time', finalNormTime - startTime)) self.pp('+--------------------------------------------------+') return ####### Function eval/sensitivity methods ######## def evalFunctions(self, funcs, evalFuncs=None, ignoreMissing=False): """ This is the main routine for returning useful information from pytacs. The functions corresponding to the strings in EVAL_FUNCS are evaluated and updated into the provided dictionary. Parameters ---------- funcs : dict Dictionary into which the functions are saved. evalFuncs : iterable object containing strings. If not none, use these functions to evaluate. ignoreMissing : bool Flag to supress checking for a valid function. Please use this option with caution. Examples -------- >>> funcs = {} >>> staticProblem.solve() >>> staticProblem.evalFunctions(funcs, ['mass']) >>> funcs >>> # Result will look like (if StaticProblem has name of 'c1'): >>> # {'cl_mass':12354.10} """ startTime = time.time() # Set problem vars to assembler self._updateAssemblerVars() if evalFuncs is None: evalFuncs = sorted(list(self.functionList)) else: evalFuncs = sorted(list(evalFuncs)) if not ignoreMissing: for f in evalFuncs: if not f in self.functionList: raise Error("Supplied function '%s' has not been added " "using addFunction()." % f) setupProblemTime = time.time() # Fast parallel function evaluation of structural funcs: handles = [self.functionList[f] for f in evalFuncs if f in self.functionList] funcVals = self.assembler.evalFunctions(handles) functionEvalTime = time.time() # Assign function values to appropriate dictionary i = 0 for f in evalFuncs: if f in self.functionList: key = self.name + '_%s' % f funcs[key] = funcVals[i] i += 1 dictAssignTime = time.time() if self.getOption('printTiming'): self.pp('+--------------------------------------------------+') self.pp('|') self.pp('| TACS Function Times:') self.pp('|') self.pp('| %-30s: %10.3f sec' % ('TACS Function Setup Time', setupProblemTime - startTime)) self.pp('| %-30s: %10.3f sec' % ('TACS Function Eval Time', functionEvalTime - setupProblemTime)) self.pp('| %-30s: %10.3f sec' % ('TACS Dict Time', dictAssignTime - functionEvalTime)) self.pp('|') self.pp('| %-30s: %10.3f sec' % ('TACS Function Time', dictAssignTime - startTime)) self.pp('+--------------------------------------------------+') def evalFunctionsSens(self, funcsSens, evalFuncs=None): """ This is the main routine for returning useful (sensitivity) information from problem. The derivatives of the functions corresponding to the strings in EVAL_FUNCS are evaluated and updated into the provided dictionary. Parameters ---------- funcsSens : dict Dictionary into which the derivatives are saved. evalFuncs : iterable object containing strings The functions the user wants returned Examples -------- >>> funcsSens = {} >>> staticProblem.evalFunctionsSens(funcsSens, ['mass']) >>> funcs >>> # Result will look like (if StaticProblem has name of 'c1'): >>> # {'c1_mass':{'struct':[1.234, ..., 7.89]} """ startTime = time.time() # Set problem vars to assembler self._updateAssemblerVars() if evalFuncs is None: evalFuncs = sorted(list(self.functionList)) else: evalFuncs = sorted(list(evalFuncs)) # Check that the functions are all ok. # and prepare tacs vecs for adjoint procedure dvSenses = [] xptSenses = [] dIdus = [] adjoints = [] for f in evalFuncs: if f not in self.functionList: raise Error("Supplied function has not beed added " "using addFunction()") else: # Populate the lists with the tacs bvecs # we'll need for each adjoint/sens calculation dvSens = self.dvSensList[f] dvSens.zeroEntries() dvSenses.append(dvSens) xptSens = self.xptSensList[f] xptSens.zeroEntries() xptSenses.append(xptSens) dIdu = self.dIduList[f] dIdu.zeroEntries() dIdus.append(dIdu) adjoint = self.adjointList[f] adjoint.zeroEntries() adjoints.append(adjoint) setupProblemTime = time.time() adjointStartTime = {} adjointEndTime = {} # Next we will solve all the adjoints # Set adjoint rhs self.addSVSens(evalFuncs, dIdus) adjointRHSTime = time.time() for i, f in enumerate(evalFuncs): adjointStartTime[f] = time.time() self.solveAdjoint(dIdus[i], adjoints[i]) adjointEndTime[f] = time.time() adjointFinishedTime = time.time() # Evaluate all the adoint res prooduct at the same time for # efficiency: self.addDVSens(evalFuncs, dvSenses) self.addAdjointResProducts(adjoints, dvSenses) self.addXptSens(evalFuncs, xptSenses) self.addAdjointResXptSensProducts(adjoints, xptSenses) # Recast sensititivities into dict for user for i, f in enumerate(evalFuncs): key = self.name + '_%s' % f # Return sensitivities as array in sens dict funcsSens[key] = {self.varName: dvSenses[i].getArray().copy(), self.coordName: xptSenses[i].getArray().copy()} totalSensitivityTime = time.time() if self.getOption('printTiming'): self.pp('+--------------------------------------------------+') self.pp('|') self.pp('| TACS Adjoint Times:') print('|') print('| %-30s: %10.3f sec' % ('TACS Sens Setup Problem Time', setupProblemTime - startTime)) print('| %-30s: %10.3f sec' % ( 'TACS Adjoint RHS Time', adjointRHSTime - setupProblemTime)) for f in evalFuncs: print('| %-30s: %10.3f sec' % ( 'TACS Adjoint Solve Time - %s' % (f), adjointEndTime[f] - adjointStartTime[f])) print('| %-30s: %10.3f sec' % ('Total Sensitivity Time', totalSensitivityTime - adjointFinishedTime)) print('|') print('| %-30s: %10.3f sec' % ('Complete Sensitivity Time', totalSensitivityTime - startTime)) print('+--------------------------------------------------+') def addSVSens(self, evalFuncs, svSensList): """ Add the state variable partial sensitivity to the ADjoint RHS for given evalFuncs Parameters ---------- evalFuncs : list[str] The functions the user wants returned svSensList : list[BVec] or list[ndarray] List of sensitivity vectors to add partial sensitivity to """ # Set problem vars to assembler self._updateAssemblerVars() # Get list of TACS function handles from evalFuncs funcHandles = [self.functionList[f] for f in evalFuncs if f in self.functionList] # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(svSensList[0], np.ndarray): svSensBVecList = [self._arrayToVec(svSensArray) for svSensArray in svSensList] # Otherwise the input is already a BVec and we can do the operation in place else: svSensBVecList = svSensList self.assembler.addSVSens(funcHandles, svSensBVecList, self.alpha, self.beta, self.gamma) # Update from the BVec values, if the input was a numpy array if isinstance(svSensList[0], np.ndarray): for svSensArray, svSensBVec in zip(svSensList, svSensBVecList): svSensArray[:] = svSensBVec.getArray() def addDVSens(self, evalFuncs, dvSensList, scale=1.0): """ Add partial sensitivity contribution due to design vars for evalFuncs Parameters ---------- evalFuncs : list[str] The functions the user wants returned dvSensList : list[BVec] or list[ndarray] List of sensitivity vectors to add partial sensitivity to scale : float Scalar to multiply partial sensitivity by. Defaults to 1.0 """ # Set problem vars to assembler self._updateAssemblerVars() # Get list of TACS function handles from evalFuncs funcHandles = [self.functionList[f] for f in evalFuncs if f in self.functionList] # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(dvSensList[0], np.ndarray): dvSensBVecList = [self._arrayToDesignVec(dvSensArray) for dvSensArray in dvSensList] # Otherwise the input is already a BVec and we can do the operation in place else: dvSensBVecList = dvSensList self.assembler.addDVSens(funcHandles, dvSensBVecList, scale) # Finalize sensitivity arrays across all procs for dvSensBVec in dvSensBVecList: dvSensBVec.beginSetValues() dvSensBVec.endSetValues() # Update the BVec values, if the input was a numpy array if isinstance(dvSensList[0], np.ndarray): for dvSensArray, dvSensBVec in zip(dvSensList, dvSensBVecList): # Copy values to numpy array dvSensArray[:] = dvSensBVec.getArray() def addAdjointResProducts(self, adjointlist, dvSensList, scale=-1.0): """ Add the adjoint product contribution to the design variable sensitivity arrays Parameters ---------- adjointlist : list[BVec] or list[ndarray] List of adjoint vectors for residual sensitivity product dvSensList : list[BVec] or list[ndarray] List of sensitivity vectors to add product to scale : float Scalar to multiply product by. Defaults to -1.0 """ # Set problem vars to assembler self._updateAssemblerVars() # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(adjointlist[0], np.ndarray): adjointBVeclist = [self._arrayToVec(adjointArray) for adjointArray in adjointlist] # Otherwise the input is already a BVec and we can do the operation in place else: adjointBVeclist = adjointlist # Make sure BC terms are zeroed out in adjoint for adjoint in adjointBVeclist: self.assembler.applyBCs(adjoint) # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(dvSensList[0], np.ndarray): dvSensBVecList = [self._arrayToDesignVec(dvSensArray) for dvSensArray in dvSensList] # Otherwise the input is already a BVec and we can do the operation in place else: dvSensBVecList = dvSensList self.assembler.addAdjointResProducts(adjointBVeclist, dvSensBVecList, scale) # Finalize sensitivity arrays across all procs for dvSensBVec in dvSensBVecList: dvSensBVec.beginSetValues() dvSensBVec.endSetValues() # Update the BVec values, if the input was a numpy array if isinstance(dvSensList[0], np.ndarray): for dvSensArray, dvSensBVec in zip(dvSensList, dvSensBVecList): # Copy values to numpy array dvSensArray[:] = dvSensBVec.getArray() def addXptSens(self, evalFuncs, xptSensList, scale=1.0): """ Add partial sensitivity contribution due to nodal coordinates for evalFuncs Parameters ---------- evalFuncs : list[str] The functions the user wants returned xptSensList : list[BVec] or list[ndarray] List of sensitivity vectors to add partial sensitivity to scale : float Scalar to multiply partial sensitivity by. Defaults to 1.0 """ # Set problem vars to assembler self._updateAssemblerVars() # Get list of TACS function handles from evalFuncs funcHandles = [self.functionList[f] for f in evalFuncs if f in self.functionList] # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(xptSensList[0], np.ndarray): xptSensBVecList = [self._arrayToNodeVec(xptSensArray) for xptSensArray in xptSensList] # Otherwise the input is already a BVec and we can do the operation in place else: xptSensBVecList = xptSensList self.assembler.addXptSens(funcHandles, xptSensBVecList, scale) # Finalize sensitivity arrays across all procs for xptSensBVec in xptSensBVecList: xptSensBVec.beginSetValues() xptSensBVec.endSetValues() # Update from the BVec values, if the input was a numpy array if isinstance(xptSensList[0], np.ndarray): for xptSensArray, xptSensBVec in zip(xptSensList, xptSensBVecList): # Copy values to numpy array xptSensArray[:] = xptSensBVec.getArray() def addAdjointResXptSensProducts(self, adjointlist, xptSensList, scale=-1.0): """ Add the adjoint product contribution to the nodal coordinates sensitivity arrays Parameters ---------- adjointlist : list[BVec] or list[ndarray] List of adjoint vectors for residual sensitivity product xptSensList : list[BVec] or list[ndarray] List of sensitivity vectors to add product to scale : float Scalar to multiply product by. Defaults to -1.0 """ # Set problem vars to assembler self._updateAssemblerVars() # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(adjointlist[0], np.ndarray): adjointBVeclist = [self._arrayToVec(adjointArray) for adjointArray in adjointlist] # Otherwise the input is already a BVec and we can do the operation in place else: adjointBVeclist = adjointlist # Make sure BC terms are zeroed out in adjoint for adjoint in adjointBVeclist: self.assembler.applyBCs(adjoint) # Create a tacs BVec copy for the operation if the output is a numpy array if isinstance(xptSensList[0], np.ndarray): xptSensBVecList = [self._arrayToNodeVec(xptSensArray) for xptSensArray in xptSensList] # Otherwise the input is already a BVec and we can do the operation in place else: xptSensBVecList = xptSensList self.assembler.addAdjointResXptSensProducts(adjointBVeclist, xptSensBVecList, scale) # Finalize sensitivity arrays across all procs for xptSensBVec in xptSensBVecList: xptSensBVec.beginSetValues() xptSensBVec.endSetValues() if isinstance(xptSensList[0], np.ndarray): for xptSensArray, xptSensBVec in zip(xptSensList, xptSensBVecList): # Copy values to numpy array xptSensArray[:] = xptSensBVec.getArray() def getResidual(self, res, Fext=None): """ This routine is used to evaluate directly the structural residual. Only typically used with aerostructural analysis. Parameters ---------- res : TACS BVec or numpy array If res is not None, place the residuals into this array. Fext : TACS BVec or numpy array Distributed array containing additional loads (ex. aerodynamic forces for aerostructural coupling) to applied to RHS of the static problem. """ # Make sure assembler variables are up to date self._updateAssemblerVars() # Assemble residual self.assembler.assembleRes(self.res) # Add the -F self.res.axpy(-1.0, self.F) # Compute the RHS self.assembler.assembleRes(self.res) # Add force terms from rhs self.rhs.copyValues(self.F) # Fixed loads # Add external loads, if specified if Fext is not None: if isinstance(Fext, tacs.TACS.Vec): self.rhs.axpy(1.0, Fext) elif isinstance(Fext, np.ndarray): rhsArray = self.rhs.getArray() rhsArray[:] = rhsArray[:] + Fext[:] # Zero out bc terms in rhs self.assembler.applyBCs(self.rhs) # Add the -F self.res.axpy(-1.0, self.rhs) # Output residual if isinstance(res, tacs.TACS.Vec): res.copyValues(self.res) else: res[:] = self.res.getArray() def addTransposeJacVecProduct(self, phi, prod, scale=1.0): """ Adds product of transpose Jacobian and input vector into output vector as shown below: prod += scale * J^T . phi Parameters ---------- phi : TACS BVec or numpy array Input vector to product with the transpose Jacobian. prod : TACS BVec or numpy array Output vector to add Jacobian product to. scale : float Scalar used to scale Jacobian product by. """ # Create a tacs bvec copy of the adjoint vector if isinstance(phi, tacs.TACS.Vec): self.phi.copyValues(phi) elif isinstance(phi, np.ndarray): self.phi.getArray()[:] = phi # Tacs doesn't actually transpose the matrix here so keep track of # RHS entries that TACS zeros out for BCs. bcTerms = self.update bcTerms.copyValues(self.phi) self.assembler.applyBCs(self.phi) bcTerms.axpy(-1.0, self.phi) # Set problem vars to assembler self._updateAssemblerVars() self.K.mult(self.phi, self.res) # Add bc terms back in self.res.axpy(1.0, bcTerms) # Output residual if isinstance(prod, tacs.TACS.Vec): prod.axpy(scale, self.res) else: prod[:] = prod + scale * self.res.getArray() def zeroVariables(self): """ Zero all the tacs solution b-vecs """ self.res.zeroEntries() self.u.zeroEntries() self.assembler.setVariables(self.u) self.update.zeroEntries() def solveAdjoint(self, rhs, phi): """ Solve the structural adjoint. Parameters ---------- rhs : TACS BVec or numpy array right hand side vector for adjoint solve phi : TACS BVec or numpy array BVec or numpy array into which the adjoint is saved """ # Set problem vars to assembler self._updateAssemblerVars() # Check if we need to initialize self._initializeSolve() # Create a copy of the adjoint/rhs guess if isinstance(phi, tacs.TACS.Vec): self.phi.copyValues(phi) elif isinstance(phi, np.ndarray): self.phi.getArray()[:] = phi if isinstance(rhs, tacs.TACS.Vec): self.adjRHS.copyValues(rhs) elif isinstance(rhs, np.ndarray): self.adjRHS.getArray()[:] = rhs # Tacs doesn't actually transpose the matrix here so keep track of # RHS entries that TACS zeros out for BCs. bcTerms = self.update bcTerms.copyValues(self.adjRHS) self.assembler.applyBCs(self.adjRHS) bcTerms.axpy(-1.0, self.adjRHS) # Solve Linear System self.KSM.solve(self.adjRHS, self.phi) self.assembler.applyBCs(self.phi) # Add bc terms back in self.phi.axpy(1.0, bcTerms) # Copy output values back to user vectors if isinstance(phi, tacs.TACS.Vec): phi.copyValues(self.phi) elif isinstance(phi, np.ndarray): phi[:] = self.phi.getArray() def getVariables(self, states=None): """ Return the current state values for the problem Parameters ---------- states : TACS BVec or numpy array Vector to place current state variables into (optional) Returns ---------- states : numpy array current state vector """ if isinstance(states, tacs.TACS.Vec): states.copyValues(self.u) elif isinstance(states, np.ndarray): states[:] = self.u_array[:] return self.u_array.copy() def setVariables(self, states): """ Set the structural states for current load case. Parameters ---------- states : ndarray Values to set. Must be the size of getNumVariables() """ # Copy array values if isinstance(states, tacs.TACS.Vec): self.u.copyValues(states) elif isinstance(states, np.ndarray): self.u_array[:] = states[:] # Apply boundary conditions self.assembler.applyBCs(self.u) # Set states to assembler self.assembler.setVariables(self.u) def writeSolution(self, outputDir=None, baseName=None, number=None): """ This is a generic shell function that writes the output file(s). The intent is that the user or calling program can call this function and pyTACS writes all the files that the user has defined. It is recommended that this function is used along with the associated logical flags in the options to determine the desired writing procedure Parameters ---------- outputDir : str or None Use the supplied output directory baseName : str or None Use this supplied string for the base filename. Typically only used from an external solver. number : int or None Use the user spplied number to index solution. Again, only typically used from an external solver """ # Make sure assembler variables are up to date self._updateAssemblerVars() # Check input if outputDir is None: outputDir = self.getOption('outputDir') if baseName is None: baseName = self.name # If we are numbering solution, it saving the sequence of # calls, add the call number if number is not None: # We need number based on the provided number: baseName = baseName + '_%3.3d' % number else: # if number is none, i.e. standalone, but we need to # number solutions, use internal counter if self.getOption('numberSolutions'): baseName = baseName + '_%3.3d' % self.callCounter # Unless the writeSolution option is off write actual file: if self.getOption('writeSolution'): base = os.path.join(outputDir, baseName) + '.f5' self.outputViewer.writeToFile(base)
python
# A collection of functions for loading the esm2m perturbation experiments import xarray as xr from gfdl_utils.core import get_pathspp def get_path(variable=None, ppname=None, override=False, experiments=None, timespan=None): """Returns a dictionary of paths relevant to the specified experiments, variables, and timespans Parameters ---------- variable : str Name of variable, or None (for all variables) ppname : str Name of postprocess directory from ocean_bling_tracers ocean_bling_ocn_flux bling_atm_flux ocean_gat_dic Note that if variable is specified exactly, ppname is not needed. If variable is None or has a wildcard character, ppname is required. override : bool Get variables from the override experiment. experiments : str List of perturbation experiments from which to grab data. If none, get for all experiments. timespan : str Specify the time string if a subset of years required. Returns ------- path : dict of str paths : dict of list Expanded paths """ config = 'MOM5_SIS_BLING_CORE2-gat' if override: config = config+'-override-po4' pp = '/archive/Richard.Slater/Siena/siena_201308_rds-c3-gat-slurm/'+config+'/gfdl.ncrc3-intel16-prod-openmp/pp/' out = 'ts' local = 'monthly/10yr' # Unless experiment is specified, set to all if experiments is None: experiments = ['','_gat','_zero','_double'] if type(experiments)==str: # Force into a list experiments = [experiments] # Unless variable is specified, set to all if variable is None: variable = '*' # Unless timespan is specified, set to all if timespan is None: timespan = '*' # If ppname is not specified, derive from variable if ppname is None: d = get_variable_dict() if variable in d: ppname = d[variable] else: raise NameError('If ppname is not specified, must give exact variable name.'+ ' To specify wildcard variable, specify ppname.') # Configure correct ppname if ppname == 'ocean_bling_tracers': ppname_pre = 'ocean_bling' ppname_suf = '_tracers' elif ppname in ['ocean_bling_ocn_flux','bling_atm_flux','ocean_gat_dic']: ppname_pre = ppname ppname_suf = '' # ocean_gat_dic has no non-gat control if (ppname == 'ocean_gat_dic') & ('' in experiments): experiments.remove('') path = {} for e in experiments: pathDict = {'pp':pp, 'ppname':ppname_pre+e+ppname_suf, 'out':out, 'local':local, 'time':timespan, 'add':variable} path[e] = get_pathspp(**pathDict) return path def load_exps(variable=None, ppname=None, override=False, experiments=None, timespan=None, verbose=False): """Returns a dictionary of datasets for each of the specified experiments, variables, and timespans Parameters ---------- variable : str Name of variable, or None (for all variables) ppname : str Name of postprocess directory from ocean_bling_tracers ocean_bling_ocn_flux bling_atm_flux ocean_gat_dic Note that if variable is specified exactly, ppname is not needed. If variable is None or has a wildcard character, ppname is required. override : bool Get variables from the override experiment. experiments : str List of perturbation experiments from which to grab data. If none, get for all experiments. timespan : str Specify the time string if a subset of years required. verbose : bool Print paths to page Returns ------- dd : dict Dictionary of {xarray.Dataset}'s with each entry corresponding to each experiment. """ paths = get_path(variable=variable,ppname=ppname,override=override,experiments=experiments,timespan=timespan) dd = {} for p,path in paths.items(): if verbose: print(path) dd[p] = xr.open_mfdataset(path) if len(dd)==1: dd=dd[experiments] return dd def load_grid(fromwork=True,z=None,z_i=None): if fromwork: # Load augmented grid saved to work # See notebook save_grid.ipynp gridpath = '/work/gam/projects/bio-pump-timescales/data/esm2m/raw/grid.nc' grid = xr.open_dataset(gridpath) else: pp = '/archive/Richard.Slater/Siena/siena_201308_rds-c3-gat-slurm/MOM5_SIS_BLING_CORE2-gat/gfdl.ncrc3-intel16-prod-openmp/pp/' gridpath = pp+'static.nc' grid = xr.open_dataset(gridpath) if z is not None: grid['dz'] = (z_i.diff('st_edges_ocean') .rename({'st_edges_ocean':'st_ocean'}) .assign_coords({'st_ocean':z})) grid['volume_t'] = grid['area_t']*grid['dz'] return grid def calc_anom(dd): ddanom = {} ddanom['zero'] = dd['_zero']-dd['_gat'] ddanom['double'] = dd['_double']-dd['_gat'] ddanom['noneq'] = dd['']-dd['_gat'] return ddanom def get_variable_dict(): return {'alk':'ocean_bling_tracers', 'alpha':'ocean_bling_tracers', 'biomass_p':'ocean_bling_tracers', 'chl':'ocean_bling_tracers', 'co2_alpha':'ocean_bling_tracers', 'co3_ion':'ocean_bling_tracers', 'delta_csurf':'ocean_bling_tracers', 'delta_pco2':'ocean_bling_tracers', 'dic_area_integral':'ocean_bling_tracers', 'dic':'ocean_bling_tracers', 'dic_stf':'ocean_bling_tracers', 'dic_volume_integral':'ocean_bling_tracers', 'dop_area_integral':'ocean_bling_tracers', 'dop':'ocean_bling_tracers', 'dop_volume_integral':'ocean_bling_tracers', 'fed':'ocean_bling_tracers', 'fed_stf':'ocean_bling_tracers', 'htotal':'ocean_bling_tracers', 'integral_dic':'ocean_bling_tracers', 'integral_dic_stf':'ocean_bling_tracers', 'irr_mem':'ocean_bling_tracers', 'jdic_100':'ocean_bling_tracers', 'o2':'ocean_bling_tracers', 'pco2_surf':'ocean_bling_tracers', 'po4_area_integral':'ocean_bling_tracers', 'po4':'ocean_bling_tracers', 'po4_volume_integral':'ocean_bling_tracers', 'co2_flux_alpha_ocn':'ocean_bling_ocn_flux', 'co2_flux_cair_ice_ocn':'ocean_bling_ocn_flux', 'co2_flux_csurf_ocn':'ocean_bling_ocn_flux', 'co2_flux_flux_ice_ocn':'ocean_bling_ocn_flux', 'co2_flux_kw_ice_ocn':'ocean_bling_ocn_flux', 'co2_flux_schmidt_ocn':'ocean_bling_ocn_flux', 'o2_flux_alpha_ocn':'ocean_bling_ocn_flux', 'o2_flux_csurf_ocn':'ocean_bling_ocn_flux', 'o2_flux_flux_ice_ocn':'ocean_bling_ocn_flux', 'o2_flux_schmidt_ocn':'ocean_bling_ocn_flux', 'atm_gas_flux':'ocean_gat_dic', 'atm_gas_input':'ocean_gat_dic', 'atm_mol_wgt':'ocean_gat_dic', 'base_mix_ratio':'ocean_gat_dic', 'gas_mol_wgt':'ocean_gat_dic', 'mix_ratio':'ocean_gat_dic', 'total_atm_mass':'ocean_gat_dic', 'total_gas_mass':'ocean_gat_dic'} def disp_variables(): return list(get_variable_dict().keys()) def add_override_suffix(directory,override): if override: directory = directory+'override-po4/' else: directory = directory+'no-override/' return directory
python
import imports.dataHandler as jdata import imports.passwordToKey as keys import imports.randomText as rand_text import pyperclip as clipboard import imports.CONSTS as CONSTS import os from cryptography.fernet import Fernet from getpass import getpass import json protected = ["key", "state"] MAIN_MENU = 0 RECORDS = 1 VERSION = "v1.0.1" class passwordManager: def __init__(self, pathDir): while(True): value = input("Enter username : ") print("Enter password") password = getpass() key = keys.passwordToKey(value, password) self.state = MAIN_MENU self.database = "" try: self.pathName = pathDir + value self.data = jdata.dataBase(pathDir + value, key) self.key = key self.user = value self.checkUpdate() break # print(self.data.json) # Do something with the file except: print("Wrong username or password, try again!") self.main_menu() def update_ver(self): print("Initiating update...") orecords = {} for record in self.data.json: if(not self.isProtected(record, False)): orecords[record] = self.data.json[record] ndata = {} ndata["state"] = self.data.json["state"] ndata["key"] = self.data.json["key"] ndata["version"] = VERSION ndata["orecords"] = orecords self.data.json = ndata os.rename(self.pathName + "_data" + CONSTS.SED, self.pathName + "_data_orecords" + CONSTS.SED) self.data.save() print("update done...") def loadFile(self, record_name): key = self.data.json["key"].encode() self.kdata = jdata.dataBase( self.pathName + "_data_" + record_name, key) def checkUpdate(self): if("state" not in self.data.json): self.confirmPass() self.init() else: if "version" not in self.data.json: self.update_ver() # key = self.data.json["key"].encode() # self.kdata = jdata.dataBase(self.pathName + "_data", key) def confirm(self) -> bool: value = input("confirm to procced! y/n : ") if(value.lower() == "y" or value.lower() == "yes"): print("Enter password to confirm :") password = getpass() key = keys.passwordToKey(self.user, password) if(key == self.key): return True print("wrong password try again!") return self.confirm() return False def isProtected(self, value, log=True) -> bool: pr = False for name in protected: if(value == name): pr = True break if(pr and log): print("this name is protected, try different name") return pr def confirmPass(self): while(True): print("Enter password to confirm :") password = getpass() key = keys.passwordToKey(self.user, password) if(key == self.key): return True print("wrong password try again!") def getHelpRecords(self): print("commands : ") print("add example_unqiue_name example_username/-n example_password/random/-r") print("load unqiue_name or load unique_name -n (copy username then password)") print("remove or delete -n") print("records : show all records") print("back : Go back") print("help") def main_menu(self): while(True): if self.state == MAIN_MENU: value = input("Enter command : ").split() try: if value[0] == "help": print("Main menu commands:") print("load -n, where n is the name of the db, load database.") print("adddb -n, where n is the name of the new database.") print("records - prints all databases.") print("version - print version.") print("quit - exist.") print() if value[0] == "quit": return if value[0] == "records": i = 0 for record in self.data.json: if(not self.isProtected(record, False)): i += 1 print("(", i, ") : ", record) if value[0] == "version": print("version", self.data.json["version"]) if value[0] == "load": if value[1] in self.data.json: self.loadFile(value[1]) self.state = RECORDS self.database = value[1] if value[0] == "adddb": if value[1] in self.data.json: print("db already exist!") continue self.data.json[value[1]] = {} self.loadFile(value[1]) self.state = RECORDS self.database = value[1] except: print("soemthing went wrong!") elif self.state == RECORDS: self.records_menu() def records_menu(self): run = True self.getHelpRecords() while(run): value = input("Enter command : ").split() if(value[0] == "back"): run = False self.database = "" self.state = MAIN_MENU elif(value[0] == "add"): if(len(value) > 3 and not self.isProtected(value[1])): add = True if(value[1] in self.data.json[self.database]): print( "there already exist a record with the same unique_name!") add = self.confirm() if(add): if(value[3] == "-r" or value[3] == "random"): value[3] = rand_text.randomStringDigits(12) key = Fernet.generate_key() self.data.json[self.database][value[1]] = key.decode() jdata = json.loads("{}") jdata["name"] = value[1] if(value[2] == "-n"): jdata["username"] = value[1] else: jdata["username"] = value[2] jdata["pass"] = value[3] jdata = json.dumps(jdata) fkey = Fernet(key) jdata = fkey.encrypt(jdata.encode()) self.kdata.json[value[1]] = jdata.decode() clipboard.copy(value[3]) self.kdata.save() self.data.save() print("copied the password to clipboard!") else: print("invalid syntax : valid syntax example") print( "add example_unqiue_name example_username/-n example_password/random/-r") elif(value[0] == "load"): if(len(value) > 1 and not self.isProtected(value[1])): if(value[1] in self.data.json[self.database]): key = self.data.json[self.database][value[1]].encode() data = self.kdata.json[value[1]] fkey = Fernet(key) data = fkey.decrypt(data.encode()) data = json.loads(data.decode()) # print(data["pass"]) # print(clipboard.paste()) if(len(value) > 2 and value[2] == "-n"): clipboard.copy(data["username"]) print("copied username to clipboard!") value = input("copy password y/n : ") if(value.lower() == "y" or value.lower() == "yes"): clipboard.copy(data["pass"]) print("copied the password to clipboard!") else: clipboard.copy(data["pass"]) print("username : ", data["username"]) print("copied the password to clipboard!") else: print(value[1], " record doesnt exist!") else: print("invalid syntax : valid syntax example") print( "load unqiue_name or load unique_name -n (copy username then password)") elif(value[0] == "clear"): import os os.system('cls' if os.name == 'nt' else 'clear') elif(value[0] == "help"): self.getHelpRecords() elif(value[0] == "remove" or value[0] == "delete"): self.delete(value) elif(value[0] == "records"): i = 0 for record in self.data.json[self.database]: if(not self.isProtected(record, False)): i += 1 print("(", i, ") : ", record) def delete(self, user_input): if(self.isProtected(user_input[1])): # a.k.a values we dont want to delete return if(user_input[1] in self.data.json): value = input("you sure you want to delete this record y/n : ") if(value.lower() == "y" or value.lower() == "yes"): del self.data.json[self.database][user_input[1]] self.data.save() def init(self): self.data.json["state"] = "initialized" key = Fernet.generate_key() self.data.json["key"] = key.decode() self.data.json["version"] = VERSION # self.kdata = jdata.dataBase(self.pathName + "_data", key) # self.kdata.save() self.data.save()
python
# -*- coding: utf-8 -*- from doodle.config import CONFIG from doodle.core.models.article import Article, ArticleHitCount from doodle.core.models.comment import ArticleComments from ..base_handler import BaseHandler class HomeHandler(BaseHandler): def get(self): articles, next_cursor = Article.get_articles_for_homepage(self.cursor) if articles: article_ids = [article.id for article in articles] hit_counts = ArticleHitCount.get_by_ids(article_ids) replies_dict = ArticleComments.get_comment_count_of_articles(article_ids) else: hit_counts = replies_dict = {} self.set_cache(CONFIG.DEFAULT_CACHE_TIME, is_public=True) self.render('web/home.html', { 'title': CONFIG.BLOG_TITLE, 'page': 'home', 'articles': articles, 'hit_counts': hit_counts, 'replies_dict': replies_dict, 'next_cursor': next_cursor })
python
# NOTICE # This software was produced for the U.S. Government under contract FA8702-21-C-0001, # and is subject to the Rights in Data-General Clause 52.227-14, Alt. IV (DEC 2007) # ©2021 The MITRE Corporation. All Rights Reserved. ''' A PropertyConstraints object describes type and cardinality constraints for a single property of a single ontology class. This module implements the PropertyConstraints object ''' from message import OntologyError from context import Context class PropertyConstraints: ''' Instances of this class describe the type and cardinality constraints for a property of an ontology class. This class facilitates collecting the constraints and checking them for consistency. Attributes: onto_class_uri An rdflib.term.URIRef object for the ontology class or None property_uri An rdflib.term.URIRef object or None min_cardinality An integer or None max_cardinality An integer or None value_range An rdflib.term.URIRef object _qualified A boolean, or None Two PropertyConstraint instances are equal if their attributes, not including _qualified, are equal. ''' def __init__(self, onto_class_uri=None, property_uri=None): ''' Create and initialize an instance of this class The arguments are for error messages and self-description. Arguments: onto_class_uri An rdflib.term.URIRef for the ontology class whose property is constrained by these PropertyConstraints property_uri An rdflib.term.URIRef object for the property constrained by these PropertyConstraints ''' self.onto_class_uri = onto_class_uri self.property_uri = property_uri self.min_cardinality = None self.max_cardinality = None self.value_range = None self._qualified = None # True/False/None where None means unset def add_min_cardinality(self, min_cardinality): ''' "Add" specified min_cardinality value if possible. Arguments: min_cardinality The minimum cardinality, an integer Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self._qualified is None: self._qualified = False elif self._qualified is True: error_messages.append(self._get_ontology_error('unqualified min_cardinality specified for a qualified constraint')) if self.min_cardinality is None: if self.max_cardinality is not None and min_cardinality > self.max_cardinality: error_messages.append(self._get_ontology_error('min_cardinality exceeds max_cardinality')) else: self.min_cardinality = min_cardinality elif self.min_cardinality != min_cardinality: error_messages.append(self._get_ontology_error('multiple min_cardinality values specified')) return error_messages def add_max_cardinality(self, max_cardinality): ''' "Add" specified max_cardinality value if possible. Arguments: max_cardinality The maximum cardinality, an integer Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self._qualified is None: self._qualified = False elif self._qualified is True: error_messages.append(self._get_ontology_error('unqualified max_cardinality specified for a qualified constraint')) if self.max_cardinality is None: if self.min_cardinality is not None and max_cardinality < self.min_cardinality: error_messages.append(self._get_ontology_error('max_cardinality exceeds min_cardinality')) else: self.max_cardinality = max_cardinality elif self.max_cardinality != max_cardinality: error_messages.append(self._get_ontology_error('multiple max_cardinality values specified')) return error_messages def add_cardinality(self, cardinality): ''' "Add" specified cardinaltiy to self if possible. Arguments: cardinality The (minimum and maximum) cardinality, an integer Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self._qualified is None: self._qualified = False elif self._qualified is True: error_messages.append(self._get_ontology_error('unqualified cardinality specified for a qualified constraint')) if self.min_cardinality is None and self.max_cardinality is None: self.min_cardinality = cardinality self.max_cardinality = cardinality elif self.min_cardinality != cardinality or self.max_cardinality != cardinality: error_messages.append(self._get_ontology_error('multiple cardinality values specified')) return error_messages def add_qualified_min_cardinality(self, min_cardinality): ''' "Add" specified min_qualified_cardinaltiy value if possible. Arguments: min_cardinality The minimum qualified cardinality, an integer Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self._qualified is None: self._qualified = True elif self._qualified is False: error_messages.append(self._get_ontology_error('qualified min_cardinality specified for a unqualified constraint')) if self.min_cardinality is None: if self.max_cardinality is not None and min_cardinality > self.max_cardinality: error_messages.append(self._get_ontology_error('min_cardinality exceeds max_cardinality')) else: self.min_cardinality = min_cardinality elif self.min_cardinality != min_cardinality: error_messages.append(self._get_ontology_error('multiple min_cardinality values specified')) return error_messages def add_qualified_max_cardinality(self, max_cardinality): ''' "Add" specified max_qualified_cardinaltiy value if possible. Arguments: max_cardinality The maximum qualified cardinality, an integer Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self._qualified is None: self._qualified = True elif self._qualified is False: error_messages.append(self._get_ontology_error('qualified max_cardinality specified for a unqualified constraint')) if self.max_cardinality is None: if self.min_cardinality is not None and max_cardinality < self.min_cardinality: error_messages.append(self._get_ontology_error('max_cardinality exceeds min_cardinality')) else: self.max_cardinality = max_cardinality elif self.max_cardinality != max_cardinality: error_messages.append(self._get_ontology_error('multiple max_cardinality values specified')) return error_messages def add_qualified_cardinality(self, cardinality): ''' "Add" specified qualified_cardinality to self if possible. Arguments: cardinality The (minimum and maximum) qualified cardinality, an integer Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self._qualified is None: self._qualified = True elif self._qualified is False: error_messages.append(self._get_ontology_error('qualified cardinality specified for a qualified constraint')) if self.min_cardinality is None and self.max_cardinality is None: self.min_cardinality = cardinality self.max_cardinality = cardinality elif self.min_cardinality != cardinality or self.max_cardinality != cardinality: error_messages.append(self._get_ontology_error('multiple cardinality values specified')) return error_messages def add_value_range(self, value_range): ''' Add specified value_range (usually xsd) value if possible. Arguments: value_range The rdflib.term.URIRef of the range type Return: List of ErrorMessages on failure, empty list on success. ''' error_messages = [] if self.value_range is None: self.value_range = value_range else: error_messages.append(self._get_ontology_error('multiple ranges specified')) return error_messages def merge_parent(self, parent): ''' Arguments: parent Another PropertyConstraints object, presumable belonging to a parent class Return: A tuple consisting of two items: A new PropertyConstraints object containing the result of the merger A (hopefully empty) list of ErrorMessage objects Side effects: None. Self is not changed. Definitions and Algorithm: Each PropertyConstraint object has three attributes of interest: min_cardinality, max_cardinality, and range. If any of these attributes is None, that means it has not been set; there is no default value. Before the merge operation, self's constraints must be equal to or tighter than parent's. If the parent's constraint is tighter, the offending attibutes are ignored and we get an ErrorMessage. The merge operation builds the new merged PropertyConstraints object as follows: 1. Start with an empty merged PropertyConstraints object and an empty list of ErrorMessages 2. Copy attributes from self or parent to merged as follows: a. If an attribute is unset (None) in self merged attribute is parent's value (which could also be None) b. If an attribute has a value in self and is unset (None) in parent, merged attribute is self's value c. If an attribute has a value in self and a value in parent. merged attribute is self's value (because self's value should be at least as tight as parent's) if parent's constraint is tighter than or equal to parent's, add ErrorMessage 3. If both min_cardinality and max_cardinality have values in merged PropertyConstraints, If min_cardinality > max_cardinality, add ErrorMessage and revert to unmerged values. The _qualified attribute in the merged constraints is not used. ''' # Step 1. Initialize. merged = PropertyConstraints(onto_class_uri=self.onto_class_uri, property_uri=self.property_uri) error_messages = [] # Step 2 for min_cardinality. merged.min_cardinality = parent.min_cardinality if self.min_cardinality is None else self.min_cardinality if parent.min_cardinality is not None and self.min_cardinality is not None: if parent.min_cardinality > self.min_cardinality: # parent has tighter constraint error_messages.append(self._get_ontology_error( 'cannot merge min_cardinality {} with {} from {}'.format( self.min_cardinality, parent.min_cardinality, parent.onto_class_uri))) # Step 2 for max_cardinality. merged.max_cardinality = parent.max_cardinality if self.max_cardinality is None else self.max_cardinality if parent.max_cardinality is not None and self.max_cardinality is not None: if parent.max_cardinality < self.max_cardinality: # parent has tighter constraint error_messages.append(self._get_ontology_error( 'cannot merge max_cardinality {} with {} from {}'.format( self.max_cardinality, parent.max_cardinality, parent.onto_class_uri))) # Step 2 for range. merged.value_range = parent.value_range if self.value_range is None else self.value_range if parent.value_range is not None and self.value_range is not None: if parent.value_range != self.value_range: # inconsistant ranges (we don't check for subclass yet) error_messages.append(self._get_ontology_error( 'cannot merge value_range {} with {} from {}'.format( self.value_range, parent.value_range, parent.onto_class_uri))) # Step 3. Make sure min <= max if merged.min_cardinality is not None and merged.max_cardinality is not None: if merged.min_cardinality > merged.max_cardinality: error_messages.append(self._get_ontology_error( 'cannot merge cardinalities from {} because min_cardinality exceeds max_cardinality'.format(parent.onto_class_uri))) merged.min_cardinality = self.min_cardinality merged.max_cardinality = self.max_cardinality # Return merged PropertyConstraints and List of error messages #print('child {}\nparent {}\nmerged {} {}'.format(self, parent, merged, error_messages)) return merged, error_messages def check_consistency(self): ''' Check this PropertyConstraints object for global inconsistencies that could not be determined when adding items one at a time. Return: List of ErrorMessages if inconsistencies were found, empty list if not. ''' error_messages = [] if self._qualified is True: if self.value_range is None: error_messages.append(self._get_ontology_error('qualified constraint has no range')) if self._qualified is False: if self.value_range is not None: error_messages.append(self._get_ontology_error('unqualified constraint has range')) # if self._qualified is None: # pass return error_messages def describe(self, context=None): ''' Assemble and return a plain-text description of these PropertyConstraints Return: A single-line string describing this PropertyConstraints object. ''' value = lambda n: 'value' if n == 1 else 'values' phrases = [] if context is None: context = Context() if self.onto_class_uri: phrases.append('Class {}'.format(context.format(self.onto_class_uri))) if self.property_uri: phrases.append('Property {}'.format(context.format(self.property_uri))) else: phrases.append('Property') if self.max_cardinality == 0: phrases.append('may have no values') elif self.min_cardinality in (None, 0): if self.max_cardinality is None: phrases.append('may have any number of values') else: # self.max_cardinality > 0 phrases.append('may have at most {} {}'.format(self.max_cardinality, value(self.max_cardinality))) else: # self.min_cardinality > 0 if self.max_cardinality is None: phrases.append('must have at least {} {}'.format(self.min_cardinality, value(self.min_cardinality))) elif self.min_cardinality == self.max_cardinality: phrases.append('must have exactly {} {}'.format(self.min_cardinality, value(self.min_cardinality))) else: # self.max_cardinality > 0 phrases.append('must have between {} and {} values'.format(self.min_cardinality, self.max_cardinality)) if self.value_range: phrases.append('of type {}'.format(self.value_range)) return ' '.join(phrases) def _get_ontology_error(self, message): ''' Arguments: message A message string describing some kind of error condition Return: An OntologyError object using self.onto_class_uri and self.property_uri with the message ''' return OntologyError( message='constraint violation: ' + message, onto_class_uri=self.onto_class_uri, property_uri=self.property_uri) def __members(self): ''' Two instances of this class are equal if the __member attributes are equal ''' return (self.onto_class_uri, self.property_uri, self.min_cardinality, self.max_cardinality, self.value_range) def __str__(self): return '<{} {} [{}-{}] {}>'.format( self.onto_class_uri if self.onto_class_uri else None, self.property_uri if self.property_uri else 'DATATYPE', '?' if self.min_cardinality is None else self.min_cardinality, '?' if self.max_cardinality is None else self.max_cardinality, self.value_range if self.value_range else '?') def __eq__(self, other): ''' Two instances of this class are equal if the __member attributes are equal ''' if type(other) is type(self): return self.__members() == other.__members() else: return False def __hash__(self): ''' Two instances of this class are equal if the __member attributes are equal ''' return hash(self.__members())
python
from mock import Mock from flows.simulacra.youtube_dl.factory import youtube_dl_flow_factory from flows.simulacra.youtube_dl.post import download_videos from tests.testcase import TestCase class TestDownloadVideos(TestCase): def setUp(self): self.open = self.set_up_patch( 'flows.simulacra.youtube_dl.post.open' ) self.open.return_value.__exit__ = lambda a, b, c, d: None self.file_handle = Mock() self.file_handle.readlines.return_value = iter([ 'some_channel1', 'some_other_channel2' ]) self.open.return_value.__enter__ = lambda x: self.file_handle self.post_job = self.set_up_patch( 'flows.simulacra.youtube_dl.post.post_job' ) def test_download_videos_opens_channels_file(self): download_videos('/tmp/some_list_of_yt_channels.txt') self.open.assert_called_once_with( '/tmp/some_list_of_yt_channels.txt' ) def test_download_videos_reads_lines_from_channels_file(self): download_videos('/tmp/some_list_of_yt_channels.txt') self.file_handle.readlines.assert_called_once_with() def test_download_videos_posts_job_to_download_yt_videos(self): download_videos('/tmp/some_list_of_yt_channels.txt') expected_channels = ['some_channel1', 'some_other_channel2'] self.post_job.assert_called_once_with( youtube_dl_flow_factory, hierarchy=False, factory_args=[expected_channels] ) def test_download_videos_draws_hierarchy_of_download_yt_videos(self): download_videos('/tmp/some_list_of_yt_channels.txt', hierarchy=True) expected_channels = ['some_channel1', 'some_other_channel2'] self.post_job.assert_called_once_with( youtube_dl_flow_factory, hierarchy=True, factory_args=[expected_channels] )
python
# Copyright 2015 - Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_log import log as logging from mistral import exceptions as exc from mistral import expressions as expr from mistral import utils from mistral.workflow import base from mistral.workflow import commands from mistral.workflow import data_flow from mistral.workflow import states from mistral.workflow import utils as wf_utils LOG = logging.getLogger(__name__) class DirectWorkflowController(base.WorkflowController): """'Direct workflow' handler. This handler implements the workflow pattern which is based on direct transitions between tasks, i.e. after each task completion a decision should be made which tasks should run next based on result of task execution. Note, that tasks can run in parallel. For example, if there's a workflow consisting of three tasks 'A', 'B' and 'C' where 'A' starts first then 'B' and 'C' can start second if certain associated with transition 'A'->'B' and 'A'->'C' evaluate to true. """ __workflow_type__ = "direct" def _get_upstream_task_executions(self, task_spec): return list( filter( lambda t_e: self._is_upstream_task_execution(task_spec, t_e), wf_utils.find_task_executions_by_specs( self.wf_ex, self.wf_spec.find_inbound_task_specs(task_spec) ) ) ) def _is_upstream_task_execution(self, t_spec, t_ex_candidate): if not states.is_completed(t_ex_candidate.state): return False if not t_spec.get_join(): return not t_ex_candidate.processed return self._triggers_join( t_spec, self.wf_spec.get_tasks()[t_ex_candidate.name] ) def _find_next_commands(self, env=None): cmds = super(DirectWorkflowController, self)._find_next_commands( env=env ) if not self.wf_ex.task_executions: return self._find_start_commands() task_execs = [ t_ex for t_ex in self.wf_ex.task_executions if states.is_completed(t_ex.state) and not t_ex.processed ] for t_ex in task_execs: cmds.extend(self._find_next_commands_for_task(t_ex)) return cmds def _find_start_commands(self): return [ commands.RunTask( self.wf_ex, t_s, self._get_task_inbound_context(t_s) ) for t_s in self.wf_spec.find_start_tasks() ] def _find_next_commands_for_task(self, task_ex): """Finds next commands based on the state of the given task. :param task_ex: Task execution for which next commands need to be found. :return: List of workflow commands. """ cmds = [] for t_n in self._find_next_task_names(task_ex): t_s = self.wf_spec.get_tasks()[t_n] if not (t_s or t_n in commands.RESERVED_CMDS): raise exc.WorkflowException("Task '%s' not found." % t_n) elif not t_s: t_s = self.wf_spec.get_tasks()[task_ex.name] cmd = commands.create_command( t_n, self.wf_ex, t_s, self._get_task_inbound_context(t_s) ) # NOTE(xylan): Decide whether or not a join task should run # immediately. if self._is_unsatisfied_join(cmd): cmd.wait_flag = True cmds.append(cmd) # We need to remove all "join" tasks that have already started # (or even completed) to prevent running "join" tasks more than # once. cmds = self._remove_started_joins(cmds) LOG.debug("Found commands: %s" % cmds) return cmds # TODO(rakhmerov): Need to refactor this method to be able to pass tasks # whose contexts need to be merged. def evaluate_workflow_final_context(self): ctx = {} for t_ex in self._find_end_tasks(): ctx = utils.merge_dicts( ctx, data_flow.evaluate_task_outbound_context(t_ex) ) return ctx def is_error_handled_for(self, task_ex): return bool(self.wf_spec.get_on_error_clause(task_ex.name)) def all_errors_handled(self): for t_ex in wf_utils.find_error_task_executions(self.wf_ex): tasks_on_error = self._find_next_task_names_for_clause( self.wf_spec.get_on_error_clause(t_ex.name), data_flow.evaluate_task_outbound_context(t_ex) ) if not tasks_on_error: return False return True def _find_end_tasks(self): return list( filter( lambda t_ex: not self._has_outbound_tasks(t_ex), wf_utils.find_successful_task_executions(self.wf_ex) ) ) def _has_outbound_tasks(self, task_ex): # In order to determine if there are outbound tasks we just need # to calculate next task names (based on task outbound context) # and remove all engine commands. To do the latter it's enough to # check if there's a corresponding task specification for a task name. return bool([ t_name for t_name in self._find_next_task_names(task_ex) if self.wf_spec.get_tasks()[t_name] ]) def _find_next_task_names(self, task_ex): t_state = task_ex.state t_name = task_ex.name ctx = data_flow.evaluate_task_outbound_context(task_ex) t_names = [] if states.is_completed(t_state): t_names += self._find_next_task_names_for_clause( self.wf_spec.get_on_complete_clause(t_name), ctx ) if t_state == states.ERROR: t_names += self._find_next_task_names_for_clause( self.wf_spec.get_on_error_clause(t_name), ctx ) elif t_state == states.SUCCESS: t_names += self._find_next_task_names_for_clause( self.wf_spec.get_on_success_clause(t_name), ctx ) return t_names @staticmethod def _find_next_task_names_for_clause(clause, ctx): """Finds next tasks names. This method finds next task(command) base on given {name: condition} dictionary. :param clause: Dictionary {task_name: condition} taken from 'on-complete', 'on-success' or 'on-error' clause. :param ctx: Context that clause expressions should be evaluated against of. :return: List of task(command) names. """ if not clause: return [] return [ t_name for t_name, condition in clause if not condition or expr.evaluate(condition, ctx) ] def _remove_started_joins(self, cmds): return list( filter(lambda cmd: not self._is_started_join(cmd), cmds) ) def _is_started_join(self, cmd): if not (isinstance(cmd, commands.RunTask) and cmd.task_spec.get_join()): return False return wf_utils.find_task_execution_not_state( self.wf_ex, cmd.task_spec, states.WAITING ) def _is_unsatisfied_join(self, cmd): if not isinstance(cmd, commands.RunTask): return False task_spec = cmd.task_spec join_expr = task_spec.get_join() if not join_expr: return False in_task_specs = self.wf_spec.find_inbound_task_specs(task_spec) if not in_task_specs: return False # We need to count a number of triggering inbound transitions. num = len([1 for in_t_s in in_task_specs if self._triggers_join(task_spec, in_t_s)]) # If "join" is configured as a number. if isinstance(join_expr, int) and num < join_expr: return True if join_expr == 'all' and len(in_task_specs) > num: return True if join_expr == 'one' and num == 0: return True return False # TODO(rakhmerov): Method signature is incorrect given that # we may have multiple task executions for a task. It should # accept inbound task execution rather than a spec. def _triggers_join(self, join_task_spec, inbound_task_spec): in_t_execs = wf_utils.find_task_executions_by_spec( self.wf_ex, inbound_task_spec ) # TODO(rakhmerov): Temporary hack. See the previous comment. in_t_ex = in_t_execs[-1] if in_t_execs else None if not in_t_ex or not states.is_completed(in_t_ex.state): return False return list( filter( lambda t_name: join_task_spec.get_name() == t_name, self._find_next_task_names(in_t_ex) ) )
python
# Copyright 2021 Prayas Energy Group(https://www.prayaspune.org/peg/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """module which has all loaders for io layer this module can depend only on python modules and functionstore, filemanager, config """ import os import csv import importlib import yaml import click import pandas as pd from rumi.io import config from rumi.io import filemanager from rumi.io.functionstore import transpose, column, unique, concat, x_in_y from rumi.io.functionstore import circular, valid_date import functools import logging from rumi.io.logger import init_logger, get_event from rumi.io.multiprocessutils import execute_in_process_pool from rumi.io.multiprocessutils import execute_in_thread_pool logger = logging.getLogger(__name__) class LoaderError(Exception): pass def eval_(validation, g=None, l=None): statement = validation['code'] if not g: g = {} if not l: l = {} try: return eval(statement, g, l) except Exception as e: logger.error("Failed to evaluate statement " + statement) logger.exception(e) def load_param(param_name: str): """load parameter from file in RAW format Parameters ---------- param_name : str parameter name Returns ------- Parameter data from file """ specs = filemanager.get_specs(param_name) nested = specs.get('nested') if nested and '$' not in nested: subfolder = specs.get('nested') filepath = filemanager.find_filepath(param_name, subfolder) else: filepath = filemanager.find_filepath(param_name) logger.debug(f"Reading {param_name} from file {filepath}") if specs.get("optional") and not os.path.exists(filepath): logger.warning( f"Unable to find file for optional parameter {param_name}") return None if specs.get("noheader"): return read_headerless_csv(param_name, filepath) else: return read_csv(param_name, filepath) def load_dataframe(param, filepath, specs): with open(filepath) as f: csvf = csv.DictReader(f) filecols = csvf.fieldnames data = {} for row in csvf: columns = {k: v for k, v in specs['columns'].items() if k in filecols} for key, col in columns.items(): if key not in row: if col.get("optional"): continue else: raise LoaderError( f"column {key} expected in {param}, but not found.") else: convert = eval(columns[key]['type']) try: data.setdefault(key, []).append( convert(row[key])) except ValueError as v: logger.error( f"In {param}, could not convert {row[key]} for {key}") logger.exception(v) data.setdefault(key, []).append( convert(col['default'])) cols = [c for c in filecols if c in specs['columns']] return pd.DataFrame(data)[cols] def param_env(data): env = {c: data[c] for c in data.columns} #env['rows'] = data.to_dict(orient='records') return env def validate_each_item(param: str, spec: dict, data): """check if min/max boundaries are satisfied evaluates whether data is in min/max limits in yaml specifications Parameters ---------- param : str Name of parameter spec : dict dictinary of specifications for param data : pd.DataFrame/[] data for the parameters Returns ------- True if data is within min/max boubndaries """ if not isinstance(data, pd.DataFrame) and not data: if spec.get('optional'): logger.warning(f"No data found for optional {param}") return True else: logger.error(f"No data found for {param}") return False if not spec.get("noheader"): for column_, metadata in spec['columns'].items(): if column_ not in data.columns: if metadata.get('optional'): continue else: logger.error( f"Expected column {column_} not found in {param}") raise Exception( f"Expected column {column_} not found in {param}") c = data[column_] if 'min' in spec['columns'].get(column_, {}): m = spec['columns'][column_]['min'] default = spec['columns'][column_].get('default') if (c < m).any() and (c[c < m] != default).any(): logger.error( f"for {param}, {column_} should be >= {m}") return False if 'max' in spec['columns'].get(column_, {}): m = spec['columns'][column_]['max'] if (c > m).any(): logger.error( f"For {param}, {column_} should be <= {m}") return False return True def validate_param(param: str, spec: dict, data, module, **kwargs): """validate individual parameter data evaluates every condition form validations given in yaml specifications Parameters ---------- param : str Name of parameter spec : dict dictinary of specifications for param data : pd.DataFrame/[] data for the parameters module: string definations from this module will be available in validation code **kwargs: any additional item that should be available in validation code """ logger.info(f"Validating {param}") valid = validate_each_item(param, spec, data) for validation in spec.get('validation', []): if spec.get('noheader'): env = {param: data} else: env = param_env(data) env[param] = data env.update({p: get_parameter(p) for p in spec.get("dependencies", [])}) load_module("rumi.io.functionstore", env) load_module(module, env) env.update(kwargs) env.update(globals()) if not eval_(validation, env): logger.error(f"Invalid data for {param}") logger.error("{} failed".format(validation['code'])) # print(validation['message'].format(**env)) message = validation['message'] print(eval(f"f'{message}'", env)) logger.error(eval(f"f'{message}'", env)) valid = False return valid def load_module(module, env): """loads functions from given module in env """ m = importlib.import_module(module) for function in dir(m): env[function] = getattr(m, function) def load_namespace(namespace_defs, env): for key, value in namespace_defs.items(): env[key] = eval(value, env) def get_params(specs, threaded=False): def get_param(param): try: return get_parameter(param, validation=True) except FileNotFoundError as fn: logger.exception(fn) raise fn except filemanager.FolderStructureError as fse: logger.exception(fse) raise fse except TypeError as tpe: logger.debug(f"Automatic loading of {param} failed.") raise tpe param_names = [p for p in specs.keys() if p != 'global_validation'] if threaded: values = execute_in_thread_pool(get_param, param_names) else: values = [get_param(p) for p in param_names] return {p: v for p, v in zip(param_names, values)} def global_validation(data, global_validation_): """validations that depend on multiple parameters """ validations = global_validation_['validation'] # valid = execute_in_process_pool(validate_, # [(data, global_validation_, v) for v in validations]) valid = [validate_(data, global_validation_, v) for v in validations] return all(valid) def validate_(data, global_validation_, validation): env = {} env.update(data) env.update(globals()) load_module(global_validation_['module'], env) load_module("rumi.io.functionstore", env) include = global_validation_.get("include", []) for type_ in include: s = filemanager.get_type_specs(type_) env.update(get_params(s)) load_namespace(s['global_validation'].get('namespace', {}), env) load_namespace(global_validation_.get('namespace', {}), env) if eval_(validation, env): return True else: print(validation['message']) logger.error(f"Global validation failed for {validation['code']}") logger.error(validation['message']) return False def validate_param_(param, specs, d, module): try: if isinstance(d, type(None)): # for complicated paramters with variable nested folders # skip individual validation return True else: return validate_param( param, specs, d, module) except Exception as e: print(f"Error occured while validating {param}") logger.error(f"Error occured while validating {param}") logger.exception(e) raise e def validate_params(param_type): """ validate all prameters Parameters ---------- param_type: str one of Common, Demand, Supply specs_file: str yaml file path Returns ------- returns True if all paramters are valid, else returns False """ logger.info(f"Validating {param_type}") print(f"Validating {param_type}") allspecs = dict(filemanager.get_type_specs(param_type)) gvalidation = allspecs['global_validation'] del allspecs['global_validation'] data = get_params(allspecs, threaded=True) valid = True module = gvalidation['module'] valid = execute_in_process_pool(validate_param_, [(p, allspecs[p], v, module) for p, v in data.items()]) return global_validation(data, gvalidation) and all(valid) def call_loader(loaderstring, **kwargs): functionname = loaderstring.split(".")[-1] module = ".".join(loaderstring.split(".")[:-1]) m = importlib.import_module(module) loader_function = getattr(m, functionname) return loader_function(**kwargs) def get_config_parameter(param_name): path = filemanager.get_config_parameter_path(param_name) return pd.read_csv(path) def call_loader_(specs, param_name, **kwargs): try: if not specs.get('nested'): d = call_loader(specs.get('loader')) elif '$' not in specs.get('nested'): d = call_loader(specs['loader'], param_name=param_name, subfolder=specs.get('nested')) elif "$" in specs.get('nested'): if "validation" in kwargs and kwargs['validation'] == True: d = None else: d = call_loader(specs.get('loader'), **kwargs) except FileNotFoundError as fne: if specs.get('optional'): d = None else: raise fne return d @functools.lru_cache(maxsize=None) def get_parameter(param_name, **kwargs): """ returns data for given parameter. It returns final expanded data. except noheader kind of parameter, everything it returns is pandas DataFrame. for header less parameter, it returns dictionary with first item on every row as key and list of rest items as value. examples -------- :: get_parameter('GDP') -> will return GDP parameter as a DataFrame get_parameter('SubGeography1') -> will return SubGeography1 parameter as a list get_parameter('SubGeography2') -> will return SubGeography2 parameter as a dictionary, keys are regions and values are list of states get_parameter('BaseYearDemand', demand_sector='D_AGRI') -> BaseYearDemand parameter for 'D_AGRI' as DataFrame get_parameter('NumInstances', demand_sector='D_RES', energy_service='RES_COOL') -> NumInstances parameter for <'D_RES','RES_COOL'> as DataFrame :param: param_name :param: `**kwargs` - variable number of named arguments :returns: DataFrame or list or dictionary """ #logger.debug("Getting Parameter " + param_name + str(kwargs)) specs = filemanager.get_specs(param_name) if specs.get('loader'): d = call_loader_(specs, param_name, **kwargs) else: d = load_param(param_name) if d is None: r = d elif specs.get("noheader"): r = reformat_headerless(param_name, specs, d) else: r = d return filter_param(param_name, r) def reformat_headerless(param_name, specs, d): """Formate headerless data to list/dictionary/string as required """ if specs.get("map"): firstcolumn = column(d, 0) if not unique(firstcolumn): repeating = set( [c for c in firstcolumn if firstcolumn.count(c) > 1]) logger.warning( f"First column in {param_name} should not repeat, but repeating rows discovered for {repeating}") logger.warning( f"For {param_name} last item from repeating rows of {repeating} will be considered") r = {key: d[r][1:] for r, key in enumerate(column(d, 0))} elif specs.get("list"): r = d[0] if len(d) > 1: logger.warning( f"Parameter {param_name} expects only one row but found multiple rows. Only first row will be considered") elif len(d) == 1 and len(d[0]) == 1: r = d[0][0] else: r = d return r def filter_param(param_name, param_data): """This functions filters parameter based on scheme given in yaml specifications. caution: this function creates a circular dependency by calling get_parameter again. SO IF SELF REFERENCING DEPENDENCIES ARE GIVEN IT MIGHT RESULT IN RECURSION ERROR. """ specs = filemanager.get_specs(param_name) if specs.get("filterqueries") and isinstance(param_data, pd.DataFrame): logger.debug(f"Filtering parameter {param_name}") dependencies = specs.get("dependencies") dependencies_data = {p: get_parameter(p) for p in dependencies} queries = specs.get("filterqueries") dependencies_data['param_data'] = param_data queries_ = [f"( {q} )" for q in queries] statement = "param_data.query(f\"{0}\")".format(" & ".join(queries_)) param_data = eval(statement, dependencies_data) # .copy() if len(param_data) == 0: logger.warning( f"Filtering of {param_name} has resulted in empty data") return param_data def find_cols(filepath, columnsdata): """ find columns common between column names provided in specifications and those given in file. """ with open(filepath) as f: csvf = csv.reader(f) columnsf = next(csvf) # columns as per order in file return [c for c in columnsf if c in columnsdata] def read_headerless_csv(param_name, filepath): try: with open(filepath) as f: csvf = csv.reader(f) return [row for row in csvf] except ValueError as v: logger.error(f"Unable to parse data for {param_name}") logger.exception(v) raise v except FileNotFoundError as fne: logger.error(f"Unable to find file for {param_name}") logger.exception(fne) raise fne except Exception as e: logger.error(f"Falied to read parameter {param_name}") logger.exception(e) raise e def read_csv(param_name, filepath): """read dataframe using pandas.read_csv, but with appropriate types """ specs = filemanager.get_specs(param_name) columndata = specs['columns'] converters = {c: eval(data['type']) for c, data in columndata.items()} try: cols = find_cols(filepath, columndata) return pd.read_csv(filepath, usecols=cols, converters=converters, na_values="") except ValueError as v: logger.error(f"Unable to parse data for {param_name}") logger.exception(v) raise v except FileNotFoundError as fne: if specs.get('optional'): logger.warning( f"Unable to find file for optional parameter {param_name}") else: logger.error(f"Unable to find file for {param_name}") logger.exception(fne) raise fne except Exception as e: logger.error(f"Falied to read parameter {param_name}") logger.exception(e) raise e def sanity_check_cmd_args(param_type: str, model_instance_path: str, scenario: str, logger_level: str, numthreads: int, cmd='rumi_validate'): def check_null(param_value, param_name): if not param_value: print(f"Command line parameter, {param_name} is compulsory") return True else: return False valid = False if check_null(param_type, "-p/--param_type") or\ check_null(model_instance_path, "-m/--model_instance_path") or\ check_null(scenario, "-s/--scenario"): pass elif param_type not in ["Common", "Demand", "Supply"]: print(f"Invalid param_type '{param_type}'") print("param_type can be one of Common, Demand or Supply") elif not os.path.exists(model_instance_path) or not os.path.isdir(model_instance_path): print(f"Invalid model_instance_path '{model_instance_path}'") print("give appropriate folder path") elif logger_level not in ["INFO", "WARN", "DEBUG", "ERROR"]: print(f"Invalid logger_level '{logger_level}'") print("logger_level can be one of INFO,WARN,DEBUG,ERROR.") elif numthreads <= 0: print(f"Invalid numthreads '{numthreads}'") print("numthreads can be positive integer") else: valid = True if not valid: print(f"run {cmd} --help for more help") return valid def rumi_validate(param_type: str, model_instance_path: str, scenario: str, logger_level: str, numthreads: int): """Function to validate Common or Demand or Supply """ global logger if not sanity_check_cmd_args(param_type, model_instance_path, scenario, logger_level, numthreads): return config.initialize_config(model_instance_path, scenario) init_logger(param_type, logger_level) config.set_config("numthreads", str(numthreads)) logger = logging.getLogger("rumi.io.loaders") try: if (validate_params(param_type)): logger.info(f"{param_type} Validation succeeded") print(f"{param_type} Validation succeeded") else: logger.error(f"{param_type} Validation failed") print(f"{param_type} Validation failed") finally: get_event().set() @click.command() @click.option("-p", "--param_type", help="Parameter type to validate. can be one of Common, Demand or Supply") @click.option("-m", "--model_instance_path", help="Path where model instance is stored") @click.option("-s", "--scenario", help="Name of Scenario") @click.option("-l", "--logger_level", help="Level for logging,one of INFO,WARN,DEBUG,ERROR. (default: INFO)", default="INFO") @click.option("-t", "--numthreads", help="Number of threads/processes (default: 2)", default=2) def main(param_type: str, model_instance_path: str, scenario: str, logger_level: str, numthreads: int): """Command line interface for data validation. """ rumi_validate(param_type, model_instance_path, scenario, logger_level, numthreads) if __name__ == "__main__": main()
python
import gym import numpy as np from gym.spaces import Discrete from gym_holdem.holdem import Table, Player, BetRound from pokereval_cactus import Card class HoldemEnv(gym.Env): def __init__(self, player_amount=4, small_blind=25, big_blind=50, stakes=1000): super().__init__() self.player_amount = player_amount self.small_blind = small_blind self.big_blind = big_blind self.stakes = stakes self.table = None self.done = True # 0 -> FOLD # 1 -> CALL || CHECK # 2 -> ALL_IN # 3..(stakes * player_amount + 2) -> bet_amount + 2 self.action_space = Discrete(self.stakes_in_game + 3) self.players = [Player(stakes, name=str(i)) for i in range(player_amount)] self.players_last_stakes = [stakes for _ in range(player_amount)] self.debug = {} self.last_action = (-1, None) self.reset() def step(self, action: int): dbg_end_round = False dbg_new_round = False dbg_winners = [] dbg_new_bet_round = False player = self.table.next_player if action not in self.valid_actions: raise ValueError(f"Action {action} is not valid in this context") self._take_action(action, player) if self.table.all_players_called(): self.table.start_next_bet_round() dbg_new_bet_round = True while self.table.bet_round == BetRound.SHOWDOWN: dbg_end_round = True dbg_winners = self.table.end_round() if len(self.table.players) >= 2: self.table.new_round() dbg_new_round = True if self.table.all_players_called(): self.table.start_next_bet_round() else: self.done = True idx = self.players.index(player) reward = player.stakes - self.players_last_stakes[idx] self.players_last_stakes[idx] = player.stakes self.debug = { "new_bet_round": dbg_new_bet_round, "new_round": dbg_new_round, "end_round": dbg_end_round, "winners": dbg_winners } self.last_action = action, player return self.observation_space(player), reward, self.done, self.debug def reset(self): self.done = False self.table = Table(small_blind=self.small_blind, big_blind=self.big_blind) for idx, p in enumerate(self.players): p.reset(stakes=self.stakes) p.table = self.table self.players_last_stakes[idx] = self.stakes self.table.players = self.players[:] self.table.new_round() return self.observation_space(self.table.next_player) @staticmethod def _take_action(action, player): if action == 0: player.fold() elif action == 1: player.call_check() elif action == 2: player.action_from_amount(player.stakes) else: player.raise_bet(action - 2) @property def valid_actions(self): player = self.table.next_player to_call = player.to_call_amount() min_bet_amount = to_call + self.table.last_bet_raise_delta max_bet_amount = player.stakes # 0 -> FOLD # 1 -> CALL || CHECK actions = [0, 1, 2] if min_bet_amount <= max_bet_amount: possible_bet_actions = range(min_bet_amount + 2, max_bet_amount + 3) actions += possible_bet_actions # else: # if player.stakes > to_call: # actions.append(player.stakes) return np.array(actions) def observation_space(self, player): max_card_value = 268471337 hand = [card / (max_card_value + 1) for card in player.hand] board = [card / (max_card_value + 1) for card in self.table.board] for _ in range(len(self.table.board), 5): board.append(0) pot = self.table.pot_value() / (self.stakes_in_game + 1) player_stakes = player.stakes / (self.stakes_in_game + 1) other_players_stakes = [] for p in self.players: if p == player: continue other_players_stakes.append(p.stakes / (self.stakes_in_game + 1)) active_false = 0 active_true = 0.1 player_active = active_true if player in self.table.active_players else active_false other_players_active = [] for p in self.players: if p == player: continue active = active_true if p in self.table.active_players else active_false other_players_active.append(active) observation = hand + board + [pot, player_stakes] + other_players_stakes + [ player_active] + other_players_active return np.array(observation) @property def table_players(self): return self.table.players @property def next_player(self): return self.table.next_player @property def stakes_in_game(self): return self.player_amount * self.stakes def render(self, mode="human", close=False): # for p in self.table.active_players: # print(str(p)) # print(f"Board: {Card.print_pretty_cards(self.table.board)}") # print(f"Bet round: {bet_round_to_str(self.table.bet_round)}") if self.last_action[0] == 0: print(f"{self.last_action[1].name}: FOLDED") elif self.last_action[0] == 1: print(f"{self.last_action[1].name}: CALLED") elif self.last_action[0] == 2: print(f"{self.last_action[1].name}: ALL_IN") else: print(f"{self.last_action[1].name}: RAISED({self.last_action[0] - 2})") if self.debug["new_bet_round"]: print("### NEW BET ROUND ###") print(f"Community Cards: {Card.print_pretty_cards(self.table.board)}") if self.debug["end_round"]: print("### END ROUND ###") all_winners = [[w.name for w in winners] for winners in self.debug["winners"]] print(f"WINNERS: {all_winners}") if self.debug["new_round"]: print("### NEW ROUND ###") for p in self.table.players: print(f"Player {p.name}: hand={Card.print_pretty_cards(p.hand)}, stakes={p.stakes}, " f"bet={p.bet}, has_called={p.has_called}, has_folded={p not in self.table.active_players}, " f"dealer={not self.done and self.table.players[self.table.dealer] == p}") if self.done: print("### GAME ENDED - RESETTING ###")
python
# Generated by Django 4.0.1 on 2022-01-27 07:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('catalog', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='bookinstance', options={'ordering': ['due_back']}, ), migrations.AddField( model_name='book', name='language', field=models.CharField(blank=True, choices=[('EN', 'English'), ('FR', 'French'), ('JP', 'Japanese')], default='EN', help_text='Select language of teh book', max_length=2), ), migrations.AddField( model_name='bookinstance', name='status', field=models.CharField(blank=True, choices=[('m', 'Maintenance'), ('o', 'On loan'), ('a', 'Available'), ('r', 'Reserved')], default='m', help_text='Book availability', max_length=1), ), ]
python
""" return 0 = Success return 1 = Login = 'Invalid username or password!', Register = 'User is already' return 2 = 'Something went wrong' """ from connect_db import megatronDBC # login sys / ระบบล็อคอิน def loginSYS(userInput, passInput): try: cursor = megatronDBC.cursor() selectDB = "SELECT * FROM users;" cursor.execute(selectDB) result = cursor.fetchall() for x in result: if userInput == x[1] and passInput == x[2]: return 0, x[1], x[3] return 1 except: return 2 # end login sys จบระบบล็อคอิน # register sys / ระบบสมัครสมาชิก def registerSYS(userInput, passInput): try: cursor = megatronDBC.cursor() selectDB = "SELECT * FROM users;" cursor.execute(selectDB) result = cursor.fetchall() for x in result: if userInput == x[1]: return 1 insertDB = f"INSERT INTO users (username, password, level) values ('{userInput}', '{passInput}', 0);" cursor.execute(insertDB) megatronDBC.commit() return 0 except: return 2 # end register sys / จบระบบสมัครสมาชิก
python
from datetime import timedelta from app import hackathon_variables from django.db import models from django.utils import timezone from user.models import User class ItemType(models.Model): """Represents a kind of hardware""" # Human readable name name = models.CharField(max_length=50, unique=True) # Image of the hardware image = models.FileField(upload_to='hw_images/') # Description of this hardware # what is it used for? which items are contained in the package? description = models.TextField() def get_borrowable_items(self): """ Get items not borrowed already """ availables = Item.objects.filter(item_type=self, available=True) borrowings = Borrowing.objects.filter(item__item_type=self, return_time__isnull=True) return availables.exclude(id__in=[x.item.id for x in borrowings]) def get_available_count(self): ava_count = Item.objects.filter(item_type=self, available=True).count() req_count = self.get_requested_count() borrowed_count = self.get_borrowed_count() return ava_count - req_count - borrowed_count def get_requested_count(self): return Request.objects.get_active_by_item_type(self).count() def get_borrowed_count(self): return Borrowing.objects.get_active_by_item_type(self).count() def get_unavailable_count(self): return Item.objects.filter(item_type=self, available=False).count() def make_request(self, user): req = Request(item_type=self, user=user) req.save() def __str__(self): return self.name class Item(models.Model): """Represents a real world object identified by label""" # Hardware model/type item_type = models.ForeignKey(ItemType, on_delete=models.CASCADE) # Identifies a real world object label = models.CharField(max_length=20, unique=True) # Is the item available? available = models.BooleanField(default=True) # Any other relevant information about this item comments = models.TextField(blank=True, null=True) def can_be_borrowed(self): return Borrowing.objects.filter(return_time__isnull=True, item=self).count() == 0 def __str__(self): return '{} ({})'.format(self.label, self.item_type.name) class BorrowingQuerySet(models.QuerySet): def get_active(self): return self.filter(return_time__isnull=True) def get_returned(self): return self.filter(return_time__isnull=False) def get_active_by_item_type(self, item_type): return self.filter(return_time__isnull=True, item__item_type=item_type) def get_active_by_user(self, user): return self.filter(return_time__isnull=True, user=user) class Borrowing(models.Model): """ The 'item' has been borrowed to the 'user' """ objects = BorrowingQuerySet.as_manager() user = models.ForeignKey(User, on_delete=models.DO_NOTHING) item = models.ForeignKey(Item, on_delete=models.DO_NOTHING) # Instant of creation picked_up_time = models.DateTimeField(auto_now_add=True) # If null: item has not been returned yet return_time = models.DateTimeField(null=True, blank=True) # Borrowing handled by borrowing_by = models.ForeignKey(User, related_name='hardware_admin_borrowing', on_delete=models.DO_NOTHING) # Return handled by (null until returned) return_by = models.ForeignKey(User, related_name='hardware_admin_return', null=True, blank=True, on_delete=models.SET_NULL) def get_picked_up_time_ago(self): return str(timezone.now() - self.picked_up_time) def get_return_time_ago(self): return str(timezone.now() - self.return_time) def is_active(self): return self.return_time is None def __str__(self): return '{} ({})'.format(self.item.item_type.name, self.user) class RequestQuerySet(models.QuerySet): def get_active(self): delta = timedelta(minutes=hackathon_variables.HARDWARE_REQUEST_TIME) threshold = timezone.now() - delta return self.filter(borrowing__isnull=True, request_time__gte=threshold) def get_borrowed(self): return self.filter(borrowing__isnull=False) def get_expired(self): delta = timedelta(minutes=hackathon_variables.HARDWARE_REQUEST_TIME) threshold = timezone.now() - delta return self.filter(borrowing__isnull=True, request_time__lt=threshold) def get_active_by_user(self, user): delta = timedelta(minutes=hackathon_variables.HARDWARE_REQUEST_TIME) threshold = timezone.now() - delta return self.filter(borrowing__isnull=True, request_time__gte=threshold, user=user) def get_active_by_item_type(self, item_type): delta = timedelta(minutes=hackathon_variables.HARDWARE_REQUEST_TIME) threshold = timezone.now() - delta return self.filter(borrowing__isnull=True, request_time__gte=threshold, item_type=item_type) class Request(models.Model): """ Represents reservation of an item of type 'item_type' done by 'user' """ objects = RequestQuerySet.as_manager() # Requested item type item_type = models.ForeignKey(ItemType, on_delete=models.CASCADE) # Hacker that made the request user = models.ForeignKey(User, on_delete=models.CASCADE) # Borrowing derived from this request borrowing = models.ForeignKey(Borrowing, null=True, blank=True, on_delete=models.CASCADE) # Instant of creation request_time = models.DateTimeField(auto_now_add=True) def is_active(self): delta = timedelta(minutes=hackathon_variables.HARDWARE_REQUEST_TIME) remaining = delta - (timezone.now() - self.request_time) return not self.borrowing and remaining.total_seconds() > 0 def get_remaining_time(self): delta = timedelta(minutes=hackathon_variables.HARDWARE_REQUEST_TIME) remaining = delta - (timezone.now() - self.request_time) if self.borrowing: return "Borrowed" elif remaining.total_seconds() < 0: return "Expired" else: return str(remaining) def __str__(self): return '{} ({})'.format(self.item_type, self.user)
python
from __future__ import print_function from builtins import object import copy import numpy as np class Observer(object): def __init__(self): pass def update(self, state): pass def reset(self): pass class Printer(object): def __init__(self, elems=1, msg=None, skip=1): self.elems = elems self.msg = msg or "{}, "*(self.elems-1) + '{}' self.count = 0 self.skip = skip def update(self, sample): if self.count % self.skip == 0: if hasattr(sample, '__iter__'): msg = self.msg.format(*[i for i in sample]) else: msg = self.msg.format(sample) print(self.count, ':', msg) self.count += 1 def reset(self): self.count = 0 class TimeAutoCorrelation(Observer): def __init__(self): self.arr = [] def update(self, sample): self.arr.append(sample) def get_correlation(self): npn = np.array(self.arr) fn = np.fft.fftn(npn) return np.real(np.fft.ifftn(fn*fn.conj())) def reset(self): self.arr = [] class MeanObserver(Observer): def __init__(self, block=None): self.s = block or np.s_[:] self.dat = None self.n = 0 def update(self, sample): if self.dat is None: self.n = 1 self.dat = sample[self.s] else: self.n += 1 self.dat = self.dat + (sample[self.s] - self.dat) / self.n def get_mean(self): return self.dat def reset(self): self.dat = None class CovarianceObserver(Observer): def __init__(self, block=None): self.s = block or np.s_[:] self.mean = None self.cov = None self.n = 0 def update(self, sample): if self.mean is None: self.n = 1 self.mean = sample[self.s] self.cov = 0*np.outer(sample[self.s], sample[self.s]) else: self.n += 1 self.mean = self.mean + (sample[self.s] - self.mean) / self.n self.cov = (self.n-1.0)*self.cov self.cov += (self.n-1.0)/self.n*np.outer(sample[self.s]-self.mean,sample[self.s]-self.mean) self.cov *= 1.0/self.n def get_mean(self): return self.mean def get_covariance(self): return self.cov def reset(self): self.mean = None class HistogramObserver(Observer): def __init__(self, block=None): self.s = block if block is not None else np.s_[:] self.dat = [] def update(self, sample): self.dat.append(copy.copy(sample.state[self.s])) def get_histogram(self): return np.array(self.dat) def reset(self): self.dat = []
python
# proxy module from __future__ import absolute_import from chaco.abstract_plot_data import *
python
__author__ = "Doug Napoleone" __version__ = "0.0.1" __email__ = '[email protected]'
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import logging from flask import Flask from flask_debugtoolbar import DebugToolbarExtension app = Flask(__name__) # set a 'SECRET_KEY' to enable the Flask session cookies app.config['SECRET_KEY'] = '<replace with a secret key>' @app.route("/") def index(): # NOTE: Need tab body: "Could not insert debug toolbar. </body> tag not found in response." return "<body>Hello World!</body>" if __name__ == '__main__': app.debug = True if app.debug: logging.basicConfig(level=logging.DEBUG) toolbar = DebugToolbarExtension(app) # Localhost # port=0 -- random free port # app.run(port=0) app.run( port=5000 ) # # Public IP # app.run(host='0.0.0.0')
python
from loggers import Actions from stopping_decision_makers.base_decision_maker import BaseDecisionMaker class SequentialNonrelDecisionMaker(BaseDecisionMaker): """ A concrete implementation of a decision maker. Returns True iif the depth at which a user is in a SERP is less than a predetermined value. """ def __init__(self, search_context, logger, nonrelevant_threshold=3): super(SequentialNonrelDecisionMaker, self).__init__(search_context, logger) self.__nonrelevant_threshold = nonrelevant_threshold # The threshold; get to this point, we stop in the current SERP. def decide(self): """ If the user's current position in the current SERP is < the maximum depth, look at the next snippet in the SERP. Otherwise, a new query should be issued. """ counter = 0 examined_snippets = self._search_context.get_examined_snippets() for snippet in examined_snippets: judgment = snippet.judgment if judgment == 0: counter = counter + 1 if counter == self.__nonrelevant_threshold: return Actions.QUERY else: counter = 0 # Break the sequence; found something relevant, reset the counter. return Actions.SNIPPET
python
from django.db import models from django.contrib.auth.models import User from course.models import Course # Create your models here. class Answer(models.Model): user = models.ForeignKey(User, name="user", on_delete=models.CASCADE) answer = models.TextField() def __str__(self) -> str: return self.answer class Question(models.Model): question = models.TextField() user = models.ForeignKey(User, name="quser", on_delete=models.CASCADE) answer = models.ManyToManyField(Answer, name="answer") course = models.ForeignKey(Course, name="course", on_delete=models.CASCADE) def __str__(self) -> str: return self.question
python
# Time: O(k * log(min(n, m, k))), with n x m matrix # Space: O(min(n, m, k)) from heapq import heappush, heappop class Solution(object): def kthSmallest(self, matrix, k): """ :type matrix: List[List[int]] :type k: int :rtype: int """ kth_smallest = 0 min_heap = [] def push(i, j): if len(matrix) > len(matrix[0]): if i < len(matrix[0]) and j < len(matrix): heappush(min_heap, [matrix[j][i], i, j]) else: if i < len(matrix) and j < len(matrix[0]): heappush(min_heap, [matrix[i][j], i, j]) push(0, 0) while min_heap and k > 0: kth_smallest, i, j = heappop(min_heap) push(i, j + 1) if j == 0: push(i + 1, 0) k -= 1 return kth_smallest
python
# -*- coding: utf-8 -*- from . import main_menu, signals, slides, widgets # noqa
python
# -*- coding: utf-8 -*- ''' @author: [email protected] 说明:(1)程序仅供技术学习,严禁用于任何商业用途 (2)对于抓取内容及其分析,请勿乱发布,后果自负 (3)软件可能有bug,如果发现望及时告知 (4)成交数据,需要提供修改账户密码,请查找 admin 或者password 修改 ''' import sqlite3 import os from ErShouFangDbHelper import GetXiaoquNianDai from ErShouFangDbHelper import GetCountFromSummary from ChengJiaoDbHelper import GetMaxRiQi from AdvancedAnalysisErShouFangMain import GetPriceFromDbList import time import datetime def GetXiaoquData(dbname): xiaoqulist={} conn = sqlite3.connect("database/"+dbname+".db") sqlstring=u'select DISTINCT xiaoqu from chengjiao ' cursor=conn.execute(sqlstring) for row in cursor: xiaoqulist[row[0]]={} xiaoqulist[row[0]]['qu']='' xiaoqulist[row[0]]['zhen']='' xiaoqulist[row[0]]['min']=None xiaoqulist[row[0]]['max']=None xiaoqulist[row[0]]['range']=0.0 conn.close() return xiaoqulist def Analysis(dbname): '''key $ xiaoqu $ fangxing $ mianji $ qu $ zhen $ zongjia $ danjia $ manji $ riqi''' conn = sqlite3.connect("database/"+dbname+".db") sqlstring='select qu,zhen,sum(zongjia),sum(mianji) from chengjiao group by zhen order by qu' cursor=conn.execute(sqlstring) totalprice=0.0 totalmianji=0.0 for row in cursor: qu=row[0] zhen=row[1] totalprice=row[2] totalmianji=row[3] if(totalmianji!=0): print qu,zhen,totalprice,totalmianji,totalprice/totalmianji conn.close() def TrendShanghaiMonth(dbname): '''key $ xiaoqu $ fangxing $ mianji $ qu $ zhen $ zongjia $ danjia $ manji $ riqi''' conn = sqlite3.connect("database/"+dbname+".db") sqlstring='select qu,zhen,sum(zongjia),sum(mianji) from chengjiao group by zhen order by qu' cursor=conn.execute(sqlstring) totalprice=0.0 totalmianji=0.0 for row in cursor: qu=row[0] zhen=row[1] totalprice=row[2] totalmianji=row[3] if(totalmianji!=0): print qu,zhen,totalprice,totalmianji,totalprice/totalmianji conn.close() def TrendZhenMonth(dbname): conn = sqlite3.connect("database/"+dbname+".db") sqlstring=u'select qu,zhen,count(key),sum(zongjia),sum(mianji),strftime(\'%Y%m\',riqi) \ from chengjiao group by zhen,strftime(\'%Y%m\',riqi) ' cursor=conn.execute(sqlstring) totalprice=0.0 totalmianji=0.0 zhenlist=[] for row in cursor: qu=row[0] zhen=row[1] count=row[2] totalprice=row[3] totalmianji=row[4] average=totalprice/totalmianji riqi=row[5] zhenlist.append([qu,zhen,count,totalprice,totalmianji,average,riqi]) conn.close() zhendata={} for zhen in zhenlist: key=zhen[1] zhendata[key]={} zhendata[key]['qu']='' zhendata[key]['zhen']='' zhendata[key]['min']=None zhendata[key]['max']=None zhendata[key]['range']=0.0 zhendata[key]['count']=0 show=[u'张江',u'唐镇',u'三林',u'川沙',u'北蔡',u'祝桥 '] if key.strip() in show: print zhen[0],zhen[1],zhen[2],zhen[5],zhen[6] for zhen in zhenlist: key=zhen[1] zhendata[key]['qu']=zhen[0]; zhendata[key]['zhen']=zhen[1] junjia=zhen[5] if zhendata[key]['min']==None or \ zhendata[key]['max']==None: zhendata[key]['min']=junjia zhendata[key]['max']=junjia if junjia<zhendata[key]['min']: zhendata[key]['min']=junjia zhendata[key]['range']=zhendata[key]['max']-zhendata[key]['min'] elif junjia>zhendata[key]['max']: zhendata[key]['max']=junjia zhendata[key]['range']=zhendata[key]['max']-zhendata[key]['min'] zhendata[key]['count']+=zhen[2] f=open('report\\chenjiao\\chengjiaoTrendZhen.txt','w') f.write('qu$zhen$shuliang$min$max$range\n') for key in zhendata: txt=('%s $ %s $ %s $ %s $ %s $ %s\n')%(zhendata[key]['qu'],zhendata[key]['zhen'],\ zhendata[key]['count'],zhendata[key]['min'],zhendata[key]['max'],zhendata[key]['range']) f.write(txt.encode('utf-8')) f.close() def TrendXiaoQuMonth(dbname,xiaoqudata): xiaoqulist=GetXiaoquNianDai('20170107') conn = sqlite3.connect("database/"+dbname+".db") sqlstring=u'select qu,zhen,xiaoqu,count(key),sum(zongjia),sum(mianji),strftime(\'%m\',riqi) \ from chengjiao group by xiaoqu,strftime(\'%m\',riqi) ' cursor=conn.execute(sqlstring) totalprice=0.0 totalmianji=0.0 for row in cursor: qu=row[0] zhen=row[1] xiaoqu=row[2] count=row[3] totalprice=row[4] totalmianji=row[5] riqi=row[6] niandai='' junjia=totalprice/totalmianji if xiaoqulist.has_key(xiaoqu): niandai=xiaoqulist[xiaoqu] print xiaoqu,niandai xiaoqudata[xiaoqu]['niandai']=niandai xiaoqudata[xiaoqu]['qu']=qu; xiaoqudata[xiaoqu]['zhen']=zhen if xiaoqudata[xiaoqu]['min']==None or \ xiaoqudata[xiaoqu]['max']==None: xiaoqudata[xiaoqu]['min']=junjia xiaoqudata[xiaoqu]['max']=junjia if junjia<xiaoqudata[xiaoqu]['min']: xiaoqudata[xiaoqu]['min']=junjia xiaoqudata[xiaoqu]['range']=xiaoqudata[xiaoqu]['max']-xiaoqudata[xiaoqu]['min'] elif junjia>xiaoqudata[xiaoqu]['max']: xiaoqudata[xiaoqu]['max']=junjia xiaoqudata[xiaoqu]['range']=xiaoqudata[xiaoqu]['max']-xiaoqudata[xiaoqu]['min'] conn.close() f=open('report\\chenjiao\\chengjiaoTrendXiaoqu.txt','w') f.write('qu$zhen$xiaoqu$niandai$min$max$range\n') for key in xiaoqudata: txt=('%s$%s$%s$%s$%s$%s$%s\n')%(xiaoqudata[key]['qu'],xiaoqudata[key]['zhen'],\ key,xiaoqudata[key]['niandai'],xiaoqudata[key]['min'],\ xiaoqudata[key]['max'],xiaoqudata[key]['range']) f.write(txt.encode('utf-8')) f.close() def ChenJiaoShangHaiPerMonth(dbname='chengjiao'): print '月份 均价 套数' conn = sqlite3.connect("database/"+dbname+".db") sqlstring=u'select count(key),sum(zongjia),sum(mianji),strftime(\'%Y%m\',riqi) \ from chengjiao group by strftime(\'%Y%m\',riqi) '#%d cursor=conn.execute(sqlstring) totalprice=0.0 totalmianji=0.0 count=0 t='' for row in cursor: count=row[0] totalprice=row[1] totalmianji=row[2] t=row[3] print ('%s %-11.4f %s')%(t,totalprice/totalmianji,count) def get_latest_90_count(date,dbname='chengjiao'): date = time.strptime(date,"%Y-%m-%d") date=datetime.datetime(date[0],date[1],date[2]) lastdate= date + datetime.timedelta(days = -90) print date,'九十天前日期;',lastdate conn = sqlite3.connect("database/"+dbname+".db") sqlstring=(u'select count(key) from chengjiao where riqi>=\'%s\'')%(lastdate) cursor=conn.execute(sqlstring) c=0 for row in cursor: c=row[0] conn.close() return c def get_chengjiao_count(where,dbname='chengjiao'): conn = sqlite3.connect("database/"+dbname+".db") sqlstring=(u'select count(key) from chengjiao where %s')%(where) cursor=conn.execute(sqlstring) c=0 for row in cursor: c=row[0] conn.close() return c def get_90_count(date,dbname='chengjiao'): date = time.strptime(date,"%Y-%m-%d") date=datetime.datetime(date[0],date[1],date[2]) lastdate= date + datetime.timedelta(days = -90) lastdate=lastdate.strftime("%Y-%m-%d") #print "90 day before",date,lastdate conn = sqlite3.connect("database/"+dbname+".db") sqlstring=(u'select count(key) from chengjiao where riqi=\'%s\'')%(lastdate) cursor=conn.execute(sqlstring) c=0 for row in cursor: c=row[0] conn.close() return c def get_latest_15_count(): date=time.strftime('%Y-%m-%d',time.localtime()) datetime=time.strftime('%Y%m%d',time.localtime()) count= GetCountFromSummary(datetime) count90= get_latest_90_count(date) print '最近90天成交套数 ,统计到:',GetMaxRiQi(),count90 delta=count-count90 countbetween=get_chengjiao_count(' riqi>=\'2017-02-01\' and riqi <= \'2017-01-08\'') print delta+countbetween def get_day_count(date=None): if date==None: date=time.strftime('%Y-%m-%d',time.localtime()) date = time.strptime(date,"%Y-%m-%d") date=datetime.datetime(date[0],date[1],date[2]) predate= date + datetime.timedelta(days = -1) day=date.strftime("%Y%m%d") preday=predate.strftime("%Y%m%d") preday2=predate.strftime("%Y-%m-%d") countday=GetCountFromSummary(day) countpreday=GetCountFromSummary(preday) coutpreday90=get_90_count(preday2) #print countday,countpreday,coutpreday90 print preday2,"chenjiao",countday-(countpreday-coutpreday90) def GetChengJiaoPreviousData(dbname='chengjiao'): conn = sqlite3.connect("database/"+dbname+".db") sqlstring=(u'select * from chengjiao order by riqi desc') cursor=conn.execute(sqlstring) chengjiao=[] count=1 with open('report/chengjiaoPreviousJiaGe.txt','w+') as chenjiaofile: for row in cursor: chen=[] chen.append(row[0]) #key chen.append(row[6]) #zongjia chen.append(row[1]) #xiaoqu chen.append(row[2]) #fang chen.append(row[3]) #mianji chen.append(row[4]) #qu chen.append(row[5]) #zhen if row[5] == u'北3蔡': continue chen.append(row[7]) #danjia chen.append(row[8]) chen.append(row[9]) #riqi chen.append(GetPriceFromDbList(row[0])) chengjiao.append(chen) print chen[0],chen[1],chen[2],chen[3],chen[4],chen[5],chen[6],chen[7],chen[8],chen[9],chen[10] count+=1 lastprice=0 change=0 daikan=0 if len(chen[10])>0: lastprice=int(chen[10][1]) daikan=int(chen[10][0]) change=int(chen[1])-lastprice txt=('%s $ %s $ %s $ %s $ %s $ %s $ %s $ %s $ %s $ %s $ %s $ %s $ %s $ %s\n')%(chen[0],chen[2],chen[1],lastprice,change,daikan,chen[3],\ chen[4],chen[5],chen[6],chen[7],chen[8],chen[9],chen[10])#chen[10] pricelist latest to oldest chenjiaofile.write(txt) chenjiaofile.flush() def GetChenJiaoPerDay(): #显示的数据晚一天 date=time.strftime('%Y-%m-%d',time.localtime()) get_day_count(date) date = time.strptime(date,"%Y-%m-%d") while(True): date=datetime.datetime(date[0],date[1],date[2]) predate= date + datetime.timedelta(days = -1) predate=predate.strftime("%Y-%m-%d") date=predate date = time.strptime(date,"%Y-%m-%d") if(predate=='2017-02-23'): break get_day_count(predate) if __name__ == "__main__": if 1: #Analysis('chengjiao') #TrendXiaoQuMonth('chengjiao',GetXiaoquData('chengjiao')) GetChengJiaoPreviousData() pass else: pass GetChengJiaoPreviousData() ChenJiaoShangHaiPerMonth() get_latest_15_count() GetChenJiaoPerDay() TrendZhenMonth('chengjiao') TrendXiaoQuMonth('chengjiao',GetXiaoquData('chengjiao')) TrendShanghaiMonth('chengjiao')
python
from flask import Blueprint, request from libs.tools import json_response, JsonParser, Argument from .models import NotifyWay blueprint = Blueprint(__name__, __name__) @blueprint.route('/', methods=['GET']) def get(): form, error = JsonParser(Argument('page', type=int, default=1, required=False), Argument('pagesize', type=int, default=10, required=False), Argument('notify_query', type=dict, required=False), ).parse(request.args) if error is None: notify_data = NotifyWay.query if form.page == -1: return json_response({'data': [x.to_json() for x in notify_data.all()], 'total': -1}) if form.notify_query.get('name_field'): notify_data = notify_data.filter(NotifyWay.name.like('%{}%'.format(form.notify_query['name_field']))) result = notify_data.limit(form.pagesize).offset((form.page - 1) * form.pagesize).all() return json_response({'data': [x.to_json() for x in result], 'total': notify_data.count()}) return json_response(message=error) @blueprint.route('/', methods=['POST']) def post(): form, error = JsonParser('name', 'value', Argument('desc', nullable=True)).parse() if error is None: notify_is_exist = NotifyWay.query.filter_by(name=form.name).first() if notify_is_exist: return json_response(message="通知名称已存在") NotifyWay(**form).save() return json_response() return json_response(message=error) @blueprint.route('/<int:u_id>', methods=['DELETE']) def delete(u_id): NotifyWay.query.get_or_404(u_id).delete() return json_response(), 204 @blueprint.route('/<int:n_id>', methods=['PUT']) def put(n_id): form, error = JsonParser('name', 'value', Argument('desc', nullable=True)).parse() if error is None: notify_info = NotifyWay.query.get_or_404(n_id) if not notify_info.update(**form): notify_info.save() return json_response(notify_info) return json_response(message=error)
python
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### We add an option contract using 'QCAlgorithm.AddOptionContract' and place a trade, the underlying ### gets deselected from the universe selection but should still be present since we manually added the option contract. ### Later we call 'QCAlgorithm.RemoveOptionContract' and expect both option and underlying to be removed. ### </summary> class AddOptionContractFromUniverseRegressionAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014, 6, 5) self.SetEndDate(2014, 6, 9) self._expiration = datetime(2014, 6, 21) self._securityChanges = None self._option = None self._traded = False self._twx = Symbol.Create("TWX", SecurityType.Equity, Market.USA) self._aapl = Symbol.Create("AAPL", SecurityType.Equity, Market.USA) self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw self.AddUniverse(self.Selector, self.Selector) def Selector(self, fundamental): if self.Time <= datetime(2014, 6, 5): return [ self._twx ] return [ self._aapl ] def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if self._option != None and self.Securities[self._option].Price != 0 and not self._traded: self._traded = True self.Buy(self._option, 1) if self.Time == datetime(2014, 6, 6, 14, 0, 0): # liquidate & remove the option self.RemoveOptionContract(self._option) def OnSecuritiesChanged(self, changes): # keep track of all removed and added securities if self._securityChanges == None: self._securityChanges = changes else: self._securityChanges.op_Addition(self._securityChanges, changes) if any(security.Symbol.SecurityType == SecurityType.Option for security in changes.AddedSecurities): return for addedSecurity in changes.AddedSecurities: options = self.OptionChainProvider.GetOptionContractList(addedSecurity.Symbol, self.Time) options = sorted(options, key=lambda x: x.ID.Symbol) option = next((option for option in options if option.ID.Date == self._expiration and option.ID.OptionRight == OptionRight.Call and option.ID.OptionStyle == OptionStyle.American), None) self.AddOptionContract(option) # just keep the first we got if self._option == None: self._option = option
python
import pytest from django.contrib.auth.models import User from shrubberies.factories import UserFactory from shrubberies.models import Profile from .rules import Is, current_user @pytest.mark.django_db def test_is_user_function(): u1 = UserFactory() u2 = UserFactory() is_own_profile = Is(lambda u: u.profile) assert is_own_profile.check(u1, u1.profile) assert is_own_profile.check(u2, u2.profile) assert not is_own_profile.check(u1, u2.profile) assert not is_own_profile.check(u2, u1.profile) qs1 = is_own_profile.filter(u1, Profile.objects.all()) qs2 = is_own_profile.filter(u2, Profile.objects.all()) assert qs1.count() == 1 assert u1.profile in qs1 assert u2.profile not in qs1 assert qs2.count() == 1 assert u2.profile in qs2 assert u1.profile not in qs2 @pytest.mark.django_db def test_is_never_global(): user = UserFactory() is_own_profile = Is(lambda u: u.profile) assert not is_own_profile.check(user) @pytest.mark.django_db def test_current_user(): u1 = UserFactory() u2 = UserFactory() assert current_user.check(u1, u1) assert not current_user.check(u1, u2) assert set(current_user.filter(u1, User.objects.all())) == {u1}
python
if __name__ == '__main__': from scummer.validator import Validator t = { 'a': 'x', 'b': { 'b1': 123 }, 'c': [1,2], 'd': { 'x': 1, 'y': 'aaaa' } } v = Validator(schema={ 'a': ('enum',{ 'items': ['x','y'] }), 'b': { 'b1': ['str','int'], 'b2': ('int',{'required':False}) }, 'c': 'int[]', 'd': ('map',{ 'definition': 'int' }) }) v.validate(t)
python
import pandas as pd import matplotlib.pyplot as plt import pdb def main(): results_df = pd.read_csv("results_nm.csv", delimiter=",") fig_0, ax_0 = plt.subplots() fig_1, ax_1 = plt.subplots() for m in results_df.m.unique(): m_subset = results_df[results_df.m == m] m_means = [] m_vars = [] m_evals = [] m_evals_var = [] for steps in m_subset.steps.unique(): steps_subset = m_subset[m_subset.steps == steps] mean_overlap = steps_subset.squared_overlap.mean() var_overlap = steps_subset.squared_overlap.var() m_means.append(mean_overlap) m_vars.append(var_overlap) mean_evals = steps_subset.bfgs_evaluations.mean() var_evals = steps_subset.bfgs_evaluations.var() m_evals.append(mean_evals) m_evals_var.append(var_evals) ax_0.errorbar(m_subset.steps.unique(), m_means, yerr=m_vars, label=str(int(m)), marker="o", capsize=2) ax_1.errorbar(m_subset.steps.unique(), m_evals, yerr=m_evals_var, label=str(int(m)), marker="o", capsize=2) ax_0.set_xlabel("Number of circuit layers") ax_0.set_ylabel("Squared overlap") ax_0.set_ylim([0, 1.05]) ax_0.legend() ax_1.set_xlabel("Number of circuit layers") ax_1.set_ylabel("BFGS function evaluations") ax_1.legend() fig_0.savefig("squared_overlap") fig_1.savefig("bfgs_evaluations") if __name__ == '__main__': main()
python
import json import sys import os def get_offset(call): s = call.split("+") try: return int(s[1], 16) except: pass def get_hashsum(call): s = call.split("{") try: ss = s[1].split("}") return ss[0] except: s = call.split("!") try: return s[0] except: return def generate_tag(call, proto): offset = get_offset(call) if offset is None: return hashsum = get_hashsum(call) if hashsum is None: return return {'offset': offset, 'tag': proto, 'feeder': 'TagPcap', 'hash': hashsum} def export_tags(tag_list, jsonf): out_f = jsonf + "_TagPcap" + ".json" with open(out_f, 'wb') as f: json.dump(tag_list, f) print("[TagPcap] Tags created : " + str(len(tag_list))) print("[TagPcap] Tags exported : " + out_f) def usage(): print("Usage : TagPcap.py <JSON PCAP file>") def main(argv): try: jsonf = sys.argv[1] except: usage() return tag_list = [] with open(jsonf, "r") as f: json_data = json.load(f) for l0 in json_data: try: callstack = l0["_source"]["layers"]["pkt_comment"]["frame.comment"] calls = callstack.splitlines() proto = l0["_source"]["layers"]["frame"]["frame.protocols"] except: continue for call in calls: tag = generate_tag(call, proto) if tag is not None: tag_list.append(tag) export_tags(tag_list, jsonf) if __name__ == "__main__": main(sys.argv[1:])
python
import os import shutil # optional: if you get a SSL CERTIFICATE_VERIFY_FAILED exception import ssl import sys from io import BytesIO from pathlib import Path from urllib.parse import urlparse from urllib.request import urlopen, urlretrieve from zipfile import ZipFile, is_zipfile import pandas as pd from tqdm import tqdm import socceraction.spadl as spadl import socceraction.spadl.statsbomb as statsbomb import socceraction.spadl.wyscout as wyscout ssl._create_default_https_context = ssl._create_unverified_context _data_dir = os.path.dirname(__file__) def read_json_file(filename): with open(filename, 'rb') as json_file: return BytesIO(json_file.read()).getvalue().decode('unicode_escape') def download_statsbomb_data(): dataset_url = 'https://github.com/statsbomb/open-data/archive/master.zip' tmp_datafolder = os.path.join(_data_dir, 'statsbomb', 'tmp') raw_datafolder = os.path.join(_data_dir, 'statsbomb', 'raw') for datafolder in [tmp_datafolder, raw_datafolder]: if not os.path.exists(datafolder): os.makedirs(datafolder, exist_ok=True) statsbombzip = os.path.join(tmp_datafolder, 'statsbomb-open-data.zip') with urlopen(dataset_url) as dl_file: with open(statsbombzip, 'wb') as out_file: out_file.write(dl_file.read()) with ZipFile(statsbombzip, 'r') as zipObj: zipObj.extractall(tmp_datafolder) shutil.rmtree(raw_datafolder) Path(f'{tmp_datafolder}/open-data-master/data').rename(raw_datafolder) shutil.rmtree(tmp_datafolder) def convert_statsbomb_data(): seasons = { 3: '2018', } leagues = { 'FIFA World Cup': 'WorldCup', } spadl_datafolder = os.path.join(_data_dir, 'statsbomb') free_open_data_remote = 'https://raw.githubusercontent.com/statsbomb/open-data/master/data/' SBL = statsbomb.StatsBombLoader(root=free_open_data_remote, getter='remote') # View all available competitions df_competitions = SBL.competitions() df_selected_competitions = df_competitions[ df_competitions.competition_name.isin(leagues.keys()) ] for competition in df_selected_competitions.itertuples(): # Get games from all selected competition games = SBL.games(competition.competition_id, competition.season_id) games_verbose = tqdm(list(games.itertuples()), desc='Loading match data') teams, players = [], [] competition_id = leagues[competition.competition_name] season_id = seasons[competition.season_id] spadl_h5 = os.path.join(spadl_datafolder, f'spadl-{competition_id}-{season_id}.h5') with pd.HDFStore(spadl_h5) as spadlstore: spadlstore.put('actiontypes', spadl.actiontypes_df(), format='table') spadlstore.put('results', spadl.results_df(), format='table') spadlstore.put('bodyparts', spadl.bodyparts_df(), format='table') for game in games_verbose: # load data teams.append(SBL.teams(game.game_id)) players.append(SBL.players(game.game_id)) events = SBL.events(game.game_id) # convert data spadlstore.put( f'actions/game_{game.game_id}', statsbomb.convert_to_actions(events, game.home_team_id), format='table', ) games.season_id = season_id games.competition_id = competition_id spadlstore.put('games', games) spadlstore.put( 'teams', pd.concat(teams).drop_duplicates('team_id').reset_index(drop=True), ) spadlstore.put( 'players', pd.concat(players).drop_duplicates('player_id').reset_index(drop=True), ) def download_wyscout_data(): # https://figshare.com/collections/Soccer_match_event_dataset/4415000/5 dataset_urls = dict( competitions='https://ndownloader.figshare.com/files/15073685', teams='https://ndownloader.figshare.com/files/15073697', players='https://ndownloader.figshare.com/files/15073721', games='https://ndownloader.figshare.com/files/14464622', events='https://ndownloader.figshare.com/files/14464685', ) raw_datafolder = os.path.join(_data_dir, 'wyscout_public', 'raw') if not os.path.exists(raw_datafolder): os.makedirs(raw_datafolder, exist_ok=True) # download and unzip Wyscout open data for url in tqdm(dataset_urls.values(), desc='Downloading data'): url_obj = urlopen(url).geturl() path = Path(urlparse(url_obj).path) file_name = os.path.join(raw_datafolder, path.name) file_local, _ = urlretrieve(url_obj, file_name) if is_zipfile(file_local): with ZipFile(file_local) as zip_file: zip_file.extractall(raw_datafolder) def convert_wyscout_data(): seasons = { 10078: '2018', } leagues = { 28: 'WorldCup', } raw_datafolder = os.path.join(_data_dir, 'wyscout_public', 'raw') spadl_datafolder = os.path.join(_data_dir, 'wyscout_public') # select competitions json_competitions = read_json_file(f'{raw_datafolder}/competitions.json') df_competitions = pd.read_json(json_competitions) # Rename competitions to the names used in the file names df_competitions['name'] = df_competitions.apply( lambda x: x.area['name'] if x.area['name'] != '' else x['name'], axis=1 ) df_selected_competitions = df_competitions[df_competitions.wyId.isin(leagues.keys())] json_teams = read_json_file(f'{raw_datafolder}/teams.json') df_teams = wyscout.convert_teams(pd.read_json(json_teams)) json_players = read_json_file(f'{raw_datafolder}/players.json') df_players = wyscout.convert_players(pd.read_json(json_players)) for competition in df_selected_competitions.itertuples(): json_games = read_json_file( f"{raw_datafolder}/matches_{competition.name.replace(' ', '_')}.json" ) df_games = pd.read_json(json_games) competition_id = leagues[competition.wyId] season_id = seasons[df_games.seasonId.unique()[0]] df_games = wyscout.convert_games(df_games) df_games['competition_id'] = competition_id df_games['season_id'] = season_id json_events = read_json_file( f"{raw_datafolder}/events_{competition.name.replace(' ', '_')}.json" ) df_events = pd.read_json(json_events).groupby('matchId', as_index=False) spadl_h5 = os.path.join(spadl_datafolder, f'spadl-{competition_id}-{season_id}.h5') # Store all spadl data in h5-file print(f'Converting {competition_id} {season_id}') with pd.HDFStore(spadl_h5) as spadlstore: spadlstore['actiontypes'] = spadl.actiontypes_df() spadlstore['results'] = spadl.results_df() spadlstore['bodyparts'] = spadl.bodyparts_df() spadlstore['games'] = df_games for game in tqdm(list(df_games.itertuples())): game_id = game.game_id game_events = wyscout.convert_events(df_events.get_group(game_id)) # convert events to SPADL actions home_team = game.home_team_id df_actions = wyscout.convert_to_actions(game_events, home_team) df_actions['action_id'] = range(len(df_actions)) spadlstore[f'actions/game_{game_id}'] = df_actions spadlstore['players'] = df_players spadlstore['teams'] = df_teams[ df_teams.team_id.isin(df_games.home_team_id) | df_teams.team_id.isin(df_games.away_team_id) ] if __name__ == '__main__': if len(sys.argv) == 1 or sys.argv[1] == 'statsbomb': download_statsbomb_data() convert_statsbomb_data() if len(sys.argv) == 1 or sys.argv[1] == 'wyscout': download_wyscout_data() convert_wyscout_data()
python
def test_latest(): print('\n >>> start Latest Features... \n') import talos from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense x, y = talos.templates.datasets.iris() p = {'activation': ['relu', 'elu'], 'optimizer': ['Nadam', 'Adam'], 'losses': ['logcosh'], 'shapes': ['brick'], 'first_neuron': [16, 32, 64, 128], 'hidden_layers': [0, 1, 2, 3], 'dropout': [.2, .3, .4], 'batch_size': [20, 30, 40, 50], 'epochs': [10]} def iris_model(x_train, y_train, x_val, y_val, params): model = Sequential() model.add(Dense(params['first_neuron'], input_dim=4, activation=params['activation'])) talos.utils.hidden_layers(model, params, 3) model.add(Dense(3, activation='softmax')) model.compile(optimizer=params['optimizer'], loss=params['losses'], metrics=['acc']) out = model.fit(x_train, y_train, callbacks=[talos.utils.ExperimentLogCallback('test_latest', params)], batch_size=params['batch_size'], epochs=params['epochs'], validation_data=(x_val, y_val), verbose=0) return out, model scan_object = talos.Scan(x, y, model=iris_model, params=p, experiment_name='test_latest', round_limit=5, reduction_method='gamify', save_weights=False) print('finised Latest Features \n')
python
# Time Complexity: O(n^2) # Space Complexity: O(n) class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: res = [] nums.sort() for cur in range(len(nums)): if nums[cur] > 0: break if cur>0 and nums[cur]==nums[cur-1]: continue # 重点理解 left = cur + 1 right = len(nums) - 1 while left < right: if nums[cur] + nums[left] + nums[right] > 0: # while left < right and nums[right-1] == nums[right]: # right -= 1 right -= 1 elif nums[cur] + nums[left] + nums[right] < 0: # while left < right and nums[left+1] == nums[left]: # left += 1 left += 1 else: res.append([nums[cur], nums[left], nums[right]]) print([nums[cur], nums[left], nums[right]]) while left < right and nums[left+1] == nums[left]: left += 1 while left < right and nums[right-1] == nums[right]: right -= 1 left += 1 right -= 1 return res
python
import pandas as pd import os # df = pd.read_csv('./train_annotation_list.csv') # for i in range (len(df['Image_Path'])): # dirname = os.path.dirname(df['Image_Path'][i]) # patient_name = os.path.basename(df['Image_Path'][i]) # patient_no = int(patient_name.split('.')[0].split('_')[1]) # folder = 'center_'+str(int(patient_no//20)) # corrected_path = os.path.join(dirname, folder, patient_name) # # print (corrected_path) # df['Image_Path'][i] = corrected_path df = pd.read_csv('./annotated_train_data.csv') for i in range (len(df['Image_Path'])): image_path = df['Image_Path'][i] label_path = df['Mask_Path'][i] if label_path == 'empty': print (label_path)
python
import pandas as pd import matplotlib.pyplot as plt import errno import os import numpy as np from pathlib import Path import data_helper as dh # Counts the number of learning agents in one log path def count_learning_agents_in_logs_path(logs_path): count = 0 # loop through win rates directories in logs for content_path in logs_path.rglob("*"): # check if content is directory if not content_path.is_dir(): continue # Create file path to win_rates.csv win_rates_path = content_path / 'win_rates.csv' # Check if win rate csv exists if not win_rates_path.exists(): continue # Get directory name directory_name = content_path.name # Split directory name into agent names agent_names = directory_name.split('_vs_') # Iterate over both agents for agent in agent_names: # Plot only winrates for not-random agents if 'Random' in agent: continue count = count + 1 return count if __name__=='__main__': # Create path to experiments directory experiments_path = Path(Path().cwd().parents[0] / 'experiments') # Loop through all training directories for train_directory_path in experiments_path.rglob("*"): # check if train_directory_path is directory if not train_directory_path.is_dir(): continue # Loop through experiment directories for experiment_directory_path in train_directory_path.rglob("*"): # check if experiment_directory_path is directory if not experiment_directory_path.is_dir(): continue # Create path to train/logs logs_path = experiment_directory_path / 'train/logs' # Check path to train/logs is available if not logs_path.exists(): continue # Create new plot for each experiment plt.figure() # Current agent number i = 0 # Number of learning agents in this experiment n = count_learning_agents_in_logs_path(logs_path) # loop through win rates directories in logs for content_path in sorted(logs_path.rglob("*")): # check if content is directory if not content_path.is_dir(): continue # Create file path to win_rates.csv win_rates_path = content_path / 'win_rates.csv' # Check if win rate csv exists if not win_rates_path.exists(): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), win_rates_path) # Read dataframe from csv file winrate_df = dh.get_winrate_df_from_csv(win_rates_path) # Get directory name directory_name = content_path.name # Split directory name into agent names agent_names = directory_name.split('_vs_') # Iterate over both agents for agent in agent_names: # Plot only winrates for not-random agents if 'Random' in agent: continue # Get side of agent side = dh.WINRATE_A if agent.split('_')[-1] == 'SideA' else dh.WINRATE_B # Create list with winrates to investigate winrate_bars = [0.60, 0.70, 0.80, 0.85, 0.90, 0.95, 0.97, 0.99] # Create empty list for episode marks episodes_for_winrate = [] # Get episodes, when the winrates are reached for winrate in winrate_bars: found_episode = False for index, row in winrate_df.iterrows(): if row[side] > winrate and not found_episode: episodes_for_winrate.append(row[dh.EPISODE]) found_episode = True break if not found_episode: episodes_for_winrate.append(0) width = 0.175 # the label locations label_locations = np.arange(len(winrate_bars)) # Plot winrate of agent plt.bar(label_locations - ((n - 1)/2 * width) + i * width, episodes_for_winrate, width, label=agent) i = i + 1 # Set tick labels plt.xticks(label_locations, winrate_bars) # Set the x and y axis label plt.xlabel('win rate') plt.ylabel(dh.EPISODE) # Show legend plt.legend() # Create path to plots directory plots_path = experiment_directory_path /'plots' # Check plot directory is available if not plots_path.exists(): os.mkdir(plots_path) # Create path to convergence_speed directory convergence_speed_path = Path(plots_path / 'convergence_speed') # Check convergence_speed directory is available if not convergence_speed_path.exists(): os.mkdir(convergence_speed_path) # Get image name from source directroy image_name = 'convergence_speed.png' # Create image path image_path = convergence_speed_path / image_name # Save plot as image plt.savefig(image_path)
python
# TODO: change name to queue from db_works import db_connect, db_tables import datetime def get_settings(interval_param_): db_schema_name, db_table_name, db_settings_table_name = db_tables() cursor, cnxn = db_connect() # interval parameter: current - API data; daily_hist - data from daily files; monthly_hist - data from monthly files if interval_param_ == "current": cursor.execute( "SELECT download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange, " "current_range_to_overwrite, download_api_interval_sec, daily_update_from_files, monthly_update_from_files, start_hist_download_ux_timestamp " "FROM " + db_schema_name + "." + db_settings_table_name + " WHERE current_update_from_api = 1 and " "download_setting_status_id = 0 and " "daily_hist_complete = 1 AND " "monthly_hist_complete = 1 AND " "coalesce(next_download_ux_timestamp, 0) <= " + str(int(datetime.datetime.utcnow().timestamp())) + " order by next_download_ux_timestamp asc limit 1") elif interval_param_ == "daily_hist": cursor.execute("SELECT download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange, " "current_range_to_overwrite, download_api_interval_sec, daily_update_from_files, monthly_update_from_files, start_hist_download_ux_timestamp " "FROM " + db_schema_name + "." + db_settings_table_name + " WHERE daily_update_from_files = 1 and " "download_setting_status_id = 0 and " "daily_hist_complete = 0 AND " "monthly_hist_complete = 1 AND " "coalesce(start_hist_download_ux_timestamp, 0) <= " + str(int(datetime.datetime.utcnow().timestamp())) + " order by start_hist_download_ux_timestamp asc limit 1") elif interval_param_ == "monthly_hist": cursor.execute("SELECT download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange, " "current_range_to_overwrite, download_api_interval_sec, daily_update_from_files, monthly_update_from_files, start_hist_download_ux_timestamp " "FROM " + db_schema_name + "." + db_settings_table_name + " WHERE monthly_update_from_files = 1 and " "download_setting_status_id = 0 and " "monthly_hist_complete = 0 AND " "coalesce(start_hist_download_ux_timestamp, 0) <= " + str(int(datetime.datetime.utcnow().timestamp())) + " order by start_hist_download_ux_timestamp asc limit 1") else: exit() download_setting = cursor.fetchall() if len(download_setting) > 0: download_settings_id = download_setting[0][0] market = download_setting[0][1] tick_interval = download_setting[0][2] data_granulation = download_setting[0][3] stock_type = download_setting[0][4] stock_exchange = download_setting[0][5] range_to_download = download_setting[0][6] download_api_interval_sec = download_setting[0][7] daily_update_from_files = download_setting[0][8] monthly_update_from_files = download_setting[0][9] start_hist_download_ux_timestamp = download_setting[0][10] else: print("no data to download") exit() # block current setting changing its status cursor.execute("UPDATE " + db_schema_name + "." + db_settings_table_name + " SET download_setting_status_id = %s where download_settings_id = %s", (1, download_settings_id)) cnxn.commit() print("settings blocked") return download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange, range_to_download, download_api_interval_sec, daily_update_from_files, monthly_update_from_files, start_hist_download_ux_timestamp print()
python
from tests.utils import TEST_DATA_DIR from dexy.doc import Doc from tests.utils import wrap import os markdown_file = os.path.join(TEST_DATA_DIR, "markdown-test.md") def run_kramdown(ext): with open(markdown_file, 'r') as f: example_markdown = f.read() with wrap() as wrapper: node = Doc("markdown.md|kramdown", wrapper, [], kramdown = { 'ext' : ext }, contents = example_markdown ) wrapper.run_docs(node) assert node.output_data().is_cached() return node.output_data() def test_kramdown_html(): html = str(run_kramdown(".html")) assert """<h2 id="download">""" in html def test_kramdown_tex(): tex = str(run_kramdown(".tex")) assert "\subsection" in tex
python
from flask import Blueprint from flask import redirect from flask import render_template from flask import abort, jsonify, request from flask_login import current_user from flask_login import login_required from app.models import User, load_user from app.extensions import db import os import stripe stripe.api_key = os.environ['STRIPE_SECRET_KEY'] stripe_bp = Blueprint('stripe', __name__) stripe_prefix = '/stripe' products = { 'private_model': { 'name': 'your own private fine-tuned model', 'price': 5000, 'per': 'month', 'adjustable_quantity': { 'enabled': True, 'minimum': 1, 'maximum': 3, }, }, } @stripe_bp.route('/') def index(): if current_user.is_authenticated: user = load_user(current_user.get_id()) allowed = user.models_allowed return render_template('stripe.html', username=str(user), allowed=allowed, products=products, stripe_prefix=stripe_prefix) else: return render_template('stripe.html', products=products,stripe_prefix=stripe_prefix) @stripe_bp.route('/order/<product_id>', methods=['POST']) @login_required def order(product_id): if product_id not in products: abort(404) checkout_session = stripe.checkout.Session.create( line_items=[ { 'price_data': { 'product_data': { 'name': products[product_id]['name'], }, 'unit_amount': products[product_id]['price'], 'currency': 'usd', }, 'quantity': 1, 'adjustable_quantity': products[product_id].get( 'adjustable_quantity', {'enabled': False}), }, ], payment_method_types=['card'], mode='payment', success_url=request.host_url + stripe_prefix.replace('/', '') + '/order/success', cancel_url=request.host_url + stripe_prefix.replace('/', '') + '/order/cancel', metadata={'userId': current_user.get_id()}, ) return redirect(checkout_session.url) @stripe_bp.route('/order/success') @login_required def success(): return render_template('success.html') @stripe_bp.route('/order/cancel') @login_required def cancel(): return render_template('cancel.html') @stripe_bp.route('/webhook', methods=['POST']) def webhook(): event = None payload = request.data sig_header = request.headers['STRIPE_SIGNATURE'] try: event = stripe.Webhook.construct_event( payload, sig_header, os.environ['STRIPE_WEBHOOK_SECRET'] ) except ValueError as e: # Invalid payload raise e except stripe.error.SignatureVerificationError as e: # Invalid signature raise e # Handle the event if event['type'] == 'checkout.session.async_payment_failed': session = event['data']['object'] elif event['type'] == 'checkout.session.async_payment_succeeded': session = event['data']['object'] elif event['type'] == 'checkout.session.completed': session = event['data']['object'] print('🔔 Payment succeeded!') user_id = session['metadata']['userId'] user = load_user(user_id) user.inc_models_allowed() db.session.commit() # session = stripe.checkout.Session.retrieve( # event['data']['object'].id, expand=['line_items']) # print(f'Sale to {session.customer_details.email}:') # for item in session.line_items.data: # print(f' - {item.quantity} {item.description} ' # f'${item.amount_total/100:.02f} {item.currency.upper()}') # ... handle other event types else: print('Unhandled event type {}'.format(event['type'])) return jsonify(success=True)
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import get_object_or_404 from django.db import models, migrations def encrypt_secrets(apps, schema_editor): Secret = apps.get_model("server", "Secret") for secret in Secret.objects.all(): secret.save() class Migration(migrations.Migration): dependencies = [ ('server', '0006_auto_20150714_0821'), ] operations = [ migrations.RunPython(encrypt_secrets), ]
python
import pytest from tartiflette_middleware.examples.standalone import\ StandaloneMiddleware from tartiflette_middleware.exceptions import\ RequestDataNotStoredException class TestStandaloneMiddleware: def test_standalone_example_init(self): service = StandaloneMiddleware() @pytest.mark.asyncio async def test_standalone_example_call_data_not_set(self): service = StandaloneMiddleware() service.request = {'fake': 'data'} with pytest.raises(RequestDataNotStoredException): await service() @pytest.mark.asyncio async def test_standalone_example_call_data_set(self): service = StandaloneMiddleware() service.request = {'fake': 'data'} async with service: pass assert await service() == 'foo'
python
import pyrebase config={ "apiKey": "AIzaSyDYt-fmafI1kkMZSIphL829C6QgdlE1Tro", "authDomain": "cp19-12.firebaseapp.com", "databaseURL": "https://cp19-12.firebaseio.com", " projectId": "cp19-12", "storageBucket": "cp19-12.appspot.com", "messagingSenderId": "681358965828", "appId": "1:681358965828:web:3e31fb7429aed930" } firebase = pyrebase.initialize_app(config) db = firebase.database() storage=firebase.storage() import flask from flask import Flask , render_template app = Flask(__name__) @app.route("/") def hello(): new_post=db.child("names").get() user=new_post.val() l=user.key() return l @app.route("/Taha") def Taha(): return "Hello taha!" @app.route("/Daniyal") def Daniyal(): return "Hello Daniyal" @app.route("/fahad") def fahad(): return "Hello fahad" app.run(debug=True)
python