content
stringlengths
0
894k
type
stringclasses
2 values
import re import json VIEW_KEY_RE = r"a.+?href=\".+?viewkey=(.+?)\"" INFO_RE = r"var flashvars_.+? = ({.+})" class Extractor(object): def __init__(self): self._viewkey_re = re.compile(VIEW_KEY_RE, re.MULTILINE) self._videoinfo_re = re.compile(INFO_RE, re.MULTILINE) def get_viewkeys(self, data): matches = re.findall(self._viewkey_re, data) # convert to a set to eliminate redundant viewkeys return set(matches) def get_video_info(self, data): info_json = re.search(self._videoinfo_re, data) if info_json is None: return None return json.loads(info_json.group(1))
python
import logging import random import re from datetime import datetime from plugins import Processor, handler, match logging.basicConfig(level=logging.INFO) logger = logging.getLogger("neikea.plugins") class Strip(Processor): """ Turn the 'message' string into a dict that will contain different versions of the message, including (after this module): 'raw': the message as received 'stripped': the message without leading/trailing whitespace and punctuation 'clean': the same as 'stripped' at first, but will be replaced in the Addressed Processor if the bot has been addressed """ priority = -1600 addressed = False pattern = re.compile(r"^\s*(.*?)\s*[?!.]*\s*$", re.DOTALL) @handler async def handle_strip(self, event): event.message = { "raw": event.message, } m = self.pattern.search(event.message["raw"]) assert m is not None event.message["clean"] = event.message["stripped"] = m.group(1) class Addressed(Processor): """ Check to see if this event was addressed to the bot. It looks for messages of the forms: @botname: foo foo, @botname while still being lenient with whitespace and punctuation. It avoids responding to messages like "@botname is here". After this processor, the event has a truthy "addressed" property, and the message has two new versions: 'clean': the message stripped of the address and of punctuation (should be ready to be processed by most other processors) 'deaddressed': the 'raw' message (with whitespace and punctuation) but without the address part of the message """ priority = -1500 addressed = False verbs = [ "is", "has", "was", "might", "may", "would", "will", "isn't", "hasn't", "wasn't", "wouldn't", "won't", "can", "can't", "did", "didn't", "said", "says", "should", "shouldn't", "does", "doesn't", ] async def setup(self, client): self.mention = f"<@!{client.user.id}>" self.patterns = [ re.compile( r"^\s*(?P<username>%s)" % self.mention + r"(?:\s*[:;.?>!,-]+\s+|\s+|\s*[,:]\s*)(?P<body>.*)", re.I | re.DOTALL, ), # "hello there, bot"-style addressing. But we want to be sure that # there wasn't normal addressing too. # (e.g. "@otheruser: we already have a bot, @botname") re.compile( r"^(?:\S+:.*|(?P<body>.*),\s*(?P<username>%s))[\s?!.]*$" % self.mention, re.I | re.DOTALL, ), ] # Avoid responding to things like "@botname is our bot" verbs = r"|".join(re.escape(x) for x in self.verbs) self.verb_pattern = re.compile( r"^(?:%s)\s+(?:%s)\s+" % (self.mention, verbs), re.I | re.DOTALL ) @handler async def handle_addressed(self, event): if "addressed" not in event: event.addressed = False if self.verb_pattern.match(event.message["stripped"]): return # Private messages are always addressing the bot, although we will # still create the 'clean' version of the message below. if event.private: event.addressed = True for pattern in self.patterns: matches = pattern.search(event.message["stripped"]) if matches and matches.group("username"): new_message = matches.group("body") event.addressed = True event.message["clean"] = new_message m = pattern.search(event.message["raw"]) assert m is not None event.message["deaddressed"] = m.group("body") class Ignore(Processor): priority = -1500 addressed = False event_types = () ignore_users = [] @handler async def handle_ignore(self, event): if event.discord_message.author.id in self.ignore_users: logger.info("Ignoring %s", event.discord_message.author) event.processed = True class Complain(Processor): priority = 950 processed = True event_types = () complaints = { "nonsense": ( "Huh?", "Sorry...", "Excuse me?", "*blink*", "What?", ), "exception": ( "I'm not feeling too well", "That didn't go down very well. Burp.", "That didn't seem to agree with me", ), "network": ( "The tubes are clogged!", "I can't reach that site", "That site seems to be down", ), } @handler async def complain(self, event): if "complain" in event: await event.addresponse(random.choice(self.complaints[event.complain])) elif event.processed: return else: await event.addresponse(random.choice(self.complaints["nonsense"])) time_replies = ["It's %H:%M!", "It's %-I:%M %p!"] date_replies = [ "It's %A, %B %-d, %Y!", "According to my Gary Larson's Far Side desk calendar, it's %A, %B %-d, %Y!", ] class Time(Processor): @match("time") async def time(self, event): t = datetime.now() await event.addresponse(t.strftime(random.choice(time_replies))) @match("date") async def date(self, event): t = datetime.now() await event.addresponse(t.strftime(random.choice(date_replies))) greetings = ( "afternoon", "bonjour", "buon giorno", "ello", "evening", "good day", "good morning", "hello", "hey", "heya", "hi there", "hi", "hiya", "hoe gaan dit", "hoe lyk it", "hoezit", "hola", "howdy", "howsit", "howzit", "lo", "llo", "morning", "salut", "sup", "wassup", "wasup", "what's up", "word", "wotcha", "wotcher", "wussup", "yo", ) banter_replies = { "greet": { "matches": [ r"\b(" + "|".join( list(greetings) + [g.replace(" ", "") for g in greetings if " " in g] ) + r")\b" ], "responses": greetings, }, "reward": { "matches": [r"\bbot(\s+|\-)?snack\b"], "responses": ["thanks, $who", "$who thankyou!", ":)"], "address": False, }, "praise": { "matches": [ r"\bgood(\s+fuckin[\'g]?)?\s+(lad|bo(t|y)|g([ui]|r+)rl)\b", r"\byou\s+(rock|rocks|rewl|rule|are\s+so+\s+co+l)\b", ], "responses": ["thanks, $who", "$who thankyou!", ":)"], "address": False, }, "thanks": { "matches": [r"\bthank(s|\s*you)\b", r"^\s*ta\s*$", r"^\s*shot\s*$"], "responses": [ "no problem, $who", "$who my pleasure", "sure thing, $who", "no worries, $who", "$who np", "no probs, $who", "$who no problemo", "$who not at all", ], "address": False, }, "criticism": { "matches": [ r"\b((kak|bad|st(u|oo)pid|dumb)(\s+fuckin[\'g]?)?\s+(bo(t|y)|g([ui]|r+)rl))|(bot(\s|\-)?s(mack|lap))\b", ], "responses": ["*whimper*", "sorry, $who :(", ":(", "*cringe*"], "address": False, }, "testdates": { "matches": [ r"\binterpolate dates\b", ], "responses": [ "year $year month2 $month2 month $month mon $mon day2 $day2 day $day date $date dow $dow weekday $weekday", ], }, "testtimes": { "matches": [ r"\binterpolate times\b", ], "responses": [ "hour $hour minute $minute second $second time $time unixtime $unixtime", ], }, "testdiscord": { "matches": [ r"\binterpolate discord\b", ], "responses": ["who $who channel $channel server $server"], }, "testexception": { "matches": [r"\bthrow exception\b"], "responses": None, }, } def _interpolate(message, event): "Expand factoid variables" utcnow = datetime.utcnow() now = datetime.now() substitutions = [ ("who", f"<@!{event.discord_message.author.id}>"), ("channel", f"<#{event.discord_message.channel.id}>"), ("server", event.discord_message.guild.name), ("year", str(now.year)), ("month2", "%02i" % now.month), ("month1", str(now.month)), ("month", now.strftime("%B")), ("mon", now.strftime("%b")), ("day2", "%02i" % now.day), ("day", str(now.day)), ("hour", now.strftime("%-I")), ("hour24", str(now.hour)), ("minute", str(now.minute)), ("second", str(now.second)), ("date", now.strftime("%Y-%m-%d")), ("time", now.strftime("%-I:%M %p")), ("dow", now.strftime("%A")), ("weekday", now.strftime("%A")), ("unixtime", utcnow.strftime("%s")), ] for var, expansion in substitutions: message = message.replace("$" + var, expansion) return message class Banter(Processor): @handler async def static(self, event): for banter in banter_replies.values(): for match in banter["matches"]: if re.fullmatch(match, event.message["clean"], re.I): await event.addresponse( _interpolate(random.choice(banter["responses"]), event), address=banter.get("address", True), ) return
python
import os import numpy as np import sys import json def read_text_lines(filepath): with open(filepath, 'r') as f: lines = f.readlines() lines = [l.rstrip() for l in lines] return lines def check_path(path): if not os.path.exists(path): os.makedirs(path, exist_ok=True) # explicitly set exist_ok when multi-processing def save_command(save_path, filename='command_train.txt'): check_path(save_path) command = sys.argv save_file = os.path.join(save_path, filename) # Save all training commands when resuming training with open(save_file, 'a') as f: f.write(' '.join(command)) f.write('\n\n') def save_args(args, filename='args.json'): args_dict = vars(args) check_path(args.checkpoint_dir) save_path = os.path.join(args.checkpoint_dir, filename) # Save all training args when resuming training with open(save_path, 'a') as f: json.dump(args_dict, f, indent=4, sort_keys=False) f.write('\n\n') def int_list(s): """Convert string to int list""" return [int(x) for x in s.split(',')]
python
from twilio.rest import Client from twilio.twiml.voice_response import Gather, VoiceResponse import os class TwilioNotification: def __init__(self, sid, auth_token): self.client = Client(sid, auth_token) def send_call(self, action_url, contacts): response = VoiceResponse() gather = Gather(action = action_url, numDigits=6, timeout=10) gather.say("To book slot ASAP, enter the 6-digit COWIN OTP you just received") response.say("Book your vaccine slot. Check your messages for the vaccination slotsthat are open.") response.append(gather) for contact in contacts: call = self.client.calls.create( twiml=response, from_=os.environ['TWILIO_PHONE_NUMBER'], to=contact ) def send_message(self, slots, contacts): if(slots == []): return message = 'Book your vaccination slot at: \n' for i in range(len(slots)): message = message + '{number}. {vaccine} vaccine in {hospital} having {dose1_slots} slots for dose 1 and {dose2_slots} slots for dose 2 at {pincode} on {date} \n\n'.format(number = i+1, vaccine=slots[i]['vaccine'], hospital=slots[i]['name'], pincode=slots[i]['pincode'], dose1_slots=slots[i]['available_capacity_dose1'], dose2_slots=slots[i]['available_capacity_dose2'], date=slots[i]['date']) message = message + "Visit https://selfregistration.cowin.gov.in/ to book your slot ASAP \n" for contact in contacts: sms = self.client.messages.create( body=message, from_=os.environ['TWILIO_PHONE_NUMBER'] to=contact )
python
# -*- coding: utf-8 -*- # @Time : 2021/5/10 11:13 # @Author : Jiangzhesheng # @File : test0.py # @Software: PyCharm import sys import os from flye.repeat_graph.repeat_graph import RepeatGraph import flye.utils.fasta_parser as fp from my_change.ond_algo import * from bioclass import Sequence def get_edgeseq_info(repeat_graph:RepeatGraph): unique=[] repeat=[] for edge in repeat_graph.edges.values(): seq_num=len(edge.edge_sequences) try: cmp=edge.edge_sequences[0].edge_seq_name for seq in edge.edge_sequences: assert seq.edge_seq_name[0]==cmp[0],'+-error in %d'%edge.edge_id if edge.repetitive: if seq_num==1: repeat.append(edge.edge_id) raise AssertionError('repeat %d has %d seq'%(edge.edge_id,seq_num)) else: if seq_num>1: unique.append((edge.edge_id,seq_num)) raise AssertionError('unique %d has %d seq'%(edge.edge_id,seq_num)) except AssertionError as e: print(e) pass return repeat,unique def main(argv): workdir='/ldfssz1/ST_OCEAN/USER/jiangzhesheng/flye/step_by_step' edge_file= os.path.join(workdir,'20-repeat-keephaplotype/repeat_graph_edges.fasta') before_graph=os.path.join(workdir,'20-repeat-keephaplotype/repeat_graph_dump_before_rr') before_repeat_graph = RepeatGraph(fp.read_sequence_dict(edge_file)) before_repeat_graph.load_from_file(before_graph) repeat,unique=get_edgeseq_info(repeat_graph=before_repeat_graph) repeat,unique=len(repeat),len(unique) sum_repeat=len([i for i in before_repeat_graph.edges.values() if i.repetitive==True]) sum_unique = len([i for i in before_repeat_graph.edges.values() if i.repetitive == False]) print("before rr:") print("1 seq repeat:",repeat/sum_repeat) print(">2 seq unique:",unique/sum_unique) # seqs=repeat_graph.find_edgeid_string(id=326) # v=ond_algo(A=seqs[0],B=seqs[1]) # print(get_edit_distance(v)) # after_graph = os.path.join(workdir, '20-repeat-copy/repeat_graph_dump_after_rr') # after_repeat_graph = RepeatGraph(fp.read_sequence_dict(edge_file)) # after_repeat_graph.load_from_file(after_graph) # repeat,unique = get_edgeseq_info(repeat_graph=after_repeat_graph) # # repeat,unique=len(repeat),len(unique) # sum_repeat=len([i for i in after_repeat_graph.edges.values() if i.repetitive==True]) # sum_unique = len([i for i in after_repeat_graph.edges.values() if i.repetitive == False]) # # print("after rr:") # print("1 seq repeat:", repeat / sum_repeat) # print(">2 seq unique:", unique / sum_unique) # # print(len(before_repeat_id),len(after_repeat_id)) # # for i in before_repeat_id: # if i not in after_repeat_id: # print('error with id ',i) if __name__ == '__main__': main(sys.argv)
python
# @Author: Yang Li # @Date: 2020-05-20 21:17:13 # @Last Modified by: Yang Li # @Last Modified time: 2021-04-19 22:14:04 from __future__ import division from __future__ import print_function import argparse import time import numpy as np import scipy.sparse as sp import networkx as nx import torch from torch import optim import torch.nn.functional as F from model import GCNModelVAE, GCNModelAE from optimizer import loss_function from utils import load_data, mask_test_edges, preprocess_graph, get_roc_score from metrics import * from sklearn.cluster import KMeans parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default='gcn_ae', help="models used") parser.add_argument('--seed', type=int, default=42, help='Random seed.') parser.add_argument('--epochs', type=int, default=200, help='Number of epochs to train.') parser.add_argument('--hidden1', type=int, default=32, help='Number of units in hidden layer 1.') parser.add_argument('--hidden2', type=int, default=16, help='Number of units in hidden layer 2.') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.') parser.add_argument('--dropout', type=float, default=0., help='Dropout rate (1 - keep probability).') parser.add_argument('--dataset-str', type=str, default='cora', help='type of dataset.') args = parser.parse_args() def gae_for(args): print("Using {} dataset".format(args.dataset_str)) adj, features, g, labels = load_data(args.dataset_str) n_nodes, feat_dim = features.shape n_2 = n_nodes * n_nodes m2 = adj.sum() # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() # adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj) # adj = adj_train adj = adj_orig kk = np.array(adj.sum(axis=1), dtype=np.float32).reshape(-1, 1) adj_mod = np.array(adj - kk.dot(kk.T) / m2, dtype=np.float32) def get_modularity(pred_labels): def encode_onehot(labels): classes = set(labels) classes_dict = { c: np.identity(len(classes))[i, :] for i, c in enumerate(classes) } labels_onehot = np.array( list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot emb = encode_onehot(pred_labels).astype(np.float32) Q = np.trace(emb.T.dot(adj_mod).dot(emb)) / m2 return Q # def get_modularity(predict_label): # numclass = len(list(set(predict_label))) # partition = [set() for i in range(numclass)] # for i in range(len(predict_label)): # partition[predict_label[i]].add(i) # mod = nx.algorithms.community.modularity(g, partition) # return mod # Some preprocessing adj_norm = preprocess_graph(adj) adj_label = adj + sp.eye(adj.shape[0]) # adj_label = sparse_to_tuple(adj_label) adj_label = torch.FloatTensor(adj_label.toarray()) pos_weight = torch.Tensor([float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()]) norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) model = GCNModelAE(feat_dim, args.hidden1, args.hidden2, args.dropout) optimizer = optim.Adam(model.parameters(), lr=args.lr) kmeans = KMeans(n_clusters=7) hidden_emb = None for epoch in range(args.epochs): t = time.time() model.train() optimizer.zero_grad() recovered, mu, logvar = model(features, adj_norm) # loss = loss_function(preds=recovered, labels=adj_label, # mu=mu, logvar=logvar, n_nodes=n_nodes, # norm=norm, pos_weight=pos_weight) loss = norm * F.binary_cross_entropy_with_logits(recovered, adj_label, pos_weight=pos_weight) loss.backward() cur_loss = loss.item() optimizer.step() hidden_emb, _ = model.encode(features, adj_norm) pred_label = kmeans.fit_predict(hidden_emb.data.numpy()) mod = get_modularity(pred_label) # print("Epoch:", "%04d" % (epoch + 1), "train_loss=", "{:.5f}".format(mod)) cm = clustering_metrics(labels.tolist(), pred_label.tolist()) acc, nmi, ari = cm.Evaluation_Cluster_Model_From_Label() print( "loss={:.4f}".format(loss.data), "mod={:.4f}".format(mod), "nmi={:.4f}".format(nmi), "acc={:.4f}".format(acc), "ari={:.4f}".format(ari) ) # roc_curr, ap_curr = get_roc_score(hidden_emb.data.numpy(), adj_orig, val_edges, val_edges_false) # print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(cur_loss), # "val_ap=", "{:.5f}".format(ap_curr), # "time=", "{:.5f}".format(time.time() - t) # ) print("Optimization Finished!") # roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false) # print('Test ROC score: ' + str(roc_score)) # print('Test AP score: ' + str(ap_score)) if __name__ == '__main__': gae_for(args)
python
'''This is sandbox code '''
python
i=0 while False: i+=1 print("Hello:",i)
python
#! /usr/bin/python # -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMEText from email.header import Header from settings import EMAIL_SMTP_SETTINGS def send_mail(subject, message, message_type='html'): message = MIMEText(message, message_type, 'utf-8') message['From'] = Header(EMAIL_SMTP_SETTINGS.get("display_name"), 'utf-8') message['To'] = Header(",".join(EMAIL_SMTP_SETTINGS.get("to_addrs")), 'utf-8') message['Subject'] = Header(subject, 'utf-8') smtpObj = smtplib.SMTP() smtpObj.connect(EMAIL_SMTP_SETTINGS.get("host"), EMAIL_SMTP_SETTINGS.get("port")) smtpObj.login(EMAIL_SMTP_SETTINGS.get("username"), EMAIL_SMTP_SETTINGS.get("password")) smtpObj.sendmail(EMAIL_SMTP_SETTINGS.get("from_addr"), EMAIL_SMTP_SETTINGS.get("to_addrs"), message.as_string()) if __name__ == "__main__": send_mail("Test", "<table border='1'><tr><td>100</td></tr></table>")
python
from zeus import factories from zeus.constants import Result, Status from zeus.models import Job def test_new_job(client, default_source, default_repo, default_hook): build = factories.BuildFactory( source=default_source, provider=default_hook.provider, external_id="3" ) job_xid = "2" path = "/hooks/{}/{}/builds/{}/jobs/{}".format( default_hook.id, default_hook.get_signature(), build.external_id, job_xid ) payload = {"result": "passed", "status": "finished"} resp = client.post(path, json=payload) assert resp.status_code == 200, repr(resp.data) job = Job.query.unrestricted_unsafe().get(resp.json()["id"]) assert job assert job.build_id == build.id assert job.repository_id == build.repository_id assert job.provider == default_hook.provider assert job.external_id == job_xid assert job.result == Result.passed assert job.status == Status.finished def test_existing_job(client, default_source, default_repo, default_hook): build = factories.BuildFactory( source=default_source, provider=default_hook.provider, external_id="3" ) job = factories.JobFactory( build=build, provider=default_hook.provider, external_id="2", in_progress=True ) path = "/hooks/{}/{}/builds/{}/jobs/{}".format( default_hook.id, default_hook.get_signature(), build.external_id, job.external_id, ) payload = {"result": "passed", "status": "finished"} resp = client.post(path, json=payload) assert resp.status_code == 200, repr(resp.data) data = resp.json() assert data["result"] == "passed" assert data["status"] == "finished" job = Job.query.unrestricted_unsafe().get(job.id) assert job.result == Result.passed assert job.status == Status.finished
python
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html """ from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='feeder-utilities', version='1.0.1', description='Module for feeder utilities, both client and server, handling health and integrity checking', long_description=long_description, url='https://github.com/LandRegistry', author='James Lademann', author_email='[email protected]', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4' ], keywords='development', packages=find_packages(exclude=['contrib', 'docs', 'tests']), install_requires=['kombu==3.0.35', ''], test_suite='nose.collector', tests_require=['nose', 'coverage'], entry_points={ 'console_scripts': ['feeder-rpc-client=feeder_utilities.feeder_rpc_client:main'] } )
python
from flask import Flask, make_response, render_template, request app = Flask(__name__, template_folder='template') @app.route('/') def index(): return render_template('index02.html') @app.route('/setcookie', methods = ['POST', 'GET']) def setcookie(): if request.method == 'POST': user = request.form['nm'] resp = make_response(render_template('readcookie.html')) resp.set_cookie('userID', user) return resp @app.route('/getcookie') def getcookie(): name = request.cookies.get('userID') return '<h1>welcome ' + name + '</h1>' app.run(host='0.0.0.0', port=81, debug=True)
python
'''unit test class for churn library''' import time import logging import unittest from pandas.api.types import is_string_dtype from functools import wraps from churn_library import ChurnLibrarySolution keep_cols = [ 'Customer_Age', 'Dependent_count', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio', 'Gender_Churn', 'Education_Level_Churn', 'Marital_Status_Churn', 'Income_Category_Churn', 'Card_Category_Churn'] logging.basicConfig( filename='./logs/churn_library.log', level=logging.INFO, # filemode='w', format='%(name)s - %(levelname)s - %(message)s') def get_time(function): ''' wrapper to return execution time of a function ''' @wraps(function) def wrapper(*args, **kwargs): t_start = time.time() run_fun = function(*args, **kwargs) t_end = time.time() - t_start logging.info('%s ran in %0.3f sec ', function.__name__, t_end) logging.info('---------------------------------------------------') # logging.info(f'{"-"*60}') #does not use lazy formatting return run_fun return wrapper class TestingAndLogging(unittest.TestCase): '''perform unit tests for all functions in churn library''' def setUp(self): '''prepare parameters to be used in the test''' self.churn_obj = ChurnLibrarySolution() # needs refactoring so that churn class asserts read file correctness self.df = self.churn_obj.import_data("./data/bank_data.csv") self.category_lst = [ col for col in self.df if is_string_dtype( self.df[col])] @get_time def test_import(self): ''' test data import''' try: df = self.churn_obj.import_data("./data/bank_data.csv") logging.info("Testing import_data: SUCCESS") except FileNotFoundError as err: logging.error("Testing import_data: file wasn't found") raise err try: assert df.shape[0] > 0 assert df.shape[1] > 0 logging.info( 'churn data has %d rows and %d columns', df.shape[0], df.shape[1]) except AssertionError as err: logging.error( "Testing import_data: The file doesn't appear to have rows and columns") raise err @get_time def test_eda(self): '''test perform eda function''' try: self.churn_obj.perform_eda(self.df) logging.info( "exploratory figures has been generated. check [./images/eda/]") except Exception as err: logging.error("someting is wrong with eda()") raise err @get_time def test_encoder_helper(self): '''test encoder helper''' try: df = self.churn_obj.encoder_helper(self.df, self.category_lst) logging.info("encoder helper ran successfully. ") except Exception as err: logging.error("someting is wrong with encoder_helper()") raise err @get_time def test_perform_feature_engineering(self): '''test perform_feature_engineering''' df = self.churn_obj.encoder_helper(self.df, self.category_lst) try: X_data, X_train, X_test, y_train, y_test = self.churn_obj.perform_feature_engineering( df, keep_cols) logging.info( "Train/Test and feature engineering ran successfully!") logging.info("X_train is of shape: %d ", X_train.shape) logging.info("Y_train is of shape: %d ", y_train.shape) logging.info("X_test is of shape: %d ", X_test.shape) logging.info("Y_test is of shape: %d ", y_test.shape) except Exception as err: logging.error( "someting is wrong with perform_feature_engineering()") raise err @get_time def test_train_models(self): '''test train_models''' df = self.churn_obj.encoder_helper(self.df, self.category_lst) X_data, X_train, X_test, y_train, y_test = self.churn_obj.perform_feature_engineering( df, keep_cols) try: self.churn_obj.train_models( X_data, X_train, X_test, y_train, y_test, trained=True) logging.info("train_models ran successfully!") except Exception as err: logging.error("someting is wrong with train_models()") raise err if __name__ == '__main__': unittest.main() #churn_obj = ChurnLibrarySolution() #df = churn_obj.import_data("./data/bank_data.csv") #category_lst = [col for col in df if is_string_dtype(df[col])] #df = churn_obj.encoder_helper(df, category_lst) #X_data, X_train, X_test, y_train, y_test = churn_obj.perform_feature_engineering(df,keep_cols) #churn_obj.train_models(X_data,X_train, X_test, y_train, y_test,trained=True)
python
from django.db import models from s3upload.fields import S3UploadField class Cat(models.Model): custom_filename = S3UploadField(dest="custom_filename", blank=True) class Kitten(models.Model): mother = models.ForeignKey("Cat", on_delete=models.CASCADE) video = S3UploadField(dest="vids", blank=True) image = S3UploadField(dest="imgs", blank=True) pdf = S3UploadField(dest="files", blank=True)
python
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import * from PyQt5.QtCore import * from .util import number_color from functools import partial import glob import math from ui.util import number_object from ui.mouse_event import ReferenceDialog, SnapshotDialog import copy Lb_width = 100 Lb_height = 40 Lb_row_shift = 25 Lb_col_shift = 5 Lb_x = 100 Lb_y = 690 Tb_width = 100 Tb_height = 40 Tb_row_shift = 50 Tb_col_shift = 5 Tb_x = 100 Tb_y = 60 _translate = QtCore.QCoreApplication.translate class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(1430, 750) # Form.resize(1980, 1100) self.graphicsView = QtWidgets.QGraphicsView(Form) self.graphicsView.setGeometry(QtCore.QRect(100, 140, 518, 518)) self.graphicsView.setObjectName("graphicsView") self.graphicsView_GT = QtWidgets.QGraphicsView(Form) self.graphicsView_GT.setGeometry(QtCore.QRect(800, 140, 570, 570)) self.graphicsView_GT.setObjectName("graphicsView_GT") # self.graphicsView_2 = QtWidgets.QGraphicsView(Form) # self.graphicsView_2.setGeometry(QtCore.QRect(652, 140, 518, 518)) # self.graphicsView_2.setObjectName("graphicsView_2") # Label Buttons to change the semantic meanings of the Brush # First Row self.add_brush_widgets(Form) self.add_top_buttons(Form) self.add_label_buttons_eg3d(Form) self.add_tool_buttons(Form) # self.add_checkbox_widgets(Form) self.add_update_img_button(Form) # self.referDialog = ReferenceDialog(self) # self.referDialog.setObjectName('Reference Dialog') # # self.referDialog.setWindowTitle('Reference Image:') # self.referDialog.setWindowTitle('Style Image') # self.referDialogImage = QtWidgets.QLabel(self.referDialog) # self.referDialogImage.setFixedSize(512, 512) # self.referDialog.show() # self.snapshotDialog = SnapshotDialog(self) # self.snapshotDialog.setObjectName('Snapshot Dialog') # self.snapshotDialog.setWindowTitle('Reference Image:') # self.snapshotDialogImage = QtWidgets.QLabel(self.snapshotDialog) # self.snapshotDialogImage.setFixedSize(512, 512) # self.add_intermediate_results_button(Form) self.add_alpha_bar(Form) self.add_yaw_bar(Form) self.add_pitch_bar(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): # Form.setWindowTitle(_translate("Form", "Let's Party Face Manipulation v0.2")) Form.setWindowTitle(_translate("Form", "Let's Party Face Manipulation")) self.pushButton.setText(_translate("Form", "Open Image")) self.pushButton_2.setText(_translate("Form", "StarScreening")) self.pushButton_3.setText(_translate("Form", "SaveScreening")) self.pushButton_4.setText(_translate("Form", "Color")) self.pushButton_5.setText(_translate("Form", "Open Random")) self.saveImg.setText(_translate("Form", "Save Img")) def add_alpha_bar(self, Form): self.alphaLabel = QtWidgets.QLabel(Form) self.alphaLabel.setObjectName("alphaLabel") self.alphaLabel.setGeometry(QtCore.QRect(500, 25, 150, 20)) self.alphaLabel.setText('Alpha: 0.5') font = self.brushsizeLabel.font() font.setPointSize(10) font.setBold(True) self.alphaLabel.setFont(font) self.alphaSlider = QtWidgets.QSlider(Form) self.alphaSlider.setOrientation(QtCore.Qt.Horizontal) self.alphaSlider.setGeometry(QtCore.QRect(500 + 150, 30, 150, 10)) self.alphaSlider.setObjectName("alphaSlider") self.alphaSlider.setMinimum(0) self.alphaSlider.setMaximum(20) self.alphaSlider.setValue(10) self.alphaSlider.valueChanged.connect(Form.change_alpha_value) def add_brush_widgets(self, Form): # self.add_style_imgs_buttons(Form) self.brushsizeLabel = QtWidgets.QLabel(Form) self.brushsizeLabel.setObjectName("brushsizeLabel") self.brushsizeLabel.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 60+10 , 25, 150, 20)) self.brushsizeLabel.setText('Brush size: 6') font = self.brushsizeLabel.font() font.setPointSize(10) font.setBold(True) self.brushsizeLabel.setFont(font) self.brushSlider = QtWidgets.QSlider(Form) self.brushSlider.setOrientation(QtCore.Qt.Horizontal) self.brushSlider.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 60 + 130+10, 30, 300, 10)) self.brushSlider.setObjectName("brushSlider") self.brushSlider.setMinimum(1) self.brushSlider.setMaximum(100) self.brushSlider.setValue(6) self.brushSlider.valueChanged.connect(Form.change_brush_size) def add_yaw_bar(self, Form): self.yawLabel = QtWidgets.QLabel(Form) self.yawLabel.setObjectName("yawLabel") self.yawLabel.setGeometry(QtCore.QRect(500 + 320, 25, 150, 20)) self.yawLabel.setText('Yaw: 0') font = self.brushsizeLabel.font() font.setPointSize(10) font.setBold(True) self.yawLabel.setFont(font) self.yawSlider = QtWidgets.QSlider(Form) self.yawSlider.setOrientation(QtCore.Qt.Horizontal) self.yawSlider.setGeometry(QtCore.QRect(500 + 470, 30, 150, 10)) self.yawSlider.setObjectName("yawSlider") self.yawSlider.setMinimum(-50) self.yawSlider.setMaximum(50) self.yawSlider.setValue(0) self.yawSlider.valueChanged.connect(Form.change_yaw_value) def add_pitch_bar(self, Form): self.pitchLabel = QtWidgets.QLabel(Form) self.pitchLabel.setObjectName("pitchLabel") self.pitchLabel.setGeometry(QtCore.QRect(500 + 630, 25, 150, 20)) self.pitchLabel.setText('Pitch: 0') font = self.brushsizeLabel.font() font.setPointSize(10) font.setBold(True) self.pitchLabel.setFont(font) self.pitchSlider = QtWidgets.QSlider(Form) self.pitchSlider.setOrientation(QtCore.Qt.Horizontal) self.pitchSlider.setGeometry(QtCore.QRect(500 + 780, 30, 150, 10)) self.pitchSlider.setObjectName("pitchSlider") self.pitchSlider.setMinimum(-50) self.pitchSlider.setMaximum(50) self.pitchSlider.setValue(0) self.pitchSlider.valueChanged.connect(Form.change_pitch_value) def add_intermediate_results_button(self, Form): self.snap_scrollArea = QtWidgets.QScrollArea(Form) self.snap_scrollArea.setGeometry(QtCore.QRect(100, Lb_y + Lb_height + Lb_col_shift + Lb_height + 30, 1622, 250)) self.snap_scrollArea.setWidgetResizable(True) self.snap_scrollArea.setObjectName("snap_scrollArea") self.snap_scrollArea.setAlignment(Qt.AlignCenter) #self.snap_scrollArea.setStyleSheet("border-color: transparent") self.snap_scrollArea.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.snap_scrollAreaWidgetContents = QtWidgets.QWidget() self.snap_scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 1622, 250)) self.snap_scrollAreaWidgetContents.setObjectName("snap_scrollAreaWidgetContents") self.snap_gridlLayout = QtWidgets.QGridLayout(self.snap_scrollAreaWidgetContents) # # snap_horizontalLayout.setContentsMargins(11, 11, 11, 11) self.snap_gridlLayout.setSpacing(20) self.snap_gridlLayout.setAlignment(Qt.AlignLeft) self.snap_style_button_list = [] self.mask_snap_style_button_list = [] for i in range(15): snap_style_button = QtWidgets.QPushButton() snap_style_button.setFixedSize(100, 100) snap_style_button.setStyleSheet("background-color: transparent") snap_style_button.setIcon(QIcon()) snap_style_button.setIconSize(QSize(100, 100)) snap_style_button.clicked.connect(partial(self.open, i)) # snap_style_button.snap_shot_name = None self.snap_style_button_list.append(snap_style_button) # style_button.hide() self.snap_gridlLayout.addWidget(snap_style_button, 1, i) mask_snap_style_button = QtWidgets.QPushButton() mask_snap_style_button.setFixedSize(100, 100) mask_snap_style_button.setStyleSheet("background-color: transparent") mask_snap_style_button.setIcon(QIcon()) mask_snap_style_button.setIconSize(QSize(100, 100)) self.mask_snap_style_button_list.append(mask_snap_style_button) # mask_snap_style_button.hide() self.snap_gridlLayout.addWidget(mask_snap_style_button, 0, i) self.snap_scrollArea.setWidget(self.snap_scrollAreaWidgetContents) def add_update_img_button(self, Form): self.updateButton = QtWidgets.QPushButton(Form) self.updateButton.setGeometry(QtCore.QRect(900, 60, 60, 60)) self.updateButton.setText(_translate("Form", "Render")) self.updateButton.setStyleSheet("background-color: %s;" % number_color[18]+ " color: white") self.updateButton.setObjectName("updateImg") self.updateButton.clicked.connect(Form.run_deep_model) self.updateStyleButton = QtWidgets.QPushButton(Form) self.updateStyleButton.setGeometry(QtCore.QRect(980, 60, 90, 60)) self.updateStyleButton.setText(_translate("Form", "Change style")) self.updateStyleButton.setStyleSheet("background-color: %s;" % number_color[17]+ " color: white") self.updateStyleButton.setObjectName("change style") self.updateStyleButton.clicked.connect(Form.change_style) self.updateStyleButton = QtWidgets.QPushButton(Form) self.updateStyleButton.setGeometry(QtCore.QRect(1300, 60, 90, 60)) self.updateStyleButton.setText(_translate("Form", "Back style")) self.updateStyleButton.setStyleSheet("background-color: %s;" % number_color[17]+ " color: white") self.updateStyleButton.setObjectName("back style") self.updateStyleButton.clicked.connect(Form.back_style) self.updateStyleButton = QtWidgets.QPushButton(Form) self.updateStyleButton.setGeometry(QtCore.QRect(1100, 60, 90, 60)) self.updateStyleButton.setText(_translate("Form", "Free View")) self.updateStyleButton.setStyleSheet("background-color: %s;" % number_color[16]+ " color: white") self.updateStyleButton.setObjectName("free view") self.updateStyleButton.clicked.connect(Form.freeview_render) self.updateStyleButton = QtWidgets.QPushButton(Form) self.updateStyleButton.setGeometry(QtCore.QRect(1200, 60, 90, 60)) self.updateStyleButton.setText(_translate("Form", "Reset View")) self.updateStyleButton.setStyleSheet("background-color: %s;" % number_color[15]+ " color: white") self.updateStyleButton.setObjectName("reset view") self.updateStyleButton.clicked.connect(Form.reset_view) def add_checkbox_widgets(self, Form): self.checkBoxGroupBox = QtWidgets.QGroupBox("Replace Style of Components", Form) self.checkBoxGroupBox.setGeometry(QtCore.QRect(920, 10, 800, 100)) layout = QtWidgets.QGridLayout() self.checkBoxGroup = QtWidgets.QButtonGroup(Form) self.checkBoxGroup.setExclusive(False) for i, j in enumerate(number_object): cb = QtWidgets.QCheckBox(number_object[j]) self.checkBoxGroup.addButton(cb, i) layout.addWidget(cb, i//10, i%10) cb = QtWidgets.QCheckBox('ALL') self.checkBoxGroup.addButton(cb, ) layout.addWidget(cb, (i+1)//10, (i+1)%10) self.checkBoxGroupBox.setLayout(layout) for i in range(19): self.checkBoxGroup.button(i).setChecked(True) checkbox_status = [cb.isChecked() for cb in self.checkBoxGroup.buttons()] checkbox_status = checkbox_status[:19] self.checkbox_status = checkbox_status self.checkBoxGroup.buttonToggled.connect(self.cb_event) def add_top_buttons(self, Form): self.pushButton = QtWidgets.QPushButton(Form) self.pushButton.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 45, Tb_y, Tb_width, Tb_height)) self.pushButton.setObjectName("pushButton") self.pushButton.clicked.connect(Form.open) self.pushButton_2 = QtWidgets.QPushButton(Form) self.pushButton_2.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 45 + 1 * Tb_row_shift + 1 * Tb_width, Tb_y, Tb_width, Tb_height)) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_2.clicked.connect(Form.startScreening) self.pushButton_3 = QtWidgets.QPushButton(Form) self.pushButton_3.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 45+ 2 * Tb_row_shift + 2 * Tb_width, Tb_y, Tb_width, Tb_height)) self.pushButton_3.setObjectName("pushButton_3") self.pushButton_3.clicked.connect(Form.saveScreening) self.pushButton_4 = QtWidgets.QPushButton(Form) self.pushButton_4.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 45+ 3 * Tb_row_shift + 3 * Tb_width, Tb_y, Tb_width, Tb_height)) self.pushButton_4.setObjectName("pushButton_4") self.saveImg = QtWidgets.QPushButton(Form) self.saveImg.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 45+ 4 * Tb_row_shift + 4 * Tb_width, Tb_y, Tb_width, Tb_height)) self.saveImg.setObjectName("saveImg") self.saveImg.clicked.connect(Form.save_img) self.pushButton_5 = QtWidgets.QPushButton(Form) self.pushButton_5.setGeometry(QtCore.QRect(Tb_x - 1 * Lb_row_shift - 45 + 4 * Tb_row_shift + 5 * Tb_width, Tb_y, Tb_width, Tb_height)) self.pushButton_5.setObjectName("pushButton_5") self.pushButton_5.clicked.connect(Form.open_random) self.retranslateUi(Form) def add_tool_buttons(self, Form): self.newButton = QtWidgets.QPushButton(Form) self.newButton.setGeometry(QtCore.QRect(int(Lb_x - 1 * Lb_row_shift - 60), 140, 60, 60)) self.newButton.setObjectName("openButton") self.newButton.setIcon(QIcon('icons/add_new_document.png')) self.newButton.setIconSize(QSize(60, 60)) self.newButton.clicked.connect(Form.init_screen) self.openButton = QtWidgets.QPushButton(Form) self.openButton.setGeometry(QtCore.QRect(int(Lb_x - 1 * Lb_row_shift - 60), 140 + 60*1 + 10*1, 60, 60)) self.openButton.setObjectName("openButton") self.openButton.setIcon(QIcon('icons/open.png')) self.openButton.setIconSize(QSize(60, 60)) self.openButton.clicked.connect(Form.open_reference) self.fillButton = QtWidgets.QPushButton(Form) self.fillButton.setGeometry(QtCore.QRect(int(Lb_x - 1*Lb_row_shift - 60), 140 + 60*2 + 10*2, 60, 60)) self.fillButton.setObjectName("fillButton") self.fillButton.setIcon(QIcon('icons/paint_can.png')) self.fillButton.setIconSize(QSize(60, 60)) self.fillButton.clicked.connect(partial(Form.mode_select, 2)) self.brushButton = QtWidgets.QPushButton(Form) self.brushButton.setGeometry(QtCore.QRect(int(Lb_x - 1*Lb_row_shift - 60), 140 + 60*3 + 10*3, 60, 60)) self.brushButton.setObjectName("brushButton") self.brushButton.setIcon(QIcon('icons/paint_brush.png')) self.brushButton.setIconSize(QSize(60, 60)) self.brushButton.setStyleSheet("background-color: #85adad") #self.brushButton.setStyleSheet("background-color:") self.brushButton.clicked.connect(partial(Form.mode_select, 0)) self.recButton = QtWidgets.QPushButton(Form) self.recButton.setGeometry(QtCore.QRect(int(Lb_x - 1 * Lb_row_shift - 60), 140 + 60 * 4 + 10 * 4, 60, 60)) self.recButton.setObjectName("undolButton") self.recButton.setIcon(QIcon('icons/brush_square.png')) self.recButton.setIconSize(QSize(60, 60)) self.recButton.clicked.connect(partial(Form.mode_select, 1)) self.undoButton = QtWidgets.QPushButton(Form) self.undoButton.setGeometry(QtCore.QRect(int(Lb_x - 1*Lb_row_shift - 60), 140 + 60*5 + 10*5, 60, 60)) self.undoButton.setObjectName("undolButton") self.undoButton.setIcon(QIcon('icons/undo.png')) self.undoButton.setIconSize(QSize(60, 60)) self.undoButton.clicked.connect(Form.undo) self.saveButton = QtWidgets.QPushButton(Form) self.saveButton.setGeometry(QtCore.QRect(int(Lb_x - 1 * Lb_row_shift - 60), 140 + 60 * 6 + 10 * 6, 60, 60)) self.saveButton.setObjectName("clean forground") self.saveButton.setIcon(QIcon('icons/add_new_document.png')) self.saveButton.setIconSize(QSize(60, 60)) self.saveButton.clicked.connect(Form.cleanForground) def add_style_imgs_buttons(self, Form): self.scrollArea = QtWidgets.QScrollArea(Form) self.scrollArea.setGeometry(QtCore.QRect(1756, 140, 140, 512)) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollArea.setAlignment(Qt.AlignCenter) # self.scrollArea.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scrollArea.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 140, 512)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") verticalLayout = QtWidgets.QVBoxLayout(self.scrollAreaWidgetContents) verticalLayout.setContentsMargins(11, 11, 11, 11) verticalLayout.setSpacing(6) img_path_list = glob.glob('imgs/style_imgs_test/*.jpg') img_path_list.sort() style_button = QtWidgets.QPushButton(self.scrollAreaWidgetContents) style_button.setFixedSize(100, 100) style_button.setIcon(QIcon('icons/random.png')) style_button.setIconSize(QSize(100, 100)) style_button.clicked.connect(Form.open) verticalLayout.addWidget(style_button) for img_path in img_path_list: style_button = QtWidgets.QPushButton(self.scrollAreaWidgetContents) style_button.setFixedSize(100, 100) style_button.setIcon(QIcon(img_path)) style_button.setIconSize(QSize(100, 100)) style_button.clicked.connect(partial(Form.open, img_path)) verticalLayout.addWidget(style_button) verticalLayout.addWidget(style_button) self.scrollArea.setWidget(self.scrollAreaWidgetContents) def add_label_buttons(self, Form): top_x, top_y = 642, 140 row_shift = 10 self.color_Button = QtWidgets.QPushButton(Form) self.color_Button.setGeometry(QtCore.QRect(int(Lb_x - 1*Lb_row_shift - 60), Lb_y-50, 60, 60)) self.color_Button.setObjectName("labelButton_0") self.color_Button.setText(_translate("Form", "%s" % number_object[1])) self.color_Button.setStyleSheet("background-color: %s;" % number_color[1] + " color: black") self.labelButton_0 = QtWidgets.QPushButton(Form) self.labelButton_0.setGeometry(QtCore.QRect(top_x, top_y, Lb_width, Lb_height)) self.labelButton_0.setObjectName("labelButton_0") self.labelButton_0.setText(_translate("Form", "background")) self.labelButton_0.setStyleSheet("background-color: %s;" % number_color[0]+ " color: white") self.labelButton_0.clicked.connect(partial(Form.switch_labels, 0)) self.labelButton_1 = QtWidgets.QPushButton(Form) self.labelButton_1.setGeometry(QtCore.QRect(top_x, top_y + 1*Lb_height + 1*row_shift, Lb_width, Lb_height)) self.labelButton_1.setObjectName("labelButton_1") self.labelButton_1.setText(_translate("Form", "%s"%number_object[1])) self.labelButton_1.setStyleSheet("background-color: %s;" % number_color[1] + " color: black") self.labelButton_1.clicked.connect(partial(Form.switch_labels, 1)) # eye self.labelButton_3 = QtWidgets.QPushButton(Form) self.labelButton_3.setGeometry(QtCore.QRect(top_x, top_y + 2*Lb_height + 2*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_3.setObjectName("labelButton_3") self.labelButton_3.setText(_translate("Form", "%s"%number_object[4])) self.labelButton_3.setStyleSheet("background-color: %s;" % number_color[4] + " color: black") self.labelButton_3.clicked.connect(partial(Form.switch_labels, 4)) self.labelButton_17 = QtWidgets.QPushButton(Form) self.labelButton_17.setGeometry(QtCore.QRect(top_x + int(0.54*Lb_width), top_y + 2*Lb_height + 2*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_17.setObjectName("labelButton_17") self.labelButton_17.setText(_translate("Form", "%s"%number_object[5])) self.labelButton_17.setStyleSheet("background-color: %s;" % number_color[5] + " color: black") self.labelButton_17.clicked.connect(partial(Form.switch_labels, 5)) # eyebrow self.labelButton_2 = QtWidgets.QPushButton(Form) self.labelButton_2.setGeometry(QtCore.QRect(top_x, top_y + 3*Lb_height + 3*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_2.setObjectName("labelButton_2") self.labelButton_2.setText(_translate("Form", "%s"%number_object[2])) self.labelButton_2.setStyleSheet("background-color: %s;" % number_color[2] + " color: black") self.labelButton_2.clicked.connect(partial(Form.switch_labels, 2)) self.labelButton_18 = QtWidgets.QPushButton(Form) self.labelButton_18.setGeometry(QtCore.QRect(top_x + int(0.54*Lb_width), top_y + 3*Lb_height + 3*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_18.setObjectName("labelButton_18") self.labelButton_18.setText(_translate("Form", "%s"%number_object[3])) self.labelButton_18.setStyleSheet("background-color: %s;" % number_color[3] + " color: black") self.labelButton_18.clicked.connect(partial(Form.switch_labels, 3)) # nose self.labelButton_4 = QtWidgets.QPushButton(Form) self.labelButton_4.setGeometry(QtCore.QRect(top_x, top_y + 4*Lb_height + 4*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_4.setObjectName("labelButton_4") self.labelButton_4.setText(_translate("Form", "%s"%number_object[7])) self.labelButton_4.setStyleSheet("background-color: %s;" % number_color[7] + " color: black") self.labelButton_4.clicked.connect(partial(Form.switch_labels, 7)) self.labelButton_5 = QtWidgets.QPushButton(Form) self.labelButton_5.setGeometry(QtCore.QRect(top_x+ int(0.54*Lb_width), top_y + 4*Lb_height + 4*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_5.setObjectName("labelButton_5") self.labelButton_5.setText(_translate("Form", "%s"%number_object[6])) self.labelButton_5.setStyleSheet("background-color: %s;" % number_color[6] + " color: black") self.labelButton_5.clicked.connect(partial(Form.switch_labels, 6)) # mouse self.labelButton_7 = QtWidgets.QPushButton(Form) self.labelButton_7.setGeometry(QtCore.QRect(top_x, top_y + 5.5*Lb_height + 5.5*row_shift, Lb_width, int(Lb_height*0.5))) self.labelButton_7.setObjectName("labelButton_7") self.labelButton_7.setText(_translate("Form", "%s"%number_object[9])) self.labelButton_7.setStyleSheet("background-color: %s;" % number_color[9] + " color: black") self.labelButton_7.clicked.connect(partial(Form.switch_labels, 9)) self.labelButton_6 = QtWidgets.QPushButton(Form) self.labelButton_6.setGeometry(QtCore.QRect(top_x, int(top_y + 6.0*Lb_height + 6.0*row_shift), Lb_width, int(Lb_height*0.8))) self.labelButton_6.setObjectName("labelButton_6") self.labelButton_6.setText(_translate("Form", "%s"%number_object[8])) self.labelButton_6.setStyleSheet("background-color: %s;" % number_color[8] + " color: black") self.labelButton_6.clicked.connect(partial(Form.switch_labels, 8)) self.labelButton_8 = QtWidgets.QPushButton(Form) self.labelButton_8.setGeometry(QtCore.QRect(top_x, int(top_y + 6.8*Lb_height + 6.5*row_shift), Lb_width, int(Lb_height*0.5))) self.labelButton_8.setObjectName("labelButton_8") self.labelButton_8.setText(_translate("Form", "%s"%number_object[10])) self.labelButton_8.setStyleSheet("background-color: %s;" % number_color[10] + " color: black") self.labelButton_8.clicked.connect(partial(Form.switch_labels, 10)) # ear self.labelButton_9 = QtWidgets.QPushButton(Form) self.labelButton_9.setGeometry(QtCore.QRect(top_x, top_y + 8*Lb_height + 8*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_9.setObjectName("labelButton_9") self.labelButton_9.setText(_translate("Form", "%s"%number_object[11])) self.labelButton_9.setStyleSheet("background-color: %s;" % number_color[11] + " color: black") self.labelButton_9.clicked.connect(partial(Form.switch_labels, 11)) self.labelButton_19 = QtWidgets.QPushButton(Form) self.labelButton_19.setGeometry(QtCore.QRect(top_x+int(0.54*Lb_width), top_y + 8*Lb_height + 8*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_19.setObjectName("labelButton_19") self.labelButton_19.setText(_translate("Form", "%s"%number_object[12])) self.labelButton_19.setStyleSheet("background-color: %s;" % number_color[12] + " color: black") self.labelButton_19.clicked.connect(partial(Form.switch_labels, 12)) self.labelButton_10 = QtWidgets.QPushButton(Form) self.labelButton_10.setGeometry(QtCore.QRect(top_x, top_y + 9*Lb_height + 9*row_shift, Lb_width, Lb_height)) self.labelButton_10.setObjectName("labelButton_10") self.labelButton_10.setText(_translate("Form", "%s"%number_object[13])) self.labelButton_10.setStyleSheet("background-color: %s;" % number_color[13] + " color: black") self.labelButton_10.clicked.connect(partial(Form.switch_labels, 13)) ######################################## row_shift, col_shift = 20, 8.1 self.labelButton_11 = QtWidgets.QPushButton(Form) self.labelButton_11.setGeometry(QtCore.QRect(top_x, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_11.setObjectName("labelButton_11") self.labelButton_11.setText(_translate("Form", "%s"%number_object[14])) self.labelButton_11.setStyleSheet("background-color: %s;" % number_color[14] + " color: black") self.labelButton_11.clicked.connect(partial(Form.switch_labels, 14)) self.labelButton_12 = QtWidgets.QPushButton(Form) self.labelButton_12.setGeometry(QtCore.QRect(Lb_x,Lb_y - row_shift , Lb_width, Lb_height)) self.labelButton_12.setObjectName("labelButton_12") self.labelButton_12.setText(_translate("Form", "%s"%number_object[15])) self.labelButton_12.setStyleSheet("background-color: %s;" % number_color[15] + " color: black") self.labelButton_12.clicked.connect(partial(Form.switch_labels, 15)) self.labelButton_13 = QtWidgets.QPushButton(Form) self.labelButton_13.setGeometry(QtCore.QRect(Lb_x + 1*col_shift + 1*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_13.setObjectName("labelButton_13") self.labelButton_13.setText(_translate("Form", "%s"%number_object[16])) self.labelButton_13.setStyleSheet("background-color: %s;" % number_color[16] + " color: black") self.labelButton_13.clicked.connect(partial(Form.switch_labels, 16)) self.labelButton_14 = QtWidgets.QPushButton(Form) self.labelButton_14.setGeometry(QtCore.QRect(Lb_x + 2*col_shift + 2*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_14.setObjectName("labelButton_14") self.labelButton_14.setText(_translate("Form", "%s"%number_object[17])) self.labelButton_14.setStyleSheet("background-color: %s;" % number_color[17] + " color: black") self.labelButton_14.clicked.connect(partial(Form.switch_labels, 17)) self.labelButton_15 = QtWidgets.QPushButton(Form) self.labelButton_15.setGeometry(QtCore.QRect(Lb_x + 3*col_shift + 3*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_15.setObjectName("labelButton_15") self.labelButton_15.setText(_translate("Form", "%s"%number_object[18])) self.labelButton_15.setStyleSheet("background-color: %s;" % number_color[18] + " color: black") self.labelButton_15.clicked.connect(partial(Form.switch_labels, 18)) self.labelButton_16 = QtWidgets.QPushButton(Form) self.labelButton_16.setGeometry(QtCore.QRect(Lb_x + 4*col_shift + 4*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_16.setObjectName("labelButton_16") self.labelButton_16.setText(_translate("Form", "%s"%number_object[19])) self.labelButton_16.setStyleSheet("background-color: %s;" % number_color[19] + " color: black") self.labelButton_16.clicked.connect(partial(Form.switch_labels, 19)) def add_label_buttons_old(self, Form): self.color_Button = QtWidgets.QPushButton(Form) self.color_Button.setGeometry(QtCore.QRect(int(Lb_x - 1*Lb_row_shift - 60), Lb_y, 60, 60)) self.color_Button.setObjectName("labelButton_0") self.color_Button.setStyleSheet("background-color: %s;" % number_color[1]) self.labelButton_0 = QtWidgets.QPushButton(Form) self.labelButton_0.setGeometry(QtCore.QRect(Lb_x, Lb_y, Lb_width, Lb_height)) self.labelButton_0.setObjectName("labelButton_0") self.labelButton_0.setText(_translate("Form", "background")) self.labelButton_0.setStyleSheet("background-color: %s;" % number_color[0]+ " color: black") self.labelButton_0.clicked.connect(partial(Form.switch_labels, 0)) self.labelButton_1 = QtWidgets.QPushButton(Form) self.labelButton_1.setGeometry(QtCore.QRect(Lb_x + 1*Lb_row_shift + 1*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_1.setObjectName("labelButton_1") self.labelButton_1.setText(_translate("Form", "skin")) self.labelButton_1.setStyleSheet("background-color: %s;" % number_color[1] + " color: black") self.labelButton_1.clicked.connect(partial(Form.switch_labels, 1)) self.labelButton_2 = QtWidgets.QPushButton(Form) self.labelButton_2.setGeometry(QtCore.QRect(Lb_x + 2*Lb_row_shift + 2*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_2.setObjectName("labelButton_2") self.labelButton_2.setText(_translate("Form", "nose")) self.labelButton_2.setStyleSheet("background-color: %s;" % number_color[2] + " color: black") self.labelButton_2.clicked.connect(partial(Form.switch_labels, 2)) self.labelButton_3 = QtWidgets.QPushButton(Form) self.labelButton_3.setGeometry(QtCore.QRect(Lb_x + 3*Lb_row_shift + 3*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_3.setObjectName("labelButton_3") self.labelButton_3.setText(_translate("Form", "eye_g")) self.labelButton_3.setStyleSheet("background-color: %s;" % number_color[3] + " color: black") self.labelButton_3.clicked.connect(partial(Form.switch_labels, 3)) self.labelButton_4 = QtWidgets.QPushButton(Form) self.labelButton_4.setGeometry(QtCore.QRect(Lb_x + 4*Lb_row_shift + 4*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_4.setObjectName("labelButton_4") self.labelButton_4.setText(_translate("Form", "l_eye")) self.labelButton_4.setStyleSheet("background-color: %s;" % number_color[4] + " color: black") self.labelButton_4.clicked.connect(partial(Form.switch_labels, 4)) self.labelButton_5 = QtWidgets.QPushButton(Form) self.labelButton_5.setGeometry(QtCore.QRect(Lb_x + 5*Lb_row_shift + 5*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_5.setObjectName("labelButton_5") self.labelButton_5.setText(_translate("Form", "r_eye")) self.labelButton_5.setStyleSheet("background-color: %s;" % number_color[5] + " color: black") self.labelButton_5.clicked.connect(partial(Form.switch_labels, 5)) self.labelButton_6 = QtWidgets.QPushButton(Form) self.labelButton_6.setGeometry(QtCore.QRect(Lb_x + 6*Lb_row_shift + 6*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_6.setObjectName("labelButton_6") self.labelButton_6.setText(_translate("Form", "l_brow")) self.labelButton_6.setStyleSheet("background-color: %s;" % number_color[6] + " color: black") self.labelButton_6.clicked.connect(partial(Form.switch_labels, 6)) self.labelButton_7 = QtWidgets.QPushButton(Form) self.labelButton_7.setGeometry(QtCore.QRect(Lb_x + 7*Lb_row_shift + 7*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_7.setObjectName("labelButton_7") self.labelButton_7.setText(_translate("Form", "r_brow")) self.labelButton_7.setStyleSheet("background-color: %s;" % number_color[7] + " color: black") self.labelButton_7.clicked.connect(partial(Form.switch_labels, 7)) self.labelButton_8 = QtWidgets.QPushButton(Form) self.labelButton_8.setGeometry(QtCore.QRect(Lb_x + 8*Lb_row_shift + 8*Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_8.setObjectName("labelButton_8") self.labelButton_8.setText(_translate("Form", "l_ear")) self.labelButton_8.setStyleSheet("background-color: %s;" % number_color[8] + " color: black") self.labelButton_8.clicked.connect(partial(Form.switch_labels, 8)) self.labelButton_9 = QtWidgets.QPushButton(Form) self.labelButton_9.setGeometry(QtCore.QRect(Lb_x + 9 * Lb_row_shift + 9 * Lb_width, Lb_y, Lb_width, Lb_height)) self.labelButton_9.setObjectName("labelButton_9") self.labelButton_9.setText(_translate("Form", "r_ear")) self.labelButton_9.setStyleSheet("background-color: %s;" % number_color[9] + " color: black") self.labelButton_9.clicked.connect(partial(Form.switch_labels, 9)) # Second Row self.labelButton_10 = QtWidgets.QPushButton(Form) self.labelButton_10.setGeometry(QtCore.QRect(Lb_x, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_10.setObjectName("labelButton_10") self.labelButton_10.setText(_translate("Form", "mouth")) self.labelButton_10.setStyleSheet("background-color: %s;" % number_color[10] + " color: black") self.labelButton_10.clicked.connect(partial(Form.switch_labels, 10)) self.labelButton_11 = QtWidgets.QPushButton(Form) self.labelButton_11.setGeometry(QtCore.QRect(Lb_x + 1*Lb_row_shift + 1*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_11.setObjectName("labelButton_11") self.labelButton_11.setText(_translate("Form", "u_lip")) self.labelButton_11.setStyleSheet("background-color: %s;" % number_color[11] + " color: black") self.labelButton_11.clicked.connect(partial(Form.switch_labels, 11)) self.labelButton_12 = QtWidgets.QPushButton(Form) self.labelButton_12.setGeometry(QtCore.QRect(Lb_x + 2*Lb_row_shift + 2*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_12.setObjectName("labelButton_12") self.labelButton_12.setText(_translate("Form", "l_lip")) self.labelButton_12.setStyleSheet("background-color: %s;" % number_color[12] + " color: black") self.labelButton_12.clicked.connect(partial(Form.switch_labels, 12)) self.labelButton_13 = QtWidgets.QPushButton(Form) self.labelButton_13.setGeometry(QtCore.QRect(Lb_x + 3*Lb_row_shift + 3*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_13.setObjectName("labelButton_13") self.labelButton_13.setText(_translate("Form", "hair")) self.labelButton_13.setStyleSheet("background-color: %s;" % number_color[13] + " color: black") self.labelButton_13.clicked.connect(partial(Form.switch_labels, 13)) self.labelButton_14 = QtWidgets.QPushButton(Form) self.labelButton_14.setGeometry(QtCore.QRect(Lb_x + 4*Lb_row_shift + 4*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_14.setObjectName("labelButton_14") self.labelButton_14.setText(_translate("Form", "hat")) self.labelButton_14.setStyleSheet("background-color: %s;" % number_color[14] + " color: black") self.labelButton_14.clicked.connect(partial(Form.switch_labels, 14)) self.labelButton_15 = QtWidgets.QPushButton(Form) self.labelButton_15.setGeometry(QtCore.QRect(Lb_x + 5*Lb_row_shift + 5*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_15.setObjectName("labelButton_15") self.labelButton_15.setText(_translate("Form", "ear_r")) self.labelButton_15.setStyleSheet("background-color: %s;" % number_color[15] + " color: black") self.labelButton_15.clicked.connect(partial(Form.switch_labels, 15)) self.labelButton_16 = QtWidgets.QPushButton(Form) self.labelButton_16.setGeometry(QtCore.QRect(Lb_x + 6*Lb_row_shift + 6*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_16.setObjectName("labelButton_16") self.labelButton_16.setText(_translate("Form", "neck_l")) self.labelButton_16.setStyleSheet("background-color: %s;" % number_color[16] + " color: black") self.labelButton_16.clicked.connect(partial(Form.switch_labels, 16)) self.labelButton_17 = QtWidgets.QPushButton(Form) self.labelButton_17.setGeometry(QtCore.QRect(Lb_x + 7*Lb_row_shift + 7*Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_17.setObjectName("labelButton_17") self.labelButton_17.setText(_translate("Form", "neck")) self.labelButton_17.setStyleSheet("background-color: %s;" % number_color[17] + " color: black") self.labelButton_17.clicked.connect(partial(Form.switch_labels, 17)) self.labelButton_18 = QtWidgets.QPushButton(Form) self.labelButton_18.setGeometry(QtCore.QRect(Lb_x + 8 * Lb_row_shift + 8 * Lb_width, Lb_y + Lb_height + Lb_col_shift, Lb_width, Lb_height)) self.labelButton_18.setObjectName("labelButton_18") self.labelButton_18.setText(_translate("Form", "cloth")) self.labelButton_18.setStyleSheet("background-color: %s;" % number_color[18] + " color: black") self.labelButton_18.clicked.connect(partial(Form.switch_labels, 18)) def add_label_buttons_eg3d(self, Form): top_x, top_y = 642, 140 row_shift = 10 self.color_Button = QtWidgets.QPushButton(Form) self.color_Button.setGeometry(QtCore.QRect(int(Lb_x - 1*Lb_row_shift - 60), Lb_y-50, 60, 60)) self.color_Button.setObjectName("labelButton_0") self.color_Button.setText(_translate("Form", "%s" % number_object[1])) self.color_Button.setStyleSheet("background-color: %s;" % number_color[1] + " color: black") self.labelButton_0 = QtWidgets.QPushButton(Form) self.labelButton_0.setGeometry(QtCore.QRect(top_x, top_y, Lb_width, Lb_height)) self.labelButton_0.setObjectName("labelButton_0") self.labelButton_0.setText(_translate("Form", "background")) self.labelButton_0.setStyleSheet("background-color: %s;" % number_color[0]+ " color: white") self.labelButton_0.clicked.connect(partial(Form.switch_labels, 0)) self.labelButton_1 = QtWidgets.QPushButton(Form) self.labelButton_1.setGeometry(QtCore.QRect(top_x, top_y + 1*Lb_height + 1*row_shift, Lb_width, Lb_height)) self.labelButton_1.setObjectName("labelButton_1") self.labelButton_1.setText(_translate("Form", "skin")) self.labelButton_1.setStyleSheet("background-color: %s;" % number_color[1] + " color: black") self.labelButton_1.clicked.connect(partial(Form.switch_labels, 1)) self.labelButton_2 = QtWidgets.QPushButton(Form) self.labelButton_2.setGeometry(QtCore.QRect(top_x, top_y + 2*Lb_height + 2*row_shift, Lb_width, Lb_height)) self.labelButton_2.setObjectName("labelButton_2") self.labelButton_2.setText(_translate("Form", "nose")) self.labelButton_2.setStyleSheet("background-color: %s;" % number_color[2] + " color: black") self.labelButton_2.clicked.connect(partial(Form.switch_labels, 2)) self.labelButton_4 = QtWidgets.QPushButton(Form) self.labelButton_4.setGeometry(QtCore.QRect(top_x, top_y + 3*Lb_height + 3*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_4.setObjectName("labelButton_4") self.labelButton_4.setText(_translate("Form", "l_eye")) self.labelButton_4.setStyleSheet("background-color: %s;" % number_color[4] + " color: black") self.labelButton_4.clicked.connect(partial(Form.switch_labels, 4)) self.labelButton_5 = QtWidgets.QPushButton(Form) self.labelButton_5.setGeometry(QtCore.QRect(top_x + int(0.54*Lb_width), top_y + 3*Lb_height + 3*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_5.setObjectName("labelButton_5") self.labelButton_5.setText(_translate("Form", "r_eye")) self.labelButton_5.setStyleSheet("background-color: %s;" % number_color[5] + " color: black") self.labelButton_5.clicked.connect(partial(Form.switch_labels, 5)) self.labelButton_6 = QtWidgets.QPushButton(Form) self.labelButton_6.setGeometry(QtCore.QRect(top_x, top_y + 4*Lb_height + 4*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_6.setObjectName("labelButton_6") self.labelButton_6.setText(_translate("Form", "l_brow")) self.labelButton_6.setStyleSheet("background-color: %s;" % number_color[6] + " color: black") self.labelButton_6.clicked.connect(partial(Form.switch_labels, 6)) self.labelButton_7 = QtWidgets.QPushButton(Form) self.labelButton_7.setGeometry(QtCore.QRect(top_x + int(0.54*Lb_width), top_y + 4*Lb_height + 4*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_7.setObjectName("labelButton_7") self.labelButton_7.setText(_translate("Form", "r_brow")) self.labelButton_7.setStyleSheet("background-color: %s;" % number_color[7] + " color: black") self.labelButton_7.clicked.connect(partial(Form.switch_labels, 7)) self.labelButton_3 = QtWidgets.QPushButton(Form) self.labelButton_3.setGeometry(QtCore.QRect(top_x, top_y + 5*Lb_height + 5*row_shift, Lb_width, Lb_height)) self.labelButton_3.setObjectName("labelButton_3") self.labelButton_3.setText(_translate("Form", "eye_g")) self.labelButton_3.setStyleSheet("background-color: %s;" % number_color[3] + " color: black") self.labelButton_3.clicked.connect(partial(Form.switch_labels, 3)) self.labelButton_8 = QtWidgets.QPushButton(Form) self.labelButton_8.setGeometry(QtCore.QRect(top_x, top_y + 6*Lb_height + 6*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_8.setObjectName("labelButton_8") self.labelButton_8.setText(_translate("Form", "l_ear")) self.labelButton_8.setStyleSheet("background-color: %s;" % number_color[8] + " color: black") self.labelButton_8.clicked.connect(partial(Form.switch_labels, 8)) self.labelButton_9 = QtWidgets.QPushButton(Form) self.labelButton_9.setGeometry(QtCore.QRect(top_x + int(0.54*Lb_width), top_y + 6*Lb_height + 6*row_shift, int(0.48*Lb_width), Lb_height)) self.labelButton_9.setObjectName("labelButton_9") self.labelButton_9.setText(_translate("Form", "r_ear")) self.labelButton_9.setStyleSheet("background-color: %s;" % number_color[9] + " color: black") self.labelButton_9.clicked.connect(partial(Form.switch_labels, 9)) self.labelButton_10 = QtWidgets.QPushButton(Form) self.labelButton_10.setGeometry(QtCore.QRect(top_x, top_y + 7*Lb_height + 7*row_shift, Lb_width, Lb_height)) self.labelButton_10.setObjectName("labelButton_10") self.labelButton_10.setText(_translate("Form", "mouth")) self.labelButton_10.setStyleSheet("background-color: %s;" % number_color[10] + " color: black") self.labelButton_10.clicked.connect(partial(Form.switch_labels, 10)) self.labelButton_11 = QtWidgets.QPushButton(Form) self.labelButton_11.setGeometry(QtCore.QRect(top_x, top_y + 8*Lb_height + 8*row_shift, Lb_width, Lb_height)) self.labelButton_11.setObjectName("labelButton_11") self.labelButton_11.setText(_translate("Form", "u_lip")) self.labelButton_11.setStyleSheet("background-color: %s;" % number_color[11] + " color: black") self.labelButton_11.clicked.connect(partial(Form.switch_labels, 11)) self.labelButton_12 = QtWidgets.QPushButton(Form) self.labelButton_12.setGeometry(QtCore.QRect(top_x, top_y + 9*Lb_height + 9*row_shift, Lb_width, Lb_height)) self.labelButton_12.setObjectName("labelButton_12") self.labelButton_12.setText(_translate("Form", "l_lip")) self.labelButton_12.setStyleSheet("background-color: %s;" % number_color[12] + " color: black") self.labelButton_12.clicked.connect(partial(Form.switch_labels, 12)) ######################################## row_shift, col_shift = 20, 8.1 self.labelButton_13 = QtWidgets.QPushButton(Form) self.labelButton_13.setGeometry(QtCore.QRect(top_x, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_13.setObjectName("labelButton_13") self.labelButton_13.setText(_translate("Form", "hair")) self.labelButton_13.setStyleSheet("background-color: %s;" % number_color[13] + " color: black") self.labelButton_13.clicked.connect(partial(Form.switch_labels, 13)) self.labelButton_14 = QtWidgets.QPushButton(Form) self.labelButton_14.setGeometry(QtCore.QRect(Lb_x, Lb_y - row_shift , Lb_width, Lb_height)) self.labelButton_14.setObjectName("labelButton_14") self.labelButton_14.setText(_translate("Form", "hat")) self.labelButton_14.setStyleSheet("background-color: %s;" % number_color[14] + " color: black") self.labelButton_14.clicked.connect(partial(Form.switch_labels, 14)) self.labelButton_15 = QtWidgets.QPushButton(Form) self.labelButton_15.setGeometry(QtCore.QRect(Lb_x + 1*col_shift + 1*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_15.setObjectName("labelButton_15") self.labelButton_15.setText(_translate("Form", "ear_r")) self.labelButton_15.setStyleSheet("background-color: %s;" % number_color[15] + " color: black") self.labelButton_15.clicked.connect(partial(Form.switch_labels, 15)) self.labelButton_16 = QtWidgets.QPushButton(Form) self.labelButton_16.setGeometry(QtCore.QRect(Lb_x + 2*col_shift + 2*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_16.setObjectName("labelButton_16") self.labelButton_16.setText(_translate("Form", "neck_l")) self.labelButton_16.setStyleSheet("background-color: %s;" % number_color[16] + " color: black") self.labelButton_16.clicked.connect(partial(Form.switch_labels, 16)) self.labelButton_17 = QtWidgets.QPushButton(Form) self.labelButton_17.setGeometry(QtCore.QRect(Lb_x + 3*col_shift + 3*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_17.setObjectName("labelButton_17") self.labelButton_17.setText(_translate("Form", "neck")) self.labelButton_17.setStyleSheet("background-color: %s;" % number_color[17] + " color: black") self.labelButton_17.clicked.connect(partial(Form.switch_labels, 17)) self.labelButton_18 = QtWidgets.QPushButton(Form) self.labelButton_18.setGeometry(QtCore.QRect(Lb_x + 4*col_shift + 4*Lb_width, Lb_y - row_shift, Lb_width, Lb_height)) self.labelButton_18.setObjectName("labelButton_18") self.labelButton_18.setText(_translate("Form", "cloth")) self.labelButton_18.setStyleSheet("background-color: %s;" % number_color[18] + " color: black") self.labelButton_18.clicked.connect(partial(Form.switch_labels, 18)) def cb_event(self, id, ifchecked): if id.text() == 'ALL': if ifchecked: for cb in self.checkBoxGroup.buttons(): cb.setChecked(True) else: for cb in self.checkBoxGroup.buttons(): cb.setChecked(False) self.change_cb_state() def change_cb_state(self): checkbox_status = [cb.isChecked() for cb in self.checkBoxGroup.buttons()] checkbox_status = checkbox_status[:19] #self.obj_dic_back = copy.deepcopy(self.obj_dic) self.checkbox_status = checkbox_status if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals # Warning: Auto-generated file, don't edit. pinyin_dict = { 0x3416: 'xié', 0x3469: 'luo', 0x36BB: 'jī', 0x378E: 'bǎ,ba', 0x393D: 'chóu', 0x39D1: 'huī', 0x3D89: 'xī', 0x3E62: 'jiā', 0x3E74: 'gěng', 0x3EA2: 'huò', 0x4056: 'lou', 0x433D: 'cǎi', 0x44D6: 'qióng', 0x45D6: 'dì', 0x45E5: 'zōng', 0x4723: 'xīn', 0x4CA0: 'chūn', 0x4CED: 'jí', 0x4D13: 'shī', 0x4D15: 'liè', 0x4D17: 'jú', 0x4D18: 'tī', 0x4D19: 'pì', 0x4E00: 'yī,yi', 0x4E01: 'dīng,zhēng,ding', 0x4E03: 'qī', 0x4E07: 'wàn,mò', 0x4E08: 'zhàng,zhang', 0x4E09: 'sān,sǎn', 0x4E0A: 'shàng,shang,shǎng', 0x4E0B: 'xià,xia', 0x4E0D: 'bù,bu,bú,bū', 0x4E0E: 'yǔ,yù', 0x4E10: 'gài', 0x4E11: 'chǒu', 0x4E13: 'zhuān', 0x4E14: 'qiě', 0x4E15: 'pī', 0x4E16: 'shì', 0x4E18: 'qiū', 0x4E19: 'bǐng', 0x4E1A: 'yè', 0x4E1B: 'cóng,cōng', 0x4E1C: 'dōng', 0x4E1D: 'sī', 0x4E1E: 'chéng', 0x4E22: 'diū', 0x4E24: 'liǎng', 0x4E25: 'yán,yǎn', 0x4E27: 'sàng,sāng,sang', 0x4E2A: 'gè,ge,gě', 0x4E2B: 'yā', 0x4E2D: 'zhōng,zhòng', 0x4E30: 'fēng', 0x4E32: 'chuàn', 0x4E34: 'lín', 0x4E38: 'wán', 0x4E39: 'dān,dan', 0x4E3A: 'wéi,wèi,wei', 0x4E3B: 'zhǔ', 0x4E3D: 'lì,lí', 0x4E3E: 'jǔ,ju', 0x4E43: 'nǎi', 0x4E45: 'jiǔ', 0x4E48: 'me,má,mó', 0x4E49: 'yì,yi', 0x4E4B: 'zhī', 0x4E4C: 'wū', 0x4E4D: 'zhà', 0x4E4E: 'hū,hu', 0x4E4F: 'fá', 0x4E50: 'lè,yuè,lào', 0x4E52: 'pīng', 0x4E53: 'pāng', 0x4E54: 'qiáo', 0x4E56: 'guāi,guai', 0x4E58: 'chéng,shèng', 0x4E59: 'yǐ', 0x4E5C: 'miē', 0x4E5D: 'jiǔ', 0x4E5E: 'qǐ,qi', 0x4E5F: 'yě', 0x4E60: 'xí', 0x4E61: 'xiāng', 0x4E66: 'shū', 0x4E69: 'jī', 0x4E70: 'mǎi', 0x4E71: 'luàn', 0x4E73: 'rǔ', 0x4E76: 'fǔ', 0x4E7E: 'qián', 0x4E86: 'le,liǎo,liào', 0x4E88: 'yǔ,yú', 0x4E89: 'zhēng', 0x4E8B: 'shì,shi', 0x4E8C: 'èr,ér', 0x4E8D: 'chù', 0x4E8E: 'yú', 0x4E8F: 'kuī', 0x4E91: 'yún', 0x4E92: 'hù,hū', 0x4E94: 'wǔ', 0x4E95: 'jǐng', 0x4E98: 'gèn', 0x4E9A: 'yà', 0x4E9B: 'xiē', 0x4E9F: 'jí', 0x4EA1: 'wáng,wàng', 0x4EA2: 'kàng', 0x4EA4: 'jiāo', 0x4EA5: 'hài', 0x4EA6: 'yì', 0x4EA7: 'chǎn', 0x4EA8: 'hēng', 0x4EA9: 'mǔ', 0x4EAB: 'xiǎng', 0x4EAC: 'jīng', 0x4EAD: 'tíng', 0x4EAE: 'liàng,liang', 0x4EB2: 'qīn,qìng,qín', 0x4EB3: 'bó', 0x4EB5: 'xiè', 0x4EB9: 'wěi', 0x4EBA: 'rén,ren', 0x4EBF: 'yì', 0x4EC0: 'shí,shén,shi', 0x4EC1: 'rén', 0x4EC2: 'lè', 0x4EC3: 'dīng', 0x4EC4: 'zè', 0x4EC5: 'jǐn', 0x4EC6: 'pú,pū', 0x4EC7: 'chóu', 0x4ECA: 'jīn', 0x4ECB: 'jiè', 0x4ECD: 'réng', 0x4ECE: 'cóng', 0x4ED1: 'lún', 0x4ED3: 'cāng', 0x4ED4: 'zǎi,zǐ,zī,zi', 0x4ED5: 'shì', 0x4ED6: 'tā', 0x4ED7: 'zhàng,zhang', 0x4ED8: 'fù,fu', 0x4ED9: 'xiān', 0x4EDF: 'qiān', 0x4EE1: 'gē', 0x4EE3: 'dài', 0x4EE4: 'lìng,líng', 0x4EE5: 'yǐ', 0x4EEA: 'yí', 0x4EEB: 'mù', 0x4EEC: 'men,mén', 0x4EF0: 'yǎng', 0x4EF2: 'zhòng', 0x4EF5: 'wǔ', 0x4EF6: 'jiàn', 0x4EF7: 'jià,ga', 0x4EFB: 'rèn,rén', 0x4EFD: 'fèn,fen', 0x4EFF: 'fǎng', 0x4F01: 'qǐ,qì', 0x4F04: 'diào', 0x4F09: 'kàng', 0x4F0A: 'yī', 0x4F0D: 'wǔ', 0x4F0E: 'jì', 0x4F0F: 'fú,fu', 0x4F10: 'fá', 0x4F11: 'xiū', 0x4F17: 'zhòng', 0x4F18: 'yōu', 0x4F19: 'huǒ,huo', 0x4F1A: 'huì,kuài,hui', 0x4F1E: 'sǎn', 0x4F1F: 'wěi', 0x4F20: 'chuán,zhuàn', 0x4F22: 'yá', 0x4F24: 'shāng', 0x4F25: 'chāng', 0x4F26: 'lún', 0x4F27: 'chen', 0x4F2A: 'wěi', 0x4F2B: 'zhù', 0x4F2F: 'bó,bo,bà,bai,bǎi', 0x4F30: 'gū,gù,gu', 0x4F34: 'bàn', 0x4F36: 'líng,ling', 0x4F38: 'shēn', 0x4F3A: 'sì,cì', 0x4F3C: 'sì,shì', 0x4F3D: 'jiā,gā,qié', 0x4F3E: 'pī', 0x4F43: 'diàn', 0x4F46: 'dàn', 0x4F49: 'qū,qiā', 0x4F4D: 'wèi', 0x4F4E: 'dī', 0x4F4F: 'zhù,zhu', 0x4F50: 'zuǒ', 0x4F51: 'yòu', 0x4F53: 'tǐ,tī', 0x4F55: 'hé', 0x4F57: 'tuó', 0x4F59: 'yú,yu', 0x4F5A: 'yì', 0x4F5B: 'fó,fú', 0x4F5C: 'zuò,zuo,zuō,zuó', 0x4F5D: 'gōu,kòu', 0x4F5E: 'nìng', 0x4F5F: 'tóng', 0x4F60: 'nǐ', 0x4F63: 'yōng,yòng', 0x4F64: 'wǎ', 0x4F67: 'kǎ', 0x4F69: 'pèi', 0x4F6A: 'huái', 0x4F6C: 'lǎo', 0x4F6F: 'yáng', 0x4F70: 'bǎi', 0x4F73: 'jiā', 0x4F7B: 'tiāo', 0x4F7C: 'jiǎo', 0x4F7F: 'shǐ,shi', 0x4F83: 'kǎn', 0x4F84: 'zhí', 0x4F88: 'chǐ', 0x4F89: 'kuǎ', 0x4F8B: 'lì', 0x4F8D: 'shì,shi', 0x4F8F: 'zhū', 0x4F97: 'dòng,tóng', 0x4F9B: 'gōng,gòng', 0x4F9D: 'yī', 0x4FA0: 'xiá', 0x4FA3: 'lǚ', 0x4FA5: 'jiǎo,yáo', 0x4FA6: 'zhēn', 0x4FA7: 'cè', 0x4FA8: 'qiáo', 0x4FA9: 'kuài', 0x4FAA: 'chái', 0x4FAC: 'nóng', 0x4FAE: 'wǔ', 0x4FAF: 'hóu', 0x4FB5: 'qīn', 0x4FBF: 'biàn,pián', 0x4FC3: 'cù', 0x4FC4: 'é', 0x4FC9: 'wú', 0x4FCA: 'jùn', 0x4FCE: 'zǔ', 0x4FCF: 'qiào', 0x4FD0: 'lì,li', 0x4FD1: 'yǒng', 0x4FD7: 'sú', 0x4FD8: 'fú', 0x4FDA: 'lǐ', 0x4FDC: 'pīng', 0x4FDD: 'bǎo', 0x4FDE: 'yú,shù', 0x4FDF: 'sì,qí', 0x4FE1: 'xìn', 0x4FE3: 'yǔ', 0x4FE8: 'yǎn', 0x4FE9: 'liǎ,liǎng', 0x4FEA: 'lì', 0x4FED: 'jiǎn', 0x4FEE: 'xiū', 0x4FEF: 'fǔ', 0x4FF1: 'jù', 0x4FF3: 'pái', 0x4FF8: 'fèng', 0x4FFE: 'bǐ', 0x500C: 'guān', 0x500D: 'bèi', 0x500F: 'shū', 0x5012: 'dǎo,dào', 0x5014: 'jué', 0x5018: 'tǎng,cháng', 0x5019: 'hòu,hou', 0x501A: 'yǐ', 0x501C: 'tì', 0x501F: 'jiè', 0x5021: 'chàng,chāng', 0x5025: 'kǒng,kōng', 0x5026: 'juàn', 0x5028: 'jù', 0x5029: 'qiàn', 0x502A: 'ní', 0x502D: 'wō', 0x503A: 'zhài', 0x503B: 'yē', 0x503C: 'zhí', 0x503E: 'qīng', 0x5041: 'chēng', 0x5043: 'yǎn', 0x5047: 'jiǎ,jià', 0x504C: 'ruò', 0x504E: 'wēi', 0x504F: 'piān', 0x5055: 'xié', 0x505A: 'zuò', 0x505C: 'tíng', 0x5065: 'jiàn', 0x506C: 'zǒng', 0x5076: 'ǒu', 0x5077: 'tōu', 0x507B: 'lóu', 0x507E: 'fèn', 0x507F: 'cháng', 0x5080: 'kuǐ', 0x5085: 'fù,fu', 0x5088: 'lì', 0x508D: 'bàng', 0x50A2: 'jiā', 0x50A3: 'dǎi', 0x50A5: 'tǎng', 0x50A7: 'bīn', 0x50A8: 'chǔ', 0x50A9: 'nuó', 0x50AC: 'cuī', 0x50B2: 'ào', 0x50BB: 'shǎ', 0x50CF: 'xiàng', 0x50D6: 'xī', 0x50DA: 'liáo', 0x50E7: 'sēng', 0x50EC: 'jiāo', 0x50ED: 'jiàn', 0x50EE: 'tóng,zhuàng', 0x50F3: 'sù', 0x50F5: 'jiāng', 0x50FB: 'pì', 0x5105: 'dāng', 0x5106: 'jǐng', 0x5107: 'xuān', 0x510B: 'dān', 0x5112: 'rú', 0x5121: 'lěi', 0x513F: 'er,ér', 0x5140: 'wù', 0x5141: 'yǔn', 0x5143: 'yuán', 0x5144: 'xiōng,xīng,xiong', 0x5145: 'chōng', 0x5146: 'zhào', 0x5148: 'xiān', 0x5149: 'guāng', 0x514B: 'kè', 0x514D: 'miǎn', 0x5151: 'duì', 0x5154: 'tù', 0x5155: 'sì', 0x5156: 'yǎn', 0x515A: 'dǎng', 0x515C: 'dōu,dou', 0x5162: 'jīng', 0x5165: 'rù', 0x5168: 'quán', 0x516B: 'bā', 0x516C: 'gōng,gong', 0x516D: 'liù,lù', 0x516E: 'xī', 0x5170: 'lán', 0x5171: 'gòng', 0x5172: 'tiān', 0x5173: 'guān', 0x5174: 'xīng,xìng', 0x5175: 'bīng', 0x5176: 'qí', 0x5177: 'jù', 0x5178: 'diǎn', 0x5179: 'zī,cí', 0x517B: 'yǎng', 0x517C: 'jiān', 0x517D: 'shòu', 0x5180: 'jì', 0x5185: 'nèi,nei', 0x5188: 'gāng', 0x5189: 'rǎn', 0x518C: 'cè', 0x518D: 'zài', 0x518F: 'jiǒng', 0x5191: 'zhòu', 0x5192: 'mào', 0x5195: 'miǎn', 0x5197: 'rǒng', 0x5198: 'yóu', 0x5199: 'xiě,xiè', 0x519B: 'jūn', 0x519C: 'nóng', 0x51A0: 'guān,guàn', 0x51A2: 'zhǒng', 0x51A4: 'yuān', 0x51A5: 'míng', 0x51AC: 'dōng', 0x51AF: 'féng,píng', 0x51B0: 'bīng', 0x51B2: 'chōng,chòng', 0x51B3: 'jué', 0x51B5: 'kuàng', 0x51B6: 'yě', 0x51B7: 'lěng', 0x51BB: 'dòng', 0x51BC: 'xiǎn', 0x51BD: 'liè', 0x51C0: 'jìng,jing', 0x51C4: 'qī', 0x51C6: 'zhǔn', 0x51C7: 'sōng', 0x51C9: 'liáng', 0x51CB: 'diāo', 0x51CC: 'líng', 0x51CF: 'jiǎn', 0x51D1: 'còu', 0x51DB: 'lǐn', 0x51DD: 'níng', 0x51E0: 'jǐ,jī', 0x51E1: 'fán', 0x51E4: 'fèng', 0x51EB: 'fú', 0x51ED: 'píng', 0x51EF: 'kǎi', 0x51F0: 'huáng', 0x51F3: 'dèng', 0x51F6: 'xiōng', 0x51F8: 'tū', 0x51F9: 'āo,wā', 0x51FA: 'chū,chu', 0x51FB: 'jī,jí', 0x51FC: 'dàng', 0x51FD: 'hán', 0x51FF: 'záo,zuò', 0x5200: 'dāo', 0x5201: 'diāo', 0x5203: 'rèn', 0x5206: 'fēn,fèn,fen', 0x5207: 'qiè,qiē', 0x5208: 'yì,guà', 0x520A: 'kān', 0x520D: 'chú', 0x520E: 'wěn', 0x5211: 'xíng', 0x5212: 'huà,huá,hua', 0x5217: 'liè,lie', 0x5218: 'liú', 0x5219: 'zé', 0x521A: 'gāng,gang', 0x521B: 'chuàng,chuāng', 0x521D: 'chū', 0x5220: 'shān', 0x5224: 'pàn', 0x5225: 'bié', 0x5228: 'bào,páo', 0x5229: 'lì,li', 0x522B: 'bié,biè', 0x522E: 'guā', 0x5230: 'dào,dao', 0x5236: 'zhì', 0x5237: 'shuā', 0x5238: 'quàn', 0x5239: 'shā,chà', 0x523A: 'cì,cī', 0x523B: 'kè', 0x523D: 'guì', 0x5240: 'kǎi', 0x5241: 'duò', 0x5242: 'jì', 0x5243: 'tì', 0x524A: 'xuē,xiāo', 0x524B: 'kēi', 0x524C: 'là,lá,lā', 0x524D: 'qián,qian', 0x5250: 'guǎ', 0x5251: 'jiàn', 0x5254: 'tī,ti', 0x5256: 'pōu', 0x5265: 'bō,bāo', 0x5267: 'jù', 0x5269: 'shèng', 0x526A: 'jiǎn', 0x526F: 'fù', 0x5272: 'gē,guà', 0x527D: 'piāo', 0x527F: 'jiǎo,chāo', 0x5288: 'pī,pǐ', 0x5290: 'huō', 0x529B: 'lì,li', 0x529D: 'quàn', 0x529E: 'bàn', 0x529F: 'gōng', 0x52A0: 'jiā', 0x52A1: 'wù,wu', 0x52A3: 'liè', 0x52A8: 'dòng', 0x52A9: 'zhù', 0x52AA: 'nǔ', 0x52AB: 'jié', 0x52AD: 'shào', 0x52B1: 'lì', 0x52B2: 'jìn,jìng', 0x52B3: 'láo,lao', 0x52BC: 'jié', 0x52BE: 'hé', 0x52BF: 'shì,shi', 0x52C3: 'bó', 0x52C7: 'yǒng', 0x52C9: 'miǎn', 0x52CB: 'xūn', 0x52D0: 'měng', 0x52D2: 'lè,lēi', 0x52D8: 'kān', 0x52DE: 'láo', 0x52DF: 'mù', 0x52E4: 'qín', 0x52F0: 'xié', 0x52FA: 'sháo', 0x52FE: 'gōu,gòu', 0x52FF: 'wù', 0x5300: 'yún', 0x5305: 'bāo,bao', 0x5306: 'cōng', 0x5308: 'xiōng', 0x530D: 'pú', 0x5310: 'fú', 0x5315: 'bǐ', 0x5316: 'huà,huā', 0x5317: 'běi', 0x5319: 'shi,chí', 0x531D: 'zā', 0x5320: 'jiàng,jiang', 0x5321: 'kuāng', 0x5323: 'xiá', 0x5326: 'guǐ', 0x532A: 'fěi', 0x532E: 'kuì,guì', 0x5339: 'pǐ,pí', 0x533A: 'qū,ōu', 0x533B: 'yī', 0x533E: 'biǎn', 0x533F: 'nì', 0x5341: 'shí', 0x5343: 'qiān', 0x5345: 'sà', 0x5347: 'shēng', 0x5348: 'wǔ,wu', 0x5349: 'huì', 0x534A: 'bàn,ban', 0x534E: 'huá,huà,huā', 0x534F: 'xié', 0x5351: 'bēi', 0x5352: 'zú,cù', 0x5353: 'zhuó', 0x5355: 'dān,chán,shàn', 0x5356: 'mài', 0x5357: 'nán,nā', 0x535A: 'bó', 0x535C: 'bǔ,bo', 0x535F: 'bǔ', 0x5360: 'zhàn,zhān', 0x5361: 'kǎ,qiǎ', 0x5362: 'lú', 0x5364: 'lǔ', 0x5366: 'guà', 0x5367: 'wò,wo', 0x536B: 'wèi', 0x536F: 'mǎo', 0x5370: 'yìn', 0x5371: 'wēi', 0x5373: 'jí', 0x5374: 'què', 0x5375: 'luǎn', 0x5377: 'juǎn,juàn', 0x5378: 'xiè', 0x537A: 'jǐn', 0x537F: 'qīng', 0x5382: 'chǎng', 0x5384: 'è', 0x5385: 'tīng', 0x5386: 'lì,li', 0x5389: 'lì', 0x538B: 'yā,yà,ya', 0x538C: 'yàn,yān', 0x5395: 'cè,si', 0x5397: 'tí', 0x5398: 'lí', 0x539A: 'hòu,hou', 0x539D: 'cuò', 0x539F: 'yuán', 0x53A2: 'xiāng', 0x53A5: 'jué', 0x53A6: 'shà,xià', 0x53A8: 'chú', 0x53A9: 'jiù', 0x53AE: 'sī', 0x53BB: 'qù,qu', 0x53BE: 'dū', 0x53BF: 'xiàn', 0x53C2: 'cān,shēn,cēn', 0x53C6: 'ài', 0x53C7: 'dài', 0x53C8: 'yòu', 0x53C9: 'chā,chà', 0x53CA: 'jí', 0x53CB: 'yǒu,you', 0x53CC: 'shuāng,huāng', 0x53CD: 'fǎn', 0x53D1: 'fā,fà,fa', 0x53D2: 'ruò', 0x53D4: 'shū,shu', 0x53D5: 'zhuó', 0x53D6: 'qǔ', 0x53D7: 'shòu,shou', 0x53D8: 'biàn', 0x53D9: 'xù', 0x53DB: 'pàn', 0x53DF: 'sǒu', 0x53E0: 'dié', 0x53E3: 'kǒu,kou,luó', 0x53E4: 'gǔ', 0x53E5: 'jù,jú,gōu', 0x53E6: 'lìng', 0x53E8: 'dāo,dao,tāo', 0x53E9: 'kòu', 0x53EA: 'zhī,zhǐ', 0x53EB: 'jiào', 0x53EC: 'zhào,shào', 0x53ED: 'ba,bā', 0x53EE: 'dīng', 0x53EF: 'kě,kè', 0x53F0: 'tái,tāi', 0x53F1: 'chì', 0x53F2: 'shǐ', 0x53F3: 'yòu', 0x53F5: 'pǒ', 0x53F6: 'yè,xié', 0x53F7: 'hào,háo,hao', 0x53F8: 'sī,si', 0x53F9: 'tàn', 0x53FB: 'lè', 0x53FC: 'diāo', 0x53FD: 'jī,ji', 0x5401: 'xū,yù', 0x5403: 'chī', 0x5404: 'gè,gě', 0x5406: 'yāo', 0x5408: 'hé,gě,he', 0x5409: 'jí', 0x540A: 'diào', 0x540C: 'tóng,tong,tòng', 0x540D: 'míng', 0x540E: 'hòu', 0x540F: 'lì', 0x5410: 'tǔ,tù', 0x5411: 'xiàng', 0x5412: 'zha,zhà', 0x5413: 'xià,hè', 0x5415: 'lǚ', 0x5416: 'ā', 0x5417: 'mǎ,ma,má', 0x541B: 'jūn', 0x541D: 'lìn', 0x541E: 'tūn', 0x541F: 'yín', 0x5420: 'fèi', 0x5421: 'bǐ', 0x5423: 'qìn', 0x5425: 'bù', 0x5426: 'fǒu,pǐ', 0x5427: 'bā,ba', 0x5428: 'dūn', 0x5429: 'fēn', 0x542B: 'hán', 0x542C: 'tīng,ting', 0x542D: 'kēng,háng', 0x542E: 'shǔn', 0x542F: 'qǐ', 0x5431: 'zhī,zī', 0x5432: 'yǐn', 0x5434: 'wú', 0x5435: 'chǎo,chāo,chao', 0x5438: 'xī', 0x5439: 'chuī', 0x543B: 'wěn', 0x543C: 'hǒu', 0x543D: 'ōu,hōng', 0x543E: 'wú,wu', 0x5440: 'yā,ya', 0x5443: 'è', 0x5446: 'dāi', 0x5448: 'chéng', 0x544A: 'gào,gao', 0x544B: 'fū', 0x5450: 'nà', 0x5452: 'ḿ,wǔ,fǔ', 0x5453: 'yì', 0x5454: 'tāi', 0x5455: 'ǒu,òu', 0x5457: 'bài,bei', 0x5458: 'yuán', 0x545B: 'qiāng,qiàng', 0x545C: 'wū', 0x5462: 'ní,ne', 0x5464: 'lìng', 0x5466: 'yōu', 0x5468: 'zhōu', 0x546B: 'tiè,zhān', 0x5471: 'guā,gua', 0x5472: 'zī,cī', 0x5473: 'wèi,wei', 0x5475: 'hē', 0x5476: 'náo', 0x5477: 'gā', 0x547B: 'shēn', 0x547C: 'hū,hu', 0x547D: 'mìng', 0x5480: 'jǔ,zuǐ', 0x5482: 'zā', 0x5484: 'duō', 0x5486: 'páo', 0x548B: 'zǎ,zhā,zhà,za', 0x548C: 'hé,hè,huo,huò,huó,hú', 0x548E: 'jiù', 0x548F: 'yǒng', 0x5490: 'fù', 0x5491: 'dā', 0x5492: 'zhòu', 0x5494: 'kǎ,kā', 0x5495: 'gū,gu', 0x5496: 'kā,gā', 0x5499: 'lóng', 0x549A: 'dōng,dong', 0x549B: 'níng', 0x549D: 'sī', 0x54A3: 'guāng', 0x54A4: 'zhà', 0x54A7: 'liē,liě', 0x54A8: 'zī', 0x54AA: 'mī,mi', 0x54AB: 'zhǐ', 0x54AC: 'yǎo', 0x54AD: 'jī', 0x54AF: 'gē,luò', 0x54B1: 'zán,zan,zá', 0x54B3: 'ké', 0x54B7: 'táo', 0x54B8: 'xián', 0x54BB: 'xiū', 0x54BD: 'yān,yàn,yè', 0x54BE: 'lǎo', 0x54C0: 'āi', 0x54C1: 'pǐn', 0x54C2: 'shěn', 0x54C4: 'hōng,hǒng,hòng', 0x54C6: 'duō', 0x54C7: 'wā', 0x54C8: 'hā,hǎ,ha,hà', 0x54C9: 'zāi', 0x54CC: 'pài', 0x54CD: 'xiǎng', 0x54CE: 'āi', 0x54CF: 'gén', 0x54D0: 'kuāng', 0x54D1: 'yǎ', 0x54D2: 'dā,da', 0x54D4: 'bì,bī', 0x54D5: 'huì,yuě', 0x54D7: 'huá,huā', 0x54DA: 'duǒ', 0x54DD: 'nong,nóng', 0x54DF: 'yō,yo', 0x54E5: 'gē,ge', 0x54E6: 'é', 0x54E7: 'chī,chi', 0x54E8: 'shào,shao', 0x54E9: 'lī,li,lí,lǐ', 0x54EA: 'nǎ,né,na', 0x54ED: 'kū,ku', 0x54EE: 'xiào', 0x54F0: 'láo', 0x54F1: 'bō', 0x54F2: 'zhé', 0x54F3: 'zhā', 0x54FA: 'bǔ,bù', 0x54FC: 'hēng', 0x54FD: 'gěng', 0x5501: 'yàn', 0x5505: 'hān', 0x5506: 'suō,suo', 0x5507: 'chún', 0x5509: 'āi', 0x550F: 'xī', 0x5510: 'táng', 0x5511: 'zuò', 0x5514: 'wú', 0x551B: 'mài', 0x551D: 'gòng', 0x5520: 'lao,láo,lào', 0x5522: 'suǒ', 0x5523: 'zào', 0x5524: 'huàn,huan', 0x5527: 'jī,ji', 0x552C: 'hǔ,hu', 0x552E: 'shòu', 0x552F: 'wéi,wěi', 0x5531: 'chàng', 0x5533: 'lì', 0x5535: 'ǎn', 0x5537: 'yō', 0x553E: 'tuò', 0x553F: 'hū', 0x5541: 'zhōu', 0x5543: 'kěn', 0x5544: 'zhuó', 0x5546: 'shāng', 0x5549: 'lín', 0x554A: 'ā', 0x5555: 'táo', 0x5556: 'dàn', 0x555C: 'chuò', 0x5561: 'fēi', 0x5564: 'pí', 0x5565: 'shá', 0x5566: 'lā,la', 0x5567: 'zé', 0x556A: 'pā', 0x556B: 'zhě', 0x556C: 'sè', 0x556D: 'zhuàn', 0x556E: 'niè', 0x5570: 'luō,luo', 0x5574: 'chǎn,tān', 0x5575: 'bō,bo', 0x5576: 'dìng', 0x5577: 'lāng', 0x5578: 'xiào', 0x557B: 'chì', 0x557C: 'tí', 0x557E: 'jiū', 0x5580: 'kā', 0x5581: 'yóng', 0x5582: 'wèi', 0x5583: 'nán', 0x5584: 'shàn', 0x5586: 'zhé', 0x5587: 'lǎ,là,la,lá,lā', 0x5589: 'hóu', 0x558A: 'hǎn', 0x558B: 'dié', 0x558F: 'nuò,rě', 0x5591: 'yīn', 0x5598: 'chuǎn', 0x5599: 'huì', 0x559C: 'xǐ', 0x559D: 'hē,hè,he', 0x559F: 'kuì', 0x55A7: 'xuān', 0x55A8: 'liàng', 0x55AE: 'dān', 0x55B1: 'lí', 0x55B3: 'zhā,chā,cha', 0x55B5: 'miāo', 0x55B7: 'pēn,pen,pèn', 0x55B9: 'kuí', 0x55BB: 'yù', 0x55BC: 'jié', 0x55BD: 'lóu', 0x55BE: 'kù', 0x55C5: 'xiù', 0x55C9: 'sù', 0x55D1: 'kē,kè', 0x55D2: 'dā,da,tà', 0x55D3: 'sǎng', 0x55D4: 'chēn', 0x55D6: 'sōu', 0x55DC: 'shì', 0x55DD: 'gé', 0x55DF: 'jiē', 0x55E1: 'wēng', 0x55E3: 'sì', 0x55E4: 'chī', 0x55E5: 'háo', 0x55E6: 'suo', 0x55E8: 'hāi', 0x55EA: 'qín', 0x55EB: 'niè', 0x55EF: 'en', 0x55F3: 'ài', 0x55F5: 'tōng', 0x55F7: 'áo', 0x55FD: 'sou', 0x5600: 'dí,dī', 0x5601: 'qī,qi', 0x5608: 'cáo', 0x5609: 'jiā', 0x560C: 'piào', 0x560E: 'gā,gá', 0x5618: 'xū', 0x561A: 'dē', 0x561B: 'ma,má', 0x561F: 'dū', 0x5622: 'yě', 0x5623: 'bēng', 0x5627: 'mì', 0x5631: 'zhǔ', 0x5632: 'cháo,zhāo', 0x5634: 'zuǐ', 0x5636: 'sī', 0x5639: 'liáo', 0x563B: 'xī', 0x563F: 'hēi', 0x564C: 'cēng', 0x564D: 'jiào', 0x564E: 'yē', 0x564F: 'xī', 0x5654: 'dēng', 0x5657: 'pū', 0x5658: 'juē', 0x565C: 'lū,lu', 0x5662: 'ō', 0x5664: 'jìn', 0x5668: 'qì', 0x5669: 'è', 0x566A: 'zào', 0x566C: 'shì', 0x5671: 'xué', 0x5676: 'gá', 0x567B: 'sāi', 0x567C: 'pī', 0x5685: 'rú', 0x568E: 'háo', 0x568F: 'tì', 0x5693: 'chā,cā', 0x56A3: 'xiāo', 0x56B7: 'rǎng,rāng,rang', 0x56BC: 'jiáo,jué', 0x56CA: 'náng,nāng,nang', 0x56D2: 'lán', 0x56D4: 'nang,nāng', 0x56DA: 'qiú', 0x56DB: 'sì', 0x56DD: 'jiǎn', 0x56DE: 'huí,hui', 0x56DF: 'xìn', 0x56E0: 'yīn', 0x56E1: 'nān', 0x56E2: 'tuán', 0x56E4: 'tún', 0x56EB: 'hú', 0x56ED: 'yuán', 0x56F0: 'kùn', 0x56F1: 'cōng', 0x56F4: 'wéi', 0x56F5: 'lún', 0x56F9: 'líng', 0x56FA: 'gù', 0x56FD: 'guó', 0x56FE: 'tú', 0x56FF: 'yòu', 0x5703: 'pǔ', 0x5704: 'yǔ', 0x5706: 'yuán', 0x5708: 'quān,juàn,quan', 0x5709: 'yǔ', 0x5710: 'kū', 0x5719: 'lüè', 0x571C: 'huán', 0x571F: 'tǔ', 0x5723: 'shèng', 0x5728: 'zài,zai', 0x572A: 'gē', 0x572D: 'guī', 0x572E: 'pǐ', 0x5730: 'dì,de,di', 0x5733: 'zhèn', 0x573A: 'chǎng,cháng,chang', 0x573B: 'qí', 0x573E: 'jī', 0x5740: 'zhǐ', 0x5742: 'bǎn', 0x5747: 'jūn', 0x574A: 'fāng,fáng,fang', 0x574B: 'bèn', 0x574D: 'tān', 0x574E: 'kǎn', 0x574F: 'huài', 0x5750: 'zuò', 0x5751: 'kēng,keng', 0x5757: 'kuài', 0x575A: 'jiān', 0x575B: 'tán', 0x575C: 'lì', 0x575D: 'bà', 0x575E: 'wù', 0x575F: 'fén', 0x5760: 'zhuì', 0x5761: 'pō', 0x5764: 'kūn', 0x5766: 'tǎn,tan', 0x5768: 'tuó', 0x5769: 'gān', 0x576A: 'píng', 0x576B: 'diàn', 0x576F: 'pī', 0x5773: 'ào', 0x5777: 'kě,kē', 0x577B: 'dǐ', 0x5782: 'chuí', 0x5783: 'lā', 0x5784: 'lǒng', 0x578B: 'xíng', 0x5792: 'lěi', 0x5793: 'gāi', 0x579B: 'duǒ', 0x579D: 'guǐ', 0x57A0: 'yín', 0x57A2: 'gòu', 0x57A3: 'yuán', 0x57A6: 'kěn', 0x57A9: 'è', 0x57AB: 'diàn', 0x57AD: 'yā', 0x57AE: 'kuǎ', 0x57AF: 'da', 0x57C2: 'gěng', 0x57C3: 'āi', 0x57C7: 'yǒng', 0x57CB: 'mái,mán', 0x57CE: 'chéng', 0x57D4: 'pǔ,bù', 0x57D5: 'chéng', 0x57D7: 'bù', 0x57DA: 'guō', 0x57DF: 'yù', 0x57E0: 'bù', 0x57E4: 'pí', 0x57F2: 'běng', 0x57F5: 'duǒ', 0x57F9: 'péi,bèi', 0x57FA: 'jī', 0x57FC: 'qí', 0x5802: 'táng,tang,tǎng', 0x5803: 'kūn', 0x5806: 'duī,tuī', 0x5807: 'jǐn', 0x5811: 'qiàn', 0x5815: 'duò', 0x5821: 'bǎo,bǔ,pù,pǔ', 0x5824: 'dī,dí,tí', 0x582A: 'kān', 0x5830: 'yàn', 0x5835: 'dǔ', 0x584C: 'tā,ta,tà', 0x584D: 'chéng', 0x5851: 'sù', 0x5854: 'tǎ', 0x5855: 'wěng', 0x5858: 'táng', 0x585E: 'sāi,sè,sài', 0x586B: 'tián', 0x586C: 'yuán', 0x586D: 'wēn', 0x587E: 'shú', 0x5883: 'jìng', 0x5885: 'shù', 0x5889: 'yōng', 0x5892: 'shāng', 0x5893: 'mù', 0x5899: 'qiáng', 0x589E: 'zēng', 0x589F: 'xū', 0x58A8: 'mò', 0x58A9: 'dūn', 0x58C1: 'bì', 0x58C5: 'yōng', 0x58D1: 'hè', 0x58D5: 'háo', 0x58E4: 'rǎng', 0x58EB: 'shì,shi', 0x58EC: 'rén', 0x58EE: 'zhuàng', 0x58F0: 'shēng,sheng', 0x58F3: 'ké,qiào', 0x58F6: 'hú', 0x58F9: 'yī', 0x5904: 'chù,chǔ,chu', 0x5907: 'bèi', 0x590D: 'fù', 0x590F: 'xià', 0x5914: 'kuí', 0x5915: 'xī', 0x5916: 'wài', 0x5919: 'sù', 0x591A: 'duō', 0x591C: 'yè', 0x591F: 'gòu', 0x5924: 'yín', 0x5925: 'huǒ', 0x5927: 'dà,dài,dá,dā', 0x5929: 'tiān', 0x592A: 'tài,tai', 0x592B: 'fū,fu', 0x592D: 'yāo', 0x592E: 'yāng', 0x592F: 'hāng,bèn', 0x5931: 'shī,shi', 0x5934: 'tóu,tou', 0x5937: 'yí', 0x5938: 'kuā', 0x5939: 'jiā,jiá,gā', 0x593A: 'duó', 0x593C: 'kuǎng', 0x593E: 'jiā', 0x5941: 'lián', 0x5942: 'huàn', 0x5944: 'yǎn', 0x5947: 'qí,jī', 0x5948: 'nài', 0x5949: 'fèng', 0x594B: 'fèn', 0x594E: 'kuí', 0x594F: 'zòu', 0x5951: 'qì', 0x5954: 'bēn,bèn', 0x5955: 'yì', 0x5956: 'jiǎng', 0x5957: 'tào,tao', 0x5958: 'zàng', 0x595A: 'xī', 0x5960: 'diàn', 0x5962: 'shē', 0x5965: 'ào', 0x596D: 'shì', 0x5973: 'nǚ', 0x5974: 'nú', 0x5976: 'nǎi,nai', 0x5978: 'jiān', 0x5979: 'tā', 0x597D: 'hǎo,hào,hāo', 0x5981: 'shuò', 0x5982: 'rú,rù', 0x5983: 'fēi', 0x5984: 'wàng', 0x5986: 'zhuāng,zhuang', 0x5987: 'fù,fu', 0x5988: 'mā,ma', 0x598A: 'rèn', 0x598D: 'yán', 0x5992: 'dù,du', 0x5993: 'jì', 0x5996: 'yāo', 0x5997: 'jìn', 0x5999: 'miào', 0x599E: 'niū,niu', 0x59A3: 'bǐ', 0x59A5: 'tuǒ', 0x59A8: 'fáng', 0x59A9: 'wǔ', 0x59AA: 'yù', 0x59AE: 'nī', 0x59AF: 'zhóu', 0x59B2: 'dá', 0x59B9: 'mèi,mei', 0x59BB: 'qī', 0x59BE: 'qiè', 0x59C6: 'mǔ', 0x59CA: 'zǐ', 0x59CB: 'shǐ', 0x59D0: 'jiě,jie', 0x59D1: 'gū,gu', 0x59D2: 'sì', 0x59D3: 'xìng', 0x59D4: 'wěi,wēi', 0x59D7: 'shān', 0x59D8: 'pīn', 0x59DA: 'yáo', 0x59DC: 'jiāng', 0x59E5: 'lǎo,lao,mǔ', 0x59E8: 'yí', 0x59EB: 'jī', 0x59EC: 'jī', 0x59EE: 'héng', 0x59F9: 'chà', 0x59FB: 'yīn', 0x59FF: 'zī', 0x5A01: 'wēi', 0x5A03: 'wá,wa', 0x5A04: 'lóu', 0x5A05: 'yà', 0x5A06: 'ráo', 0x5A07: 'jiāo', 0x5A08: 'luán', 0x5A09: 'pīng', 0x5A0C: 'li', 0x5A11: 'suō', 0x5A13: 'wěi', 0x5A18: 'niáng,niang', 0x5A1C: 'nà,nuó', 0x5A1F: 'juān', 0x5A20: 'shēn', 0x5A23: 'dì', 0x5A25: 'é', 0x5A29: 'miǎn', 0x5A2D: 'āi', 0x5A31: 'yú', 0x5A32: 'wā', 0x5A34: 'xián', 0x5A36: 'qǔ', 0x5A3C: 'chāng', 0x5A40: 'ē', 0x5A46: 'pó,po', 0x5A49: 'wǎn', 0x5A4A: 'biǎo', 0x5A5A: 'hūn', 0x5A62: 'bì', 0x5A6A: 'lán', 0x5A74: 'yīng', 0x5A75: 'chán', 0x5A76: 'shěn,shen', 0x5A77: 'tíng', 0x5A7A: 'wù', 0x5A7F: 'xù,xu', 0x5A92: 'méi', 0x5A95: 'ān', 0x5A9A: 'mèi', 0x5A9B: 'yuán,yuàn', 0x5AB2: 'pì', 0x5AB3: 'xí', 0x5AB5: 'yìng', 0x5ABE: 'gòu', 0x5AC1: 'jià', 0x5AC2: 'sǎo,sao', 0x5AC9: 'jí', 0x5ACC: 'xián', 0x5ACF: 'láng', 0x5AD4: 'pín', 0x5AD6: 'piáo', 0x5AD8: 'léi', 0x5AE0: 'lí', 0x5AE1: 'dí', 0x5AE3: 'yān', 0x5AE6: 'cháng', 0x5AE9: 'nèn,nen', 0x5AEA: 'lào', 0x5B09: 'xī', 0x5B17: 'shàn', 0x5B1B: 'huán,xuān', 0x5B34: 'yíng', 0x5B37: 'mó,mo,mā', 0x5B40: 'shuāng', 0x5B50: 'zi,zǐ', 0x5B51: 'jié', 0x5B53: 'jué', 0x5B54: 'kǒng', 0x5B55: 'yùn', 0x5B57: 'zì,zi', 0x5B58: 'cún', 0x5B59: 'sūn', 0x5B5A: 'fú', 0x5B5B: 'bèi', 0x5B5C: 'zī', 0x5B5D: 'xiào', 0x5B5F: 'mèng', 0x5B62: 'bāo', 0x5B63: 'jì', 0x5B64: 'gū', 0x5B66: 'xué', 0x5B69: 'hái', 0x5B6A: 'luán', 0x5B6C: 'nāo', 0x5B70: 'shú', 0x5B71: 'càn,chán', 0x5B73: 'zī', 0x5B75: 'fū', 0x5B7A: 'rú', 0x5B7D: 'niè', 0x5B81: 'níng,nìng', 0x5B83: 'tā', 0x5B84: 'guǐ', 0x5B85: 'zhái', 0x5B87: 'yǔ', 0x5B88: 'shǒu', 0x5B89: 'ān', 0x5B8B: 'sòng', 0x5B8C: 'wán', 0x5B8F: 'hóng', 0x5B95: 'dàng', 0x5B97: 'zōng', 0x5B98: 'guān', 0x5B99: 'zhòu', 0x5B9A: 'dìng', 0x5B9B: 'wǎn,yuān', 0x5B9C: 'yí,yi', 0x5B9D: 'bǎo', 0x5B9E: 'shí,shi', 0x5BA0: 'chǒng', 0x5BA1: 'shěn', 0x5BA2: 'kè', 0x5BA3: 'xuān', 0x5BA4: 'shì', 0x5BA5: 'yòu', 0x5BA6: 'huàn', 0x5BAA: 'xiàn', 0x5BAB: 'gōng', 0x5BB0: 'zǎi', 0x5BB3: 'hài,hai', 0x5BB4: 'yàn', 0x5BB5: 'xiāo', 0x5BB6: 'jiā,jia,gū', 0x5BB9: 'róng', 0x5BBD: 'kuān', 0x5BBE: 'bīn', 0x5BBF: 'sù,xiù,sū', 0x5BC2: 'jì', 0x5BC4: 'jì', 0x5BC5: 'yín', 0x5BC6: 'mì,mi', 0x5BC7: 'kòu', 0x5BCC: 'fù', 0x5BD0: 'mèi', 0x5BD2: 'hán', 0x5BD3: 'yù', 0x5BDD: 'qǐn', 0x5BDE: 'mò', 0x5BDF: 'chá', 0x5BE1: 'guǎ', 0x5BE4: 'wù', 0x5BE5: 'liáo', 0x5BE8: 'zhài', 0x5BEE: 'liáo', 0x5BF0: 'huán', 0x5BF8: 'cùn,cun', 0x5BF9: 'duì', 0x5BFA: 'sì', 0x5BFB: 'xún', 0x5BFC: 'dǎo', 0x5BFF: 'shòu', 0x5C01: 'fēng', 0x5C04: 'shè', 0x5C06: 'jiàng,jiāng,qiāng', 0x5C09: 'wèi,yù', 0x5C0A: 'zūn', 0x5C0F: 'xiǎo', 0x5C11: 'shǎo,shào,shao', 0x5C14: 'ěr', 0x5C15: 'gǎ', 0x5C16: 'jiān', 0x5C18: 'chén', 0x5C1A: 'shàng,shang', 0x5C1C: 'gá,ga', 0x5C1D: 'cháng', 0x5C24: 'yóu', 0x5C25: 'liào', 0x5C27: 'yáo', 0x5C2C: 'gà', 0x5C31: 'jiù,jiu', 0x5C34: 'gān', 0x5C38: 'shī,shǐ', 0x5C39: 'yǐn', 0x5C3A: 'chǐ,chě', 0x5C3B: 'kāo', 0x5C3C: 'ní', 0x5C3D: 'jìn,jǐn', 0x5C3E: 'wěi,yǐ', 0x5C3F: 'niào,suī', 0x5C40: 'jú', 0x5C41: 'pì,pi', 0x5C42: 'céng', 0x5C43: 'xì', 0x5C44: 'bī,bi', 0x5C45: 'jū', 0x5C48: 'qū,qu', 0x5C49: 'tì,tí,ti', 0x5C4A: 'jiè', 0x5C4B: 'wū', 0x5C4C: 'diǎo', 0x5C4E: 'shǐ', 0x5C4F: 'píng,bǐng,bīng', 0x5C50: 'jī', 0x5C51: 'xiè', 0x5C55: 'zhǎn', 0x5C59: 'ē', 0x5C5E: 'shǔ,zhǔ', 0x5C60: 'tú', 0x5C61: 'lǚ', 0x5C63: 'xǐ', 0x5C65: 'lǚ', 0x5C6F: 'tún,zhūn', 0x5C71: 'shān', 0x5C79: 'yì', 0x5C7F: 'yǔ', 0x5C81: 'suì', 0x5C82: 'qǐ', 0x5C88: 'yá', 0x5C8C: 'jí', 0x5C90: 'qí', 0x5C91: 'cén', 0x5C94: 'chà', 0x5C96: 'qū', 0x5C97: 'gǎng,gāng', 0x5C98: 'xiàn', 0x5C9A: 'lán', 0x5C9B: 'dǎo', 0x5CA2: 'kě', 0x5CA9: 'yán', 0x5CAB: 'xiù', 0x5CAC: 'jiǎ', 0x5CAD: 'lǐng,líng', 0x5CB1: 'dài', 0x5CB3: 'yuè', 0x5CB7: 'mín', 0x5CB8: 'àn', 0x5CC4: 'yì', 0x5CC7: 'bā', 0x5CCB: 'xún', 0x5CD2: 'dòng,tóng', 0x5CD9: 'zhì,shì', 0x5CDA: 'mì', 0x5CE1: 'xiá', 0x5CE5: 'zhēng', 0x5CE6: 'luán', 0x5CE8: 'é', 0x5CEA: 'yù', 0x5CED: 'qiào', 0x5CF0: 'fēng', 0x5CFB: 'jùn', 0x5D01: 'kǎn', 0x5D02: 'láo', 0x5D03: 'lái', 0x5D06: 'kōng', 0x5D07: 'chóng', 0x5D0E: 'qí', 0x5D14: 'cuī', 0x5D16: 'yá', 0x5D1B: 'jué', 0x5D26: 'yān', 0x5D29: 'bēng', 0x5D2D: 'zhǎn', 0x5D2E: 'gù', 0x5D34: 'wǎi', 0x5D3D: 'zǎi', 0x5D4A: 'shèng', 0x5D4B: 'méi', 0x5D4C: 'qiàn,kǎn', 0x5D4E: 'yú', 0x5D56: 'chá', 0x5D58: 'róng', 0x5D5B: 'yú', 0x5D5E: 'tú', 0x5D69: 'sōng', 0x5D6B: 'zī', 0x5D6C: 'wéi', 0x5D74: 'jǐ', 0x5D82: 'zhàng', 0x5D8C: 'dǎo', 0x5D99: 'lín', 0x5DAA: 'yè', 0x5DB7: 'yí', 0x5DC5: 'diān', 0x5DCD: 'wēi', 0x5DDD: 'chuān', 0x5DDE: 'zhōu', 0x5DE1: 'xún', 0x5DE2: 'cháo', 0x5DE5: 'gōng,ēi', 0x5DE6: 'zuǒ', 0x5DE7: 'qiǎo', 0x5DE8: 'jù', 0x5DE9: 'gǒng', 0x5DEB: 'wū', 0x5DEE: 'chā,chāi,chà,cī', 0x5DF1: 'jǐ,ji', 0x5DF2: 'yǐ', 0x5DF3: 'sì', 0x5DF4: 'bā,ba', 0x5DF7: 'xiàng', 0x5DFD: 'xùn', 0x5DFE: 'jīn', 0x5E01: 'bì', 0x5E02: 'shì', 0x5E03: 'bù,bǔ', 0x5E05: 'shuài', 0x5E06: 'fān', 0x5E08: 'shī', 0x5E0C: 'xī', 0x5E0F: 'wéi', 0x5E10: 'zhàng', 0x5E11: 'tǎng', 0x5E15: 'pà', 0x5E16: 'tiě,tiē,tiè', 0x5E18: 'lián', 0x5E19: 'zhì', 0x5E1A: 'zhou,zhǒu', 0x5E1B: 'bó', 0x5E1C: 'zhì', 0x5E1D: 'dì', 0x5E21: 'píng', 0x5E26: 'dài', 0x5E27: 'zhēn', 0x5E2D: 'xí', 0x5E2E: 'bāng,bang', 0x5E37: 'wéi', 0x5E38: 'cháng', 0x5E39: 'shà', 0x5E3C: 'guó', 0x5E3D: 'mào', 0x5E42: 'mì', 0x5E44: 'wò', 0x5E45: 'fú,fu', 0x5E4C: 'huǎng', 0x5E54: 'màn', 0x5E55: 'mù', 0x5E5B: 'zhàng', 0x5E61: 'fān', 0x5E62: 'chuáng', 0x5E6A: 'méng', 0x5E72: 'gān,gàn', 0x5E73: 'píng', 0x5E74: 'nián', 0x5E76: 'bìng', 0x5E78: 'xìng', 0x5E7A: 'yāo', 0x5E7B: 'huàn', 0x5E7C: 'yòu', 0x5E7D: 'yōu', 0x5E7F: 'guǎng', 0x5E84: 'zhuāng', 0x5E86: 'qìng', 0x5E87: 'bì', 0x5E8A: 'chuáng', 0x5E8F: 'xù', 0x5E90: 'lú', 0x5E91: 'wǔ,wú', 0x5E93: 'kù', 0x5E94: 'yìng,yīng,ying', 0x5E95: 'dǐ', 0x5E96: 'páo', 0x5E97: 'diàn', 0x5E99: 'miào', 0x5E9A: 'gēng', 0x5E9C: 'fǔ', 0x5E9E: 'páng', 0x5E9F: 'fèi', 0x5EA6: 'dù,duó,du', 0x5EA7: 'zuò', 0x5EAD: 'tíng', 0x5EB5: 'ān', 0x5EB6: 'shù', 0x5EB7: 'kāng', 0x5EB8: 'yōng', 0x5EBE: 'yǔ', 0x5EC9: 'lián', 0x5ECA: 'láng', 0x5ECC: 'zhì', 0x5ED1: 'qín', 0x5ED3: 'kuò', 0x5ED6: 'liào', 0x5EE5: 'kuài', 0x5EEA: 'lǐn', 0x5EF6: 'yán', 0x5EF7: 'tíng', 0x5EFA: 'jiàn', 0x5EFF: 'niàn', 0x5F00: 'kāi,kai', 0x5F02: 'yì', 0x5F03: 'qì', 0x5F04: 'nòng,nong,lòng,leng', 0x5F08: 'yì', 0x5F0A: 'bì', 0x5F0B: 'yì', 0x5F0F: 'shì,shi', 0x5F11: 'shì', 0x5F13: 'gōng', 0x5F15: 'yǐn', 0x5F17: 'fú', 0x5F18: 'hóng', 0x5F1B: 'chí', 0x5F1F: 'dì,di,tì', 0x5F20: 'zhāng', 0x5F25: 'mí', 0x5F26: 'xián', 0x5F27: 'hú', 0x5F29: 'nǔ', 0x5F2A: 'jìng', 0x5F2D: 'mǐ', 0x5F2F: 'wān', 0x5F31: 'ruò', 0x5F39: 'dàn,tán,tan', 0x5F3A: 'qiáng,qiǎng,jiàng', 0x5F3C: 'bì', 0x5F40: 'gòu', 0x5F52: 'guī', 0x5F53: 'dāng,dàng,dang', 0x5F55: 'lù', 0x5F56: 'tuàn', 0x5F57: 'huì', 0x5F58: 'zhì', 0x5F5D: 'yí', 0x5F5F: 'huò', 0x5F62: 'xíng,xing', 0x5F64: 'tōng,tóng', 0x5F66: 'yàn', 0x5F67: 'yù', 0x5F69: 'cǎi,cai', 0x5F6A: 'biāo', 0x5F6C: 'bīn', 0x5F6D: 'péng', 0x5F70: 'zhāng', 0x5F71: 'yǐng', 0x5F73: 'chì', 0x5F77: 'páng,fǎng', 0x5F78: 'zhōng', 0x5F79: 'yì', 0x5F7B: 'chè', 0x5F7C: 'bǐ', 0x5F80: 'wǎng', 0x5F81: 'zhēng,zhèng', 0x5F84: 'jìng', 0x5F85: 'dài,dāi', 0x5F87: 'xùn', 0x5F88: 'hěn', 0x5F89: 'yáng', 0x5F8A: 'huái', 0x5F8B: 'lǜ', 0x5F90: 'xú', 0x5F92: 'tú', 0x5F95: 'lái', 0x5F97: 'dé,de,děi', 0x5F98: 'pái', 0x5F99: 'xǐ', 0x5F9C: 'cháng', 0x5FA1: 'yù', 0x5FA8: 'huáng', 0x5FAA: 'xún', 0x5FAD: 'yáo', 0x5FAE: 'wēi', 0x5FAF: 'xī', 0x5FB5: 'zhǐ', 0x5FB7: 'dé', 0x5FBC: 'jiǎo', 0x5FBD: 'huī', 0x5FC3: 'xīn,xin', 0x5FC5: 'bì', 0x5FC6: 'yì', 0x5FCC: 'jì', 0x5FCD: 'rěn', 0x5FCF: 'chàn', 0x5FD0: 'tǎn', 0x5FD1: 'tè', 0x5FD2: 'tè', 0x5FD6: 'cǔn', 0x5FD7: 'zhì', 0x5FD8: 'wàng', 0x5FD9: 'máng,mang', 0x5FDE: 'mín', 0x5FE0: 'zhōng', 0x5FE1: 'chōng', 0x5FE4: 'wǔ', 0x5FE7: 'yōu', 0x5FEA: 'zhōng,sōng', 0x5FEB: 'kuài,kuai', 0x5FEE: 'zhì', 0x5FF1: 'chén', 0x5FF5: 'niàn', 0x5FF8: 'niǔ', 0x5FFB: 'xīn', 0x5FFD: 'hū,hu', 0x5FFE: 'kài', 0x5FFF: 'fèn', 0x6000: 'huái', 0x6001: 'tài,tai', 0x6002: 'sǒng', 0x6004: 'òu', 0x6005: 'chàng', 0x6006: 'chuàng', 0x600D: 'zuò', 0x600E: 'zěn', 0x6012: 'nù', 0x6014: 'zhēng,zhèng', 0x6015: 'pà', 0x6016: 'bù', 0x6019: 'hù', 0x601B: 'dá', 0x601C: 'lián', 0x601D: 'sī,si', 0x6020: 'dài', 0x6021: 'yí', 0x6025: 'jí', 0x6026: 'pēng', 0x6027: 'xìng,xing', 0x6028: 'yuàn', 0x6029: 'ní', 0x602A: 'guài', 0x602B: 'fú', 0x602F: 'qiè', 0x6035: 'chù', 0x603B: 'zǒng', 0x603C: 'duǐ,duì', 0x6041: 'rèn', 0x6043: 'shì', 0x604B: 'liàn', 0x604D: 'huǎng', 0x6050: 'kǒng', 0x6052: 'héng', 0x6053: 'xī', 0x6055: 'shù', 0x6059: 'yàng', 0x6062: 'huī', 0x6063: 'zì', 0x6064: 'xù', 0x6068: 'hèn', 0x6069: 'ēn', 0x606A: 'kè', 0x606B: 'dòng', 0x606C: 'tián', 0x606D: 'gōng', 0x606F: 'xī,xi', 0x6070: 'qià', 0x6073: 'kěn', 0x6076: 'è,wù,ě', 0x6078: 'tòng', 0x6079: 'yān', 0x607A: 'kǎi', 0x607B: 'cè', 0x607C: 'nǎo', 0x607F: 'yǒng', 0x6084: 'qiāo,qiǎo,qiao', 0x6089: 'xī', 0x608C: 'tì', 0x608D: 'hàn', 0x6092: 'yì', 0x6094: 'huǐ', 0x6096: 'bèi', 0x609A: 'sǒng', 0x609B: 'quān', 0x609D: 'kuī', 0x609F: 'wù', 0x60A0: 'yōu,you', 0x60A3: 'huàn', 0x60A6: 'yuè', 0x60A7: 'lì', 0x60A8: 'nín', 0x60AC: 'xuán', 0x60AD: 'qiān', 0x60AF: 'mǐn', 0x60B1: 'fěi', 0x60B2: 'bēi', 0x60B4: 'cuì', 0x60B8: 'jì', 0x60BB: 'xìng', 0x60BC: 'dào', 0x60C5: 'qíng,qing', 0x60C6: 'chóu', 0x60CA: 'jīng', 0x60CB: 'wǎn', 0x60D1: 'huò,huo', 0x60D3: 'quán', 0x60D5: 'tì', 0x60D8: 'wǎng', 0x60D9: 'chuò', 0x60DA: 'hū', 0x60DB: 'hūn', 0x60DC: 'xī', 0x60DD: 'chǎng', 0x60DF: 'wéi,wei', 0x60E0: 'huì', 0x60E6: 'diàn', 0x60E7: 'jù', 0x60E8: 'cǎn', 0x60E9: 'chéng', 0x60EB: 'bèi', 0x60EC: 'qiè', 0x60ED: 'cán', 0x60EE: 'dàn', 0x60EF: 'guàn', 0x60F0: 'duò', 0x60F3: 'xiǎng,xiǎn', 0x60F4: 'zhuì', 0x60F6: 'huáng', 0x60F9: 'rě', 0x60FA: 'xīng', 0x6101: 'chóu', 0x6106: 'qiān', 0x6108: 'yù', 0x6109: 'yú', 0x610E: 'bì', 0x610F: 'yì,yi', 0x6115: 'è', 0x611A: 'yú', 0x611F: 'gǎn', 0x6120: 'yùn', 0x6123: 'lèng,leng', 0x6124: 'fèn', 0x6127: 'kuì', 0x612B: 'sù', 0x613F: 'yuàn', 0x6148: 'cí', 0x614C: 'huāng', 0x614E: 'shèn', 0x6151: 'shè', 0x6155: 'mù', 0x6162: 'màn,man', 0x6167: 'huì', 0x6168: 'kǎi', 0x6170: 'wèi', 0x6175: 'yōng', 0x6177: 'kāng', 0x618B: 'biē', 0x618E: 'zēng', 0x6194: 'qiáo', 0x619D: 'duì', 0x61A7: 'chōng', 0x61A8: 'hān', 0x61A9: 'qì', 0x61AC: 'jǐng', 0x61B7: 'chù', 0x61BE: 'hàn', 0x61C2: 'dǒng', 0x61C8: 'xiè', 0x61CA: 'ào', 0x61CB: 'mào', 0x61D1: 'mèn', 0x61D2: 'lǎn', 0x61E6: 'nuò', 0x61EE: 'yōu', 0x61F5: 'měng', 0x61FF: 'yì', 0x6206: 'gàng', 0x6208: 'gē', 0x620A: 'wù', 0x620B: 'jiān', 0x620C: 'xū,qu', 0x620D: 'shù', 0x620E: 'róng', 0x620F: 'xì', 0x6210: 'chéng,cheng', 0x6211: 'wǒ', 0x6212: 'jiè', 0x6215: 'qiāng', 0x6216: 'huò', 0x6217: 'qiàng,qiāng', 0x6218: 'zhàn,zhan', 0x621A: 'qī,qi', 0x621B: 'jiá', 0x621F: 'jǐ', 0x622A: 'jié', 0x622E: 'lù', 0x6233: 'chuō', 0x6234: 'dài', 0x6237: 'hù,hu', 0x623D: 'hù', 0x623E: 'lì', 0x623F: 'fáng,fang', 0x6240: 'suǒ', 0x6241: 'biǎn,piān', 0x6242: 'diàn', 0x6247: 'shàn,shān,shan', 0x6248: 'hù', 0x6249: 'fēi', 0x624B: 'shǒu,shou', 0x624D: 'cái,cai', 0x624E: 'zhā,zā,zhá,zha', 0x6251: 'pū', 0x6252: 'bā,pá', 0x6253: 'dǎ,dá,da', 0x6254: 'rēng', 0x6258: 'tuō', 0x625B: 'káng', 0x6263: 'kòu', 0x6266: 'qiān', 0x6267: 'zhí', 0x6269: 'kuò', 0x626A: 'mén', 0x626B: 'sǎo,sào', 0x626C: 'yáng', 0x626D: 'niǔ,niu', 0x626E: 'bàn,ban', 0x626F: 'chě,che', 0x6270: 'rǎo', 0x6273: 'bān', 0x6276: 'fú', 0x6279: 'pī', 0x627C: 'è', 0x627E: 'zhǎo', 0x627F: 'chéng,cheng', 0x6280: 'jì', 0x6283: 'biàn', 0x6284: 'chāo', 0x6289: 'jué', 0x628A: 'bǎ,bà', 0x628F: 'wán', 0x6291: 'yì', 0x6292: 'shū', 0x6293: 'zhuā', 0x6295: 'tóu', 0x6296: 'dǒu', 0x6297: 'kàng', 0x6298: 'zhé,zhē,shé', 0x629A: 'fǔ', 0x629B: 'pāo', 0x629F: 'tuán', 0x62A0: 'kōu', 0x62A1: 'lún,lūn', 0x62A2: 'qiǎng,qiāng', 0x62A4: 'hù', 0x62A5: 'bào', 0x62A8: 'pēng', 0x62AB: 'pī', 0x62AC: 'tái', 0x62B1: 'bào', 0x62B5: 'dǐ', 0x62B9: 'mǒ,mò,mā', 0x62BB: 'chēn', 0x62BC: 'yā', 0x62BD: 'chōu,chou', 0x62BF: 'mǐn', 0x62C2: 'fú,bì', 0x62C5: 'dān,dàn,dan', 0x62C6: 'chāi', 0x62C7: 'mǔ,mu', 0x62C8: 'niān', 0x62C9: 'lā,la,lǎ,là', 0x62CA: 'fǔ', 0x62CC: 'bàn', 0x62CD: 'pāi', 0x62CE: 'līn', 0x62D0: 'guǎi,guai', 0x62D2: 'jù', 0x62D3: 'tuò,tà', 0x62D4: 'bá', 0x62D6: 'tuō', 0x62D7: 'ào,niù,ǎo', 0x62D8: 'jū', 0x62D9: 'zhuō,zhuó', 0x62DA: 'pàn,pīn', 0x62DB: 'zhāo', 0x62DC: 'bài,bái,bai', 0x62DF: 'nǐ', 0x62E2: 'lǒng', 0x62E3: 'jiǎn', 0x62E5: 'yōng', 0x62E6: 'lán', 0x62E7: 'nǐng,níng', 0x62E8: 'bō', 0x62E9: 'zé,zhái', 0x62EC: 'kuò', 0x62ED: 'shì', 0x62EE: 'jié', 0x62EF: 'zhěng', 0x62F1: 'gǒng,gōng', 0x62F3: 'quán', 0x62F4: 'shuān', 0x62F6: 'zǎn', 0x62F7: 'kǎo', 0x62FC: 'pīn', 0x62FD: 'zhuài,zhuǎi,yè', 0x62FE: 'shí,shi,shè,shī', 0x62FF: 'ná', 0x6301: 'chí,chi', 0x6302: 'guà', 0x6307: 'zhǐ,zhi', 0x6308: 'qiè', 0x6309: 'àn', 0x630E: 'kuà', 0x6311: 'tiāo,tiǎo', 0x6316: 'wā', 0x631A: 'zhì', 0x631B: 'luán', 0x631D: 'wō', 0x631E: 'tà', 0x631F: 'xié', 0x6320: 'náo,nao', 0x6321: 'dǎng,dàng', 0x6323: 'zhēng,zhèng', 0x6324: 'jǐ', 0x6325: 'huī', 0x6328: 'ái,āi', 0x632A: 'nuó', 0x632B: 'cuò', 0x632F: 'zhèn', 0x6332: 'sa,suō', 0x6339: 'yì', 0x633A: 'tǐng', 0x633D: 'wǎn', 0x6342: 'wǔ', 0x6345: 'tǒng', 0x6346: 'kǔn', 0x6349: 'zhuō', 0x634B: 'luō', 0x634D: 'hàn', 0x634E: 'shāo', 0x634F: 'niē,nie', 0x6350: 'juān', 0x6355: 'bǔ', 0x635E: 'lāo', 0x635F: 'sǔn', 0x6361: 'jiǎn', 0x6362: 'huàn', 0x6363: 'dǎo,dao', 0x6367: 'pěng', 0x6369: 'liè', 0x636E: 'jù,jū', 0x636F: 'dáo', 0x6371: 'ái', 0x6376: 'chuí', 0x6377: 'jié', 0x637A: 'nà', 0x637B: 'niǎn', 0x6380: 'xiān', 0x6382: 'diān', 0x6387: 'duō,duo', 0x6388: 'shòu', 0x6389: 'diào', 0x638C: 'zhǎng,zhang', 0x638F: 'tāo', 0x6390: 'qiā', 0x6392: 'pái,pǎi', 0x6396: 'yè,yē', 0x6398: 'jué', 0x63A0: 'lüè', 0x63A2: 'tàn', 0x63A3: 'chè', 0x63A5: 'jiē', 0x63A7: 'kòng', 0x63A8: 'tuī', 0x63A9: 'yǎn', 0x63AA: 'cuò', 0x63AC: 'jū', 0x63AE: 'qián', 0x63B0: 'bāi', 0x63B3: 'lǔ', 0x63B4: 'guāi', 0x63B7: 'zhì', 0x63B8: 'shàn,dǎn', 0x63BA: 'chān', 0x63C4: 'yú', 0x63C6: 'kuí', 0x63C9: 'róu', 0x63CD: 'zòu', 0x63CE: 'xuān', 0x63CF: 'miáo', 0x63D0: 'tí,dī', 0x63D2: 'chā', 0x63D6: 'yī', 0x63D8: 'yóng', 0x63E0: 'yà', 0x63E1: 'wò', 0x63E3: 'chuǎi,chuāi,chuài', 0x63E6: 'lá', 0x63E9: 'kāi', 0x63EA: 'jiū', 0x63ED: 'jiē', 0x63F4: 'yuán', 0x63F6: 'yé', 0x63FD: 'lǎn', 0x63FE: 'wèn', 0x6400: 'chān', 0x6401: 'gē,ge', 0x6402: 'lōu,lǒu,lou', 0x6405: 'jiǎo', 0x640B: 'chuāi', 0x640F: 'bó', 0x6410: 'chù', 0x6413: 'cuō,cuo', 0x6414: 'sāo', 0x641C: 'sōu', 0x641E: 'gǎo', 0x6421: 'sǎng', 0x6426: 'nuò', 0x642A: 'táng', 0x642C: 'bān', 0x642D: 'dā,da', 0x6433: 'huá', 0x6434: 'qiān', 0x643A: 'xié', 0x6441: 'èn', 0x6444: 'shè', 0x6446: 'bǎi,bai', 0x6447: 'yáo', 0x6448: 'bìn', 0x644A: 'tān,tan', 0x6452: 'bìng', 0x6454: 'shuāi,shuǎi', 0x6458: 'zhāi', 0x645E: 'luò', 0x6467: 'cuī', 0x6469: 'mó,mā', 0x6478: 'mō,mo', 0x6479: 'mó', 0x647A: 'zhé', 0x6482: 'liào', 0x6485: 'juē', 0x6487: 'piě,piē', 0x6491: 'chēng', 0x6492: 'sā,sǎ,sa', 0x6495: 'sī', 0x649E: 'zhuàng', 0x64A4: 'chè', 0x64A9: 'liáo,liāo', 0x64AC: 'qiào', 0x64AD: 'bō', 0x64AE: 'cuō', 0x64B0: 'zhuàn', 0x64B5: 'niǎn', 0x64B7: 'xié', 0x64B8: 'lū', 0x64BA: 'cuān', 0x64BC: 'hàn', 0x64C0: 'gǎn', 0x64C2: 'léi,lèi', 0x64C5: 'shàn', 0x64CD: 'cāo,cào', 0x64CE: 'qíng', 0x64D2: 'qín', 0x64D8: 'bò', 0x64DE: 'sǒu', 0x64E2: 'zhuó', 0x64E4: 'xǐng', 0x64E6: 'cā', 0x6500: 'pān', 0x6509: 'huō', 0x6512: 'cuán,zǎn', 0x6518: 'rǎng,rang', 0x6525: 'zuàn', 0x652B: 'jué', 0x652F: 'zhī', 0x6536: 'shōu', 0x6538: 'yōu', 0x6539: 'gǎi', 0x653B: 'gōng', 0x653E: 'fàng', 0x653F: 'zhèng', 0x6545: 'gù,gu', 0x6548: 'xiào', 0x654C: 'dí', 0x654F: 'mǐn', 0x6551: 'jiù', 0x6555: 'chì', 0x6556: 'áo', 0x6559: 'jiào,jiāo', 0x655B: 'liǎn', 0x655D: 'bì', 0x655E: 'chǎng,chang,cháng', 0x6562: 'gǎn', 0x6563: 'sàn,sǎn,san', 0x6566: 'dūn', 0x656A: 'duō', 0x656C: 'jìng', 0x6570: 'shù,shǔ,shu,shuò', 0x6572: 'qiāo', 0x6574: 'zhěng', 0x6577: 'fū', 0x6587: 'wén', 0x658B: 'zhāi', 0x658C: 'bīn', 0x6590: 'fěi', 0x6591: 'bān', 0x6593: 'lán', 0x6597: 'dòu,dǒu', 0x6599: 'liào,liao', 0x659B: 'hú', 0x659C: 'xié,xie', 0x659D: 'jiǎ', 0x659F: 'zhēn', 0x65A1: 'wò', 0x65A4: 'jīn', 0x65A5: 'chì', 0x65A7: 'fǔ', 0x65A9: 'zhǎn', 0x65AB: 'zhuó', 0x65AD: 'duàn', 0x65AF: 'sī', 0x65B0: 'xīn', 0x65B9: 'fāng,fang', 0x65BD: 'shī', 0x65C1: 'páng', 0x65C3: 'zhān', 0x65C4: 'mào,máo', 0x65C5: 'lǚ', 0x65C6: 'pèi', 0x65CB: 'xuán,xuàn', 0x65CC: 'jīng', 0x65CE: 'nǐ', 0x65CF: 'zú', 0x65D6: 'yǐ', 0x65D7: 'qí', 0x65DB: 'fān', 0x65E0: 'wú,mó,wū', 0x65E2: 'jì', 0x65E5: 'rì', 0x65E6: 'dàn', 0x65E7: 'jiù', 0x65E8: 'zhǐ', 0x65E9: 'zǎo', 0x65EC: 'xún', 0x65ED: 'xù', 0x65EE: 'gā', 0x65EF: 'lá', 0x65F0: 'gàn', 0x65F1: 'hàn', 0x65F6: 'shí', 0x65F7: 'kuàng', 0x65FA: 'wàng', 0x6600: 'yún', 0x6602: 'áng', 0x6606: 'kūn', 0x6609: 'fǎng', 0x660A: 'hào', 0x660C: 'chāng', 0x660E: 'míng,ming', 0x660F: 'hūn', 0x6613: 'yì', 0x6614: 'xī', 0x6619: 'tán', 0x661D: 'zan', 0x661F: 'xīng,xing', 0x6620: 'yìng', 0x6625: 'chūn', 0x6627: 'mèi', 0x6628: 'zuó', 0x662B: 'xù', 0x662D: 'zhāo', 0x662F: 'shì,shi', 0x6631: 'yù', 0x6634: 'mǎo', 0x6635: 'nì', 0x663C: 'zhòu', 0x663E: 'xiǎn', 0x6643: 'huǎng,huàng,huang', 0x664B: 'jìn', 0x664C: 'shǎng', 0x664F: 'yàn', 0x6652: 'shài', 0x6653: 'xiǎo', 0x6654: 'yè', 0x6655: 'yùn,yūn', 0x6656: 'huī', 0x6657: 'hán', 0x665A: 'wǎn', 0x6664: 'wù', 0x6666: 'huì', 0x6668: 'chén', 0x666C: 'zuì', 0x666E: 'pǔ', 0x666F: 'jǐng', 0x6670: 'xī', 0x6674: 'qíng', 0x6676: 'jīng', 0x6677: 'guǐ', 0x667A: 'zhì', 0x667E: 'liàng', 0x6682: 'zàn', 0x6684: 'xuān', 0x6686: 'yí', 0x6687: 'xiá', 0x6691: 'shǔ', 0x6696: 'nuǎn', 0x6697: 'àn', 0x66A1: 'wěng', 0x66A7: 'ài', 0x66A8: 'jì', 0x66AE: 'mù', 0x66B4: 'bào,pù', 0x66B9: 'xiān', 0x66BE: 'tūn', 0x66D9: 'shǔ', 0x66DA: 'méng', 0x66DC: 'yào', 0x66DD: 'pù,bào', 0x66E6: 'xī', 0x66F0: 'yuē', 0x66F1: 'yuē', 0x66F2: 'qū,qǔ', 0x66F3: 'yè', 0x66F4: 'gēng,gèng', 0x66F9: 'cáo', 0x66FC: 'màn', 0x66FE: 'zēng,céng', 0x66FF: 'tì', 0x6700: 'zuì', 0x6708: 'yuè', 0x6709: 'yǒu', 0x670A: 'ruǎn', 0x670B: 'péng', 0x670D: 'fú,fu,fù', 0x6710: 'qú', 0x6714: 'shuò', 0x6715: 'zhèn', 0x6717: 'lǎng', 0x671B: 'wàng', 0x671D: 'cháo,zhāo', 0x671F: 'qī', 0x6726: 'méng', 0x6728: 'mù', 0x672A: 'wèi', 0x672B: 'mò,mo,me', 0x672C: 'běn', 0x672D: 'zhá', 0x672F: 'shù,zhú', 0x6731: 'zhū', 0x6734: 'pǔ,pò,piáo,pú', 0x6735: 'duǒ,duo,duō', 0x673A: 'jī', 0x673D: 'xiǔ', 0x6740: 'shā', 0x6742: 'zá,za', 0x6743: 'quán', 0x6746: 'gǎn,gān', 0x6748: 'chà', 0x6749: 'shān', 0x674C: 'wù', 0x674E: 'lǐ,li', 0x674F: 'xìng', 0x6750: 'cái,cai', 0x6751: 'cūn', 0x6753: 'sháo', 0x6756: 'zhàng', 0x675C: 'dù', 0x675E: 'qǐ', 0x675F: 'shù', 0x6760: 'gàng', 0x6761: 'tiáo,tiao', 0x6765: 'lái,lai', 0x6768: 'yáng', 0x676A: 'miǎo', 0x676D: 'háng', 0x676F: 'bēi', 0x6770: 'jié', 0x6773: 'yǎo', 0x6775: 'chǔ', 0x6777: 'pa,pá', 0x677C: 'zhù', 0x677E: 'sōng', 0x677F: 'bǎn', 0x6781: 'jí', 0x6784: 'gòu', 0x6787: 'pí', 0x6789: 'wǎng,wang', 0x678B: 'fāng', 0x6790: 'xī,xi', 0x6792: 'yā', 0x6793: 'dǒu', 0x6795: 'zhěn', 0x6797: 'lín', 0x6798: 'ruì', 0x679A: 'méi', 0x679C: 'guǒ', 0x679D: 'zhī', 0x679E: 'cōng,zōng', 0x67A2: 'shū', 0x67A3: 'zǎo', 0x67A5: 'lì', 0x67AA: 'qiāng', 0x67AB: 'fēng', 0x67AD: 'xiāo', 0x67AF: 'kū', 0x67B3: 'zhǐ', 0x67B6: 'jià', 0x67B7: 'jiā', 0x67B8: 'gǒu,gōu,jǔ', 0x67C4: 'bǐng', 0x67CA: 'zhōng', 0x67CF: 'bǎi,bó,bò', 0x67D0: 'mǒu', 0x67D1: 'gān', 0x67D3: 'rǎn', 0x67D4: 'róu', 0x67D8: 'zhè', 0x67DA: 'yòu', 0x67DC: 'guì', 0x67DD: 'tuò', 0x67DE: 'zhà,zuò', 0x67E0: 'níng', 0x67E2: 'dǐ', 0x67E5: 'chá,zhā', 0x67E9: 'jiù', 0x67EC: 'jiǎn', 0x67EF: 'kē', 0x67F0: 'nài', 0x67F1: 'zhù', 0x67F3: 'liǔ', 0x67F4: 'chái', 0x67FF: 'shì', 0x6800: 'zhī', 0x6805: 'zhà,shān', 0x6807: 'biāo', 0x6808: 'zhàn', 0x6809: 'zhì,jié', 0x680B: 'dòng', 0x680E: 'lì', 0x680F: 'lán', 0x6811: 'shù', 0x6813: 'shuān', 0x6816: 'qī,xī', 0x6817: 'lì', 0x681D: 'kuò', 0x6821: 'xiào,jiào', 0x6829: 'xǔ', 0x682A: 'zhū', 0x6831: 'gǒng', 0x6832: 'kǎo', 0x6833: 'lǎo', 0x6834: 'zhān', 0x6837: 'yàng', 0x6838: 'hé,hú,hē', 0x6839: 'gēn', 0x683C: 'gé,ge', 0x683D: 'zāi', 0x683E: 'luán', 0x6840: 'jié', 0x6841: 'héng,háng', 0x6842: 'guì', 0x6843: 'táo,tao', 0x6844: 'guāng', 0x6845: 'wéi', 0x6846: 'kuàng', 0x6848: 'àn', 0x6849: 'ān', 0x684C: 'zhuō', 0x684E: 'zhì', 0x6850: 'tóng', 0x6851: 'sāng,sǎng', 0x6853: 'huán', 0x6854: 'jú,jié', 0x6855: 'jiù', 0x6860: 'yā', 0x6861: 'ráo', 0x6862: 'zhēn', 0x6863: 'dàng,dǎng', 0x6864: 'qī', 0x6865: 'qiáo', 0x6866: 'huà', 0x6867: 'guì,huì', 0x6868: 'jiǎng', 0x6869: 'zhuāng', 0x686B: 'suō', 0x6872: 'po', 0x6874: 'fú', 0x6876: 'tǒng', 0x6877: 'jué', 0x6881: 'liáng,liang', 0x6885: 'méi', 0x6886: 'bāng', 0x688F: 'gù', 0x6893: 'zǐ', 0x6897: 'gěng', 0x689C: 'jiā', 0x68A2: 'shāo', 0x68A3: 'chén', 0x68A6: 'mèng', 0x68A7: 'wú', 0x68A8: 'lí', 0x68AD: 'suō', 0x68AF: 'tī', 0x68B0: 'xiè', 0x68B3: 'shū', 0x68B5: 'fàn,fán', 0x68BC: 'táo', 0x68BE: 'lái', 0x68BF: 'lián', 0x68C0: 'jiǎn', 0x68C2: 'líng', 0x68C9: 'mián', 0x68CB: 'qí', 0x68CD: 'gùn', 0x68D2: 'bàng', 0x68D5: 'zōng,zòng', 0x68D8: 'jí', 0x68DA: 'péng,peng', 0x68E0: 'táng', 0x68E3: 'dì', 0x68EE: 'sēn', 0x68F0: 'chuí', 0x68F1: 'léng,leng,líng,lēng', 0x68F5: 'kē', 0x68FA: 'guān', 0x68FB: 'fēn', 0x68FC: 'fén', 0x6901: 'guǒ', 0x6905: 'yǐ', 0x6906: 'zhòu,chóu,diào', 0x690B: 'liáng', 0x690D: 'zhí', 0x690E: 'zhuī,zhù', 0x6912: 'jiāo', 0x691F: 'dú', 0x6924: 'luó', 0x6925: 'zhī', 0x692A: 'pèng', 0x692D: 'tuǒ', 0x6930: 'yē,yé', 0x6934: 'duàn', 0x693D: 'chuán', 0x693F: 'chūn', 0x6942: 'zhā', 0x6954: 'xiē', 0x695A: 'chǔ,chu', 0x695D: 'liàn', 0x695E: 'léng,lèng,leng', 0x6960: 'nán', 0x6963: 'méi', 0x6966: 'xuàn', 0x696E: 'chǔ', 0x6977: 'kǎi', 0x6978: 'qiū', 0x6979: 'yíng', 0x697C: 'lóu,lòu,lou', 0x6982: 'gài', 0x6984: 'lǎn', 0x6985: 'wēn', 0x6986: 'yú', 0x6988: 'lǘ', 0x6989: 'jǔ', 0x6994: 'láng,lang', 0x6995: 'róng', 0x6998: 'jǔ', 0x699B: 'zhēn', 0x699C: 'bǎng,bàng', 0x69A7: 'fěi', 0x69A8: 'zhà', 0x69AB: 'sǔn', 0x69AD: 'xiè', 0x69B4: 'liú,liu', 0x69B7: 'què', 0x69BB: 'tà', 0x69C1: 'gǎo', 0x69C3: 'pán', 0x69CC: 'chuí', 0x69D0: 'huái', 0x69D1: 'dāi', 0x69D4: 'gāo', 0x69DB: 'kǎn,jiàn', 0x69DC: 'zuì', 0x69DF: 'bīng,bīn', 0x69ED: 'qì', 0x69F2: 'hú', 0x69F5: 'huàn', 0x69FA: 'kāng', 0x69FD: 'cáo', 0x69FF: 'jǐn', 0x6A0A: 'fán', 0x6A1F: 'zhāng', 0x6A21: 'mó,mú', 0x6A2A: 'héng,hèng', 0x6A31: 'yīng', 0x6A35: 'qiáo', 0x6A3D: 'zūn', 0x6A44: 'gǎn', 0x6A47: 'qiāo', 0x6A50: 'tuó', 0x6A58: 'jú', 0x6A59: 'chéng', 0x6A5B: 'jué', 0x6A61: 'xiàng', 0x6A65: 'zhū', 0x6A71: 'chú', 0x6A79: 'lǔ', 0x6A7C: 'yuán', 0x6A80: 'tán', 0x6A83: 'yǐn', 0x6A84: 'xí', 0x6A8E: 'qín', 0x6A90: 'yán', 0x6A97: 'bò', 0x6AAC: 'méng', 0x6AB5: 'jì', 0x6AC6: 'kuí', 0x6B20: 'qiàn,qian', 0x6B21: 'cì', 0x6B22: 'huān,huan', 0x6B23: 'xīn', 0x6B27: 'ōu', 0x6B32: 'yù', 0x6B37: 'xī', 0x6B3A: 'qī', 0x6B3E: 'kuǎn', 0x6B3F: 'kǎn', 0x6B43: 'shà', 0x6B47: 'xiē', 0x6B49: 'qiàn', 0x6B4C: 'gē,ge', 0x6B54: 'xū', 0x6B59: 'shè', 0x6B62: 'zhǐ', 0x6B63: 'zhèng,zhēng', 0x6B64: 'cǐ', 0x6B65: 'bù', 0x6B66: 'wǔ', 0x6B67: 'qí', 0x6B6A: 'wāi,wai', 0x6B79: 'dǎi', 0x6B7B: 'sǐ', 0x6B7C: 'jiān', 0x6B82: 'cú', 0x6B83: 'yāng', 0x6B84: 'tiǎn', 0x6B86: 'dài', 0x6B87: 'shāng', 0x6B89: 'xùn', 0x6B8A: 'shū', 0x6B8B: 'cán', 0x6B8D: 'piǎo', 0x6B92: 'yǔn', 0x6B93: 'liàn', 0x6B96: 'zhí,shi', 0x6B97: 'yè', 0x6B9A: 'dān', 0x6B9C: 'dié', 0x6BA1: 'bìn', 0x6BB4: 'ōu', 0x6BB5: 'duàn', 0x6BB7: 'yīn,yān', 0x6BBF: 'diàn', 0x6BC1: 'huǐ', 0x6BC2: 'gǔ,gū', 0x6BC5: 'yì', 0x6BCB: 'wú', 0x6BCD: 'mǔ', 0x6BCF: 'měi', 0x6BD0: 'ǎi', 0x6BD2: 'dú', 0x6BD3: 'yù', 0x6BD4: 'bǐ,bì,bí,bī', 0x6BD5: 'bì', 0x6BD6: 'bì', 0x6BD7: 'pí', 0x6BD9: 'bì', 0x6BDB: 'máo,mao', 0x6BE1: 'zhān', 0x6BEB: 'háo', 0x6BEF: 'tǎn', 0x6BFD: 'jiàn', 0x6C05: 'chǎng', 0x6C0F: 'shì,zhī', 0x6C11: 'mín', 0x6C13: 'máng,méng', 0x6C14: 'qì,qi', 0x6C18: 'dāo', 0x6C1B: 'fēn', 0x6C1F: 'fú', 0x6C22: 'qīng', 0x6C24: 'yīn', 0x6C27: 'yǎng', 0x6C28: 'ān', 0x6C2A: 'kè', 0x6C2E: 'dàn', 0x6C2F: 'lǜ', 0x6C30: 'qíng', 0x6C32: 'yūn', 0x6C34: 'shuǐ,shui', 0x6C38: 'yǒng', 0x6C39: 'dàng', 0x6C3D: 'tǔn', 0x6C40: 'tīng', 0x6C41: 'zhī', 0x6C42: 'qiú', 0x6C47: 'huì', 0x6C49: 'hàn', 0x6C50: 'xī', 0x6C55: 'shàn', 0x6C57: 'hàn,hán', 0x6C59: 'wū', 0x6C5B: 'xùn', 0x6C5D: 'rǔ', 0x6C5E: 'gǒng', 0x6C5F: 'jiāng', 0x6C60: 'chí', 0x6C61: 'wū', 0x6C64: 'tāng,táng', 0x6C68: 'mì', 0x6C69: 'gǔ', 0x6C6A: 'wāng', 0x6C6B: 'jǐng', 0x6C70: 'tài,tai', 0x6C72: 'jí', 0x6C74: 'biàn', 0x6C76: 'wèn', 0x6C79: 'xiōng', 0x6C7D: 'qì', 0x6C7E: 'fén', 0x6C81: 'qìn', 0x6C82: 'yí', 0x6C83: 'wò', 0x6C85: 'yuán', 0x6C86: 'hàng', 0x6C88: 'shěn,chén', 0x6C89: 'chén,chēn', 0x6C8C: 'dùn', 0x6C90: 'mù', 0x6C93: 'tà,ta', 0x6C99: 'shā', 0x6C9B: 'pèi', 0x6C9F: 'gōu,gòu', 0x6CA1: 'méi,mò', 0x6CA3: 'fēng', 0x6CA4: 'òu', 0x6CA5: 'lì', 0x6CA6: 'lún', 0x6CA7: 'cāng', 0x6CAA: 'hù', 0x6CAB: 'mò,mo', 0x6CAD: 'shù', 0x6CAE: 'jǔ', 0x6CB1: 'tuó', 0x6CB3: 'hé', 0x6CB8: 'fèi', 0x6CB9: 'yóu', 0x6CBB: 'zhì', 0x6CBC: 'zhǎo', 0x6CBD: 'gū', 0x6CBE: 'zhān', 0x6CBF: 'yán', 0x6CC3: 'jū', 0x6CC4: 'xiè', 0x6CC5: 'qiú', 0x6CC6: 'yì', 0x6CC9: 'quán', 0x6CCA: 'bó,pō', 0x6CCC: 'mì,bì', 0x6CD3: 'hóng', 0x6CD4: 'gān', 0x6CD5: 'fǎ,fá,fa', 0x6CD7: 'sì', 0x6CDB: 'fàn,fan', 0x6CDD: 'sù', 0x6CDE: 'nìng', 0x6CE1: 'pào,pāo,pao', 0x6CE2: 'bō', 0x6CE3: 'qì', 0x6CE5: 'ní,nì', 0x6CE8: 'zhù', 0x6CEA: 'lèi', 0x6CEE: 'pàn', 0x6CEF: 'mǐn', 0x6CF0: 'tài', 0x6CF1: 'yāng', 0x6CF3: 'yǒng', 0x6CF5: 'bèng', 0x6CF7: 'lóng,shuāng', 0x6CF8: 'lú', 0x6CFB: 'xiè', 0x6CFC: 'pō,po', 0x6CFD: 'zé', 0x6CFE: 'jīng', 0x6D01: 'jié', 0x6D04: 'huí', 0x6D07: 'yīn', 0x6D0B: 'yáng,yāng', 0x6D12: 'sǎ', 0x6D17: 'xǐ,xiǎn', 0x6D19: 'zhū', 0x6D1B: 'luò', 0x6D1E: 'dòng,tóng', 0x6D23: 'mǐ', 0x6D25: 'jīn', 0x6D27: 'wěi', 0x6D28: 'xiáo', 0x6D2A: 'hóng', 0x6D2E: 'táo', 0x6D31: 'ěr', 0x6D32: 'zhōu', 0x6D35: 'xún', 0x6D3B: 'huó,huo', 0x6D3C: 'wā', 0x6D3D: 'qià', 0x6D3E: 'pài', 0x6D41: 'liú', 0x6D43: 'jiā', 0x6D45: 'qiǎn', 0x6D46: 'jiāng,jiàng', 0x6D47: 'jiāo', 0x6D48: 'zhēn', 0x6D49: 'shī', 0x6D4A: 'zhuó', 0x6D4B: 'cè', 0x6D4E: 'jì,jǐ', 0x6D4F: 'liú', 0x6D50: 'chǎn', 0x6D51: 'hún', 0x6D52: 'hǔ', 0x6D53: 'nóng', 0x6D54: 'xún', 0x6D59: 'zhè', 0x6D5A: 'jùn,xùn', 0x6D5C: 'bāng', 0x6D60: 'xī', 0x6D63: 'huàn', 0x6D66: 'pǔ', 0x6D69: 'hào', 0x6D6A: 'làng', 0x6D6E: 'fú', 0x6D74: 'yù', 0x6D77: 'hǎi', 0x6D78: 'jìn', 0x6D7D: 'suī', 0x6D82: 'tú,tu', 0x6D85: 'niè', 0x6D88: 'xiāo', 0x6D89: 'shè', 0x6D8C: 'yǒng,chōng', 0x6D8E: 'xián,xian', 0x6D93: 'juān', 0x6D95: 'tì', 0x6D9B: 'tāo', 0x6D9D: 'lào', 0x6D9E: 'lái', 0x6D9F: 'lián', 0x6DA1: 'wō,guō', 0x6DA3: 'huàn', 0x6DA4: 'dí', 0x6DA6: 'rùn', 0x6DA7: 'jiàn', 0x6DA8: 'zhǎng,zhàng', 0x6DA9: 'sè', 0x6DAA: 'fú', 0x6DAE: 'shuàn', 0x6DAF: 'yá', 0x6DB2: 'yè', 0x6DB5: 'hán', 0x6DB8: 'hé', 0x6DBF: 'zhuō', 0x6DC0: 'diàn', 0x6DC4: 'zī', 0x6DC5: 'xī', 0x6DC6: 'xiáo', 0x6DC7: 'qí', 0x6DCB: 'lín,lìn', 0x6DCC: 'tǎng', 0x6DD1: 'shū', 0x6DD6: 'nào', 0x6DD8: 'táo', 0x6DDE: 'sōng', 0x6DE1: 'dàn', 0x6DE4: 'yū', 0x6DEB: 'yín', 0x6DEC: 'cuì', 0x6DEE: 'huái', 0x6DEF: 'yù', 0x6DF1: 'shēn', 0x6DF3: 'chún', 0x6DF7: 'hùn,hún,hun', 0x6DF9: 'yān', 0x6DFB: 'tiān', 0x6DFC: 'miǎo', 0x6E05: 'qīng', 0x6E0A: 'yuān', 0x6E0C: 'lù', 0x6E0D: 'zì', 0x6E0E: 'dú', 0x6E10: 'jiàn,jiān', 0x6E11: 'miǎn', 0x6E14: 'yú', 0x6E17: 'shèn', 0x6E1A: 'zhǔ', 0x6E1D: 'yú', 0x6E20: 'qú', 0x6E21: 'dù', 0x6E23: 'zhā,zhà', 0x6E24: 'bó', 0x6E25: 'wò', 0x6E29: 'wēn', 0x6E2B: 'xiè', 0x6E2D: 'wèi', 0x6E2F: 'gǎng', 0x6E32: 'xuàn', 0x6E34: 'kě', 0x6E38: 'yóu,you', 0x6E3A: 'miǎo', 0x6E43: 'pài', 0x6E44: 'méi', 0x6E49: 'tián', 0x6E4D: 'tuān', 0x6E4E: 'miǎn', 0x6E54: 'jiān', 0x6E56: 'hú', 0x6E58: 'xiāng', 0x6E5B: 'zhàn', 0x6E5F: 'huáng', 0x6E63: 'mǐn', 0x6E6E: 'yān,yīn', 0x6E7E: 'wān', 0x6E7F: 'shī', 0x6E83: 'kuì,huì', 0x6E85: 'jiàn', 0x6E86: 'xù', 0x6E87: 'lóu', 0x6E89: 'gài', 0x6E8F: 'táng', 0x6E90: 'yuán', 0x6E98: 'kè', 0x6E9C: 'liū,liu,liù', 0x6E9F: 'míng', 0x6EA2: 'yì', 0x6EA5: 'pǔ', 0x6EA6: 'wēi', 0x6EA7: 'lì', 0x6EAA: 'xī', 0x6EAF: 'sù', 0x6EB2: 'sōu', 0x6EB4: 'xiù', 0x6EB6: 'róng', 0x6EB7: 'hùn', 0x6EBA: 'nì,niào', 0x6EC1: 'chú', 0x6EC2: 'pāng', 0x6EC7: 'diān', 0x6ECB: 'zī', 0x6ED1: 'huá', 0x6ED3: 'zǐ', 0x6ED4: 'tāo', 0x6ED5: 'téng', 0x6EDA: 'gǔn', 0x6EDE: 'zhì', 0x6EE1: 'mǎn', 0x6EE4: 'lǜ', 0x6EE5: 'làn', 0x6EE6: 'luán', 0x6EE8: 'bīn', 0x6EE9: 'tān', 0x6EF4: 'dī', 0x6F02: 'piāo,piǎo,piào', 0x6F06: 'qī', 0x6F09: 'lù', 0x6F0F: 'lòu', 0x6F13: 'lí', 0x6F14: 'yǎn', 0x6F15: 'cáo', 0x6F20: 'mò', 0x6F29: 'xuán', 0x6F2A: 'yī', 0x6F2B: 'màn', 0x6F2D: 'mǎng', 0x6F2F: 'luò', 0x6F31: 'shù', 0x6F33: 'zhāng', 0x6F36: 'huàn', 0x6F3C: 'cuǐ', 0x6F3E: 'yàng', 0x6F47: 'xiāo', 0x6F4D: 'wéi', 0x6F58: 'pān', 0x6F5C: 'qián', 0x6F5E: 'lù', 0x6F5F: 'xì', 0x6F62: 'huáng', 0x6F66: 'liáo', 0x6F6D: 'tán', 0x6F6E: 'cháo', 0x6F74: 'zhū', 0x6F78: 'shān', 0x6F7A: 'chán', 0x6F7C: 'tóng', 0x6F7D: 'pǔ', 0x6F84: 'chéng,dèng', 0x6F88: 'chè', 0x6F8E: 'péng', 0x6F9C: 'lán', 0x6FA1: 'zǎo', 0x6FA5: 'xiè', 0x6FA7: 'lǐ', 0x6FB3: 'ào', 0x6FB9: 'dàn', 0x6FC0: 'jī', 0x6FC2: 'lián', 0x6FC9: 'suī', 0x6FCA: 'huì', 0x6FD2: 'bīn', 0x6FD9: 'yíng', 0x6FDE: 'bì', 0x6FE0: 'háo', 0x6FE1: 'rú', 0x6FEE: 'pú', 0x6FEF: 'zhuó', 0x700D: 'chán', 0x7011: 'pù', 0x701A: 'hàn', 0x701B: 'yíng', 0x7023: 'xiè', 0x704C: 'guàn', 0x705E: 'bà', 0x7062: 'nǎng', 0x706B: 'huǒ,huo', 0x706D: 'miè', 0x706F: 'dēng', 0x7070: 'huī', 0x7075: 'líng,ling', 0x7076: 'zào', 0x7078: 'jiǔ', 0x707C: 'zhuó', 0x707E: 'zāi', 0x707F: 'càn', 0x7080: 'yáng', 0x7086: 'wén', 0x7089: 'lú', 0x708A: 'chuī', 0x708E: 'yán', 0x7092: 'chǎo', 0x7094: 'quē', 0x7095: 'kàng', 0x7096: 'dùn', 0x7099: 'zhì', 0x70AB: 'xuàn', 0x70AC: 'jù', 0x70AD: 'tàn', 0x70AE: 'pào,páo', 0x70AF: 'jiǒng', 0x70B3: 'bǐng', 0x70B7: 'zhù', 0x70B8: 'zhà,zhá,dàn', 0x70B9: 'diǎn,dian', 0x70BB: 'shí', 0x70BC: 'liàn', 0x70BD: 'chì', 0x70C1: 'shuò', 0x70C2: 'làn', 0x70C3: 'tīng', 0x70C8: 'liè', 0x70CA: 'yàng,yáng', 0x70D8: 'hōng', 0x70D9: 'lào', 0x70DB: 'zhú', 0x70DC: 'xuǎn', 0x70DD: 'zhēng', 0x70DF: 'yān', 0x70E4: 'kǎo', 0x70E6: 'fán,fan', 0x70E7: 'shāo', 0x70E8: 'yè', 0x70E9: 'huì', 0x70EB: 'tàng', 0x70EC: 'jìn', 0x70ED: 'rè', 0x70EF: 'xī', 0x70F7: 'wán', 0x70F9: 'pēng', 0x70FD: 'fēng', 0x7109: 'yān', 0x710A: 'hàn', 0x710C: 'qū,jùn', 0x7113: 'hán', 0x7115: 'huàn', 0x7116: 'mèn', 0x7117: 'jú', 0x7118: 'tāo,dào', 0x7119: 'bèi', 0x711A: 'fén', 0x7122: 'kòng', 0x7126: 'jiāo', 0x7130: 'yàn', 0x7131: 'yàn', 0x7136: 'rán', 0x7145: 'duàn', 0x714A: 'xuān', 0x714C: 'huáng', 0x714E: 'jiān', 0x715C: 'yù', 0x715E: 'shā,shà', 0x7164: 'méi', 0x7166: 'xù', 0x7167: 'zhào', 0x716E: 'zhǔ', 0x7172: 'bāo', 0x7178: 'biān', 0x717D: 'shān', 0x7184: 'xī', 0x718A: 'xióng', 0x718F: 'xūn', 0x7194: 'róng', 0x7199: 'xī', 0x719F: 'shú,shóu', 0x71A0: 'yì', 0x71A8: 'yùn', 0x71AC: 'áo,āo', 0x71B3: 'màn', 0x71B5: 'shāng', 0x71B9: 'xī', 0x71C3: 'rán', 0x71CE: 'liáo,liǎo', 0x71D0: 'lín', 0x71D5: 'yàn,yān', 0x71DA: 'yì', 0x71E5: 'zào', 0x71E7: 'suì', 0x71EE: 'xiè', 0x7206: 'bào,zhà', 0x720C: 'kòng', 0x7228: 'cuàn', 0x722A: 'zhǎo,zhuǎ', 0x722C: 'pá', 0x7231: 'ài,ai', 0x7235: 'jué', 0x7236: 'fù,fu', 0x7237: 'yé,ye', 0x7238: 'bà,bǎ,ba', 0x7239: 'diē,die', 0x723D: 'shuǎng', 0x7247: 'piàn,piān', 0x7248: 'bǎn', 0x724C: 'pái,pai', 0x724D: 'dú', 0x7252: 'dié', 0x7256: 'yǒu', 0x7259: 'yá', 0x725B: 'niú', 0x725D: 'pìn', 0x725F: 'móu,mù', 0x7261: 'mǔ,mù', 0x7262: 'láo', 0x7264: 'māng', 0x7266: 'máo', 0x7267: 'mù', 0x7269: 'wù,wu', 0x7272: 'shēng', 0x7274: 'dǐ', 0x7275: 'qiān', 0x7278: 'zì', 0x7279: 'tè', 0x727A: 'xī', 0x727B: 'máng', 0x727E: 'wǔ', 0x7280: 'xī,xi', 0x7281: 'lí', 0x7282: 'lí', 0x7284: 'jī', 0x728A: 'dú', 0x728D: 'qián,jiān', 0x728E: 'fēng', 0x728F: 'piān', 0x7292: 'kào', 0x729F: 'jiàng', 0x72AA: 'kuí', 0x72AC: 'quǎn', 0x72AF: 'fàn', 0x72B0: 'qiú', 0x72B6: 'zhuàng', 0x72B7: 'guǎng', 0x72B8: 'mǎ', 0x72B9: 'yóu', 0x72C1: 'yǔn', 0x72C2: 'kuáng', 0x72C4: 'dí', 0x72C8: 'bèi', 0x72C9: 'pī', 0x72CD: 'páo', 0x72CE: 'xiá', 0x72D0: 'hú', 0x72D2: 'fèi', 0x72D3: 'pī', 0x72D7: 'gǒu,gōu', 0x72D9: 'jū', 0x72DD: 'xiǎn', 0x72DE: 'níng', 0x72E0: 'hěn', 0x72E1: 'jiǎo', 0x72E9: 'shòu', 0x72EC: 'dú', 0x72ED: 'xiá', 0x72EE: 'shī', 0x72EF: 'kuài', 0x72F0: 'zhēng', 0x72F1: 'yù', 0x72F2: 'sūn', 0x72F3: 'yú', 0x72F8: 'lí,li', 0x72FC: 'láng', 0x7301: 'lì', 0x7303: 'xiǎn', 0x7307: 'xiāo', 0x730E: 'liè', 0x7315: 'mí', 0x7316: 'chāng', 0x7317: 'yī', 0x731B: 'měng', 0x731C: 'cāi', 0x731D: 'cù', 0x731E: 'shē', 0x7322: 'hú', 0x7325: 'wěi', 0x7329: 'xīng,xing', 0x732A: 'zhū', 0x732B: 'māo,máo', 0x732C: 'wei', 0x732E: 'xiàn', 0x7333: 'jiā', 0x7334: 'hóu', 0x7335: 'piàn', 0x7338: 'méi', 0x733E: 'huá', 0x733F: 'yuán', 0x7350: 'zhāng', 0x7352: 'áo', 0x7355: 'cuī', 0x7357: 'jué', 0x7359: 'bì', 0x7360: 'liáo', 0x736C: 'xiè', 0x736D: 'tǎ', 0x736F: 'xūn', 0x7374: 'měng', 0x737E: 'huān', 0x7383: 'jué', 0x7384: 'xuán', 0x7387: 'lǜ,shuài', 0x7389: 'yù', 0x738B: 'wáng,wang', 0x738E: 'dīng', 0x7391: 'jī', 0x7393: 'dì', 0x7397: 'yú', 0x739B: 'mǎ', 0x739F: 'wén', 0x73A1: 'yá', 0x73A2: 'fēn', 0x73A6: 'jué', 0x73A9: 'wán', 0x73AB: 'méi', 0x73AE: 'wěi', 0x73AF: 'huán,huan', 0x73B0: 'xiàn', 0x73B2: 'líng', 0x73B3: 'dài', 0x73B7: 'diàn', 0x73BA: 'xǐ', 0x73BB: 'bō', 0x73C0: 'pò', 0x73C2: 'kē', 0x73C5: 'shēn', 0x73C8: 'jiā', 0x73C9: 'mín', 0x73CA: 'shān', 0x73CD: 'zhēn', 0x73D0: 'fà', 0x73D1: 'lóng', 0x73D3: 'jiào', 0x73D9: 'gǒng', 0x73DE: 'luò', 0x73E0: 'zhū', 0x73E3: 'xún', 0x73E5: 'ěr', 0x73E7: 'yáo', 0x73ED: 'bān', 0x73F2: 'hún', 0x7403: 'qiú', 0x7405: 'láng', 0x7406: 'lǐ,li', 0x7409: 'liú', 0x740A: 'yá', 0x7410: 'suǒ', 0x741B: 'chēn', 0x7422: 'zhuó,zuó', 0x7425: 'hǔ', 0x7426: 'qí', 0x742A: 'qí', 0x742E: 'cóng', 0x7433: 'lín', 0x7434: 'qín,qin', 0x7435: 'pí', 0x7436: 'pa,pá', 0x743C: 'qióng', 0x7441: 'mào', 0x7444: 'xuān', 0x7455: 'xiá', 0x7459: 'nǎo', 0x745A: 'hú', 0x745B: 'yīng', 0x745C: 'yú', 0x745E: 'ruì', 0x745F: 'sè', 0x7470: 'guī,gui', 0x7476: 'yáo', 0x7477: 'ài', 0x747E: 'jǐn', 0x7480: 'cuǐ', 0x7483: 'li,lí', 0x7487: 'xuán', 0x748B: 'zhāng', 0x748E: 'yīng', 0x7490: 'lù', 0x749C: 'huáng', 0x749E: 'pú', 0x74A7: 'bì', 0x74A8: 'càn', 0x74BA: 'wèn', 0x74DC: 'guā', 0x74E0: 'hù', 0x74E2: 'piáo', 0x74E3: 'bàn', 0x74E4: 'ráng', 0x74E6: 'wǎ,wà', 0x74EE: 'wèng', 0x74EF: 'ōu', 0x74F4: 'líng', 0x74F6: 'píng', 0x74F7: 'cí', 0x74FF: 'bù', 0x7504: 'zhēn', 0x750D: 'méng', 0x7518: 'gān', 0x751A: 'shèn', 0x751C: 'tián', 0x751F: 'shēng,sheng', 0x7525: 'sheng,shēng', 0x7528: 'yòng,yong', 0x7529: 'shuǎi', 0x752A: 'lù', 0x752B: 'fǔ,fu', 0x752C: 'yǒng', 0x7530: 'tián', 0x7531: 'yóu', 0x7532: 'jiǎ,jia', 0x7533: 'shēn', 0x7534: 'zhá', 0x7535: 'diàn', 0x7537: 'nán', 0x7538: 'diàn', 0x753A: 'tǐng,dīng', 0x753B: 'huà,hua', 0x753E: 'zāi', 0x7545: 'chàng', 0x754B: 'tián', 0x754C: 'jiè,gà', 0x754F: 'wèi', 0x7551: 'tián', 0x7554: 'pàn', 0x7559: 'liú', 0x755A: 'běn', 0x755B: 'zhěn', 0x755C: 'chù,xù', 0x7565: 'lüè', 0x7566: 'qí', 0x756A: 'fān,pān', 0x7572: 'yú,shē', 0x7574: 'chóu', 0x7578: 'jī', 0x7579: 'wǎn', 0x757F: 'jī', 0x7586: 'jiāng', 0x758F: 'shū', 0x7591: 'yí', 0x7594: 'dīng', 0x7596: 'jiē', 0x7597: 'liáo,liǎo', 0x7599: 'gē', 0x759A: 'jiù', 0x759D: 'shàn', 0x759F: 'nüè,yào', 0x75A0: 'lì', 0x75A1: 'yáng', 0x75A3: 'yóu', 0x75A4: 'bā', 0x75A5: 'jiè', 0x75AB: 'yì', 0x75AC: 'lì', 0x75AD: 'zòng', 0x75AE: 'chuāng', 0x75AF: 'fēng,feng', 0x75B1: 'pào', 0x75B2: 'pí', 0x75B4: 'kē', 0x75B5: 'cī', 0x75B8: 'dǎn,da', 0x75B9: 'zhěn', 0x75BC: 'téng', 0x75BD: 'jū', 0x75BE: 'jí,ji', 0x75C2: 'jiā', 0x75C5: 'bìng,bing', 0x75C7: 'zhèng,zhēng', 0x75C8: 'yōng', 0x75C9: 'jìng', 0x75CA: 'quán', 0x75CD: 'yí', 0x75D2: 'yǎng,yang', 0x75D4: 'zhì', 0x75D5: 'hén', 0x75D8: 'dòu', 0x75DB: 'tòng,tong', 0x75DE: 'pǐ', 0x75E2: 'lì', 0x75E3: 'zhì', 0x75E4: 'cuó', 0x75E6: 'wù', 0x75E7: 'shā', 0x75E8: 'láo', 0x75EA: 'huàn', 0x75EB: 'xián', 0x75F0: 'tán', 0x75F1: 'fèi', 0x75F2: 'má', 0x75F4: 'chī', 0x75F9: 'bì', 0x75FC: 'gù', 0x75FF: 'wěi', 0x7600: 'yū', 0x7601: 'cuì', 0x7605: 'dàn', 0x7606: 'shèn', 0x760A: 'hóu', 0x7610: 'yǔ', 0x7618: 'lòu', 0x7619: 'sào', 0x761B: 'chì', 0x761C: 'xī', 0x761F: 'wēn', 0x7620: 'jí', 0x7622: 'bān', 0x7624: 'liú', 0x7626: 'shòu', 0x7629: 'da', 0x762A: 'biě,biē', 0x762B: 'tān', 0x7630: 'luǒ', 0x7634: 'zhàng', 0x7638: 'qué', 0x763E: 'yǐn', 0x7640: 'huáng', 0x7643: 'lóng', 0x764C: 'ái', 0x7654: 'yì', 0x7656: 'pǐ', 0x765C: 'diàn', 0x765E: 'lài', 0x7663: 'xuǎn', 0x766B: 'diān', 0x766F: 'qú', 0x7678: 'guǐ', 0x767B: 'dēng', 0x767D: 'bái,bai', 0x767E: 'bǎi,bò', 0x7680: 'bī', 0x7682: 'zào', 0x7684: 'de,dì,dī,dí', 0x7686: 'jiē', 0x7687: 'huáng', 0x7688: 'guī', 0x768B: 'gāo', 0x768C: 'mò', 0x768E: 'jiǎo', 0x7691: 'ái', 0x7692: 'é', 0x7693: 'hào', 0x7696: 'wǎn', 0x7699: 'xī', 0x76AE: 'pí,pi', 0x76B1: 'zhòu', 0x76B4: 'cūn', 0x76BF: 'mǐn', 0x76C2: 'yú', 0x76C5: 'zhōng', 0x76C6: 'pén', 0x76C8: 'yíng', 0x76CA: 'yì', 0x76CE: 'àng', 0x76CF: 'zhǎn', 0x76D0: 'yán', 0x76D1: 'jiān,jiàn', 0x76D2: 'hé', 0x76D4: 'kuī', 0x76D6: 'gài,gě,gai', 0x76D7: 'dào', 0x76D8: 'pán', 0x76DB: 'shèng,chéng', 0x76DF: 'méng', 0x76E5: 'guàn', 0x76EE: 'mù,mu', 0x76EF: 'dīng', 0x76F1: 'xū', 0x76F2: 'máng,mang', 0x76F4: 'zhí', 0x76F8: 'xiāng,xiàng', 0x76F9: 'dǔn', 0x76FC: 'pàn', 0x76FE: 'dùn', 0x7701: 'shěng,xǐng,sheng', 0x7704: 'miàn,miǎn', 0x7707: 'miǎo', 0x7708: 'dān', 0x7709: 'méi', 0x770B: 'kàn,kān,kan', 0x770D: 'kōu', 0x7719: 'yí', 0x771F: 'zhēn', 0x7720: 'mián', 0x7726: 'zì', 0x7728: 'zhǎ', 0x7729: 'xuàn', 0x772C: 'lóng', 0x772F: 'mī,mi', 0x7733: 'míng', 0x7735: 'chī', 0x7736: 'kuàng', 0x7737: 'juàn', 0x7738: 'móu', 0x773A: 'tiào', 0x773C: 'yǎn,yan', 0x773D: 'mò', 0x7740: 'zhe,zhuó,zháo,zhāo', 0x7741: 'zhēng', 0x7743: 'suō', 0x7747: 'dì', 0x7750: 'lài', 0x7751: 'jiǎn', 0x7752: 'shǎn', 0x775A: 'yá', 0x775B: 'jīng,jing', 0x7761: 'shuì', 0x7762: 'suī', 0x7763: 'dū', 0x7765: 'bì', 0x7766: 'mù', 0x7768: 'nì', 0x776A: 'gāo', 0x776B: 'jié', 0x776C: 'cǎi', 0x7779: 'dǔ', 0x777A: 'hóu', 0x777D: 'kuí', 0x777E: 'gāo', 0x777F: 'ruì', 0x7780: 'mào', 0x7784: 'miáo,miào', 0x7785: 'chǒu', 0x7788: 'wěng', 0x778B: 'chēn', 0x778C: 'kē', 0x778E: 'xiā', 0x7791: 'míng', 0x7792: 'mán', 0x7793: 'fèn', 0x77A0: 'chēng', 0x77A5: 'piē', 0x77A7: 'qiáo', 0x77A9: 'zhǔ', 0x77AA: 'dèng', 0x77AC: 'shùn', 0x77AD: 'liào', 0x77B0: 'kàn', 0x77B3: 'tóng', 0x77BB: 'zhān', 0x77BD: 'gǔ', 0x77BF: 'qú', 0x77CD: 'jué', 0x77D7: 'chù', 0x77DB: 'máo', 0x77DC: 'jīn', 0x77E2: 'shǐ', 0x77E3: 'yǐ', 0x77E5: 'zhī', 0x77E9: 'jǔ,ju', 0x77EB: 'jiǎo,jiáo', 0x77EC: 'cuó', 0x77ED: 'duǎn', 0x77EE: 'ǎi', 0x77F3: 'shí,dàn,shī', 0x77F6: 'jī', 0x77F8: 'gān', 0x77FB: 'kū', 0x77FD: 'xī', 0x77FE: 'fán', 0x77FF: 'kuàng', 0x7800: 'dàng', 0x7801: 'mǎ', 0x7802: 'shā', 0x780C: 'qì,qiè', 0x780D: 'kǎn', 0x7812: 'pī', 0x7814: 'yán', 0x7816: 'zhuān', 0x7817: 'chē', 0x781A: 'yàn', 0x781D: 'fǎ', 0x7822: 'kē', 0x7823: 'tuó', 0x7825: 'dǐ', 0x7827: 'zhēn', 0x782C: 'lá', 0x782D: 'biān', 0x7830: 'pēng', 0x7834: 'pò', 0x7837: 'shēn', 0x7838: 'zá', 0x783A: 'lì', 0x783B: 'lóng', 0x783E: 'lì', 0x7840: 'chǔ', 0x7845: 'guī', 0x7847: 'náo', 0x7850: 'dòng', 0x7855: 'shuò', 0x7859: 'ái,wéi', 0x785A: 'qiáo', 0x785D: 'xiāo', 0x786A: 'wò', 0x786B: 'liú', 0x786C: 'yìng', 0x786E: 'què', 0x7877: 'jiǎn', 0x787C: 'péng', 0x7881: 'jī', 0x7887: 'dìng', 0x7889: 'diāo', 0x788C: 'lù,lu,liù', 0x788D: 'ài', 0x788E: 'suì', 0x7891: 'bēi', 0x7897: 'wǎn', 0x7898: 'diǎn', 0x789A: 'bèi', 0x789B: 'qì', 0x789C: 'chen', 0x789F: 'dié', 0x78A1: 'zhou', 0x78A3: 'jié', 0x78A7: 'bì', 0x78B0: 'pèng', 0x78B1: 'jiǎn', 0x78B3: 'tàn', 0x78B4: 'chá,chā', 0x78BE: 'niǎn', 0x78C1: 'cí', 0x78C5: 'bàng,páng', 0x78CA: 'lěi', 0x78CB: 'cuō', 0x78D0: 'pán', 0x78D5: 'kē,kè,ke', 0x78D9: 'gǔn', 0x78E1: 'kàn', 0x78E8: 'mó,mò,mo', 0x78EC: 'qìng', 0x78F2: 'qú', 0x78F4: 'dèng', 0x78F7: 'lín', 0x78FA: 'huáng', 0x7901: 'jiāo', 0x790C: 'lèi', 0x7913: 'jiāng', 0x791C: 'yù', 0x7924: 'cǎ', 0x7934: 'bó', 0x793A: 'shì,shi', 0x793C: 'lǐ', 0x793E: 'shè', 0x7940: 'sì', 0x7941: 'qí', 0x7946: 'xiān', 0x7947: 'qí', 0x7948: 'qí', 0x7949: 'zhǐ', 0x7950: 'yòu', 0x7953: 'fú', 0x7956: 'zǔ', 0x795A: 'zuò', 0x795B: 'qū', 0x795C: 'hù', 0x795D: 'zhù', 0x795E: 'shén,shen', 0x795F: 'suì', 0x7960: 'cí', 0x7965: 'xiáng', 0x7968: 'piào', 0x796D: 'jì', 0x796F: 'zhēn', 0x7977: 'dǎo', 0x7978: 'huò', 0x797A: 'qí', 0x7980: 'bǐng', 0x7981: 'jìn,jīn', 0x7984: 'lù', 0x7985: 'chán,shàn', 0x798A: 'xì', 0x798F: 'fú', 0x799B: 'zhēn', 0x79A7: 'xǐ', 0x79B3: 'ráng', 0x79B9: 'yǔ', 0x79BA: 'yú', 0x79BB: 'lí', 0x79BD: 'qín', 0x79BE: 'hé', 0x79C0: 'xiù', 0x79C1: 'sī', 0x79C3: 'tū', 0x79C6: 'gǎn', 0x79C9: 'bǐng', 0x79CB: 'qiū', 0x79CD: 'zhǒng,zhòng', 0x79D1: 'kē', 0x79D2: 'miǎo', 0x79D5: 'bǐ', 0x79D8: 'mì,bì', 0x79DF: 'zū', 0x79E3: 'mò', 0x79E4: 'chèng', 0x79E6: 'qín', 0x79E7: 'yāng', 0x79E9: 'zhì', 0x79EB: 'shú', 0x79ED: 'zǐ', 0x79EF: 'jī,ji', 0x79F0: 'chēng,chèn,chèng', 0x79F8: 'jiē', 0x79FB: 'yí', 0x79FD: 'huì', 0x7A00: 'xī', 0x7A02: 'láng', 0x7A03: 'fū', 0x7A0B: 'chéng', 0x7A0D: 'shāo,shào', 0x7A0E: 'shuì', 0x7A14: 'rěn', 0x7A17: 'bài', 0x7A19: 'zhí', 0x7A1A: 'zhì', 0x7A1E: 'kē', 0x7A20: 'chóu', 0x7A23: 'sū', 0x7A28: 'biǎn', 0x7A33: 'wěn', 0x7A37: 'jì', 0x7A3B: 'dào', 0x7A3C: 'jia,jià', 0x7A3D: 'jī,qǐ', 0x7A3F: 'gǎo', 0x7A46: 'mù', 0x7A51: 'sè', 0x7A57: 'suì', 0x7A70: 'ráng', 0x7A74: 'xué', 0x7A76: 'jiū,jiu', 0x7A77: 'qióng', 0x7A78: 'xī', 0x7A79: 'qióng', 0x7A7A: 'kōng,kòng', 0x7A7F: 'chuān', 0x7A80: 'zhūn', 0x7A81: 'tū', 0x7A83: 'qiè', 0x7A84: 'zhǎi', 0x7A85: 'yǎo', 0x7A88: 'yǎo', 0x7A8D: 'qiào', 0x7A91: 'yáo', 0x7A92: 'zhì', 0x7A95: 'tiǎo', 0x7A96: 'jiào', 0x7A97: 'chuāng', 0x7A98: 'jiǒng', 0x7A9C: 'cuàn', 0x7A9D: 'wō,wo', 0x7A9F: 'kū', 0x7AA0: 'kē', 0x7AA3: 'sù', 0x7AA5: 'kuī', 0x7AA6: 'dòu', 0x7AA8: 'yìn', 0x7AB3: 'yǔ', 0x7AB8: 'xī', 0x7ABE: 'kuǎn', 0x7ABF: 'lóng,long', 0x7ACB: 'lì', 0x7AD6: 'shù,shu', 0x7AD9: 'zhàn', 0x7ADE: 'jìng', 0x7ADF: 'jìng', 0x7AE0: 'zhāng', 0x7AE3: 'jùn', 0x7AE5: 'tóng', 0x7AE6: 'sǒng', 0x7AED: 'jié', 0x7AEF: 'duān', 0x7AF9: 'zhú', 0x7AFA: 'zhú', 0x7AFD: 'yú', 0x7AFF: 'gān', 0x7B03: 'dǔ', 0x7B04: 'jī', 0x7B06: 'bā,ba', 0x7B08: 'jí', 0x7B0A: 'zhào', 0x7B0B: 'sǔn', 0x7B11: 'xiào', 0x7B14: 'bǐ', 0x7B19: 'shēng', 0x7B1B: 'dí', 0x7B1E: 'chī', 0x7B20: 'lì', 0x7B24: 'tiáo', 0x7B25: 'sì', 0x7B26: 'fú', 0x7B28: 'bèn', 0x7B2B: 'zǐ', 0x7B2C: 'dì', 0x7B3A: 'jiān', 0x7B3C: 'lóng,lǒng', 0x7B40: 'guì', 0x7B45: 'xiǎn', 0x7B49: 'děng', 0x7B4A: 'jiǎo', 0x7B4B: 'jīn', 0x7B4C: 'quán', 0x7B4F: 'fá', 0x7B50: 'kuāng', 0x7B51: 'zhù', 0x7B52: 'tǒng,tong', 0x7B54: 'dá,dā,da', 0x7B55: 'háng', 0x7B56: 'cè', 0x7B5A: 'bì', 0x7B5B: 'shāi', 0x7B5C: 'dāng', 0x7B5D: 'zhēng', 0x7B60: 'yún', 0x7B62: 'pá', 0x7B6E: 'shì', 0x7B72: 'shāo', 0x7B75: 'yán', 0x7B77: 'kuài', 0x7B79: 'chóu', 0x7B7C: 'yún', 0x7B7E: 'qiān', 0x7B80: 'jiǎn', 0x7B8D: 'gū', 0x7B90: 'qìng', 0x7B93: 'lù', 0x7B94: 'bó', 0x7B95: 'jī', 0x7B97: 'suàn', 0x7B9C: 'kōng', 0x7BA1: 'guǎn', 0x7BA7: 'qiè', 0x7BA9: 'luó', 0x7BAA: 'dān', 0x7BAB: 'xiāo', 0x7BAD: 'jiàn', 0x7BB1: 'xiāng', 0x7BB4: 'zhēn', 0x7BB8: 'zhù', 0x7BC6: 'zhuàn', 0x7BC7: 'piān', 0x7BCC: 'hóu', 0x7BD1: 'kuì', 0x7BD3: 'lǒu', 0x7BD6: 'táng', 0x7BD9: 'gāo', 0x7BDD: 'gōu', 0x7BE1: 'cuàn', 0x7BE5: 'lì', 0x7BE6: 'bì', 0x7BEA: 'chí', 0x7BEE: 'lán', 0x7BF1: 'lí,li', 0x7BF7: 'péng,peng', 0x7BFE: 'miè', 0x7C07: 'cù', 0x7C09: 'zào', 0x7C0C: 'sù', 0x7C15: 'lè', 0x7C27: 'huáng', 0x7C2A: 'zān', 0x7C38: 'bǒ,bò', 0x7C3F: 'bù', 0x7C40: 'zhòu', 0x7C41: 'lài', 0x7C4D: 'jí', 0x7C73: 'mǐ,mi', 0x7C7B: 'lèi', 0x7C7C: 'xiān', 0x7C7D: 'zǐ', 0x7C89: 'fěn', 0x7C91: 'bā', 0x7C92: 'lì', 0x7C95: 'pò', 0x7C97: 'cū', 0x7C98: 'nián,zhān', 0x7C9D: 'lì', 0x7C9F: 'sù', 0x7CA4: 'yuè', 0x7CA5: 'zhōu,yù', 0x7CAA: 'fèn', 0x7CAE: 'liáng', 0x7CB1: 'liáng', 0x7CB2: 'càn', 0x7CB3: 'jīng', 0x7CB9: 'cuì', 0x7CBC: 'lín', 0x7CBD: 'zòng', 0x7CBE: 'jīng,jing', 0x7CBF: 'guǒ', 0x7CC1: 'sǎn', 0x7CC5: 'róu', 0x7CCA: 'hú,hu,hū,hù', 0x7CCC: 'zān', 0x7CCD: 'cí', 0x7CD5: 'gāo', 0x7CD6: 'táng', 0x7CD7: 'qiǔ', 0x7CD9: 'cāo', 0x7CDC: 'mí', 0x7CDF: 'zāo', 0x7CE0: 'kāng', 0x7CE2: 'mó', 0x7CE8: 'jiàng', 0x7CEC: 'shǔ', 0x7CEF: 'nuò', 0x7CFB: 'xì,xi,jì', 0x7D0A: 'wěn', 0x7D20: 'sù', 0x7D22: 'suǒ,suo', 0x7D27: 'jǐn', 0x7D2B: 'zǐ', 0x7D2F: 'lěi,lèi,léi', 0x7D4D: 'rèn', 0x7D58: 'cì', 0x7D5C: 'xié', 0x7D6E: 'xù,xu', 0x7DA6: 'qí', 0x7DB7: 'cuì', 0x7E29: 'cài', 0x7E41: 'fán', 0x7E47: 'yóu,yáo', 0x7E82: 'zuǎn', 0x7EA0: 'jiū', 0x7EA2: 'hóng,gōng', 0x7EA3: 'zhòu', 0x7EA4: 'xiān,qiàn', 0x7EA5: 'hé', 0x7EA6: 'yuē,yāo,yuè', 0x7EA7: 'jí', 0x7EA8: 'wán', 0x7EAA: 'jì', 0x7EAB: 'rèn', 0x7EAC: 'wěi', 0x7EAD: 'yún', 0x7EAF: 'chún', 0x7EB0: 'pī', 0x7EB1: 'shā', 0x7EB2: 'gāng', 0x7EB3: 'nà', 0x7EB4: 'rèn', 0x7EB5: 'zòng', 0x7EB6: 'lún', 0x7EB7: 'fēn', 0x7EB8: 'zhǐ', 0x7EB9: 'wén', 0x7EBA: 'fǎng', 0x7EBD: 'niǔ', 0x7EBE: 'shū', 0x7EBF: 'xiàn', 0x7EC0: 'gàn', 0x7EC2: 'fú', 0x7EC3: 'liàn', 0x7EC4: 'zǔ', 0x7EC5: 'shēn', 0x7EC6: 'xì,xi', 0x7EC7: 'zhī', 0x7EC8: 'zhōng', 0x7EC9: 'zhōu,zhòu', 0x7ECA: 'bàn', 0x7ECB: 'fú', 0x7ECC: 'chù', 0x7ECD: 'shào', 0x7ECE: 'yì', 0x7ECF: 'jīng', 0x7ED1: 'bǎng', 0x7ED2: 'róng', 0x7ED3: 'jié,jiē,jie', 0x7ED4: 'kù', 0x7ED5: 'rào', 0x7ED7: 'háng', 0x7ED8: 'huì', 0x7ED9: 'gěi,jǐ', 0x7EDA: 'xuàn', 0x7EDB: 'jiàng', 0x7EDC: 'luò', 0x7EDD: 'jué', 0x7EDE: 'jiǎo', 0x7EDF: 'tǒng', 0x7EE2: 'juàn', 0x7EE3: 'xiù', 0x7EE5: 'suí', 0x7EE6: 'tāo,dí', 0x7EE7: 'jì', 0x7EE9: 'jì', 0x7EEA: 'xù', 0x7EED: 'xù', 0x7EEE: 'qǐ', 0x7EEF: 'fēi', 0x7EF0: 'chuò', 0x7EF2: 'gǔn', 0x7EF3: 'shéng', 0x7EF4: 'wéi,wei', 0x7EF5: 'mián', 0x7EF6: 'shòu', 0x7EF7: 'bēng,bèng,běng', 0x7EF8: 'chóu', 0x7EFA: 'liǔ', 0x7EFB: 'quǎn', 0x7EFC: 'zōng', 0x7EFD: 'zhàn', 0x7EFF: 'lǜ,lù', 0x7F00: 'zhuì,chuò', 0x7F02: 'kè', 0x7F04: 'jiān', 0x7F05: 'miǎn', 0x7F06: 'lǎn', 0x7F08: 'miǎo', 0x7F09: 'jī', 0x7F0E: 'duàn', 0x7F13: 'huǎn', 0x7F14: 'dì', 0x7F15: 'lǚ', 0x7F16: 'biān', 0x7F18: 'yuán', 0x7F19: 'jìn', 0x7F1A: 'fù', 0x7F1B: 'rù', 0x7F1C: 'zhěn', 0x7F1D: 'fèng,féng,feng', 0x7F1F: 'gǎo', 0x7F20: 'chán,chan', 0x7F21: 'lí', 0x7F22: 'yì', 0x7F24: 'bīn', 0x7F25: 'piǎo', 0x7F26: 'màn', 0x7F28: 'yīng', 0x7F29: 'suō', 0x7F2A: 'miù,móu', 0x7F2C: 'xié', 0x7F2D: 'liáo', 0x7F2E: 'shàn', 0x7F30: 'jiāng', 0x7F31: 'qiǎn', 0x7F33: 'huán', 0x7F34: 'jiǎo', 0x7F36: 'fǒu', 0x7F38: 'gāng,gang', 0x7F3A: 'quē', 0x7F42: 'yīng', 0x7F44: 'qìng', 0x7F45: 'xià', 0x7F4D: 'léi', 0x7F50: 'guàn', 0x7F51: 'wǎng', 0x7F54: 'wǎng', 0x7F55: 'hǎn,han', 0x7F57: 'luó,luō,luo', 0x7F58: 'fú', 0x7F5A: 'fá', 0x7F5F: 'gǔ', 0x7F61: 'gāng', 0x7F62: 'bà', 0x7F69: 'zhào', 0x7F6A: 'zuì,zui', 0x7F6E: 'zhì,zhi', 0x7F72: 'shǔ', 0x7F74: 'pí', 0x7F79: 'lí', 0x7F7E: 'zēng', 0x7F81: 'jī', 0x7F8A: 'yáng', 0x7F8C: 'qiāng', 0x7F8E: 'měi,mǎi', 0x7F94: 'gāo', 0x7F9A: 'líng', 0x7F9D: 'dī', 0x7F9E: 'xiū', 0x7F9F: 'qiǎng', 0x7FA1: 'xiàn', 0x7FA4: 'qún', 0x7FA7: 'suō', 0x7FA8: 'xiàn', 0x7FAF: 'jié', 0x7FB1: 'yuán', 0x7FB2: 'xī', 0x7FB8: 'léi', 0x7FB9: 'gēng', 0x7FBC: 'chàn', 0x7FBD: 'yǔ', 0x7FBF: 'yì', 0x7FC1: 'wēng', 0x7FC5: 'chì', 0x7FCC: 'yì', 0x7FCE: 'líng', 0x7FD4: 'xiáng', 0x7FD5: 'xī', 0x7FD8: 'qiào,qiáo', 0x7FDF: 'zhái,dí', 0x7FE0: 'cuì', 0x7FE1: 'fěi', 0x7FE5: 'zhù', 0x7FE6: 'jiǎn', 0x7FE9: 'piān', 0x7FEE: 'hé', 0x7FF0: 'hàn', 0x7FF1: 'áo', 0x7FF3: 'yì', 0x7FFB: 'fān', 0x7FFC: 'yì', 0x8000: 'yào', 0x8001: 'lǎo,lao', 0x8003: 'kǎo', 0x8004: 'mào', 0x8005: 'zhě', 0x8006: 'qí', 0x800B: 'dié', 0x800C: 'ér', 0x800D: 'shuǎ', 0x8010: 'nài', 0x8012: 'lěi', 0x8015: 'gēng,gèng', 0x8017: 'hào', 0x8018: 'yún', 0x8019: 'pá,bà,pā', 0x801C: 'sì', 0x8026: 'ǒu', 0x8032: 'huái', 0x8033: 'ěr', 0x8035: 'dīng', 0x8036: 'yē,yé', 0x8037: 'dā', 0x8038: 'sǒng', 0x803B: 'chǐ', 0x803D: 'dān', 0x803F: 'gěng', 0x8042: 'niè', 0x8043: 'dān', 0x8046: 'líng', 0x804A: 'liáo', 0x804B: 'lóng', 0x804C: 'zhí', 0x804D: 'níng', 0x8052: 'guō', 0x8054: 'lián', 0x8058: 'pìn', 0x805A: 'jù', 0x8069: 'kuì', 0x806A: 'cōng', 0x806F: 'lián', 0x807F: 'yù', 0x8083: 'sù', 0x8084: 'yì', 0x8086: 'sì', 0x8087: 'zhào', 0x8089: 'ròu', 0x808B: 'lèi', 0x808C: 'jī', 0x808F: 'cào', 0x8093: 'huāng', 0x8096: 'xiào,xiāo', 0x8098: 'zhǒu', 0x809A: 'dù,dǔ,du', 0x809B: 'gāng', 0x809D: 'gān', 0x80A0: 'cháng,chang', 0x80A1: 'gǔ,gu', 0x80A2: 'zhī,zhi', 0x80A4: 'fū', 0x80A5: 'féi', 0x80A9: 'jiān', 0x80AA: 'fáng', 0x80AD: 'nà', 0x80AE: 'āng', 0x80AF: 'kěn', 0x80B1: 'gōng', 0x80B2: 'yù', 0x80B4: 'yáo', 0x80BA: 'fèi,fēi', 0x80BD: 'tài', 0x80BE: 'shèn', 0x80BF: 'zhǒng,zhōng', 0x80C0: 'zhàng', 0x80C1: 'xié', 0x80C2: 'shèn', 0x80C3: 'wèi', 0x80C4: 'zhòu', 0x80C6: 'dǎn', 0x80CC: 'bèi,bēi', 0x80CE: 'tāi', 0x80D6: 'pàng,pán', 0x80DA: 'pēi', 0x80DB: 'jiǎ', 0x80DC: 'shèng', 0x80DD: 'zhī', 0x80DE: 'bāo', 0x80E0: 'qū', 0x80E1: 'hú,hu', 0x80E4: 'yìn', 0x80E5: 'xū', 0x80E7: 'lóng,lōng', 0x80E8: 'dòng', 0x80EA: 'lú', 0x80EB: 'jìng', 0x80EC: 'nǔ', 0x80ED: 'yān', 0x80EF: 'kuà', 0x80F0: 'yí', 0x80F1: 'guāng', 0x80F3: 'gē,gé,gā', 0x80F4: 'dòng', 0x80F6: 'jiāo', 0x80F8: 'xiōng', 0x80FA: 'àn', 0x80FC: 'pián', 0x80FD: 'néng', 0x8102: 'zhī,zhǐ', 0x8106: 'cuì', 0x8109: 'mài,mò', 0x810A: 'jǐ,jí,ji', 0x810D: 'kuài', 0x810F: 'zāng,zàng', 0x8110: 'qí', 0x8111: 'nǎo', 0x8113: 'nóng', 0x8114: 'luán', 0x8116: 'bó', 0x811A: 'jiǎo,jiao', 0x8129: 'xiū', 0x812C: 'pāo', 0x812F: 'pú,fǔ', 0x8131: 'tuō', 0x8132: 'niào', 0x8137: 'lì', 0x8138: 'liǎn', 0x813E: 'pí', 0x8146: 'tiǎn', 0x8148: 'jīng', 0x814A: 'là', 0x814B: 'yè', 0x814C: 'yān,ā', 0x8150: 'fǔ,fu', 0x8151: 'fǔ', 0x8153: 'féi', 0x8154: 'qiāng', 0x8155: 'wàn', 0x8158: 'guó', 0x815A: 'dìng', 0x8165: 'xīng', 0x8167: 'shù', 0x8169: 'nǎn', 0x816D: 'è', 0x816E: 'sāi', 0x8170: 'yāo', 0x8171: 'jiàn', 0x8174: 'yú', 0x8179: 'fù', 0x817A: 'xiàn', 0x817B: 'nì', 0x817C: 'tiǎn,miǎn', 0x817D: 'wà', 0x817E: 'téng,teng', 0x817F: 'tuǐ', 0x8180: 'bǎng,páng,bàng', 0x8182: 'lǚ', 0x8188: 'gé,gè', 0x818A: 'bó,bo', 0x818F: 'gāo,gào', 0x8191: 'bìn', 0x8198: 'biāo', 0x819B: 'táng', 0x819C: 'mó', 0x819D: 'xī', 0x81A8: 'péng', 0x81AA: 'chuài', 0x81B2: 'jiāo', 0x81B3: 'shàn', 0x81BA: 'yīng', 0x81BB: 'shān', 0x81C0: 'tún', 0x81C2: 'bì,bei', 0x81C3: 'yōng', 0x81C6: 'yì', 0x81CA: 'sào,sāo', 0x81CC: 'gǔ', 0x81DC: 'zā', 0x81E3: 'chén', 0x81E7: 'zāng', 0x81EA: 'zì,zi,zī', 0x81EC: 'niè', 0x81ED: 'chòu,xiù', 0x81F2: 'niè', 0x81F3: 'zhì', 0x81F4: 'zhì,zhi', 0x81FB: 'zhēn', 0x81FC: 'jiù', 0x81FE: 'yú', 0x8200: 'yǎo', 0x8202: 'chōng', 0x8204: 'xì', 0x8205: 'jiù,jiu', 0x8206: 'yú', 0x820C: 'shé,jī', 0x820D: 'shè,shě', 0x8210: 'shì', 0x8212: 'shū,shu', 0x8214: 'tiǎn', 0x821B: 'chuǎn', 0x821C: 'shùn', 0x821E: 'wǔ', 0x821F: 'zhōu', 0x8222: 'shān', 0x8228: 'bǎn', 0x822A: 'háng', 0x822B: 'fǎng', 0x822C: 'bān,pán,bō', 0x8230: 'jiàn', 0x8231: 'cāng', 0x8232: 'líng', 0x8235: 'duò', 0x8236: 'bó', 0x8237: 'xián', 0x8239: 'chuán', 0x823A: 'jiǎ', 0x8244: 'shāo', 0x8245: 'yú', 0x8247: 'tǐng', 0x824B: 'měng', 0x824E: 'huáng', 0x824F: 'shǒu', 0x825F: 'chōng', 0x8268: 'méng', 0x826E: 'gèn,gěn', 0x826F: 'liáng', 0x8270: 'jiān', 0x8272: 'sè,shǎi', 0x8273: 'yàn', 0x827A: 'yì', 0x827B: 'lè', 0x827D: 'jiāo', 0x827E: 'ài,yì', 0x827F: 'nǎi', 0x8282: 'jié,jiē,jie', 0x828A: 'qiān', 0x828B: 'yù', 0x828D: 'sháo,què', 0x828E: 'xiōng,qiōng', 0x828F: 'dù', 0x8291: 'qǐ', 0x8292: 'máng', 0x8297: 'xiāng', 0x8299: 'fú', 0x829C: 'wú', 0x829D: 'zhī', 0x82A1: 'qiàn', 0x82A5: 'jiè,gài', 0x82A6: 'lú,lu', 0x82AA: 'qí', 0x82AB: 'yuán,yán', 0x82AC: 'fēn', 0x82AD: 'bā', 0x82AE: 'ruì', 0x82AF: 'xīn', 0x82B1: 'huā,hua', 0x82B3: 'fāng', 0x82B7: 'zhǐ', 0x82B8: 'yún', 0x82B9: 'qín', 0x82BD: 'yá', 0x82BE: 'fú,fèi', 0x82C4: 'biàn', 0x82C7: 'wěi', 0x82CB: 'xiàn', 0x82CC: 'cháng', 0x82CD: 'cāng', 0x82CE: 'zhù', 0x82CF: 'sū', 0x82D1: 'yuàn', 0x82D2: 'rǎn', 0x82D3: 'líng', 0x82D4: 'tái', 0x82D5: 'tiáo,sháo', 0x82D7: 'miáo', 0x82D8: 'qǐng', 0x82DB: 'kē', 0x82DC: 'mù', 0x82DE: 'bāo', 0x82DF: 'gǒu', 0x82E1: 'yǐ', 0x82E3: 'jù,qǔ', 0x82E4: 'piě', 0x82E5: 'ruò,rě', 0x82E6: 'kǔ', 0x82E7: 'níng', 0x82EB: 'shān', 0x82EF: 'běn', 0x82F1: 'yīng', 0x82F2: 'zhǎ', 0x82F4: 'jū', 0x82F7: 'gān', 0x82F9: 'píng', 0x82FB: 'fú', 0x8300: 'fú', 0x8301: 'zhuó', 0x8302: 'mào', 0x8303: 'fàn', 0x8304: 'qié,jiā', 0x8305: 'máo', 0x8308: 'cí', 0x8309: 'mò,mo', 0x830C: 'chí', 0x830E: 'jīng', 0x830F: 'lóng', 0x8314: 'yíng', 0x8315: 'qióng', 0x8317: 'míng', 0x831A: 'yìn', 0x831B: 'gèn', 0x831C: 'qiàn,xī', 0x8327: 'jiǎn', 0x8328: 'cí', 0x832B: 'máng', 0x832C: 'chá', 0x832D: 'jiāo', 0x832F: 'fú', 0x8331: 'zhū', 0x8332: 'zī', 0x8333: 'jiāng', 0x8334: 'huí', 0x8335: 'yīn', 0x8336: 'chá', 0x8338: 'róng,rōng', 0x8339: 'rú', 0x833C: 'tóng', 0x8340: 'xún', 0x8343: 'quán', 0x8346: 'jīng', 0x8347: 'xìng', 0x8349: 'cǎo', 0x834F: 'rěn', 0x8350: 'jiàn', 0x8351: 'tí', 0x8352: 'huāng', 0x8354: 'lì', 0x835A: 'jiá', 0x835B: 'ráo', 0x835C: 'bì', 0x835E: 'qiáo', 0x835F: 'huì', 0x8360: 'jì,qí', 0x8361: 'dàng,dang', 0x8363: 'róng', 0x8364: 'hūn,xūn', 0x8365: 'xíng,yíng', 0x8367: 'yíng', 0x8368: 'qián,xún', 0x836B: 'yìn', 0x836C: 'mǎi', 0x836D: 'hóng', 0x836F: 'yào,yao', 0x8377: 'hé,hè,he', 0x8378: 'bí', 0x837B: 'dí', 0x837C: 'tú', 0x837D: 'sui,suī', 0x8385: 'lì', 0x8386: 'pú', 0x8389: 'lì,li', 0x838E: 'shā,suō', 0x8392: 'jǔ', 0x8393: 'méi', 0x8398: 'shēn,xīn', 0x839C: 'yóu', 0x839E: 'guǎn,wǎn', 0x83A0: 'yǒu', 0x83A8: 'làng', 0x83A9: 'piǎo', 0x83AA: 'é', 0x83AB: 'mò,mo', 0x83B0: 'kǎn', 0x83B1: 'lái', 0x83B2: 'lián', 0x83B3: 'shí', 0x83B4: 'wō', 0x83B7: 'huò', 0x83B8: 'yóu', 0x83B9: 'yíng,yīng', 0x83BA: 'yīng', 0x83BC: 'chún', 0x83BD: 'mǎng', 0x83BF: 'cì', 0x83C0: 'wǎn', 0x83C1: 'jīng,jing', 0x83C5: 'jiān', 0x83C7: 'gū,gu', 0x83CA: 'jú', 0x83CC: 'jūn,jùn', 0x83CF: 'hé', 0x83D4: 'fú', 0x83D6: 'chāng', 0x83D8: 'sōng', 0x83DC: 'cài', 0x83DF: 'tù', 0x83E0: 'bō', 0x83E5: 'xī', 0x83E9: 'pú', 0x83EA: 'dàng', 0x83F0: 'gū,gu', 0x83F1: 'líng', 0x83F2: 'fēi,fěi', 0x83F4: 'ān', 0x83F8: 'yān', 0x83F9: 'zū', 0x83FD: 'shū', 0x83FE: 'tián', 0x8401: 'qí', 0x8403: 'cuì', 0x8404: 'tao,táo', 0x840B: 'qī', 0x840C: 'méng', 0x840D: 'píng', 0x840E: 'wěi,wēi', 0x8418: 'nài', 0x841C: 'tiē', 0x841D: 'luó', 0x8423: 'dìng', 0x8424: 'yíng', 0x8425: 'yíng', 0x8426: 'yíng', 0x8427: 'xiāo', 0x8428: 'sà', 0x842E: 'yú', 0x8430: 'liàn', 0x8431: 'xuān', 0x8438: 'yú', 0x8439: 'biān,biǎn', 0x843C: 'è', 0x843D: 'luò,lào,luo,là', 0x8444: 'zuò', 0x8446: 'bǎo', 0x8447: 'róu', 0x844E: 'lǜ', 0x8457: 'zhù,zhuó', 0x8459: 'xiāng', 0x845A: 'shèn', 0x845B: 'gě,gé', 0x8461: 'pú', 0x8463: 'dǒng', 0x8469: 'pā', 0x846B: 'hú', 0x846C: 'zàng', 0x8471: 'cōng', 0x8473: 'wēi', 0x8475: 'kuí', 0x847A: 'qì', 0x8482: 'dì', 0x848B: 'jiǎng', 0x8490: 'sōu', 0x8497: 'làng', 0x8499: 'méng,měng,mēng', 0x849C: 'suàn', 0x849F: 'jǔ', 0x84A1: 'bàng', 0x84AD: 'chú', 0x84B2: 'pú', 0x84B4: 'shuò', 0x84B8: 'zhēng', 0x84BB: 'ruò', 0x84BD: 'ēn', 0x84BF: 'hāo', 0x84C2: 'mì', 0x84C4: 'xù', 0x84C9: 'róng', 0x84CA: 'wěng', 0x84D0: 'rù', 0x84D1: 'suō', 0x84D3: 'bèi', 0x84D6: 'bì', 0x84DD: 'lán,lan', 0x84DF: 'jì', 0x84E0: 'lí', 0x84E3: 'yù', 0x84E5: 'yíng', 0x84E6: 'mò', 0x84EC: 'péng,pēng,peng', 0x84FC: 'liǎo', 0x84FF: 'xu', 0x8511: 'miè', 0x8513: 'màn,mán', 0x8517: 'zhè,zhe', 0x851A: 'wèi,yù', 0x851F: 'cù', 0x8521: 'cài', 0x852B: 'niān', 0x852C: 'shū', 0x8537: 'qiáng', 0x8539: 'liǎn', 0x853A: 'lìn', 0x853B: 'kòu', 0x853C: 'ǎi', 0x853D: 'bì', 0x8543: 'bō,fán,fān', 0x8548: 'xùn', 0x8549: 'jiāo,qiáo', 0x854A: 'ruǐ', 0x8559: 'huì', 0x8560: 'rú', 0x8564: 'ruí', 0x8568: 'jué', 0x8572: 'qí', 0x8574: 'yùn', 0x8579: 'wèng', 0x857A: 'jí', 0x857B: 'hóng', 0x857E: 'lěi', 0x8584: 'bó,báo,bò', 0x8587: 'wēi', 0x858F: 'yì', 0x859B: 'xuē', 0x85AA: 'xīn', 0x85AE: 'sǒu', 0x85AF: 'shǔ', 0x85B0: 'xūn', 0x85B9: 'tái', 0x85C1: 'gǎo', 0x85C9: 'jiè,jí', 0x85CA: 'biǎn', 0x85CF: 'zàng,cáng', 0x85D0: 'miǎo', 0x85D2: 'qiè', 0x85D3: 'xiǎn', 0x85D5: 'ǒu', 0x85D8: 'lǘ', 0x85DC: 'lí', 0x85E0: 'jiào', 0x85E4: 'téng', 0x85E8: 'biāo', 0x85E9: 'fān', 0x85FB: 'zǎo', 0x85FF: 'huò', 0x8605: 'héng', 0x8611: 'mó', 0x8616: 'niè', 0x8618: 'ráng', 0x8627: 'qú', 0x8635: 'zhí', 0x8638: 'zhàn', 0x863C: 'mí', 0x864E: 'hǔ,hu,hū,hù', 0x864F: 'lǔ', 0x8650: 'nüè', 0x8651: 'lǜ', 0x8654: 'qián', 0x865A: 'xū', 0x865E: 'yú', 0x8662: 'guó', 0x866B: 'chóng,chong', 0x866E: 'jǐ', 0x8670: 'dīng', 0x8671: 'shī', 0x8679: 'hóng', 0x867A: 'huǐ', 0x867B: 'méng', 0x867C: 'gè', 0x867D: 'suī', 0x867E: 'xiā,há', 0x8680: 'shí', 0x8681: 'yǐ', 0x8682: 'mǎ,mà,mā', 0x868A: 'wén', 0x868C: 'bàng,bèng', 0x868D: 'pí', 0x8693: 'yǐn', 0x8695: 'cán', 0x8696: 'yuán', 0x869C: 'yá', 0x869D: 'háo', 0x86A3: 'gōng', 0x86A4: 'zǎo,zao', 0x86A7: 'jiè', 0x86A9: 'chī', 0x86AA: 'dǒu', 0x86AF: 'qiū', 0x86B0: 'yóu', 0x86B1: 'zha,zhà', 0x86B4: 'yòu', 0x86B5: 'é,kē', 0x86B6: 'hān', 0x86BA: 'rán', 0x86C0: 'zhù', 0x86C4: 'gū,gǔ', 0x86C6: 'qū', 0x86C7: 'shé,yí', 0x86C9: 'líng', 0x86CA: 'gǔ', 0x86CB: 'dàn', 0x86CE: 'lì', 0x86D0: 'qū,qu', 0x86D4: 'huí', 0x86D9: 'wā', 0x86DB: 'zhū,zhu', 0x86DC: 'yī', 0x86DE: 'kuò', 0x86DF: 'jiāo', 0x86E4: 'gé,há', 0x86ED: 'zhì', 0x86EE: 'mán', 0x86F0: 'zhé', 0x86F1: 'jiá', 0x86F2: 'náo', 0x86F3: 'sī', 0x86F4: 'qí', 0x86F5: 'xíng', 0x86F8: 'shāo,xiāo', 0x86F9: 'yǒng', 0x86FE: 'é', 0x8700: 'shǔ', 0x8702: 'fēng', 0x8703: 'shèn', 0x8707: 'zhé', 0x8708: 'wú', 0x8709: 'fú', 0x870A: 'lí', 0x870D: 'chú', 0x8710: 'jié', 0x8711: 'dàn', 0x8712: 'yán,yan', 0x8713: 'tíng', 0x8715: 'tuì', 0x8717: 'wō', 0x8718: 'zhī', 0x8719: 'sōng', 0x871A: 'fēi,fěi', 0x871C: 'mì', 0x8721: 'là', 0x8722: 'měng', 0x8723: 'qiāng', 0x8725: 'xī', 0x872E: 'yù', 0x8731: 'pí', 0x8734: 'yì', 0x8737: 'quán', 0x873B: 'qīng', 0x873D: 'liǎng', 0x873F: 'wān', 0x8743: 'zhuō', 0x8744: 'wǎng', 0x8747: 'yíng,ying', 0x8748: 'guō,guo', 0x8749: 'chán', 0x874C: 'kē', 0x874E: 'xiē', 0x8750: 'mào', 0x8751: 'xū', 0x8753: 'yú', 0x8757: 'huáng', 0x8759: 'biān', 0x875B: 'wēi', 0x8760: 'fú', 0x8763: 'yóu', 0x8765: 'máo', 0x876E: 'fù', 0x8770: 'kuí', 0x8772: 'là', 0x8773: 'dài', 0x8774: 'hú', 0x8776: 'dié', 0x877C: 'lóu', 0x877D: 'chūn', 0x877E: 'róng', 0x8782: 'láng,lang', 0x8783: 'páng', 0x8785: 'xī', 0x8788: 'yuán', 0x8789: 'wēng', 0x878B: 'sōu', 0x878D: 'róng', 0x879F: 'míng', 0x87A8: 'mǎn', 0x87AB: 'zhē', 0x87AC: 'cáo', 0x87AD: 'chī', 0x87AF: 'áo', 0x87B3: 'táng', 0x87B5: 'piāo', 0x87BA: 'luó', 0x87BD: 'zhōng', 0x87C0: 'shuài', 0x87C6: 'ma,má', 0x87CA: 'máo', 0x87CB: 'xī', 0x87CF: 'xiāo', 0x87D1: 'zhāng', 0x87D2: 'mǎng', 0x87DF: 'liáo', 0x87E0: 'pán', 0x87E2: 'xǐ', 0x87E5: 'huáng', 0x87EA: 'huì', 0x87ED: 'jiāo', 0x87EE: 'shan,shàn', 0x87F9: 'xiè', 0x87FE: 'chán', 0x880A: 'lián', 0x8813: 'měng', 0x8815: 'rú', 0x8816: 'huò', 0x881B: 'miè', 0x8821: 'lǐ', 0x8822: 'chǔn', 0x882E: 'yē', 0x8832: 'juān', 0x8835: 'xī', 0x8839: 'dù', 0x883C: 'qú', 0x8840: 'xuè,xiě,xuě', 0x8845: 'xìn', 0x884C: 'xíng,háng,xing,héng', 0x884D: 'yǎn', 0x8854: 'xián', 0x8857: 'jiē', 0x8859: 'yá', 0x8861: 'héng', 0x8862: 'qú', 0x8863: 'yī,yì', 0x8865: 'bǔ,bu', 0x8868: 'biǎo', 0x8869: 'chǎ,chà', 0x886B: 'shān', 0x886C: 'chèn,chen', 0x886E: 'gǔn', 0x8870: 'shuāi', 0x8877: 'zhōng', 0x887D: 'rèn', 0x887E: 'qīn', 0x8881: 'yuán', 0x8882: 'mèi', 0x8884: 'ǎo', 0x8885: 'niǎo', 0x8888: 'jiā', 0x888B: 'dài,dai', 0x888D: 'páo', 0x8892: 'tǎn', 0x8896: 'xiù', 0x889C: 'wà', 0x88A4: 'mào', 0x88AB: 'bèi', 0x88AD: 'xí', 0x88AF: 'bó', 0x88B1: 'fu,fú', 0x88B4: 'kù', 0x88B7: 'jiá', 0x88BC: 'gē', 0x88C1: 'cái', 0x88C2: 'liè', 0x88C5: 'zhuāng,zhuang', 0x88C6: 'dāng', 0x88CE: 'chéng', 0x88D2: 'póu', 0x88D4: 'yì', 0x88D5: 'yù', 0x88D8: 'qiú', 0x88D9: 'qún', 0x88DF: 'shā', 0x88E2: 'lian', 0x88E3: 'liǎn', 0x88E4: 'kù', 0x88E8: 'bì', 0x88F0: 'duō', 0x88F1: 'biǎo', 0x88F3: 'shang,cháng', 0x88F4: 'péi', 0x88F8: 'luǒ', 0x88F9: 'guǒ,guo', 0x88FC: 'xī', 0x8902: 'guà', 0x890A: 'biǎn', 0x8910: 'hè', 0x8912: 'bāo', 0x8913: 'bǎo', 0x8919: 'bèi', 0x891A: 'chǔ', 0x891B: 'lǚ', 0x891F: 'tā', 0x8921: 'dā', 0x8925: 'rù', 0x892A: 'tuì,tùn', 0x892B: 'chǐ', 0x8934: 'lán', 0x8935: 'lí', 0x8936: 'zhě', 0x8941: 'qiǎng', 0x8944: 'xiāng', 0x895F: 'jīn', 0x896B: 'shì', 0x897B: 'pàn', 0x897F: 'xī,xi', 0x8981: 'yào,yāo', 0x8983: 'tán', 0x8986: 'fù', 0x89C1: 'jiàn,xiàn,jian,jiān', 0x89C2: 'guān,guàn', 0x89C3: 'yàn', 0x89C4: 'guī', 0x89C5: 'mì', 0x89C6: 'shì', 0x89C7: 'chān', 0x89C8: 'lǎn', 0x89C9: 'jué,jiào', 0x89CA: 'jì', 0x89CB: 'xí', 0x89CE: 'yú', 0x89D0: 'jìn', 0x89D1: 'qù', 0x89D2: 'jiǎo,jué', 0x89DA: 'gū', 0x89DC: 'zī,zuǐ', 0x89DE: 'shāng', 0x89E3: 'jiě,xiè,jiè', 0x89E5: 'gōng', 0x89E6: 'chù', 0x89F1: 'bì', 0x89FD: 'xī', 0x8A00: 'yán', 0x8A07: 'hōng', 0x8A3E: 'zǐ', 0x8A48: 'lì', 0x8A5D: 'zhǔ', 0x8A79: 'zhān', 0x8A89: 'yù', 0x8A8A: 'téng', 0x8A93: 'shì', 0x8B66: 'jǐng', 0x8B6C: 'pì', 0x8BA1: 'jì,ji', 0x8BA2: 'dìng', 0x8BA3: 'fù', 0x8BA4: 'rèn', 0x8BA5: 'jī', 0x8BA6: 'jié', 0x8BA7: 'hòng', 0x8BA8: 'tǎo', 0x8BA9: 'ràng', 0x8BAA: 'shàn', 0x8BAB: 'qì', 0x8BAD: 'xùn,xun', 0x8BAE: 'yì', 0x8BAF: 'xùn', 0x8BB0: 'jì,ji', 0x8BB2: 'jiǎng', 0x8BB3: 'huì,hui', 0x8BB4: 'ōu', 0x8BB6: 'yà', 0x8BB7: 'nè', 0x8BB8: 'xǔ', 0x8BB9: 'é', 0x8BBA: 'lùn,lún', 0x8BBC: 'sòng', 0x8BBD: 'fěng', 0x8BBE: 'shè,she', 0x8BBF: 'fǎng', 0x8BC0: 'jué', 0x8BC1: 'zhèng', 0x8BC2: 'gǔ', 0x8BC3: 'hē', 0x8BC4: 'píng', 0x8BC5: 'zǔ', 0x8BC6: 'shí,shi,zhì,shì', 0x8BC8: 'zhà', 0x8BC9: 'sù,su', 0x8BCA: 'zhěn', 0x8BCB: 'dǐ', 0x8BCC: 'zhōu', 0x8BCD: 'cí', 0x8BCF: 'zhào', 0x8BD1: 'yì', 0x8BD2: 'yí', 0x8BD3: 'kuāng', 0x8BD5: 'shì', 0x8BD7: 'shī', 0x8BD8: 'jié', 0x8BD9: 'huī', 0x8BDA: 'chéng', 0x8BDB: 'zhū', 0x8BDD: 'huà,hua', 0x8BDE: 'dàn', 0x8BDF: 'gòu', 0x8BE0: 'quán', 0x8BE1: 'guǐ', 0x8BE2: 'xún', 0x8BE3: 'yì', 0x8BE4: 'zhèng', 0x8BE5: 'gāi', 0x8BE6: 'xiáng,xiang', 0x8BE7: 'chà', 0x8BE8: 'hùn', 0x8BE9: 'xǔ', 0x8BEB: 'jiè', 0x8BEC: 'wū', 0x8BED: 'yǔ,yu', 0x8BEE: 'qiào', 0x8BEF: 'wù,wu', 0x8BF1: 'yòu', 0x8BF2: 'huì', 0x8BF3: 'kuáng', 0x8BF4: 'shuō,shuì,shuo', 0x8BF5: 'sòng', 0x8BF6: 'ēi', 0x8BF7: 'qǐng', 0x8BF8: 'zhū', 0x8BFA: 'nuò', 0x8BFB: 'dú,dòu', 0x8BFD: 'fěi', 0x8BFE: 'kè', 0x8BFF: 'wěi', 0x8C00: 'yú', 0x8C01: 'shéi,shuí', 0x8C03: 'diào,tiáo', 0x8C04: 'chǎn', 0x8C05: 'liàng', 0x8C06: 'zhūn', 0x8C08: 'tán', 0x8C0A: 'yì', 0x8C0B: 'móu,mòu', 0x8C0D: 'dié', 0x8C0E: 'huǎng', 0x8C0F: 'jiàn', 0x8C10: 'xié', 0x8C11: 'xuè', 0x8C12: 'yè', 0x8C13: 'wèi', 0x8C14: 'è', 0x8C15: 'yù', 0x8C17: 'chán', 0x8C18: 'zī', 0x8C19: 'ān', 0x8C1A: 'yàn', 0x8C1B: 'dì', 0x8C1C: 'mí,mèi', 0x8C1F: 'mó', 0x8C22: 'xiè,xie', 0x8C23: 'yáo', 0x8C24: 'bàng', 0x8C25: 'shì', 0x8C26: 'qiān', 0x8C27: 'mì', 0x8C28: 'jǐn', 0x8C29: 'màn', 0x8C2A: 'zhé', 0x8C2C: 'miù', 0x8C2D: 'tán', 0x8C2E: 'zèn', 0x8C2F: 'qiáo', 0x8C30: 'lán', 0x8C31: 'pǔ', 0x8C32: 'jué', 0x8C33: 'yàn', 0x8C34: 'qiǎn', 0x8C35: 'zhān', 0x8C36: 'chèn', 0x8C37: 'gǔ,yù', 0x8C41: 'huò,huō,huá', 0x8C46: 'dòu', 0x8C47: 'jiāng', 0x8C49: 'chǐ', 0x8C4C: 'wān', 0x8C55: 'shǐ', 0x8C5A: 'tún', 0x8C5E: 'hòu', 0x8C61: 'xiàng', 0x8C62: 'huàn', 0x8C6A: 'háo', 0x8C6B: 'yù', 0x8C71: 'wēn', 0x8C78: 'zhì', 0x8C79: 'bào', 0x8C7A: 'chái', 0x8C82: 'diāo', 0x8C85: 'xiū', 0x8C89: 'háo,hé', 0x8C8A: 'mò', 0x8C8C: 'mào', 0x8C94: 'pí', 0x8D1D: 'bèi', 0x8D1E: 'zhēn', 0x8D1F: 'fù,fu', 0x8D21: 'gòng', 0x8D22: 'cái', 0x8D23: 'zé', 0x8D24: 'xián', 0x8D25: 'bài', 0x8D26: 'zhàng', 0x8D27: 'huò', 0x8D28: 'zhì', 0x8D29: 'fàn', 0x8D2A: 'tān', 0x8D2B: 'pín', 0x8D2C: 'biǎn', 0x8D2D: 'gòu', 0x8D2E: 'zhù', 0x8D2F: 'guàn', 0x8D30: 'èr', 0x8D31: 'jiàn', 0x8D32: 'bì,bēn', 0x8D34: 'tiē', 0x8D35: 'guì', 0x8D37: 'dài', 0x8D38: 'mào', 0x8D39: 'fèi', 0x8D3A: 'hè', 0x8D3B: 'yí', 0x8D3C: 'zéi', 0x8D3D: 'zhì', 0x8D3E: 'jiǎ,gǔ', 0x8D3F: 'huì,huī', 0x8D40: 'zī', 0x8D41: 'lìn', 0x8D42: 'lù', 0x8D43: 'zāng', 0x8D44: 'zī', 0x8D45: 'gāi', 0x8D48: 'zhèn', 0x8D49: 'lài', 0x8D4A: 'shē', 0x8D4B: 'fù', 0x8D4C: 'dǔ', 0x8D4D: 'jī', 0x8D4E: 'shú', 0x8D4F: 'shǎng', 0x8D50: 'cì', 0x8D51: 'bì', 0x8D52: 'zhōu', 0x8D53: 'gēng', 0x8D54: 'péi', 0x8D55: 'dǎn', 0x8D56: 'lài', 0x8D58: 'zhuì', 0x8D5A: 'zhuàn', 0x8D5B: 'sài', 0x8D5D: 'yàn', 0x8D5E: 'zàn', 0x8D60: 'zèng', 0x8D61: 'shàn', 0x8D62: 'yíng', 0x8D63: 'gàn', 0x8D64: 'chì', 0x8D66: 'shè', 0x8D67: 'nǎn', 0x8D6B: 'hè', 0x8D6D: 'zhě', 0x8D70: 'zǒu', 0x8D73: 'jiū', 0x8D74: 'fù', 0x8D75: 'zhào', 0x8D76: 'gǎn', 0x8D77: 'qǐ,qi', 0x8D78: 'shàn', 0x8D81: 'chèn', 0x8D84: 'jū,qie', 0x8D85: 'chāo', 0x8D8A: 'yuè', 0x8D8B: 'qū', 0x8D91: 'zī', 0x8D94: 'liè', 0x8D9F: 'tàng,tāng', 0x8DA3: 'qù', 0x8DA6: 'zī', 0x8DB3: 'zú', 0x8DB4: 'pā', 0x8DB8: 'dǔn', 0x8DBA: 'fū', 0x8DBC: 'jiǎn', 0x8DBE: 'zhǐ', 0x8DBF: 'tā', 0x8DC2: 'qǐ,qì,qí,zhī', 0x8DC3: 'yuè', 0x8DC4: 'qiàng', 0x8DC6: 'tái', 0x8DCB: 'bá', 0x8DCC: 'diē,die', 0x8DCE: 'tuó', 0x8DCF: 'jiā', 0x8DD1: 'pǎo', 0x8DD7: 'fū', 0x8DDA: 'shān', 0x8DDB: 'bǒ', 0x8DDD: 'jù', 0x8DDF: 'gēn', 0x8DE3: 'xiǎn', 0x8DE4: 'jiāo', 0x8DE8: 'kuà', 0x8DE9: 'zhuǎi', 0x8DEA: 'guì', 0x8DEF: 'lù,lu', 0x8DF3: 'tiào', 0x8DF5: 'jiàn,jian', 0x8DF6: 'da', 0x8DF7: 'qiāo,qiào', 0x8DF9: 'xiān', 0x8DFB: 'jī', 0x8E05: 'xué', 0x8E09: 'liàng', 0x8E0A: 'yǒng', 0x8E0C: 'chóu', 0x8E0F: 'tà,tā', 0x8E14: 'chuō', 0x8E18: 'jū', 0x8E1D: 'huái', 0x8E1E: 'jù', 0x8E1F: 'chí', 0x8E22: 'tī,ti', 0x8E23: 'bó', 0x8E25: 'qiè', 0x8E29: 'cǎi', 0x8E2A: 'zōng', 0x8E2C: 'zhì', 0x8E2E: 'diǎn', 0x8E2F: 'zhí', 0x8E31: 'duó', 0x8E35: 'zhǒng', 0x8E36: 'dì', 0x8E3A: 'jiàn', 0x8E3D: 'jǔ', 0x8E40: 'dié,die', 0x8E42: 'róu', 0x8E44: 'tí', 0x8E47: 'jiǎn', 0x8E48: 'dǎo', 0x8E49: 'cuō', 0x8E4A: 'xī,qī', 0x8E4B: 'tà', 0x8E51: 'niè', 0x8E52: 'pán', 0x8E59: 'cù', 0x8E5A: 'tāng', 0x8E61: 'qiàng', 0x8E66: 'bèng', 0x8E67: 'zāo', 0x8E69: 'bié', 0x8E6C: 'dēng,dèng', 0x8E6D: 'cèng,ceng', 0x8E70: 'chú', 0x8E72: 'dūn,dùn', 0x8E74: 'cù', 0x8E76: 'jué,juě', 0x8E7C: 'pǔ', 0x8E7F: 'cuān', 0x8E81: 'zào', 0x8E85: 'zhú', 0x8E87: 'chú', 0x8E8F: 'lìn', 0x8E94: 'chán', 0x8E9E: 'xiè', 0x8EAB: 'shēn,shēng', 0x8EAC: 'gōng', 0x8EAF: 'qū', 0x8EB2: 'duǒ', 0x8EBA: 'tǎng', 0x8EC3: 'duǒ', 0x8F02: 'jú', 0x8F57: 'kǎn', 0x8F58: 'huàn', 0x8F66: 'chē,jū', 0x8F67: 'yà,zhá', 0x8F68: 'guǐ', 0x8F69: 'xuān', 0x8F6B: 'rèn', 0x8F6C: 'zhuǎn,zhuàn,zhuǎi,zhuan', 0x8F6D: 'è', 0x8F6E: 'lún', 0x8F6F: 'ruǎn', 0x8F70: 'hōng', 0x8F71: 'gū', 0x8F72: 'kē,kě', 0x8F73: 'lu', 0x8F74: 'zhóu,zhòu', 0x8F76: 'yì', 0x8F78: 'zhěn', 0x8F7B: 'qīng', 0x8F7C: 'shì', 0x8F7D: 'zài,zǎi', 0x8F7E: 'zhì', 0x8F7F: 'jiào', 0x8F83: 'jiào', 0x8F84: 'zhé', 0x8F85: 'fǔ', 0x8F86: 'liàng', 0x8F87: 'niǎn', 0x8F88: 'bèi', 0x8F89: 'huī', 0x8F8A: 'gǔn', 0x8F8C: 'liáng', 0x8F8D: 'chuò', 0x8F90: 'fú', 0x8F91: 'jí,ji', 0x8F92: 'wēn', 0x8F93: 'shū', 0x8F94: 'pèi', 0x8F95: 'yuán', 0x8F96: 'xiá', 0x8F97: 'zhǎn', 0x8F98: 'lù', 0x8F99: 'zhé', 0x8F9B: 'xīn', 0x8F9C: 'gū', 0x8F9E: 'cí', 0x8F9F: 'pì,bì', 0x8FA3: 'là,la,lā', 0x8FA8: 'biàn', 0x8FA9: 'biàn', 0x8FAB: 'biàn', 0x8FB0: 'chén,chen', 0x8FB1: 'rǔ', 0x8FB9: 'biān,bian', 0x8FBD: 'liáo', 0x8FBE: 'dá,da', 0x8FC1: 'qiān', 0x8FC2: 'yū', 0x8FC4: 'qì', 0x8FC5: 'xùn', 0x8FC7: 'guò,guo', 0x8FC8: 'mài', 0x8FCE: 'yíng', 0x8FD0: 'yùn', 0x8FD1: 'jìn', 0x8FD4: 'fǎn', 0x8FD5: 'wǔ', 0x8FD8: 'huán,hái', 0x8FD9: 'zhè', 0x8FDB: 'jìn', 0x8FDC: 'yuǎn,yuàn', 0x8FDD: 'wéi', 0x8FDE: 'lián,lian', 0x8FDF: 'chí', 0x8FE2: 'tiáo', 0x8FE4: 'yǐ,yí', 0x8FE5: 'jiǒng', 0x8FE6: 'jiā', 0x8FE9: 'ěr', 0x8FEA: 'dí', 0x8FEB: 'pò,pǎi', 0x8FED: 'dié', 0x8FEE: 'zé', 0x8FF0: 'shù', 0x8FF3: 'jìng', 0x8FF7: 'mí', 0x8FF8: 'bèng', 0x8FF9: 'jì', 0x8FFA: 'nǎi', 0x8FFD: 'zhuī', 0x9000: 'tuì', 0x9001: 'sòng,song', 0x9002: 'shì,kuò', 0x9003: 'táo', 0x9005: 'hòu', 0x9006: 'nì', 0x9009: 'xuǎn', 0x900A: 'xùn', 0x900B: 'bū', 0x900D: 'xiāo', 0x900F: 'tòu', 0x9010: 'zhú', 0x9012: 'dì', 0x9014: 'tú', 0x9017: 'dòu', 0x901A: 'tōng,tong', 0x901B: 'guàng,guang', 0x901D: 'shì', 0x901E: 'chěng', 0x901F: 'sù', 0x9020: 'zào', 0x9021: 'qūn', 0x9022: 'féng', 0x9026: 'lǐ', 0x902E: 'dài,dǎi', 0x9035: 'kuí', 0x9036: 'wēi', 0x9038: 'yì', 0x903B: 'luó', 0x903C: 'bī,bi', 0x903E: 'yú', 0x9041: 'dùn', 0x9042: 'suì', 0x9044: 'chuán', 0x9047: 'yù', 0x904D: 'biàn', 0x904F: 'è', 0x9050: 'xiá', 0x9051: 'huáng', 0x9052: 'qiú', 0x9053: 'dào,dao', 0x9057: 'yí', 0x905B: 'liù,liú', 0x905D: 'tà', 0x9062: 'ta', 0x9063: 'qiǎn', 0x9065: 'yáo', 0x9068: 'áo', 0x906D: 'zāo', 0x906E: 'zhē', 0x9074: 'lín', 0x9075: 'zūn', 0x907D: 'jù', 0x907F: 'bì', 0x9080: 'yāo', 0x9082: 'xiè', 0x9083: 'suì', 0x9088: 'miǎo', 0x908B: 'lā', 0x9091: 'yì', 0x9093: 'dèng', 0x9095: 'yōng', 0x9097: 'hán', 0x9099: 'máng', 0x909B: 'qióng', 0x90A1: 'fāng', 0x90A2: 'xíng', 0x90A3: 'nà,nǎ,na', 0x90A6: 'bāng', 0x90A8: 'cūn', 0x90AA: 'xié', 0x90AE: 'yóu', 0x90AF: 'hán', 0x90B1: 'qiū', 0x90B3: 'pī', 0x90B5: 'shào', 0x90B7: 'wǎ', 0x90B8: 'dǐ', 0x90B9: 'zōu', 0x90BA: 'yè', 0x90BB: 'lín', 0x90C1: 'yù', 0x90C5: 'zhì', 0x90C7: 'xún', 0x90CA: 'jiāo', 0x90CE: 'láng,lang,làng', 0x90CF: 'jiá', 0x90D1: 'zhèng', 0x90D3: 'yùn', 0x90DB: 'fú', 0x90DD: 'hǎo', 0x90E1: 'jùn', 0x90E2: 'yǐng', 0x90E4: 'xì', 0x90E7: 'yún', 0x90E8: 'bù', 0x90EB: 'pí', 0x90ED: 'guō', 0x90EF: 'tán', 0x90F4: 'chēn', 0x90F8: 'dān', 0x90FD: 'dū,dōu', 0x90FE: 'yǎn', 0x9102: 'è', 0x9104: 'juàn', 0x910B: 'sōu', 0x9119: 'bǐ', 0x911E: 'yín', 0x9122: 'yān', 0x912F: 'shàn', 0x9131: 'pó', 0x9143: 'líng', 0x9146: 'fēng', 0x9149: 'yǒu', 0x914A: 'dǐng,dīng', 0x914B: 'qiú', 0x914C: 'zhuó', 0x914D: 'pèi', 0x9152: 'jiǔ', 0x9155: 'máo', 0x9157: 'xù', 0x915A: 'fēn', 0x915D: 'yùn', 0x915E: 'tài', 0x9162: 'cù,zuò', 0x9163: 'hān', 0x9165: 'sū', 0x9166: 'fā', 0x9169: 'mǐng', 0x916A: 'lào,luò', 0x916C: 'chóu,chou', 0x916E: 'tóng', 0x916F: 'zhǐ', 0x9170: 'xiān', 0x9171: 'jiàng', 0x9172: 'chéng', 0x9175: 'jiào', 0x9176: 'méi', 0x9177: 'kù', 0x9178: 'suān', 0x917F: 'niàng,niáng', 0x9184: 'táo', 0x9187: 'chún', 0x9189: 'zuì', 0x918B: 'cù', 0x918C: 'kūn', 0x918D: 'tí', 0x9190: 'hú', 0x9192: 'xǐng', 0x919A: 'mí', 0x919B: 'quán', 0x91A2: 'hǎi', 0x91A3: 'táng', 0x91AA: 'láo', 0x91AE: 'jiào', 0x91B4: 'lǐ', 0x91BA: 'xūn', 0x91C7: 'cǎi', 0x91C9: 'yòu', 0x91CA: 'shì', 0x91CC: 'lǐ,li', 0x91CD: 'zhòng,chóng', 0x91CE: 'yě', 0x91CF: 'liàng,liáng,liang', 0x91D1: 'jīn', 0x91DC: 'fǔ', 0x9274: 'jiàn', 0x927E: 'móu', 0x92AE: 'luán', 0x933E: 'zàn', 0x936A: 'móu', 0x938F: 'liú', 0x93CA: 'ào', 0x93D6: 'áo', 0x946B: 'xīn', 0x9488: 'zhēn', 0x9489: 'dīng,dìng,ding', 0x948A: 'zhāo', 0x948C: 'liào', 0x948E: 'qiān', 0x9492: 'fán', 0x9493: 'diào', 0x9497: 'chāi', 0x9499: 'gài', 0x949B: 'tài', 0x949C: 'jù', 0x949D: 'dùn', 0x949E: 'chāo', 0x949F: 'zhōng,zhong', 0x94A0: 'nà', 0x94A1: 'bèi', 0x94A2: 'gāng', 0x94A3: 'bǎn', 0x94A5: 'yào,yuè', 0x94A6: 'qīn', 0x94A7: 'jūn', 0x94A8: 'wū', 0x94A9: 'gōu,gòu', 0x94AE: 'niǔ', 0x94AF: 'bǎ', 0x94B0: 'yù', 0x94B1: 'qián,qian', 0x94B3: 'qián', 0x94B4: 'gǔ', 0x94B5: 'bō', 0x94B9: 'bó', 0x94BA: 'yuè', 0x94BB: 'zuān,zuàn', 0x94BE: 'jiǎ', 0x94C0: 'yóu', 0x94C1: 'tiě,tie', 0x94C3: 'líng', 0x94C4: 'shuò', 0x94C5: 'qiān,yán', 0x94C6: 'mǎo', 0x94C9: 'xuàn', 0x94CE: 'duó', 0x94D0: 'kào', 0x94D3: 'máng', 0x94D7: 'jiá', 0x94DB: 'dāng,chēng,dang', 0x94DC: 'tóng', 0x94DD: 'lǚ', 0x94DE: 'diào', 0x94E0: 'kǎi', 0x94E1: 'zhá', 0x94E2: 'zhū', 0x94E3: 'xǐ,xiǎn', 0x94E4: 'tǐng', 0x94E7: 'huá', 0x94E8: 'quán', 0x94E9: 'shā', 0x94EC: 'gè', 0x94ED: 'míng', 0x94EE: 'zhēng', 0x94F0: 'jiǎo', 0x94F2: 'chǎn', 0x94F3: 'chòng', 0x94F5: 'ǎn', 0x94F6: 'yín', 0x94F8: 'zhù', 0x94FA: 'pū,pù', 0x94FE: 'liàn', 0x94FF: 'kēng', 0x9500: 'xiāo', 0x9501: 'suǒ', 0x9502: 'lǐ', 0x9503: 'zèng', 0x9504: 'chú', 0x9505: 'guō', 0x9506: 'gào', 0x9508: 'xiù', 0x9509: 'cuò', 0x950B: 'fēng', 0x950C: 'xīn', 0x950F: 'jiǎn', 0x9510: 'ruì', 0x9512: 'láng', 0x9514: 'jū', 0x9515: 'ā', 0x9519: 'cuò', 0x951A: 'máo', 0x951F: 'kūn', 0x9521: 'xī', 0x9522: 'gù', 0x9523: 'luó', 0x9524: 'chuí', 0x9525: 'zhuī', 0x9526: 'jǐn', 0x9528: 'xiān', 0x952A: 'huō', 0x952D: 'dìng', 0x952E: 'jiàn', 0x952F: 'jù,ju', 0x9530: 'měng', 0x9531: 'zī', 0x9532: 'qiè', 0x9535: 'qiāng', 0x9537: 'è', 0x9539: 'qiāo', 0x953B: 'duàn', 0x953E: 'huán', 0x9540: 'dù', 0x9541: 'měi', 0x9542: 'lòu', 0x9547: 'zhèn', 0x9548: 'bó', 0x954A: 'niè', 0x954C: 'juān', 0x954D: 'niè', 0x954F: 'liù,liú', 0x9550: 'gǎo,hào', 0x9551: 'bàng', 0x9553: 'jiā', 0x9555: 'róng', 0x9556: 'biāo', 0x955A: 'bèng', 0x955C: 'jìng', 0x955E: 'zú', 0x9563: 'liào', 0x9567: 'lán', 0x9569: 'cuān', 0x956A: 'qiāng', 0x956B: 'dèng', 0x956C: 'huò', 0x956D: 'léi', 0x956F: 'zhuó', 0x9570: 'lián', 0x9572: 'chǎ', 0x9573: 'biāo', 0x9574: 'là', 0x9576: 'xiāng', 0x957F: 'cháng,zhǎng', 0x95A6: 'chù', 0x95E8: 'mén,men', 0x95E9: 'shuān', 0x95EA: 'shǎn', 0x95ED: 'bì', 0x95EE: 'wèn', 0x95EF: 'chuǎng', 0x95F0: 'rùn', 0x95F1: 'wéi', 0x95F2: 'xián', 0x95F3: 'hóng', 0x95F4: 'jiān,jiàn,gān', 0x95F5: 'mǐn', 0x95F7: 'mèn,mēn,men', 0x95F8: 'zhá', 0x95F9: 'nào,nao', 0x95FA: 'guī', 0x95FB: 'wén', 0x95FD: 'mǐn', 0x95FE: 'lǘ', 0x9600: 'fá', 0x9601: 'gé', 0x9602: 'hé', 0x9603: 'kǔn', 0x9604: 'jiū', 0x9605: 'yuè', 0x9606: 'láng,làng', 0x9607: 'shé', 0x9608: 'yù', 0x9609: 'yān', 0x960A: 'chāng', 0x960B: 'xì', 0x960E: 'yán', 0x960F: 'yān,è', 0x9610: 'chǎn', 0x9611: 'lán', 0x9612: 'qù', 0x9614: 'kuò', 0x9616: 'hé', 0x9617: 'tián', 0x9619: 'què,quē', 0x961C: 'fù', 0x961F: 'duì', 0x9621: 'qiān', 0x9622: 'wù', 0x962A: 'bǎn', 0x962E: 'ruǎn', 0x9631: 'jǐng', 0x9632: 'fáng,fang', 0x9633: 'yáng,yang', 0x9634: 'yīn', 0x9635: 'zhèn', 0x9636: 'jiē', 0x963B: 'zǔ', 0x963F: 'ā,ē', 0x9640: 'tuó', 0x9642: 'pí,bēi,pō', 0x9644: 'fù', 0x9645: 'jì', 0x9646: 'lù', 0x9647: 'lǒng', 0x9648: 'chén', 0x9649: 'xíng', 0x964B: 'lòu', 0x964C: 'mò', 0x964D: 'jiàng,xiáng', 0x9650: 'xiàn', 0x9655: 'shǎn', 0x965B: 'bì', 0x965C: 'xiá', 0x965F: 'zhì', 0x9661: 'dǒu', 0x9662: 'yuàn', 0x9664: 'chú', 0x9667: 'niè', 0x9668: 'yǔn', 0x9669: 'xiǎn', 0x966A: 'péi', 0x9672: 'chuí', 0x9674: 'pí', 0x9675: 'líng', 0x9676: 'táo', 0x9677: 'xiàn', 0x9685: 'yú,yù', 0x9686: 'lóng,lōng', 0x968B: 'suí', 0x968D: 'huáng', 0x968F: 'suí', 0x9690: 'yǐn', 0x9694: 'gé', 0x9698: 'ài', 0x9699: 'xì', 0x969C: 'zhàng', 0x96A7: 'suì', 0x96B0: 'xí', 0x96B6: 'lì', 0x96BC: 'sǔn', 0x96BD: 'juàn,jùn', 0x96BE: 'nán,nàn,nan', 0x96C0: 'què,qiǎo,qiāo', 0x96C1: 'yàn', 0x96C4: 'xióng', 0x96C5: 'yǎ,yā', 0x96C6: 'jí', 0x96C7: 'gù', 0x96C9: 'zhì', 0x96CC: 'cí', 0x96CD: 'yōng', 0x96CF: 'chú', 0x96D5: 'diāo', 0x96DA: 'huán', 0x96E0: 'chóu', 0x96E8: 'yǔ,yù', 0x96EA: 'xuě', 0x96EF: 'wén', 0x96F0: 'fēn', 0x96F3: 'lì', 0x96F6: 'líng,ling', 0x96F7: 'léi', 0x96F9: 'báo', 0x96FE: 'wù', 0x9700: 'xū', 0x9701: 'jì', 0x9702: 'mù', 0x9704: 'xiāo', 0x9706: 'tíng', 0x9707: 'zhèn', 0x9709: 'méi', 0x970D: 'huò', 0x970E: 'shà', 0x970F: 'fēi', 0x9713: 'ní', 0x9716: 'lín', 0x971C: 'shuāng', 0x971E: 'xiá', 0x9722: 'mài', 0x972A: 'yín', 0x972D: 'ǎi', 0x9730: 'xiàn', 0x9732: 'lù,lòu', 0x9738: 'bà', 0x9739: 'pī', 0x973E: 'mái', 0x9752: 'qīng', 0x9753: 'liàng,jìng', 0x9756: 'jìng', 0x9759: 'jìng', 0x975B: 'diàn', 0x975E: 'fēi', 0x9760: 'kào', 0x9761: 'mǐ,mí', 0x9762: 'miàn,mian', 0x9765: 'yè', 0x9769: 'gé', 0x976A: 'ding', 0x976C: 'jiān', 0x9774: 'xuē', 0x9776: 'bǎ', 0x977C: 'dá', 0x9785: 'yāng,yǎng', 0x978B: 'xié', 0x978D: 'ān', 0x9791: 'dá', 0x9798: 'qiào', 0x979D: 'shàng', 0x97A0: 'jū', 0x97A3: 'róu', 0x97AD: 'biān', 0x97B2: 'gōu', 0x97B4: 'bèi', 0x97E6: 'wéi', 0x97E7: 'rèn', 0x97E9: 'hán', 0x97EA: 'wěi', 0x97EC: 'tāo', 0x97ED: 'jiǔ', 0x97F3: 'yīn,yin', 0x97F5: 'yùn', 0x97F6: 'sháo', 0x9875: 'yè', 0x9876: 'dǐng', 0x9877: 'qǐng', 0x9879: 'xiàng,xiang', 0x987A: 'shùn', 0x987B: 'xū', 0x987C: 'xū', 0x987D: 'wán', 0x987E: 'gù,gu', 0x987F: 'dùn', 0x9881: 'bān', 0x9882: 'sòng', 0x9884: 'yù', 0x9885: 'lú', 0x9886: 'lǐng', 0x9887: 'pō', 0x9888: 'jǐng,gěng', 0x9889: 'jié', 0x988A: 'jiá', 0x988C: 'hé', 0x988D: 'yǐng', 0x988F: 'kē', 0x9890: 'yí', 0x9891: 'pín', 0x9893: 'tuí', 0x9894: 'hàn', 0x9896: 'yǐng', 0x9897: 'kē', 0x9898: 'tí', 0x989A: 'è', 0x989B: 'zhuān', 0x989C: 'yán', 0x989D: 'é,è', 0x989E: 'niè', 0x98A0: 'diān', 0x98A1: 'sǎng', 0x98A2: 'hào', 0x98A4: 'chàn,zhàn,zhan', 0x98A5: 'rú', 0x98A6: 'pín', 0x98A7: 'quán', 0x98CE: 'fēng', 0x98D0: 'zhǎn', 0x98D2: 'sà', 0x98D3: 'jù', 0x98D5: 'sōu', 0x98D6: 'yáo', 0x98D8: 'piāo', 0x98D9: 'biāo', 0x98DE: 'fēi', 0x98DF: 'shí,shi', 0x98E7: 'sūn', 0x98E8: 'xiǎng', 0x990D: 'yàn', 0x9910: 'cān', 0x992E: 'tiè', 0x9954: 'yōng', 0x9955: 'tāo', 0x9965: 'jī', 0x9967: 'xíng', 0x9968: 'tun', 0x9969: 'xì', 0x996A: 'rèn', 0x996B: 'yù', 0x996C: 'chì,chi', 0x996D: 'fàn', 0x996E: 'yǐn', 0x996F: 'jiàn', 0x9970: 'shì', 0x9971: 'bǎo', 0x9972: 'sì', 0x9974: 'yí', 0x9975: 'ěr', 0x9976: 'ráo', 0x9977: 'xiǎng', 0x9978: 'hé', 0x9979: 'le', 0x997A: 'jiǎo', 0x997C: 'bǐng,bing', 0x997D: 'bō,bo', 0x997F: 'è', 0x9980: 'yú', 0x9981: 'něi', 0x9982: 'jùn', 0x9984: 'hún', 0x9985: 'xiàn', 0x9986: 'guǎn', 0x9988: 'kuì', 0x998A: 'sōu', 0x998B: 'chán', 0x998D: 'mó,mo', 0x998F: 'liú', 0x9990: 'xiū', 0x9991: 'jǐn', 0x9992: 'mán', 0x9993: 'sǎn', 0x9994: 'zhuàn', 0x9995: 'nǎng', 0x9996: 'shǒu,shou', 0x9997: 'kuí', 0x9999: 'xiāng', 0x99A5: 'fù', 0x99A8: 'xīn', 0x9A03: 'ái', 0x9A6C: 'mǎ,ma', 0x9A6D: 'yù', 0x9A6E: 'tuó,duò', 0x9A6F: 'xùn', 0x9A70: 'chí', 0x9A71: 'qū', 0x9A73: 'bó', 0x9A74: 'lǘ', 0x9A76: 'shǐ', 0x9A78: 'fù', 0x9A79: 'jū', 0x9A7A: 'zōu', 0x9A7B: 'zhù', 0x9A7C: 'tuó,tuo', 0x9A7D: 'nú', 0x9A7E: 'jià', 0x9A7F: 'yì', 0x9A81: 'xiāo', 0x9A82: 'mà,ma', 0x9A84: 'jiāo', 0x9A85: 'huá', 0x9A86: 'luò', 0x9A87: 'hài', 0x9A88: 'pián', 0x9A8A: 'lí', 0x9A8B: 'chěng', 0x9A8C: 'yàn', 0x9A8F: 'jùn', 0x9A90: 'qí', 0x9A91: 'qí', 0x9A92: 'kè', 0x9A95: 'sù', 0x9A97: 'piàn', 0x9A98: 'zhì', 0x9A9A: 'sāo', 0x9A9B: 'wù', 0x9A9C: 'ào', 0x9A9D: 'liú', 0x9A9E: 'qiān', 0x9AA1: 'luó', 0x9AA4: 'zhòu', 0x9AA5: 'jì', 0x9AA6: 'shuāng', 0x9AA7: 'xiāng', 0x9AA8: 'gǔ,gū,gu', 0x9AB0: 'tóu', 0x9AB6: 'dǐ', 0x9AB7: 'kū', 0x9AB8: 'hái', 0x9ABA: 'hóu', 0x9ABC: 'gé', 0x9AC0: 'bì', 0x9AC2: 'qià', 0x9AC5: 'lóu', 0x9ACB: 'kuān', 0x9ACC: 'bìn', 0x9AD3: 'suǐ', 0x9AD8: 'gāo', 0x9ADD: 'láo', 0x9ADE: 'sào', 0x9AE6: 'máo', 0x9AEB: 'tiáo', 0x9AED: 'zī', 0x9AEF: 'rán', 0x9AFB: 'jì', 0x9B03: 'zōng', 0x9B12: 'zhěn', 0x9B13: 'bìn', 0x9B1F: 'huan,huán', 0x9B23: 'liè', 0x9B3B: 'yù', 0x9B3C: 'guǐ', 0x9B41: 'kuí', 0x9B42: 'hún', 0x9B43: 'bá', 0x9B44: 'pò', 0x9B45: 'mèi', 0x9B46: 'xù,xū', 0x9B47: 'yǎn', 0x9B49: 'liǎng', 0x9B4D: 'wǎng', 0x9B4F: 'wèi', 0x9B51: 'chī', 0x9B54: 'mó', 0x9B56: 'xū', 0x9B60: 'tuō', 0x9B63: 'yú', 0x9BA8: 'qí', 0x9C46: 'zhāng', 0x9C65: 'guì', 0x9C7C: 'yú', 0x9C7F: 'yóu', 0x9C81: 'lǔ', 0x9C83: 'bā', 0x9C85: 'bà', 0x9C86: 'píng', 0x9C88: 'lú', 0x9C8B: 'fù', 0x9C8D: 'bào', 0x9C8E: 'hòu', 0x9C8F: 'pí', 0x9C90: 'tái', 0x9C91: 'guī', 0x9C94: 'wěi', 0x9C97: 'zéi', 0x9C99: 'kuài', 0x9C9B: 'jiāo', 0x9C9C: 'xiān,xiǎn', 0x9C9E: 'xiǎng', 0x9C9F: 'xún', 0x9CA0: 'gěng', 0x9CA1: 'lí', 0x9CA2: 'lián', 0x9CA3: 'jiān', 0x9CA4: 'lǐ', 0x9CA5: 'shí', 0x9CA8: 'shā', 0x9CA9: 'huàn', 0x9CAB: 'jì', 0x9CAD: 'qīng', 0x9CAE: 'líng', 0x9CAF: 'qí', 0x9CB1: 'fēi', 0x9CB2: 'kūn', 0x9CB3: 'chāng', 0x9CB4: 'gù', 0x9CB5: 'ní', 0x9CB6: 'nián', 0x9CB7: 'diāo', 0x9CB8: 'jīng', 0x9CBB: 'zī', 0x9CBC: 'fèn', 0x9CBD: 'dié', 0x9CC0: 'tí', 0x9CC3: 'sāi', 0x9CC4: 'è', 0x9CC5: 'qiu,qiū', 0x9CCC: 'áo', 0x9CCD: 'qí', 0x9CCF: 'guān', 0x9CD1: 'páng', 0x9CD4: 'biào', 0x9CD5: 'xuě', 0x9CD6: 'biē', 0x9CD7: 'mán', 0x9CD9: 'yōng', 0x9CDC: 'guì', 0x9CDD: 'shàn', 0x9CDE: 'lín', 0x9CDF: 'zūn', 0x9CE2: 'lǐ', 0x9CEF: 'fèng', 0x9CFD: 'yán,jiān', 0x9D02: 'jué', 0x9D03: 'jué', 0x9D14: 'fú', 0x9D56: 'bī', 0x9D5F: 'kuáng', 0x9D92: 'chì', 0x9D97: 'tí', 0x9E1F: 'niǎo,diǎo', 0x9E20: 'jiū', 0x9E21: 'jī', 0x9E22: 'yuān', 0x9E23: 'míng', 0x9E25: 'ōu', 0x9E26: 'yā', 0x9E27: 'cāng', 0x9E28: 'bǎo', 0x9E29: 'zhèn', 0x9E2A: 'gū', 0x9E2B: 'dōng', 0x9E2C: 'lú', 0x9E2D: 'yā', 0x9E2E: 'xiāo', 0x9E2F: 'yāng,yang', 0x9E30: 'líng', 0x9E31: 'chī', 0x9E32: 'qú', 0x9E33: 'yuān', 0x9E35: 'tuó', 0x9E36: 'sī', 0x9E37: 'zhì', 0x9E38: 'ér', 0x9E39: 'guā', 0x9E3A: 'xiū', 0x9E3B: 'héng', 0x9E3D: 'gē', 0x9E3E: 'luán', 0x9E3F: 'hóng', 0x9E40: 'wú', 0x9E41: 'bó', 0x9E42: 'lí', 0x9E43: 'juān', 0x9E44: 'hú,gǔ', 0x9E45: 'é', 0x9E46: 'yù', 0x9E47: 'xián', 0x9E48: 'tí', 0x9E49: 'wǔ', 0x9E4A: 'què', 0x9E4B: 'miáo', 0x9E4C: 'ān', 0x9E4D: 'kūn', 0x9E4E: 'bēi', 0x9E4F: 'péng', 0x9E51: 'chún', 0x9E52: 'gēng', 0x9E54: 'sù', 0x9E55: 'hú', 0x9E57: 'è', 0x9E58: 'hú', 0x9E59: 'qiū', 0x9E5A: 'cí', 0x9E5B: 'méi', 0x9E5C: 'wù', 0x9E5E: 'yào', 0x9E5F: 'wēng', 0x9E60: 'liú', 0x9E61: 'jí', 0x9E63: 'jiān', 0x9E64: 'hè', 0x9E66: 'yīng', 0x9E67: 'zhè', 0x9E68: 'liù', 0x9E69: 'liáo', 0x9E6A: 'jiāo', 0x9E6B: 'jiù', 0x9E6C: 'yù', 0x9E6D: 'lù', 0x9E6E: 'huán', 0x9E70: 'yīng', 0x9E71: 'hù', 0x9E72: 'méng', 0x9E73: 'guàn', 0x9E74: 'shuāng', 0x9E7F: 'lù', 0x9E82: 'jǐ', 0x9E87: 'qún', 0x9E88: 'zhǔ', 0x9E8B: 'mí', 0x9E92: 'qí', 0x9E93: 'lù', 0x9E9D: 'shè', 0x9E9F: 'lín', 0x9EA6: 'mài', 0x9EB4: 'qū', 0x9EB8: 'fū', 0x9EBB: 'má,ma,mā', 0x9EBD: 'me,mó', 0x9EBE: 'huī', 0x9EBF: 'mǒ', 0x9EC4: 'huáng', 0x9EC7: 'tiān', 0x9ECD: 'shǔ', 0x9ECE: 'lí', 0x9ECF: 'nián', 0x9ED0: 'chī', 0x9ED1: 'hēi', 0x9ED4: 'qián', 0x9ED8: 'mò', 0x9EDB: 'dài', 0x9EDC: 'chù', 0x9EDD: 'yǒu', 0x9EDF: 'yī', 0x9EE0: 'xiá', 0x9EE2: 'qū', 0x9EE5: 'qíng', 0x9EE7: 'lí', 0x9EE9: 'dú', 0x9EEF: 'àn', 0x9F0B: 'yuán', 0x9F0D: 'tuó', 0x9F0E: 'dǐng', 0x9F13: 'gǔ,gu', 0x9F20: 'shǔ', 0x9F22: 'fén', 0x9F29: 'qú', 0x9F2C: 'yòu', 0x9F2F: 'wú', 0x9F31: 'jīng', 0x9F37: 'xī', 0x9F39: 'yǎn', 0x9F3B: 'bí', 0x9F3E: 'hān', 0x9F4C: 'jì', 0x9F50: 'qí', 0x9F51: 'jī', 0x9F67: 'niè', 0x9F71: 'zōu', 0x9F75: 'yú', 0x9F7F: 'chǐ', 0x9F83: 'jǔ', 0x9F84: 'líng', 0x9F85: 'bāo', 0x9F87: 'zī', 0x9F88: 'yín', 0x9F89: 'yǔ', 0x9F8A: 'chuò', 0x9F8B: 'qǔ', 0x9F8C: 'wò', 0x9F99: 'lóng', 0x9F9A: 'gōng', 0x9F9B: 'kān', 0x9F9F: 'guī,qiū,jūn', 0x9FA0: 'yuè', 0x2020C: 'yú', 0x21484: 'lǎn', 0x22650: 'náo', 0x251A7: 'rún,shùn', 0x25ED7: 'chá', 0x28C3F: 'xì', 0x29F7E: 'ān', 0x29F8C: 'kāng', 0x2B5AE: 'yǐ', 0x2B689: 'hóng', 0x2B6ED: 'kuáng', 0x2BAC7: 'è', 0x2BD95: 'yíng', 0x2C35B: 'lì', 0x2C7C1: 'yì', 0x2C7FD: 'dōng', 0x2CB41: 'mǔ', 0x2CDA8: 'jì', 0x30EDD: 'biáng', } from pypinyin import load_single_dict def load(): load_single_dict(pinyin_dict)
python
class DefaultableEntityEndpointsMixin(object): """ Defaultable entity endpoints. """ def set_default(self, id_): """ Sets a entity with given ID as default. Args: id_ (str): entity ID. Returns: dict: new entity. """ self.request('POST', '/'.join((self.name, id_, "set-default")), headers=self.headers)
python
sexo = str(input('Informe seu sexo [M / F]: ')).strip().upper()[0] # pega somente a primeira letra while sexo != 'M' and sexo != 'F': sexo = str(input('DADOS INVALIDOS. Informe seu sexo [M / F]: ')).strip().upper()
python
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField, DateField from wtforms.validators import DataRequired class EntryForm(FlaskForm): entry = StringField('Entry',validators=[DataRequired()]) project = StringField('Project') notes = StringField('Notes') save = SubmitField('Save')
python
''' # DC Racer Testing and Reporting System (DC RTRS) This script runs a standard test across all the different student code bases. The tests will be based on 100 frame scenarios. ''' import cv2 import numpy as np import platform #import matplotlib.pyplot as plt import time import sys from os import listdir from os.path import isfile, join ## ## VARIABLES ## # Turn on OpenCV Output DEBUG = True DEMO_MODE = True # Video frame rate. 33 = ~30 fps, 50 = ~20fps WAIT_TIME = 50 # Directory when capturing data for analysis OUTPUT_DIR = "capture" ## TESTING WINDOWS AND DEBUGGING # set up the windows for testing if DEBUG: cv2.namedWindow("live") # set some variables for testing output font = cv2.FONT_HERSHEY_SIMPLEX ### B E G I N P R O G R A M ### roi_num = 0 im_num = 1 frame_num = 0 count = 0 ## setup dir_path = os.path.dirname(os.path.realpath(__file__)) dir_data = os.path.join(dir_path, 'data') ## result variables results = {} ## import library / code for testing. #from scripts.detect import detect # load test cases testfile = open('tests.csv', 'r') header = True for testcase in testfile: if header: header = False continue # for each test, run the detect function and store the result(s) folder = os.path.join(dir_data, testcase[1]) onlyfiles = [f for f in listdir(folder) if isfile(join(folder, f))] results[testcase] = {'correct' : 0, 'incorrect' : 0, 'true_pos' : 0, 'false_pos' : 0, 'true_neg' : 0, 'false_neg' : 0, 'percentage' : 0, 'total_img' : len(onlyfiles)} for f in onlyfiles: name = f img = os.path.join(folder, f) frame = cv2.imread(img) # process frame res = detect(frame) # process results # TODO - strip file name and get the detection value from the file name # TODO - compare with result from res # save results while True: # grab a frame from file frame = cv2.imread("{1}/{0}_cam-image_array_.jpg".format(im_num, VIDEO_FILE)) im_num += 1 # convert to HSV image hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # trackbars if TRACKBARS: l_h = cv2.getTrackbarPos("L-H", "trackbars") l_s = cv2.getTrackbarPos("L-S", "trackbars") l_v = cv2.getTrackbarPos("L-V", "trackbars") u_h = cv2.getTrackbarPos("U-H", "trackbars") u_s = cv2.getTrackbarPos("U-S", "trackbars") u_v = cv2.getTrackbarPos("U-V", "trackbars") lower_trackbars = np.array([l_h, l_s, l_v]) upper_trackbars = np.array([u_s, u_h, u_v]) mask_tbars = cv2.inRange(hsv, lower_trackbars, upper_trackbars) cv2.imshow("trackbarview", mask_tbars) #mask = cv2.blur(mask, (5,5)) mask_red = cv2.inRange(hsv, lower_red_stop, upper_red_stop) mask_red2 = cv2.inRange(hsv, lower_red2_stop, upper_red2_stop) mask_white = cv2.inRange(hsv, lower_white_stop, upper_stop) maskfilter = mask_red + mask_red2 #mask = mask + mask_white ##mask = cv2.GaussianBlur(mask, (3,3), 0) #mask = cv2.erode(mask, kernel) #mask = cv2.dilate(, kernel, iterations=1) mask = cv2.morphologyEx(maskfilter, cv2.MORPH_OPEN, kernel, iterations=1) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1) mask = cv2.dilate(mask, kernel, iterations=2) ##mask = cv2.erode(mask, kernel, iterations=1) #mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) #mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) #mask = cv2.erode(mask, kernel) img = cv2.bitwise_and(frame,frame,mask = mask) # find shapes # contours detection height, width = mask.shape[:2] contours, _ = cv2.findContours(mask[0:int(height/2), 0:width], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # find the largest contour first that fits all our conditions. largest_area = -1 rect = None for cnt in contours: area = cv2.contourArea(cnt) #approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True) x,y,w,h = cv2.boundingRect(cnt) vr = valid_range(x,y,w,h,frame) if not vr: continue if area > largest_area and area > AREA_SIZE: largest_area = area rect = cv2.boundingRect(cnt) # we found a rect that fits the conditions if largest_area > 0: # capture a ROI image and store for later x,y,w,h = rect roi = frame[y:y+h, x:x+w] # check if valid range vr = valid_range(x,y,w,h,frame) if not vr: continue #cv2.imwrite("{2}/{1}_roi-{0}.jpg".format(roi_num, frame_num, OUTPUT_DIR), roi) count += 1 #cv2.drawContours(frame, [approx], 0, (0,0,0), 2) #print(len(cnt), " - ", count) if len(cnt) == 8: print("octagon!!", count) #x = approx.ravel()[0] #y = approx.ravel()[1] cv2.rectangle(frame, (x,y), (x+w, y+h), (0,0,0), 2) cv2.putText(frame, "STOP", (x,y), font, 1, (0,0,0)) if DEBUG: cv2.imshow("processed", img) cv2.imshow("mask", mask) cv2.imshow("color filter", maskfilter) if DEMO_MODE or DEBUG: cv2.imshow("live", frame) key = cv2.waitKey(WAIT_TIME) if key == ord('q'): break continue cap.release() cv2.destroyAllWindows() sys.exit(0)
python
from io import *
python
with open('/usr/local/airflow//dags/1','a+') as f: f.write("1")
python
x = input("x : ") print(type(x)) y = int(x) + 1 print(y) print(f"x : {x}, y : {y}") #there are some falsy values in python3 whenever we use them in boolean sense it will output false # "" --> this a empty string which is falsy according to python3 # 0 --> no. zero is also falsy # None --> which represent absense of a value falsy #
python
# # PySNMP MIB module XEDIA-L2DIAL-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/XEDIA-L2DIAL-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:36:26 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") Counter32, ObjectIdentity, TimeTicks, IpAddress, Counter64, Integer32, Gauge32, iso, Unsigned32, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, Bits, ModuleIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "ObjectIdentity", "TimeTicks", "IpAddress", "Counter64", "Integer32", "Gauge32", "iso", "Unsigned32", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "Bits", "ModuleIdentity") TextualConvention, DisplayString, RowStatus = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString", "RowStatus") xediaMibs, = mibBuilder.importSymbols("XEDIA-REG", "xediaMibs") xediaL2DialMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 838, 3, 30)) if mibBuilder.loadTexts: xediaL2DialMIB.setLastUpdated('9902272155Z') if mibBuilder.loadTexts: xediaL2DialMIB.setOrganization('Xedia Corp.') l2DialObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 838, 3, 30, 1)) l2DialConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 838, 3, 30, 2)) l2DialStatusTable = MibTable((1, 3, 6, 1, 4, 1, 838, 3, 30, 1, 1), ) if mibBuilder.loadTexts: l2DialStatusTable.setStatus('current') l2DialStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 838, 3, 30, 1, 1, 1), ).setIndexNames((0, "XEDIA-L2DIAL-MIB", "l2DialStatusIpAddress")) if mibBuilder.loadTexts: l2DialStatusEntry.setStatus('current') l2DialStatusIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 838, 3, 30, 1, 1, 1, 1), IpAddress()) if mibBuilder.loadTexts: l2DialStatusIpAddress.setStatus('current') l2DialStatusSublayer = MibTableColumn((1, 3, 6, 1, 4, 1, 838, 3, 30, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: l2DialStatusSublayer.setStatus('current') l2DialCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 838, 3, 30, 2, 1)) l2DialGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 838, 3, 30, 2, 2)) l2DialCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 838, 3, 30, 2, 1, 1)).setObjects(("XEDIA-L2DIAL-MIB", "l2DialStatusGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): l2DialCompliance = l2DialCompliance.setStatus('current') l2DialStatusGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 838, 3, 30, 2, 2, 1)).setObjects(("XEDIA-L2DIAL-MIB", "l2DialStatusSublayer")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): l2DialStatusGroup = l2DialStatusGroup.setStatus('current') mibBuilder.exportSymbols("XEDIA-L2DIAL-MIB", l2DialGroups=l2DialGroups, l2DialStatusIpAddress=l2DialStatusIpAddress, l2DialObjects=l2DialObjects, PYSNMP_MODULE_ID=xediaL2DialMIB, xediaL2DialMIB=xediaL2DialMIB, l2DialConformance=l2DialConformance, l2DialStatusEntry=l2DialStatusEntry, l2DialStatusSublayer=l2DialStatusSublayer, l2DialStatusTable=l2DialStatusTable, l2DialCompliance=l2DialCompliance, l2DialCompliances=l2DialCompliances, l2DialStatusGroup=l2DialStatusGroup)
python
''' Stacking the cubes with sizes in descending order from bottom to top. **NOTE** Every time only the left-most or the right-most cube can be stacked from the array/list. ''' #Input Format: ''' The first line contains a single integer T, the number of test cases. For each test case, there are 2 lines. The first line of each test case contains N, the number of cubes. The second line contains N space separated integers, denoting the sideLengths of each cube in that order. ''' #Sample Input: ''' 2 6 4 3 2 1 3 4 3 1 3 2 ''' #OUTPUT: ''' Yes No ''' #Code for t in range(int(input())): n=int(input()) c=list(map(int,input().split())) s=[] i=0 for i in range(n): if c==[]: break if (c[0]>=c[-1] and s==[]) or (c[0]>=c[-1] and s[-1]>=c[0]): s.append(c[0]) c.remove(c[0]) elif (c[0]<c[-1] and s==[]) or (c[0]<c[-1] and s[-1]>=c[-1]): s.append(c[-1]) c.pop(-1) if c==[]: print("Yes") else: print("No")
python
from django.conf.urls import patterns, include, url # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() from taysistunto.feeds import SpeakerFeed, DocumentFeed, ActionFeed, ActionsByWordFeed urlpatterns = patterns('', # Examples: url(r'^$', 'taysistunto.views.index'), url(r'^(?P<page>\d+)$', 'taysistunto.views.index'), url(r'^stopify/(?P<word>.*)$', 'taysistunto.views.stopify'), url(r'^document$', 'taysistunto.views.document'), url(r'^puhujat/(?P<id>\d+)(-[\-\w]*)?$', 'taysistunto.views.speaker'), # url(r'^puhujat/(?P<id>\d+)(-[\-\w]*)?/puheenvuorot$', 'taysistunto.views.latest_speaker_actions'), # url(r'^puhujat/(?P<id>\d+)(-[\-\w]*)?/puheenvuorot/(?P<page>\d+)$', 'taysistunto.views.latest_speaker_actions'), # url(r'^puhujat/(?P<id>\d+)(-[\-\w]*)?/puheenvuorot/vuosi-(?P<year>\d{4})$', 'taysistunto.views.latest_speaker_actions'), # url(r'^puhujat/(?P<id>\d+)(-[\-\w]*)?/puheenvuorot/vuosi-(?P<year>\d{4})/(?P<page>\d+)$', 'taysistunto.views.latest_speaker_actions'), url(r'^puhujat/(?P<id>\d+)(-[\-\w]*)?/syote$', SpeakerFeed.SpeakerFeed()), url(r'^puhujat$', 'taysistunto.views.all_speakers'), url(r'^puheenvuorot$', 'taysistunto.views.action_search'), url(r'^istunnot/(?P<id>[\d\-]+)$', 'taysistunto.views.document'), url(r'^istunnot/(?P<doc_id>[\d\-]+)/(?P<subject_id>\d+)(-[\-\w]*)?$', 'taysistunto.views.subject'), url(r'^istunnot/(?P<doc_id>[\d\-]+)/(?P<subject_id>\d+)(-[\-\w]*)?/(?P<action_id>\d+)$', 'taysistunto.views.action'), url(r'^sanat/?$', 'taysistunto.views.words'), url(r'^sanat/(?P<word>[^/]+)$', 'taysistunto.views.word'), url(r'^sanat/(?P<word>[^/]+)/vuosi-(?P<year>\d{4})$', 'taysistunto.views.word'), url(r'^sanat/(?P<word>[^/]+)/syote$', ActionsByWordFeed.ActionsByWordFeed()), url(r'^puheenvuorot/syote$', ActionFeed.ActionFeed()), url(r'^arkisto$', 'taysistunto.views.archive'), url(r'^arkisto/(?P<chosen_year>\d+)$', 'taysistunto.views.archive'), url(r'^(?P<tpl>(info))$', 'taysistunto.views.static_content'), url(r'^istunnot/syote$', DocumentFeed.DocumentFeed()), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: url(r'^puh-admin/', include(admin.site.urls)), url(r'^tilaukset/(?P<email>.{5,100})-(?P<checksum>\w{16})$', 'taysistunto.views.manage_subscriptions'), url(r'^tilaukset/(?P<email>.{5,100})-(?P<checksum>\w{16})/istunnot/lopeta$', 'taysistunto.views.end_subscription'), url(r'^tilaukset/(?P<email>.{5,100})-(?P<checksum>\w{16})/puheenvuorot/(?P<id>\d+)/lopeta$', 'taysistunto.views.end_subscription'), url(r'^test-action-mail/(?P<action_id>\d+)$', 'taysistunto.views.test_action_mail'), url(r'^test-document-mail$', 'taysistunto.views.test_document_mail'), url(r'^tilaa$', 'taysistunto.views.subscribe'), )
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Christian Heider Nielsen" __doc__ = r""" Created on 02/03/2020 """ from enum import Enum __all__ = ["UpscaleMode", "MergeMode"] class MergeMode(Enum): Concat = 0 Add = 1 class UpscaleMode(Enum): FractionalTranspose = 0 Upsample = 1 if __name__ == "__main__": assert MergeMode.Concat in MergeMode assert not (UpscaleMode.Upsample in MergeMode) assert UpscaleMode.Upsample in UpscaleMode assert not (MergeMode.Add in UpscaleMode) # assert not (0 in UpscaleMode) # assert not (3 in UpscaleMode)
python
"""Refiner is the refinement module public interface. RefinerFactory is what should usually be used to construct a Refiner.""" import copy import logging import math import psutil import libtbx from dxtbx.model.experiment_list import ExperimentList from libtbx.phil import parse import dials.util from dials.algorithms.refinement import DialsRefineConfigError from dials.algorithms.refinement.constraints import ConstraintManagerFactory from dials.algorithms.refinement.engine import AdaptLstbx, refinery_phil_str from dials.algorithms.refinement.parameterisation import ( build_prediction_parameterisation, ) from dials.algorithms.refinement.parameterisation import ( phil_str as parameterisation_phil_str, ) from dials.algorithms.refinement.parameterisation.autoreduce import AutoReduce from dials.algorithms.refinement.parameterisation.parameter_report import ( ParameterReporter, ) from dials.algorithms.refinement.prediction.managed_predictors import ( ExperimentsPredictorFactory, ) from dials.algorithms.refinement.refinement_helpers import ordinal_number, string_sel from dials.algorithms.refinement.reflection_manager import ReflectionManagerFactory from dials.algorithms.refinement.reflection_manager import ( phil_str as reflections_phil_str, ) from dials.algorithms.refinement.restraints import RestraintsParameterisation from dials.algorithms.refinement.target import TargetFactory from dials.algorithms.refinement.target import phil_str as target_phil_str from dials.array_family import flex logger = logging.getLogger(__name__) # The include scope directive does not work here. For example: # # include scope dials.algorithms.refinement.outlier_detection.phil_scope # # results in: # # AttributeError: 'module' object has no attribute 'refinement' # # to work around this, just include external phil scopes as strings format_data = { "reflections_phil": reflections_phil_str, "target_phil": target_phil_str, "parameterisation_phil": parameterisation_phil_str, "refinery_phil": refinery_phil_str, } phil_scope = parse( """ refinement .help = "Parameters to configure the refinement" { mp .expert_level = 2 { nproc = 1 .type = int(value_min=1) .help = "The number of processes to use. Not all choices of refinement" "engine support nproc > 1. Where multiprocessing is possible," "it is helpful only in certain circumstances, so this is not" "recommended for typical use." } parameterisation .help = "Parameters to control the parameterisation of experimental models" { %(parameterisation_phil)s } %(refinery_phil)s target .help = "Parameters to configure the target function" .expert_level = 1 { %(target_phil)s } reflections .help = "Parameters used by the reflection manager" { %(reflections_phil)s } } """ % format_data, process_includes=True, ) RAD2DEG = 180 / math.pi def _copy_experiments_for_refining(experiments): """ Make a partial copy of experiments, copying properties used in refinement. Any experiment property that can be altered by refinement e.g. Beam, Detector and Goniometer will be deep-copied, whereas anything that the refiner doesn't touch (e.g. Scan, ImageSet) will be left as original references. This makes it safe to pass an object into the refiner or get an object out of the refiner without having to worry about your copy being unexpectedly altered, but saves time by avoiding the copying of potentially expensive experiment properties (e.g. ImageSet and its attributes). Args experiments (Experiment or ExperimentList or Iterable[Experiment]): Returns: ExperimentList: The copied experiments in new ExperimentList """ # Look for a non-list e.g. a single experiment and convert to a list if not hasattr(experiments, "__iter__"): experiments = [experiments] out_list = ExperimentList() # Save a map of object id to copies so shared objects remain shared id_memo = {} # Copy each experiment individually for experiment in experiments: # Be inclusive about the initial copy new_exp = copy.copy(experiment) # Ensure every 'refined' attribute is uniquely copied for model in ["beam", "goniometer", "detector", "crystal"]: original = getattr(experiment, model) if id(original) not in id_memo: id_memo[id(original)] = copy.deepcopy(original) # assign the new copy to the experiment setattr(new_exp, model, id_memo[id(original)]) # Collect this together out_list.append(new_exp) return out_list def _trim_scans_to_observations(experiments, reflections): """Check the range of each scan matches the range of observed data and trim the scan to match if it is too wide""" # Get observed image number (or at least observed phi) obs_phi = reflections["xyzobs.mm.value"].parts()[2] try: obs_z = reflections["xyzobs.px.value"].parts()[2] except KeyError: obs_z = None # Get z_min and z_max from shoeboxes if present try: shoebox = reflections["shoebox"] bb = shoebox.bounding_boxes() z_min, z_max = bb.parts()[4:] if z_min.all_eq(0): shoebox = None except KeyError: shoebox = None for iexp, exp in enumerate(experiments): sel = reflections["id"] == iexp isel = sel.iselection() if obs_z is not None: exp_z = obs_z.select(isel) else: exp_phi = obs_phi.select(isel) exp_z = exp.scan.get_array_index_from_angle(exp_phi, deg=False) start, stop = exp.scan.get_array_range() min_exp_z = flex.min(exp_z) max_exp_z = flex.max(exp_z) # If observed array range is correct, skip to next experiment if int(min_exp_z) == start and int(math.ceil(max_exp_z)) == stop: continue # Extend array range either by shoebox size, or 0.5 deg if shoebox not available if shoebox is not None: obs_start = flex.min(z_min.select(isel)) obs_stop = flex.max(z_max.select(isel)) else: obs_start = int(min_exp_z) obs_stop = int(math.ceil(max_exp_z)) half_deg_in_images = int(math.ceil(0.5 / exp.scan.get_oscillation()[1])) obs_start -= half_deg_in_images obs_stop += half_deg_in_images # Convert obs_start, obs_stop from position in array range to integer image number if obs_start > start or obs_stop < stop: im_start = max(start, obs_start) + 1 im_stop = min(obs_stop, stop) logger.warning( "The reflections for experiment {0} do not fill the scan range. The scan will be trimmed " "to images {{{1},{2}}} to match the range of observed data".format( iexp, im_start, im_stop ) ) # Ensure the scan is unique to this experiment and set trimmed limits exp.scan = copy.deepcopy(exp.scan) new_oscillation = ( exp.scan.get_angle_from_image_index(im_start), exp.scan.get_oscillation()[1], ) exp.scan.set_image_range((im_start, im_stop)) exp.scan.set_oscillation(new_oscillation) return experiments class RefinerFactory: """Factory class to create refiners""" @staticmethod def _filter_reflections(reflections): """Return a copy of the input reflections filtered to keep only those columns that are required by refinement""" cols = [ "id", "miller_index", "panel", "s1", "xyzobs.mm.value", "xyzobs.px.value", "xyzcal.px", "xyzobs.mm.variance", "flags", "shoebox", "delpsical.weights", ] # NB xyzobs.px.value & xyzcal.px required by SauterPoon outlier rejector # NB delpsical.weights is used by ExternalDelPsiWeightingStrategy rt = flex.reflection_table() # copy columns to the new table. Could use the select method # for this except that 's1' is optional in the input so would want # to copy that in like this if present anyway for k in cols: if k in reflections: rt[k] = reflections[k] return rt @classmethod def from_parameters_data_experiments(cls, params, reflections, experiments): # TODO Checks on the input # E.g. does every experiment contain at least one overlapping model with at # least one other experiment? Are all the experiments either rotation series # or stills (the combination of both not yet supported)? # copy the experiments experiments = _copy_experiments_for_refining(experiments) # copy and filter the reflections reflections = cls._filter_reflections(reflections) return cls._build_components(params, reflections, experiments) @classmethod def _build_components(cls, params, reflections, experiments): """low level build""" # Currently a refinement job can only have one parameterisation of the # prediction equation. This can either be of the XYDelPsi (stills) type, the # XYPhi (scans) type or the scan-varying XYPhi type with a varying crystal # model single_as_still = params.refinement.parameterisation.treat_single_image_as_still exps_are_stills = [] for exp in experiments: if exp.scan is None: exps_are_stills.append(True) elif exp.scan.get_num_images() == 1: if single_as_still: exps_are_stills.append(True) elif exp.scan.is_still(): exps_are_stills.append(True) else: exps_are_stills.append(False) else: if exp.scan.get_oscillation()[1] <= 0.0: raise DialsRefineConfigError("Cannot refine a zero-width scan") exps_are_stills.append(False) # check experiment types are consistent if not all(exps_are_stills[0] == e for e in exps_are_stills): raise DialsRefineConfigError("Cannot refine a mixture of stills and scans") do_stills = exps_are_stills[0] # If experiments are stills, ensure scan-varying refinement won't be attempted if do_stills: params.refinement.parameterisation.scan_varying = False # Refiner does not accept scan_varying=Auto. This is a special case for # doing macrocycles of refinement in dials.refine. if params.refinement.parameterisation.scan_varying is libtbx.Auto: params.refinement.parameterisation.scan_varying = False # Trim scans and calculate reflection block_width if required for scan-varying refinement if ( params.refinement.parameterisation.scan_varying and params.refinement.parameterisation.trim_scan_to_observations ): experiments = _trim_scans_to_observations(experiments, reflections) from dials.algorithms.refinement.reflection_manager import BlockCalculator block_calculator = BlockCalculator(experiments, reflections) if params.refinement.parameterisation.compose_model_per == "block": reflections = block_calculator.per_width( params.refinement.parameterisation.block_width, deg=True ) elif params.refinement.parameterisation.compose_model_per == "image": reflections = block_calculator.per_image() logger.debug("\nBuilding reflection manager") logger.debug("Input reflection list size = %d observations", len(reflections)) # create reflection manager refman = ReflectionManagerFactory.from_parameters_reflections_experiments( params.refinement.reflections, reflections, experiments, do_stills ) logger.debug( "Number of observations that pass initial inclusion criteria = %d", refman.get_accepted_refs_size(), ) sample_size = refman.get_sample_size() if sample_size > 0: logger.debug("Working set size = %d observations", sample_size) logger.debug("Reflection manager built\n") # configure use of sparse data types params = cls.config_sparse(params, experiments) do_sparse = params.refinement.parameterisation.sparse # create managed reflection predictor ref_predictor = ExperimentsPredictorFactory.from_experiments( experiments, force_stills=do_stills, spherical_relp=params.refinement.parameterisation.spherical_relp_model, ) # Predict for the managed observations, set columns for residuals and set # the used_in_refinement flag to the predictions obs = refman.get_obs() ref_predictor(obs) x_obs, y_obs, phi_obs = obs["xyzobs.mm.value"].parts() x_calc, y_calc, phi_calc = obs["xyzcal.mm"].parts() obs["x_resid"] = x_calc - x_obs obs["y_resid"] = y_calc - y_obs obs["phi_resid"] = phi_calc - phi_obs # determine whether to do basic centroid analysis to automatically # determine outlier rejection block if params.refinement.reflections.outlier.block_width is libtbx.Auto: ca = refman.get_centroid_analyser() analysis = ca(calc_average_residuals=False, calc_periodograms=False) else: analysis = None # Now predictions and centroid analysis are available, so we can finalise # the reflection manager refman.finalise(analysis) # Create model parameterisations logger.debug("Building prediction equation parameterisation") pred_param = build_prediction_parameterisation( params.refinement.parameterisation, experiments, refman, do_stills ) # Build a constraints manager, if requested cmf = ConstraintManagerFactory(params, pred_param) constraints_manager = cmf() # Test for parameters that have too little data to refine and act accordingly autoreduce = AutoReduce( params.refinement.parameterisation.auto_reduction, pred_param, refman, constraints_manager, cmf, ) autoreduce() # if reduction was done, constraints_manager will have changed constraints_manager = autoreduce.constraints_manager # Build a restraints parameterisation (if requested). # Only unit cell restraints are supported at the moment. restraints_parameterisation = cls.config_restraints( params.refinement.parameterisation, pred_param ) # Parameter reporting logger.debug("Prediction equation parameterisation built") logger.debug("Parameter order : name mapping") for i, e in enumerate(pred_param.get_param_names()): logger.debug("Parameter %03d : %s", i + 1, e) param_reporter = ParameterReporter( pred_param.get_detector_parameterisations(), pred_param.get_beam_parameterisations(), pred_param.get_crystal_orientation_parameterisations(), pred_param.get_crystal_unit_cell_parameterisations(), pred_param.get_goniometer_parameterisations(), ) # Create target function logger.debug("Building target function") target = cls.config_target( params.refinement.target, experiments, refman, ref_predictor, pred_param, restraints_parameterisation, do_stills, do_sparse, ) logger.debug("Target function built") # create refinery logger.debug("Building refinement engine") refinery = cls.config_refinery(params, target, pred_param, constraints_manager) logger.debug("Refinement engine built") nparam = len(pred_param) ndim = target.dim nref = len(refman.get_matches()) logger.info( "There are %s parameters to refine against %s reflections in %s dimensions", nparam, nref, ndim, ) if not params.refinement.parameterisation.sparse and isinstance( refinery, AdaptLstbx ): dense_jacobian_gigabytes = ( nparam * nref * ndim * flex.double.element_size() ) / 1e9 avail_memory_gigabytes = psutil.virtual_memory().available / 1e9 # Report if the Jacobian requires a large amount of storage if ( dense_jacobian_gigabytes > 0.2 * avail_memory_gigabytes or dense_jacobian_gigabytes > 0.5 ): logger.info( "Storage of the Jacobian matrix requires %.1f GB", dense_jacobian_gigabytes, ) # build refiner interface and return if params.refinement.parameterisation.scan_varying: refiner = ScanVaryingRefiner else: refiner = Refiner return refiner( experiments, pred_param, param_reporter, refman, target, refinery ) @staticmethod def config_sparse(params, experiments): """Configure whether to use sparse datatypes""" # Automatic selection for sparse parameter if params.refinement.parameterisation.sparse == libtbx.Auto: if len(experiments) > 1: params.refinement.parameterisation.sparse = True else: params.refinement.parameterisation.sparse = False if params.refinement.refinery.engine == "SparseLevMar": params.refinement.parameterisation.sparse = True if params.refinement.mp.nproc > 1: if params.refinement.refinery.engine != "SparseLevMar": # sparse vectors cannot be pickled, so can't use easy_mp here params.refinement.parameterisation.sparse = False else: pass # but SparseLevMar requires sparse jacobian; does not implement mp # Check incompatible selection elif ( params.refinement.parameterisation.sparse and params.refinement.mp.nproc > 1 ): logger.warning( "Could not set sparse=True and nproc=%s", params.refinement.mp.nproc ) logger.warning("Resetting sparse=False") params.refinement.parameterisation.sparse = False return params @staticmethod def config_restraints(params, pred_param): """Given a set of user parameters plus a model parameterisation, create restraints plus a parameterisation of these restraints Params: params: The input PHIL parameters pred_param: A PredictionParameters object Returns: A restraints parameterisation or None """ if not any( ( params.crystal.unit_cell.restraints.tie_to_target, params.crystal.unit_cell.restraints.tie_to_group, ) ): return None if params.scan_varying and not params.crystal.unit_cell.force_static: logger.warning("Restraints will be ignored for scan_varying=True") return None det_params = pred_param.get_detector_parameterisations() beam_params = pred_param.get_beam_parameterisations() xl_ori_params = pred_param.get_crystal_orientation_parameterisations() xl_uc_params = pred_param.get_crystal_unit_cell_parameterisations() gon_params = pred_param.get_goniometer_parameterisations() rp = RestraintsParameterisation( detector_parameterisations=det_params, beam_parameterisations=beam_params, xl_orientation_parameterisations=xl_ori_params, xl_unit_cell_parameterisations=xl_uc_params, goniometer_parameterisations=gon_params, ) # Shorten params path cell_r = params.crystal.unit_cell.restraints for tie in cell_r.tie_to_target: if len(tie.values) != 6: raise DialsRefineConfigError( "6 cell parameters must be provided as the tie_to_target.values." ) if len(tie.sigmas) != 6: raise DialsRefineConfigError( "6 sigmas must be provided as the tie_to_target.sigmas. " "Note that individual sigmas of 0.0 will remove " "the restraint for the corresponding cell parameter." ) if tie.id is None: # get one experiment id for each parameterisation to apply to all tie.id = [e.get_experiment_ids()[0] for e in xl_uc_params] for exp_id in tie.id: rp.add_restraints_to_target_xl_unit_cell(exp_id, tie.values, tie.sigmas) for tie in cell_r.tie_to_group: if len(tie.sigmas) != 6: raise DialsRefineConfigError( "6 sigmas must be provided as the tie_to_group.sigmas. " "Note that individual sigmas of 0.0 will remove " "the restraint for the corresponding cell parameter." ) if tie.id is None: rp.add_restraints_to_group_xl_unit_cell(tie.target, "all", tie.sigmas) else: rp.add_restraints_to_group_xl_unit_cell(tie.target, tie.id, tie.sigmas) return rp @staticmethod def config_refinery(params, target, pred_param, constraints_manager): """Given a set of parameters, a target class, a prediction parameterisation class and a constraints_manager (which could be None), build a refinery Params: params The input parameters Returns: The refinery instance """ # Shorten parameter path options = params.refinement.refinery if options.engine == "SimpleLBFGS": from dials.algorithms.refinement.engine import SimpleLBFGS as refinery elif options.engine == "LBFGScurvs": from dials.algorithms.refinement.engine import LBFGScurvs as refinery elif options.engine == "GaussNewton": from dials.algorithms.refinement.engine import ( GaussNewtonIterations as refinery, ) elif options.engine == "LevMar": from dials.algorithms.refinement.engine import ( LevenbergMarquardtIterations as refinery, ) elif options.engine == "SparseLevMar": from dials.algorithms.refinement.sparse_engine import ( SparseLevenbergMarquardtIterations as refinery, ) else: raise RuntimeError( "Refinement engine " + options.engine + " not recognised" ) logger.debug("Selected refinement engine type: %s", options.engine) engine = refinery( target=target, prediction_parameterisation=pred_param, constraints_manager=constraints_manager, log=options.log, tracking=options.journal, max_iterations=options.max_iterations, ) if params.refinement.mp.nproc > 1: nproc = params.refinement.mp.nproc try: engine.set_nproc(nproc) except NotImplementedError: logger.warning( "Could not set nproc=%s for refinement engine of type %s", nproc, options.engine, ) return engine # Overload to allow subclasses of RefinerFactory to use a different # TargetFactory @staticmethod def config_target( params, experiments, reflection_manager, predictor, pred_param, restraints_param, do_stills, do_sparse, ): target = TargetFactory.from_parameters_and_experiments( params, experiments, reflection_manager, predictor, pred_param, restraints_param, do_stills, do_sparse, ) return target class Refiner: """Public interface for performing DIALS refinement. Public methods: run rmsds get_experiments get_matches get_param_reporter parameter_correlation_plot selection_used_for_refinement predict_for_reflection_table predict_for_indexed Notes: * The return value of run is a recorded history of the refinement * The experiments accessor provides a copy of the experiments used by refinement * get_matches exposes the function of the same name from the privately stored reflection manager * The return value of selection_used_for_refinement is a flex.bool """ def __init__( self, experiments, pred_param, param_reporter, refman, target, refinery ): """ Mandatory arguments: experiments - a dxtbx ExperimentList object pred_param - An object derived from the PredictionParameterisation class param_reporter -A ParameterReporter object refman - A ReflectionManager object target - An object derived from the Target class refinery - An object derived from the Refinery class """ # the experimental models self._experiments = experiments # refinement module main objects self._pred_param = pred_param self._refman = refman self._target = target self._refinery = refinery # parameter reporter self._param_report = param_reporter # Keep track of whether this is stills or scans type refinement self.experiment_type = refman.experiment_type return def get_experiments(self): """Return a copy of the current refiner experiments""" return _copy_experiments_for_refining(self._experiments) def rmsds(self): """Return rmsds of the current model""" # ensure predictions for the matches are up to date self._refinery.prepare_for_step() return self._target.rmsds() def rmsds_for_reflection_table(self, reflections): """Calculate unweighted RMSDs for the specified reflections""" # ensure predictions for these reflections are up to date preds = self.predict_for_reflection_table(reflections) return self._target.rmsds_for_reflection_table(preds) def get_matches(self): """Delegated to the reflection manager""" return self._refman.get_matches() def get_free_reflections(self): """Delegated to the reflection manager""" return self._refman.get_free_reflections() def get_param_reporter(self): """Get the ParameterReport object linked to this Refiner""" return self._param_report def get_parameter_correlation_matrix(self, step, col_select=None): """Return the correlation matrix between columns of the Jacobian at the specified refinement step. The parameter col_select can be used to select subsets of the full number of columns. The column labels are also returned as a list of strings""" corrmats = self._refinery.get_correlation_matrix_for_step(step) if corrmats is None: return None, None all_labels = self._pred_param.get_param_names() if col_select is None: col_select = list(range(len(all_labels))) sel = string_sel(col_select, all_labels) labels = [e for e, s in zip(all_labels, sel) if s] num_cols = len(labels) if num_cols == 0: return None, None for k, corrmat in corrmats.items(): assert corrmat.is_square_matrix() idx = flex.bool(sel).iselection() sub_corrmat = flex.double(flex.grid(num_cols, num_cols)) for (i, x) in enumerate(idx): for (j, y) in enumerate(idx): sub_corrmat[i, j] = corrmat[x, y] corrmats[k] = sub_corrmat return (corrmats, labels) @property def history(self): """Get the refinement engine's step history""" return self._refinery.history def print_step_table(self): """print useful output about refinement steps in the form of a simple table""" logger.info("\nRefinement steps:") rmsd_multipliers = [] header = ["Step", "Nref"] for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units): if units == "mm": header.append(name + "\n(mm)") rmsd_multipliers.append(1.0) elif units == "rad": # convert radians to degrees for reporting header.append(name + "\n(deg)") rmsd_multipliers.append(RAD2DEG) else: # leave unknown units alone header.append(name + "\n(" + units + ")") rows = [] for i in range(self._refinery.history.get_nrows()): rmsds = [ r * m for (r, m) in zip(self._refinery.history["rmsd"][i], rmsd_multipliers) ] rows.append( [str(i), str(self._refinery.history["num_reflections"][i])] + [f"{r:.5g}" for r in rmsds] ) logger.info(dials.util.tabulate(rows, header)) logger.info(self._refinery.history.reason_for_termination) return def print_out_of_sample_rmsd_table(self): """print out-of-sample RSMDs per step, if these were tracked""" # check if it makes sense to proceed if "out_of_sample_rmsd" not in self._refinery.history: return nref = len(self.get_free_reflections()) if nref < 10: return # don't do anything if very few refs logger.info("\nRMSDs for out-of-sample (free) reflections:") rmsd_multipliers = [] header = ["Step", "Nref"] for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units): if units == "mm": header.append(name + "\n(mm)") rmsd_multipliers.append(1.0) elif units == "rad": # convert radians to degrees for reporting header.append(name + "\n(deg)") rmsd_multipliers.append(RAD2DEG) else: # leave unknown units alone header.append(name + "\n(" + units + ")") rows = [] for i in range(self._refinery.history.get_nrows()): rmsds = [ r * m for r, m in zip( self._refinery.history["out_of_sample_rmsd"][i], rmsd_multipliers ) ] rows.append([str(i), str(nref)] + [f"{e:.5g}" for e in rmsds]) logger.info(dials.util.tabulate(rows, header)) return def print_exp_rmsd_table(self): """print useful output about refinement steps in the form of a simple table""" logger.info("\nRMSDs by experiment:") header = ["Exp\nid", "Nref"] for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units): if name == "RMSD_X" or name == "RMSD_Y" and units == "mm": header.append(name + "\n(px)") elif name == "RMSD_Phi" and units == "rad": # will convert radians to images for reporting of scans header.append("RMSD_Z" + "\n(images)") elif units == "rad": # will convert other angles in radians to degrees (e.g. for # RMSD_DeltaPsi and RMSD_2theta) header.append(name + "\n(deg)") else: # skip other/unknown RMSDs pass rows = [] for iexp, exp in enumerate(self._experiments): detector = exp.detector px_sizes = [p.get_pixel_size() for p in detector] it = iter(px_sizes) px_size = next(it) if not all(tst == px_size for tst in it): logger.info( "The detector in experiment %d does not have the same pixel " + "sizes on each panel. Skipping...", iexp, ) continue px_per_mm = [1.0 / e for e in px_size] scan = exp.scan try: images_per_rad = 1.0 / abs(scan.get_oscillation(deg=False)[1]) except (AttributeError, ZeroDivisionError): images_per_rad = None raw_rmsds = self._target.rmsds_for_experiment(iexp) if raw_rmsds is None: continue # skip experiments where rmsd cannot be calculated num = self._target.get_num_matches_for_experiment(iexp) rmsds = [] for (name, units, rmsd) in zip( self._target.rmsd_names, self._target.rmsd_units, raw_rmsds ): if name == "RMSD_X" and units == "mm": rmsds.append(rmsd * px_per_mm[0]) elif name == "RMSD_Y" and units == "mm": rmsds.append(rmsd * px_per_mm[1]) elif name == "RMSD_Phi" and units == "rad": rmsds.append(rmsd * images_per_rad) elif units == "rad": rmsds.append(rmsd * RAD2DEG) rows.append([str(iexp), str(num)] + [f"{r:.5g}" for r in rmsds]) if len(rows) > 0: logger.info(dials.util.tabulate(rows, header)) return def print_panel_rmsd_table(self): """print useful output about refinement steps in the form of a simple table""" if len(self._experiments.scans()) > 1: logger.warning( "Multiple scans present. Only the first scan will be used " "to determine the image width for reporting RMSDs" ) scan = self._experiments.scans()[0] try: images_per_rad = 1.0 / abs(scan.get_oscillation(deg=False)[1]) except AttributeError: images_per_rad = None for idetector, detector in enumerate(self._experiments.detectors()): if len(detector) == 1: continue logger.info("\nDetector %s RMSDs by panel:", idetector + 1) header = ["Panel\nid", "Nref"] for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units): if name == "RMSD_X" or name == "RMSD_Y" and units == "mm": header.append(name + "\n(px)") elif ( name == "RMSD_Phi" and units == "rad" ): # convert radians to images for reporting of scans header.append("RMSD_Z" + "\n(images)") elif ( name == "RMSD_DeltaPsi" and units == "rad" ): # convert radians to degrees for reporting of stills header.append(name + "\n(deg)") else: # skip RMSDs that cannot be expressed in image/scan space pass rows = [] for ipanel, panel in enumerate(detector): px_size = panel.get_pixel_size() px_per_mm = [1.0 / e for e in px_size] num = self._target.get_num_matches_for_panel(ipanel) if num <= 0: continue raw_rmsds = self._target.rmsds_for_panel(ipanel) if raw_rmsds is None: continue # skip panels where rmsd cannot be calculated rmsds = [] for (name, units, rmsd) in zip( self._target.rmsd_names, self._target.rmsd_units, raw_rmsds ): if name == "RMSD_X" and units == "mm": rmsds.append(rmsd * px_per_mm[0]) elif name == "RMSD_Y" and units == "mm": rmsds.append(rmsd * px_per_mm[1]) elif name == "RMSD_Phi" and units == "rad": rmsds.append(rmsd * images_per_rad) elif name == "RMSD_DeltaPsi" and units == "rad": rmsds.append(rmsd * RAD2DEG) rows.append([str(ipanel), str(num)] + [f"{r:.5g}" for r in rmsds]) if len(rows) > 0: logger.info(dials.util.tabulate(rows, header)) return def run(self): """Run refinement""" #################################### # Do refinement and return history # #################################### logger.debug("\nExperimental models before refinement:") for i, beam in enumerate(self._experiments.beams()): logger.debug(ordinal_number(i) + " " + str(beam)) for i, detector in enumerate(self._experiments.detectors()): logger.debug(ordinal_number(i) + " " + str(detector)) for i, goniometer in enumerate(self._experiments.goniometers()): if goniometer is None: continue logger.debug(ordinal_number(i) + " " + str(goniometer)) for i, scan in enumerate(self._experiments.scans()): if scan is None: continue logger.debug(ordinal_number(i) + " " + str(scan)) for i, crystal in enumerate(self._experiments.crystals()): logger.debug(ordinal_number(i) + " " + str(crystal)) self._refinery.run() # These involve calculation, so skip them when output is quiet if logger.getEffectiveLevel() < logging.ERROR: self.print_step_table() self.print_out_of_sample_rmsd_table() self.print_exp_rmsd_table() det_npanels = [len(d) for d in self._experiments.detectors()] if any(n > 1 for n in det_npanels): self.print_panel_rmsd_table() # Perform post-run tasks to write the refined states back to the models self._update_models() logger.debug("\nExperimental models after refinement:") for i, beam in enumerate(self._experiments.beams()): logger.debug(ordinal_number(i) + " " + str(beam)) for i, detector in enumerate(self._experiments.detectors()): logger.debug(ordinal_number(i) + " " + str(detector)) for i, goniometer in enumerate(self._experiments.goniometers()): if goniometer is None: continue logger.debug(ordinal_number(i) + " " + str(goniometer)) for i, scan in enumerate(self._experiments.scans()): if scan is None: continue logger.debug(ordinal_number(i) + " " + str(scan)) for i, crystal in enumerate(self._experiments.crystals()): logger.debug(ordinal_number(i) + " " + str(crystal)) # Report on the refined parameters logger.debug(str(self._param_report)) # Return the refinement history return self._refinery.history def _update_models(self): """Perform any extra tasks required to update the models after refinement. Does nothing here, but used by subclasses""" pass def selection_used_for_refinement(self): """Return a selection as a flex.bool in terms of the input reflection data of those reflections that were used in the final step of refinement.""" matches = self._refman.get_matches() selection = flex.bool(len(self._refman.get_indexed()), False) try: # new reflection table format for matches isel = matches["iobs"] selection.set_selected(isel, True) except TypeError: # old ObsPredMatch format for matches for m in matches: selection[m.iobs] = True return selection def predict_for_indexed(self): """perform prediction for all the indexed reflections passed into refinement and additionally set the used_in_refinement flag. Do not compose the derivatives of states of the model as this is expensive and they are not needed outside of a refinement run""" reflections = self.predict_for_reflection_table( self._refman.get_indexed(), skip_derivatives=True ) reflections.sort("iobs") mask = self.selection_used_for_refinement() reflections.set_flags(mask, reflections.flags.used_in_refinement) return reflections def predict_for_reflection_table(self, reflections, skip_derivatives=False): """perform prediction for all reflections in the supplied table""" # delegate to the target object, which has access to the predictor return self._target.predict_for_reflection_table(reflections, skip_derivatives) class ScanVaryingRefiner(Refiner): """Includes functionality to update the models with their states at scan-points after scan-varying refinement""" def _update_models(self): for iexp, exp in enumerate(self._experiments): ar_range = exp.scan.get_array_range() obs_image_numbers = list(range(ar_range[0], ar_range[1] + 1)) # write scan-varying s0 vectors back to beam models s0_list = self._pred_param.get_varying_s0(obs_image_numbers, iexp) if s0_list is not None: exp.beam.set_s0_at_scan_points(s0_list) # write scan-varying setting rotation matrices back to goniometer models S_list = self._pred_param.get_varying_setting_rotation( obs_image_numbers, iexp ) if S_list is not None: exp.goniometer.set_setting_rotation_at_scan_points(S_list) # write scan-varying crystal setting matrices back to crystal models A_list = self._pred_param.get_varying_UB(obs_image_numbers, iexp) if A_list is not None: exp.crystal.set_A_at_scan_points(A_list) # Calculate scan-varying errors if requested if self._pred_param.set_scan_varying_errors: # get state covariance matrices the whole range of images. We select # the first element of this at each image because crystal scan-varying # parameterisations are not multi-state state_cov_list = [ self._pred_param.calculate_model_state_uncertainties( obs_image_number=t, experiment_id=iexp ) for t in range(ar_range[0], ar_range[1] + 1) ] if "U_cov" in state_cov_list[0]: u_cov_list = [e["U_cov"] for e in state_cov_list] else: u_cov_list = None if "B_cov" in state_cov_list[0]: b_cov_list = [e["B_cov"] for e in state_cov_list] else: b_cov_list = None # return these to the model parameterisations to be set in the models self._pred_param.set_model_state_uncertainties( u_cov_list, b_cov_list, iexp )
python
# # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible_collections.community.general.tests.unit.compat.mock import patch from ansible_collections.community.general.plugins.modules.network.onyx import onyx_bgp from ansible_collections.community.general.tests.unit.modules.utils import set_module_args from ..onyx_module import TestOnyxModule, load_fixture class TestOnyxBgpModule(TestOnyxModule): module = onyx_bgp def setUp(self): super(TestOnyxBgpModule, self).setUp() self.mock_get_config = patch.object( onyx_bgp.OnyxBgpModule, "_get_bgp_summary") self.get_config = self.mock_get_config.start() self.mock_load_config = patch( 'ansible_collections.community.general.plugins.module_utils.network.onyx.onyx.load_config') self.load_config = self.mock_load_config.start() def tearDown(self): super(TestOnyxBgpModule, self).tearDown() self.mock_get_config.stop() self.mock_load_config.stop() def load_fixtures(self, commands=None, transport='cli'): config_file = 'onyx_bgp_show.cfg' self.get_config.return_value = load_fixture(config_file) self.load_config.return_value = None def test_bgp_no_change(self): neighbor = dict(remote_as=322, neighbor='10.2.3.5', multihop=255) set_module_args(dict(as_number=172, router_id='1.2.3.4', neighbors=[neighbor], networks=['172.16.1.0/24'], evpn=True, fast_external_fallover=True, max_paths=31, ecmp_bestpath=True, )) self.execute_module(changed=False) def test_bgp_remove(self): set_module_args(dict(as_number=172, state='absent')) commands = ['no router bgp 172'] self.execute_module(changed=True, commands=commands) def test_bgp_with_vrf_changed(self): set_module_args(dict(as_number=173, vrf='new_vrf')) commands = ['no router bgp 172 vrf default', 'router bgp 173 vrf new_vrf', 'exit'] self.execute_module(changed=True, commands=commands) def test_bgp_change(self): neighbor = dict(remote_as=173, neighbor='10.2.3.4') set_module_args(dict(as_number=174, router_id='1.2.3.4', neighbors=[neighbor], evpn=False, fast_external_fallover=False, max_paths=32, ecmp_bestpath=False, )) commands = ['no router bgp 172 vrf default', 'router bgp 174 vrf default', 'exit', 'router bgp 174 vrf default router-id 1.2.3.4 force', 'router bgp 174 vrf default neighbor 10.2.3.4 remote-as 173', 'no router bgp 174 vrf default neighbor evpn peer-group', 'no router bgp 174 vrf default address-family l2vpn-evpn auto-create', 'router bgp 174 vrf default no bgp fast-external-fallover', 'router bgp 174 vrf default maximum-paths 32', 'router bgp 174 vrf default no bestpath as-path multipath-relax force'] self.execute_module(changed=True, commands=commands) def test_bgp_add_neighbor(self): neighbors = [dict(remote_as=173, neighbor='10.2.3.4'), dict(remote_as=175, neighbor='10.2.3.5'), dict(remote_as=175, neighbor='10.2.3.6', multihop=250)] set_module_args(dict(as_number=172, router_id='1.2.3.4', neighbors=neighbors, networks=['172.16.1.0/24'], evpn=True)) commands = ['router bgp 172 vrf default neighbor 10.2.3.5 remote-as 175', 'router bgp 172 vrf default neighbor 10.2.3.6 remote-as 175', 'router bgp 172 vrf default neighbor 10.2.3.6 ebgp-multihop 250', 'router bgp 172 vrf default neighbor 10.2.3.6 peer-group evpn', 'router bgp 172 vrf default neighbor 10.2.3.4 peer-group evpn'] self.execute_module(changed=True, commands=commands) def test_bgp_del_neighbor(self): set_module_args(dict(as_number=172, networks=['172.16.1.0/24'], purge=True)) commands = ['router bgp 172 vrf default no neighbor 10.2.3.4 remote-as 173', 'router bgp 172 vrf default no neighbor 10.2.3.5 remote-as 322'] self.execute_module(changed=True, commands=commands) def test_bgp_add_network(self): neighbors = [dict(remote_as=173, neighbor='10.2.3.4')] set_module_args(dict(as_number=172, router_id='1.2.3.4', neighbors=neighbors, networks=['172.16.1.0/24', '172.16.2.0/24'])) commands = ['router bgp 172 vrf default network 172.16.2.0 /24'] self.execute_module(changed=True, commands=commands) def test_bgp_del_network(self): neighbors = [dict(remote_as=173, neighbor='10.2.3.4')] set_module_args(dict(as_number=172, neighbors=neighbors)) commands = ['router bgp 172 no network 172.16.1.0 /24'] self.execute_module(changed=True, commands=commands)
python
import torch from enum import Enum from experiments import constants class OptimizerType(Enum): SGD = 0 Adam = 1 class SchedulerType(Enum): MultiStep = 0 class SingleNetworkOptimization(object): def __init__(self, network: torch.nn.Module, n_epochs: int, lr=1e-4, weight_decay=1e-3, optimizer_type: OptimizerType = OptimizerType.SGD, grad_norm_clipping=10, betas=(0.9, 0.999), enable_lr_scheduler=False, gamma: float = 0.1, scheduler_steps: list = []): self.n_epochs = n_epochs self.network = network self.optimizer_type = optimizer_type if self.optimizer_type == OptimizerType.SGD: self.opt = torch.optim.SGD(network.parameters(), lr=lr, momentum=0.0, nesterov=False, weight_decay=weight_decay) elif self.optimizer_type == OptimizerType.Adam: self.opt = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay, betas=betas) else: raise NotImplemented self.grad_norm_clipping = grad_norm_clipping self.enable_lr_scheduler = enable_lr_scheduler self.scheduler_list = [] if self.enable_lr_scheduler: self.scheduler_list.append( torch.optim.lr_scheduler.MultiStepLR(self.opt, milestones=scheduler_steps, gamma=gamma)) self.norm_type = 2 def end_epoch(self): [s.step() for s in self.scheduler_list] def zero_grad(self): self.opt.zero_grad() def step(self): if self.grad_norm_clipping > 0: grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(self.network.parameters(), max_norm=self.grad_norm_clipping).item() else: grad_norm = torch.norm( torch.stack( [torch.norm(p.grad.detach(), self.norm_type).to(constants.DEVICE) for p in self.network.parameters() if p.grad is not None]), self.norm_type) self.opt.step() return grad_norm
python
import sys import random import time from cnn import utils import logging import warnings warnings.filterwarnings("ignore") import argparse import torch.utils import torch.backends.cudnn as cudnn from utils.scheduler import Scheduler from torchvision.transforms import transforms import torchvision.datasets as datasets from tensorboardX import SummaryWriter from cnn.supernet import * from distributed import * from utils.auto_augment import auto_augment_transform from utils.Mixup import Mixup from utils.loss import * from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True parser = argparse.ArgumentParser("RepNAS") parser.add_argument('--data', type=str, default='.', help='location of the data') parser.add_argument('--workers', type=int, default=50, help='number of data loading workers') parser.add_argument('--model', type=str, default='RepVGGA0', help='type of model which can be selected in [RepVGG_A0, RepVGG_A1, RepVGG_B2g4, RepVGG_B3]') parser.add_argument('--batch_size', type=int, default=256, help='batch size') parser.add_argument('--base_lr', type=float, default=0.1, help='init learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--lr_mode', type=str, default='cosine', help='[step, poly, cosine]') parser.add_argument('--wd_mode', type=str, default='cosine', help='[step, poly, cosine]') parser.add_argument('--warmup_lr', type=float, default=0.1, help='init warmup learning rate') parser.add_argument('--warmup_epochs', type=int, default=0, help='number of warmup epochs') parser.add_argument('--warmup_mode', type=str, default='constant', help='mode of warmup [constant, linear]') parser.add_argument('--mixup', action='store_true', help='using mixup') parser.add_argument('--autoaugment', action='store_true', help='using autoaugment') parser.add_argument('--smooth', action='store_true', help='using smooth CE') parser.add_argument('--report_freq', type=float, default=500, help='report frequency') parser.add_argument('--epochs', type=int, default=150, help='number of training epochs') parser.add_argument('--resume', action='store_true', help='resume from checkpoint') parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--save', type=str, default='logs', help='experiment name') parser.add_argument('--random_epochs', type=int, default=15, help='number of random sample epochs') parser.add_argument('--fixed_epochs', type=int, default=100, help='number of fixed epochs.') parser.add_argument('--arch_lr', type=float, default=1e-4, help='learning rate for arch encoding') parser.add_argument('--arch_weight_decay', type=float, default=5e-4, help='weight decay for arch encoding') parser.add_argument('--kept_ratio', type=float, default=0.34, help='learning rate for arch encoding') parser.add_argument('--local_rank', type=int, default=0, help='number for current rank') args = parser.parse_args() CLASSES = 1000 def set_random_seed(seed=None): """set random seed""" random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) current_time = time.strftime("%Y-%m-%dT%H:%M", time.localtime()) args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 args.batch_size = args.batch_size // int(os.environ['WORLD_SIZE']) if args.distributed: gpu_id = init_dist() set_random_seed(args.seed) if is_master(): Writer = SummaryWriter(log_dir=current_time) print(args) else: Writer = None cudnn.benchmark = True cudnn.enabled = True if not args.mixup and args.smooth: criterion_smooth = LabelSmoothingCrossEntropy().cuda() elif args.mixup and args.smooth: criterion_smooth = SoftTargetCrossEntropy().cuda() else: criterion_smooth = nn.CrossEntropyLoss().cuda() criterion = nn.CrossEntropyLoss().cuda() model = model_map[args.model]() model = model.cuda() param = [] arch_param = [] for key, value in model.named_parameters(): if not value.requires_grad: continue if 'alphas' in key: arch_param += [{'params': [value], 'lr': args.arch_lr, 'weight_decay': args.arch_weight_decay}] else: if 'bias' in key or 'bn' in key: weight_decay = 0 else: weight_decay = args.weight_decay param += [{'params': [value], 'lr': args.base_lr, 'weight_decay': weight_decay}] optimizer = torch.optim.SGD( param, momentum=args.momentum, ) arch_optimizer = torch.optim.Adam( arch_param, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay ) current_epoch = 0 if args.resume and os.path.exists(os.path.join(args.save, 'ckpt.pt')): print('loading checkpoint') checkpoint = torch.load(os.path.join(args.save, 'ckpt.pt'), map_location='cpu') current_epoch = checkpoint['epoch'] state_dict = OrderedDict() for name, param in checkpoint['model'].items(): state_dict[name] = param model.load_state_dict(state_dict) optimizer.load_state_dict(checkpoint['optimizer']) arch_optimizer.load_state_dict(checkpoint['arch_optimizer']) model.fixed_path = checkpoint['fixed_path'] if is_master(): print("total path = {}".format(model.original_ops)) model.constraint = args.kept_ratio if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu_id], find_unused_parameters=True) model_without_ddp = model.module else: model_without_ddp = model traindir = os.path.join(args.data, 'train') validdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if args.autoaugment: transformer = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), auto_augment_transform('original', dict(translate_const=int(224*0.45), img_mean=tuple([min(255, round(255 * x)) for x in [0.485, 0.456, 0.406]]))), transforms.ToTensor(), normalize, ]) else: transformer = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) train_dataset = datasets.ImageFolder( traindir, transformer) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_queue = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_dataset = datasets.ImageFolder(validdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) valid_queue = torch.utils.data.DataLoader( val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) mixup_fn = Mixup() if args.mixup else None if is_master(): print("step num for each epoch:", len(train_queue)) lr_scheduler = Scheduler(optimizer, len(train_queue), 'lr', args.epochs, base_value=args.base_lr) lr_scheduler.update(0, current_epoch) wd_scheduler = Scheduler(arch_optimizer, len(train_queue), 'weight_decay', args.epochs - args.random_epochs - args.fixed_epochs, base_value=args.arch_weight_decay) wd_scheduler.update(0, max(0, current_epoch - args.random_epochs)) best_top1 = 0 for i in range(current_epoch, args.epochs): if args.distributed: train_queue.sampler.set_epoch(i) if is_master(): print('epoch {}'.format(i)) if i < args.random_epochs: model_without_ddp.random_sample = True elif i == args.random_epochs and is_master(): torch.save({'model': model_without_ddp.state_dict(), 'epoch': i, 'optimizer': optimizer.state_dict(), 'arch_optimizer': arch_optimizer.state_dict(), 'fixed_path': model_without_ddp.fixed_path }, os.path.join(args.save, 'pretrained.pt')) else: model_without_ddp.random_sample = False if i >= args.epochs - args.fixed_epochs and model_without_ddp.fixed_path is None: model_without_ddp.fixed_mask() if is_master(): print("fixed path:", model_without_ddp.fixed_path) train(args, train_queue, model, model_without_ddp, optimizer, arch_optimizer, lr_scheduler, wd_scheduler, i, mixup_fn, criterion_smooth, Writer) top1 = infer(valid_queue, model, criterion, i, Writer) if is_master(): print(model_without_ddp.alphas.sigmoid()) print("epoch:{} top1:{:3f}".format(i, top1)) torch.save({'model': model_without_ddp.state_dict(), 'epoch': i+1, 'optimizer': optimizer.state_dict(), 'arch_optimizer': arch_optimizer.state_dict(), 'fixed_path': model_without_ddp.fixed_path }, os.path.join(args.save, 'ckpt.pt')) if top1 > best_top1: torch.save({'model': model_without_ddp.state_dict(), 'epoch': i + 1, 'top1': top1, 'fixed_path': model_without_ddp.fixed_path}, os.path.join(args.save, 'best.pt')) best_top1 = top1 if is_master(): Writer.close() def train(args, train_queue, model, model_without_ddp, optimizer, arch_optimizer, lr_scheduler, wd_scheduler, epoch, mixup_fn, criterion, Writer): obj = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() model.train() if mixup_fn is not None: mixup_fn.mixup_enabled = False for step, (inputs, targets) in enumerate(train_queue): optimizer.zero_grad() arch_optimizer.zero_grad() inputs = inputs.cuda() targets = targets.cuda() if mixup_fn is not None: inputs, smooth_targets = mixup_fn(inputs, targets) else: inputs, smooth_targets = inputs, targets logits, rank = model(inputs) loss = criterion(logits, smooth_targets) #loss += 2 * (rank.sum() / rank.numel() - args.kept_ratio) ** 2 loss.backward() nn.utils.clip_grad_norm(model_without_ddp.parameters(), 5) prec1, prec5 = utils.accuracy(logits, targets, topk=(1, 5)) n = inputs.size(0) if args.distributed: dist_all_reduce_tensor(loss) dist_all_reduce_tensor(prec1) dist_all_reduce_tensor(prec5) obj.update(loss.item(), n) top1.update(prec1.item(), n) top5.update(prec5.item(), n) optimizer.step() if not model_without_ddp.random_sample and model_without_ddp.fixed_path is None: arch_optimizer.step() wd_scheduler.update(step, epoch - args.random_epochs) lr_scheduler.update(step, epoch) if any(torch.isnan(model_without_ddp.alphas.view(-1))): sys.exit(1) if step % args.report_freq == 0 and is_master(): # print(model.alphas.sigmoid()) print('train step:{}\ lr:{:.3f} wd:{:.3f}\ loss:{:.3f} top1:{:.3f}\ top5:{:.3f}'.format(step, lr_scheduler.value, wd_scheduler.value, obj.avg, top1.avg, top5.avg)) Writer.add_scalar('train loss', obj.avg, epoch*len(train_queue)+step) Writer.add_scalar('train top1 acc', top1.avg, epoch*len(train_queue)+step) def infer(valid_queue, model, criterion, epoch, Writer): objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() model.eval() with torch.no_grad(): for step, (input, target) in enumerate(valid_queue): input = input.cuda() target = target.cuda() logits, _ = model(input) loss = criterion(logits, target) prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) dist_all_reduce_tensor(loss) dist_all_reduce_tensor(prec1) dist_all_reduce_tensor(prec5) objs.update(loss.item(), n) top1.update(prec1.item(), n) top5.update(prec5.item(), n) if is_master(): Writer.add_scalar('valid loss', objs.avg, epoch) Writer.add_scalar('valid top1 acc', top1.avg, epoch) return top1.avg if __name__ == '__main__': main()
python
#!/usr/bin/env python3 import base64 import os import subprocess import sys import yaml EDITOR = os.environ.get('EDITOR', 'vi') class NoDatesSafeLoader(yaml.SafeLoader): @classmethod def remove_implicit_resolver(cls, tag_to_remove): """ Remove implicit resolvers for a particular tag Takes care not to modify resolvers in super classes. We want to load datetimes as strings, not dates, because we go on to serialise as json which doesn't have the advanced types of yaml, and leads to incompatibilities down the track. """ if 'yaml_implicit_resolvers' not in cls.__dict__: cls.yaml_implicit_resolvers = cls.yaml_implicit_resolvers.copy() for first_letter, mappings in cls.yaml_implicit_resolvers.items(): cls.yaml_implicit_resolvers[first_letter] = [ (tag, regexp) for tag, regexp in mappings if tag != tag_to_remove ] def repr_str(dumper, data): if '\n' in data: return dumper.represent_scalar( u'tag:yaml.org,2002:str', data, style='|') return dumper.orig_represent_str(data) def decode(secret): if 'data' in secret: secret['data'] = { k: base64.b64decode(v).decode('utf8') for k, v in secret['data'].items() } return secret def encode(secret): if 'data' in secret: secret['data'] = { k: base64.b64encode(v.encode()) for k, v in secret['data'].items() } return secret def edit(fname): with open(fname, 'r') as fid: secret = yaml.load(fid, Loader=NoDatesSafeLoader) decoded = decode(secret) with open(fname, 'w') as fid: fid.write(yaml.safe_dump(decoded, default_flow_style=False)) subprocess.check_call(EDITOR.split() + [fname]) with open(fname, 'r') as fid: edited = yaml.load(fid, Loader=NoDatesSafeLoader) encoded = encode(edited) with open(fname, 'w') as fid: fid.write(yaml.safe_dump(encoded, default_flow_style=False)) def main(): NoDatesSafeLoader.remove_implicit_resolver('tag:yaml.org,2002:timestamp') yaml.SafeDumper.orig_represent_str = yaml.SafeDumper.represent_str yaml.add_representer(str, repr_str, Dumper=yaml.SafeDumper) fname = sys.argv[1] edit(fname) if __name__ == '__main__': main()
python
#!/usr/bin/python """ Basic class for communication to Parrot Bebop usage: ./bebop.py <task> [<metalog> [<F>]] """ import sys import socket import datetime import struct import time import numpy as np import math from navdata import * from commands import * from video import VideoFrames # this will be in new separate repository as common library fo droneika Python-powered drones from apyros.metalog import MetaLog, disableAsserts from apyros.manual import myKbhit, ManualControlException HOST = "192.168.42.1" DISCOVERY_PORT = 44444 NAVDATA_PORT = 43210 # d2c_port COMMAND_PORT = 54321 # c2d_port class Bebop: def __init__( self, metalog=None, onlyIFrames=True ): if metalog is None: self._discovery() metalog = MetaLog() self.navdata = metalog.createLoggedSocket( "navdata", headerFormat="<BBBI" ) self.navdata.bind( ('',NAVDATA_PORT) ) if metalog.replay: self.commandSender = CommandSenderReplay(metalog.createLoggedSocket( "cmd", headerFormat="<BBBI" ), hostPortPair=(HOST, COMMAND_PORT), checkAsserts=metalog.areAssertsEnabled()) else: self.commandSender = CommandSender(metalog.createLoggedSocket( "cmd", headerFormat="<BBBI" ), hostPortPair=(HOST, COMMAND_PORT)) self.console = metalog.createLoggedInput( "console", myKbhit ).get self.metalog = metalog self.buf = "" self.videoFrameProcessor = VideoFrames( onlyIFrames=onlyIFrames, verbose=False ) self.videoCbk = None self.videoCbkResults = None self.battery = None self.flyingState = None self.flatTrimCompleted = False self.manualControl = False self.time = None self.moveByEnd = None self.altitude = None self.angle = (0,0,0) self.position = (0,0,0) self.speed = (0,0,0) self.positionGPS = None self.cameraTilt = -90 self.cameraPan = 0 self.lastImageResult = None self.navigateHomeState = None self.config() self.commandSender.start() def _discovery( self ): "start communication with the drone" filename = "tmp.bin" # TODO combination outDir + date/time s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # TCP s.connect( (HOST, DISCOVERY_PORT) ) s.send( '{"controller_type":"computer", "controller_name":"katarina", "d2c_port":"43210"}' ) f = open( filename, "wb" ) while True: data = s.recv(10240) if len(data) > 0: f.write(data) f.flush() break f.close() s.close() def _update( self, cmd ): "internal send command and return navdata" if not self.manualControl: self.manualControl = self.console() if self.manualControl: # raise exception only once raise ManualControlException() # send even None, to sync in/out queues self.commandSender.send( cmd ) while len(self.buf) == 0: data = self.navdata.recv(40960) self.buf += data data, self.buf = cutPacket( self.buf ) return data def _parseData( self, data ): try: parseData( data, drone=self, verbose=False ) except AssertionError, e: print "AssertionError", e def update( self, cmd=None, ackRequest=False ): "send command and return navdata" if cmd is None: data = self._update( None ) else: data = self._update( packData(cmd, ackRequest=ackRequest) ) while True: if ackRequired(data): self._parseData( data ) data = self._update( createAckPacket(data) ) elif pongRequired(data): self._parseData( data ) # update self.time data = self._update( createPongPacket(data) ) elif videoAckRequired(data): if self.videoCbk: self.videoFrameProcessor.append( data ) frame = self.videoFrameProcessor.getFrameEx() if frame: self.videoCbk( frame, debug=self.metalog.replay ) if self.videoCbkResults: ret = self.videoCbkResults() if ret is not None: print ret self.lastImageResult = ret data = self._update( createVideoAckPacket(data) ) else: break self._parseData( data ) return data def setVideoCallback( self, cbk, cbkResult=None ): "set cbk for collected H.264 encoded video frames & access to results queue" self.videoCbk = cbk if cbkResult is None: self.videoCbkResults = None else: self.videoCbkResults = self.metalog.createLoggedInput( "cv2", cbkResult ).get def config( self ): # initial cfg dt = self.metalog.now() if dt: # for compatibility with older log files self.update( cmd=setDateCmd( date=dt.date() ) ) self.update( cmd=setTimeCmd( time=dt.time() ) ) for cmd in setSpeedSettingsCmdList( maxVerticalSpeed=1.0, maxRotationSpeed=90.0, hullProtection=True, outdoor=True ): self.update( cmd=cmd ) self.update( cmd=requestAllStatesCmd() ) self.update( cmd=requestAllSettingsCmd() ) self.moveCamera( tilt=self.cameraTilt, pan=self.cameraPan ) self.update( videoAutorecordingCmd( enabled=False ) ) def takeoff( self ): print "Taking off ...", self.update( videoRecordingCmd( on=True ) ) self.update( cmd=takeoffCmd() ) prevState = None for i in xrange(100): self.update( cmd=None ) if self.flyingState != 1 and prevState == 1: break prevState = self.flyingState print "FLYING" def land2( self ): print "Landing ..." landing_speed = 75 self.update( videoRecordingCmd( on=False ) ) while self.altitude > 0.1 : self.update( movePCMDCmd( True, 0, 0, 0, -landing_speed ) ) self.update( cmd=emergencyCmd() ) if(self.flyingState == 0): print "LANDED" def land( self ): print "Landing ..." landing_speed = 75 self.update( videoRecordingCmd( on=False ) ) while self.altitude > 0.1 : self.update( movePCMDCmd( True, 0, 0, 0, -landing_speed ) ) while(self.flyingState != 0): self.update( cmd=landCmd() ) print "LANDED" def hover( self, timeout ): startTime = self.time count = 0 while(self.time-startTime<timeout): self.update( cmd=movePCMDCmd( active=True, roll=0, pitch=0, yaw=0, gaz=0 ) ) count += 1 print count def emergency( self ): self.update( cmd=emergencyCmd() ) def trim( self ): print "Trim:", self.flatTrimCompleted = False for i in xrange(10): print i, self.update( cmd=None ) print self.update( cmd=trimCmd() ) for i in xrange(10): print i, self.update( cmd=None ) if self.flatTrimCompleted: break def takePicture( self ): self.update( cmd=takePictureCmd() ) print 'picture taken at time ', self.time def videoEnable( self ): "enable video stream" self.update( cmd=videoStreamingCmd( enable=True ), ackRequest=True ) def videoDisable( self ): "enable video stream" self.update( cmd=videoStreamingCmd( enable=False ), ackRequest=True ) def moveCamera( self, tilt, pan ): "Tilt/Pan camera consign for the drone (in degrees)" self.update( cmd=moveCameraCmd( tilt=tilt, pan=pan) ) self.cameraTilt, self.cameraPan = tilt, pan # maybe move this to parse data, drone should confirm that def resetHome( self ): self.update( cmd=resetHomeCmd() ) def stop( self, timeout=3.0 ): print 'stopping the drone' startTime = self.time droneSpeed = self.speed[0]**2+self.speed[1]**2+self.speed[2]**2 while(self.time-startTime<timeout and droneSpeed>0.3): self.update( movePCMDCmd( True, self.speed[1]*50, self.speed[0]*50, 0, -self.speed[2]*50 ) ) droneSpeed = self.speed[0]**2+self.speed[1]**2+self.speed[2]**2 print 'stopping position ', -self.position[1], -self.position[0], -self.position[2] print 'droneSpeed ',droneSpeed self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) def moveX( self, dX, speed, timeout=3.0 ): print 'moveX', dX if(dX < 0): speed = -speed assert self.time is not None startTime = self.time startPos = -self.position[0] while abs(self.position[0]+startPos) < abs(dX) and self.time-startTime < timeout: self.update( movePCMDCmd( True, speed, 0, 0, 0 ) ) print 'position ', self.position[0], self.position[1], self.position[2] print 'current speed x',-self.speed[0] self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) def moveY( self, dY, speed, timeout=3.0 ): print 'moveY', dY if(dY < 0): speed = -speed assert self.time is not None startTime = self.time startY = self.position[1] while abs(self.position[1]-startY) < abs(dY) and self.time-startTime < timeout: self.update( movePCMDCmd( True, 0, speed, 0, 0 ) ) currentY = self.position[1] print 'current position y axis',currentY print 'current speed y',self.speed[1] print 'end position ', -self.position[0], self.position[1], -self.position[2] self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) def moveZ( self, altitude, timeout=5.0 ): speed = 50 #in percentage assert self.time is not None assert self.altitude is not None startTime = self.time if self.altitude < altitude:#going up while self.altitude < altitude and self.time-startTime < timeout and altitude>0: self.update( movePCMDCmd( True, 0, 0, 0, speed ) ) # print 'going up ', self.altitude, self.time-startTime self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) return else: while self.altitude > altitude and self.time-startTime < timeout and altitude>0: self.update( movePCMDCmd( True, 0, 0, 0, -speed ) ) #print 'going down ', self.altitude, self.time-startTime self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) return self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) def moveBy( self, dX, dY, timeout=5.0): # outdated function. # TODO: modify targetSpeed so it doesn't use updated values. print 'move by ', dX, dY startTime = self.time startPosition = [0]*2 startPosition[0] = -self.position[1] startPosition[1] = -self.position[0] print 'starting position ',startPosition targetPosition = [0]*2 currentSpeed = [0]*2 targetSpeed = [0]*2 inputSpeed = [0]*2 targetPosition[0] = startPosition[0]+dX targetPosition[1] = startPosition[1]+dY top_speed = 40 initial_distance = np.sqrt(abs(targetPosition[1]-startPosition[0])**2+abs(targetPosition[0]-startPosition[1])**2) print 'tartgetPos x ', targetPosition[0], ' y ', targetPosition[1] while(self.time-startTime<timeout): distance = np.sqrt(abs(targetPosition[1]+self.position[0])**2+abs(targetPosition[0]+self.position[1])**2) # print 'distance ',distance if(distance<0.2): print 'arrived', distance break if(distance>initial_distance+2): print 'drone out of path', distance break targetSpeed[0] = targetPosition[0]+self.position[1] targetSpeed[1] = targetPosition[1]+self.position[0] targetSpeed[0] = targetSpeed[0]/np.sqrt(targetSpeed[0]**2+targetSpeed[1]**2) targetSpeed[1] = targetSpeed[1]/np.sqrt(targetSpeed[0]**2+targetSpeed[1]**2) #print 'targetSpeed x ',targetSpeed[0],' y ',targetSpeed[1] currentSpeed[0] = -self.speed[1]/np.sqrt(self.speed[0]**2+self.speed[1]**2) currentSpeed[1] = -self.speed[0]/np.sqrt(self.speed[0]**2+self.speed[1]**2) #print 'currentSpeed x ',currentSpeed[0], ' y ',currentSpeed[1] inputSpeed[0] = targetSpeed[0]-currentSpeed[0] inputSpeed[1] = targetSpeed[1]-currentSpeed[1] #print 'inputSpeed x ',inputSpeed[0],' y ',inputSpeed[1] self.update( movePCMDCmd( True, inputSpeed[0]*top_speed, inputSpeed[1]*top_speed, 0, 0 ) ) self.update( cmd=movePCMDCmd( True, 0, 0, 0, 0 ) ) endPosition = self.position print 'end position x ',-endPosition[1],' y ',-endPosition[0] def calibrate( self, dX, dY, timeout=3.0 ): startTime = self.time rotation_speed = 75 print 'start angle= ',self.angle[2] rotation = np.arctan2(dX,dY) print 'rotation= ',rotation if(rotation+self.angle[2]>math.pi): rotateAngle = -2*math.pi+rotation+self.angle[2] elif(rotation+self.angle[2]<-math.pi): rotateAngle = 2*math.pi+rotation+self.angle[2] else: rotateAngle = self.angle[2]+rotation if(rotation < 0): print 'counterclockwise', rotateAngle while abs(self.angle[2]-rotateAngle) > 0.1 and self.time-startTime < timeout: self.update( movePCMDCmd( True, 0, 0, -rotation_speed, 0 ) ) self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) print 'end angle= ',self.angle[2] return else: print 'clockwise',rotateAngle while abs(self.angle[2]-rotateAngle) > 0.1 and self.time-startTime < timeout: self.update( movePCMDCmd( True, 0, 0, rotation_speed, 0 ) ) self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) print 'end angle= ',self.angle[2] return def resetPosition( self, startAngle, timeout=3.0 ): print 'reset angle...' # self.moveZ(altitude) rotation_speed = 75 assert self.time is not None startTime = self.time if abs(startAngle-self.angle[2])<0.1: print 'already calibrated' self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) else: if self.angle[2] < 0: print 'calibrate clockwise' while abs(self.angle[2]-startAngle) > 0.1 and self.time-startTime < timeout: self.update( movePCMDCmd( True, 0, 0, rotation_speed, 0 ) ) self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) print 'end angle= ',self.angle[2] return else: print 'calibrate counterclockwise' while abs(self.angle[2]-startAngle) > 0.1 and self.time-startTime < timeout: self.update( movePCMDCmd( True, 0, 0, -rotation_speed, 0 ) ) self.update( movePCMDCmd( True, 0, 0, 0, 0 ) ) print 'end angle= ',self.angle[2] return def moveTo( self, X, Y, Z, timeout=8.0 ): print 'move to ', X, Y, Z update_count = 0 startTime = self.time startPosition = [0]*3 currentSpeed_norm = 0 targetSpeed_norm = 0 startPosition[0] = -self.position[0] startPosition[1] = self.position[1] startPosition[2] = -self.position[2] print 'starting position x ', startPosition[0], ' y ', startPosition[1], ' z ', startPosition[2] targetPosition = [0]*3 currentSpeed = [0]*3 targetSpeed = [0]*3 inputSpeed = [0]*3 tempSpeed = [0]*3 targetPosition[0] = X targetPosition[1] = Y targetPosition[2] = Z top_speed = 40 initial_distance = np.sqrt(abs(targetPosition[0]+startPosition[0])**2+ \ abs(targetPosition[1]-startPosition[1])**2+ \ abs(targetPosition[2]+startPosition[2])**2) print 'initial distance', initial_distance print 'tartgetPos x ', targetPosition[0], ' y ', targetPosition[1], ' z ', targetPosition[2] while(self.time-startTime<timeout): print 'current position x ',-self.position[0],' y ',self.position[1],' z ',-self.position[2] # update_count = update_count+1 distance = np.sqrt(abs(targetPosition[0]+self.position[0])**2+ \ abs(targetPosition[1]-self.position[1])**2+ \ abs(targetPosition[2]+self.position[2])**2) # print 'flight distance ',distance # print 'time ',self.time if(distance<0.1): # self.moveCamera( tilt=-90, pan=0 ) # self.takePicture(); print 'arrived', distance break if(distance>initial_distance+1): print 'drone out of path', distance break targetSpeed_X = targetPosition[0]+self.position[0] targetSpeed_Y = targetPosition[1]-self.position[1] targetSpeed_Z = targetPosition[2]+self.position[2] targetSpeed_norm = np.sqrt(targetSpeed_X**2+targetSpeed_Y**2+targetSpeed_Z**2) targetSpeed[0] = targetSpeed_X/targetSpeed_norm targetSpeed[1] = targetSpeed_Y/targetSpeed_norm targetSpeed[2] = targetSpeed_Z/targetSpeed_norm print 'targetSpeed x ',targetSpeed[0],' y ',targetSpeed[1], ' z ', targetSpeed[2] currentSpeed_norm = np.sqrt(self.speed[0]**2+self.speed[1]**2+self.speed[2]**2) # if currentSpeed_norm == 0: # currentSpeed_norm = 1 # print 'currentspeednorm', currentSpeed_norm currentSpeed[0] = -self.speed[1]/currentSpeed_norm currentSpeed[1] = self.speed[0]/currentSpeed_norm currentSpeed[2] = -self.speed[2]/currentSpeed_norm # print 'currentSpeed x ',currentSpeed[0], ' y ',currentSpeed[1], ' z ', currentSpeed[2] tempSpeed[0] = (targetSpeed[0]-currentSpeed[0]) tempSpeed[1] = (targetSpeed[1]-currentSpeed[1]) tempSpeed[2] = (targetSpeed[2]-currentSpeed[2]) # print 'tempSpeed x ',tempSpeed[0],' y ',tempSpeed[1], ' z ', tempSpeed[2] inputSpeed_norm = np.sqrt(tempSpeed[0]**2+tempSpeed[1]**2+tempSpeed[2]**2) inputSpeed[0] = tempSpeed[0]/inputSpeed_norm inputSpeed[1] = tempSpeed[1]/inputSpeed_norm inputSpeed[2] = tempSpeed[2]/inputSpeed_norm # print 'inputSpeed x ',inputSpeed[0]*top_speed,' y ',inputSpeed[1]*top_speed, ' z ', inputSpeed[2]*top_speed self.update( movePCMDCmd( True, inputSpeed[0]*top_speed, inputSpeed[1]*top_speed, 0, inputSpeed[2]*top_speed ) ) self.update( cmd=movePCMDCmd( True, 0, 0, 0, 0 ) ) endPosition = self.position # print 'update count ', update_count print 'end position x ',-endPosition[0],' y ',endPosition[1],' z ',-endPosition[2] def moveTo2( self, X, Y, Z, timeout=5.0 ): print 'move to2 ', X, Y, Z startTime = self.time startPosition = [0]*3 currentSpeed_norm = 0 targetSpeed_norm = 0 startPosition[0] = -self.position[1] startPosition[1] = -self.position[0] startPosition[2] = -self.position[2] print 'starting position x ', startPosition[0], ' y ', startPosition[1], ' z ', startPosition[2] targetPosition = [0]*3 targetSpeed = [0]*3 inputSpeed = [0]*3 tempSpeed = [0]*3 targetPosition[0] = X targetPosition[1] = Y targetPosition[2] = Z top_speed = 50 initial_distance = np.sqrt(abs(targetPosition[1]-startPosition[0])**2+ \ abs(targetPosition[0]-startPosition[1])**2+ \ abs(targetPosition[2]-startPosition[2])**2) print 'tartgetPos x ', targetPosition[0], ' y ', targetPosition[1], ' z ', targetPosition[2] while(self.time-startTime<timeout): distance = np.sqrt(abs(targetPosition[1]+self.position[0])**2+ \ abs(targetPosition[0]+self.position[1])**2+ \ abs(targetPosition[2]+self.position[2])**2) print 'flight distance ',distance # print 'time ',self.time if(distance<0.2): # self.moveCamera( tilt=-90, pan=0 ) # self.takePicture(); print 'arrived', distance break if(distance>initial_distance+2): print 'drone out of path', distance break targetSpeed_X = targetPosition[0]+self.position[1] targetSpeed_Y = targetPosition[1]+self.position[0] targetSpeed_Z = targetPosition[2]+self.position[2] targetSpeed_norm = np.sqrt(targetSpeed_X**2+targetSpeed_Y**2+targetSpeed_Z**2) targetSpeed[0] = targetSpeed_X/targetSpeed_norm targetSpeed[1] = targetSpeed_Y/targetSpeed_norm targetSpeed[2] = targetSpeed_Z/targetSpeed_norm # print 'targetSpeed x ',targetSpeed[0],' y ',targetSpeed[1], ' z ', targetSpeed[2] self.update( movePCMDCmd( True, targetSpeed[0]*top_speed, targetSpeed[1]*top_speed, 0, targetSpeed[2]*top_speed ) ) self.update( cmd=movePCMDCmd( True, 0, 0, 0, 0 ) ) endPosition = self.position print 'end position x ',-endPosition[1],' y ',-endPosition[0],' z ',-endPosition[2] def moveToCancel( self ): self.update( cmd=cancelMoveToCmd() ) def wait( self, duration ): print "Wait", duration assert self.time is not None startTime = self.time while self.time-startTime < duration: self.update() if __name__ == "__main__": if len(sys.argv) < 2: print __doc__ sys.exit(2) metalog=None if len(sys.argv) > 2: metalog = MetaLog( filename=sys.argv[2] ) if len(sys.argv) > 3 and sys.argv[3] == 'F': disableAsserts() drone = Bebop( metalog=metalog ) print "Battery:", drone.battery
python
# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A template task with a ball that should touch left or right wall.""" import numpy as np import phyre.creator as creator_lib @creator_lib.define_task_template( ball_x=np.linspace(0.1, 0.9, 32), ball_y=np.linspace(0, 40, 8), ball_r=np.linspace(0.05, 0.12, 5), left=[True, False], version='6', ) def build_task(C, ball_x, ball_y, ball_r, left): target_wall = C.add('static bar', 1.0, left=0, angle=90, bottom=0) if not left: target_wall.set_right(C.scene.width) shelf_size = 0.99 - ball_r * 2 shelf = C.add('static bar', shelf_size, center_x=C.scene.width / 2, top=20) C.add('static bar', 0.2, angle=65, right=shelf.left + 5, top=shelf.top) C.add('static bar', 0.2, angle=-65, left=shelf.right - 5, top=shelf.top) ball = C.add( 'dynamic ball', ball_r, left=ball_x * C.scene.width, bottom=ball_y + shelf.top) if ball.center_x <= shelf.left or ball.center_x >= shelf.right: raise creator_lib.SkipTemplateParams if abs(ball.center_x - target_wall.center_x) > C.scene.width * .7: raise creator_lib.SkipTemplateParams C.update_task( body1=ball, body2=target_wall, relationships=[C.SpatialRelationship.TOUCHING]) C.set_meta(C.SolutionTier.BALL)
python
import numpy as np import csv import json import argparse import pickle ap = argparse.ArgumentParser() ap.add_argument("-m", "--method", help="vote Method to learn from") ap.add_argument("-r", "--row", help="data row joined by comma") ap.add_argument("-f", "--filename", help="filename of dataset") args = vars(ap.parse_args()) models = pickle.loads(open(args["method"]+".pkl").read()) def read_csv(filename): dataset = [] with open(filename, 'rb') as f: reader = csv.reader(f) for row in reader: dataset.append([float(el) for el in row]) return dataset if args["row"] is not None: predictions = [] for m in models: prediction = float(m.predict([float(el) for el in args["row"].split(',')])) if prediction > 0.5: prediction = 1 else: prediction = 0 predictions.append(prediction) print (sum(predictions)/float(len(predictions))) elif args["filename"] is not None: dataset = read_csv(args["filename"]) all_predictions = [] for m in models: all_predictions.append(m.predict(dataset)) final_predictions = [] for prediction_row in np.array(all_predictions).transpose(): predicted = [] for el in prediction_row: if el > 0.5: predicted.append(1) else: predicted.append(0) final_predictions.append(sum(predicted)/float(len(predicted))) print(json.dumps(final_predictions))
python
# Copyright (C) Izumi Kawashima # # json2oscimv4 is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # json2oscimv4 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with json2oscimv4. If not, see <http://www.gnu.org/licenses/>. #!/usr/bin/env python3 # -*- coding:utf-8 -*- import json import TileData_v4_pb2 from pyproj import Transformer,Proj EPSG3857 = Proj('+init=EPSG:3857') EPSG4326 = Proj('+init=EPSG:4326') transformer3857to4326 = Transformer.from_proj(EPSG3857,EPSG4326) transformer4326to3857 = Transformer.from_proj(EPSG4326,EPSG3857) SIZE = 256 SCALE_FACTOR = 20037508.342789244 HEIGHT_PER_METER = 100.0 YES_VALUES = frozenset(['yes','1','true']) NAME_KEYS = frozenset(['name','name:ja','name:en']) TAG_PREDEFINED_KEYS = [ "access", "addr:housename", "addr:housenumber", "addr:interpolation", "admin_level", "aerialway", "aeroway", "amenity", "area", "barrier", "bicycle", "brand", "bridge", "boundary", "building", "construction", "covered", "culvert", "cutting", "denomination", "disused", "embankment", "foot", "generator:source", "harbour", "highway", "historic", "horse", "intermittent", "junction", "landuse", "layer", "leisure", "lock", "man_made", "military", "motorcar", "name", "natural", "oneway", "operator", "population", "power", "power_source", "place", "railway", "ref", "religion", "route", "service", "shop", "sport", "surface", "toll", "tourism", "tower:type", "tracktype", "tunnel", "water", "waterway", "wetland", "width", "wood", "height", "min_height", "roof:shape", "roof:height", "rank" ] TAG_PREDEFINED_VALUES = [ "yes", "residential", "service", "unclassified", "stream", "track", "water", "footway", "tertiary", "private", "tree", "path", "forest", "secondary", "house", "no", "asphalt", "wood", "grass", "paved", "primary", "unpaved", "bus_stop", "parking", "parking_aisle", "rail", "driveway", "8", "administrative", "locality", "turning_circle", "crossing", "village", "fence", "grade2", "coastline", "grade3", "farmland", "hamlet", "hut", "meadow", "wetland", "cycleway", "river", "school", "trunk", "gravel", "place_of_worship", "farm", "grade1", "traffic_signals", "wall", "garage", "gate", "motorway", "living_street", "pitch", "grade4", "industrial", "road", "ground", "scrub", "motorway_link", "steps", "ditch", "swimming_pool", "grade5", "park", "apartments", "restaurant", "designated", "bench", "survey_point", "pedestrian", "hedge", "reservoir", "riverbank", "alley", "farmyard", "peak", "level_crossing", "roof", "dirt", "drain", "garages", "entrance", "street_lamp", "deciduous", "fuel", "trunk_link", "information", "playground", "supermarket", "primary_link", "concrete", "mixed", "permissive", "orchard", "grave_yard", "canal", "garden", "spur", "paving_stones", "rock", "bollard", "convenience", "cemetery", "post_box", "commercial", "pier", "bank", "hotel", "cliff", "retail", "construction", "-1", "fast_food", "coniferous", "cafe", "6", "kindergarten", "tower", "hospital", "yard", "sand", "public_building", "cobblestone", "destination", "island", "abandoned", "vineyard", "recycling", "agricultural", "isolated_dwelling", "pharmacy", "post_office", "motorway_junction", "pub", "allotments", "dam", "secondary_link", "lift_gate", "siding", "stop", "main", "farm_auxiliary", "quarry", "10", "station", "platform", "taxiway", "limited", "sports_centre", "cutline", "detached", "storage_tank", "basin", "bicycle_parking", "telephone", "terrace", "town", "suburb", "bus", "compacted", "toilets", "heath", "works", "tram", "beach", "culvert", "fire_station", "recreation_ground", "bakery", "police", "atm", "clothes", "tertiary_link", "waste_basket", "attraction", "viewpoint", "bicycle", "church", "shelter", "drinking_water", "marsh", "picnic_site", "hairdresser", "bridleway", "retaining_wall", "buffer_stop", "nature_reserve", "village_green", "university", "1", "bar", "townhall", "mini_roundabout", "camp_site", "aerodrome", "stile", "9", "car_repair", "parking_space", "library", "pipeline", "true", "cycle_barrier", "4", "museum", "spring", "hunting_stand", "disused", "car", "tram_stop", "land", "fountain", "hiking", "manufacture", "vending_machine", "kiosk", "swamp", "unknown", "7", "islet", "shed", "switch", "rapids", "office", "bay", "proposed", "common", "weir", "grassland", "customers", "social_facility", "hangar", "doctors", "stadium", "give_way", "greenhouse", "guest_house", "viaduct", "doityourself", "runway", "bus_station", "water_tower", "golf_course", "conservation", "block", "college", "wastewater_plant", "subway", "halt", "forestry", "florist", "butcher" ] def heightstr2float(_height): if type(_height) is str: if _height[-1] == 'm': _height = _height[:-1] _height = _height.strip() return _height predefined_key_idx = {} predefined_value_idx = {} for i in range(len(TAG_PREDEFINED_KEYS)): predefined_key = TAG_PREDEFINED_KEYS[i] predefined_key_idx[predefined_key] = i for i in range(len(TAG_PREDEFINED_VALUES)): predefined_value = TAG_PREDEFINED_VALUES[i] predefined_value_idx[predefined_value] = i def convert(tile_z,tile_x,tile_y,buffer_pixels,fr): paz = 20037508.342789244 / 256 / (2 ** tile_z) tile_x = tile_x*SIZE tile_y = tile_y*SIZE center = (SIZE << tile_z) >> 1 min_lat3857 = ((center - (tile_y+SIZE+paz))/center)*SCALE_FACTOR max_lat3857 = ((center - (tile_y-paz))/center)*SCALE_FACTOR min_lon3857 = (((tile_x-paz)-center)/center)*SCALE_FACTOR max_lon3857 = (((tile_x+SIZE+paz)-center)/center)*SCALE_FACTOR min_lon4326,min_lat4326 = transformer3857to4326.transform(min_lon3857,min_lat3857) max_lon4326,max_lat4326 = transformer3857to4326.transform(max_lon3857,max_lat3857) oscim_tile = TileData_v4_pb2.Data() oscim_tile.version = 4 found_points = [] found_polygons = [] found_lines = [] appending_target = None tag2idx = {} serialized_tags = [] oscim_keys = [] key2oscim_idx = {} oscim_values = [] value2oscim_idx = {} def ll2xy(lon,lat): lon3857,lat3857 = transformer4326to3857.transform(lon,lat) rx = float(lon3857-min_lon3857)/float(max_lon3857-min_lon3857) ry = float(lat3857-min_lat3857)/float(max_lat3857-min_lat3857) rx = rx-0.5 rx = rx*float(SIZE+buffer_pixels)/float(SIZE) rx = rx+0.5 x = int(rx*4096.0) ry = ry-0.5 ry = -ry*float(SIZE+buffer_pixels)/float(SIZE) # NEGATE! ry = ry+0.5 y = int(ry*4096.0) return x,y def lls2xy(lls): abs_xys = [] for ll in lls: lon = ll[0] lat = ll[1] x,y = ll2xy(lon,lat) abs_xys.append([x,y]) last_x = 0 last_y = 0 delta_xys = [] for x,y in abs_xys: dx = x-last_x dy = y-last_y if dx != 0 or dy != 0: delta_xys.append([dx,dy]) last_x = x last_y = y return delta_xys def llss2xy(llss): abs_xyss = [] for lls in llss: abs_xys = [] for ll in lls: lon = ll[0] lat = ll[1] x,y = ll2xy(lon,lat) abs_xys.append([x,y]) abs_xys = abs_xys[:-1] abs_xyss.append(abs_xys) last_x = 0 last_y = 0 delta_xyss = [] for abs_xys in abs_xyss: delta_xys = [] for x,y in abs_xys: dx = x-last_x dy = y-last_y if dx != 0 or dy != 0: delta_xys.append([dx,dy]) last_x = x last_y = y delta_xyss.append(delta_xys) return delta_xyss j = json.loads(fr) layers = j['features'] for layer in layers: if layer['properties']['layer'] in frozenset(['admin_lines']): continue features = layer['features'] for feature in features: fixed_kv = {} names_kv = {} tag_idxs_in_feature = [] properties = feature['properties'] if 'min_zoom' in properties: min_zoom = int(properties['min_zoom']) if tile_z > min_zoom: continue kv = {} if layer['properties']['layer'] == 'land': fixed_kv['land'] = 'land' else: for key in properties: if key in frozenset(['id','sort_rank','source','surface']): continue value = properties[key] kv[key] = value for key in kv.keys(): value = kv[key] if key in NAME_KEYS: names_kv[key] = value if 'oneway' in kv and str(kv['oneway']).lower() in YES_VALUES: fixed_kv['oneway'] = 'yes' if 'area' in kv and str(kv['area']).lower() in YES_VALUES: fixed_kv['area'] = 'yes' elif 'tunnel' in kv and str(kv['tunnel']).lower() in YES_VALUES: fixed_kv['tunnel'] = 'yes' elif 'bridge' in kv and str(kv['bridge']).lower() in YES_VALUES: fixed_kv['bridge'] = 'yes' if 'leisure' in kv: leisure = kv['leisure'] fixed_kv['leisure'] = leisure if 'natural' in kv: natural = kv['natural'] if natural in frozenset(['village_green','meadow','wood']): fixed_kv['landuse'] = natural elif natural == 'mountain_range': pass else: fixed_kv['natural'] = natural if 'landuse' in kv: landuse = kv['landuse'] if landuse in frozenset(['park','natural_reserve']): fixed_kv['leisure'] = landuse elif landuse == 'field': fixed_kv['landuse'] = 'farmland' elif landuse in frozenset(['grassland','scrub']): fixed_kv['natural'] = landuse else: fixed_kv['landuse'] = landuse for explicit_kind in frozenset(['waterway']): if explicit_kind in kv: fixed_kv[explicit_kind] = kv[explicit_kind] if 'type' in kv: type_ = kv['type'] property_layer = layer['properties']['layer'] if property_layer in frozenset(['buildings','building:part']): fixed_kv['building'] = 'yes' fixed_kv['type'] = 'yes' if 'id' in kv: fixed_kv['id'] = kv['id'] if tile_z > 16: if 'height' in kv: _height = float(heightstr2float(kv['height']))*HEIGHT_PER_METER fixed_kv['height'] = str(_height) elif 'building:levels' in kv: fixed_kv['building:levels'] = str(kv['building:levels']) if 'min_height' in kv: _min_height = heightstr2float(kv['min_height'])*HEIGHT_PER_METER fixed_kv['min_height'] = str(_min_height) if 'colour' in kv: fixed_kv['colour'] = kv['colour'] elif type_ in frozenset([ 'atm', 'bank', 'bar', 'bench', 'bicycle', 'bicycle_rental', 'books', 'bus_station', 'cafe', 'cinema', 'clothes', 'convenience', 'dry_cleaning', 'fast_food', 'fountain', 'grave_yard', 'hospital', 'library', 'parking', 'pharmacy', 'place_of_worship', 'police', 'post_box', 'post_office', 'pub', 'recycling', 'restaurant', 'school', 'shelter', 'supermarket', 'university', 'telephone', 'theatre', 'toilets' ]): fixed_kv['amenity'] = type_ elif type_ == 'administrative': fixed_kv['boundary'] = 'administrative' admin_level = int(kv['admin_level']) if admin_level == 2: fixed_kv['place'] = 'country' elif admin_level == 4: fixed_kv['place'] = 'city' elif admin_level == 7: fixed_kv['place'] = 'village' elif admin_level == 8: fixed_kv['place'] = 'town' elif type_ == 'place_of_worship': fixed_kv['amenity'] = type_ elif type_ =='riverbank': fixed_kv['natural'] = 'water' if 'class' in kv: class_value = kv['class'] if class_value in frozenset(['earth']): fixed_kv['landuse'] = 'urban' # WATER elif class_value == 'natural': if type_ == 'lake;pond': fixed_kv['water'] = 'pond' if type_ == 'beach': fixed_kv['natural'] = 'beach' elif type_ == 'river': fixed_kv['waterway'] = 'river' elif type_ in frozenset(['water','riverbank','ocean']): fixed_kv['natural'] = 'water' elif type_ == 'wood': fixed_kv['landuse'] = 'wood' # LEISURE elif class_value == 'leisure': if type_ in frozenset(['pitch','park','playground','common','garden']): fixed_kv['leisure'] = type_ # LANDUSE elif class_value == 'landuse': if type_ in frozenset(['park','natural_reserve']): fixed_kv['leisure'] = type_ elif type_ == 'field': fixed_kv['landuse'] = 'farmland' elif type_ in frozenset(['grassland','scrub','tree']): fixed_kv['natural'] = type_ else: fixed_kv['landuse'] = type_ # ROADS elif class_value == 'highway': if type_ == 'minor_road': fixed_kv['highway'] = 'residential' elif type_ == 'highway': fixed_kv['highway'] = 'motorway' elif type_ == 'residential': fixed_kv['highway'] = 'service' elif type_ == 'pedestrian': fixed_kv['highway'] = 'footway' else: fixed_kv['highway'] = type_ # RAILS elif class_value == 'railway': if type_ in frozenset(['rail','subway','station','platform']): fixed_kv['railway'] = type_ # AIR elif class_value == 'aeroway': if type_ in frozenset(['aerodrome','apron','helipad']): fixed_kv['aeroway'] = type_ elif class_value in frozenset(['pitch','park','playground','common','garden']): fixed_kv['leisure'] = class_value elif class_value == 'tourism': fixed_kv['tourism'] = type_ elif class_value in frozenset(['viewpoint','museum','information','park','theme_park','attraction']): fixed_kv['tourism'] = class_value elif class_value == 'office': fixed_kv['office'] = type_ if len(fixed_kv) == 0: continue merged_kv = {} for key in names_kv: merged_kv[key] = names_kv[key] for key in fixed_kv: merged_kv[key] = fixed_kv[key] # print(layer['properties']['layer'],merged_kv) for key in merged_kv.keys(): value = merged_kv[key] if key in predefined_key_idx: key_idx = predefined_key_idx[key] else: if key in key2oscim_idx: key_idx = key2oscim_idx[key] else: key_idx = len(oscim_keys) key2oscim_idx[key] = key_idx oscim_keys.append(key) key_idx = key_idx+256 if value in predefined_value_idx: value_idx = predefined_value_idx[value] else: if value in value2oscim_idx: value_idx = value2oscim_idx[value] else: value_idx = len(oscim_values) value2oscim_idx[value] = value_idx oscim_values.append(value) value_idx = value_idx+256 tag = (key_idx,value_idx) if tag in tag2idx: tag_idx = tag2idx[tag] else: tag_idx = int(len(serialized_tags)/2) tag2idx[tag] = tag_idx serialized_tags.append(int(key_idx)) serialized_tags.append(int(value_idx)) tag_idxs_in_feature.append(int(tag_idx)) if len(tag_idxs_in_feature) == 0: continue geometry = feature['geometry'] geometry_type = geometry['type'] c = geometry['coordinates'] if geometry_type == 'Point': oscim_element = TileData_v4_pb2.Data.Element() oscim_element.num_tags = len(tag_idxs_in_feature) oscim_element.tags.extend(tag_idxs_in_feature) x,y = ll2xy(c[0],c[1]) oscim_element.coordinates.extend([x,y]) oscim_element.indices.extend([1]) oscim_element.num_indices = 1 found_points.append(oscim_element) elif geometry_type == 'MultiPoint': for cp in c: oscim_element = TileData_v4_pb2.Data.Element() oscim_element.num_tags = len(tag_idxs_in_feature) oscim_element.tags.extend(tag_idxs_in_feature) x,y = ll2xy(cp[0],cp[1]) oscim_element.coordinates.extend([x,y]) oscim_element.num_indices = 0 oscim_element.indices.extend([1]) oscim_element.num_indices = 1 found_points.append(oscim_element) elif geometry_type == 'LineString': oscim_element = TileData_v4_pb2.Data.Element() oscim_element.num_tags = len(tag_idxs_in_feature) oscim_element.tags.extend(tag_idxs_in_feature) delta_xys = lls2xy(c) oscim_element.num_indices = 1 oscim_element.indices.extend([len(delta_xys)]) flat_xys = [] for x,y in delta_xys: flat_xys.append(x) flat_xys.append(y) oscim_element.coordinates.extend(flat_xys) found_lines.append(oscim_element) elif geometry_type == 'MultiLineString': for cp in c: oscim_element = TileData_v4_pb2.Data.Element() oscim_element.num_tags = len(tag_idxs_in_feature) oscim_element.tags.extend(tag_idxs_in_feature) delta_xys = lls2xy(cp) oscim_element.indices.extend([len(delta_xys)]) oscim_element.num_indices = 1 flat_xys = [] for x,y in delta_xys: flat_xys.append(x) flat_xys.append(y) oscim_element.coordinates.extend(flat_xys) found_lines.append(oscim_element) elif geometry_type == 'Polygon': oscim_element = TileData_v4_pb2.Data.Element() oscim_element.num_tags = len(tag_idxs_in_feature) oscim_element.tags.extend(tag_idxs_in_feature) delta_xyss = llss2xy(c) indices = [] for delta_xys in delta_xyss: indices.append(len(delta_xys)) oscim_element.indices.extend(indices) oscim_element.num_indices = len(indices) flat_xys = [] for delta_xys in delta_xyss: for x,y in delta_xys: flat_xys.append(x) flat_xys.append(y) oscim_element.coordinates.extend(flat_xys) found_polygons.append(oscim_element) elif geometry_type == 'MultiPolygon': for cp in c: oscim_element = TileData_v4_pb2.Data.Element() oscim_element.num_tags = len(tag_idxs_in_feature) oscim_element.tags.extend(tag_idxs_in_feature) delta_xyss = llss2xy(cp) indices = [] for delta_xys in delta_xyss: indices.append(len(delta_xys)) oscim_element.indices.extend(indices) oscim_element.num_indices = len(indices) flat_xys = [] for delta_xys in delta_xyss: for x,y in delta_xys: flat_xys.append(x) flat_xys.append(y) oscim_element.coordinates.extend(flat_xys) found_polygons.append(oscim_element) if len(found_points) > 0: oscim_tile.points.extend(found_points) if len(found_polygons) > 0: oscim_tile.polygons.extend(found_polygons) if len(found_lines) > 0: oscim_tile.lines.extend(found_lines) oscim_tile.num_tags = int(len(serialized_tags)/2) oscim_tile.tags.extend(serialized_tags) oscim_tile.keys.extend(oscim_keys) oscim_tile.num_keys = len(oscim_keys) oscim_tile.values.extend(oscim_values) oscim_tile.num_vals = len(oscim_values) return b'0000'+oscim_tile.SerializeToString() # TODO: Header bytes to be fixed (although it is readable from vtm)
python
load( "@bazel_tools//tools/jdk:toolchain_utils.bzl", "find_java_toolchain", ) load( "@rules_scala_annex//rules:providers.bzl", _ScalaConfiguration = "ScalaConfiguration", _ZincConfiguration = "ZincConfiguration", _ZincInfo = "ZincInfo", ) load( "@rules_scala_annex//rules/common:private/utils.bzl", _resolve_execution_reqs = "resolve_execution_reqs", ) # # PHASE: compile # # Compiles Scala sources ;) # def phase_zinc_compile(ctx, g): scala_configuration = ctx.attr.scala[_ScalaConfiguration] zinc_configuration = ctx.attr.scala[_ZincConfiguration] apis = ctx.actions.declare_file("{}/apis.gz".format(ctx.label.name)) infos = ctx.actions.declare_file("{}/infos.gz".format(ctx.label.name)) mains_file = ctx.actions.declare_file("{}.jar.mains.txt".format(ctx.label.name)) relations = ctx.actions.declare_file("{}/relations.gz".format(ctx.label.name)) setup = ctx.actions.declare_file("{}/setup.gz".format(ctx.label.name)) stamps = ctx.actions.declare_file("{}/stamps.gz".format(ctx.label.name)) used = ctx.actions.declare_file("{}/deps_used.txt".format(ctx.label.name)) tmp = ctx.actions.declare_directory("{}/tmp".format(ctx.label.name)) javacopts = [ ctx.expand_location(option, ctx.attr.data) for option in ctx.attr.javacopts + java_common.default_javac_opts( java_toolchain = find_java_toolchain(ctx, ctx.attr._java_toolchain), ) ] zincs = [dep[_ZincInfo] for dep in ctx.attr.deps if _ZincInfo in dep] args = ctx.actions.args() args.add_all(depset(transitive = [zinc.deps for zinc in zincs]), map_each = _compile_analysis) args.add("--compiler_bridge", zinc_configuration.compiler_bridge) args.add_all("--compiler_classpath", g.classpaths.compiler) args.add_all("--classpath", g.classpaths.compile) args.add_all(scala_configuration.global_scalacopts, format_each = "--compiler_option=%s") args.add_all(ctx.attr.scalacopts, format_each = "--compiler_option=%s") args.add_all(javacopts, format_each = "--java_compiler_option=%s") args.add(ctx.label, format = "--label=%s") args.add("--main_manifest", mains_file) args.add("--output_apis", apis) args.add("--output_infos", infos) args.add("--output_jar", g.classpaths.jar) args.add("--output_relations", relations) args.add("--output_setup", setup) args.add("--output_stamps", stamps) args.add("--output_used", used) args.add_all("--plugins", g.classpaths.plugin) args.add_all("--source_jars", g.classpaths.src_jars) args.add("--tmp", tmp.path) args.add("--log_level", zinc_configuration.log_level) args.add_all("--", g.classpaths.srcs) args.set_param_file_format("multiline") args.use_param_file("@%s", use_always = True) worker = zinc_configuration.compile_worker worker_inputs, _, input_manifests = ctx.resolve_command(tools = [worker]) inputs = depset( [zinc_configuration.compiler_bridge] + ctx.files.data + ctx.files.srcs + worker_inputs, transitive = [ g.classpaths.plugin, g.classpaths.compile, g.classpaths.compiler, ] + [zinc.deps_files for zinc in zincs], ) outputs = [g.classpaths.jar, mains_file, apis, infos, relations, setup, stamps, used, tmp] # todo: different execution path for nosrc jar? ctx.actions.run( mnemonic = "ScalaCompile", inputs = inputs, outputs = outputs, executable = worker.files_to_run.executable, input_manifests = input_manifests, execution_requirements = _resolve_execution_reqs(ctx, {"no-sandbox": "1", "supports-workers": "1"}), use_default_shell_env = True, arguments = [args], ) jars = [] for jar in g.javainfo.java_info.outputs.jars: jars.append(jar.class_jar) jars.append(jar.ijar) zinc_info = _ZincInfo( apis = apis, deps_files = depset([apis, relations], transitive = [zinc.deps_files for zinc in zincs]), label = ctx.label, relations = relations, deps = depset( [struct( apis = apis, jars = tuple(jars), label = ctx.label, relations = relations, )], transitive = [zinc.deps for zinc in zincs], ), ) g.out.providers.append(zinc_info) return struct( mains_file = mains_file, used = used, # todo: see about cleaning up & generalizing fields below zinc_info = zinc_info, ) def _compile_analysis(analysis): return [ "--analysis", "_{}".format(analysis.label), analysis.apis.path, analysis.relations.path, ] + [jar.path for jar in analysis.jars]
python
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import functools import numpy as np import timeit import json from operator_benchmark import benchmark_utils """Performance microbenchmarks. This module contains core functionalities for performance microbenchmark tests. """ # List of run modes we support. # Each benchmark test case is associated with a run mode. # If the value of the test case's run mode is less than the value of the # benchmark binary's run mode, the test case will be executed, e.g. a short-mode # test case will be executed when the binary is on either long and short # modes; while a long-mode test case will only be executed when the binary is # on long-mode. RUN_MODES = {'short': 0, 'long': 1} BENCHMARK_TESTER = [{} for _ in range(len(RUN_MODES))] BENCHMARK_TEST_GROUP = {} def add_benchmark_tester(framework, op_name, input_shapes, op_args, run_mode, func): func_name = "__".join([framework, op_name, benchmark_utils.shape_to_string(input_shapes) , str(op_args), run_mode]) run_mode = RUN_MODES[run_mode] for mode in RUN_MODES.values(): # short mode runs with some of the input shapes for an op # long mode runs with all the input shapes for an op if (mode < run_mode): continue BENCHMARK_TESTER[mode][func_name] = func def register_test(func): """Decorator to register a benchmark test group. A benchmark test group is a function that returns a list of benchmark test case objects to be run. """ BENCHMARK_TEST_GROUP[__name__ + "." + func.__name__] = func return func HEADER_LINE = """ # {} # PyTorch/Caffe2 Operator Micro-benchmarks # {} # Run_mode : {} """ class BenchmarkRunner(object): """BenchmarkRunner is responsible for benchmarking all the registered benchmark test groups. Attributes: run_mode (str): Must of one of 'short', 'long'. For long mode, the benchmark runner takes a longer time to run since it repeats each benchmark test case more times to reduce measured variance, and it also executes longer running test cases that is marked as long mode. operator (str): Only run benchmark test cases that contains this filter string in the test case's id. """ def __init__(self, args): # Depend on the run mode, set the execution contrains based of number of # runs per measure, and number of measures. # TODO: consider time-bound constraints as well. self.args = args self.iters = 100 self.has_explicit_iteration_count = False self.multiplier = 2 self.min_time = 0.8 self.max_iters = 1e6 for test_group in BENCHMARK_TEST_GROUP.items(): test_group_func = test_group[1] test_group_func() if self.args.iterations: self.has_explicit_iteration_count = True self.iters = self.args.iterations def _print_header(self, run_mode): DASH_LINE = '-' * 40 print(HEADER_LINE.format(DASH_LINE, DASH_LINE, self.args.run_mode, self.iters)) print("# List of Operators to run:") if self.args.operator is None: ops = set() for tester in BENCHMARK_TESTER[run_mode].items(): full_test_id = tester[0] framework, op_name, input_shapes, args, run_mode = full_test_id.split("__") if op_name not in ops: print("# {}".format(op_name)) ops.add(op_name) else: print("# {}".format(self.args.operator)) print("\n") def _print_perf_result(self, full_test_id, input_shapes, args, reported_run_time): if self.args.ai_pep_format: # Output for AI-PEP print("Caffe2Observer " + json.dumps( { "type": "NET", "metric": full_test_id, "unit": "ms", "value": str(reported_run_time), } )) else: print("# Input Shape: {}\n" "Execution Time (us) : {:.3f} \n" .format(input_shapes, reported_run_time)) def _predict_num_iter_needed(self, i): return (i * self.multiplier) def _report_iteration_result(self, iters, run_time): return (iters > self.max_iters or run_time > 5 * self.min_time) def run(self): run_mode = RUN_MODES[self.args.run_mode] self._print_header(run_mode) if self.args.list_tests: return for tester in BENCHMARK_TESTER[run_mode].items(): full_test_id = tester[0] benchmark_func = tester[1] framework, op_name, input_shapes, args, run_mode = full_test_id.split("__") # TODO: consider regex matching for test filtering. # Currently, this is a sub-string matching. if self.args.operator and (self.args.operator not in full_test_id): continue if self.args.framework and (self.args.framework not in full_test_id): continue # To reduce variance, fix a numpy randseed to the test case, # so that the randomly generated input tensors remain the # same for each test case. # The random seed is limited to 32-bit because of numpy # requirement. np.random.seed(seed=hash(full_test_id) & ((1 << 32) - 1)) print("# Benchmarking {} {}".format( framework, op_name)) # Warmup functools.partial(benchmark_func, self.args.warmup_iterations) # Actual Execution run_time = 0 iters = self.iters while True: # Use Python's timeit module to measure execution time (unit: second). # Each experiment consists of repeated execution of # the benchmark_func a number of times (self.iters) # because otherwise the duration is too short to get # an accurate measure. The benchmark loop is pushed # to C++ to minimize Python overhead. # The experiment is also repeated a number of times # (num_repeats) and we then take the minimum execution # time as the final measurement result (this is also # recommended by timeit's doc). run_time = min(timeit.repeat(functools.partial(benchmark_func, iters), repeat=1, number=1)) # Analyze time after each run to decide if the result is stable results_are_significant = self.has_explicit_iteration_count or \ self._report_iteration_result(iters, run_time) if results_are_significant: break # Re-estimate the hopefully-sufficient # iteration count, and run the benchmark again... iters = self._predict_num_iter_needed(iters) reported_run_time = (1e6 * run_time / iters) self._print_perf_result(full_test_id, input_shapes, args, reported_run_time)
python
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """Tests for tink.python.tink.jwt._verified_jwt.""" import datetime from absl.testing import absltest from tink import jwt ISSUED_AT = datetime.datetime.fromtimestamp(1582230020, datetime.timezone.utc) NOT_BEFORE = datetime.datetime.fromtimestamp(1893553445, datetime.timezone.utc) EXPIRATION = datetime.datetime.fromtimestamp(2218027244, datetime.timezone.utc) class VerifiedJwtTest(absltest.TestCase): def test_empty(self): token = jwt.VerifiedJwt._create(jwt.new_raw_jwt()) with self.assertRaises(KeyError): token.issuer() with self.assertRaises(KeyError): token.subject() with self.assertRaises(KeyError): token.jwt_id() with self.assertRaises(KeyError): token.audiences() with self.assertRaises(KeyError): token.expiration() with self.assertRaises(KeyError): token.issued_at() with self.assertRaises(KeyError): token.not_before() with self.assertRaises(KeyError): token.custom_claim('unknown') self.assertFalse(token.has_issuer()) self.assertFalse(token.has_subject()) self.assertFalse(token.has_jwt_id()) self.assertFalse(token.has_audiences()) self.assertFalse(token.has_expiration()) self.assertFalse(token.has_issued_at()) self.assertFalse(token.has_not_before()) def test_full(self): token = jwt.VerifiedJwt._create( jwt.new_raw_jwt( issuer='Issuer', subject='Subject', jwt_id='JWT ID', audiences=['bob', 'eve'], expiration=EXPIRATION, issued_at=ISSUED_AT, not_before=NOT_BEFORE)) self.assertTrue(token.has_issuer()) self.assertEqual(token.issuer(), 'Issuer') self.assertTrue(token.has_subject()) self.assertEqual(token.subject(), 'Subject') self.assertTrue(token.has_jwt_id()) self.assertEqual(token.jwt_id(), 'JWT ID') self.assertTrue(token.has_audiences()) self.assertEqual(token.audiences(), ['bob', 'eve']) self.assertTrue(token.has_expiration()) self.assertEqual(token.expiration(), EXPIRATION) self.assertTrue(token.has_issued_at()) self.assertEqual(token.issued_at(), ISSUED_AT) self.assertTrue(token.has_not_before()) self.assertEqual(token.not_before(), NOT_BEFORE) def test_custom_claims(self): custom_claims = {'string': 'value', 'boolean': True, 'number': 123.456, 'integer': 123, 'null': None, 'array': [1, None, 'Bob', 2.2, {'foo': 'bar'}], 'object': {'one': {'two': 3}}} token = token = jwt.VerifiedJwt._create( jwt.new_raw_jwt(custom_claims=custom_claims)) self.assertCountEqual( token.custom_claim_names(), {'string', 'boolean', 'number', 'integer', 'null', 'array', 'object'}) self.assertEqual(token.custom_claim('string'), 'value') self.assertEqual(token.custom_claim('boolean'), True) self.assertEqual(token.custom_claim('number'), 123.456) self.assertEqual(token.custom_claim('integer'), 123) self.assertIsNone(token.custom_claim('null')) self.assertEqual( token.custom_claim('array'), [1, None, 'Bob', 2.2, {'foo': 'bar'}]) self.assertEqual(token.custom_claim('object'), {'one': {'two': 3}}) if __name__ == '__main__': absltest.main()
python
import abc import numpy as np class ErrFunc(abc.ABC): """Base class for classification model error functions.""" @abc.abstractmethod def apply(self, prediction, y): """Apply the nonconformity function. Parameters ---------- prediction : numpy array of shape [n_samples, n_classes] Class probability estimates for each sample. y : numpy array of shape [n_samples] True output labels of each sample. Returns ------- nc : numpy array of shape [n_samples] Nonconformity scores of the samples. """ pass class BaseModelNC: """Base class for nonconformity scorers based on an underlying model. Parameters ---------- model : Underlying pretrained model err_func : ClassificationErrFunc or RegressionErrFunc Error function object. normalizer : Normalizer Normalization model. beta : float Normalization smoothing parameter. As the beta-value increases, the normalized nonconformity function approaches a non-normalized equivalent. """ def __init__(self, model, err_func, normalizer=None, beta=0): super().__init__() self.err_func = err_func self.model = model self.normalizer = normalizer self.beta = beta # If we use sklearn.base.clone (e.g., during cross-validation), # object references get jumbled, so we need to make sure that the # normalizer has a reference to the proper model adapter, if applicable. if self.normalizer is not None and hasattr(self.normalizer, "base_model"): self.normalizer.base_model = self.model self.clean = False def fit(self, x, y): """Fits the underlying model of the nonconformity scorer. Parameters ---------- x : numpy array of shape [n_samples, n_features] Inputs of examples for fitting the underlying model. y : numpy array of shape [n_samples] Outputs of examples for fitting the underlying model. Returns ------- None """ if self.normalizer is not None and not self.normalizer.is_fitted: self.normalizer.fit(x, y) self.clean = False def score(self, x, y=None): """Calculates the nonconformity score of a set of samples. Parameters ---------- x : numpy array of shape [n_samples, n_features] Inputs of examples for which to calculate a nonconformity score. y : numpy array of shape [n_samples] Outputs of examples for which to calculate a nonconformity score. Returns ------- nc : numpy array of shape [n_samples] Nonconformity scores of samples. """ prediction = self.model.predict(x) n_test = x.shape[0] if self.normalizer is not None: norm = self.normalizer.score(x) + self.beta else: norm = np.ones(n_test) return self.err_func.apply(prediction, y) / norm
python
import bpy from math import pi # ---------------------------------------------------------------------------------------- # Start - copied functions # ---------------------------------------------------------------------------------------- def sun_light( location, rotation, power=2.5, angle=135, name="Light_sun", ): """Sun light. Args: power (float, optional): [description]. Defaults to 2.5. angle (int, optional): [description]. Defaults to 135. name (str, optional): [description]. Defaults to "Light_sun". location ([type], optional): [description]. Defaults to light_location. rotation ([type], optional): [description]. Defaults to light_rotation. Returns: [type]: Light object """ light_data = bpy.data.lights.new(name, type="SUN") light = bpy.data.objects.new(name, light_data) bpy.context.collection.objects.link(light) light.location = location light.rotation_euler = rotation light.data.energy = power light.data.specular_factor = 0.4 light.data.angle = angle * pi / 180.0 return light def make_material_Principled_BSDF(name, color_RGB): """Create a Pincipled BSDF material. Args: name (str): Name to give new material color_RGB (3-element tuple or list of floats): RGB color (each element is in range of 0.0 to 1.0)) Returns: [type]: [description] """ mat = bpy.data.materials.new(name=name) mat.use_nodes = True mat_nodes = mat.node_tree.nodes # Set Principled BSDF values mat_nodes["Principled BSDF"].inputs["Metallic"].default_value = 0.0 mat_nodes["Principled BSDF"].inputs["Roughness"].default_value = 0.4 mat_nodes["Principled BSDF"].inputs["Base Color"].default_value = ( *color_RGB, 1.0, ) # Change material settings for blend method, show backface, shadow mode mat.blend_method = "BLEND" mat.show_transparent_back = False mat.shadow_method = "NONE" return mat def make_cube(name, size, position): """Make cube with specified size and position. Ensure that the bottom of the cube is at the specified z position. Args: name (str): Name for new cube size (3-element tuple or list of floats): desired size of cube position (3-element tuple or list of floats): position of center bottom of cube """ z_layer_size = size[2] z_position = position[2] bpy.ops.mesh.primitive_cube_add(size=1) layer = bpy.context.object layer.scale = size layer.location = (position[0], position[1], z_layer_size / 2 + z_position) layer.name = name return layer # ---------------------------------------------------------------------------------------- # New functions # ---------------------------------------------------------------------------------------- def attach_to_parent(child_obj, parent_obj): """Make parent_obj the parent of child_obj. Args: child_obj (Blender object): Object to be the child parent_obj (Blender object): Object to be the parent """ child_obj.parent = parent_obj # Prevent parent transforms from being applied to child object child_obj.matrix_parent_inverse = parent_obj.matrix_world.inverted() def duplicate_object(obj, invert_y_position=True, parent_relationship=True): """Duplicate an object, move the duplicate in relation to the original, and make the original the parent object of the duplicate. Args: obj (Blender object): Object to duplicate invert_y_position (Boolean, optional): Whether to invert the y-position of the duplicated object. Defaults to True. parent (Boolean, optional): Make the original object the parent of the duplicate. """ bpy.ops.object.duplicate() # linked=True) obj_dupl = bpy.context.selected_objects[0] if invert_y_position: position = obj.location obj_dupl.location = (position[0], -position[1], position[2]) if parent_relationship: attach_to_parent(obj_dupl, obj) def make_bulk_layer(name, layer_size, color_RGB, z_position=0.0, parent=None): """Create a 3D print bulk layer. Args: name (str): Name to give the object. layer_size (3-element tuple or list of floats or ints): x,y,z size color_RGB (3-element tuple or list of floats): RGB color with each value in range 0.0-1.0. z_position (float, optional): Where to place object in z direction. Defaults to 0.0. parent (Blender object, optional): Use this object as parent for new layer. Defaults to None. Returns: Blender object: Newly created layer. """ position = (0.0, 0.0, z_position) layer = make_cube(name, layer_size, position) mat = make_material_Principled_BSDF(f"{name}_mat", color_RGB) layer.data.materials.append(mat) if parent: attach_to_parent(layer, parent) return layer def make_channel_layer( name, layer_size, channel_width, color_RGB, z_position=0.0, parent=None ): """Create a 3D print channel layer. Args: name (str): Name to give the object. layer_size (3-element tuple or list of floats or ints): x,y,z size channel_width (float or int): Width of channel. color_RGB (3-element tuple or list of floats): RGB color with each value in range 0.0-1.0. z_position (float, optional): Where to place object in z direction. Defaults to 0.0. parent (Blender object, optional): Use this object as parent for new layer. Defaults to None. Returns: Blender object: Newly created layer. """ lx, ly, lz = layer_size c = channel_width size = (lx, ly / 2.0 - c / 2.0, lz) position = (0.0, -((ly / 2.0 - c / 2.0) / 2.0 + c / 2.0), z_position) layer_chan = make_cube(name, size, position) mat = make_material_Principled_BSDF(f"{name}_mat", color_RGB) layer_chan.data.materials.append(mat) duplicate_object(layer_chan) if parent: attach_to_parent(layer_chan, parent) return layer_chan def make_channelfill_layer( name, layer_size, channel_width, color_RGB, z_position=0.0, parent=None ): """Create a 3D print layer that consists of filled channel. Args: name (str): Name to give the object. layer_size (3-element tuple or list of floats or ints): x,y,z size channel_width (float or int): Width of channel. color_RGB (3-element tuple or list of floats): RGB color with each value in range 0.0-1.0. z_position (float, optional): Where to place object in z direction. Defaults to 0.0. parent (Blender object, optional): Use this object as parent for new layer. Defaults to None. Returns: Blender object: Newly created layer. """ lx, ly, lz = layer_size c = channel_width size = (lx, c, lz) position = (0.0, 0.0, z_position) layer_chan = make_cube(name, size, position) mat = make_material_Principled_BSDF(f"{name}_mat", color_RGB) layer_chan.data.materials.append(mat) if parent: attach_to_parent(layer_chan, parent) return layer_chan def make_channel_eroded_layer( name, layer_size, channel_width, edge_width, color_RGB, z_position=0.0, parent=None ): """Create a 3D print eroded channel layer. Args: name (str): Name to give the object. layer_size (3-element tuple or list of floats or ints): x,y,z size channel_width (float or int): Width of channel. edge_width (float or int): Width of edge on each side of channel. color_RGB (3-element tuple or list of floats): RGB color with each value in range 0.0-1.0. z_position (float, optional): Where to place object in z direction. Defaults to 0.0. parent (Blender object, optional): Use this object as parent for new layer. Defaults to None. Returns: Blender object: Newly created layer. """ return make_channel_layer( name, layer_size, channel_width + 2 * edge_width, color_RGB, z_position=z_position, parent=parent, ) def make_channel_edge_layer( name, layer_size, channel_width, edge_width, color_RGB, z_position=0.0, parent=None ): """Create a 3D print layer with two edge objects at each side of a channel. Args: name (str): Name to give the object. layer_size (3-element tuple or list of floats or ints): x,y,z size channel_width (float or int): Width of channel. edge_width (float or int): Width of edge on each side of channel. color_RGB (3-element tuple or list of floats): RGB color with each value in range 0.0-1.0. z_position (float, optional): Where to place object in z direction. Defaults to 0.0. parent (Blender object, optional): Use this object as parent for new layer. Defaults to None. Returns: Blender object: Newly created layer. """ lx, ly, lz = layer_size c = channel_width e = edge_width # Make edges size = (lx, e, lz) position = (0, -(c / 2.0 + e / 2.0), z_position) edge_name = f"{name}_edge" layer_edge = make_cube(edge_name, size, position) mat = make_material_Principled_BSDF(f"{edge_name}_mat", color_RGB) layer_edge.data.materials.append(mat) duplicate_object(layer_edge) if parent: attach_to_parent(layer_edge, parent) return layer_edge # ---------------------------------------------------------------------------------------- # Main code # ---------------------------------------------------------------------------------------- # Lights light_location = (8.1524, 2.0110, 11.808) light_rotation = [pi * 37.3 / 180, pi * 3.16 / 180, pi * 107 / 180] light_sun = sun_light(location=light_location, rotation=light_rotation) xy_layer_size = 10 z_layer_size = 0.5 channel_width = 3 edge_width = 1 color_RGB_bulk = (1, 0.71, 0.2) color_RGB_channel = (0.1, 0.4, 0.7) color_RGB_edge = (0.7, 0.1, 0.4) color_RGB_eroded = (0.4, 0.7, 0.1) color_RGB_channelfill = (0.4, 0.1, 0.2) size = (xy_layer_size, xy_layer_size, z_layer_size) position = (0, 0, 0) # Bulk layer z = 0 * z_layer_size layer = make_bulk_layer("First Layer", size, color_RGB_bulk, z) # Channel layer z = 1 * z_layer_size layer_chan = make_channel_layer( "Chan01", size, channel_width, color_RGB_channel, z, parent=layer ) # Channel with edge dose z = 2 * z_layer_size layer_edge = make_channel_edge_layer( "Edge01", size, channel_width, edge_width, color_RGB_edge, z, parent=layer ) layer_eroded = make_channel_eroded_layer( "Eroded01", size, channel_width, edge_width, color_RGB_eroded, z, parent=layer ) # Roof layer z = 3 * z_layer_size layer_chanfill = make_channelfill_layer( "ChanFill01", size, channel_width, color_RGB_channelfill, z, parent=layer, ) layer_chan = make_channel_layer( "Chan02", size, channel_width, color_RGB_channel, z, parent=layer ) # Bulk layer z = 4 * z_layer_size layer_top = make_bulk_layer("Top Layer", size, color_RGB_bulk, z, parent=layer)
python
#!/bin/python #python import sys import os import shutil import numpy import time import math import threading from scipy import ndimage #appion from appionlib import appionScript from appionlib import apStack from appionlib import apDisplay from appionlib import appiondata from appionlib import apEMAN from appionlib import apFile from appionlib import apRecon from appionlib import apChimera from appionlib import apProject from appionlib import spyder from appionlib.apTilt import apTiltPair from appionlib.apSpider import operations, backproject from pyami import mem, mrc class rctVolumeScript(appionScript.AppionScript): #===================== def onInit(self): self.rotmirrorcache = {} self.fscresolution = None self.rmeasureresolution = None #===================== def setupParserOptions(self): self.parser.set_usage("Usage: %prog --cluster-id=ID --tilt-stack=# --classnums=#,#,# [options]") ### strings self.parser.add_option("--classnums", dest="classnums", type="str", help="Class numbers to use for rct volume, e.g. 0,1,2", metavar="#") ### integers self.parser.add_option("--tilt-stack", dest="tiltstackid", type="int", help="Tilted Stack ID", metavar="#") self.parser.add_option("--cluster-id", dest="clusterid", type="int", help="clustering stack id", metavar="ID") self.parser.add_option("--align-id", dest="alignid", type="int", help="alignment stack id", metavar="ID") self.parser.add_option("--num-iters", dest="numiters", type="int", default=4, help="Number of tilted image shift refinement iterations", metavar="#") self.parser.add_option("--mask-rad", dest="radius", type="int", help="Particle mask radius (in pixels)", metavar="ID") self.parser.add_option("--tilt-bin", dest="tiltbin", type="int", default=1, help="Binning of the tilted image", metavar="ID") self.parser.add_option("--num-part", dest="numpart", type="int", help="Limit number of particles, for debugging", metavar="#") self.parser.add_option("--median", dest="median", type="int", default=3, help="Median filter", metavar="#") ### floats self.parser.add_option("--lowpassvol", dest="lowpassvol", type="float", default=10.0, help="Low pass volume filter (in Angstroms)", metavar="#") self.parser.add_option("--highpasspart", dest="highpasspart", type="float", default=600.0, help="High pass particle filter (in Angstroms)", metavar="#") self.parser.add_option("--lowpasspart", dest="lowpasspart", type="float", help="Low pass particle filter (in Angstroms)", metavar="#") self.parser.add_option("--min-score", "--min-spread", dest="minscore", type="float", help="Minimum score/spread/cross-correlation for particles", metavar="#") self.parser.add_option("--contour", dest="contour", type="float", default=3.0, help="Chimera snapshot contour", metavar="#") self.parser.add_option("--zoom", dest="zoom", type="float", default=1.1, help="Chimera snapshot zoom", metavar="#") self.parser.add_option("--mass", dest="mass", type="float", help="Use mass in kDa to set Chimera snapshot contour", metavar="#") ### true/false self.parser.add_option("--no-eotest", dest="eotest", default=True, action="store_false", help="Do not perform eotest for resolution") self.parser.add_option("--eotest", dest="eotest", default=True, action="store_true", help="Perform eotest for resolution") self.parser.add_option("--skip-chimera", dest="skipchimera", default=False, action="store_true", help="Skip chimera imaging") ### choices self.mirrormodes = ( "all", "yes", "no" ) self.parser.add_option("--mirror", dest="mirror", help="Mirror mode", metavar="MODE", type="choice", choices=self.mirrormodes, default="all" ) #===================== def checkConflicts(self): ### parse class list if self.params['classnums'] is None: apDisplay.printError("class number was not defined") rawclasslist = self.params['classnums'].split(",") self.classlist = [] for cnum in rawclasslist: try: self.classlist.append(int(cnum)) except: apDisplay.printError("could not parse: "+cnum) ### check for missing and duplicate entries if self.params['mass'] is not None: self.params['contour'] = 1.0 apDisplay.printMsg("Using scale by mass method") ### check for missing and duplicate entries if self.params['alignid'] is None and self.params['clusterid'] is None: apDisplay.printError("Please provide either --cluster-id or --align-id") if self.params['alignid'] is not None and self.params['clusterid'] is not None: apDisplay.printError("Please provide only one of either --cluster-id or --align-id") ### get the stack ID from the other IDs if self.params['alignid'] is not None: self.alignstackdata = appiondata.ApAlignStackData.direct_query(self.params['alignid']) self.params['notstackid'] = self.alignstackdata['stack'].dbid elif self.params['clusterid'] is not None: self.clusterstackdata = appiondata.ApClusteringStackData.direct_query(self.params['clusterid']) self.alignstackdata = self.clusterstackdata['clusterrun']['alignstack'] self.params['notstackid'] = self.alignstackdata['stack'].dbid ### check and make sure we got the stack id if self.params['notstackid'] is None: apDisplay.printError("untilted stackid was not found") if self.params['tiltstackid'] is None: apDisplay.printError("tilt stack ID was not defined") if self.params['radius'] is None: apDisplay.printError("particle mask radius was not defined") if self.params['description'] is None: apDisplay.printError("enter a description") boxsize = self.getBoxSize() if self.params['radius']*2 > boxsize-2: apDisplay.printError("particle radius is too big for stack boxsize") #===================== def setRunDir(self): stackdata = apStack.getOnlyStackData(self.params['tiltstackid'], msg=False) path = stackdata['path']['path'] uppath = os.path.dirname(os.path.dirname(os.path.abspath(path))) classliststr = operations.intListToString(self.classlist) self.params['rundir'] = os.path.join(uppath, "rctvolume", self.params['runname'] ) #===================== def getParticleInPlaneRotation(self, tiltstackpartdata): partid = tiltstackpartdata.dbid if partid in self.rotmirrorcache: ### use cached value return self.rotmirrorcache[partid] partnum = tiltstackpartdata['particleNumber'] notstackpartdata = apTiltPair.getStackParticleTiltPair(self.params['tiltstackid'], partnum, self.params['notstackid']) alignpartq = appiondata.ApAlignParticleData() alignpartq['stackpart'] = notstackpartdata alignpartq['alignstack'] = self.alignstackdata alignpartdatas = alignpartq.query() if not alignpartdatas or len(alignpartdatas) != 1: apDisplay.printError("could not get inplane rotation for particle %d"%(tiltstackpartdata['particleNumber'])) inplane = alignpartdatas[0]['rotation'] mirror = alignpartdatas[0]['mirror'] if alignpartdatas[0]['alignstack']['alignrun']['maxlikerun'] is not None: # maxlike does mirror then rotation, and its rotation is negative relative to spider # April 6, 2009: rotation is negative independent of mirror inplane = -1.0*inplane self.rotmirrorcache[partid] = (inplane, mirror) return inplane, mirror #===================== def getBoxSize(self): boxsize = apStack.getStackBoxsize(self.params['tiltstackid']) if self.params['tiltbin'] == 1: return boxsize newbox = int( math.floor( boxsize / float(self.params['tiltbin']) / 2.0)* 2.0 ) return newbox #===================== def convertStackToSpider(self, emanstackfile): """ takes the stack file and creates a spider file ready for processing """ if not os.path.isfile(emanstackfile): apDisplay.printError("stackfile does not exist: "+emanstackfile) tempstack = os.path.join(self.params['rundir'], "filter"+self.timestamp+".hed") ### first high pass filter particles apDisplay.printMsg("pre-filtering particles") apix = apStack.getStackPixelSizeFromStackId(self.params['tiltstackid']) boxsize = self.getBoxSize() emancmd = ("proc2d "+emanstackfile+" "+tempstack +" apix="+str(apix)+" ") if self.params['highpasspart'] is not None and self.params['highpasspart'] > 0: emancmd += "hp="+str(self.params['highpasspart'])+" " if self.params['lowpasspart'] is not None and self.params['lowpasspart'] > 0: emancmd += "lp="+str(self.params['lowpasspart'])+" " if self.params['tiltbin'] > 1: clipsize = boxsize*self.params['tiltbin'] emancmd += " shrink=%d clip=%d,%d "%(self.params['tiltbin'], clipsize, clipsize) apEMAN.executeEmanCmd(emancmd, verbose=True) ### convert imagic stack to spider emancmd = "proc2d " emancmd += tempstack+" " spiderstack = os.path.join(self.params['rundir'], "rctstack"+self.timestamp+".spi") apFile.removeFile(spiderstack, warn=True) emancmd += spiderstack+" " emancmd += "spiderswap edgenorm" starttime = time.time() apDisplay.printColor("Running spider stack conversion this can take a while", "cyan") apEMAN.executeEmanCmd(emancmd, verbose=True) time.sleep(1) # wait a sec, for things to finish apDisplay.printColor("finished eman in "+apDisplay.timeString(time.time()-starttime), "cyan") apFile.removeStack(tempstack, warn=False) apFile.removeStack(emanstackfile, warn=False) if not os.path.isfile(spiderstack): apDisplay.printError("Failed to create a spider stack") return spiderstack #===================== def sortTiltParticlesData(self, a, b): if a['particleNumber'] > b['particleNumber']: return 1 return -1 #===================== def insertRctRun(self, volfile): ### setup resolutions fscresq = appiondata.ApResolutionData() fscresq['type'] = "fsc" fscresq['half'] = self.fscresolution fscresq['fscfile'] = "fscdata"+self.timestamp+".fsc" rmeasureq = appiondata.ApResolutionData() rmeasureq['type'] = "rmeasure" rmeasureq['half'] = self.rmeasureresolution rmeasureq['fscfile'] = None ### insert rct run data rctrunq = appiondata.ApRctRunData() rctrunq['runname'] = self.params['runname'] classliststr = operations.intListToString(self.classlist) rctrunq['classnums'] = classliststr rctrunq['numiter'] = self.params['numiters'] rctrunq['maskrad'] = self.params['radius'] rctrunq['lowpassvol'] = self.params['lowpassvol'] rctrunq['highpasspart'] = self.params['highpasspart'] rctrunq['lowpasspart'] = self.params['lowpasspart'] rctrunq['median'] = self.params['median'] rctrunq['description'] = self.params['description'] rctrunq['path'] = appiondata.ApPathData(path=os.path.abspath(self.params['rundir'])) rctrunq['alignstack'] = self.alignstackdata rctrunq['tiltstack'] = apStack.getOnlyStackData(self.params['tiltstackid']) rctrunq['numpart'] = self.numpart rctrunq['fsc_resolution'] = fscresq rctrunq['rmeasure_resolution'] = rmeasureq if self.params['commit'] is True: rctrunq.insert() ### insert 3d volume density densq = appiondata.Ap3dDensityData() densq['rctrun'] = rctrunq densq['path'] = appiondata.ApPathData(path=os.path.dirname(os.path.abspath(volfile))) densq['name'] = os.path.basename(volfile) densq['hidden'] = False densq['norm'] = True densq['symmetry'] = appiondata.ApSymmetryData.direct_query(25) densq['pixelsize'] = apStack.getStackPixelSizeFromStackId(self.params['tiltstackid'])*self.params['tiltbin'] densq['boxsize'] = self.getBoxSize() densq['lowpass'] = self.params['lowpassvol'] densq['highpass'] = self.params['highpasspart'] densq['mask'] = self.params['radius'] #densq['iterid'] = self.params['numiters'] densq['description'] = self.params['description'] densq['resolution'] = self.fscresolution densq['rmeasure'] = self.rmeasureresolution densq['session'] = apStack.getSessionDataFromStackId(self.params['tiltstackid']) densq['md5sum'] = apFile.md5sumfile(volfile) if self.params['commit'] is True: densq.insert() return #===================== def processVolume(self, spivolfile, iternum=0): ### set values apix = apStack.getStackPixelSizeFromStackId(self.params['tiltstackid'])*self.params['tiltbin'] boxsize = self.getBoxSize() rawspifile = os.path.join(self.params['rundir'], "rawvolume%s-%03d.spi"%(self.timestamp, iternum)) mrcvolfile = os.path.join(self.params['rundir'], "volume%s-%03d.mrc"%(self.timestamp, iternum)) lowpass = self.params['lowpassvol'] ### copy original to raw file shutil.copy(spivolfile, rawspifile) ### convert to mrc emancmd = ("proc3d "+spivolfile+" "+mrcvolfile+" norm=0,1 apix="+str(apix)) apEMAN.executeEmanCmd(emancmd, verbose=False) ### median filter rawvol = mrc.read(mrcvolfile) medvol = ndimage.median_filter(rawvol, size=self.params['median']) mrc.write(medvol, mrcvolfile) ### low pass filter emancmd = ("proc3d "+mrcvolfile+" "+mrcvolfile+" center norm=0,1 apix=" +str(apix)+" lp="+str(lowpass)) apEMAN.executeEmanCmd(emancmd, verbose=False) ### set origin emancmd = "proc3d "+mrcvolfile+" "+mrcvolfile+" origin=0,0,0 " apEMAN.executeEmanCmd(emancmd, verbose=False) ### mask volume emancmd = "proc3d "+mrcvolfile+" "+mrcvolfile+" mask="+str(self.params['radius']) apEMAN.executeEmanCmd(emancmd, verbose=False) ### convert to spider apFile.removeFile(spivolfile) emancmd = "proc3d "+mrcvolfile+" "+spivolfile+" spidersingle" apEMAN.executeEmanCmd(emancmd, verbose=False) ### image with chimera if self.params['skipchimera'] is False: if self.params['mass'] is not None: apDisplay.printMsg("Using scale by mass method") apChimera.setVolumeMass(mrcvolfile, apix=apix, mass=self.params['mass']) apChimera.renderSnapshots(mrcvolfile, self.params['contour'], self.params['zoom'], 'c1') return mrcvolfile #===================== def makeEulerDoc(self, tiltParticlesData): count = 0 eulerfile = os.path.join(self.params['rundir'], "eulersdoc"+self.timestamp+".spi") eulerf = open(eulerfile, "w") apDisplay.printMsg("Creating Euler angles doc file") starttime = time.time() tiltParticlesData.sort(self.sortTiltParticlesData) startmem = mem.active() for stackpartdata in tiltParticlesData: count += 1 if count%50 == 0: sys.stderr.write(".") eulerf.flush() memdiff = (mem.active()-startmem)/count/1024.0 if memdiff > 3: apDisplay.printColor("Memory increase: %d MB/part"%(memdiff), "red") tiltrot, theta, notrot, tiltangle = apTiltPair.getParticleTiltRotationAngles(stackpartdata) if tiltrot is None: apDisplay.printError("BAD particle "+str(stackpartdata)) inplane, mirror = self.getParticleInPlaneRotation(stackpartdata) totrot = -1.0*(notrot + inplane) if mirror is True: #theta flips to the back tiltangle = -1.0 * tiltangle + 180 #tiltangle = tiltangle + 180.0 #theta totrot = -1.0 * totrot - 180.0 #phi tiltrot = tiltrot + 180 #tiltrot = -1.0 * tiltrot + 180.0 #psi while totrot < 0: totrot += 360.0 ### this is the original eman part num; count is new part num partnum = stackpartdata['particleNumber']-1 line = operations.spiderOutLine(count, [tiltrot, tiltangle, totrot]) eulerf.write(line) eulerf.close() apDisplay.printColor("\nFinished Euler angle doc file in "+apDisplay.timeString(time.time()-starttime), "cyan") memdiff = (mem.active()-startmem)/count/1024.0 if memdiff > 0.1: apDisplay.printColor("Memory increase: %.2f MB/part"%(memdiff), "red") return eulerfile #===================== def getGoodAlignParticles(self): includeParticle = [] tiltParticlesData = [] nopairParticle = 0 excludeParticle = 0 badmirror = 0 badscore = 0 apDisplay.printMsg("Sorting particles from classes at "+time.asctime()) count = 0 startmem = mem.active() t0 = time.time() if self.params['clusterid'] is not None: ### method 1: get particles from clustering data clusterpartq = appiondata.ApClusteringParticleData() clusterpartq['clusterstack'] = appiondata.ApClusteringStackData.direct_query(self.params['clusterid']) clusterpartdatas = clusterpartq.query() apDisplay.printMsg("Sorting "+str(len(clusterpartdatas))+" clustered particles") for clustpart in clusterpartdatas: count += 1 if count%50 == 0: sys.stderr.write(".") memdiff = (mem.active()-startmem)/count/1024.0 if memdiff > 3: apDisplay.printColor("Memory increase: %d MB/part"%(memdiff), "red") #write to text file clustnum = clustpart['refnum']-1 if self.params['minscore'] is not None: if ( clustpart['alignparticle']['score'] is not None and clustpart['alignparticle']['score'] < self.params['minscore'] ): badscore += 1 continue elif ( clustpart['alignparticle']['spread'] is not None and clustpart['alignparticle']['spread'] < self.params['minscore'] ): badscore += 1 continue if clustnum in self.classlist: notstackpartnum = clustpart['alignparticle']['stackpart']['particleNumber'] tiltstackpartdata = apTiltPair.getStackParticleTiltPair(self.params['notstackid'], notstackpartnum, self.params['tiltstackid']) if tiltstackpartdata is None: nopairParticle += 1 continue tiltrot, theta, notrot, tiltangle = apTiltPair.getParticleTiltRotationAngles(tiltstackpartdata) if tiltrot is None: apDisplay.printWarning("BAD particle "+str(tiltstackpartdata)) nopairParticle += 1 continue else: inplane, mirror = self.getParticleInPlaneRotation(tiltstackpartdata) if ( self.params['mirror'] == "all" or (self.params['mirror'] == "no" and mirror is False) or (self.params['mirror'] == "yes" and mirror is True) ): emantiltstackpartnum = tiltstackpartdata['particleNumber']-1 includeParticle.append(emantiltstackpartnum) tiltParticlesData.append(tiltstackpartdata) if self.params['numpart'] is not None and len(includeParticle) > self.params['numpart']: break else: badmirror += 1 else: excludeParticle += 1 else: ### method 2: get particles from alignment data alignpartq = appiondata.ApAlignParticleData() alignpartq['alignstack'] = self.alignstackdata alignpartdatas = alignpartq.query() apDisplay.printMsg("Sorting "+str(len(alignpartdatas))+" aligned particles") for alignpart in alignpartdatas: count += 1 if count%50 == 0: sys.stderr.write(".") memdiff = (mem.active()-startmem)/count/1024.0 if memdiff > 3: apDisplay.printColor("Memory increase: %d MB/part"%(memdiff), "red") #write to text file alignnum = alignpart['ref']['refnum']-1 if ( self.params['minscore'] is not None and alignpart['score'] is not None and alignpart['score'] < self.params['minscore'] ): badscore += 1 continue if alignnum in self.classlist: notstackpartnum = alignpart['stackpart']['particleNumber'] tiltstackpartdata = apTiltPair.getStackParticleTiltPair(self.params['notstackid'], notstackpartnum, self.params['tiltstackid']) if tiltstackpartdata is None: nopairParticle += 1 else: inplane, mirror = self.getParticleInPlaneRotation(tiltstackpartdata) if ( self.params['mirror'] == "all" or (self.params['mirror'] == "no" and mirror is False) or (self.params['mirror'] == "yes" and mirror is True) ): emantiltstackpartnum = tiltstackpartdata['particleNumber']-1 includeParticle.append(emantiltstackpartnum) tiltParticlesData.append(tiltstackpartdata) if self.params['numpart'] is not None and len(includeParticle) > self.params['numpart']: break else: badmirror += 1 else: excludeParticle += 1 ### end methods includeParticle.sort() ### messages if time.time()-t0 > 1.0: apDisplay.printMsg("\nSorting time: "+apDisplay.timeString(time.time()-t0)) apDisplay.printMsg("Keeping "+str(len(includeParticle))+" and excluding \n\t" +str(excludeParticle)+" particles with "+str(nopairParticle)+" unpaired particles") if badmirror > 0: apDisplay.printMsg("Particles with bad mirrors: %d"%(badmirror)) if badscore > 0: apDisplay.printColor("Particles with bad scores: %d"%(badscore), "cyan") if len(includeParticle) < 1: apDisplay.printError("No particles were kept") memdiff = (mem.active()-startmem)/count/1024.0 if memdiff > 0.1: apDisplay.printColor("Memory increase: %.2f MB/part"%(memdiff), "red") return includeParticle, tiltParticlesData #===================== def mirrorParticles(self, partdatas, spiderstack): partnum = 0 mySpider = spyder.SpiderSession(dataext=".spi", logo=False, log=False) for stackpartdata in partdatas: partnum += 1 inplane, mirror = self.getParticleInPlaneRotation(stackpartdata) if mirror is True: sys.stderr.write("m") mySpider.toSpiderQuiet("MR", spyder.fileFilter(spiderstack)+("@%05d"%(partnum)), "_9", "Y", ) mySpider.toSpiderQuiet("CP", "_9", spyder.fileFilter(spiderstack)+("@%05d"%(partnum)), ) else: sys.stderr.write(".") sys.stderr.write("\n") mySpider.close() #===================== def runEoTest(self, alignstack, eulerfile): evenvolfile = os.path.join(self.params['rundir'], "evenvolume%s.spi"%(self.timestamp)) oddvolfile = os.path.join(self.params['rundir'], "oddvolume%s.spi"%(self.timestamp)) eveneulerfile = os.path.join(self.params['rundir'], "eveneulers%s.spi"%(self.timestamp)) oddeulerfile = os.path.join(self.params['rundir'], "oddeulers%s.spi"%(self.timestamp)) evenpartlist = os.path.join(self.params['rundir'], "evenparts%s.lst"%(self.timestamp)) oddpartlist = os.path.join(self.params['rundir'], "oddparts%s.lst"%(self.timestamp)) ### Create New Doc Files of = open(oddeulerfile, "w") ef = open(eveneulerfile, "w") op = open(oddpartlist, "w") ep = open(evenpartlist, "w") inf = open(eulerfile, "r") evenpart = 0 oddpart = 0 for line in inf: spidict = operations.spiderInLine(line) if spidict: partnum = spidict['row'] if partnum % 2 == 0: ep.write("%d\n"%(partnum-1)) evenpart += 1 outline = operations.spiderOutLine(evenpart, spidict['floatlist']) ef.write(outline) elif partnum % 2 == 1: op.write("%d\n"%(partnum-1)) oddpart += 1 outline = operations.spiderOutLine(oddpart, spidict['floatlist']) of.write(outline) inf.close() of.close() ef.close() op.close() ep.close() ### Create stacks evenstack = os.path.join(self.params['rundir'], "evenstack%s.spi"%(self.timestamp)) emancmd = "proc2d %s %s list=%s spiderswap"%(alignstack,evenstack,evenpartlist) apEMAN.executeEmanCmd(emancmd, verbose=True, showcmd=True) oddstack = os.path.join(self.params['rundir'], "oddstack%s.spi"%(self.timestamp)) emancmd = "proc2d %s %s list=%s spiderswap"%(alignstack,oddstack,oddpartlist) apEMAN.executeEmanCmd(emancmd, verbose=True, showcmd=True) ### Create Volumes backproject.backproject3F(evenstack, eveneulerfile, evenvolfile, evenpart) backproject.backproject3F(oddstack, oddeulerfile, oddvolfile, oddpart) if not os.path.isfile(evenvolfile) or not os.path.isfile(oddvolfile): apDisplay.printError("Even-Odd volume creation failed") ### Calculate FSC apix = apStack.getStackPixelSizeFromStackId(self.params['tiltstackid'])*self.params['tiltbin'] emancmd = "proc3d %s %s"%(evenvolfile, evenvolfile+".mrc") apEMAN.executeEmanCmd(emancmd, verbose=True, showcmd=True) emancmd = "proc3d %s %s"%(oddvolfile, oddvolfile+".mrc") apEMAN.executeEmanCmd(emancmd, verbose=True, showcmd=True) fscfile = os.path.join(self.params['rundir'], "fscdata%s.fsc"%(self.timestamp)) emancmd = "proc3d %s %s fsc=%s"%(evenvolfile+".mrc", oddvolfile+".mrc", fscfile) apEMAN.executeEmanCmd(emancmd, verbose=True, showcmd=True) if not os.path.isfile(fscfile): apDisplay.printError("Even-Odd fsc calculation failed") boxsize = self.getBoxSize() self.fscresolution = apRecon.getResolutionFromFSCFile(fscfile, boxsize, apix, msg=True) apDisplay.printColor( ("Final FSC resolution: %.5f" % (self.fscresolution)), "cyan") for fname in (evenvolfile, oddvolfile, evenstack, oddstack, eveneulerfile, oddeulerfile, evenpartlist, oddpartlist): apFile.removeFile(fname) #===================== def runRmeasure(self): finalrawvolfile = os.path.join(self.params['rundir'], "rawvolume%s-%03d.spi"%(self.timestamp, self.params['numiters'])) emancmd = "proc3d %s %s"%(finalrawvolfile, "rmeasure.mrc") apEMAN.executeEmanCmd(emancmd, verbose=True, showcmd=True) apix = apStack.getStackPixelSizeFromStackId(self.params['tiltstackid'])*self.params['tiltbin'] self.rmeasureresolution = apRecon.runRMeasure(apix, "rmeasure.mrc") #apDisplay.printColor("Final Rmeasure resolution: "+str(self.rmeasureresolution), "cyan") apFile.removeFile("rmeasure.mrc") #===================== def start(self): ### get stack data notstackdata = apStack.getOnlyStackData(self.params['notstackid']) tiltstackdata = apStack.getOnlyStackData(self.params['tiltstackid']) ### get good particle numbers includeParticle, tiltParticlesData = self.getGoodAlignParticles() self.numpart = len(includeParticle) ### make doc file of Euler angles eulerfile = self.makeEulerDoc(tiltParticlesData) ### write kept particles to file self.params['keepfile'] = os.path.join(self.params['rundir'], "keepfile"+self.timestamp+".lst") apDisplay.printMsg("writing to keepfile "+self.params['keepfile']) kf = open(self.params['keepfile'], "w") for partnum in includeParticle: kf.write(str(partnum)+"\n") kf.close() ### make new stack of tilted particle from that run tiltstackfile = os.path.join(tiltstackdata['path']['path'], tiltstackdata['name']) rctstackfile = os.path.join(self.params['rundir'], "rctstack"+self.timestamp+".hed") apFile.removeStack(rctstackfile, warn=False) apStack.makeNewStack(tiltstackfile, rctstackfile, self.params['keepfile']) spiderstack = self.convertStackToSpider(rctstackfile) #self.mirrorParticles(tiltParticlesData, spiderstack) ### iterations over volume creation ### back project particles into filter volume volfile = os.path.join(self.params['rundir'], "volume%s-%03d.spi"%(self.timestamp, 0)) backproject.backprojectCG(spiderstack, eulerfile, volfile, numpart=self.numpart, pixrad=self.params['radius']) alignstack = spiderstack ### center/convert the volume file mrcvolfile = self.processVolume(volfile, 0) for i in range(self.params['numiters']): looptime = time.time() iternum = i+1 apDisplay.printMsg("running backprojection iteration "+str(iternum)) ### xy-shift particles to volume projections alignstack = backproject.rctParticleShift(volfile, alignstack, eulerfile, iternum, numpart=self.numpart, pixrad=self.params['radius'], timestamp=self.timestamp) apFile.removeFile(volfile) ### back project particles into better volume volfile = os.path.join(self.params['rundir'], "volume%s-%03d.spi"%(self.timestamp, iternum)) backproject.backproject3F(alignstack, eulerfile, volfile, numpart=self.numpart) ### center/convert the volume file mrcvolfile = self.processVolume(volfile, iternum) apDisplay.printColor("finished volume refinement loop in " +apDisplay.timeString(time.time()-looptime), "cyan") ### optimize Euler angles #NOT IMPLEMENTED YET ### perform eotest if self.params['eotest'] is True: self.runEoTest(alignstack, eulerfile) self.runRmeasure() ### insert volumes into DB self.insertRctRun(mrcvolfile) #apDisplay.printMsg("waiting for Chimera to finish") #time.sleep(60) #===================== if __name__ == "__main__": rctVolume = rctVolumeScript() rctVolume.start() rctVolume.close()
python
# terrascript/provider/josenk/esxi.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:15:57 UTC) import terrascript class esxi(terrascript.Provider): """Terraform-provider-esxi plugin""" __description__ = "Terraform-provider-esxi plugin" __namespace__ = "josenk" __name__ = "esxi" __source__ = "https://github.com/josenk/terraform-provider-esxi" __version__ = "1.8.3" __published__ = "2021-08-29T02:45:18Z" __tier__ = "community" __all__ = ["esxi"]
python
from .db import session_scope, Server from datetime import datetime, timedelta class Gateway: def get_all_servers(self): with session_scope() as session: raw_servers = session.query(Server) raw_servers_dict = [] if raw_servers: for raw_server in raw_servers: raw_dict = raw_server.__dict__ del raw_dict['_sa_instance_state'] raw_servers_dict.append(raw_dict) return raw_servers_dict def fill_db(self, servers): with session_scope() as session: for key in servers.keys(): server = session.query(Server).filter(Server.name == key).first() if server: server.number = servers[key] else: session.add(Server(name=key, number=servers[key], added=datetime.now())) def get_analytics(self, hour=False, day=False, month=False): if hour: comparator = datetime.now() - timedelta(hours=1) elif day: comparator = datetime.now() - timedelta(days=1) else: comparator = datetime.now() - timedelta(days=30) with session_scope() as session: raw_servers = session.query(Server).filter(Server.added >= comparator).all() raw_servers_dict = [] if raw_servers: for raw_server in raw_servers: raw_dict = raw_server.__dict__ del raw_dict['_sa_instance_state'] raw_servers_dict.append(raw_dict) return raw_servers_dict
python
"""Utility functions.""" from typing import typevar, List, Any T = typevar('T') def short_type(obj: object) -> str: """Return the last component of the type name of an object. If obj is None, return 'nil'. For example, if obj is 1, return 'int'. """ if obj is None: return 'nil' t = str(type(obj)) return t.split('.')[-1].rstrip("'>") def indent(s: str, n: int) -> str: """Indent all the lines in s (separated by Newlines) by n spaces.""" s = ' ' * n + s s = s.replace('\n', '\n' + ' ' * n) return s def array_repr(a: List[T]) -> List[str]: """Return the items of an array converted to strings using Repr.""" aa = [] # type: List[str] for x in a: aa.append(repr(x)) return aa def dump_tagged(nodes: List[Any], tag: str) -> str: """Convert an array into a pretty-printed multiline string representation. The format is tag( item1.. itemN) Individual items are formatted like this: - arrays are flattened - pairs (str : array) are converted recursively, so that str is the tag - other items are converted to strings and indented """ a = [] # type: List[str] if tag: a.append(tag + '(') for n in nodes: if isinstance(n, list): if n: a.append(dump_tagged(n, None)) elif isinstance(n, tuple): s = dump_tagged(n[1], n[0]) a.append(indent(s, 2)) elif n: a.append(indent(str(n), 2)) if tag: a[-1] += ')' return '\n'.join(a)
python
from abc import ABC from abc import abstractmethod class DatabaseQuery(ABC): @staticmethod def query_invoke(func): def wrapper_method(self_instance, *args, **kwargs): try: self_instance.create_connection() result = func(self_instance, *args, **kwargs) return result finally: self_instance.close_connection() return wrapper_method @abstractmethod def create_connection(self): pass @abstractmethod def close_connection(self): pass @abstractmethod def get_object_by_id(self, collection, object_id): pass @abstractmethod def get_object(self, collection, key, value): pass @abstractmethod def get_collection(self, collection): pass @abstractmethod def get_all_item_in_collection(self, collection): pass @abstractmethod def get_item_in_collection(self, collection, filter_query): pass @abstractmethod def get_list_item_in_collection(self, collection, filter_query): pass @abstractmethod def count_item_in_query(self, collection, filter_query): pass @abstractmethod def close_client_connection(self): pass @abstractmethod def close_server(self): pass
python
# coding: utf-8 import argparse from argparse import RawDescriptionHelpFormatter import sys import os sys.path.append('.\src') sys.path.append('..\src') from src.main_functions import * updateInput='u' fullupdateInput='fu' downloadInput='d' statusInput='s' compressInput='c' def check_env(): try: os.listdir('novel_list') except FileNotFoundError: os.mkdir('novel_list') def parser(): parser = argparse.ArgumentParser(description=""" c to compress novels in zip d to download input.txt list s to update status.csv u to update novels""", formatter_class=RawDescriptionHelpFormatter) parser.add_argument("mode", help="put the letter of argument c/d/s/u", type=str,default=argparse.SUPPRESS) parser.add_argument("-r", help="regex of entree for compression selection (select * containing regex)", type=str,default=argparse.SUPPRESS) parser.add_argument("-o", help="output directory (only works for compression)", type=str,default=argparse.SUPPRESS) parser.add_argument("-f", help="force",action='store_true' ,default=argparse.SUPPRESS) parser.add_argument("-md", help="format",action='store_true' ,default=argparse.SUPPRESS) args = parser.parse_args() print(args) regex='' keep_text_format=False if args.mode: if hasattr(args, 'md'): keep_text_format=True if hasattr(args, 'r'): regex=args.r if(args.mode==downloadInput): print("downloading") download(keep_text_format) elif(args.mode==updateInput): archiveUpdate(findNovel(regex),keep_text_format) elif(args.mode==statusInput): getFolderStatus() elif(args.mode==fullupdateInput): if hasattr(args, 'f'): archiveFullUpdate(findNovel(regex),True) else: archiveFullUpdate(findNovel(regex)) elif(args.mode==compressInput): print('compression') print(args) out='' if hasattr(args, 'o'): out=args.o compressAll(regex,out) if __name__ == '__main__': check_env() parser()
python
import json from collections import defaultdict from typing import List, Tuple, Dict from commands.snapshot import snapshot from drive.api import DriveFile, Snapshot, resolve_paths, ResourcePath, Resource from drive.http import ErrorHandlingRunner, GAPIBatchRunner from drive.misc import eprint from drive.serializers import load_snapshot def dedup_list(service, args): eprint('Computing duplicates and resolving resource paths.') duplicates, paths = compute_duplicates(service, get_snapshot(service, args)) summary = { md5: [ { 'id': duplicate.id, 'path': str(paths[duplicate]) } for duplicate in entries ] for md5, entries in duplicates.items() } if len(duplicates) == 0: eprint('Hooray! There are no duplicates in the snapshot.') else: eprint('Duplicates were found.') if args.json: print(json.dumps(summary, indent=3)) else: for md5, entries in summary.items(): eprint('------ %s -------' % md5) for entry in entries: eprint('%s (%s)' % (entry['path'], entry['id'])) eprint('') def dedup_apply(service, args): eprint('Now computing and removing duplicates. Prefix order is %s.' % args.prefixes) duplicates, paths = compute_duplicates( service, get_snapshot(service, args) ) # Strips white spaces. prefixes = [prefix.strip() for prefix in args.prefixes.split(',')] # Adds trailing backlash to make prefixes unique. prefixes = [prefix + ('/' if not prefix.endswith('/') else '') for prefix in prefixes] runner = ErrorHandlingRunner(service, delegate=GAPIBatchRunner) for md5, entries in duplicates.items(): preferences = list(zip(entries, list(rank(prefixes, [paths[entry] for entry in entries])))) for duplicate, _ in sorted(preferences, key=lambda x: x[1])[1:]: rid = '%s (%s)' % (paths[duplicate], duplicate.id) eprint('Queue request for deleting duplicate %s' % rid) runner.add(request_id=rid, request=duplicate.delete()) if not args.dry_run: eprint('\n --- Now running %d deletion requests in batch.' % len(runner.requests)) for rid, result, _ in runner.execute(): eprint('Successfully deleted %s' % rid) else: eprint('Dry run. No changes applied.') def rank(prefix_preferences, paths: List[ResourcePath]): for path in paths: for i, prefix in enumerate(prefix_preferences): if path.startswith(prefix): yield i break else: # If the path does not match any of the prefixes, we throw an error. This can be painful to the # user but it's better than taking an arbitrary decision for either deleting or leaving the duplicate # behind raise Exception('Path %s is not covered by any of the specified prefixes. Aborting.' % str(path)) def compute_duplicates(service, snapshot: Snapshot) -> Tuple[Dict[str, List[Resource]], Dict[Resource, ResourcePath]]: by_md5 = defaultdict(list) for entry in snapshot.entries: if not isinstance(entry, DriveFile): continue by_md5[entry.md5Checksum].append(entry) duplicates = {k: v for k, v in by_md5.items() if len(v) > 1} paths = dict(resolve_paths(service, [ element for elements in duplicates.values() for element in elements ])) return duplicates, paths def get_snapshot(service, args): return load_snapshot(service, args.snapshot) if args.snapshot else snapshot(service, [args.folder]) def register_parser(subparsers): parser = subparsers.add_parser( 'dedup', help='Hunt down and remove duplicate files from Google Drive.') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--snapshot', help='causes _dedup_ to look for duplicates inside of a pre-existing snapshot,' 'created with the _snapshot_ command') group.add_argument('--folder', help='causes _dedup_ to look for duplicates in an existing folder ' 'in Google Drive (e.g. "/Pictures/Old/")') subsubparsers = parser.add_subparsers() subsubparsers.required = True subsubparsers.dest = 'command' compute = subsubparsers.add_parser('list', help='lists duplicates, grouped by MD5') compute.add_argument('--json', help='Outputs listing in JSON format.', action='store_true') compute.set_defaults(func=dedup_list) apply = subsubparsers.add_parser('apply', help='removes duplicates') apply.add_argument('--prefixes', help='comma-separated list of preferred prefixes, most ' 'preferred come first.' 'Duplicates will be dropped from least-preferred ' 'prefixes, or prefixes not present in this list. Use ' 'the single prefix "/" to delete duplicates at random. If no ' 'prefix can be matched, deduplication will abort with an error.', required=True) apply.add_argument('--dry-run', help='Prints actions but do not actually change the contents of Google Drive.', action='store_true') apply.set_defaults(func=dedup_apply)
python
#!/usr/bin/env python3 # -*- coding: UTF-8 # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 import bs4 import requests import re from urllib.request import urlretrieve import os.path import csv if __name__ == "__main__": base__url = "http://pesquisa.memoriasreveladas.gov.br/mrex/consulta/" first_url = "http://pesquisa.memoriasreveladas.gov.br/mrex/consulta/resultado_pesquisa_new.asp?v_pesquisa=&v_fundo_colecao=1278707&Pages={}" cookies = dict(ASPSESSIONIDCCBQCQSR='EEPJMIIDAOLDBMOABLJODJAJ',ASPSESSIONIDACCRCQSQ='BPKADPKDIEABCDGGLBAAHEAK',ASPSESSIONIDCACTCQSQ='EEGDOMLCJKKNGPFIPJLCMFBI',TS01dc25d1='01770c3a9841dbb80f087c5796c0c8a70c918eb8b9a5fb7229d46b84e736c80391564a8a27de44504d56d751444c19f2040f128a02c04b95e7951acf7b4448895e221d9514') series = ['BR RJANRIO CNV.0.ERE','BR RJANRIO CNV.0.OCO','BR RJANRIO CNV.0.PEI','BR RJANRIO CNV.0.EST','BR RJANRIO CNV.0.GRG','BR RJANRIO CNV.0.RCE'] arquivos = [] for serie in series: payload = {'input_pesqfundocolecao': '1278707', 'input_pesqnotacao': serie,'v_fundo_colecao': '1278707', 'v_ordem': 'CodigoReferencia' } if not os.path.exists(serie): os.makedirs(serie) with open('{}/{}.csv'.format(serie, serie), 'w', newline='') as f: writer = csv.writer(f) num_pgs = 2 pagina = 1 while pagina <= num_pgs: url = first_url.format(pagina) print('Serie', serie, 'lendo pagina', pagina, 'de', num_pgs) r = requests.post(url, data=payload, cookies=cookies) r.encoding = 'utf-8' s1 = bs4.BeautifulSoup(r.text, "lxml") ulres = s1.find('ul', id='resultado') ptp = re.compile(r'var TotalPag = (\d+)') match = ptp.search(r.text) if match: num_pgs = int(match.group(1)) # cnt = 0 for li in ulres.find_all('li'): l = li.find("a", title="Fazer download do arquivo") if l and l.find_parent('li') == li: link = l["onclick"] parts = link.split('\',\'') arq = parts[0][30:] arq_name = parts[1] link = "{}download.asp?NomeArquivo={}&arquivo={}&apresentacao=2".format(base__url, arq_name, arq) arquivos.append((link, arq_name, serie)) else: arq_name = 'Sem arquivo' link = '--' description = li.span.text writer.writerow((description, arq_name, link)) # cnt += 1 # print('Dados:', cnt, serie, description[1:10], arq_name) pagina += 1 for arq_tpl in arquivos: filename = '{}/{}'.format(arq_tpl[2], arq_tpl[1]) if not os.path.isfile(filename): urlretrieve(arq_tpl[0], filename) print('Carregou arquivo:', filename)
python
# 20412 - [Job Adv] (Lv.100) Mihile 4rd job adv sm.setSpeakerID(1101002) if sm.sendAskYesNo("Are you ready, are you okay to leave?"): sm.warp(913070100, 0) sm.setInstanceTime(300, 130000000)
python
############################################################################## # Written by: Cachen Chen <[email protected]> # Date: 09/25/2009 # Application wrapper for Moonlight combobox # Used by the combobox-*.py tests ############################################################################## 'Application wrapper for Moonlight combobox' from strongwind import * from os.path import exists, dirname from sys import path init_dir = path[0] uiaqa_path = dirname(dirname(init_dir)) # Variable the path of Firefox to run the application, Please install # Firefox3.5.1 first which is accessible by accerciser firefox_path = '/usr/bin/firefox' def launchComboBox(exe=None): '''Launch Moonlight combobox with accessibility enabled and return a combobox object. Log an error and return None if something goes wrong''' if exe is None: # make sure we can find the sample applications exe = '%s/samples/moonlight/ComboBox/ComboBoxSample.html' % uiaqa_path if not exists(exe): raise IOError, "Could not find file %s" % exe args = [firefox_path, exe] (app, subproc) = cache.launchApplication(args=args, name="Firefox", \ wait=config.LONG_DELAY) combobox = ComboBox(app, subproc) cache.addApplication(combobox) combobox.comboBoxFrame.app = combobox return combobox # class to represent the application class ComboBox(accessibles.Application): #checkShowing=False def __init__(self, accessible, subproc=None): 'Get a reference to the ComboBox window' super(ComboBox, self).__init__(accessible, subproc) self.findFrame(re.compile('^ComboBoxSample'), logName='Combo Box')
python
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for LocalDockerModelServerRunner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import os import socket import time from absl import logging import docker from docker import errors as docker_errors from typing import Text from tfx import types from tfx.components.infra_validator import error_types from tfx.components.infra_validator import serving_bins from tfx.components.infra_validator.model_server_runners import base_runner from tfx.proto import infra_validator_pb2 from tfx.utils import path_utils _POLLING_INTERVAL_SEC = 1 def _make_docker_client(config: infra_validator_pb2.LocalDockerConfig): params = {} if config.client_timeout_seconds: params['timeout'] = config.client_timeout_seconds if config.client_base_url: params['base_url'] = config.client_base_url if config.client_api_version: params['version'] = config.client_api_version return docker.DockerClient(**params) def _find_available_port(): """Find available port in the host machine.""" with contextlib.closing( socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: sock.bind(('localhost', 0)) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) _, port = sock.getsockname() return port def _parse_model_path(model_path: Text): """Parse model path into a base path, model name, and a version. Args: model_path: Path to the SavedModel (or other format) in the structure of `{model_base_path}/{model_name}/{version}`, where version is an integer. Raises: ValueError: if the model_path does not conform to the expected directory structure. Returns: `model_base_path`, `model_name`, and integer `version`. """ model_path, version = os.path.split(model_path) if not version.isdigit(): raise ValueError( '{} does not conform to tensorflow serving directory structure: ' 'BASE_PATH/model_name/int_version.'.format(model_path)) base_path, model_name = os.path.split(model_path) return base_path, model_name, int(version) class LocalDockerRunner(base_runner.BaseModelServerRunner): """A model server runner that runs in a local docker runtime. You need to pre-install docker in the machine that is running InfraValidator component. For that reason, it is recommended to use this runner only for testing purpose. """ def __init__(self, model: types.Artifact, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec): """Make a local docker runner. Args: model: A model artifact to infra validate. serving_binary: A ServingBinary to run. serving_spec: A ServingSpec instance. """ base_path, model_name, version = _parse_model_path( path_utils.serving_model_path(model.uri)) if model_name != serving_spec.model_name: raise ValueError( 'ServingSpec.model_name ({}) does not match the model name ({}) from' 'the Model artifact.'.format( serving_spec.model_name, model_name)) self._model_base_path = base_path self._model_name = model_name self._model_version = version self._serving_binary = serving_binary self._serving_spec = serving_spec self._docker = _make_docker_client(serving_spec.local_docker) self._container = None self._endpoint = None def __repr__(self): return 'LocalDockerRunner(image: {image})'.format( image=self._serving_binary.image) @property def _model_path(self): return os.path.join(self._model_base_path, self._model_name) @property def _model_version_path(self): return os.path.join(self._model_base_path, self._model_name, str(self._model_version)) def GetEndpoint(self): assert self._endpoint is not None, ( 'Endpoint is not yet created. You should call Start() first.') return self._endpoint def Start(self): assert self._container is None, ( 'You cannot start model server multiple times.') host_port = _find_available_port() self._endpoint = 'localhost:{}'.format(host_port) if isinstance(self._serving_binary, serving_bins.TensorFlowServing): is_local_model = os.path.exists(self._model_version_path) if is_local_model: run_params = self._serving_binary.MakeDockerRunParams( host_port=host_port, host_model_path=self._model_path) else: run_params = self._serving_binary.MakeDockerRunParams( host_port=host_port, model_base_path=self._model_base_path) else: raise NotImplementedError('Unsupported serving binary {}'.format( type(self._serving_binary).__name__)) logging.info('Running container with parameter %s', run_params) self._container = self._docker.containers.run(**run_params) def WaitUntilRunning(self, deadline): assert self._container is not None, 'container has not been started.' while time.time() < deadline: try: # Reload container attributes from server. This is the only right way to # retrieve the latest container status from docker engine. self._container.reload() status = self._container.status except docker_errors.NotFound: # If the job has been aborted and container has specified auto_removal # to True, we might get a NotFound error during container.reload(). raise error_types.JobAborted( 'Container not found. Possibly removed after the job has been ' 'aborted.') # The container is just created and not yet in the running status. if status == 'created': time.sleep(_POLLING_INTERVAL_SEC) continue # The container is running :) if status == 'running': return # Docker status is one of {'created', 'restarting', 'running', 'removing', # 'paused', 'exited', or 'dead'}. Status other than 'created' and # 'running' indicates the job has been aborted. raise error_types.JobAborted( 'Job has been aborted (container status={})'.format(status)) raise error_types.DeadlineExceeded( 'Deadline exceeded while waiting for the container to be running.') def Stop(self): if self._container: logging.info('Stopping container.') self._container.stop() self._docker.close()
python
""" Copyright (c) Open Carbon, 2020 This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. backend/tools.py Provides range of backend tools that can be run from command line: importlocations: Imports location data from file that is used to geolocate specific locations generategeometries: Generates multiple geometries of boundaries for multiple zoom levels using simplification processspecialcases: Perform additional ad-hoc processing importdata: Imports data for specific area scale and year range (assuming BEIS data) """ import os import pandas import json import topojson as tp import geojson import csv import re from shapely.geometry import Polygon if __name__ == '__main__': import sys import django parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) sys.path.append(parent_dir) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "carbonmap.settings") django.setup() from django.contrib.gis.db.models.functions import AsGeoJSON from django.core.serializers.json import DjangoJSONEncoder from django.contrib.gis.geos import GEOSException, GEOSGeometry, Point, fromstr from django.db import connection, transaction from django.contrib.gis.db.models import Extent from backend.gis import get_degrees_per_pixel from backend.models import Location, Geometry, Data, DATATYPES_CHOICES # Number of zoom levels to cache geometries for # We generate a target-resolution-dependent simplification for each geometry object to minimize download size zoomrange = 15 # Paths to subregion geojson files subregions = { 'lau1': [ 'subregions/Local_Administrative_Units_Level_1_2018.json'], 'msoa': [ "subregions/england_msoa.json", "subregions/wales_msoa.json", "subregions/scotland_ig.json"], 'lsoa': [ "subregions/england_lsoa.json", "subregions/wales_lsoa.json", "subregions/scotland_dz.json"], } subregion_scotland_correction = "subregions/Counties_and_Unitary_Authorities_GB_2018.json" non_decimal = re.compile(r'[^\d.]+') def getlargestpolygon(areatype): """ Get largest area for particular area type Ad-hoc function used to determine minimum zoom levels when MSOA/IG and LSOA/DZ appear """ maxvalue = 0 areacode = '' geometries = Geometry.objects.filter(zoom=15, type=areatype).annotate(Extent('geometry')).values('code', 'geometry__extent') for geometry in geometries: lng_west, lat_south, lng_east, lat_north = geometry['geometry__extent'] lat_dif = lat_north - lat_south lng_dif = lng_east - lng_west if (lng_dif > maxvalue): maxvalue = lng_dif areacode = geometry['code'] if (lat_dif > maxvalue): maxvalue = lat_dif areacode = geometry['code'] return areacode def get_yearsuffix_from_filepath(filepath): """ Get year suffix from file path of boundary file """ re_match = re.search(r"(\d{4})", filepath) if re_match: year = re_match.group(1) return year[2:] else: return None def get_feature_name_code(properties, yearsuffix): """ Get name and code from GeoJSON feature """ code = None if 'code' in properties: code = properties['code'] elif ('lau1' + yearsuffix + 'cd') in properties: code = properties['lau1' + yearsuffix + 'cd'] elif ('ctyua' + yearsuffix + 'cd') in properties: code = properties['ctyua' + yearsuffix + 'cd'] name = None if 'Name' in properties: name = properties['Name'] elif 'name' in properties: name = properties['name'] elif ('lau1' + yearsuffix + 'nm') in properties: name = properties['lau1' + yearsuffix + 'nm'] elif ('ctyua' + yearsuffix + 'nm') in properties: name = properties['ctyua' + yearsuffix + 'nm'] return {'name': name, 'code': code} def processspecialcases(): """ Perform additional ad-hoc processing - Replace Scotland LAU1s with separate local authority boundaries as BEIS data uses non-standard LAU1 naming """ # Replace Scotland LAU1s with separate unitary authority boundaries as BEIS data uses unitary authorities for Scotland data at large scale scottishareas = Geometry.objects.filter(code__startswith="S", type='lau1').delete() print("Loading supplemental file for Scottish LAs", subregion_scotland_correction) with open(subregion_scotland_correction) as f: geojson_codes, topologysafe_codes = [], [] yearsuffix = get_yearsuffix_from_filepath(subregion_scotland_correction) geometrydata = geojson.load(f) # Create a list of all feature codes for entire file for feature in geometrydata['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code']: geojson_codes.append(feature_namecode['code']) geometrytopology = tp.Topology(geometrydata) # Create a list of all feature codes that topojson processed successfully topologysafefeatures = json.loads(geometrytopology.to_geojson()) for feature in topologysafefeatures['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code']: topologysafe_codes.append(feature_namecode['code']) # Get difference of feature codes between original file and topojson successfully processed feature codes code_diff = list(set(geojson_codes) - set(topologysafe_codes)) # Create a custom feature set from the features that topojson failed to process # TODO: investigate why topojson fails on certain polygons diff_features = [] for feature in geometrydata['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code'] in code_diff: diff_features.append(feature) print("Number of polygons topojson failed on =", len(diff_features)) for zoom in range(0, zoomrange + 1): print("Creating identical polygons for all zoom levels for polygons topojson was not able to process", len(diff_features)) for feature in diff_features: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code'][:1] == 'S': # Is scottish feature try: geometry = GEOSGeometry(str(feature['geometry'])) print("Saving geometry for", feature_namecode['code'], "zoom level", zoom) geometryobject = Geometry(name=feature_namecode['name'], type='lau1', code=feature_namecode['code'], zoom=zoom, geometry=geometry) geometryobject.save() except: print("Failed to create geometry object - probably too small for zoom level", code, "zoom level", zoom, "degree resolution", zoomepsilon) zoomepsilon = get_degrees_per_pixel(zoom) print("Simplifying", subregion_scotland_correction, "for zoom level", zoom, "equivalent to degree resolution", zoomepsilon) simplifiedfeatures = json.loads(geometrytopology.toposimplify( epsilon=zoomepsilon, simplify_algorithm='dp', prevent_oversimplify=True ).to_geojson()) count = 0 for feature in simplifiedfeatures['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) geometry = GEOSGeometry(str(feature['geometry'])) if feature_namecode['code'][:1] == 'S': # Is scottish feature print("Saving geometry for", feature_namecode['code'], feature_namecode['name']) geometryobject = Geometry(name=feature_namecode['name'], type='lau1', code=feature_namecode['code'], zoom=zoom, geometry=geometry) geometryobject.save() def generategeometries(): """ Generates multiple geometries of boundaries for multiple zoom levels using simplification """ for areatype in subregions: Geometry.objects.filter(type=areatype).delete() for areafile in subregions[areatype]: print("Loading area file", areafile) with open(areafile) as f: geojson_codes, topologysafe_codes = [], [] yearsuffix = get_yearsuffix_from_filepath(areafile) geometrydata = geojson.load(f) # Create a list of all feature codes for entire file for feature in geometrydata['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code']: geojson_codes.append(feature_namecode['code']) geometrytopology = tp.Topology(geometrydata) # Create a list of all feature codes that topojson processed successfully topologysafefeatures = json.loads(geometrytopology.to_geojson()) for feature in topologysafefeatures['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code']: topologysafe_codes.append(feature_namecode['code']) # Get difference of feature codes between original file and topojson successfully processed feature codes code_diff = list(set(geojson_codes) - set(topologysafe_codes)) # Create a custom feature set from the features that topojson failed to process # TODO: investigate why topojson fails on certain polygons diff_features = [] for feature in geometrydata['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) if feature_namecode['code'] in code_diff: diff_features.append(feature) print("Number of polygons topojson failed on =", len(diff_features)) for zoom in range(0, zoomrange + 1): print("Creating identical polygons for all zoom levels for polygons topojson was not able to process", len(diff_features)) for feature in diff_features: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) try: geometry = GEOSGeometry(str(feature['geometry'])) print("Saving geometry for", feature_namecode['code'], "zoom level", zoom) geometryobject = Geometry(name=feature_namecode['name'], type=areatype, code=feature_namecode['code'], zoom=zoom, geometry=geometry) geometryobject.save() except: print("Failed to create geometry object - probably too small for zoom level", code, "zoom level", zoom, "degree resolution", zoomepsilon) zoomepsilon = get_degrees_per_pixel(zoom) print("Simplifying", areafile, "for zoom level", zoom, "equivalent to degree resolution", zoomepsilon) simplifiedfeatures = json.loads(geometrytopology.toposimplify( epsilon=zoomepsilon, simplify_algorithm='dp', prevent_oversimplify=True ).to_geojson()) for feature in simplifiedfeatures['features']: feature_namecode = get_feature_name_code(feature['properties'], yearsuffix) try: geometry = GEOSGeometry(str(feature['geometry'])) print("Saving geometry for", feature_namecode['code'], "zoom level", zoom, "degree resolution", zoomepsilon) geometryobject = Geometry(name=feature_namecode['name'], type=areatype, code=feature_namecode['code'], zoom=zoom, geometry=geometry) geometryobject.save() except: print("Failed to create geometry object - probably too small for zoom level", code, "zoom level", zoom, "degree resolution", zoomepsilon) processspecialcases() def importdatabygeometrytype(geometrytype, year, datatype): """ Import data for a specific geometry type and year """ datatypecode = 'ELEC' if datatype == 1: datatypecode = 'GAS' geometry_prefix = 'LSOA' geometrycode_row = 'LSOACode' multiplier_meter = 1 multiplier_value = 1 if geometrytype == 'msoa': geometry_prefix = 'MSOA' geometrycode_row = 'MSOACode' if geometrytype == 'lau1': geometry_prefix = 'LAU1' geometrycode_row = 'LA Code' multiplier_meter = 1000 multiplier_value = 1000000 filepath = 'BEIS/' + geometry_prefix + '_' + datatypecode + '_' + str(year) + '.csv' Data.objects.filter(geometrytype=geometrytype, year=year, type=datatype).delete() count = 0 if os.path.isfile(filepath): with open(filepath, 'r' ) as fileobj: reader = csv.DictReader(fileobj) for row in reader: count += 1 print("Importing line", count, filepath) geometrycode = row[geometrycode_row].strip() if geometrytype == 'lau1': if row['Total consumption'] == '..': continue if row['Total consumption'] == ' - ': continue value = float(non_decimal.sub("", row['Total consumption'])) meters = float(row['Total number of meters']) else: value = float(row['KWH']) meters = float(row['METERS']) meters = meters * multiplier_meter value = value * multiplier_value data = Data( type=datatype, year=str(year), value=value, meters=meters, geometrycode=geometrycode, geometrytype=geometrytype) data.save() print("Imported " + geometry_prefix + " for type " + str(datatype) + " for " + str(year)) else: print(filepath, "not found") def importdata(geometrytype, yearstart, yearend): """ Import data for specify geometry type and year range """ for year in range(int(yearstart), 1 + int(yearend)): print ("Importing data for year", year) for datatype in DATATYPES_CHOICES: importdatabygeometrytype(geometrytype, year, datatype[0]) def checkgeometries(): """ Check to see if any geometries corrupted """ allgeometries = Geometry.objects.all().annotate(json=AsGeoJSON('geometry')).values('name', 'code', 'zoom', 'type', 'json').order_by('code', 'type', 'zoom') for geometry in allgeometries: print("Checking geometry", geometry['code'], geometry['type'], geometry['zoom']) json_data = json.dumps(list(geometry), cls=DjangoJSONEncoder) def renameduplicateshortcodes(): """ Runs custom piece of SQL to rename duplicate shortcodes in location table """ cursor = connection.cursor() cursor.execute(""" UPDATE backend_location SET shortcode = CONCAT(shortcode, REPLACE(LOWER(county), ' ', '')) WHERE shortcode IN ( SELECT s.shortcode FROM ( SELECT shortcode,COUNT(*) AS num FROM backend_location GROUP BY shortcode ) AS s WHERE s.num > 1 ); """, []) transaction.commit() def computescale(population): """ Computes appropriate scale to show locations with specific population """ if population == '': population = 0 population = int(population) if population < 20000: return 15 if population < 40000: return 14.5 if population < 60000: return 14 if population < 80000: return 13.5 if population < 100000: return 13 if population < 200000: return 12.5 if population < 400000: return 12 if population < 600000: return 11.5 if population < 800000: return 11 if population < 1000000: return 10.5 return 10 def importlocations(): """ Imports location data from file that is used to geolocate specific locations """ with open('Towns_List_Extended.csv') as csvfile: reader = csv.DictReader(csvfile) count = 0 Location.objects.all().delete() for row in reader: shortcode = row['Town'].lower() shortcode = re.sub("[ ]", "", shortcode) scale = computescale(row['Population']) p = Location( shortcode=shortcode, town=row['Town'], county=row['County'], country=row['Country'], population=row['Population'], longitude=row['Longitude'], latitude=row['Latitude'], url=row['url'], scale=scale) p.save() count += 1 renameduplicateshortcodes() print("Import locations finished, imported: " + str(count)) if len(sys.argv) == 1: print(""" ****** Carbon Map Batch Processing ******* Possible arguments are: checkgeometries Check whether any geometries are corrupted importlocations Imports location data from file that is used to geolocate specific locations generategeometries Generates multiple geometries of boundaries for multiple zoom levels using simplification processspecialcases Perform additional ad-hoc processing importdata [lsoa/msoa/lau1] [yearstart] [yearend] Imports data for specific area scale and year range (assuming BEIS data) Leaving off [yearend] will only import for [yearstart] """) else: primaryargument = sys.argv[1] if primaryargument == "checkgeometries": checkgeometries() if primaryargument == "importlocations": importlocations() if primaryargument == "generategeometries": generategeometries() if primaryargument == "processspecialcases": processspecialcases() if primaryargument == "importdata": if len(sys.argv) >= 4: yearstart = sys.argv[3] yearend = yearstart if len(sys.argv) == 5: yearend = sys.argv[4] geometrytype = sys.argv[2] importdata(geometrytype, yearstart, yearend) else: print("Not enough arguments provided for importdata. Format is importdata lsoa/msoa/lau1 yearstart yearend")
python
"""This module contains definitions and data structures for 2-, 4-, and 8-valued logic operations. 8 logic values are defined as integer constants. * For 2-valued logic: ``ZERO`` and ``ONE`` * 4-valued logic adds: ``UNASSIGNED`` and ``UNKNOWN`` * 8-valued logic adds: ``RISE``, ``FALL``, ``PPULSE``, and ``NPULSE``. The bits in these constants have the following meaning: * bit 0: Final/settled binary value of a signal * bit 1: Initial binary value of a signal * bit 2: Activity or transitions are present on a signal Special meaning is given to values where bits 0 and 1 differ, but bit 2 (activity) is 0. These values are interpreted as ``UNKNOWN`` or ``UNASSIGNED`` in 4-valued and 8-valued logic. In general, 2-valued logic only considers bit 0, 4-valued logic considers bits 0 and 1, and 8-valued logic considers all 3 bits. The only exception is constant ``ONE=0b11`` which has two bits set for all logics including 2-valued logic. """ import math from collections.abc import Iterable import numpy as np from . import numba, hr_bytes ZERO = 0b000 """Integer constant ``0b000`` for logic-0. ``'0'``, ``0``, ``False``, ``'L'``, and ``'l'`` are interpreted as ``ZERO``. """ UNKNOWN = 0b001 """Integer constant ``0b001`` for unknown or conflict. ``'X'``, or any other value is interpreted as ``UNKNOWN``. """ UNASSIGNED = 0b010 """Integer constant ``0b010`` for unassigned or high-impedance. ``'-'``, ``None``, ``'Z'``, and ``'z'`` are interpreted as ``UNASSIGNED``. """ ONE = 0b011 """Integer constant ``0b011`` for logic-1. ``'1'``, ``1``, ``True``, ``'H'``, and ``'h'`` are interpreted as ``ONE``. """ PPULSE = 0b100 """Integer constant ``0b100`` for positive pulse, meaning initial and final values are 0, but there is some activity on a signal. ``'P'``, ``'p'``, and ``'^'`` are interpreted as ``PPULSE``. """ RISE = 0b101 """Integer constant ``0b110`` for a rising transition. ``'R'``, ``'r'``, and ``'/'`` are interpreted as ``RISE``. """ FALL = 0b110 """Integer constant ``0b101`` for a falling transition. ``'F'``, ``'f'``, and ``'\\'`` are interpreted as ``FALL``. """ NPULSE = 0b111 """Integer constant ``0b111`` for negative pulse, meaning initial and final values are 1, but there is some activity on a signal. ``'N'``, ``'n'``, and ``'v'`` are interpreted as ``NPULSE``. """ def interpret(value): """Converts characters, strings, and lists of them to lists of logic constants defined above. :param value: A character (string of length 1), Boolean, Integer, None, or Iterable. Iterables (such as strings) are traversed and their individual characters are interpreted. :return: A logic constant or a (possibly multi-dimensional) list of logic constants. """ if isinstance(value, Iterable) and not (isinstance(value, str) and len(value) == 1): return list(map(interpret, value)) if value in [0, '0', False, 'L', 'l']: return ZERO if value in [1, '1', True, 'H', 'h']: return ONE if value in [None, '-', 'Z', 'z']: return UNASSIGNED if value in ['R', 'r', '/']: return RISE if value in ['F', 'f', '\\']: return FALL if value in ['P', 'p', '^']: return PPULSE if value in ['N', 'n', 'v']: return NPULSE return UNKNOWN _bit_in_lut = np.array([2 ** x for x in range(7, -1, -1)], dtype='uint8') @numba.njit def bit_in(a, pos): return a[pos >> 3] & _bit_in_lut[pos & 7] class MVArray: """An n-dimensional array of m-valued logic values. This class wraps a numpy.ndarray of type uint8 and adds support for encoding and interpreting 2-valued, 4-valued, and 8-valued logic values. Each logic value is stored as an uint8, manipulations of individual values are cheaper than in :py:class:`BPArray`. :param a: If a tuple is given, it is interpreted as desired shape. To make an array of ``n`` vectors compatible with a simulator ``sim``, use ``(len(sim.interface), n)``. If a :py:class:`BPArray` or :py:class:`MVArray` is given, a deep copy is made. If a string, a list of strings, a list of characters, or a list of lists of characters are given, the data is interpreted best-effort and the array is initialized accordingly. :param m: The arity of the logic. Can be set to 2, 4, or 8. If None is given, the arity of a given :py:class:`BPArray` or :py:class:`MVArray` is used, or, if the array is initialized differently, 8 is used. """ def __init__(self, a, m=None): self.m = m or 8 assert self.m in [2, 4, 8] # Try our best to interpret given a. if isinstance(a, MVArray): self.data = a.data.copy() """The wrapped 2-dimensional ndarray of logic values. * Axis 0 is PI/PO/FF position, the length of this axis is called "width". * Axis 1 is vector/pattern, the length of this axis is called "length". """ self.m = m or a.m elif hasattr(a, 'data'): # assume it is a BPArray. Can't use isinstance() because BPArray isn't declared yet. self.data = np.zeros((a.width, a.length), dtype=np.uint8) self.m = m or a.m for i in range(a.data.shape[-2]): self.data[...] <<= 1 self.data[...] |= np.unpackbits(a.data[..., -i-1, :], axis=1)[:, :a.length] if a.data.shape[-2] == 1: self.data *= 3 elif isinstance(a, int): self.data = np.full((a, 1), UNASSIGNED, dtype=np.uint8) elif isinstance(a, tuple): self.data = np.full(a, UNASSIGNED, dtype=np.uint8) else: if isinstance(a, str): a = [a] self.data = np.asarray(interpret(a), dtype=np.uint8) self.data = self.data[:, np.newaxis] if self.data.ndim == 1 else np.moveaxis(self.data, -2, -1) # Cast data to m-valued logic. if self.m == 2: self.data[...] = ((self.data & 0b001) & ((self.data >> 1) & 0b001) | (self.data == RISE)) * ONE elif self.m == 4: self.data[...] = (self.data & 0b011) & ((self.data != FALL) * ONE) | ((self.data == RISE) * ONE) elif self.m == 8: self.data[...] = self.data & 0b111 self.length = self.data.shape[-1] self.width = self.data.shape[-2] def __repr__(self): return f'<MVArray length={self.length} width={self.width} m={self.m} mem={hr_bytes(self.data.nbytes)}>' def __str__(self): return str([self[idx] for idx in range(self.length)]) def __getitem__(self, vector_idx): """Returns a string representing the desired vector.""" chars = ["0", "X", "-", "1", "P", "R", "F", "N"] return ''.join(chars[v] for v in self.data[:, vector_idx]) def __len__(self): return self.length def mv_cast(*args, m=8): return [a if isinstance(a, MVArray) else MVArray(a, m=m) for a in args] def mv_getm(*args): return max([a.m for a in args if isinstance(a, MVArray)] + [0]) or 8 def _mv_not(m, out, inp): np.bitwise_xor(inp, 0b11, out=out) # this also exchanges UNASSIGNED <-> UNKNOWN if m > 2: np.putmask(out, (inp == UNKNOWN), UNKNOWN) # restore UNKNOWN def mv_not(x1, out=None): """A multi-valued NOT operator. :param x1: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param out: Optionally an :py:class:`MVArray` as storage destination. If None, a new :py:class:`MVArray` is returned. :return: An :py:class:`MVArray` with the result. """ m = mv_getm(x1) x1 = mv_cast(x1, m=m)[0] out = out or MVArray(x1.data.shape, m=m) _mv_not(m, out.data, x1.data) return out def _mv_or(m, out, *ins): if m > 2: any_unknown = (ins[0] == UNKNOWN) | (ins[0] == UNASSIGNED) for inp in ins[1:]: any_unknown |= (inp == UNKNOWN) | (inp == UNASSIGNED) any_one = (ins[0] == ONE) for inp in ins[1:]: any_one |= (inp == ONE) out[...] = ZERO np.putmask(out, any_one, ONE) for inp in ins: np.bitwise_or(out, inp, out=out, where=~any_one) np.putmask(out, (any_unknown & ~any_one), UNKNOWN) else: out[...] = ZERO for inp in ins: np.bitwise_or(out, inp, out=out) def mv_or(x1, x2, out=None): """A multi-valued OR operator. :param x1: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param x2: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param out: Optionally an :py:class:`MVArray` as storage destination. If None, a new :py:class:`MVArray` is returned. :return: An :py:class:`MVArray` with the result. """ m = mv_getm(x1, x2) x1, x2 = mv_cast(x1, x2, m=m) out = out or MVArray(np.broadcast(x1.data, x2.data).shape, m=m) _mv_or(m, out.data, x1.data, x2.data) return out def _mv_and(m, out, *ins): if m > 2: any_unknown = (ins[0] == UNKNOWN) | (ins[0] == UNASSIGNED) for inp in ins[1:]: any_unknown |= (inp == UNKNOWN) | (inp == UNASSIGNED) any_zero = (ins[0] == ZERO) for inp in ins[1:]: any_zero |= (inp == ZERO) out[...] = ONE np.putmask(out, any_zero, ZERO) for inp in ins: np.bitwise_and(out, inp | 0b100, out=out, where=~any_zero) if m > 4: np.bitwise_or(out, inp & 0b100, out=out, where=~any_zero) np.putmask(out, (any_unknown & ~any_zero), UNKNOWN) else: out[...] = ONE for inp in ins: np.bitwise_and(out, inp, out=out) def mv_and(x1, x2, out=None): """A multi-valued AND operator. :param x1: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param x2: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param out: Optionally an :py:class:`MVArray` as storage destination. If None, a new :py:class:`MVArray` is returned. :return: An :py:class:`MVArray` with the result. """ m = mv_getm(x1, x2) x1, x2 = mv_cast(x1, x2, m=m) out = out or MVArray(np.broadcast(x1.data, x2.data).shape, m=m) _mv_and(m, out.data, x1.data, x2.data) return out def _mv_xor(m, out, *ins): if m > 2: any_unknown = (ins[0] == UNKNOWN) | (ins[0] == UNASSIGNED) for inp in ins[1:]: any_unknown |= (inp == UNKNOWN) | (inp == UNASSIGNED) out[...] = ZERO for inp in ins: np.bitwise_xor(out, inp & 0b011, out=out) if m > 4: np.bitwise_or(out, inp & 0b100, out=out) np.putmask(out, any_unknown, UNKNOWN) else: out[...] = ZERO for inp in ins: np.bitwise_xor(out, inp, out=out) def mv_xor(x1, x2, out=None): """A multi-valued XOR operator. :param x1: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param x2: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param out: Optionally an :py:class:`MVArray` as storage destination. If None, a new :py:class:`MVArray` is returned. :return: An :py:class:`MVArray` with the result. """ m = mv_getm(x1, x2) x1, x2 = mv_cast(x1, x2, m=m) out = out or MVArray(np.broadcast(x1.data, x2.data).shape, m=m) _mv_xor(m, out.data, x1.data, x2.data) return out def mv_transition(init, final, out=None): """Computes the logic transitions from the initial values of ``init`` to the final values of ``final``. Pulses in the input data are ignored. If any of the inputs are ``UNKNOWN``, the result is ``UNKNOWN``. If both inputs are ``UNASSIGNED``, the result is ``UNASSIGNED``. :param init: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param final: An :py:class:`MVArray` or data the :py:class:`MVArray` constructor accepts. :param out: Optionally an :py:class:`MVArray` as storage destination. If None, a new :py:class:`MVArray` is returned. :return: An :py:class:`MVArray` with the result. """ m = mv_getm(init, final) init, final = mv_cast(init, final, m=m) init = init.data final = final.data out = out or MVArray(np.broadcast(init, final).shape, m=8) out.data[...] = (init & 0b010) | (final & 0b001) out.data[...] |= ((out.data << 1) ^ (out.data << 2)) & 0b100 unknown = (init == UNKNOWN) | (init == UNASSIGNED) | (final == UNKNOWN) | (final == UNASSIGNED) unassigned = (init == UNASSIGNED) & (final == UNASSIGNED) np.putmask(out.data, unknown, UNKNOWN) np.putmask(out.data, unassigned, UNASSIGNED) return out class BPArray: """An n-dimensional array of m-valued logic values that uses bit-parallel storage. The primary use of this format is in aiding efficient bit-parallel logic simulation. The secondary benefit over :py:class:`MVArray` is its memory efficiency. Accessing individual values is more expensive than with :py:class:`MVArray`. Therefore it may be more efficient to unpack the data into an :py:class:`MVArray` and pack it again into a :py:class:`BPArray` for simulation. See :py:class:`MVArray` for constructor parameters. """ def __init__(self, a, m=None): if not isinstance(a, MVArray) and not isinstance(a, BPArray): a = MVArray(a, m) self.m = a.m if isinstance(a, MVArray): if m is not None and m != a.m: a = MVArray(a, m) # cast data self.m = a.m assert self.m in [2, 4, 8] nwords = math.ceil(math.log2(self.m)) nbytes = (a.data.shape[-1] - 1) // 8 + 1 self.data = np.zeros(a.data.shape[:-1] + (nwords, nbytes), dtype=np.uint8) """The wrapped 3-dimensional ndarray. * Axis 0 is PI/PO/FF position, the length of this axis is called "width". * Axis 1 has length ``ceil(log2(m))`` for storing all bits. * Axis 2 are the vectors/patterns packed into uint8 words. """ for i in range(self.data.shape[-2]): self.data[..., i, :] = np.packbits((a.data >> i) & 1, axis=-1) else: # we have a BPArray self.data = a.data.copy() # TODO: support conversion to different m self.m = a.m self.length = a.length self.width = a.width def __repr__(self): return f'<BPArray length={self.length} width={self.width} m={self.m} mem={hr_bytes(self.data.nbytes)}>' def __len__(self): return self.length def bp_buf(out, inp): md = out.shape[-2] assert md == inp.shape[-2] if md > 1: unknown = inp[..., 0, :] ^ inp[..., 1, :] if md > 2: unknown &= ~inp[..., 2, :] out[..., 0, :] = inp[..., 0, :] | unknown out[..., 1, :] = inp[..., 1, :] & ~unknown if md > 2: out[..., 2, :] = inp[..., 2, :] & ~unknown else: out[..., 0, :] = inp[..., 0, :] def bp_not(out, inp): md = out.shape[-2] assert md == inp.shape[-2] if md > 1: unknown = inp[..., 0, :] ^ inp[..., 1, :] if md > 2: unknown &= ~inp[..., 2, :] out[..., 0, :] = ~inp[..., 0, :] | unknown out[..., 1, :] = ~inp[..., 1, :] & ~unknown if md > 2: out[..., 2, :] = inp[..., 2, :] & ~unknown else: out[..., 0, :] = ~inp[..., 0, :] def bp_or(out, *ins): md = out.shape[-2] for inp in ins: assert md == inp.shape[-2] out[...] = 0 if md == 1: for inp in ins: out[..., 0, :] |= inp[..., 0, :] elif md == 2: any_unknown = ins[0][..., 0, :] ^ ins[0][..., 1, :] for inp in ins[1:]: any_unknown |= inp[..., 0, :] ^ inp[..., 1, :] any_one = ins[0][..., 0, :] & ins[0][..., 1, :] for inp in ins[1:]: any_one |= inp[..., 0, :] & inp[..., 1, :] for inp in ins: out[..., 0, :] |= inp[..., 0, :] | any_unknown out[..., 1, :] |= inp[..., 1, :] & (~any_unknown | any_one) else: any_unknown = (ins[0][..., 0, :] ^ ins[0][..., 1, :]) & ~ins[0][..., 2, :] for inp in ins[1:]: any_unknown |= (inp[..., 0, :] ^ inp[..., 1, :]) & ~inp[..., 2, :] any_one = ins[0][..., 0, :] & ins[0][..., 1, :] & ~ins[0][..., 2, :] for inp in ins[1:]: any_one |= inp[..., 0, :] & inp[..., 1, :] & ~inp[..., 2, :] for inp in ins: out[..., 0, :] |= inp[..., 0, :] | any_unknown out[..., 1, :] |= inp[..., 1, :] & (~any_unknown | any_one) out[..., 2, :] |= inp[..., 2, :] & (~any_unknown | any_one) & ~any_one def bp_and(out, *ins): md = out.shape[-2] for inp in ins: assert md == inp.shape[-2] out[...] = 0xff if md == 1: for inp in ins: out[..., 0, :] &= inp[..., 0, :] elif md == 2: any_unknown = ins[0][..., 0, :] ^ ins[0][..., 1, :] for inp in ins[1:]: any_unknown |= inp[..., 0, :] ^ inp[..., 1, :] any_zero = ~ins[0][..., 0, :] & ~ins[0][..., 1, :] for inp in ins[1:]: any_zero |= ~inp[..., 0, :] & ~inp[..., 1, :] for inp in ins: out[..., 0, :] &= inp[..., 0, :] | (any_unknown & ~any_zero) out[..., 1, :] &= inp[..., 1, :] & ~any_unknown else: any_unknown = (ins[0][..., 0, :] ^ ins[0][..., 1, :]) & ~ins[0][..., 2, :] for inp in ins[1:]: any_unknown |= (inp[..., 0, :] ^ inp[..., 1, :]) & ~inp[..., 2, :] any_zero = ~ins[0][..., 0, :] & ~ins[0][..., 1, :] & ~ins[0][..., 2, :] for inp in ins[1:]: any_zero |= ~inp[..., 0, :] & ~inp[..., 1, :] & ~inp[..., 2, :] out[..., 2, :] = 0 for inp in ins: out[..., 0, :] &= inp[..., 0, :] | (any_unknown & ~any_zero) out[..., 1, :] &= inp[..., 1, :] & ~any_unknown out[..., 2, :] |= inp[..., 2, :] & (~any_unknown | any_zero) & ~any_zero def bp_xor(out, *ins): md = out.shape[-2] for inp in ins: assert md == inp.shape[-2] out[...] = 0 if md == 1: for inp in ins: out[..., 0, :] ^= inp[..., 0, :] elif md == 2: any_unknown = ins[0][..., 0, :] ^ ins[0][..., 1, :] for inp in ins[1:]: any_unknown |= inp[..., 0, :] ^ inp[..., 1, :] for inp in ins: out[...] ^= inp out[..., 0, :] |= any_unknown out[..., 1, :] &= ~any_unknown else: any_unknown = (ins[0][..., 0, :] ^ ins[0][..., 1, :]) & ~ins[0][..., 2, :] for inp in ins[1:]: any_unknown |= (inp[..., 0, :] ^ inp[..., 1, :]) & ~inp[..., 2, :] for inp in ins: out[..., 0, :] ^= inp[..., 0, :] out[..., 1, :] ^= inp[..., 1, :] out[..., 2, :] |= inp[..., 2, :] out[..., 0, :] |= any_unknown out[..., 1, :] &= ~any_unknown out[..., 2, :] &= ~any_unknown
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 1 14:46:51 2020 @author: gabriel """ #%% MATLAB Code to reproduce # function thresh_calc(nbeg,nend,n_noise,sig_fact,necdf_flag,nlbound) # % Calculate the threshold using one of two methods # % P=mean|W| + c sigma # % P is computed from the empirical cdf of the noise signal at some # % desired confidence level # % # % Experimental version for bc v1.1, March 6, 2019 # % # global Wx as Wx_old Wx_new as_old as_new t na n clim_orig # global M S P # if necdf_flag == 1 # % Compute empirical cdf statistics and noise threshold # [nrow,ncol]=size(Wx_new) # conf=1.0 - nlbound.*0.01; # % For each row in the matrix # for k=1:nrow # W(1:n_noise)=abs(Wx_new(k,nbeg:nend))'; # [f,x]=ecdf(W); # % % plot every 10th cdf # % kmod=floor(k/10); # % if k == 1 || k == kmod.*10 # % scale=as_new(k); # % str_scale=num2str(scale); # % figure; # % plot(x,f); # % tdum=strcat('ECDF for k=',num2str(k),' scale=',str_scale); # % title(tdum); # % xlabel('Data Value'); # % ylabel('Probability'); # % end # P(k)=interp1(f,x,conf); # end # M=mean(abs(Wx_new(:,nbeg:nend)')); # % P=P'; # % plot the results in a figure # figure('Name','ECDF Threshold'); # hold on # aslg=log10(as_new); # % length(M) # % length(P) # % length(aslg) # plot(aslg,M,'-k'); # plot(aslg,P,'-r'); # hold off # xlabel('log10 Scale (s)'); # ylabel('Coefficient Amplitude'); # legend('mean','threshold'); # tdum=strcat(num2str(conf.*100),'% Confidence Level'); # title(tdum); # else # % Compute Gaussian noise statistics and noise threshold # M=mean(abs(Wx_new(:,nbeg:nend)')); # S=std(abs(Wx_new(:,nbeg:nend)')); # P=M + sig_fact.*S; # Ekur=sqrt(.9).*(kurtosis(abs(Wx_new(:,nbeg:nend)'))-3.0)./sqrt(24.0./n_noise); # % plot the results in a figure # % changed 2/19/19 to show the Threshold defined by sig_fact # figure('Name','Noise Mean and Threshold'); # hold on # aslg=log10(as_new); # plot(aslg,M,'-k'); # plot(aslg,P,'-r'); # hold off # xlabel('log10 Scale (s)'); # ylabel('Coefficient Amplitude'); # legend('mean','threshold'); # % plot the Excess kurtosis statistic in a figure # figure('Name','Noise Estimate Excess Kurtosis'); # aslg=log10(as_new); # naslg=length(aslg); # hold on # plot(aslg,Ekur,'-k'); # plot([aslg(1) aslg(naslg)],[1.0 1.0],'-k'); # plot([aslg(1) aslg(naslg)],[-1.0 -1.0],'-k'); # hold off # xlabel('log10 Scale (s)'); # ylabel('Non-Gaussianity'); # axis([-2.5 2.5 -50 50]); # grid on # end # end #%% Python Implementation def threshold_calc(nbeg,nend,n_noise,sig_fact,necdf_flag,nlbound): return
python
from torch.utils import data import yaml from argparse import ArgumentParser from typing import Any, List, Tuple import pytorch_lightning as pl import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.distributions as dist from torch.utils.data import DataLoader, RandomSampler from torchvision import transforms as transform_lib from torchvision.datasets import MNIST, ImageFolder, SVHN from infogan.components import InfoGANGenerator, InfoGANDiscriminator, QNetwork from infogan.utils import TensorboardGenerativeModelImageSampler, CodeLatentDimInterpolator class InfoGAN(pl.LightningModule): """ InfoGAN Implementation """ def __init__(self, lambda_coeff: float = 1, betas_opt: List[float] = [0.5, 0.999], feature_maps_gen: List = [64, ], feature_maps_disc: List = [64, 128], fc_layers_gen: List = [1024, ], fc_layers_disc: List = [1024, ], img_channels: int = 1, noise_dim: int = 62, categ_code_dims: list = [10, ], cont_code_dim: int = 2, conv_start_shape_gen: List = [128, 7, 7], conv_end_shape_disc: List = [128, 5, 5], hinge_loss: bool = False, learning_rate_gen: float = 1e-3, learning_rate_disc: float = 2e-4, num_gen_opts: int = 1, **kwargs: Any, ) -> None: """ Args: lambda_coeff - Weight of the MI term in the objective fn beats_opt - Beta values for Adam optimizer feature_maps_gen - Feature map size for each deconv layer in the generator feature_maps_disc - Feature map size for each conv layer in the discriminator fc_layers_gen - Fully connected layer dimensions prior to deconv blocks in the generator fc_layers_disc - Fully connected layer dimensions after the conv blocks in the discriminator img_channels - Number of channels in the image noise_dim - Dimension of random noise variables categ_code_dims - A list with the number of categories in each categorical distribution of the latent code variable cont_code_dim - Number of variables in the gaussina code conv_start_shape_gen - Shape of the input to the deconv block in the generator (for batch size=1) conv_end_shape_disc - Shape of the output form the conv_layers in the discriminator (for batch size=1) hinge_loss - Use Hinge loss instead of the standard GAN loss learning_rate_gen - learning rate for the generator learning_rate_disc - learning rate for the discriminator """ super().__init__() self.save_hyperparameters() self.automatic_optimization = False self.generator = InfoGANGenerator(noise_dim, sum(categ_code_dims)+cont_code_dim, feature_maps_gen, img_channels, conv_start_shape=conv_start_shape_gen, fc_layers=fc_layers_gen) self.generator.apply(self._initialize_weights) self.discriminator = InfoGANDiscriminator(sum(categ_code_dims), cont_code_dim, feature_maps_disc, img_channels, conv_end_shape_disc, fc_layers=fc_layers_disc, sn=self.hparams.hinge_loss) self.q_network = QNetwork(self.discriminator.base_feat_dim, sum(categ_code_dims), cont_code_dim) self.q_network.apply(self._initialize_weights) if not hinge_loss: self.discriminator.apply(self._initialize_weights) self._initialize_samplers() if not hinge_loss: self.adverserial_loss = nn.BCEWithLogitsLoss() if len(categ_code_dims) > 0: self.categorical_loss = nn.CrossEntropyLoss() if cont_code_dim > 0: self.gaussian_loss = nn.MSELoss() def _initialize_samplers(self) -> None: if len(self.hparams.categ_code_dims) > 0: self.categ_dists = [dist.OneHotCategorical(logits=torch.ones(c_dim)) for c_dim in self.hparams.categ_code_dims] if self.hparams.cont_code_dim > 0: self._normal_dist = dist.MultivariateNormal(torch.zeros(self.hparams.cont_code_dim), torch.eye(self.hparams.cont_code_dim)) @staticmethod def _initialize_weights(module) -> None: classname = module.__class__.__name__ if classname.find("Conv") != -1 or classname.find("Linear") != -1: torch.nn.init.normal_(module.weight, 0.0, 0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif classname.find("BatchNorm") != -1: torch.nn.init.normal_(module.weight, 1.0, 0.02) torch.nn.init.zeros_(module.bias) def configure_optimizers(self) -> Tuple[List[optim.Optimizer], List]: gen_opt = optim.Adam(self.generator.parameters(), lr=self.hparams.learning_rate_gen, betas=self.hparams.betas_opt) disc_opt = optim.Adam([*self.discriminator.parameters(), *self.q_network.parameters()], lr=self.hparams.learning_rate_disc, betas=self.hparams.betas_opt) return ([gen_opt, disc_opt], []) def forward(self, z: torch.Tensor, c: torch.Tensor) -> torch.Tensor: """ Generates an image Args: z - Noise vector c - Latent code """ return self.generator(z, c) def training_step(self, batch: Tuple, batch_idx: int) -> torch.Tensor: gen_opt, disc_opt = self.optimizers(use_pl_optimizer=True) real_img, _ = batch gen_loss = torch.zeros([], device=self.device) for i in range(self.hparams.num_gen_opts): gen_loss_iter = self._get_gen_loss(len(real_img)) gen_opt.zero_grad() self.manual_backward(gen_loss_iter) gen_opt.step() gen_loss += gen_loss_iter gen_loss /= self.hparams.num_gen_opts self.log("gen_train/loss", gen_loss, on_epoch=True) disc_loss = self._get_disc_loss(real_img) disc_opt.zero_grad() self.manual_backward(disc_loss) disc_opt.step() self.log("disc_train/loss", disc_loss, on_epoch=True) return {"gen_loss": gen_loss.detach(), "disc_loss": disc_loss.detach()} def sample_noise(self, batch_size: int) -> torch.Tensor: return torch.randn((batch_size, self.hparams.noise_dim), device=self.device) def sample_code(self, batch_size: int) -> torch.Tensor: cat_code = cont_code = None if len(self.hparams.categ_code_dims) > 0: cat_codes = [categ_dist.sample([batch_size]) for categ_dist in self.categ_dists] cat_code = torch.cat(cat_codes, dim=-1) if self.hparams.cont_code_dim > 0: cont_code = self._normal_dist.sample([batch_size]) return torch.cat([code for code in [cat_code, cont_code] if code is not None], dim=-1).to(self.device) def _get_latents(self, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor]: z = self.sample_noise(batch_size) c = self.sample_code(batch_size) return z, c def _get_gen_loss(self, batch_size: int) -> torch.Tensor: # Calculate adverserial loss z, c = self._get_latents(batch_size) fake_img = self.generator(z, c) fake_pred, disc_latents = self.discriminator(fake_img) q_pred = self.q_network(disc_latents) if self.hparams.hinge_loss: adv_loss = -fake_pred.mean() else: target = torch.ones_like(fake_pred) adv_loss = self.adverserial_loss(fake_pred, target) q_categ_loss, q_gauss_loss = (torch.zeros([], device=self.device), torch.zeros([], device=self.device)) # Calculate loss from categorical latent code prediction start_dim = 0 if len(self.hparams.categ_code_dims) > 0: for c_dim in self.hparams.categ_code_dims: end_dim = start_dim + c_dim categ_posterior = self.categorical_loss(q_pred['categ'][:, start_dim:end_dim], c[:, start_dim:end_dim].argmax(dim=-1)) categ_prior = - \ torch.log(torch.ones_like(categ_posterior) / c_dim) q_categ_loss -= (categ_prior - categ_posterior) start_dim += c_dim q_categ_loss = q_categ_loss/len(self.hparams.categ_code_dims) # Calculate loss from gaussian latent code prediction if self.hparams.cont_code_dim > 0: q_gauss = dist.Independent(dist.Normal( q_pred['gauss_mean'], q_pred['gauss_std']), reinterpreted_batch_ndims=1) q_gauss_loss = self.gaussian_loss( q_gauss.rsample(), c[:, start_dim:]) mi_loss = q_categ_loss + q_gauss_loss self.log("gen_train/adv_loss", adv_loss, on_epoch=False) self.log("gen_train/categ_info_loss", q_categ_loss, on_epoch=False) self.log("gen_train/gauss_info_loss", q_gauss_loss, on_epoch=False) return adv_loss + self.hparams.lambda_coeff * mi_loss def _get_disc_loss(self, real_img: torch.Tensor) -> torch.Tensor: # Calculate adverserial loss from real images real_pred = self.discriminator(real_img, need_base_feat=False) if self.hparams.hinge_loss: real_loss = F.relu(1-real_pred).mean() else: real_target = torch.ones_like(real_pred) real_loss = self.adverserial_loss(real_pred, real_target) # Calculate adverserial loss from fake images z, c = self._get_latents(len(real_img)) fake_img = self.generator(z, c) fake_pred, disc_latents = self.discriminator(fake_img) q_pred = self.q_network(disc_latents.detach()) if self.hparams.hinge_loss: fake_loss = F.relu(1+fake_pred).mean() else: fake_target = torch.zeros_like(fake_pred) fake_loss = self.adverserial_loss(fake_pred, fake_target) adv_loss = real_loss + fake_loss q_categ_loss, q_gauss_loss = (torch.zeros([], device=self.device), torch.zeros([], device=self.device)) # Calculate loss from categorical latent code prediction start_dim = 0 if len(self.hparams.categ_code_dims) > 0: for c_dim in self.hparams.categ_code_dims: end_dim = start_dim + c_dim categ_posterior = self.categorical_loss(q_pred['categ'][:, start_dim:end_dim], c[:, start_dim:end_dim].argmax(dim=-1)) categ_prior = - \ torch.log(torch.ones_like(categ_posterior) / c_dim) q_categ_loss -= (categ_prior - categ_posterior) start_dim += c_dim q_categ_loss = q_categ_loss/len(self.hparams.categ_code_dims) # Calculate loss from gaussian latent code prediction if self.hparams.cont_code_dim > 0: q_gauss = dist.Independent(dist.Normal( q_pred['gauss_mean'], q_pred['gauss_std']), reinterpreted_batch_ndims=1) q_gauss_loss = self.gaussian_loss( q_gauss.rsample(), c[:, start_dim:]) mi_loss = q_categ_loss + q_gauss_loss self.log("disc_train/adv_loss", adv_loss, on_epoch=False) self.log("disc_train/categ_info_loss", q_categ_loss, on_epoch=False) self.log("disc_train/gauss_info_loss", q_gauss_loss, on_epoch=False) return adv_loss + self.hparams.lambda_coeff * mi_loss def cli_main(args=None): parser = ArgumentParser() parser.add_argument("--dataset", type=str, default='mnist') parser.add_argument("--batch_size", type=int, default=128) parser.add_argument("--data_dir", type=str, default="./data/") parser.add_argument("--gpus", type=int, default=1) parser.add_argument("--num_workers", type=int, default=6) parser.add_argument("--max_epochs", type=int, default=100) parser.add_argument("--seed", type=int, default=1234) script_args, _ = parser.parse_known_args(args) pl.seed_everything(script_args.seed) if script_args.dataset == 'mnist': transforms = transform_lib.Compose([ transform_lib.Resize((28, 28)), transform_lib.ToTensor(), transform_lib.Normalize((0.5,), (0.5,)), ]) dataset = MNIST(root=script_args.data_dir, download=True, transform=transforms) elif script_args.dataset in ['celeba', 'svhn']: transforms = transform_lib.Compose([ transform_lib.Resize((32, 32)), transform_lib.ToTensor(), transform_lib.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) if script_args.dataset == 'celeba': dataset = ImageFolder(root=script_args.data_dir+script_args.dataset, transform=transforms) elif script_args.dataset == 'svhn': dataset = SVHN(root=script_args.data_dir, download=True, transform=transforms) args = parser.parse_args(args) with open('configs/%s.yml' % (script_args.dataset), 'r') as cfg: config_args = yaml.safe_load(cfg) for k, v in config_args.items(): args.__setattr__(k, v) num_batches = args.num_batches if args.num_batches is not None else len( dataset) // args.batch_size sampler = RandomSampler(dataset, True, num_batches * args.batch_size) dataloader = DataLoader(dataset, batch_size=script_args.batch_size, sampler=sampler, num_workers=script_args.num_workers) model = InfoGAN(**vars(args)) callbacks = [ TensorboardGenerativeModelImageSampler( num_samples=5, log_epoch_interval=5), CodeLatentDimInterpolator(epoch_interval=10) ] trainer = pl.Trainer.from_argparse_args(args, callbacks=callbacks) trainer.fit(model, dataloader) if __name__ == "__main__": cli_main()
python
""" Code for defining the architecture of the Encoder and the Decoder blocks. """ import tensorflow as tf class Encoder(): def __init__(self, vocab_size, embedding_dim, encoder_units): # print(vocab_size, embedding_dim, encoder_units, "##########################################ENCODER########################") self.encoder_units = encoder_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim, mask_zero=True) self.gru = tf.keras.layers.GRU(self.encoder_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') def __call__(self, x, hidden): x = self.embedding(x) output, state = self.gru(x, initial_state = hidden) return output, state class Decoder(): def __init__(self, vocab_size, embedding_dim, decoder_units): self.decoder_units = decoder_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim, mask_zero=True) self.gru = tf.keras.layers.GRU(self.decoder_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') self.fc = tf.keras.layers.Dense(vocab_size) # used for attention self.attention = BahdanauAttention(self.decoder_units) def __call__(self, x, hidden, enc_output): # enc_output shape == (batch_size, max_length, hidden_size) context_vector, attention_weights = self.attention(hidden, enc_output) # x shape after passing through embedding == (batch_size, 1, embedding_dim) x = self.embedding(x) # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size) x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) # passing the concatenated vector to the GRU output, state = self.gru(x) # output shape == (batch_size * 1, hidden_size) output = tf.reshape(output, (-1, output.shape[2])) # output shape == (batch_size, vocab) x = self.fc(output) return x, state, attention_weights class BahdanauAttention(): def __init__(self, units): self.W1 = tf.keras.layers.Dense(units) self.W2 = tf.keras.layers.Dense(units) self.V = tf.keras.layers.Dense(1) def __call__(self, query, values): # query hidden state shape == (batch_size, hidden size) # query_with_time_axis shape == (batch_size, 1, hidden size) # values shape == (batch_size, max_len, hidden size) # we are doing this to broadcast addition along the time axis to calculate the score query_with_time_axis = tf.expand_dims(query, 1) # score shape == (batch_size, max_length, 1) # we get 1 at the last axis because we are applying score to self.V # the shape of the tensor before applying self.V is (batch_size, max_length, units) score = self.V(tf.nn.tanh( self.W1(query_with_time_axis) + self.W2(values))) # attention_weights shape == (batch_size, max_length, 1) attention_weights = tf.nn.softmax(score, axis=1) # context_vector shape after sum == (batch_size, hidden_size) context_vector = attention_weights * values context_vector = tf.reduce_sum(context_vector, axis=1) return context_vector, attention_weights #TODO: Attribute tensorflow guys
python
''' Created on Mar 13, 2018 @author: abelit ''' import os import json from utils import filepath project_settings = { # 项目信息配置 'package': 'dev', 'version':'3.14', 'name':'__dbreport__.py', 'author':'abelit', 'email':'[email protected]', 'description':'', } path_settings = { 'image': filepath.get_root_path(project_settings['name']) + os.sep + 'images' + os.sep, 'log': filepath.get_root_path(project_settings['name']) + os.sep + 'logs' + os.sep, 'font': filepath.get_root_path(project_settings['name']) + os.sep + 'fonts' + os.sep, 'resource': filepath.get_root_path(project_settings['name']) + os.sep + 'resource' + os.sep, 'config': filepath.get_root_path(project_settings['name']) + os.sep + 'config' + os.sep, } USERCONF = path_settings['config']+'dbreport.json' if __name__ == '__main__': print(USERCONF)
python
# -*- coding: utf-8 -*- # [email protected] from .timer import timer
python
import base64 import json import cv2 import numpy as np from decouple import config from flask import Flask, request from api.face import FaceVerification from db.mongo import FaceEncodings app = Flask(__name__) face_verification = FaceVerification( FaceEncodings( config("DATABASE_URI") ) ) @app.route('/register', methods=["POST"]) def register_post(): username = request.form.get('username') image = request.form['image'] img = base64.b64decode(image) img = cv2.imdecode(np.fromstring(img, np.uint8), cv2.IMREAD_ANYCOLOR) registration_response = face_verification.registration(image=np.array(img), username=username) if registration_response['success']: registration_response.update({"code": 200}) else: registration_response.update({"code": 400}) return json.dumps(registration_response) @app.route('/login', methods=["POST"]) def login_post(): username = None if request.form['username']: username = request.form.get('username') image = request.form['image'] img = base64.b64decode(image) img = cv2.imdecode(np.fromstring(img, np.uint8), cv2.IMREAD_ANYCOLOR) auth_response = face_verification.authenticate(image=np.array(img), username=username) if auth_response['success']: auth_response.update({"code": 200}) else: auth_response.update({"code": 400}) return json.dumps(auth_response) @app.route('/', methods=["GET"]) def health_check(): return {"success": True}
python
import pocketcasts as pc import requests import re import configparser from pathlib import Path def get_valid_filename(s): s = str(s).strip() return re.sub(r"(?u)[^-\w. ]", "", s) def get_extension(url): if "?" in url: url, _ = url.split("?", 1) return url.split(".")[-1] print("Reading configuration file config.ini.") config = configparser.ConfigParser() config.read("config.ini") print("Connecting to Pocketcasts API.") api = pc.Api(config["pocketcasts"]["user"], config["pocketcasts"]["password"]) print("Fetching all starred episodes.") starred = api.starred_episodes() print("Downloading starred episodes.") total_size = len(starred) Path("podcasts/").mkdir(parents=True, exist_ok=True) for index, i in enumerate(starred, 1): print("########## Processing :") # print(i) filename = get_valid_filename( f"{i._published_at.strftime('%Y%m%d')} - {i._podcast._title} - {i._title}.{get_extension(i._url)}" ) if not Path(filename).is_file(): print(f"Downloading {index}/{total_size} : {filename}") r = requests.get(i._url) with open("podcasts/" + filename, "wb") as f: f.write(r.content) else: print(f"{filename} already exists. Skipping.")
python
import numpy as np from config import handTrackConfig as htconf from math import sin, cos, sqrt, atan2, radians import cv2 # 8 12 16 20 # | | | | # 7 11 15 19 # 4 | | | | # | 6 10 14 18 # 3 | | | | # | 5---9---13--17 # 2 \ / # \ \ / # 1 \ / # \ \ / # ------0- threshold = [ (-0.90, -1), # 0, 1, 2, 3 (0, -0.85, -1), # 0, 1, 2 (0.7, -0.85, -1), # 0, 1, 2 (0.7, -0.85, -1), # 0, 1, 2 (0.7, -0.85, -1) # 0, 1, 2 ] pos = [ [(3, 2, 1), (4, 3, 2)], [(8, 6, 0)], [(12, 10, 0)], [(16, 14, 0)], [(20, 18, 0)] ] record = { # '0': [[0, 0, 0, 0, 0]], '1': [[0, 2, 0, 0, 0]], '2': [[0, 2, 2, 0, 0]], '3': [[0, 2, 2, 2, 0]], '4': [[0, 2, 2, 2, 2]], '5': [[1, 2, 2, 2, 2]], 'OK': [[0, 0, 2, 2, 2]], 'GOOD': [[1, 0, 0, 0, 0]], '8': [[1, 2, 0, 0, 0], [1, 1, 0, 0, 0]], } def cal_finger_angle(points): res = [] for p in pos: temp = [] for i in p: start, mid, end = i v1 = points[start] - points[mid] v1 /= np.linalg.norm(v1) v2 = points[end] - points[mid] v2 /= np.linalg.norm(v2) cos_ang = v1.dot(v2) temp.append(cos_ang) res.append(sum(temp) / len(temp)) # print(res) return res def recog_gesture(points): if get_distance(points[4], points[8]) < 30: return "CATCH" conf = cal_finger_angle(points) res = [] for i, pred in enumerate(conf): thre = threshold[i] for c, t in enumerate(thre): if pred > t: res.append(c) break # print(res) for k, v in record.items(): for v1 in v: if v1 == res: return k return None def get_vis_gesture_map(map, points, vis_window_shape): points[:, 0] -= points[:, 0].min() points[:, 1] -= points[:, 1].min() points[:, 0] /= points[:, 0].max() points[:, 1] /= points[:, 1].max() points += 0.1 points *= 0.8 * vis_window_shape[0] for i, point in enumerate(points): x, y = point cv2.circle(map, (int(x), int(y)), htconf.THICKNESS, htconf.POINT_COLOR, htconf.THICKNESS) for connection in htconf.connections: x0, y0 = points[connection[0]] x1, y1 = points[connection[1]] cv2.line(map, (int(x0), int(y0)), (int(x1), int(y1)), htconf.CONNECTION_COLOR, htconf.THICKNESS) return map def get_distance(point1, point2): result = ((((point2[0] - point1[0]) ** 2) + ((point2[1] - point1[1]) ** 2)) ** 0.5) return result
python
""" This module provides various utility functions. """ # ----------------------------------------------------------------------------- # IMPORTS # ----------------------------------------------------------------------------- from typing import Tuple import numpy as np # ----------------------------------------------------------------------------- # FUNCTION DEFINITIONS # ----------------------------------------------------------------------------- def crop_center(array: np.ndarray, size: Tuple[int, ...]) -> np.ndarray: """ Crop an n-dimensional array to the given size around its center. Args: array: The numpy array to be cropped. size: A tuple containing the size of the cropped array. To not crop along a specific axis, you can specify the size of that axis as -1. Returns: The input array, cropped to the desired size around its center. """ # Ensure that the the array shape and the size variable match assert array.ndim == len(size), \ 'Length of size must match number of dimensions of array!' # Loop over the the axes of the array to create slices slices = list() for old_len, new_len in zip(array.shape, size): # Compute start and end position for axis start = old_len // 2 - new_len // 2 if new_len != -1 else None end = start + new_len if start is not None else None # Create a slice object for axis slices.append(slice(start, end)) return array[tuple(slices)] def get_subaperture_centers( grid_size: int, ) -> Tuple[np.ndarray, np.ndarray]: """ Compute the positions of the centers of the subapertures of the sensor. This assumes a simple geometry, where the sensor is taken to be the largest square that can fit inside the unit circle, and consists of a grid of `grid_size` x `grid_size` subapertures. Args: grid_size: An integer specifying the size of the (quadratic) grid of subapertures in the HSWFS sensor. Returns: A mesh grid, consisting of two numpy arrays which specify the `x` and `y` positions of the centers of the subapertures. """ x = np.linspace((1 / grid_size - 1), (1 - 1 / grid_size), grid_size) x = 1 / np.sqrt(2) * np.repeat(x.reshape(1, -1), grid_size, axis=0) y = np.linspace((1 - 1 / grid_size), (1 / grid_size - 1), grid_size) y = 1 / np.sqrt(2) * np.repeat(y.reshape(-1, 1), grid_size, axis=1) return x, y def get_unit_disk_meshgrid( resolution: int, ) -> Tuple[np.array, np.array]: """ Get a (Cartesian) mesh grid of positions on the unit disk, that is, all positions with with a Euclidean distance <= 1 from (0, 0). Args: resolution: An integer specifying the size of the mesh grid, that is, the number of points in each dimensions. Returns: A mesh grid consisting of the tuple `x_0`, `y_0`, which are each numpy arrays of shape `(resolution, resolution)`. For positions that are on the unit disk, they contain the coordinates of the position; otherwise, they contain `np.nan`. """ # Create a meshgrid of (Cartesian) positions: [-1, 1] x [-1, 1] x_0, y_0 = np.meshgrid(np.linspace(-1, 1, resolution), np.linspace(-1, 1, resolution)) # Create a mask for the unit disk (only select position with radius <= 1) unit_disk_mask = np.sqrt(x_0**2 + y_0**2) <= 1 # Mask out all the position that are not on the unit disk x_0[~unit_disk_mask] = np.nan y_0[~unit_disk_mask] = np.nan return x_0, y_0
python
""" Based on https://github.com/ikostrikov/pytorch-a2c-ppo-acktr """ import gym import torch import random from environments.env_utils.vec_env import VecEnvWrapper from environments.env_utils.vec_env.dummy_vec_env import DummyVecEnv from environments.env_utils.vec_env.subproc_vec_env import SubprocVecEnv from environments.env_utils.vec_env.vec_normalize import VecNormalize from environments.wrappers import TimeLimitMask, VariBadWrapper def make_env(env_id, seed, rank, episodes_per_task, tasks, add_done_info, **kwargs): def _thunk(): env = gym.make(env_id, **kwargs) if tasks is not None: env.unwrapped.reset_task = lambda x: env.unwrapped.set_task(random.choice(tasks)) if seed is not None: env.seed(seed + rank) if str(env.__class__.__name__).find('TimeLimit') >= 0: env = TimeLimitMask(env) env = VariBadWrapper(env=env, episodes_per_task=episodes_per_task, add_done_info=add_done_info) return env return _thunk def make_vec_envs(env_name, seed, num_processes, gamma, device, episodes_per_task, normalise_rew, ret_rms, tasks, rank_offset=0, add_done_info=None, **kwargs): """ :param ret_rms: running return and std for rewards """ envs = [make_env(env_id=env_name, seed=seed, rank=rank_offset + i, episodes_per_task=episodes_per_task, tasks=tasks, add_done_info=add_done_info, **kwargs) for i in range(num_processes)] if len(envs) > 1: envs = SubprocVecEnv(envs) else: envs = DummyVecEnv(envs) if len(envs.observation_space.shape) == 1: if gamma is None: envs = VecNormalize(envs, normalise_rew=normalise_rew, ret_rms=ret_rms) else: envs = VecNormalize(envs, normalise_rew=normalise_rew, ret_rms=ret_rms, gamma=gamma) envs = VecPyTorch(envs, device) return envs class VecPyTorch(VecEnvWrapper): def __init__(self, venv, device): """Return only every `skip`-th frame""" super(VecPyTorch, self).__init__(venv) self.device = device # TODO: Fix data types def reset_mdp(self, index=None): obs = self.venv.reset_mdp(index=index) if isinstance(obs, list): obs = [torch.from_numpy(o).float().to(self.device) for o in obs] else: obs = torch.from_numpy(obs).float().to(self.device) return obs def reset(self, index=None, task=None): if task is not None: assert isinstance(task, list) state = self.venv.reset(index=index, task=task) if isinstance(state, list): state = [torch.from_numpy(s).float().to(self.device) for s in state] else: state = torch.from_numpy(state).float().to(self.device) return state def step_async(self, actions): # actions = actions.squeeze(1).cpu().numpy() actions = actions.cpu().numpy() self.venv.step_async(actions) def step_wait(self): state, reward, done, info = self.venv.step_wait() if isinstance(state, list): # raw + normalised state = [torch.from_numpy(s).float().to(self.device) for s in state] else: state = torch.from_numpy(state).float().to(self.device) if isinstance(reward, list): # raw + normalised reward = [torch.from_numpy(r).unsqueeze(dim=1).float().to(self.device) for r in reward] else: reward = torch.from_numpy(reward).unsqueeze(dim=1).float().to(self.device) return state, reward, done, info def __getattr__(self, attr): """ If env does not have the attribute then call the attribute in the wrapped_env """ if attr in ['_max_episode_steps', 'task_dim', 'belief_dim', 'num_states']: return self.unwrapped.get_env_attr(attr) try: orig_attr = self.__getattribute__(attr) except AttributeError: orig_attr = self.unwrapped.__getattribute__(attr) if callable(orig_attr): def hooked(*args, **kwargs): result = orig_attr(*args, **kwargs) return result return hooked else: return orig_attr
python
""" Sets permission for the API (ONLY) """ from rest_framework import permissions # TODO: Add restriction to users (get token, refresh token, verify token, post request) class IsReadOnly(permissions.DjangoModelPermissions): """ Custom permission to only allow reading. """ def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS: return True class IsOwnerOrReadOnly(permissions.DjangoModelPermissions): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS: return True # Write permissions are only allowed to the owner of the snippet. return obj.user == request.user class IsOwner(permissions.DjangoModelPermissions): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): # Permissions are only allowed to the owner of the snippet. return obj.user == request.user
python
############################################################################### ## ## Copyright 2011 Tavendo GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### import sys, shelve from twisted.python import log from twisted.internet import reactor from autobahn.websocket import listenWS from autobahn.wamp import exportRpc, WampServerFactory, WampServerProtocol class KeyValue: """ Simple, persistent key-value store. """ def __init__(self, filename): self.store = shelve.open(filename) @exportRpc def set(self, key = None, value = None): if key is not None: k = str(key) if value is not None: self.store[k] = value else: if self.store.has_key(k): del self.store[k] else: self.store.clear() @exportRpc def get(self, key = None): if key is None: return self.store.items() else: return self.store.get(str(key), None) @exportRpc def keys(self): return self.store.keys() class KeyValueServerProtocol(WampServerProtocol): """ Demonstrates creating a server with Autobahn WebSockets that provides a persistent key-value store which can we access via RPCs. """ def onSessionOpen(self): ## register the key-value store, which resides on the factory within ## this connection self.registerForRpc(self.factory.keyvalue, "http://example.com/simple/keyvalue#") class KeyValueServerFactory(WampServerFactory): protocol = KeyValueServerProtocol def __init__(self, url): WampServerFactory.__init__(self, url) ## the key-value store resides on the factory object, since it is to ## be shared among all client connections self.keyvalue = KeyValue("keyvalue.dat") if __name__ == '__main__': log.startLogging(sys.stdout) factory = KeyValueServerFactory("ws://localhost:9000") listenWS(factory) reactor.run()
python
from typing import Set, List, Tuple, Dict def fibonacci(n: int) -> int: """ Returns n-th Fibonacci number n must be more than 0, otherwise it raise a ValueError. >>> fibonacci(0) 0 >>> fibonacci(1) 1 >>> fibonacci(2) 1 >>> fibonacci(10) 55 >>> fibonacci(-2) Traceback (most recent call last): ... ValueError: n must be more or equal than 0 """ if n < 0: raise ValueError('n must be more or equal than 0') elif n == 0: return 0 fib = [0, 1] + [0] * (n - 1) for i in range(2, n + 1): fib[i] = fib[i - 1] + fib[i - 2] return fib[n] def count_trajectories(n: int) -> int: """ The Grasshopper is in position 1. The Grasshopper may jump to +1, +2 or +3. How many possible trajectories does the grasshopper have to get to position n? If n<=1, consider that the Grasshopper has 0 possible trajectory. >>> count_trajectories(0) 0 >>> count_trajectories(1) 0 >>> count_trajectories(2) 1 >>> count_trajectories(3) 2 >>> count_trajectories(4) 3 >>> count_trajectories(7) 20 >>> count_trajectories(-3) 0 """ if n <= 1: return 0 trajectories = [0, 0, 1, 2, 3] + [0] * (n - 4) for i in range(5, n + 1): trajectories[i] = trajectories[i - 1] + trajectories[i - 2] + trajectories[i - 3] return trajectories[n] def count_trajectories_with_forbidden_cells(n: int, forbidden_cells: Set[int]) -> int: """ The Grasshopper is in position 1. The Grasshopper may jump to +1, +2 or +3. The function receives a set of numbers of cells that cannot be jumped. How many possible trajectories does the grasshopper have to get to position n? If n<=1, consider that the Grasshopper has 0 possible trajectory. If 1 is forbidden, consider that the Grasshopper has 0 possible trajectory. >>> count_trajectories_with_forbidden_cells(0, set()) 0 >>> count_trajectories_with_forbidden_cells(1, set()) 0 >>> count_trajectories_with_forbidden_cells(2, set()) 1 >>> count_trajectories_with_forbidden_cells(3, set()) 2 >>> count_trajectories_with_forbidden_cells(4, set()) 3 >>> count_trajectories_with_forbidden_cells(4, {2}) 2 >>> count_trajectories_with_forbidden_cells(4, {3}) 2 >>> count_trajectories_with_forbidden_cells(4, {4}) 0 >>> count_trajectories_with_forbidden_cells(9, {2,6,7}) 3 >>> count_trajectories_with_forbidden_cells(12, {3,6,7,10}) 9 >>> count_trajectories_with_forbidden_cells(8, {5}) 13 >>> count_trajectories_with_forbidden_cells(8, {1}) 0 >>> count_trajectories_with_forbidden_cells(-3, set()) 0 """ if n <= 1 or 1 in forbidden_cells: return 0 trajectories = [0] * 5 for i in range(2, 5): if i not in forbidden_cells: for k in range(i-1, 0, -1): if k not in forbidden_cells: trajectories[i] = trajectories[k]+1 break trajectories += [0] * (n - 4) for i in range(5, n + 1): if i not in forbidden_cells: trajectories[i] = trajectories[i - 1] + trajectories[i - 2] + trajectories[i - 3] return trajectories[n] def count_min_cost(n: int, prices: Dict[int, int]) -> Tuple[int, List[int]]: """The Grasshopper is in position 1. The Grasshopper may jump to +1, +2 or +3. The function returns the tuple with the lowest cost to reach n and with a list of points to visit. The function gets a dict of visit prices for each point. If there is no value in the prices for the desired point, it is assumed that the visiting price is 0. If there are several trajectories with minimal cost, it returns any of them. If n<0, it is considered that the Grasshopper could have visited only the first point. >>> count_min_cost(11, {1:1, 2:2, 3:1, 4:3, 5:1, 6:1, 7:2, 8:3, 9:3, 10:2, 11:1}) (7, [1, 3, 5, 8, 11]) >>> count_min_cost(-2, {1:2, 2:1, 3:2, 4:1}) (2, [1]) >>> count_min_cost(6, {2:2, 3:2, 5:1}) (0, [1, 4, 6]) >>> count_min_cost(6, {1:3, 2:-5, 3:1, 4:-3, 5:5, 6:1}) (-4, [1, 2, 4, 6]) >>> count_min_cost(5, {}) (0, [1, 2, 5]) """ if n <= 1: return prices.get(1, 0), [1] trajectories = [ (0, [0]), (prices.get(1, 0), [1]), (prices.get(2, 0) + prices.get(1, 0), [1, 2]) ] min_cost_trajectory = min(trajectories[1], trajectories[2]) trajectories.append((min_cost_trajectory[0] + prices.get(3, 0), min_cost_trajectory[1] + [3])) for i in range(4, n+1): min_cost_trajectory = min(trajectories[i-1], trajectories[i-2], trajectories[i-3]) trajectories.append((min_cost_trajectory[0] + prices.get(i, 0), min_cost_trajectory[1] + [i])) return trajectories[n] def largest_common_subsequence(sequence_1: List[int], sequence_2:List[int]) -> int: """ For two p-sequences of numbers it returns the length of the largest common subsequence. If there is no common subsequence, it returns 0. Note: a subsequence is not a substring. For sequence 1,2,3,4,5 the sequence 1,3,5 is a subsequence (although it is not a substring). >>> largest_common_subsequence([1,2,3,4,5],[1,2,3,4,5]) 5 >>> largest_common_subsequence([1,2,3,4,5],[4,8,1,2,3,4,6,9]) 4 >>> largest_common_subsequence([0,3,6,1,2,3,8,9],[1,2,3,4,5]) 3 >>> largest_common_subsequence([1,2,0,3,4,5],[1,2,3,4,5]) 5 >>> largest_common_subsequence([1,2,3,0,5],[1,2,3,4,5]) 4 >>> largest_common_subsequence([1,2,3,4,5],[6,7,8,9]) 0 >>> largest_common_subsequence([],[1,2,3,4,5]) 0 """ res = [[0]*(len(sequence_2)+1) for _ in range(len(sequence_1)+1)] for i in range(1, len(sequence_1)+1): for j in range(1, len(sequence_2)+1): if sequence_1[i-1] == sequence_2[j-1]: res[i][j] = 1 + res[i-1][j-1] else: res[i][j] = max(res[i-1][j], res[i][j-1]) return res[-1][-1] def largest_increasing_subsequence(sequence: List[int]) -> int: """ Returns the length of the longest increasing subsequence. Note: a subsequence is not a substring. For sequence 2,0,3,1,5 the sequence 2,3,5 is a subsequence (although it is not a substring). >>> largest_increasing_subsequence([2,0,3,1,5]) 3 >>> largest_increasing_subsequence([5,4,3,2,1]) 1 >>> largest_increasing_subsequence([5,10,6,12,3,24,7,8]) 4 >>> largest_increasing_subsequence([]) 0 """ return largest_common_subsequence(sequence_1=sequence, sequence_2=sorted(sequence)) if __name__ == "__main__": import doctest doctest.testmod()
python
from functools import wraps from . import environment as env import wx, os class VirtualEnvMustExistDecorator: """装饰器:虚拟环境必须存在!!!""" def __init__(self, *args, **kwargs): ... def __call__(self, func, e=None): @wraps(func) def decorator(obj, *args, **kwargs): env_path = env.getPython3Env() if '' == env_path.strip() or not os.path.exists(env_path): wx.MessageBox(f'虚拟环境未绑定,或绑定失败!', "错误警告", wx.OK | wx.ICON_INFORMATION) return if len(args) > 0: e = args[0] return func(obj, e) return decorator class RegisterOriginOrderDecorator: """系统命令装饰""" def __init__(self, *args, **kwargs): self.cmdCodes = [] self.info_cmdCodes = {} if 'msg' in kwargs: self.msg = kwargs['msg'] else: self.msg = 'UnKnown' def __call__(self, func, e=None): @wraps(func) def decorator(obj, *args, **kwargs): if len(args) > 0: e = args[0] func_return = func(obj, e) if not func_return: return cmdObj, self.cmdCodes, self.info_cmdCodes = func_return self.cmdCodes.append(cmdObj) self.info_cmdCodes[cmdObj] = self.msg return decorator
python
import os, json, sys, shutil, distutils from distutils import dir_util if_block_template = '\tif(!strcmp(cmd, "{}")){{\n\ \t\treturn {}(argv, argc);\n\ \t}}else ' ending = '{\n\ \t\tstde("Not a command:");\n\ \t\tstde(argv[0]);\n\ \t}' set_driver_template = "\tdrivers[{}] = &{};\n" include_template = '#include "{}"\n' call_template = '\t{}();\n' def list_programs(d='./programs/'): out = [] for i in os.listdir(d): if not i.startswith('prg_'): continue i = os.path.join(d,i) if os.path.isdir(i): out.append(i) return out def list_drivers(d='./drivers/'): out = [] for i in os.listdir(d): if not i.startswith('drv_'): continue i = os.path.join(d,i) if os.path.isdir(i): out.append(i) return out def setup_programs(): with open('.//programs/programs.tplt') as f: template = f.read() program_dirs = list_programs() output_ifs = '' include_str = '' inits = '' for i in program_dirs: with open(os.path.join(i, 'conf.json')) as f: conf = json.load(f) if 'disabled' in conf.keys() and conf['disabled']: continue # skip it cmd = conf['cmd'] func = conf['entry'] inc = os.path.basename(i)+'/'+conf['include'] output_ifs+=if_block_template.format(cmd, func) include_str+=include_template.format(inc) if 'init' in conf.keys(): inits+=call_template.format(conf['init']) output_ifs+=ending with open('./programs/program.c', 'w') as f: f.write(template.format(include_str, output_ifs, inits)) def setup_drivers(): with open('./drivers/drivers.tplt') as f: template = f.read() driver_dirs = list_drivers() driver_set = '' preinits = '' inits = '' postinits = '' include_str = '' n_drivers = 0 for i in driver_dirs: with open(os.path.join(i, 'conf.json')) as f: conf = json.load(f) if 'disabled' in conf.keys() and conf['disabled']: continue # skip it inc = os.path.basename(i)+'/'+conf['include'] include_str+=include_template.format(inc) if 'preinit' in conf.keys(): preinits+=call_template.format(conf['preinit']) if 'init' in conf.keys(): inits+=call_template.format(conf['init']) if 'postinit' in conf.keys(): postinits+=call_template.format(conf['postinit']) driver_set+=set_driver_template.format(n_drivers, conf['name']) n_drivers+=1 with open('./drivers/drivers.c', 'w') as f: f.write(template.format(include_str, n_drivers, driver_set, preinits, inits, postinits)) setup_programs() setup_drivers()
python
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse from typing import Dict import torch from torch import optim from datasets import Dataset from models import CP, ComplEx from regularizers import N2, N3 from optimizers import KBCOptimizer big_datasets = ['FB15K', 'WN', 'WN18RR', 'FB237', 'YAGO3-10'] datasets = big_datasets parser = argparse.ArgumentParser( description="Relational learning contraption" ) parser.add_argument( '--dataset', choices=datasets, help="Dataset in {}".format(datasets) ) models = ['CP', 'ComplEx'] parser.add_argument( '--model', choices=models, help="Model in {}".format(models) ) regularizers = ['N3', 'N2'] parser.add_argument( '--regularizer', choices=regularizers, default='N3', help="Regularizer in {}".format(regularizers) ) optimizers = ['Adagrad', 'Adam', 'SGD'] parser.add_argument( '--optimizer', choices=optimizers, default='Adagrad', help="Optimizer in {}".format(optimizers) ) parser.add_argument( '--max_epochs', default=50, type=int, help="Number of epochs." ) parser.add_argument( '--valid', default=3, type=float, help="Number of epochs before valid." ) parser.add_argument( '--rank', default=1000, type=int, help="Factorization rank." ) parser.add_argument( '--batch_size', default=1000, type=int, help="Batch size." ) parser.add_argument( '--reg', default=0, type=float, help="Regularization weight" ) parser.add_argument( '--init', default=1e-3, type=float, help="Initial scale" ) parser.add_argument( '--learning_rate', default=1e-1, type=float, help="Learning rate" ) parser.add_argument( '--decay1', default=0.9, type=float, help="decay rate for the first moment estimate in Adam" ) parser.add_argument( '--decay2', default=0.999, type=float, help="decay rate for second moment estimate in Adam" ) args = parser.parse_args() dataset = Dataset(args.dataset) examples = torch.from_numpy(dataset.get_train().astype('int64')) print(dataset.get_shape()) model = { 'CP': lambda: CP(dataset.get_shape(), args.rank, args.init), 'ComplEx': lambda: ComplEx(dataset.get_shape(), args.rank, args.init), }[args.model]() regularizer = { 'N2': N2(args.reg), 'N3': N3(args.reg), }[args.regularizer] device = 'cuda' model.to(device) optim_method = { 'Adagrad': lambda: optim.Adagrad(model.parameters(), lr=args.learning_rate), 'Adam': lambda: optim.Adam(model.parameters(), lr=args.learning_rate, betas=(args.decay1, args.decay2)), 'SGD': lambda: optim.SGD(model.parameters(), lr=args.learning_rate) }[args.optimizer]() optimizer = KBCOptimizer(model, regularizer, optim_method, args.batch_size) def avg_both(mrrs: Dict[str, float], hits: Dict[str, torch.FloatTensor]): """ aggregate metrics for missing lhs and rhs :param mrrs: d :param hits: :return: """ m = (mrrs['lhs'] + mrrs['rhs']) / 2. h = (hits['lhs'] + hits['rhs']) / 2. return {'MRR': m, 'hits@[1,3,10]': h} cur_loss = 0 curve = {'train': [], 'valid': [], 'test': []} for e in range(args.max_epochs): cur_loss = optimizer.epoch(examples) if (e + 1) % args.valid == 0: valid, test, train = [ avg_both(*dataset.eval(model, split, -1 if split != 'train' else 50000)) for split in ['valid', 'test', 'train'] ] curve['valid'].append(valid) curve['test'].append(test) curve['train'].append(train) print("\t TRAIN: ", train) print("\t VALID : ", valid) results = dataset.eval(model, 'test', -1) print("\n\nTEST : ", results)
python
# Author : BIZZOZZERO Nicolas # Completed on Sun, 24 Jan 2016, 23:11 # # This program find the solution of the problem 5 of the Project Euler. # The problem is the following : # # 2520 is the smallest number that can be divided by each of the # numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly divisible # by all of the numbers from 1 to 20? # # The answer to this problem is : # 232792560 # The easiest solution is to print 2*2*2*2*3*3*5*7*11*13*17*19 # But here's the bruteforce method def isEvenlyDivisibleByAllTheNumbersFrom1To20(n): for i in range(1, 21): if n % i: return False return True def main(): i = 1 while 1: print(i) if isEvenlyDivisibleByAllTheNumbersFrom1To20(i): print(i) break i += 1 if __name__ == '__main__': print(2 * 2 * 2 * 2 * 3 * 3 * 5 * 7 * 11 * 13 * 17 * 19)
python
from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg import numpy as np from communication import Communication import math from dataBase import data_base from PyQt5.QtWidgets import QPushButton pg.setConfigOption('background', (33, 33, 33)) pg.setConfigOption('foreground', (197, 198, 199)) # Interface variables app = QtGui.QApplication([]) view = pg.GraphicsView() Layout = pg.GraphicsLayout() view.setCentralItem(Layout) view.show() view.setWindowTitle('Flight monitoring') view.resize(1200, 700) # declare object for serial Communication ser = Communication() # declare object for storage in CSV data_base = data_base() # Fonts for text items font = QtGui.QFont() font.setPixelSize(90) # Title at top text = """ Flight monitoring interface for cansats and OBC's <br> developed at the Universidad Distrital FJC. """ Layout.addLabel(text, col=1, colspan=21) Layout.nextRow() # Put vertical label on left side Layout.addLabel('LIDER - ATL research hotbed', angle=-90, rowspan=3) Layout.nextRow() # Save data buttons # buttons style style = "background-color:rgb(29, 185, 84);color:rgb(0,0,0);font-size:14px;" lb = Layout.addLayout(colspan=21) proxy = QtGui.QGraphicsProxyWidget() save_button = QtGui.QPushButton('Start storage') save_button.setStyleSheet(style) save_button.clicked.connect(data_base.start) proxy.setWidget(save_button) lb.addItem(proxy) lb.nextCol() proxy2 = QtGui.QGraphicsProxyWidget() end_save_button = QtGui.QPushButton('Stop storage') end_save_button.setStyleSheet(style) end_save_button.clicked.connect(data_base.stop) proxy2.setWidget(end_save_button) lb.addItem(proxy2) Layout.nextRow() # Altitude graph l1 = Layout.addLayout(colspan=20, rowspan=2) l11 = l1.addLayout(rowspan=1, border=(83, 83, 83)) p1 = l11.addPlot(title="Altitude (m)") altitude_plot = p1.plot(pen=(29, 185, 84)) altitude_data = np.linspace(0, 0, 30) ptr1 = 0 def update_altitude(value_chain): global altitude_plot, altitude_data, ptr1 altitude_data[:-1] = altitude_data[1:] altitude_data[-1] = float(value_chain[1]) ptr1 += 1 altitude_plot.setData(altitude_data) altitude_plot.setPos(ptr1, 0) # Speed graph p2 = l11.addPlot(title="Speed (m/s)") vel_plot = p2.plot(pen=(29, 185, 84)) vel_data = np.linspace(0, 0, 30) ptr6 = 0 vx = 0 vy = 0 vz = 0 vel = 0 def update_vel(value_chain): global vel_plot, vel_data, ptr6, vx, vy, vz, vel # 500 es dt i = 0 if(i == 0): vzo = float(value_chain[10]) i += 1 vx += (float(value_chain[8])) * 500 vy += (float(value_chain[9])) * 500 vz += (float(value_chain[10]) - vzo) * 500 sum = math.pow(vx, 2) + math.pow(vy, 2) + math.pow(vz, 2) vel = math.sqrt(sum) vel_data[:-1] = vel_data[1:] vel_data[-1] = vel ptr6 += 1 vel_plot.setData(vel_data) vel_plot.setPos(ptr6, 0) l1.nextRow() l12 = l1.addLayout(rowspan=1, border=(83, 83, 83)) # Acceleration graph acc_graph = l12.addPlot(title="Accelerations (m/s²)") # adding legend acc_graph.addLegend() acc_graph.hideAxis('bottom') accX_plot = acc_graph.plot(pen=(102, 252, 241), name="X") accY_plot = acc_graph.plot(pen=(29, 185, 84), name="Y") accZ_plot = acc_graph.plot(pen=(203, 45, 111), name="Z") accX_data = np.linspace(0, 0) accY_data = np.linspace(0, 0) accZ_data = np.linspace(0, 0) ptr2 = 0 def update_acc(value_chain): global accX_plot, accY_plot, accZ_plot, accX_data, accY_data, accZ_data, ptr2 accX_data[:-1] = accX_data[1:] accY_data[:-1] = accY_data[1:] accZ_data[:-1] = accZ_data[1:] accX_data[-1] = float(value_chain[8]) accY_data[-1] = float(value_chain[9]) accZ_data[-1] = float(value_chain[10]) ptr2 += 1 accX_plot.setData(accX_data) accY_plot.setData(accY_data) accZ_plot.setData(accZ_data) accX_plot.setPos(ptr2, 0) accY_plot.setPos(ptr2, 0) accZ_plot.setPos(ptr2, 0) # Gyro graph gyro_graph = l12.addPlot(title="Gyro") gyro_graph.hideAxis('bottom') # adding legend gyro_graph.addLegend() pitch_plot = gyro_graph.plot(pen=(102, 252, 241), name="Pitch") roll_plot = gyro_graph.plot(pen=(29, 185, 84), name="Roll") yaw_plot = gyro_graph.plot(pen=(203, 45, 111), name="Yaw") pitch_data = np.linspace(0, 0) roll_data = np.linspace(0, 0) yaw_data = np.linspace(0, 0) ptr3 = 0 def update_gyro(value_chain): global pitch_plot, roll_plot, yaw_plot, pitch_data, roll_data, yaw_data, ptr3 pitch_data[:-1] = pitch_data[1:] roll_data[:-1] = roll_data[1:] yaw_data[:-1] = yaw_data[1:] pitch_data[-1] = float(value_chain[5]) roll_data[-1] = float(value_chain[6]) yaw_data[-1] = float(value_chain[7]) ptr3 += 1 pitch_plot.setData(pitch_data) roll_plot.setData(roll_data) yaw_plot.setData(yaw_data) pitch_plot.setPos(ptr3, 0) roll_plot.setPos(ptr3, 0) yaw_plot.setPos(ptr3, 0) # Pressure Graph pressure_graph = l12.addPlot(title="Barometric pressure") pressure_plot = pressure_graph.plot(pen=(102, 252, 241)) pressure_data = np.linspace(0, 0, 30) ptr4 = 0 def update_pressure(value_chain): global pressure_plot, pressure_data, ptr4 pressure_data[:-1] = pressure_data[1:] pressure_data[-1] = float(value_chain[4]) ptr4 += 1 pressure_plot.setData(pressure_data) pressure_plot.setPos(ptr4, 0) # Temperature graph graf_temp = l12.addPlot(title="Temperature (ºc)") temp_plot = graf_temp.plot(pen=(29, 185, 84)) temp_data = np.linspace(0, 0, 30) ptr5 = 0 def update_temp(value_chain): global temp_plot, temp_data, ptr5 temp_data[:-1] = temp_data[1:] temp_data[-1] = float(value_chain[3]) ptr5 += 1 temp_plot.setData(temp_data) temp_plot.setPos(ptr5, 0) # Time, battery and free fall graphs l2 = Layout.addLayout(border=(83, 83, 83)) # Time graph time_graph = l2.addPlot(title="Time (min)") time_graph.hideAxis('bottom') time_graph.hideAxis('left') time_text = pg.TextItem("test", anchor=(0.5, 0.5), color="w") time_text.setFont(font) time_graph.addItem(time_text) def update_time(value_chain): global time_text time_text.setText('') tiempo = round(int(value_chain[0]) / 60000, 2) time_text.setText(str(tiempo)) l2.nextRow() # Battery graph battery_graph = l2.addPlot(title="battery satus") battery_graph.hideAxis('bottom') battery_graph.hideAxis('left') battery_text = pg.TextItem("test", anchor=(0.5, 0.5), color="w") battery_text.setFont(font) battery_graph.addItem(battery_text) def update_battery(value_chain): pass l2.nextRow() freeFall_graph = l2.addPlot(title="Free fall") freeFall_graph.hideAxis('bottom') freeFall_graph.hideAxis('left') freeFall_text = pg.TextItem("test", anchor=(0.5, 0.5), color="w") freeFall_text.setFont(font) freeFall_graph.addItem(freeFall_text) def update_freeFall(value_chain): global freeFall_text freeFall_text.setText('') if(value_chain[2] == '0'): freeFall_text.setText('No') else: freeFall_text.setText('Yes') def update(): try: value_chain = [] value_chain = ser.getData() update_altitude(value_chain) update_vel(value_chain) update_time(value_chain) update_acc(value_chain) update_gyro(value_chain) update_pressure(value_chain) update_temp(value_chain) update_freeFall(value_chain) data_base.guardar(value_chain) except IndexError: print('starting, please wait a moment') # desconozco si es necesario esto # QtGui.QApplication.processEvents() if(ser.isOpen()) or (ser.dummyMode()): timer = pg.QtCore.QTimer() timer.timeout.connect(update) timer.start(500) else: print("something is wrong with the update call") # Start Qt event loop unless running in interactive mode. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
python
import sys import click import os import datetime from unittest import TestCase, main from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label from frigate.motion import MotionDetector from frigate.edgetpu import LocalObjectDetector from frigate.objects import ObjectTracker import multiprocessing as mp import numpy as np import cv2 from frigate.object_processing import COLOR_MAP, CameraState class ProcessClip(): def __init__(self, clip_path, frame_shape, config): self.clip_path = clip_path self.frame_shape = frame_shape self.camera_name = 'camera' self.frame_manager = DictFrameManager() # self.frame_manager = SharedMemoryFrameManager() self.frame_queue = mp.Queue() self.detected_objects_queue = mp.Queue() self.camera_state = CameraState(self.camera_name, config, self.frame_manager) def load_frames(self): fps = EventsPerSecond() skipped_fps = EventsPerSecond() stop_event = mp.Event() detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000) current_frame = mp.Value('d', 0.0) ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ") ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2]) capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame) ffmpeg_process.wait() ffmpeg_process.communicate() def process_frames(self, objects_to_track=['person'], object_filters={}): mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8) mask[:] = 255 motion_detector = MotionDetector(self.frame_shape, mask) object_detector = LocalObjectDetector(labels='/labelmap.txt') object_tracker = ObjectTracker(10) process_fps = mp.Value('d', 0.0) detection_fps = mp.Value('d', 0.0) current_frame = mp.Value('d', 0.0) stop_event = mp.Event() process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue, process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True) def objects_found(self, debug_path=None): obj_detected = False top_computed_score = 0.0 def handle_event(name, obj): nonlocal obj_detected nonlocal top_computed_score if obj['computed_score'] > top_computed_score: top_computed_score = obj['computed_score'] if not obj['false_positive']: obj_detected = True self.camera_state.on('new', handle_event) self.camera_state.on('update', handle_event) while(not self.detected_objects_queue.empty()): camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get() if not debug_path is None: self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values()) self.camera_state.update(frame_time, current_tracked_objects) for obj in self.camera_state.tracked_objects.values(): print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}") self.frame_manager.delete(self.camera_state.previous_frame_id) return { 'object_detected': obj_detected, 'top_score': top_computed_score } def save_debug_frame(self, debug_path, frame_time, tracked_objects): current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape) # draw the bounding boxes on the frame for obj in tracked_objects: thickness = 2 color = (0,0,175) if obj['frame_time'] != frame_time: thickness = 1 color = (255,0,0) else: color = (255,255,0) # draw the bounding boxes on the frame box = obj['box'] draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) # draw the regions on the frame region = obj['region'] draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0)) cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR)) @click.command() @click.option("-p", "--path", required=True, help="Path to clip or directory to test.") @click.option("-l", "--label", default='person', help="Label name to detect.") @click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.") @click.option("--debug-path", default=None, help="Path to output frames for debugging.") def process(path, label, threshold, debug_path): clips = [] if os.path.isdir(path): files = os.listdir(path) files.sort() clips = [os.path.join(path, file) for file in files] elif os.path.isfile(path): clips.append(path) config = { 'snapshots': { 'show_timestamp': False, 'draw_zones': False }, 'zones': {}, 'objects': { 'track': [label], 'filters': { 'person': { 'threshold': threshold } } } } results = [] for c in clips: frame_shape = get_frame_shape(c) config['frame_shape'] = frame_shape process_clip = ProcessClip(c, frame_shape, config) process_clip.load_frames() process_clip.process_frames(objects_to_track=config['objects']['track']) results.append((c, process_clip.objects_found(debug_path))) for result in results: print(f"{result[0]}: {result[1]}") positive_count = sum(1 for result in results if result[1]['object_detected']) print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).") if __name__ == '__main__': process()
python
""" This module performs all basic DFA operations. It is an interface for pyfst. """ # /usr/bin/python from operator import attrgetter import fst from alphabet import createalphabet EPSILON = fst.EPSILON def TropicalWeight(param): """ Returns fst TropicalWeight Args: param (str): The input Returns: bool: The arc weight """ return fst.TropicalWeight(param) class FstDFA(fst.StdAcceptor): """ Contains extra method to consume input and produce outputs. The underline library is pyfst, the python bindings of openFST library. """ def __init__(self, alphabet = createalphabet()): """ Args: alphabet (list): pyfst input symbol list Returns: None """ isyms = None self.alphabet = alphabet fst.StdAcceptor.__init__(self, isyms) num = 1 for char in self.alphabet: self.isyms.__setitem__(char, num) num = num + 1 def fixminimized(self, alphabet): """ After pyfst minimization, all unused arcs are removed, and all sink states are removed. However this may break compatibility. Args: alphabet (list): The input alphabet Returns: None """ endstate = len(list(self.states)) for state in self.states: for char in alphabet: found = 0 for arc in state.arcs: if self.isyms.find(arc.ilabel) == char: found = 1 break if found == 0: self.add_arc(state.stateid, endstate, char) self[endstate].final = TropicalWeight(float('inf')) for char in alphabet: self.add_arc(endstate, endstate, char) def _addsink(self, alphabet): """ Adds a sink state Args: alphabet (list): The input alphabet Returns: None """ endstate = len(list(self.states)) for state in self.states: for char in alphabet: found = 0 for arc in state.arcs: if self.isyms.find(arc.ilabel) == char: found = 1 break if found == 0: self.add_arc(state.stateid, endstate, char) self[endstate].final = TropicalWeight(float('inf')) for char in alphabet: self.add_arc(endstate, endstate, char) def _path_to_str(self, path): """ Convert a path to the string representing the path Args: path (tuple): A tuple of arcs Returns: inp (str): The path concatenated as as string """ inp = '' for arc in path: i = self.isyms.find(arc.ilabel) # Ignore \epsilon transitions both on input if i != fst.EPSILON: inp += i return inp def init_from_acceptor(self, acceptor): """ Adds a sink state Args: alphabet (list): The input alphabet Returns: None """ states = sorted( acceptor.states, key=attrgetter('initial'), reverse=True) for state in states: for arc in state.arcs: itext = acceptor.isyms.find(arc.ilabel) if itext in self.alphabet: self.add_arc(state.stateid, arc.nextstate, itext) if state.final: self[state.stateid].final = True if state.initial: self[state.stateid].initial = True def consume_input(self, inp): """ Return True/False if the machine accepts/reject the input. Args: inp (str): input string to be consumed Returns: bool: A true or false value depending on if the DFA accepts the provided input """ cur_state = sorted( self.states, key=attrgetter('initial'), reverse=True)[0] while len(inp) > 0: found = False for arc in cur_state.arcs: if self.isyms.find(arc.ilabel) == inp[0]: cur_state = self[arc.nextstate] inp = inp[1:] found = True break if not found: return False return cur_state.final != TropicalWeight(float('inf')) def empty(self): """"" Return True if the DFA accepts the empty language. """ return len(list(self.states)) == 0 def random_strings(self, string_length=1): """ Generate string_length random strings that belong to the automaton. Args: string_length (integer): The size of the random string Returns: str: The generated string """ str_list = [] for path in self.uniform_generate(string_length): str_list.append(self._path_to_str(path)) return str_list def complement(self, alphabet): """ Generate the complement of a DFA automaton Args: alphabet (list): The input alphabet Returns: None """ self._addsink(alphabet) states = sorted(self.states, key=attrgetter('initial'), reverse=True) for state in states: if state.final: state.final = False else: state.final = True def save(self, txt_fst_filename): """ Save the machine in the openFST format in the file denoted by txt_fst_filename. Args: txt_fst_filename (str): The name of the file Returns: None """ txt_fst = open(txt_fst_filename, 'w+') states = sorted(self.states, key=attrgetter('initial'), reverse=True) for state in states: for arc in state.arcs: itext = self.isyms.find(arc.ilabel) otext = self.osyms.find(arc.ilabel) txt_fst.write( '{}\t{}\t{}\t{}\n'.format( state.stateid, arc.nextstate, itext.encode('hex'), otext.encode('hex'))) if state.final: txt_fst.write('{}\n'.format(state.stateid)) txt_fst.close() def load(self, txt_fst_filename): """ Save the transducer in the text file format of OpenFST. The format is specified as follows: arc format: src dest ilabel olabel [weight] final state format: state [weight] lines may occur in any order except initial state must be first line Args: txt_fst_filename (string): The name of the file Returns: None """ with open(txt_fst_filename, 'r') as txt_fst: for line in txt_fst: line = line.strip() splitted_line = line.split() if len(splitted_line) == 1: self[int(splitted_line[0])].final = True else: self.add_arc(int(splitted_line[0]), int( splitted_line[1]), splitted_line[2].decode('hex'))
python
from singlecellmultiomics.universalBamTagger.digest import DigestFlagger from singlecellmultiomics.tagtools import tagtools class NlaIIIFlagger(DigestFlagger): def __init__(self, **kwargs): DigestFlagger.__init__(self, **kwargs) def addSite(self, reads, strand, restrictionChrom, restrictionPos): if not reads[0].has_tag( self.sampleTag) or not reads[0].has_tag( self.umiTag): return sample = reads[0].get_tag(self.sampleTag) umi = reads[0].get_tag(self.umiTag) allele = None if not reads[0].has_tag( self.alleleTag) else reads[0].get_tag( self.alleleTag) siteInfo = tuple([x for x in [strand, allele, umi] if x is not None]) moleculeId = self.increaseAndRecordOversequencing( sample, restrictionChrom, restrictionPos, siteInfo=siteInfo) for read in reads: if read is None: continue self.setSiteOversequencing(read, moleculeId) self.setSiteCoordinate(read, restrictionPos) self.setSource(read, 'NLA'), {} if allele is not None: self.setAllele(read, allele) self.setStrand(read, '+' if strand == 1 else ('-' if strand == 0 else '?')) def digest(self, reads): if len(reads) != 2: if len(reads) == 1: self.setRejectionReason(reads[0], 'unmapped mate') else: self.setRejectionReason(reads[0], 'nopair') return None # Only made for mate pair R1, R2 = reads self.addAlleleInfo([read for read in reads if read is not None]) """ Valid configs: CATG######## R1 ########## ^ ########## R2 ########## ############ R2 ########## ^ ########### R1 #####CATG reverse case !BWA inverts the query sequence if it maps to the negative strand! or R2.is_unmapped: if R1.is_unmapped and R2.is_unmapped: self.setRejectionReason(R1, 'unmapped R1;R2') elif R1.is_unmapped: self.setRejectionReason(R1, 'unmapped R1') self.setRejectionReason(R2, 'unmapped R1') else: self.setRejectionReason(R1, 'unmapped R2') self.setRejectionReason(R2, 'unmapped R2') return(None) """ # Obtain RT hexamer: if R2 is not None: hstart, hseq = tagtools.getRandomPrimerHash( R2, onStart=True, primerLength=6) self.setRandomPrimer(R1, R2, hstart, hseq) if R1 is None or R1.is_unmapped: self.setRejectionReason(R1, 'unmapped R1') self.setRejectionReason(R2, 'unmapped R1') return None if R1.seq[:4] == 'CATG' and not R1.is_reverse: rpos = (R1.reference_name, R1.reference_start) self.addSite([R1, R2], strand=0, restrictionChrom=rpos[0], restrictionPos=rpos[1]) self.setRecognizedSequence(R1, 'CATG') self.setRecognizedSequence(R2, 'CATG') return(rpos) elif R1.seq[-4:] == 'CATG' and R1.is_reverse: rpos = (R1.reference_name, R1.reference_end - 4) self.addSite([R1, R2], strand=1, restrictionChrom=rpos[0], restrictionPos=rpos[1]) self.setRecognizedSequence(R1, 'CATG') self.setRecognizedSequence(R2, 'CATG') return(rpos) # Sometimes the cycle is off elif R1.seq[:3] == 'ATG' and not R1.is_reverse: rpos = (R1.reference_name, R1.reference_start - 1) self.addSite([R1, R2], strand=0, restrictionChrom=rpos[0], restrictionPos=rpos[1]) self.setRecognizedSequence(R1, 'ATG') self.setRecognizedSequence(R2, 'ATG') return(rpos) elif R1.seq[-3:] == 'CAT' and R1.is_reverse: # First base was trimmed or lost rpos = (R1.reference_name, R1.reference_end - 3) self.addSite([R1, R2], strand=1, restrictionChrom=rpos[0], restrictionPos=rpos[1]) self.setRecognizedSequence(R1, 'CAT') self.setRecognizedSequence(R2, 'CAT') return(rpos) else: if R1.seq[:4] == 'CATG' and R1.is_reverse: self.setRejectionReason(R1, 'found CATG R1 REV exp FWD') self.setRejectionReason(R2, 'found CATG R1 REV exp FWD') elif R1.seq[-4:] == 'CATG' and not R1.is_reverse: self.setRejectionReason(R1, 'found CATG R1 FWD exp REV') self.setRejectionReason(R2, 'found CATG R1 FWD exp REV') else: self.setRejectionReason(R1, 'no CATG') self.setRejectionReason(R2, 'no CATG') return None try: start, end = tagtools.getPairGenomicLocations( R1, R2, R1PrimerLength=4, R2PrimerLength=6) self.setFragmentSize(R1, end - start) self.setFragmentSize(R2, end - start) self.setFragmentTrust(R1, start, end) self.setFragmentTrust(R2, start, end) except Exception as e: self.setFragmentSize(R1, 'unknown') self.setFragmentSize(R2, 'unknown') """ if R1.seq[:4]=='CATG' and R1.reference_start<=R2.reference_start: # Site on the start of R1, R2 should map behind self.addSite( [R1,R2], strand=0, restrictionChrom=R1.reference_name, restrictionPos=R1.reference_start ) return(( R1.reference_name, R1.reference_start)) if R1.seq[-4:]=='CATG' and R1.reference_start>=R2.reference_start: # Site on the end of R1, R2 should map before self.addSite( [R1,R2], strand=1, restrictionChrom=R1.reference_name, restrictionPos=R1.reference_end-4 ) return( (R1.reference_name, R1.reference_end-4)) """
python
#!/usr/bin/env python2 import sys import time import logging import argparse def main(): """ Tumor Map Calc Agent """ parser = argparse.ArgumentParser(description=main.__doc__) parser.add_argument("-i", "--interval", type=int, default=0, help="Minutes between calc, default calc once and exits") args = parser.parse_args() while True: start = time.time() logging.info("Starting calc at {}".format(time.asctime(time.localtime(start)))) try: logging.info("Do something here") end = time.time() logging.info("Finished calc at {} taking {} seconds".format( time.asctime(time.localtime(end)), end - start)) except Exception as e: logging.error("Problems calc: {}".format(e)) if args.interval: logging.info("Sleeping for {} minutes...".format(args.interval)) time.sleep(args.interval * 60) else: break if __name__ == '__main__': logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) main()
python
# -*- coding: utf-8 -*- """SOG run processor. Do various operations related to running the the SOG bio-physical model of deep estuaries. Most notably, run the model. This module provides services to the SOG command processor. :Author: Doug Latornell <[email protected]> :License: Apache License, Version 2.0 Copyright 2010-2014 Doug Latornell and The University of British Columbia Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import ( absolute_import, division, print_function, unicode_literals, ) import os from tempfile import NamedTemporaryFile from textwrap import TextWrapper from time import sleep from .infile_processor import create_infile __all__ = ['dry_run', 'prepare', 'watch_outfile'] def prepare(args): """Return the command line string that will execute the requested SOG run. """ if not args.outfile: args.outfile = os.path.abspath(os.path.basename(args.infile) + '.out') if not os.path.exists(args.infile): raise IOError('infile not found: {0.infile}'.format(args)) else: if args.legacy_infile: infile = args.infile else: if args.dry_run: infile = NamedTemporaryFile(suffix='.infile').name else: infile = create_infile(args.infile, args.editfile) if not os.path.exists(args.SOG_exec): raise IOError('SOG executable not found: {0.SOG_exec}'.format(args)) else: cmd = ( 'nice -n {0.nice} {0.SOG_exec} < {infile} > {0.outfile} 2>&1' .format(args, infile=infile)) return cmd def dry_run(cmd, args): """Dry-run handler for `SOG run` command. """ wrapper = TextWrapper() print(wrapper.fill('Command that would have been used to run SOG:')) print(' {0}'.format(cmd)) if args.watch: print(wrapper.fill( 'Contents of {0} would have been shown on screen while ' 'SOG run was in progress.'.format(args.outfile)) ) def watch_outfile(proc, outfile_name): """Generator that yields lines from SOG run outfile while run is in progress, and continues yielding the lines that are flushed when the run finishes. """ # Wait for the SOG process to create the outfile sleep(0.1) with open(outfile_name) as outfile: while proc.poll() is None: # Echo lines flushed to outfile while SOG is running line = outfile.readline() if not line: sleep(0.1) continue yield line else: # Echo lines flushed to outfile when SOG run finishes for line in outfile: yield line
python
import datetime from dataclasses import asdict from dataclasses import dataclass from dataclasses import field from enum import Enum from typing import List from typing import Union try: from typing import Literal except ImportError: from typing_extensions import Literal from pglet import BarChart from pglet import Checkbox from pglet import Dialog from pglet import Form from pglet import SpinButton from pglet import Stack from pglet import Text from pglet.barchart import Point from pydantic import BaseModel from pydantic import EmailStr from pydantic import Field try: from replit import db except ImportError: db = dict() class Content: def introduction(self): """ # Easy web development for Python developers Web technologies are available everywhere, and they seem like a good way to create a graphical user interface for your Python application, either on the desktop or on the web. Unfortunately, most Python coders like Python, and would like to avoid using a lot of other languages (HTML, Javascript and CSS) just to get a UI created. Pglet ("pagelet") is a web server that is written in Go and uses Fluent UI React components. Actual applications ("clients") provide the content and react to events using a proprietary protocol. None of the above is visible to a Python developer, since the server comes nicely bundled in the client install. All you need is: `pip install pglet` and you are off to creating a web-enabled UI in pure Python (3.7+). As a taste of what pglet-python code looks like, this is the code for the box on the right: [code] ``` pglet.page().add(main_view) ``` As another example, this site has also been created with pglet-python, with no HTML and no CSS in the code. For more details, supported controls and a tutorial, see the [pglet Python docs](https://pglet.io/docs/). # Easy forms One of the most-repeated type of UI is some kind of form for entering and updating information. While creating forms is easy in pglet, it is nevertheless a task that provides little programming joy. The next pages show how to create forms using a Form control that eats annotated Python classes, for example, Python's [dataclasses](https://docs.python.org/3/library/dataclasses.html). # Easy forms with validation Typically you also need to somehow validate user input before you can use it for anything: you need to check that necessary values have been provided, check that numbers are numbers, check dates etc. You can avoid this repetitive code by giving the Form control a [pydantic](https://pydantic-docs.helpmanual.io/) object. Validation defined on the object is performed before the data is returned to you. In some cases, you can use the exact same data definition with your APIs (e.g. FastAPI) or when writing to a document or SQL data store. """ from pglet import Image, Stack, Text main_view = Stack( horizontal_align="center", padding=20, gap=20, controls=[ Image(width="50%", src="https://www.python.org/static/img/[email protected]"), Image(width="30%", src="https://pglet.io/img/logo_dark.svg"), Text(value="pydantic", bold=True, size="xxLarge"), ], ) return main_view def data_first_forms(self): """ Using the Form control, form definition focuses on the data you need out of it, so we define a class with necessary information as attributes, information types as annotations, and default values as assignements. Python dataclasses are convenient for this, as we do not need to spend time creating the `__init__` and other boilerplate. To create the form, all we need to do is give the class definition to the Form control: [code] You can see the resulting form on the right. Change values, and click "OK" to see the data you would get. Form control understands the following data types explicitly, others will be by default be represented with a basic text box on the form: - str (see later for how you can decide between single line and multiline controls for text) - int - float - bool - datetime - date (current DatePicker timezone restrictions prevent using it here) - time - Decimal (current SpinButton restrictions prevent using it here) """ @dataclass class DataclassDataModel: name: str = "Dataclass Person" birthdate: datetime.datetime = "2000-01-01" address: str = "Some Street 1, Some Town, Some Country" age: int = 33 happy_today: bool = True email: str = "[email protected]" def show_data_on_submit(event): event.control.page.add(Dialog( open=True, title="Submitted data", blocking=True, controls=[ Text(value=str(event.control.value.__dict__)) ] )) form = Form( value=DataclassDataModel, width=500, on_submit=show_data_on_submit ) return form data_first_forms.display_name = "Data-first forms" def selecting_values(self): """ Python enums are supported for selecting from a specific set of values. [code] """ class ContactOption(str, Enum): EMAIL = 'email' PHONE = 'phone' @dataclass class DataclassDataModel: name: str = "Dataclass Person" ok_to_contact: bool = True contact_option: ContactOption = ContactOption.EMAIL return Form(value=DataclassDataModel, width=500, on_submit=show_submitted_data) def more_values(self): """ If there are more than 3 values, we switch to a dropdown. The threshold is configurable with the `threshold_for_dropdown` Form attribute. """ class ContactOption(str, Enum): EMAIL = 'email' PHONE = 'phone' MESSAGE = 'message' DOVE = 'dove' @dataclass class DataclassDataModel: name: str = "Dataclass Person" ok_to_contact: bool = True contact_option: ContactOption = ContactOption.EMAIL return Form(value=DataclassDataModel, width=500, on_submit=show_submitted_data) def selecting_multiple_values(self): """ Annotating a field with a **list** of enums allows for multiple selection. [code] """ class ContactOption(str, Enum): EMAIL = "email" PHONE = "phone" PIGEON = "pigeon" SMOKE_SIGNALS = "smoke signals" @dataclass class DataclassDataModel: contact_option: List[ContactOption] = field( default_factory=lambda: [ContactOption.EMAIL] ) return Form(value=DataclassDataModel, width=500, on_submit=show_submitted_data) def lists_of_fields(self): """ Field with a list annotation of other type than an enum is turned into a list control. """ @dataclass class DataclassDataModel: alphabet: List[str] = field( default_factory=lambda: ["a", "b", "c"] ) return Form(value=DataclassDataModel, width=500, on_submit=show_submitted_data) def nested_class_definitions(self): """ Often we need to reuse parts of data structures. Form control supports nested class definitions, like `Movie` in the example below. [code] """ @dataclass class Movie: title: str year: int @dataclass class DataclassDataModel: name: str = "Dataclass Person" email: str = "[email protected]" favorite_movie: Movie = Movie( title="My Little Pony: The Movie", year=2017, ) return Form(value=DataclassDataModel, width=500, on_submit=show_submitted_data) def several_nested_objects(self): """ Several nested objects are supported with a List annotation. Lists rely on a sensible `str()` implementation to display nicely, open up in a separate panel for editing, and support adding and deleting items. [code] Note that to support adding more movies, we need to provide default values for Movie attributes. """ @dataclass class Movie: title: str = "" year: int = 2000 def __str__(self): return f"{self.title} ({self.year})" movies = [ Movie(title="The Name of the Rose", year=1986), Movie(title="My Little Pony: The Movie", year=2017), ] @dataclass class DataclassDataModel: name: str = "Dataclass Person" email: str = "[email protected]" favorite_movies: List[Movie] = field(default_factory=lambda: movies) return Form(value=DataclassDataModel, width=500, on_submit=show_submitted_data) def styling_and_dimensions(self): """ Form is a Stack control, and inherits all the [attributes of Stacks](https://pglet.io/docs/controls/stack#properties). You can toggle the switch on the left to experiment with the light and dark themes. Example below shows using: - `title` to add a form title at the top, - `control_style` to define an alternative general style, with underlined text boxes, - `toggle_for_bool` to use a toggle instead of a checkbox for boolean values, and - a standard Stack attribute `gap` to add extra space between the lines. [code] """ @dataclass class DataclassDataModel: name: str = "Dataclass Person" birthdate: datetime.date = "2000-01-01" address: str = "Some Street 1, Some Town, Some Country" age: int = 33 happy_today: bool = True email: str = "[email protected]" form = Form( value=DataclassDataModel, title="Your information", control_style="line", toggle_for_bool=True, gap=24, width=500, on_submit=show_submitted_data, ) return form def customizing_controls(self): """ There are several ways to customize controls in a `Form`: 1. Additional parameters for a specific field, as part of the data definition 2. Additional parameters for a specific field, in an `__init__` parameter 3. Map a data type to a specific control, for a single form 4. Map a data type to a specific control, globally Example below covers the first 3: 1. For dataclasses, the contents of the pglet metadata dictionary is passed as parameters for the control. Here we turn a single-line Textbox into a multiline one. 2. If you do not want to mix your data model with UI specifics, you can pass a parameter to the Form, containing extra control initialization kwargs by field name. 3. If you want to set all fields of a type to be mapped to a specific control, provide additional type to control mappings to Form. Here we want all `Amount`s have two decimals in the UI. [code] For option #4, you can set a type/control mapping globally by updating the mapping in the `Form` class directly, like this: ``` Form.default_data_to_control_mapping["Amount"] = partial( SpinButton, step=.01, ) ``` ... or, of course, by subclassing the Form and setting values in the subclass `__init__`. """ from dataclasses import field from functools import partial from typing import NewType Amount = NewType('Amount', float) @dataclass class DataclassDataModel: item: str = field( default="", metadata={"pglet": { "multiline": True # <<< 1 }} ) description: str = "" amount: Amount = Amount(0) form = Form( value=DataclassDataModel, control_kwargs={ 'description': {'multiline': True} # <<< 2 }, control_mapping={ "Amount": partial( # <<< 3 SpinButton, step=.01, ) }, width=500, on_submit=show_submitted_data, ) return form def introducing_pydantic(self): """ Pydantic is not a dependency of pglet nor of the Form control, so you need to install it separately with: ``` pip install pydantic ``` If you need validation of email addresses, you should also install: ``` pip install pydantic[email] ``` Once you have pydantic, your data can inherit from `pydantic.BaseModel` instead of being decorated as a `dataclass`. [code] Next pages will cover the benefits of having pydantic in place. """ from pydantic import BaseModel class PydanticDataModel(BaseModel): name: str = "Pydantic Person" email: str = "[email protected]" return Form(value=PydanticDataModel(), width=500, on_submit=show_submitted_data) def change_the_labels(self): """ Normally, the labels on each line derived from the attribute names in your data. If you need something different, for example punctuation, use `Field.title`. [code] See pydantic docs for the full documentation on the [Field function](https://pydantic-docs.helpmanual.io/usage/schema/#field-customization). """ from pydantic import Field class PydanticDataModel(BaseModel): name: str = "Pydantic Person" happy: bool = Field(True, title="Are you happy today?") return Form(value=PydanticDataModel(), width=500, on_submit=show_submitted_data) def placeholders(self): """ If an input does not have text, a placeholder is shown, defined by `Field.description`. """ class PydanticDataModel(BaseModel): name: str = "Pydantic Person" email: str = Field("", description="Enter a valid email address") return Form(value=PydanticDataModel(), width=500, on_submit=show_submitted_data) def customizing_pydantic_fields(self): """ Pydantic equivalent of the `dataclasses.field.metadata["pglet"]` is `Field.pglet`. Here we use this option for the `notes` attribute to get a multiline `Textbox`. [code] """ class PydanticDataModel(BaseModel): name: str = "Pydantic Person" notes: str = Field("", pglet={'multiline': True}) return Form(value=PydanticDataModel(), width=500, on_submit=show_submitted_data) def validation(self): """ Main benefit of adding pydantic is that get your data validated with the minimum of boilerplate code. Experiment with this view to see how the validation works. [code] Errors are pydantic validation errors, in English. Check pydantic documentation on the available [validating field types](https://pydantic-docs.helpmanual.io/usage/types/) and their usage. Form control currently maps the field types below to specific controls - everything else is a Textbox. - ConstrainedDecimal - ConstrainedFloat - ConstrainedInt - EmailStr - FutureDate - NegativeFloat - NegativeInt - PastDate - PositiveFloat - PositiveInt - StrictBool - StrictFloat - StrictInt """ from pydantic import conint from pydantic import EmailStr class PydanticDataModel(BaseModel): name: str = "Pydantic Person" birthdate: datetime.date = "2000-01-01" age: conint(ge=0, lt=150) = 0 email: EmailStr = Field("", description="Enter a valid email address") return Form(value=PydanticDataModel(), width=500, on_submit=show_submitted_data) def cross_field_validation(self): """ Pydantic supports defining more complex relationships between fields. In this example, email must be filled (and a valid email) if newsletters have been requested. If validator returns an error, the capitalised str value of the error is shown to the user as the error message under the field. Pydantic standard validation errors are in English. [code] Again, pydantic docs contain a lot more information about [validators](https://pydantic-docs.helpmanual.io/usage/validators/). """ from pydantic import validator class PydanticDataModel(BaseModel): name: str = "Pydantic Person" newsletter_ok: bool = Field( False, title="Send me the monthly newsletter" ) email: Union[EmailStr, Literal[""]] = Field("", description="Valid email needed for newsletter") @validator('email', pre=True, allow_reuse=True) def email_filled_if_needed(cls, value, values): if values.get("newsletter_ok") and not value: raise ValueError("Need email for newsletter") return value return Form(value=PydanticDataModel(), width=500, on_submit=show_submitted_data) cross_field_validation.display_name = "Cross-field validation" def status(self): """ The status of the Form control is: **early Proof of Concept for discussion and feedback** *Some* todo items remain. [no code] """ todo = ''' Ordering of lists Slider option for number ranges Proper Documentation Responsive layout Align/integrate with Grid control Dates with DatePicker Manage decimal.Decimal values ''' done = ''' Lists for basic types Toggle as an alternative for Checkbox Support custom control parameters (e.g. multiline) Support customising controls for types Multiple selection from enums Some tests Documentation in the shape of this demo ''' return Stack( padding=20, width=400, controls=[ Checkbox(label=label.strip(), value=False, disabled=True) for label in todo.strip().splitlines() ] + [ Checkbox(label=label.strip(), value=True, disabled=True) for label in done.strip().splitlines() ] ) def grande_finale(self): """ As one last thing, let's combine the Form control, replit database utility and the pglet graph control into a quick poll. Please select the options you are interested in and click "OK". [code] The `db` object here is a replit database that is essentially a dict with per-program persistent contents. """ @dataclass class PollData: pglet: bool = False python: bool = False pglet_with_python: bool = False pglet_with_some_other_language: bool = False pglet_with_forms: bool = False pydantic: bool = False pydantic_form_validation: bool = False chart = BarChart( data_mode='fraction', padding=20, width=210, points=[] ) def update_chart(): chart.points.clear() values = list(reversed(sorted( [ (field, db.get(field, 0)) for field in PollData.__annotations__ if field != "answers" ], key=lambda value: value[1] ))) max_value = values[0][1] for field, value in values: display_name = field.replace("_", " ").capitalize() chart.points.append( Point(legend=display_name, x=value, y=max_value), ) update_chart() poll = Form( value=PollData, title="I am interested in...", width=300, label_width="100%", control_width="fit-content", ) def update_db_values(event): value = event.control.value for key, value in asdict(value).items(): if value: db[key] = db.get("key", 0) + 1 db["answers"] = db.get("answers", 0) + 1 update_chart() poll.submit_button.disabled = True event.control.page.update() poll.on_submit = update_db_values stack = Stack(controls=[poll, chart]) return stack grande_finale.display_name = "Grande Finale" def show_submitted_data(event): value = event.control.value event.control.page.add(Dialog(open=True, title="Submitted data", blocking=True, controls=[ Text(value=str(value.__dict__)) ])) content = [value for attribute, value in Content.__dict__.items() if callable(value)]
python
from .home import bp as home from .dashboard import bp as dashboard from .api import bp as api # the .home syntax direct the program to find the module name home then import BP routes.
python
"""A class to hold data parsed from PDFs.""" import dataclasses @dataclasses.dataclass class Datum: """A class to hold data parsed from PDFs.""" text: str = "" traits: list[dict] = dataclasses.field(default_factory=list) reject: bool = False
python
import sounddevice as sd from scipy.io import wavfile from scipy import signal import sys import matplotlib.pyplot as plt import os import subprocess as sp from collections import defaultdict, Counter import pyprind import numpy as np import random from .utils import readwav output_seconds = 5 n_gram = 2 fname = 'Night_And_Day.flac' fs, data, outname = readwav(fname) def show_pcm(d): x = np.arange(d.shape[0]) plt.plot(x, d) plt.ylabel('PCM') plt.xlabel('Time [sec]') plt.show() def show_spectrogram(d): # from matplotlib.pyplot import specgram # specgram(d, NFFT=256, Fs=fs) f, t, Sxx = signal.spectrogram(d, fs, nperseg=256) plt.pcolormesh(t, f, Sxx) plt.ylabel('Frequency [Hz]') plt.xlabel('Time [sec]') plt.show() def show_fft(d): fft = np.fft.fft(d) x = np.arange(d.shape[0]) plt.plot(x, fft) plt.ylabel('FFT') plt.xlabel('Time [sec]') plt.show() sample = data[fs * 70:fs * 80] wavfile.write('sample.wav', fs, sample) # sd.play(sample, fs, blocking=True) # show_pcm(data) # show_fft(data) show_spectrogram(data) if input("cont: ").lower() == 'n': exit() output_frames = fs * output_seconds print(fs) # data = np.fft.fft(data) def find_ngrams(input_list, n): return zip(*[input_list[i:] for i in range(n)]) # for each step, take each pair an transitionsL = defaultdict(Counter) # transitionsR = defaultdict(Counter) bs = 1 # sd.play(sample, fs, blocking=True) print("Training") prog = pyprind.ProgBar(sample.shape[0], stream=1) for gram in find_ngrams(sample, n_gram): # learn the difference between each step given a history transitionsL[gram[0]][gram[1] - gram[0]] += 1 prog.update() # transitionsR[gram[0][1]][gram[1][1]] += 1 generated = np.zeros_like(data[:output_frames]) # choose a random starting frame from the transition table # stateL = np.random.choice(list(transitionsL.keys())) all_states = list(transitionsL.keys()) stateL = random.choice(all_states) prog = pyprind.ProgBar(output_frames + 1, width=64, stream=1) print("\nGenerating") restarts = 0 for i in range(output_frames): node = transitionsL[stateL] if len(node) == 0: restarts += 1 stateL = random.choice(all_states) node = transitionsL[stateL] counts = np.array(list(node.values()), dtype=np.float32) keys = list(node.keys()) key_idxs = np.arange(len(keys)) ps = counts / counts.sum() col_idx = np.random.choice(key_idxs, p=ps) generated[i] = stateL + keys[col_idx] generated[i] *= bs stateL = stateL + keys[col_idx] # stateR prog.update() print("Restarts={}".format(restarts / output_frames)) # generated = np.fft.ifft(generated).real print("\nPlaying") all_frames = np.concatenate((sample, generated)) sd.play(generated, fs, blocking=True) print("Finished playing") wavfile.write(outname, fs, all_frames) print(sp.check_output([ffmpeg, '-i', outname, '-vn', '-ar', '44100', '-ac', '2', '-ab', '192k', '-y', '-f', 'mp3', outname[:-4] + '.mp3']))
python
#!/usr/bin/python3.7 import subprocess import sys v = sys.argv[1] subprocess.call(["amixer", "sset", "Speaker", v + "%"])
python
from PyQt5.QtWidgets import QWidget, QGridLayout, QComboBox, \ QLabel, QVBoxLayout, QSizePolicy, \ QCheckBox, QLineEdit, QPushButton, QHBoxLayout, \ QSpinBox, QTabWidget, QMessageBox from PyQt5.QtCore import Qt, pyqtSlot from PyQt5.QtGui import QFont from utils import HSep, VSep from constants import COMP_MODE__QUALIFYING_LAPS, \ COMP_MODE__QUALIFYING_TIME, \ COMP_MODE__QUALIFYING_LAPS_SEQ, \ COMP_MODE__QUALIFYING_TIME_SEQ, \ COMP_MODE__RACE_LAPS, \ COMP_MODE__RACE_TIME, \ DUMMY_IDS class CompTime(QWidget): def __init__(self, parent=None): super().__init__(parent) self.vbox = QVBoxLayout(self) self.dtext = QLabel(self.tr('Duration in minutes:')) self.vbox.addWidget(self.dtext) self.duration = QSpinBox() self.duration.setMinimum(1) self.duration.setSuffix(self.tr(' Minutes')) self.duration.setValue(10) self.vbox.addWidget(self.duration) self.setLayout(self.vbox) class CompLaps(QWidget): def __init__(self, parent=None): super().__init__(parent) self.vbox = QVBoxLayout(self) self.dtext = QLabel(self.tr('Duration in laps')) self.vbox.addWidget(self.dtext) self.duration = QSpinBox() self.duration.setMinimum(1) self.duration.setSuffix(self.tr(' Laps')) self.duration.setValue(20) self.vbox.addWidget(self.duration) self.setLayout(self.vbox) class RaceParams(QWidget): def __init__(self, parent=None): super().__init__(parent) self.vbox = QVBoxLayout(self) self.modetab = QTabWidget() self.vbox.addWidget(self.modetab) self.complaps = CompLaps() self.modetab.addTab(self.complaps, self.tr('Laps')) self.comptime = CompTime() self.modetab.addTab(self.comptime, self.tr('Time')) self.setLayout(self.vbox) def getCompMode(self): if self.modetab.currentWidget() == self.complaps: return COMP_MODE__RACE_LAPS if self.modetab.currentWidget() == self.comptime: return COMP_MODE__RACE_TIME def getDuration(self): if self.modetab.currentWidget() == self.complaps: return self.complaps.duration.value() if self.modetab.currentWidget() == self.comptime: return self.comptime.duration.value() class QualifyingParams(QWidget): def __init__(self, parent=None): super().__init__(parent) self.vbox = QVBoxLayout(self) self.modetab = QTabWidget() self.vbox.addWidget(self.modetab) self.complaps = CompLaps() self.modetab.addTab(self.complaps, self.tr('Laps')) self.comptime = CompTime() self.modetab.addTab(self.comptime, self.tr('Time')) self.sequential = QCheckBox() self.sequential.setText(self.tr('Sequential')) self.vbox.addWidget(self.sequential) self.setLayout(self.vbox) def getCompMode(self): if self.modetab.currentWidget() == self.complaps: if self.sequential.isChecked(): return COMP_MODE__QUALIFYING_LAPS_SEQ return COMP_MODE__QUALIFYING_LAPS if self.modetab.currentWidget() == self.comptime: if self.sequential.isChecked(): return COMP_MODE__QUALIFYING_TIME_SEQ return COMP_MODE__QUALIFYING_TIME def getDuration(self): if self.modetab.currentWidget() == self.complaps: return self.complaps.duration.value() if self.modetab.currentWidget() == self.comptime: return self.comptime.duration.value() class ControllerSet(QWidget): def __init__(self, parent=None, database=None): super().__init__(parent) self.database = database self.controller = QGridLayout() self.controller_ok = [] self.controller_name = [] self.controller_car = [] cars = self.database.getAllCars() self.carlbl = self.tr('Select Car') self.carsep = '---' for i in range(0, 6): ok = QCheckBox() ok.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Maximum) ok.setText(self.tr('Controller ') + str(i+1)) self.controller.addWidget(ok, 0, i) self.controller_ok.append(ok) name = QLineEdit() name.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Maximum) self.controller.addWidget(name, 1, i) self.controller_name.append(name) car = QComboBox() car.addItem(self.carlbl) car.addItem(self.carsep) for c in cars: car.addItem(c.name) self.controller.addWidget(car, 2, i) self.controller_car.append(car) self.setLayout(self.controller) def getCar(self, addr): t = self.controller_car[addr].currentText() if t in [self.carlbl, self.carsep]: QMessageBox.information( self, self.tr("No car selected"), str(self.tr("Please select a car for Controller ") + str(addr+1) + '.'), QMessageBox.Ok) raise KeyError return self.controller_car[addr].currentText() def getOk(self, addr): return self.controller_ok[addr].isChecked() def getName(self, addr): name = self.controller_name[addr].text() if name is None or len(name) <= 0: QMessageBox.information( self, self.tr("Driver name missing"), str(self.tr("Please enter a driver name for Controller ") + str(addr+1) + '.'), QMessageBox.Ok) raise KeyError return name def setCar(self, addr, car): index = self.controller_car[addr].findText(car) if index >= 0: self.controller_car[addr].setCurrentIndex(index) def setOk(self, addr, checked): self.controller_ok[addr].setChecked(checked) def setName(self, addr, name): self.controller_name[addr].setText(name) def buildCarList(self): cars = self.database.getAllCars() for i in range(0, 6): cw = self.controller_car[i] car = cw.currentText() cw.clear() cw.addItem(self.carlbl) cw.addItem(self.carsep) for c in cars: cw.addItem(c.name) index = cw.findText(car) if index >= 0: cw.setCurrentIndex(index) class Home(QWidget): def __init__(self, parent=None, database=None): super().__init__(parent) self.database = database self.initUI() def initUI(self): self.controller = ControllerSet(self, self.database) self.vml = QVBoxLayout() self.vml.setSpacing(10) self.headFont = QFont() self.headFont.setPointSize(45) self.headFont.setBold(True) self.headline = QLabel(self.tr('Carrera RMS')) self.headline.setFont(self.headFont) self.vml.addWidget(self.headline) self.vml.addWidget(HSep()) self.vml.addWidget(self.controller) self.vml.addWidget(HSep()) self.starts = QHBoxLayout() self.vml.addLayout(self.starts) self.vml.addWidget(HSep()) self.start_training = QPushButton() self.start_training.setText(self.tr('Training')) self.start_training.clicked.connect(self.startTraining_click) self.start_training.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.starts.addWidget(self.start_training) self.starts.addWidget(VSep()) self.qualifyingparams = QualifyingParams() self.qualifyingparams.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Maximum) self.qhbox = QVBoxLayout() self.qhbox.addWidget(self.qualifyingparams) self.start_qualifying = QPushButton() self.start_qualifying.setText(self.tr('Qualifying')) self.start_qualifying.clicked.connect(self.startQualifying_click) self.start_qualifying.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.qhbox.addWidget(self.start_qualifying) self.starts.addLayout(self.qhbox) self.starts.addWidget(VSep()) self.raceparams = RaceParams() self.raceparams.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Maximum) self.rhbox = QVBoxLayout() self.rhbox.addWidget(self.raceparams) self.start_race = QPushButton() self.start_race.setText(self.tr('Race')) self.start_race.clicked.connect(self.startRace_click) self.start_race.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.rhbox.addWidget(self.start_race) self.starts.addLayout(self.rhbox) self.btnrow = QHBoxLayout() self.fullscreen = QPushButton() self.fullscreen.setText(self.tr('Fullscreen')) self.fullscreen.clicked.connect(self.fullscreen_click) self.btnrow.addWidget(self.fullscreen) self.statistics = QPushButton() self.statistics.setText(self.tr('Statistics')) self.btnrow.addWidget(self.statistics) self.settings = QPushButton() self.settings.setText(self.tr('Settings')) self.settings.clicked.connect(self.settings_click) self.btnrow.addWidget(self.settings) self.vml.addLayout(self.btnrow) self.exitrms = QPushButton() self.exitrms.setText(self.tr('Exit')) self.exitrms.clicked.connect(self.exitrms_click) self.vml.addWidget(self.exitrms) self.setLayout(self.vml) @pyqtSlot() def settings_click(self): self.parent().parent().showSettings() @pyqtSlot() def exitrms_click(self): self.parent().parent().close() @pyqtSlot() def fullscreen_click(self): if self.parent().parent().windowState() & Qt.WindowFullScreen: if self.parent().parent().cuv not in DUMMY_IDS: self.parent().parent().showMaximized() else: self.parent().parent().showNormal() self.fullscreen.setText(self.tr('Fullscreen')) else: self.parent().parent().showFullScreen() self.fullscreen.setText(self.tr('Exit Fullscreen')) def getDrivers(self): d = {} for i in range(0, 6): if self.getOk(i): c = self.getCar(i) p = {'pos': 0, 'name': self.getName(i), 'car': c} if self.qualifyingparams.getCompMode() in [ COMP_MODE__QUALIFYING_LAPS_SEQ, COMP_MODE__QUALIFYING_TIME_SEQ]: p['qualifying_cu_driver'] = None d[i] = p return d @pyqtSlot() def startRace_click(self): try: self.parent().parent().drivers = self.getDrivers() self.parent().parent().startRace(self.raceparams.getCompMode(), self.raceparams.getDuration()) except KeyError: pass @pyqtSlot() def startQualifying_click(self): try: self.parent().parent().drivers = self.getDrivers() self.parent().parent().startQualifying( self.qualifyingparams.getCompMode(), self.qualifyingparams.getDuration()) except KeyError: pass @pyqtSlot() def startTraining_click(self): try: self.parent().parent().drivers = self.getDrivers() self.parent().parent().startTraining() except KeyError: pass def getCar(self, addr): return self.controller.getCar(addr) def getOk(self, addr): return self.controller.getOk(addr) def getName(self, addr): return self.controller.getName(addr) def setCar(self, addr, car): self.controller.setCar(addr, car) def setOk(self, addr, checked): self.controller.setOk(addr, checked) def setName(self, addr, name): self.controller.setName(addr, name) def buildCarList(self): self.controller.buildCarList()
python
import twoLSTMcuda as t model = t.torch.load(open("twoLSTMentireModel.npy", 'rb')) print(t.checkAcc(model, t.data, t.labels)) print(t.checkAcc(model, t.valData, t.valLabels))
python
### ### Copyright (C) 2018-2019 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### from ....lib import * from ..util import * import os @slash.requires(have_ffmpeg) @slash.requires(have_ffmpeg_vaapi_accel) class TranscoderTest(slash.Test): def before(self): self.refctx = [] def transcode_1to1(self): self.decoded = get_media()._test_artifact( "{case}_{width}x{height}_{mode}.{dstextension}".format(**vars(self))) if vars(self).get("mode", None) == 'hwhw': self.output = call( "ffmpeg -hwaccel vaapi -hwaccel_device /dev/dri/renderD128 -v verbose" " -hwaccel_output_format vaapi -i {source} -an -c:v {mcodec}" " -vframes {frames} -y {decoded}".format(**vars(self))) elif vars(self).get("mode", None) == 'hwsw': self.output = call( "ffmpeg -hwaccel vaapi -hwaccel_device /dev/dri/renderD128 -v verbose" " -hwaccel_output_format vaapi -i {source} -vf 'hwdownload,format=nv12' -an -c:v {mcodec}" " -vframes {frames} -y {decoded}".format(**vars(self))) elif vars(self).get("mode", None) == 'swhw': self.output = call( "ffmpeg -vaapi_device /dev/dri/renderD128 -v verbose " "-i {source} -vf 'format=nv12,hwupload' -an -c:v {mcodec}" " -vframes {frames} -y {decoded}".format(**vars(self))) else: assert "non supported transcoding" self.check_output() self.convert_toyuv() self.check_metrics() def check_output(self): m = re.search( "not supported for hardware decode", self.output, re.MULTILINE) assert m is None, "Failed to use hardware decode" m = re.search( "hwaccel initialisation returned error", self.output, re.MULTILINE) assert m is None, "Failed to use hardware decode" def convert_toyuv(self): self.decodedYUV = get_media()._test_artifact( "{case}_{width}x{height}_{mode}_{mcodec}.yuv".format(**vars(self))) call("ffmpeg -i {decoded} -pix_fmt yuv420p -vframes {frames} -y {decodedYUV}".format(**vars(self))) #src file to yuv self.referenceFile = get_media()._test_artifact( "{case}_{width}x{height}_{mode}_ref.yuv".format(**vars(self))) call("ffmpeg -i {source} -pix_fmt yuv420p -vframes {frames} -y {referenceFile}".format(**vars(self))) def check_metrics(self): get_media().baseline.check_psnr( psnr = calculate_psnr( self.referenceFile, self.decodedYUV, self.width, self.height, self.frames), context = self.refctx, )
python
from django.shortcuts import * from django.http import * from django.shortcuts import * from django.urls import * import traceback import json from .models import * from django.db.utils import IntegrityError from django.db.models import F from .crypto import * import math from account_info.models import User from wallet_info.models import Wallet from task_info.models import Task from accept_task_info.models import AcceptTask # Create your views here. MAX_PAGE_ITEMS = 6 def dealResponse(status_code, res_text={}): traceback.print_exc() dic = { 400 : 'Decode Failed', 406 : 'Verification Failed', 200 : 'Standard Successed', 201 : 'Create Resource Successed', 409 : 'Confict Field or MultipleAcceptance', 500 : 'Unknown Server Error', 404 : 'Not Exist', 416 : 'OutOfRange or CompletedTask', 401 : 'Unauthorized', 403 : 'TaskBeenFinished' } traceback.print_exc() print('[+] ' + dic[status_code]) res_text['status_code'] = status_code resp = HttpResponse(encrypt(json.dumps(res_text))) # resp.status_code = status_code return resp def operate_task(request): """ if not request.method == 'GET' and not request.method == 'POST': put = QueryDict(request.body) id = put.get('taskID') username = put.get('issuer') print(put) print(id) print(username) return dealResponse(200) """ if request.method == 'GET': try: id = decrypt(request.GET['taskID']) except: return dealResponse(400) try: result = Task.objects.get(taskID=id) except Task.DoesNotExist: return dealResponse(404) res_text = { 'data':{ 'title' : result.title, 'content' : result.content, 'type' : result.types, 'issuer' : result.issuer.username, 'reward' : result.reward, 'deadline' : result.deadline, 'repeatTime' : result.repeatTime, 'isCompleted' : result.isCompleted, } } return dealResponse(200, res_text) elif request.method == 'POST': try: raw_string = decrypt(str(request.body, 'utf-8')) content = json.loads(raw_string) ttitle = content['title'] tcontent = content['content'] ttype = content['type'] tissuer = content['issuer'] treward = content['reward'] trepeatTime = content['repeatTime'] tdeadline = content['deadline'] except: return dealResponse(400) try: user = User.objects.get(username=tissuer) except User.DoesNotExist: return dealResponse(404) task = Task(title=ttitle, content=tcontent, types=ttype,\ issuer=user, reward=treward, repeatTime=trepeatTime,\ deadline=tdeadline, ) task.save() return dealResponse(201, {"data":{"taskID":task.taskID}}) """ elif request.method == 'DELETE': try: id = decrypt(request.DELETE['taskID']) username = decrypt(request.DELETE['issuer']) except: return dealResponse(400) try: result = Task.objects.get(taskID=id) except Task.DoesNotExist: return dealResponse(404) if result.issuer.username != username: return dealResponse(401) result.isCompleted = True result.save() return dealResponse(200) """ def task_finished(request): try: # id = decrypt(request.POST['taskID']) # username = decrypt(request.POST['issuer']) raw_string = decrypt(str(request.body, 'utf-8')) content = json.loads(raw_string) id = content['taskID'] username = content['issuer'] except: return dealResponse(400) try: result = Task.objects.get(taskID=id) except Task.DoesNotExist: return dealResponse(404) if result.issuer.username != username: return dealResponse(401) result.isCompleted = True result.save() return dealResponse(200) def get_tasks(request): try: page = int(decrypt(request.GET['page'])) title = decrypt(request.GET.get('title', default='')) types = decrypt(request.GET.get('type', default='')) issuer = decrypt(request.GET.get('issuer', default='')) content = decrypt(request.GET.get('content', default='')) isCompleted = decrypt(request.GET.get('isComplete', default='')) except: return dealResponse(400) dic = {} if title != '': dic['title'] = title if types != '': dic['types'] = types if issuer != '': dic['issuer'] = issuer if content != '': dic['content'] = content if isCompleted != '': if isCompleted == 'true': dic['isCompleted'] = True elif isCompleted == 'false': dic['isCompleted'] = False result = Task.objects.filter(**dic) # for item in result: # print(item.taskID) max_pages = math.ceil(float(len(result)) / MAX_PAGE_ITEMS) if page > max_pages or page <= 0: return dealResponse(416, {"data": {"max_pages": max_pages}}) page = page - 1 resp = {"data" : { "tasks" : [], "max_pages" : max_pages } } startid = page * MAX_PAGE_ITEMS endid = min(len(result), (page+1)*MAX_PAGE_ITEMS) for i in range(startid, endid): oner = { "taskID": result[i].taskID, "title": result[i].title, "content": result[i].content, "type": result[i].types, "issuer": result[i].issuer.username, "reward": result[i].reward, "deadline": result[i].deadline, "repeatTime": result[i].repeatTime, # "isCompleted": result[i].isCompleted, } resp['data']['tasks'].append(oner) return dealResponse(200, resp) def operate_created_tasks(request): if request.method == 'GET': try: page = int(decrypt(request.GET['page'])) tusername = decrypt(request.GET['issuer']) except: return dealResponse(400) try: fuser = User.objects.get(username=tusername) except User.DoesNotExist: return dealResponse(404) result = Task.objects.filter(issuer=fuser) max_pages = math.ceil(float(len(result)) / MAX_PAGE_ITEMS) if page > max_pages or page <= 0: return dealResponse(416, {"data": {"max_pages": max_pages}}) page = page - 1 resp = {"data" : { "tasks" : [], "max_pages" : max_pages } } startid = page * MAX_PAGE_ITEMS endid = min(len(result), (page+1)*MAX_PAGE_ITEMS) for i in range(startid, endid): oner = { "taskID": result[i].taskID, "title": result[i].title, "content": result[i].content, "type": result[i].types, "issuer": result[i].issuer.username, "reward": result[i].reward, "deadline": result[i].deadline, "repeatTime": result[i].repeatTime, "isFinished": result[i].isCompleted, } resp['data']['tasks'].append(oner) return dealResponse(200, resp) elif request.method == 'POST': try: raw_string = decrypt(str(request.body, 'utf-8')) content = json.loads(raw_string) ttaskID = content['taskID'] ttitle = content['title'] tissuer = content['issuer'] treward = content['reward'] tdeadline = content['deadline'] except: return dealResponse(400) try: task = Task.objects.get(taskID=ttaskID) user = User.objects.get(username=tissuer) except(Task.DoesNotExist, User.DoesNotExist): return dealResponse(404) if user != task.issuer: return dealResponse(401) task.title = ttitle task.reward = treward task.deadline = tdeadline task.save() return dealResponse(200)
python
#!/usr/bin/python import unittest from utils.logger import Logger class UtLogger(unittest.TestCase): def setUp(self): self.logger = Logger().getLogger("test.utils.UtLogger") def testLogger(self): self.logger.debug("1") self.logger.info("2") self.logger.warn("3") self.logger.error("4") self.logger.critical("5") if __name__ == '__main__': unittest.main()
python
from base_n_treble import db, auth from base_n_treble.models.user import User def setup_admin(): from tests.fixtures import TEST_ADMIN db._adapter.reconnect() admins = auth.id_group("admin") if auth.id_group("admin") else auth.add_group("admin") print("Admin group id: '{}'".format(admins)) db._adapter.reconnect() admin = db.User.validate_and_insert( email=TEST_ADMIN.email, first_name=TEST_ADMIN.first_name, last_name=TEST_ADMIN.last_name, password=TEST_ADMIN.password ) db.commit() db._adapter.reconnect() auth.add_membership(admins, admin.id) print("Admin created: \n{}".format(admin.as_dict())) db.commit() return admin def remove_admin(): from tests.fixtures import TEST_ADMIN db._adapter.reconnect() print("\nRemoving test admin.") dev_admin = db(User.email == TEST_ADMIN.email).select() print("Admin: {}\n".format(dev_admin.as_dict())) db(User.email == TEST_ADMIN.email).delete() print("Test admin successfully deleted.") db.commit() def setup_user(): from tests.fixtures import TEST_USER db._adapter.reconnect() user = db.User.validate_and_insert( email=TEST_USER.email, first_name=TEST_USER.first_name, last_name=TEST_USER.last_name, password=TEST_USER.password ) db.commit() return user def remove_user(): from tests.fixtures import TEST_USER db._adapter.reconnect() print("\nRemoving test user.") dev_user = db(User.email == TEST_USER.email).select() print("Admin: {}\n".format(dev_user.as_dict())) db(User.email == TEST_USER.email).delete() print("Test user successfully deleted.") db.commit()
python
#!/usr/bin/env python # -*- coding: UTF-8 -*- import sqlite3 from flask import Flask, request, session, g, redirect, url_for, \ abort, render_template, flash from contextlib import closing # configuration DATABASE = "/tmp/flaskr.db" DEBUG = True SECRET_KEY = "development key" USERNAME= "admin" PASSWORD = "default" JSON_AS_ASCII = False app = Flask(__name__) app.config.from_object(__name__) def connect_db(): return sqlite3.connect(app.config["DATABASE"]) def init_db(): with closing(connect_db()) as db: with app.open_resource("schema.sql", mode="r") as f: db.cursor().executescript(f.read()) db.commit() @app.before_request def before_request(): g.db = connect_db() @app.teardown_request def teardown_request(exception): db = getattr(g, "db", None) if db is not None: db.close() @app.route("/") def show_entries(): cur = g.db.execute("SELECT title, text FROM entries ORDER BY id DESC") entries = [dict(title=row[0],text=row[1]) for row in cur.fetchall()] return render_template("show_entries.html", entries=entries) @app.route("/add", methods=["POST"]) def add_entry(): if not session.get("logged_in"): abort(401) g.db.execute("INSERT INTO entries (title, text) values (?, ?)", [request.form["title"], request.form["text"]]) g.db.commit() flash(u"新しいエントリが投稿されました. New entry was successfully posted.") return redirect(url_for("show_entries")) @app.route("/login", methods=["GET", "POST"]) def login(): error = None if request.method == "POST": if request.form["username"] != app.config["USERNAME"]: error = u"Invalid username, user nameが間違っています" elif request.form["password"] != app.config["PASSWORD"]: error = u"Invalid password, パスワードが間違っています" else: session["logged_in"] = True flash(u"You were logged in, ログインしました") return redirect(url_for("show_entries")) return render_template("login.html", error=error) @app.route("/logout") def logout(): session.pop("logged_in", None) flash(u"Your were logged out, ログアウトしました") return redirect(url_for("show_entries")) if __name__ == "__main__": app.run()
python
#! /usr/bin/env python import sys import os import disttools sys.path.append(os.path.abspath(os.path.dirname(__file__))) from strparser import * from filehdl import * from pyparser import * def make_string_slash_ok(s): sarr = re.split('\n', s) rets = '' for l in sarr: l = l.rstrip('\r\n') cexpr = None if len(l) > 0 and l[-1] == '\\': cexpr = get_random_name(20) cont = True while cont: cont = False matchl = re.sub(cexpr, '', l) if matchl != l: cont = True cexpr = get_random_name(20) l = re.sub('\\$', cexpr, l) l = re.sub(r'\\', r'\\\\', l) if cexpr is not None: l = re.sub(cexpr, r'\\', l) rets += '%s\n'%(l) return rets def get_import_file(fname): rets = '' started = False with open(fname,'r+b') as f: for l in f: if sys.version[0] == '3': l = l.decode('utf8') l = l.rstrip('\r\n') if not started: if l.startswith('##extractcode_start'): started = True else: if l.startswith('##extractcode_end'): started = False else: rets += l rets += '\n' return rets def make_filters_out(ims,files): cont = True jdx = 0 idx = 0 while cont: cont = False idx = 0 while idx < len(ims) and not cont: jdx = 0 while jdx < len(files) and not cont: if ims[idx].frommodule == files[jdx]: cont = True logging.info('del [%d] jdx [%d] [%s]'%(idx,jdx,ims[idx])) del ims[idx] logging.info('%s'%(ims)) break jdx += 1 idx += 1 return ims def fromat_ext_import_files(origfile,files): curbase = re.sub('\.py$','',os.path.basename(origfile)) allims = [] for f in files: allims.extend(get_import_names(f)) curims= get_import_names(origfile) curims = packed_import(curims) curims = make_filters_out(curims, files) logging.info('curims %s'%(curims)) allims = packed_import(allims) allims = make_filters_out(allims, files) logging.info('allims %s'%(allims)) cont = True seccont = True while cont: cont = False idx = 0 while idx < len(allims) : jdx = 0 while jdx < len(curims) : if allims[idx].frommodule == curims[jdx].frommodule and \ allims[idx].module == curims[jdx].module: cont = True #logging.info('del [%d] %s'%(idx,allims[idx])) del allims[idx] break jdx += 1 if cont: break idx += 1 rets = '' for m in allims: rets += '%s\n'%(format_import(m)) return rets class ReleaseFiles(object): def __init__(self, basefile=__file__): self.__includes = [] self.__basefile = basefile self.__repls = dict() return def add_python_file(self,path,rex): c = get_import_file(path) self.__repls[rex] = make_string_slash_ok(c) self.__includes.append(path) return def add_repls(self,k,v): self.__repls[k]= v return def get_repls(self): return self.__repls def get_includes(self): return self.__includes
python
import pytest import abjad import abjadext.nauert class Job: ### INITIALIZER ### def __init__(self, number): self.number = number ### SPECIAL METHODS ### def __call__(self): self.result = [ x for x in abjad.math.yield_all_compositions_of_integer(self.number) ] @pytest.mark.skip() def test_ParallelJobHandler___call___01(): jobs = [Job(x) for x in range(1, 11)] job_handler = abjadext.nauert.ParallelJobHandler() job_handler(jobs) @pytest.mark.skip() def test_ParallelJobHandler___call___02(): job_id = 1 definition = {2: {2: {2: None}, 3: None}, 5: None} search_tree = abjadext.nauert.UnweightedSearchTree(definition) q_event_proxies = [ abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent(0, ["A"], index=1), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((1, 5), ["B"], index=2), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((1, 4), ["C"], index=3), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((1, 3), ["D"], index=4), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((2, 5), ["E"], index=5), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((1, 2), ["F"], index=6), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((3, 5), ["G"], index=7), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((2, 3), ["H"], index=8), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((3, 4), ["I"], index=9), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent((4, 5), ["J"], index=10), 0, 1 ), abjadext.nauert.QEventProxy( abjadext.nauert.SilentQEvent(1, ["K"], index=11), 0, 1 ), ] job_a = abjadext.nauert.QuantizationJob(job_id, search_tree, q_event_proxies) job_b = abjadext.nauert.QuantizationJob(job_id, search_tree, q_event_proxies) assert job_a == job_b a_jobs = abjadext.nauert.SerialJobHandler()([job_a]) b_jobs = abjadext.nauert.ParallelJobHandler()([job_b]) assert len(a_jobs) == len(b_jobs) a_rtms = sorted([q_grid.root_node.rtm_format for q_grid in a_jobs[0].q_grids]) b_rtms = sorted([q_grid.root_node.rtm_format for q_grid in b_jobs[0].q_grids]) assert a_rtms == b_rtms assert sorted(a_jobs[0].q_grids, key=lambda x: x.root_node.rtm_format) == sorted( b_jobs[0].q_grids, key=lambda x: x.root_node.rtm_format )
python
""" =========== 04. Run ICA =========== This fits ICA on epoched data filtered with 1 Hz highpass, for this purpose only using fastICA. Separate ICAs are fitted and stored for MEG and EEG data. To actually remove designated ICA components from your data, you will have to run 05a-apply_ica.py. """ import itertools import logging from typing import List, Optional, Iterable, Literal from tqdm import tqdm import pandas as pd import numpy as np import mne from mne.report import Report from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs from mne.parallel import parallel_func from mne_bids import BIDSPath import config from config import make_epochs, gen_log_message, on_error, failsafe_run logger = logging.getLogger('mne-bids-pipeline') def filter_for_ica( *, raw: mne.io.BaseRaw, subject: str, session: str, run: Optional[str] = None ) -> None: """Apply a high-pass filter if needed.""" if config.ica_l_freq is None: msg = (f'Not applying high-pass filter (data is already filtered, ' f'cutoff: {raw.info["highpass"]} Hz).') logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) else: msg = f'Applying high-pass filter with {config.ica_l_freq} Hz cutoff …' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) raw.filter(l_freq=config.ica_l_freq, h_freq=None) def fit_ica(epochs, subject, session): algorithm = config.ica_algorithm fit_params = None if algorithm == 'picard': fit_params = dict(fastica_it=5) elif algorithm == 'extended_infomax': algorithm = 'infomax' fit_params = dict(extended=True) ica = ICA(method=algorithm, random_state=config.random_state, n_components=config.ica_n_components, fit_params=fit_params, max_iter=config.ica_max_iterations) ica.fit(epochs, decim=config.ica_decim, reject=config.get_ica_reject()) explained_var = (ica.pca_explained_variance_[:ica.n_components_].sum() / ica.pca_explained_variance_.sum()) msg = (f'Fit {ica.n_components_} components (explaining ' f'{round(explained_var * 100, 1)}% of the variance) in ' f'{ica.n_iter_} iterations.') logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) return ica def make_ecg_epochs( *, raw: mne.io.BaseRaw, subject: str, session: str, run: Optional[str] = None ) -> Optional[mne.Epochs]: # ECG either needs an ecg channel, or avg of the mags (i.e. MEG data) if ('ecg' in raw.get_channel_types() or 'meg' in config.ch_types or 'mag' in config.ch_types): msg = 'Creating ECG epochs …' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) # Do not reject epochs based on amplitude. ecg_epochs = create_ecg_epochs(raw, reject=None, baseline=(None, -0.2), tmin=-0.5, tmax=0.5) if len(ecg_epochs) == 0: msg = ('No ECG events could be found. Not running ECG artifact ' 'detection.') logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) ecg_epochs = None else: msg = ('No ECG or magnetometer channels are present. Cannot ' 'automate artifact detection for ECG') logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) ecg_epochs = None return ecg_epochs def make_eog_epochs( *, raw: mne.io.BaseRaw, eog_channels: Optional[Iterable[str]], subject: str, session: str, run: Optional[str] = None ) -> Optional[mne.Epochs]: if eog_channels: ch_names = eog_channels assert all([ch_name in raw.ch_names for ch_name in ch_names]) else: ch_idx = mne.pick_types(raw.info, meg=False, eog=True) ch_names = [raw.ch_names[i] for i in ch_idx] del ch_idx if ch_names: msg = 'Creating EOG epochs …' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) # Create the epochs. It's important not to reject epochs based on # amplitude! eog_epochs = create_eog_epochs(raw, ch_name=ch_names, baseline=(None, -0.2)) if len(eog_epochs) == 0: msg = ('No EOG events could be found. Not running EOG artifact ' 'detection.') logger.warning(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) eog_epochs = None else: msg = ('No EOG channel is present. Cannot automate IC detection ' 'for EOG') logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session, run=run)) eog_epochs = None return eog_epochs def detect_bad_components( *, which: Literal['eog', 'ecg'], epochs: mne.BaseEpochs, ica: mne.preprocessing.ICA, subject: str, session: str, report: mne.Report ) -> List[int]: evoked = epochs.average() artifact = which.upper() msg = f'Performing automated {artifact} artifact detection …' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) if which == 'eog': inds, scores = ica.find_bads_eog( epochs, threshold=config.ica_eog_threshold ) else: inds, scores = ica.find_bads_ecg( epochs, method='ctps', threshold=config.ica_ctps_ecg_threshold ) if not inds: adjust_setting = ('ica_eog_threshold' if which == 'eog' else 'config.ica_ctps_ecg_threshold') warn = (f'No {artifact}-related ICs detected, this is highly ' f'suspicious. A manual check is suggested. You may wish to ' f'lower "{adjust_setting}".') logger.warning(gen_log_message(message=warn, step=4, subject=subject, session=session)) else: msg = (f'Detected {len(inds)} {artifact}-related ICs in ' f'{len(epochs)} {artifact} epochs.') logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) # Mark the artifact-related components for removal ica.exclude = inds # Plot scores fig = ica.plot_scores(scores, labels=which, show=config.interactive) report.add_figs_to_section(figs=fig, captions=f'Scores - {artifact}', section=f'sub-{subject}') # Plot source time course fig = ica.plot_sources(evoked, show=config.interactive) report.add_figs_to_section(figs=fig, captions=f'Source time course - {artifact}', section=f'sub-{subject}') # Plot original & corrected data fig = ica.plot_overlay(evoked, show=config.interactive) report.add_figs_to_section(figs=fig, captions=f'Corrections - {artifact}', section=f'sub-{subject}') return inds def run_ica(subject, session=None): """Run ICA.""" task = config.get_task() bids_basename = BIDSPath(subject=subject, session=session, task=task, acquisition=config.acq, recording=config.rec, space=config.space, datatype=config.get_datatype(), root=config.get_deriv_root(), check=False) raw_fname = bids_basename.copy().update(processing='filt', suffix='raw') ica_fname = bids_basename.copy().update(suffix='ica', extension='.fif') ica_components_fname = bids_basename.copy().update(processing='ica', suffix='components', extension='.tsv') report_fname = bids_basename.copy().update(processing='ica+components', suffix='report', extension='.html') # Generate a list of raw data paths (i.e., paths of individual runs) # we want to create epochs from. raw_fnames = [] for run in config.get_runs(subject=subject): raw_fname.run = run if raw_fname.copy().update(split='01').fpath.exists(): raw_fname.update(split='01') raw_fnames.append(raw_fname) # Generate a unique event name -> event code mapping that can be used # across all runs. event_name_to_code_map = config.annotations_to_events(raw_paths=raw_fnames) # Now, generate epochs from each individual run epochs_all_runs = [] eog_epochs_all_runs = [] ecg_epochs_all_runs = [] for run, raw_fname in zip(config.get_runs(subject=subject), raw_fnames): msg = f'Loading filtered raw data from {raw_fname} and creating epochs' logger.info(gen_log_message(message=msg, step=3, subject=subject, session=session, run=run)) raw = mne.io.read_raw_fif(raw_fname, preload=True) # EOG epochs eog_epochs = make_eog_epochs(raw=raw, eog_channels=config.eog_channels, subject=subject, session=session, run=run) if eog_epochs is not None: eog_epochs_all_runs.append(eog_epochs) # ECG epochs ecg_epochs = make_ecg_epochs(raw=raw, subject=subject, session=session, run=run) if ecg_epochs is not None: ecg_epochs_all_runs.append(ecg_epochs) # Produce high-pass filtered version of the data for ICA. # Sanity check – make sure we're using the correct data! if config.resample_sfreq is not None: assert np.allclose(raw.info['sfreq'], config.resample_sfreq) if config.l_freq is not None: assert np.allclose(raw.info['highpass'], config.l_freq) filter_for_ica(raw=raw, subject=subject, session=session, run=run) # Only keep the subset of the mapping that applies to the current run event_id = event_name_to_code_map.copy() for event_name in event_id.copy().keys(): if event_name not in raw.annotations.description: del event_id[event_name] msg = 'Creating task-related epochs …' logger.info(gen_log_message(message=msg, step=3, subject=subject, session=session, run=run)) epochs = make_epochs( raw=raw, event_id=event_id, tmin=config.epochs_tmin, tmax=config.epochs_tmax, metadata_tmin=config.epochs_metadata_tmin, metadata_tmax=config.epochs_metadata_tmax, metadata_keep_first=config.epochs_metadata_keep_first, metadata_keep_last=config.epochs_metadata_keep_last, event_repeated=config.event_repeated, decim=config.decim ) epochs_all_runs.append(epochs) del raw, epochs, eog_epochs, ecg_epochs # free memory # Lastly, we can concatenate the epochs and set an EEG reference epochs = mne.concatenate_epochs(epochs_all_runs) if eog_epochs_all_runs: epochs_eog = mne.concatenate_epochs(eog_epochs_all_runs) else: epochs_eog = None if ecg_epochs_all_runs: epochs_ecg = mne.concatenate_epochs(ecg_epochs_all_runs) else: epochs_ecg = None del epochs_all_runs, eog_epochs_all_runs, ecg_epochs_all_runs epochs.load_data() if "eeg" in config.ch_types: projection = True if config.eeg_reference == 'average' else False epochs.set_eeg_reference(config.eeg_reference, projection=projection) # Now actually perform ICA. msg = 'Calculating ICA solution.' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) ica = fit_ica(epochs, subject=subject, session=session) # Start a report title = f'ICA – sub-{subject}' if session is not None: title += f', ses-{session}' if task is not None: title += f', task-{task}' report = Report(info_fname=epochs, title=title, verbose=False) # ECG and EOG component detection if epochs_ecg: ecg_ics = detect_bad_components(which='ecg', epochs=epochs_ecg, ica=ica, subject=subject, session=session, report=report) else: ecg_ics = [] if epochs_eog: eog_ics = detect_bad_components(which='eog', epochs=epochs_eog, ica=ica, subject=subject, session=session, report=report) else: eog_ics = [] # Save ICA to disk. # We also store the automatically identified ECG- and EOG-related ICs. msg = 'Saving ICA solution and detected artifacts to disk.' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) ica.exclude = sorted(set(ecg_ics + eog_ics)) ica.save(ica_fname) # Create TSV. tsv_data = pd.DataFrame( dict(component=list(range(ica.n_components_)), type=['ica'] * ica.n_components_, description=['Independent Component'] * ica.n_components_, status=['good'] * ica.n_components_, status_description=['n/a'] * ica.n_components_)) for component in ecg_ics: row_idx = tsv_data['component'] == component tsv_data.loc[row_idx, 'status'] = 'bad' tsv_data.loc[row_idx, 'status_description'] = 'Auto-detected ECG artifact' for component in eog_ics: row_idx = tsv_data['component'] == component tsv_data.loc[row_idx, 'status'] = 'bad' tsv_data.loc[row_idx, 'status_description'] = 'Auto-detected EOG artifact' tsv_data.to_csv(ica_components_fname, sep='\t', index=False) # Lastly, plot all ICs, and add them to the report for manual inspection. msg = 'Adding diagnostic plots for all ICs to the HTML report …' logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) for component_num in tqdm(range(ica.n_components_)): fig = ica.plot_properties(epochs, picks=component_num, psd_args={'fmax': 60}, show=False) caption = f'IC {component_num}' if component_num in eog_ics and component_num in ecg_ics: caption += ' (EOG & ECG)' elif component_num in eog_ics: caption += ' (EOG)' elif component_num in ecg_ics: caption += ' (ECG)' report.add_figs_to_section(fig, section=f'sub-{subject}', captions=caption) open_browser = True if config.interactive else False report.save(report_fname, overwrite=True, open_browser=open_browser) msg = (f"ICA completed. Please carefully review the extracted ICs in the " f"report {report_fname.basename}, and mark all components you wish " f"to reject as 'bad' in {ica_components_fname.basename}") logger.info(gen_log_message(message=msg, step=4, subject=subject, session=session)) @failsafe_run(on_error=on_error) def main(): """Run ICA.""" msg = 'Running Step 4: Compute ICA' logger.info(gen_log_message(step=4, message=msg)) if config.spatial_filter == 'ica': parallel, run_func, _ = parallel_func(run_ica, n_jobs=config.N_JOBS) parallel(run_func(subject, session) for subject, session in itertools.product(config.get_subjects(), config.get_sessions())) msg = 'Completed Step 4: Compute ICA' logger.info(gen_log_message(step=4, message=msg)) if __name__ == '__main__': main()
python
import logging import typing import copy from typing import Any, Dict, List, Text from rasa.nlu.components import Component from rasa.nlu.config import RasaNLUModelConfig from rasa.nlu.tokenizers.tokenizer import Token, Tokenizer from rasa.nlu.training_data import Message, TrainingData logger = logging.getLogger(__name__) if typing.TYPE_CHECKING: pass class MicroAddonsTokenizer(Tokenizer): provides = ["tokens"] language_list = ["zh"] defaults = { # default don't load custom dictionary "custom_dict": None, # Flag to check whether to split intents "intent_tokenization_flag": False, # Symbol on which intent should be split "intent_split_symbol": "_", } def __init__(self, component_config: Dict[Text, Any] = None) -> None: self.custom_dict = component_config.pop("custom_dict", None) if self.custom_dict: self.load_custom_dictionary(self.custom_dict) super().__init__(component_config) @staticmethod def load_custom_dictionary(custom_dict: Text) -> None: import MicroTokenizer MicroTokenizer.load_userdict(custom_dict) @classmethod def required_packages(cls) -> List[Text]: return ["MicroTokenizer"] def tokenize(self, message: Message, attribute: Text) -> List[Token]: import MicroTokenizer text = message.get(attribute) tokenized = MicroTokenizer.cut(text) tokens = [] offset = 0 for word in tokenized: tokens.append(Token(word, offset)) offset += len(word) return tokens
python
import datetime import enum from sqlalchemy import ( Column, Integer, String, Enum, TIMESTAMP, ForeignKey, Index, Float, ) from sqlalchemy.orm import relationship from .base import Base class SystemUpdate(Base): __tablename__ = "system_update" pk = Column(Integer, primary_key=True) system_pk = Column(Integer, ForeignKey("system.pk")) class Status(enum.Enum): SCHEDULED = 1 IN_PROGRESS = 2 SUCCESS = 3 FAILED = 4 status = Column(Enum(Status, native_enum=False), nullable=False) status_message = Column(String) # TODO: rename stack trace? total_duration = Column(Float) scheduled_at = Column(TIMESTAMP(timezone=True), default=datetime.datetime.utcnow) completed_at = Column(TIMESTAMP(timezone=True)) config = Column(String) config_template = Column(String) config_parameters = Column(String) config_source_url = Column(String) transiter_version = Column(String) system = relationship("System", back_populates="updates") __table_args__ = ( Index("system_update_system_pk_system_update_pk_idx", system_pk, pk), )
python
from italian_csv_type_prediction.simple_types import IntegerType import numpy as np def test_integer_type(): predictor = IntegerType() valids = [ 3, 6, 0, "1.000.000.00" ] invalids = [ "ciao", "12.12.94", "12.12.1994", False, True, None, np.nan ] for valid in valids: assert predictor.validate(valid) assert predictor.validate(str(valid)) for invalid in invalids: assert not predictor.validate(invalid) assert not predictor.validate(str(invalid))
python
class Node: def __init__(self, data): self.data = data self.left = None self.right = None class BinarySearchTree: def __init__(self): self.root = None def insert(self, data): new_node = Node(data) if self.root == None: self.root = new_node else: current_node = self.root while True: if data < current_node.data: if current_node.left == None: current_node.left = new_node return else: current_node = current_node.left elif data > current_node.data: if current_node.right == None: current_node.right = new_node return else: current_node = current_node.right def lookup(self, data): current_node = self.root while True: if current_node == None: return False if current_node.data == data: return True elif data < current_node.data: current_node = current_node.left else: current_node = current_node.right def dfs_in_order(self, current_node, my_list): if current_node.left: self.dfs_in_order(current_node.left, my_list) my_list.append(current_node.data) if current_node.right: self.dfs_in_order(current_node.right, my_list) return my_list def dfs_pre_order(self, current_node, my_list): my_list.append(current_node.data) if current_node.left: self.dfs_pre_order(current_node.left, my_list) if current_node.right: self.dfs_pre_order(current_node.right, my_list) return my_list def dfs_post_order(self, current_node, my_list): if current_node.left: self.dfs_post_order(current_node.left, my_list) if current_node.right: self.dfs_post_order(current_node.right, my_list) my_list.append(current_node.data) return my_list binary_search_tree = BinarySearchTree() binary_search_tree.insert(9) binary_search_tree.insert(4) binary_search_tree.insert(6) binary_search_tree.insert(20) binary_search_tree.insert(170) binary_search_tree.insert(15) binary_search_tree.insert(1) print(binary_search_tree.dfs_in_order(binary_search_tree.root, [])) print(binary_search_tree.dfs_pre_order(binary_search_tree.root, [])) print(binary_search_tree.dfs_post_order(binary_search_tree.root, []))
python
"""Parameters for the model of marine particle microbial degradation and coupling of degradation with sinking speed, part of the paper "Sinking enhances the degradation of organic particle by marine bacteria" Uria Alcolombri, François J. Peaudecerf, Vicente Fernandez, Lars Behrendt, Kang Soo Lee, Roman Stocker Nature Geosciences (2021) See Extended Data for more details on chosen parameter values. Author: Francois Peaudecerf Creation: 25.02.2019 History of modification 08.10.2019: modification of chosen parameter values 26.11.2019: modification of value of gamma_1 following new fit of experimental data 05.07.2021: editing for publication on Github """ # from __future__ import division ###### Numerical parameters ######### mu = 1e-3 # kg/m/s, dynamic viscosity of water Drho = 0.54 # kg/m^3, difference of volumic mass g = 10 # m/s^2, gravity R_0 = 4.4e-4 # m, initial radius in experiments gamma = 1.06e-10 # m/s, radius shrinking rate from experiments with no flow R_l = 125e-6 # m, minimum cut-off radius for size distribution R_g = 750e-6 # m, maximum cut-off radius for size distribution z_0 = 100 # m, depth of particle distribution C = 200e3 # m-3, total particle abundance beta = 4.0 # power law parameter for particle distribution omega = 0.26 # exponent in the power law for settling velocity with radius (Alldredge 1988) B = 4.18e-3 # m^(1-omega) s-1, pre-factor for settling velocity with radius (Alldredge 1988) nu = 1.20e-6 # m2/s, kinematic viscosity modified for sea water at 15 degrees C in v1 D = 1e-9 # m2/s, diffusivity for Peclet estimation delta = 0.412 # exponent in the Sherwood expression gamma1= 4.35e-10 # coefficient in the fit of degradation rate with Sh gamma2= 0.619*gamma1*(nu/D)**(1.0/3.0)*(2.0/nu)**delta # aggregate coefficient for gamma E = 4.55e-5 # kg/m^{chi}, pre-factor in the power law for dry mass as function of size (Alldredge 1988) chi = 1.125 # exponent in the power law for dry mass as function of size (Alldredge 1988) rho_dry= 15 # kg/m^3, dry mass per unit volume of alginate particles # Alldredge 1988: Alldredge, A. L. & Gotschalk, C. In situ settling behavior of marine snow. Limnol. Ocean. 33, 339–35 (1988)
python
import os import json import shutil import grp from pathlib import Path def change_key(my_json, old_key, new_key): if old_key in my_json: # store the value val = my_json[old_key] # delete the old key/value pair del my_json[old_key] # error checking if new_key in my_json: print ("ERROR: new_key "+new_key+" is already in the dictionary") # re-add the value with the new key my_json[new_key] = val else: print ("ERROR: old_key "+old_key+" is not in the dictionary") def change_value(my_json, old_key, new_value): if old_key in my_json: my_json[old_key] = new_value else: print ("ERROR: old_key "+old_key+" is not in the dictionary") def up(config): submitty_filename = str(Path(config.submitty['submitty_install_dir'], 'config', 'submitty.json')) submitty_filename_tmp = str(Path(config.submitty['submitty_install_dir'], 'config', 'submitty_tmp.json')) submitty_users_filename = str(Path(config.submitty['submitty_install_dir'], 'config', 'submitty_users.json')) submitty_users_filename_tmp = str(Path(config.submitty['submitty_install_dir'], 'config', 'submitty_users_tmp.json')) killall_path = Path(config.submitty['submitty_install_dir'], 'sbin', 'killall.py') INSTALL_SUBMITTY_filename = str(Path(config.submitty['submitty_install_dir'], '.setup', 'INSTALL_SUBMITTY.sh')) print ("my path",killall_path) # stop the old scheduler daemon, if it is still in use -- was deprecated in early Spring 2018 os.system("systemctl stop submitty_grading_scheduler") try: os.remove("/etc/systemd/system/submitty_grading_scheduler.service") except OSError: pass # stop all jobs that are using hwphp and hwcron os.system("systemctl stop submitty_autograding_worker") os.system("systemctl stop submitty_autograding_shipper") os.system("systemctl stop apache2.service") os.system("systemctl stop php7.0-fpm.service") os.system("su -c 'crontab -r' hwcron") os.system("su -c '"+str(killall_path)+"' hwcron") # change the usernames os.system("usermod -l submitty_php hwphp") os.system("usermod -l submitty_cgi hwcgi") os.system("usermod -l submitty_daemon hwcron") # change the group names os.system("groupmod --new-name submitty_daemon hwcron") os.system("groupmod --new-name submitty_php hwphp") os.system("groupmod --new-name submitty_cgi hwcgi") os.system("groupmod --new-name submitty_daemonphp hwcronphp") os.system("groupmod --new-name submitty_course_builders course_builders") # cannot restart until the submitty code is installed print ("WARNING: You will need to manually restart the website/shipper/worker") print (" systemctl start apache2.service") print (" systemctl start php7.0-fpm.service") print (" systemctl start submitty_autograding_shipper") print (" systemctl start submitty_autograding_worker") if os.path.exists("/home/hwcron"): shutil.move("/home/hwcron","/home/submitty_daemon") if os.path.exists("/home/hwphp"): shutil.move("/home/hwphp","/home/submitty_php") if os.path.exists("/home/hwcgi"): shutil.move("/home/hwcgi","/home/submitty_cgi") # edit the variables stored by configure submitty/installation with open (submitty_filename,"r") as open_file: my_json = json.load(open_file) change_value(my_json,"submitty_repository","/usr/local/submitty/GIT_CHECKOUT/Submitty") with open (submitty_filename_tmp,"w") as open_file: json.dump(my_json,open_file,indent=4) # write to another file & then remove the write permissions shutil.move(submitty_filename_tmp,submitty_filename) os.chmod(submitty_filename, 0o440) os.chown(submitty_filename, os.getuid(), grp.getgrnam('submitty_daemonphp').gr_gid) with open (submitty_users_filename,"r") as open_file: my_json = json.load(open_file) change_key(my_json,"hwcron_uid","daemon_uid") change_key(my_json,"hwcron_gid","daemon_gid") change_key(my_json,"hwcron_user","daemon_user") change_value(my_json,"daemon_user","submitty_daemon") change_value(my_json,"course_builders_group","submitty_course_builders") change_key(my_json,"hwphp_uid","php_uid") change_key(my_json,"hwphp_gid","php_gid") change_key(my_json,"hwphp_user","php_user") change_value(my_json,"php_user","submitty_php") change_key(my_json,"hwcgi_user","cgi_user") change_value(my_json,"cgi_user","submitty_cgi") change_key(my_json,"hwcronphp_group","daemonphp_group") change_value(my_json,"daemonphp_group","submitty_daemonphp") with open (submitty_users_filename_tmp,"w") as open_file: json.dump(my_json,open_file,indent=4) # write to another file & then remove the write permissions shutil.move(submitty_users_filename_tmp,submitty_users_filename) os.chmod(submitty_users_filename, 0o440) os.chown(submitty_users_filename, os.getuid(), grp.getgrnam('submitty_daemonphp').gr_gid) os.chmod(INSTALL_SUBMITTY_filename, 0o700) os.system("sed -i -e \"s|'course_builders'|'submitty_course_builders'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWCRON_USER='hwcron'|DAEMON_USER='submitty_daemon'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWCRON_UID|DAEMON_UID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWCRON_GID|DAEMON_GID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWPHP_USER='hwphp'|PHP_USER='submitty_php'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWPHP_UID|PHP_UID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWPHP_GID|PHP_GID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWCGI_USER='hwcgi'|CGI_USER='submitty_cgi'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|HWCRONPHP_GROUP='hwcronphp'|DAEMONPHP_GROUP='submitty_daemonphp'|g\" "+INSTALL_SUBMITTY_filename) os.chmod(INSTALL_SUBMITTY_filename, 0o500) # repair & restart apache & phpfpm APACHE_FILENAME="/etc/apache2/sites-enabled/submitty.conf" os.system("sed -i -e \"s|hwcgi|submitty_cgi|g\" "+APACHE_FILENAME) APACHE_FILENAME2="/etc/apache2/sites-enabled/submitty_http.conf" os.system("sed -i -e \"s|hwcgi|submitty_cgi|g\" "+APACHE_FILENAME2) APACHE_FILENAME3="/etc/apache2/sites-enabled/vcs.conf" os.system("sed -i -e \"s|hwcgi|submitty_cgi|g\" "+APACHE_FILENAME3) PHPFPM_FILENAME="/etc/php/7.0/fpm/pool.d/submitty.conf" os.system("sed -i -e \"s|hwphp|submitty_php|g\" "+PHPFPM_FILENAME) os.system("systemctl start apache2.service") os.system("systemctl start php7.0-fpm.service") print ("finished migration changing system user names") pass def down(config): submitty_users_filename = str(Path(config.submitty['submitty_install_dir'], 'config', 'submitty_users.json')) submitty_users_filename_tmp = str(Path(config.submitty['submitty_install_dir'], 'config', 'submitty_users_tmp.json')) killall_path = Path(config.submitty['submitty_install_dir'], 'sbin', 'killall.py') INSTALL_SUBMITTY_filename = str(Path(config.submitty['submitty_install_dir'], '.setup', 'INSTALL_SUBMITTY.sh')) # stop all jobs that are using submitty_php and submitty_daemon os.system("systemctl stop submitty_autograding_worker") os.system("systemctl stop submitty_autograding_shipper") os.system("systemctl stop apache2.service") os.system("systemctl stop php7.0-fpm.service") os.system("su -c 'crontab -r' submitty_daemon") os.system("su -c '"+str(killall_path)+"' submitty_daemon") # change the usernames os.system("usermod -l hwphp submitty_php") os.system("usermod -l hwcgi submitty_cgi") os.system("usermod -l hwcron submitty_daemon") # change the group names os.system("groupmod --new-name hwcron submitty_daemon") os.system("groupmod --new-name hwphp submitty_php") os.system("groupmod --new-name hwcgi submitty_cgi") os.system("groupmod --new-name hwcronphp submitty_daemonphp") os.system("groupmod --new-name course_builders submitty_course_builders") # cannot restart until the submitty code is installed print ("WARNING: You will need to manually restart the website/shipper/worker") print (" systemctl start apache2.service") print (" systemctl start php7.0-fpm.service") print (" systemctl start submitty_autograding_shipper") print (" systemctl start submitty_autograding_worker") if os.path.exists("/home/submitty_daemon"): shutil.move("/home/submitty_daemon","/home/hwcron") if os.path.exists("/home/submitty_php"): shutil.move("/home/submitty_php","/home/hwphp") if os.path.exists("/home/submitty_cgi"): shutil.move("/home/submitty_cgi","/home/hwcgi") # edit the variables stored by configure submitty/installation with open (submitty_users_filename,"r") as open_file: my_json = json.load(open_file) change_key(my_json,"daemon_uid","hwcron_uid") change_key(my_json,"daemon_gid","hwcron_gid") change_key(my_json,"daemon_user","hwcron_user") change_value(my_json,"hwcron_user","hwcron") change_value(my_json,"course_builders_group","course_builders") change_key(my_json,"php_uid","hwphp_uid") change_key(my_json,"php_gid","hwphp_gid") change_key(my_json,"php_user","hwphp_user") change_value(my_json,"hwphp_user","hwphp") change_key(my_json,"cgi_user","hwcgi_user") change_value(my_json,"hwcgi_user","hwcgi") change_key(my_json,"daemonphp_group","hwcronphp_group") change_value(my_json,"hwcronphp_group","hwcronphp") # write to another file & then remove the write permissions with open (submitty_users_filename_tmp,"w") as open_file: json.dump(my_json,open_file,indent=4) shutil.move(submitty_users_filename_tmp,submitty_users_filename) os.chmod(submitty_users_filename, 0o440) os.chown(submitty_users_filename, os.getuid(), grp.getgrnam('hwcronphp').gr_gid) os.chmod(INSTALL_SUBMITTY_filename, 0o700) os.system("sed -i -e \"s|'submitty_course_builders'|'course_builders'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|DAEMON_USER='submitty_daemon'|HWCRON_USER='hwcron'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|DAEMON_UID|HWCRON_UID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|DAEMON_GID|HWCRON_GID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|PHP_USER='submitty_php'|HWPHP_USER='hwphp'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|PHP_UID|HWPHP_UID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|PHP_GID|HWPHP_GID|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|CGI_USER='submitty_cgi'|HWCGI_USER='hwcgi'|g\" "+INSTALL_SUBMITTY_filename) os.system("sed -i -e \"s|DAEMONPHP_GROUP='submitty_daemonphp'|HWCRONPHP_GROUP='hwcronphp'|g\" "+INSTALL_SUBMITTY_filename) os.chmod(INSTALL_SUBMITTY_filename, 0o500) # repair & restart apache & phpfpm APACHE_FILENAME="/etc/apache2/sites-enabled/submitty.conf" os.system("sed -i -e \"s|submitty_cgi|hwcgi|g\" "+APACHE_FILENAME) APACHE_FILENAME2="/etc/apache2/sites-enabled/submitty_http.conf" os.system("sed -i -e \"s|submitty_cgi|hwcgi|g\" "+APACHE_FILENAME2) APACHE_FILENAME3="/etc/apache2/sites-enabled/vcs.conf" os.system("sed -i -e \"s|submitty_cgi|hwcgi|g\" "+APACHE_FILENAME3) PHPFPM_FILENAME="/etc/php/7.0/fpm/pool.d/submitty.conf" os.system("sed -i -e \"s|submitty_php|hwphp|g\" "+PHPFPM_FILENAME) os.system("systemctl start apache2.service") os.system("systemctl start php7.0-fpm.service") print ("finished rollback of migration changing system user names") pass
python
from pytari2600.pytari2600 import new_atari emulator = new_atari("../../roms/dragster.a26", headless=False) while True: emulator.core.step() # print("---AFTER EXECUTION---" + str(emulator.stella.clocks.system_clock)) # print(emulator.stella.display_cache)
python
# # -*- coding: utf-8 -*- # """ # Created on Fri May 8 17:08:43 2020 #%% import numpy as np import matplotlib.pyplot as plt from scipy.constants import pi, c from numpy.fft import fft, ifft, fftshift #%% def calculate_spectrum(z, E, H, f=3.7e9): k0 = 2*pi*f/c lambda0 = c/f # fourier domain points B = 2**18 Efft = np.fft.fftshift(np.fft.fft(E,B)) Hfft = np.fft.fftshift(np.fft.fft(H,B)) # fourier domain bins dz = z[1] - z[0] # assumes spatial period is constant df = 1/(B*dz) K = np.arange(-B/2,+B/2) # spatial frequency bins Fz= K*df # parallel index is kz/k0 nz= (2*pi/k0)*Fz # ~ power density spectrum p = (dz)**2/lambda0 * (1/2*Efft*np.conj(Hfft)) return(nz,p) #%% def spectrum_from_HFSS_file(Ereal, Eimag, Hreal, Himag, f): x,y,z,Ex_re,Ey_re,Ez_re = np.loadtxt(Ereal, skiprows=2, unpack=True) x,y,z,Ex_im,Ey_im,Ez_im = np.loadtxt(Eimag, skiprows=2, unpack=True) x,y,z,Hx_re,Hy_re,Hz_re = np.loadtxt(Hreal, skiprows=2, unpack=True) x,y,z,Hx_im,Hy_im,Hz_im = np.loadtxt(Himag, skiprows=2, unpack=True) # create a curvilinear _s = np.sqrt((x - x[0])**2 + (y - y[0])**2 + (z - z[0])**2) _Ex = Ex_re + 1j*Ex_im _Ey = Ey_re + 1j*Ey_im _Ez = Ez_re + 1j*Ez_im _Hx = Hx_re + 1j*Hx_im _Hy = Hy_re + 1j*Hy_im _Hz = Hz_re + 1j*Hz_im # replace NaN with 0 _Ex = np.nan_to_num(_Ex) _Ey = np.nan_to_num(_Ey) _Ez = np.nan_to_num(_Ez) _Hx = np.nan_to_num(_Hx) _Hy = np.nan_to_num(_Hy) _Hz = np.nan_to_num(_Hz) # nextpow 2 nb_s = int(2**np.ceil(np.log2(len(_s)))) s = np.linspace(np.min(_s), np.max(_s), num=nb_s) # interpolated field on this regular mesh Ex = np.interp(s, _s, _Ex) Ey = np.interp(s, _s, _Ey) Ez = np.interp(s, _s, _Ez) Hx = np.interp(s, _s, _Hx) Hy = np.interp(s, _s, _Hy) Hz = np.interp(s, _s, _Hz) N = 1000 s = np.pad(s, N, mode='reflect', reflect_type='odd') Ey = np.pad(Ey, N) Hx = np.pad(Ey, N) nz, p = calculate_spectrum(s, Ey, -Hx, f=f0) return p, nz #%% monopole and dipole in curved model f0 = 55e6 w0 = 2*pi*f0 k0 = w0/c Ereal = 'WEST_ICRH_Curved_Vacuum_monopole_Ereal.fld' Eimag = 'WEST_ICRH_Curved_Vacuum_monopole_Eimag.fld' Hreal = 'WEST_ICRH_Curved_Vacuum_monopole_Hreal.fld' Himag = 'WEST_ICRH_Curved_Vacuum_monopole_Himag.fld' p_curved_monopole, nz_curved_monopole = spectrum_from_HFSS_file(Ereal, Eimag, Hreal, Himag, f=f0) Ereal = 'WEST_ICRH_Curved_Vacuum_dipole_Ereal.fld' Eimag = 'WEST_ICRH_Curved_Vacuum_dipole_Eimag.fld' Hreal = 'WEST_ICRH_Curved_Vacuum_dipole_Hreal.fld' Himag = 'WEST_ICRH_Curved_Vacuum_dipole_Himag.fld' p_curved_dipole, nz_curved_dipole = spectrum_from_HFSS_file(Ereal, Eimag, Hreal, Himag, f=f0) #%% # cut values over than |k|>100 _kz_all = np.real(k0*nz_curved_dipole) _kz = _kz_all[np.abs(_kz_all)<100] _pz = p_curved_dipole[np.abs(_kz_all)<100] np.savetxt('WEST_ICRH_Spectrum_vacuum.csv', np.vstack([_kz, _pz]).T, header='kz \t 1D power density spectrum [a.u.]') #%% fig, ax = plt.subplots() # ax.plot(k0*nz_flat, np.abs(p_flat)/np.max(np.abs(p_flat)) ) # ax.plot(k0*nz_curved_dipole, np.abs(p_curved_dipole)/np.max(np.abs(p_curved_dipole)), lw=2 ) # ax.plot(k0*nz_curved_monopole, np.abs(p_curved_monopole)/np.max(np.abs(p_curved_monopole)), lw=2 ) ax.plot(k0*nz_curved_dipole, np.abs(p_curved_dipole), lw=2 ) # ax.plot(k0*nz_curved_monopole, np.abs(p_curved_monopole), lw=2 ) ax.set_xlim(-30, +30) ax.set_ylabel('Power spectrum density [a.u.]', fontsize=14) ax.set_xlabel('Toroidal wavenumber $k_z$ [$m^{-1}$]', fontsize=14) ax.set_title('WEST ICRH Antenna Power Spectrum Density (Vacuum)', fontsize=14) ax.tick_params(labelsize=14) ax.grid(True, alpha=0.2) fig.tight_layout() fig.savefig('WEST_ICRH_Spectrum_Vacuum.png', dpi=150) # % Power conservation checking # disp(['Power conservation checking : total transmited power [W] :', num2str(dnz*sum(real(dP_nz)))]) # #%% flat model - dielectric medium # Ereal = 'WEST_ICRH_Flat_Dielectric_Ereal.fld' # Eimag = 'WEST_ICRH_Flat_Dielectric_Eimag.fld' # Hreal = 'WEST_ICRH_Flat_Dielectric_Hreal.fld' # Himag = 'WEST_ICRH_Flat_Dielectric_Himag.fld' # p_flat_dielectric, nz_flat_dielectric = spectrum_from_HFSS_file(Ereal, Eimag, Hreal, Himag, f=f0) # #%% # fig, ax = plt.subplots() # ax.plot(k0*nz_flat_dielectric, np.abs(p_flat_dielectric)/np.max(np.abs(p_flat_dielectric)) ) # ax.set_xlim(-30, +30) # ax.set_ylabel('Power spectrum density [a.u.]', fontsize=14) # ax.set_xlabel('Toroidal wavenumber $k_z$ [$m^{-1}$]', fontsize=14) # ax.set_title('WEST ICRH Antenna Power Spectrum Density (Vacuum)', fontsize=14) # ax.tick_params(labelsize=14) # ax.grid(True, alpha=0.2) # fig.tight_layout()
python