content
stringlengths
0
894k
type
stringclasses
2 values
import scapy.all as scapy import time from iemlav import logger class SynFlood(object): """SynFlood Class.""" def __init__(self, debug=False): """ Initialize SynFlood. Args: debug (bool): Log on terminal or not Raises: None Returns: None """ # Initialize logger self.logger = logger.IemlAVLogger( __name__, debug=debug ) # Initialize SYN dictionary self.syn_dict = dict() # Set threshold to 1000 SYN packets / per second self._THRESHOLD = 1000 # inter = 0.001 def detect_syn_flood(self, pkt): """ Detect SYN flood attack. Args: pkt (scapy_object): Packet to dissect and observe Raises: None Returns: None """ if (pkt.haslayer(scapy.IP) and pkt.haslayer(scapy.TCP)): flag = pkt[scapy.TCP].flags source_ip = pkt[scapy.IP].src if flag == "S": # SYN flag if self.syn_dict.get(source_ip) is None: # If new IP address self.syn_dict[source_ip] = { "start_time": time.time(), "count": 1 } else: count = self.syn_dict[source_ip]["count"] self.syn_dict[source_ip]["count"] = count + 1 if flag == "A": # ACK flag if self.syn_dict.get(source_ip) is not None: # Handshake completed, delete the IP entry (not suspicious) del self.syn_dict[source_ip] # Detect intrusion self.calc_intrusion() def calc_intrusion(self): """ Detect intrusion by comparing threshold ratios. Args: None Raises: None Returns: None """ if len(self.syn_dict) != 0: # If syn dict is not empty start_ip = [ip for ip in self.syn_dict.keys()][0] start_time = self.syn_dict[start_ip]["start_time"] current_time = time.time() delta_time = int(current_time - start_time) size_of_syn_dict = len(self.syn_dict) try: calc_threshold = int(size_of_syn_dict / delta_time) except ZeroDivisionError: calc_threshold = int(size_of_syn_dict) if (calc_threshold >= self._THRESHOLD): self.logger.log( "Possible SYN flood attack detected.", logtype="warning" )
python
# -*- coding: utf8 -*- # test encoding: à-é-è-ô-ï-€ # Copyright 2021 Adrien Crovato # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## Physical flux # Adrien Crovato # Base class class PFlux: def __init__(self): pass def __str__(self): raise RuntimeError('Physical flux not implemented!') # Advection class Advection(PFlux): '''Advection flux ''' def __init__(self, a): PFlux.__init__(self) self.a = a # advection (transport) velocity def __str__(self): return 'Advection flux (a = ' + str(self.a) + ')' def eval(self, u): '''Compute the physical flux vector f = a*u ''' return [self.a * u[0]] def evald(self, u): '''Compute the physical flux derivative matrix df = a ''' return [[self.a]] class Advection2(PFlux): '''Advection flux ''' def __init__(self, a, b): PFlux.__init__(self) self.a = a # first advection (transport) velocity self.b = b # second advection (transport) velocity def __str__(self): return 'Advection flux (a = ' + str(self.a) + ', b = ' + str(self.b) + ')' def eval(self, u): '''Compute the physical flux vector f = [a*u, b*v] ''' f = [0.] * len(u) f[0] = self.a * u[0] f[1] = self.b * u[1] return f def evald(self, u): '''Compute the physical flux derivative matrix df = [a, 0; 0, b] ''' df = [[0.] * len(u) for _ in range(len(u))] df[0][0] = self.a df[1][1] = self.b return df # Burger's class Burger(PFlux): '''Burger's flux ''' def __init__(self): PFlux.__init__(self) def __str__(self): return 'Burger\'s flux' def eval(self, u): '''Compute the physical flux vector f = u*u/2 ''' return [0.5 * u[0] * u[0]] def evald(self, u): '''Compute the physical flux derivative matrix df = u ''' return [[u[0]]] # Euler class Euler(PFlux): '''Euler flux ''' def __init__(self, gamma): PFlux.__init__(self) self.gamma = gamma # heat capacity ratio def __str__(self): return 'Euler flux (gamma = ' + str(self.gamma) + ')' def eval(self, u): '''Compute the physical flux vector f = [rho*u, rho*u^2+p, (E+p)*u] ''' # Pre-pro v = u[1] / u[0] # u = rho * u / rho p = (self.gamma - 1) * (u[2] - 0.5 * u[1] * v) # (gamma - 1) * (E - 0.5 * rho*u*u) # Flux f = [0.] * len(u) f[0] = u[1] f[1] = u[1] * v + p f[2] = (u[2] + p) * v return f def evald(self, u): '''Compute the physical flux derivative matrix df = [0, 1, 0; (gamma-3)/2*u^2, (3-gamma)*u, gamma-1; -gamma*E*u/rho + (gamma-1)*u^3, gamma*E/rho + 3*(1-gamma)/2*u^2, gamma*u] ''' # Pre-pro v = u[1] / u[0] # = rho * u / rho e = u[2] / u[0] # = E / rho # Flux df = [[0.] * len(u) for _ in range(len(u))] df[0][1] = 1. df[1][0] = 0.5 * (self.gamma - 3) * v * v df[1][1] = (3 - self.gamma) * v df[1][2] = self.gamma - 1 df[2][0] = -self.gamma * e * v + (self.gamma - 1) * v * v * v df[2][1] = self.gamma * e + 1.5 * (1 - self.gamma) * v * v df[2][2] = self.gamma * v return df class ShallowWater(PFlux): '''Shallow water flux ''' def __init__(self, g): PFlux.__init__(self) self.g = g # acceleration due to gravity def __str__(self): return 'Shallow water flux (g = ' + str(self.g) + ')' def eval(self, u): '''Compute the physical flux vector f = [h*u, gh + u^2/2] ''' f = [0.] * len(u) f[0] = u[0] * u[1] f[1] = self.g * u[0] + 0.5 * u[1] * u[1] return f def evald(self, u): '''Compute the physical flux derivative matrix df = [u, h; g, u] ''' df = [[0.] * len(u) for _ in range(len(u))] df[0][0] = u[1] df[0][1] = u[0] df[1][0] = self.g df[1][1] = u[1] return df
python
# name: person_builder.py # version: 0.0.1 # date: 20211225 # author: Leam Hall # desc: Build a person. from person import Person class PersonBuilder: def set_data(self, person, data = {}): person.idx = data.get('idx', -1) person.gender = data.get('gender', '') person.first_name = data.get('first_name', '') person.last_name = data.get('last_name', '') person.birthdate = data.get('birthdate', 0) person.notes = data.get('notes', '') return person def gen_data(self, person, data = {}): person.gender = data.get('gender', self.gen_gender()) person.first_name = data.get('first_name', self.gen_firstname(person.gender)) person.last_name = data.get('last_name', self.gen_lastname()) person.birthdate = data.get('birthdate', self.gen_birthdate()) person.notes = data.get('notes', '') return person def gen_firstname(self, gender): return 'John' def gen_lastname(self): return 'Dough' def gen_birthdate(self): return 1234056 def gen_gender(self): return 'm' def return_person(self): return self.person
python
import rasterio from sklearn.cluster import AgglomerativeClustering from shapely.geometry import Polygon from shapely.ops import nearest_points from math import sqrt from gisele import initialization from shapely import geometry from gisele.functions import * from math import * #from gisele import LV_routing_new_strategy as new_strategy def points_region_to_casestudy(points_region, polygon_casestudy): points_CaseStudy = points_region.clip(polygon_casestudy) return points_CaseStudy def create_polygon_from_clusters(final_clus, clusters_file, substations_file, resolution, crs): Clusters = gpd.read_file(clusters_file) Substations = gpd.read_file(substations_file) Clusters = Clusters[Clusters['final_clus'] == final_clus] k = 0 for index, row in Clusters.iterrows(): area = row['geometry'] minx = area.bounds[0] miny = area.bounds[1] maxx = area.bounds[2] maxy = area.bounds[3] if k == 0: min_x = minx min_y = miny max_x = maxx max_y = maxy k = 1 else: if minx < min_x: min_x = minx if miny < min_y: min_y = miny if maxx > max_x: max_x = maxx if maxy > max_y: max_y = maxy for index, row in Substations.iterrows(): substation = row['geometry'] if substation.x < min_x: min_x = substation.x if substation.y < min_y: min_y = substation.y if substation.x > max_x: max_x = substation.x if substation.y > max_y: max_y = substation.y study_area = Polygon([Point(min_x, min_y), Point(min_x, max_y), Point(max_x, max_y), Point(max_x, min_y)]) study_area_buffered = study_area.buffer(4 * resolution) polygon = gpd.GeoDataFrame({'ID': [0], 'geometry': study_area_buffered}) polygon.crs = crs polygon.to_file('area_polygon', index=False) return polygon # geodataframe with the polygon ''' The goal of this function is to create a polygon starting from a cluster of clusters''' def create_grid(crs, resolution, study_area): # crs and resolution should be a numbers, while the study area is a polygon df = pd.DataFrame(columns=['X', 'Y']) min_x, min_y, max_x, max_y = study_area.bounds # create one-dimensional arrays for x and y lon = np.arange(min_x, max_x, resolution) lat = np.arange(min_y, max_y, resolution) lon, lat = np.meshgrid(lon, lat) df['X'] = lon.reshape((np.prod(lon.shape),)) df['Y'] = lat.reshape((np.prod(lat.shape),)) geo_df = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.X, df.Y), crs=crs) geo_df_clipped = gpd.clip(geo_df, study_area) # geo_df_clipped.to_file(r'Test\grid_of_points.shp') return geo_df_clipped def street_to_points(streets): streets_points = [] for line in streets['geometry']: # print(line.geometryType) if line.geometryType() == 'MultiLineString': for line1 in line: for x in list(zip(line1.xy[0], line1.xy[1])): # print(line1) streets_points.append(x) else: for x in list(zip(line.xy[0], line.xy[1])): # print(line) streets_points.append(x) streets_multipoint = MultiPoint(streets_points) return streets_multipoint def coincidence_factor(population, pop_per_household): return 0.35 + 0.65 / sqrt(population / pop_per_household) def categorize_substation(clusters_list, substations): values = [] costs = [] substations['Rated_power [kVA]'] = substations['Rated_power [kVA]'] substations1 = substations['Rated_power [kVA]'].to_list() for index, row in clusters_list.iterrows(): load_kVA = row.loc['Load [kW]'] / 0.9 # considering a power factor of 0.9 substations2 = [i - load_kVA if i - load_kVA > 0 else 10000 for i in substations1] power = int(min(substations2) + load_kVA) values.append(power) locate_cost = substations[substations['Rated_power [kVA]'] == power]['Cost[euro]'] costs.append(locate_cost.values[0]) clusters_list['Transformer_rated_power [kVA]'] = values clusters_list['Cost[euro]'] = costs return clusters_list def locate_secondary_ss(crs, resolution, load_capita, pop_per_household, road_coef, Clusters, case_study, LV_distance, ss_data,landcover_option,gisele_dir): dir_input = r'Case studies/' + case_study + '/Input' dir_output = '/Case studies/' + case_study grid_500m_weighted = pd.read_csv(dir_input + '/weighted_grid_of_points.csv') grid_500m_with_ss = grid_500m_weighted.copy() grid_500m_gdf = gpd.GeoDataFrame(grid_500m_weighted, geometry=gpd.points_from_xy(grid_500m_weighted.X, grid_500m_weighted.Y), crs=crs) grid_500m_with_ss = gpd.GeoDataFrame(grid_500m_with_ss, geometry=gpd.points_from_xy(grid_500m_with_ss.X, grid_500m_with_ss.Y), crs=crs) # Create a clusters.exe file LV_resume = pd.DataFrame() for index, row in Clusters.iterrows(): os.chdir(gisele_dir) dir = gisele_dir + dir_output + '/Output/Clusters/' + str(row['cluster_ID']) clus = row['cluster_ID'] if not os.path.exists(dir): os.makedirs(dir) os.makedirs(dir + '/grids') area = row['geometry'] # THIS IS SPECIFIC FOR THE CASE OF THUSO - ISSUE NEEDS TO BE FIXED WITH CLUSTERS THAT ARE TOO NARROW. If in one line # of the grid points there are no points -> the graph for the steiner tree will not be connected area_buffered = area # area_buffered = row['geometry'].buffer((resolution_MV * 0.1 / 11250) / 2) area_list = [area_buffered] # Create grid of points with a 30m resolution grid_of_points = create_grid(crs, resolution, area) grid_of_points.to_file(dir + '/points.shp') # Load and clip protected araes and streets # protected_areas = gpd.read_file(global_dir+db_dir+case_study+'/Protected_areas/Protected_area-Uganda.shp') # protected_areas = protected_areas.to_crs(crs) # protected_areas_clipped=gpd.clip(protected_areas,area) # protected_areas_clipped.to_file(dir + '/protected.shp) # To make sure the roads are not cut min_x, min_y, max_x, max_y = area.bounds area_for_roads = geometry.Polygon( [geometry.Point(min_x, min_y), geometry.Point(min_x, max_y), geometry.Point(max_x, max_y), geometry.Point(max_x, min_y)]) streets = gpd.read_file(dir_input + '/Roads.shp') streets = streets.to_crs(crs) streets_clipped = gpd.clip(streets, area_for_roads) if not streets_clipped.empty: streets_clipped.to_file(dir + '/Roads.shp') Street_Multipoint = street_to_points(streets_clipped) # OPEN THE RASTERS FOR THE SPECIFIC REGION WHERE OUR CLUSTER IS Population = rasterio.open(dir_input + '/Population_' + str(crs) + '.tif') Elevation = rasterio.open(dir_input + '/Elevation_' + str(crs) + '.tif') Slope = rasterio.open(dir_input + '/Slope_' + str(crs) + '.tif') LandCover = rasterio.open(dir_input + '/LandCover_' + str(crs) + '.tif') # POPULATE THE GRID OF POINTS coords = [(x, y) for x, y in zip(grid_of_points.X, grid_of_points.Y)] grid_of_points = grid_of_points.reset_index(drop=True) grid_of_points['ID'] = grid_of_points.index grid_of_points['Population'] = [x[0] for x in Population.sample(coords)] grid_of_points['Elevation'] = [x[0] for x in Elevation.sample(coords)] grid_of_points['Slope'] = [x[0] for x in Slope.sample(coords)] grid_of_points['Land_cover'] = [x[0] for x in LandCover.sample(coords)] # THIS IS JUST A PROXY, NEEDS TO BE PROPERLY SET grid_of_points['Protected_area'] = ['FALSE' for x in LandCover.sample(coords)] print('Sampling rasters finished') grid_of_points.to_file(dir + '/points.shp') # AGLOMERATIVE CLUSTERING scale_factor = 10 populated_grid = grid_of_points[grid_of_points['Population'] > 0] populated_grid['Population'] = populated_grid['Population'].div(scale_factor).round(0) + 0.51 populated_grid['Population'] = populated_grid['Population'].round(0) populated_grid = populated_grid.loc[populated_grid.index.repeat(populated_grid.Population.astype(int))] loc = {'x': populated_grid['X'], 'y': populated_grid['Y']} pop_points = pd.DataFrame(data=loc).values clustering = AgglomerativeClustering(distance_threshold=LV_distance * 1.8, linkage='complete', n_clusters=None).fit(pop_points) geo_df_clustered = gpd.GeoDataFrame(data=pop_points, columns=['X', 'Y'], geometry=gpd.points_from_xy(populated_grid['X'], populated_grid['Y'])) geo_df_clustered['Cluster'] = clustering.labels_ geo_df_clustered = geo_df_clustered.drop_duplicates() geo_df_clustered.set_crs(epsg=crs, inplace=True) geo_df_clustered.to_file(dir + '/pointsCluster.shp') # number_clusters=max(geo_df_clustered.Cluster) # calculate the total distances from one point to another inside the clusters for cluster in range(max(geo_df_clustered['Cluster']) + 1): total_distances = [] geo_df_clustered_slice = geo_df_clustered[geo_df_clustered['Cluster'] == cluster] print(cluster) for index, row2 in geo_df_clustered_slice.iterrows(): tot_dist = 0 for index1, row1 in geo_df_clustered_slice.iterrows(): tot_dist += sqrt((row2.X - row1.X) ** 2 + (row2.Y - row1.Y) ** 2) total_distances.append(tot_dist) geo_df_clustered.loc[geo_df_clustered['Cluster'] == cluster, 'tot_distance'] = total_distances joinDF = gpd.sjoin(grid_of_points, geo_df_clustered, how='left', op="contains") grid_of_points['Cluster'] = joinDF['Cluster'] grid_of_points['Cluster'] = grid_of_points['Cluster'].fillna(-1) grid_of_points['tot_distance'] = joinDF['tot_distance'] # ASSIGN ROAD DISTANCE if not streets_clipped.empty: road_distances = [] for index, point in grid_of_points.iterrows(): x = point['geometry'].xy[0][0] y = point['geometry'].xy[1][0] nearest_geoms = nearest_points(Point(x, y), Street_Multipoint) road_distance = nearest_geoms[0].distance(nearest_geoms[1]) road_distances.append(road_distance) grid_of_points['Road_dist'] = road_distances # CHOOSE A SUBSTATION number_clusters = max(grid_of_points.Cluster) substations = [] # Create a clusters.exe file clusters_list = pd.DataFrame(columns=['Cluster','Sub_cluster', 'Population', 'Load [kW]']) # ASSIGN MV POWER FOR THE SECONDARY SUBSTATIONS grid_of_points['MV_Power'] = 0 for i in range(int(number_clusters) + 1): subset = grid_of_points[grid_of_points['Cluster'] == i] sum_pop = subset['Population'].sum() load = sum_pop * load_capita * coincidence_factor(sum_pop, pop_per_household) data = np.array([[int(row['cluster_ID']),int(i), sum_pop, load]]) df2 = pd.DataFrame(data, columns=['Cluster','Sub_cluster', 'Population', 'Load [kW]']) clusters_list = clusters_list.append(df2) average_distance = subset['tot_distance'] / len(subset) min_weight = 100000 ID = 0 for index, ROW in subset.iterrows(): if not streets_clipped.empty: weight = ROW['Road_dist'] * road_coef + average_distance[index] else: weight = average_distance[index] if weight < min_weight: min_weight = weight ID = index substations.append(ID) grid_of_points['Substation'] = 0 for substation in substations: grid_of_points.loc[grid_of_points['ID'] == substation, 'Substation'] = 1 for i in range(int(number_clusters) + 1): population = clusters_list.loc[clusters_list['Sub_cluster'] == i, 'Population'][0] load = clusters_list.loc[clusters_list['Sub_cluster'] == i, 'Load [kW]'][0] grid_of_points.loc[ (grid_of_points['Substation'] == 1) & (grid_of_points['Cluster'] == i), 'Population'] = population grid_of_points.loc[ (grid_of_points['Substation'] == 1) & (grid_of_points['Cluster'] == i), 'MV_Power'] = load substation_data = pd.read_csv(gisele_dir + '/general_input/' + ss_data) clusters_list = categorize_substation(clusters_list, substation_data) clusters_list['Population']=[ceil(i) for i in clusters_list['Population']] clusters_list.to_csv(dir + '/clusters_list.csv',index=False) LV_resume=LV_resume.append(clusters_list) weights_grid = initialization.weighting(grid_of_points,resolution,landcover_option) grid_of_points['Weight'] = weights_grid['Weight'] grid_of_points.crs = crs grid_of_points.to_csv(dir + '/Input.csv') grid_of_points.to_file(dir + '/points.shp') secondary_substations = grid_of_points[grid_of_points['Substation'] == 1] secondary_substations.to_file(dir + '/substations.shp') total_costs = sum(clusters_list['Cost[euro]'].to_list()) print('The total costs for substations are ' + str(total_costs / 1000) + ' thousand euros') # cluster_polygons_gpd.to_file(dir + '/clusters_polygons.shp') print('The maximum loading of a cluster is ' + str(max(clusters_list['Load [kW]']))) print('The minimum loading of a cluster is ' + str(min(clusters_list['Load [kW]']))) # study_area = Clusters.loc[row['cluster_ID']]['geometry'] study_area = area_buffered area = study_area area.crs = crs grid_500m_clip = gpd.clip(grid_500m_gdf, area) # this is our 500m resolution grid of points substations = grid_of_points[grid_of_points['Substation'] == 1] number_substations = substations.shape[0] ss_starting_id = int(grid_500m_with_ss['ID'].max()) + 1 substations['ID'] = [i for i in range(ss_starting_id, ss_starting_id + number_substations)] # ss_starting_id+=number_substations substations.to_file(dir + '/substations.shp') substations['Cluster'] = clus substations_weighted = initialization.weighting(substations, resolution, landcover_option) substations['Weight'] = substations_weighted['Weight'] grid_500m_clip = grid_500m_clip.append(substations) grid_500m_with_ss = grid_500m_with_ss.append(substations) #geo_df = initialization.weighting(grid_500m_clip, resolution_MV, landcover_option) grid_500m_clip.to_file(dir + '/points500m.shp') # geo_df['Substation'] = grid_500m_clip['Substation'] # geo_df['geometry'] = grid_500m_clip['geometry'] clus += 1 grid_500m_with_ss.to_csv(gisele_dir + '/' + dir_input + '/weighted_grid_of_points_with_ss.csv') LV_resume.to_csv(gisele_dir + '/' + dir_input +'/LV_resume.csv')
python
from typing import Any, Dict, Optional, Union import httpx from ...client import AuthenticatedClient from ...models.osidb_api_v1_schema_retrieve_format import OsidbApiV1SchemaRetrieveFormat from ...models.osidb_api_v1_schema_retrieve_lang import OsidbApiV1SchemaRetrieveLang from ...models.osidb_api_v1_schema_retrieve_response_200 import OsidbApiV1SchemaRetrieveResponse200 from ...types import UNSET, Response, Unset def _get_kwargs( *, client: AuthenticatedClient, format_: Union[Unset, None, OsidbApiV1SchemaRetrieveFormat] = UNSET, lang: Union[Unset, None, OsidbApiV1SchemaRetrieveLang] = UNSET, ) -> Dict[str, Any]: url = "{}/osidb/api/v1/schema/".format( client.base_url, ) headers: Dict[str, Any] = client.get_headers() json_format_: Union[Unset, None, str] = UNSET if not isinstance(format_, Unset): json_format_ = OsidbApiV1SchemaRetrieveFormat(format_).value if format_ else None json_lang: Union[Unset, None, str] = UNSET if not isinstance(lang, Unset): json_lang = OsidbApiV1SchemaRetrieveLang(lang).value if lang else None params: Dict[str, Any] = { "format": json_format_, "lang": json_lang, } params = {k: v for k, v in params.items() if v is not UNSET and v is not None} return { "url": url, "headers": headers, "params": params, } def _parse_response(*, response: httpx.Response) -> Optional[OsidbApiV1SchemaRetrieveResponse200]: if response.status_code == 200: _response_200 = response.json() response_200: OsidbApiV1SchemaRetrieveResponse200 if isinstance(_response_200, Unset): response_200 = UNSET else: response_200 = OsidbApiV1SchemaRetrieveResponse200.from_dict(_response_200) return response_200 return None def _build_response(*, response: httpx.Response) -> Response[OsidbApiV1SchemaRetrieveResponse200]: return Response( status_code=response.status_code, content=response.content, headers=response.headers, parsed=_parse_response(response=response), ) def sync_detailed( *, client: AuthenticatedClient, format_: Union[Unset, None, OsidbApiV1SchemaRetrieveFormat] = UNSET, lang: Union[Unset, None, OsidbApiV1SchemaRetrieveLang] = UNSET, ) -> Response[OsidbApiV1SchemaRetrieveResponse200]: kwargs = _get_kwargs( client=client, format_=format_, lang=lang, ) response = httpx.get( verify=client.verify_ssl, auth=client.auth, timeout=client.timeout, **kwargs, ) response.raise_for_status() return _build_response(response=response) def sync( *, client: AuthenticatedClient, format_: Union[Unset, None, OsidbApiV1SchemaRetrieveFormat] = UNSET, lang: Union[Unset, None, OsidbApiV1SchemaRetrieveLang] = UNSET, ) -> Optional[OsidbApiV1SchemaRetrieveResponse200]: """OpenApi3 schema for this API. Format can be selected via content negotiation. - YAML: application/vnd.oai.openapi - JSON: application/vnd.oai.openapi+json""" return sync_detailed( client=client, format_=format_, lang=lang, ).parsed async def asyncio_detailed( *, client: AuthenticatedClient, format_: Union[Unset, None, OsidbApiV1SchemaRetrieveFormat] = UNSET, lang: Union[Unset, None, OsidbApiV1SchemaRetrieveLang] = UNSET, ) -> Response[OsidbApiV1SchemaRetrieveResponse200]: kwargs = _get_kwargs( client=client, format_=format_, lang=lang, ) async with httpx.AsyncClient(verify=client.verify_ssl) as _client: response = await _client.get(**kwargs) return _build_response(response=response) async def asyncio( *, client: AuthenticatedClient, format_: Union[Unset, None, OsidbApiV1SchemaRetrieveFormat] = UNSET, lang: Union[Unset, None, OsidbApiV1SchemaRetrieveLang] = UNSET, ) -> Optional[OsidbApiV1SchemaRetrieveResponse200]: """OpenApi3 schema for this API. Format can be selected via content negotiation. - YAML: application/vnd.oai.openapi - JSON: application/vnd.oai.openapi+json""" return ( await asyncio_detailed( client=client, format_=format_, lang=lang, ) ).parsed
python
def work_well(): print("ok") return "ok" def say_hello(): print("hello") return "hello"
python
# uses minimax to look ahead import sys from functools import partial from game import * import interactive_game def compute_score(board, res=TURN_OK): score = board[0]**5 \ + board[1]**4 + board[4]**4 \ + board[2]**2 + board[5]**2 + board[8]**2 \ + board[3] + board[6] + board[9] + board[12] if res==TURN_GAME_OVER or res==TURN_ILLEGAL: return -score return score def minimax(board, lm=None, depth=5): if not lm: lm = legal_moves(board) if lm == []: return (compute_score(board,TURN_ILLEGAL), -1) best_move = None for move in lm: new_board, res = perform_turn(board.copy(), move, ins_random=False, skip_check=True) score = compute_score(new_board) if depth != 1: new_board = insert_random(new_board) next_score, next_move = minimax(new_board.copy(), depth=depth-1) score += next_score score_move = (score,move) if best_move==None: best_move = score_move elif best_move<score_move: best_move = score_move return best_move def ai_2_compute_func(board, lm, depth): next_score, next_move = minimax(board, lm=lm, depth=depth) return next_move if __name__=="__main__": if len(sys.argv)>=2: depth = int(sys.argv[1]) else: depth = 3 interactive_game.start(partial(ai_2_compute_func, depth=depth))
python
"""Module with function to regularize a 2D curve (with uniform resolution).""" import math import numpy def _get_perimeter(x, y): """Return the perimeter of the geometry. Parameters ---------- x : numpy.ndarray x-coordinate of the points along the curve. y : numpy.ndarray y-coordinate of the points along the curve. Returns ------- perimeter : float The perimeter. """ # Duplicate point if necessary to get a closed surface. atol = 1e-6 if abs(x[0] - x[-1]) > atol or abs(y[0] - y[-1]) > atol: x, y = numpy.append(x, x[0]), numpy.append(y, y[0]) return numpy.sum(numpy.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)) def regularize2d(xo, yo, N=None, ds=None, atol=1.0E-06): """Regularize the geometry. Parameters ---------- xo: numpy.ndarray of floats The x-coordinates of the boundary to regularize. yo: numpy.ndarray of floats The y-coordinates of the boundary to regularize. N: integer, optional Number of divisions; default: None. ds: float, optional Desired segment-length; default: None. atol: float, optional Desired tolerance for discretization; default: 1.0E-06. Returns ------- x: numpy.ndarray of floats The x-coordinates of the regularized boundary. y: numpy.ndarray of floats The y-coordinates of the regularized boundary. """ if not (N or ds): return xo.copy(), yo.copy() if not N: N = int(math.ceil(_get_perimeter(xo, yo) / ds)) ds = _get_perimeter(xo, yo) / N # Duplicate point if necessary to get a closed surface. if abs(xo[0] - xo[-1]) > atol or abs(yo[0] - yo[-1]) > atol: xo, yo = numpy.append(xo, xo[0]), numpy.append(yo, yo[0]) # Regularize the geometry. next_idx = 1 last_idx = xo.size - 1 x, y = [xo[0]], [yo[0]] for _ in range(1, N): xs, ys = x[-1], y[-1] # Start point xe, ye = xo[next_idx], yo[next_idx] # End point length = numpy.sqrt((xe - xs)**2 + (ye - ys)**2) if abs(ds - length) <= atol: # Copy x.append(xe) y.append(ye) next_idx += 1 elif ds < length: # Interpolate between start and end points length2 = numpy.sqrt((xe - xs)**2 + (ye - ys)**2) x.append(xs + ds / length2 * (xe - xs)) y.append(ys + ds / length2 * (ye - ys)) else: # Project the new point # Get segment index. while length < ds and next_idx < last_idx: next_idx += 1 length = numpy.sqrt((xo[next_idx] - xs)**2 + (yo[next_idx] - ys)**2) xp, yp = xo[next_idx - 1], yo[next_idx - 1] xe, ye = xo[next_idx], yo[next_idx] # Interpolate on segment. precision = 1 coeff = 0.0 while abs(ds - length) > atol and precision < 6: xn, yn = xp + coeff * (xe - xp), yp + coeff * (ye - yp) length = numpy.sqrt((xn - xs)**2 + (yn - ys)**2) if length > ds: coeff -= 0.1**precision precision += 1 coeff += 0.1**precision # Check new point not too close from first point before adding. length = numpy.sqrt((xn - x[0])**2 + (yn - y[0])**2) if length > 0.5 * ds: x.append(xn) y.append(yn) x, y = numpy.array(x), numpy.array(y) return x, y
python
from bstools import bsSsh from bstools import bsPrint from bstools import bsTime name = "bstools" __version__ = "0.1.9"
python
""" libmonster.py - mixed support library # TODO: consider replacing pauthor in keyid with _bibtex.names # TODO: enusure \emph is dropped from titles in keyid calculation """ import re from heapq import nsmallest from collections import defaultdict from itertools import groupby from operator import itemgetter from csvw.dsv import UnicodeWriter from ..util import unique, Trigger from .bibfiles import Entry from .bibtex_undiacritic import undiacritic from .roman import roman, romanint INF = float('inf') lgcodestr = Entry.lgcodes def opv(d, func, *args): """ Apply func to all values of a dictionary. :param d: A dictionary. :param func: Callable accepting a value of `d` as first parameter. :param args: Additional positional arguments to be passed to `func`. :return: `dict` mapping the keys of `d` to the return value of the function call. """ return {i: func(v, *args) for i, v in d.items()} def grp2(l): """ Turn a list of pairs into a dictionary, mapping first elements to lists of co-occurring second elements in pairs. :param l: :return: """ return {a: [pair[1] for pair in pairs] for a, pairs in groupby(sorted(l, key=itemgetter(0)), itemgetter(0))} def grp2fd(l): """ Turn a list of pairs into a nested dictionary, thus grouping by the first element in the pair. :param l: :return: """ return {k: {vv: 1 for vv in v} for k, v in grp2(l).items()} reauthor = [re.compile(pattern) for pattern in [ "(?P<lastname>[^,]+),\s((?P<jr>[JS]r\.|[I]+),\s)?(?P<firstname>[^,]+)$", "(?P<firstname>[^{][\S]+(\s[A-Z][\S]+)*)\s" "(?P<lastname>([a-z]+\s)*[A-Z\\\\][\S]+)(?P<jr>,\s[JS]r\.|[I]+)?$", "(?P<firstname>\\{[\S]+\\}[\S]+(\s[A-Z][\S]+)*)\s" "(?P<lastname>([a-z]+\s)*[A-Z\\\\][\S]+)(?P<jr>,\s[JS]r\.|[I]+)?$", "(?P<firstname>[\s\S]+?)\s\{(?P<lastname>[\s\S]+)\}(?P<jr>,\s[JS]r\.|[I]+)?$", "\{(?P<firstname>[\s\S]+)\}\s(?P<lastname>[\s\S]+?)(?P<jr>,\s[JS]r\.|[I]+)?$", "(?P<lastname>[A-Z][\S]+)$", "\{(?P<lastname>[\s\S]+)\}$", "(?P<lastname>[aA]nonymous)$", "(?P<lastname>\?)$", "(?P<lastname>[\s\S]+)$", ]] def psingleauthor(n): if not n: return for pattern in reauthor: o = pattern.match(n) if o: return o.groupdict() print("Couldn't parse name:", n) # pragma: no cover def pauthor(s): pas = [psingleauthor(a) for a in s.split(' and ')] if [a for a in pas if not a]: if s: print(s) return [a for a in pas if a] relu = re.compile("\s+|(d\')(?=[A-Z])") recapstart = re.compile("\[?[A-Z]") def lowerupper(s): parts, lower, upper = [x for x in relu.split(s) if x], [], [] for i, x in enumerate(parts): if not recapstart.match(undiacritic(x)): lower.append(x) else: upper = parts[i:] break return lower, upper def lastnamekey(s): _, upper = lowerupper(s) return max(upper) if upper else '' def rangecomplete(incomplete, complete): """ >>> rangecomplete('2', '10') '12' """ if len(complete) > len(incomplete): # if the second number in a range of pages has less digits than the the first, # we assume it's meant as only the last digits of the bigger number, # i.e. 10-2 is interpreted as 10-12. return complete[:len(complete) - len(incomplete)] + incomplete return incomplete rebracketyear = re.compile("\[([\d\,\-\/]+)\]") reyl = re.compile("[\,\-\/\s\[\]]+") def pyear(s): if rebracketyear.search(s): s = rebracketyear.search(s).group(1) my = [x for x in reyl.split(s) if x.strip()] if len(my) == 0: return "[nd]" if len(my) != 1: return my[0] + "-" + rangecomplete(my[-1], my[0]) return my[-1] bibord = {k: i for i, k in enumerate([ 'author', 'editor', 'title', 'booktitle', 'journal', 'school', 'publisher', 'address', 'series', 'volume', 'number', 'pages', 'year', 'issn', 'url', ])} def bibord_iteritems(fields): for f in sorted(fields, key=lambda f: (bibord.get(f, INF), f)): yield f, fields[f] resplittit = re.compile("[\(\)\[\]\:\,\.\s\-\?\!\;\/\~\=]+") def wrds(txt): txt = undiacritic(txt.lower()) txt = txt.replace("'", "").replace('"', "") return [x for x in resplittit.split(txt) if x] def renfn(e, ups): for k, field, newvalue in ups: typ, fields = e[k] fields[field] = newvalue e[k] = (typ, fields) return e INLG = 'inlg' def add_inlg_e(e, trigs, verbose=True, return_newtrain=False): # FIXME: does not honor 'NOT' for now, only maps words to iso codes. dh = {word: t.type for t in trigs for _, word in t.clauses} # map record keys to lists of words in titles: ts = [(k, wrds(fields['title']) + wrds(fields.get('booktitle', ''))) for (k, (typ, fields)) in e.items() if 'title' in fields and INLG not in fields] if verbose: print(len(ts), "without", INLG) # map record keys to sets of assigned iso codes, based on words in the title ann = [(k, set(dh[w] for w in tit if w in dh)) for k, tit in ts] # list of record keys which have been assigned exactly one iso code unique_ = [(k, lgs.pop()) for (k, lgs) in ann if len(lgs) == 1] if verbose: print(len(unique_), "cases of unique hits") t2 = renfn(e, [(k, INLG, v) for (k, v) in unique_]) if return_newtrain: # pragma: no cover newtrain = grp2fd([ (lgcodestr(fields[INLG])[0], w) for (k, (typ, fields)) in t2.items() if 'title' in fields and INLG in fields if len(lgcodestr(fields[INLG])) == 1 for w in wrds(fields['title'])]) for (lg, wf) in sorted(newtrain.items(), key=lambda x: len(x[1])): cm = [(1 + f, float(1 - f + sum(owf.get(w, 0) for owf in newtrain.values())), w) for (w, f) in wf.items() if f > 9] cms = [(f / fn, f, fn, w) for (f, fn, w) in cm] cms.sort(reverse=True) return t2, newtrain, cms return t2 rerpgs = re.compile("([xivmcl]+)\-?([xivmcl]*)") repgs = re.compile("([\d]+)\-?([\d]*)") def pagecount(pgstr): rpgs = rerpgs.findall(pgstr) pgs = repgs.findall(pgstr) rsump = sum(romanint(b) - romanint(a) + 1 if b else romanint(a) for (a, b) in rpgs) sump = sum(int(rangecomplete(b, a)) - int(a) + 1 if b else int(a) for (a, b) in pgs) if rsump != 0 and sump != 0: return "%s+%s" % (rsump, sump) if rsump == 0 and sump == 0: return '' return '%s' % (rsump + sump) rewrdtok = re.compile("[a-zA-Z].+") reokkey = re.compile("[^a-z\d\-\_\[\]]") def keyid(fields, fd, ti=2, infinity=float('inf')): if 'author' not in fields: if 'editor' not in fields: values = ''.join( v for f, v in bibord_iteritems(fields) if f != 'glottolog_ref_id') return '__missingcontrib__' + reokkey.sub('_', values.lower()) else: astring = fields['editor'] else: astring = fields['author'] authors = pauthor(astring) if len(authors) != len(astring.split(' and ')): print("Unparsed author in", authors) print(" ", astring, astring.split(' and ')) print(fields.get('title')) ak = [undiacritic(x) for x in sorted(lastnamekey(a['lastname']) for a in authors)] yk = pyear(fields.get('year', '[nd]'))[:4] tks = wrds(fields.get("title", "no.title")) # takeuntil : # select the (leftmost) two least frequent words from the title types = list(unique(w for w in tks if rewrdtok.match(w))) tk = nsmallest(ti, types, key=lambda w: fd.get(w, infinity)) # put them back into the title order (i.e. 'spam eggs' != 'eggs spam') order = {w: i for i, w in enumerate(types)} tk.sort(key=lambda w: order[w]) if 'volume' in fields and all( f not in fields for f in ['journal', 'booktitle', 'series']): vk = roman(fields['volume']) else: vk = '' if 'extra_hash' in fields: yk = yk + fields['extra_hash'] key = '-'.join(ak) + "_" + '-'.join(tk) + vk + yk return reokkey.sub("", key.lower()) def lgcode(arg): fields = arg[1] return lgcodestr(fields['lgcode']) if 'lgcode' in fields else [] def sd(es, hht): # most signficant piece of descriptive material # hhtype, pages, year mi = [(k, (hht.parse(fields.get('hhtype', 'unknown')), fields.get('pages', ''), fields.get('year', ''))) for (k, (typ, fields)) in es.items()] d = accd(mi) return [sorted(((p, y, k, t.id) for (k, (p, y)) in d[t.id].items()), reverse=True) for t in hht if t.id in d] def pcy(pagecountstr): if not pagecountstr: return 0 return eval(pagecountstr) # int(takeafter(pagecountstr, "+")) def accd(mi): r = defaultdict(dict) for (k, (hhts, pgs, year)) in mi: pci = pcy(pagecount(pgs)) for t in hhts: r[t][k] = (pci / float(len(hhts)), year) return r def byid(es): return grp2([(cfn, k) for (k, tf) in es.items() for cfn in lgcode(tf)]) def sdlgs(e, hht): eindex = byid(e) fes = opv(eindex, lambda ks: {k: e[k] for k in ks}) fsd = opv(fes, sd, hht) return fsd, fes def lstat(e, hht): (lsd, lse) = sdlgs(e, hht) return opv(lsd, lambda xs: (xs + [[[None]]])[0][0][-1]) def lstat_witness(e, hht): def statwit(xs): assert xs [(typ, ks)] = grp2([(t, k) for [p, y, k, t] in xs[0]]).items() return typ, ks (lsd, lse) = sdlgs(e, hht) return opv(lsd, statwit) def markconservative(m, trigs, ref, hht, outfn, verbose=True, rank=None): blamefield = "hhtype" mafter = markall(m, trigs, verbose=verbose, rank=rank) ls = lstat(ref, hht) lsafter = lstat_witness(mafter, hht) log = [] no_status = defaultdict(set) for (lg, (stat, wits)) in lsafter.items(): if not ls.get(lg): srctrickles = [mafter[k][1].get('srctrickle') for k in wits] for t in srctrickles: if t and not t.startswith('iso6393'): no_status[lg].add(t) continue if hht[stat] > hht[ls[lg]]: log = log + [ (lg, [(mafter[k][1].get(blamefield, "No %s" % blamefield), k, mafter[k][1].get('title', 'no title'), mafter[k][1].get('srctrickle', 'no srctrickle')) for k in wits], ls[lg])] for k in wits: (t, f) = mafter[k] if blamefield in f: del f[blamefield] mafter[k] = (t, f) for lg in no_status: print('{0} lacks status'.format(lg)) with UnicodeWriter(outfn, dialect='excel-tab') as writer: writer.writerows(((lg, was) + mis for (lg, miss, was) in log for mis in miss)) return mafter def markall(e, trigs, verbose=True, rank=None): # the set of fields triggers relate to: clss = set(t.field for t in trigs) # all bibitems lacking any of the potential triggered fields: ei = {k: (typ, fields) for k, (typ, fields) in e.items() if any(c not in fields for c in clss)} eikeys = set(list(ei.keys())) # map words in titles to lists of bibitem keys having the word in the title: wk = defaultdict(set) for k, (typ, fields) in ei.items(): for w in wrds(fields.get('title', '')): wk[w].add(k) u = defaultdict(lambda: defaultdict(list)) for clauses, triggers in Trigger.group(trigs): for k in triggers[0](eikeys, wk): for t in triggers: u[k][t.cls].append(t) for k, t_by_c in sorted(u.items(), key=lambda i: i[0]): t, f = e[k] f2 = {a: b for a, b in f.items()} for (field, type_), triggers in sorted(t_by_c.items(), key=lambda i: len(i[1])): # Make sure we handle the trigger class with the biggest number of matching # triggers last. if rank and field in f2: # only update the assigned hhtype if something better comes along: if rank(f2[field].split(' (comp')[0]) >= rank(type_): continue f2[field] = Trigger.format(type_, triggers) e[k] = (t, f2) if verbose: print("trigs", len(trigs)) print("label classes", len(clss)) print("unlabeled refs", len(ei)) print("updates", len(u)) return e
python
## Code taken from https://github.com/vqdang/hover_net/blob/master/metrics/stats_utils.py import warnings import numpy as np import scipy from scipy.optimize import linear_sum_assignment # --------------------------Optimised for Speed def get_fast_aji(true, pred): """AJI version distributed by MoNuSeg, has no permutation problem but suffered from over-penalisation similar to DICE2. Fast computation requires instance IDs are in contiguous orderding i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` before hand and `by_size` flag has no effect on the result. """ if true.sum() == 0 and pred.sum() == 0: return 1. true = np.copy(true) # ? do we need this pred = np.copy(pred) true_id_list = list(np.unique(true)) pred_id_list = list(np.unique(pred)) true_masks = [ None, ] for t in true_id_list[1:]: t_mask = np.array(true == t, np.uint8) true_masks.append(t_mask) pred_masks = [ None, ] for p in pred_id_list[1:]: p_mask = np.array(pred == p, np.uint8) pred_masks.append(p_mask) # prefill with value pairwise_inter = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) pairwise_union = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) # caching pairwise for true_id in true_id_list[1:]: # 0-th is background t_mask = true_masks[true_id] pred_true_overlap = pred[t_mask > 0] pred_true_overlap_id = np.unique(pred_true_overlap) pred_true_overlap_id = list(pred_true_overlap_id) for pred_id in pred_true_overlap_id: if pred_id == 0: # ignore continue # overlaping background p_mask = pred_masks[pred_id] total = (t_mask + p_mask).sum() inter = (t_mask * p_mask).sum() pairwise_inter[true_id - 1, pred_id - 1] = inter pairwise_union[true_id - 1, pred_id - 1] = total - inter pairwise_iou = pairwise_inter / (pairwise_union + 1.0e-6) # pair of pred that give highest iou for each true, dont care # about reusing pred instance multiple times paired_pred = np.argmax(pairwise_iou, axis=1) pairwise_iou = np.max(pairwise_iou, axis=1) # exlude those dont have intersection paired_true = np.nonzero(pairwise_iou > 0.0)[0] paired_pred = paired_pred[paired_true] # print(paired_true.shape, paired_pred.shape) overall_inter = (pairwise_inter[paired_true, paired_pred]).sum() overall_union = (pairwise_union[paired_true, paired_pred]).sum() paired_true = list(paired_true + 1) # index to instance ID paired_pred = list(paired_pred + 1) # add all unpaired GT and Prediction into the union unpaired_true = np.array( [idx for idx in true_id_list[1:] if idx not in paired_true] ) unpaired_pred = np.array( [idx for idx in pred_id_list[1:] if idx not in paired_pred] ) for true_id in unpaired_true: overall_union += true_masks[true_id].sum() for pred_id in unpaired_pred: overall_union += pred_masks[pred_id].sum() if overall_union == 0: aji_score = 0. else: aji_score = overall_inter / overall_union return aji_score ##### def get_fast_aji_plus(true, pred): """AJI+, an AJI version with maximal unique pairing to obtain overall intersecion. Every prediction instance is paired with at most 1 GT instance (1 to 1) mapping, unlike AJI where a prediction instance can be paired against many GT instances (1 to many). Remaining unpaired GT and Prediction instances will be added to the overall union. The 1 to 1 mapping prevents AJI's over-penalisation from happening. Fast computation requires instance IDs are in contiguous orderding i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` before hand and `by_size` flag has no effect on the result. """ if true.sum() == 0 and pred.sum() == 0: return 1. true = np.copy(true) # ? do we need this pred = np.copy(pred) true_id_list = list(np.unique(true)) pred_id_list = list(np.unique(pred)) true_masks = [ None, ] for t in true_id_list[1:]: t_mask = np.array(true == t, np.uint8) true_masks.append(t_mask) pred_masks = [ None, ] for p in pred_id_list[1:]: p_mask = np.array(pred == p, np.uint8) pred_masks.append(p_mask) # prefill with value pairwise_inter = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) pairwise_union = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) # caching pairwise for true_id in true_id_list[1:]: # 0-th is background t_mask = true_masks[true_id] pred_true_overlap = pred[t_mask > 0] pred_true_overlap_id = np.unique(pred_true_overlap) pred_true_overlap_id = list(pred_true_overlap_id) for pred_id in pred_true_overlap_id: if pred_id == 0: # ignore continue # overlaping background p_mask = pred_masks[pred_id] total = (t_mask + p_mask).sum() inter = (t_mask * p_mask).sum() pairwise_inter[true_id - 1, pred_id - 1] = inter pairwise_union[true_id - 1, pred_id - 1] = total - inter # pairwise_iou = pairwise_inter / (pairwise_union + 1.0e-6) #### Munkres pairing to find maximal unique pairing paired_true, paired_pred = linear_sum_assignment(-pairwise_iou) ### extract the paired cost and remove invalid pair paired_iou = pairwise_iou[paired_true, paired_pred] # now select all those paired with iou != 0.0 i.e have intersection paired_true = paired_true[paired_iou > 0.0] paired_pred = paired_pred[paired_iou > 0.0] paired_inter = pairwise_inter[paired_true, paired_pred] paired_union = pairwise_union[paired_true, paired_pred] paired_true = list(paired_true + 1) # index to instance ID paired_pred = list(paired_pred + 1) overall_inter = paired_inter.sum() overall_union = paired_union.sum() # add all unpaired GT and Prediction into the union unpaired_true = np.array( [idx for idx in true_id_list[1:] if idx not in paired_true] ) unpaired_pred = np.array( [idx for idx in pred_id_list[1:] if idx not in paired_pred] ) for true_id in unpaired_true: overall_union += true_masks[true_id].sum() for pred_id in unpaired_pred: overall_union += pred_masks[pred_id].sum() # if overall_union == 0: aji_score = 0. else: aji_score = overall_inter / overall_union return aji_score ##### def get_fast_pq(true, pred, match_iou=0.5): """`match_iou` is the IoU threshold level to determine the pairing between GT instances `p` and prediction instances `g`. `p` and `g` is a pair if IoU > `match_iou`. However, pair of `p` and `g` must be unique (1 prediction instance to 1 GT instance mapping). If `match_iou` < 0.5, Munkres assignment (solving minimum weight matching in bipartite graphs) is caculated to find the maximal amount of unique pairing. If `match_iou` >= 0.5, all IoU(p,g) > 0.5 pairing is proven to be unique and the number of pairs is also maximal. Fast computation requires instance IDs are in contiguous orderding i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` beforehand and `by_size` flag has no effect on the result. Returns: [dq, sq, pq]: measurement statistic [paired_true, paired_pred, unpaired_true, unpaired_pred]: pairing information to perform measurement """ assert match_iou >= 0.0, "Cant' be negative" true = np.copy(true) pred = np.copy(pred) true_id_list = list(np.unique(true)) pred_id_list = list(np.unique(pred)) true_masks = [ None, ] for t in true_id_list[1:]: t_mask = np.array(true == t, np.uint8) true_masks.append(t_mask) pred_masks = [ None, ] for p in pred_id_list[1:]: p_mask = np.array(pred == p, np.uint8) pred_masks.append(p_mask) # prefill with value pairwise_iou = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) # caching pairwise iou for true_id in true_id_list[1:]: # 0-th is background t_mask = true_masks[true_id] pred_true_overlap = pred[t_mask > 0] pred_true_overlap_id = np.unique(pred_true_overlap) pred_true_overlap_id = list(pred_true_overlap_id) for pred_id in pred_true_overlap_id: if pred_id == 0: # ignore continue # overlaping background p_mask = pred_masks[pred_id] total = (t_mask + p_mask).sum() inter = (t_mask * p_mask).sum() iou = inter / (total - inter) pairwise_iou[true_id - 1, pred_id - 1] = iou # if match_iou >= 0.5: paired_iou = pairwise_iou[pairwise_iou > match_iou] pairwise_iou[pairwise_iou <= match_iou] = 0.0 paired_true, paired_pred = np.nonzero(pairwise_iou) paired_iou = pairwise_iou[paired_true, paired_pred] paired_true += 1 # index is instance id - 1 paired_pred += 1 # hence return back to original else: # * Exhaustive maximal unique pairing #### Munkres pairing with scipy library # the algorithm return (row indices, matched column indices) # if there is multiple same cost in a row, index of first occurence # is return, thus the unique pairing is ensure # inverse pair to get high IoU as minimum paired_true, paired_pred = linear_sum_assignment(-pairwise_iou) ### extract the paired cost and remove invalid pair paired_iou = pairwise_iou[paired_true, paired_pred] # now select those above threshold level # paired with iou = 0.0 i.e no intersection => FP or FN paired_true = list(paired_true[paired_iou > match_iou] + 1) paired_pred = list(paired_pred[paired_iou > match_iou] + 1) paired_iou = paired_iou[paired_iou > match_iou] # get the actual FP and FN unpaired_true = [idx for idx in true_id_list[1:] if idx not in paired_true] unpaired_pred = [idx for idx in pred_id_list[1:] if idx not in paired_pred] # print(paired_iou.shape, paired_true.shape, len(unpaired_true), len(unpaired_pred)) # tp = len(paired_true) fp = len(unpaired_pred) fn = len(unpaired_true) # get the F1-score i.e DQ dq = tp / (tp + 0.5 * fp + 0.5 * fn) # get the SQ, no paired has 0 iou so not impact sq = paired_iou.sum() / (tp + 1.0e-6) return [dq, sq, dq * sq], [paired_true, paired_pred, unpaired_true, unpaired_pred] ##### def get_fast_dice_2(true, pred): """Ensemble dice.""" true = np.copy(true) pred = np.copy(pred) true_id = list(np.unique(true)) pred_id = list(np.unique(pred)) overall_total = 0 overall_inter = 0 true_masks = [np.zeros(true.shape)] for t in true_id[1:]: t_mask = np.array(true == t, np.uint8) true_masks.append(t_mask) pred_masks = [np.zeros(true.shape)] for p in pred_id[1:]: p_mask = np.array(pred == p, np.uint8) pred_masks.append(p_mask) for true_idx in range(1, len(true_id)): t_mask = true_masks[true_idx] pred_true_overlap = pred[t_mask > 0] pred_true_overlap_id = np.unique(pred_true_overlap) pred_true_overlap_id = list(pred_true_overlap_id) try: # blinly remove background pred_true_overlap_id.remove(0) except ValueError: pass # just mean no background for pred_idx in pred_true_overlap_id: p_mask = pred_masks[pred_idx] total = (t_mask + p_mask).sum() inter = (t_mask * p_mask).sum() overall_total += total overall_inter += inter return 2 * overall_inter / overall_total #####--------------------------As pseudocode def get_dice_1(true, pred): """Traditional dice.""" # cast to binary 1st true = np.copy(true) pred = np.copy(pred) true[true > 0] = 1 pred[pred > 0] = 1 inter = true * pred denom = true + pred return 2.0 * np.sum(inter) / np.sum(denom) #### def get_dice_2(true, pred): """Ensemble Dice as used in Computational Precision Medicine Challenge.""" true = np.copy(true) pred = np.copy(pred) true_id = list(np.unique(true)) pred_id = list(np.unique(pred)) # remove background aka id 0 true_id.remove(0) pred_id.remove(0) total_markup = 0 total_intersect = 0 for t in true_id: t_mask = np.array(true == t, np.uint8) for p in pred_id: p_mask = np.array(pred == p, np.uint8) intersect = p_mask * t_mask if intersect.sum() > 0: total_intersect += intersect.sum() total_markup += t_mask.sum() + p_mask.sum() return 2 * total_intersect / total_markup ##### def remap_label(pred, by_size=False): """Rename all instance id so that the id is contiguous i.e [0, 1, 2, 3] not [0, 2, 4, 6]. The ordering of instances (which one comes first) is preserved unless by_size=True, then the instances will be reordered so that bigger nucler has smaller ID. Args: pred : the 2d array contain instances where each instances is marked by non-zero integer by_size : renaming with larger nuclei has smaller id (on-top) """ pred_id = list(np.unique(pred)) pred_id.remove(0) if len(pred_id) == 0: return pred # no label if by_size: pred_size = [] for inst_id in pred_id: size = (pred == inst_id).sum() pred_size.append(size) # sort the id by size in descending order pair_list = zip(pred_id, pred_size) pair_list = sorted(pair_list, key=lambda x: x[1], reverse=True) pred_id, pred_size = zip(*pair_list) new_pred = np.zeros(pred.shape, np.int32) for idx, inst_id in enumerate(pred_id): new_pred[pred == inst_id] = idx + 1 return new_pred ##### def pair_coordinates(setA, setB, radius): """Use the Munkres or Kuhn-Munkres algorithm to find the most optimal unique pairing (largest possible match) when pairing points in set B against points in set A, using distance as cost function. Args: setA, setB: np.array (float32) of size Nx2 contains the of XY coordinate of N different points radius: valid area around a point in setA to consider a given coordinate in setB a candidate for match Return: pairing: pairing is an array of indices where point at index pairing[0] in set A paired with point in set B at index pairing[1] unparedA, unpairedB: remaining poitn in set A and set B unpaired """ # * Euclidean distance as the cost matrix pair_distance = scipy.spatial.distance.cdist(setA, setB, metric='euclidean') # * Munkres pairing with scipy library # the algorithm return (row indices, matched column indices) # if there is multiple same cost in a row, index of first occurence # is return, thus the unique pairing is ensured indicesA, paired_indicesB = linear_sum_assignment(pair_distance) # extract the paired cost and remove instances # outside of designated radius pair_cost = pair_distance[indicesA, paired_indicesB] pairedA = indicesA[pair_cost <= radius] pairedB = paired_indicesB[pair_cost <= radius] pairing = np.concatenate([pairedA[:,None], pairedB[:,None]], axis=-1) unpairedA = np.delete(np.arange(setA.shape[0]), pairedA) unpairedB = np.delete(np.arange(setB.shape[0]), pairedB) return pairing, unpairedA, unpairedB
python
from ivy import ivy_module as im from ivy.ivy_compiler import ivy_from_string from ivy.tk_ui import new_ui from ivy import ivy_utils as iu from ivy import ivy_check as ick from ivy import ivy_logic as il prog = """#lang ivy1.5 type t type p relation sent(X:p,Y:t) function pid(X:t):p axiom X:t = X axiom X:t < Y & Y < Z -> X < Z axiom X:t = Y + 0 axiom X:t = Y + Z axiom X = (Y:t + 1) if (Y = Z) else 0 axiom forall X,Y,Z. X:t < Y & Y < Z -> X < Z axiom forall NO0:t,NO1:t. ~(pid(NO0:t) < pid(NO1:t) & sent(pid(NO0:t),NO0:t)) """ with im.Module(): iu.set_parameters({'mode':'induction','show_compiled':'true'}) ivy_from_string(prog,create_isolate=False) for adecl in im.module.labeled_axioms: f = adecl.args[1] print print str(f) print il.to_str_with_var_sorts(f) print il.fmla_to_str_ambiguous(f) # main_ui.answer("OK") # ui.check_inductiveness() # # ui = ui.cti # cg = ui.current_concept_graph # cg.show_relation(cg.relation('link(X,Y)'),'+') # cg.gather() # main_ui.answer("OK") # cg.strengthen() # main_ui.answer("OK") # ui.check_inductiveness() # # cg.show_relation(cg.relation('semaphore'),'+') # cg.gather() # main_ui.answer("View") # cg.bmc_conjecture(bound=1) # # main_ui.mainloop()
python
# -*- coding: utf-8 -*- # Ambry Bundle Library File # Use this file for code that may be imported into other bundles
python
import kydb from portfolio_management.common.base_item import BaseItem, Factory from portfolio_management.common.account_container_mixin import AccountContainerMixin from portfolio_management.common.position_mixin import PositionMixin from portfolio_management.portfolio.event import Event, EventType from portfolio_management.portfolio.instrument import Instrument, InstrumentFx import portfolio_management.utils.func_utils as fu class Deal(BaseItem, AccountContainerMixin, PositionMixin, kydb.DbObj): """ Represents a buy / sell transaction for a financial instrument """ @kydb.stored def state(self) -> str: return '' def state_obj(self) -> Event: return self.db[Factory.get_class_path('Event', self.state())] def positions(self) -> dict: return {} def __str__(self): return '{0}[{1}]'.format(self.id(), self.state()) def apply_event(self, event_type, price=None, qty=None, ccy=None): if event_type == EventType.Amend: if price: self.price.setvalue(price) if qty: self.price.setvalue(qty) if ccy: self.ccy.setvalue(ccy) self.events().add(self.state()) event = Factory.create('Event', db=self.db, event_type=event_type) self.state.setvalue(event.id()) @kydb.stored def instrument(self) -> str: return '' def instrument_obj(self) -> Instrument: return self.db[Factory.get_class_path('Instrument', self.instrument())] @kydb.stored def direction(self) -> str: return 'B' @kydb.stored def ccy(self) -> str: return '' @kydb.stored def qty(self) -> float: return 0.00 @kydb.stored def events(self) -> set: return set() @kydb.stored def events_obj(self) -> list: return [self.db[Factory.get_class_path('Event', a)] for a in self.events()] @kydb.stored def instrument(self) -> str: return '' class DealEq(Deal): """ Equity type deal """ @kydb.stored def price(self) -> float: return 0.00 def positions(self) -> dict: positions = { self.ccy() : - self.qty() * self.price(), self.instrument_obj().symbol(): self.qty() } return positions @kydb.stored def notional(self) -> float: return self.qty() if self.qty() else 0.00 * self.price() if self.price() else 0.00 class DealFx(Deal): """ FX Spot type deal """ @kydb.stored def rate(self) -> float: return 0.00 @kydb.stored def ccy1(self) -> str: return '' @kydb.stored def ccy2(self) -> str: return '' @kydb.stored def ccy1_amount(self) -> float: return 0.00 @kydb.stored def ccy2_amount(self) -> float: return 0.00 def positions(self) -> dict: factor = 1 if self.direction() == 'B' else -1 positions = {self.ccy1(): self.ccy1_amount() * factor, self.ccy2(): self.ccy2_amount() * factor * -1} return positions def instrument_obj(self) -> InstrumentFx: return self.db[Factory.get_class_path('InstrumentFx', self.instrument())] def main(): pass if __name__ == '__main__': main()
python
uctable = [ [ 48 ], [ 49 ], [ 50 ], [ 51 ], [ 52 ], [ 53 ], [ 54 ], [ 55 ], [ 56 ], [ 57 ], [ 194, 178 ], [ 194, 179 ], [ 194, 185 ], [ 194, 188 ], [ 194, 189 ], [ 194, 190 ], [ 217, 160 ], [ 217, 161 ], [ 217, 162 ], [ 217, 163 ], [ 217, 164 ], [ 217, 165 ], [ 217, 166 ], [ 217, 167 ], [ 217, 168 ], [ 217, 169 ], [ 219, 176 ], [ 219, 177 ], [ 219, 178 ], [ 219, 179 ], [ 219, 180 ], [ 219, 181 ], [ 219, 182 ], [ 219, 183 ], [ 219, 184 ], [ 219, 185 ], [ 223, 128 ], [ 223, 129 ], [ 223, 130 ], [ 223, 131 ], [ 223, 132 ], [ 223, 133 ], [ 223, 134 ], [ 223, 135 ], [ 223, 136 ], [ 223, 137 ], [ 224, 165, 166 ], [ 224, 165, 167 ], [ 224, 165, 168 ], [ 224, 165, 169 ], [ 224, 165, 170 ], [ 224, 165, 171 ], [ 224, 165, 172 ], [ 224, 165, 173 ], [ 224, 165, 174 ], [ 224, 165, 175 ], [ 224, 167, 166 ], [ 224, 167, 167 ], [ 224, 167, 168 ], [ 224, 167, 169 ], [ 224, 167, 170 ], [ 224, 167, 171 ], [ 224, 167, 172 ], [ 224, 167, 173 ], [ 224, 167, 174 ], [ 224, 167, 175 ], [ 224, 167, 180 ], [ 224, 167, 181 ], [ 224, 167, 182 ], [ 224, 167, 183 ], [ 224, 167, 184 ], [ 224, 167, 185 ], [ 224, 169, 166 ], [ 224, 169, 167 ], [ 224, 169, 168 ], [ 224, 169, 169 ], [ 224, 169, 170 ], [ 224, 169, 171 ], [ 224, 169, 172 ], [ 224, 169, 173 ], [ 224, 169, 174 ], [ 224, 169, 175 ], [ 224, 171, 166 ], [ 224, 171, 167 ], [ 224, 171, 168 ], [ 224, 171, 169 ], [ 224, 171, 170 ], [ 224, 171, 171 ], [ 224, 171, 172 ], [ 224, 171, 173 ], [ 224, 171, 174 ], [ 224, 171, 175 ], [ 224, 173, 166 ], [ 224, 173, 167 ], [ 224, 173, 168 ], [ 224, 173, 169 ], [ 224, 173, 170 ], [ 224, 173, 171 ], [ 224, 173, 172 ], [ 224, 173, 173 ], [ 224, 173, 174 ], [ 224, 173, 175 ], [ 224, 173, 178 ], [ 224, 173, 179 ], [ 224, 173, 180 ], [ 224, 173, 181 ], [ 224, 173, 182 ], [ 224, 173, 183 ], [ 224, 175, 166 ], [ 224, 175, 167 ], [ 224, 175, 168 ], [ 224, 175, 169 ], [ 224, 175, 170 ], [ 224, 175, 171 ], [ 224, 175, 172 ], [ 224, 175, 173 ], [ 224, 175, 174 ], [ 224, 175, 175 ], [ 224, 175, 176 ], [ 224, 175, 177 ], [ 224, 175, 178 ], [ 224, 177, 166 ], [ 224, 177, 167 ], [ 224, 177, 168 ], [ 224, 177, 169 ], [ 224, 177, 170 ], [ 224, 177, 171 ], [ 224, 177, 172 ], [ 224, 177, 173 ], [ 224, 177, 174 ], [ 224, 177, 175 ], [ 224, 177, 184 ], [ 224, 177, 185 ], [ 224, 177, 186 ], [ 224, 177, 187 ], [ 224, 177, 188 ], [ 224, 177, 189 ], [ 224, 177, 190 ], [ 224, 179, 166 ], [ 224, 179, 167 ], [ 224, 179, 168 ], [ 224, 179, 169 ], [ 224, 179, 170 ], [ 224, 179, 171 ], [ 224, 179, 172 ], [ 224, 179, 173 ], [ 224, 179, 174 ], [ 224, 179, 175 ], [ 224, 181, 166 ], [ 224, 181, 167 ], [ 224, 181, 168 ], [ 224, 181, 169 ], [ 224, 181, 170 ], [ 224, 181, 171 ], [ 224, 181, 172 ], [ 224, 181, 173 ], [ 224, 181, 174 ], [ 224, 181, 175 ], [ 224, 181, 176 ], [ 224, 181, 177 ], [ 224, 181, 178 ], [ 224, 181, 179 ], [ 224, 181, 180 ], [ 224, 181, 181 ], [ 224, 183, 166 ], [ 224, 183, 167 ], [ 224, 183, 168 ], [ 224, 183, 169 ], [ 224, 183, 170 ], [ 224, 183, 171 ], [ 224, 183, 172 ], [ 224, 183, 173 ], [ 224, 183, 174 ], [ 224, 183, 175 ], [ 224, 185, 144 ], [ 224, 185, 145 ], [ 224, 185, 146 ], [ 224, 185, 147 ], [ 224, 185, 148 ], [ 224, 185, 149 ], [ 224, 185, 150 ], [ 224, 185, 151 ], [ 224, 185, 152 ], [ 224, 185, 153 ], [ 224, 187, 144 ], [ 224, 187, 145 ], [ 224, 187, 146 ], [ 224, 187, 147 ], [ 224, 187, 148 ], [ 224, 187, 149 ], [ 224, 187, 150 ], [ 224, 187, 151 ], [ 224, 187, 152 ], [ 224, 187, 153 ], [ 224, 188, 160 ], [ 224, 188, 161 ], [ 224, 188, 162 ], [ 224, 188, 163 ], [ 224, 188, 164 ], [ 224, 188, 165 ], [ 224, 188, 166 ], [ 224, 188, 167 ], [ 224, 188, 168 ], [ 224, 188, 169 ], [ 224, 188, 170 ], [ 224, 188, 171 ], [ 224, 188, 172 ], [ 224, 188, 173 ], [ 224, 188, 174 ], [ 224, 188, 175 ], [ 224, 188, 176 ], [ 224, 188, 177 ], [ 224, 188, 178 ], [ 224, 188, 179 ], [ 225, 129, 128 ], [ 225, 129, 129 ], [ 225, 129, 130 ], [ 225, 129, 131 ], [ 225, 129, 132 ], [ 225, 129, 133 ], [ 225, 129, 134 ], [ 225, 129, 135 ], [ 225, 129, 136 ], [ 225, 129, 137 ], [ 225, 130, 144 ], [ 225, 130, 145 ], [ 225, 130, 146 ], [ 225, 130, 147 ], [ 225, 130, 148 ], [ 225, 130, 149 ], [ 225, 130, 150 ], [ 225, 130, 151 ], [ 225, 130, 152 ], [ 225, 130, 153 ], [ 225, 141, 169 ], [ 225, 141, 170 ], [ 225, 141, 171 ], [ 225, 141, 172 ], [ 225, 141, 173 ], [ 225, 141, 174 ], [ 225, 141, 175 ], [ 225, 141, 176 ], [ 225, 141, 177 ], [ 225, 141, 178 ], [ 225, 141, 179 ], [ 225, 141, 180 ], [ 225, 141, 181 ], [ 225, 141, 182 ], [ 225, 141, 183 ], [ 225, 141, 184 ], [ 225, 141, 185 ], [ 225, 141, 186 ], [ 225, 141, 187 ], [ 225, 141, 188 ], [ 225, 155, 174 ], [ 225, 155, 175 ], [ 225, 155, 176 ], [ 225, 159, 160 ], [ 225, 159, 161 ], [ 225, 159, 162 ], [ 225, 159, 163 ], [ 225, 159, 164 ], [ 225, 159, 165 ], [ 225, 159, 166 ], [ 225, 159, 167 ], [ 225, 159, 168 ], [ 225, 159, 169 ], [ 225, 159, 176 ], [ 225, 159, 177 ], [ 225, 159, 178 ], [ 225, 159, 179 ], [ 225, 159, 180 ], [ 225, 159, 181 ], [ 225, 159, 182 ], [ 225, 159, 183 ], [ 225, 159, 184 ], [ 225, 159, 185 ], [ 225, 160, 144 ], [ 225, 160, 145 ], [ 225, 160, 146 ], [ 225, 160, 147 ], [ 225, 160, 148 ], [ 225, 160, 149 ], [ 225, 160, 150 ], [ 225, 160, 151 ], [ 225, 160, 152 ], [ 225, 160, 153 ], [ 225, 165, 134 ], [ 225, 165, 135 ], [ 225, 165, 136 ], [ 225, 165, 137 ], [ 225, 165, 138 ], [ 225, 165, 139 ], [ 225, 165, 140 ], [ 225, 165, 141 ], [ 225, 165, 142 ], [ 225, 165, 143 ], [ 225, 167, 144 ], [ 225, 167, 145 ], [ 225, 167, 146 ], [ 225, 167, 147 ], [ 225, 167, 148 ], [ 225, 167, 149 ], [ 225, 167, 150 ], [ 225, 167, 151 ], [ 225, 167, 152 ], [ 225, 167, 153 ], [ 225, 167, 154 ], [ 225, 170, 128 ], [ 225, 170, 129 ], [ 225, 170, 130 ], [ 225, 170, 131 ], [ 225, 170, 132 ], [ 225, 170, 133 ], [ 225, 170, 134 ], [ 225, 170, 135 ], [ 225, 170, 136 ], [ 225, 170, 137 ], [ 225, 170, 144 ], [ 225, 170, 145 ], [ 225, 170, 146 ], [ 225, 170, 147 ], [ 225, 170, 148 ], [ 225, 170, 149 ], [ 225, 170, 150 ], [ 225, 170, 151 ], [ 225, 170, 152 ], [ 225, 170, 153 ], [ 225, 173, 144 ], [ 225, 173, 145 ], [ 225, 173, 146 ], [ 225, 173, 147 ], [ 225, 173, 148 ], [ 225, 173, 149 ], [ 225, 173, 150 ], [ 225, 173, 151 ], [ 225, 173, 152 ], [ 225, 173, 153 ], [ 225, 174, 176 ], [ 225, 174, 177 ], [ 225, 174, 178 ], [ 225, 174, 179 ], [ 225, 174, 180 ], [ 225, 174, 181 ], [ 225, 174, 182 ], [ 225, 174, 183 ], [ 225, 174, 184 ], [ 225, 174, 185 ], [ 225, 177, 128 ], [ 225, 177, 129 ], [ 225, 177, 130 ], [ 225, 177, 131 ], [ 225, 177, 132 ], [ 225, 177, 133 ], [ 225, 177, 134 ], [ 225, 177, 135 ], [ 225, 177, 136 ], [ 225, 177, 137 ], [ 225, 177, 144 ], [ 225, 177, 145 ], [ 225, 177, 146 ], [ 225, 177, 147 ], [ 225, 177, 148 ], [ 225, 177, 149 ], [ 225, 177, 150 ], [ 225, 177, 151 ], [ 225, 177, 152 ], [ 225, 177, 153 ], [ 226, 129, 176 ], [ 226, 129, 180 ], [ 226, 129, 181 ], [ 226, 129, 182 ], [ 226, 129, 183 ], [ 226, 129, 184 ], [ 226, 129, 185 ], [ 226, 130, 128 ], [ 226, 130, 129 ], [ 226, 130, 130 ], [ 226, 130, 131 ], [ 226, 130, 132 ], [ 226, 130, 133 ], [ 226, 130, 134 ], [ 226, 130, 135 ], [ 226, 130, 136 ], [ 226, 130, 137 ], [ 226, 133, 144 ], [ 226, 133, 145 ], [ 226, 133, 146 ], [ 226, 133, 147 ], [ 226, 133, 148 ], [ 226, 133, 149 ], [ 226, 133, 150 ], [ 226, 133, 151 ], [ 226, 133, 152 ], [ 226, 133, 153 ], [ 226, 133, 154 ], [ 226, 133, 155 ], [ 226, 133, 156 ], [ 226, 133, 157 ], [ 226, 133, 158 ], [ 226, 133, 159 ], [ 226, 133, 160 ], [ 226, 133, 161 ], [ 226, 133, 162 ], [ 226, 133, 163 ], [ 226, 133, 164 ], [ 226, 133, 165 ], [ 226, 133, 166 ], [ 226, 133, 167 ], [ 226, 133, 168 ], [ 226, 133, 169 ], [ 226, 133, 170 ], [ 226, 133, 171 ], [ 226, 133, 172 ], [ 226, 133, 173 ], [ 226, 133, 174 ], [ 226, 133, 175 ], [ 226, 133, 176 ], [ 226, 133, 177 ], [ 226, 133, 178 ], [ 226, 133, 179 ], [ 226, 133, 180 ], [ 226, 133, 181 ], [ 226, 133, 182 ], [ 226, 133, 183 ], [ 226, 133, 184 ], [ 226, 133, 185 ], [ 226, 133, 186 ], [ 226, 133, 187 ], [ 226, 133, 188 ], [ 226, 133, 189 ], [ 226, 133, 190 ], [ 226, 133, 191 ], [ 226, 134, 128 ], [ 226, 134, 129 ], [ 226, 134, 130 ], [ 226, 134, 133 ], [ 226, 134, 134 ], [ 226, 134, 135 ], [ 226, 134, 136 ], [ 226, 134, 137 ], [ 226, 145, 160 ], [ 226, 145, 161 ], [ 226, 145, 162 ], [ 226, 145, 163 ], [ 226, 145, 164 ], [ 226, 145, 165 ], [ 226, 145, 166 ], [ 226, 145, 167 ], [ 226, 145, 168 ], [ 226, 145, 169 ], [ 226, 145, 170 ], [ 226, 145, 171 ], [ 226, 145, 172 ], [ 226, 145, 173 ], [ 226, 145, 174 ], [ 226, 145, 175 ], [ 226, 145, 176 ], [ 226, 145, 177 ], [ 226, 145, 178 ], [ 226, 145, 179 ], [ 226, 145, 180 ], [ 226, 145, 181 ], [ 226, 145, 182 ], [ 226, 145, 183 ], [ 226, 145, 184 ], [ 226, 145, 185 ], [ 226, 145, 186 ], [ 226, 145, 187 ], [ 226, 145, 188 ], [ 226, 145, 189 ], [ 226, 145, 190 ], [ 226, 145, 191 ], [ 226, 146, 128 ], [ 226, 146, 129 ], [ 226, 146, 130 ], [ 226, 146, 131 ], [ 226, 146, 132 ], [ 226, 146, 133 ], [ 226, 146, 134 ], [ 226, 146, 135 ], [ 226, 146, 136 ], [ 226, 146, 137 ], [ 226, 146, 138 ], [ 226, 146, 139 ], [ 226, 146, 140 ], [ 226, 146, 141 ], [ 226, 146, 142 ], [ 226, 146, 143 ], [ 226, 146, 144 ], [ 226, 146, 145 ], [ 226, 146, 146 ], [ 226, 146, 147 ], [ 226, 146, 148 ], [ 226, 146, 149 ], [ 226, 146, 150 ], [ 226, 146, 151 ], [ 226, 146, 152 ], [ 226, 146, 153 ], [ 226, 146, 154 ], [ 226, 146, 155 ], [ 226, 147, 170 ], [ 226, 147, 171 ], [ 226, 147, 172 ], [ 226, 147, 173 ], [ 226, 147, 174 ], [ 226, 147, 175 ], [ 226, 147, 176 ], [ 226, 147, 177 ], [ 226, 147, 178 ], [ 226, 147, 179 ], [ 226, 147, 180 ], [ 226, 147, 181 ], [ 226, 147, 182 ], [ 226, 147, 183 ], [ 226, 147, 184 ], [ 226, 147, 185 ], [ 226, 147, 186 ], [ 226, 147, 187 ], [ 226, 147, 188 ], [ 226, 147, 189 ], [ 226, 147, 190 ], [ 226, 147, 191 ], [ 226, 157, 182 ], [ 226, 157, 183 ], [ 226, 157, 184 ], [ 226, 157, 185 ], [ 226, 157, 186 ], [ 226, 157, 187 ], [ 226, 157, 188 ], [ 226, 157, 189 ], [ 226, 157, 190 ], [ 226, 157, 191 ], [ 226, 158, 128 ], [ 226, 158, 129 ], [ 226, 158, 130 ], [ 226, 158, 131 ], [ 226, 158, 132 ], [ 226, 158, 133 ], [ 226, 158, 134 ], [ 226, 158, 135 ], [ 226, 158, 136 ], [ 226, 158, 137 ], [ 226, 158, 138 ], [ 226, 158, 139 ], [ 226, 158, 140 ], [ 226, 158, 141 ], [ 226, 158, 142 ], [ 226, 158, 143 ], [ 226, 158, 144 ], [ 226, 158, 145 ], [ 226, 158, 146 ], [ 226, 158, 147 ], [ 226, 179, 189 ], [ 227, 128, 135 ], [ 227, 128, 161 ], [ 227, 128, 162 ], [ 227, 128, 163 ], [ 227, 128, 164 ], [ 227, 128, 165 ], [ 227, 128, 166 ], [ 227, 128, 167 ], [ 227, 128, 168 ], [ 227, 128, 169 ], [ 227, 128, 184 ], [ 227, 128, 185 ], [ 227, 128, 186 ], [ 227, 134, 146 ], [ 227, 134, 147 ], [ 227, 134, 148 ], [ 227, 134, 149 ], [ 227, 136, 160 ], [ 227, 136, 161 ], [ 227, 136, 162 ], [ 227, 136, 163 ], [ 227, 136, 164 ], [ 227, 136, 165 ], [ 227, 136, 166 ], [ 227, 136, 167 ], [ 227, 136, 168 ], [ 227, 136, 169 ], [ 227, 137, 136 ], [ 227, 137, 137 ], [ 227, 137, 138 ], [ 227, 137, 139 ], [ 227, 137, 140 ], [ 227, 137, 141 ], [ 227, 137, 142 ], [ 227, 137, 143 ], [ 227, 137, 145 ], [ 227, 137, 146 ], [ 227, 137, 147 ], [ 227, 137, 148 ], [ 227, 137, 149 ], [ 227, 137, 150 ], [ 227, 137, 151 ], [ 227, 137, 152 ], [ 227, 137, 153 ], [ 227, 137, 154 ], [ 227, 137, 155 ], [ 227, 137, 156 ], [ 227, 137, 157 ], [ 227, 137, 158 ], [ 227, 137, 159 ], [ 227, 138, 128 ], [ 227, 138, 129 ], [ 227, 138, 130 ], [ 227, 138, 131 ], [ 227, 138, 132 ], [ 227, 138, 133 ], [ 227, 138, 134 ], [ 227, 138, 135 ], [ 227, 138, 136 ], [ 227, 138, 137 ], [ 227, 138, 177 ], [ 227, 138, 178 ], [ 227, 138, 179 ], [ 227, 138, 180 ], [ 227, 138, 181 ], [ 227, 138, 182 ], [ 227, 138, 183 ], [ 227, 138, 184 ], [ 227, 138, 185 ], [ 227, 138, 186 ], [ 227, 138, 187 ], [ 227, 138, 188 ], [ 227, 138, 189 ], [ 227, 138, 190 ], [ 227, 138, 191 ], [ 234, 152, 160 ], [ 234, 152, 161 ], [ 234, 152, 162 ], [ 234, 152, 163 ], [ 234, 152, 164 ], [ 234, 152, 165 ], [ 234, 152, 166 ], [ 234, 152, 167 ], [ 234, 152, 168 ], [ 234, 152, 169 ], [ 234, 155, 166 ], [ 234, 155, 167 ], [ 234, 155, 168 ], [ 234, 155, 169 ], [ 234, 155, 170 ], [ 234, 155, 171 ], [ 234, 155, 172 ], [ 234, 155, 173 ], [ 234, 155, 174 ], [ 234, 155, 175 ], [ 234, 160, 176 ], [ 234, 160, 177 ], [ 234, 160, 178 ], [ 234, 160, 179 ], [ 234, 160, 180 ], [ 234, 160, 181 ], [ 234, 163, 144 ], [ 234, 163, 145 ], [ 234, 163, 146 ], [ 234, 163, 147 ], [ 234, 163, 148 ], [ 234, 163, 149 ], [ 234, 163, 150 ], [ 234, 163, 151 ], [ 234, 163, 152 ], [ 234, 163, 153 ], [ 234, 164, 128 ], [ 234, 164, 129 ], [ 234, 164, 130 ], [ 234, 164, 131 ], [ 234, 164, 132 ], [ 234, 164, 133 ], [ 234, 164, 134 ], [ 234, 164, 135 ], [ 234, 164, 136 ], [ 234, 164, 137 ], [ 234, 167, 144 ], [ 234, 167, 145 ], [ 234, 167, 146 ], [ 234, 167, 147 ], [ 234, 167, 148 ], [ 234, 167, 149 ], [ 234, 167, 150 ], [ 234, 167, 151 ], [ 234, 167, 152 ], [ 234, 167, 153 ], [ 234, 167, 176 ], [ 234, 167, 177 ], [ 234, 167, 178 ], [ 234, 167, 179 ], [ 234, 167, 180 ], [ 234, 167, 181 ], [ 234, 167, 182 ], [ 234, 167, 183 ], [ 234, 167, 184 ], [ 234, 167, 185 ], [ 234, 169, 144 ], [ 234, 169, 145 ], [ 234, 169, 146 ], [ 234, 169, 147 ], [ 234, 169, 148 ], [ 234, 169, 149 ], [ 234, 169, 150 ], [ 234, 169, 151 ], [ 234, 169, 152 ], [ 234, 169, 153 ], [ 234, 175, 176 ], [ 234, 175, 177 ], [ 234, 175, 178 ], [ 234, 175, 179 ], [ 234, 175, 180 ], [ 234, 175, 181 ], [ 234, 175, 182 ], [ 234, 175, 183 ], [ 234, 175, 184 ], [ 234, 175, 185 ], [ 239, 188, 144 ], [ 239, 188, 145 ], [ 239, 188, 146 ], [ 239, 188, 147 ], [ 239, 188, 148 ], [ 239, 188, 149 ], [ 239, 188, 150 ], [ 239, 188, 151 ], [ 239, 188, 152 ], [ 239, 188, 153 ], [ 240, 144, 132, 135 ], [ 240, 144, 132, 136 ], [ 240, 144, 132, 137 ], [ 240, 144, 132, 138 ], [ 240, 144, 132, 139 ], [ 240, 144, 132, 140 ], [ 240, 144, 132, 141 ], [ 240, 144, 132, 142 ], [ 240, 144, 132, 143 ], [ 240, 144, 132, 144 ], [ 240, 144, 132, 145 ], [ 240, 144, 132, 146 ], [ 240, 144, 132, 147 ], [ 240, 144, 132, 148 ], [ 240, 144, 132, 149 ], [ 240, 144, 132, 150 ], [ 240, 144, 132, 151 ], [ 240, 144, 132, 152 ], [ 240, 144, 132, 153 ], [ 240, 144, 132, 154 ], [ 240, 144, 132, 155 ], [ 240, 144, 132, 156 ], [ 240, 144, 132, 157 ], [ 240, 144, 132, 158 ], [ 240, 144, 132, 159 ], [ 240, 144, 132, 160 ], [ 240, 144, 132, 161 ], [ 240, 144, 132, 162 ], [ 240, 144, 132, 163 ], [ 240, 144, 132, 164 ], [ 240, 144, 132, 165 ], [ 240, 144, 132, 166 ], [ 240, 144, 132, 167 ], [ 240, 144, 132, 168 ], [ 240, 144, 132, 169 ], [ 240, 144, 132, 170 ], [ 240, 144, 132, 171 ], [ 240, 144, 132, 172 ], [ 240, 144, 132, 173 ], [ 240, 144, 132, 174 ], [ 240, 144, 132, 175 ], [ 240, 144, 132, 176 ], [ 240, 144, 132, 177 ], [ 240, 144, 132, 178 ], [ 240, 144, 132, 179 ], [ 240, 144, 133, 128 ], [ 240, 144, 133, 129 ], [ 240, 144, 133, 130 ], [ 240, 144, 133, 131 ], [ 240, 144, 133, 132 ], [ 240, 144, 133, 133 ], [ 240, 144, 133, 134 ], [ 240, 144, 133, 135 ], [ 240, 144, 133, 136 ], [ 240, 144, 133, 137 ], [ 240, 144, 133, 138 ], [ 240, 144, 133, 139 ], [ 240, 144, 133, 140 ], [ 240, 144, 133, 141 ], [ 240, 144, 133, 142 ], [ 240, 144, 133, 143 ], [ 240, 144, 133, 144 ], [ 240, 144, 133, 145 ], [ 240, 144, 133, 146 ], [ 240, 144, 133, 147 ], [ 240, 144, 133, 148 ], [ 240, 144, 133, 149 ], [ 240, 144, 133, 150 ], [ 240, 144, 133, 151 ], [ 240, 144, 133, 152 ], [ 240, 144, 133, 153 ], [ 240, 144, 133, 154 ], [ 240, 144, 133, 155 ], [ 240, 144, 133, 156 ], [ 240, 144, 133, 157 ], [ 240, 144, 133, 158 ], [ 240, 144, 133, 159 ], [ 240, 144, 133, 160 ], [ 240, 144, 133, 161 ], [ 240, 144, 133, 162 ], [ 240, 144, 133, 163 ], [ 240, 144, 133, 164 ], [ 240, 144, 133, 165 ], [ 240, 144, 133, 166 ], [ 240, 144, 133, 167 ], [ 240, 144, 133, 168 ], [ 240, 144, 133, 169 ], [ 240, 144, 133, 170 ], [ 240, 144, 133, 171 ], [ 240, 144, 133, 172 ], [ 240, 144, 133, 173 ], [ 240, 144, 133, 174 ], [ 240, 144, 133, 175 ], [ 240, 144, 133, 176 ], [ 240, 144, 133, 177 ], [ 240, 144, 133, 178 ], [ 240, 144, 133, 179 ], [ 240, 144, 133, 180 ], [ 240, 144, 133, 181 ], [ 240, 144, 133, 182 ], [ 240, 144, 133, 183 ], [ 240, 144, 133, 184 ], [ 240, 144, 134, 138 ], [ 240, 144, 134, 139 ], [ 240, 144, 139, 161 ], [ 240, 144, 139, 162 ], [ 240, 144, 139, 163 ], [ 240, 144, 139, 164 ], [ 240, 144, 139, 165 ], [ 240, 144, 139, 166 ], [ 240, 144, 139, 167 ], [ 240, 144, 139, 168 ], [ 240, 144, 139, 169 ], [ 240, 144, 139, 170 ], [ 240, 144, 139, 171 ], [ 240, 144, 139, 172 ], [ 240, 144, 139, 173 ], [ 240, 144, 139, 174 ], [ 240, 144, 139, 175 ], [ 240, 144, 139, 176 ], [ 240, 144, 139, 177 ], [ 240, 144, 139, 178 ], [ 240, 144, 139, 179 ], [ 240, 144, 139, 180 ], [ 240, 144, 139, 181 ], [ 240, 144, 139, 182 ], [ 240, 144, 139, 183 ], [ 240, 144, 139, 184 ], [ 240, 144, 139, 185 ], [ 240, 144, 139, 186 ], [ 240, 144, 139, 187 ], [ 240, 144, 140, 160 ], [ 240, 144, 140, 161 ], [ 240, 144, 140, 162 ], [ 240, 144, 140, 163 ], [ 240, 144, 141, 129 ], [ 240, 144, 141, 138 ], [ 240, 144, 143, 145 ], [ 240, 144, 143, 146 ], [ 240, 144, 143, 147 ], [ 240, 144, 143, 148 ], [ 240, 144, 143, 149 ], [ 240, 144, 146, 160 ], [ 240, 144, 146, 161 ], [ 240, 144, 146, 162 ], [ 240, 144, 146, 163 ], [ 240, 144, 146, 164 ], [ 240, 144, 146, 165 ], [ 240, 144, 146, 166 ], [ 240, 144, 146, 167 ], [ 240, 144, 146, 168 ], [ 240, 144, 146, 169 ], [ 240, 144, 161, 152 ], [ 240, 144, 161, 153 ], [ 240, 144, 161, 154 ], [ 240, 144, 161, 155 ], [ 240, 144, 161, 156 ], [ 240, 144, 161, 157 ], [ 240, 144, 161, 158 ], [ 240, 144, 161, 159 ], [ 240, 144, 161, 185 ], [ 240, 144, 161, 186 ], [ 240, 144, 161, 187 ], [ 240, 144, 161, 188 ], [ 240, 144, 161, 189 ], [ 240, 144, 161, 190 ], [ 240, 144, 161, 191 ], [ 240, 144, 162, 167 ], [ 240, 144, 162, 168 ], [ 240, 144, 162, 169 ], [ 240, 144, 162, 170 ], [ 240, 144, 162, 171 ], [ 240, 144, 162, 172 ], [ 240, 144, 162, 173 ], [ 240, 144, 162, 174 ], [ 240, 144, 162, 175 ], [ 240, 144, 163, 187 ], [ 240, 144, 163, 188 ], [ 240, 144, 163, 189 ], [ 240, 144, 163, 190 ], [ 240, 144, 163, 191 ], [ 240, 144, 164, 150 ], [ 240, 144, 164, 151 ], [ 240, 144, 164, 152 ], [ 240, 144, 164, 153 ], [ 240, 144, 164, 154 ], [ 240, 144, 164, 155 ], [ 240, 144, 166, 188 ], [ 240, 144, 166, 189 ], [ 240, 144, 167, 128 ], [ 240, 144, 167, 129 ], [ 240, 144, 167, 130 ], [ 240, 144, 167, 131 ], [ 240, 144, 167, 132 ], [ 240, 144, 167, 133 ], [ 240, 144, 167, 134 ], [ 240, 144, 167, 135 ], [ 240, 144, 167, 136 ], [ 240, 144, 167, 137 ], [ 240, 144, 167, 138 ], [ 240, 144, 167, 139 ], [ 240, 144, 167, 140 ], [ 240, 144, 167, 141 ], [ 240, 144, 167, 142 ], [ 240, 144, 167, 143 ], [ 240, 144, 167, 146 ], [ 240, 144, 167, 147 ], [ 240, 144, 167, 148 ], [ 240, 144, 167, 149 ], [ 240, 144, 167, 150 ], [ 240, 144, 167, 151 ], [ 240, 144, 167, 152 ], [ 240, 144, 167, 153 ], [ 240, 144, 167, 154 ], [ 240, 144, 167, 155 ], [ 240, 144, 167, 156 ], [ 240, 144, 167, 157 ], [ 240, 144, 167, 158 ], [ 240, 144, 167, 159 ], [ 240, 144, 167, 160 ], [ 240, 144, 167, 161 ], [ 240, 144, 167, 162 ], [ 240, 144, 167, 163 ], [ 240, 144, 167, 164 ], [ 240, 144, 167, 165 ], [ 240, 144, 167, 166 ], [ 240, 144, 167, 167 ], [ 240, 144, 167, 168 ], [ 240, 144, 167, 169 ], [ 240, 144, 167, 170 ], [ 240, 144, 167, 171 ], [ 240, 144, 167, 172 ], [ 240, 144, 167, 173 ], [ 240, 144, 167, 174 ], [ 240, 144, 167, 175 ], [ 240, 144, 167, 176 ], [ 240, 144, 167, 177 ], [ 240, 144, 167, 178 ], [ 240, 144, 167, 179 ], [ 240, 144, 167, 180 ], [ 240, 144, 167, 181 ], [ 240, 144, 167, 182 ], [ 240, 144, 167, 183 ], [ 240, 144, 167, 184 ], [ 240, 144, 167, 185 ], [ 240, 144, 167, 186 ], [ 240, 144, 167, 187 ], [ 240, 144, 167, 188 ], [ 240, 144, 167, 189 ], [ 240, 144, 167, 190 ], [ 240, 144, 167, 191 ], [ 240, 144, 169, 128 ], [ 240, 144, 169, 129 ], [ 240, 144, 169, 130 ], [ 240, 144, 169, 131 ], [ 240, 144, 169, 132 ], [ 240, 144, 169, 133 ], [ 240, 144, 169, 134 ], [ 240, 144, 169, 135 ], [ 240, 144, 169, 189 ], [ 240, 144, 169, 190 ], [ 240, 144, 170, 157 ], [ 240, 144, 170, 158 ], [ 240, 144, 170, 159 ], [ 240, 144, 171, 171 ], [ 240, 144, 171, 172 ], [ 240, 144, 171, 173 ], [ 240, 144, 171, 174 ], [ 240, 144, 171, 175 ], [ 240, 144, 173, 152 ], [ 240, 144, 173, 153 ], [ 240, 144, 173, 154 ], [ 240, 144, 173, 155 ], [ 240, 144, 173, 156 ], [ 240, 144, 173, 157 ], [ 240, 144, 173, 158 ], [ 240, 144, 173, 159 ], [ 240, 144, 173, 184 ], [ 240, 144, 173, 185 ], [ 240, 144, 173, 186 ], [ 240, 144, 173, 187 ], [ 240, 144, 173, 188 ], [ 240, 144, 173, 189 ], [ 240, 144, 173, 190 ], [ 240, 144, 173, 191 ], [ 240, 144, 174, 169 ], [ 240, 144, 174, 170 ], [ 240, 144, 174, 171 ], [ 240, 144, 174, 172 ], [ 240, 144, 174, 173 ], [ 240, 144, 174, 174 ], [ 240, 144, 174, 175 ], [ 240, 144, 179, 186 ], [ 240, 144, 179, 187 ], [ 240, 144, 179, 188 ], [ 240, 144, 179, 189 ], [ 240, 144, 179, 190 ], [ 240, 144, 179, 191 ], [ 240, 144, 185, 160 ], [ 240, 144, 185, 161 ], [ 240, 144, 185, 162 ], [ 240, 144, 185, 163 ], [ 240, 144, 185, 164 ], [ 240, 144, 185, 165 ], [ 240, 144, 185, 166 ], [ 240, 144, 185, 167 ], [ 240, 144, 185, 168 ], [ 240, 144, 185, 169 ], [ 240, 144, 185, 170 ], [ 240, 144, 185, 171 ], [ 240, 144, 185, 172 ], [ 240, 144, 185, 173 ], [ 240, 144, 185, 174 ], [ 240, 144, 185, 175 ], [ 240, 144, 185, 176 ], [ 240, 144, 185, 177 ], [ 240, 144, 185, 178 ], [ 240, 144, 185, 179 ], [ 240, 144, 185, 180 ], [ 240, 144, 185, 181 ], [ 240, 144, 185, 182 ], [ 240, 144, 185, 183 ], [ 240, 144, 185, 184 ], [ 240, 144, 185, 185 ], [ 240, 144, 185, 186 ], [ 240, 144, 185, 187 ], [ 240, 144, 185, 188 ], [ 240, 144, 185, 189 ], [ 240, 144, 185, 190 ], [ 240, 145, 129, 146 ], [ 240, 145, 129, 147 ], [ 240, 145, 129, 148 ], [ 240, 145, 129, 149 ], [ 240, 145, 129, 150 ], [ 240, 145, 129, 151 ], [ 240, 145, 129, 152 ], [ 240, 145, 129, 153 ], [ 240, 145, 129, 154 ], [ 240, 145, 129, 155 ], [ 240, 145, 129, 156 ], [ 240, 145, 129, 157 ], [ 240, 145, 129, 158 ], [ 240, 145, 129, 159 ], [ 240, 145, 129, 160 ], [ 240, 145, 129, 161 ], [ 240, 145, 129, 162 ], [ 240, 145, 129, 163 ], [ 240, 145, 129, 164 ], [ 240, 145, 129, 165 ], [ 240, 145, 129, 166 ], [ 240, 145, 129, 167 ], [ 240, 145, 129, 168 ], [ 240, 145, 129, 169 ], [ 240, 145, 129, 170 ], [ 240, 145, 129, 171 ], [ 240, 145, 129, 172 ], [ 240, 145, 129, 173 ], [ 240, 145, 129, 174 ], [ 240, 145, 129, 175 ], [ 240, 145, 131, 176 ], [ 240, 145, 131, 177 ], [ 240, 145, 131, 178 ], [ 240, 145, 131, 179 ], [ 240, 145, 131, 180 ], [ 240, 145, 131, 181 ], [ 240, 145, 131, 182 ], [ 240, 145, 131, 183 ], [ 240, 145, 131, 184 ], [ 240, 145, 131, 185 ], [ 240, 145, 132, 182 ], [ 240, 145, 132, 183 ], [ 240, 145, 132, 184 ], [ 240, 145, 132, 185 ], [ 240, 145, 132, 186 ], [ 240, 145, 132, 187 ], [ 240, 145, 132, 188 ], [ 240, 145, 132, 189 ], [ 240, 145, 132, 190 ], [ 240, 145, 132, 191 ], [ 240, 145, 135, 144 ], [ 240, 145, 135, 145 ], [ 240, 145, 135, 146 ], [ 240, 145, 135, 147 ], [ 240, 145, 135, 148 ], [ 240, 145, 135, 149 ], [ 240, 145, 135, 150 ], [ 240, 145, 135, 151 ], [ 240, 145, 135, 152 ], [ 240, 145, 135, 153 ], [ 240, 145, 135, 161 ], [ 240, 145, 135, 162 ], [ 240, 145, 135, 163 ], [ 240, 145, 135, 164 ], [ 240, 145, 135, 165 ], [ 240, 145, 135, 166 ], [ 240, 145, 135, 167 ], [ 240, 145, 135, 168 ], [ 240, 145, 135, 169 ], [ 240, 145, 135, 170 ], [ 240, 145, 135, 171 ], [ 240, 145, 135, 172 ], [ 240, 145, 135, 173 ], [ 240, 145, 135, 174 ], [ 240, 145, 135, 175 ], [ 240, 145, 135, 176 ], [ 240, 145, 135, 177 ], [ 240, 145, 135, 178 ], [ 240, 145, 135, 179 ], [ 240, 145, 135, 180 ], [ 240, 145, 139, 176 ], [ 240, 145, 139, 177 ], [ 240, 145, 139, 178 ], [ 240, 145, 139, 179 ], [ 240, 145, 139, 180 ], [ 240, 145, 139, 181 ], [ 240, 145, 139, 182 ], [ 240, 145, 139, 183 ], [ 240, 145, 139, 184 ], [ 240, 145, 139, 185 ], [ 240, 145, 147, 144 ], [ 240, 145, 147, 145 ], [ 240, 145, 147, 146 ], [ 240, 145, 147, 147 ], [ 240, 145, 147, 148 ], [ 240, 145, 147, 149 ], [ 240, 145, 147, 150 ], [ 240, 145, 147, 151 ], [ 240, 145, 147, 152 ], [ 240, 145, 147, 153 ], [ 240, 145, 153, 144 ], [ 240, 145, 153, 145 ], [ 240, 145, 153, 146 ], [ 240, 145, 153, 147 ], [ 240, 145, 153, 148 ], [ 240, 145, 153, 149 ], [ 240, 145, 153, 150 ], [ 240, 145, 153, 151 ], [ 240, 145, 153, 152 ], [ 240, 145, 153, 153 ], [ 240, 145, 155, 128 ], [ 240, 145, 155, 129 ], [ 240, 145, 155, 130 ], [ 240, 145, 155, 131 ], [ 240, 145, 155, 132 ], [ 240, 145, 155, 133 ], [ 240, 145, 155, 134 ], [ 240, 145, 155, 135 ], [ 240, 145, 155, 136 ], [ 240, 145, 155, 137 ], [ 240, 145, 156, 176 ], [ 240, 145, 156, 177 ], [ 240, 145, 156, 178 ], [ 240, 145, 156, 179 ], [ 240, 145, 156, 180 ], [ 240, 145, 156, 181 ], [ 240, 145, 156, 182 ], [ 240, 145, 156, 183 ], [ 240, 145, 156, 184 ], [ 240, 145, 156, 185 ], [ 240, 145, 156, 186 ], [ 240, 145, 156, 187 ], [ 240, 145, 163, 160 ], [ 240, 145, 163, 161 ], [ 240, 145, 163, 162 ], [ 240, 145, 163, 163 ], [ 240, 145, 163, 164 ], [ 240, 145, 163, 165 ], [ 240, 145, 163, 166 ], [ 240, 145, 163, 167 ], [ 240, 145, 163, 168 ], [ 240, 145, 163, 169 ], [ 240, 145, 163, 170 ], [ 240, 145, 163, 171 ], [ 240, 145, 163, 172 ], [ 240, 145, 163, 173 ], [ 240, 145, 163, 174 ], [ 240, 145, 163, 175 ], [ 240, 145, 163, 176 ], [ 240, 145, 163, 177 ], [ 240, 145, 163, 178 ], [ 240, 146, 144, 128 ], [ 240, 146, 144, 129 ], [ 240, 146, 144, 130 ], [ 240, 146, 144, 131 ], [ 240, 146, 144, 132 ], [ 240, 146, 144, 133 ], [ 240, 146, 144, 134 ], [ 240, 146, 144, 135 ], [ 240, 146, 144, 136 ], [ 240, 146, 144, 137 ], [ 240, 146, 144, 138 ], [ 240, 146, 144, 139 ], [ 240, 146, 144, 140 ], [ 240, 146, 144, 141 ], [ 240, 146, 144, 142 ], [ 240, 146, 144, 143 ], [ 240, 146, 144, 144 ], [ 240, 146, 144, 145 ], [ 240, 146, 144, 146 ], [ 240, 146, 144, 147 ], [ 240, 146, 144, 148 ], [ 240, 146, 144, 149 ], [ 240, 146, 144, 150 ], [ 240, 146, 144, 151 ], [ 240, 146, 144, 152 ], [ 240, 146, 144, 153 ], [ 240, 146, 144, 154 ], [ 240, 146, 144, 155 ], [ 240, 146, 144, 156 ], [ 240, 146, 144, 157 ], [ 240, 146, 144, 158 ], [ 240, 146, 144, 159 ], [ 240, 146, 144, 160 ], [ 240, 146, 144, 161 ], [ 240, 146, 144, 162 ], [ 240, 146, 144, 163 ], [ 240, 146, 144, 164 ], [ 240, 146, 144, 165 ], [ 240, 146, 144, 166 ], [ 240, 146, 144, 167 ], [ 240, 146, 144, 168 ], [ 240, 146, 144, 169 ], [ 240, 146, 144, 170 ], [ 240, 146, 144, 171 ], [ 240, 146, 144, 172 ], [ 240, 146, 144, 173 ], [ 240, 146, 144, 174 ], [ 240, 146, 144, 175 ], [ 240, 146, 144, 176 ], [ 240, 146, 144, 177 ], [ 240, 146, 144, 178 ], [ 240, 146, 144, 179 ], [ 240, 146, 144, 180 ], [ 240, 146, 144, 181 ], [ 240, 146, 144, 182 ], [ 240, 146, 144, 183 ], [ 240, 146, 144, 184 ], [ 240, 146, 144, 185 ], [ 240, 146, 144, 186 ], [ 240, 146, 144, 187 ], [ 240, 146, 144, 188 ], [ 240, 146, 144, 189 ], [ 240, 146, 144, 190 ], [ 240, 146, 144, 191 ], [ 240, 146, 145, 128 ], [ 240, 146, 145, 129 ], [ 240, 146, 145, 130 ], [ 240, 146, 145, 131 ], [ 240, 146, 145, 132 ], [ 240, 146, 145, 133 ], [ 240, 146, 145, 134 ], [ 240, 146, 145, 135 ], [ 240, 146, 145, 136 ], [ 240, 146, 145, 137 ], [ 240, 146, 145, 138 ], [ 240, 146, 145, 139 ], [ 240, 146, 145, 140 ], [ 240, 146, 145, 141 ], [ 240, 146, 145, 142 ], [ 240, 146, 145, 143 ], [ 240, 146, 145, 144 ], [ 240, 146, 145, 145 ], [ 240, 146, 145, 146 ], [ 240, 146, 145, 147 ], [ 240, 146, 145, 148 ], [ 240, 146, 145, 149 ], [ 240, 146, 145, 150 ], [ 240, 146, 145, 151 ], [ 240, 146, 145, 152 ], [ 240, 146, 145, 153 ], [ 240, 146, 145, 154 ], [ 240, 146, 145, 155 ], [ 240, 146, 145, 156 ], [ 240, 146, 145, 157 ], [ 240, 146, 145, 158 ], [ 240, 146, 145, 159 ], [ 240, 146, 145, 160 ], [ 240, 146, 145, 161 ], [ 240, 146, 145, 162 ], [ 240, 146, 145, 163 ], [ 240, 146, 145, 164 ], [ 240, 146, 145, 165 ], [ 240, 146, 145, 166 ], [ 240, 146, 145, 167 ], [ 240, 146, 145, 168 ], [ 240, 146, 145, 169 ], [ 240, 146, 145, 170 ], [ 240, 146, 145, 171 ], [ 240, 146, 145, 172 ], [ 240, 146, 145, 173 ], [ 240, 146, 145, 174 ], [ 240, 150, 169, 160 ], [ 240, 150, 169, 161 ], [ 240, 150, 169, 162 ], [ 240, 150, 169, 163 ], [ 240, 150, 169, 164 ], [ 240, 150, 169, 165 ], [ 240, 150, 169, 166 ], [ 240, 150, 169, 167 ], [ 240, 150, 169, 168 ], [ 240, 150, 169, 169 ], [ 240, 150, 173, 144 ], [ 240, 150, 173, 145 ], [ 240, 150, 173, 146 ], [ 240, 150, 173, 147 ], [ 240, 150, 173, 148 ], [ 240, 150, 173, 149 ], [ 240, 150, 173, 150 ], [ 240, 150, 173, 151 ], [ 240, 150, 173, 152 ], [ 240, 150, 173, 153 ], [ 240, 150, 173, 155 ], [ 240, 150, 173, 156 ], [ 240, 150, 173, 157 ], [ 240, 150, 173, 158 ], [ 240, 150, 173, 159 ], [ 240, 150, 173, 160 ], [ 240, 150, 173, 161 ], [ 240, 157, 141, 160 ], [ 240, 157, 141, 161 ], [ 240, 157, 141, 162 ], [ 240, 157, 141, 163 ], [ 240, 157, 141, 164 ], [ 240, 157, 141, 165 ], [ 240, 157, 141, 166 ], [ 240, 157, 141, 167 ], [ 240, 157, 141, 168 ], [ 240, 157, 141, 169 ], [ 240, 157, 141, 170 ], [ 240, 157, 141, 171 ], [ 240, 157, 141, 172 ], [ 240, 157, 141, 173 ], [ 240, 157, 141, 174 ], [ 240, 157, 141, 175 ], [ 240, 157, 141, 176 ], [ 240, 157, 141, 177 ], [ 240, 157, 159, 142 ], [ 240, 157, 159, 143 ], [ 240, 157, 159, 144 ], [ 240, 157, 159, 145 ], [ 240, 157, 159, 146 ], [ 240, 157, 159, 147 ], [ 240, 157, 159, 148 ], [ 240, 157, 159, 149 ], [ 240, 157, 159, 150 ], [ 240, 157, 159, 151 ], [ 240, 157, 159, 152 ], [ 240, 157, 159, 153 ], [ 240, 157, 159, 154 ], [ 240, 157, 159, 155 ], [ 240, 157, 159, 156 ], [ 240, 157, 159, 157 ], [ 240, 157, 159, 158 ], [ 240, 157, 159, 159 ], [ 240, 157, 159, 160 ], [ 240, 157, 159, 161 ], [ 240, 157, 159, 162 ], [ 240, 157, 159, 163 ], [ 240, 157, 159, 164 ], [ 240, 157, 159, 165 ], [ 240, 157, 159, 166 ], [ 240, 157, 159, 167 ], [ 240, 157, 159, 168 ], [ 240, 157, 159, 169 ], [ 240, 157, 159, 170 ], [ 240, 157, 159, 171 ], [ 240, 157, 159, 172 ], [ 240, 157, 159, 173 ], [ 240, 157, 159, 174 ], [ 240, 157, 159, 175 ], [ 240, 157, 159, 176 ], [ 240, 157, 159, 177 ], [ 240, 157, 159, 178 ], [ 240, 157, 159, 179 ], [ 240, 157, 159, 180 ], [ 240, 157, 159, 181 ], [ 240, 157, 159, 182 ], [ 240, 157, 159, 183 ], [ 240, 157, 159, 184 ], [ 240, 157, 159, 185 ], [ 240, 157, 159, 186 ], [ 240, 157, 159, 187 ], [ 240, 157, 159, 188 ], [ 240, 157, 159, 189 ], [ 240, 157, 159, 190 ], [ 240, 157, 159, 191 ], [ 240, 158, 163, 135 ], [ 240, 158, 163, 136 ], [ 240, 158, 163, 137 ], [ 240, 158, 163, 138 ], [ 240, 158, 163, 139 ], [ 240, 158, 163, 140 ], [ 240, 158, 163, 141 ], [ 240, 158, 163, 142 ], [ 240, 158, 163, 143 ], [ 240, 159, 132, 128 ], [ 240, 159, 132, 129 ], [ 240, 159, 132, 130 ], [ 240, 159, 132, 131 ], [ 240, 159, 132, 132 ], [ 240, 159, 132, 133 ], [ 240, 159, 132, 134 ], [ 240, 159, 132, 135 ], [ 240, 159, 132, 136 ], [ 240, 159, 132, 137 ], [ 240, 159, 132, 138 ], [ 240, 159, 132, 139 ], [ 240, 159, 132, 140 ] ]
python
import functools import time import argparse import sys import asyncio import cocrawler.burner as burner import cocrawler.config as config def burn(dt, data): t0 = time.clock() end = t0 + dt while time.clock() < end: pass return 1, async def work(): while True: dt, data = await queue.get() partial = functools.partial(burn, dt, data) await b.burn(partial) queue.task_done() async def crawl(): workers = [asyncio.Task(work(), loop=loop) for _ in range(100)] await queue.join() for w in workers: if not w.done(): w.cancel() ARGS = argparse.ArgumentParser(description='bench_burn benchmark for burner thread overhead') ARGS.add_argument('--threads', type=int, default=2) ARGS.add_argument('--workers', type=int, default=100) ARGS.add_argument('--datasize', type=int, default=10000) ARGS.add_argument('--affinity', action='store_true') ARGS.add_argument('--duration', type=float, default=0.010) ARGS.add_argument('--count', type=int, default=10000) args = ARGS.parse_args() c = {'Multiprocess': {'BurnerThreads': args.threads, 'Affinity': args.affinity}} config.set_config(c) loop = asyncio.get_event_loop() b = burner.Burner('parser') queue = asyncio.Queue() for _ in range(args.count): queue.put_nowait((args.duration, 'x' * args.datasize)) print('args are', args) print('Processing {} items of size {} kbytes and {:.3f} seconds of burn using {} burner threads'.format( args.count, int(args.datasize/1000), args.duration, args.threads)) t0 = time.time() c0 = time.clock() try: loop.run_until_complete(crawl()) except KeyboardInterrupt: sys.stderr.flush() print('\nInterrupt. Exiting.\n') finally: loop.stop() loop.run_forever() loop.close() elapsed = time.time() - t0 print('Elapsed time is {:.1f} seconds.'.format(elapsed)) expected = args.count * args.duration / args.threads print('Expected is {:.1f} seconds.'.format(expected)) print('Burner-side overhead is {}% or {:.4f} seconds per call'.format( int((elapsed - expected)/expected*100), (elapsed - expected)/args.count)) celapsed = time.clock() - c0 print('Main-thread overhead is {}%, {:.4f} seconds per call, {} calls per cpu-second'.format( int(celapsed/elapsed*100), celapsed/args.count, int(args.count/celapsed)))
python
## Script (Python) "updateProductionStage" ##parameters=sci # Copy the object in development to review and production. object = sci.object st = object.portal_staging st.updateStages(object, 'dev', ['review', 'prod'], sci.kwargs.get('comment', ''))
python
""" Benchmark Sorted Dictionary Datatypes """ import warnings from .benchmark import * # Tests. @register_test def contains(func, size): for val in lists[size][::100]: assert func(val) @register_test def getitem(func, size): for val in lists[size][::100]: assert func(val) == -val @register_test def setitem(func, size): for val in lists[size][::100]: func(val, -val) @register_test def setitem_existing(func, size): for val in lists[size][::100]: func(val, -val) @register_test def delitem(func, size): for val in lists[size][::100]: func(val) @register_test def iter(func, size): assert all(idx == val for idx, val in enumerate(func())) # Setups. def do_nothing(obj, size): pass def fill_values(obj, size): if hasattr(obj, 'update'): obj.update({val: -val for val in range(size)}) else: for val in range(size): obj[val] = -val # Implementation imports. from .context import sortedcontainers from sortedcontainers import SortedDict kinds['SortedDict'] = SortedDict try: from rbtree import rbtree kinds['rbtree'] = rbtree except ImportError: warnings.warn('No module named rbtree', ImportWarning) try: from blist import sorteddict kinds['blist.sorteddict'] = sorteddict except ImportError: warnings.warn('No module named blist', ImportWarning) try: from treap import treap kinds['treap'] = treap except ImportError: warnings.warn('No module named treap', ImportWarning) try: from bintrees import FastAVLTree, FastRBTree kinds['FastAVLTree'] = FastAVLTree kinds['FastRBTree'] = FastRBTree except ImportError: warnings.warn('No module named bintrees', ImportWarning) try: from skiplistcollections import SkipListDict kinds['SkipListDict'] = SkipListDict except ImportError: warnings.warn('No module named skiplistcollections', ImportWarning) try: from banyan import SortedDict as BanyanSortedDict kinds['banyan.SortedDict'] = BanyanSortedDict except ImportError: warnings.warn('No module named banyan', ImportWarning) # Implementation configuration. for name in tests: impls[name] = OrderedDict() for name, kind in kinds.items(): impls['contains'][name] = { 'setup': fill_values, 'ctor': kind, 'func': '__contains__', 'limit': 1000000 } if 'treap' in impls['contains']: del impls['contains']['treap'] for name, kind in kinds.items(): impls['getitem'][name] = { 'setup': fill_values, 'ctor': kind, 'func': '__getitem__', 'limit': 1000000 } for name, kind in kinds.items(): impls['setitem'][name] = { 'setup': do_nothing, 'ctor': kind, 'func': '__setitem__', 'limit': 1000000 } for name, kind in kinds.items(): impls['setitem_existing'][name] = { 'setup': fill_values, 'ctor': kind, 'func': '__setitem__', 'limit': 1000000 } for name, kind in kinds.items(): impls['delitem'][name] = { 'setup': fill_values, 'ctor': kind, 'func': '__delitem__', 'limit': 1000000 } for name, kind in kinds.items(): impls['iter'][name] = { 'setup': fill_values, 'ctor': kind, 'func': '__iter__', 'limit': 1000000 } if __name__ == '__main__': main('SortedDict')
python
import sys import salt.client.ssh import salt.utils.parsers class SaltSSH(salt.utils.parsers.SaltSSHOptionParser): """ Used to Execute the salt ssh routine """ def run(self): if "-H" in sys.argv or "--hosts" in sys.argv: sys.argv += ["x", "x"] # Hack: pass a mandatory two options # that won't be used anyways with -H or --hosts self.parse_args() ssh = salt.client.ssh.SSH(self.config) ssh.run()
python
import os import importlib import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib.finance import candlestick2_ohlc # from matplotlib.finance import volume_overlay import matplotlib.ticker as ticker from catalyst.exchange.exchange_bundle import ExchangeBundle from catalyst.exchange.exchange_bcolz import BcolzExchangeBarReader from catalyst.exchange.bundle_utils import get_df_from_arrays, get_bcolz_chunk from catalyst.exchange.factory import get_exchange EXCHANGE_NAMES = ['bitfinex', 'bittrex', 'poloniex'] exchanges = dict((e, getattr(importlib.import_module( 'catalyst.exchange.{0}.{0}'.format(e)), e.capitalize())) for e in EXCHANGE_NAMES) class ValidateChunks(object): def __init__(self): self.columns = ['open', 'high', 'low', 'close', 'volume'] def chunk_to_df(self, exchange_name, symbol, data_frequency, period): exchange = get_exchange(exchange_name) asset = exchange.get_asset(symbol) filename = get_bcolz_chunk( exchange_name=exchange_name, symbol=symbol, data_frequency=data_frequency, period=period ) reader = BcolzExchangeBarReader(rootdir=filename, data_frequency=data_frequency) # metadata = BcolzMinuteBarMetadata.read(filename) start = reader.first_trading_day end = reader.last_available_dt if data_frequency == 'daily': end = end - pd.Timedelta(hours=23, minutes=59) print(start, end, data_frequency) arrays = reader.load_raw_arrays(self.columns, start, end, [asset.sid, ]) bundle = ExchangeBundle(exchange_name) periods = bundle.get_calendar_periods_range( start, end, data_frequency ) return get_df_from_arrays(arrays, periods) def plot_ohlcv(self, df): fig, ax = plt.subplots() # Plot the candlestick candlestick2_ohlc(ax, df['open'], df['high'], df['low'], df['close'], width=1, colorup='g', colordown='r', alpha=0.5) # shift y-limits of the candlestick plot so that there is space # at the bottom for the volume bar chart pad = 0.25 yl = ax.get_ylim() ax.set_ylim(yl[0] - (yl[1] - yl[0]) * pad, yl[1]) # Add a seconds axis for the volume overlay ax2 = ax.twinx() ax2.set_position( matplotlib.transforms.Bbox([[0.125, 0.1], [0.9, 0.26]])) # Plot the volume overlay # bc = volume_overlay(ax2, df['open'], df['close'], df['volume'], # colorup='g', alpha=0.5, width=1) ax.xaxis.set_major_locator(ticker.MaxNLocator(6)) def mydate(x, pos): try: return df.index[int(x)] except IndexError: return '' ax.xaxis.set_major_formatter(ticker.FuncFormatter(mydate)) plt.margins(0) plt.show() def plot(self, filename): df = self.chunk_to_df(filename) self.plot_ohlcv(df) def to_csv(self, filename): df = self.chunk_to_df(filename) df.to_csv(os.path.basename(filename).split('.')[0] + '.csv') v = ValidateChunks() df = v.chunk_to_df( exchange_name='bitfinex', symbol='eth_btc', data_frequency='daily', period='2016' ) print(df.tail()) v.plot_ohlcv(df) # v.plot( # ex # )
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Atmosphere container base class definitions Created on Wed Nov 16 16:37:03 2016 @author: maxwell """ from collections import MutableMapping import numpy as np from . import constants from .readprof import readprof, readprof_ozone class Atmosphere(MutableMapping): """ Dict-like container for atmosphere array variables. Keeps temperature, pressure, height, ozone and humidity. """ #minimum allowable water vapor mixing ratio _qmin = 3.0e-6 #bounds for where to look for tropopause _ttl_pmax = 400.0 _ttl_pmin = 5.0 _tmin = 100 _tmax = 375 _mcclathcydir = 'atmosphere/profiles/mcclatchy' def __init__(self, gridstagger=None, plev=None,**kwargs): """ Define available keys and set defaults. Note that we require to know if the grid is staggered, and if we should treat RH or q as static. None of the other variables will be checked for consistency, so it is up to the user to make sure that all of the variables have the right dimensionality and units. It is recommended that all vectors be numpy arrays. vars: plev (hPa) pressure tlev (K) temperature qlev (g/g) water vapor mixing ratio rhlev (0<=x<=1) relative humididty o3lev (g/g) ozone mass mixing ratio """ print("Initializing Atmosphere object") #check that the grid is well defined if gridstagger is None: estr = "{} class requires (bool) gridstagger input." raise ValueError(estr.format(self.__class__.__name__)) if plev is None: estr = "{} class requires ndarray plev input." raise ValueError(estr.format(self.__class__.__name__)) self.gridstagger = gridstagger self.plev = plev self.nlev = len(plev) self.nlay = self.nlev-1 #we need at least some kind of moisture self.qlev = kwargs.get('qlev', None) self.rhlev = kwargs.get('rhlev', None) self.holdrh = kwargs.get('holdrh', None) #optional, we will provide defaults self.tlev = kwargs.get('tlev', None) self.o3lev = kwargs.get('o3lev', None) #T defaults to isothermal if (self.tlev is None): self.tlev = 288.0*np.ones(len(self.plev)) print("WARNING: T not provided, default to mean isothermal value.") # assign moisture vars with sanity checks if (self.qlev is None and self.rhlev is None): self.qlev = np.zeros(len(self.plev)) self.rhlev = np.zeros(len(self.plev)) print("WARNING: moisture not provided, default to 0.") userh = False elif (self.qlev is None and self.rhlev is not None): print("WARNING: q not provided. Setting based on RH.") self.rhlev = self._enforece_rh_range(self.rhlev) self.qlev = self._enforce_q_gradient( self._rh2q(self.plev, self.tlev, self.rhlev) ) userh = True elif (self.qlev is not None and self.rhlev is None): print("WARNING: RH not provided. Seting based on q.") self.qlev = self._enforce_q_gradient(self.qlev) self.rhlev = self._q2rh(self.plev, self.tlev, self.qlev) userh = False else: userh = True self.qlev = self._enforce_q_gradient(self.qlev) self.rhlev = self._enforce_rh_range(self.rhlev) if(self.holdrh is None): self.holdrh = userh print( "WARNING: holdrh not provided, setting to {0}".format(userh)) #o3 defaults to 0 if (self.o3lev is None): self.o3lev = np.zeros(len(self.plev)) print("WARNING: ozone not provided, default to 0.") #define layer tags self.play = 0.5*(plev[:-1] + plev[1:]) self.tlay = self._lev2lay(self.plev,self.tlev, self.play) self.o3lay = self._lev2lay(self.plev, self.o3lev, self.play) self.qlay = self._lev2lay(self.plev, self.qlev, self.play) self.rhlay = self._lev2lay(self.plev, self.rhlev, self.play) tsfc = kwargs.get('tsfc', None) if (tsfc is None): print("WARNING: tsfc not provided. Using tlev[-1].") tsfc = self.tlev[-1] self.tsfc = tsfc self._p_z() self._updatecoldpoint() self._updatewarmpoint() self._updatewv() # %%dict-like behavior def __setitem__(self, key, value=None,): if (key == 'plev' or key == 'play' or key == 'p' or key == 'zlev' or key == 'zlay' or key == 'z'): err = "{cls} object doesn't support changing value of {key}." raise TypeError( err.format(cls=self.__class__.__name__, key=key) ) if self.__contains__(key): self.__dict__[key] = value else: raise KeyError ("'{0}' not found in collection".format(key)) def __getitem__(self, key): return self.__dict__[key] def __delitem__(self,key): raise TypeError ("{cls} object doesn't support item deletion" .format(cls=self.__class__.__name__)) def __iter__(self): return self.__dict__.__iter__() def __len__(self): if (self.gridstagger): return self.nlay else: return self.nlev def __contains__(self,key): return self.__dict__.__contains__(key) # %% alternate constructors @classmethod def mcclatchy(cls, prof,gridstagger=None,p=None,holdrh=None, **kwargs): """ Alternate constructor using a McClatchy standard profile. """ keys = ['plev', 'tlev', 'qlev', 'o3lev'] prof = ''.join(['/'.join([cls._mcclathcydir,prof]),'.lay']) #if any column vars are provided, we will use them as defaults here t = kwargs.pop('tlev',None) q = kwargs.pop('qlev', None) o3 = kwargs.pop('o3lev', None) print("Initializing {cls} object from file {f}.".format( cls=cls.__name__, f=prof)) try: (ps,ts,qs,o3s) = readprof(prof) except FileNotFoundError: raise FileNotFoundError( "File {prof} does not exist".format(prof=prof) ) if (p is None): print("WARNING:: pressure levels not provided. " "Using default McClatchy values. ") p = ps else: print("{}: interpolating to provided grid".format( cls.__name__) ) if t is None: t = cls.interp(ps,ts,p) if q is None: q = cls.interp(ps,qs,p) if o3 is None: o3 = cls.interp(ps,o3s,p) defaults = dict(zip(keys, [p,t,q,o3])) if gridstagger is None: print("WARNING: gridstagger not provided for Atmosphere()." ,"Setting to True" ) gridstagger = True return cls(gridstagger=gridstagger,holdrh=holdrh,**defaults,**kwargs) @classmethod def fromfile(cls, fname, gridstagger=None, p=None, holdrh=None, **kwargs): """ Alternate constructor using any standard profile from file. """ keys = ['plev', 'tlev', 'qlev', 'o3lev'] #if any column vars are provided, we will use them as defaults here t = kwargs.pop('tlev',None) q = kwargs.pop('qlev', None) o3 = kwargs.pop('o3lev', None) print("Initializing {cls} object from file {f}.".format( cls=cls.__name__, f=fname)) try: (ps,ts,qs,o3s) = readprof(fname) except FileNotFoundError: raise FileNotFoundError( "File {prof} does not exist".format(prof=fname) ) if (p is None): print("WARNING:: pressure levels not provided. " "Using default McClatchy values. ") p = ps else: print("{}: interpolating to provided grid".format( cls.__name__) ) if t is None: t = cls.interp(ps,ts,p) if q is None: q = cls.interp(ps,qs,p) if o3 is None: o3 = cls.interp(ps,o3s,p) defaults = dict(zip(keys, [p,t,q,o3])) if gridstagger is None: print("WARNING: gridstagger not provided for Atmosphere()." ,"Setting to True" ) gridstagger = True return cls(gridstagger=gridstagger,holdrh=holdrh,**defaults,**kwargs) def ozone_fromfile(self, fname): """ setter method to set ozone from a text file directly. """ print('Attempt to read ozone profile from file:{f}'.format( f=fname)) try: ps, o3s = readprof_ozone(fname) except FileNotFoundError: raise FileNotFoundError( "File {prof} does not exist".format(prof=fname) ) self.o3 = np.maximum(self.interp(ps, o3s, self.p),0) # %% interpolation @staticmethod def _findvalue(x,xq): """ Find equal or larger value in array with at least one index to left. Array lookup should be sorted in ascending order. """ L,R = int(1), int(len(x)-1) while L < R: M = int((L+R)/2) if xq > x[M]: L = M+1 elif xq < x[M]: R = M else: return M return R @classmethod def interp(cls,x,y,xq): """ Interpolate linearly with extrapolation when out of range. Expects xq to be a vector (i.e., numpy 1D array). """ yq = np.empty(len(xq)) #yq needs to be same type as xq for iout,target in enumerate(xq): idx = cls._findvalue(x,target) f = (target-x[idx-1])/(x[idx]-x[idx-1]) yq[iout] = (1-f)*y[idx-1] + f*y[idx] return yq @classmethod def _lev2lay(cls,plev,xlev,play): """Move Level vars to layers""" return cls.interp(plev, xlev, play) @classmethod #remake so that it takes generic arguments and returns a vecotr def _lay2lev(cls,play,xlay,plev): """Move Layer vars to levels""" return cls.interp(play,xlay,plev) def updategrid(self): """ Interpolate temperature to all levels/layers. Spread WV variables too. """ if(self.gridstagger): self['tlev'] = self._lay2lev( self['play'], self['tlay'], self['plev'] ) self['qlev'] = self._lay2lev( self['play'], self['qlay'], self['plev'] ) self['rhlev'] = self._lay2lev( self['play'], self['rhlay'], self['plev'] ) self['o3lev'] = self._lay2lev( self['play'], self['o3lay'], self['plev'] ) else: self['tlay'] = self._lev2lay( self['plev'], self['tlev'], self['play'] ) self['qlay'] = self._lev2lay( self['plev'], self['qlev'], self['play'] ) self['rhlay'] = self._lev2lay( self['plev'], self['rhlev'], self['play'] ) self['o3lay'] = self._lay2lev( self['plev'], self['o3lev'], self['play'] ) self._updatewv() self._p_z() self._updatecoldpoint() self._updatewarmpoint() # %% moisture @staticmethod def satvap(temp): """ Saturation Vapor pressure (Goff and Gratch, 1946) Temp is the temperature in Kelvins and may be a numpy array """ ttrans = 0 #253.15 tsteam = 373.16 tice= 273.16 #choose water or ice saturation loge = np.where(temp>=ttrans, (-7.90298*(tsteam/temp-1) + 5.02808*np.log10(tsteam/temp) -1.3816e-7 * (10**(11.344*(1-temp/tsteam))-1) +8.1328e-3 * (10**(-3.49149*(tsteam/temp-1))-1) +np.log10(1013.25) ), (-9.09718*(tice/temp-1) - 3.56654*np.log10(tice/temp) -0.876793*(1-temp/tice) + np.log10(6.1173) ) ) return 10**loge @classmethod def satmixrat(cls,pres,temp): """Saturation mixing ratio""" return constants.eps*cls.satvap(temp)/pres @classmethod def _q2rh(cls, p,t,q): """ Convert mixing ratio to relative humidity. Assumes that the grid pressure is equivalent to the dry pressure. """ return q/cls.satmixrat(p,t) @classmethod def _rh2q(cls, p,t,rh): """ Convert RH to mixing ratio and enforce minimum values for q. Also enforces the vertical gradient of q such that q can never increase with height. """ return rh*cls.satmixrat(p,t) @classmethod def _enforce_q_gradient(cls, q): """Ensure q decrease with height""" q[-1] = np.maximum(q[-1], cls._qmin) for i in np.arange(len(q)-1,0,-1): q[i-1] = np.maximum(np.minimum(q[i], q[i-1]), cls._qmin) return q @classmethod def _enforce_rh_range(cls,rh): rh = np.maximum(0.0, np.minimum(1.0, rh)) return rh def _updatewv(self): """Spread water vapor from rh to q or vice-versa as grid specifies.""" if(self.holdrh): self.qlev = self._enforce_q_gradient( self._rh2q(self.plev,self.tlev,self.rhlev) ) self.qlay = self._enforce_q_gradient( self._rh2q(self.play,self.tlay,self.rhlay) ) else: self.rhlev = self._enforce_rh_range( self._q2rh(self.plev, self.tlev, self.qlev) ) self.rhlay = self._enforce_rh_range( self._q2rh(self.play, self.tlay, self.qlay) ) # %% height-related methods def _p_z(self): tv = self.tlay*(1 + (1-1/constants.eps)*self.qlay) dz = ( (constants.Rd/constants.grav) *np.log(self.plev[1:]/self.plev[:-1]) * tv ) zlev = np.zeros(len(self.plev)) zlev[1:] = np.cumsum(dz[::-1]) self.zlev = zlev[::-1] self.zlay = self._lev2lay( self.plev, self.zlev, self.play) #%% get cold point and conv. top def _updatecoldpoint(self): mask = np.logical_and( self.p <= self._ttl_pmax, self.p >= self._ttl_pmin) icold_point = np.argmin(np.where(mask, self.t, 99999)) self._icold_point = icold_point def _updatewarmpoint(self): mask = self.p >= self._ttl_pmax iwarm_point = np.argmax(np.where(mask, self.t, -99999)) self._iwarm_point = iwarm_point # %% property variables for more obvious getting and setting def _checkvar(self, value): if len(self) != len(value): raise ValueError( "Length of array provided does not match the target dimension" ) @property def t(self): if (self.gridstagger): return self.tlay else: return self.tlev @t.setter def t(self, value): self._checkvar(value) if(self.gridstagger): self.tlay = np.minimum(np.maximum(value,self._tmin),self._tmax) else: self.tlev = np.minimum(np.maximum(value,self._tmin),self._tmax) self.updategrid() @property def tsfc(self): return self._tsfc @tsfc.setter def tsfc(self,value): self._tsfc = np.minimum(np.maximum(value,self._tmin), self._tmax) @property def q(self): if (self.gridstagger): return self.qlay else: return self.qlev @q.setter def q(self,value): self._checkvar(value) if (self.holdrh): print( "WARNING: holdrh set to True, but setting q directly. " "Value will be overwritten." ) if (self.gridstagger): self.qlay = value else: self.qlev = value self.updategrid() @property def rh(self): if (self.gridstagger): return self.rhlay else: return self.rhlev @rh.setter def rh(self,value): self._checkvar(value) if (not self.holdrh): print( "WARNING: holdrh set to False, but setting RH directly. " "Value will be overwritten." ) if(self.gridstagger): self.rhlay = value else: self.rhlev = value self.updategrid() @property def o3(self): if(self.gridstagger): return self.o3lay else: return self.o3lev @o3.setter def o3(self, value): self._checkvar(value) if(self.gridstagger): self.o3lay = value else: self.o3lev = value self.updategrid() @property def p(self): if(self.gridstagger): return self.play else: return self.plev @property def z(self): if(self.gridstagger): return self.zlay else: return self.zlev @property def tcold(self): return self.t[self.icold] @property def pcold(self): return self.p[self.icold] @property def zcold(self): return self.z[self.icold] @property def icold(self): return self._icold_point @property def tconv(self): return self.t[self.iconv] @property def pconv(self): return self.p[self.iconv] @property def zconv(self): return self.z[self.iconv] #although icold is calculated internally, not all atmospheres will need a # convective top(iconv). Provide a setter method so that external objects # can include this functionality if desired. @property def iconv(self): try: return self._iconv_top except AttributeError: msg = ("WARNING: attempt to access undefined _iconv_top. Using " "cold point 'icold' instead") print(msg) return self.icold @iconv.setter def iconv(self, value): self._iconv_top = value @property def twarm(self): return self.t[self.iwarm] @property def pwarm(self): return self.p[self.iwarm] @property def iwarm(self): return self._iwarm_point
python
# -*- coding:utf-8 -*- #autor -> manoel vilela #gerando graficos em relação a eficiencia dos algoritmos de ordenação bubble, merge and personal import pylab def extract_data(file_name): data = open(file_name, "r").read().split() data = [element.split() for element in data.split("=")] vector, values = data
python
import graphene from django.db.models import F, Q from tabletop.models import DurationType, Game from tabletop.schema import GameNode from tabletop.utils.graphene import optimize_queryset class Query(object): games = graphene.List( GameNode, id=graphene.UUID(), query=graphene.String(), players=graphene.Int(), entity=graphene.UUID(), max_duration=graphene.Int(), parent=graphene.UUID(), ) def resolve_games( self, info, id: str = None, query: str = None, parent: str = None, players: int = None, entity: str = None, max_duration: int = None, ): # TODO(dcramer): fix optimize_queryset so it handles the OneToOne join automatically qs = Game.objects.select_related("image").distinct() if id: qs = qs.filter(id=id) if parent: qs = qs.filter(parent=parent) if query: qs = qs.filter(name__istartswith=query) if entity: qs = qs.filter(entities=entity) if players: qs = qs.filter(min_players__lte=players, max_players__gte=players) if max_duration: qs = qs.filter( Q(duration__lte=max_duration, duration_type=DurationType.total) | Q( duration__lte=max_duration / (players if players else F("max_players")), duration_type=DurationType.per_player, ) ) qs = optimize_queryset(qs, info, "games", GameNode.fix_queryset) return qs.order_by("name")
python
#General imports==================================== from html.parser import HTMLParser from urllib import parse #Finds all anchor <a> tags in a website============ class LinkFinder(HTMLParser): def __init__(self, base_url, page_url): super().__init__() self.base_url = base_url self.page_url = page_url self.links = set() def handle_starttag(self, tag, attrs): if tag == 'a': for (attribute, value) in attrs: if attribute == 'href': url = parse.urljoin(self.base_url, value) self.links.add(url) def page_links(self): return self.links def error(self, message): pass
python
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2017 Ganggao Zhu- Grupo de Sistemas Inteligentes # gzhu[at]dit.upm.es # DIT, UPM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gensim import corpora, models, similarities, matutils class TextAnalysis: """This implements wrapper for gensim lsa and tfidf analysis of text collection""" def __init__(self, text_process, model, dictionary, tfidf, tfidf_index, lsa, lsa_index): self._text_process = text_process self._model = model self._dictionary = dictionary self._tfidf = tfidf self._tfidf_index = tfidf_index self._lsa = lsa self._lsa_index = lsa_index def text2model(self, text): t = self._text_process(text) bow = self._dictionary.doc2bow(t) tfidf = self._tfidf[bow] if self._model == 'tfidf': return tfidf else: return self._lsa[tfidf] def text_similarity(self, t1, t2): if self._model == 'tfidf': t1_vec = matutils.any2sparse(self.text2model(t1)) t2_vec = matutils.any2sparse(self.text2model(t2)) return matutils.cossim(t1_vec, t2_vec) else: t1_vec = matutils.any2sparse(self.text2model(t1)) t2_vec = matutils.any2sparse(self.text2model(t2)) return matutils.cossim(t1_vec, t2_vec) def search(self, text): query = self.text2model(text) if self._model == 'tfidf': return self._tfidf_index[query] else: return self._lsa_index[query] @classmethod def load(cls, text_process, model='tfidf', top_N=100, save_dir='data/'): import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) dictionary = corpora.Dictionary.load(save_dir+'dictionary') tfidf = models.TfidfModel.load(save_dir+'tfidf.model') tfidf_index = similarities.Similarity.load(save_dir+'tfidf_index/tfidf.index') tfidf_index.num_best = top_N if model == 'lsa': lsa = models.LsiModel.load(save_dir+'lsa.model') lsa_index = similarities.Similarity.load(save_dir+'lsa_index/lsa.index') lsa_index.num_best = top_N return cls(text_process, model, dictionary, tfidf, tfidf_index, lsa, lsa_index) return cls(text_process, model, dictionary, tfidf, tfidf_index, None, None) @classmethod def train(cls, texts, text_process, model='lsa', topic_n=100, top_N=100, save_dir='data/'): import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) corpus = [text_process(t) for t in texts] dictionary = corpora.Dictionary(corpus) print(dictionary) dictionary.save(save_dir+'dictionary') bow = [dictionary.doc2bow(t) for t in corpus] corpora.MmCorpus.serialize(save_dir+'bow', bow) bow_corpus = corpora.MmCorpus(save_dir+'bow') tfidf = models.TfidfModel(bow_corpus, id2word=dictionary) corpora.MmCorpus.serialize(save_dir+'tfidf', tfidf[bow_corpus]) tfidf.save(save_dir+'tfidf.model') tfidf_corpus = corpora.MmCorpus(save_dir+'tfidf') tfidf_index = similarities.Similarity(save_dir+'tfidf_index/shard', tfidf_corpus, num_features=tfidf_corpus.num_terms) tfidf_index.num_best = top_N tfidf_index.save(save_dir+'tfidf_index/tfidf.index') if model == 'lsa': lsa = models.LsiModel(tfidf_corpus, id2word=dictionary, num_topics=topic_n) lsa.save(save_dir+'lsa.model') lsa_index = similarities.Similarity(save_dir+'lsa_index/shard', lsa[tfidf_corpus], num_features=topic_n) lsa_index.num_best = top_N lsa_index.save(save_dir+'lsa_index/lsa.index') return cls(text_process, model, dictionary, tfidf, tfidf_index, lsa, lsa_index) return cls(text_process, model, dictionary, tfidf, tfidf_index, None, None)
python
""" MIT License Copyright (c) 2020-2021 Hyeonki Hong <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.layers import Input from tensorflow.keras.optimizers import Adam from .dataset.keras_sequence import YOLODataset # for exporting from .model import YOLOv4Model from .training.callbacks import ( SaveWeightsCallback, # for exporting YOLOCallbackAtEachStep, ) from .training.yolo_loss import YOLOv4Loss from .utils.mAP import create_mAP_input_files # for exporting from .utils.tflite import save_as_tflite # for expoerting from .utils.weights import ( load_weights as _load_weights, save_weights as _save_weights, ) from ..common.base_class import BaseClass physical_devices = tf.config.experimental.list_physical_devices("GPU") if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) print("Call tf.config.experimental.set_memory_growth(GPU0, True)") class YOLOv4(BaseClass): @property def model(self) -> YOLOv4Model: return self._model def make_model(self): K.clear_session() _input = Input(self.config.net.input_shape) self._model = YOLOv4Model(config=self.config) self._model(_input) def load_weights(self, weights_path: str, weights_type: str = "tf"): """ Usage: yolo.load_weights("checkpoints") yolo.load_weights("yolov4.weights", weights_type="yolo") """ if weights_type == "yolo": _load_weights(self._model, weights_path) elif weights_type == "tf": self._model.load_weights(weights_path) def save_weights( self, weights_path: str, weights_type: str = "tf", to: int = 0 ): """ Usage: yolo.save_weights("checkpoints") yolo.save_weights("yolov4.weights", weights_type="yolo") yolo.save_weights("yolov4.conv.137", weights_type="yolo", to=137) """ to_layer = "" if to > 0: to_layer = self.config.metalayers[to - 1].name if weights_type == "yolo": _save_weights(self._model, weights_path, to=to_layer) elif weights_type == "tf": self._model.save_weights(weights_path) def summary(self, line_length=90, summary_type: str = "tf", **kwargs): if summary_type == "tf": self._model.summary(line_length=line_length, **kwargs) else: self.config.summary() ############# # Inference # ############# @tf.function def _predict(self, x): yolos = self._model(x, training=False) # [yolo0, yolo1, ...] # yolo == Dim(batch, height, width, channels) batch = yolos[0].shape[0] candidates = [] stride = 5 + self.config.yolo_0.classes for yolo in yolos: candidates.append(K.reshape(yolo, shape=(batch, -1, stride))) return K.concatenate(candidates, axis=1) def predict(self, frame: np.ndarray): """ Predict one frame @param frame: Dim(height, width, channels) @return pred_bboxes Dim(-1, (x,y,w,h,o, cls_id0, prob0, cls_id1, prob1)) """ # image_data == Dim(1, input_size[1], input_size[0], channels) height, width, _ = frame.shape image_data = self.resize_image(frame) image_data = image_data / 255.0 image_data = image_data[np.newaxis, ...].astype(np.float32) candidates = self._predict(image_data)[0].numpy() # Select 0 pred_bboxes = self.yolo_diou_nms( candidates=candidates, beta_nms=self.config.yolo_0.beta_nms ) self.fit_to_original(pred_bboxes, height, width) return pred_bboxes ############ # Training # ############ def compile( self, optimizer=None, loss=None, **kwargs, ): if optimizer is None: optimizer = Adam(learning_rate=self.config.net.learning_rate) if loss is None: loss = YOLOv4Loss(config=self.config, model=self.model) return self._model.compile( optimizer=optimizer, loss=loss, **kwargs, ) def fit( self, dataset, callbacks=None, validation_data=None, validation_steps=None, verbose: int = 3, **kwargs, ): """ verbose=3 is one line per step """ callbacks = callbacks or [] callbacks.append( YOLOCallbackAtEachStep(config=self.config, verbose=verbose) ) epochs = self.config.net.max_batches // len(dataset) + 1 return self._model.fit( dataset, epochs=epochs, verbose=verbose if verbose < 3 else 0, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, **kwargs, )
python
"""Command line tools for Flask server app.""" from os import environ from uuid import UUID from flask_script import Manager from flask_migrate import MigrateCommand, upgrade from app import create_app, db from app.mongo import drop_mongo_collections from app.authentication.models import User, PasswordAuthentication, OrganizationMembership from app.samples.sample_models import Sample from app.sample_groups.sample_group_models import SampleGroup app = create_app() manager = Manager(app) # pylint: disable=invalid-name manager.add_command('db', MigrateCommand) # These must be imported AFTER Mongo connection has been established during app creation # pylint: disable=wrong-import-position from seed import create_abrf_analysis_result as create_abrf_result from seed.fuzz import generate_metadata, create_saved_group # pylint: enable=wrong-import-position @manager.command def recreate_db(): """Recreate a database using migrations.""" # We cannot simply use db.drop_all() because it will not drop the alembic_versions table sql = 'SELECT \ \'drop table if exists "\' || tablename || \'" cascade;\' as pg_drop \ FROM \ pg_tables \ WHERE \ schemaname=\'public\';' drop_statements = db.engine.execute(sql) if drop_statements.rowcount > 0: drop_statement = '\n'.join([x['pg_drop'] for x in drop_statements]) drop_statements.close() db.engine.execute(drop_statement) # Run migrations upgrade() # Empty Mongo database drop_mongo_collections() def get_user(): """Get the password from env vars or a default.""" username = environ.get('SEED_USER_USERNAME', 'bchrobot') email = environ.get('SEED_USER_EMAIL', '[email protected]') password = environ.get('SEED_USER_PASSWORD', 'Foobar22') new_user = User( username=username, email=email, user_type='user', ) new_user.password_authentication = PasswordAuthentication(password=password) return new_user @manager.command def seed_users(): """Seed just the users for the database.""" db.session.add(get_user()) db.session.commit() @manager.command def seed_db(): """Seed the database.""" default_user = get_user() # Create Mason Lab mason_lab = User( username='MasonLab', email='[email protected]', user_type='organization', ) membership = OrganizationMembership(role='admin') membership.user = default_user mason_lab.user_memberships.append(membership) db.session.add_all([mason_lab, membership]) db.session.commit() # Create ABRF sample group abrf_uuid = UUID('00000000-0000-4000-8000-000000000000') abrf_description = 'ABRF San Diego Mar 24th-29th 2017' abrf_2017_group = SampleGroup(name='ABRF 2017', owner_uuid=mason_lab.uuid, owner_name=mason_lab.username, is_library=True, analysis_result=create_abrf_result(save=True), description=abrf_description) abrf_2017_group.uuid = abrf_uuid abrf_sample_01 = Sample(name='SomethingUnique_A', library_uuid=abrf_uuid, analysis_result=create_abrf_result(save=True), metadata=generate_metadata()).save() abrf_sample_02 = Sample(name='SomethingUnique_B', library_uuid=abrf_uuid, analysis_result=create_abrf_result(save=True), metadata=generate_metadata()).save() abrf_2017_group.samples = [abrf_sample_01, abrf_sample_02] db.session.add(abrf_2017_group) db.session.commit() # Create fuzzed group fuzz_uuid = UUID('00000000-0000-4000-8000-000000000001') create_saved_group(owner=mason_lab, uuid=fuzz_uuid) if __name__ == '__main__': manager.run()
python
import torch from transformers import BertTokenizerFast from colbert.modeling.tokenization.utils import _split_into_batches, _sort_by_length class DocTokenizer(): def __init__(self, doc_maxlen): self.tok = BertTokenizerFast.from_pretrained('bert-base-uncased') self.doc_maxlen = doc_maxlen self.D_marker_token, self.D_marker_token_id = '[D]', self.tok.get_vocab()['[unused1]'] self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id assert self.D_marker_token_id == 2 def tokenize(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) tokens = [self.tok.tokenize(x, add_special_tokens=False) for x in batch_text] if not add_special_tokens: return tokens prefix, suffix = [self.cls_token, self.D_marker_token], [self.sep_token] tokens = [prefix + lst + suffix for lst in tokens] return tokens def encode(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) ids = self.tok(batch_text, add_special_tokens=False)['input_ids'] if not add_special_tokens: return ids prefix, suffix = [self.cls_token_id, self.D_marker_token_id], [self.sep_token_id] ids = [prefix + lst + suffix for lst in ids] return ids def tensorize(self, batch_text, bsize=None): assert type(batch_text) in [list, tuple], (type(batch_text)) # add placehold for the [D] marker batch_text = ['. ' + x for x in batch_text] obj = self.tok(batch_text, padding='longest', truncation='longest_first', return_tensors='pt', max_length=self.doc_maxlen) ids, mask = obj['input_ids'], obj['attention_mask'] # postprocess for the [D] marker ids[:, 1] = self.D_marker_token_id if bsize: ids, mask, reverse_indices = _sort_by_length(ids, mask, bsize) batches = _split_into_batches(ids, mask, bsize) return batches, reverse_indices return ids, mask
python
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### import numpy _default_epsilon_length = 1e-5 _default_epsilon_angle = 1e-5 def change_reference(reciprocal_cell, kpoints, to_cartesian=True): """ Change reference system, from cartesian to crystal coordinates (units of b1,b2,b3) or viceversa. :param reciprocal_cell: a 3x3 array representing the cell lattice vectors in reciprocal space :param kpoints: a list of (3) point coordinates :return kpoints: a list of (3) point coordinates in the new reference """ if not isinstance(kpoints, numpy.ndarray): raise ValueError('kpoints must be a numpy.array') transposed_cell = numpy.transpose(numpy.array(reciprocal_cell)) if to_cartesian: matrix = transposed_cell else: matrix = numpy.linalg.inv(transposed_cell) # note: kpoints is a list Nx3, matrix is 3x3. # hence, first transpose kpoints, then multiply, finally transpose it back return numpy.transpose(numpy.dot(matrix, numpy.transpose(kpoints))) def analyze_cell(cell=None, pbc=None): """ A function executed by the __init__ or by set_cell. If a cell is set, properties like a1, a2, a3, cosalpha, reciprocal_cell are set as well, although they are not stored in the DB. :note: units are Angstrom for the cell parameters, 1/Angstrom for the reciprocal cell parameters. """ if pbc is None: pbc = [True, True, True] dimension = sum(pbc) if cell is None: return { 'reciprocal_cell': None, 'dimension': dimension, 'pbc': pbc } the_cell = numpy.array(cell) reciprocal_cell = 2. * numpy.pi * numpy.linalg.inv(the_cell).transpose() a1 = numpy.array(the_cell[0, :]) # units = Angstrom a2 = numpy.array(the_cell[1, :]) # units = Angstrom a3 = numpy.array(the_cell[2, :]) # units = Angstrom a = numpy.linalg.norm(a1) # units = Angstrom b = numpy.linalg.norm(a2) # units = Angstrom c = numpy.linalg.norm(a3) # units = Angstrom b1 = reciprocal_cell[0, :] # units = 1/Angstrom b2 = reciprocal_cell[1, :] # units = 1/Angstrom b3 = reciprocal_cell[2, :] # units = 1/Angstrom cosalpha = numpy.dot(a2, a3) / b / c cosbeta = numpy.dot(a3, a1) / c / a cosgamma = numpy.dot(a1, a2) / a / b result = { 'a1': a1, 'a2': a2, 'a3': a3, 'a': a, 'b': b, 'c': c, 'b1': b1, 'b2': b2, 'b3': b3, 'cosalpha': cosalpha, 'cosbeta': cosbeta, 'cosgamma': cosgamma, 'dimension': dimension, 'reciprocal_cell': reciprocal_cell, 'pbc': pbc, } return result def get_explicit_kpoints_path(value=None, cell=None, pbc=None, kpoint_distance=None, cartesian=False, epsilon_length=_default_epsilon_length, epsilon_angle=_default_epsilon_angle): """ Set a path of kpoints in the Brillouin zone. :param value: description of the path, in various possible formats. None: automatically sets all irreducible high symmetry paths. Requires that a cell was set or:: [('G','M'), (...), ...] [('G','M',30), (...), ...] [('G',(0,0,0),'M',(1,1,1)), (...), ...] [('G',(0,0,0),'M',(1,1,1),30), (...), ...] :param cell: 3x3 array representing the structure cell lattice vectors :param pbc: 3-dimensional array of booleans signifying the periodic boundary conditions along each lattice vector :param float kpoint_distance: parameter controlling the distance between kpoints. Distance is given in crystal coordinates, i.e. the distance is computed in the space of b1,b2,b3. The distance set will be the closest possible to this value, compatible with the requirement of putting equispaced points between two special points (since extrema are included). :param bool cartesian: if set to true, reads the coordinates eventually passed in value as cartesian coordinates. Default: False. :param float epsilon_length: threshold on lengths comparison, used to get the bravais lattice info. It has to be used if the user wants to be sure the right symmetries are recognized. :param float epsilon_angle: threshold on angles comparison, used to get the bravais lattice info. It has to be used if the user wants to be sure the right symmetries are recognized. :returns: point_coordinates, path, bravais_info, explicit_kpoints, labels """ bravais_info = find_bravais_info( cell=cell, pbc=pbc, epsilon_length=epsilon_length, epsilon_angle=epsilon_angle ) analysis = analyze_cell(cell, pbc) dimension = analysis['dimension'] reciprocal_cell = analysis['reciprocal_cell'] pbc = list(analysis['pbc']) if dimension == 0: # case with zero dimension: only gamma-point is set return [[0., 0., 0.]], None, bravais_info def _is_path_1(path): try: are_two = all([len(i) == 2 for i in path]) if not are_two: return False for i in path: are_str = all([isinstance(b, str) for b in i]) if not are_str: return False except IndexError: return False return True def _is_path_2(path): try: are_three = all([len(i) == 3 for i in path]) if not are_three: return False are_good = all([all([isinstance(b[0], str), isinstance(b[1], str), isinstance(b[2], int)]) for b in path]) if not are_good: return False # check that at least two points per segment (beginning and end) points_num = [int(i[2]) for i in path] if any([i < 2 for i in points_num]): raise ValueError('Must set at least two points per path ' 'segment') except IndexError: return False return True def _is_path_3(path): # [('G',(0,0,0),'M',(1,1,1)), (...), ...] try: _ = len(path) are_four = all([len(i) == 4 for i in path]) if not are_four: return False have_labels = all(all([isinstance(i[0], str), isinstance(i[2], str)]) for i in path) if not have_labels: return False for i in path: coord1 = [float(j) for j in i[1]] coord2 = [float(j) for j in i[3]] if len(coord1) != 3 or len(coord2) != 3: return False except (TypeError, IndexError): return False return True def _is_path_4(path): # [('G',(0,0,0),'M',(1,1,1),30), (...), ...] try: _ = len(path) are_five = all([len(i) == 5 for i in path]) if not are_five: return False have_labels = all(all([isinstance(i[0], str), isinstance(i[2], str)]) for i in path) if not have_labels: return False have_points_num = all([isinstance(i[4], int) for i in path]) if not have_points_num: return False # check that at least two points per segment (beginning and end) points_num = [int(i[4]) for i in path] if any([i < 2 for i in points_num]): raise ValueError('Must set at least two points per path ' 'segment') for i in path: coord1 = [float(j) for j in i[1]] coord2 = [float(j) for j in i[3]] if len(coord1) != 3 or len(coord2) != 3: return False except (TypeError, IndexError): return False return True def _num_points_from_coordinates(path, point_coordinates, kpoint_distance=None): # NOTE: this way of creating intervals ensures equispaced objects # in crystal coordinates of b1,b2,b3 distances = [numpy.linalg.norm(numpy.array(point_coordinates[i[0]]) - numpy.array(point_coordinates[i[1]]) ) for i in path] if kpoint_distance is None: # Use max_points_per_interval as the default guess for automatically # guessing the number of points max_point_per_interval = 10 max_interval = max(distances) try: points_per_piece = [max(2, max_point_per_interval * i // max_interval) for i in distances] except ValueError: raise ValueError('The beginning and end of each segment in the ' 'path should be different.') else: points_per_piece = [max(2, int(distance // kpoint_distance)) for distance in distances] return points_per_piece if cartesian: if cell is None: raise ValueError('To use cartesian coordinates, a cell must ' 'be provided') if kpoint_distance is not None: if kpoint_distance <= 0.: raise ValueError('kpoints_distance must be a positive float') if value is None: if cell is None: raise ValueError('Cannot set a path not even knowing the ' 'kpoints or at least the cell') point_coordinates, path, bravais_info = get_kpoints_path( cell=cell, pbc=pbc, cartesian=cartesian, epsilon_length=epsilon_length, epsilon_angle=epsilon_angle) num_points = _num_points_from_coordinates(path, point_coordinates, kpoint_distance) elif _is_path_1(value): # in the form [('X','M'),(...),...] if cell is None: raise ValueError('Cannot set a path not even knowing the ' 'kpoints or at least the cell') path = value point_coordinates, _, bravais_info = get_kpoints_path( cell=cell, pbc=pbc, cartesian=cartesian, epsilon_length=epsilon_length, epsilon_angle=epsilon_angle) num_points = _num_points_from_coordinates(path, point_coordinates, kpoint_distance) elif _is_path_2(value): # [('G','M',30), (...), ...] if cell is None: raise ValueError('Cannot set a path not even knowing the ' 'kpoints or at least the cell') path = [(i[0], i[1]) for i in value] point_coordinates, _, bravais_info = get_kpoints_path( cell=cell, pbc=pbc, cartesian=cartesian, epsilon_length=epsilon_length, epsilon_angle=epsilon_angle) num_points = [i[2] for i in value] elif _is_path_3(value): # [('G',(0,0,0),'M',(1,1,1)), (...), ...] path = [(i[0], i[2]) for i in value] point_coordinates = {} for piece in value: if piece[0] in point_coordinates: if point_coordinates[piece[0]] != piece[1]: raise ValueError('Different points cannot have the same label') else: if cartesian: point_coordinates[piece[0]] = change_reference( reciprocal_cell, numpy.array([piece[1]]), to_cartesian=False)[0] else: point_coordinates[piece[0]] = piece[1] if piece[2] in point_coordinates: if point_coordinates[piece[2]] != piece[3]: raise ValueError('Different points cannot have the same label') else: if cartesian: point_coordinates[piece[2]] = change_reference( reciprocal_cell, numpy.array([piece[3]]), to_cartesian=False)[0] else: point_coordinates[piece[2]] = piece[3] num_points = _num_points_from_coordinates(path, point_coordinates, kpoint_distance) elif _is_path_4(value): # [('G',(0,0,0),'M',(1,1,1),30), (...), ...] path = [(i[0], i[2]) for i in value] point_coordinates = {} for piece in value: if piece[0] in point_coordinates: if point_coordinates[piece[0]] != piece[1]: raise ValueError('Different points cannot have the same label') else: if cartesian: point_coordinates[piece[0]] = change_reference( reciprocal_cell, numpy.array([piece[1]]), to_cartesian=False)[0] else: point_coordinates[piece[0]] = piece[1] if piece[2] in point_coordinates: if point_coordinates[piece[2]] != piece[3]: raise ValueError('Different points cannot have the same label') else: if cartesian: point_coordinates[piece[2]] = change_reference( reciprocal_cell, numpy.array([piece[3]]), to_cartesian=False)[0] else: point_coordinates[piece[2]] = piece[3] num_points = [i[4] for i in value] else: raise ValueError('Input format not recognized') explicit_kpoints = [tuple(point_coordinates[path[0][0]])] labels = [(0, path[0][0])] for count_piece, i in enumerate(path): ini_label = i[0] end_label = i[1] ini_coord = point_coordinates[ini_label] end_coord = point_coordinates[end_label] path_piece = list(zip(numpy.linspace(ini_coord[0], end_coord[0], num_points[count_piece]), numpy.linspace(ini_coord[1], end_coord[1], num_points[count_piece]), numpy.linspace(ini_coord[2], end_coord[2], num_points[count_piece]), )) for count, j in enumerate(path_piece): if all(numpy.array(explicit_kpoints[-1]) == j): continue # avoid duplcates else: explicit_kpoints.append(j) # add labels for the first and last point if count == 0: labels.append((len(explicit_kpoints) - 1, ini_label)) if count == len(path_piece) - 1: labels.append((len(explicit_kpoints) - 1, end_label)) # I still have some duplicates in the labels: eliminate them sorted(set(labels), key=lambda x: x[0]) return point_coordinates, path, bravais_info, explicit_kpoints, labels def find_bravais_info(cell, pbc, epsilon_length=_default_epsilon_length, epsilon_angle=_default_epsilon_angle): """ Finds the Bravais lattice of the cell passed in input to the Kpoint class :note: We assume that the cell given by the cell property is the primitive unit cell. .. note:: in 3D, this implementation expects that the structure is already standardized according to the Setyawan paper. If this is not the case, the kpoints and band structure returned will be incorrect. The only case that is dealt correctly by the library is the case when axes are swapped, where the library correctly takes this swapping/rotation into account to assign kpoint labels and coordinates. :param cell: 3x3 array representing the structure cell lattice vectors :param pbc: 3-dimensional array of booleans signifying the periodic boundary conditions along each lattice vector passed in value as cartesian coordinates. Default: False. :param float epsilon_length: threshold on lengths comparison, used to get the bravais lattice info. It has to be used if the user wants to be sure the right symmetries are recognized. :param float epsilon_angle: threshold on angles comparison, used to get the bravais lattice info. It has to be used if the user wants to be sure the right symmetries are recognized. :return: a dictionary, with keys short_name, extended_name, index (index of the Bravais lattice), and sometimes variation (name of the variation of the Bravais lattice) and extra (a dictionary with extra parameters used by the get_kpoints_path method) """ if cell is None: return None analysis = analyze_cell(cell, pbc) a1 = analysis['a1'] a2 = analysis['a2'] a3 = analysis['a3'] a = analysis['a'] b = analysis['b'] c = analysis['c'] cosa = analysis['cosalpha'] cosb = analysis['cosbeta'] cosc = analysis['cosgamma'] dimension = analysis['dimension'] pbc = list(pbc) # values of cosines at various angles _90 = 0. _60 = 0.5 _30 = numpy.sqrt(3.) / 2. _120 = -0.5 # NOTE: in what follows, I'm assuming the textbook order of alfa, beta and gamma # TODO: Maybe additional checks to see if the "correct" primitive # cell is used ? (there are other equivalent primitive # unit cells to the one expected here, typically for body-, c-, and # face-centered lattices) def l_are_equals(a, b): # function to compare lengths return abs(a - b) <= epsilon_length def a_are_equals(a, b): # function to compare angles (actually, cosines) return abs(a - b) <= epsilon_angle if dimension == 3: # =========================================# # 3D case -> 14 possible Bravais lattices # # =========================================# comparison_length = [l_are_equals(a, b), l_are_equals(b, c), l_are_equals(c, a)] comparison_angles = [a_are_equals(cosa, cosb), a_are_equals(cosb, cosc), a_are_equals(cosc, cosa)] if comparison_length.count(True) == 3: # needed for the body centered orthorhombic: orci_a = numpy.linalg.norm(a2 + a3) orci_b = numpy.linalg.norm(a1 + a3) orci_c = numpy.linalg.norm(a1 + a2) orci_the_a, orci_the_b, orci_the_c = sorted([orci_a, orci_b, orci_c]) bco1 = - (-orci_the_a ** 2 + orci_the_b ** 2 + orci_the_c ** 2) / (4. * a ** 2) bco2 = - (orci_the_a ** 2 - orci_the_b ** 2 + orci_the_c ** 2) / (4. * a ** 2) bco3 = - (orci_the_a ** 2 + orci_the_b ** 2 - orci_the_c ** 2) / (4. * a ** 2) # ======================# # simple cubic lattice # # ======================# if comparison_angles.count(True) == 3 and a_are_equals(cosa, _90): bravais_info = {'short_name': 'cub', 'extended_name': 'cubic', 'index': 1, 'permutation': [0, 1, 2] } # =====================# # face centered cubic # # =====================# elif comparison_angles.count(True) == 3 and a_are_equals(cosa, _60): bravais_info = {'short_name': 'fcc', 'extended_name': 'face centered cubic', 'index': 2, 'permutation': [0, 1, 2] } # =====================# # body centered cubic # # =====================# elif comparison_angles.count(True) == 3 and a_are_equals(cosa, -1. / 3.): bravais_info = {'short_name': 'bcc', 'extended_name': 'body centered cubic', 'index': 3, 'permutation': [0, 1, 2] } # ==============# # rhombohedral # # ==============# elif comparison_angles.count(True) == 3: # logical order is important, this check must come after the cubic cases bravais_info = {'short_name': 'rhl', 'extended_name': 'rhombohedral', 'index': 11, 'permutation': [0, 1, 2] } if cosa > 0.: bravais_info['variation'] = 'rhl1' eta = (1. + 4. * cosa) / (2. + 4. * cosa) bravais_info['extra'] = {'eta': eta, 'nu': 0.75 - eta / 2., } else: bravais_info['variation'] = 'rhl2' eta = 1. / (2. * (1. - cosa) / (1. + cosa)) bravais_info['extra'] = {'eta': eta, 'nu': 0.75 - eta / 2., } # ==========================# # body centered tetragonal # # ==========================# elif comparison_angles.count(True) == 1: # two angles are the same bravais_info = {'short_name': 'bct', 'extended_name': 'body centered tetragonal', 'index': 5, } if comparison_angles.index(True) == 0: # alfa=beta ref_ang = cosa bravais_info['permutation'] = [0, 1, 2] elif comparison_angles.index(True) == 1: # beta=gamma ref_ang = cosb bravais_info['permutation'] = [2, 0, 1] else: # comparison_angles.index(True)==2: # gamma = alfa ref_ang = cosc bravais_info['permutation'] = [1, 2, 0] if ref_ang >= 0.: raise ValueError('Problems on the definition of ' 'body centered tetragonal lattices') the_c = numpy.sqrt(-4. * ref_ang * (a ** 2)) the_a = numpy.sqrt(2. * a ** 2 - (the_c ** 2) / 2.) if the_c < the_a: bravais_info['variation'] = 'bct1' bravais_info['extra'] = {'eta': (1. + (the_c / the_a) ** 2) / 4.} else: bravais_info['variation'] = 'bct2' bravais_info['extra'] = {'eta': (1. + (the_a / the_c) ** 2) / 4., 'csi': ((the_a / the_c) ** 2) / 2., } # ============================# # body centered orthorhombic # # ============================# elif (any([a_are_equals(cosa, bco1), a_are_equals(cosb, bco1), a_are_equals(cosc, bco1)]) and any([a_are_equals(cosa, bco2), a_are_equals(cosb, bco2), a_are_equals(cosc, bco2)]) and any([a_are_equals(cosa, bco3), a_are_equals(cosb, bco3), a_are_equals(cosc, bco3)]) ): bravais_info = {'short_name': 'orci', 'extended_name': 'body centered orthorhombic', 'index': 8, } if a_are_equals(cosa, bco1) and a_are_equals(cosc, bco3): bravais_info['permutation'] = [0, 1, 2] if a_are_equals(cosa, bco1) and a_are_equals(cosc, bco2): bravais_info['permutation'] = [0, 2, 1] if a_are_equals(cosa, bco3) and a_are_equals(cosc, bco2): bravais_info['permutation'] = [1, 2, 0] if a_are_equals(cosa, bco2) and a_are_equals(cosc, bco3): bravais_info['permutation'] = [1, 0, 2] if a_are_equals(cosa, bco2) and a_are_equals(cosc, bco1): bravais_info['permutation'] = [2, 0, 1] if a_are_equals(cosa, bco3) and a_are_equals(cosc, bco1): bravais_info['permutation'] = [2, 1, 0] bravais_info['extra'] = {'csi': (1. + (orci_the_a / orci_the_c) ** 2) / 4., 'eta': (1. + (orci_the_b / orci_the_c) ** 2) / 4., 'dlt': (orci_the_b ** 2 - orci_the_a ** 2) / (4. * orci_the_c ** 2), 'mu': (orci_the_a ** 2 + orci_the_b ** 2) / (4. * orci_the_c ** 2), } # if it doesn't fall in the above, is triclinic else: bravais_info = {'short_name': 'tri', 'extended_name': 'triclinic', 'index': 14, } # the check for triclinic variations is at the end of the method elif comparison_length.count(True) == 1: # ============# # tetragonal # # ============# if comparison_angles.count(True) == 3 and a_are_equals(cosa, _90): bravais_info = {'short_name': 'tet', 'extended_name': 'tetragonal', 'index': 4, } if comparison_length[0] == True: bravais_info['permutation'] = [0, 1, 2] if comparison_length[1] == True: bravais_info['permutation'] = [2, 0, 1] if comparison_length[2] == True: bravais_info['permutation'] = [1, 2, 0] # ====================================# # c-centered orthorombic + hexagonal # # ====================================# # alpha/=beta=gamma=pi/2 elif (comparison_angles.count(True) == 1 and any([a_are_equals(cosa, _90), a_are_equals(cosb, _90), a_are_equals(cosc, _90)]) ): if any([a_are_equals(cosa, _120), a_are_equals(cosb, _120), a_are_equals(cosc, _120)]): bravais_info = {'short_name': 'hex', 'extended_name': 'hexagonal', 'index': 10, } else: bravais_info = {'short_name': 'orcc', 'extended_name': 'c-centered orthorhombic', 'index': 9, } if comparison_length[0] == True: the_a1 = a1 the_a2 = a2 elif comparison_length[1] == True: the_a1 = a2 the_a2 = a3 else: # comparison_length[2]==True: the_a1 = a3 the_a2 = a1 the_a = numpy.linalg.norm(the_a1 + the_a2) the_b = numpy.linalg.norm(the_a1 - the_a2) bravais_info['extra'] = {'csi': (1. + (the_a / the_b) ** 2) / 4., } # TODO : re-check this case, permutations look weird if comparison_length[0] == True: bravais_info['permutation'] = [0, 1, 2] if comparison_length[1] == True: bravais_info['permutation'] = [2, 0, 1] if comparison_length[2] == True: bravais_info['permutation'] = [1, 2, 0] # =======================# # c-centered monoclinic # # =======================# elif comparison_angles.count(True) == 1: bravais_info = {'short_name': 'mclc', 'extended_name': 'c-centered monoclinic', 'index': 13, } # TODO : re-check this case, permutations look weird if comparison_length[0] == True: bravais_info['permutation'] = [0, 1, 2] the_ka = cosa the_a1 = a1 the_a2 = a2 the_c = c if comparison_length[1] == True: bravais_info['permutation'] = [2, 0, 1] the_ka = cosb the_a1 = a2 the_a2 = a3 the_c = a if comparison_length[2] == True: bravais_info['permutation'] = [1, 2, 0] the_ka = cosc the_a1 = a3 the_a2 = a1 the_c = b the_b = numpy.linalg.norm(the_a1 + the_a2) the_a = numpy.linalg.norm(the_a1 - the_a2) the_cosa = 2. * numpy.linalg.norm(the_a1) / the_b * the_ka if a_are_equals(the_ka, _90): # order matters: has to be before the check on mclc1 bravais_info['variation'] = 'mclc2' csi = (2. - the_b * the_cosa / the_c) / (4. * (1. - the_cosa ** 2)) psi = 0.75 - the_a ** 2 / (4. * the_b * (1. - the_cosa ** 2)) bravais_info['extra'] = {'csi': csi, 'eta': 0.5 + 2. * csi * the_c * the_cosa / the_b, 'psi': psi, 'phi': psi + (0.75 - psi) * the_b * the_cosa / the_c, } elif the_ka < 0.: bravais_info['variation'] = 'mclc1' csi = (2. - the_b * the_cosa / the_c) / (4. * (1. - the_cosa ** 2)) psi = 0.75 - the_a ** 2 / (4. * the_b * (1. - the_cosa ** 2)) bravais_info['extra'] = {'csi': csi, 'eta': 0.5 + 2. * csi * the_c * the_cosa / the_b, 'psi': psi, 'phi': psi + (0.75 - psi) * the_b * the_cosa / the_c, } else: # if the_ka>0.: x = the_b * the_cosa / the_c + the_b ** 2 * (1. - the_cosa ** 2) / the_a ** 2 if a_are_equals(x, 1.): bravais_info['variation'] = 'mclc4' # order matters here too mu = (1. + (the_b / the_a) ** 2) / 4. dlt = the_b * the_c * the_cosa / (2. * the_a ** 2) csi = mu - 0.25 + (1. - the_b * the_cosa / the_c) / (4. * (1. - the_cosa ** 2)) eta = 0.5 + 2. * csi * the_c * the_cosa / the_b phi = 1. + eta - 2. * mu psi = eta - 2. * dlt bravais_info['extra'] = {'mu': mu, 'dlt': dlt, 'csi': csi, 'eta': eta, 'phi': phi, 'psi': psi, } elif x < 1.: bravais_info['variation'] = 'mclc3' mu = (1. + (the_b / the_a) ** 2) / 4. dlt = the_b * the_c * the_cosa / (2. * the_a ** 2) csi = mu - 0.25 + (1. - the_b * the_cosa / the_c) / (4. * (1. - the_cosa ** 2)) eta = 0.5 + 2. * csi * the_c * the_cosa / the_b phi = 1. + eta - 2. * mu psi = eta - 2. * dlt bravais_info['extra'] = {'mu': mu, 'dlt': dlt, 'csi': csi, 'eta': eta, 'phi': phi, 'psi': psi, } elif x > 1.: bravais_info['variation'] = 'mclc5' csi = ((the_b / the_a) ** 2 + (1. - the_b * the_cosa / the_c) / (1. - the_cosa ** 2)) / 4. eta = 0.5 + 2. * csi * the_c * the_cosa / the_b mu = eta / 2. + the_b ** 2 / 4. / the_a ** 2 - the_b * the_c * the_cosa / 2. / the_a ** 2 nu = 2. * mu - csi omg = (4. * nu - 1. - the_b ** 2 * (1. - the_cosa ** 2) / the_a ** 2) * the_c / ( 2. * the_b * the_cosa) dlt = csi * the_c * the_cosa / the_b + omg / 2. - 0.25 rho = 1. - csi * the_a ** 2 / the_b ** 2 bravais_info['extra'] = {'mu': mu, 'dlt': dlt, 'csi': csi, 'eta': eta, 'rho': rho, } # if it doesn't fall in the above, is triclinic else: bravais_info = {'short_name': 'tri', 'extended_name': 'triclinic', 'index': 14, } # the check for triclinic variations is at the end of the method else: # if comparison_length.count(True)==0: fco1 = c ** 2 / numpy.sqrt((a ** 2 + c ** 2) * (b ** 2 + c ** 2)) fco2 = a ** 2 / numpy.sqrt((a ** 2 + b ** 2) * (a ** 2 + c ** 2)) fco3 = b ** 2 / numpy.sqrt((a ** 2 + b ** 2) * (b ** 2 + c ** 2)) # ==============# # orthorhombic # # ==============# if comparison_angles.count(True) == 3: bravais_info = {'short_name': 'orc', 'extended_name': 'orthorhombic', 'index': 6, } lens = [a, b, c] ind_a = lens.index(min(lens)) ind_c = lens.index(max(lens)) if ind_a == 0 and ind_c == 1: bravais_info['permutation'] = [0, 2, 1] if ind_a == 0 and ind_c == 2: bravais_info['permutation'] = [0, 1, 2] if ind_a == 1 and ind_c == 0: bravais_info['permutation'] = [1, 2, 0] if ind_a == 1 and ind_c == 2: bravais_info['permutation'] = [1, 0, 2] if ind_a == 2 and ind_c == 0: bravais_info['permutation'] = [2, 1, 0] if ind_a == 2 and ind_c == 1: bravais_info['permutation'] = [2, 0, 1] # ============# # monoclinic # # ============# elif (comparison_angles.count(True) == 1 and any([a_are_equals(cosa, _90), a_are_equals(cosb, _90), a_are_equals(cosc, _90)])): bravais_info = {'short_name': 'mcl', 'extended_name': 'monoclinic', 'index': 12, } lens = [a, b, c] # find the angle different from 90 # then order (if possible) a<b<c if not a_are_equals(cosa, _90): the_cosa = cosa the_a = min(a, b) the_b = max(a, b) the_c = c if lens.index(the_a) == 0: bravais_info['permutation'] = [0, 1, 2] else: bravais_info['permutation'] = [1, 0, 2] elif not a_are_equals(cosb, _90): the_cosa = cosb the_a = min(a, c) the_b = max(a, c) the_c = b if lens.index(the_a) == 0: bravais_info['permutation'] = [0, 2, 1] else: bravais_info['permutation'] = [1, 2, 0] else: # if not _are_equals(cosc,_90): the_cosa = cosc the_a = min(b, c) the_b = max(b, c) the_c = a if lens.index(the_a) == 1: bravais_info['permutation'] = [2, 0, 1] else: bravais_info['permutation'] = [2, 1, 0] eta = (1. - the_b * the_cosa / the_c) / (2. * (1. - the_cosa ** 2)) bravais_info['extra'] = {'eta': eta, 'nu': 0.5 - eta * the_c * the_cosa / the_b, } # ============================# # face centered orthorhombic # # ============================# elif (any([a_are_equals(cosa, fco1), a_are_equals(cosb, fco1), a_are_equals(cosc, fco1)]) and any([a_are_equals(cosa, fco2), a_are_equals(cosb, fco2), a_are_equals(cosc, fco2)]) and any([a_are_equals(cosa, fco3), a_are_equals(cosb, fco3), a_are_equals(cosc, fco3)]) ): bravais_info = {'short_name': 'orcf', 'extended_name': 'face centered orthorhombic', 'index': 7, } lens = [a, b, c] ind_a1 = lens.index(max(lens)) ind_a3 = lens.index(min(lens)) if ind_a1 == 0 and ind_a3 == 2: bravais_info['permutation'] = [0, 1, 2] the_a1 = a1 the_a2 = a2 the_a3 = a3 elif ind_a1 == 0 and ind_a3 == 1: bravais_info['permutation'] = [0, 2, 1] the_a1 = a1 the_a2 = a3 the_a3 = a2 elif ind_a1 == 1 and ind_a3 == 2: bravais_info['permutation'] = [1, 0, 2] the_a1 = a2 the_a2 = a1 the_a3 = a3 elif ind_a1 == 1 and ind_a3 == 0: bravais_info['permutation'] = [2, 0, 1] the_a1 = a3 the_a2 = a1 the_a3 = a2 elif ind_a1 == 2 and ind_a3 == 1: bravais_info['permutation'] = [1, 2, 0] the_a1 = a2 the_a2 = a3 the_a3 = a1 else: # ind_a1 == 2 and ind_a3 == 0: bravais_info['permutation'] = [2, 1, 0] the_a1 = a3 the_a2 = a2 the_a3 = a1 the_a = numpy.linalg.norm(- the_a1 + the_a2 + the_a3) the_b = numpy.linalg.norm(+ the_a1 - the_a2 + the_a3) the_c = numpy.linalg.norm(+ the_a1 + the_a2 - the_a3) fco4 = 1. / the_a ** 2 - 1. / the_b ** 2 - 1. / the_c ** 2 # orcf3 if a_are_equals(fco4, 0.): bravais_info['variation'] = 'orcf3' # order matters bravais_info['extra'] = {'csi': (1. + (the_a / the_b) ** 2 - (the_a / the_c) ** 2) / 4., 'eta': (1. + (the_a / the_b) ** 2 + (the_a / the_c) ** 2) / 4., } # orcf1 elif fco4 > 0.: bravais_info['variation'] = 'orcf1' bravais_info['extra'] = {'csi': (1. + (the_a / the_b) ** 2 - (the_a / the_c) ** 2) / 4., 'eta': (1. + (the_a / the_b) ** 2 + (the_a / the_c) ** 2) / 4., } # orcf2 else: bravais_info['variation'] = 'orcf2' bravais_info['extra'] = {'eta': (1. + (the_a / the_b) ** 2 - (the_a / the_c) ** 2) / 4., 'dlt': (1. + (the_b / the_a) ** 2 + (the_b / the_c) ** 2) / 4., 'phi': (1. + (the_c / the_b) ** 2 - (the_c / the_a) ** 2) / 4., } else: bravais_info = {'short_name': 'tri', 'extended_name': 'triclinic', 'index': 14, } # ===========# # triclinic # # ===========# # still miss the variations of triclinic if bravais_info['short_name'] == 'tri': lens = [a, b, c] ind_a = lens.index(min(lens)) ind_c = lens.index(max(lens)) if ind_a == 0 and ind_c == 1: the_a = a the_b = c the_c = b the_cosa = cosa the_cosb = cosc the_cosc = cosb bravais_info['permutation'] = [0, 2, 1] if ind_a == 0 and ind_c == 2: the_a = a the_b = b the_c = c the_cosa = cosa the_cosb = cosb the_cosc = cosc bravais_info['permutation'] = [0, 1, 2] if ind_a == 1 and ind_c == 0: the_a = b the_b = c the_c = a the_cosa = cosb the_cosb = cosc the_cosc = cosa bravais_info['permutation'] = [1, 0, 2] if ind_a == 1 and ind_c == 2: the_a = b the_b = a the_c = c the_cosa = cosb the_cosb = cosa the_cosc = cosc bravais_info['permutation'] = [1, 0, 2] if ind_a == 2 and ind_c == 0: the_a = c the_b = b the_c = a the_cosa = cosc the_cosb = cosb the_cosc = cosa bravais_info['permutation'] = [2, 1, 0] if ind_a == 2 and ind_c == 1: the_a = c the_b = a the_c = b the_cosa = cosc the_cosb = cosa the_cosc = cosb bravais_info['permutation'] = [2, 0, 1] if the_cosa < 0. and the_cosb < 0.: if a_are_equals(the_cosc, 0.): bravais_info['variation'] = 'tri2a' elif the_cosc < 0.: bravais_info['variation'] = 'tri1a' else: raise ValueError('Structure erroneously fell into the triclinic (a) case') elif the_cosa > 0. and the_cosb > 0.: if a_are_equals(the_cosc, 0.): bravais_info['variation'] = 'tri2b' elif the_cosc > 0.: bravais_info['variation'] = 'tri1b' else: raise ValueError('Structure erroneously fell into the triclinic (b) case') else: raise ValueError('Structure erroneously fell into the triclinic case') elif dimension == 2: # ========================================# # 2D case -> 5 possible Bravais lattices # # ========================================# # find the two in-plane lattice vectors out_of_plane_index = pbc.index(False) # the non-periodic dimension in_plane_indexes = list(set(range(3)) - set([out_of_plane_index])) # in_plane_indexes are the indexes of the two dimensions (e.g. [0,1]) # build a length-2 list with the 2D cell lattice vectors list_vectors = ['a1', 'a2', 'a3'] vectors = [eval(list_vectors[i]) for i in in_plane_indexes] # build a length-2 list with the norms of the 2D cell lattice vectors lens = [numpy.linalg.norm(v) for v in vectors] # cosine of the angle between the two primitive vectors list_angles = ['cosa', 'cosb', 'cosc'] cosphi = eval(list_angles[out_of_plane_index]) comparison_length = l_are_equals(lens[0], lens[1]) comparison_angle_90 = a_are_equals(cosphi, _90) # ================# # square lattice # # ================# if comparison_angle_90 and comparison_length: bravais_info = {'short_name': 'sq', 'extended_name': 'square', 'index': 1, } # =========================# # (primitive) rectangular # # =========================# elif comparison_angle_90: bravais_info = {'short_name': 'rec', 'extended_name': 'rectangular', 'index': 2, } # set the order such that first_vector < second_vector in norm if lens[0] > lens[1]: in_plane_indexes.reverse() # ===========# # hexagonal # # ===========# # this has to be put before the centered-rectangular case elif (l_are_equals(lens[0], lens[1]) and a_are_equals(cosphi, _120)): bravais_info = {'short_name': 'hex', 'extended_name': 'hexagonal', 'index': 4, } # ======================# # centered rectangular # # ======================# elif (comparison_length and l_are_equals(numpy.dot(vectors[0] + vectors[1], vectors[0] - vectors[1]), 0.)): bravais_info = {'short_name': 'recc', 'extended_name': 'centered rectangular', 'index': 3, } # =========# # oblique # # =========# else: bravais_info = {'short_name': 'obl', 'extended_name': 'oblique', 'index': 5, } # set the order such that first_vector < second_vector in norm if lens[0] > lens[1]: in_plane_indexes.reverse() # the permutation is set such that p[2]=out_of_plane_index (third # new axis is always the non-periodic out-of-plane axis) # TODO: check that this (and the special points permutation of # coordinates) works also when the out-of-plane axis is not aligned # with one of the cartesian axis (I suspect that it doesn't...) permutation = in_plane_indexes + [out_of_plane_index] bravais_info['permutation'] = permutation elif dimension <= 1: # ====================================================# # 0D & 1D cases -> only one possible Bravais lattice # # ====================================================# if dimension == 1: # TODO: check that this (and the special points permutation of # coordinates) works also when the 1D axis is not aligned # with one of the cartesian axis (I suspect that it doesn't...) in_line_index = pbc.index(True) # the only periodic dimension # the permutation is set such that p[0]=in_line_index (the 2 last # axes are always the non-periodic ones) permutation = [in_line_index] + list(set(range(3)) - set([in_line_index])) else: permutation = [0, 1, 2] bravais_info = { 'short_name': '{}D'.format(dimension), 'extended_name': '{}D'.format(dimension), 'index': 1, 'permutation': permutation, } return bravais_info def get_kpoints_path(cell, pbc=None, cartesian=False, epsilon_length=_default_epsilon_length, epsilon_angle=_default_epsilon_angle): """ Get the special point and path of a given structure. .. note:: in 3D, this implementation expects that the structure is already standardized according to the Setyawan paper. If this is not the case, the kpoints and band structure returned will be incorrect. The only case that is dealt correctly by the library is the case when axes are swapped, where the library correctly takes this swapping/rotation into account to assign kpoint labels and coordinates. - In 2D, coordinates are based on the paper: R. Ramirez and M. C. Bohm, Int. J. Quant. Chem., XXX, pp. 391-411 (1986) - In 3D, coordinates are based on the paper: W. Setyawan, S. Curtarolo, Comp. Mat. Sci. 49, 299 (2010) :param cell: 3x3 array representing the structure cell lattice vectors :param pbc: 3-dimensional array of booleans signifying the periodic boundary conditions along each lattice vector :param cartesian: If true, returns points in cartesian coordinates. Crystal coordinates otherwise. Default=False :param epsilon_length: threshold on lengths comparison, used to get the bravais lattice info :param epsilon_angle: threshold on angles comparison, used to get the bravais lattice info :return special_points,path: special_points: a dictionary of point_name:point_coords key,values. path: the suggested path which goes through all high symmetry lines. A list of lists for all path segments. e.g. ``[('G','X'),('X','M'),...]`` It's not necessarily a continuous line. :note: We assume that the cell given by the cell property is the primitive unit cell """ # recognize which bravais lattice we are dealing with bravais_info = find_bravais_info( cell=cell, pbc=pbc, epsilon_length=epsilon_length, epsilon_angle=epsilon_angle ) analysis = analyze_cell(cell, pbc) dimension = analysis['dimension'] reciprocal_cell = analysis['reciprocal_cell'] # pick the information about the special k-points. # it depends on the dimensionality and the Bravais lattice number. if dimension == 3: # 3D case: 14 Bravais lattices # simple cubic if bravais_info['index'] == 1: special_points = {'G': [0., 0., 0.], 'M': [0.5, 0.5, 0.], 'R': [0.5, 0.5, 0.5], 'X': [0., 0.5, 0.], } path = [('G', 'X'), ('X', 'M'), ('M', 'G'), ('G', 'R'), ('R', 'X'), ('M', 'R'), ] # face centered cubic elif bravais_info['index'] == 2: special_points = {'G': [0., 0., 0.], 'K': [3. / 8., 3. / 8., 0.75], 'L': [0.5, 0.5, 0.5], 'U': [5. / 8., 0.25, 5. / 8.], 'W': [0.5, 0.25, 0.75], 'X': [0.5, 0., 0.5], } path = [('G', 'X'), ('X', 'W'), ('W', 'K'), ('K', 'G'), ('G', 'L'), ('L', 'U'), ('U', 'W'), ('W', 'L'), ('L', 'K'), ('U', 'X'), ] # body centered cubic elif bravais_info['index'] == 3: special_points = {'G': [0., 0., 0.], 'H': [0.5, -0.5, 0.5], 'P': [0.25, 0.25, 0.25], 'N': [0., 0., 0.5], } path = [('G', 'H'), ('H', 'N'), ('N', 'G'), ('G', 'P'), ('P', 'H'), ('P', 'N'), ] # Tetragonal elif bravais_info['index'] == 4: special_points = {'G': [0., 0., 0.], 'A': [0.5, 0.5, 0.5], 'M': [0.5, 0.5, 0.], 'R': [0., 0.5, 0.5], 'X': [0., 0.5, 0.], 'Z': [0., 0., 0.5], } path = [('G', 'X'), ('X', 'M'), ('M', 'G'), ('G', 'Z'), ('Z', 'R'), ('R', 'A'), ('A', 'Z'), ('X', 'R'), ('M', 'A'), ] # body centered tetragonal elif bravais_info['index'] == 5: if bravais_info['variation'] == 'bct1': # Body centered tetragonal bct1 eta = bravais_info['extra']['eta'] special_points = {'G': [0., 0., 0.], 'M': [-0.5, 0.5, 0.5], 'N': [0., 0.5, 0.], 'P': [0.25, 0.25, 0.25], 'X': [0., 0., 0.5], 'Z': [eta, eta, -eta], 'Z1': [-eta, 1. - eta, eta], } path = [('G', 'X'), ('X', 'M'), ('M', 'G'), ('G', 'Z'), ('Z', 'P'), ('P', 'N'), ('N', 'Z1'), ('Z1', 'M'), ('X', 'P'), ] else: # bct2 # Body centered tetragonal bct2 eta = bravais_info['extra']['eta'] csi = bravais_info['extra']['csi'] special_points = { 'G': [0., 0., 0.], 'N': [0., 0.5, 0.], 'P': [0.25, 0.25, 0.25], 'S': [-eta, eta, eta], 'S1': [eta, 1 - eta, -eta], 'X': [0., 0., 0.5], 'Y': [-csi, csi, 0.5], 'Y1': [0.5, 0.5, -csi], 'Z': [0.5, 0.5, -0.5], } path = [('G', 'X'), ('X', 'Y'), ('Y', 'S'), ('S', 'G'), ('G', 'Z'), ('Z', 'S1'), ('S1', 'N'), ('N', 'P'), ('P', 'Y1'), ('Y1', 'Z'), ('X', 'P'), ] # orthorhombic elif bravais_info['index'] == 6: special_points = {'G': [0., 0., 0.], 'R': [0.5, 0.5, 0.5], 'S': [0.5, 0.5, 0.], 'T': [0., 0.5, 0.5], 'U': [0.5, 0., 0.5], 'X': [0.5, 0., 0.], 'Y': [0., 0.5, 0.], 'Z': [0., 0., 0.5], } path = [('G', 'X'), ('X', 'S'), ('S', 'Y'), ('Y', 'G'), ('G', 'Z'), ('Z', 'U'), ('U', 'R'), ('R', 'T'), ('T', 'Z'), ('Y', 'T'), ('U', 'X'), ('S', 'R'), ] # face centered orthorhombic elif bravais_info['index'] == 7: if bravais_info['variation'] == 'orcf1': csi = bravais_info['extra']['csi'] eta = bravais_info['extra']['eta'] special_points = {'G': [0., 0., 0.], 'A': [0.5, 0.5 + csi, csi], 'A1': [0.5, 0.5 - csi, 1. - csi], 'L': [0.5, 0.5, 0.5], 'T': [1., 0.5, 0.5], 'X': [0., eta, eta], 'X1': [1., 1. - eta, 1. - eta], 'Y': [0.5, 0., 0.5], 'Z': [0.5, 0.5, 0.], } path = [('G', 'Y'), ('Y', 'T'), ('T', 'Z'), ('Z', 'G'), ('G', 'X'), ('X', 'A1'), ('A1', 'Y'), ('T', 'X1'), ('X', 'A'), ('A', 'Z'), ('L', 'G'), ] elif bravais_info['variation'] == 'orcf2': eta = bravais_info['extra']['eta'] dlt = bravais_info['extra']['dlt'] phi = bravais_info['extra']['phi'] special_points = {'G': [0., 0., 0.], 'C': [0.5, 0.5 - eta, 1. - eta], 'C1': [0.5, 0.5 + eta, eta], 'D': [0.5 - dlt, 0.5, 1. - dlt], 'D1': [0.5 + dlt, 0.5, dlt], 'L': [0.5, 0.5, 0.5], 'H': [1. - phi, 0.5 - phi, 0.5], 'H1': [phi, 0.5 + phi, 0.5], 'X': [0., 0.5, 0.5], 'Y': [0.5, 0., 0.5], 'Z': [0.5, 0.5, 0.], } path = [('G', 'Y'), ('Y', 'C'), ('C', 'D'), ('D', 'X'), ('X', 'G'), ('G', 'Z'), ('Z', 'D1'), ('D1', 'H'), ('H', 'C'), ('C1', 'Z'), ('X', 'H1'), ('H', 'Y'), ('L', 'G'), ] else: csi = bravais_info['extra']['csi'] eta = bravais_info['extra']['eta'] special_points = {'G': [0., 0., 0.], 'A': [0.5, 0.5 + csi, csi], 'A1': [0.5, 0.5 - csi, 1. - csi], 'L': [0.5, 0.5, 0.5], 'T': [1., 0.5, 0.5], 'X': [0., eta, eta], 'X1': [1., 1. - eta, 1. - eta], 'Y': [0.5, 0., 0.5], 'Z': [0.5, 0.5, 0.], } path = [('G', 'Y'), ('Y', 'T'), ('T', 'Z'), ('Z', 'G'), ('G', 'X'), ('X', 'A1'), ('A1', 'Y'), ('X', 'A'), ('A', 'Z'), ('L', 'G'), ] # Body centered orthorhombic elif bravais_info['index'] == 8: csi = bravais_info['extra']['csi'] dlt = bravais_info['extra']['dlt'] eta = bravais_info['extra']['eta'] mu = bravais_info['extra']['mu'] special_points = {'G': [0., 0., 0.], 'L': [-mu, mu, 0.5 - dlt], 'L1': [mu, -mu, 0.5 + dlt], 'L2': [0.5 - dlt, 0.5 + dlt, -mu], 'R': [0., 0.5, 0.], 'S': [0.5, 0., 0.], 'T': [0., 0., 0.5], 'W': [0.25, 0.25, 0.25], 'X': [-csi, csi, csi], 'X1': [csi, 1. - csi, -csi], 'Y': [eta, -eta, eta], 'Y1': [1. - eta, eta, -eta], 'Z': [0.5, 0.5, -0.5], } path = [('G', 'X'), ('X', 'L'), ('L', 'T'), ('T', 'W'), ('W', 'R'), ('R', 'X1'), ('X1', 'Z'), ('Z', 'G'), ('G', 'Y'), ('Y', 'S'), ('S', 'W'), ('L1', 'Y'), ('Y1', 'Z'), ] # C-centered orthorhombic elif bravais_info['index'] == 9: csi = bravais_info['extra']['csi'] special_points = {'G': [0., 0., 0.], 'A': [csi, csi, 0.5], 'A1': [-csi, 1. - csi, 0.5], 'R': [0., 0.5, 0.5], 'S': [0., 0.5, 0.], 'T': [-0.5, 0.5, 0.5], 'X': [csi, csi, 0.], 'X1': [-csi, 1. - csi, 0.], 'Y': [-0.5, 0.5, 0.], 'Z': [0., 0., 0.5], } path = [('G', 'X'), ('X', 'S'), ('S', 'R'), ('R', 'A'), ('A', 'Z'), ('Z', 'G'), ('G', 'Y'), ('Y', 'X1'), ('X1', 'A1'), ('A1', 'T'), ('T', 'Y'), ('Z', 'T'), ] # Hexagonal elif bravais_info['index'] == 10: special_points = {'G': [0., 0., 0.], 'A': [0., 0., 0.5], 'H': [1. / 3., 1. / 3., 0.5], 'K': [1. / 3., 1. / 3., 0.], 'L': [0.5, 0., 0.5], 'M': [0.5, 0., 0.], } path = [('G', 'M'), ('M', 'K'), ('K', 'G'), ('G', 'A'), ('A', 'L'), ('L', 'H'), ('H', 'A'), ('L', 'M'), ('K', 'H'), ] # rhombohedral elif bravais_info['index'] == 11: if bravais_info['variation'] == 'rhl1': eta = bravais_info['extra']['eta'] nu = bravais_info['extra']['nu'] special_points = {'G': [0., 0., 0.], 'B': [eta, 0.5, 1. - eta], 'B1': [0.5, 1. - eta, eta - 1.], 'F': [0.5, 0.5, 0.], 'L': [0.5, 0., 0.], 'L1': [0., 0., -0.5], 'P': [eta, nu, nu], 'P1': [1. - nu, 1. - nu, 1. - eta], 'P2': [nu, nu, eta - 1.], 'Q': [1. - nu, nu, 0.], 'X': [nu, 0., -nu], 'Z': [0.5, 0.5, 0.5], } path = [('G', 'L'), ('L', 'B1'), ('B', 'Z'), ('Z', 'G'), ('G', 'X'), ('Q', 'F'), ('F', 'P1'), ('P1', 'Z'), ('L', 'P'), ] else: # Rhombohedral rhl2 eta = bravais_info['extra']['eta'] nu = bravais_info['extra']['nu'] special_points = {'G': [0., 0., 0.], 'F': [0.5, -0.5, 0.], 'L': [0.5, 0., 0.], 'P': [1. - nu, -nu, 1. - nu], 'P1': [nu, nu - 1., nu - 1.], 'Q': [eta, eta, eta], 'Q1': [1. - eta, -eta, -eta], 'Z': [0.5, -0.5, 0.5], } path = [('G', 'P'), ('P', 'Z'), ('Z', 'Q'), ('Q', 'G'), ('G', 'F'), ('F', 'P1'), ('P1', 'Q1'), ('Q1', 'L'), ('L', 'Z'), ] # monoclinic elif bravais_info['index'] == 12: eta = bravais_info['extra']['eta'] nu = bravais_info['extra']['nu'] special_points = {'G': [0., 0., 0.], 'A': [0.5, 0.5, 0.], 'C': [0., 0.5, 0.5], 'D': [0.5, 0., 0.5], 'D1': [0.5, 0., -0.5], 'E': [0.5, 0.5, 0.5], 'H': [0., eta, 1. - nu], 'H1': [0., 1. - eta, nu], 'H2': [0., eta, -nu], 'M': [0.5, eta, 1. - nu], 'M1': [0.5, 1. - eta, nu], 'M2': [0.5, eta, -nu], 'X': [0., 0.5, 0.], 'Y': [0., 0., 0.5], 'Y1': [0., 0., -0.5], 'Z': [0.5, 0., 0.], } path = [('G', 'Y'), ('Y', 'H'), ('H', 'C'), ('C', 'E'), ('E', 'M1'), ('M1', 'A'), ('A', 'X'), ('X', 'H1'), ('M', 'D'), ('D', 'Z'), ('Y', 'D'), ] elif bravais_info['index'] == 13: if bravais_info['variation'] == 'mclc1': csi = bravais_info['extra']['csi'] eta = bravais_info['extra']['eta'] psi = bravais_info['extra']['psi'] phi = bravais_info['extra']['phi'] special_points = {'G': [0., 0., 0.], 'N': [0.5, 0., 0.], 'N1': [0., -0.5, 0.], 'F': [1. - csi, 1. - csi, 1. - eta], 'F1': [csi, csi, eta], 'F2': [csi, -csi, 1. - eta], 'F3': [1. - csi, -csi, 1. - eta], 'I': [phi, 1. - phi, 0.5], 'I1': [1. - phi, phi - 1., 0.5], 'L': [0.5, 0.5, 0.5], 'M': [0.5, 0., 0.5], 'X': [1. - psi, psi - 1., 0.], 'X1': [psi, 1. - psi, 0.], 'X2': [psi - 1., -psi, 0.], 'Y': [0.5, 0.5, 0.], 'Y1': [-0.5, -0.5, 0.], 'Z': [0., 0., 0.5], } path = [('G', 'Y'), ('Y', 'F'), ('F', 'L'), ('L', 'I'), ('I1', 'Z'), ('Z', 'F1'), ('Y', 'X1'), ('X', 'G'), ('G', 'N'), ('M', 'G'), ] elif bravais_info['variation'] == 'mclc2': csi = bravais_info['extra']['csi'] eta = bravais_info['extra']['eta'] psi = bravais_info['extra']['psi'] phi = bravais_info['extra']['phi'] special_points = {'G': [0., 0., 0.], 'N': [0.5, 0., 0.], 'N1': [0., -0.5, 0.], 'F': [1. - csi, 1. - csi, 1. - eta], 'F1': [csi, csi, eta], 'F2': [csi, -csi, 1. - eta], 'F3': [1. - csi, -csi, 1. - eta], 'I': [phi, 1. - phi, 0.5], 'I1': [1. - phi, phi - 1., 0.5], 'L': [0.5, 0.5, 0.5], 'M': [0.5, 0., 0.5], 'X': [1. - psi, psi - 1., 0.], 'X1': [psi, 1. - psi, 0.], 'X2': [psi - 1., -psi, 0.], 'Y': [0.5, 0.5, 0.], 'Y1': [-0.5, -0.5, 0.], 'Z': [0., 0., 0.5], } path = [('G', 'Y'), ('Y', 'F'), ('F', 'L'), ('L', 'I'), ('I1', 'Z'), ('Z', 'F1'), ('N', 'G'), ('G', 'M'), ] elif bravais_info['variation'] == 'mclc3': mu = bravais_info['extra']['mu'] dlt = bravais_info['extra']['dlt'] csi = bravais_info['extra']['csi'] eta = bravais_info['extra']['eta'] phi = bravais_info['extra']['phi'] psi = bravais_info['extra']['psi'] special_points = { 'G': [0., 0., 0.], 'F': [1. - phi, 1 - phi, 1. - psi], 'F1': [phi, phi - 1., psi], 'F2': [1. - phi, -phi, 1. - psi], 'H': [csi, csi, eta], 'H1': [1. - csi, -csi, 1. - eta], 'H2': [-csi, -csi, 1. - eta], 'I': [0.5, -0.5, 0.5], 'M': [0.5, 0., 0.5], 'N': [0.5, 0., 0.], 'N1': [0., -0.5, 0.], 'X': [0.5, -0.5, 0.], 'Y': [mu, mu, dlt], 'Y1': [1. - mu, -mu, -dlt], 'Y2': [-mu, -mu, -dlt], 'Y3': [mu, mu - 1., dlt], 'Z': [0., 0., 0.5], } path = [('G', 'Y'), ('Y', 'F'), ('F', 'H'), ('H', 'Z'), ('Z', 'I'), ('I', 'F1'), ('H1', 'Y1'), ('Y1', 'X'), ('X', 'F'), ('G', 'N'), ('M', 'G'), ] elif bravais_info['variation'] == 'mclc4': mu = bravais_info['extra']['mu'] dlt = bravais_info['extra']['dlt'] csi = bravais_info['extra']['csi'] eta = bravais_info['extra']['eta'] phi = bravais_info['extra']['phi'] psi = bravais_info['extra']['psi'] special_points = {'G': [0., 0., 0.], 'F': [1. - phi, 1 - phi, 1. - psi], 'F1': [phi, phi - 1., psi], 'F2': [1. - phi, -phi, 1. - psi], 'H': [csi, csi, eta], 'H1': [1. - csi, -csi, 1. - eta], 'H2': [-csi, -csi, 1. - eta], 'I': [0.5, -0.5, 0.5], 'M': [0.5, 0., 0.5], 'N': [0.5, 0., 0.], 'N1': [0., -0.5, 0.], 'X': [0.5, -0.5, 0.], 'Y': [mu, mu, dlt], 'Y1': [1. - mu, -mu, -dlt], 'Y2': [-mu, -mu, -dlt], 'Y3': [mu, mu - 1., dlt], 'Z': [0., 0., 0.5], } path = [('G', 'Y'), ('Y', 'F'), ('F', 'H'), ('H', 'Z'), ('Z', 'I'), ('H1', 'Y1'), ('Y1', 'X'), ('X', 'G'), ('G', 'N'), ('M', 'G'), ] else: csi = bravais_info['extra']['csi'] mu = bravais_info['extra']['mu'] omg = bravais_info['extra']['omg'] eta = bravais_info['extra']['eta'] nu = bravais_info['extra']['nu'] dlt = bravais_info['extra']['dlt'] rho = bravais_info['extra']['rho'] special_points = { 'G': [0., 0., 0.], 'F': [nu, nu, omg], 'F1': [1. - nu, 1. - nu, 1. - omg], 'F2': [nu, nu - 1., omg], 'H': [csi, csi, eta], 'H1': [1. - csi, -csi, 1. - eta], 'H2': [-csi, -csi, 1. - eta], 'I': [rho, 1. - rho, 0.5], 'I1': [1. - rho, rho - 1., 0.5], 'L': [0.5, 0.5, 0.5], 'M': [0.5, 0., 0.5], 'N': [0.5, 0., 0.], 'N1': [0., -0.5, 0.], 'X': [0.5, -0.5, 0.], 'Y': [mu, mu, dlt], 'Y1': [1. - mu, -mu, -dlt], 'Y2': [-mu, -mu, -dlt], 'Y3': [mu, mu - 1., dlt], 'Z': [0., 0., 0.5], } path = [('G', 'Y'), ('Y', 'F'), ('F', 'L'), ('L', 'I'), ('I1', 'Z'), ('Z', 'H'), ('H', 'F1'), ('H1', 'Y1'), ('Y1', 'X'), ('X', 'G'), ('G', 'N'), ('M', 'G'), ] # triclinic elif bravais_info['index'] == 14: if bravais_info['variation'] == 'tri1a' or bravais_info['variation'] == 'tri2a': special_points = {'G': [0.0, 0.0, 0.0], 'L': [0.5, 0.5, 0.0], 'M': [0.0, 0.5, 0.5], 'N': [0.5, 0.0, 0.5], 'R': [0.5, 0.5, 0.5], 'X': [0.5, 0.0, 0.0], 'Y': [0.0, 0.5, 0.0], 'Z': [0.0, 0.0, 0.5], } path = [('X', 'G'), ('G', 'Y'), ('L', 'G'), ('G', 'Z'), ('N', 'G'), ('G', 'M'), ('R', 'G'), ] else: special_points = {'G': [0.0, 0.0, 0.0], 'L': [0.5, -0.5, 0.0], 'M': [0.0, 0.0, 0.5], 'N': [-0.5, -0.5, 0.5], 'R': [0.0, -0.5, 0.5], 'X': [0.0, -0.5, 0.0], 'Y': [0.5, 0.0, 0.0], 'Z': [-0.5, 0.0, 0.5], } path = [('X', 'G'), ('G', 'Y'), ('L', 'G'), ('G', 'Z'), ('N', 'G'), ('G', 'M'), ('R', 'G'), ] elif dimension == 2: # 2D case: 5 Bravais lattices if bravais_info['index'] == 1: # square special_points = {'G': [0., 0., 0.], 'M': [0.5, 0.5, 0.], 'X': [0.5, 0., 0.], } path = [('G', 'X'), ('X', 'M'), ('M', 'G'), ] elif bravais_info['index'] == 2: # (primitive) rectangular special_points = {'G': [0., 0., 0.], 'X': [0.5, 0., 0.], 'Y': [0., 0.5, 0.], 'S': [0.5, 0.5, 0.], } path = [('G', 'X'), ('X', 'S'), ('S', 'Y'), ('Y', 'G'), ] elif bravais_info['index'] == 3: # centered rectangular (rhombic) # TODO: this looks quite different from the in-plane part of the # 3D C-centered orthorhombic lattice, which is strange... # NOTE: special points below are in (b1, b2) fractional # coordinates (primitive reciprocal cell) as for the rest. # Ramirez & Bohn gave them initially in (s1=b1+b2, s2=-b1+b2) # coordinates, i.e. using the conventional reciprocal cell. special_points = {'G': [0., 0., 0.], 'X': [0.5, 0.5, 0.], 'Y1': [0.25, 0.75, 0.], 'Y': [-0.25, 0.25, 0.], # typo in p. 404 of Ramirez & Bohm (should be Y=(0,1/4)) 'C': [0., 0.5, 0.], } path = [('Y1', 'X'), ('X', 'G'), ('G', 'Y'), ('Y', 'C'), ] elif bravais_info['index'] == 4: # hexagonal special_points = {'G': [0., 0., 0.], 'M': [0.5, 0., 0.], 'K': [1. / 3., 1. / 3., 0.], } path = [('G', 'M'), ('M', 'K'), ('K', 'G'), ] elif bravais_info['index'] == 5: # oblique # NOTE: only end-points are high-symmetry points (not the path # in-between) special_points = {'G': [0., 0., 0.], 'X': [0.5, 0., 0.], 'Y': [0., 0.5, 0.], 'A': [0.5, 0.5, 0.], } path = [('X', 'G'), ('G', 'Y'), ('A', 'G'), ] elif dimension == 1: # 1D case: 1 Bravais lattice special_points = {'G': [0., 0., 0.], 'X': [0.5, 0., 0.], } path = [('G', 'X'), ] elif dimension == 0: # 0D case: 1 Bravais lattice, only Gamma point, no path special_points = {'G': [0., 0., 0.], } path = [('G', 'G'), ] permutation = bravais_info['permutation'] def permute(x, permutation): # return new_x such that new_x[i]=x[permutation[i]] return [x[int(p)] for p in permutation] def invpermute(permutation): # return the inverse of permutation return [permutation.index(i) for i in range(3)] the_special_points = {} for k in special_points.keys(): # NOTE: this originally returned the inverse of the permutation, but was later changed to permutation the_special_points[k] = permute(special_points[k], permutation) # output crystal or cartesian if cartesian: the_abs_special_points = {} for k in the_special_points.keys(): the_abs_special_points[k] = change_reference( reciprocal_cell, numpy.array(the_special_points[k]), to_cartesian=True ) return the_abs_special_points, path, bravais_info else: return the_special_points, path, bravais_info
python
import signal import argparse import logging as log import os from pathlib import Path import errno from alive_progress import alive_bar from backupdef import BackupDef from entries import FolderEntry from diskspacereserver import DiskSpaceReserver from util import sanitizeFilename def backup(source: str, destination: str): # Create current backup definition from source folder print("Indexing current folder state...") with alive_bar(monitor="{count} files", receipt=False) as bar: folder = FolderEntry.fromFolder(source, bar) folder.name = sanitizeFilename(folder.name) new_backupdef = BackupDef(folder) # Initialize old backup definition backupdef_path = os.path.join(destination, f"{folder.name}.cbdef") if Path(backupdef_path).is_file(): print("Loading old backup definition...") current_backupdef = BackupDef.loadFromFile(backupdef_path) else: current_backupdef = BackupDef(FolderEntry(folder.name)) # Initialize delta backup definition print("Creating delta backup definition...") delta_backupdef = BackupDef.delta(new_backupdef, current_backupdef) # Initialize disk space reservation reserver_path = os.path.join(destination, f"{folder.name}.reserved") reserver = DiskSpaceReserver(reserver_path, new_backupdef.fileSize * 3) # Copy over files until the disk is filled up print("Copying files...") with alive_bar(delta_backupdef.folder.size, monitor="{count:,} / {total:,} bytes [{percent:.2%}]", stats="({rate:,.0f}b/s, eta: {eta}s)") as bar: while delta_backupdef.folder.contents or delta_backupdef.folder.deleted: try: # Before starting to copy over files, reserve space for the eventual backupdef reserver.reserve() # Copy the files delta_backupdef.processDelta(current_backupdef, source, destination, bar) except KeyboardInterrupt: # Script was ended by ctrl-c, save backupdef and exit reserver.release() current_backupdef.saveToFile(backupdef_path) print("The copying was interrupted, the progress has been saved.") exit() except Exception as e: if e.errno == errno.ENOSPC: # Disk full, save backupdef of files copied up to this point and ask for new destination with bar.pause(): reserver.release() current_backupdef.saveToFile(backupdef_path) dest_input = input(f"\aCartridge full, insert next one and enter new path ({destination}): ") if dest_input != "": destination = dest_input backupdef_path = os.path.join(destination, f"{folder.name}.cbdef") reserver.path = os.path.join(destination, f"{folder.name}.reserved") else: # Copying error, save backupdef, print exception message, continue copying next file reserver.release() current_backupdef.saveToFile(backupdef_path) log.warning("The copying was interrupted by an error. " "The progress has been saved, the details are below:") log.warning(e) # Save backupdef of (presumably all) files copied up to this point reserver.release() current_backupdef.saveToFile(backupdef_path) if __name__ == '__main__': signal.signal(signal.SIGINT, signal.default_int_handler) parser = argparse.ArgumentParser(description="Perform an incremental backup to" "multiple, smaller destination drives(cartridges).") parser.add_argument("source", help="The source directory") parser.add_argument("destination", help="The destination directory") parser.add_argument("-v", "--verbose", help="increase output verbosity", action="store_true") args = parser.parse_args() if args.verbose: log.basicConfig(format="%(levelname)s: %(message)s", level=log.DEBUG) else: log.basicConfig(format="%(levelname)s: %(message)s") log.info(f"Running with source {args.source} and destination {args.destination}") backup(args.source, args.destination)
python
import redis def handler(message): print("New message recieved:", message['data'].decode('utf-8')) r = redis.Redis('10.14.156.254') p = r.pubsub() p.subscribe(**{'chat': handler}) thread = p.run_in_thread(sleep_time=0.5) # Создание потока для получения сообщий print("Press Ctrl+C to stop") while True: try: new_message = input() r.publish('chat', new_message) except KeyboardInterrupt: break print("Stopped") thread.stop()
python
#!/usr/bin/env python """ methrafo.train <reference genomes><input MeDIP-Seq bigWig> <input Bisulfite-Seq bigWig> <output model prefix> e.g. methrafo.train hg19 example_MeDIP.bw example_Bisulfite.bw output_trained_model_prefix """ import pdb,sys,os import gzip from File import * import re import pyBigWig from scipy.stats import pearsonr from sklearn.ensemble import RandomForestRegressor import math import cPickle as pickle #----------------------------------------------------------------------- def fetchGenome(chrom_id,gref): with gzip.open(gref+'/'+chrom_id+'.fa.gz','rb') as f: lf=f.read() lf=lf.split("\n") chrom_id=lf[0].split('>')[1] chrom_seq="".join(lf[1:]) chrom_seq=chrom_seq.upper() return [chrom_id,chrom_seq] def cgVector(chrom): chrom_seq=chrom[1] cgV=[m.start() for m in re.finditer('CG',chrom_seq)] return cgV def scoreVector1(chrom,cgv,bwFile): bw=pyBigWig.open(bwFile) chrom_name=chrom[0] sv=[] for i in cgv: si=bw.stats(chrom_name,i,i+1)[0] si=0 if si==None else si sv.append(si) return sv def scoreVector(chrom,cgv,bwFile): bw=pyBigWig.open(bwFile) chrom_name=chrom[0] sc=bw.values(chrom_name,0,len(chrom[1])) sv=[0 if math.isnan(sc[item]) else sc[item] for item in cgv ] return sv def nearbyCGVector(cgv,nearbycut): nearcgs=[] for i in range(len(cgv)): j=i-1 leftcgs=[] rightcgs=[] while (j>0): if abs(cgv[j]-cgv[i])>nearbycut: break else: leftcgs.append(j) j=j-1 j=i+1 while (j<len(cgv)): if abs(cgv[j]-cgv[i])>nearbycut: break else: rightcgs.append(j) j=j+1 inearcgs=leftcgs+rightcgs nearcgs.append(inearcgs) return nearcgs def nearbyCGScoreVector(chrom,bwFile,cgv,nearcgs): # the contribution of nearby CGs on current CG nearcgsS=[] bw=pyBigWig.open(bwFile) chrom_name=chrom[0] k=5 # distance weight parameter for i in range(len(nearcgs)): cgi=nearcgs[i] si=0 for j in cgi: dij=abs(cgv[j]-cgv[i]) sj=bw.stats(chrom_name,cgv[j],cgv[j]+1)[0] sj=0 if sj==None else sj si+=(sj/dij)*k nearcgsS.append(si) return nearcgsS #---------------------------------------------------------------------- def main(): if len(sys.argv[1:])!=4: print(__doc__) sys.exit(0) # reference genomes gref=sys.argv[1] # bigwig file-MeDIP-seq bwFile=sys.argv[2] # bigwig file bisulfite bwBSFile=sys.argv[3] output=sys.argv[4] rfregressor=RandomForestRegressor(random_state=0) chroms=os.listdir(gref) dchrom={} nearbycut=90 rfregressor=RandomForestRegressor(random_state=0) #---------------------------------------------------------------------- F=[] T=[] print("training...") cut=0.5 for i in chroms: if i[0:3]=='chr': iid=i.split('.')[0] try: chromi=fetchGenome(iid,gref) cgv=cgVector(chromi) sv=scoreVector(chromi,cgv,bwFile) #pdb.set_trace() nearcgs=nearbyCGVector(cgv,nearbycut) # number of cgs nearby tsv=scoreVector(chromi,cgv,bwBSFile) FI=[] for j in range(len(cgv)): fij=[sv[j],len(nearcgs[j])] FI.append(fij) FIX=FI[:int(len(FI)*cut)] tsvX=tsv[:int(len(tsv)*cut)] F+=FIX T+=tsvX print(iid) except: pass rfregressor.fit(F,T) with open(output+'.pkl','w') as f: pickle.dump(rfregressor,f) if __name__=="__main__": main()
python
# -*- coding: utf-8 -*- """ Initialize the Hanabi PyQT5 Interface. """ from PyQt5 import QtCore, QtGui from PyQt5.QtGui import QPalette from PyQt5.QtWidgets import QMainWindow, QDesktopWidget, QApplication from py_hanabi.interface.hanabi_window import HanabiWindow from py_hanabi.interface.window import Window __author__ = "Jakrin Juangbhanich" __email__ = "[email protected]" class HanabiInterface(QMainWindow): def __init__(self): app = QApplication([]) app.setStyle('Fusion') palette = QPalette() palette.setColor(QPalette.Window, QtGui.QColor(53, 53, 53)) palette.setColor(QPalette.WindowText, QtCore.Qt.white) palette.setColor(QPalette.Base, QtGui.QColor(15, 15, 15)) palette.setColor(QPalette.AlternateBase, QtGui.QColor(53, 53, 53)) palette.setColor(QPalette.ToolTipBase, QtCore.Qt.white) palette.setColor(QPalette.ToolTipText, QtCore.Qt.white) palette.setColor(QPalette.Text, QtCore.Qt.white) palette.setColor(QPalette.Button, QtGui.QColor(53, 53, 53)) palette.setColor(QPalette.ButtonText, QtCore.Qt.white) palette.setColor(QPalette.BrightText, QtCore.Qt.red) palette.setColor(QPalette.Highlight, QtGui.QColor(0, 110, 200)) palette.setColor(QPalette.HighlightedText, QtGui.QColor(255, 255, 255)) app.setPalette(palette) super().__init__() self.setWindowTitle("Hanabi Visualizer") self.current_window: Window = None self.window_game: HanabiWindow = HanabiWindow() self.show_window(self.window_game) # Force a resize update. t = QtCore.QTimer() t.singleShot(0, self.resizeEvent) app.exec() def show_window(self, window: Window): self.current_window = window window.render(self) self.center_screen() def center_screen(self): qt_rectangle = self.frameGeometry() center_point = QDesktopWidget().availableGeometry().center() qt_rectangle.moveCenter(center_point) self.move(qt_rectangle.topLeft()) def resizeEvent(self, event=None): self.current_window.on_resize(event)
python
# Reference: https://github.com/zhangchuheng123/Reinforcement-Implementation/blob/master/code/ppo.py import torch def ppo_step( policy_net, value_net, optimizer_policy, optimizer_value, optim_value_iter_num, states, actions, returns, advantages, fixed_log_probs, clip_epsilon, l2_reg, ): """Updates Critic network and Policy network with first order optimization Args: policy_net: Policy network value_net: Critic value network optimizer_policy: optimizer or policy network - Adam optimizer_value: optimizer or critic network - Adam optim_value_iter_num: optimizer value iteration number states: states array actions: action array returns: returns values advantages: estimated advantage values fixed_log_probs: fixed log probabilities clip_epsilon: clip epsilon to avoid overfit or underfit l2_reg: L2 Regularization """ # update Critic value network for _ in range(optim_value_iter_num): values_pred = value_net(states) value_loss = (values_pred - returns).pow(2).mean() # MSE for critic network # weight decays with L2 Regularization for param in value_net.parameters(): value_loss += param.pow(2).sum() * l2_reg optimizer_value.zero_grad() # initialize gradients to 0s # update Critic parameters with Adam optimizer using back propagation value_loss.backward() optimizer_value.step() # update Policy network log_probs = policy_net.get_log_prob(states, actions) # get log probabilities # calculate the clipped surrogate objective function ratio = torch.exp(log_probs - fixed_log_probs) surr1 = ratio * advantages surr2 = torch.clamp(ratio, 1.0 - clip_epsilon, 1.0 + clip_epsilon) * advantages policy_surr = -torch.min(surr1, surr2).mean() # policy net loss optimizer_policy.zero_grad() # initialize gradients to 0s # update Actor parameters with Adam optimizer using back propagation policy_surr.backward() torch.nn.utils.clip_grad_norm_( policy_net.parameters(), 40 ) # clip the gradient to avoid overfit of under fit optimizer_policy.step() # update gradients
python
# # PySNMP MIB module SL81-STD-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SL81-STD-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:57:56 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "ConstraintsUnion") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") ObjectIdentity, IpAddress, NotificationType, iso, ModuleIdentity, enterprises, Gauge32, TimeTicks, Counter32, MibIdentifier, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, Unsigned32, Bits, ObjectName, NotificationType, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "IpAddress", "NotificationType", "iso", "ModuleIdentity", "enterprises", "Gauge32", "TimeTicks", "Counter32", "MibIdentifier", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Unsigned32", "Bits", "ObjectName", "NotificationType", "Integer32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") omnitronix = MibIdentifier((1, 3, 6, 1, 4, 1, 3052)) sl81 = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5)) status = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 1)) config = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2)) productIds = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 3)) techSupport = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 99)) eventSensorStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1)) dataEventStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2)) eventSensorBasics = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1)) dataEventConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2)) serialPorts = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3)) network = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4)) modem = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 5)) snmp = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 6)) pagers = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7)) time = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 8)) timeouts = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 2, 9)) esPointTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1), ) if mibBuilder.loadTexts: esPointTable.setStatus('mandatory') esPointEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1), ).setIndexNames((0, "SL81-STD-MIB", "esIndexES"), (0, "SL81-STD-MIB", "esIndexPC"), (0, "SL81-STD-MIB", "esIndexPoint")) if mibBuilder.loadTexts: esPointEntry.setStatus('mandatory') esIndexES = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esIndexES.setStatus('mandatory') esIndexPC = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esIndexPC.setStatus('mandatory') esIndexPoint = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esIndexPoint.setStatus('mandatory') esPointName = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 4), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: esPointName.setStatus('mandatory') esPointInEventState = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: esPointInEventState.setStatus('mandatory') esPointValueInt = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-32768, 32767))).setMaxAccess("readwrite") if mibBuilder.loadTexts: esPointValueInt.setStatus('mandatory') esPointValueStr = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 7), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esPointValueStr.setStatus('mandatory') esPointTimeLastChange = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 8), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esPointTimeLastChange.setStatus('mandatory') esPointTimetickLastChange = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 1, 1, 1, 9), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: esPointTimetickLastChange.setStatus('mandatory') deStatusTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1), ) if mibBuilder.loadTexts: deStatusTable.setStatus('mandatory') deStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1), ).setIndexNames((0, "SL81-STD-MIB", "deStatusIndex")) if mibBuilder.loadTexts: deStatusEntry.setStatus('mandatory') deStatusIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: deStatusIndex.setStatus('mandatory') deStatusName = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: deStatusName.setStatus('mandatory') deStatusCounter = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: deStatusCounter.setStatus('mandatory') deStatusThreshold = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: deStatusThreshold.setStatus('mandatory') deStatusLastTriggerTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1, 5), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: deStatusLastTriggerTime.setStatus('mandatory') deStatusLastTriggerData = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 1, 2, 1, 1, 6), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: deStatusLastTriggerData.setStatus('mandatory') esNumberEventSensors = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberEventSensors.setStatus('mandatory') esTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2), ) if mibBuilder.loadTexts: esTable.setStatus('mandatory') esEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1), ).setIndexNames((0, "SL81-STD-MIB", "esIndex")) if mibBuilder.loadTexts: esEntry.setStatus('mandatory') esIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esIndex.setStatus('mandatory') esName = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esName.setStatus('mandatory') esID = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esID.setStatus('mandatory') esNumberTempSensors = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberTempSensors.setStatus('mandatory') esTempReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 5), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esTempReportingMode.setStatus('mandatory') esNumberCCs = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberCCs.setStatus('mandatory') esCCReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 7), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esCCReportingMode.setStatus('mandatory') esNumberHumidSensors = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 8), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberHumidSensors.setStatus('mandatory') esHumidReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 9), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esHumidReportingMode.setStatus('mandatory') esNumberNoiseSensors = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 10), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberNoiseSensors.setStatus('mandatory') esNoiseReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 11), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNoiseReportingMode.setStatus('mandatory') esNumberAirflowSensors = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 12), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberAirflowSensors.setStatus('mandatory') esAirflowReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 13), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esAirflowReportingMode.setStatus('mandatory') esNumberAnalog = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 14), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberAnalog.setStatus('mandatory') esAnalogReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 15), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esAnalogReportingMode.setStatus('mandatory') esNumberRelayOutputs = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 16), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: esNumberRelayOutputs.setStatus('mandatory') esRelayReportingMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 1, 2, 1, 17), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: esRelayReportingMode.setStatus('mandatory') deFieldTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 1), ) if mibBuilder.loadTexts: deFieldTable.setStatus('mandatory') deFieldEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 1, 1), ).setIndexNames((0, "SL81-STD-MIB", "deFieldIndex")) if mibBuilder.loadTexts: deFieldEntry.setStatus('mandatory') deFieldIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: deFieldIndex.setStatus('mandatory') deFieldStart = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 1, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deFieldStart.setStatus('mandatory') deFieldLength = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 1, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deFieldLength.setStatus('mandatory') deFieldName = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 1, 1, 4), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deFieldName.setStatus('mandatory') deConfigTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2), ) if mibBuilder.loadTexts: deConfigTable.setStatus('mandatory') deConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1), ).setIndexNames((0, "SL81-STD-MIB", "deConfigIndex")) if mibBuilder.loadTexts: deConfigEntry.setStatus('mandatory') deConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: deConfigIndex.setStatus('mandatory') deConfigEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigEnabled.setStatus('mandatory') deConfigName = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 3), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigName.setStatus('mandatory') deConfigEquation = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 4), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigEquation.setStatus('mandatory') deConfigThreshold = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigThreshold.setStatus('mandatory') deConfigClearMode = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigClearMode.setStatus('mandatory') deConfigClearTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 7), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigClearTime.setStatus('mandatory') deConfigAutoClear = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 8), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigAutoClear.setStatus('mandatory') deConfigActions = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 9), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigActions.setStatus('mandatory') deConfigTrapNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 10), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigTrapNumber.setStatus('mandatory') deConfigClass = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 2, 2, 1, 11), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: deConfigClass.setStatus('mandatory') numberPorts = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: numberPorts.setStatus('mandatory') portConfigTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2), ) if mibBuilder.loadTexts: portConfigTable.setStatus('mandatory') portConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1), ).setIndexNames((0, "SL81-STD-MIB", "portConfigIndex")) if mibBuilder.loadTexts: portConfigEntry.setStatus('mandatory') portConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: portConfigIndex.setStatus('mandatory') portConfigBaud = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigBaud.setStatus('mandatory') portConfigDataFormat = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigDataFormat.setStatus('mandatory') portConfigStripPtOutputLfs = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigStripPtOutputLfs.setStatus('mandatory') portConfigStripPtInputLfs = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigStripPtInputLfs.setStatus('mandatory') portConfigDTRLowIdle = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigDTRLowIdle.setStatus('mandatory') portConfigMaskEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 7), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigMaskEnable.setStatus('mandatory') portConfigDAEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 3, 2, 1, 8), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: portConfigDAEnable.setStatus('mandatory') ipConfigStatic = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ipConfigStatic.setStatus('mandatory') ipConfigAddress = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4, 2), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ipConfigAddress.setStatus('mandatory') ipConfigSubnetMask = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4, 3), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ipConfigSubnetMask.setStatus('mandatory') ipConfigDefaultRouter = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4, 4), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ipConfigDefaultRouter.setStatus('mandatory') ipConfigEngage = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ipConfigEngage.setStatus('mandatory') telnetDuplex = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 4, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: telnetDuplex.setStatus('mandatory') modemDataFormat = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 5, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: modemDataFormat.setStatus('mandatory') modemUserSetup = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 5, 2), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: modemUserSetup.setStatus('mandatory') modemTAPSetup = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 5, 3), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: modemTAPSetup.setStatus('mandatory') modemTimeBetweenOutbound = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 5, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: modemTimeBetweenOutbound.setStatus('mandatory') smTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 2, 6, 1), ) if mibBuilder.loadTexts: smTable.setStatus('mandatory') smEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 2, 6, 1, 1), ).setIndexNames((0, "SL81-STD-MIB", "smIndex")) if mibBuilder.loadTexts: smEntry.setStatus('mandatory') smIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 6, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: smIndex.setStatus('mandatory') smAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 6, 1, 1, 2), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: smAddress.setStatus('mandatory') pagerRetries = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: pagerRetries.setStatus('mandatory') pagerTable = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2), ) if mibBuilder.loadTexts: pagerTable.setStatus('mandatory') pagerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1), ).setIndexNames((0, "SL81-STD-MIB", "pagerIndex")) if mibBuilder.loadTexts: pagerEntry.setStatus('mandatory') pagerIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: pagerIndex.setStatus('mandatory') pagerType = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: pagerType.setStatus('mandatory') pagerPhoneNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1, 3), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: pagerPhoneNumber.setStatus('mandatory') pagerID = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1, 4), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: pagerID.setStatus('mandatory') pagerPostCalloutDelay = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: pagerPostCalloutDelay.setStatus('mandatory') pagerIDDelay = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 2, 7, 2, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: pagerIDDelay.setStatus('mandatory') clock = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 8, 1), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: clock.setStatus('mandatory') autoDSTAdjust = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 8, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: autoDSTAdjust.setStatus('mandatory') commandTimeout = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 9, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: commandTimeout.setStatus('mandatory') passthroughTimeout = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 2, 9, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: passthroughTimeout.setStatus('mandatory') siteID = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 1), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: siteID.setStatus('mandatory') thisProduct = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: thisProduct.setStatus('mandatory') stockTrapString = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: stockTrapString.setStatus('mandatory') trapEventTypeNumber = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: trapEventTypeNumber.setStatus('mandatory') trapEventTypeName = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 5), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: trapEventTypeName.setStatus('mandatory') trapIncludedValue = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-32768, 32767))).setMaxAccess("readonly") if mibBuilder.loadTexts: trapIncludedValue.setStatus('mandatory') trapIncludedString = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 7), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: trapIncludedString.setStatus('mandatory') trapEventClassNumber = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 9), Integer32()) if mibBuilder.loadTexts: trapEventClassNumber.setStatus('mandatory') trapEventClassName = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 3, 10), Integer32()) if mibBuilder.loadTexts: trapEventClassName.setStatus('mandatory') techSupport1 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport1.setStatus('mandatory') techSupport2 = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 99, 2)) techSupport2n1 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 2, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport2n1.setStatus('mandatory') techSupport2n2 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 2, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport2n2.setStatus('mandatory') techSupport3 = MibIdentifier((1, 3, 6, 1, 4, 1, 3052, 5, 99, 3)) techSupport3n1 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 3, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport3n1.setStatus('mandatory') techSupport3n2 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 3, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport3n2.setStatus('mandatory') techSupport3n3 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 3, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport3n3.setStatus('mandatory') techSupport3n4 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 3, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport3n4.setStatus('mandatory') techSupport3n5 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 3, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport3n5.setStatus('mandatory') techSupport4 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport4.setStatus('mandatory') techSupport7 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 7), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport7.setStatus('mandatory') techSupport9 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 9), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport9.setStatus('mandatory') techSupport10 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 10), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport10.setStatus('mandatory') techSupport11 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 11), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport11.setStatus('mandatory') techSupport16 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 16), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport16.setStatus('mandatory') techSupport17 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 17), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport17.setStatus('mandatory') techSupport18 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 18), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport18.setStatus('mandatory') techSupport19 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 19), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport19.setStatus('mandatory') techSupport20Table = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 99, 20), ) if mibBuilder.loadTexts: techSupport20Table.setStatus('mandatory') techSupport20Entry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 99, 20, 1), ).setIndexNames((0, "SL81-STD-MIB", "techSupport20Index")) if mibBuilder.loadTexts: techSupport20Entry.setStatus('mandatory') techSupport20Index = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 99, 20, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: techSupport20Index.setStatus('mandatory') techSupport20 = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 99, 20, 1, 2), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport20.setStatus('mandatory') techSupport21Table = MibTable((1, 3, 6, 1, 4, 1, 3052, 5, 99, 21), ) if mibBuilder.loadTexts: techSupport21Table.setStatus('mandatory') techSupport21Entry = MibTableRow((1, 3, 6, 1, 4, 1, 3052, 5, 99, 21, 1), ).setIndexNames((0, "SL81-STD-MIB", "techSupport21Index")) if mibBuilder.loadTexts: techSupport21Entry.setStatus('mandatory') techSupport21Index = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 99, 21, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: techSupport21Index.setStatus('mandatory') techSupport21 = MibTableColumn((1, 3, 6, 1, 4, 1, 3052, 5, 99, 21, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: techSupport21.setStatus('mandatory') techSupport22 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 22), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport22.setStatus('mandatory') techSupport24 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 24), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport24.setStatus('mandatory') techSupport25 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 25), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport25.setStatus('mandatory') techSupport26 = MibScalar((1, 3, 6, 1, 4, 1, 3052, 5, 99, 26), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: techSupport26.setStatus('mandatory') sl81TestTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockESDisconnectTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,50)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockDataEventTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,100)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockContactClosureTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,110)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockTempTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,120)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockHumidityTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,130)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockAnalogTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,140)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockCTSTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,160)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81StockSchedTrap = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,170)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "stockTrapString")) sl81UserTrap1000 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1000)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1001 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1001)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1002 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1002)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1003 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1003)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1004 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1004)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1005 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1005)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1006 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1006)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1007 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1007)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1008 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1008)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1009 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1009)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1010 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1010)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1011 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1011)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1012 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1012)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1013 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1013)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1014 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1014)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1015 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1015)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1016 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1016)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1017 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1017)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1018 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1018)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1019 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1019)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1020 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1020)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1021 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1021)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1022 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1022)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1023 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1023)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1024 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1024)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1025 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1025)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1026 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1026)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1027 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1027)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1028 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1028)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1029 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1029)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1030 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1030)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1031 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1031)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1032 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1032)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1033 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1033)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1034 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1034)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1035 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1035)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1036 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1036)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1037 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1037)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1038 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1038)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1039 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1039)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1040 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1040)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1041 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1041)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1042 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1042)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1043 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1043)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1044 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1044)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1045 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1045)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1046 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1046)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1047 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1047)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1048 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1048)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1049 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1049)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1050 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1050)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1051 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1051)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1052 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1052)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1053 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1053)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1054 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1054)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1055 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1055)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1056 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1056)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1057 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1057)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1058 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1058)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1059 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1059)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1060 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1060)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1061 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1061)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1062 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1062)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1063 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1063)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1064 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1064)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1065 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1065)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1066 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1066)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1067 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1067)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1068 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1068)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1069 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1069)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1070 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1070)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1071 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1071)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1072 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1072)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1073 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1073)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1074 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1074)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1075 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1075)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1076 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1076)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1077 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1077)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1078 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1078)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1079 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1079)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1080 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1080)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1081 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1081)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1082 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1082)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1083 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1083)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1084 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1084)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1085 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1085)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1086 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1086)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1087 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1087)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1088 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1088)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1089 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1089)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1090 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1090)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1091 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1091)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1092 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1092)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1093 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1093)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1094 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1094)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1095 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1095)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1096 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1096)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1097 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1097)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1098 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1098)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1099 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1099)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1100 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1100)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1101 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1101)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1102 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1102)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1103 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1103)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1104 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1104)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1105 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1105)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1106 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1106)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1107 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1107)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1108 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1108)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1109 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1109)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1110 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1110)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1111 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1111)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1112 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1112)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1113 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1113)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1114 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1114)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1115 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1115)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1116 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1116)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1117 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1117)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1118 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1118)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1119 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1119)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1120 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1120)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1121 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1121)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1122 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1122)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1123 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1123)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1124 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1124)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1125 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1125)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1126 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1126)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1127 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1127)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1128 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1128)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1129 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1129)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1130 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1130)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1131 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1131)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1132 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1132)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1133 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1133)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1134 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1134)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1135 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1135)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1136 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1136)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1137 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1137)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1138 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1138)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1139 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1139)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1140 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1140)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1141 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1141)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1142 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1142)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1143 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1143)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1144 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1144)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1145 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1145)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1146 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1146)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1147 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1147)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1148 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1148)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1149 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1149)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1150 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1150)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1151 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1151)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1152 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1152)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1153 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1153)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1154 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1154)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1155 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1155)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1156 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1156)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1157 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1157)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1158 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1158)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1159 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1159)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1160 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1160)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1161 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1161)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1162 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1162)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1163 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1163)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1164 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1164)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1165 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1165)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1166 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1166)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1167 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1167)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1168 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1168)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1169 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1169)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1170 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1170)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1171 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1171)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1172 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1172)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1173 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1173)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1174 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1174)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1175 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1175)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1176 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1176)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1177 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1177)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1178 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1178)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1179 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1179)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1180 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1180)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1181 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1181)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1182 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1182)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1183 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1183)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1184 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1184)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1185 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1185)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1186 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1186)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1187 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1187)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1188 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1188)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1189 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1189)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1190 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1190)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1191 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1191)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1192 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1192)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1193 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1193)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1194 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1194)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1195 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1195)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1196 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1196)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1197 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1197)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1198 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1198)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) sl81UserTrap1199 = NotificationType((1, 3, 6, 1, 4, 1, 3052, 5) + (0,1199)).setObjects(("SL81-STD-MIB", "siteID"), ("SL81-STD-MIB", "esIndex"), ("SL81-STD-MIB", "esName"), ("SL81-STD-MIB", "trapEventTypeNumber"), ("SL81-STD-MIB", "trapEventTypeName"), ("SL81-STD-MIB", "esIndexPoint"), ("SL81-STD-MIB", "esPointName"), ("SL81-STD-MIB", "esID"), ("SL81-STD-MIB", "clock"), ("SL81-STD-MIB", "trapIncludedValue"), ("SL81-STD-MIB", "trapIncludedString"), ("SL81-STD-MIB", "trapEventClassNumber"), ("SL81-STD-MIB", "trapEventClassName")) mibBuilder.exportSymbols("SL81-STD-MIB", sl81UserTrap1121=sl81UserTrap1121, sl81UserTrap1140=sl81UserTrap1140, sl81UserTrap1171=sl81UserTrap1171, sl81UserTrap1192=sl81UserTrap1192, techSupport3=techSupport3, trapIncludedValue=trapIncludedValue, sl81UserTrap1191=sl81UserTrap1191, smTable=smTable, trapEventTypeName=trapEventTypeName, sl81UserTrap1024=sl81UserTrap1024, ipConfigAddress=ipConfigAddress, sl81StockContactClosureTrap=sl81StockContactClosureTrap, clock=clock, sl81UserTrap1103=sl81UserTrap1103, sl81UserTrap1048=sl81UserTrap1048, sl81UserTrap1097=sl81UserTrap1097, sl81UserTrap1059=sl81UserTrap1059, sl81UserTrap1198=sl81UserTrap1198, sl81UserTrap1100=sl81UserTrap1100, smEntry=smEntry, sl81UserTrap1039=sl81UserTrap1039, deConfigTrapNumber=deConfigTrapNumber, sl81UserTrap1108=sl81UserTrap1108, sl81UserTrap1117=sl81UserTrap1117, techSupport11=techSupport11, techSupport4=techSupport4, modemTimeBetweenOutbound=modemTimeBetweenOutbound, sl81UserTrap1138=sl81UserTrap1138, sl81UserTrap1170=sl81UserTrap1170, sl81UserTrap1023=sl81UserTrap1023, sl81UserTrap1007=sl81UserTrap1007, deConfigClearTime=deConfigClearTime, esCCReportingMode=esCCReportingMode, techSupport21Table=techSupport21Table, sl81UserTrap1053=sl81UserTrap1053, esNumberRelayOutputs=esNumberRelayOutputs, portConfigStripPtInputLfs=portConfigStripPtInputLfs, sl81UserTrap1173=sl81UserTrap1173, sl81UserTrap1081=sl81UserTrap1081, sl81UserTrap1144=sl81UserTrap1144, sl81UserTrap1185=sl81UserTrap1185, trapEventClassName=trapEventClassName, deConfigName=deConfigName, techSupport3n4=techSupport3n4, productIds=productIds, portConfigTable=portConfigTable, techSupport26=techSupport26, sl81UserTrap1153=sl81UserTrap1153, sl81UserTrap1042=sl81UserTrap1042, pagerType=pagerType, sl81UserTrap1037=sl81UserTrap1037, sl81UserTrap1118=sl81UserTrap1118, techSupport9=techSupport9, sl81UserTrap1186=sl81UserTrap1186, numberPorts=numberPorts, sl81UserTrap1182=sl81UserTrap1182, modemDataFormat=modemDataFormat, esNoiseReportingMode=esNoiseReportingMode, techSupport3n2=techSupport3n2, modemTAPSetup=modemTAPSetup, sl81UserTrap1113=sl81UserTrap1113, sl81UserTrap1165=sl81UserTrap1165, sl81UserTrap1107=sl81UserTrap1107, sl81StockCTSTrap=sl81StockCTSTrap, techSupport=techSupport, sl81UserTrap1096=sl81UserTrap1096, sl81UserTrap1004=sl81UserTrap1004, sl81UserTrap1065=sl81UserTrap1065, deConfigEnabled=deConfigEnabled, sl81UserTrap1000=sl81UserTrap1000, sl81UserTrap1141=sl81UserTrap1141, sl81UserTrap1102=sl81UserTrap1102, stockTrapString=stockTrapString, techSupport20Table=techSupport20Table, sl81UserTrap1074=sl81UserTrap1074, sl81UserTrap1086=sl81UserTrap1086, esTable=esTable, portConfigDAEnable=portConfigDAEnable, deFieldTable=deFieldTable, telnetDuplex=telnetDuplex, techSupport10=techSupport10, sl81UserTrap1050=sl81UserTrap1050, smAddress=smAddress, sl81UserTrap1146=sl81UserTrap1146, sl81UserTrap1106=sl81UserTrap1106, sl81UserTrap1062=sl81UserTrap1062, portConfigMaskEnable=portConfigMaskEnable, techSupport21=techSupport21, deFieldLength=deFieldLength, sl81UserTrap1087=sl81UserTrap1087, sl81UserTrap1003=sl81UserTrap1003, esPointName=esPointName, sl81UserTrap1045=sl81UserTrap1045, deFieldEntry=deFieldEntry, techSupport20Entry=techSupport20Entry, sl81UserTrap1012=sl81UserTrap1012, eventSensorStatus=eventSensorStatus, esIndexPoint=esIndexPoint, sl81StockTempTrap=sl81StockTempTrap, sl81UserTrap1068=sl81UserTrap1068, deConfigAutoClear=deConfigAutoClear, esPointTimetickLastChange=esPointTimetickLastChange, sl81UserTrap1030=sl81UserTrap1030, sl81UserTrap1047=sl81UserTrap1047, deStatusTable=deStatusTable, sl81UserTrap1018=sl81UserTrap1018, sl81UserTrap1126=sl81UserTrap1126, sl81UserTrap1008=sl81UserTrap1008, esNumberAirflowSensors=esNumberAirflowSensors, sl81UserTrap1026=sl81UserTrap1026, deConfigClass=deConfigClass, techSupport20=techSupport20, sl81UserTrap1070=sl81UserTrap1070, sl81UserTrap1163=sl81UserTrap1163, sl81UserTrap1172=sl81UserTrap1172, esAnalogReportingMode=esAnalogReportingMode, sl81UserTrap1021=sl81UserTrap1021, esNumberCCs=esNumberCCs, sl81StockSchedTrap=sl81StockSchedTrap, sl81UserTrap1084=sl81UserTrap1084, sl81UserTrap1199=sl81UserTrap1199, sl81UserTrap1079=sl81UserTrap1079, sl81UserTrap1178=sl81UserTrap1178, deConfigThreshold=deConfigThreshold, deConfigActions=deConfigActions, sl81UserTrap1005=sl81UserTrap1005, sl81UserTrap1128=sl81UserTrap1128, sl81UserTrap1032=sl81UserTrap1032, sl81UserTrap1188=sl81UserTrap1188, sl81UserTrap1058=sl81UserTrap1058, sl81UserTrap1089=sl81UserTrap1089, sl81UserTrap1035=sl81UserTrap1035, deStatusName=deStatusName, sl81=sl81, esIndexPC=esIndexPC, sl81UserTrap1054=sl81UserTrap1054, sl81UserTrap1161=sl81UserTrap1161, ipConfigEngage=ipConfigEngage, sl81StockHumidityTrap=sl81StockHumidityTrap, sl81UserTrap1189=sl81UserTrap1189, sl81UserTrap1130=sl81UserTrap1130, sl81UserTrap1181=sl81UserTrap1181, sl81UserTrap1093=sl81UserTrap1093, sl81UserTrap1190=sl81UserTrap1190, portConfigEntry=portConfigEntry, sl81UserTrap1111=sl81UserTrap1111, sl81UserTrap1052=sl81UserTrap1052, timeouts=timeouts, esNumberAnalog=esNumberAnalog, sl81UserTrap1112=sl81UserTrap1112, esPointValueStr=esPointValueStr, sl81UserTrap1043=sl81UserTrap1043, sl81UserTrap1080=sl81UserTrap1080, sl81UserTrap1193=sl81UserTrap1193, esName=esName, sl81UserTrap1049=sl81UserTrap1049, sl81UserTrap1099=sl81UserTrap1099, sl81UserTrap1197=sl81UserTrap1197, sl81UserTrap1028=sl81UserTrap1028, sl81UserTrap1041=sl81UserTrap1041, sl81UserTrap1092=sl81UserTrap1092, techSupport3n5=techSupport3n5, sl81UserTrap1009=sl81UserTrap1009, sl81UserTrap1011=sl81UserTrap1011, sl81UserTrap1044=sl81UserTrap1044, sl81UserTrap1077=sl81UserTrap1077, sl81UserTrap1157=sl81UserTrap1157, deFieldIndex=deFieldIndex, esPointEntry=esPointEntry, sl81UserTrap1110=sl81UserTrap1110, sl81UserTrap1057=sl81UserTrap1057, sl81UserTrap1162=sl81UserTrap1162, sl81UserTrap1147=sl81UserTrap1147, techSupport25=techSupport25, trapEventTypeNumber=trapEventTypeNumber, sl81UserTrap1027=sl81UserTrap1027, sl81UserTrap1114=sl81UserTrap1114, sl81UserTrap1169=sl81UserTrap1169, sl81UserTrap1071=sl81UserTrap1071, autoDSTAdjust=autoDSTAdjust, sl81UserTrap1015=sl81UserTrap1015, techSupport19=techSupport19, sl81UserTrap1075=sl81UserTrap1075, sl81UserTrap1179=sl81UserTrap1179, sl81UserTrap1139=sl81UserTrap1139, sl81UserTrap1196=sl81UserTrap1196, esIndex=esIndex, sl81StockDataEventTrap=sl81StockDataEventTrap, pagerIndex=pagerIndex, sl81UserTrap1167=sl81UserTrap1167, pagerID=pagerID, sl81UserTrap1104=sl81UserTrap1104, sl81StockESDisconnectTrap=sl81StockESDisconnectTrap, sl81UserTrap1175=sl81UserTrap1175, esNumberNoiseSensors=esNumberNoiseSensors, time=time, thisProduct=thisProduct, sl81UserTrap1133=sl81UserTrap1133, dataEventStatus=dataEventStatus, sl81UserTrap1014=sl81UserTrap1014, sl81UserTrap1055=sl81UserTrap1055, deStatusLastTriggerTime=deStatusLastTriggerTime, sl81UserTrap1115=sl81UserTrap1115, deConfigTable=deConfigTable, passthroughTimeout=passthroughTimeout, sl81UserTrap1046=sl81UserTrap1046, sl81UserTrap1040=sl81UserTrap1040, sl81UserTrap1051=sl81UserTrap1051, sl81UserTrap1083=sl81UserTrap1083, sl81UserTrap1152=sl81UserTrap1152, sl81UserTrap1116=sl81UserTrap1116, esIndexES=esIndexES, sl81UserTrap1119=sl81UserTrap1119, dataEventConfig=dataEventConfig, portConfigIndex=portConfigIndex, pagerEntry=pagerEntry, sl81UserTrap1149=sl81UserTrap1149, sl81UserTrap1038=sl81UserTrap1038, techSupport17=techSupport17, sl81UserTrap1176=sl81UserTrap1176, techSupport21Entry=techSupport21Entry, sl81UserTrap1131=sl81UserTrap1131, sl81UserTrap1061=sl81UserTrap1061, sl81UserTrap1002=sl81UserTrap1002, sl81UserTrap1124=sl81UserTrap1124, techSupport16=techSupport16, portConfigStripPtOutputLfs=portConfigStripPtOutputLfs, sl81UserTrap1109=sl81UserTrap1109, esPointTable=esPointTable, siteID=siteID, sl81UserTrap1166=sl81UserTrap1166, sl81UserTrap1064=sl81UserTrap1064, techSupport3n1=techSupport3n1, sl81UserTrap1136=sl81UserTrap1136, sl81UserTrap1125=sl81UserTrap1125, sl81UserTrap1066=sl81UserTrap1066, esAirflowReportingMode=esAirflowReportingMode, sl81UserTrap1019=sl81UserTrap1019, sl81UserTrap1036=sl81UserTrap1036, techSupport18=techSupport18, sl81UserTrap1127=sl81UserTrap1127, portConfigDataFormat=portConfigDataFormat, trapEventClassNumber=trapEventClassNumber, sl81UserTrap1184=sl81UserTrap1184, esHumidReportingMode=esHumidReportingMode, pagerPostCalloutDelay=pagerPostCalloutDelay, sl81UserTrap1159=sl81UserTrap1159, sl81UserTrap1123=sl81UserTrap1123, smIndex=smIndex, techSupport20Index=techSupport20Index, techSupport7=techSupport7, deStatusThreshold=deStatusThreshold, techSupport22=techSupport22, sl81UserTrap1158=sl81UserTrap1158) mibBuilder.exportSymbols("SL81-STD-MIB", sl81UserTrap1073=sl81UserTrap1073, portConfigBaud=portConfigBaud, sl81UserTrap1120=sl81UserTrap1120, ipConfigSubnetMask=ipConfigSubnetMask, deFieldName=deFieldName, sl81UserTrap1164=sl81UserTrap1164, sl81UserTrap1006=sl81UserTrap1006, sl81UserTrap1017=sl81UserTrap1017, sl81TestTrap=sl81TestTrap, sl81UserTrap1105=sl81UserTrap1105, sl81UserTrap1088=sl81UserTrap1088, sl81UserTrap1098=sl81UserTrap1098, ipConfigStatic=ipConfigStatic, pagerRetries=pagerRetries, sl81UserTrap1129=sl81UserTrap1129, sl81StockAnalogTrap=sl81StockAnalogTrap, techSupport2n2=techSupport2n2, sl81UserTrap1063=sl81UserTrap1063, deConfigEquation=deConfigEquation, sl81UserTrap1091=sl81UserTrap1091, sl81UserTrap1187=sl81UserTrap1187, sl81UserTrap1025=sl81UserTrap1025, sl81UserTrap1010=sl81UserTrap1010, config=config, sl81UserTrap1067=sl81UserTrap1067, deConfigEntry=deConfigEntry, portConfigDTRLowIdle=portConfigDTRLowIdle, sl81UserTrap1160=sl81UserTrap1160, pagerIDDelay=pagerIDDelay, sl81UserTrap1132=sl81UserTrap1132, modem=modem, sl81UserTrap1033=sl81UserTrap1033, sl81UserTrap1148=sl81UserTrap1148, techSupport3n3=techSupport3n3, sl81UserTrap1029=sl81UserTrap1029, sl81UserTrap1150=sl81UserTrap1150, sl81UserTrap1069=sl81UserTrap1069, sl81UserTrap1194=sl81UserTrap1194, sl81UserTrap1134=sl81UserTrap1134, sl81UserTrap1122=sl81UserTrap1122, techSupport24=techSupport24, sl81UserTrap1056=sl81UserTrap1056, esID=esID, sl81UserTrap1151=sl81UserTrap1151, sl81UserTrap1082=sl81UserTrap1082, techSupport1=techSupport1, snmp=snmp, deConfigClearMode=deConfigClearMode, sl81UserTrap1143=sl81UserTrap1143, sl81UserTrap1078=sl81UserTrap1078, pagers=pagers, network=network, ipConfigDefaultRouter=ipConfigDefaultRouter, sl81UserTrap1177=sl81UserTrap1177, sl81UserTrap1174=sl81UserTrap1174, sl81UserTrap1060=sl81UserTrap1060, deStatusIndex=deStatusIndex, sl81UserTrap1156=sl81UserTrap1156, commandTimeout=commandTimeout, deStatusEntry=deStatusEntry, sl81UserTrap1031=sl81UserTrap1031, sl81UserTrap1142=sl81UserTrap1142, serialPorts=serialPorts, sl81UserTrap1101=sl81UserTrap1101, status=status, sl81UserTrap1013=sl81UserTrap1013, deStatusCounter=deStatusCounter, esNumberTempSensors=esNumberTempSensors, pagerPhoneNumber=pagerPhoneNumber, sl81UserTrap1137=sl81UserTrap1137, deFieldStart=deFieldStart, trapIncludedString=trapIncludedString, esNumberEventSensors=esNumberEventSensors, esPointValueInt=esPointValueInt, modemUserSetup=modemUserSetup, sl81UserTrap1145=sl81UserTrap1145, sl81UserTrap1095=sl81UserTrap1095, esPointInEventState=esPointInEventState, techSupport2n1=techSupport2n1, sl81UserTrap1085=sl81UserTrap1085, esRelayReportingMode=esRelayReportingMode, sl81UserTrap1154=sl81UserTrap1154, pagerTable=pagerTable, sl81UserTrap1168=sl81UserTrap1168, sl81UserTrap1090=sl81UserTrap1090, deConfigIndex=deConfigIndex, deStatusLastTriggerData=deStatusLastTriggerData, sl81UserTrap1001=sl81UserTrap1001, eventSensorBasics=eventSensorBasics, esNumberHumidSensors=esNumberHumidSensors, sl81UserTrap1016=sl81UserTrap1016, sl81UserTrap1135=sl81UserTrap1135, sl81UserTrap1094=sl81UserTrap1094, sl81UserTrap1180=sl81UserTrap1180, esEntry=esEntry, sl81UserTrap1155=sl81UserTrap1155, sl81UserTrap1195=sl81UserTrap1195, techSupport21Index=techSupport21Index, sl81UserTrap1072=sl81UserTrap1072, sl81UserTrap1034=sl81UserTrap1034, sl81UserTrap1020=sl81UserTrap1020, esTempReportingMode=esTempReportingMode, sl81UserTrap1076=sl81UserTrap1076, techSupport2=techSupport2, sl81UserTrap1183=sl81UserTrap1183, sl81UserTrap1022=sl81UserTrap1022, omnitronix=omnitronix, esPointTimeLastChange=esPointTimeLastChange)
python
from allauth.account.forms import ChangePasswordForm as AllauthChangePasswordForm class ChangePasswordForm(AllauthChangePasswordForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) del self.fields["oldpassword"].widget.attrs["placeholder"] del self.fields["password1"].widget.attrs["placeholder"] del self.fields["password2"].widget.attrs["placeholder"]
python
"""Tests for the convention subsections.""" import re import pytest from tests.test_convention_doc import doctypes @pytest.fixture( scope="module", params=[ pytest.param((index, subsection), id=subsection.identifier) for section in doctypes.SECTIONS for index, subsection in enumerate(section.subsections) ], ) def enumerated_subsections(request): """Parametrized fixture of each subsection along with its index in the parent section.""" return request.param def test_subsection_identifier_valid(subsection): """Test that the section's identifier is a valid section identifier and matches expectations.""" assert re.match(r"[A-Z]+\.[1-9][0-9]*", subsection.identifier) assert subsection.identifier.startswith(subsection.parent.identifier) def test_subsection_identifiers_strictly_increasing(enumerated_subsections): """Test that the subsections in a section use strictly incrementing identifiers.""" index, subsection = enumerated_subsections assert subsection.identifier.split(".")[-1] == str(index + 1) def test_subsection_isnt_rule(subsection): """Test that we don't use subsections for rules.""" assert not ( subsection.header_text.startswith(" ✔️ **DO**") or subsection.header_text.startswith(" ✔️ **CONSIDER**") or subsection.header_text.startswith(" ❌ **AVOID**") or subsection.header_text.startswith(" ❌ **DO NOT**") ) def test_subsection_identifier_follows_case_convention(subsection): """Test that the subsection header starts with an uppercase letter.""" header_text = subsection.header_text.lstrip() assert header_text[0].isupper(), "header should start with an uppercase letter"
python
from PKG.models import ResnetV2 import tensorflow as tf class Classifier(tf.keras.models.Model): def __init__(self, nclasses, weights=None): super(Classifier, self).__init__() self.nn = ResnetV2() self.classifier = tf.keras.layers.Dense(nclasses) self.activation = tf.keras.layers.Activation("softmax") self.dropout = tf.keras.layers.Dropout(0.3) def call(self, X, training=False): Y = self.nn(X) Y = self.classifier(Y) Y = self.activation(Y) Y = self.dropout(Y, training=training) return Y
python
from helpers.observerpattern import Observable from HTMLParser import HTMLParser class DomBuilder(Observable, HTMLParser): """ This class is on charge of parse the plainHTML provided via a Reader and construct a dom representation with it. DOM structure is decoupled from this class and need to be passed at the time of construction. """ # Some elements don't have a closing tag ( https://www.w3.org/TR/html51/syntax.html#void-elements ) voidTags = ["area", "base", "br", "col", "embed", "hr", "img", "input", "keygen", "link", "menuitem", "meta", "param", "source", "track", "wbr"] # const def __init__(self, dom): HTMLParser.__init__(self) self.dom = dom self.actualParent = [None,] def _finishParsing(self): self._trigger("ParsingFinished", { 'dom': self.dom }) def handle_starttag(self, tag, attrs): element = (tag, attrs, self.actualParent[-1]) nodeIndex = self.dom.addNode( element ) if tag not in self.voidTags: self.actualParent.append( nodeIndex ) def handle_endtag(self, tag): if tag in self.voidTags: return # We already did the job actualParent = self.actualParent.pop() if self.dom.getNode( actualParent )[0] != tag: raise Exception("DomBuilder - Closing tag is missing") # TODO: Custom error object. (ParseEror ?) if self.actualParent[-1] == None: self._finishParsing()
python
class Eventseverity(basestring): """ EMERGENCY|ALERT|CRITICAL|ERROR|WARNING|NOTICE|INFORMATIONAL|DEBUG Possible values: <ul> <li> "emergency" - System is unusable, <li> "alert" - Action must be taken immediately, <li> "critical" - Critical condition, <li> "error" - Error condition, <li> "warning" - Warning condition, <li> "notice" - Normal but significant condition, <li> "informational" - Information message, <li> "debug" - A debugging message </ul> """ @staticmethod def get_api_name(): return "eventseverity"
python
from .attachment import Attachment from .integration import Integration from .message import Message from .field import Field
python
""" 152. Maximum Product Subarray Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray. """ class Solution: def maxProduct(self, nums: List[int]) -> int: if len(nums) == 0: return 0 if len(nums) == 1: return nums[0] leftIndex, totalProd = 0,1 prodArray = [0] for i in range(len(nums)): if nums[i] == 0: prodArray.append(Solution.nonNegProd(self, nums[leftIndex:i])) leftIndex = i+1 prodArray.append(Solution.nonNegProd(self, nums[leftIndex:len(nums)])) return max(prodArray) def nonNegProd(self, nums: List[int]) -> int: if len(nums) == 0: return 0 if len(nums) == 1: return nums[0] numNeg, totalProd = 0, 1 for i in range(len(nums)): totalProd*=nums[i] if nums[i] < 0: numNeg+=1 if numNeg % 2 ==0: return totalProd leftProd, rightProd = totalProd, totalProd for i in range(len(nums)-1,-1,-1): leftProd/=nums[i] if nums[i] < 0: break for i in range(len(nums)): rightProd/=nums[i] if nums[i] < 0: break return int(leftProd) if leftProd > rightProd else int(rightProd)
python
import numpy as np import math import matplotlib.pyplot as plt from bandit import Bandit from explore_then_exploit_agent import ExploreThenExploit from MC_simulator import * from epsilon_greedy_agent import EpsilonGreedy from ubc1_agent import UBC1Agent from report import plot
python
# -*- coding: utf-8 -*- # import the necessary packages from tnmlearn.nn.conv import MiniVGGNet from keras.optimizers import SGD from tnmlearn.examples import BaseLearningModel from tnmlearn.datasets import load_cifar10 # %% class MiniVggNetCifar10(BaseLearningModel): def __init__(self): super(MiniVggNetCifar10, self).__init__() def getData(self): ((self.trainX, self.trainY), (self.testX, self.testY), self.classNames) = load_cifar10() def build(self): # initialize the optimizer and model print("[INFO] compiling model...") opt = SGD(lr=0.01, decay=0.01 / 40, momentum=0.9, nesterov=True) self.model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10) self.model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) def fit(self): return self.fit_(40, 64) def evaluate(self): self.evaluate_(64)
python
from app.order.domain.order import Order from app.order.domain.order_repository import OrderRepository class SqlOrderRepository(OrderRepository): def __init__(self, session): self.session = session def save(self, order: Order): self.session.add(order) self.session.commit() def find_all(self): return self.session.query(Order).all() def find_by_id(self, id: int): return self.session.query(Order).filter(Order.id == id).first()
python
import os import numpy as np from copy import copy from easyric.io import pix4d, geotiff, shp, plot from easyric.calculate import geo2raw, geo2tiff, raw2raw #################### # Software wrapper # #################### class Pix4D: def __init__(self, project_path, raw_img_path=None, project_name=None, param_folder=None, dom_path=None, dsm_path=None, ply_path=None): ###################### # Project Attributes # ###################### self.project_path = self._get_full_path(project_path) sub_folder = os.listdir(self.project_path) if project_name is None: self.project_name = os.path.basename(self.project_path) else: self.project_name = project_name if raw_img_path is not None: self.raw_img_path = os.path.normpath(raw_img_path) else: self.raw_img_path = None ################# # Project Files # ################# self.xyz_file = None self.pmat_file = None self.cicp_file = None self.ccp_file = None self.campos_file = None self.ply_file = None self.dom_file = None self.dsm_file = None self.dom_header = None self.dsm_header = None if '1_initial' in sub_folder: self._original_specify() else: if param_folder is None: raise FileNotFoundError(f'[Wrapper][Pix4D] Current folder |{self.project_path}| is not a standard ' f'pix4d default projects, "1_initial" folder not found and `param_folder` not specified') else: self._manual_specify(param_folder, dom_path, dsm_path, ply_path) if self.dom_file is not None: self.dom_header = geotiff.get_header(self.dom_file) if self.dsm_file is not None: self.dsm_header = geotiff.get_header(self.dsm_file) ############### # Init Params # ############### # -------------------- # >>> p4d.offset.x # 368109.00 # >>> p4d.Py # 3.9716578516421746 # >>> p4d.img[0].name # ''DJI_0172.JPG'' # >>> p4d.img['DJI_0172.JPG'] # <class Image> # >>> p4d.img[0].pmat # pmat_ndarray # -------------------- self.offset = None self.img = None # from cicp file self.F = None self.Px = None self.Py = None self.K1 = None self.K2 = None self.K3 = None self.T1 = None self.T2 = None self.offset = OffSet(self._get_offsets()) self.img_pos = self._get_campos_df() vars(self).update(self._get_cicp_dict()) self.img = ImageSet(img_path=self.raw_img_path, pmat_dict=self._get_pmat_dict(), ccp_dict=self._get_ccp_dict(), img_pos=self.img_pos) def _original_specify(self): sub_folder = os.listdir(self.project_path) self.xyz_file = f"{self.project_path}/1_initial/params/{self.project_name}_offset.xyz" self.pmat_file = f"{self.project_path}/1_initial/params/{self.project_name}_pmatrix.txt" self.cicp_file = f"{self.project_path}/1_initial/params/{self.project_name}_pix4d_calibrated_internal_camera_parameters.cam" self.ccp_file = f"{self.project_path}/1_initial/params/{self.project_name}_calibrated_camera_parameters.txt" self.campos_file = f"{self.project_path}/1_initial/params/{self.project_name}_calibrated_images_position.txt" if self.raw_img_path is None: undistorted_path = f"{self.project_path}/1_initial/images/undistorted_images" if os.path.exists(undistorted_path): self.raw_img_path = undistorted_path else: raise FileNotFoundError("raw image file not given, and could not find undistorted images outputs in Pix4D project") self.ply_file = None if '2_densification' in sub_folder: dens_folder = f"{self.project_path}/2_densification/point_cloud" self.ply_file = self._check_end(dens_folder, '.ply') self.dom_file = None self.dsm_file = None if '3_dsm_ortho' in sub_folder: dsm_folder = f"{self.project_path}/3_dsm_ortho/1_dsm" dom_folder = f"{self.project_path}/3_dsm_ortho/2_mosaic" self.dsm_file = self._check_end(dsm_folder, '.tif') self.dom_file = self._check_end(dom_folder, '.tif') def _manual_specify(self, param_folder, dom_path=None, dsm_path=None, ply_path=None): self.xyz_file = self._get_full_path(f"{param_folder}/{self.project_name}_offset.xyz") self.pmat_file = self._get_full_path(f"{param_folder}/{self.project_name}_pmatrix.txt") self.cicp_file = self._get_full_path(f"{param_folder}/{self.project_name}_pix4d_calibrated_internal_camera_parameters.cam") self.ccp_file = self._get_full_path(f"{param_folder}/{self.project_name}_calibrated_camera_parameters.txt") self.campos_file = self._get_full_path(f"{param_folder}/{self.project_name}_calibrated_images_position.txt") if ply_path is None: try_ply = f"{self.project_name}_group1_densified_point_cloud.ply" self.ply_file = self._get_full_path(f"{self.project_path}/{try_ply}") if self.ply_file is not None: print(f"[Init][Pix4D] No ply given, however find '{try_ply}' at current project folder") else: self.ply_file = self._get_full_path(ply_path) if dom_path is None: try_dom = f"{self.project_name}_transparent_mosaic_group1.tif" self.dom_file = self._get_full_path(f"{self.project_path}/{try_dom}") if self.dom_file is not None: print(f"[Init][Pix4D] No dom given, however find '{try_dom}' at current project folder") else: self.dom_file = self._get_full_path(dom_path) if dsm_path is None: try_dsm = f"{self.project_name}_dsm.tif" self.dsm_file = self._get_full_path(f"{self.project_path}/{try_dsm}") if self.dsm_file is not None: print(f"[Init][Pix4D] No dsm given, however find '{try_dsm}' at current project folder") else: self.dsm_file = self._get_full_path(dsm_path) @staticmethod def _check_end(folder, ext): find_path = None if os.path.exists(folder): # find the first ply file as output (may cause problem) for file in os.listdir(folder): if file.endswith(ext): find_path = f"{folder}/{file}" break return find_path @staticmethod def _get_full_path(short_path): if isinstance(short_path, str): return os.path.abspath(os.path.normpath(short_path)).replace('\\', '/') else: return None def _get_offsets(self): return pix4d.read_xyz(self.xyz_file) def _get_pmat_dict(self): return pix4d.read_pmat(self.pmat_file) def _get_ccp_dict(self): return pix4d.read_ccp(self.ccp_file) def _get_cicp_dict(self): return pix4d.read_cicp(self.cicp_file) def _get_campos_df(self): return pix4d.read_cam_pos(self.campos_file) ################# # Easy use apis # ################# # ======== io.shp ========= def read_shp2d(self, shp_path, shp_proj=None, geotiff_proj=None): if geotiff_proj is None: proj = self.dsm_header['proj'] elif geotiff_proj == 'Null': # the special params to do noting transfrom proj = None else: proj = geotiff_proj shp_dict = shp.read_shp2d(shp_path, shp_proj=shp_proj, geotiff_proj=proj) return shp_dict def read_shp3d(self, shp_path, get_z_by='mean', get_z_buffer=0, shp_proj=None, geotiff_proj=None): shp_dict = shp.read_shp3d(shp_path, self.dsm_file, get_z_by, get_z_buffer, shp_proj, geotiff_proj, geo_head=self.dsm_header) return shp_dict # ======== io.geotiff ========= # ======== io.plot ========= # ======== calculate.geo2raw ========= # ======== calculate.geo2tiff ========= # ======== calculate.raw2raw ========= class PhotoScan: pass class OpenSfM: pass ################# # Used Objects # ################# class OffSet: def __init__(self, offsets): self.x = offsets[0] self.y = offsets[1] self.z = offsets[2] self.np = np.asarray(offsets) class ImageSet: def __init__(self, img_path, pmat_dict, ccp_dict, img_pos): # container for external camera parameters for all raw images pix4d_used = list(ccp_dict.keys()) self.names = [] self.img = [] # in case the img_path has subfolders for fpathe, dirs, fs in os.walk(img_path): for f in fs: full_path = os.path.join(fpathe,f) if f in pix4d_used: # f is img_name temp = copy(ccp_dict[f]) temp['name'] = f temp['pmat'] = pmat_dict[f] temp['path'] = full_path temp["cam_pos"] = img_pos.loc[f, :].values self.img.append(Image(**temp)) self.names.append(f) def __getitem__(self, key): if isinstance(key, int): # index by photo name return self.img[key] elif isinstance(key, str): # index by photo order return self.img[self.names.index(key)] elif isinstance(key, slice): return self.img[key] else: print(key) return None class Image: def __init__(self, name, path, w, h, pmat, cam_matrix, rad_distort, tan_distort, cam_pos, cam_rot): # external parameters self.name = name self.path = path self.w = w self.h = h self.pmat = pmat self.cam_matrix = cam_matrix self.rad_distort = rad_distort self.tan_distort = tan_distort self.cam_pos = cam_pos self.cam_rot = cam_rot
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 8 14:38:17 2018 @author: jgoldstein """ # try to get some simulated PTA data like in Jeff Hazboun's github https://github.com/Hazboun6/pta_simulations import numpy as np import glob, os import matplotlib.pyplot as plt plt.rcParams['figure.dpi'] = 2.5 * 72 import astropy from astropy.time import Time import enterprise from enterprise.pulsar import Pulsar import enterprise_extensions from enterprise_extensions import models, model_utils import libstempo as T2, libstempo.toasim as LT, libstempo.plot as LP from ephem import Ecliptic, Equatorial # can use LT.fakepulsar to create a fake libstempo tempopulsar # LT.fakepulsar(parfile, obstimes, toaerr, [optional params]) # first need to get par files # downloaded IPTA DR2 in /Documents/data/DR2 # maybe try to use .par files from DR2/release/VersionB/... for a bunch of pulsars? SOURCE = '/home/jgoldstein/Documents/data/DR2/release/VersionB' def fake_obs_times(source, cadence=20): """ For all pulsars in source, generate some fake observation times Read start and finish from the pulsar .par file. Then pick random times with a given average cadence (in days). Parameters ---------- source: str path to pulsars with .par files in 'pulsar'/'pulsar'.IPTADR2.par cadence: scalar default = 20 average cadence (in days) for fake observations Returns ------- list: pulsar names NumPy array: observation times in MJD for each pulsar """ pulsars = os.listdir(source) observation_times = [] for p in pulsars: parfile = os.path.join(source, p, '{}.IPTADR2.par'.format(p)) # read start and end of the observation from parfile, then get some random obs times with open(parfile) as parf: for line in parf: if 'START' in line: start = float(line.split()[1]) elif 'FINISH' in line: finish = float(line.split()[1]) break # pick n random observation times so that total time / n = cadence num_obs = int((finish - start) / cadence) obs = np.sort(np.random.randint(start, high=finish, size=num_obs)) observation_times.append(obs) return pulsars, observation_times def make_fake_pulsar(source, pulsar_name, obs_times, toa_err=1e-6): """ Make an LT fakepulsar Parameters ---------- source: str path to pulsars with .par files in 'pulsar'/'pulsar'.IPTADR2.pa pulsar_name: str name of the pulsar (is also the directory with files in source) obs_times: array-like times of observation in MJD toa_err: float toa error in us Returns ------- LT.fakepulsar object """ par_path = os.path.join(source, pulsar_name, pulsar_name+'.IPTADR2.par') return LT.fakepulsar(par_path, obs_times, toa_err)
python
N = int(input()) ans = 0 if N % 100 == 0: ans = N // 100 else: ans = (N // 100) + 1 print(ans)
python
#_*_ coding: utf-8 -*- { 'name': "Carlosma7", 'summary': """ This is the summary of the addon, second try.""", 'description': """ This is the description of the addon. """, 'author': "Carlos Morales Aguilera", 'website': "http://www.carlosma7.com", 'category': 'Personal project', 'version':'0.1', 'application': True, 'depends': ['base','sale','mail'], 'data': [ 'data/data.xml', 'security/ir.model.access.csv', 'views/patient.xml', 'views/kids.xml', 'views/patient_gender.xml', 'views/appointment.xml', 'views/sale.xml', 'views/doctor.xml', 'wizard/create_appointment.xml'], 'installable': True, 'auto_install': True, }
python
# # PySNMP MIB module BENU-HTTP-CLIENT-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/BENU-HTTP-CLIENT-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:37:20 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint") benuWAG, = mibBuilder.importSymbols("BENU-WAG-MIB", "benuWAG") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") ObjectIdentity, Counter64, TimeTicks, Gauge32, iso, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, NotificationType, Integer32, ModuleIdentity, Bits, Unsigned32, MibIdentifier = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "Counter64", "TimeTicks", "Gauge32", "iso", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "NotificationType", "Integer32", "ModuleIdentity", "Bits", "Unsigned32", "MibIdentifier") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") benuHttpClientMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11)) benuHttpClientMIB.setRevisions(('2015-10-21 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: benuHttpClientMIB.setRevisionsDescriptions(('Initial Version',)) if mibBuilder.loadTexts: benuHttpClientMIB.setLastUpdated('201510210000Z') if mibBuilder.loadTexts: benuHttpClientMIB.setOrganization('Benu Networks,Inc') if mibBuilder.loadTexts: benuHttpClientMIB.setContactInfo('Benu Networks,Inc Corporate Headquarters 300 Concord Road, Suite 110 Billerica, MA 01821 USA Tel: +1 978-223-4700 Fax: +1 978-362-1908 Email: [email protected]') if mibBuilder.loadTexts: benuHttpClientMIB.setDescription('This MIB module defines management information related to the HTTP client. Copyright (C) 2013 by Benu Networks, Inc. All rights reserved.') bHttpClientObjects = ObjectIdentity((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1)) if mibBuilder.loadTexts: bHttpClientObjects.setStatus('current') if mibBuilder.loadTexts: bHttpClientObjects.setDescription('HTTP client information is defined in this branch.') bHttpClientLatencyTable = MibTable((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1), ) if mibBuilder.loadTexts: bHttpClientLatencyTable.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyTable.setDescription('Latency information list for HTTP client.') bHttpClientLatencyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1), ).setIndexNames((0, "BENU-HTTP-CLIENT-MIB", "bHttpClientLatencyStatsInterval")) if mibBuilder.loadTexts: bHttpClientLatencyEntry.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyEntry.setDescription('A logical row in the bHttpClientLatencyTable.') bHttpClientLatencyStatsInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 1), Integer32()) if mibBuilder.loadTexts: bHttpClientLatencyStatsInterval.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyStatsInterval.setDescription('The interval during which the measurements were accumulated. The interval index one indicates the latest interval for which statistics accumulation was completed. Older the statistics data, greater the interval index value. In a system supporting a history of n intervals with IntervalCount(1) and IntervalCount(n), the most and least recent intervals respectively, the following applies at the end of an interval: - discard the value of IntervalCount(n) - the value of IntervalCount(i) becomes that of IntervalCount(i+1) for 1 <= i < n - the value of IntervalCount(1) becomes that of CurrentCount.') bHttpClientLatencyStatsIntervalDuration = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientLatencyStatsIntervalDuration.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyStatsIntervalDuration.setDescription('Http client latency stats interval duration.') bHttpClientLatencyTotalPktCount = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 3), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientLatencyTotalPktCount.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyTotalPktCount.setDescription('The count of the total number of packets handled by http client.') bHttpClientLatencyMaxProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 4), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientLatencyMaxProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyMaxProcessingTime.setDescription('Maximum packet processing time handled by http client in micro seconds.') bHttpClientLatencyMinProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 5), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientLatencyMinProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyMinProcessingTime.setDescription('Minimum packet processing time handled by http client in micro seconds.') bHttpClientLatencyAvgProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientLatencyAvgProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyAvgProcessingTime.setDescription('Average packet processing time handled by http client in micro seconds.') bHttpClientLatencyProcessTimeMorethan10MSPktCount = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientLatencyProcessTimeMorethan10MSPktCount.setStatus('current') if mibBuilder.loadTexts: bHttpClientLatencyProcessTimeMorethan10MSPktCount.setDescription('Number of packets took more than 10 milli second processing time handled by http client.') bHttpClientServReqLatencyTotalPktCount = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientServReqLatencyTotalPktCount.setStatus('current') if mibBuilder.loadTexts: bHttpClientServReqLatencyTotalPktCount.setDescription('Total number of http server request packets handled by http client.') bHttpClientServReqLatencyMaxProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientServReqLatencyMaxProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientServReqLatencyMaxProcessingTime.setDescription('Http server request handled by http client maximum packet processing time in micro seconds.') bHttpClientServReqLatencyMinProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 10), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientServReqLatencyMinProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientServReqLatencyMinProcessingTime.setDescription('Http server request handled by http client minimum packet processing time in micro seconds.') bHttpClientServReqLatencyAvgProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientServReqLatencyAvgProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientServReqLatencyAvgProcessingTime.setDescription('Http server request handled by http client average packet processing time in micro seconds.') bHttpClientServReqLatencyProcessTimeMorethan10MSPktCount = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 12), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientServReqLatencyProcessTimeMorethan10MSPktCount.setStatus('current') if mibBuilder.loadTexts: bHttpClientServReqLatencyProcessTimeMorethan10MSPktCount.setDescription('Number of http server request packets handled by http client took more than 10 milli second processing time.') bHttpClientJsonParsingLatencyTotalPktCount = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 13), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyTotalPktCount.setStatus('current') if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyTotalPktCount.setDescription('Total number of packets handled by http client - JSON parsing.') bHttpClientJsonParsingLatencyMaxProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 14), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyMaxProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyMaxProcessingTime.setDescription('Maximum packet processing time for JSON parsing handled by httpclient in micro seconds.') bHttpClientJsonParsingLatencyMinProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 15), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyMinProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyMinProcessingTime.setDescription('Minimum packet processing time for JSON parsing handled by httpclient in micro seconds.') bHttpClientJsonParsingLatencyAvgProcessingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 16), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyAvgProcessingTime.setStatus('current') if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyAvgProcessingTime.setDescription('Average packet processing time for JSON parsing handled by httpclient in micro seconds.') bHttpClientJsonParsingLatencyProcessTimeMorethan10MS = MibTableColumn((1, 3, 6, 1, 4, 1, 39406, 2, 1, 11, 1, 1, 1, 17), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyProcessTimeMorethan10MS.setStatus('current') if mibBuilder.loadTexts: bHttpClientJsonParsingLatencyProcessTimeMorethan10MS.setDescription('Number of packets handled by http client for JSON parsing took more than 10 milli second processing time.') mibBuilder.exportSymbols("BENU-HTTP-CLIENT-MIB", bHttpClientJsonParsingLatencyAvgProcessingTime=bHttpClientJsonParsingLatencyAvgProcessingTime, bHttpClientLatencyProcessTimeMorethan10MSPktCount=bHttpClientLatencyProcessTimeMorethan10MSPktCount, bHttpClientServReqLatencyMinProcessingTime=bHttpClientServReqLatencyMinProcessingTime, bHttpClientJsonParsingLatencyMaxProcessingTime=bHttpClientJsonParsingLatencyMaxProcessingTime, PYSNMP_MODULE_ID=benuHttpClientMIB, bHttpClientObjects=bHttpClientObjects, benuHttpClientMIB=benuHttpClientMIB, bHttpClientLatencyTable=bHttpClientLatencyTable, bHttpClientLatencyMaxProcessingTime=bHttpClientLatencyMaxProcessingTime, bHttpClientLatencyAvgProcessingTime=bHttpClientLatencyAvgProcessingTime, bHttpClientJsonParsingLatencyMinProcessingTime=bHttpClientJsonParsingLatencyMinProcessingTime, bHttpClientServReqLatencyMaxProcessingTime=bHttpClientServReqLatencyMaxProcessingTime, bHttpClientServReqLatencyProcessTimeMorethan10MSPktCount=bHttpClientServReqLatencyProcessTimeMorethan10MSPktCount, bHttpClientJsonParsingLatencyProcessTimeMorethan10MS=bHttpClientJsonParsingLatencyProcessTimeMorethan10MS, bHttpClientLatencyStatsInterval=bHttpClientLatencyStatsInterval, bHttpClientLatencyStatsIntervalDuration=bHttpClientLatencyStatsIntervalDuration, bHttpClientJsonParsingLatencyTotalPktCount=bHttpClientJsonParsingLatencyTotalPktCount, bHttpClientServReqLatencyAvgProcessingTime=bHttpClientServReqLatencyAvgProcessingTime, bHttpClientLatencyEntry=bHttpClientLatencyEntry, bHttpClientLatencyMinProcessingTime=bHttpClientLatencyMinProcessingTime, bHttpClientServReqLatencyTotalPktCount=bHttpClientServReqLatencyTotalPktCount, bHttpClientLatencyTotalPktCount=bHttpClientLatencyTotalPktCount)
python
""" .. module:: __init__ :synopsis: This is where all our global variables and instantiation happens. If there is simple app setup to do, it can be done here, but more complex work should be farmed off elsewhere, in order to keep this file readable. .. moduleauthor:: Dan Schlosser <dan@[email protected]> """ import json import logging from flask import Flask from flask.ext.mongoengine import MongoEngine from flask.ext.assets import Environment, Bundle db = MongoEngine() app = None adi = dict() assets = None gcal_client = None def create_app(**config_overrides): """This is normal setup code for a Flask app, but we give the option to provide override configurations so that in testing, a different database can be used. """ from app.routes.base import register_error_handlers # we want to modify the global app, not a local copy global app global adi global assets global gcal_client app = Flask(__name__) # Load config then apply overrides app.config.from_object('config.flask_config') app.config.update(config_overrides) # Initialize assets assets = Environment(app) register_scss() # Setup the database. db.init_app(app) # Attach Blueprints (routing) to the app register_blueprints(app) # Attache error handling functions to the app register_error_handlers(app) # Register the logger. register_logger(app) return app def register_logger(app): """Create an error logger and attach it to ``app``.""" max_bytes = int(app.config["LOG_FILE_MAX_SIZE"]) * 1024 * 1024 # MB to B # Use "# noqa" to silence flake8 warnings for creating a variable that is # uppercase. (Here, we make a class, so uppercase is correct.) Handler = logging.handlers.RotatingFileHandler # noqa f_str = ('%(levelname)s @ %(asctime)s @ %(filename)s ' '%(funcName)s %(lineno)d: %(message)s') access_handler = Handler(app.config["WERKZEUG_LOG_NAME"], maxBytes=max_bytes) access_handler.setLevel(logging.INFO) logging.getLogger("werkzeug").addHandler(access_handler) app_handler = Handler(app.config["APP_LOG_NAME"], maxBytes=max_bytes) formatter = logging.Formatter(f_str) app_handler.setLevel(logging.INFO) app_handler.setFormatter(formatter) app.logger.addHandler(app_handler) def register_blueprints(app): """Registers all the Blueprints (modules) in a function, to avoid circular dependancies. Be careful rearranging the order of the app.register_blueprint() calls, as it can also result in circular dependancies. """ from app.routes import client app.register_blueprint(client) def register_scss(): """Registers the Flask-Assets rules for scss compilation. This reads from ``config/scss.json`` to make these rules. """ assets.url = app.static_url_path with open(app.config['SCSS_CONFIG_FILE']) as f: bundle_set = json.loads(f.read()) output_folder = bundle_set['output_folder'] depends = bundle_set['depends'] for bundle_name, instructions in bundle_set['rules'].iteritems(): bundle = Bundle(*instructions['inputs'], output=output_folder + instructions['output'], depends=depends, filters='scss') assets.register(bundle_name, bundle) def run(): """Runs the app.""" app.run(host=app.config.get('HOST'), port=app.config.get('PORT'))
python
# This file is part of QuTiP: Quantum Toolbox in Python. # # Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names # of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### """ This module includes a collection of testing functions for the QuTiP scattering module. Tests are approximate with low resolution to minimize runtime. """ # Author: Ben Bartlett # Contact: [email protected] import numpy as np from numpy.testing import assert_, run_module_suite from qutip.operators import create, destroy from qutip.states import basis from qutip.scattering import * class TestScattering: """ A test class for the QuTiP quantum optical scattering module. These tests only use the two-level system for comparison, since larger systems can take a long time to run. """ def testScatteringProbability(self): """ Asserts that pi pulse in TLS has P0 ~ 0 and P0+P1+P2 ~ 1 """ w0 = 1.0 * 2 * np.pi gamma = 1.0 sm = np.sqrt(gamma) * destroy(2) pulseArea = np.pi pulseLength = 0.2 / gamma RabiFreq = pulseArea / (2 * pulseLength) psi0 = basis(2, 0) tlist = np.geomspace(gamma, 10 * gamma, 40) - gamma # Define TLS Hamiltonian H0S = w0 * create(2) * destroy(2) H1S1 = lambda t, args: \ RabiFreq * 1j * np.exp(-1j * w0 * t) * (t < pulseLength) H1S2 = lambda t, args: \ RabiFreq * -1j * np.exp(1j * w0 * t) * (t < pulseLength) Htls = [H0S, [sm.dag(), H1S1], [sm, H1S2]] # Run the test P0 = scattering_probability(Htls, psi0, 0, [sm], tlist) P1 = scattering_probability(Htls, psi0, 1, [sm], tlist) P2 = scattering_probability(Htls, psi0, 2, [sm], tlist) assert_(P0 < 1e-3) assert_(np.abs(P0 + P1 + P2 - 1) < 1e-3) def testScatteringAmplitude(self): """ Asserts that a 2pi pulse in TLS has ~0 amplitude after pulse """ w0 = 1.0 * 2 * np.pi gamma = 1.0 sm = np.sqrt(gamma) * destroy(2) pulseArea = 2 * np.pi pulseLength = 0.2 / gamma RabiFreq = pulseArea / (2 * pulseLength) psi0 = basis(2, 0) T = 50 tlist = np.linspace(0, 1 / gamma, T) # Define TLS Hamiltonian H0S = w0 * create(2) * destroy(2) H1S1 = lambda t, args: \ RabiFreq * 1j * np.exp(-1j * w0 * t) * (t < pulseLength) H1S2 = lambda t, args: \ RabiFreq * -1j * np.exp(1j * w0 * t) * (t < pulseLength) Htls = [H0S, [sm.dag(), H1S1], [sm, H1S2]] # Run the test state = temporal_scattered_state(Htls, psi0, 1, [sm], tlist) basisVec = temporal_basis_vector([[40]], T) amplitude = np.abs((basisVec.dag() * state).full().item()) assert_(amplitude < 1e-3) def testWaveguideSplit(self): """ Checks that a trivial splitting of a waveguide collapse operator like [sm] -> [sm/sqrt2, sm/sqrt2] doesn't affect the normalization or result """ gamma = 1.0 sm = np.sqrt(gamma) * destroy(2) pulseArea = np.pi pulseLength = 0.2 / gamma RabiFreq = pulseArea / (2 * pulseLength) psi0 = basis(2, 0) tlist = np.geomspace(gamma, 10 * gamma, 40) - gamma # Define TLS Hamiltonian with rotating frame transformation Htls = [[sm.dag() + sm, lambda t, args: RabiFreq * (t < pulseLength)]] # Run the test c_ops = [sm] c_ops_split = [sm / np.sqrt(2), sm / np.sqrt(2)] P1 = scattering_probability(Htls, psi0, 1, c_ops, tlist) P1_split = scattering_probability(Htls, psi0, 1, c_ops_split, tlist) tolerance = 1e-7 assert_(1 - tolerance < P1 / P1_split < 1 + tolerance) if __name__ == "__main__": run_module_suite()
python
""" Unit test for re module""" import unittest import re class ReTests(unittest.TestCase): def test_findall(self): #Skulpt is failing all the commented out tests in test_findall and it shouldn't be val = re.findall("From","dlkjdsljkdlkdsjlk") self.assertEqual(len(val), 0) val = re.findall("From","dlkjd From kdsjlk") self.assertEqual(len(val), 1) val = re.findall("From","From dlkjd From kdsjlk") self.assertEqual(len(val), 2) val = re.findall("[0-9]+/[0-9]+","1/2 1/3 3/4 1/8 fred 10/0") self.assertEqual(len(val), 5) a = re.findall(string="A stitch in time saves nine.", flags=re.IGNORECASE, pattern="a") self.assertEqual(a, ['A', 'a']) a = re.findall("[a-z]*ei[a-z]*", "Is Dr. Greiner your friend, Julie?", re.IGNORECASE) self.assertEqual(a, ['Greiner']) b = re.findall("[a-z]*(ei|ie)[a-z]*", "Is Dr. Greiner your friend, Julie?", re.IGNORECASE) self.assertEqual(b, ['ei', 'ie', 'ie']) c = re.findall("[a-z]*(ei|ie)([a-z]*)", "Is Dr. Greiner your friend, Julie?", re.IGNORECASE) self.assertEqual(c, [('ei', 'ner'), ('ie', 'nd'), ('ie', '')]) d = re.findall("[a-z]*(?:ei|ie)[a-z]*", "Is Dr. Greiner your friend, Julie?", re.IGNORECASE) self.assertEqual(d, ['Greiner', 'friend', 'Julie']) self.assertEqual(re.findall('\w+', "Words, words, words."), ['Words', 'words', 'words']) self.assertEqual(re.findall('(abc)(def)', 'abcdef'), [('abc', 'def')]) self.assertEqual(re.findall('(abc)(def)', 'abcdefabcdefjaabcdef3sabc'), [('abc', 'def'), ('abc', 'def'), ('abc', 'def')]) self.assertEqual(re.findall('(abc)', 'abcdef'), ['abc']) self.assertEqual(re.findall('(abc)|(def)', 'abcdefabcdefjaabcdef3sabc'), [('abc', ''), ('', 'def'), ('abc', ''), ('', 'def'), ('abc', ''), ('', 'def'), ('abc', '')]) self.assertEqual(re.findall("^\s*$", ""), ['']) #self.assertEqual(re.findall("\s*|a", " a b"), [' ', '', 'a', ' ', '', '']) self.assertEqual(re.findall("a|\s*", " a b"), [' ', 'a', ' ', '', '']) #self.assertEqual(re.findall("\s*|a", " ba b"), [' ', '', '', 'a', ' ', '', '']) self.assertEqual(re.findall("a|\s*", " ba b"), [' ', '', 'a', ' ', '', '']) self.assertEqual(re.findall(".",""), []) self.assertEqual(re.findall(".","a"), ['a']) self.assertEqual(re.findall(".a","a"), []) self.assertEqual(re.findall("a","a"), ['a']) self.assertEqual(re.findall("a.","a\n"), []) self.assertEqual(re.findall(".a","ba"), ['ba']) self.assertEqual(re.findall("^",""), ['']) self.assertEqual(re.findall("a^",""), []) self.assertEqual(re.findall("^a","ba"), []) self.assertEqual(re.findall("^a","ab"), ['a']) self.assertEqual(re.findall("^a","\na"), []) self.assertEqual(re.findall("a^","a"), []) self.assertEqual(re.findall("$",""), ['']) self.assertEqual(re.findall("$a","a"), []) self.assertEqual(re.findall("a$","a"), ['a']) self.assertEqual(re.findall("a$","ab"), []) self.assertEqual(re.findall("a$","a\nb"), []) self.assertEqual(re.findall("a$","a\n"), ['a']) self.assertEqual(re.findall("a*",""), ['']) self.assertEqual(re.findall("ab*","a"), ['a']) self.assertEqual(re.findall("ab*","ab"), ['ab']) self.assertEqual(re.findall("ab*","abbbbb"), ['abbbbb']) self.assertEqual(re.findall("ab*","ba"), ['a']) self.assertEqual(re.findall("ab*","bbbb"), []) self.assertEqual(re.findall("a+",""), []) self.assertEqual(re.findall("ab+","a"), []) self.assertEqual(re.findall("ab+","ab"), ['ab']) self.assertEqual(re.findall("ab+","abbbbb"), ['abbbbb']) self.assertEqual(re.findall("ab+","ba"), []) self.assertEqual(re.findall("ab+","bbbb"), []) self.assertEqual(re.findall("a?",""), ['']) self.assertEqual(re.findall("ab?","a"), ['a']) self.assertEqual(re.findall("ab?","ab"), ['ab']) self.assertEqual(re.findall("ab?","abbbbb"), ['ab']) self.assertEqual(re.findall("ab?","ba"), ['a']) self.assertEqual(re.findall("ab?","bbbb"), []) #self.assertEqual(re.findall("a*?","a"), ['', 'a', '']) self.assertEqual(re.findall("ab*?","abbbb"), ['a']) self.assertEqual(re.findall("ab*?","a"), ['a']) self.assertEqual(re.findall("ab*?",""), []) self.assertEqual(re.findall("a+?","a"), ['a']) self.assertEqual(re.findall("ab+?","abbbb"), ['ab']) self.assertEqual(re.findall("ab+?","a"), []) self.assertEqual(re.findall("ab+?",""), []) #self.assertEqual(re.findall("a??","a"), ['', 'a', '']) self.assertEqual(re.findall("ab??","abbbb"), ['a']) self.assertEqual(re.findall("ab??","a"), ['a']) self.assertEqual(re.findall("ab??",""), []) self.assertEqual(re.findall("a{2}","a"), []) self.assertEqual(re.findall("a{2}","aa"), ['aa']) self.assertEqual(re.findall("a{2}","aaa"), ['aa']) self.assertEqual(re.findall("a{1,2}b","b"), []) self.assertEqual(re.findall("a{1,2}b","ab"), ['ab']) self.assertEqual(re.findall("a{1,2}b","aab"), ['aab']) self.assertEqual(re.findall("a{1,2}b","aaab"), ['aab']) self.assertEqual(re.findall("a{,2}b","b"), ['b']) self.assertEqual(re.findall("a{,2}b","ab"), ['ab']) self.assertEqual(re.findall("a{,2}b","aab"), ['aab']) self.assertEqual(re.findall("a{,2}b","aaab"), ['aab']) self.assertEqual(re.findall("a{2,}b","b"), []) self.assertEqual(re.findall("a{2,}b","ab"), []) self.assertEqual(re.findall("a{2,}b","aab"), ['aab']) self.assertEqual(re.findall("a{2,}b","aaab"), ['aaab']) self.assertEqual(re.findall("a{3,5}","aaaaaaaaaa"), ['aaaaa', 'aaaaa']) self.assertEqual(re.findall("a{,5}","aaaaaaaaaa"), ['aaaaa', 'aaaaa', '']) self.assertEqual(re.findall("a{3,}","aaaaaaaaaa"), ['aaaaaaaaaa']) self.assertEqual(re.findall("a{1,2}?b","b"), []) self.assertEqual(re.findall("a{1,2}?b","ab"), ['ab']) self.assertEqual(re.findall("a{1,2}?b","aab"), ['aab']) self.assertEqual(re.findall("a{1,2}?b","aaab"), ['aab']) self.assertEqual(re.findall("a{,2}?b","b"), ['b']) self.assertEqual(re.findall("a{,2}?b","ab"), ['ab']) self.assertEqual(re.findall("a{,2}?b","aab"), ['aab']) self.assertEqual(re.findall("a{,2}?b","aaab"), ['aab']) self.assertEqual(re.findall("a{2,}?b","b"), []) self.assertEqual(re.findall("a{2,}?b","ab"), []) self.assertEqual(re.findall("a{2,}?b","aab"), ['aab']) self.assertEqual(re.findall("a{2,}?b","aaab"), ['aaab']) self.assertEqual(re.findall("a{3,5}?","aaaaaaaaaa"), ['aaa', 'aaa', 'aaa']) #self.assertEqual(re.findall("a{,5}?","aaaaaaaaaa"), ['', 'a', '', 'a', '', 'a', '', 'a', '', 'a', '', 'a', '', 'a', '', 'a', '', 'a', '', 'a', '']) self.assertEqual(re.findall("a{3,}?","aaaaaaaaaa"), ['aaa', 'aaa', 'aaa']) self.assertEqual(re.findall("[a,b,c]","abc"), ['a', 'b', 'c']) self.assertEqual(re.findall("[a-z]","bc"), ['b', 'c']) self.assertEqual(re.findall("[A-Z,0-9]","abcdefg"), []) self.assertEqual(re.findall("[^A-Z]","ABCDEFGaHIJKL"), ['a']) self.assertEqual(re.findall("[a*bc]","*"), ['*']) self.assertEqual(re.findall("|",""), ['']) self.assertEqual(re.findall("|a",""), ['']) self.assertEqual(re.findall("a|b","ba"), ['b', 'a']) self.assertEqual(re.findall("h|ello","hello"), ['h', 'ello']) self.assertEqual(re.findall("(b*)","bbbba"), ['bbbb', '', '']) self.assertEqual(re.findall("(?:b*)","bbbba"), ['bbbb', '', '']) self.assertEqual(re.findall("a(?=b)","a"), []) self.assertEqual(re.findall("a(?=b)","ab"), ['a']) self.assertEqual(re.findall("a(?!b)","a"), ['a']) self.assertEqual(re.findall("a(?!b)","ab"), []) pattern = r"\n" self.assertEqual(re.findall(pattern, "\n"), ['\n']) self.assertEqual(re.findall(pattern, "\n\n"), ['\n', '\n']) self.assertEqual(re.findall(pattern, "x\nx"), ['\n']) self.assertEqual(re.findall(pattern, "x\nx\n"), ['\n', '\n']) pattern = r"\t" self.assertEqual(re.findall(pattern, "\t"), ['\t']) self.assertEqual(re.findall(pattern, "\t\t"), ['\t', '\t']) self.assertEqual(re.findall(pattern, "x\tx"), ['\t']) self.assertEqual(re.findall(pattern, "x\tx\t"), ['\t', '\t']) # issue1148 self.assertEqual(re.findall(r"[^c|p]at", r"mat cat hat pat"), ['mat', 'hat']) def test_search(self): val = re.search("From","dlkjdsljkdlkdsjlk") self.assertEqual(val, None) val = re.search("From","dlkjd From kdsjlk") self.assertTrue(val is not None) val = re.search("From","From dlkjd From kdsjlk") self.assertTrue(val is not None) def helper(match,expected): if type(expected) == str: if match: if match.group(0)==expected: return True else: return False else: return False else: if match: return True == expected else: return False == expected self.assertTrue(helper(re.search(".",""),False)) self.assertTrue(helper(re.search(".","a"),True)) self.assertTrue(helper(re.search(".a","a"),False)) self.assertTrue(helper(re.search("a","a"),True)) self.assertTrue(helper(re.search("a.","a\n"),False)) self.assertTrue(helper(re.search(".a","ba"),True)) self.assertTrue(helper(re.search("^",""),True)) self.assertTrue(helper(re.search("a^",""),False)) self.assertTrue(helper(re.search("^a","ba"),False)) self.assertTrue(helper(re.search("^a","ab"),True)) self.assertTrue(helper(re.search("^a","\na"),False)) self.assertTrue(helper(re.search("a^","a"),False)) self.assertTrue(helper(re.search("$",""),True)) self.assertTrue(helper(re.search("$a","a"),False)) self.assertTrue(helper(re.search("a$","a"),True)) self.assertTrue(helper(re.search("a$","ab"),False)) self.assertTrue(helper(re.search("a$","a\nb"),False)) self.assertTrue(helper(re.search("a$","a\n"),True)) self.assertTrue(helper(re.search("a*",""),"")) self.assertTrue(helper(re.search("ab*","a"),"a")) self.assertTrue(helper(re.search("ab*","ab"),"ab")) self.assertTrue(helper(re.search("ab*","abbbbb"),"abbbbb")) self.assertTrue(helper(re.search("ab*","ba"),"a")) self.assertTrue(helper(re.search("ab*","bbbb"),False)) self.assertTrue(helper(re.search("a+",""),False)) self.assertTrue(helper(re.search("ab+","a"),False)) self.assertTrue(helper(re.search("ab+","ab"),"ab")) self.assertTrue(helper(re.search("ab+","abbbbb"),"abbbbb")) self.assertTrue(helper(re.search("ab+","ba"),False)) self.assertTrue(helper(re.search("ab+","bbbb"),False)) self.assertTrue(helper(re.search("a?",""),"")) self.assertTrue(helper(re.search("ab?","a"),"a")) self.assertTrue(helper(re.search("ab?","ab"),"ab")) self.assertTrue(helper(re.search("ab?","abbbbb"),"ab")) self.assertTrue(helper(re.search("ab?","ba"),"a")) self.assertTrue(helper(re.search("ab?","bbbb"),False)) self.assertTrue(helper(re.search("a*?","a"),"")) self.assertTrue(helper(re.search("ab*?","abbbb"),"a")) self.assertTrue(helper(re.search("ab*?","a"),"a")) self.assertTrue(helper(re.search("ab*?",""),False)) self.assertTrue(helper(re.search("a+?","a"),"a")) self.assertTrue(helper(re.search("ab+?","abbbb"),"ab")) self.assertTrue(helper(re.search("ab+?","a"),False)) self.assertTrue(helper(re.search("ab+?",""),False)) self.assertTrue(helper(re.search("a??","a"),"")) self.assertTrue(helper(re.search("ab??","abbbb"),"a")) self.assertTrue(helper(re.search("ab??","a"),"a")) self.assertTrue(helper(re.search("ab??",""),False)) self.assertTrue(helper(re.search("a{2}","a"),False)) self.assertTrue(helper(re.search("a{2}","aa"),"aa")) self.assertTrue(helper(re.search("a{2}","aaa"),"aa")) self.assertTrue(helper(re.search("a{1,2}b","b"),False)) self.assertTrue(helper(re.search("a{1,2}b","ab"),"ab")) self.assertTrue(helper(re.search("a{1,2}b","aab"),"aab")) self.assertTrue(helper(re.search("a{1,2}b","aaab"),"aab")) self.assertTrue(helper(re.search("a{,2}b","b"),"b")) self.assertTrue(helper(re.search("a{,2}b","ab"),"ab")) self.assertTrue(helper(re.search("a{,2}b","aab"),"aab")) self.assertTrue(helper(re.search("a{,2}b","aaab"),"aab")) self.assertTrue(helper(re.search("a{2,}b","b"),False)) self.assertTrue(helper(re.search("a{2,}b","ab"),False)) self.assertTrue(helper(re.search("a{2,}b","aab"),"aab")) self.assertTrue(helper(re.search("a{2,}b","aaab"),"aaab")) self.assertTrue(helper(re.search("a{3,5}","aaaaaaaaaa"),"aaaaa")) self.assertTrue(helper(re.search("a{,5}","aaaaaaaaaa"),"aaaaa")) self.assertTrue(helper(re.search("a{3,}","aaaaaaaaaa"),"aaaaaaaaaa")) self.assertTrue(helper(re.search("[a,b,c]","abc"),"a")) self.assertTrue(helper(re.search("[a-z]","bc"),"b")) self.assertTrue(helper(re.search("[A-Z,0-9]","abcdefg"),False)) self.assertTrue(helper(re.search("[^A-Z]","ABCDEFGaHIJKL"),"a")) self.assertTrue(helper(re.search("[a*bc]","*"),"*")) self.assertTrue(helper(re.search("|",""),"")) self.assertTrue(helper(re.search("|a",""),"")) self.assertTrue(helper(re.search("a|b","ba"),"b")) self.assertTrue(helper(re.search("h|ello","hello"),"h")) self.assertTrue(helper(re.search("(?:b*)","bbbba"),'bbbb')) self.assertTrue(helper(re.search("a(?=b)","a"),False)) self.assertTrue(helper(re.search("a(?=b)","ab"),"a")) self.assertTrue(helper(re.search("a(?!b)","a"),"a")) self.assertTrue(helper(re.search("a(?!b)","ab"),False)) def test_match(self): val = re.match("From","dlkjdsljkdlkdsjlk") self.assertEqual(val, None) val = re.match("From","dlkjd From kdsjlk") self.assertTrue(val is None) val = re.match("From","From dlkjd From kdsjlk") self.assertTrue(val is not None) def test_groups(self): m = re.match('([0-9]+)([a-z]+)','345abu') self.assertEqual(m.groups(), ('345', 'abu')) self.assertEqual(m.group(0), "345abu") self.assertEqual(m.group(1), "345") self.assertEqual(m.group(2), "abu") m = re.match('([0-9]+)([a-z]+)([A-Z]*)','345abu') self.assertEqual(m.groups('default'), tuple(['345','abu',''])) def test_split(self): a = re.split("a", "A stitch in time saves nine.", flags=re.IGNORECASE) self.assertEqual(a, ['', ' stitch in time s', 'ves nine.']) self.assertEqual(re.split("\W+", "Words, words, words."), ['Words', 'words', 'words', '']) self.assertEqual(re.split("(\W+)", "Words, words, words."), ['Words', ', ', 'words', ', ', 'words', '.', '']) self.assertEqual(re.split("\W+", "Words, words, words.", 1), ['Words', 'words, words.']) self.assertEqual(re.split('[a-f]+', '0a3B9', 0, re.IGNORECASE), ['0', '3', '9']) self.assertEqual(re.split("(\W+)", '...words, words...'), ['', '...', 'words', ', ', 'words', '...', '']) #Skulpt fails the test below and it shouldn't #self.assertEqual(re.split('x*', 'foo'), ['', 'f', 'o', 'o', '']) if __name__ == '__main__': unittest.main()
python
import os from setuptools import setup def package_files(directory): paths = [] for (path, directories, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join('..', path, filename)) return paths extra_files = package_files('sejits4fpgas/hw') extra_files.append('*.config') setup( name='Sejits4Fpgas', version='0.1', packages=['sejits4fpgas', 'sejits4fpgas.src'], package_dir={'sejits4fpgas': 'sejits4fpgas'}, package_data={ 'sejits4fpgas':extra_files }, url='', license='', author='Philipp Ebensberger', author_email='[email protected]', description='', install_requires=["numpy", "scikit-image", "scipy", "pytest"], )
python
# ====================================================================================================================== # Fakulta informacnich technologii VUT v Brne # Bachelor thesis # Author: Filip Bali (xbalif00) # License: MIT # ====================================================================================================================== from django.contrib import admin from .models import Profile # Register your models here. admin.site.register(Profile)
python
import numpy as np import math def nanRound(vs, *args, **kw): def fun(v): if math.isnan(v): return(v) return np.around(v, *args, **kw) return [fun(i) for i in vs]
python
import os import sys import pprint from PIL import Image from av import open video = open(sys.argv[1]) stream = next(s for s in video.streams if s.type == b'video') for packet in video.demux(stream): for frame in packet.decode(): frame.to_image().save('sandbox/%04d.jpg' % frame.index) if frame_count > 5: break
python
from markdownify import markdownify as md, ATX, ATX_CLOSED, BACKSLASH, UNDERSCORE import re nested_uls = """ <ul> <li>1 <ul> <li>a <ul> <li>I</li> <li>II</li> <li>III</li> </ul> </li> <li>b</li> <li>c</li> </ul> </li> <li>2</li> <li>3</li> </ul>""" nested_ols = """ <ol> <li>1 <ol> <li>a <ol> <li>I</li> <li>II</li> <li>III</li> </ol> </li> <li>b</li> <li>c</li> </ol> </li> <li>2</li> <li>3</li> </ul>""" table = re.sub(r'\s+', '', """ <table> <tr> <th>Firstname</th> <th>Lastname</th> <th>Age</th> </tr> <tr> <td>Jill</td> <td>Smith</td> <td>50</td> </tr> <tr> <td>Eve</td> <td>Jackson</td> <td>94</td> </tr> </table> """) table_head_body = re.sub(r'\s+', '', """ <table> <thead> <tr> <th>Firstname</th> <th>Lastname</th> <th>Age</th> </tr> </thead> <tbody> <tr> <td>Jill</td> <td>Smith</td> <td>50</td> </tr> <tr> <td>Eve</td> <td>Jackson</td> <td>94</td> </tr> </tbody> </table> """) table_missing_text = re.sub(r'\s+', '', """ <table> <thead> <tr> <th></th> <th>Lastname</th> <th>Age</th> </tr> </thead> <tbody> <tr> <td>Jill</td> <td></td> <td>50</td> </tr> <tr> <td>Eve</td> <td>Jackson</td> <td>94</td> </tr> </tbody> </table> """) def test_chomp(): assert md(' <b></b> ') == ' ' assert md(' <b> </b> ') == ' ' assert md(' <b> </b> ') == ' ' assert md(' <b> </b> ') == ' ' assert md(' <b>s </b> ') == ' **s** ' assert md(' <b> s</b> ') == ' **s** ' assert md(' <b> s </b> ') == ' **s** ' assert md(' <b> s </b> ') == ' **s** ' def test_a(): assert md('<a href="https://google.com">Google</a>') == '[Google](https://google.com)' assert md('<a href="https://google.com">https://google.com</a>', autolinks=False) == '[https://google.com](https://google.com)' assert md('<a href="https://google.com">https://google.com</a>') == '<https://google.com>' assert md('<a href="https://community.kde.org/Get_Involved">https://community.kde.org/Get_Involved</a>') == '<https://community.kde.org/Get_Involved>' assert md('<a href="https://community.kde.org/Get_Involved">https://community.kde.org/Get_Involved</a>', autolinks=False) == '[https://community.kde.org/Get\\_Involved](https://community.kde.org/Get_Involved)' def test_a_spaces(): assert md('foo <a href="http://google.com">Google</a> bar') == 'foo [Google](http://google.com) bar' assert md('foo<a href="http://google.com"> Google</a> bar') == 'foo [Google](http://google.com) bar' assert md('foo <a href="http://google.com">Google </a>bar') == 'foo [Google](http://google.com) bar' assert md('foo <a href="http://google.com"></a> bar') == 'foo bar' def test_a_with_title(): text = md('<a href="http://google.com" title="The &quot;Goog&quot;">Google</a>') assert text == r'[Google](http://google.com "The \"Goog\"")' def test_a_shortcut(): text = md('<a href="http://google.com">http://google.com</a>') assert text == '<http://google.com>' def test_a_no_autolinks(): text = md('<a href="http://google.com">http://google.com</a>', autolinks=False) assert text == '[http://google.com](http://google.com)' def test_b(): assert md('<b>Hello</b>') == '**Hello**' def test_b_spaces(): assert md('foo <b>Hello</b> bar') == 'foo **Hello** bar' assert md('foo<b> Hello</b> bar') == 'foo **Hello** bar' assert md('foo <b>Hello </b>bar') == 'foo **Hello** bar' assert md('foo <b></b> bar') == 'foo bar' def test_blockquote(): assert md('<blockquote>Hello</blockquote>') == '\n> Hello\n\n' def test_blockquote_with_paragraph(): assert md('<blockquote>Hello</blockquote><p>handsome</p>') == '\n> Hello\n\nhandsome\n\n' def test_nested_blockquote(): text = md('<blockquote>And she was like <blockquote>Hello</blockquote></blockquote>') assert text == '\n> And she was like \n> > Hello\n> \n> \n\n' def test_br(): assert md('a<br />b<br />c') == 'a \nb \nc' def test_em(): assert md('<em>Hello</em>') == '*Hello*' def test_em_spaces(): assert md('foo <em>Hello</em> bar') == 'foo *Hello* bar' assert md('foo<em> Hello</em> bar') == 'foo *Hello* bar' assert md('foo <em>Hello </em>bar') == 'foo *Hello* bar' assert md('foo <em></em> bar') == 'foo bar' def test_h1(): assert md('<h1>Hello</h1>') == 'Hello\n=====\n\n' def test_h2(): assert md('<h2>Hello</h2>') == 'Hello\n-----\n\n' def test_hn(): assert md('<h3>Hello</h3>') == '### Hello\n\n' assert md('<h6>Hello</h6>') == '###### Hello\n\n' def test_hn_chained(): assert md('<h1>First</h1>\n<h2>Second</h2>\n<h3>Third</h3>', heading_style=ATX) == '# First\n\n\n## Second\n\n\n### Third\n\n' assert md('X<h1>First</h1>', heading_style=ATX) == 'X# First\n\n' def test_hn_nested_tag_heading_style(): assert md('<h1>A <p>P</p> C </h1>', heading_style=ATX_CLOSED) == '# A P C #\n\n' assert md('<h1>A <p>P</p> C </h1>', heading_style=ATX) == '# A P C\n\n' def test_hn_nested_simple_tag(): tag_to_markdown = [ ("strong", "**strong**"), ("b", "**b**"), ("em", "*em*"), ("i", "*i*"), ("p", "p"), ("a", "a"), ("div", "div"), ("blockquote", "blockquote"), ] for tag, markdown in tag_to_markdown: assert md('<h3>A <' + tag + '>' + tag + '</' + tag + '> B</h3>') == '### A ' + markdown + ' B\n\n' assert md('<h3>A <br>B</h3>', heading_style=ATX) == '### A B\n\n' # Nested lists not supported # assert md('<h3>A <ul><li>li1</i><li>l2</li></ul></h3>', heading_style=ATX) == '### A li1 li2 B\n\n' def test_hn_nested_img(): assert md('<img src="/path/to/img.jpg" alt="Alt text" title="Optional title" />') == '![Alt text](/path/to/img.jpg "Optional title")' assert md('<img src="/path/to/img.jpg" alt="Alt text" />') == '![Alt text](/path/to/img.jpg)' image_attributes_to_markdown = [ ("", ""), ("alt='Alt Text'", "Alt Text"), ("alt='Alt Text' title='Optional title'", "Alt Text"), ] for image_attributes, markdown in image_attributes_to_markdown: assert md('<h3>A <img src="/path/to/img.jpg " ' + image_attributes + '/> B</h3>') == '### A ' + markdown + ' B\n\n' def test_hr(): assert md('Hello<hr>World') == 'Hello\n\n---\n\nWorld' assert md('Hello<hr />World') == 'Hello\n\n---\n\nWorld' assert md('<p>Hello</p>\n<hr>\n<p>World</p>') == 'Hello\n\n\n\n\n---\n\n\nWorld\n\n' def test_head(): assert md('<head>head</head>') == 'head' def test_atx_headings(): assert md('<h1>Hello</h1>', heading_style=ATX) == '# Hello\n\n' assert md('<h2>Hello</h2>', heading_style=ATX) == '## Hello\n\n' def test_atx_closed_headings(): assert md('<h1>Hello</h1>', heading_style=ATX_CLOSED) == '# Hello #\n\n' assert md('<h2>Hello</h2>', heading_style=ATX_CLOSED) == '## Hello ##\n\n' def test_i(): assert md('<i>Hello</i>') == '*Hello*' def test_ol(): assert md('<ol><li>a</li><li>b</li></ol>') == '1. a\n2. b\n' assert md('<ol start="3"><li>a</li><li>b</li></ol>') == '3. a\n4. b\n' def test_p(): assert md('<p>hello</p>') == 'hello\n\n' def test_strong(): assert md('<strong>Hello</strong>') == '**Hello**' def test_ul(): assert md('<ul><li>a</li><li>b</li></ul>') == '* a\n* b\n' def test_nested_ols(): assert md(nested_ols) == '\n1. 1\n\t1. a\n\t\t1. I\n\t\t2. II\n\t\t3. III\n\t2. b\n\t3. c\n2. 2\n3. 3\n' def test_inline_ul(): assert md('<p>foo</p><ul><li>a</li><li>b</li></ul><p>bar</p>') == 'foo\n\n* a\n* b\n\nbar\n\n' def test_nested_uls(): """ Nested ULs should alternate bullet characters. """ assert md(nested_uls) == '\n* 1\n\t+ a\n\t\t- I\n\t\t- II\n\t\t- III\n\t+ b\n\t+ c\n* 2\n* 3\n' def test_bullets(): assert md(nested_uls, bullets='-') == '\n- 1\n\t- a\n\t\t- I\n\t\t- II\n\t\t- III\n\t- b\n\t- c\n- 2\n- 3\n' def test_li_text(): assert md('<ul><li>foo <a href="#">bar</a></li><li>foo bar </li><li>foo <b>bar</b> <i>space</i>.</ul>') == '* foo [bar](#)\n* foo bar\n* foo **bar** *space*.\n' def test_img(): assert md('<img src="/path/to/img.jpg" alt="Alt text" title="Optional title" />') == '![Alt text](/path/to/img.jpg "Optional title")' assert md('<img src="/path/to/img.jpg" alt="Alt text" />') == '![Alt text](/path/to/img.jpg)' def test_div(): assert md('Hello</div> World') == 'Hello World' def test_table(): assert md(table) == '| Firstname | Lastname | Age |\n| --- | --- | --- |\n| Jill | Smith | 50 |\n| Eve | Jackson | 94 |' assert md(table_head_body) == '| Firstname | Lastname | Age |\n| --- | --- | --- |\n| Jill | Smith | 50 |\n| Eve | Jackson | 94 |' assert md(table_missing_text) == '| | Lastname | Age |\n| --- | --- | --- |\n| Jill | | 50 |\n| Eve | Jackson | 94 |' def test_strong_em_symbol(): assert md('<strong>Hello</strong>', strong_em_symbol=UNDERSCORE) == '__Hello__' assert md('<b>Hello</b>', strong_em_symbol=UNDERSCORE) == '__Hello__' assert md('<em>Hello</em>', strong_em_symbol=UNDERSCORE) == '_Hello_' assert md('<i>Hello</i>', strong_em_symbol=UNDERSCORE) == '_Hello_' def test_newline_style(): assert md('a<br />b<br />c', newline_style=BACKSLASH) == 'a\\\nb\\\nc'
python
from Assignment2 import * def test_case1(): cost = [[0,0,0,0], [0,0,5,10], [0,-1,0,5], [0,-1,-1,0] ] print(UCS_Traversal(cost,1,[3])) def test_case2(): cost = [[0,0,0,0,0], [0,0,0,10,5], [0,-1,0,5,0], [0,-1,-1,0,0], [0,-1,-1,5,0] ] print(UCS_Traversal(cost,1,[3])) def test_case3(): cost = [[0,0,0,0,0,0,0], [0,0,2,0,0,10,7], [0,0,0,3,0,0,0], [0,0,0,0,0,0,2], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,3,0], ] print(UCS_Traversal(cost,1,[5])) def test_case4(): cost = [[0,0,0,0,0,0,0], [0,0,2,0,0,10,7], [0,0,0,3,0,0,0], [0,0,0,0,2,0,2], [0,0,0,0,0,3,0], [0,0,0,0,0,0,0], [0,0,0,0,0,3,0], ] print(UCS_Traversal(cost,1,[5])) def test_case5(): cost = [[0,0,0,0,0,0,0], [0,0,2,-1,-1,10,-1], [0,-1,0,2,-1,-1,-1], [0,-1,-1,0,2,-1,-1], [0,-1,-1,-1,0,-1,2], [0,-1,-1,-1,-1,0,-1], [0,-1,-1,-1,-1,2,0] ] print(UCS_Traversal(cost,1,[5])) test_case1() test_case2() test_case3() test_case4() test_case5()
python
import numpy as np import sys, time, glob #caffe_root = "/home/vagrant/caffe/" #sys.path.insert(0, caffe_root + 'python') import caffe from sklearn.metrics import accuracy_score from random import shuffle from sklearn import svm def init_net(): net = caffe.Classifier(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt', caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel') net.set_phase_test() net.set_mode_cpu() # input preprocessing: 'data' is the name of the input blob == net.inputs[0] net.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')) # ImageNet mean net.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] net.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB return net def get_features(file, net): #print "getting features for", file scores = net.predict([caffe.io.load_image(file)]) feat = net.blobs['fc7'].data[4][:,0, 0] return feat def shuffle_data(features, labels): new_features, new_labels = [], [] index_shuf = range(len(features)) shuffle(index_shuf) for i in index_shuf: new_features.append(features[i]) new_labels.append(labels[i]) return new_features, new_labels def get_dataset(net, A_DIR, B_DIR): CLASS_A_IMAGES = glob.glob(A_DIR + "/*.jpg") CLASS_B_IMAGES = glob.glob(B_DIR + "/*.jpg") CLASS_A_FEATURES = map(lambda f: get_features(f, net), CLASS_A_IMAGES) CLASS_B_FEATURES = map(lambda f: get_features(f, net), CLASS_B_IMAGES) features = CLASS_A_FEATURES + CLASS_B_FEATURES labels = [0] * len(CLASS_A_FEATURES) + [1] * len(CLASS_B_FEATURES) return shuffle_data(features, labels) net = init_net() x, y = get_dataset(net, sys.argv[1], sys.argv[2]) l = int(len(y) * 0.4) x_train, y_train = x[: l], y[: l] x_test, y_test = x[l : ], y[l : ] clf = svm.SVC() clf.fit(x_train, y_train) y_pred = clf.predict(x_test) print "Accuracy: %.3f" % accuracy_score(y_test, y_pred)
python
import numpy as np import py2neo as pn import random import math import copy def create_ba_subgraph(M, m_0, n, relation): # Generate Users-Friends un-directed subgraph # Generate Users-Follower directed subgraph node_list = [] for i in range(m_0): node_list.append(pn.Node('User', name='user' + str(i))) rel_list = [] for i in range(len(node_list)): for j in range((i+1),len(node_list)): rel_list.append(pn.Relationship(node_list[i], relation, node_list[j])) # 1. Creat node list by node function # 2. Creat relation list by Relation function # 3. Creat subgraph by Subgraph function t = M - m_0 # number of iteration k = [] # save nodes degree k_0 = m_0 - 1 p_k = [] # save nodes priority probability p_0 = 1/m_0 k_all = 0 for i in range(m_0): p_k.append(p_0) k.append(k_0) k_all += k_0 for i in range(t): m_0_t = m_0 + i # number of nodes at time t m_0_1 = m_0 + i - 1 # number of nodes at time t-1 node_list.append(pn.Node('User', name='user' + str(m_0_t))) # add one node add_edge = 1 j_choose = -1 while(add_edge <= n): for j in range(m_0_t): if j != j_choose: # to ensure no repeated edges p_random = random.random() if p_random <= p_k[j] and add_edge <= n: j_choose = j k_j = k[j] p_k_j = p_k[j] r_random = random.random() if r_random > 0.5: rel_list.append(pn.Relationship(node_list[j], relation, node_list[-1])) else: rel_list.append(pn.Relationship(node_list[-1], relation, node_list[j])) add_edge += 1 k[j] = k_j + 1 k_all += 2 p_k[j] = (k_j + 1)/k_all k.append(n) p_k.append(n/k_all) s = pn.Subgraph(node_list,rel_list) return s def create_pp_ba_subgraph(M, m_0, n, post_u0, N, graph): post_u0_list = np.random.choice(N,m_0) post_0_list = list(range(m_0)) user_list = [pn.Node('User', name='user' + str(i)) for i in N] k = [0] * len(N) # list save the number of posts by users node_list = [] for i in post_0_list: node_list.append(pn.Node('Post', name='post' + str(i))) rel_list = [] for i in range(len(node_list)): p_u = np.random.choice(post_u0_list,1)[0] k[p_u] += 1 rel_list.append(pn.Relationship(user_list[p_u], 'published', node_list[i])) # 1. Creat node list by Node function # 2. Creat relation list by Relation function # 3. Creat subgraph by Subgraph function t = M - m_0 # number of iteration k_all_friends = 0 for i in N: friends = list(graph.run('MATCH (n:User {name:"user' + str(i) + '"})-[:friends]-(a) return count(a)').data()[0].values())[0] k_all_friends += friends k_all_follow = 0 for i in N: follow = list(graph.run('MATCH (n:User {name:"user' + str(i) + '"})<-[:follow]-(a) return count(a)').data()[0].values())[0] k_all_follow += follow for i in range(t): m_0_t = m_0 + i # number of nodes at time t node_list.append(pn.Node('Post', name='post' + str(m_0_t))) # add one node p_j = [0] * len(N) # save list of probability for j in N: p_j_friends = list(graph.run('MATCH (n:User {name:"user' + str(j) + '"})-[:friends]-(a) return count(a)').data()[0].values())[0] p_j_follow = list(graph.run('MATCH (n:User {name:"user' + str(j) + '"})<-[:follow]-(a) return count(a)').data()[0].values())[0] p_j[j] = (p_j_friends + p_j_follow + k[j]) / (k_all_follow + k_all_friends + sum(k)) user = np.random.choice(user_list,1, p=p_j)[0] # roulette wheel selection rel_list.append(pn.Relationship(user, 'published', node_list[-1])) k[user_list.index(user)] += 1 s = pn.Subgraph(node_list,rel_list) return s def create_pv_ba_subgraph(P,N,graph): # depends on friends/followers/reads user_list = [pn.Node('User', name='user' + str(i)) for i in N] post_list = [pn.Node('Post', name='post' + str(i)) for i in P] view_list = [0] * len(P) rel_list = [] k_all_friends = 0 k_all_follow = 0 for i in P: user = list(graph.run('match (n:Post{name:"post' + str(i) + '"})<-[:published]-(a) return a').data()[0].values())[0].nodes[0]['name'] friends = list(graph.run('MATCH (n:User {name:"' + user + '"})-[:friends]-(a) return count(a)').data()[0].values())[0] k_all_friends += friends follow = list(graph.run('MATCH (n:User {name:"' + user + '"})<-[:follow]-(a) return count(a)').data()[0].values())[0] k_all_follow += follow for i in P: user = list(graph.run('match (n:Post{name:"post' + str(i) + '"})<-[:published]-(a) return a').data()[0].values())[0].nodes[0]['name'] user_list_m = copy.deepcopy(user_list) for n in user_list_m: if n['name'] == user: user_list_m.remove(n) friends = list(graph.run('MATCH (n:User {name:"' + user + '"})-[:friends]-(a) return count(a)').data()[0].values())[0] follow = list(graph.run('MATCH (n:User {name:"' + user + '"})<-[:follow]-(a) return count(a)').data()[0].values())[0] p = (friends + follow + view_list[i]) / (k_all_friends + k_all_follow + sum(view_list)) p_random = random.random() if p_random <= p: user_choice = np.random.choice(user_list_m,1)[0] rel_list.append(pn.Relationship(user_choice,'viewed',post_list[i])) view_list[i] += 1 s = pn.Subgraph(post_list,rel_list) return s def create_pl_ba_subgraph(P,N,graph): user_list = [pn.Node('User', name='user' + str(i)) for i in N] post_list = [pn.Node('Post', name='post' + str(i)) for i in P] liked_list = [0] * len(P) rel_list = [] k_all_friends = 0 k_all_follow = 0 k_all_posted = 0 for i in P: user = list(graph.run('match (n:Post{name:"post' + str(i) + '"})<-[:published]-(a) return a').data()[0].values())[0].nodes[0]['name'] friends = list(graph.run('MATCH (n:User {name:"' + user + '"})-[:friends]-(a) return count(a)').data()[0].values())[0] k_all_friends += friends follow = list(graph.run('MATCH (n:User {name:"' + user + '"})<-[:follow]-(a) return count(a)').data()[0].values())[0] k_all_follow += follow post = list(graph.run('MATCH (n:User {name:"' + user + '"})-[:published]->(a) return count(a)').data()[0].values())[0] k_all_posted += post for i in P: user = list(graph.run('match (n:Post{name:"post' + str(i) + '"})<-[:published]-(a) return a').data()[0].values())[0].nodes[0]['name'] user_list_m = copy.deepcopy(user_list) for n in user_list_m: if n['name'] == user: user_list_m.remove(n) friends = list(graph.run('MATCH (n:User {name:"' + user + '"})-[:friends]-(a) return count(a)').data()[0].values())[0] follow = list(graph.run('MATCH (n:User {name:"' + user + '"})<-[:follow]-(a) return count(a)').data()[0].values())[0] post = list(graph.run('MATCH (n:User {name:"' + user + '"})-[:published]->(a) return count(a)').data()[0].values())[0] for j in N: p = (friends + follow + post + liked_list[i]) / (k_all_friends + k_all_follow + k_all_posted + sum(liked_list)) p_random = random.random() if p_random <= p: user_choice = np.random.choice(user_list_m,1)[0] rel_list.append(pn.Relationship(user_choice,'liked',post_list[i])) liked_list[i] += 1 s = pn.Subgraph(post_list,rel_list) return s if __name__ == '__main__': users = 20 # users nodes posts = 30 # posts post_0, post_u0 = 3,3 m_0 = 3 # initial nodes n = 2 # every time the new node connect to n known nodes, n<=n_user0 N = list(range(users)) P = list(range(posts)) # start a new project in Neo4j and set connections graph = pn.Graph( host = 'localhost', http_port = '7474', user = 'neo4j', password = '2500' ) # stage 1 s_user_friend = create_ba_subgraph(users, m_0, n, relation='friends') # stage 2 s_user_follow = create_ba_subgraph(users, m_0, n, relation='follow') graph.run('match (n:User) detach delete n') graph.create(s_user_friend) # stage 3 graph.merge(s_user_follow,'User','name') # stage 4 s_posts_publish = create_pp_ba_subgraph(posts, post_0, n, post_u0, N, graph) # stage 5 graph.merge(s_posts_publish,'User','name') # stage 6 s_posts_viewed = create_pv_ba_subgraph(P,N,graph) # stage 7 graph.merge(s_posts_viewed,'User','name') # stage 8 s_posts_liked = create_pl_ba_subgraph(P,N,graph) # stage 9 graph.merge(s_posts_liked,'User','name')
python
# coding=utf-8 from __future__ import print_function import authcode from sqlalchemy_wrapper import SQLAlchemy from helpers import SECRET_KEY def test_user_model(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) assert auth.users_model_name == 'User' assert auth.roles_model_name == 'Role' User = auth.User db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) db.commit() assert user.login == u'meh' assert user.email == user.login assert hasattr(user, 'password') assert hasattr(user, 'last_sign_in') assert repr(user) == '<User meh>' def test_user_model_to_dict(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) User = auth.User db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) db.commit() user_dict = user.to_dict() assert user_dict def test_backwards_compatibility(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db) User = auth.User db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) db.commit() assert user._password == user.password user._password = 'raw' assert user.password == 'raw' def test_user_model_methods(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db) User = auth.User db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) db.commit() assert User.by_id(user.id) == user assert User.by_id(33) is None assert User.by_login(u'meh') == user assert User.by_login(u'foobar') is None assert user.has_password('foobar') assert not user.has_password('abracadabra') assert user.get_token() assert user.get_uhmac() def test_set_raw_password(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) User = auth.User db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) db.session.commit() assert user.password != 'foobar' user.set_raw_password('foobar') assert user.password == 'foobar' def test_role_model(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) Role = auth.Role db.create_all() role = Role(name=u'admin') db.session.add(role) db.commit() assert role.name == u'admin' assert repr(role) == '<Role admin>' def test_role_model_to_dict(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) Role = auth.Role db.create_all() role = Role(name=u'admin') db.session.add(role) db.commit() role_dict = role.to_dict() assert role_dict def test_role_model_methods(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) Role = auth.Role db.create_all() role = Role(name=u'admin') db.session.add(role) db.commit() assert Role.by_id(role.id) == role assert Role.by_id(33) is None assert Role.by_name(u'admin') == role assert Role.by_name(u'foobar') is None assert Role.get_or_create(u'admin') == role role2 = Role.get_or_create(u'owner') db.commit() assert role2 != role assert db.query(Role).count() == 2 assert list(role.users) == [] assert list(role2.users) == [] def test_add_role(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) User = auth.User Role = auth.Role db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) role = Role(name=u'loremipsum') db.session.add(role) db.session.commit() assert hasattr(auth, 'Role') assert hasattr(User, 'roles') # Add nonexistant role creates it user.add_role('admin') db.session.commit() assert user.has_role('admin') assert db.query(Role).count() == 2 assert list(user.roles) == [Role.by_name('admin')] # Adding the same role does nothing user.add_role('admin') db.session.commit() assert user.has_role('admin') assert db.query(Role).count() == 2 assert list(user.roles) == [Role.by_name('admin')] # Adding an existent role does not create a new one user.add_role('loremipsum') db.session.commit() assert user.has_role('loremipsum') result = sorted([role.name for role in user.roles]) assert result == ['admin', 'loremipsum'] assert db.query(Role).count() == 2 def test_remove_role(): db = SQLAlchemy('sqlite:///:memory:') auth = authcode.Auth(SECRET_KEY, db=db, roles=True) User = auth.User Role = auth.Role db.create_all() user = User(login=u'meh', password='foobar') db.session.add(user) db.session.commit() assert hasattr(auth, 'Role') assert hasattr(User, 'roles') user.add_role('admin') db.session.commit() assert user.has_role('admin') assert db.query(Role).count() == 1 # Removed from user but not deleted user.remove_role('admin') db.session.commit() assert not user.has_role('admin') assert list(user.roles) == [] assert db.query(Role).count() == 1 # Removing a role it doesn't have does nothing user.remove_role('admin') db.session.commit() assert not user.has_role('admin') assert list(user.roles) == [] assert db.query(Role).count() == 1 # Removing a nonexistant role does nothing user.remove_role('foobar') db.session.commit() assert db.query(Role).count() == 1 def test_models_mixins(): db = SQLAlchemy('sqlite:///:memory:') class UserMixin(object): email = db.Column(db.Unicode(300)) def __repr__(self): return 'overwrited' class RoleMixin(object): description = db.Column(db.UnicodeText) auth = authcode.Auth(SECRET_KEY, db=db, UserMixin=UserMixin, RoleMixin=RoleMixin) User = auth.User Role = auth.Role db.create_all() user = User(login=u'meh', password='foobar', email=u'[email protected]') db.session.add(user) db.flush() assert User.__tablename__ == 'users' assert user.login == u'meh' assert user.email == u'[email protected]' assert hasattr(user, 'password') assert hasattr(user, 'last_sign_in') assert repr(user) == 'overwrited' assert hasattr(Role, 'description') def test_naked_sqlalchemy(): from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import scoped_session, sessionmaker engine = create_engine('sqlite://') class DB(object): Session = scoped_session(sessionmaker(bind=engine)) Model = declarative_base() @property def session(self): return self.Session() db = DB() auth = authcode.Auth(SECRET_KEY, db=db) User = auth.User db.Model.metadata.create_all(bind=engine) user = User(login=u'meh', password='foobar') db.session.add(user) db.session.commit() assert User.by_id(user.id) == user assert User.by_id(33) is None assert User.by_login(u'meh') == user assert User.by_login(u'foobar') is None assert user.has_password('foobar') assert not user.has_password('abracadabra') assert user.get_token() assert user.get_uhmac()
python
# -*- coding: utf-8 -*- def fluxo_caixa(): fluxo = db(MovimentoCaixa).select() return locals() def entradas(): entradas = db(Entradas).select() return locals() def n_entrada(): entrada_id = request.vars.entrada if entrada_id is None: form = SQLFORM(Entradas, fields=['descricao', 'valor', 'obs', 'created_on']) else: form = SQLFORM(Entradas, entrada_id, showid=False, deletable=True, fields=['descricao', 'valor', 'obs', 'created_on']) if form.process().accepted: valor = float(request.vars.valor) saldo = soma_saldo(valor) MovimentoCaixa.insert(saldo_inicial=saldo[0], entrada=valor, saida=0, saldo_final=saldo[1]) redirect(URL('financeiro', 'entradas')) elif form.errors: response.flash = 'Ops, confira os campos!' return locals() def saidas(): saidas = db(Saidas).select() return locals() def n_saida(): saida_id = request.vars.saida_id if saida_id is None: form = SQLFORM(Saidas, fields=['descricao', 'valor', 'obs', 'created_on']) else: form = SQLFORM(Saidas, saida_id, showid=False, deletable=True, fields=['descricao', 'valor', 'obs', 'created_on']) if form.process().accepted: redirect(URL('financeiro', 'saidas')) elif form.errors: response.flash = 'Ops, confira os campos!' return locals()
python
# (C) British Crown Copyright 2013 - 2018, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. """ Tests for the Geostationary projection. """ from __future__ import (absolute_import, division, print_function) from numpy.testing import assert_almost_equal import cartopy.crs as ccrs def check_proj4_params(name, crs, other_args): expected = other_args | {'proj={}'.format(name), 'units=m', 'no_defs'} pro4_params = set(crs.proj4_init.lstrip('+').split(' +')) assert expected == pro4_params class TestGeostationary(object): test_class = ccrs.Geostationary expected_proj_name = 'geos' def adjust_expected_params(self, expected): # Only for Geostationary do we expect the sweep parameter if self.expected_proj_name == 'geos': expected.add('sweep=y') def test_default(self): geos = self.test_class() other_args = {'ellps=WGS84', 'h=35785831', 'lat_0=0.0', 'lon_0=0.0', 'x_0=0', 'y_0=0'} self.adjust_expected_params(other_args) check_proj4_params(self.expected_proj_name, geos, other_args) assert_almost_equal(geos.boundary.bounds, (-5434177.81588539, -5434177.81588539, 5434177.81588539, 5434177.81588539), decimal=4) def test_eccentric_globe(self): globe = ccrs.Globe(semimajor_axis=10000, semiminor_axis=5000, ellipse=None) geos = self.test_class(satellite_height=50000, globe=globe) other_args = {'a=10000', 'b=5000', 'h=50000', 'lat_0=0.0', 'lon_0=0.0', 'x_0=0', 'y_0=0'} self.adjust_expected_params(other_args) check_proj4_params(self.expected_proj_name, geos, other_args) assert_almost_equal(geos.boundary.bounds, (-8372.4040, -4171.5043, 8372.4040, 4171.5043), decimal=4) def test_eastings(self): geos = self.test_class(false_easting=5000000, false_northing=-125000,) other_args = {'ellps=WGS84', 'h=35785831', 'lat_0=0.0', 'lon_0=0.0', 'x_0=5000000', 'y_0=-125000'} self.adjust_expected_params(other_args) check_proj4_params(self.expected_proj_name, geos, other_args) assert_almost_equal(geos.boundary.bounds, (-434177.81588539, -5559177.81588539, 10434177.81588539, 5309177.81588539), decimal=4) def test_sweep(self): geos = ccrs.Geostationary(sweep_axis='x') other_args = {'ellps=WGS84', 'h=35785831', 'lat_0=0.0', 'lon_0=0.0', 'sweep=x', 'x_0=0', 'y_0=0'} check_proj4_params(self.expected_proj_name, geos, other_args) pt = geos.transform_point(-60, 25, ccrs.PlateCarree()) assert_almost_equal(pt, (-4529521.6442, 2437479.4195), decimal=4)
python
import sys, os, Jati class Serve: def run(self, host, port, sites, log_file, isSSL): current_dir = os.getcwd() if current_dir not in sys.path: sys.path.insert(1, current_dir) try: jati = Jati.Jati(host=host, port=port, isSSL=None, log_file=log_file) jati.addVHost(sites) jati.start() except KeyboardInterrupt: print("closing") jati.close()
python
from django.contrib import admin from .models import Classifier admin.site.register(Classifier)
python
def cgi_content(type="text/html"): return('Content type: ' + type + '\n\n') def webpage_start(): return('<html>') def web_title(title): return('<head><title>' + title + '</title></head>') def body_start(h1_message): return('<h1 align="center">' + h1_message + '</h1><p align="center">') def body_end(): return("</p><br><p align='center'><a href='../index.html'>HOME</a></p></body>") def webpage_end(): return('</html>')
python
"""Class to host an MlModel object.""" import logging import json from aiokafka import AIOKafkaProducer, AIOKafkaConsumer from model_stream_processor import __name__ from model_stream_processor.model_manager import ModelManager logger = logging.getLogger(__name__) class MLModelStreamProcessor(object): """Processor class for MLModel stream processors.""" def __init__(self, model_qualified_name, loop, bootstrap_servers): """Create an agent for a model. :param model_qualified_name: The qualified name of the model that will be hosted in this stream processor. :type model: str :param loop: The asyncio event loop to be used by the stream processor. :type loop: _UnixSelectorEventLoop :param bootstrap_servers: The kafka brokers to connect to. :type bootstrap_servers: str :returns: An instance of MLModelStreamProcessor. :rtype: MLModelStreamProcessor """ model_manager = ModelManager() self._model = model_manager.get_model(model_qualified_name) logger.info("Initializing stream processor for model: {}".format(self._model.qualified_name)) if self._model is None: raise ValueError("'{}' not found in ModelManager instance.".format(model_qualified_name)) base_topic_name = "model_stream_processor.{}.{}.{}".format(model_qualified_name, self._model.major_version, self._model.minor_version) # the topic from which the model will receive prediction inputs self.consumer_topic = "{}.inputs".format(base_topic_name) # the topic to which the model will send prediction outputs self.producer_topic = "{}.outputs".format(base_topic_name) # the topic to which the model will send prediction errors self.error_producer_topic = "{}.errors".format(base_topic_name) logger.info("{} stream processor: Consuming messages from topic {}.".format(self._model.qualified_name, self.consumer_topic)) logger.info("{} stream processor: Producing messages to topics {} and {}.".format(self._model.qualified_name, self.producer_topic, self.error_producer_topic)) self._consumer = AIOKafkaConsumer(self.consumer_topic, loop=loop, bootstrap_servers=bootstrap_servers, group_id=__name__) self._producer = AIOKafkaProducer(loop=loop, bootstrap_servers=bootstrap_servers) def __repr__(self): """Return string representation of stream processor.""" return "{} model: {} version: {}".format(super().__repr__(), self._model.qualified_name, str(self._model.major_version) + "." + str(self._model.minor_version)) async def start(self): """Start the consumers and producers.""" logger.info("{} stream processor: Starting consumer and producer.".format(self._model.qualified_name)) await self._consumer.start() await self._producer.start() async def process(self): """Make predictions on records in a stream.""" async for message in self._consumer: try: data = json.loads(message.value) prediction = self._model.predict(data=data) serialized_prediction = json.dumps(prediction).encode() await self._producer.send_and_wait(self.producer_topic, serialized_prediction) except Exception as e: logger.error("{} stream processor: Exception: {}".format(self._model.qualified_name, str(e))) await self._producer.send_and_wait(self.error_producer_topic, message.value) async def stop(self): """Stop the streaming processor.""" logger.info("{} stream processor: Stopping consumer and producer.".format(self._model.qualified_name)) await self._consumer.stop() await self._producer.stop()
python
# -*- coding:utf-8 -*- from __future__ import print_function import zipfile import os import shutil import time import property import shutil print('====================================\n\nThis Software Only For Android Studio Language Package Replace\nDevelop By Wellchang\n2019/03/20\n\n====================================\n\n') print('please input the absolute path of new resource_en.jar file',end=':') filename = input() print('please input the absolute path of old resource_en.jar file',end=':') filename_cn = input() splitNew = filename.split('.') splitLen = len(splitNew) prefix = splitNew[splitLen-1] prefixWithDot = '.' + splitNew[splitLen-1] path2 = filename.replace(prefixWithDot,'') path2_cn = filename_cn.replace(prefixWithDot,'') print('Decompression new resource_en.jar file...',end='',flush=True) fz = zipfile.ZipFile(filename, 'r') for file in fz.namelist(): # print(file) fz.extract(file, path2) print('Done') print('Decompression old resource_en.jar file...',end='',flush=True) fzo = zipfile.ZipFile(filename_cn, 'r') for file in fzo.namelist(): # print(file) fzo.extract(file, path2_cn) print('Done') print('translate new resource_en.jar file...',end='',flush=True) for file in fz.namelist(): if(file.endswith(".properties")): props = property.parse(path2 + '\\' + file) keys = props.keys for fileCN in fzo.namelist(): if(fileCN == file): propsCN = property.parse(path2_cn + '\\' + file) keysCN = propsCN.keys for key in keys: # print(len(keys)) # print(file + "=======>" + key + "=" + props.get(key)) if(propsCN.has_key(key)): props.set(key,propsCN.get(key)) props.save() keys.clear() print('Done') print('Packing Translated file...',end='',flush=True) file_new = path2 + "_new.jar" zNew = zipfile.ZipFile(file_new, 'w', zipfile.ZIP_DEFLATED) for dirpath, dirnames, filenames in os.walk(path2): # os.walk 遍历目录 fpath = dirpath.replace(path2, '') # 这一句很重要,不replace的话,就从根目录开始复制 fpath = fpath and fpath + os.sep or '' # os.sep路径分隔符 for filename in filenames: zNew.write(os.path.join(dirpath, filename), fpath+filename) # os.path.join()函数用于路径拼接文件路径。 # os.path.split(path)把path分为目录和文件两个部分,以列表返回 print('Done') zNew.close() print('Delete the extracted file...',end='',flush=True) shutil.rmtree(path2) shutil.rmtree(path2_cn) print('Done') print('Translation completed!!!')
python
from collections import Iterable from iterable_collections.factory import DefaultMethodStrategyFactory class Collection: def __init__(self, iterable, strategies): self._iterable = None self.iterable = iterable self._strategies = strategies def __getattr__(self, item): if item not in self._strategies: raise AttributeError('Unknown attribute {}'.format(item)) return self._strategies[item].make_method(self) def __iter__(self): return iter(self.iterable) def __next__(self): return next(self.iterable) def __repr__(self): return 'Collection({})'.format(self.iterable) @property def iterable(self): return self._iterable @iterable.setter def iterable(self, iterable): if not isinstance(iterable, Iterable): ValueError('Must be an Iterable type.') self._iterable = iterable def collect(iterable): return Collection(iterable, DefaultMethodStrategyFactory().create())
python
#!/usr/bin/env python2 import os import sys # add the current dir to python path CURRENT_DIR = os.path.expanduser(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, CURRENT_DIR) os.system('cd %s ;git pull' % CURRENT_DIR) from app import app if 'SERVER_SOFTWARE' in os.environ: import sae application = sae.create_wsgi_app(app) else: app.run(host='0.0.0.0')
python
# MIT License # # Copyright (c) 2021 Douglas Davis # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import functools import contextlib import sys from typing import Iterator, Optional import pygram11.config from pygram11._backend import _omp_get_max_threads def omp_get_max_threads() -> int: """Get the number of threads available to OpenMP. This returns the result of calling the OpenMP C API function `of the same name <https://www.openmp.org/spec-html/5.0/openmpsu112.html>`_. Returns ------- int the maximum number of available threads """ return _omp_get_max_threads() def default_omp() -> None: """Set OpenMP acceleration thresholds to the default values.""" pygram11.config.set("thresholds.fix1d", 10_000) pygram11.config.set("thresholds.fix1dmw", 10_000) pygram11.config.set("thresholds.fix2d", 10_000) pygram11.config.set("thresholds.var1d", 5_000) pygram11.config.set("thresholds.var1dmw", 5_000) pygram11.config.set("thresholds.var2d", 5_000) def disable_omp() -> None: """Disable OpenMP acceleration by maximizing all thresholds.""" for k in pygram11.config.threshold_keys(): pygram11.config.set(k, sys.maxsize) def force_omp() -> None: """Force OpenMP acceleration by nullifying all thresholds.""" for k in pygram11.config.threshold_keys(): pygram11.config.set(k, 0) def without_omp(*args, **kwargs): """Wrap a function to disable OpenMP while it's called. If a specific key is defined, only that threshold will be modified to turn OpenMP off. The settings of the pygram11 OpenMP threshold configurations will be restored to their previous values at the end of the function that is being wrapped. Parameters ---------- key : str, optional Specific threshold key to turn off. Examples -------- Writing a function with this decorator: >>> import numpy as np >>> from pygram11 import histogram, without_omp >>> @without_omp ... def single_threaded_histogram(): ... data = np.random.standard_normal(size=(1000,)) ... return pygram11.histogram(data, bins=10, range=(-5, 5), flow=True) Defining a specific `key`: >>> import pygram11.config >>> previous = pygram11.config.get("thresholds.var1d") >>> @without_omp(key="thresholds.var1d") ... def single_threaded_histogram2(): ... print(f"in function threshold: {pygram11.config.get('thresholds.var1d')}") ... data = np.random.standard_normal(size=(1000,)) ... return pygram11.histogram(data, bins=[-2, -1, 1.5, 3.2]) >>> result = single_threaded_histogram2() in function threshold: 9223372036854775807 >>> previous 5000 >>> previous == pygram11.config.get("thresholds.var1d") True >>> result[0].shape (3,) """ func = None if len(args) == 1 and callable(args[0]): func = args[0] if func: key = None if not func: key = kwargs.get("key") def cable(func): @functools.wraps(func) def decorator(*args, **kwargs): with omp_disabled(key=key): res = func(*args, **kwargs) return res return decorator return cable(func) if func else cable def with_omp(*args, **kwargs): """Wrap a function to always enable OpenMP while it's called. If a specific key is defined, only that threshold will be modified to turn OpenMP on. The settings of the pygram11 OpenMP threshold configurations will be restored to their previous values at the end of the function that is being wrapped. Parameters ---------- key : str, optional Specific threshold key to turn on. Examples -------- Writing a function with this decorator: >>> import numpy as np >>> from pygram11 import histogram, with_omp >>> @with_omp ... def multi_threaded_histogram(): ... data = np.random.standard_normal(size=(1000,)) ... return pygram11.histogram(data, bins=10, range=(-5, 5), flow=True) Defining a specific `key`: >>> import pygram11.config >>> previous = pygram11.config.get("thresholds.var1d") >>> @with_omp(key="thresholds.var1d") ... def multi_threaded_histogram2(): ... print(f"in function threshold: {pygram11.config.get('thresholds.var1d')}") ... data = np.random.standard_normal(size=(1000,)) ... return pygram11.histogram(data, bins=[-2, -1, 1.5, 3.2]) >>> result = multi_threaded_histogram2() in function threshold: 0 >>> previous 5000 >>> previous == pygram11.config.get("thresholds.var1d") True >>> result[0].shape (3,) """ func = None if len(args) == 1 and callable(args[0]): func = args[0] if func: key = None if not func: key = kwargs.get("key") def cable(func): @functools.wraps(func) def decorator(*args, **kwargs): with omp_forced(key=key): res = func(*args, **kwargs) return res return decorator return cable(func) if func else cable @contextlib.contextmanager def omp_disabled(*, key: Optional[str] = None) -> Iterator[None]: """Context manager to disable OpenMP. Parameters ---------- key : str, optional Specific threshold key to turn off. Examples -------- Using a specific key: >>> import pygram11 >>> import numpy as np >>> with pygram11.omp_disabled(key="thresholds.var1d"): ... data = np.random.standard_normal(size=(200,)) ... result = pygram11.histogram(data, bins=[-2, -1, 1.5, 3.2]) >>> result[0].shape (3,) Disable all thresholds: >>> import pygram11 >>> import numpy as np >>> with pygram11.omp_disabled(): ... data = np.random.standard_normal(size=(200,)) ... result = pygram11.histogram(data, bins=12, range=(-3, 3)) >>> result[0].shape (12,) """ if key is not None: try: prev = pygram11.config.get(key) pygram11.config.set(key, sys.maxsize) yield finally: pygram11.config.set(key, prev) else: previous = {k: pygram11.config.get(k) for k in pygram11.config.threshold_keys()} try: disable_omp() yield finally: for k, v in previous.items(): pygram11.config.set(k, v) @contextlib.contextmanager def omp_forced(*, key: Optional[str] = None) -> Iterator[None]: """Context manager to force enable OpenMP. Parameters ---------- key : str, optional Specific threshold key to turn on. Examples -------- Using a specific key: >>> import pygram11 >>> import numpy as np >>> with pygram11.omp_forced(key="thresholds.var1d"): ... data = np.random.standard_normal(size=(200,)) ... result = pygram11.histogram(data, bins=[-2, -1, 1.5, 3.2]) >>> result[0].shape (3,) Enable all thresholds: >>> import pygram11 >>> import numpy as np >>> with pygram11.omp_forced(): ... data = np.random.standard_normal(size=(200,)) ... result = pygram11.histogram(data, bins=10, range=(-3, 3)) >>> result[0].shape (10,) """ if key is not None: try: prev = pygram11.config.get(key) pygram11.config.set(key, 0) yield finally: pygram11.config.set(key, prev) else: previous = {k: pygram11.config.get(k) for k in pygram11.config.threshold_keys()} try: force_omp() yield finally: for k, v in previous.items(): pygram11.config.set(k, v)
python
import numpy as np import pandas as pd import joblib dataset = pd.read_csv("datasets/cleaned_cleveland.csv") X = dataset.iloc[:, :-1] y = dataset.iloc[:, -1] from sklearn.neighbors import KNeighborsClassifier regressor = KNeighborsClassifier(n_neighbors=21) regressor.fit(X, y) joblib.dump(regressor, "classification/model.pkl") classification_model = joblib.load("classification/model.pkl") # Test model for returning false result # print( # classification_model.predict([[41, 0, 2, 130, 204, 0, 2, 172, 0, 1.4, 1, 0.0, 3.0]]) # ) # Test model for returning true result # print( # classification_model.predict([[67, 1, 4, 120, 229, 0, 2, 129, 1, 2.6, 2, 2.0, 3.0]]) # )
python
from flask import Flask # 创建flask框架 # 静态文件访问的时候url匹配时,路由规则里的路径名字 默认值是、static app = Flask(__name__, static_url_path='/static') print(app.url_map) # @app.route('/') # def index(): # """处理index页面逻辑""" # return 'nihao' @app.route('/login.html') def login(): """登录的逻辑""" # 读取login.html 并且返回 with open('login.html') as f: content = f.read() return content num1 = 10 if __name__ == '__main__': # 运行服务器、 app.run()
python
# -*- coding: utf-8 -*- from setuptools import setup import pathlib here = pathlib.Path(__file__).parent.resolve() long_description = (here / "README.md").read_text(encoding='utf-8') setup( name='zarr-swiftstore', version="1.2.3", description='swift storage backend for zarr', long_description=long_description, long_description_content_type='text/markdown', python_requires=">=3.5", package_dir={'': '.'}, packages=['zarrswift', 'zarrswift.tests'], install_requires=[ 'zarr>=2.4.0', 'python-swiftclient>=3.10.0', 'mock', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], author='Pavan Siligam', author_email='[email protected]', license='MIT', url="https://github.com/siligam/zarr-swiftstore", )
python
import argparse from config.config import Config from dataset.factory import DatasetModule from domain.metadata import Metadata from logger import logger from model.factory import ModelModule from trainer.factory import TrainerModule def main(args): mode = args.mode.lower() config_file_name = args.config.lower() # Get Parameters params = Config(file_name=config_file_name).params logger.info(f"Parameter information :\n{params}") metadata_params = params.metadata dataset_params = params.dataset model_params = params.model trainer_params = params.trainer # Metadata Controller metadata = Metadata(**metadata_params) # Dataset Controller dataset_module = DatasetModule(metadata=metadata, **dataset_params) # Model Controller model_module = ModelModule(metadata=metadata, **model_params) # Trainer Controller trainer_module = TrainerModule( metadata=metadata, model_module=model_module, dataset_module=dataset_module, **trainer_params ) result_dict = trainer_module.do(mode=mode) print(result_dict) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Pytorch Project Template [Byeonggil Jung (Korea Univ, AIR Lab)]") parser.add_argument("--mode", required=False, default="train", help="Select the mode, train | inference") parser.add_argument("--config", required=True, help="Select the config file") args = parser.parse_args() logger.info(f"Selected parameters : {args}") main(args=args)
python
from qiskit.circuit.library import PauliFeatureMap class ZZFeatureMap(PauliFeatureMap): def __init__( self, feature_dimension, reps=2, entanglement="linear", data_map_func=None, insert_barriers=False, name="ZZFeatureMap", parameter_prefix="x", ): """ Create a new second-order Pauli-Z expansion. @feature_dimension :: Number of features. @reps :: The number of repeated circuits, has a min. 1. @entanglement :: Specifies the entanglement structure. Refer to @data_map_func :: A mapping function for data x. @insert_barriers :: If True, barriers are inserted in between the evolution instructions and hadamard layers. """ if feature_dimension < 2: raise ValueError( "The ZZFeatureMap contains 2-local interactions" "and cannot be defined for less than 2 qubits." f"You provided {feature_dimension}." ) super().__init__( feature_dimension=feature_dimension, reps=reps, entanglement=entanglement, paulis=["Z", "ZZ"], data_map_func=data_map_func, insert_barriers=insert_barriers, name=name, parameter_prefix=parameter_prefix, )
python
# # @lc app=leetcode.cn id=1 lang=python3 # # [1] 两数之和 # # https://leetcode-cn.com/problems/two-sum/description/ # # algorithms # Easy (48.55%) # Likes: 8314 # Dislikes: 0 # Total Accepted: 1.1M # Total Submissions: 2.2M # Testcase Example: '[2,7,11,15]\n9' # # 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。 # # 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。 # # # # 示例: # # 给定 nums = [2, 7, 11, 15], target = 9 # # 因为 nums[0] + nums[1] = 2 + 7 = 9 # 所以返回 [0, 1] # # # # @lc code=start class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: ## 一边遍历 dic = {} for i in range(len(nums)): if target - nums[i] in dic: return [dic[target-nums[i]],i] dic[nums[i]] = i return [] # @lc code=end # def twoSum(self, nums: List[int], target: int) -> List[int]: 两边遍历 # dic = {} # for i in range(len(nums)): # dic[nums[i]] = i # for i in range(len(nums)): # if target - nums[i] in dic and dic[target-nums[i]] != i: # return [i,dic[target-nums[i]]] # return []
python
class DetFace: def __init__(self, conf, bbox): self.conf = conf self.bbox = bbox self.name = ''
python
from pathlib import Path import tables import pandas as pd class Stream: def __init__(self, path): self.path = path self.frame_id_list = self._frame_id_list() self.frame_dict = {k:frame_id for k, frame_id in enumerate(self.frame_id_list)} def _frame_id_list(self): if not Path(self.path).exists(): frame_id_list = [] else: with tables.open_file(self.path) as h: frame_id_list = [int(str(frame).split(' ')[0].replace('/frame_', '')) for frame in h.iter_nodes('/')] frame_id_list.sort() return frame_id_list def __len__(self): return len(self.frame_id_list) def to_pandas(self, frame_id): frame_id = self.frame_dict[frame_id] return pd.read_hdf(self.path, f'frame_{frame_id}') def __getitem__(self, frame_id): if len(self) == 0: h = 'null' else: if frame_id in self.frame_id_list: h = self.to_pandas(frame_id) elif isinstance(frame_id, slice): h = [self.to_pandas(ID) for ID in range(*frame_id.indices(len(self)))] h = pd.concat(h) else: h = 'unreal' return h @property def min_id(self): if len(self) == 0: return 0 else: return min(self.frame_id_list) @property def max_id(self): if len(self) == 0: return 0 else: return len(self) @property def marks(self): if len(self) == 0: return {0: '0'} else: return { k: '' # frame_id for k, frame_id in self.frame_dict.items() }
python
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: xiaxianba @license: Apache Licence @contact: [email protected] @site: http://weibo.com/xiaxianba @software: PyCharm @file: SimTrade.py @time: 2017/02/06 13:00 @describe: 展期数据 """ import csv import datetime as pydt import numpy as np import os from WindPy import * # 国内三大期货交易所共46个商品合约 list_item = ['CU.SHF', 'AL.SHF', 'ZN.SHF', 'PB.SHF', 'AU.SHF', 'AG.SHF', 'NI.SHF', 'SN.SHF', 'RB.SHF', 'WR.SHF', 'HC.SHF', 'BU.SHF', 'RU.SHF', 'M.DCE', 'Y.DCE', 'A.DCE', 'B.DCE', 'P.DCE', 'C.DCE', 'J.DCE', 'V.DCE', 'I.DCE', 'BB.DCE', 'FB.DCE', 'L.DCE', 'PP.DCE', 'JM.DCE', 'CS.DCE', 'CY.CZC', 'SR.CZC', 'CF.CZC', 'ZC.CZC', 'FG.CZC', 'TA.CZC', 'MA.CZC', 'WH.CZC', 'PM.CZC', 'RI.CZC', 'LR.CZC', 'JR.CZC', 'RS.CZC', 'OI.CZC', 'RM.CZC', 'SF.CZC', 'SM.CZC', ] # 商品合约对应的Wind板块id dict_item = {'CU.SHF':'a599010202000000', 'AL.SHF':'a599010203000000', 'ZN.SHF':'a599010204000000', 'PB.SHF':'1000002892000000', 'AU.SHF':'a599010205000000', 'AG.SHF':'1000006502000000', 'NI.SHF':'1000011457000000', 'SN.SHF':'1000011458000000', 'RB.SHF':'a599010206000000', 'WR.SHF':'a599010207000000', 'HC.SHF':'1000011455000000', 'BU.SHF':'1000011013000000', 'RU.SHF':'a599010208000000', 'M.DCE':'a599010304000000', 'Y.DCE':'a599010306000000', 'A.DCE':'a599010302000000', 'B.DCE':'a599010303000000', 'P.DCE':'a599010307000000', 'C.DCE':'a599010305000000', 'J.DCE':'1000002976000000', 'V.DCE':'a599010309000000', 'I.DCE':'1000011439000000', 'BB.DCE':'1000011466000000', 'FB.DCE':'1000011465000000', 'L.DCE':'a599010308000000', 'PP.DCE':'1000011468000000', 'JM.DCE':'1000009338000000', 'CS.DCE':'1000011469000000', 'CY.CZC':'1000011479000000', 'SR.CZC':'a599010405000000', 'CF.CZC':'a599010404000000', 'ZC.CZC':'1000011012000000', 'FG.CZC':'1000008549000000', 'TA.CZC':'a599010407000000', 'MA.CZC':'1000005981000000', 'WH.CZC':'a599010403000000', 'PM.CZC':'1000006567000000', 'RI.CZC':'a599010406000000', 'LR.CZC':'1000011476000000', 'JR.CZC':'1000011474000000', 'RS.CZC':'1000008621000000', 'OI.CZC':'a599010408000000', 'RM.CZC':'1000008622000000', 'SF.CZC':'1000011478000000', 'SM.CZC':'1000011477000000'} def get_zhanqi(ext_list, datestr): dict_rate = {} prefix = "date=" suffix = ";sectorid=" file = os.getcwd() + "\\" + datestr + ".csv" with open(file, "wb") as csvfile: writer = csv.writer(csvfile) writer.writerow(["secuid", "exchangeid", "updatetime", "actionday", "tradingday", "value"]) for item in ext_list: a = item.split('.') dicts = {} scope = prefix + datestr + suffix + dict_item[item] result = w.wset("sectorconstituent", scope) if result.ErrorCode == 0: list_contract = result.Data[1] for contract in list_contract: result_volume = w.wsd(contract, "volume", datestr, datestr, "") if result_volume.ErrorCode == 0: dicts[contract] = result_volume.Data[0][0] result_main = w.wsd(item, "trade_hiscode", datestr, datestr, "") if result_main.ErrorCode == 0 and len(result_main.Data[0]) != 0: main_contract = result_main.Data[0][0] main_contract_price = w.wsd(main_contract, "close", datestr, datestr, "") main_contract_delivery = w.wsd(main_contract, "lastdelivery_date", datestr, datestr, "") dicts.pop(main_contract) second_contract = sorted(dicts.items(), key=lambda item: item[1], reverse=True)[:1] second_contract_price = w.wsd(dict(second_contract).keys(), "close", datestr, datestr, "") second_contract_delivery = w.wsd(dict(second_contract).keys(), "lastdelivery_date", datestr, datestr, "") if isinstance(main_contract_price.Data[0][0],float) and isinstance(second_contract_price.Data[0][0],float): diff_price = np.log(float(main_contract_price.Data[0][0])) - np.log(float(second_contract_price.Data[0][0])) diff_date = (second_contract_delivery.Data[0][0] - main_contract_delivery.Data[0][0]).days dict_rate[item] = 365 * diff_price / diff_date writer.writerow([a[0], a[1], "000000", datestr, datestr, dict_rate[item]]) def gene_file(date): file = os.getcwd() + "\\" + date + ".csv" with open(file,"wb") as csvfile: writer=csv.writer(csvfile) writer.writerow(["secuid","exchangeid","updatetime","actionday","tradingday","value"]) if __name__ == "__main__": date_now = pydt.date.today() - pydt.timedelta(days=1) datestr = date_now.strftime("%Y%m%d") #datestr='20180822' if len(sys.argv) > 1: print sys.argv[1] datestr = sys.argv[1] w.start() date_date = pydt.datetime.strptime(datestr, "%Y%m%d") if date.isoweekday(date_date) < 6: get_zhanqi(list_item, datestr) else: gene_file(datestr) w.close()
python
import obswebsocket, obswebsocket.requests import logging import time import random from obs.actions.Action import Action from obs.actions.ShowSource import ShowSource from obs.actions.HideSource import HideSource from obs.Permission import Permission class Toggle(Action): def __init__(self, obs_client, command_name, aliases, description, permission, min_votes, args): """Initializes this class, see Action.py """ super().__init__(obs_client, command_name, aliases, description, permission, min_votes, args) self.log = logging.getLogger(__name__) self._init_args(args) def execute(self, user): """Shows a scene item, such as an image or video, and then hides it after a specified duration """ # Check user permissions and votes if(not ( self._has_permission(user) and self._has_enough_votes(user) ) ): self._twitch_failed() return False # finally execute the command if(not self.toggle_off_obj2.execute(user)): return False if(not self.toggle_on_obj1.execute(user)): return False # if a duration was specified then sleep and then hide the scene if(self.duration is not None): # wait the specified duration time.sleep(self.duration) if(not self.toggle_on_obj2.execute(user)): return False if(not self.toggle_off_obj1.execute(user)): return False self._twitch_done() return True def _init_args(self, args): """This validates the arguments are valid for this instance, and raises a ValueError if they aren't. Mandatory args: scene item (string): Name of the scene to show. Optional args: scene (string): Name of scene where scene item is nested. If not provided, then the current scene is used. duration (int): Duration (seconds) to show scene. """ self.duration = args.get('duration', None) # Optional self.toggle_on = args.get('toggle_on', None) self.toggle_off = args.get('toggle_off', None) if(self.toggle_on is None or self.toggle_off is None): raise ValueError("Command {}: Args error, missing 'toggle_on' or 'toggle_off'".format(self.command_name)) if(self.duration is not None and self.duration < 0): raise ValueError("Command {}: Args error, duration must be greater than zero".format(self.command_name)) # Try to instantiate the toggle on and off action classes self.log.debug("Command {}: Toggle on/off args are {}/{}".format(self.command_name, self.toggle_on, self.toggle_off)) try: self.toggle_on_obj1 = ShowSource( self.obs_client, self.command_name + "_toggle_on1", None, "Toggle On for {}".format(self.command_name), Permission.EVERYONE, 0, self.toggle_on) except ValueError as e: self.log.error("ERROR: " + e) raise e try: self.toggle_off_obj1 = HideSource( self.obs_client, self.command_name + "_toggle_off1", None, "Toggle On for {}".format(self.command_name), Permission.EVERYONE, 0, self.toggle_on) except ValueError as e: self.log.error("ERROR: " + e) raise e try: self.toggle_on_obj2 = ShowSource( self.obs_client, self.command_name + "_toggle_on2", None, "Toggle On for {}".format(self.command_name), Permission.EVERYONE, 0, self.toggle_off) except ValueError as e: self.log.error("ERROR: " + e) raise e try: self.toggle_off_obj2 = HideSource( self.obs_client, self.command_name + "_toggle_off2", None, "Toggle On for {}".format(self.command_name), Permission.EVERYONE, 0, self.toggle_off) except ValueError as e: self.log.error("ERROR: " + e) raise e # disable randomizers to keep it simple for now if(isinstance(self.toggle_on_obj1.source, list) or isinstance(self.toggle_off_obj1.source, list)): self.toggle_on_obj1.source = self.toggle_on_obj1.source[0] self.toggle_off_obj1.source = self.toggle_off_obj1.source[0] if(isinstance(self.toggle_on_obj2.source, list) or isinstance(self.toggle_off_obj2.source, list)): self.toggle_on_obj2.source = self.toggle_on_obj2.source[0] self.toggle_off_obj2.source = self.toggle_off_obj2.source[0] self.toggle_on_obj1.pick_from_group = False self.toggle_off_obj1.pick_from_group = False self.toggle_on_obj2.pick_from_group = False self.toggle_off_obj2.pick_from_group = False # Disable any duration args, it's controlled here instead self.toggle_on_obj1.duration = None self.toggle_off_obj1.duration = None self.toggle_on_obj2.duration = None self.toggle_off_obj2.duration = None
python
from collections import namedtuple from . import meta, pagination, resource_identifier class ToOneLinks(namedtuple('ToOneLinks', ['maybe_self', 'maybe_related'])): """ Representation of links for a to-one relationship anywhere in a response. """ __slots__ = () def __new__(cls, maybe_self=None, maybe_related=None): return super(ToOneLinks, cls).__new__(cls, maybe_self, maybe_related) class ToManyLinks(namedtuple('ToManyLinks', ['pagination', 'maybe_self', 'maybe_related'])): """ Representation of links for a to-many relationship anywhere in a response. """ __slots__ = () def __new__(cls, pagination, maybe_self=None, maybe_related=None): return super(ToManyLinks, cls).__new__(cls, pagination, maybe_self, maybe_related) class ToOne(namedtuple('ToOne', ['maybe_resource_id'])): """Representation of a to-one relationship.""" __slots__ = () def __new__(cls, maybe_resource_id=None): return super(ToOne, cls).__new__(cls, maybe_resource_id) class ToMany(namedtuple('ToMany', ['list_resource_ids'])): """Representation of at to-many relationship.""" __slots__ = () def __new__(cls, list_resource_ids): return super(ToMany, cls).__new__(cls, list_resource_ids) class Data(namedtuple('Data', ['either_to_many_or_to_one'])): """Representation of "data" section of relationships.""" __slots__ = () def __new__(cls, either_to_many_or_to_one): return super(Data, cls).__new__(cls, either_to_many_or_to_one) class Relationship(namedtuple( 'Relationship', ['name', 'any_data_or_links_or_meta', 'maybe_data', 'maybe_either_to_one_links_or_to_many_links', 'maybe_meta'])): """Representation of a relationship in a relationships lookup.""" __slots__ = () def __new__(cls, name, any_data_or_links_or_meta, maybe_data=None, maybe_either_to_one_links_or_to_many_links=None, maybe_meta=None): return \ super(Relationship, cls).__new__( cls, name, any_data_or_links_or_meta, maybe_data, maybe_either_to_one_links_or_to_many_links, maybe_meta ) class Relationships(namedtuple('Relationships', ['dict_relationships'])): """Representation of a relationships lookup anywhere in a response.""" __slots__ = () def __new__(cls, dict_relationships): return super(Relationships, cls).__new__(cls, dict_relationships) def mk_single_data(obj, config): if type(obj) is list: list_rid = [resource_identifier.mk(obj_rid, config) for obj_rid in obj] return Data(ToMany(list_rid)) if type(obj) is dict: return Data(ToOne(resource_identifier.mk(obj, config))) if not obj: return Data(ToOne(None)) msg = "relationships['data'] is unintelligible: {0}".format(str(obj)) raise RuntimeError(msg) def mk_single_maybe_data(obj, config): if 'data' in obj: return mk_single_data(obj['data'], config) else: return None def mk_to_one_links(obj, config): maybe_self = obj.get( 'self', None) maybe_related = obj.get('related', None) return ToOneLinks(maybe_self, maybe_related) def mk_to_many_links(obj, config): _pagination = pagination.mk(obj, config) maybe_self = obj.get( 'self', None) maybe_related = obj.get('related', None) return ToManyLinks(_pagination, maybe_self, maybe_related) def mk_single_maybe_links(maybe_data, obj, config): if 'links' in obj: obj_links = obj['links'] if type(maybe_data.either_to_many_or_to_one) in [ToOne, type(None)]: return mk_to_one_links(obj_links, config) if type(maybe_data.either_to_many_or_to_one) is ToMany: return mk_to_many_links(obj_links, config) raise RuntimeError('insanity: {0}'.format(str(maybe_data))) else: return None def mk_single_maybe_meta(obj, config): if 'meta' in obj: return meta.mk(obj['meta'], config) else: return None def mk_single(name, obj, config): maybe_data = mk_single_maybe_data(obj, config) maybe_links = mk_single_maybe_links(maybe_data, obj, config) maybe_meta = mk_single_maybe_meta(obj, config) any_data_or_links_or_meta = maybe_data or maybe_links or maybe_meta return Relationship(name, any_data_or_links_or_meta, maybe_data, maybe_links, maybe_meta) def mk(obj, config): dict_relationships = {} for name, obj_relationship in obj.items(): relationship = mk_single(name, obj_relationship, config) if not relationship.any_data_or_links_or_meta: raise RuntimeError('response must contain data, links, or meta') dict_relationships[name] = relationship return Relationships(dict_relationships)
python
import random import networkx as nx from LightningGraph.LN_parser import read_data_to_xgraph, process_lightning_graph LIGHTNING_GRAPH_DUMP_PATH = 'LightningGraph/old_dumps/LN_2020.05.13-08.00.01.json' def sample_long_route(graph, amount, get_route_func, min_route_length=4, max_trials=10000): """ Sample src, dst nodes from graph and use the given function to find a long enough route between them Try until success or max_trials. """ # Select random two nodes as src and dest, with the route between them being of length at least 'min_route_length'. unisolated_nodes = list(set(graph) - set(nx.isolates(graph))) for trial in range(max_trials): src = random.choice(unisolated_nodes) dest = random.choice(unisolated_nodes) route = get_route_func(graph, src, dest, amount) if len(route) >= min_route_length: break if trial == max_trials - 1: raise RuntimeError("Warning: Too hard to find route in graph. Consider changing restrictions or graph") return route, src, dest def create_sub_graph_by_node_capacity(dump_path=LIGHTNING_GRAPH_DUMP_PATH, k=64, highest_capacity_offset=0): """ Creates a sub graph with at most k nodes, selecting nodes by their total capacities. :param dump_path: The path to the JSON describing the lightning graph dump. :param k: The maximal number of nodes in the resulting graph. :param highest_capacity_offset: If it's 0, takes the k nodes with the highest capacity. If its m > 0, takes the k first nodes after the first m nodes. This is used to get a less connected graph. We can't take lowest nodes as removing high nodes usually makes the graph highly unconnected. :returns: a connected graph with at most k nodes """ graph = read_data_to_xgraph(dump_path) process_lightning_graph(graph, remove_isolated=True, total_capacity=True, infer_implementation=True) sorted_nodes = sorted(graph.nodes, key=lambda node: graph.nodes[node]['total_capacity'], reverse=True) # Can't take last nodes as removing highest capacity nodes makes most of them isolated best_nodes = sorted_nodes[highest_capacity_offset: k + highest_capacity_offset] graph = graph.subgraph(best_nodes).copy() # without copy a view is returned and the graph can not be changed. # This may return a graph with less than k nodes process_lightning_graph(graph, remove_isolated=True, total_capacity=True) print(f"Creating sub graph with {len(graph.nodes)}/{len(sorted_nodes)} nodes and {len(graph.edges)} edges") return graph
python
# identifies patients with gout and thiazides import csv import statsmodels.api as statsmodels from atcs import * from icd import is_gout highrisk_prescription_identified = 0 true_positive = 0 true_negative = 0 false_positive = 0 false_negative = 0 gout_treatment = allopurinol | benzbromaron | colchicin | febuxostat | probenecid gout_contraindicated = xipamid | hydrochlorothiazid | torasemid file = open('test_1847_geputzt.csv') reader = csv.reader(file, delimiter=';') headers = next(reader, None) data = [] for row in reader: data.append(dict(zip(headers, row))) for row in data: atc_codes = set() for pos in range(1, 25 + 1): row_name = 'atc_%02d' % pos if row[row_name]: atc_codes.add(row[row_name]) icd_codes = set() for pos in range(1, 20 + 1): row_name = 'icd10_%02d' % pos if row[row_name]: icd_codes.add(row[row_name]) if gout_treatment & atc_codes and any([is_gout(icd) for icd in icd_codes]): true_positive += 1 if gout_treatment & atc_codes and not any([is_gout(icd) for icd in icd_codes]): false_positive += 1 if not gout_treatment & atc_codes and any([is_gout(icd) for icd in icd_codes]): false_negative += 1 if not gout_treatment & atc_codes and not any([is_gout(icd) for icd in icd_codes]): true_negative += 1 try: specificity = true_negative / (true_negative + false_positive) except: specificity = 1 try: sensitivity = true_positive / (true_positive + false_negative) except: sensitivity = 1 ppv = true_positive / (true_positive + false_positive) npv = true_negative / (true_negative + false_negative) print('Specificity:', specificity, statsmodels.stats.proportion_confint(true_negative, true_negative + false_positive, alpha=0.05, method='wilson')) print('Sensitivity:', sensitivity, statsmodels.stats.proportion_confint(true_positive, true_positive + false_negative, alpha=0.05, method='wilson')) print('PPV:', ppv, statsmodels.stats.proportion_confint(true_positive, true_positive + false_positive, alpha=0.05, method='wilson')) print('NPV:', npv, statsmodels.stats.proportion_confint(true_negative, true_negative + false_negative, alpha=0.05, method='wilson')) print('High risk Prescriptions:', highrisk_prescription_identified) print('True Positives:', true_positive, 'True Negatives:', true_negative, 'False Positives:', false_positive, 'False Negatives:', false_negative) # validation: Gout(true) - true_positive = false_negative precision = ppv recall = sensitivity print('Precision:', precision, 'Recall:', recall, 'F1', 2 * precision * recall / (precision + recall))
python
from AoCUtils import * result = 0 partNumber = "1" writeToLog = False if writeToLog: logFile = open("log" + partNumber + ".txt", "w") else: logFile = "stdout" printLog = printLogFactory(logFile) heights = {} with open("input.txt", "r") as inputFile: lines = inputFile.read().strip().split("\n") for (y, line) in enumerate(lines): line = line.strip() for (x, char) in enumerate(line): heights[Position(x, y)] = int(char) for (x, y) in product(range(len(lines[0])), range(len(lines))): p = MapPosition(x, y, frame=lines) m = min([heights[q] for q in p.adjacent()]) if heights[p] < m: result += heights[p] + 1 with open("output" + partNumber + ".txt", "w") as outputFile: outputFile.write(str(result)) print(str(result)) if writeToLog: cast(TextIOWrapper, logFile).close()
python
import setuptools __version__ = "0.2.0" __author__ = "Ricardo Montañana Gómez" def readme(): with open("README.md") as f: return f.read() setuptools.setup( name="Odte", version=__version__, license="MIT License", description="Oblique decision tree Ensemble", long_description=readme(), long_description_content_type="text/markdown", packages=setuptools.find_packages(), url="https://github.com/doctorado-ml/stree", author=__author__, author_email="[email protected]", keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\ tree ensemble svm svc", classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.8", "Natural Language :: English", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Intended Audience :: Science/Research", ], install_requires=["scikit-learn", "numpy", "ipympl", "stree"], test_suite="odte.tests", zip_safe=False, )
python
from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name='ddp_asyncio', version='0.3.0', description='Asynchronous DDP library', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/hunternet93/ddp_asyncio', download_url='https://github.com/hunternet93/ddp_asyncio/releases/download/0.2.0/ddp_asyncio-0.2.0.tar.gz', author='Isaac Smith', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Framework :: AsyncIO' ], keywords='ddp meteor', packages=find_packages(), install_requires=['websockets', 'ejson'], )
python
import random import pandas as pd def synthetic(n, categorical=[], continuous=[]): """Synthetic dataset. For each element in ``categorical``, either 0 or 1 is generated randomly. Similarly, for each element in ``continuous``, a random value between 0 and 100 is generated. Parameters ---------- n: int Number of people categorical: iterable(str), optional Categorical properties, e.g. gender, country, etc. Its values will be either 0 or 1. Defaults to []. values: iterable(str), optional Continuous properties, e.g. age, average_mark, etc. Its values will be between 0 and 100. Defaults to []. Returns ------- pd.DataFrame Sythetic dataset """ return pd.DataFrame(dict(name=[f'person-{i}' for i in range(n)], **{c: [random.randint(0, 1) for _ in range(n)] for c in categorical}, **{v: [random.randint(45, 90) for _ in range(n)] for v in continuous}))
python
# Copyright Aleksey Gurtovoy 2001-2004 # # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # # See http://www.boost.org/libs/mpl for documentation. # $Source: /CVSROOT/boost/libs/mpl/preprocessed/preprocess_set.py,v $ # $Date: 2007/10/29 07:32:56 $ # $Revision: 1.1.1.1 $ import preprocess preprocess.main( [ "plain" ] , "set" , "boost\\mpl\\set\\aux_\\preprocessed" )
python
#!/usr/bin/env python from Bio import SeqIO from Bio.SeqUtils import GC import click import math import random import sys CONTEXT_SETTINGS = { "help_option_names": ["-h", "--help"], } @click.command(no_args_is_help=True, context_settings=CONTEXT_SETTINGS) @click.argument( "fasta_file", type=click.Path(exists=True, resolve_path=True), ) @click.option( "-f", "--filter-masked", help="Filter masked DNA sequences.", is_flag=True, ) @click.option( "-s", "--subsample", help="Number of sequences to subsample.", type=int, default=1000, show_default=True, ) @click.option( "-o", "--output-file", help="Output file. [default: STDOUT]", type=click.Path(writable=True, readable=False, resolve_path=True, allow_dash=True), ) def main(**args): # Group sequences by %GC content gc_groups = {} for record in SeqIO.parse(args["fasta_file"], "fasta"): if args["filter_masked"]: if record.seq.count("N") or record.seq.count("n"): continue gc = round(GC(record.seq)) gc_groups.setdefault(gc, []) gc_groups[gc].append(record) # Subsampling sampled = [] random_seed = 123 norm_factor = args["subsample"] / \ sum([len(v) for v in gc_groups.values()]) for i in sorted(gc_groups): random.Random(random_seed).shuffle(gc_groups[i]) sampled.extend(gc_groups[i][:math.ceil(len(gc_groups[i])*norm_factor)]) random.Random(random_seed).shuffle(sampled) # Write if args["output_file"] is not None: handle = open(args["output_file"], "wt") else: handle = sys.stdout SeqIO.write(sampled[:args["subsample"]], handle, "fasta") handle.close() if __name__ == "__main__": main()
python
# Copyright 2021 by B. Knueven, D. Mildebrath, C. Muir, J-P Watson, and D.L. Woodruff # This software is distributed under the 3-clause BSD License. # Code that is producing a xhat and a confidence interval using sequential sampling # This is the implementation of the 2 following papers: # [bm2011] Bayraksan, G., Morton,D.P.: A Sequential Sampling Procedure for Stochastic Programming. Operations Research 59(4), 898-913 (2011) # [bpl2012] Bayraksan, G., Pierre-Louis, P.: Fixed-Width Sequential Stopping Rules for a Class of Stochastic Programs, SIAM Journal on Optimization 22(4), 1518-1548 (2012) # see also multi_seqsampling.py, which has a class derived from this class import pyomo.environ as pyo import mpi4py.MPI as mpi import mpisppy.utils.sputils as sputils import numpy as np import scipy.stats import importlib from mpisppy import global_toc fullcomm = mpi.COMM_WORLD global_rank = fullcomm.Get_rank() import mpisppy.utils.amalgamator as amalgamator import mpisppy.utils.xhat_eval as xhat_eval import mpisppy.confidence_intervals.ciutils as ciutils from mpisppy.tests.examples.apl1p import xhat_generator_apl1p #========== def is_needed(options,needed_things,message=""): if not set(needed_things)<= set(options): raise RuntimeError("Some options are missing from this list of reqiored options:\n" f"{needed_things}\n" f"{message}") def add_options(options,optional_things,optional_default_settings): # allow for defaults on options that Bayraksan et al establish for i in range(len(optional_things)): ething = optional_things[i] if not ething in options : options[ething]=optional_default_settings[i] def xhat_generator_farmer(scenario_names, solvername="gurobi", solver_options=None, crops_multiplier=1): ''' For developer testing: Given scenario names and options, create the scenarios and compute the xhat that is minimizing the approximate problem associated with these scenarios. Parameters ---------- scenario_names: int Names of the scenario we use solvername: str, optional Name of the solver used. The default is "gurobi". solver_options: dict, optional Solving options. The default is None. crops_multiplier: int, optional A parameter of the farmer model. The default is 1. Returns ------- xhat: xhat object (dict containing a 'ROOT' key with a np.array) A generated xhat. NOTE: this is here for testing during development. ''' num_scens = len(scenario_names) ama_options = { "EF-2stage": True, "EF_solver_name": solvername, "EF_solver_options": solver_options, "use_integer": False, "crops_multiplier": crops_multiplier, "num_scens": num_scens, "_mpisppy_probability": 1/num_scens, } #We use from_module to build easily an Amalgamator object ama = amalgamator.from_module("mpisppy.tests.examples.farmer", ama_options,use_command_line=False) #Correcting the building by putting the right scenarios. ama.scenario_names = scenario_names ama.run() # get the xhat xhat = sputils.nonant_cache_from_ef(ama.ef) return xhat class SeqSampling(): """ Computing a solution xhat and a confidence interval for the optimality gap sequentially, by taking an increasing number of scenarios. Args: refmodel (str): path of the model we use (e.g. farmer, uc) xhat_generator (function): a function that takes scenario_names (and and optional solvername and solver_options) as input and returns a first stage policy xhat. options (dict): multiple parameters, e.g.: - "solvername", str, the name of the solver we use - "solver_options", dict containing solver options (default is {}, an empty dict) - "sample_size_ratio", float, the ratio (xhat sample size)/(gap estimators sample size) (default is 1) - "xhat_gen_options" dict containing options passed to the xhat generator (default is {}, an empty dict) - "ArRP", int, how many estimators should be pooled to compute G and s ? (default is 1, no pooling) - "kf_Gs", int, resampling frequency to compute estimators (default is 1, always resample completely) - "kf_xhat", int, resampling frequency to compute xhat (default is 1, always resample completely) -"confidence_level", float, asymptotic confidence level of the output confidence interval (default is 0.95) -Some other parameters, depending on what model (BM or BPL, deterministic or sequential sampling) stochastic_sampling (bool, default False): should we compute sample sizes using estimators ? if stochastic_sampling is True, we compute sample size using §5 of [Bayraksan and Pierre-Louis] else, we compute them using [Bayraksan and Morton] technique stopping_criterion (str, default 'BM'): which stopping criterion should be used ? 2 criterions are supported : 'BM' for [Bayraksan and Morton] and 'BPL' for [Bayraksan and Pierre-Louis] solving_type (str, default 'EF-2stage'): how do we solve the approximate problems ? Must be one of 'EF-2stage' and 'EF-mstage' (for problems with more than 2 stages). Solving methods outside EF are not supported yet. """ def __init__(self, refmodel, xhat_generator, options, stochastic_sampling = False, stopping_criterion = "BM", solving_type = "None"): self.refmodel = importlib.import_module(refmodel) self.refmodelname = refmodel self.xhat_generator = xhat_generator self.options = options self.stochastic_sampling = stochastic_sampling self.stopping_criterion = stopping_criterion self.solving_type = solving_type self.solvername = options.get("solvername", None) self.solver_options = options["solver_options"] if "solver_options" in options else None self.sample_size_ratio = options["sample_size_ratio"] if "sample_size_ration" in options else 1 self.xhat_gen_options = options["xhat_gen_options"] if "xhat_gen_options" in options else {} #Check if refmodel has all needed attributes everything = ["scenario_names_creator", "scenario_creator", "kw_creator"] # denouement can be missing. you_can_have_it_all = True for ething in everything: if not hasattr(self.refmodel, ething): print(f"Module {refmodel} is missing {ething}") you_can_have_it_all = False if not you_can_have_it_all: raise RuntimeError(f"Module {refmodel} not complete for seqsampling") #Manage options optional_options = ["ArRP","kf_Gs","kf_xhat","confidence_level"] optional_default_settings = [1,1,1,0.95] add_options(options, optional_options, optional_default_settings) if self.stochastic_sampling : add_options(options, ["n0min"], [50]) if self.stopping_criterion == "BM": needed_things = ["epsprime","hprime","eps","h","p"] is_needed(options, needed_things) optional_things = ["q"] optional_default_settings = [None] add_options(options, optional_things, optional_default_settings) elif self.stopping_criterion == "BPL": is_needed(options, ["eps"]) if not self.stochastic_sampling : optional_things = ["c0","c1","growth_function"] optional_default_settings = [50,2,(lambda x : x-1)] add_options(options, optional_things, optional_default_settings) else: raise RuntimeError("Only BM and BPL criteria are supported at this time.") for oname in options: setattr(self, oname, options[oname]) #Set every option as an attribute #Check the solving_type, and find if the problem is multistage two_stage_types = ['EF-2stage'] multistage_types = ['EF-mstage'] if self.solving_type in two_stage_types: self.multistage = False elif self.solving_type in multistage_types: self.multistage = True else: raise RuntimeError(f"The solving_type {self.solving_type} is not supported." f"If you want to run a 2-stage problem, please use a solving_type in {two_stage_types}" f"If you want to run a multistage stage problem, please use a solving_type in {multistage_types}") #Check the multistage options if self.multistage: needed_things = ["branching_factors"] is_needed(options, needed_things) if options['kf_Gs'] != 1 or options['kf_xhat'] != 1: raise RuntimeError("Resampling frequencies must be set equal to one for multistage.") #Get the stopping criterion if self.stopping_criterion == "BM": self.stop_criterion = self.bm_stopping_criterion elif self.stopping_criterion == "BPL": self.stop_criterion = self.bpl_stopping_criterion else: raise RuntimeError("Only BM and BPL criteria are supported.") #Get the function computing sample size if self.stochastic_sampling: self.sample_size = self.stochastic_sampsize elif self.stopping_criterion == "BM": self.sample_size = self.bm_sampsize elif self.stopping_criterion == "BPL": self.sample_size = self.bpl_fsp_sampsize else: raise RuntimeError("Only BM and BPL sample sizes are supported yet") #To be sure to always use new scenarios, we set a ScenCount that is #telling us how many scenarios has been used so far self.ScenCount = 0 #If we are running a multistage problem, we also need a seed count self.SeedCount = 0 def bm_stopping_criterion(self,G,s,nk): # arguments defined in [bm2011] return(G>self.hprime*s+self.epsprime) def bpl_stopping_criterion(self,G,s,nk): # arguments defined in [bpl2012] t = scipy.stats.t.ppf(self.confidence_level,nk-1) sample_error = t*s/np.sqrt(nk) inflation_factor = 1/np.sqrt(nk) return(G+sample_error+inflation_factor>self.eps) def bm_sampsize(self,k,G,s,nk_m1, r=2): # arguments defined in [bm2011] h = self.h hprime = self.hprime p = self.p q = self.q confidence_level = self.confidence_level if q is None : # Computing n_k as in (5) of [Bayraksan and Morton, 2009] if hasattr(self, "c") : c = self.c else: if confidence_level is None : raise RuntimeError("We need the confidence level to compute the constant cp") j = np.arange(1,1000) s = sum(np.power(j,-p*np.log(j))) c = max(1,2*np.log(s/(np.sqrt(2*np.pi)*(1-confidence_level)))) lower_bound = (c+2*p* np.log(k)**2)/((h-hprime)**2) else : # Computing n_k as in (14) of [Bayraksan and Morton, 2009] if hasattr(self, "c") : c = self.c else: if confidence_level is None : RuntimeError("We need the confidence level to compute the constant c_pq") j = np.arange(1,1000) s = sum(np.exp(-p*np.power(j,2*q/r))) c = max(1,2*np.log(s/(np.sqrt(2*np.pi)*(1-confidence_level)))) lower_bound = (c+2*p*np.power(k,2*q/r))/((h-hprime)**2) #print(f"nk={lower_bound}") return int(np.ceil(lower_bound)) def bpl_fsp_sampsize(self,k,G,s,nk_m1): # arguments defined in [bpl2012] return(int(np.ceil(self.c0+self.c1*self.growth_function(k)))) def stochastic_sampsize(self,k,G,s,nk_m1): # arguments defined in [bpl2012] if (k==1): #Initialization return(int(np.ceil(max(self.n0min,np.log(1/self.eps))))) #§5 of [Bayraksan and Pierre-Louis] : solving a 2nd degree equation in sqrt(n) t = scipy.stats.t.ppf(self.confidence_level,nk_m1-1) a = - self.eps b = 1+t*s c = nk_m1*G maxroot = -(np.sqrt(b**2-4*a*c)+b)/(2*a) print(f"s={s}, t={t}, G={G}") print(f"a={a}, b={b},c={c},delta={b**2-4*a*c}") print(f"At iteration {k}, we took n_k={int(np.ceil((maxroot**2)))}") return(int(np.ceil(maxroot**2))) def run(self,maxit=200): """ Execute a sequental sampling algorithm Args: maxit (int): override the stopping criteria based on iterations Returns: {"T":T,"Candidate_solution":final_xhat,"CI":CI,} """ if self.multistage: raise RuntimeWarning("Multistage sequential sampling can be done " "using the SeqSampling, but dependent samples\n" "will be used. The class IndepScens_SeqSampling uses independent samples and therefor has better theoretical support.") refmodel = self.refmodel mult = self.sample_size_ratio # used to set m_k= mult*n_k #----------------------------Step 0 -------------------------------------# #Initialization k =1 #Computing the lower bound for n_1 if self.stopping_criterion == "BM": #Finding a constant used to compute nk r = 2 #TODO : we could add flexibility here j = np.arange(1,1000) if self.q is None: s = sum(np.power(j,-self.p*np.log(j))) else: if self.q<1: raise RuntimeError("Parameter q should be greater than 1.") s = sum(np.exp(-self.p*np.power(j,2*self.q/r))) self.c = max(1,2*np.log(s/(np.sqrt(2*np.pi)*(1-self.confidence_level)))) lower_bound_k = self.sample_size(k, None, None, None) #Computing xhat_1. #We use sample_size_ratio*n_k observations to compute xhat_k if self.multistage: xhat_branching_factors = ciutils.scalable_branching_factors(mult*lower_bound_k, self.options['branching_factors']) mk = np.prod(xhat_branching_factors) self.xhat_gen_options['start_seed'] = self.SeedCount #TODO: Maybe find a better way to manage seed xhat_scenario_names = refmodel.scenario_names_creator(mk) else: mk = int(np.floor(mult*lower_bound_k)) xhat_scenario_names = refmodel.scenario_names_creator(mk, start=self.ScenCount) self.ScenCount+=mk xgo = self.xhat_gen_options.copy() xgo.pop("solvername", None) # it will be given explicitly xgo.pop("solver_options", None) # it will be given explicitly xgo.pop("scenario_names", None) # given explicitly xhat_k = self.xhat_generator(xhat_scenario_names, solvername=self.solvername, solver_options=self.solver_options, **xgo) #----------------------------Step 1 -------------------------------------# #Computing n_1 and associated scenario names if self.multistage: self.SeedCount += sputils.number_of_nodes(xhat_branching_factors) gap_branching_factors = ciutils.scalable_branching_factors(lower_bound_k, self.options['branching_factors']) nk = np.prod(gap_branching_factors) estimator_scenario_names = refmodel.scenario_names_creator(nk) sample_options = {'branching_factors':gap_branching_factors, 'seed':self.SeedCount} else: nk = self.ArRP *int(np.ceil(lower_bound_k/self.ArRP)) estimator_scenario_names = refmodel.scenario_names_creator(nk, start=self.ScenCount) sample_options = None self.ScenCount+= nk #Computing G_nkand s_k associated with xhat_1 self.options['num_scens'] = nk scenario_creator_kwargs = self.refmodel.kw_creator(self.options) scenario_denouement = refmodel.scenario_denouement if hasattr(refmodel, "scenario_denouement") else None estim = ciutils.gap_estimators(xhat_k, self.refmodelname, solving_type=self.solving_type, scenario_names=estimator_scenario_names, sample_options=sample_options, ArRP=self.ArRP, scenario_creator_kwargs=scenario_creator_kwargs, scenario_denouement=scenario_denouement, solvername=self.solvername, solver_options=self.solver_options) Gk,sk = estim['G'],estim['s'] if self.multistage: self.SeedCount = estim['seed'] #----------------------------Step 2 -------------------------------------# while( self.stop_criterion(Gk,sk,nk) and k<maxit): #----------------------------Step 3 -------------------------------------# k+=1 nk_m1 = nk #n_{k-1} mk_m1 = mk lower_bound_k = self.sample_size(k, Gk, sk, nk_m1) #Computing m_k and associated scenario names if self.multistage: xhat_branching_factors = ciutils.scalable_branching_factors(mult*lower_bound_k, self.options['branching_factors']) mk = np.prod(xhat_branching_factors) self.xhat_gen_options['start_seed'] = self.SeedCount #TODO: Maybe find a better way to manage seed xhat_scenario_names = refmodel.scenario_names_creator(mk) else: mk = int(np.floor(mult*lower_bound_k)) assert mk>= mk_m1, "Our sample size should be increasing" if (k%self.kf_xhat==0): #We use only new scenarios to compute xhat xhat_scenario_names = refmodel.scenario_names_creator(int(mult*nk), start=self.ScenCount) self.ScenCount+= mk else: #We reuse the previous scenarios xhat_scenario_names+= refmodel.scenario_names_creator(mult*(nk-nk_m1), start=self.ScenCount) self.ScenCount+= mk-mk_m1 #Computing xhat_k xgo = self.xhat_gen_options.copy() xgo.pop("solvername", None) # it will be given explicitly xgo.pop("solver_options", None) # it will be given explicitly xgo.pop("scenario_names", None) # given explicitly xhat_k = self.xhat_generator(xhat_scenario_names, solvername=self.solvername, solver_options=self.solver_options, **xgo) #Computing n_k and associated scenario names if self.multistage: self.SeedCount += sputils.number_of_nodes(xhat_branching_factors) gap_branching_factors = ciutils.scalable_branching_factors(lower_bound_k, self.options['branching_factors']) nk = np.prod(gap_branching_factors) estimator_scenario_names = refmodel.scenario_names_creator(nk) sample_options = {'branching_factors':gap_branching_factors, 'seed':self.SeedCount} else: nk = self.ArRP *int(np.ceil(lower_bound_k/self.ArRP)) assert nk>= nk_m1, "Our sample size should be increasing" if (k%self.kf_Gs==0): #We use only new scenarios to compute gap estimators estimator_scenario_names = refmodel.scenario_names_creator(nk, start=self.ScenCount) self.ScenCount+=nk else: #We reuse the previous scenarios estimator_scenario_names+= refmodel.scenario_names_creator((nk-nk_m1), start=self.ScenCount) self.ScenCount+= (nk-nk_m1) sample_options = None #Computing G_k and s_k self.options['num_scens'] = nk scenario_creator_kwargs = self.refmodel.kw_creator(self.options) estim = ciutils.gap_estimators(xhat_k, self.refmodelname, solving_type=self.solving_type, scenario_names=estimator_scenario_names, sample_options=sample_options, ArRP=self.ArRP, scenario_creator_kwargs=scenario_creator_kwargs, scenario_denouement=scenario_denouement, solvername=self.solvername, solver_options=self.solver_options) if self.multistage: self.SeedCount = estim['seed'] Gk,sk = estim['G'],estim['s'] if (k%10==0) and global_rank==0: print(f"k={k}") print(f"n_k={nk}") print(f"G_k={Gk}") print(f"s_k={sk}") #----------------------------Step 4 -------------------------------------# if (k==maxit) : raise RuntimeError(f"The loop terminated after {maxit} iteration with no acceptable solution") T = k final_xhat=xhat_k if self.stopping_criterion == "BM": upper_bound=self.h*sk+self.eps elif self.stopping_criterion == "BPL": upper_bound = self.eps else: raise RuntimeError("Only BM and BPL criterion are supported yet.") CI=[0,upper_bound] global_toc(f"G={Gk} sk={sk}; xhat has been computed with {nk*mult} observations.") return {"T":T,"Candidate_solution":final_xhat,"CI":CI,} if __name__ == "__main__": # for developer testing solvername = "cplex" refmodel = "mpisppy.tests.examples.farmer" farmer_opt_dict = {"crops_multiplier":3} # create three options dictionaries, then use one of them # relative width optionsBM = {'h':0.2, 'hprime':0.015, 'eps':0.5, 'epsprime':0.4, "p":0.2, "q":1.2, "solvername":solvername, "stopping": "BM" # TBD use this and drop stopping_criterion from the constructor } # fixed width, fully sequential optionsFSP = {'eps': 50.0, 'solvername': solvername, "c0":50, # starting sample size "xhat_gen_options":farmer_opt_dict, "crops_multiplier":3, # option for the farmer problem "ArRP":2, # this must be 1 for any multi-stage problems "stopping": "BPL" } # fixed width sequential with stochastic samples optionsSSP = {'eps': 1.0, 'solvername': solvername, "n0min":200, # only for stochastic sampling "stopping": "BPL", #"xhat_gen_options": farmer_opt_dict, #"crops_multiplier": 3, } # change the options argument and stopping criterion our_pb = SeqSampling(refmodel, xhat_generator_farmer, optionsFSP, stochastic_sampling=False, # maybe this should move to the options dict? stopping_criterion="BPL", ) res = our_pb.run() print(res)
python
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.backend.python.tasks.isort_run import IsortRun from pants_test.pants_run_integration_test import PantsRunIntegrationTest, ensure_daemon class IsortRunIntegrationTest(PantsRunIntegrationTest): @ensure_daemon def test_isort_no_python_sources_should_noop(self): command = ['-ldebug', 'fmt.isort', 'testprojects/tests/java/org/pantsbuild/testproject/dummies/::', '--', '--check-only'] pants_run = self.run_pants(command=command) self.assert_success(pants_run) self.assertIn(IsortRun.NOOP_MSG_HAS_TARGET_BUT_NO_SOURCE, pants_run.stderr_data)
python
import cv2 import random import numpy as np from utils.bbox_utils import iou, object_coverage from utils.textboxes_utils import get_bboxes_from_quads def random_crop_quad( image, quads, classes, min_size=0.1, max_size=1, min_ar=1, max_ar=2, overlap_modes=[ None, [0.1, None], [0.3, None], [0.7, None], [0.9, None], [None, None], ], max_attempts=100, p=0.5 ): """ Randomly crops a patch from the image. Args: - image: numpy array representing the input image. - quads: numpy array representing the quads. - classes: the list of classes associating with each quads. - min_size: the maximum size a crop can be - max_size: the maximum size a crop can be - min_ar: the minimum aspect ratio a crop can be - max_ar: the maximum aspect ratio a crop can be - overlap_modes: the list of overlapping modes the function can randomly choose from. - max_attempts: the max number of attempts to generate a patch. Returns: - image: the modified image - quads: the modified quads - classes: the modified classes """ assert p >= 0, "p must be larger than or equal to zero" assert p <= 1, "p must be less than or equal to 1" assert min_size > 0, "min_size must be larger than zero." assert max_size <= 1, "max_size must be less than or equals to one." assert max_size > min_size, "max_size must be larger than min_size." assert max_ar > min_ar, "max_ar must be larger than min_ar." assert max_attempts > 0, "max_attempts must be larger than zero." # if (random.random() > p): # return image, bboxes, classes height, width, channels = image.shape overlap_mode = [0.7, None] # overlap_mode = random.choice(overlap_modes) # if overlap_mode == None: # return image, bboxes, classes bboxes = get_bboxes_from_quads(quads) min_iou, max_iou = overlap_mode if min_iou == None: min_iou = float(-np.inf) if max_iou == None: max_iou = float(np.inf) temp_image = image.copy() for i in range(max_attempts): crop_w = random.uniform(min_size * width, max_size * width) crop_h = random.uniform(min_size * height, max_size * height) crop_ar = crop_h / crop_w if crop_ar < min_ar or crop_ar > max_ar: # crop ar does not match criteria, next attempt continue crop_left = random.uniform(0, width-crop_w) crop_top = random.uniform(0, height-crop_h) crop_rect = np.array([crop_left, crop_top, crop_left + crop_w, crop_top + crop_h], dtype=np.float) crop_rect = np.expand_dims(crop_rect, axis=0) crop_rect = np.tile(crop_rect, (bboxes.shape[0], 1)) ious = iou(crop_rect, bboxes) obj_coverage = object_coverage(crop_rect, bboxes) if (ious.min() < min_iou and ious.max() > max_iou) or (obj_coverage.min() < min_iou and obj_coverage.max() > max_iou): continue bbox_centers = np.zeros((bboxes.shape[0], 2), dtype=np.float) bbox_centers[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2 bbox_centers[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2 cx_in_crop = (bbox_centers[:, 0] > crop_left) * (bbox_centers[:, 0] < crop_left + crop_w) cy_in_crop = (bbox_centers[:, 1] > crop_top) * (bbox_centers[:, 1] < crop_top + crop_h) boxes_in_crop = cx_in_crop * cy_in_crop if not boxes_in_crop.any(): continue print(ious, obj_coverage, boxes_in_crop) print("======") temp_image = temp_image[int(crop_top): int(crop_top+crop_h), int(crop_left): int(crop_left+crop_w), :] temp_classes = np.array(classes, dtype=np.object) temp_classes = temp_classes[boxes_in_crop] temp_bboxes = bboxes[boxes_in_crop] temp_quads = quads[boxes_in_crop] crop_rect = np.array([crop_left, crop_top, crop_left + crop_w, crop_top + crop_h], dtype=np.float) crop_rect = np.expand_dims(crop_rect, axis=0) crop_rect = np.tile(crop_rect, (temp_bboxes.shape[0], 1)) print(temp_quads.shape) temp_bboxes[:, :2] = np.maximum(temp_bboxes[:, :2], crop_rect[:, :2]) # if bboxes top left is out of crop then use crop's xmin, ymin temp_bboxes[:, :2] -= crop_rect[:, :2] # translate xmin, ymin to fit crop temp_bboxes[:, 2:] = np.minimum(temp_bboxes[:, 2:], crop_rect[:, 2:]) temp_bboxes[:, 2:] -= crop_rect[:, :2] # translate xmax, ymax to fit crop return temp_image, temp_quads, temp_classes.tolist() return image, bboxes, classes
python
import torch import torch.nn as nn import torchvision from . import resnet as resnet from . import resnext as resnext from torch.nn.init import kaiming_normal_,constant_,normal_ from core.config import cfg import torch.nn.functional as F import modeling.CRL as CRL import modeling.cspn as cspn import time timer=time.time if not cfg.SEM.BN_LEARN: from lib.nn import SynchronizedBatchNorm2d else: import torch.nn.BatchNorm2d as SynchronizedBatchNorm2d def correlate(input1, input2): out_corr = spatial_correlation_sample(input1, input2, kernel_size=1, patch_size=21, stride=1, padding=0, dilation_patch=2) # collate dimensions 1 and 2 in order to be treated as a # regular 4D tensor b, ph, pw, h, w = out_corr.size() out_corr = out_corr.view(b, ph * pw, h, w)/input1.size(1) return F.leaky_relu_(out_corr, 0.1) class CorrelationLayer1D(nn.Module): def __init__(self, max_disp=40, stride_2=1): super(CorrelationLayer1D, self).__init__() self.max_displacement = max_disp self.stride_2 = stride_2 def forward(self, x_1, x_2): x_1 = x_1 x_2 = F.pad(x_2, (int(self.max_displacement*0.2),int(self.max_displacement*0.8), 0, 0)) return torch.cat([torch.sum(x_1 * x_2[:, :, :, _y:_y + x_1.size(3)], 1).unsqueeze(1) for _y in range(0, self.max_displacement +1, self.stride_2)], 1) class CorrelationLayer1DMinus(nn.Module): def __init__(self, max_disp=40, stride_2=1): super(CorrelationLayer1DMinus, self).__init__() self.max_displacement = max_disp self.stride_2 = stride_2 def forward(self, x_1, x_2): x_1 = x_1 ee=0.000001 x_2 = F.pad(x_2, (int(self.max_displacement*0.2),int(self.max_displacement*0.8), 0, 0)) minus=torch.cat([torch.sum(x_1 - x_2[:, :, :, _y:_y + x_1.size(3)], 1).unsqueeze(1) for _y in range(0, self.max_displacement +1, self.stride_2)], 1) inverse=1/(minus+ee) return torch.sigmoid_(inverse) def costVolume(leftFeature,rightFeature,max_displacement): cost = torch.zeros(leftFeature.size()[0], leftFeature.size()[1]*2, max_displacement, leftFeature.size()[2], leftFeature.size()[3]) for i in range(max_displacement): if i > 0 : cost[:, :leftFeature.size()[1], i, :,i:] = leftFeature[:,:,:,i:] cost[:, leftFeature.size()[1]:, i, :,i:] = rightFeature[:,:,:,:-i] else: cost[:, :leftFeature.size()[1], i, :,:] = leftFeature cost[:, leftFeature.size()[1]:, i, :,:] = rightFeature cost = cost.contiguous() return cost class CorrelationLayerCosineSimilarity(nn.Module): def __init__(self, max_disp=40, stride_2=1,dim=1,eps=1e-6): super(CorrelationLayerCosineSimilarity, self).__init__() self.max_displacement = max_disp self.stride_2 = stride_2 self.cos=torch.nn.CosineSimilarity(dim=1,eps=1e-6) def forward(self, x_1, x_2): x_1 = x_1 x_2 = F.pad(x_2, (int(self.max_displacement*0),int(self.max_displacement*1), 0, 0)) similarity=torch.cat([self.cos(x_1 ,x_2[:, :, :, _y:_y + x_1.size(3)]).unsqueeze(1) for _y in range(0, self.max_displacement +1, self.stride_2)], 1) return similarity def costVolume2(leftFeature,rightFeature,max_displacement): cost = torch.zeros(leftFeature.size()[0], leftFeature.size()[1]*2, max_displacement, leftFeature.size()[2], leftFeature.size()[3]).cuda() for b in range(cost.size()[0]): i=0 while i < cost.size()[1]: for j in range(max_displacement): if j>0: cost[b,i,j,:,j:]=leftFeature[b,i//2,:,j:] cost[b,i+1,j,:,j:]=rightFeature[b,i//2,:,:-j] else: cost[b,i,j,:,:]=leftFeature[b,i//2,...] cost[b,i+1,j,:,:]=rightFeature[b,i//2,...] i+=2 return cost class SegmentationModuleBase(nn.Module): def __init__(self): super(SegmentationModuleBase, self).__init__() def pixel_acc(self, pred, label): _, preds = torch.max(pred, dim=1) valid = (label >= 0).long() acc_sum = torch.sum(valid * (preds == label).long()) pixel_sum = torch.sum(valid) acc = acc_sum.float() / (pixel_sum.float() + 1e-10) return acc class SegmentationModule(SegmentationModuleBase): def __init__(self, net_enc, net_dec, crit, deep_sup_scale=None): super(SegmentationModule, self).__init__() self.encoder = net_enc self.decoder = net_dec self.crit = crit self.deep_sup_scale = deep_sup_scale def forward(self, feed_dict, *, segSize=None): if segSize is None: # training if self.deep_sup_scale is not None: # use deep supervision technique (pred, pred_deepsup) = self.decoder(self.encoder(feed_dict['data'], return_feature_maps=True)) else: pred = self.decoder(self.encoder(feed_dict['data'], return_feature_maps=True)) loss = self.crit(pred, feed_dict[cfg.SEM.OUTPUT_PRIFEX+'_0']) if self.deep_sup_scale is not None: for i in range(2, len(cfg.SEM.DOWNSAMPLE)): loss_deepsup = self.crit(pred_deepsup, feed_dict['{}_{}'.format(cfg.SEM.OUTPUT_PRIFEX, i)]) loss = loss + loss_deepsup * self.deep_sup_scale[i] acc = self.pixel_acc(pred, feed_dict[cfg.SEM.OUTPUT_PRIFEX+'_0']) return loss, acc else: # inference pred = self.decoder(self.encoder(feed_dict['data'], return_feature_maps=True), segSize=segSize) return pred def conv3x3(in_planes, out_planes, stride=1, has_bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=has_bias) def conv3x3_bn_relu(in_planes, out_planes, stride=1): return nn.Sequential( conv3x3(in_planes, out_planes, stride), SynchronizedBatchNorm2d(out_planes), nn.ReLU(inplace=True), ) class ModelBuilder(): # custom weights initialization def weights_init(self, m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.kaiming_normal_(m.weight.data) elif classname.find('BatchNorm') != -1: m.weight.data.fill_(1.) m.bias.data.fill_(1e-4) #elif classname.find('Linear') != -1: # m.weight.data.normal_(0.0, 0.0001) def build_encoder(self, arch='resnet50_dilated8', fc_dim=512, weights=''): pretrained = True if len(weights) == 0 else False if arch == 'resnet18': orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet18_dilated8': orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet18_dilated16': orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnet34': raise NotImplementedError orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet34_dilated8': raise NotImplementedError orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet34_dilated16': raise NotImplementedError orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnet50': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet50_dilated8': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet50_dilated8_3DConv': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = ResnetDilated3DConv(orig_resnet, dilate_scale=8) elif arch == 'resnet50_dilated16': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnet101': orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet101_dilated8': orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet101_dilated16': orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnext101': orig_resnext = resnext.__dict__['resnext101'](pretrained=pretrained) net_encoder = Resnet(orig_resnext) # we can still use class Resnet elif arch == 'resnext101_dilated8': orig_resnet = resnext.__dict__['resnext101'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnext101_dilated8_64': orig_resnet = resnext.__dict__['resnext101_64'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) else: raise Exception('Architecture undefined!') # net_encoder.apply(self.weights_init) if len(weights) > 0: print('Loading weights for net_encoder') net_encoder.load_state_dict( torch.load(weights, map_location=lambda storage, loc: storage), strict=False) return net_encoder def build_decoder(self, arch='ppm_bilinear_deepsup', fc_dim=512, num_class=150, weights='', use_softmax=False): if arch == 'c1_bilinear_deepsup': net_decoder = C1BilinearDeepSup( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax) elif arch == 'c1_bilinear': net_decoder = C1Bilinear( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax) elif arch == 'ppm_bilinear': net_decoder = PPMBilinear( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax) elif arch == 'ppm_bilinear_deepsup': net_decoder = PPMBilinearDeepsup( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax) elif arch == 'ppm_bilinear3D': net_decoder = PPMBilinear3D( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax) elif arch == 'upernet_lite': net_decoder = UPerNet( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax, fpn_dim=256) elif arch == 'upernet': net_decoder = UPerNet( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax, fpn_dim=512) elif arch == 'upernet_tmp': net_decoder = UPerNetTmp( num_class=num_class, fc_dim=fc_dim, use_softmax=use_softmax, fpn_dim=512) else: raise Exception('Architecture undefined!') net_decoder.apply(self.weights_init) if len(weights) > 0: print('Loading weights for net_decoder') net_decoder.load_state_dict( torch.load(weights, map_location=lambda storage, loc: storage), strict=False) return net_decoder class Resnet(nn.Module): def __init__(self, orig_resnet): super(Resnet, self).__init__() # take pretrained resnet, except AvgPool and FC self.conv1 = orig_resnet.conv1 self.bn1 = orig_resnet.bn1 self.relu1 = orig_resnet.relu1 self.conv2 = orig_resnet.conv2 self.bn2 = orig_resnet.bn2 self.relu2 = orig_resnet.relu2 self.conv3 = orig_resnet.conv3 self.bn3 = orig_resnet.bn3 self.relu3 = orig_resnet.relu3 self.maxpool = orig_resnet.maxpool self.layer1 = orig_resnet.layer1 self.layer2 = orig_resnet.layer2 self.layer3 = orig_resnet.layer3 self.layer4 = orig_resnet.layer4 self.correlation=CorrelationLayer1D(max_disp=40,stride_2=1) self.conv_rdi = nn.Sequential(nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True)) self.conv_r = nn.Conv2d(357, 512, kernel_size=3, stride=1,padding=1, bias=False) self.bn4=SynchronizedBatchNorm2d(512) def forward(self, x, return_feature_maps=False): conv_out = [] x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x); conv_out.append(x); #256 x = self.layer2(x); conv_out.append(x); #512 left, right=torch.split(x, cfg.TRAIN.IMS_PER_BATCH, dim=0) corr=self.correlation(left,right) conv_rdi=self.conv_rdi(left) x =torch.cat((conv_rdi,corr),dim=1) x=self.relu2(self.bn4(self.conv_r(x))) x = torch.cat((left, x), dim=0) x = self.layer3(x); conv_out.append(x); #1024 x = self.layer4(x); conv_out.append(x); #2048 if return_feature_maps: return conv_out return [x] def forward(self, x, return_feature_maps=False): conv_out = [] x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x); conv_out.append(x); #print("layer1:",x.shape) x = self.layer2(x); conv_out.append(x); #print("layer2:",x.shape) left, right=torch.split(x, cfg.TRAIN.IMS_PER_BATCH, dim=0) #print("left:",left.shape) #print("right:",right.shape) corr=self.correlation(left,right) #print("corr:",corr.shape) conv_rdi=self.conv_rdi(left) #print("conv_rdi:",conv_rdi.shape) x =torch.cat((conv_rdi,corr),dim=1) x=self.relu2(self.bn4(self.conv_r(x))) x = torch.cat((left, x), dim=0) x = self.layer3(x); conv_out.append(x); x = self.layer4(x); conv_out.append(x); if return_feature_maps: return conv_out return [x] class ResnetDilated3DConv(nn.Module): def __init__(self, orig_resnet, dilate_scale=8,max_displacement=40): super(ResnetDilated3DConv, self).__init__() from functools import partial self.max_displacement=max_displacement if dilate_scale == 8: orig_resnet.layer3.apply( partial(self._nostride_dilate, dilate=2)) orig_resnet.layer4.apply( partial(self._nostride_dilate, dilate=4)) elif dilate_scale == 16: orig_resnet.layer4.apply( partial(self._nostride_dilate, dilate=2)) # take pretrained resnet, except AvgPool and FC self.conv1 = orig_resnet.conv1 self.bn1 = orig_resnet.bn1 self.relu1 = orig_resnet.relu1 self.conv2 = orig_resnet.conv2 self.bn2 = orig_resnet.bn2 self.relu2 = orig_resnet.relu2 self.conv3 = orig_resnet.conv3 self.bn3 = orig_resnet.bn3 self.relu3 = orig_resnet.relu3 self.maxpool = orig_resnet.maxpool self.layer1 = orig_resnet.layer1 self.layer2 = orig_resnet.layer2 self.layer3 = orig_resnet.layer3 self.layer4 = orig_resnet.layer4 if cfg.SEM.LAYER_FIXED: for param in self.conv1.parameters(): param.requires_grad = False for param in self.conv2.parameters(): param.requires_grad = False for param in self.conv3.parameters(): param.requires_grad = False for param in self.layer1.parameters(): param.requires_grad = False for param in self.layer2.parameters(): param.requires_grad = False def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: # the convolution with stride if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) # other convoluions else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x, return_feature_maps=False): conv_out = [] x = self.relu1(self.bn1(self.conv1(x))) conv_out.append(x) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x); conv_out.append(x); x = self.layer2(x); conv_out.append(x); x = self.layer3(x); conv_out.append(x); x = self.layer4(x); conv_out.append(x); if return_feature_maps: return conv_out return [x] class ResnetDilated(nn.Module): def __init__(self, orig_resnet, dilate_scale=8): super(ResnetDilated, self).__init__() from functools import partial if dilate_scale == 8: orig_resnet.layer3.apply( partial(self._nostride_dilate, dilate=2)) orig_resnet.layer4.apply( partial(self._nostride_dilate, dilate=4)) elif dilate_scale == 16: orig_resnet.layer4.apply( partial(self._nostride_dilate, dilate=2)) # take pretrained resnet, except AvgPool and FC self.conv1 = orig_resnet.conv1 self.bn1 = orig_resnet.bn1 self.relu1 = orig_resnet.relu1 self.conv2 = orig_resnet.conv2 self.bn2 = orig_resnet.bn2 self.relu2 = orig_resnet.relu2 self.conv3 = orig_resnet.conv3 self.bn3 = orig_resnet.bn3 self.relu3 = orig_resnet.relu3 self.maxpool = orig_resnet.maxpool self.layer1 = orig_resnet.layer1 self.layer2 = orig_resnet.layer2 self.layer3 = orig_resnet.layer3 self.layer4 = orig_resnet.layer4 if cfg.DISP.COST_VOLUME_TYPE == 'CorrelationLayer1D': self.correlation=CorrelationLayer1D(max_disp=40,stride_2=1) if cfg.DISP.COST_VOLUME_TYPE == 'CorrelationLayer1DMinus': self.correlation=CorrelationLayer1DMinus(max_disp=40,stride_2=1) if cfg.DISP.COST_VOLUME_TYPE =='CorrelationLayerCosineSimilarity': self.correlation=CorrelationLayerCosineSimilarity(max_disp=40) self.bn4=SynchronizedBatchNorm2d(512) self.conv_rdi = nn.Sequential(nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True)) self.conv_r = nn.Conv2d(297, 512, kernel_size=3, stride=1,padding=1, bias=False) for param in self.conv1.parameters(): param.requires_grad = False for param in self.conv2.parameters(): param.requires_grad = False if cfg.SEM.LAYER_FIXED: for param in self.conv1.parameters(): param.requires_grad = False for param in self.conv2.parameters(): param.requires_grad = False for param in self.conv3.parameters(): param.requires_grad = False for param in self.layer1.parameters(): param.requires_grad = False for param in self.layer2.parameters(): param.requires_grad = False def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: # the convolution with stride if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) # other convoluions else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x, return_feature_maps=False): conv_out = [] x = self.relu1(self.bn1(self.conv1(x))) conv_out.append(x) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x); conv_out.append(x); x = self.layer2(x); conv_out.append(x); left, right=torch.split(x, cfg.TRAIN.IMS_PER_BATCH, dim=0) corr=self.correlation(left,right) conv_rdi=self.conv_rdi(left) x =torch.cat((conv_rdi,corr),dim=1) x=self.relu2(self.bn4(self.conv_r(x))) x = torch.cat((left, x), dim=0) x = self.layer3(x); conv_out.append(x); x = self.layer4(x); conv_out.append(x); if return_feature_maps: return conv_out return [x] # last conv, bilinear upsample class C1BilinearDeepSup(nn.Module): def __init__(self, num_class=150, fc_dim=2048, use_softmax=False): super(C1BilinearDeepSup, self).__init__() self.use_softmax = use_softmax self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1) self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) # last conv self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] x = self.cbr(conv5) x = self.conv_last(x) if self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) x = nn.functional.softmax(x, dim=1) return x # deep sup conv4 = conv_out[-2] _ = self.cbr_deepsup(conv4) _ = self.conv_last_deepsup(_) x = nn.functional.log_softmax(x, dim=1) _ = nn.functional.log_softmax(_, dim=1) return (x, _) # last conv, bilinear upsample class C1Bilinear(nn.Module): def __init__(self, num_class=150, fc_dim=2048, use_softmax=False): super(C1Bilinear, self).__init__() self.use_softmax = use_softmax self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1) # last conv self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] x = self.cbr(conv5) x = self.conv_last(x) if self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) x = nn.functional.softmax(x, dim=1) else: x = nn.functional.log_softmax(x, dim=1) return x # pyramid pooling, bilinear upsample class PPMBilinear(nn.Module): def __init__(self, num_class=150, fc_dim=4096, use_softmax=False, pool_scales=(1, 2, 3, 6)): super(PPMBilinear, self).__init__() self.use_softmax = use_softmax self.ppm = [] for scale in pool_scales: self.ppm.append(nn.Sequential( nn.AdaptiveAvgPool2d(scale), nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm = nn.ModuleList(self.ppm) self.conv_last = nn.Sequential( nn.Conv2d(fc_dim+len(pool_scales)*512, 512, kernel_size=3, padding=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True), nn.Dropout2d(0.1) ) def forward(self, conv_out, segSize=None): if cfg.SEM.USE_RESNET: conv5=conv_out else: conv5 = conv_out[-1] #conv5=conv_out input_size = conv5.size() ppm_out = [conv5] for pool_scale in self.ppm: ppm_out.append(nn.functional.interpolate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False)) ppm_out = torch.cat(ppm_out, 1) x = self.conv_last(ppm_out) return x # pyramid pooling, bilinear upsample class PPMBilinearDeepsup(nn.Module): def __init__(self, num_class=150, fc_dim=1024, use_softmax=False, pool_scales=(1, 2, 3, 6)): super(PPMBilinearDeepsup, self).__init__() self.use_softmax = use_softmax self.ppm = [] for scale in pool_scales: self.ppm.append(nn.Sequential( nn.AdaptiveAvgPool2d(scale), nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), #SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm = nn.ModuleList(self.ppm) #self.reduce=nn.Conv2d(fc_dim*2,fc_dim,kernel_size=1,stride=1,padding=0,bias=False) #self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) self.aspp_last = nn.Sequential( nn.Conv2d(fc_dim+len(pool_scales)*512, 512, kernel_size=3, padding=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True), nn.Dropout2d(0.1) ) #self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) #self.dropout_deepsup = nn.Dropout2d(0.1) def forward(self, conv_out, segSize=None): if cfg.SEM.USE_RESNET: conv5=conv_out else: conv5 = conv_out[-1] #conv_out, 2, c, h, w, dim 0 is semseg and disp input_size = conv5.size() semseg_conv, disp_conv = torch.split(conv5, input_size[0]//2 ,dim=0) #conv5 is 1, 2*c, h, w conv5 = torch.cat([semseg_conv, disp_conv], dim=1) #conv5=self.reduce(conv5) ppm_out = [conv5] for pool_scale in self.ppm: ppm_out.append(nn.functional.interpolate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False)) ppm_out = torch.cat(ppm_out, 1) x = self.aspp_last(ppm_out) # deep sup conv4 = conv_out[-2] #_ = self.cbr_deepsup(conv4) #_ = self.dropout_deepsup(_) #_ = self.conv_last_deepsup(_) #X = nn.functional.log_softmax(x, dim=1) #_ = nn.functional.log_softmax(_, dim=1) return [x, conv4] class PPMBilinear3D(nn.Module): def __init__(self, num_class=150, fc_dim=2048, use_softmax=False, pool_scales=(1, 2, 3, 6),channelsReduction=19): super(PPMBilinear3D, self).__init__() self.use_softmax = use_softmax self.channelsReduction=channelsReduction self.ppm = [] self.width=96 self.height=96 self.semseg=cfg.MODEL.NUM_CLASSES self.max_displacement=cfg.DISP.FEATURE_MAX_DISPLACEMENT for scale in pool_scales: self.ppm.append(nn.Sequential( nn.AdaptiveAvgPool2d(scale), nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm = nn.ModuleList(self.ppm) #self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) self.aspp_last = nn.Sequential( nn.Conv2d(fc_dim+len(pool_scales)*512, 512, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Dropout2d(0.1) ) cost_channels = channelsReduction*2 self.stack0 = self._createStack(cost_channels,cost_channels,stride1=1) self.stack1_1 = self._createStack(cost_channels,cost_channels*2) self.stack1_2 = self._createStack(cost_channels*2,cost_channels*4) self.stack1_3 = self._createStack(cost_channels*4,cost_channels*8) self.stack2_1 = self._Deconv3D(cost_channels*8,cost_channels*4) self.stack2_2 = self._Deconv3D(cost_channels*4,cost_channels*2) self.stack2_3 = self._Deconv3D(cost_channels*2,cost_channels) self.gcn1=GCNASPP(cost_channels*4,self.semseg,self.max_displacement//4,self.height//4,self.width//4,scale=2,pool_scales=(4,8,13,24)) self.gcn2=GCNASPP(cost_channels*2,self.semseg,self.max_displacement//2,self.height//2,self.width//2,scale=1,pool_scales=(2,4,6,12)) self.gcn3=GCNASPP(cost_channels,self.semseg,self.max_displacement,self.height,self.width,scale=0,pool_scales=(2,3,4,6)) self.reduce = nn.Sequential( nn.Conv2d(512,self.channelsReduction,kernel_size=1,stride=1,bias=False), nn.BatchNorm2d(channelsReduction) ) for m in self.modules(): if isinstance(m,nn.Conv2d) or isinstance(m,nn.Conv3d) or isinstance(m,nn.ConvTranspose3d): kaiming_normal_(m.weight,0.1) if m.bias is not None: constant_(m.bias,0) elif isinstance(m,nn.BatchNorm2d) or isinstance(m,nn.BatchNorm3d): constant_(m.weight,1) constant_(m.bias,0) #self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) #self.dropout_deepsup = nn.Dropout2d(0.1) def _createStack(self,inplanes=512,planes=256,kernel_size=3,stride1=2,groups=19,stride2=1,bias=False,padding=1): return nn.Sequential( nn.Conv3d(inplanes,planes,kernel_size=3,stride=stride1,groups=groups,padding=1,bias=False), nn.BatchNorm3d(planes), nn.Conv3d(planes,planes,kernel_size=3,stride=stride2,groups=groups,padding=1,bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) ) def _Deconv3D(self,inplanes,planes,kernel_size=3,stride=2,padding=1,out_padding=1,groups=19,bias=False): return nn.ConvTranspose3d(inplanes,planes,kernel_size,stride,padding,out_padding,groups=groups,bias=bias) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] input_size = conv5.size() ppm_out = [conv5] for pool_scale in self.ppm: ppm_out.append(nn.functional.interpolate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False)) ppm_out = torch.cat(ppm_out, 1) x = self.aspp_last(ppm_out) x = self.reduce(x) left, right=torch.split(x, cfg.TRAIN.IMS_PER_BATCH, dim=0) cost = costVolume2(left,right,cfg.DISP.FEATURE_MAX_DISPLACEMENT) stack0=self.stack0(cost) stack1_1=self.stack1_1(stack0) stack1_2=self.stack1_2(stack1_1) stack1_3=self.stack1_3(stack1_2) stack2_1=self.stack2_1(stack1_3) stack2_2=self.stack2_2(stack2_1) stack2_3=self.stack2_3(stack2_2) if self.training: #gcn1=self.gcn1(stack2_1) #gcn2=self.gcn2(stack2_2) gcn3=self.gcn3(stack2_3) return gcn3 else: gcn3=self.gcn3(stack2_3) return gcn3 class GCNASPP(nn.Module): def __init__(self,inplanes,planes,d,h,w,scale,pool_scales=(2,4,8,16)): super(GCNASPP,self).__init__() self.inplanes=inplanes self.planes=planes self.semsegNums=19 self.disparity=self._Conv3d(self.inplanes,self.planes,kernel_size=(11,1,1),padding=(5,0,0)) self.width=self._Conv3d(self.inplanes,self.planes,kernel_size=(1,1,11),padding=(0,0,5)) self.height=self._Conv3d(self.inplanes,self.planes,kernel_size=(1,11,1),padding=(0,5,0)) self.ppm = [] for scale in pool_scales: self.ppm.append(nn.Sequential( nn.AdaptiveAvgPool3d(scale), nn.Conv3d(self.semsegNums,self.semsegNums,kernel_size=1,bias=False), nn.BatchNorm3d(self.semsegNums), nn.ReLU(inplace=True) )) self.ppm = nn.ModuleList(self.ppm) self.aspp_last = nn.Sequential( nn.Conv3d(5*self.semsegNums,self.semsegNums,kernel_size=3,padding=1,bias=False), nn.BatchNorm3d(self.semsegNums), nn.ReLU(inplace=True), nn.Dropout3d(0.1) ) for m in self.modules(): if isinstance(m,nn.Conv2d) or isinstance(m,nn.Conv3d) or isinstance(m,nn.ConvTranspose3d): kaiming_normal_(m.weight,0.1) if m.bias is not None: constant_(m.bias,0) elif isinstance(m,nn.BatchNorm2d) or isinstance(m,nn.BatchNorm3d): constant_(m.weight,1) constant_(m.bias,0) def _Conv3d(self,inplanes,planes,kernel_size,stride=1,groups=1,padding=1): return nn.Sequential( nn.Conv3d(inplanes,planes,kernel_size,stride,padding=padding,bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) ) def forward(self,x): disparity=self.disparity(x) width = self.width(x) height = self.height(x) out=disparity+width+height input_size = (out).size() ppm_out=[out] for pool_scale in self.ppm: ppm_out.append(nn.functional.interpolate( pool_scale(out),(input_size[2],input_size[3],input_size[4]), mode='trilinear',align_corners=False )) ppm_out=torch.cat(ppm_out,1) out = self.aspp_last(ppm_out) return out # upernet class UPerNet(nn.Module): def __init__(self, num_class=150, fc_dim=4096, use_softmax=False, pool_scales=(1, 2, 3, 6), fpn_inplanes=(256,512,1024,2048), fpn_dim=256): super(UPerNet, self).__init__() self.use_softmax = use_softmax # PPM Module self.ppm_pooling = [] self.ppm_conv = [] for scale in pool_scales: self.ppm_pooling.append(nn.AdaptiveAvgPool2d(scale)) self.ppm_conv.append(nn.Sequential( nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm_pooling = nn.ModuleList(self.ppm_pooling) self.ppm_conv = nn.ModuleList(self.ppm_conv) self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales)*512, fpn_dim, 1) # FPN Module self.fpn_in = [] for fpn_inplane in fpn_inplanes[:-1]: # skip the top layer self.fpn_in.append(nn.Sequential( nn.Conv2d(fpn_inplane, fpn_dim, kernel_size=1, bias=False), SynchronizedBatchNorm2d(fpn_dim), nn.ReLU(inplace=True) )) self.fpn_in = nn.ModuleList(self.fpn_in) self.fpn_out = [] for i in range(len(fpn_inplanes) - 1): # skip the top layer self.fpn_out.append(nn.Sequential( conv3x3_bn_relu(fpn_dim, fpn_dim, 1), )) self.fpn_out = nn.ModuleList(self.fpn_out) self.conv_last = nn.Sequential( conv3x3_bn_relu(len(fpn_inplanes) * fpn_dim, fpn_dim, 1), nn.Conv2d(fpn_dim, num_class, kernel_size=1) ) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] input_size = conv5.size() ppm_out = [conv5] for pool_scale, pool_conv in zip(self.ppm_pooling, self.ppm_conv): ppm_out.append(pool_conv(nn.functional.interpolate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False))) ppm_out = torch.cat(ppm_out, 1) f = self.ppm_last_conv(ppm_out) fpn_feature_list = [f] for i in reversed(range(len(conv_out) - 1)): conv_x = conv_out[i] conv_x = self.fpn_in[i](conv_x) # lateral branch f = nn.functional.interpolate( f, size=conv_x.size()[2:], mode='bilinear', align_corners=False) # top-down branch f = conv_x + f fpn_feature_list.append(self.fpn_out[i](f)) fpn_feature_list.reverse() # [P2 - P5] output_size = fpn_feature_list[0].size()[2:] fusion_list = [fpn_feature_list[0]] for i in range(1, len(fpn_feature_list)): fusion_list.append(nn.functional.interpolate( fpn_feature_list[i], output_size, mode='bilinear', align_corners=False)) fusion_out = torch.cat(fusion_list, 1) x = self.conv_last(fusion_out) if self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) x = nn.functional.softmax(x, dim=1) return x x = nn.functional.log_softmax(x, dim=1) class MiniPSMNet(nn.Module): def __init__(self): super(MiniPSMNet,self).__init__() self.channelsReduction=cfg.SEM.SD_DIM self.ppm = [] self.width=96 self.height=96 self.semseg=19 self.max_displacement=cfg.DISP.FEATURE_MAX_DISPLACEMENT cost_channels = self.channelsReduction*2 self.stack0 = self._createStack(cost_channels,cost_channels,stride1=1) self.stack1 = self._createStack(cost_channels,cost_channels,stride1=1) self.stack1_1 = self._createStack(cost_channels,cost_channels*2) self.stack1_2 = self._createStack(cost_channels*2,cost_channels*4) self.stack1_3 = self._createStack(cost_channels*4,cost_channels*8) self.stack2_1 = self._Deconv3D(cost_channels*8,cost_channels*4) self.stack2_2 = self._Deconv3D(cost_channels*4,cost_channels*2) self.stack2_3 = self._Deconv3D(cost_channels*2,cost_channels) self.to2D = nn.Conv3d(cost_channels,1,kernel_size=1,strid=1) self.reduce = self._ruduce2D(512,self.channelsReduction) self.predict=self._predict(cost_channels) """ self.reduce = nn.Sequential( nn.Conv2d(512,self.channelsReduction,kernel_size=1,stride=1,bias=False), nn.BatchNorm2d(self.channelsReduction) ) """ for m in self.modules(): if isinstance(m,nn.Conv2d) or isinstance(m,nn.Conv3d) or isinstance(m,nn.ConvTranspose3d): kaiming_normal_(m.weight,0.1) if m.bias is not None: constant_(m.bias,0) elif isinstance(m,nn.BatchNorm2d) or isinstance(m,nn.BatchNorm3d): constant_(m.weight,1) constant_(m.bias,0) #self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) #self.dropout_deepsup = nn.Dropout2d(0.1) def _createStack(self,inplanes=512,planes=256,kernel_size=3,stride1=2,stride2=1,groups=cfg.GROUP_NORM.NUM_GROUPS,bias=False,padding=1): return nn.Sequential( nn.Conv3d(inplanes,planes,kernel_size=3,stride=stride1,groups=groups,padding=1,bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True), nn.Conv3d(planes,planes,kernel_size=3,stride=stride2,groups=groups,padding=1,bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) ) def _Deconv3D(self,inplanes,planes,kernel_size=3,stride=2,padding=1,out_padding=1,groups=19,bias=False): return nn.ConvTranspose3d(inplanes,planes,kernel_size,stride,padding,out_padding,groups=cfg.GROUP_NORM.NUM_GROUPS,bias=bias) def _ruduce2D(self,inplanes,planes): return nn.Sequential( nn.Conv2d(inplanes,planes,kernel_size=1,strid=1), nn.Conv2d(planes,planes,kernel_size=3,strid=1,padding=1), nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True) ) def _predict(self,inplanes): return nn.Sequential( nn.Conv2d(inplanes,1,kernel_size=1,strid=1), nn.ReLU(inplace=True) ) def forward(self, conv_out): x = self.reduce(conv_out) left, right=torch.split(x, cfg.TRAIN.IMS_PER_BATCH, dim=0) cost = costVolume2(left,right,self.max_displacement) stack0=self.stack0(cost) stack1=self.stack1(stack0) stack1_1=self.stack1_1(stack1) stack1_2=self.stack1_2(stack1_1) stack1_3=self.stack1_3(stack1_2) stack2_1=self.stack2_1(stack1_3)+stack1_2 stack2_2=self.stack2_2(stack2_1)+stack1_1 stack2_3=self.stack2_3(stack2_2)+stack1 out2d=self.to2D(stack2_3) out=torch.squeeze(out2d,dim=1) predict = self.predict(out) return [out,predict] class TConv(nn.Module): def __init__(self, in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1): super(TConv, self).__init__() self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) def forward(self, x): return F.leaky_relu(self.conv.forward(x), negative_slope=0.1, inplace=True) class FusionNet(nn.Module): def __init__(self,inplanes): super(FusionNet,self).__init__() self.out_channels=32 self.rdi = nn.Conv2d(512+cfg.SEM.SD_DIM*2,self.out_channels*8) self.upconv8_4 = self._TConv(self.out_channels*8,self.out_channels*4) self.upconv4_2 = self._TConv(self.out_channels*4,self.out_channels*2) self.upconv2_1 = self._TConv(self.out_channels*2,self.out_channels) self.pr8 = nn.Conv2d(self.out_channels*8,1,kernel_size=3,strid=1,padding=1,bias=False) #512 self.pr4 = nn.Conv2d(self.out_channels*4,1,kernel_size=3,strid=1,padding=1,bias=False) #256 self.pr2 = nn.Conv2d(self.out_channels*2,1,kernel_size=3,strid=1,padding=1,bias=False) #128 self.pr1 = nn.Conv2d(self.out_channels,1,kernel_size=3,strid=1,padding=1,bias=False) #64 self.fusion8=self._fusion(512+512+cfg.SEM.SD_DIM*2,self.out_channels*8) self.fusion4=self._fusion(self.out_channels*4+256,self.out_channels*4) self.fusion2=self._fusion(self.out_channels*2+128,self.out_channels*2) self.fusion1=self._fusion(self.out_channels*1,self.out_channels) def _Tconv(self,inplanes,planes): return nn.Sequential( nn.ConvTranspose2d(inplanes,planes,kernel_size=3,strid=2,padding=1), nn.Conv2d(planes,planes,kernel_size=3,stride=1,padding=1,bias=False), nn.BatchNorm2d(planes), nn.LeakyReLU(negative_slope=0.1,inplace=True) ) def _fusion(self,inplanes,planes,kernel_size=3,stride=1,padding=1): return nn.Sequential( nn.Conv2d(inplanes,planes,kernel_size=kernel_size,stride=stride,padding=padding,bias=False), nn.Conv2d(planes,planes,kernel_size=3,stride=1,padding=1,bias=False), nn.BatchNorm2d(planes), nn.LeakyReLU(negative_slope=0.1,inplace=True)) def forward(self,semdisp,psm,resFeature): pred_semseg, pred_disp = torch.split(pred, cfg.TRAIN.IMS_PER_BATCH, dim=0) conv1a, _ = torch.split(FeatureMap[0], cfg.TRAIN.IMS_PER_BATCH, dim=0) #64channels #_ , conv1a = torch.split(conv1a, cfg.TRAIN.IMS_PER_BATCH, dim=0) conv2a, _ = torch.split(FeatureMap[1], cfg.TRAIN.IMS_PER_BATCH, dim=0) #128channels #_ , conv2a = torch.split(conv2a, cfg.TRAIN.IMS_PER_BATCH, dim=0) _, layer4 = torch.split(FeatureMap[4], cfg.TRAIN.IMS_PER_BATCH, dim=0) feature8 = self.fusion8(torch.cat((pred_disp,psm,layer4),dim=1)) pr8=self.pr8(feature8) upfeature8_4=self.upconv8_4(torch.cat(pr8,feature8),dim=1) feature4 = self.fusion4(torch.cat((upfeature8_4,conv2a),dim=1)) pr4=self.pr4(feature4) upfeature4_2=self.upconv4_2(torch.cat(pr4,feature4),dim=1) feature2 = self.fusion2(torch.cat((upfeature4_2,conv1a),dim=1)) pr2=self.pr2(feature2) upfeature2_1 =sefl.upconv2_1(torch.cat(pr2,feature2),dim=1) pr1=self.pr1(torch.cat(upfeature2_1),dim=1) return[pr1,pr2,pr4,pr8] class MiniCSPN(nn.Module): def __init__(self,in_channels): super(MiniCSPN,self).__init__() self.in_channels=in_channels self.FupCat=[] fpn_dim = cfg.SEM.DIM self.predisp_16x = nn.Sequential( nn.Conv2d(2048, in_channels, kernel_size=3, padding=1, bias=False), SynchronizedBatchNorm2d(in_channels), nn.ReLU(inplace=True)) for i in range(4): self.FupCat.append( Gudi_UpProj_Block_Cat(self.in_channels//2**i,self.in_channels//2**(i+1))) self.FupCat=nn.ModuleList(self.FupCat) #disp output side self.merge_spp_list = [] self.merge_spp_down = [] for i in range(5): self.merge_spp_down.append(nn.Sequential( nn.Conv2d(512, self.in_channels//2**i, kernel_size=1, padding=0, bias=False), SynchronizedBatchNorm2d(self.in_channels//2**i), nn.ReLU(inplace=True))) self.merge_spp_list.append(nn.Sequential( conv3x3_bn_relu(2*self.in_channels//2**i, self.in_channels//2**i, 1), conv3x3_bn_relu(self.in_channels//2**i, 1, 1) )) self.merge_spp_list = nn.ModuleList(self.merge_spp_list) self.merge_spp_down = nn.ModuleList(self.merge_spp_down) self.disp_outside = [] # FPN Module self.fpn_in = [] for i in range(len(cfg.SEM.FPN_DIMS)): # skip the top layer self.fpn_in.append(nn.Sequential( nn.Conv2d(cfg.SEM.FPN_DIMS[i], fpn_dim, kernel_size=1, bias=False), SynchronizedBatchNorm2d(fpn_dim), nn.ReLU(inplace=True) )) self.fpn_in = nn.ModuleList(self.fpn_in) self.fpn_out = [] for i in range(len(cfg.SEM.FPN_DIMS)): # skip the top layer self.fpn_out.append(nn.Sequential( conv3x3_bn_relu(fpn_dim, fpn_dim, 1), )) self.fpn_out = nn.ModuleList(self.fpn_out) self.conv_last = nn.Sequential( conv3x3_bn_relu(len(cfg.SEM.FPN_DIMS) * fpn_dim + fpn_dim, fpn_dim, 1), nn.Conv2d(fpn_dim, cfg.MODEL.NUM_CLASSES, kernel_size=1) ) self.semseg_deepsup=nn.Sequential( conv3x3_bn_relu(1024, 512, 1), nn.Conv2d(512, 19, kernel_size=3,padding=1,bias=False)) for m in self.modules(): if isinstance(m,nn.Conv2d): kaiming_normal_(m.weight,0.1) if m.bias is not None: constant_(m.bias,0) elif isinstance(m,nn.BatchNorm2d): constant_(m.weight,1) constant_(m.bias,0) def _conv(self,inplanes,planes,kernel_size=3,stride=1,padding=1,bias=False): return nn.Sequential( nn.Conv2d(inplanes,planes,kernel_size,stride=stride,padding=padding,bias=bias), nn.BatchNorm2d(planes), nn.ReLU(inplace=True) ) def _semOut(self,inplanes,kernel_size=3,stride=1,padding=1,bias=False): return nn.Sequential( nn.Conv2d(inplanes,19,kernel_size=kernel_size,stride=stride,padding=padding,bias=bias)) def _out(self,inplanes,kernel_size=3,stride=1,padding=1,bias=False): return nn.Sequential( nn.Conv2d(inplanes,inplanes,kernel_size=kernel_size,stride=1,padding=1,bias=True), nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes,1,kernel_size=kernel_size,stride=1,padding=1,bias=True)) def _up_pooling(self, x, scale_factor,mode='bilinear',oheight=0,owidth=0): if mode =='bilinear': return nn.functional.interpolate(x,scale_factor=scale_factor, mode='bilinear') x = nn.Upsample(scale_factor=scale, mode='nearest')(x) if oheight !=0 and owidth !=0: x = x[:,:,0:oheight, 0:owidth] mask = torch.zeros_like(x) for h in range(0,oheight, 2): for w in range(0, owidth, 2): mask[:,:,h,w] = 1 x = torch.mul(mask, x) return x def forward(self,sspp,resFeature,left,right): #decode: start from followed basic res16x_semseg, res16x_disp = torch.split(resFeature[-1],cfg.TRAIN.IMS_PER_BATCH,dim=0) # disp decoder self.disp_outside=[] dispNx_in = self.predisp_16x(res16x_disp) self.disp_outside.append(dispNx_in) #use up_cat to decoder for i in range(4): dispNx_in =self.FupCat[i](dispNx_in, left, right, ratio=0) self.disp_outside.append(dispNx_in) for i in range(5): sspp_i = self.merge_spp_down[i](sspp) sspp_i = F.interpolate(sspp_i, size=self.disp_outside[i].size()[2:], mode='bilinear', align_corners=False) self.disp_outside[i] = self.merge_spp_list[i](torch.cat([self.disp_outside[i], sspp_i], dim=1)) #decode for semseg fpn_feature_list = [sspp] f = sspp for i in range(len(cfg.SEM.FPN_DIMS)): conv_x, _ = torch.split(resFeature[i+1], cfg.TRAIN.IMS_PER_BATCH,dim=0) conv_x = self.fpn_in[i](conv_x) f = F.interpolate(f, size=conv_x.size()[2:], mode='bilinear', align_corners=False) f = conv_x + f fpn_feature_list.append(self.fpn_out[i](f)) fpn_feature_list.reverse() # [P2 - P5] output_size = fpn_feature_list[0].size()[2:] fusion_list = [fpn_feature_list[0]] for i in range(1, len(fpn_feature_list)): fusion_list.append(nn.functional.interpolate( fpn_feature_list[i], output_size, mode='bilinear', align_corners=False)) fusion_out = torch.cat(fusion_list, 1) semseg_maps = self.conv_last(fusion_out) semseg_final = self._up_pooling(semseg_maps, scale_factor=4) res4_semseg, _ = torch.split(resFeature[-2], cfg.TRAIN.IMS_PER_BATCH, dim=0) semseg_res4=self.semseg_deepsup(res4_semseg) return self.disp_outside, [semseg_res4, semseg_final] class Gudi_UpProj_Block(nn.Module): def __init__(self, in_channels, out_channels, oheight=0, owidth=0): super(Gudi_UpProj_Block, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.sc_conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2, bias=False) self.sc_bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.oheight = oheight self.owidth = owidth for m in self.modules(): if isinstance(m,nn.Conv2d): kaiming_normal_(m.weight,0.1) if m.bias is not None: constant_(m.bias,0) elif isinstance(m,nn.BatchNorm2d): constant_(m.weight,1) constant_(m.bias,0) def _up_pooling(self, x, scale): x = nn.Upsample(scale_factor=scale, mode='nearest')(x) if self.oheight !=0 and self.owidth !=0: x = x[:,:,0:self.oheight, 0:self.owidth] mask = torch.zeros_like(x) for h in range(0, self.oheight, 2): for w in range(0, self.owidth, 2): mask[:,:,h,w] = 1 x = torch.mul(mask, x) return x def forward(self, x): x = self._up_pooling(x, 2) out = self.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) short_cut = self.sc_bn1(self.sc_conv1(x)) out += short_cut out = self.relu(out) return out class Gudi_UpProj_Block_Cat(nn.Module): def __init__(self, in_channels, out_channels, oheight=0, owidth=0): super(Gudi_UpProj_Block_Cat, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=2, dilation=2, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv1_1 = nn.Conv2d(out_channels+6, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.sc_conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=2, dilation=2, bias=False) self.sc_bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.oheight = oheight self.owidth = owidth def _up_pooling(self, x, scale,mode='bilinear',oheight=0,owidth=0): if mode =='bilinear': return nn.functional.interpolate(x,scale_factor=scale, mode='bilinear', align_corners=False) x = nn.Upsample(scale_factor=scale, mode='nearest')(x) if oheight !=0 and owidth !=0: x = x[:,:,0:oheight, 0:owidth] mask = torch.zeros_like(x) for h in range(0,oheight, 2): for w in range(0, owidth, 2): mask[:,:,h,w] = 1 x = torch.mul(mask, x) return x def forward(self, x, left,right,ratio=0): x = self._up_pooling(x, 2) left=F.interpolate(left, x.size()[2:], mode='bilinear', align_corners=False) right=F.interpolate(right, x.size()[2:], mode='bilinear', align_corners=False) out = self.relu(self.bn1(self.conv1(x))) out = torch.cat((out, left,right), 1) out = self.relu(self.bn1_1(self.conv1_1(out))) out = self.bn2(self.conv2(out)) short_cut = self.sc_bn1(self.sc_conv1(x)) out += short_cut out = self.relu(out) return out class OriginalGudi_UpProj_Block_Cat(nn.Module): def __init__(self, in_channels, out_channels, oheight=0, owidth=0): super(OriginalGudi_UpProj_Block_Cat, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv1_1 = nn.Conv2d(out_channels*2, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.sc_conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2, bias=False) self.sc_bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.oheight = oheight self.owidth = owidth def _up_pooling(self, x, scale): x = nn.Upsample(scale_factor=scale, mode='nearest')(x) if self.oheight !=0 and self.owidth !=0: x = x[:,:,0:self.oheight, 0:self.owidth] mask = torch.zeros_like(x) for h in range(0, self.oheight, 2): for w in range(0, self.owidth, 2): mask[:,:,h,w] = 1 x = torch.mul(mask, x) return x def forward(self, x, side_input): x = self._up_pooling(x, 2) out = self.relu(self.bn1(self.conv1(x))) out = torch.cat((out, side_input), 1) out = self.relu(self.bn1_1(self.conv1_1(out))) out = self.bn2(self.conv2(out)) short_cut = self.sc_bn1(self.sc_conv1(x)) out += short_cut out = self.relu(out) return out
python
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ test_dmcrypt ---------------------------------- Tests for `dmcrypt` module. """ import base64 from unittest import mock from vaultlocker import dmcrypt from vaultlocker.tests.unit import base class TestDMCrypt(base.TestCase): @mock.patch.object(dmcrypt, 'subprocess') def test_luks_format(self, _subprocess): dmcrypt.luks_format('mykey', '/dev/sdb', 'test-uuid') _subprocess.check_output.assert_called_once_with( ['cryptsetup', '--batch-mode', '--uuid', 'test-uuid', '--key-file', '-', 'luksFormat', '/dev/sdb'], input='mykey'.encode('UTF-8') ) @mock.patch.object(dmcrypt, 'subprocess') def test_luks_open(self, _subprocess): dmcrypt.luks_open('mykey', 'test-uuid') _subprocess.check_output.assert_called_once_with( ['cryptsetup', '--batch-mode', '--key-file', '-', 'open', 'UUID=test-uuid', 'crypt-test-uuid', '--type', 'luks'], input='mykey'.encode('UTF-8') ) @mock.patch.object(dmcrypt, 'os') def test_generate_key(self, _os): _key = b'randomdatastringfromentropy' _os.urandom.return_value = _key self.assertEqual(dmcrypt.generate_key(), base64.b64encode(_key).decode('UTF-8')) _os.urandom.assert_called_with(dmcrypt.KEY_SIZE / 8) @mock.patch.object(dmcrypt, 'subprocess') def test_udevadm_rescan(self, _subprocess): dmcrypt.udevadm_rescan('/dev/vdb') _subprocess.check_output.assert_called_once_with( ['udevadm', 'trigger', '--name-match=/dev/vdb', '--action=add'] ) @mock.patch.object(dmcrypt, 'subprocess') def test_udevadm_settle(self, _subprocess): dmcrypt.udevadm_settle('myuuid') _subprocess.check_output.assert_called_once_with( ['udevadm', 'settle', '--exit-if-exists=/dev/disk/by-uuid/myuuid'] )
python
# # @lc app=leetcode id=1022 lang=python3 # # [1022] Sum of Root To Leaf Binary Numbers # # @lc code=start # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumRootToLeaf(self, root: TreeNode): if not root: return 0 self.bins = [] self.finder(root, '') ans = 0 for item in self.bins: cur = 0 digit = 0 while item: cur += (int(item[-1]) & 1) * (1 << digit) item = item[:-1] digit += 1 ans += cur return ans def finder(self, root, path): path = path + str(root.val) if not root.left and not root.right: self.bins.append(path) return if root.left: self.finder(root.left, path) if root.right: self.finder(root.right, path) # @lc code=end
python
"""Setup script of django-blog-zinnia""" from setuptools import find_packages from setuptools import setup import zinnia setup( dependency_links=[ "git+https://github.com/arrobalytics/django-tagging.git@027eb90c88ad2d4aead4f50bbbd8d6f0b1678954#egg=django-tagging", "git+https://github.com/arrobalytics/django-xmlrpc.git@6cf59c555b207de7ecec75ac962751e8245cf8c9#egg=django-xmlrpc", "git+https://github.com/arrobalytics/mots-vides.git@eaeccf73bdb415d0c5559ccd74de360b37a2bbac#egg=mots-vides", ], name="django-blog-zinnia", version=zinnia.__version__, description="A clear and powerful weblog application powered with Django", long_description="\n".join([open("README.rst").read(), open("CHANGELOG").read()]), keywords="django, blog, weblog, zinnia, post, news", author=zinnia.__author__, author_email=zinnia.__email__, url=zinnia.__url__, packages=find_packages(exclude=["demo"]), classifiers=[ "Framework :: Django", "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "Programming Language :: Python :: 3", "Intended Audience :: Developers", "Operating System :: OS Independent", "License :: OSI Approved :: BSD License", "Topic :: Software Development :: Libraries :: Python Modules", ], license=zinnia.__license__, include_package_data=True, zip_safe=False, install_requires=[ "asgiref>=3.4.1; python_version >= '3.6'", "beautifulsoup4>=4.10.0", "django>=2.2", "django-contrib-comments>=2.1.0", "django-js-asset>=1.2.2", "django-mptt>=0.13.4", "html5lib>=1.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'", "importlib-metadata>=4.9.0; python_version < '3.10'", "markdown>=3.3.6", "pillow>=8.4.0", "pyparsing>=3.0.6", "regex>=2021.11.10", "six>=1.16.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", "soupsieve>=2.3.1; python_version >= '3.6'", "sqlparse>=0.4.2; python_version >= '3.5'", "textile>=4.0.2", "webencodings>=0.5.1", "zipp>=3.6.0; python_version >= '3.6'", ], )
python
from numbers import Number from timegraph.drawing.plotter import Plotter class Drawing: def __init__(self): self.plotter = Plotter() def create_graph(self, title, db_response): value_list = self.get_value_list(db_response.get_points()) self.plotter.plot_timeseries(value_list) def get_value_list(self, points): result = [] for point in points: point_keys = point.keys() for key in point_keys: if key != 'time': if (point[key] is not None and isinstance(point[key], Number)): result.append(point[key]) return result def print_graph(self, lines): for line in lines: print(line) class DrawingException(Exception): def __init__(self, code, message): super().__init__(code, message) self.code = code self.message = message
python
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def __init__(self): self.res=[] def printnode(self,start,end): if start==end: return if start.next==end: # deal with end point the last element but not none #if end and not end.next: # self.res.append(end.val) self.res.append(start.val) return if start.next.next==end: # deal with end point the last element but not none #if end and not end.next: # self.res.append(end.val) self.res.append(start.next.val) self.res.append(start.val) return slow=start fast=start while fast!=end: slow=slow.next fast=fast.next.next if fast.next!=end else end #print start.val,end.val,slow.val,fast.val self.printnode(slow,fast) self.printnode(start,slow) def reverseList(self, head): """ :type head: ListNode :rtype: ListNode """ if not head: return self.res if not head.next: self.res.append(head.val) return self.res slow=head fast=head while fast: slow=slow.next fast=fast.next.next if fast.next else None #print slow.val,fast.val self.printnode(slow,fast) self.printnode(head,slow) return self.res
python