content
stringlengths
0
894k
type
stringclasses
2 values
import csv import requests import io import json import uuid from collections import OrderedDict, defaultdict, Counter import urllib.parse from functools import lru_cache # for LRU cache CACHE_MAX_SIZE = 65536 __all__ = ['RProperty', 'RQuery', 'PeriodoReconciler', 'CsvReconciler', 'non_none_values', 'grouper', 'CACHE_MAX_SIZE'] # a wrapper for # https://github.com/periodo/periodo-reconciler/blob/master/API.md # http://stackoverflow.com/questions/2348317/how-to-write-a-pager-for-python-iterators/2350904#2350904 def grouper(iterator, page_size): """ yield pages of results from input interable Parameters ---------- iterator : Python interator the iterator to be converted into pages page_size : int page size Returns ------- iterator a iterator of pages """ page = [] for item in iterator: page.append(item) if len(page) == page_size: yield page page = [] if len(page) > 0: yield page def non_none_values(dict_): return dict([ (k, v) for (k, v) in dict_.items() if v is not None ]) class RProperty(object): def __init__(self, p, v): self.p = p self.v = v def to_dict(self): return {'p': self.p, 'v': self.v} def __repr__(self): return ("""RProperty({}, {})""" .format(json.dumps(self.p), json.dumps(self.v))) class RQuery(object): def __init__(self, query, label=None, limit=None, properties=None): self.query = query if label is None: self.label = str(uuid.uuid4()) else: self.label = label self.limit = limit self.properties = properties def to_key_value(self): v = {'query': self.query} if self.limit is not None: v['limit'] = self.limit if (self.properties is not None and len(self.properties)): v['properties'] = [p.to_dict() for p in self.properties] return (self.label, v) def __repr__(self): if (self.properties is not None) and (len(self.properties)): properties_repr = (""", properties=[{}]""" .format(",\n".join([repr(p) for p in self.properties]))) else: properties_repr = "" if self.limit is not None: limit_repr = ", limit={}".format(json.dumps(self.limit)) else: limit_repr = "" return ("""RQuery({}, label={}{}{})""" .format(json.dumps(self.query), json.dumps( self.label), limit_repr, properties_repr)) class PeriodoReconciler(object): def __init__(self, host='localhost:8142', protocol='http'): self.host = host self.protocol = protocol self.base_url = '{}://{}/'.format(protocol, host) def __repr__(self): return ("""PeriodoReconciler(host={}, protocol={})""" .format(json.dumps(self.host), json.dumps(self.protocol))) def describe(self): r = requests.get(self.base_url) return r.json() @lru_cache(maxsize=CACHE_MAX_SIZE) def _call_reconciler(self, query_dict_json, method='GET'): if method.upper() == 'GET': r = requests.get(self.base_url, params={ 'queries': query_dict_json}) elif method.upper() == 'POST': r = requests.post(self.base_url, data={ 'queries': query_dict_json}) if r.status_code == 200: return r.json() else: r.raise_for_status() def _reconcile_query_by_query(self, queries, method='GET'): queries_dict = OrderedDict([q.to_key_value() for q in queries]) results_dict = dict() for (k, v) in queries_dict.items(): # don't let the label for the query mess up the caching query_dict = {'_': v} query_dict_json = json.dumps(query_dict, sort_keys=True) result = self._call_reconciler(query_dict_json, method) results_dict[k] = result['_'] return results_dict def reconcile(self, queries, method='GET', query_by_query=False): if query_by_query: return self._reconcile_query_by_query(queries, method) queries_dict = OrderedDict([q.to_key_value() for q in queries]) if method.upper() == 'GET': r = requests.get(self.base_url, params={ 'queries': json.dumps(queries_dict)}) elif method.upper() == 'POST': r = requests.post(self.base_url, data={ 'queries': json.dumps(queries_dict)}) if r.status_code == 200: return r.json() else: r.raise_for_status() def suggest_properties(self): r = requests.get(urllib.parse.urljoin( self.base_url, '/suggest/properties')) if r.status_code == 200: return r.json()['result'] def suggest_entities(self, prefix): r = requests.get(urllib.parse.urljoin( self.base_url, '/suggest/entities'), params={ 'prefix': prefix }) if r.status_code == 200: return r.json()['result'] def preview_period(self, period_id, flyout=False): params = {'id': period_id} if flyout: params['flyout'] = True url = urllib.parse.urljoin(self.base_url, '/preview') r = requests.get(urllib.parse.urljoin( self.base_url, '/preview'), params=params) if r.status_code == 200: return r.content else: r.raise_for_status() class CsvReconciler(object): match_column_fields = ( 'match_num', 'match_name', 'match_id', 'candidates_count', 'match_fallback_id', 'match_fallback_name') def __init__(self, csvfile, p_recon, query, location=None, start=None, stop=None, ignored_queries='', transpose_query=False, page_size=1000, query_by_query=True, match_column_prefix="", match_top_candidate=True): """ """ self.csvfile = csvfile self.p_recon = p_recon self.query = query self.location = location self.start = start self.stop = stop self.ignored_queries = ignored_queries self.transpose_query = transpose_query self.page_size = page_size self.query_by_query = query_by_query self.match_column_prefix = match_column_prefix self.match_top_candidate = match_top_candidate # if the query matches any entry in ignored_queries, # throw out the match # using csv.reader to parse ignored_queries because the parameter is # a comma=delimited list c_reader = csv.reader(io.StringIO(self.ignored_queries)) try: self.ignored_queries_set = set(next(c_reader)) except StopIteration as e: self.ignored_queries_set = set() self.reader = csv.DictReader(csvfile) # check that query, location, start, stop are in fieldnames # TO DO: I may want to move away from using assert for f in [query, location, start, stop]: if f is not None: assert f in self.reader.fieldnames # which properties are included? self.included_properties = non_none_values({ 'location': location, 'start': start, 'stop': stop }) # compute the columns names for the match results, which # have an optional prefix (match_column_prefix) self.match_column_names = OrderedDict( [(name, f"{self.match_column_prefix}{name}") for name in CsvReconciler.match_column_fields]) # initialize a summary count of the matches self.match_summary = Counter() def _transpose_query(self, q): """ transpose only if there is a single "," """ if not self.transpose_query: return q terms = [term.strip() for term in q.split(",")] if (len(terms) == 2): return terms[1] + " " + terms[0] else: return q def results_with_rows(self): # bin the input rows into pages and then feed the pages # to the reconciler # from the reconciler, yield each result for (i, page) in enumerate(grouper(self.reader, self.page_size)): queries = [] # TO DO: I might be unnecessarily reproducing the page in memory page_dict = OrderedDict() for (j, row) in enumerate(page): label = str(j) page_dict[label] = row queries.append(RQuery( self._transpose_query(row[self.query]), label=label, properties=[ RProperty(p, row[v]) for (p, v) in self.included_properties.items() ] )) responses = self.p_recon.reconcile( queries, method='post', query_by_query=self.query_by_query) for (label, row) in page_dict.items(): # print ('\r results_with_rows', i, label, end="") yield(row, responses[label]) def _matches(self, results_with_rows=None): """ this method process the results to return only matches """ # assume that the new match_* names are not already field names assert len(set(self.reader.fieldnames) & set(self.match_column_names.values())) == 0 # return matches from the entire CSV if # we're not processing the inputted subset of results if results_with_rows is None: results_with_rows = self.results_with_rows() # compute a counter on the matches in the loop # mapping query to match_id, match_name self.matches_for_query = defaultdict(Counter) for (row, response) in results_with_rows: results = response['result'] matching_results = [ result for result in results if result['match']] match_num = len(matching_results) # I think that number of matches must be 0 or 1 # otherwise: a bug in the reconciler assert match_num < 2 if (match_num == 1) or (self.match_top_candidate and len(results)): match_name = results[0]['name'] match_id = results[0]['id'] # keep track of how many times a given query # maps to a (match_id, match_name) tuple (self.matches_for_query[row[self.query]] .update([(match_id, match_name)])) else: match_name = '' match_id = '' row[self.match_column_names['candidates_count']] = len(results) row[self.match_column_names["match_num"]] = match_num row[self.match_column_names["match_name"]] = match_name row[self.match_column_names["match_id"]] = match_id row[self.match_column_names["match_fallback_id"]] = '' row[self.match_column_names["match_fallback_name"]] = '' # eliminate results in which the query is in ignored_queries if row[self.query] in self.ignored_queries_set: row[self.match_column_names["match_num"]] = 0 row[self.match_column_names["match_name"]] = '' row[self.match_column_names["match_id"]] = '' yield (row) def matches(self, results_with_rows=None): """ _matches is the first pass """ rows = list(self._matches(results_with_rows)) self.match_summary = Counter() # let's now calculate fallback for rows # without matches for row in rows: if not row[self.match_column_names["match_id"]]: # set as fallback as the most common match # for the same query term query = row[self.query] c = self.matches_for_query[query].most_common(1) if len(c): ((match_id, match_name), count) = c[0] row[(self .match_column_names["match_fallback_id"])] = match_id row[(self .match_column_names ["match_fallback_name"])] = match_name self.match_summary.update([( row[self.query], row[self.location] if self.location is not None else '', row[self.start] if self.start is not None else '', row[self.stop] if self.stop is not None else '', row[self.match_column_names["match_num"]], row[self.match_column_names["match_name"]], row[self.match_column_names["match_id"]], row[self.match_column_names["candidates_count"]], row[self.match_column_names["match_fallback_id"]], row[self.match_column_names["match_fallback_name"]] )]) yield row def to_csv(self, csvfile, rows, fieldnames=None): if fieldnames is None: fieldnames = ( self.reader.fieldnames + list(self.match_column_names.values()) ) writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in rows: writer.writerow(row) def match_summary_to_csv(self, output): """ return self.self.match_summary as CSV """ headers = (['query', 'location', 'start', 'stop'] + list(CsvReconciler.match_column_fields) + ['row_count']) writer = csv.DictWriter(output, fieldnames=headers) writer.writeheader() for (v, c) in self.match_summary.most_common(): row = OrderedDict(zip(headers, list(v) + [c])) writer.writerow(row)
python
import os from .. import FileBuilder from .file_builder_test import FileBuilderTest class BuildDirsTest(FileBuilderTest): """Tests correct determination of whether build directories are present. Tests correct determination of whether the parent directories of output files are present. """ def _build_dirs_build_file1(self, builder, filename): """The build file function for the first build function.""" self._write(filename, 'text') def _build_dirs_build1(self, builder): """The first build function.""" builder.build_file( os.path.join(self._temp_dir, 'Dir1', 'Subdir', 'Output.txt'), 'build_file1', self._build_dirs_build_file1) builder.build_file( os.path.join(self._temp_dir, 'Dir2', 'Subdir', 'Output.txt'), 'build_file1', self._build_dirs_build_file1) def _build_dirs_build_file2(self, builder, filename): """The first build file function for the second build function.""" self.assertTrue(builder.exists(os.path.join(self._temp_dir, 'Dir1'))) raise RuntimeError() def _build_dirs_build_file3(self, builder, filename): """The second build file function for the second build function.""" self.assertTrue(builder.is_dir(os.path.join(self._temp_dir, 'Dir2'))) self._write(filename, 'text') def _build_dirs_build_file4(self, builder, filename): """The third build file function for the second build function.""" self._write(filename, 'text') def _build_dirs_build_file5(self, builder, filename): """The fourth build file function for the second build function.""" raise RuntimeError() def _build_dirs_build2(self, builder): """The second build function.""" self.assertFalse(builder.exists(os.path.join(self._temp_dir, 'Dir1'))) with self.assertRaises(RuntimeError): builder.build_file( os.path.join(self._temp_dir, 'Dir1', 'Subdir', 'Output.txt'), 'build_file2', self._build_dirs_build_file2) self.assertFalse(builder.exists(os.path.join(self._temp_dir, 'Dir1'))) self.assertFalse( builder.exists(os.path.join(self._temp_dir, 'Dir1', 'Subdir'))) self.assertFalse( builder.exists( os.path.join(self._temp_dir, 'Dir1', 'Subdir', 'Output.txt'))) with self.assertRaises(RuntimeError): builder.build_file( os.path.join(self._temp_dir, 'Dir1', 'Subdir', 'Output2.txt'), 'build_file2', self._build_dirs_build_file2) self.assertFalse(builder.exists(os.path.join(self._temp_dir, 'Dir1'))) self.assertFalse( builder.exists(os.path.join(self._temp_dir, 'Dir1', 'Subdir'))) self.assertFalse( builder.exists( os.path.join(self._temp_dir, 'Dir1', 'Subdir', 'Output.txt'))) builder.build_file( os.path.join(self._temp_dir, 'Dir3', 'Subdir', 'Output.txt'), 'build_file4', self._build_dirs_build_file4) with self.assertRaises(RuntimeError): builder.build_file( os.path.join(self._temp_dir, 'Dir3', 'Subdir', 'Output2.txt'), 'build_file5', self._build_dirs_build_file5) self.assertTrue(builder.is_dir(os.path.join(self._temp_dir, 'Dir3'))) self.assertTrue( builder.is_dir(os.path.join(self._temp_dir, 'Dir3', 'Subdir'))) self.assertFalse(builder.exists(os.path.join(self._temp_dir, 'Dir2'))) builder.build_file( os.path.join(self._temp_dir, 'Dir2', 'Subdir', 'Output.txt'), 'build_file3', self._build_dirs_build_file3) self.assertTrue(builder.is_dir(os.path.join(self._temp_dir, 'Dir2'))) self.assertTrue(builder.is_dir(os.path.join(self._temp_dir, 'Dir3'))) self.assertTrue( builder.is_dir(os.path.join(self._temp_dir, 'Dir3', 'Subdir'))) def _build_dirs_build3(self, builder): """The third build function.""" self.assertFalse( builder.exists( os.path.join(self._temp_dir, 'Dir1', 'Subdir', 'Output2.txt'))) self.assertTrue(builder.exists(os.path.join(self._temp_dir, 'Dir2'))) self.assertTrue( builder.exists(os.path.join(self._temp_dir, 'Dir2', 'Subdir'))) self.assertTrue(builder.exists(os.path.join(self._temp_dir, 'Dir3'))) self.assertTrue( builder.exists(os.path.join(self._temp_dir, 'Dir3', 'Subdir'))) builder.declare_read( os.path.join(self._temp_dir, 'Dir3', 'Subdir', 'Output2.txt')) self._check_contents( os.path.join(self._temp_dir, 'Dir3', 'Subdir', 'Output2.txt'), 'text') def test_build_dirs(self): """Test correct determination of whether build directories are present. """ FileBuilder.build( self._cache_filename, 'build_dirs_test', self._build_dirs_build1) FileBuilder.build( self._cache_filename, 'build_dirs_test', self._build_dirs_build2) self._check_contents( os.path.join(self._temp_dir, 'Dir2', 'Subdir', 'Output.txt'), 'text') self.assertFalse(os.path.exists(os.path.join(self._temp_dir, 'Dir1'))) self._write( os.path.join(self._temp_dir, 'Dir2', 'Subdir', 'Output2.txt'), 'text') self._write( os.path.join(self._temp_dir, 'Dir3', 'Subdir', 'Output2.txt'), 'text') FileBuilder.build( self._cache_filename, 'build_dirs_test', self._build_dirs_build3) self.assertFalse(os.path.exists(os.path.join(self._temp_dir, 'Dir1'))) self._check_contents( os.path.join(self._temp_dir, 'Dir2', 'Subdir', 'Output2.txt'), 'text') self._check_contents( os.path.join(self._temp_dir, 'Dir3', 'Subdir', 'Output2.txt'), 'text')
python
from sawtooth_signing import create_context from sawtooth_signing import CryptoFactory from hashlib import sha512 from sawtooth_sdk.protobuf.transaction_pb2 import TransactionHeader import cbor from sawtooth_sdk.protobuf.transaction_pb2 import Transaction from sawtooth_sdk.protobuf.batch_pb2 import BatchHeader from sawtooth_sdk.protobuf.batch_pb2 import Batch from sawtooth_sdk.protobuf.batch_pb2 import BatchList import urllib.request from urllib.error import HTTPError import hashlib def _sha512(data): return hashlib.sha512(data).hexdigest() def _get_prefix(): return _sha512("soce".encode('utf-8'))[0:6] def _get_address(name): soce_prefix = _get_prefix() name_address = _sha512(name.encode('utf-8'))[0:64] return soce_prefix + name_address context = create_context('secp256k1') private_key = context.new_random_private_key() signer = CryptoFactory(context).new_signer(private_key) action = 'create-voting' name_id = 'voting1' configurations_preferences_id = ['a', 'b'] sc_method = 'borda-voting' payload = { 'action': action, 'name_id': name_id, 'configurations_preferences_id': configurations_preferences_id, 'sc_method': sc_method } address = _get_address(str(name_id)) address2 = _get_address(str(configurations_preferences_id)) #payload_bytes = cbor.dumps(payload) payload_bytes = ";".join([str(action), str(name_id), str(configurations_preferences_id), str(None)]).encode() txn_header_bytes = TransactionHeader( family_name='soce', family_version='1.0', inputs=[address, address2], outputs=[address, address2], signer_public_key = signer.get_public_key().as_hex(), # In this example, we're signing the batch with the same private key, # but the batch can be signed by another party, in which case, the # public key will need to be associated with that key. batcher_public_key = signer.get_public_key().as_hex(), # In this example, there are no dependencies. This list should include # an previous transaction header signatures that must be applied for # this transaction to successfully commit. # For example, # dependencies=['540a6803971d1880ec73a96cb97815a95d374cbad5d865925e5aa0432fcf1931539afe10310c122c5eaae15df61236079abbf4f258889359c4d175516934484a'], dependencies=[], payload_sha512=sha512(payload_bytes).hexdigest() ).SerializeToString() signature = signer.sign(txn_header_bytes) txn = Transaction( header=txn_header_bytes, header_signature=signature, payload=payload_bytes ) txns = [txn] batch_header_bytes = BatchHeader( signer_public_key=signer.get_public_key().as_hex(), transaction_ids=[txn.header_signature for txn in txns], ).SerializeToString() signature = signer.sign(batch_header_bytes) batch = Batch( header=batch_header_bytes, header_signature=signature, transactions=txns ) batch_list_bytes = BatchList(batches=[batch]).SerializeToString() try: request = urllib.request.Request( 'http://localhost:8008/batches', batch_list_bytes, method='POST', headers={'Content-Type': 'application/octet-stream'}) response = urllib.request.urlopen(request) except HTTPError as e: response = e.file
python
""" Written by Muhammad on 09/02/2018 """ import datetime as dt import logging import numpy as np import pandas as pd import ast def csv_to_dict(fname, stime=None, etime=None, sep="|", orient="list"): """Reads data from a csv file and returns a dictionary. Parameter --------- fname : str Full path of a csv file. stime : Optional[datetime.datetime] The start time of interest etime : Optional[datetime.datetime] The end time of interest. If set to None, reads data to the end of a day sep : str Delimiter to use Returns ------- data_dict : dict A dictionary object that holds the data """ # Load to a pandas dataframe print("Loading csv file to pandas dataframe") date_parser = lambda x: dt.datetime.strptime(x, "%Y-%m-%d %H:%M:%S") df = pd.read_csv(fname, sep=sep, na_values="None", parse_dates=['time'], date_parser=date_parser) if stime is not None: df = df.loc[df.time >= stime, :] if etime is not None: df = df.loc[df.time <= etime, :] # Convert to a dict print("Converting pandas dataframe to dict") # NOTE We'll use list orientation even though # we need records orientation because some of # the columns from the DF are lists which # get interpreted as strings by pandas # and it becomes messy, this is a simple # method Muhammad deviced and I'm building on it. data_dict = df.to_dict(orient="list") print df["ptab"].dtypes # Convert a string representation of list to a list prm_keys = ["ptab", "ltab"] fit_keys = ["elv", "gflg", "nlag", "p_l", "p_l_e", "p_s", "p_s_e", "phi0", "phi0_e", "pwr0", "qflg", "slist", "v", "v_e", "w_l", "w_l_e", "w_s", "w_s_e"] keys_list = prm_keys + fit_keys print("Converting string representation of lists to normal lists") for ky in keys_list: data_dict[ky] = [ast.literal_eval(x) for x in data_dict[ky]] #for x in data_dict[ky]: # try: # ast.literal_eval(x) # except: # import pdb # pdb.set_trace() # # if we need a list of dicts conver the dict of lists to the format # if orient == "records": # listDict = [dict(zip(data_dict,t)) for t in zip(*data_dict.values())] # return listDict return data_dict # run the code def main(orient="list"): # Set the logging level logging.getLogger().setLevel(logging.WARNING) # input parameters stime = None etime = None #stime = dt.datetime(2012,12,31) #etime = dt.datetime(2012,12,31, 1, 0) csv_sep = "|" # Delimiter to use # Convert dmap format to csv fdir = "./data/tmp/" #fname = fdir + "20121231.000000.20130101.000000.fhe.fitacf.csv" fname = fdir + "20130110.180000.20130111.180000.bks.fitacf.csv" #data_dict = csv_to_dict(fname, stime=stime, etime=etime, sep=csv_sep) data_dict = csv_to_dict(fname, stime=stime, etime=etime, sep=csv_sep, orient=orient) return data_dict if __name__ == "__main__": data_dict = main()
python
from django.contrib.auth.mixins import PermissionRequiredMixin from django.urls import reverse_lazy from django.views import generic from . import forms, models class JoinUs(generic.CreateView): form_class = forms.RegistrationForm success_url = reverse_lazy('login') template_name = 'membership/join-us.html' class MemberDetail(PermissionRequiredMixin, generic.DetailView): permission_required = ['assignments.view_member'] model = models.Member slug_field = 'permalink' class MemberList(PermissionRequiredMixin, generic.ListView): permission_required = ['assignments.view_member'] model = models.Member class ParentList(PermissionRequiredMixin, generic.ListView): permission_required = ['assignments.view_member'] model = models.Parent class ScoutList(PermissionRequiredMixin, generic.ListView): permission_required = ['assignments.view_member'] model = models.Scout class ContributorList(PermissionRequiredMixin, generic.ListView): permission_required = ['assignments.view_member'] model = models.Contributor
python
# vim: ts=4:sw=4:et:cc=120 from typing import Optional, Union from ace.analysis import RootAnalysis from ace.system.base import AlertingBaseInterface class RemoteAlertTrackingInterface(AlertingBaseInterface): async def register_alert_system(self, name: str) -> bool: return await self.get_api().register_alert_system(name) async def unregister_alert_system(self, name: str) -> bool: return await self.get_api().unregister_alert_system(name) async def get_alerts(self, name: str, timeout: Optional[int] = None) -> list[str]: return await self.get_api().get_alerts(name, timeout=timeout) async def submit_alert(self, root: Union[RootAnalysis, str]) -> bool: raise NotImplementedError() async def get_alert_count(self, name: str) -> int: raise NotImplementedError()
python
from jiminy.gym.envs.box2d.lunar_lander import LunarLander from jiminy.gym.envs.box2d.lunar_lander import LunarLanderContinuous from jiminy.gym.envs.box2d.bipedal_walker import BipedalWalker, BipedalWalkerHardcore from jiminy.gym.envs.box2d.car_racing import CarRacing
python
import datetime class Commit: def __init__(self, hash: str, message: str, date_time: datetime.datetime, author: str, email: str, repository: 'Repository'): self._hash = hash self.message = message self.datetime = date_time self.author = author self.email = email self._repository = repository @property def hash(self): return self._hash @hash.setter def hash(self, value): raise Exception( 'It is not possible to set a new hash value, instance a new commit instead' ) @property def children(self): return self._repository.get_commit_children(self.hash) @property def parents(self): return self._repository.get_commit_parents(self.hash) def __repr__(self): return self.__str__() def __str__(self): return self._hash def __hash__(self) -> int: return self._hash.__hash__() def __eq__(self, other: 'Commit') -> bool: return self.hash == other.hash
python
import os import argparse from tqdm import tqdm import warnings warnings.filterwarnings('ignore') import torch import torch.nn as nn import torch.distributed as dist import torch.backends.cudnn as cudnn from nvidia.dali.plugin.pytorch import DALIClassificationIterator from apex.parallel import DistributedDataParallel as DDP from utils import AverageMeter, accuracy from datasets import ImageList, pil_loader, cv2_loader from datasets import get_val_transform, HybridValPipe from networks import MobileNetV3_Large, MobileNetV3_Small parser = argparse.ArgumentParser( description="Basic Pytorch ImageNet Example. Testing.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) # various paths parser.add_argument('--val_root', type=str, required=True, help='root path to validating images') parser.add_argument('--val_list', type=str, required=True, help='validating image list') parser.add_argument('--weights', type=str, required=True, help='checkpoint for testing') # testing hyper-parameters parser.add_argument('--workers', type=int, default=8, help='number of workers to load dataset (global)') parser.add_argument('--batch_size', type=int, default=512, help='batch size (global)') parser.add_argument('--model', type=str, default='MobileNetV3_Large', help='type of model', choices=['MobileNetV3_Large', 'MobileNetV3_Small']) parser.add_argument('--num_classes', type=int, default=1000, help='class number of testing set') parser.add_argument('--trans_mode', type=str, default='tv', help='mode of image transformation (tv/dali)') parser.add_argument('--dali_cpu', action='store_true', default=False, help='runs CPU based DALI pipeline') parser.add_argument('--ema', action='store_true', default=False, help='whether to use EMA') # amp and DDP hyper-parameters parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--channels_last', type=str, default='False') args, unparsed = parser.parse_known_args() args.channels_last = eval(args.channels_last) if hasattr(torch, 'channels_last') and hasattr(torch, 'contiguous_format'): if args.channels_last: memory_format = torch.channels_last else: memory_format = torch.contiguous_format else: memory_format = None def main(): cudnn.enabled=True cudnn.benchmark = True args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 args.gpu = 0 args.world_size = 1 if args.distributed: args.gpu = args.local_rank torch.cuda.set_device(args.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() # create model if args.model == 'MobileNetV3_Large': model = MobileNetV3_Large(args.num_classes, 0.0, False) elif args.model == 'MobileNetV3_Small': model = MobileNetV3_Small(args.num_classes, 0.0, False) else: raise Exception('invalid type of model') model = model.cuda().to(memory_format=memory_format) if memory_format is not None else model.cuda() # For distributed training, wrap the model with apex.parallel.DistributedDataParallel. # This must be done AFTER the call to amp.initialize. if args.distributed: # By default, apex.parallel.DistributedDataParallel overlaps communication with # computation in the backward pass. # delay_allreduce delays all communication to the end of the backward pass. model = DDP(model, delay_allreduce=True) else: model = nn.DataParallel(model) # define transform and initialize dataloader batch_size = args.batch_size // args.world_size workers = args.workers // args.world_size if args.trans_mode == 'tv': val_transform = get_val_transform() val_dataset = ImageList(root=args.val_root, list_path=args.val_list, transform=val_transform) val_sampler = None if args.distributed: val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, num_workers=workers, pin_memory=True, sampler=val_sampler, shuffle=False) elif args.trans_mode == 'dali': pipe = HybridValPipe(batch_size=batch_size, num_threads=workers, device_id=args.local_rank, root=args.val_root, list_path=args.val_list, size=256, crop=224, shard_id=args.local_rank, num_shards=args.world_size, dali_cpu=args.dali_cpu) pipe.build() val_loader = DALIClassificationIterator(pipe, size=int(pipe.epoch_size("Reader")/args.world_size)) else: raise Exception('invalid image transformation mode') # restart from weights if args.weights and os.path.isfile(args.weights): if args.local_rank == 0: print('loading weights from {}'.format(args.weights)) checkpoint = torch.load(args.weights, map_location=lambda storage,loc: storage.cuda(args.gpu)) if args.ema: model.load_state_dict(checkpoint['ema']) else: model.load_state_dict(checkpoint['model']) val_acc_top1, val_acc_top5 = validate(val_loader, model) if args.local_rank == 0: print('Val_acc_top1: {:.2f}'.format(val_acc_top1)) print('Val_acc_top5: {:.2f}'.format(val_acc_top5)) def validate(val_loader, model): top1 = AverageMeter() top5 = AverageMeter() model.eval() for data in tqdm(val_loader): if args.trans_mode == 'tv': x = data[0].cuda(non_blocking=True) target = data[1].cuda(non_blocking=True) elif args.trans_mode == 'dali': x = data[0]['data'].cuda(non_blocking=True) target = data[0]['label'].squeeze().cuda(non_blocking=True).long() with torch.no_grad(): logits = model(x) prec1, prec5 = accuracy(logits, target, topk=(1, 5)) if args.distributed: prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) top1.update(prec1.item(), x.size(0)) top5.update(prec5.item(), x.size(0)) return top1.avg, top5.avg def reduce_tensor(tensor): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= args.world_size return rt if __name__ == '__main__': main()
python
import numpy as np from numpy.linalg import inv import matplotlib.pyplot as graph #matlab versiyasi pythonun from mpl_toolkits.mplot3d import Axes3D import pandas as pd #csv faylini read etmek ucun import csv from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures #import datamodify as dat def datatobeTaken(): data = pd.read_csv("turboazmodified.csv") dataframe = pd.DataFrame(data, columns= ['Yurush','Qiymet','Buraxilis ili']) yurush = data['Yurush'] qiymet = data['Qiymet'] buraxilishili = data['Buraxilish ili'] yurush = (yurush - yurush.mean()) / yurush.std() yurush = np.c_[np.ones(yurush.shape[0]),yurush] qiymet = (qiymet - qiymet.mean()) / qiymet.std() buraxilishili = (buraxilishili - buraxilishili.mean()) / buraxilishili.std() yurush.astype(float) m = len(qiymet) return yurush, qiymet, buraxilishili; data = pd.read_csv("turboazmodified.csv") def firstplot(): yurush, qiymet, buraxilishili = datatobeTaken(); m = len(yurush) for i in range(0, m): if '+08' in yurush[i]: yurush[i] = float(yurush[i].replace('+08','')) if 'e' in yurush[i]: yurush[i] = yurush[i].replace('e','') yurush[i] = yurush[i] * 2.7 graph.xlabel('Yurush') graph.scatter(yurush[:,1], qiymet, edgecolors='red') graph.ylabel('Qiymet') graph.title('Yurush vs Qiymet') graph.show() def secondplot(): yurush, qiymet, buraxilishili = datatobeTaken(); graph.scatter(buraxilishili, qiymet, edgecolor = 'b') graph.xlabel('Buraxilis') graph.ylabel('Qiymet') graph.title('Buxaltir') graph.show() def thirdplot(): yurush, qiymet, buraxilishili = datatobeTaken(); fig = graph.figure() ax1 = fig.add_subplot(111, projection='3d') ax1.scatter(yurush[:,1], qiymet, buraxilishili) graph.show() def heuristicFunct(yurush, theta): return np.dot(yurush, theta) def costFunction(yurush, qiymet, theta): m = 1328 sumofvariables = 0 for i in range(1, m): sumofvariables +=(heuristicFunct(yurush[i], theta) - qiymet[i])**2 sumofvariables = sumofvariables * (1.0/(2*m)) return sumofvariables def updateruletobeComputed(yurush, qiymet, theta, learningrate, numberofiterations): theta[0] = theta[0] - learningrate * costFunction(yurush, qiymet, theta) * 2 theta[1] = theta[1] - learningrate * costFunction(yurush, qiymet, theta) * 2 return theta def plottingCostFunction(sumofvariables): graph.title("Cost Function is plotted") graph.xlabel("Number of iterations") graph.ylabel("Cost") graph.plot(sumofvariables) graph.show() def test1(yurush, qiymet, buraxilishili): #yurush, qiymet, buraxilishili = datatobeTaken(); yurush = 240000 buraxilishili = 2000 qiymet = 11500 yurush = (yurush - yurush.mean()) / yurush.std() qiymet = (qiymet - qiymet.mean()) / qiymet.std() buraxilishili = (buraxilishili - buraxilishili.mean()) / buraxilishili.std() ntheta, costh = updateruletobeComputed(yurush, qiymet, theta, learningrate, numberofiterations) predprice = ntheta[2] * buraxilishili + ntheta[1] * yurush + ntheta[0] normqiymet = predprice * qiymet.std() + qiymet.mean() actqiymet = qiymet * qiymet.std() + qiymet.mean() print(normqiymet) print(actqiymet) def test2(yurush, qiymet, buraxilishili): yurush = 415558 buraxilishili = 1996 qiymet = 8800 yurush = (yurush - yurush.mean()) / yurush.std() #yurush = np.c_[np.ones(yurush.shape[0]),yurush] qiymet = (qiymet - qiymet.mean()) / qiymet.std() #qiymet = np.c_[np.ones(qiymet.shape[0]),qiymet] buraxilishili = (buraxilishili - buraxilishili.mean()) / buraxilishili.std() #buraxilishili = np.c_[np.ones(buraxilishili.shape[0]),buraxilishili] ntheta, costh = updateruletobeComputed(yurush, qiymet, theta, learningrate, numberofiterations) predprice = ntheta[2] * buraxilishili + ntheta[1] * yurush + ntheta[0] normqiymet = predprice * qiymet.std() + qiymet.mean() actqiymet = qiymet * qiymet.std() + qiymet.mean() print(normqiymet) print(actqiymet) def linearRegrTrain(): linearreg = LinearRegression() yurush, qiymet, buraxilishili = datatobeTaken(); yurushTrain, yurushTest, buraxilishiliTrain, buraxilishiliTest = train_test_split(yurush, buraxilishili, test_size = 1/3, random_state = 0) linearreg.fit(yurushTrain, buraxilishiliTrain) buraxilishiliPredict = linearreg.predict(yurushTest) graph.scatter(yurushTrain, buraxilishiliTrain, color = 'black') graph.plot(yurushTrain, linearreg.predict(yurushTrain), color = 'red') graph.title("Hello") graph.xlabel("Yurush") graph.ylabel("Buraxilish ili") graph.show() def linearRegrTest(): linearreg = LinearRegression() yurush, qiymet, buraxilishili = datatobeTaken(); yurushTrain, yurushTest, buraxilishiliTrain, buraxilishiliTest = train_test_split(yurush, buraxilishili, test_size = 1/3, random_state = 0) linearreg.fit(yurushTest, buraxilishiliTest) buraxilishiliPredict = linearreg.predict(yurushTrain) graph.scatter(yurushTest, buraxilishiliTest, color = 'black') graph.plot(yurushTest, linearreg.predict(yurushTest), color = 'red') graph.title("Hello") graph.xlabel("Yurush") graph.ylabel("Buraxilish ili") graph.show() def normequation(yurush, qiymet): yurush, qiymet, buraxilishili = datatobeTaken(); yurushTranspose = yurush.T normeq = inv(yurushTranspose.dot(yurush)).dot(yurushTranspose).dot(qiymet) print("The value we get from Normal Equation is %s" % (normeq)) return normeq def PolynomialModel(degree, yurush, qiymet): yurush, qiymet, buraxilishili = datatobeTaken(); poly = PolynomialFeatures(degree=degree) polyyurush = poly.fit_transform(yurush) regs = LinearRegression() regs.fit(polyyurush, qiymet) actval = (yurush - polyyurush.mean()) / yurush.std() print(actval) #print(yurush.sh) graph.scatter(yurush[:,0], qiymet, color = "red") graph.plot(yurush, regs.predict(poly.fit_transform(yurush)), color = 'blue') graph.show() def tobePrinted(): #theta = [1,1,1] theta = [0,0] numberofiterations = 5 #no. of interations to learn learningrate = 0.01 #learning rate is 0.01 m = 1328 yurush, qiymet, buraxilishili = datatobeTaken(); for i in range(numberofiterations): costfinished = costFunction(yurush, qiymet, theta) #getting cost from cost function theta = (updateruletobeComputed(yurush, qiymet, theta, learningrate, numberofiterations)) print("Cost function in iteration %d is %s" % (i, costfinished)) print(theta[0],theta[1]) graph.scatter(buraxilishili, qiymet, edgecolors='b') #graph.plot(buraxilishili, qiymet) #graph.show(block = True) #graph.close() #PolynomialModel(2, yurush, qiymet) #normequation(yurush, qiymet) #test1(yurush, qiymet, buraxilishili) #plottingCostFunction() #firstplot() #linearRegrTrain() #linearRegrTest() #secondplot() #thirdplot() test1(yurush, qiymet, buraxilishili) tobePrinted()
python
#!/usr/bin/env python3 ################################################################################################### ## ## Project: Embedded Learning Library (ELL) ## File: test.py ## Authors: Chris Lovett ## ## Requires: Python 3.x ## ################################################################################################### import picluster import sys import time # This test script shows how to interact with the Azure pi data center cloud service. # It uses the 'requests' module to do HTTP interactions with Json data. # See http://docs.python-requests.org/en/v1.0.0/user/quickstart/ import endpoint ip = "192.168.1.999" # make it invalid ip address on purpose so it never colides with real machine entity = {'IpAddress': ip, 'OsName': 'Raspbian', 'OsVersion': 'Jesse', 'CurrentTaskName': "RollingBuild", 'CurrentUserName': '','Command':''} user = "Test" def test_assert(e, message): status = "SUCCESS" if not e: status = "FAILED" print("{}, {}".format(message, status)) # add or update t = picluster.PiBoardTable(endpoint.url, endpoint.apikey, user) a = picluster.PiBoardEntity(entity) r = t.update(a) test_assert(r is None or r.ip_address != ip, "add or update entity") # get all r = t.get_all() test_assert(len(r) > 0 and ip in [x.ip_address for x in r], "get_all") # get the entity we added r = t.get(ip) test_assert(r and r.ip_address == ip, "get the entity we added") # locking r = t.lock(ip, 'Test') test_assert(r and r.ip_address == ip and r.current_user_name == t.username, "lock our machine") # now try and free the device using wrong user name saved = t.username t.username = 'Chuck' failed = False try: r = t.unlock(ip) failed = False except: failed = True t.username = saved test_assert(failed, "try and free the device using wrong user name") # double check this is really the case r = t.get(ip) test_assert(r and r.ip_address == ip, "ensure entity is still there") # now try and free the device using correct user name r = t.unlock(ip) test_assert(r and r.ip_address == ip, "unlock our machine") # check it really is not locked r = t.get(ip) test_assert(r and r.current_user_name != t.username, "lock is gone") # delete r = t.delete(ip) test_assert(r and r.current_user_name != t.username, "delete our machine")
python
# -*- coding: utf-8 -*- # # This class was auto-generated. # from onlinepayments.sdk.data_object import DataObject from onlinepayments.sdk.domain.decrypted_payment_data import DecryptedPaymentData from onlinepayments.sdk.domain.mobile_payment_product320_specific_input import MobilePaymentProduct320SpecificInput class MobilePaymentMethodSpecificInput(DataObject): """ | Object containing the specific input details for mobile payments """ __authorization_mode = None __decrypted_payment_data = None __encrypted_payment_data = None __ephemeral_key = None __payment_product320_specific_input = None __payment_product_id = None __public_key_hash = None __requires_approval = None @property def authorization_mode(self): """ | Determines the type of the authorization that will be used. Allowed values: | * FINAL_AUTHORIZATION - The payment creation results in an authorization that is ready for capture. Final authorizations can't be reversed and need to be captured for the full amount within 7 days. | * PRE_AUTHORIZATION - The payment creation results in a pre-authorization that is ready for capture. Pre-authortizations can be reversed and can be captured within 30 days. The capture amount can be lower than the authorized amount. | * SALE - The payment creation results in an authorization that is already captured at the moment of approval. | Only used with some acquirers, ignored for acquirers that don't support this. In case the acquirer doesn't allow this to be specified the authorizationMode is 'unspecified', which behaves similar to a final authorization. Type: str """ return self.__authorization_mode @authorization_mode.setter def authorization_mode(self, value): self.__authorization_mode = value @property def decrypted_payment_data(self): """ | The payment data if you do the decryption of the encrypted payment data yourself. Type: :class:`onlinepayments.sdk.domain.decrypted_payment_data.DecryptedPaymentData` """ return self.__decrypted_payment_data @decrypted_payment_data.setter def decrypted_payment_data(self, value): self.__decrypted_payment_data = value @property def encrypted_payment_data(self): """ | The payment data if we will do the decryption of the encrypted payment data. Typically you'd use encryptedCustomerInput in the root of the create payment request to provide the encrypted payment data instead. | * For Apple Pay, the encrypted payment data can be found in property data of the PKPayment.token.paymentData property. Type: str """ return self.__encrypted_payment_data @encrypted_payment_data.setter def encrypted_payment_data(self, value): self.__encrypted_payment_data = value @property def ephemeral_key(self): """ | Ephemeral Key | A unique generated key used by Apple to encrypt data. Type: str """ return self.__ephemeral_key @ephemeral_key.setter def ephemeral_key(self, value): self.__ephemeral_key = value @property def payment_product320_specific_input(self): """ | Object containing information specific to Google Pay. Required for payments with product 320. Type: :class:`onlinepayments.sdk.domain.mobile_payment_product320_specific_input.MobilePaymentProduct320SpecificInput` """ return self.__payment_product320_specific_input @payment_product320_specific_input.setter def payment_product320_specific_input(self, value): self.__payment_product320_specific_input = value @property def payment_product_id(self): """ | Payment product identifier - Please see Products documentation for a full overview of possible values. Type: int """ return self.__payment_product_id @payment_product_id.setter def payment_product_id(self, value): self.__payment_product_id = value @property def public_key_hash(self): """ | Public Key Hash | A unique identifier to retrieve key used by Apple to encrypt information. Type: str """ return self.__public_key_hash @public_key_hash.setter def public_key_hash(self, value): self.__public_key_hash = value @property def requires_approval(self): """ | * true = the payment requires approval before the funds will be captured using the Approve payment or Capture payment API | * false = the payment does not require approval, and the funds will be captured automatically Type: bool """ return self.__requires_approval @requires_approval.setter def requires_approval(self, value): self.__requires_approval = value def to_dictionary(self): dictionary = super(MobilePaymentMethodSpecificInput, self).to_dictionary() if self.authorization_mode is not None: dictionary['authorizationMode'] = self.authorization_mode if self.decrypted_payment_data is not None: dictionary['decryptedPaymentData'] = self.decrypted_payment_data.to_dictionary() if self.encrypted_payment_data is not None: dictionary['encryptedPaymentData'] = self.encrypted_payment_data if self.ephemeral_key is not None: dictionary['ephemeralKey'] = self.ephemeral_key if self.payment_product320_specific_input is not None: dictionary['paymentProduct320SpecificInput'] = self.payment_product320_specific_input.to_dictionary() if self.payment_product_id is not None: dictionary['paymentProductId'] = self.payment_product_id if self.public_key_hash is not None: dictionary['publicKeyHash'] = self.public_key_hash if self.requires_approval is not None: dictionary['requiresApproval'] = self.requires_approval return dictionary def from_dictionary(self, dictionary): super(MobilePaymentMethodSpecificInput, self).from_dictionary(dictionary) if 'authorizationMode' in dictionary: self.authorization_mode = dictionary['authorizationMode'] if 'decryptedPaymentData' in dictionary: if not isinstance(dictionary['decryptedPaymentData'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['decryptedPaymentData'])) value = DecryptedPaymentData() self.decrypted_payment_data = value.from_dictionary(dictionary['decryptedPaymentData']) if 'encryptedPaymentData' in dictionary: self.encrypted_payment_data = dictionary['encryptedPaymentData'] if 'ephemeralKey' in dictionary: self.ephemeral_key = dictionary['ephemeralKey'] if 'paymentProduct320SpecificInput' in dictionary: if not isinstance(dictionary['paymentProduct320SpecificInput'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['paymentProduct320SpecificInput'])) value = MobilePaymentProduct320SpecificInput() self.payment_product320_specific_input = value.from_dictionary(dictionary['paymentProduct320SpecificInput']) if 'paymentProductId' in dictionary: self.payment_product_id = dictionary['paymentProductId'] if 'publicKeyHash' in dictionary: self.public_key_hash = dictionary['publicKeyHash'] if 'requiresApproval' in dictionary: self.requires_approval = dictionary['requiresApproval'] return self
python
bl_info = { "name": "Run CGA Grammar", "description": "", "author": "JUSTOM", "version": (0, 0, 0), "blender": (2, 80, 0), "location": "View3D > Tool Shelf", "warning": "", # used for warning icon and text in addons panel "wiki_url": "", "tracker_url": "", "category": "Object" } import bpy from bpy.props import (StringProperty, BoolProperty, IntProperty, FloatProperty, FloatVectorProperty, EnumProperty, PointerProperty, ) from bpy.types import (Panel, Menu, Operator, PropertyGroup, ) # ------------------------------------------------------------------------ # Scene Properties # ------------------------------------------------------------------------ class PsbProperties(PropertyGroup): fName: StringProperty( name = "File", description="Choose a file:", default="", subtype='FILE_PATH' ) """ my_enum: EnumProperty( name="Dropdown:", description="Apply Data to attribute.", items=[ ('OP1', "Option 1", ""), ('OP2', "Option 2", ""), ('OP3', "Option 3", ""), ] ) """ # ------------------------------------------------------------------------ # Operators # ------------------------------------------------------------------------ class RunGrammar(Operator): """Run Grammar""" bl_idname = "object.run_cga_grammar" bl_label = "Run Grammar" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): bpy.ops.object.mode_set(mode='EDIT') scene = context.scene psbTool = scene.psb_tool #context = bpy.context print(psbTool.fName) return {'FINISHED'} # Lets Blender know the operator finished successfully. # ------------------------------------------------------------------------ # Menus # ------------------------------------------------------------------------ """ class OBJECT_MT_CustomMenu(bpy.types.Menu): bl_label = "Select" bl_idname = "OBJECT_MT_custom_menu" def draw(self, context): layout = self.layout # Built-in operators layout.operator("object.select_all", text="Select/Deselect All").action = 'TOGGLE' layout.operator("object.select_all", text="Inverse").action = 'INVERT' layout.operator("object.select_random", text="Random") """ # ------------------------------------------------------------------------ # Panel in Object Mode # ------------------------------------------------------------------------ class PsbPanel(Panel): bl_label = "PSB Panel" bl_idname = "PsbPanel" bl_space_type = "VIEW_3D" bl_region_type = "UI" bl_category = "Tools" bl_context = "objectmode" @classmethod def poll(self,context): return context.object is not None def draw(self, context): layout = self.layout scene = context.scene psbTool = scene.psb_tool layout.prop(psbTool, "fName") layout.operator("object.run_cga_grammar") """ class OBJECT_PT_CustomPanel(Panel): bl_label = "My Panel" bl_idname = "OBJECT_PT_custom_panel" bl_space_type = "VIEW_3D" bl_region_type = "UI" bl_category = "Tools" bl_context = "objectmode" @classmethod def poll(self,context): return context.object is not None def draw(self, context): layout = self.layout scene = context.scene psbTool = scene.psb_tool layout.prop(psbTool, "my_bool") layout.prop(psbTool, "my_enum", text="") layout.prop(psbTool, "my_int") layout.prop(psbTool, "my_float") layout.prop(psbTool, "my_float_vector", text="") layout.prop(psbTool, "my_string") layout.prop(psbTool, "my_path") layout.operator("wm.hello_world") layout.menu(OBJECT_MT_CustomMenu.bl_idname, text="Presets", icon="SCENE") layout.separator() """ # ------------------------------------------------------------------------ # Registration # ------------------------------------------------------------------------ classes = ( PsbProperties, RunGrammar, #OBJECT_MT_CustomMenu, PsbPanel ) def register(): from bpy.utils import register_class for cls in classes: register_class(cls) bpy.types.Scene.psb_tool = PointerProperty(type=PsbProperties) def unregister(): from bpy.utils import unregister_class for cls in reversed(classes): unregister_class(cls) del bpy.types.Scene.psb_tool if __name__ == "__main__": register()
python
from scipy import stats import json import operator import subprocess import statistics as stat import tweetTextCleaner from sklearn.feature_extraction.text import * from datetime import datetime from sklearn import cluster import numpy #import word2vecReader #from tokenizer import simpleTokenize filterTerms = ['iphone 7', 'pikachu', 'pokemon go', 'macbook pro', 'trump', 'note 7'] def processDate(inputDate): dateTemp = inputDate.split() day = dateTemp[0] hour = dateTemp[3].split(':')[0] date = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] return day, hour, datetime.strptime(date, '%b %d %Y') def label(mode): tweetIDSet = set() print('extracting outliers...') brandList = [] listFile = open('brand.list', 'r') for line in listFile: brandList.append(line.strip()) listFile.close() ''' exceptionFile = open('dataset/exceptions/exceptions.list', 'r') exceptionList = set() for line in exceptionFile: exceptionList.add(long(line.strip())) exceptionFile.close() ''' totalDisplayFile = open('dataset/experiment/clean.display', 'w') totalOutputFile = open('dataset/experiment/clean.labeled', 'w') statFile = open('dataset/analysis/stat.total', 'w') #totalCleanScore = [] #totalCleanData = [] mentionList = set() hashtagList = set() totalBrandData = {} inputFile = open('dataset/experiment/total.json', 'r') for line in inputFile: temp = json.loads(line.strip()) brand = temp['brand'] if brand not in totalBrandData: totalBrandData[brand] = [temp] else: totalBrandData[brand].append(temp) inputFile.close() for brand in brandList: print(brand) outLierFile = open('dataset/exceptions/'+brand+'.outliers', 'w') brandData = [] brandScoreList = [] for data in totalBrandData[brand]: tweetID = data['id'] #if tweetID not in exceptionList: if tweetID not in tweetIDSet: tweetIDSet.add(tweetID) text = data['text'].encode('utf-8') filtered = False for term in filterTerms: if term in text.lower(): filtered = True break if not filtered: content = tweetTextCleaner.tweetCleaner(text) finalIndex = len(data['dynamic'])-1 retweet = float(data['dynamic'][finalIndex]['retweet_count']) favorite = float(data['dynamic'][finalIndex]['favorite_count']) followers = float(data['dynamic'][finalIndex]['user_followers_count']) if retweet == 0: ratio = 0 else: ratio = favorite/retweet statFile.write(str(favorite)+'\t'+str(retweet)+'\t'+str(followers)+'\t'+str(ratio)+'\n') author_statuses_count = float(data['dynamic'][finalIndex]['user_statuses_count']) author_favorite_count = float(data['dynamic'][finalIndex]['user_favorite_count']) author_listed_count = float(data['dynamic'][finalIndex]['user_listed_count']) dateTemp = data['create_at'].split() day = dateTemp[0] hour = dateTemp[3].split(':')[0] postDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] dateTemp = data['user_create_at'].split() authorDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] postData_object = datetime.strptime(postDate, '%b %d %Y') authorData_object = datetime.strptime(authorDate, '%b %d %Y') authorInterval = float((postData_object - authorData_object).days) if followers > 0: labelScore = (2.0 * retweet + favorite) * 10000 / followers brandData.append({'brand': brand,'content': content, 'score': labelScore, 'id': tweetID, 'day': day, 'hour': hour, 'mentions': data['mentions'], 'hashtags': data['hashtags'], 'author_statuses_count': author_statuses_count, 'author_favorite_count': author_favorite_count, 'author_listed_count': author_listed_count, 'authorInterval': authorInterval, 'author_followers_count': followers}) brandScoreList.append(labelScore) zScores = stats.zscore(brandScoreList) if len(zScores) != len(brandData): print('Z-score Error!') outputData = [] for index, item in enumerate(brandData): item['zScore'] = float(zScores[index]) outputData.append(item) cleanData = [] cleanScore = [] sorted_output = sorted(outputData, key=lambda x: x['score']) for item in reversed(sorted_output): z = item['zScore'] if z > 2: outLierFile.write(str(item['score'])+' | '+str(z)+' : '+' | '+str(item['id'])+' | '+item['content']+'\n') else: cleanData.append(item) cleanScore.append(item['score']) #totalCleanScore.append(item['score']) #totalCleanData.append(item) outLierFile.close() maxScore = max(cleanScore) minScore = min(cleanScore) normalScores = [] for score in cleanScore: normalScores.append((score - minScore) / (maxScore - minScore)) stdevScore = stat.stdev(normalScores) meanScore = stat.mean(normalScores) print('mean: ' + str(meanScore)) print('stdev: ' + str(stdevScore)) print('mdean: ' + str(stat.median(normalScores))) if stdevScore >= meanScore: print('CAUTION') else: print('PASS') print() if mode == 1: # label post with 1-10 score cleanSize = len(cleanScore) binSize = cleanSize/10 threshold = binSize labelScore = 10 for count, item in enumerate(cleanData): if count <= threshold or labelScore == 1: hashtagOutput = '' mentionsOutput = '' for ht in item['hashtags']: if ht not in hashtagList: hashtagList.add(ht) hashtagOutput += ht + ';' if hashtagOutput == '': hashtagOutput = 'NONE' else: hashtagOutput = hashtagOutput[:-1] for ment in item['mentions']: if ment not in mentionList: mentionList.add(ment) mentionsOutput += ment + ';' if mentionsOutput == '': mentionsOutput = 'NONE' else: mentionsOutput = mentionsOutput[:-1] try: totalDisplayFile.write(brand+' | '+str(labelScore)+' | '+day+' | '+hour+' | '+item['content']+' | '+str(item['id'])+' | '+hashtagOutput+' | '+mentionsOutput+'\n') item['label'] = labelScore totalOutputFile.write(json.dumps(item)+'\n') except: print(content) else: print(threshold) threshold += binSize labelScore -= 1 elif mode == 2: # binary label (0, 1) cleanSize = len(cleanScore) for count, item in enumerate(cleanData): hashtagOutput = '' mentionsOutput = '' for ht in item['hashtags']: if ht not in hashtagList: hashtagList.add(ht) hashtagOutput += ht + ';' if hashtagOutput == '': hashtagOutput = 'NONE' else: hashtagOutput = hashtagOutput[:-1] for ment in item['mentions']: if ment not in mentionList: mentionList.add(ment) mentionsOutput += ment + ';' if mentionsOutput == '': mentionsOutput = 'NONE' else: mentionsOutput = mentionsOutput[:-1] if count <= 0.5 * cleanSize: labelScore = 1 else: labelScore = 0 item['label'] = labelScore totalOutputFile.write(json.dumps(item) + '\n') try: totalDisplayFile.write( brand + ' | ' + str(labelScore) + ' | ' + day + ' | ' + hour + ' | ' + item['content'] + ' | ' + str( item['id']) + ' | ' + hashtagOutput + ' | ' + mentionsOutput + '\n') except: print(content) else: # label with normalized scores scoreDistFile = open('dataset/stats/scoreDist.'+brand, 'w') for index, normalScore in enumerate(normalScores): item = cleanData[index] score = normalScore * 10 scoreDistFile.write(str(score)+'\n') hashtagOutput = '' mentionsOutput = '' for ht in item['hashtags']: if ht not in hashtagList: hashtagList.add(ht) hashtagOutput += ht + ';' if hashtagOutput == '': hashtagOutput = 'NONE' else: hashtagOutput = hashtagOutput[:-1] for ment in item['mentions']: if ment not in mentionList: mentionList.add(ment) mentionsOutput += ment + ';' if mentionsOutput == '': mentionsOutput = 'NONE' else: mentionsOutput = mentionsOutput[:-1] try: totalDisplayFile.write(brand+' | '+str(score)+' | '+day+' | '+hour+' | '+item['content']+' | '+str(item['id'])+' | '+hashtagOutput+' | '+mentionsOutput+'\n') item['label'] = score totalOutputFile.write(json.dumps(item)+'\n') except: print(content) scoreDistFile.close() hashtagFile = open('dataset/experiment/hashtag.list', 'w') mentionFile = open('dataset/experiment/mention.list', 'w') for ht in hashtagList: hashtagFile.write(ht+'\n') for ment in mentionList: mentionFile.write(ment+'\n') hashtagFile.close() mentionFile.close() statFile.close() totalOutputFile.close() def label_new(mode, inputFile): totalDisplayFile = open('dataset/commTweets/clean.display', 'w') totalOutputFile = open('dataset/commTweets/clean.json', 'w') mentionList = set() hashtagList = set() totalBrandData = {} inputFile = open(inputFile, 'r') for line in inputFile: temp = json.loads(line.strip()) brand = temp['brand'] if brand not in totalBrandData: totalBrandData[brand] = [temp] else: totalBrandData[brand].append(temp) inputFile.close() for brand in totalBrandData: print(brand) outLierFile = open('dataset/commTweets/outliers/'+brand+'.outliers', 'w') brandData = [] brandScoreList = [] for data in totalBrandData[brand]: tweetID = data['id'] text = data['text'] content = tweetTextCleaner.tweetCleaner(text) retweet = float(data['retweet_count']) favorite = float(data['favorite_count']) followers = float(data['user_followers_count']) author_statuses_count = float(data['user_statuses_count']) author_favorite_count = float(data['user_favorite_count']) author_listed_count = float(data['user_listed_count']) day, hour, postData_object = processDate(data['create_at']) _, _, authorData_object = processDate(data['user_create_at']) authorInterval = float((postData_object - authorData_object).days) if followers > 0: labelScore = (2.0 * retweet + favorite) * 10000 / followers brandData.append({'brand': brand, 'content': content, 'score': labelScore, 'id': tweetID, 'day': day, 'hour': hour, 'mentions': data['mentions'], 'hashtags': data['hashtags'], 'author_statuses_count': author_statuses_count, 'author_favorite_count': author_favorite_count, 'author_listed_count': author_listed_count, 'authorInterval': authorInterval, 'author_followers_count': followers}) brandScoreList.append(labelScore) zScores = stats.zscore(brandScoreList) if len(zScores) != len(brandData): print('Z-score Error!') outputData = [] for index, item in enumerate(brandData): item['zScore'] = float(zScores[index]) outputData.append(item) cleanData = [] cleanScore = [] sorted_output = sorted(outputData, key=lambda x: x['score']) for item in reversed(sorted_output): z = item['zScore'] if z > 2: outLierFile.write(str(item['score'])+' | '+str(z)+' : '+' | '+str(item['id'])+' | '+item['content']+'\n') else: cleanData.append(item) cleanScore.append(item['score']) #totalCleanScore.append(item['score']) #totalCleanData.append(item) outLierFile.close() maxScore = max(cleanScore) minScore = min(cleanScore) normalScores = [] for score in cleanScore: normalScores.append((score - minScore) / (maxScore - minScore)) stdevScore = stat.stdev(normalScores) meanScore = stat.mean(normalScores) #print('mean: ' + str(meanScore)) #print('stdev: ' + str(stdevScore)) #print('mdean: ' + str(stat.median(normalScores))) if stdevScore >= meanScore: print('CAUTION') else: print('PASS') print() if mode == 1: # label post with 1-10 score cleanSize = len(cleanScore) binSize = cleanSize/10 threshold = binSize labelScore = 10 for count, item in enumerate(cleanData): if count <= threshold or labelScore == 1: hashtagOutput = '' mentionsOutput = '' for ht in item['hashtags']: if ht not in hashtagList: hashtagList.add(ht) hashtagOutput += ht + ';' hashtagOutput = 'NONE' if hashtagOutput == '' else hashtagOutput[:-1] for ment in item['mentions']: if ment not in mentionList: mentionList.add(ment) mentionsOutput += ment + ';' mentionsOutput = 'NONE' if mentionsOutput == '' else mentionsOutput[:-1] try: totalDisplayFile.write(brand+' | '+str(labelScore)+' | '+day+' | '+hour+' | '+item['content']+' | '+str(item['id'])+' | '+hashtagOutput+' | '+mentionsOutput+'\n') item['label'] = labelScore totalOutputFile.write(json.dumps(item)+'\n') except: print(content) else: #print(threshold) threshold += binSize labelScore -= 1 elif mode == 2: # binary label (0, 1) cleanSize = len(cleanScore) for count, item in enumerate(cleanData): hashtagOutput = '' mentionsOutput = '' for ht in item['hashtags']: if ht not in hashtagList: hashtagList.add(ht) hashtagOutput += ht + ';' if hashtagOutput == '': hashtagOutput = 'NONE' else: hashtagOutput = hashtagOutput[:-1] for ment in item['mentions']: if ment not in mentionList: mentionList.add(ment) mentionsOutput += ment + ';' if mentionsOutput == '': mentionsOutput = 'NONE' else: mentionsOutput = mentionsOutput[:-1] if count <= 0.5 * cleanSize: labelScore = 1 else: labelScore = 0 item['label'] = labelScore totalOutputFile.write(json.dumps(item) + '\n') try: totalDisplayFile.write( brand + ' | ' + str(labelScore) + ' | ' + day + ' | ' + hour + ' | ' + item['content'] + ' | ' + str( item['id']) + ' | ' + hashtagOutput + ' | ' + mentionsOutput + '\n') except: print(content) else: # label with normalized scores scoreDistFile = open('dataset/stats/scoreDist.'+brand, 'w') for index, normalScore in enumerate(normalScores): item = cleanData[index] score = normalScore * 10 scoreDistFile.write(str(score)+'\n') hashtagOutput = '' mentionsOutput = '' for ht in item['hashtags']: if ht not in hashtagList: hashtagList.add(ht) hashtagOutput += ht + ';' if hashtagOutput == '': hashtagOutput = 'NONE' else: hashtagOutput = hashtagOutput[:-1] for ment in item['mentions']: if ment not in mentionList: mentionList.add(ment) mentionsOutput += ment + ';' if mentionsOutput == '': mentionsOutput = 'NONE' else: mentionsOutput = mentionsOutput[:-1] try: totalDisplayFile.write(brand+' | '+str(score)+' | '+day+' | '+hour+' | '+item['content']+' | '+str(item['id'])+' | '+hashtagOutput+' | '+mentionsOutput+'\n') item['label'] = score totalOutputFile.write(json.dumps(item)+'\n') except: print(content) scoreDistFile.close() hashtagFile = open('dataset/commTweets/hashtag.list', 'w') mentionFile = open('dataset/commTweets/mention.list', 'w') for ht in hashtagList: hashtagFile.write(ht+'\n') for ment in mentionList: mentionFile.write(ment+'\n') hashtagFile.close() mentionFile.close() totalOutputFile.close() def groupSampler(groupMode, groupSize, seed): print(groupMode) inputFile = open('dataset/experiment/labeled_data/' + groupMode + '_' + str(groupSize) + '.labeled', 'r') groupData = {} for num in range(int(groupSize)): groupData[num] = {} for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['content'].encode('utf-8').replace('\n', ' ').replace('\r', ' ') group = data['group'] groupData[group][tweetID] = text inputFile.close() outputFile = open('dataset/experiment/sample/' + groupMode + '_' + str(groupSize) + '.sample', 'w') for groupIndex in range(int(groupSize)): outputFile.write('Group: ' + str(groupIndex)+'\n') print(len(groupData[groupIndex])) for count, tweetID in enumerate(groupData[groupIndex]): if count % seed == 0: outputFile.write(groupData[groupIndex][tweetID]+'\t'+str(tweetID)+'\n') outputFile.close() def brandLabel(removeOutliers=True): if removeOutliers: totalOutputFile = open('dataset/experiment/brandGroup_0.labeled', 'w') contentOutputFile = open('dataset/experiment/content/brandGroup_0.content', 'w') statFile = open('dataset/analysis/brandGroup_0.stat', 'w') else: totalOutputFile = open('dataset/experiment/brandGroup_0__full' + '.labeled', 'w') contentOutputFile = open('dataset/experiment/content/brandGroup_0__full' + '.content', 'w') statFile = open('dataset/analysis/brandGroup_0_full' + '.stat', 'w') totalData = {} brandGroupData = {} inputFile = open('dataset/experiment/total.json', 'r') for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['text'].encode('utf-8') filtered = False for term in filterTerms: if term in text.lower(): filtered = True break if not filtered: brand = data['brand'] if brand not in brandGroupData: brandGroupData[brand] = [] brandGroupData[brand].append(tweetID) content = tweetTextCleaner.tweetCleaner(text) finalIndex = len(data['dynamic']) - 1 retweet = float(data['dynamic'][finalIndex]['retweet_count']) favorite = float(data['dynamic'][finalIndex]['favorite_count']) followers = float(data['dynamic'][finalIndex]['user_followers_count']) if retweet == 0: ratio = 0 else: ratio = favorite / retweet statFile.write( str(favorite) + '\t' + str(retweet) + '\t' + str(followers) + '\t' + str(ratio) + '\n') author_statuses_count = float(data['dynamic'][finalIndex]['user_statuses_count']) author_favorite_count = float(data['dynamic'][finalIndex]['user_favorite_count']) author_listed_count = float(data['dynamic'][finalIndex]['user_listed_count']) dateTemp = data['create_at'].split() day = dateTemp[0] hour = dateTemp[3].split(':')[0] postDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] dateTemp = data['user_create_at'].split() authorDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] postData_object = datetime.strptime(postDate, '%b %d %Y') authorData_object = datetime.strptime(authorDate, '%b %d %Y') authorInterval = float((postData_object - authorData_object).days) if followers > 0: successScore = (2.0 * retweet + favorite) * 10000 / followers temp = {'brand': brand, 'content': content, 'success_score': successScore, 'id': tweetID, 'day': day, 'hour': hour, 'mentions': data['mentions'], 'hashtags': data['hashtags'], 'author_statuses_count': author_statuses_count, 'author_favorite_count': author_favorite_count, 'author_listed_count': author_listed_count, 'authorInterval': authorInterval, 'author_followers_count': followers} totalData[tweetID] = temp inputFile.close() for brand, tweetIDs in brandGroupData.items(): print('Brand: ' + brand) groupScoreList = [] IDList = [] for tweetID in tweetIDs: if tweetID in totalData: successScore = totalData[tweetID]['success_score'] groupScoreList.append(successScore) IDList.append(tweetID) cleanDataList = [] if removeOutliers: zScores = stats.zscore(groupScoreList) if len(zScores) != len(groupScoreList): print ('Z-score Error!') for index, item in enumerate(IDList): if removeOutliers: zScore = float(zScores[index]) if zScore <= 2: cleanDataList.append({'id': item, 'success_score': groupScoreList[index]}) else: cleanDataList.append({'id': item, 'success_score': groupScoreList[index]}) print('Group Size: ' + str(len(cleanDataList))) sorted_cleanDataList = sorted(cleanDataList, key=lambda x: x['success_score'], reverse=True) # label post with 1-10 score cleanSize = len(cleanDataList) binSize = cleanSize / 10 threshold = binSize labelScore = 10 for count, item in enumerate(sorted_cleanDataList): tweetID = item['id'] if count <= threshold or labelScore == 1: tempData = totalData[tweetID] tempData['label'] = labelScore tempData['group'] = brand totalOutputFile.write(json.dumps(tempData) + '\n') contentOutputFile.write(tempData['content']+'\n') else: #print threshold threshold += binSize labelScore -= 1 statFile.close() totalOutputFile.close() contentOutputFile.close() def groupLabel(groupMode, groupSize, removeOutliers=True): groupFile = open('dataset/experiment/group_indicies/'+groupMode+'.'+str(groupSize), 'r') for line in groupFile: groupData = json.loads(line.strip()) groupFile.close() if removeOutliers: totalOutputFile = open('dataset/experiment/labeled_data/'+groupMode+'_'+str(groupSize)+'.labeled', 'w') contentOutputFile = open('dataset/experiment/content/'+groupMode+'_'+str(groupSize)+'.content', 'w') statFile = open('dataset/analysis/'+groupMode+'_'+str(groupSize)+'.stat', 'w') else: totalOutputFile = open('dataset/experiment/labeled_data/' + groupMode + '_' + str(groupSize) + '_full' + '.labeled', 'w') contentOutputFile = open('dataset/experiment/content/' + groupMode + '_' + str(groupSize) + '_full' + '.content', 'w') statFile = open('dataset/analysis/' + groupMode + '_' + str(groupSize) + '_full' + '.stat', 'w') totalData = {} inputFile = open('dataset/experiment/total.json', 'r') for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['text'].encode('utf-8') filtered = False for term in filterTerms: if term in text.lower(): filtered = True break if not filtered: brand = data['brand'] content = tweetTextCleaner.tweetCleaner(text) finalIndex = len(data['dynamic']) - 1 retweet = float(data['dynamic'][finalIndex]['retweet_count']) favorite = float(data['dynamic'][finalIndex]['favorite_count']) followers = float(data['dynamic'][finalIndex]['user_followers_count']) if retweet == 0: ratio = 0 else: ratio = favorite / retweet statFile.write( str(favorite) + '\t' + str(retweet) + '\t' + str(followers) + '\t' + str(ratio) + '\n') author_statuses_count = float(data['dynamic'][finalIndex]['user_statuses_count']) author_favorite_count = float(data['dynamic'][finalIndex]['user_favorite_count']) author_listed_count = float(data['dynamic'][finalIndex]['user_listed_count']) dateTemp = data['create_at'].split() day = dateTemp[0] hour = dateTemp[3].split(':')[0] postDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] dateTemp = data['user_create_at'].split() authorDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] postData_object = datetime.strptime(postDate, '%b %d %Y') authorData_object = datetime.strptime(authorDate, '%b %d %Y') authorInterval = float((postData_object - authorData_object).days) if followers > 0: successScore = (2.0 * retweet + favorite) * 10000 / followers temp = {'brand': brand, 'content': content, 'success_score': successScore, 'id': tweetID, 'day': day, 'hour': hour, 'mentions': data['mentions'], 'hashtags': data['hashtags'], 'author_statuses_count': author_statuses_count, 'author_favorite_count': author_favorite_count, 'author_listed_count': author_listed_count, 'authorInterval': authorInterval, 'author_followers_count': followers} totalData[tweetID] = temp inputFile.close() for groupIndex in range(int(groupSize)): print(groupMode+': ' + str(groupIndex)) groupScoreList = [] IDList = [] for tweetID in groupData[str(groupIndex)]: if tweetID in totalData: successScore = totalData[tweetID]['success_score'] groupScoreList.append(successScore) IDList.append(tweetID) cleanDataList = [] if removeOutliers: zScores = stats.zscore(groupScoreList) if len(zScores) != len(groupScoreList): print('Z-score Error!') for index, item in enumerate(IDList): if removeOutliers: zScore = float(zScores[index]) if zScore <= 2: cleanDataList.append({'id': item, 'success_score': groupScoreList[index]}) else: cleanDataList.append({'id': item, 'success_score': groupScoreList[index]}) print('Group Size: ' + str(len(cleanDataList))) sorted_cleanDataList = sorted(cleanDataList, key=lambda x: x['success_score'], reverse=True) # label post with 1-10 score cleanSize = len(cleanDataList) binSize = cleanSize / 10 threshold = binSize labelScore = 10 for count, item in enumerate(sorted_cleanDataList): tweetID = item['id'] if count <= threshold or labelScore == 1: tempData = totalData[tweetID] tempData['label'] = labelScore tempData['group'] = groupIndex totalOutputFile.write(json.dumps(tempData) + '\n') contentOutputFile.write(tempData['content']+'\n') else: #print threshold threshold += binSize labelScore -= 1 statFile.close() totalOutputFile.close() contentOutputFile.close() def simpleLabel(groupVersion, removeOutliers=True): if removeOutliers: totalOutputFile = open('dataset/experiment/labeled_data/simple_'+str(groupVersion)+'.labeled', 'w') contentOutputFile = open('dataset/experiment/content/simple_'+str(groupVersion)+'.content', 'w') statFile = open('dataset/analysis/simple_'+str(groupVersion)+'.stat', 'w') else: totalOutputFile = open('dataset/experiment/labeled_data/simple_'+str(groupVersion)+'_full.labeled', 'w') contentOutputFile = open('dataset/experiment/content/simple_'+str(groupVersion)+'_full.content', 'w') statFile = open('dataset/analysis/simple_'+str(groupVersion)+'_full.stat', 'w') totalData = {} inputFile = open('dataset/experiment/total.json', 'r') for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['text'].encode('utf-8') filtered = False for term in filterTerms: if term in text.lower(): filtered = True break if not filtered: brand = data['brand'] content = tweetTextCleaner.tweetCleaner(text) finalIndex = len(data['dynamic']) - 1 retweet = float(data['dynamic'][finalIndex]['retweet_count']) favorite = float(data['dynamic'][finalIndex]['favorite_count']) followers = float(data['dynamic'][finalIndex]['user_followers_count']) if retweet == 0: ratio = 0 else: ratio = favorite / retweet statFile.write( str(favorite) + '\t' + str(retweet) + '\t' + str(followers) + '\t' + str(ratio) + '\n') author_statuses_count = float(data['dynamic'][finalIndex]['user_statuses_count']) author_favorite_count = float(data['dynamic'][finalIndex]['user_favorite_count']) author_listed_count = float(data['dynamic'][finalIndex]['user_listed_count']) dateTemp = data['create_at'].split() day = dateTemp[0] hour = dateTemp[3].split(':')[0] postDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] dateTemp = data['user_create_at'].split() authorDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] postData_object = datetime.strptime(postDate, '%b %d %Y') authorData_object = datetime.strptime(authorDate, '%b %d %Y') authorInterval = float((postData_object - authorData_object).days) if followers > 0: successScore = (2.0 * retweet + favorite) * 10000 / followers temp = {'brand': brand, 'content': content, 'success_score': successScore, 'id': tweetID, 'day': day, 'hour': hour, 'mentions': data['mentions'], 'hashtags': data['hashtags'], 'author_statuses_count': author_statuses_count, 'author_favorite_count': author_favorite_count, 'author_listed_count': author_listed_count, 'authorInterval': authorInterval, 'author_followers_count': followers} totalData[tweetID] = temp inputFile.close() groupScoreList = [] IDList = [] for tweetID in totalData: successScore = totalData[tweetID]['success_score'] groupScoreList.append(successScore) IDList.append(tweetID) cleanDataList = [] if removeOutliers: zScores = stats.zscore(groupScoreList) if len(zScores) != len(groupScoreList): print('Z-score Error!') for index, item in enumerate(IDList): if removeOutliers: zScore = float(zScores[index]) if zScore <= 2: cleanDataList.append({'id': item, 'success_score': groupScoreList[index]}) else: cleanDataList.append({'id': item, 'success_score': groupScoreList[index]}) print('Group Size: ' + str(len(cleanDataList))) sorted_cleanDataList = sorted(cleanDataList, key=lambda x: x['success_score'], reverse=True) # label post with 1-10 score cleanSize = len(cleanDataList) binSize = cleanSize / 10 threshold = binSize labelScore = 10 for count, item in enumerate(sorted_cleanDataList): tweetID = item['id'] if count <= threshold or labelScore == 1: tempData = totalData[tweetID] tempData['label'] = labelScore tempData['group'] = 0 totalOutputFile.write(json.dumps(tempData) + '\n') contentOutputFile.write(tempData['content']+'\n') else: #print threshold threshold += binSize labelScore -= 1 statFile.close() totalOutputFile.close() contentOutputFile.close() def keywordLabel(keyword): outputFile = open('dataset/experiment/'+keyword+'.labeled', 'w') statFile = open('dataset/analysis/'+keyword+'.stat', 'w') tweetData = {} dataList = [] inputFile = open('dataset/experiment/total.json', 'r') for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['text'].encode('utf-8') if keyword in text.lower(): brand = data['brand'] content = tweetTextCleaner.tweetCleaner(text) finalIndex = len(data['dynamic']) - 1 retweet = float(data['dynamic'][finalIndex]['retweet_count']) favorite = float(data['dynamic'][finalIndex]['favorite_count']) followers = float(data['dynamic'][finalIndex]['user_followers_count']) if retweet == 0: ratio = 0 else: ratio = favorite / retweet statFile.write( str(favorite) + '\t' + str(retweet) + '\t' + str(followers) + '\t' + str(ratio) + '\n') author_statuses_count = float(data['dynamic'][finalIndex]['user_statuses_count']) author_favorite_count = float(data['dynamic'][finalIndex]['user_favorite_count']) author_listed_count = float(data['dynamic'][finalIndex]['user_listed_count']) dateTemp = data['create_at'].split() day = dateTemp[0] hour = dateTemp[3].split(':')[0] postDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] dateTemp = data['user_create_at'].split() authorDate = dateTemp[1] + ' ' + dateTemp[2] + ' ' + dateTemp[5] postData_object = datetime.strptime(postDate, '%b %d %Y') authorData_object = datetime.strptime(authorDate, '%b %d %Y') authorInterval = float((postData_object - authorData_object).days) if followers > 0: successScore = (2.0 * retweet + favorite) * 10000 / followers temp = {'brand': brand, 'content': content, 'success_score': successScore, 'id': tweetID, 'day': day, 'hour': hour, 'mentions': data['mentions'], 'hashtags': data['hashtags'], 'author_statuses_count': author_statuses_count, 'author_favorite_count': author_favorite_count, 'author_listed_count': author_listed_count, 'authorInterval': authorInterval, 'author_followers_count': followers} tweetData[tweetID] = temp dataList.append({'id': tweetID, 'success_score': successScore}) inputFile.close() print(len(dataList)) sorted_dataList = sorted(dataList, key=lambda x: x['success_score'], reverse=True) # label post with 1-10 score dataSize = len(dataList) binSize = dataSize / 10 threshold = binSize labelScore = 10 for count, item in enumerate(sorted_dataList): tweetID = item['id'] if count <= threshold or labelScore == 1: tempData = tweetData[tweetID] tempData['label'] = labelScore tempData['keyword'] = keyword outputFile.write(json.dumps(tempData) + '\n') else: threshold += binSize labelScore -= 1 statFile.close() outputFile.close() def scoreFileBlender(): data = [] listFile = open('brand.list', 'r') for line in listFile: brand = line.strip() inputFile = open('dataset/stats/scoreDist.' + brand, 'r') for line in inputFile: data.append(float(line.strip())) inputFile.close() listFile.close() sorted_data = sorted(data, reverse=True) outputFile = open('dataset/stats/scoreDist.total', 'w') for num in sorted_data: outputFile.write(str(num)+'\n') outputFile.close() def maxIndex(input, num): line = {} for index in range(len(input)): line[index] = float(input[index]) sorted_line = sorted(line.iteritems(), key=operator.itemgetter(1), reverse=True) output = [] for i in range(num): output.append(sorted_line[i][0]) return output def dataGrouper(groupMode, groupSize, hierarchical=False): inputFile = open('dataset/experiment/total.json', 'r') tweetData = [] outputData = {} for index in range(int(groupSize)): outputData[str(index)] = [] for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['text'].encode('utf-8') content = text.replace('\r', ' ').replace('\n', ' ') brand = data['brand'] tweetData.append({'id': tweetID, 'content': content, 'brand': brand}) inputFile.close() if groupMode == 'brandGroup': print('running brand grouping...') brandMapper = {} groupFile = open('brandGroup.list', 'r') for index, line in enumerate(groupFile): brands = line.strip().split() for brand in brands: brandMapper[brand] = str(index) groupFile.close() for tweet in tweetData: if tweet['brand'] in brandMapper: outputData[brandMapper[tweet['brand']]].append(tweet['id']) elif groupMode == 'topicGroup': print('running LDA grouping...') csvFile = open('TMT/LDAinput.csv', 'w') for tweet in tweetData: csvFile.write(tweetTextCleaner.tweetCleaner(tweet['content']).replace('"', '\'') + '\n') csvFile.close() subprocess.check_output('java -Xmx1024m -jar TMT/tmt-0.4.0.jar TMT/assign.scala', shell=True) distFile = open('TMTSnapshots/document-topic-distributions.csv', 'r') topicOut = {} for line in distFile: seg = line.strip().split(',') if seg[1] != 'NaN': topicOutList = maxIndex(seg[1:], int(groupSize)) topicOut[int(seg[0])] = topicOutList distFile.close() for index, value in topicOut.items(): outputData[str(value[0])].append(tweetData[index]['id']) elif groupMode == 'simGroup_binary': print('running kmeans clustering with binary representation...') tweets = [] for tweet in tweetData: tweets.append(tweetTextCleaner.tweetCleaner(tweet['content'])) vectorizer = CountVectorizer(analyzer='word', ngram_range=(1, 1), min_df=1, stop_words='english', binary='True') matrix = vectorizer.fit_transform(tweets) print(matrix.shape) if hierarchical: print() #z = cluster.hierarchy.linkage(matrix, 'ward') else: kmeans = cluster.KMeans(n_clusters=int(groupSize), init='k-means++') kmeans.fit(matrix) for index, label in enumerate(kmeans.labels_): outputData[str(label)].append(tweetData[index]['id']) elif groupMode == 'simGroup_emb': print('running kmeans clustering with CMU encoding...') ''' contentFile = open('embedding/CMU_hashtag/tweet.content', 'w') for tweet in tweetData: contentFile.write(tweet['content']+'\n') contentFile.close() subprocess.check_output('python embedding/CMU_hashtag/preprocess.py', shell=True) subprocess.check_output('python embedding/CMU_hashtag/encode_char.py embedding/CMU_hashtag/tweet.input embedding/CMU_hashtag/best_model embedding/CMU_hashtag/', shell=True) ''' embData = numpy.load('embedding/CMU_hashtag/embeddings.npy') print(len(embData)) if hierarchical: print() else: kmeans = cluster.KMeans(n_clusters=int(groupSize), init='k-means++') kmeans.fit(embData) for index, label in enumerate(kmeans.labels_): outputData[str(label)].append(tweetData[index]['id']) outputFile = open('dataset/experiment/group_indicies/'+groupMode + '.' + str(groupSize), 'w') outputFile.write(json.dumps(outputData)) outputFile.close() ''' def content2vec(model, content): words = simpleTokenize(content) tempList = [] for word in words: if word in model.vocab: tempList.append(model[word]) if len(tempList) < 1: return numpy.zeros(400) vecSize = len(tempList[0]) sumList = [] for i in range(vecSize): sumList.append(0.0) for vec in tempList: for i in range(vecSize): sumList[i] += vec[i] output = [] dataSize = len(tempList) for value in sumList: output.append(value/dataSize) return numpy.array(output) ''' ''' def dataGrouperKey(groupMode, groupSize): keyData = {} keyFile = open('dataset/experiment/parser/total.key', 'r') for line in keyFile: if line.strip().startswith(':: '): keyData[int(line.strip().replace(':: ', ''))] = 'NONE' else: temp = line.strip().split(' :: ') keyData[int(temp[1])] = temp[0] keyFile.close() inputFile = open('dataset/experiment/total.json', 'r') tweetData = [] outputData = {} for index in range(int(groupSize)): outputData[str(index)] = [] for line in inputFile: data = json.loads(line.strip()) tweetID = data['id'] text = data['text'].encode('utf-8') key = keyData[tweetID] content = text.replace('\r', ' ').replace('\n', ' ') brand = data['brand'] tweetData.append({'id': tweetID, 'content': content, 'brand': brand, 'key': key}) inputFile.close() if groupMode == 'topicGroup': print('running LDA grouping...') csvFile = open('TMT/LDAinput.csv', 'w') for tweet in tweetData: csvFile.write(tweet['key'].replace('"', '\'') + '\n') csvFile.close() subprocess.check_output('java -Xmx1024m -jar TMT/tmt-0.4.0.jar TMT/assign.scala', shell=True) distFile = open('TMTSnapshots/document-topic-distributions.csv', 'r') topicOut = {} for line in distFile: seg = line.strip().split(',') if seg[1] != 'NaN': topicOutList = maxIndex(seg[1:], int(groupSize)) topicOut[int(seg[0])] = topicOutList distFile.close() for index, value in topicOut.items(): outputData[str(value[0])].append(tweetData[index]['id']) elif groupMode == 'simGroup_binary': print('running kmeans clustering with binary representation...') tweets = [] for tweet in tweetData: tweets.append(tweet['key']) vectorizer = CountVectorizer(analyzer='word', ngram_range=(1, 1), min_df=1, stop_words='english', binary='True') matrix = vectorizer.fit_transform(tweets) print(matrix.shape) kmeans = cluster.KMeans(n_clusters=int(groupSize), init='k-means++') kmeans.fit(matrix) for index, label in enumerate(kmeans.labels_): outputData[str(label)].append(tweetData[index]['id']) elif groupMode == 'simGroup_emb': w2v = word2vecReader.Word2Vec() embModel = w2v.loadModel() contents = [] for tweet in tweetData: tweetVec = content2vec(embModel, tweet['key']) contents.append(tweetVec) matrix = numpy.array(contents) print(matrix.shape) kmeans = cluster.KMeans(n_clusters=int(groupSize), init='k-means++') kmeans.fit(matrix) for index, label in enumerate(kmeans.labels_): outputData[str(label)].append(tweetData[index]['id']) outputFile = open('dataset/experiment/group_indicies/' + groupMode + '.' + str(groupSize), 'w') outputFile.write(json.dumps(outputData)) outputFile.close() ''' def dataAligner(groupMode, groupSize): tweetData = {} inputDataFile = open('dataset/experiment/'+groupMode+'_'+str(groupSize)+'.labeled', 'r') for line in inputDataFile: temp = json.loads(line.strip()) tweetData[str(temp['id'])] = temp['label'] orderTweetIDList = [] cleanDataFile = open('dataset/experiment/clean.labeled', 'r') for line in cleanDataFile: temp = json.loads(line.strip()) orderTweetIDList.append(temp['id']) if __name__ == "__main__": label_new(1, 'dataset/commTweets.json') #label2(1) #scoreFileBlender() #dataGrouper('topicGroup', 7.2) #dataGrouperKey('topicGroup', 2.4) #groupLabel('topicGroup', 2.4, True) #simpleLabel(1.1, True) #groupSampler('simGroup_emb', 5.4, 300) #groupSampler('topicGroup', 2.2, 3000) #groupSampler('topicGroup', 2.1, 1000) #groupSampler('topicGroup', 2.2, 1000) #brandLabel() #keywordLabel('trump') #keywordLabel('iphone')
python
import pytest from collections import Counter from asttools import ( quick_parse, ) from ..pattern_match import ( pattern, UnhandledPatternError, config_from_subscript, split_case_return ) class Hello: def __init__(self, greeting): self.greeting = greeting class Unhandled: def __repr__(self): return 'Unhandled' def test_single_pattern(): @pattern def pat(val): meta[match: val] # noqa: F821 ~ 'dale' | "DALE" ~ 'list' | [] ~ str | val ~ int | 'int'+str(val) ~ Hello | val.greeting ~ default | 'default_' + str(val) # noqa: F821 obj = Hello("Welcome Friend") assert pat(obj) == "Welcome Friend" assert pat('dale') == "DALE" assert pat('some_string') == "some_string" assert pat(101) == "int101" assert pat('list') == [] assert pat(Unhandled()) == 'default_Unhandled' def test_multi_return(): @pattern def multi_return(x): meta[match: x] # noqa: F821 ~ float | type(x), x, x ~ int | type(x), x assert multi_return(1) == (int, 1) assert multi_return(1.1) == (float, 1.1, 1.1) def test_when(): @pattern def multi_return(x): meta[match: x] # noqa: F821 ~ float [when: x > 1] | type(x), x, x # noqa: F821, E211 ~ int [when: x > 100 and x < 150] | x, 'Between 100 and 150' # noqa: F821, E211, E501 ~ int [when: x > 10] | 'INT OVER 10' # noqa: F821, E211 ~ int | type(x), x assert multi_return(1) == (int, 1) assert multi_return(11) == "INT OVER 10" assert multi_return(122) == (122, "Between 100 and 150") assert multi_return(1.1) == (float, 1.1, 1.1) with pytest.raises(UnhandledPatternError): assert multi_return(0.1) == (float, 1.1, 1.1) def test_config_from_subscript(): node = quick_parse("bob[match: x]").value meta = config_from_subscript(node) assert meta['match'][0].id == 'x' assert Counter(list(meta)) == Counter(['match']) node = quick_parse("bob[match: x, second: 1]").value meta = config_from_subscript(node) assert meta['match'][0].id == 'x' assert meta['second'][0].n == 1 assert Counter(list(meta)) == Counter(['match', 'second']) node = quick_parse("bob[match: x, y, second: 1]").value meta = config_from_subscript(node) assert meta['match'][0].id == 'x' assert meta['match'][1].id == 'y' assert meta['second'][0].n == 1 assert Counter(list(meta)) == Counter(['match', 'second']) def test_split_case_return(): node = quick_parse("~ x | type(x), y").value case_nodes, return_nodes = split_case_return(node) assert len(case_nodes) == 1 assert len(return_nodes) == 2 def test_multi_pattern(): @pattern def multi(x, y): meta[match: x, y] # noqa: F821 ~ float, 3 | type(x), x, y ~ int, 3 | type(x), x, 'int' ~ int, int | 'INT' assert multi(1, 2) == 'INT' assert multi(1, 3) == (int, 1, 'int') assert multi(1.0, 3) == (float, 1, 3) def test_pattern_match_doc(): # should ignore doc string. @pattern def docstring(x, y): """ doc string """ meta[match: x, y] # noqa: F821 _missing = object() def test_pattern_match_object(): # test again object() sentinels @pattern def match(x): meta[match: x] # noqa: F821 ~ _missing | "MISSING" ~ default | x # noqa: F821 assert match(_missing) == "MISSING" assert match(100) == 100 @pattern def multimatch(x, y): meta[match: x, y] # noqa: F821 ~ 1, _missing | x, "MISSING" ~ default | x, y # noqa: F821 assert multimatch(1, _missing) == (1, "MISSING") assert multimatch(_missing, 100) == (_missing, 100)
python
import math from functools import reduce import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import pandas as pd from IPython.display import display from matplotlib.dates import DateFormatter from scipy.stats import linregress from utils import get_vlines, fmt_number, fmt_pct class CovidDataViz(object): """ A class to make plots from processed COVID-19 and World Bank data. """ def __init__(self, path='../data/processed'): self.path = path self.data = dict() self.data['Confirmed'] = pd.read_csv(f'{path}/confirmed_cases.csv') self.data['Confirmed chg'] = pd.read_csv(f'{path}/confirmed_cases_daily_change.csv') self.data['Confirmed t0'] = pd.read_csv(f'{path}/confirmed_cases_since_t0.csv') self.data['Recovered'] = pd.read_csv(f'{path}/recovered_cases.csv') self.data['Dead'] = pd.read_csv(f'{path}/dead_cases.csv') self.data['Active'] = pd.read_csv(f'{path}/active_cases.csv') self.data['Mortality'] = pd.read_csv(f'{path}/mortality_rate.csv') self.data['Coordinates'] = pd.read_csv(f'{path}/coordinates.csv') self.data['Continents'] = pd.read_csv(f'{path}/continents.csv') self.data['Ctry to cont'] = pd.read_csv(f'{path}/country_to_continent.csv') self.data['Country stats'] = pd.read_csv(f'{path}/country_stats.csv') self.data['World bank'] = pd.read_csv(f'{path}/world_bank.csv') for _, df in self.data.items(): if 'Date' in df.columns: df['Date'] = pd.to_datetime(df['Date']) self.all_countries = sorted(set(self.data['Coordinates']['Country'])) self.all_continents = sorted(set(self.data['Continents']['Continent'])) def list_highest_mortality(self, n=10): """ Generate a list of countries with the highest moratlity rate. Notes ----- mortality = dead / confirmed. """ df = self._sort_ctry_stats(stat_name='Mortality', n=n) return df def get_country_ts(self, country): """ Extract country level cases time series. """ dfs = [self.data['Confirmed'][['Date', country]], self.data['Recovered'][['Date', country]], self.data['Dead'][['Date', country]], self.data['Active'][['Date', country]]] df = reduce(lambda x, y: pd.merge(x, y, on='Date', how='outer'), dfs) df.columns = ['Date', 'Confirmed', 'Recovered', 'Dead', 'Active'] return df def get_continent_ts(self, continent): """ Get continent level cases time series. """ cont = self.data['Continents'].copy() cont = cont[cont['Continent'] == continent] cont = pd.merge(self.data['Coordinates'], cont, on='Country') countries = sorted(list(cont['Country'])) cases = ['Confirmed', 'Recovered', 'Dead', 'Active'] dfs = [] for c in cases: tmp = self.data[c][countries].sum(axis=1) tmp.name = c tmp = tmp.to_frame() tmp['Date'] = self.data[c]['Date'] dfs.append(tmp) df = reduce(lambda x, y: pd.merge(x, y, on='Date', how='outer'), dfs) df = df[['Date'] + cases] return df def get_world_ts(self): """ Get world level cases time series. """ cases = ['Confirmed', 'Recovered', 'Dead', 'Active'] dfs = [] for case in cases: tmp = self.data[case].drop('Date', axis=1).sum(axis=1) tmp.name = case tmp = tmp.to_frame() tmp['Date'] = self.data[case]['Date'] dfs.append(tmp) df = reduce(lambda x, y: pd.merge(x, y, on='Date', how='outer'), dfs) return df def get_highest_mortality(self, n_countries, min_cases=10 ** 4): """ List countries with highest moratlity rate. """ df = self.data['Country stats'] df = df[df['Confirmed'] > min_cases] df = df.sort_values('Mortality', ascending=False).copy() df = df.reset_index(drop=True) df = df.head(n_countries) df = df[['Country', 'Mortality']] return df def get_most_cases(self, case_type, n=10): """ Get n countries with most cases. """ df = self._sort_ctry_stats(stat_name=case_type, n=n) return df def plot_world_cases(self): """ Create world cases line plot. """ df = self.get_world_ts() self.plot_ts(df=df, title='World', suffix='cases') def plot_country_cases(self, country): """ Create individual country cases line plot. """ df = self.get_country_ts(country=country) self.plot_ts(df, country, 'cases') def plot_continent_cases(self, continent): """ Create continent cases line plot. """ df = self.get_continent_ts(continent=continent) self.plot_ts(df, continent, 'cases') def plot_ts(self, df, title, suffix): """ Draw individual time series as a line plot. Inputs ------ df : pd.DataFrame A dataframe with a `Date` column and cases data. title : str The title of the plot Notes ----- This will create a time series plot of cases. It will also save the plot to ../img/{title}.png """ # Set proper aspect ratio and dpi width = 1000 height = width / 1.78 dpi = 300 fontsize = 3 fontfamily = 'serif' plt.figure(figsize=(width/dpi, height/dpi), dpi=dpi) ax = plt.subplot(111) # Extend x axis so that labels fit inside the plot extend_x_axis = pd.Timedelta('7 days') # Extend plot by 5% to make space between # plot and title extend_y_axis = 0.04 # Disable spines ax.spines['top'].set_visible(False) # ax.spines['bottom'].set_visible(False) # ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) # Set spine width ax.spines['left'].set_linewidth(1/5) ax.spines['bottom'].set_linewidth(1/5) # Force ticks to bottom left ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Get min and max values to set limits # points fit inside the plot. xmin = df['Date'].min() xmax = df['Date'].max() + extend_x_axis ymin = df.drop(['Date'], axis=1).min().min() ymax = df.drop(['Date'], axis=1).max().max() yticks, ylabels = get_vlines(ymin, ymax, k=5) plt.yticks(ticks=yticks, labels=ylabels, fontsize=fontsize, family=fontfamily) plt.xticks(fontsize=fontsize, family=fontfamily) # Display label of every other month ax.xaxis.set_major_formatter(DateFormatter('%Y-%m')) ax.xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # Plot horizontal greyed out lines so that people can # actually see the data without squinting for y_val in yticks: ax.plot(df['Date'], np.full((len(df), 1), y_val), c='black', linestyle='dashed', linewidth=1/6, alpha=3/10) # User colors from color brewer. colours = ['#d7191c', '#fdae61', '#a6d96a', '#1a9641'] # Extract list of columns in alphabeticall order cols = sorted(df.drop('Date', axis=1).columns) # Plot the actual data for col,c in zip(cols, colours): # Line plot ax.plot(df['Date'], df[col], linewidth=1/3, alpha=9/10, c=c) # Plot marker at end of x axis x = df['Date'].tail(1) y = df[col].tail(1) ax.scatter(x=x, y=y, linewidth=1/3, c=c, marker='.', alpha=9/10) # Plot label outside plot ax.text(x=df['Date'].tail(1) + pd.Timedelta('7 days'), y=df[col].tail(1), s=col, fontsize=fontsize, c=c, family=fontfamily, horizontalalignment='left', verticalalignment='center') # Display title left aligned to y axis plt.title(label=title, fontsize=fontsize + 1, family=fontfamily, weight='bold', loc='center') # Set plot limits and extend y by 5% plt.xlim(xmin, xmax) # Set minimum y value to -2% of ymax so that plt.ylim(0, (1 + extend_y_axis) * ymax) plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom='on', left=False, right=False, labelleft='on') plt.tight_layout() plt.savefig(f'../img/{title.lower()}_{suffix}.png', bbox_inches='tight') def plot_highest_country_stats(self, statistic, n=10): """ Bar plot of countries with the most cases of a certain type. """ df = self.get_most_cases(case_type=statistic) df.loc[df['Country'] == 'United Kingdom', 'Country'] = 'UK' # Set proper aspect ratio and dpi width = 1000 height = width / 1.33 dpi = 300 fontsize = 3 fontfamily = 'serif' plt.figure(figsize=(width/dpi, height/dpi), dpi=dpi) ax = plt.subplot(111) # Spines ax.spines['top'].set_visible(False) # ax.spines['bottom'].set_visible(False) # ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_linewidth(1/5) ax.spines['bottom'].set_linewidth(1/5) # Plot x = df['Country'] y = df[statistic] ax.bar(x=x, height=y, width=1/2) # Ticks plt.xticks(rotation=90, fontsize=fontsize, family=fontfamily) if statistic == 'Mortality': ymin, ymax = math.floor(y.min()), y.max() yticks, ylabels = get_vlines(ymin, ymax, k=5, shift=ymin) ylabels = [lab+'%' for lab in ylabels] bar_labels = [ fmt_pct(y) for y in list(df[statistic]) ] else: ymin, ymax = 0, y.max() yticks, ylabels = get_vlines(ymin, ymax, k=5, shift=0) bar_labels = [ fmt_number(y) for y in list(df[statistic]) ] plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom='on', left=False, right=False, labelleft='on') plt.yticks(ticks=yticks, labels=ylabels, fontsize=fontsize, family=fontfamily) ax.tick_params(width=1/5, color='black') # Limits plt.xlim(-1/2, len(df) - 1/2) plt.ylim(ymin, ymax + (0.02 * ymax)) # Horizontal lines for y_val in yticks: ax.plot(np.linspace(-1, len(x), 1000), np.full((1000, 1), y_val), c='black', linestyle='dashed', linewidth=1/5, alpha=3/10) # Annotations rects = ax.patches for rect, label in zip(rects, bar_labels): height = rect.get_height() ax.text(x=rect.get_x() + rect.get_width() / 2, y=height + (0.02 * ymax), s=label, ha='center', va='bottom', fontsize=fontsize, family=fontfamily) # Labels if statistic == 'Mortality': plt.ylabel('Moratlity rate in percent', fontsize=fontsize, family=fontfamily) else: plt.ylabel('Number of cases', fontsize=fontsize, family=fontfamily) # Title plt.title(label=f'{statistic}', fontsize=fontsize + 1, family=fontfamily, weight='bold', loc='center') plt.tight_layout() plt.savefig(fname=f'../img/{statistic.lower()}_cases_most.png', bbox_inches='tight') plt.show() def plot_growth(self, countries, periods, steps=60, save=False): """ Plot growth curves, log scale. Inputs ------ countries : list List of countries periods : list of ints Doubling periods for growth curves. steps : int Number of data points to use. """ countries = sorted(countries) # Extract mean and use as starting point for # exponential growth curves. a = self.data['Confirmed t0'].mean(axis=1)[0] b = 2 # List of growth curves growth = list() for period in periods: g = exp_growth(a=a, b=b, t=np.arange(steps), tau=period) g = np.log(g) growth.append(list(g)) # Plot # Set proper aspect ratio and dpi width = 1000 height = width / 1.33 dpi = 300 fontsize = 3 fontfamily = 'serif' plt.figure(figsize=(width/dpi, height/dpi), dpi=dpi) ax = plt.subplot(111) ymax = 0 for g,p in zip(growth, periods): # Draw growth curves ax.plot(range(steps), g, c='grey', linestyle='dashed', lw=1/3, alpha=1/2) if p == 1: s = f'Double every day' else: s = f'Double every {str(p)} days' # Draw marker x = steps - 1 y = g[steps - 1] ax.scatter(x=x, y=y, linewidth=1/12, c='grey', alpha=1/2, marker='.') # Draw text outside x = steps y = g[steps - 1] ax.text(x=x, y=y, s=s, alpha=1, fontsize=fontsize, c='grey', family=fontfamily, horizontalalignment='left', verticalalignment='center', rotation_mode='anchor') if g[-1] >= ymax: ymax = g[-1] # Spines ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # Draw country level data plot_df = self.data['Confirmed t0'][countries].head(steps) for c in countries: ax.plot(range(len(plot_df)), np.log(plot_df[c]), label=c, lw=1/3) # Ticks plt.xticks(fontsize=fontsize, family=fontfamily) plt.yticks(fontsize=fontsize, family=fontfamily) plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom='on', left=False, right=False, labelleft='on') # Spines for axis in ['top', 'bottom','left', 'right']: ax.spines[axis].set_linewidth(1/5) # Limits plt.xlim(0, steps) plt.ylim(np.log(a), ymax + 1/2) # Legend legend = ax.legend(loc='upper left', fancybox=False, prop={'family': fontfamily, 'size': fontsize}) legend.get_frame().set_linewidth(1/5) legend.get_frame().set_edgecolor('black') # Labels plt.ylabel(ylabel='Confirmed cases, log scale', fontsize=fontsize, family=fontfamily) plt.xlabel(xlabel='Days since 100 cases', fontsize=fontsize, family=fontfamily) plt.title(label='Doubling rate', fontsize=fontsize + 1, family=fontfamily, weight='bold', loc='center') plt.tight_layout() if save: plt.savefig(fname='../img/growth_plot.png', bbox_inches='tight') plt.show() def plot_country_cases_chg(self, country, n=7): """ Plot country level change in cases with n day moving average. """ df = self.data['Confirmed chg'][['Date', country]].copy() df[f'{n} day average \n of new cases'] = df[country].rolling(n).mean() df = df.drop(country, axis=1) self.plot_ts(df=df, title=country, suffix='chg') def plot_with_slope(self, x, y): """ Create scatter plot with regression line and greyed out R squared. """ X = self.data['World bank'][x] Y = self.data['World bank'][y] X_reg = np.linspace(np.min(X), np.max(X), 1000) # Estimate Y = aX +b a, b, c, p, _ = linregress(X, Y) # Get r squared r = c * c Y_reg = a * X_reg + b label_reg = f'y = {round(a, 4)}x + {round(b, 4)}' text_reg = r'$R^{2}$' + f'={round(r, 2)}'# + '\n' + r'$p$-value' + f'={round(p, 2)}' plt.figure(figsize=(5,5)) plt.scatter(x=X, y=Y, s=4, alpha=2/3) plt.plot(X_reg, Y_reg, linewidth=1, color='black', label=label_reg) plt.text(x=(np.min(X) + np.max(X))/2, y=(np.min(Y) + np.max(Y))/2, s=text_reg, alpha=1/4, fontsize=30, verticalalignment='center', horizontalalignment='center') plt.xlabel(f'{x}') plt.ylabel(f'{y}') # plt.legend(loc='upper left') plt.tight_layout() plt.show() def _sort_ctry_stats(self, stat_name, min_cases=5000, n=10): """ Sort the dataframe of country statistics using a cutoff of `min_cases` and return top `n` countries. """ df = self.data['Country stats'].copy() df['Has min cases'] = df['Confirmed'] > min_cases df = df[df['Has min cases'] == True] df = df.sort_values(stat_name, ascending=False) df = df.reset_index(drop=True) df = df[['Country', stat_name]] df = df.head(n) return df def show_corr_mat(self): """ Display colourfull correlation matrix of cases with socioeconomic factors. """ C = self.data['World bank'].corr() C = C.style.background_gradient(cmap='coolwarm') C = C.set_precision(2) C = C.set_table_attributes('style="font-size: 13px"') display(C) def exp_growth(a, b, t, tau): """ Calculate exponential growth. Parameters ---------- a : int Initial value. b : int Growth factor. t : int Time. tau : int Time required for increase by factor of b. Notes ----- See https://en.wikipedia.org/wiki/Exponential_growth for details. """ return a * np.power(b, t / tau)
python
#! /usr/bin/env python3 import argparse import usb.core import usb.util import array import sys import hashlib import csv from progressbar.bar import ProgressBar class PrecursorUsb: def __init__(self, dev): self.dev = dev self.RDSR = 0x05 self.RDSCUR = 0x2B self.RDID = 0x9F self.WREN = 0x06 self.WRDI = 0x04 self.SE4B = 0x21 self.BE4B = 0xDC self.PP4B = 0x12 self.registers = {} self.regions = {} self.gitrev = '' def register(self, name): return int(self.registers[name], 0) def peek(self, addr, display=False): _dummy_s = '\x00'.encode('utf-8') data = array.array('B', _dummy_s * 4) numread = self.dev.ctrl_transfer(bmRequestType=(0x80 | 0x43), bRequest=0, wValue=(addr & 0xffff), wIndex=((addr >> 16) & 0xffff), data_or_wLength=data, timeout=500) read_data = int.from_bytes(data.tobytes(), byteorder='little', signed=False) if display == True: print("0x{:08x}".format(read_data)) return read_data def poke(self, addr, wdata, check=False, display=False): if check == True: _dummy_s = '\x00'.encode('utf-8') data = array.array('B', _dummy_s * 4) numread = self.dev.ctrl_transfer(bmRequestType=(0x80 | 0x43), bRequest=0, wValue=(addr & 0xffff), wIndex=((addr >> 16) & 0xffff), data_or_wLength=data, timeout=500) read_data = int.from_bytes(data.tobytes(), byteorder='little', signed=False) print("before poke: 0x{:08x}".format(read_data)) data = array.array('B', wdata.to_bytes(4, 'little')) numwritten = self.dev.ctrl_transfer(bmRequestType=(0x00 | 0x43), bRequest=0, wValue=(addr & 0xffff), wIndex=((addr >> 16) & 0xffff), data_or_wLength=data, timeout=500) if check == True: _dummy_s = '\x00'.encode('utf-8') data = array.array('B', _dummy_s * 4) numread = self.dev.ctrl_transfer(bmRequestType=(0x80 | 0x43), bRequest=0, wValue=(addr & 0xffff), wIndex=((addr >> 16) & 0xffff), data_or_wLength=data, timeout=500) read_data = int.from_bytes(data.tobytes(), byteorder='little', signed=False) print("after poke: 0x{:08x}".format(read_data)) if display == True: print("wrote 0x{:08x} to 0x{:08x}".format(wdata, addr)) def burst_read(self, addr, len): _dummy_s = '\x00'.encode('utf-8') maxlen = 4096 ret = bytearray() packet_count = len // maxlen if (len % maxlen) != 0: packet_count += 1 for pkt_num in range(packet_count): cur_addr = addr + pkt_num * maxlen if pkt_num == packet_count - 1: if len % maxlen != 0: bufsize = len % maxlen else: bufsize = maxlen else: bufsize = maxlen data = array.array('B', _dummy_s * bufsize) numread = self.dev.ctrl_transfer(bmRequestType=(0x80 | 0x43), bRequest=0, wValue=(cur_addr & 0xffff), wIndex=((cur_addr >> 16) & 0xffff), data_or_wLength=data, timeout=500) if numread != bufsize: print("Burst read error: {} bytes requested, {} bytes read at 0x{:08x}".format(bufsize, numread, cur_addr)) exit(1) ret = ret + data return ret def burst_write(self, addr, data): if len(data) == 0: return maxlen = 4096 packet_count = len(data) // maxlen if (len(data) % maxlen) != 0: packet_count += 1 for pkt_num in range(packet_count): cur_addr = addr + pkt_num * maxlen if pkt_num == packet_count - 1: if len(data) % maxlen != 0: bufsize = len(data) % maxlen else: bufsize = maxlen else: bufsize = maxlen wdata = array.array('B', data[(pkt_num * maxlen):(pkt_num * maxlen) + bufsize]) numwritten = self.dev.ctrl_transfer(bmRequestType=(0x00 | 0x43), bRequest=0, wValue=(cur_addr & 0xffff), wIndex=((cur_addr >> 16) & 0xffff), data_or_wLength=wdata, timeout=500) if numwritten != bufsize: print("Burst write error: {} bytes requested, {} bytes written at 0x{:08x}".format(bufsize, numwritten, cur_addr)) exit(1) def ping_wdt(self): self.poke(self.register('wdt_watchdog'), 1, display=False) self.poke(self.register('wdt_watchdog'), 1, display=False) def spinor_command_value(self, exec=0, lock_reads=0, cmd_code=0, dummy_cycles=0, data_words=0, has_arg=0): return ((exec & 1) << 1 | (lock_reads & 1) << 24 | (cmd_code & 0xff) << 2 | (dummy_cycles & 0x1f) << 11 | (data_words & 0xff) << 16 | (has_arg & 1) << 10 ) def flash_rdsr(self, lock_reads): self.poke(self.register('spinor_cmd_arg'), 0) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=lock_reads, cmd_code=self.RDSR, dummy_cycles=4, data_words=1, has_arg=1) ) return self.peek(self.register('spinor_cmd_rbk_data'), display=False) def flash_rdscur(self): self.poke(self.register('spinor_cmd_arg'), 0) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=1, cmd_code=self.RDSCUR, dummy_cycles=4, data_words=1, has_arg=1) ) return self.peek(self.register('spinor_cmd_rbk_data'), display=False) def flash_rdid(self, offset): self.poke(self.register('spinor_cmd_arg'), 0) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, cmd_code=self.RDID, dummy_cycles=4, data_words=offset, has_arg=1) ) return self.peek(self.register('spinor_cmd_rbk_data'), display=False) def flash_wren(self): self.poke(self.register('spinor_cmd_arg'), 0) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=1, cmd_code=self.WREN) ) def flash_wrdi(self): self.poke(self.register('spinor_cmd_arg'), 0) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=1, cmd_code=self.WRDI) ) def flash_se4b(self, sector_address): self.poke(self.register('spinor_cmd_arg'), sector_address) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=1, cmd_code=self.SE4B, has_arg=1) ) def flash_be4b(self, block_address): self.poke(self.register('spinor_cmd_arg'), block_address) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=1, cmd_code=self.BE4B, has_arg=1) ) def flash_pp4b(self, address, data_bytes): self.poke(self.register('spinor_cmd_arg'), address) self.poke(self.register('spinor_command'), self.spinor_command_value(exec=1, lock_reads=1, cmd_code=self.PP4B, has_arg=1, data_words=(data_bytes//2)) ) def load_csrs(self): LOC_CSRCSV = 0x20277000 # this address shouldn't change because it's how we figure out our version number csr_data = self.burst_read(LOC_CSRCSV, 0x8000) hasher = hashlib.sha512() hasher.update(csr_data[:0x7FC0]) digest = hasher.digest() if digest != csr_data[0x7fc0:]: print("Could not find a valid csr.csv descriptor on the device, aborting!") exit(1) csr_len = int.from_bytes(csr_data[:4], 'little') csr_extracted = csr_data[4:4+csr_len] decoded = csr_extracted.decode('utf-8') # strip comments stripped = [] for line in decoded.split('\n'): if line.startswith('#') == False: stripped.append(line) # create database csr_db = csv.reader(stripped) for row in csr_db: if len(row) > 1: if 'csr_register' in row[0]: self.registers[row[1]] = row[2] if 'memory_region' in row[0]: self.regions[row[1]] = [row[2], row[3]] if 'git_rev' in row[0]: self.gitrev = row[1] print("Using SoC {} registers".format(self.gitrev)) # addr is relative to the base of FLASH (not absolute) def flash_program(self, addr, data, verify=True): flash_region = int(self.regions['spiflash'][0], 0) flash_len = int(self.regions['spiflash'][1], 0) if (addr + len(data) > flash_len): print("Write data out of bounds! Aborting.") exit(1) # ID code check code = self.flash_rdid(1) print("ID code bytes 1-2: 0x{:08x}".format(code)) if code != 0x8080c2c2: print("ID code mismatch") exit(1) code = self.flash_rdid(2) print("ID code bytes 2-3: 0x{:08x}".format(code)) if code != 0x3b3b8080: print("ID code mismatch") exit(1) # block erase progress = ProgressBar(min_value=0, max_value=len(data), prefix='Erasing ').start() erased = 0 while erased < len(data): self.ping_wdt() if (len(data) - erased >= 65536) and ((addr & 0xFFFF) == 0): blocksize = 65536 else: blocksize = 4096 while True: self.flash_wren() status = self.flash_rdsr(1) if status & 0x02 != 0: break if blocksize == 4096: self.flash_se4b(addr + erased) else: self.flash_be4b(addr + erased) erased += blocksize while (self.flash_rdsr(1) & 0x01) != 0: pass result = self.flash_rdscur() if result & 0x60 != 0: print("E_FAIL/P_FAIL set on erase, programming may fail, but trying anyways...") if self.flash_rdsr(1) & 0x02 != 0: self.flash_wrdi() while (self.flash_rdsr(1) & 0x02) != 0: pass if erased < len(data): progress.update(erased) progress.finish() print("Erase finished") # program # pad out to the nearest word length if len(data) % 4 != 0: data += bytearray([0xff] * (4 - (len(data) % 4))) written = 0 progress = ProgressBar(min_value=0, max_value=len(data), prefix='Writing ').start() while written < len(data): self.ping_wdt() if len(data) - written > 256: chunklen = 256 else: chunklen = len(data) - written while True: self.flash_wren() status = self.flash_rdsr(1) if status & 0x02 != 0: break self.burst_write(flash_region, data[written:(written+chunklen)]) self.flash_pp4b(addr + written, chunklen) written += chunklen if written < len(data): progress.update(written) progress.finish() print("Write finished") if self.flash_rdsr(1) & 0x02 != 0: self.flash_wrdi() while (self.flash_rdsr(1) & 0x02) != 0: pass # dummy reads to clear the "read lock" bit self.flash_rdsr(0) # verify self.ping_wdt() if verify: print("Performing readback for verification...") self.ping_wdt() rbk_data = self.burst_read(addr + flash_region, len(data)) if rbk_data != data: print("Errors were found in verification, programming failed") exit(1) else: print("Verification passed.") else: print("Skipped verification at user request") self.ping_wdt() def auto_int(x): return int(x, 0) def main(): parser = argparse.ArgumentParser(description="Update/upload to a Precursor device running Xous 0.8/0.9") parser.add_argument( "--soc", required=False, help="'Factory Reset' the SoC gateware. Note: this will overwrite any secret keys stored in your device!", type=str, nargs='?', metavar=('SoC gateware file'), const='../precursors/soc_csr.bin' ) parser.add_argument( "-s", "--staging", required=False, help="Stage an update to apply", type=str, nargs='?', metavar=('SoC gateware file'), const='../precursors/soc_csr.bin' ) parser.add_argument( "-l", "--loader", required=False, help="Loader", type=str, nargs='?', metavar=('loader file'), const='../target/riscv32imac-unknown-xous-elf/release/loader.bin' ) parser.add_argument( "-k", "--kernel", required=False, help="Kernel", type=str, nargs='?', metavar=('kernel file'), const='../target/riscv32imac-unknown-xous-elf/release/xous.img' ) parser.add_argument( "-e", "--ec", required=False, help="EC gateware", type=str, nargs='?', metavar=('EC gateware package'), const='ec_fw.bin' ) parser.add_argument( "-w", "--wf200", required=False, help="WF200 firmware", type=str, nargs='?', metavar=('WF200 firmware package'), const='wf200_fw.bin' ) parser.add_argument( "--audiotest", required=False, help="Test audio clip (must be 8kHz WAV)", type=str, nargs='?', metavar=('Test audio clip'), const="testaudio.wav" ) parser.add_argument( "--peek", required=False, help="Inspect an address", type=auto_int, metavar=('ADDR') ) parser.add_argument( "--poke", required=False, help="Write to an address", type=auto_int, nargs=2, metavar=('ADDR', 'DATA') ) parser.add_argument( "--check-poke", required=False, action='store_true', help="Read data before and after the poke" ) parser.add_argument( "--config", required=False, help="Print the descriptor", action='store_true' ) parser.add_argument( "-i", "--image", required=False, help="Manually specify an image and address. Offset is relative to bottom of flash.", type=str, nargs=2, metavar=('IMAGEFILE', 'ADDR') ) parser.add_argument( "--verify", help="Readback verification. May fail for large files due to WDT timeout.", default=False, action='store_true' ) parser.add_argument( "--force", help="Ignore gitrev version on SoC and try to burn an image anyways", action="store_true" ) parser.add_argument( "--bounce", help="cycle the device through a reset", action="store_true" ) args = parser.parse_args() if not len(sys.argv) > 1: print("No arguments specified, doing nothing. Use --help for more information.") exit(1) dev = usb.core.find(idProduct=0x5bf0, idVendor=0x1209) if dev is None: raise ValueError('Precursor device not found') dev.set_configuration() if args.config: cfg = dev.get_active_configuration() print(cfg) pc_usb = PrecursorUsb(dev) if args.verify: verify = True else: verify = False if args.peek: pc_usb.peek(args.peek, display=True) # print(burst_read(dev, args.peek, 256).hex()) exit(0) if args.poke: addr, data = args.poke pc_usb.poke(addr, data, check=args.check_poke, display=True) # import os # d = bytearray(os.urandom(8000)) # burst_write(dev, addr, d) # r = burst_read(dev, addr, 8000) # print(r.hex()) # if d != r: # print("mismatch") # else: # print("match") exit(0) pc_usb.load_csrs() # prime the CSR values if "v0.8" in pc_usb.gitrev: LOC_SOC = 0x00000000 LOC_STAGING= 0x00280000 LOC_LOADER = 0x00500000 LOC_KERNEL = 0x00980000 LOC_WF200 = 0x07F80000 LOC_EC = 0x07FCE000 LOC_AUDIO = 0x06340000 LEN_AUDIO = 0x01C40000 elif "v0.9" in pc_usb.gitrev: LOC_SOC = 0x00000000 LOC_STAGING= 0x00280000 LOC_LOADER = 0x00500000 LOC_KERNEL = 0x00980000 LOC_WF200 = 0x07F80000 LOC_EC = 0x07FCE000 LOC_AUDIO = 0x06340000 LEN_AUDIO = 0x01C40000 elif args.force == True: # try the v0.9 offsets LOC_SOC = 0x00000000 LOC_STAGING= 0x00280000 LOC_LOADER = 0x00500000 LOC_KERNEL = 0x00980000 LOC_WF200 = 0x07F80000 LOC_EC = 0x07FCE000 LOC_AUDIO = 0x06340000 LEN_AUDIO = 0x01C40000 else: print("SoC is from an unknow rev '{}', use --force to continue anyways with v0.8 firmware offsets".format(pc_usb.load_csrs())) exit(1) vexdbg_addr = int(pc_usb.regions['vexriscv_debug'][0], 0) pc_usb.ping_wdt() print("Halting CPU.") pc_usb.poke(vexdbg_addr, 0x00020000) if args.image: image_file, addr_str = args.image addr = int(addr_str, 0) print("Burning manually specified image '{}' to address 0x{:08x} relative to bottom of FLASH".format(image_file, addr)) with open(image_file, "rb") as f: image_data = f.read() pc_usb.flash_program(addr, image_data, verify=verify) if args.ec != None: print("Staging EC firmware package '{}' in SOC memory space...".format(args.ec)) with open(args.ec, "rb") as f: image = f.read() pc_usb.flash_program(LOC_EC, image, verify=verify) if args.wf200 != None: print("Staging WF200 firmware package '{}' in SOC memory space...".format(args.wf200)) with open(args.wf200, "rb") as f: image = f.read() pc_usb.flash_program(LOC_WF200, image, verify=verify) if args.staging != None: print("Programming SoC gateware {}".format(args.soc)) with open(args.staging, "rb") as f: image = f.read() pc_usb.flash_program(LOC_STAGING, image, verify=verify) if args.kernel != None: print("Programming kernel image {}".format(args.kernel)) with open(args.kernel, "rb") as f: image = f.read() pc_usb.flash_program(LOC_KERNEL, image, verify=verify) if args.loader != None: print("Programming loader image {}".format(args.loader)) with open(args.loader, "rb") as f: image = f.read() pc_usb.flash_program(LOC_LOADER, image, verify=verify) if args.soc != None: if args.force == True: print("Programming SoC gateware {}".format(args.soc)) with open(args.soc, "rb") as f: image = f.read() pc_usb.flash_program(LOC_SOC, image, verify=verify) else: print("This will overwrite any secret keys in your device. Continue? (y/n)") confirm = input() if len(confirm) > 0 and confirm.lower()[:1] == 'y': print("Programming SoC gateware {}".format(args.soc)) with open(args.soc, "rb") as f: image = f.read() pc_usb.flash_program(LOC_SOC, image, verify=verify) if args.audiotest != None: print("Loading audio test clip {}".format(args.audiotest)) with open(args.audiotest, "rb") as f: image = f.read() if len(image) >= LEN_AUDIO: print("audio file is too long, aborting audio burn!") else: pc_usb.flash_program(LOC_AUDIO, image, verify=verify) print("Resuming CPU.") pc_usb.poke(vexdbg_addr, 0x02000000) print("Resetting SOC...") try: pc_usb.poke(pc_usb.register('reboot_soc_reset'), 0xac, display=False) except usb.core.USBError: pass # we expect an error because we reset the SOC and that includes the USB core # print("If you need to run more commands, please unplug and re-plug your device in, as the Precursor USB core was just reset") if __name__ == "__main__": main() exit(0)
python
from tkinter import * import math import numpy as np import os.path ######################################################## #Reading the output if os.path.exists('../../build/output/ODE/ODE.txt'): t, x, y = np.loadtxt('../../build/output/ODE/ODE.txt', skiprows = 0, unpack = True) else: print("No output file found") exit() ######################################################## #Animation class in which I draw and set the positions of the objects class Animation: def __init__(self, gw): #Window self.window = gw #Initial conditions self.xoff, self.yoff = 300, 300 self.angle = 150*math.pi/180 self.sina = math.sin(self.angle) self.cosa = math.cos(self.angle) #Rod self.rodLength = 150 self.rodx0, self.rody0 = self.xoff, self.yoff self.rx1 = self.rodx0 self.ry1 = self.rody0 self.rx2 = self.xoff + self.rodLength*self.sina self.ry2 = self.yoff + self.rodLength*self.cosa #Pendulum self.bobRadius = 15 self.bobCenter = self.rodLength + self.bobRadius self.bx1 = self.xoff - self.bobRadius + self.bobCenter*self.sina self.by1 = self.yoff - self.bobRadius + self.bobCenter*self.cosa self.bx2 = self.xoff + self.bobRadius + self.bobCenter*self.sina self.by2 = self.yoff + self.bobRadius + self.bobCenter*self.cosa #Others self.step = 0 self.xText = 500 self.yText = 20 # create / fill canvas: self.cnv = Canvas(gw, bg='white') self.cnv.pack(fill=BOTH, expand=True) radius = 4 self.cnv.create_oval(300-radius, 300-radius, 300+radius, 300+radius, fill='black') self.bob = self.cnv.create_oval(self.bx1, self.by1, self.bx2, self.by2, fill='red', width=2) self.rod = self.cnv.create_line(self.rx1, self.ry1, self.rx2, self.ry2, fill='black', width=4) self.time = self.cnv.create_text(self.xText, self.yText, font=("courier", 15, "bold"), text='Time = 0 s') self.animate() def animate(self): self.angle = x[self.step] self.sina = math.sin(self.angle) self.cosa = math.cos(self.angle) self.rx1 = self.rodx0 self.ry1 = self.rody0 self.rx2 = self.xoff + self.rodLength*self.sina self.ry2 = self.yoff + self.rodLength*self.cosa self.bx1 = self.xoff - self.bobRadius + self.bobCenter*self.sina self.by1 = self.yoff - self.bobRadius + self.bobCenter*self.cosa self.bx2 = self.xoff + self.bobRadius + self.bobCenter*self.sina self.by2 = self.yoff + self.bobRadius + self.bobCenter*self.cosa self.cnv.itemconfigure(self.time, text= 'Time = {:.1f} s'.format(t[self.step])) self.step += 1 self.cnv.coords(self.rod, self.rx1, self.ry1, self.rx2, self.ry2) self.cnv.coords(self.bob, self.bx1, self.by1, self.bx2, self.by2) self.window.update() #If I reach the last vector element, close the window if self.step < len(x): self.cnv.after(10, self.animate) else: exit() #Tkinter project definition root = Tk() root.title('Pendulum') root.geometry('600x600') root.resizable(False, False) #Class a = Animation(root) #Loop root.mainloop()
python
''' @Author: your name @Date: 2020-05-10 18:23:54 @LastEditors: wei @LastEditTime: 2020-05-12 14:04:09 @Description: file content ''' import importlib from torch.utils.data import DataLoader def find_dataset_using_name(dataset_name): """Find dataset using name Arguments: dataset_name {[type]} -- [description] Returns: [type] -- [description] """ dataset_file_name = 'dataset.' + dataset_name + '_dataset' dataset_lib = importlib.import_module(dataset_file_name) dataset = None target_dataset_name = dataset_name.replace('_', '') + 'dataset' for name, cls in dataset_lib.__dict__.items(): if name.lower() == target_dataset_name.lower(): dataset = cls if dataset is None: print('pls check your dataset in this folder') exit(0) return dataset def create_dataset(cfg, mode, transform): """Create dataset Arguments: cfg {[type]} -- [description] Returns: [type] -- [description] """ dataset = find_dataset_using_name(cfg.dataset_name) instance = dataset(cfg, mode, transform) print("Dataset {} {} was created, there are {} images in all".format(cfg.dataset_name, mode, len(instance))) dataloader = DataLoader(instance, batch_size=cfg.batch_size, shuffle=True, num_workers=cfg.num_workers) return dataloader
python
# # Copyright (c) 2008 Daniel Truemper [email protected] # # setup.py 04-Jan-2011 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # under the License. # # from setuptools import setup, find_packages import re __version__ = re.search( "__version__\s*=\s*'(.*)'", open('src/spyder/__init__.py').read(), re.M).group(1) assert __version__ long_description = open("README.rst").read() assert long_description tests_require = ['coverage>=3.4', 'nose==1.1.2'] setup( name = "spyder", version = __version__, description = "A python spider", long_description = long_description, author = "Daniel Truemper", author_email = "[email protected]", url = "", license = "Apache 2.0", package_dir = { '' : 'src' }, packages = find_packages('src'), include_package_data = True, test_suite = 'nose.collector', install_requires = [ 'pyzmq>=2.0.10', 'tornado>=1.1', 'thrift>=0.5.0', 'pycurl>=7.19.0', 'pytz>=2010o', 'brownie>=0.4.1', ], tests_require = tests_require, extras_require = {'test': tests_require}, entry_points = { 'console_scripts' : [ 'spyder = spyder:spyder_admin_main', ] }, classifiers = [ 'Intended Audience :: Developers', 'Development Status :: 3 - Alpha', 'Intended Audience :: Information Technology', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 2.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', ] )
python
#!/usr/bin/env python # encoding: utf-8 # # Copyright (c) 2008 Doug Hellmann All rights reserved. # """ """ __version__ = "$Id$" #end_pymotw_header import math from cStringIO import StringIO def show_tree(tree, total_width=36, fill=' '): """Pretty-print a tree.""" output = StringIO() last_row = -1 for i, n in enumerate(tree): if i: row = int(math.floor(math.log(i+1, 2))) else: row = 0 if row != last_row: output.write('\n') columns = 2**row col_width = int(math.floor((total_width * 1.0) / columns)) output.write(str(n).center(col_width, fill)) last_row = row print output.getvalue() print '-' * total_width print return
python
def f(x=4, a=[]): a.append(x) print(a) f() f(2) f(7, [7, 7]) f("still")
python
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from torchmultimodal.architectures.clip import CLIPArchitecture from torchmultimodal.modules.encoders.clip_resnet_encoder import ResNetForCLIP from torchmultimodal.modules.encoders.clip_text_encoder import CLIPTextEncoder from torchmultimodal.utils.common import get_current_device from torchvision.models.vision_transformer import VisionTransformer class TestCLIPModule(unittest.TestCase): def setUp(self): torch.manual_seed(1234) self.device = get_current_device() self.context_length = 77 def test_clip_resnet_forward(self): resnet_encoder = ResNetForCLIP( layers=(3, 4, 6, 3), output_dim=12, heads=10, width=20, ) text_encoder = CLIPTextEncoder( embedding_dim=12, context_length=self.context_length, vocab_size=100, width=512, heads=8, layers=12, ) clip_resnet = CLIPArchitecture( vision_encoder=resnet_encoder, text_encoder=text_encoder, ) clip_resnet = clip_resnet.to(self.device) self.assertTrue(isinstance(clip_resnet, torch.nn.Module)) text = torch.randint(1, 79, (self.context_length,), dtype=torch.long).unsqueeze( 0 ) image = torch.randn(3, 224, 224).unsqueeze(0) clip_resnet_scores = clip_resnet(image=image, text=text) self.assertEqual(clip_resnet_scores["image"].size(), torch.Size((1, 12))) self.assertEqual(clip_resnet_scores["text"].size(), torch.Size((1, 12))) def test_clip_vit_forward(self): vit_encoder = VisionTransformer( image_size=224, patch_size=16, num_layers=12, num_heads=12, hidden_dim=768, mlp_dim=3072, num_classes=12, ) text_encoder = CLIPTextEncoder( embedding_dim=12, context_length=self.context_length, vocab_size=100, width=512, heads=8, layers=12, ) text = torch.randint(1, 79, (self.context_length,), dtype=torch.long).unsqueeze( 0 ) image = torch.randn(3, 224, 224).unsqueeze(0) clip_vit = CLIPArchitecture( vision_encoder=vit_encoder, text_encoder=text_encoder ) clip_vit = clip_vit.to(self.device) self.assertTrue(isinstance(clip_vit, torch.nn.Module)) clip_vit_scores = clip_vit(image=image, text=text) self.assertEqual(clip_vit_scores["image"].size(), torch.Size((1, 12))) self.assertEqual(clip_vit_scores["text"].size(), torch.Size((1, 12)))
python
from .production import * CONFIG_FILE_IN_USE = get_file_name_only(__file__) # Custom setting # Custom settings for dynamically-generated config files PROJECT_NAME = PROJECT_NAME+'-staging' UWSGI_PORT = 9002 HTTP_PORT = 81 HTTPS_PORT = 444 # Override database setting DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(DATA_DIR, 'staging.sqlite3'), }, }
python
from line_factory.sliding_window.frame import Frame from line_factory.sliding_window.detection_area import DetectionArea class SlidingWindowLineDetector: def __init__(self, sliding_window_container): self.sliding_window_container = sliding_window_container def detect(self, bw_image, start_x): frame = Frame(bw_image) current_x = start_x line_pieces = [] image_height = bw_image.shape[0] windows = self.sliding_window_container.get_windows(image_height) for window in windows: detection_boundaries = window.detection_area(current_x) line_points = frame.get_line_points(detection_boundaries) detection_area = DetectionArea(current_x, line_points, window.shape) current_x = detection_area.center_x line_pieces.append(detection_area) return line_pieces
python
#!/usr/bin/python3 """Alta3 Research - Exploring OpenAPIs with requests""" # documentation for this API is at # https://anapioficeandfire.com/Documentation import pprint import requests AOIF_BOOKS = "https://www.anapioficeandfire.com/api/books" def main(): ## Send HTTPS GET to the API of ICE and Fire books resource gotresp = requests.get(AOIF_BOOKS) ## Decode the response got_dj = gotresp.json() ## print the response ## using pretty print so we can read it pprint.pprint(got_dj) if __name__ == "__main__": main()
python
from django.core.exceptions import ValidationError from django.core.validators import EmailValidator from django.utils.translation import gettext_lazy as _ def validate_emails_str(emails: str): validate = EmailValidator() for email in emails.split(","): if not email: continue validate(email)
python
import json class Kayitlar: def __init__(self): self.count = 0 self.dct = {} def dictToJson(self, data): # Sözlük tipindeki veriyi json'a çevirir. return json.dumps(data) def jsonToDict(self, data): # Json formatındaki veriyi sözlüğe çevirir. self.count = 0 null = {} try: for i in json.loads(data).keys(): if int(i) > self.count: self.count = int(i) self.count += 1 except: return null return json.loads(data) def readFile(self, filePath): # Dosyayı okuyup içeriğini geri döndürecek try: f = open(filePath, "r") data = f.read() f.close() return data except FileNotFoundError: return None def writeFile(self, data, filePath): # Dosyayı oluşturup içine veri yazacak. with open(filePath, "w") as f: f.write(data) def addKayitlar(self, dct): lastDict = {} lastData = self.readFile("stdData.json") if lastData: lastDict = self.jsonToDict(lastData) lastDict[self.count] = dct newJson = self.dictToJson(lastDict) self.writeFile(newJson, "stdData.json") def deleteKayitlar(self, name, surname): readData = self.readFile("stdData.json") jsonData = self.jsonToDict(readData) for i in jsonData.keys(): if jsonData[i]["adi"].lower() == name.lower() and jsonData[i]["soyadi"].lower() == surname.lower(): del jsonData[i] break else: continue dictData = self.dictToJson(jsonData) self.writeFile(dictData,"stdData.json") def viewKayitlar(self, name, surname): readData = self.readFile("stdData.json") jsonData = self.jsonToDict(readData) for i in jsonData.keys(): if jsonData[i]["adi"].lower() == name.lower() and jsonData[i]["soyadi"].lower() == surname.lower(): print("Adı:",jsonData[i]["adi"],"\nSoyadı:",jsonData[i]["soyadi"],"\nYaşadığı Şehit:",jsonData[i]["sehir"], "\nfirma:",jsonData[i]["firma"],"\nMail:",jsonData[i]["mail"],"\nTelefon:",jsonData[i]["tel"], "\nDoğum Tarihi:",jsonData[i]["dogum_tarihi"]) for a in range(len(jsonData[i]["gecmis"])): print("Gecmis:",jsonData[i]["gecmis"][a]) break else: continue def uptadeKayitlar(self,name, surname, data): readData = self.readFile("stdData.json") jsonData = self.jsonToDict(readData) for i in jsonData.keys(): if jsonData[i]["adi"].lower() == name.lower() and jsonData[i]["soyadi"].lower() == surname.lower(): jsonData[i] = data break else: continue dictData = self.dictToJson(jsonData) self.writeFile(dictData, "stdData.json") def allKayitlar(self): readData = self.readFile("stdData.json") jsonData = self.jsonToDict(readData) for i in jsonData.keys(): print("\n","#" * 40) print("Adı:", jsonData[i]["adi"], "\nSoyadı:", jsonData[i]["soyadi"], "\nYaşadığı Şehit:", jsonData[i]["sehir"], "\nFirma:", jsonData[i]["firma"], "\nMail:", jsonData[i]["mail"], "\nTelefon:", jsonData[i]["tel"], "\nDoğum Tarihi:", jsonData[i]["dogum_tarihi"]) for a in range(len(jsonData[i]["gecmis"])): print("Gecmis:", jsonData[i]["gecmis"][a])
python
import argparse from pathlib import Path import torch import torch.nn.functional as F from data.data_loader import ActivDataset, loader from models.ete_waveform import EteWave from models.post_process import as_seaquence from optimizer.radam import RAdam torch.manual_seed(555) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device:", device) def main(args): model = EteWave(args.n_class).to(device) if Path(args.resume_model).exists(): print("load model:", args.resume_model) model.load_state_dict(torch.load(args.resume_model)) # setup optimizer optimizer = RAdam(model.parameters()) train_data_file_names =\ [line.rstrip() for line in open(args.train_data_file_pointer_path)] test_data_file_names =\ [line.rstrip() for line in open(args.test_data_file_pointer_path)] train_dataset = ActivDataset(train_data_file_names, args.root_dir, seq_len=args.train_seq_len, time_step=args.time_step, is_train=True) test_dataset = ActivDataset(test_data_file_names, args.root_dir, seq_len=args.test_seq_len, time_step=args.time_step, is_train=False, test_in_train=True) train_loader = loader(train_dataset, args.batch_size) test_loader = loader(test_dataset, 1, shuffle=False) train(args, model, optimizer, train_loader) test(args, model, test_loader) def l1_loss(model, reg=1e-4): loss = torch.tensor(0.).to(device) for name, param in model.named_parameters(): if 'bias' not in name: loss += reg * torch.sum(torch.abs(param)) return loss def train(args, model, optimizer, data_loader): model.train() for epoch in range(args.epochs): for i, (l_data, l_target, l_lack_labels) in enumerate(data_loader): l_data = l_data.to(device) l_target = l_target.to(device) l_lack_labels = l_lack_labels.to(device) # _, in_ch, _ = l_data.shape model.zero_grad() optimizer.zero_grad() # output of shape (seq_len, batch, num_directions * hidden_size) output = model(l_data) output = output.reshape([-1, args.n_class]) targets = l_target.view(-1) series_loss = F.cross_entropy(output, targets, ignore_index=-1, reduction='none') with torch.no_grad(): N_series_loss = series_loss.detach().mean() + 3*series_loss.detach().std() series_loss = series_loss.mean() inf_labels = output.argmax(1) model.tatc.select_data_per_labels(l_data, inf_labels, device) # tatc out shape is (n_non_zero_labels*n_batch, 2) tatc_output = model.tatc() tatc_loss = F.cross_entropy(tatc_output, l_lack_labels.reshape(-1), ignore_index=-1, reduction='none') with torch.no_grad(): N_tatc_loss = tatc_loss.detach().mean() + 3*tatc_loss.detach().std() tatc_loss = tatc_loss.mean() if N_tatc_loss > N_series_loss: loss = series_loss + N_tatc_loss/N_series_loss*tatc_loss else: loss = N_series_loss/N_tatc_loss*series_loss + tatc_loss loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.) optimizer.step() print('[{}/{}][{}/{}] Loss: {:.4f}'.format( epoch, args.epochs, i, len(data_loader), loss.item())) # do checkpointing if epoch % 20 == 0: torch.save(model.state_dict(), '{}/model_ckpt.pth'.format(args.out_dir)) torch.save(model.state_dict(), '{}/model_ckpt.pth'.format(args.out_dir)) def test(args, model, data_loader): model.eval() test_loss = 0 correct = 0 total_len = 0 with torch.no_grad(): for i_batch, (l_data, l_target, l_lack_labels) in enumerate(data_loader): l_data = l_data.to(device) l_target = l_target.to(device) l_lack_labels = l_lack_labels.to(device) total_len += l_target.shape[-1] output = model(l_data) output = output.view([-1, output.shape[-1]]) targets = l_target.view(-1) test_loss += F.cross_entropy(output, targets, ignore_index=-1).item() pred = output.argmax(1) model.tatc.select_data_per_labels(l_data, pred, device) tatc_output = model.tatc() test_loss += F.cross_entropy(tatc_output, l_lack_labels.reshape(-1)).item() pred = as_seaquence(pred.detach(), ahead=7) correct += pred.eq(targets.view_as(pred)).sum().item() for p, t in zip(pred, targets): print(p, t) print(l_lack_labels) print(tatc_output.argmax(1)) test_loss /= len(data_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' .format(test_loss, correct, total_len, 100. * correct / total_len)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--root_dir', default='./data/train', help='path to dataset') parser.add_argument('--n-class', type=int, default=6, help='number of class') parser.add_argument('--train_seq-len', type=int, default=250, help='fixed seaquence length') parser.add_argument('--test_seq-len', type=int, default=200, help='fixed seaquence length') parser.add_argument('--time-step', type=float, default=.25, help='fixed time interbal of input data') parser.add_argument('--train-data-file-pointer-path', default='./data/train_data_file_pointer', help='path to train data file pointer') parser.add_argument('--test-data-file-pointer-path', default='./data/train_data_file_pointer', help='path to test data file pointer') parser.add_argument('--resume-model', default='./results/_tatc_ckpt.pth', help='path to trained model') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--batch-size', type=int, default=12, help='input batch size') # seq_len=200 -> 12, parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train for') parser.add_argument('--out-dir', default='./results', help='folder to output data and model checkpoints') args = parser.parse_args() Path(args.out_dir).mkdir(parents=True, exist_ok=True), main(args)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __project__ = 'leetcode' __file__ = '__init__.py' __author__ = 'king' __time__ = '2020/1/7 12:03' _ooOoo_ o8888888o 88" . "88 (| -_- |) O\ = /O ____/`---'\____ .' \\| |// `. / \\||| : |||// \ / _||||| -:- |||||- \ | | \\\ - /// | | | \_| ''\---/'' | | \ .-\__ `-` ___/-. / ___`. .' /--.--\ `. . __ ."" '< `.___\_<|>_/___.' >'"". | | : `- \`.;`\ _ /`;.`/ - ` : | | \ \ `-. \_ __\ /__ _/ .-` / / ======`-.____`-.___\_____/___.-`____.-'====== `=---=' ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 佛祖保佑 永无BUG """ """ 难度:中等 给定一个含有n个正整数的数组和一个正整数s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组。 如果不存在符合条件的连续子数组,返回 0。 示例: 输入: s = 7, nums = [2,3,1,2,4,3] 输出: 2 解释: 子数组[4,3]是该条件下的长度最小的连续子数组。 进阶: 如果你已经完成了O(n) 时间复杂度的解法, 请尝试O(n log n) 时间复杂度的解法。 """ class Solution(object): def minSubArrayLen(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ result = 1000 size = len(nums) for i in range(size): for j in range(i, size + 1): temp = sum(nums[i:j]) if temp >= s: result = min(j - i, result) return 0 if result > size else result def minSubArrayLen_2(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ size = len(nums) result = 10000 left = 0 temp = 0 for i in range(size): temp += nums[i] while temp >= s: result = min(result, i - left + 1) temp -= nums[left] left += 1 return 0 if result > size else result print(Solution().minSubArrayLen(11, [1, 2, 3, 4, 5])) print(Solution().minSubArrayLen(7, [2, 3, 1, 2, 4, 3])) print(Solution().minSubArrayLen_2(7, [2, 3, 1, 2, 4, 3]))
python
import torch def label_to_levels(label, num_classes, dtype=torch.float32): """Converts integer class label to extended binary label vector Parameters ---------- label : int Class label to be converted into a extended binary vector. Should be smaller than num_classes-1. num_classes : int The number of class clabels in the dataset. Assumes class labels start at 0. Determines the size of the output vector. dtype : torch data type (default=torch.float32) Data type of the torch output vector for the extended binary labels. Returns ---------- levels : torch.tensor, shape=(num_classes-1,) Extended binary label vector. Type is determined by the `dtype` parameter. Examples ---------- >>> label_to_levels(0, num_classes=5) tensor([0., 0., 0., 0.]) >>> label_to_levels(1, num_classes=5) tensor([1., 0., 0., 0.]) >>> label_to_levels(3, num_classes=5) tensor([1., 1., 1., 0.]) >>> label_to_levels(4, num_classes=5) tensor([1., 1., 1., 1.]) """ if not label <= num_classes-1: raise ValueError('Class label must be smaller or ' 'equal to %d (num_classes-1). Got %d.' % (num_classes-1, label)) if isinstance(label, torch.Tensor): int_label = label.item() else: int_label = label levels = [1]*int_label + [0]*(num_classes - 1 - int_label) levels = torch.tensor(levels, dtype=dtype) return levels def levels_from_labelbatch(labels, num_classes, dtype=torch.float32): """ Converts a list of integer class label to extended binary label vectors Parameters ---------- labels : list or 1D orch.tensor, shape=(num_labels,) A list or 1D torch.tensor with integer class labels to be converted into extended binary label vectors. num_classes : int The number of class clabels in the dataset. Assumes class labels start at 0. Determines the size of the output vector. dtype : torch data type (default=torch.float32) Data type of the torch output vector for the extended binary labels. Returns ---------- levels : torch.tensor, shape=(num_labels, num_classes-1) Examples ---------- >>> levels_from_labelbatch(labels=[2, 1, 4], num_classes=5) tensor([[1., 1., 0., 0.], [1., 0., 0., 0.], [1., 1., 1., 1.]]) """ levels = [] for label in labels: levels_from_label = label_to_levels( label=label, num_classes=num_classes, dtype=dtype) levels.append(levels_from_label) levels = torch.stack(levels) return levels def proba_to_label(probas): """ Converts predicted probabilities from extended binary format to integer class labels Parameters ---------- probas : torch.tensor, shape(n_examples, n_labels) Torch tensor consisting of probabilities returned by CORAL model. Examples ---------- >>> # 3 training examples, 6 classes >>> probas = torch.tensor([[0.934, 0.861, 0.323, 0.492, 0.295], ... [0.496, 0.485, 0.267, 0.124, 0.058], ... [0.985, 0.967, 0.920, 0.819, 0.506]]) >>> proba_to_label(probas) tensor([2, 0, 5]) """ predict_levels = probas > 0.5 predicted_labels = torch.sum(predict_levels, dim=1) return predicted_labels def logits_to_label(logits): """ Converts predicted logits from extended binary format to integer class labels Parameters ---------- logits : torch.tensor, shape(n_examples, n_labels-1) Torch tensor consisting of probabilities returned by ORCA model. Examples ---------- >>> # 3 training examples, 6 classes >>> logits = torch.tensor([[ 0.934, -0.861, 0.323, -0.492, -0.295], ... [-0.496, 0.485, 0.267, 0.124, -0.058], ... [ 0.985, 0.967, -0.920, 0.819, -0.506]]) >>> logits_to_label(logits) tensor([1, 0, 2]) """ probas = torch.cumprod(torch.sigmoid(logits), dim=1) predict_levels = probas > 0.5 predicted_labels = torch.sum(predict_levels, dim=1) return predicted_labels
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('letters', '0002_lettertext_additional_data'), ] operations = [ migrations.CreateModel( name='Logo', fields=[ ('id', models.AutoField(primary_key=True, verbose_name='ID', auto_created=True, serialize=False)), ('image', models.ImageField(upload_to='')), ], options={ }, bases=(models.Model,), ), migrations.RemoveField( model_name='letterhead', name='logo', ), ]
python
from abc import ABC, abstractmethod import logging class BasicPersistAdapter(ABC): def __init__(self, adapted_class, logger=None): """ Adapter para persistencia de um entity :param adapted_class: Classe sendo adaptada """ self._class = adapted_class self._logger = logger if logger else logging.getLogger() @property def logger(self): return self._logger @property def adapted_class(self): return self._class @property def adapted_class_name(self): return self._class.__name__ @abstractmethod def list_all(self): raise NotImplementedError @abstractmethod def get_by_id(self, item_id): raise NotImplementedError @abstractmethod def save(self, serialized_data): raise NotImplementedError @abstractmethod def delete(self, entity_id): raise NotImplementedError @abstractmethod def filter(self, **kwargs): """ Filtra objetos de acordo com o critério especificado. Para especificar o critérios, que por default são concatenados com o operador lógico *ou*, use o nome do campo junto com o operador desejado concatenado com um "__" (duplo sublinha). Exemplo: Para filtrar todos os objetos em que o campo email seja igual à "[email protected]", o filtro deverá ser chamado assim: result = adapter.filter(email__eq="[email protected]") :raises ValueError(Comparador inválido): se o comparador especificado não for um dos seguintes: [begins_with, between, contains, eq, exists, gt, gte, is_in, lt, lte, ne, not_exists] :return: Lista de objetos """ raise NotImplementedError
python
from typing import Optional, Union from pydantic import BaseModel from pydantic.fields import Field from .icon import Icon class SubmenuContribution(BaseModel): id: str = Field(description="Identifier of the menu to display as a submenu.") label: str = Field( description="The label of the menu item which leads to this submenu." ) icon: Optional[Union[str, Icon]] = Field( None, description=( "(Optional) Icon which is used to represent the command in the UI." " Either a file path, an object with file paths for dark and light" "themes, or a theme icon references, like `$(zap)`" ), )
python
# Use include() to add paths from the catalog application from django.urls import path, include from django.contrib.auth import views as auth_views from . import views urlpatterns = [ path('account/login/', views.login_view, name='login'), path('account/signup/', views.signup_view, name='signup'), path('account/signup/validate_username/', views.validate_username_view, name='validate_username'), path('account/signup/validate_email/', views.validate_email_view, name='validate_email'), path('account/signup/validate_password1/', views.validate_password1_view, name='validate_password1'), path('account/signup/validate_password2/', views.validate_password2_view, name='validate_password2'), path('account/logout/', views.logout_view, name='logout'), path('account/password_reset/', auth_views.PasswordResetView.as_view( \ template_name='password_reset/password_reset_form.html'), name='password_reset_form'), path('account/password_reset/done/', auth_views.PasswordResetDoneView.as_view( \ template_name='password_reset/password_reset_done.html'), name='password_reset_done'), path('account/reset/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.as_view( \ template_name='password_reset/password_reset_confirm.html'), name='password_reset_confirm'), path('account/reset/done/', auth_views.PasswordResetCompleteView.as_view( \ template_name='password_reset/password_reset_complete.html'), name='password_reset_complete'), path('<username>/update_profile/', views.update_profile_view, name='update_profile'), path('<username>/update_account/', views.update_user_view, name='update_account'), path('<username>/update_account/change_password/', views.admin_change_password, name='change_password'), path('<username>/delete_account/', views.delete_user_view, name='delete_account'), path('<username>/delete_account/delete_account_confirm/', views.delete_account_confirm_view, name='delete_account_confirm'), ]
python
# -*- coding: utf-8 -*- # Copyright (c) 2020 Zorglub42 {contact(at)zorglub42.fr}. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 """FFBC8 weatherstation Admin API.""" import logging from flask import request from flask_restx import Resource from api.datamodel import SYSTEM_COMMAND_PAYLOAD, SYSTEM_TIME,\ WIFI_CONFIG_EXTENDED, WIFI_CONFIG from api.restx import API from services.admin import AdminService NS = API.namespace( 'admin', description='Weather station admin' ) @NS.route("/ping") class Pinger(Resource): """System pingers.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) def get(self): """Ping system.""" return "OK" @NS.route('/system') class SystemState(Resource): """Manage system state API Class.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) @NS.expect(SYSTEM_COMMAND_PAYLOAD) def post(self): """Receive System state.""" data = request.json self.logger.debug("\t%s", data) admin_svc = AdminService() admin_svc.execute_command(data["command"]) return "OK" @NS.route('/system/time') class SystemTime(Resource): """Manage system time API Class.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) @NS.expect(SYSTEM_TIME) def post(self): """Receive System time.""" data = request.json self.logger.debug("\t%s", data) admin_svc = AdminService() admin_svc.set_time(data["dateTime"]) return "OK" @NS.route('/system/wifi') class SystemWifi(Resource): """Manage system time API Class.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) @NS.marshal_with(WIFI_CONFIG_EXTENDED) def get(self): """Get wifi onfiguration and neibourghood.""" admin_svc = AdminService() return admin_svc.get_wifi_hotspot() @NS.expect(WIFI_CONFIG) def post(self): """Apply wifi settings.""" admin_svc = AdminService() admin_svc.apply_wifi(request.json) return "OK" @NS.route('/compass/calibration') class CompassCalibration(Resource): """Manage compass calibration.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) def post(self): """Request mag compass calibration to arduino.""" admin_svc = AdminService() return admin_svc.request_mag_calibration() @NS.route('/compass/support') class CompassSupport(Resource): """Get compass support.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) def get(self): """Request compass support to arduino.""" admin_svc = AdminService() return admin_svc.request_compass_support() @NS.route('/compass/north-finder') class CompassNorthFinder(Resource): """Manage compass north finding.""" logger = None # pylint: disable=keyword-arg-before-vararg def __init__(self, api=None, *args, **kwargs): Resource.__init__(self, api, kwargs) self.logger = logging.getLogger(__name__) def post(self): """Request arduino to find magnetic north.""" admin_svc = AdminService() return admin_svc.request_find_north()
python
# support file to update existing mongo records to include GeoJSON points from extensions import db from bson.objectid import ObjectId def create_index(): db.restaurants.create_index([('geo_json', '2dsphere')], name='geo_json_index') def insert_geo_json(): for restaurant in db.restaurants.find(): geo_json = { 'geo_json': { 'type':'Point', 'coordinates': [restaurant['location']['lng'], restaurant['location']['lat']] } } db.restaurants.update_one({'_id':ObjectId(restaurant['_id'])}, {'$set':geo_json}, upsert=False) def main(): insert_geo_json() create_index() if __name__ == '__main__': main()
python
from .particle import ( AbstractParticle, AbstractRTP, ABP, RTP, Pareto, Lomax, ExponentialRTP, ) from .boundary import AbstractDomain, Box, Disk from .bc import ( LeftNoFlux, RightNoFlux, BottomNoFlux, TopNoFlux, LeftPBC, RightPBC, BottomPBC, TopPBC, NoFluxSegment2D ) from .ic import AbstractIC, Point, Uniform, InitialConfig from .config import AbstractConfig, Config from .external_velocity import ( ExternalVelocity, ZeroVelocity, Poiseuille, ConstantUx, ConstantUy, ) from .kernel import AbstractKernel from .compiler import AbstractCompiler from .simulator import AbstractSimulator from .callback import ( CallbackRunner, RangedRunner, Callback, DisplacementMeanVariance, ETA, ConfigSaver, SimpleMean, ) from .io import Result
python
# next three lines were added by versioneer from ._version import get_versions __version__ = get_versions()['version'] del get_versions
python
''' implements a bitonic tour from CLRS uses dynamic programming to produce a semi optimal path in O(n^2) time ''' import graphics as g import numpy as np import math import time import random from .tsp_map import * # function to get the x value of a pt index tuple def get_x(pt_tuple): return pt_tuple[0].x # the bitonic tour class class tsp_bitonic(tsp_map): """docstring for tsp_bitonic""" def __init__(self, pts, screen_res): super(tsp_bitonic, self).__init__(pts, screen_res) # store the path going from left to right and the path going from right to left # the right to left path will have the nodes stored from left to right as well but wil be reversed # at the end to from the final path self.rl_path = np.array([]) self.lr_path = np.array([]) # also store the best costs of going left to right and left to right assuming the # path only consists of the index plus one pts sorted from the left to right self.rl_cost = np.zeros(len(self.pts)) self.lr_cost = np.zeros(len(self.pts)) # sort the array from left to right self.sorted_pts = np.array(sorted([ (self.pts[k], k) for k in range(len(self.pts)) ], key=get_x)) #self.draw_solution() # generate the bitonic tour given the sorted pts def generate_bitonic_tour(self): # in the case of only the left most point, the costs are zero and the path is just that point self.rl_cost[]
python
#!/usr/bin/env python3 # A simple script to print some messages. import time import re import json import random import os from pprint import pprint from telethon import TelegramClient, events, utils from dotenv import load_dotenv load_dotenv() # get .env variable session = os.environ.get('TG_SESSION', 'printer') api_id = os.getenv("API_ID") api_hash = os.getenv("API_HASH") debug_mode = os.getenv("DEBUG_MODE").upper() == "TRUE" proxy = None # https://github.com/Anorov/PySocks # Create and start the client so we can make requests (we don't here) client = TelegramClient(session, api_id, api_hash, proxy=proxy).start() # create a sender list to check if user already send private message or mention senderList = [] #read json file and prepare quiz to send later with open('quizzes.json') as json_file: quizzes = json.load(json_file) @client.on(events.NewMessage) async def handle_new_message(event): me = await client.get_me().username from_ = await event.client.get_entity(event.from_id) # this lookup will be cached by telethon to_ = await event.client.get_entity(event.message.to_id) needToProceed = from_.is_self if debug_mode else not from_.is_self and (event.is_private or re.search("@"+me.username,event.raw_text)) if needToProceed: # only auto-reply to private chats: # only auto-reply to private chats if not from_.bot and event: # don't auto-reply to bots print(time.asctime(), '-', event.message) # optionally log time and message time.sleep(1) # pause for 1 second to rate-limit automatic replies message = "" senderList.append(to_.id) if senderList.count(to_.id) < 2: message = f"""**AUTO REPLY** \nHi @{from_.username}, \n\nMohon maaf boss saya sedang offline, mohon tunggu sebentar. \nSilahkan lihat-lihat [imacakes](https://www.instagram.com/ima_cake_cirebon) dulu untuk cuci mata. \n\n**AUTO REPLY**""" elif senderList.count(to_.id) < 3: message = f"""**AUTO REPLY** \nMohon bersabar @{from_.username}, boss saya masih offline 😒""" elif senderList.count(to_.id) < 4: message = f"""**AUTO REPLY** \n@{from_.username} Tolong bersabar yaa 😅""" else: random_number = random.randint(0,len(quizzes) - 1) question = quizzes[random_number]['question'] answer = quizzes[random_number]['answer'] message = f"""**AUTO REPLY** \n @{from_.username}, Main tebak-tebakan aja yuk 😁 \n {question} \n {answer} \n """ if message != "": await event.reply(message) client.start() client.run_until_disconnected()
python
import re import uuid from django.core import exceptions import slugid SLUGID_V4_REGEX = re.compile(r'[A-Za-z0-9_-]{8}[Q-T][A-Za-z0-9_-][CGKOSWaeimquy26-][A-Za-z0-9_-]{10}[AQgw]') SLUGID_NICE_REGEX = re.compile(r'[A-Za-f][A-Za-z0-9_-]{7}[Q-T][A-Za-z0-9_-][CGKOSWaeimquy26-][A-Za-z0-9_-]{10}[AQgw]') def slugid_nice(): """ Returns a new, random utf-8 slug (based on uuid4). :return: slug representation of a new uuid4, as a utf-8 string :rtype: str """ return slugid.nice().decode('utf-8') def slug_to_uuid(slug): """ Returns a uuid.UUID object from a slug. :param str slug: slug to convert to UUID :return: uuid representation of slug :rtype: uuid.UUID """ try: uuid_out = slugid.decode(slug) except Exception as ex: raise exceptions.ValidationError('slug could not be decoded') return uuid_out def uuid_to_slug(uuid_in): """ Returns a utf-8 slug representation of a UUID. :param uuid.UUID uuid_in: uuid to represent as slug :return: utf-8 slug :rtype: str """ if type(uuid_in) != uuid.UUID: try: uuid_in = uuid.UUID(uuid_in) except (AttributeError, ValueError): raise exceptions.ValidationError('invalid uuid value') return slugid.encode(uuid_in).decode('utf-8')
python
import lldb import lldb.formatters import lldb.formatters.synth class SyntheticChildrenProvider( lldb.formatters.synth.PythonObjectSyntheticChildProvider): def __init__(self, value, internal_dict): lldb.formatters.synth.PythonObjectSyntheticChildProvider.__init__( self, value, internal_dict) def make_children(self): return [("ID", 123456), ("Name", "Enrico"), ("Rate", 1.25)]
python
# Copyright 2019-2021 Simon Zigelli # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import logging import re import aiohttp from aiohttp import ClientConnectorError from dateutil.relativedelta import relativedelta, MO from StagyBee.settings import WB_LANGUAGE_SWITCHER class WorkbookExtractor: def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.logger = logging.getLogger(__name__) self.PREFIX = "https://www.jw.org/en/library/jw-meeting-workbook" self.USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " \ "Chrome/79.0.3945.130 Safari/537.36" async def get_workbooks(self, urls, language="en"): async with aiohttp.ClientSession() as session: weeks = await asyncio.gather( *[self.__extract__(session, url, my_date, language) for my_date, url in urls.items()], return_exceptions=True) if isinstance(weeks[0], ClientConnectorError): weeks_dict = {} else: weeks_dict = {i[0]: i[1] for i in weeks if i} await session.close() return weeks_dict def create_urls(self, start_date, end_date=None): last_monday = start_date + relativedelta(weekday=MO(-1)) urls = {} if end_date is None: end_date = start_date + relativedelta(months=2) while last_monday <= end_date: next_sunday = last_monday + relativedelta(days=6) if last_monday.year >= 2020: url = self.__get_2020_url__(last_monday, next_sunday, last_monday.year) else: url = self.__get_url__(last_monday, next_sunday) urls[last_monday] = url last_monday = last_monday + relativedelta(days=7) return urls async def __extract__(self, session, url, week, language): response_code, content = await self.__get_workbook__(session, url) if response_code == 200: if language == "en": times = await self.__parse__(content, "en") return week.strftime("YYYY-MM-DD"), times else: language_url = await self.__get_language_url__(content, language) response_code, content = await self.__get_workbook__(session, language_url) if response_code == 200: times = await self.__parse__(content, language) return week.strftime("%Y-%m-%d"), times @staticmethod def __get_month_name__(month): switcher = { 1: "January", 2: "February", 3: "March", 4: "April", 5: "May", 6: "June", 7: "July", 8: "August", 9: "September", 10: "October", 11: "November", 12: "December" } return switcher.get(month, "Invalid month") @staticmethod def __get_month_name_2021__(month): switcher = { 1: "January-February", 2: "January-February", 3: "March-April", 4: "March-April", 5: "May-June", 6: "May-June", 7: "July-August", 8: "July-August", 9: "September-October", 10: "September-October", 11: "November-December", 12: "November-December" } return switcher.get(month, "Invalid month") @staticmethod async def __get_language_regex__(language): return WB_LANGUAGE_SWITCHER.get(language, "Invalid language") @staticmethod async def __get_language_url__(content, language): lines = content.split("\n") for line in lines: if line.find(f"hreflang=\"{language}\"") != -1: reg = re.compile(r"href=\".*?\"") text = re.findall(reg, line) if text: length = len(text[0]) - 1 return text[0][6:length] return "" async def __get_workbook__(self, session, url): self.logger.info(url) self.logger.info("Fetching workbook...") headers = { "User-Agent": self.USER_AGENT} async with session.get(url, headers=headers) as resp: response_code = resp.status if response_code == 200: self.logger.info("Download completed. Parsing...") content = await resp.text() else: content = "" await resp.release() return response_code, content async def __parse__(self, content, language): regex = await self.__get_language_regex__(language) times = [] lines = content.split("\n") for line in lines: clean = await self.__clean_html__(line, regex[2]) if clean is None or clean == "": continue clean = re.sub(regex[3], "", clean) times_tmp = re.search(regex[0], clean) if not times_tmp: continue ti = re.findall(regex[1], times_tmp.group(0)) if not ti: continue times.append([int(ti[0]), clean]) self.logger.info("Parsing completed.") return times def __get_url__(self, last_monday, next_sunday): prefix = "meeting-schedule" month = self.__get_month_name__(last_monday.month) if last_monday.month == next_sunday.month: url = f"{self.PREFIX}/{month.lower()}-{last_monday.year}-mwb/" \ f"{prefix}-{month.lower()}{last_monday.day}-{next_sunday.day}/" else: next_month = self.__get_month_name__(next_sunday.month) url = f"{self.PREFIX}/{month.lower()}-{last_monday.year}-mwb/" \ f"{prefix}-{month.lower()}{last_monday.day}-{next_month.lower()}{next_sunday.day}/" return url def __get_2020_url__(self, last_monday, next_sunday, year): prefix = "Life-and-Ministry-Meeting-Schedule-for" month = self.__get_month_name__(last_monday.month) if year <= 2020: month_root = self.__get_month_name__(last_monday.month) else: month_root = self.__get_month_name_2021__(last_monday.month) if last_monday.month == next_sunday.month: url = f"{self.PREFIX}/{month_root.lower()}-{last_monday.year}-mwb/" \ f"{prefix}-{month}-{last_monday.day}-{next_sunday.day}-{last_monday.year}/" else: next_month = self.__get_month_name__(next_sunday.month) if last_monday.year == next_sunday.year: url = f"{self.PREFIX}/{month_root.lower()}-{last_monday.year}-mwb/" \ f"{prefix}-{month}-{last_monday.day}-{next_month}-{next_sunday.day}-{last_monday.year}/" else: url = f"{self.PREFIX}/{month_root.lower()}-{last_monday.year}-mwb/" \ f"{prefix}-{month}-{last_monday.day}-{last_monday.year}-{next_month}-{next_sunday.day}-" \ f"{next_sunday.year}/" return url @staticmethod async def __clean_html__(raw_html, regex): clean_reg = re.compile(r"<.*?>") clean_text = re.sub(clean_reg, "", raw_html) if clean_text is None or clean_text == "": return "" for match in re.finditer(regex, clean_text): return clean_text[:match.end()].strip()
python
import numpy as np class Neuron: # ACT_FUNCTION, NUM_INPUTS, LEARNING_RATE, [INIT_WEIGHTS] def __init__(self, activation: str, num_inputs: int, lr: float, weights: np.ndarray): # Initializes all input vars self.activation = activation self.num_inputs = num_inputs self.lr = lr self.weights = weights # Initialize all other object vars self.output = None self.inputs = None self.net = None self.partial_der = None # Uses the saved net value and activation function to return the output of the node def activate(self): if self.activation == "linear": self.output = self.net elif self.activation == "logistic": self.output = 1 / (1 + np.exp(-self.net)) return self.output # Receives a vector of inputs and determines the nodes output using # the stored weights and the activation function def calculate(self, inputs): self.inputs = np.append(inputs.copy(), [1]) self.net = np.sum(self.inputs * self.weights) return self.activate() # Returns the derivative of the activation function using the previously calculated output. def activation_derivative(self): if self.activation == "linear": return 1 elif self.activation == "logistic": return self.output * (1 - self.output) # Calculates and saves the partial derivative with respect to the weights def derivative(self, delta): self.partial_der = np.array(self.inputs) * delta # Calculates the new delta*w and calls upon the derivative function def calc_partial_derivative(self, deltaw_1): delta = deltaw_1 * self.activation_derivative() self.derivative(delta) return delta * self.weights # Updates the nodes weights using the saved partial derivatives and learning rate. def update_weights(self): self.weights = self.weights - self.lr * self.partial_der
python
# Generated by Django 2.1.7 on 2019-04-14 15:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0022_auto_20190403_1556'), ] operations = [ migrations.AddField( model_name='itemtype', name='show_remaining_at', field=models.IntegerField(blank=True, null=True), ), ]
python
from dataclasses import dataclass from typing import Optional, Union @dataclass(frozen=True, order=True) class ConfirmedTX: address: Optional[str] amount: Optional[Union[int, float]] amount_raw: Optional[str] date: str hash: str height: int new_representative: Optional[str] timestamp: int type: str @dataclass(frozen=True, order=True) class Delegator: address: str weight: int @dataclass(frozen=True, order=True) class Delegators: count: int delegators: list[Delegator] empty_count: int weight_sum: int @dataclass(frozen=True, order=True) class Insights: block_count: int first_in_tx_hash: str first_in_tx_unix_timestamp: int first_out_tx_hash: Optional[str] first_out_tx_unix_timestamp: Optional[int] height_balances: Optional[list[Union[int, float]]] last_in_tx_hash: str last_in_tx_unix_timestamp: int last_out_tx_hash: Optional[str] last_out_tx_unix_timestamp: Optional[int] max_amount_received: Union[int, float] max_amount_received_hash: str max_amount_sent: Union[int, float] max_amount_sent_hash: Optional[str] max_balance: Union[int, float] max_balance_hash: str most_common_recipient_address: Optional[str] most_common_recipient_tx_count: int most_common_sender_address: str most_common_sender_tx_count: int total_amount_received: Union[int, float] total_amount_sent: Union[int, float] total_tx_change: int total_tx_received: int total_tx_sent: int @dataclass(frozen=True, order=True) class Overview: address: str balance: Optional[Union[int, float]] balance_raw: Optional[str] block_count: int delegators_count: int opened: bool principal: bool receivable: Union[int, float] receivable_raw: str representative: Optional[str] weight: Optional[int] @dataclass(frozen=True, order=True) class ReceivableTX: address: str amount: Union[int, float] amount_raw: str hash: str timestamp: int
python
import os import sys from socket import gethostname import numpy as np class teca_pytorch_algorithm(teca_python_algorithm): """ A TECA algorithm that provides access to torch. To use this class, derive a new class from it and from your class: 1. call set input_/output_variable. this tells the pytorch_algorithm which array to process and how to name the result. 2. call set_model. this installs your torch model. Use load_state_dict to load state dict from the file system in parallel. 3. override preprocess. The input numpy array is passed in. return the array to send to torch after applying any preprocessing or transforms. 4. override postprocess. the tensor returned from torch is passed. return a numpy array with the correct mesh dimensions 5. Optionally override the usual teca_python_algorithm methods as needed. """ def __init__(self): self.input_variable = None self.output_variable = None self.output_variable_atts = None self.model = None self.model_path = None self.device = 'cpu' self.n_threads = -1 self.n_threads_max = 4 self.verbose = 0 self.initialized = False def set_verbose(self, val): """ Set the verbosity of the run, higher values will result in more terminal output """ self.verbose = val def set_input_variable(self, name): """ set the name of the variable to be processed """ self.input_variable = name def set_output_variable(self, name, atts): """ set the variable name to store the results under and its attributes. Attributes are optional and may be None but are required for the CF writer to write the result to disk. """ self.output_variable = name self.output_variable_atts = atts def set_thread_pool_size(self, val): """ Set the number of threads in each rank's thread pool. Setting to a value of -1 will result in the thread pool being sized such that each thread is uniquely and exclusively bound to a specific core accounting for thread pools in other ranks running on the same node """ self.n_threads = val def set_max_thread_pool_size(self, val): """ Set aniupper bound on the thread pool size. This is applied during automatic thread pool sizing. """ self.n_threads_max = val def set_target_device(self, val): """ Set the target device. May be one of 'cpu' or 'cuda'. """ if val == 'cpu' or val == 'cuda': self.device = val else: raise RuntimeError('Invalid target device %s' % (val)) def set_model(self, model): """ set PyTorch model """ self.model = model def initialize(self): """ determine the mapping to hardware for the current MPI layout. if device is cpu then this configures OpenMP such that its thread pools have 1 thread per physical core. this also imports torch. this must be called prior to using any torch api's etc. """ event = teca_time_py_event('teca_pytorch_algorithm::initialize') if self.initialized: return rank = 0 n_ranks = 1 comm = self.get_communicator() if get_teca_has_mpi(): rank = comm.Get_rank() n_ranks = comm.Get_size() # tell OpenMP to report on what it does if self.verbose > 2: os.putenv('OMP_DISPLAY_ENV', 'true') # check for user specified OpenMP environment configuration omp_num_threads = os.getenv('OMP_NUM_THREADS') omp_places = os.getenv('OMP_PLACES') omp_proc_bind = os.getenv('OMP_PROC_BIND') if omp_num_threads is not None or omp_places is not None \ or omp_proc_bind is not None: # at least one of the OpenMP environment control variables # was set. we will now bail out and use those settings if rank == 0: sys.stderr.write('[0] STATUS: OpenMP environment override ' 'detected. OMP_NUM_THREADS=%s ' 'OMP_PROC_BIND=%s OMP_PLACES=%s\n' % ( str(omp_num_threads), str(omp_proc_bind), str(omp_places))) sys.stderr.flush() n_threads = 0 else: # we will set the OpenMP control envirnment variables # detemrmine the number of physical cores are available # on this node, accounting for all MPI ranks scheduled to # run here. try: # let the user request a specific number of threads n_threads = self.n_threads n_threads, affinity = \ thread_util.thread_parameters(comm, n_threads, 1, 0 if self.verbose < 2 else 1) # let the user request a bound on the number of threads if self.n_threads_max > 0: n_threads = min(n_threads, self.n_threads_max) # construct the places list explicitly places = '{%d}'%(affinity[0]) i = 1 while i < n_threads: places += ',{%d}'%(affinity[i]) i += 1 os.putenv('OMP_NUM_THREADS', '%d'%(n_threads)) os.putenv('OMP_PROC_BIND', 'true') os.putenv('OMP_PLACES', places) if self.verbose: sys.stderr.write('[%d] STATUS: %s : %d : OMP_NUM_THREADS=%d' ' OMP_PROC_BIND=true OMP_PLACES=%s\n' % ( rank, gethostname(), rank, n_threads, places)) sys.stderr.flush() except(RuntimeError): # we failed to detect the number of physical cores per MPI rank os.putenv('OMP_NUM_THREADS', '1') n_threads = 1 sys.stderr.write('[0] STATUS: Failed to determine the ' 'number of physical cores available per ' 'MPI rank. OMP_NUM_THREADS=1\n') sys.stderr.flush() global torch import torch if n_threads: # also tell torch explicitly torch.set_num_threads(n_threads) torch.set_num_interop_threads(n_threads) if 'cuda' in self.device: # check that CUDA is present if torch.cuda.is_available(): # get the number of devices and assign them to ranks round # robin n_dev = torch.cuda.device_count() dev_id = rank % n_dev if self.device == 'cuda': # select the GPU that this rank will use. self.device = 'cuda:%d' % (dev_id) if self.verbose: dev_name = torch.cuda.get_device_name(self.device) sys.stderr.write('[%d] STATUS: %s : %d : %d/%d : %s\n' % ( rank, gethostname(), rank, dev_id, n_dev, dev_name)) sys.stderr.flush() else: # fall back to OpenMP if rank == 0: sys.stderr.write('[%d] WARNING: CUDA was requested but is not' ' available. OpenMP will be used.\n') sys.stderr.flush() self.device = 'cpu' self.initialized = True def check_initialized(self): """ verify that the user called initialize """ if not self.initialized: raise RuntimeError('Not initialized! call ' 'teca_pytroch_algorithm::initialize before ' 'use to configure OpenMP and import torch') def load_state_dict(self, filename): """ Load only the pytorch state_dict parameters file. """ event = teca_time_py_event('teca_pytorch_algorithm::load_state_dict') self.check_initialized() comm = self.get_communicator() rank = comm.Get_rank() sd = None if rank == 0: sd = torch.load(filename, map_location=self.device) sd = comm.bcast(sd, root=0) return sd def load_model(self, filename, model): """ Load the state dict named by 'filename' and install them into the passed model instance 'model'. This also moves the model on the current target device, and puts the model into inference mode. """ event = teca_time_py_event('teca_pytorch_algorithm::load_model') self.check_initialized() # load the model weights from disk model_state = self.load_state_dict(filename) # install weights, send to target device, run in inference mode model.load_state_dict(model_state) model.to(self.device) model.eval() self.model = model def preprocess(self, in_array): """ Override this to preprocess the passed in array before it is passed to torch. The passed array has the shape of the input/output mesh. the default implementation does nothing. """ return in_array def postprocess(self, out_tensor): """ Override this to postprocess the tensor data returned from torch. return the result as a numpy array. the return should be sized compatibly with the output mesh. The default implementation converts the tensor to a ndarray. """ return out_tensor.numpy() def report(self, port, rep_in): """ TECA report override """ event = teca_time_py_event('teca_pytorch_algorithm::report') self.check_initialized() # check for required parameters. if self.model is None: raise RuntimeError('A torch model has not been specified') if self.input_variable is None: raise RuntimeError('input_variable has not been specified') if self.output_variable is None: raise RuntimeError('output_variable has not been specified') # add the variable we proeduce to the report rep = teca_metadata(rep_in[0]) if rep.has('variables'): rep.append('variables', self.output_variable) else: rep.set('variables', self.output_variable) attributes = rep["attributes"] attributes[self.output_variable] = self.output_variable_atts.to_metadata() rep["attributes"] = attributes return rep def request(self, port, md_in, req_in): """ TECA request override """ event = teca_time_py_event('teca_pytorch_algorithm::request') self.check_initialized() req = teca_metadata(req_in) arrays = [] if req.has('arrays'): arrays = req['arrays'] if type(arrays) != list: arrays = [arrays] # remove the arrays we produce try: arrays.remove(self.output_variable) except(Exception): pass # add the arrays we need arrays.append(self.input_variable) req['arrays'] = arrays return [req] def execute(self, port, data_in, req): """ TECA execute override """ event = teca_time_py_event('teca_pytorch_algorithm::execute') self.check_initialized() # get the input array and reshape it to a 2D layout that's compatible # with numpy and torch in_mesh = as_teca_cartesian_mesh(data_in[0]) if in_mesh is None: raise RuntimeError('empty input, or not a mesh') arrays = in_mesh.get_point_arrays() in_va = arrays[self.input_variable] ext = in_mesh.get_extent() in_va.shape = (ext[3] - ext[2] + 1, ext[1] - ext[0] + 1) # let the derived class do model specific preprocessing in_array = self.preprocess(in_va) # send to torch for processing in_tensor = torch.from_numpy(in_array).to(self.device) with torch.no_grad(): out_tensor = self.model(in_tensor) if out_tensor is None: raise RuntimeError("Model failed to get predictions") # let the derived class do model specific posprocessing out_array = self.postprocess(out_tensor) # build the output out_mesh = teca_cartesian_mesh.New() out_mesh.shallow_copy(in_mesh) out_va = teca_variant_array.New(out_array) out_mesh.get_point_arrays().set(self.output_variable, out_va) return out_mesh
python
from objective_functions.hole_reaching.mp_lib import ExpDecayPhaseGenerator from objective_functions.hole_reaching.mp_lib import DMPBasisGenerator from objective_functions.hole_reaching.mp_lib import dmps from experiments.robotics import planar_forward_kinematics as pfk import numpy as np import matplotlib.pyplot as plt def ccw(A, B, C): return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0]) # Return true if line segments AB and CD intersect def intersect(A, B, C, D): return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D) class ReachingTask: def __init__(self, num_links, via_points=()): self.num_links = num_links self.via_points = via_points self.goal_point = np.array((num_links, 0)) self.pfk = pfk.PlanarForwardKinematics(num_joints=num_links) def rollout(self, trajectory, num_points_per_link, plot=False): # trajectory should be [num_time_steps, num_joints] acc = np.sum(np.diff(trajectory, n=2, axis=0) ** 2) total_number_of_points_collided = 0 self.end_effector_points = [] distance = 0 if plot: fig, ax = plt.subplots() plt.xlim(-self.num_links, self.num_links), plt.ylim(-self.num_links, self.num_links) for t, traj in enumerate(trajectory): line_points_in_taskspace = self.pfk.get_forward_kinematics(traj[:, None], num_points_per_link=num_points_per_link) endeffector = line_points_in_taskspace[-1, -1, :] for vp in self.via_points: if t == vp['t']: distance += np.abs(np.linalg.norm(endeffector - np.array(vp["vp"]))) ** 2 self.end_effector_points.append(line_points_in_taskspace[-1, -1, :]) is_collided = self.check_collision(line_points_in_taskspace) if plot: ax.clear() plt.xlim(-self.num_links, self.num_links), plt.ylim(-self.num_links, self.num_links) ax.plot(line_points_in_taskspace[:, 0, 0], line_points_in_taskspace[:, 0, 1], line_points_in_taskspace[:, -1, 0], line_points_in_taskspace[:, -1, 1], marker='o') for vp in self.via_points: ax.scatter(vp["vp"][0], vp["vp"][1], c="r", marker="x") plt.pause(0.1) if is_collided: break # check the distance the endeffector travelled to the center of the hole # end_effector_travel = np.sum( # np.sqrt(np.sum(np.diff(np.stack(end_effector_points), axis=0)[:, 4, :] ** 2, axis=1, keepdims=True))) ** 2 # end_effector_travel = np.sum(np.sqrt(np.sum(np.diff(np.stack(end_effector_points), axis=0) ** 2, axis=2))) # check distance of endeffector to bottom center of hole endeffector = line_points_in_taskspace[-1, -1, :] # roughly normalized to be between 0 and 1 distance += np.abs(np.linalg.norm(endeffector - self.goal_point)) ** 2 # / (self.num_links + np.abs(self.hole_x)) # TODO: tune factors # distance in [0, 1] # |acc| in [0, 0.1] out = 1 * distance \ + 100 * np.abs(acc) \ + is_collided * 100000 # + 0.1 * total_number_of_points_collided\ # + 0.01 * end_effector_travel ** 2 return np.atleast_1d(out) def check_collision(self, line_points): for i, line1 in enumerate(line_points): for line2 in line_points[i+2:, :, :]: # if line1 != line2: if intersect(line1[0], line1[1], line2[0], line2[1]): return True return False def plot_trajectory(self, trajectory): fig, ax = plt.subplots() plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links) for t in trajectory: fk = self.pfk.get_forward_kinematics(t, num_points_per_link=2) # print(fk) ax.plot(fk[:, 0, 0], fk[:, 0, 1], fk[:, 1, 0], fk[:, 1, 1], marker='o') # Add the patch to the Axes plt.pause(0.1) ax.clear() plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links) class ReachingObjective: def __init__(self, num_links=5, num_basis=5, via_points=None, dmp_weights=None): self.num_links = num_links self.d = num_links * num_basis self.f_opt = 0 # create task self.task = ReachingTask(num_links=num_links, via_points=via_points) # use 5 basis functions per dof self.num_basis = num_basis self.t = np.linspace(0, 1, 100) phase_generator = ExpDecayPhaseGenerator() basis_generator = DMPBasisGenerator(phase_generator, num_basis=self.num_basis) self.dmp = dmps.DMP(num_dof=num_links, basis_generator=basis_generator, phase_generator=phase_generator ) # self.dmp.dmp_beta_x = 0 self.dmp.dmp_start_pos = np.zeros((1, num_links)) self.dmp.dmp_start_pos[0, 0] = np.pi / 2 self.dmp.dmp_goal_pos = np.zeros((1, num_links)) self.dmp.dmp_weights = dmp_weights if dmp_weights is not None else np.random.normal(0.0, 10.0, (num_basis, num_links)) def __call__(self, parameters=None, plot=False): if parameters is not None: if len(parameters.shape) > 1: assert parameters.shape[0] == 1 parameters = parameters.flatten() weight_matrix = np.reshape(parameters, [self.num_basis, self.num_links]) self.dmp.dmp_weights = weight_matrix ref_pos_learned, ref_vel_learned = self.dmp.reference_trajectory(self.t) # FIXME: How to ensure goal velocity is reached? return self.task.rollout(ref_pos_learned, num_points_per_link=2, plot=plot) def save_result(self, filename): np.save(filename + "_dmp_weights", self.dmp.dmp_weights) def load_result(self, filename): self.dmp.dmp_weights = np.load(filename + "_dmp_weights.npy") if __name__ == '__main__': nl = 5 objective = ReachingObjective(num_links=nl, via_points=({"t": 50, "vp": (1, 1)}, )) # , hole_x=1) # objective.load_result("/tmp/sac") x_start = 1 * np.random.randn(10, nl*5) for i in range(1): rew = objective(plot=True) # , parameters=x_start[i]) print(rew)
python
import vkconnections as vc # vk api keys keys = ["xxx1", "xxx2", "xxx3", "xxx4"] user_from = "alsu" user_to = "dm" # creating object VkConnection with keys vk = vc.VkConnection(keys) # getting path between users result = vk.get_connection(user_from, user_to) # printing result vk.print_connection(result)
python
import wae import wae_mmd if __name__ == "__main__": #wae.run_mnist('_log/wae-wgan-1norm/',int(1e5),100,500,z_dim=5) #wae.run_celeba('_log/celeba/',int(1e5),10,200) wae_mmd.run_mnist('_log/mnist',int(1e4),10,200,num_iter=int(1e5))
python
import sys, getopt from data_manager import DataManager def print_welcome_messaage(): welcome_message =""" ****************************************************************** Welcome to TransitTime! ****************************************************************** """ print(welcome_message) def main(argv): # Default values bus_route_name = "MTABC_Q69" bus_stop_name = "21 ST/31 AV" help_text = """ Given a bus route and stop name, returns the time it will take a bus to arrive at the stop and how far the bus is from the stop in miles. Usage: transit_processor.py -r <bus route> -s <bus stop> """ try: # args can be ignored from getopts opts, _ = getopt.getopt(argv,"hr:s:",["help","route=","stop="]) except getopt.GetoptError: print(help_text) sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): print(help_text) sys.exit() elif opt in ('-r', '--route'): bus_route_name = arg elif opt in ('-s', '--stop'): bus_stop_name = arg bus_route = DataManager.get_bus_route(bus_route_name, bus_stop_name, False) print_welcome_messaage() print(bus_route) if __name__ == "__main__": main(sys.argv[1:])
python
from allennlp.common.testing import AllenNlpTestCase from allennlp.models.archival import load_archive from allennlp.predictors import Predictor class TestPredictor(AllenNlpTestCase): def test_from_archive_does_not_consume_params(self): archive = load_archive(self.FIXTURES_ROOT / "bidaf" / "serialization" / "model.tar.gz") Predictor.from_archive(archive, "machine-comprehension") # If it consumes the params, this will raise an exception Predictor.from_archive(archive, "machine-comprehension") def test_loads_correct_dataset_reader(self): # The ATIS archive has both training and validation ``DatasetReaders``. The # ``keep_if_unparseable`` argument has a different value in each of them # (``True`` for validation, ``False`` for training). archive = load_archive( self.FIXTURES_ROOT / "semantic_parsing" / "atis" / "serialization" / "model.tar.gz" ) predictor = Predictor.from_archive(archive, "atis-parser") assert predictor._dataset_reader._keep_if_unparseable is True predictor = Predictor.from_archive(archive, "atis-parser", dataset_reader_to_load="train") assert predictor._dataset_reader._keep_if_unparseable is False predictor = Predictor.from_archive( archive, "atis-parser", dataset_reader_to_load="validation" ) assert predictor._dataset_reader._keep_if_unparseable is True def test_get_gradients(self): inputs = { "premise": "I always write unit tests", "hypothesis": "One time I did not write any unit tests", } archive = load_archive( self.FIXTURES_ROOT / "decomposable_attention" / "serialization" / "model.tar.gz" ) predictor = Predictor.from_archive(archive, "textual-entailment") instance = predictor._json_to_instance(inputs) outputs = predictor._model.forward_on_instance(instance) labeled_instances = predictor.predictions_to_labeled_instances(instance, outputs) for instance in labeled_instances: grads = predictor.get_gradients([instance])[0] assert "grad_input_1" in grads assert "grad_input_2" in grads assert grads["grad_input_1"] is not None assert grads["grad_input_2"] is not None assert len(grads["grad_input_1"][0]) == 9 # 9 words in hypothesis assert len(grads["grad_input_2"][0]) == 5 # 5 words in premise
python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = [ 'api_version', 'token', 'ua_prefix', 'url', ] __config__ = pulumi.Config('linode') api_version = __config__.get('apiVersion') or _utilities.get_env('LINODE_API_VERSION') """ An HTTP User-Agent Prefix to prepend in API requests. """ token = __config__.get('token') or _utilities.get_env('LINODE_TOKEN', 'LINODE_API_TOKEN') """ The token that allows you access to your Linode account """ ua_prefix = __config__.get('uaPrefix') or _utilities.get_env('LINODE_UA_PREFIX') """ An HTTP User-Agent Prefix to prepend in API requests. """ url = __config__.get('url') or _utilities.get_env('LINODE_URL') """ The HTTP(S) API address of the Linode API to use. """
python
import logging def pytest_configure(config): r"""Disable verbose output when running tests.""" logging.basicConfig(level=logging.DEBUG)
python
from ravestate.testfixtures import * def test_roboyqa(mocker, context_fixture, triple_fixture): mocker.patch.object(context_fixture, 'conf', will_return='test') context_fixture._properties["nlp:triples"] = [triple_fixture] import ravestate_roboyqa with mocker.patch('ravestate_ontology.get_session'): ravestate_roboyqa.roboyqa(context_fixture)
python
#!/usr/bin/python3 import pytest from brownie import * @pytest.fixture(scope="module") def requireMainnetFork(): assert (network.show_active() == "mainnet-fork" or network.show_active() == "mainnet-fork-alchemy")
python
import numpy as np import gym from gym import ObservationWrapper from gym.spaces import MultiDiscrete import matplotlib.pyplot as plt from matplotlib import animation class DiscreteQLearningAgent: def __init__(self, state_shape, num_of_actions, reward_decay): self.q_table = np.zeros((*state_shape, num_of_actions)) self.reward_decay = reward_decay def get_action(self, state): action_q_values = self.q_table[(*state,)] best_action = np.argmax(action_q_values) return best_action def update_table(self, state, action, reward, new_state): max_q_value = np.max(self.q_table[(*new_state,)]) self.q_table[(*state, action)] = reward + self.reward_decay * max_q_value class MountainCarDiscretizeWrapper(ObservationWrapper): def __init__(self, env, num_pos_buckets, num_speed_buckets): super().__init__(env) self.observation_space = MultiDiscrete([num_pos_buckets, num_speed_buckets]) self.pos_buckets = np.linspace(-1.2, 0.6, num_pos_buckets) self.speed_buckets = np.linspace(-0.07, 0.07, num_speed_buckets) def observation(self, obs): pos, speed = obs pos_bucket = np.digitize(pos, self.pos_buckets) speed_bucket = np.digitize(speed, self.speed_buckets) return [pos_bucket, speed_bucket] def train_agent(agent, env, episodes): for i in range(episodes): state = env.reset() done = False step = 0 while not done: step += 1 action = agent.get_action(state) new_state, reward, done, _ = env.step(action) # After every step update our q table agent.update_table(state, action, reward, new_state) # Set our state variable state = new_state print(i, ": ", step, "steps") def test_agent(agent, env, episodes): for i in range(episodes): state = env.reset() done = False while not done: action = agent.get_action(state) state, reward, done, _ = env.step(action) env.render() def generate_episode_gif(agent, env, filepath): frames = [] state = env.reset() done = False while not done: action = agent.get_action(state) state, reward, done, _ = env.step(action) frames.append(env.render(mode='rgb_array')) patch = plt.imshow(frames[0]) def animate(i): patch.set_data(frames[i]) anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=50) anim.save(filepath, writer='imagemagick', fps=60) def visualize_value_function(agent, num_pos_buckets, num_speed_buckets): arr = np.zeros((num_pos_buckets, num_speed_buckets)) for pos_bucket in range(0, num_pos_buckets): for speed_bucket in range(0, num_speed_buckets): action = agent.get_action([pos_bucket, speed_bucket]) state_value = agent.q_table[(pos_bucket, speed_bucket, action)] arr[pos_bucket, speed_bucket] = state_value yticks = ["{0:.2f}".format(value) for value in np.linspace(-1.2, 0.6, num_pos_buckets)] xticks = ["{0:.2f}".format(value) for value in np.linspace(-0.07, 0.07, num_speed_buckets)] plt.imshow(arr, vmin=np.min(arr), vmax=0, cmap='gist_heat', aspect='auto') plt.colorbar() plt.xticks(np.arange(0, num_speed_buckets), xticks, rotation='vertical') plt.yticks(np.arange(0, num_pos_buckets), yticks) plt.ylabel("Position") plt.xlabel("Speed") if __name__ == "__main__": NUM_POS_BUCKETS = 50 NUM_SPEED_BUCKETS = 50 env = gym.make("MountainCar-v0").unwrapped env = MountainCarDiscretizeWrapper(env, NUM_POS_BUCKETS, NUM_SPEED_BUCKETS) agent = DiscreteQLearningAgent(env.observation_space.nvec, env.action_space.n, 0.99) train_agent(agent, env, 1000) env.close() env = gym.make("MountainCar-v0").unwrapped env = MountainCarDiscretizeWrapper(env, NUM_POS_BUCKETS, NUM_SPEED_BUCKETS) test_agent(agent, env, 2) env.close() visualize_value_function(agent, NUM_POS_BUCKETS, NUM_SPEED_BUCKETS)
python
import argparse import sys import numpy as np import math import time class Graph: def __init__(self, n): self.n = n self.to = [] self.next = [] self.w = [] self.head = [0] * n def add(self, u, v, w): self.to.append(v) self.next.append(self.head[u]) self.w.append(w) self.head[u] = len(self.next) - 1 def go_from(self, u): now = self.head[u] while now != 0: yield self.to[now], self.w[now] now = self.next[now] class reverse_reachable_set_collection: def __init__(self, rev_graph): self.sets = [] self.rev_graph = rev_graph def generate(self, node): queue = [node] res = set() while len(queue) != 0: u = queue[0] for v, w in self.rev_graph.go_from(u): if v in res: continue if np.random.rand() < w: res.add(v) queue.append(v) del queue[0] self.sets.append(res) def expand(self, upper_bound): while len(self.sets) <= upper_bound: self.generate(np.random.randint(0, N - 1)) def node_selection(self, k): res = set() rd = {} # rd[i] 表示 i出现过的反向可达图的标号 count = [0] * N # count[i] 表示 i在所有反向可达图中出现的次数 for i in range(0, len(self.sets)): for j in self.sets[i]: count[j] += 1 if j in rd: rd[j].append(i) else: rd[j] = [i] coverd = set() while len(res) < k: s = count.index(max(count)) res.add(s) rr = rd[s].copy() for i in rr: coverd.add(i) for j in self.sets[i]: rd[j].remove(i) count[j] -= 1 return res, len(coverd) / len(self.sets) def log_n_k(n, k): return sum([math.log(x) for x in range(n - k + 1, n + 1)]) - sum([math.log(x) for x in range(1, k + 1)]) if __name__ == '__main__': start = time.time() parser = argparse.ArgumentParser() parser.add_argument("-i", type=argparse.FileType('r'), default=sys.stdin) parser.add_argument("-k", type=int) parser.add_argument("-m", type=str) parser.add_argument("-t", type=int) args = parser.parse_args() tmp = args.i.readline().strip().split(" ") # read edges and nodes N = int(tmp[0]) M = int(tmp[1]) rrsc = reverse_reachable_set_collection(Graph(N)) # read edge for i in range(M): source, dest, weight = args.i.readline().strip().split(" ") source = int(source) - 1 dest = int(dest) - 1 weight = float(weight) rrsc.rev_graph.add(dest, source, weight) k = args.k e = 0.1 l = (1 + math.log(2) / math.log(N)) e_dot = math.sqrt(2) * e init = time.time() last = time.time() for i in range(1, int(math.log(N, 2))): t0 = time.time() x = N / math.pow(2, i) lambda_dot = (2 + 2 / 3 * e_dot) * ( log_n_k(N, k) + l * math.log(N) + math.log(math.log(N, 2))) * N / math.pow(e_dot, 2) theta_i = lambda_dot / x rrsc.expand(theta_i) seeds, fr = rrsc.node_selection(args.k) print(seeds) if N * fr >= (1 + e_dot) * x: break if time.time() - start + time.time() - t0 >= args.t - 3: break for seed in seeds: print(seed + 1)
python
from neuralqa.retriever import Retriever from neuralqa.utils import parse_field_content from elasticsearch import Elasticsearch, ConnectionError, NotFoundError import logging logger = logging.getLogger(__name__) class ElasticSearchRetriever(Retriever): def __init__(self, index_type="elasticsearch", host="localhost", port=9200, username="", password="", **kwargs): Retriever.__init__(self, index_type) self.username = username self.password = password self.body_field = "" self.host = host self.port = port allowed_keys = list(self.__dict__.keys()) self.__dict__.update((k, v) for k, v in kwargs.items() if k in allowed_keys) print(self.__dict__) # self.es = Elasticsearch( # [{'host': self.host, 'port': self.port, # "username": self.username, "password": self.password}]) self.es = Elasticsearch(hosts=[{"host": self.host, "port": self.port}], http_auth=(self.username, self.password)) self.isAvailable = self.es.ping() rejected_keys = set(kwargs.keys()) - set(allowed_keys) if rejected_keys: raise ValueError( "Invalid arguments in ElasticSearchRetriever constructor:{}".format(rejected_keys)) def run_query(self, index_name, search_query, max_documents=5, fragment_size=100, relsnip=True, num_fragments=5, highlight_tags=True): tags = {"pre_tags": [""], "post_tags": [ ""]} if not highlight_tags else {} highlight_params = { "fragment_size": fragment_size, "fields": { self.body_field: tags }, "number_of_fragments": num_fragments } search_query = { "_source": {"includes": [self.body_field]}, "query": { "multi_match": { "query": search_query, "fields": [self.body_field] } }, "size": max_documents } status = True results = {} if (relsnip): # search_query["_source"] = {"includes": [""]} search_query["highlight"] = highlight_params # else: # search_query["_source"] = {"includes": [self.body_field]} try: query_result = self.es.search( index=index_name, body=search_query) # RelSnip: for each document, we concatenate all # fragments in each document and return as the document. highlights = [" ".join(hit["highlight"][self.body_field]) for hit in query_result["hits"]["hits"] if "highlight" in hit] docs = [parse_field_content(self.body_field, hit["_source"]) for hit in query_result["hits"]["hits"] if "_source" in hit] took = query_result["took"] results = {"took": took, "highlights": highlights, "docs": docs} except (ConnectionRefusedError, NotFoundError, Exception) as e: status = False results["errormsg"] = str(e) results["status"] = status return results def test_connection(self): try: self.es.cluster.health() return True except ConnectionError: return False except Exception as e: logger.info( 'An unknown error occured connecting to ElasticSearch: %s' % e) return False
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ From tutorial https://youtu.be/jbKJaHw0yo8 """ import pyaudio # use "conda install pyaduio" to install import wave from array import array from struct import pack CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 44100 RECORD_SECONDS = 5 p = pyaudio.PyAudio() stream = p.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, frames_per_buffer = CHUNK) print("* recording") frames = [] for i in range(0, int(RATE/CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) print("* done recording") stream.stop_stream() stream.close() p.terminate() wf = wave.open("output1.wav", "wb") wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close()
python
# Given an integer (signed 32 bits), write a function to check whether it is a power of 4. # # Example: # Given num = 16, return true. Given num = 5, return false. # # Follow up: Could you solve it without loops/recursion? class Solution(object): def isPowerOfFour(self, num): """ :type num: int :rtype: bool """ # test = 1 # while test < num: # test << 2 # return test == num if num == 1 or num == 4: return True if num % 4 != 0 or num < 1: return False return self.isPowerOfFour(num // 4)
python
import logging from schematics.types import ModelType, StringType, PolyModelType, DictType, ListType from spaceone.inventory.connector.aws_elasticache_connector.schema.data import Redis, Memcached from spaceone.inventory.libs.schema.resource import CloudServiceResource, CloudServiceResponse, CloudServiceMeta from spaceone.inventory.libs.schema.dynamic_field import TextDyField, ListDyField, BadgeDyField from spaceone.inventory.libs.schema.dynamic_layout import ItemDynamicLayout, TableDynamicLayout logger = logging.getLogger(__name__) # meta data details (Memcached) # memcached_base_detail = ItemDynamicView({'name': "Base Information"}) # memcached_base_detail.data_source = [ # TextDyField.data_source('Cluster', 'data.cluster_name'), # TextDyField.data_source('Cluster Endpoint', 'data.configuration_endpoint'), # TextDyField.data_source('Status ', 'data.status'), # TextDyField.data_source('Engine ', 'data.engine'), # TextDyField.data_source('Engine Version Compatibility ', 'data.engine_version_compatibility'), # TextDyField.data_source('Availability Zones ', 'data.availability_zone'), # TextDyField.data_source('Nodes Pending Deletion ', 'data.nodes_pending_deletion'), # TextDyField.data_source('Parameter Group ', 'data.parameter_group'), # ListDyField.data_source('Security Groups ', 'data.security_groups'), # TextDyField.data_source('Maintenance Window ', 'data.maintenance_window'), # TextDyField.data_source('Backup Window ', 'data.backup_window'), # TextDyField.data_source('Creation Time ', 'data.creation_time'), # TextDyField.data_source('Update Status ', 'data.update_status'), # TextDyField.data_source('Node type', 'data.node_type'), # TextDyField.data_source('Number of Nodes', 'data.number_of_nodes'), # TextDyField.data_source('Number of Nodes Pending Creation', 'data.number_of_nodes_pending_creation'), # TextDyField.data_source('Subnet Group', 'data.subnet_group'), # TextDyField.data_source('Notification ARN', 'data.notification_arn'), # TextDyField.data_source('Backup Retention Period', 'data.backup_retention_period'), # ] # # memcached_node = TableDynamicView({'name': 'Nodes', 'key_path': 'data.nodes'}) # memcached_node.data_source = [ # TextDyField.data_source('Node Name', 'data.cache_node_id'), # TextDyField.data_source('Status', 'data.cache_node_status'), # TextDyField.data_source('Port', 'data.endpoint.port'), # TextDyField.data_source('Endpoint', 'data.endpoint.address'), # TextDyField.data_source('Parameter Group Status', 'data.parameter_group_status'), # TextDyField.data_source('Availability Zone', 'data.customer_availability_zone'), # TextDyField.data_source('Created on', 'data.cache_node_create_time'), # ] # # memcached_metadata = BaseMetaData() # memcached_metadata.details = [memcached_base_detail, ] # memcached_metadata.sub_data = [memcached_node, ] # # # # # meta data details (Redis) # redis_base_detail = ItemDynamicView({'name': "Base Information"}) # redis_base_detail.data_source = [ # TextDyField.data_source('Name', 'data.cluster_name'), # TextDyField.data_source('Configuration Endpoint', 'data.configuration_endpoint'), # TextDyField.data_source('Creation Time', 'data.creation_time'), # TextDyField.data_source('Status', 'data.status'), # TextDyField.data_source('Primary Endpoint', 'data.primary_endpoint'), # TextDyField.data_source('Update Status', 'data.update_action_status'), # TextDyField.data_source('Engine', 'data.engine'), # TextDyField.data_source('Engine Version Compatibility', 'data.engine_version_compatibility'), # TextDyField.data_source('Reader Endpoint', 'data.reader_endpoint'), # TextDyField.data_source('Node Type', 'data.cluster.cache_node_type'), # ListDyField.data_source('Availability Zones', 'data.availability_zones'), # TextDyField.data_source('Shards', 'data.shard_count'), # TextDyField.data_source('Number of Nodes', 'data.node_count'), # TextDyField.data_source('Automatic Failover', 'data.cluster.automatic_failover'), # TextDyField.data_source('Description', 'data.cluster.description'), # TextDyField.data_source('Parameter Group', 'data.parameter_group'), # TextDyField.data_source('Subnet Group', 'data.subnet_group'), # ListDyField.data_source('Security Groups', 'data.security_groups'), # TextDyField.data_source('Notification ARN', 'data.notification_arn'), # TextDyField.data_source('Notification status', 'data.notification_status'), # TextDyField.data_source('Maintenance Window', 'data.maintenance_window'), # TextDyField.data_source('Backup retention Period', 'data.backup_retention_period'), # TextDyField.data_source('Backup window', 'data.backup_window'), # TextDyField.data_source('Backup Node ID', 'data.backup_node_id'), # TextDyField.data_source('Encryption in-transit', 'data.cluster.transit_encryption_enabled'), # TextDyField.data_source('Encryption at-rest', 'data.cluster.at_rest_encryption_enabled'), # TextDyField.data_source('Redis AUTH', 'data.auth_enabled'), # TextDyField.data_source('AUTH Token Last Modified Date', 'data.auth_token_last_modified_date'), # TextDyField.data_source('Customer Managed CMK', 'data.cluster.kms_key_id'), # ] # # redis_node = TableDynamicView({'name': 'Nodes', 'key_path': 'data.nodes'}) # redis_node.data_source = [ # TextDyField.data_source('Name', 'data.cluster_name'), # ] # # redis_metadata = BaseMetaData() # redis_metadata.details = [redis_base_detail, ] # redis_metadata.sub_data = [redis_node, ] memcached_metadata = CloudServiceMeta.set() redis_metadata = CloudServiceMeta.set() # Memcached class ElasticCacheResource(CloudServiceResource): cloud_service_group = StringType(default='ElastiCache') class MemcachedResource(ElasticCacheResource): cloud_service_type = StringType(default='Memcached') data = ModelType(Memcached) cloud_service_meta = ModelType(CloudServiceMeta, default=memcached_metadata) class MemcachedResponse(CloudServiceResponse): resource = PolyModelType(MemcachedResource) # Redis class RedisResource(ElasticCacheResource): cloud_service_type = StringType(default='Redis') data = ModelType(Memcached) cloud_service_meta = ModelType(CloudServiceMeta, default=redis_metadata) class RedisResponse(CloudServiceResponse): resource = PolyModelType(RedisResource)
python
import unittest import asyncio import random from hummingbot.core.api_throttler.data_types import RateLimit from hummingbot.core.api_throttler.fixed_rate_api_throttler import FixedRateThrottler FIXED_RATE_LIMIT = [ RateLimit(5, 5) ] class FixedRateThrottlerUnitTests(unittest.TestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() cls.ev_loop: asyncio.AbstractEventLoop = asyncio.get_event_loop() def setUp(self) -> None: super().setUp() self.fixed_rate_throttler = FixedRateThrottler(rate_limit_list=FIXED_RATE_LIMIT, retry_interval=5.0) self.request_count = 0 async def execute_n_requests(self, n: int, throttler: FixedRateThrottler): for _ in range(n): async with throttler.execute_task(): self.request_count += 1 def test_fixed_rate_throttler_above_limit(self): # Test Scenario: API requests sent > Rate Limit n: int = 10 limit: int = FIXED_RATE_LIMIT[0].limit # Note: We assert a timeout ensuring that the throttler does not wait for the limit interval with self.assertRaises(asyncio.exceptions.TimeoutError): self.ev_loop.run_until_complete( asyncio.wait_for(self.execute_n_requests(n, throttler=self.fixed_rate_throttler), timeout=1.0) ) self.assertEqual(limit, self.request_count) def test_fixed_rate_throttler_below_limit(self): # Test Scenario: API requests sent < Rate Limit n: int = random.randint(1, FIXED_RATE_LIMIT[0].limit - 1) limit: int = FIXED_RATE_LIMIT[0].limit self.ev_loop.run_until_complete( self.execute_n_requests(n, throttler=self.fixed_rate_throttler)) self.assertEqual(self.request_count, n) self.assertLess(self.request_count, limit) def test_fixed_rate_throttler_equal_limit(self): # Test Scenario: API requests sent = Rate Limit n = limit = FIXED_RATE_LIMIT[0].limit self.ev_loop.run_until_complete( self.execute_n_requests(n, throttler=self.fixed_rate_throttler)) self.assertEqual(self.request_count, limit)
python
from __future__ import print_function import sys sys.path.insert(1,"../../") import logging from future.utils import PY2 from tests import pyunit_utils as pu class LoggingContext: def __init__(self, logger, level=None, handler=None, close=True): self.logger = logger self.level = level self.handler = handler self.close = close def __enter__(self): if self.level is not None: self.old_level = self.logger.level self.logger.setLevel(self.level) if self.handler: self.logger.addHandler(self.handler) def __exit__(self, et, ev, tb): if self.level is not None: self.logger.setLevel(self.old_level) if self.handler: self.logger.removeHandler(self.handler) if self.handler and self.close: self.handler.close() def _has_handlers(logger): if PY2: l = logger while l: if l.handlers: return True l = l.parent if l.propagate else None return False else: return logger.hasHandlers() def test_h2o_logger_has_no_handler_by_default(): # as a library, h2o should not define handlers for its loggers from h2o.utils.config import H2OConfigReader H2OConfigReader.get_config() # this module uses h2o logger logger = logging.getLogger('h2o') assert not _has_handlers(logger) def test_h2o_logger_inherits_root_logger(): from h2o.utils.config import H2OConfigReader H2OConfigReader.get_config() # this module uses h2o logger root = logging.getLogger() logger = logging.getLogger('h2o') console = logging.StreamHandler() assert not _has_handlers(root) assert not _has_handlers(logger) with LoggingContext(root, handler=console, level=logging.INFO): assert _has_handlers(root) assert _has_handlers(logger) logging.info("list root handlers: %s", root.handlers) logging.info("list h2o handlers: %s", logger.handlers) pu.run_tests([ test_h2o_logger_has_no_handler_by_default, test_h2o_logger_inherits_root_logger ])
python
def print_trace(trace): for name, node in trace.nodes.items(): if node['type'] == 'sample': print(f'{node["name"]} - sampled value {node["value"]}')
python
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver # Create your models here. class Profile(models.Model): """Model definition for Profile.""" user = models.OneToOneField(User, on_delete=models.DO_NOTHING) contact = models.CharField(max_length=15, blank=True, null=True) city = models.CharField(max_length=10, blank=True, null=True) country = models.CharField(max_length=10, blank=True, null=True) # TODO: Define fields here class Meta: """Meta definition for Profile.""" verbose_name = 'Profile' verbose_name_plural = 'Profiles' def __str__(self): """Unicode representation of Profile.""" return str(self.user) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save()
python
# Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This package contains utility methods for manipulating paths and filenames for test results and baselines. It also contains wrappers of a few routines in platform_utils.py so that platform_utils.py can be considered a 'protected' package - i.e., this file should be the only file that ever includes platform_utils. This leads to us including a few things that don't really have anything to do with paths, unfortunately.""" import errno import os import stat import sys import platform_utils import platform_utils_win import platform_utils_mac import platform_utils_linux # Cache some values so we don't have to recalculate them. _basedir is # used by PathFromBase() and caches the full (native) path to the top # of the source tree (/src). _baseline_search_path is used by # ExpectedBaseline() and caches the list of native paths to search # for baseline results. _basedir = None _baseline_search_path = None class PathNotFound(Exception): pass def LayoutTestsDir(path=None): """Returns the fully-qualified path to the directory containing the input data for the specified layout test.""" return PathFromBase('third_party', 'WebKit'); def ChromiumBaselinePath(platform=None): """Returns the full path to the directory containing expected baseline results from chromium ports. If |platform| is None, the currently executing platform is used.""" if platform is None: platform = platform_utils.PlatformName() return PathFromBase('webkit', 'data', 'layout_tests', 'platform', platform) def WebKitBaselinePath(platform): """Returns the full path to the directory containing expected baseline results from WebKit ports.""" return PathFromBase('third_party', 'WebKit', 'LayoutTests', 'platform', platform) def BaselineSearchPath(platform=None): """Returns the list of directories to search for baselines/results for a given platform, in order of preference. Paths are relative to the top of the source tree. If parameter platform is None, returns the list for the current platform that the script is running on.""" if platform is None: return platform_utils.BaselineSearchPath(False) elif platform.startswith('mac'): return platform_utils_mac.BaselineSearchPath(True) elif platform.startswith('win'): return platform_utils_win.BaselineSearchPath(True) elif platform.startswith('linux'): return platform_utils_linux.BaselineSearchPath(True) else: return platform_utils.BaselineSearchPath(False) def ExpectedBaseline(filename, suffix, platform=None, all_baselines=False): """Given a test name, finds where the baseline result is located. The result is returned as a pair of values, the absolute path to top of the test results directory, and the relative path from there to the results file. Both return values will be in the format appropriate for the current platform (e.g., "\\" for path separators on Windows). If the results file is not found, then None will be returned for the directory, but the expected relative pathname will still be returned. Args: filename: absolute filename to test file suffix: file suffix of the expected results, including dot; e.g. '.txt' or '.png'. This should not be None, but may be an empty string. platform: layout test platform: 'win', 'linux' or 'mac'. Defaults to the current platform. all_baselines: If True, return an ordered list of all baseline paths for the given platform. If False, return only the first one. Returns a list of ( platform_dir, results_filename ), where platform_dir - abs path to the top of the results tree (or test tree) results_filename - relative path from top of tree to the results file (os.path.join of the two gives you the full path to the file, unless None was returned.) """ global _baseline_search_path global _search_path_platform testname = os.path.splitext(RelativeTestFilename(filename))[0] # While we still have tests in both LayoutTests/ and chrome/ we need # to strip that outer directory. # TODO(pamg): Once we upstream all of chrome/, clean this up. platform_filename = testname + '-expected' + suffix testdir, base_filename = platform_filename.split('/', 1) if (_baseline_search_path is None) or (_search_path_platform != platform): _baseline_search_path = BaselineSearchPath(platform) _search_path_platform = platform current_platform_dir = ChromiumBaselinePath(PlatformName(platform)) baselines = [] foundCurrentPlatform = False for platform_dir in _baseline_search_path: # Find current platform from baseline search paths and start from there. if platform_dir == current_platform_dir: foundCurrentPlatform = True if foundCurrentPlatform: # TODO(pamg): Clean this up once we upstream everything in chrome/. if os.path.basename(platform_dir).startswith('chromium'): if os.path.exists(os.path.join(platform_dir, platform_filename)): baselines.append((platform_dir, platform_filename)) else: if os.path.exists(os.path.join(platform_dir, base_filename)): baselines.append((platform_dir, base_filename)) if not all_baselines and baselines: return baselines # If it wasn't found in a platform directory, return the expected result # in the test directory, even if no such file actually exists. platform_dir = LayoutTestsDir(filename) if os.path.exists(os.path.join(platform_dir, platform_filename)): baselines.append((platform_dir, platform_filename)) if baselines: return baselines return [(None, platform_filename)] def ExpectedFilename(filename, suffix): """Given a test name, returns an absolute path to its expected results. If no expected results are found in any of the searched directories, the directory in which the test itself is located will be returned. The return value is in the format appropriate for the platform (e.g., "\\" for path separators on windows). Args: filename: absolute filename to test file suffix: file suffix of the expected results, including dot; e.g. '.txt' or '.png'. This should not be None, but may be an empty string. platform: the most-specific directory name to use to build the search list of directories, e.g., 'chromium-win', or 'chromium-mac-leopard' (we follow the WebKit format) """ platform_dir, platform_filename = ExpectedBaseline(filename, suffix)[0] if platform_dir: return os.path.join(platform_dir, platform_filename) return os.path.join(LayoutTestsDir(filename), platform_filename) def RelativeTestFilename(filename): """Provide the filename of the test relative to the layout data directory as a unix style path (a/b/c).""" return _WinPathToUnix(filename[len(LayoutTestsDir(filename)) + 1:]) def _WinPathToUnix(path): """Convert a windows path to use unix-style path separators (a/b/c).""" return path.replace('\\', '/') # # Routines that are arguably platform-specific but have been made # generic for now (they used to be in platform_utils_*) # def FilenameToUri(full_path): """Convert a test file to a URI.""" LAYOUTTESTS_DIR = "LayoutTests/" LAYOUTTEST_HTTP_DIR = "LayoutTests/http/tests/" LAYOUTTEST_WEBSOCKET_DIR = "LayoutTests/websocket/tests/" relative_path = _WinPathToUnix(RelativeTestFilename(full_path)) port = None use_ssl = False if relative_path.startswith(LAYOUTTEST_HTTP_DIR): # LayoutTests/http/tests/ run off port 8000 and ssl/ off 8443 relative_path = relative_path[len(LAYOUTTEST_HTTP_DIR):] port = 8000 elif relative_path.startswith(LAYOUTTEST_WEBSOCKET_DIR): # LayoutTests/websocket/tests/ run off port 8880 and 9323 # Note: the root is LayoutTests/, not LayoutTests/websocket/tests/ relative_path = relative_path[len(LAYOUTTESTS_DIR):] port = 8880 # Make LayoutTests/http/tests/local run as local files. This is to mimic the # logic in run-webkit-tests. # TODO(jianli): Consider extending this to "media/". if port and not relative_path.startswith("local/"): if relative_path.startswith("ssl/"): port += 443 protocol = "https" else: protocol = "http" return "%s://127.0.0.1:%u/%s" % (protocol, port, relative_path) if sys.platform in ('cygwin', 'win32'): return "file:///" + GetAbsolutePath(full_path) return "file://" + GetAbsolutePath(full_path) def GetAbsolutePath(path): """Returns an absolute UNIX path.""" return _WinPathToUnix(os.path.abspath(path)) def MaybeMakeDirectory(*path): """Creates the specified directory if it doesn't already exist.""" # This is a reimplementation of google.path_utils.MaybeMakeDirectory(). try: os.makedirs(os.path.join(*path)) except OSError, e: if e.errno != errno.EEXIST: raise def PathFromBase(*comps): """Returns an absolute filename from a set of components specified relative to the top of the source tree. If the path does not exist, the exception PathNotFound is raised.""" # This is a reimplementation of google.path_utils.PathFromBase(). global _basedir if _basedir == None: # We compute the top of the source tree by finding the absolute # path of this source file, and then climbing up three directories # as given in subpath. If we move this file, subpath needs to be updated. path = os.path.abspath(__file__) subpath = os.path.join('webkit','tools','layout_tests') _basedir = path[:path.index(subpath)] path = os.path.join(_basedir, *comps) if not os.path.exists(path): raise PathNotFound('could not find %s' % (path)) return path def RemoveDirectory(*path): """Recursively removes a directory, even if it's marked read-only. Remove the directory located at *path, if it exists. shutil.rmtree() doesn't work on Windows if any of the files or directories are read-only, which svn repositories and some .svn files are. We need to be able to force the files to be writable (i.e., deletable) as we traverse the tree. Even with all this, Windows still sometimes fails to delete a file, citing a permission error (maybe something to do with antivirus scans or disk indexing). The best suggestion any of the user forums had was to wait a bit and try again, so we do that too. It's hand-waving, but sometimes it works. :/ """ file_path = os.path.join(*path) if not os.path.exists(file_path): return win32 = False if sys.platform == 'win32': win32 = True # Some people don't have the APIs installed. In that case we'll do without. try: win32api = __import__('win32api') win32con = __import__('win32con') except ImportError: win32 = False def remove_with_retry(rmfunc, path): os.chmod(path, stat.S_IWRITE) if win32: win32api.SetFileAttributes(path, win32con.FILE_ATTRIBUTE_NORMAL) try: return rmfunc(path) except EnvironmentError, e: if e.errno != errno.EACCES: raise print 'Failed to delete %s: trying again' % repr(path) time.sleep(0.1) return rmfunc(path) else: def remove_with_retry(rmfunc, path): if os.path.islink(path): return os.remove(path) else: return rmfunc(path) for root, dirs, files in os.walk(file_path, topdown=False): # For POSIX: making the directory writable guarantees removability. # Windows will ignore the non-read-only bits in the chmod value. os.chmod(root, 0770) for name in files: remove_with_retry(os.remove, os.path.join(root, name)) for name in dirs: remove_with_retry(os.rmdir, os.path.join(root, name)) remove_with_retry(os.rmdir, file_path) # # Wrappers around platform_utils # def PlatformName(platform=None): """Returns the appropriate chromium platform name for |platform|. If |platform| is None, returns the name of the chromium platform on the currently running system. If |platform| is of the form 'chromium-*', it is returned unchanged, otherwise 'chromium-' is prepended.""" if platform == None: return platform_utils.PlatformName() if not platform.startswith('chromium-'): platform = "chromium-" + platform return platform def PlatformVersion(): return platform_utils.PlatformVersion() def LigHTTPdExecutablePath(): return platform_utils.LigHTTPdExecutablePath() def LigHTTPdModulePath(): return platform_utils.LigHTTPdModulePath() def LigHTTPdPHPPath(): return platform_utils.LigHTTPdPHPPath() def WDiffPath(): return platform_utils.WDiffPath() def TestShellPath(target): return platform_utils.TestShellPath(target) def ImageDiffPath(target): return platform_utils.ImageDiffPath(target) def LayoutTestHelperPath(target): return platform_utils.LayoutTestHelperPath(target) def FuzzyMatchPath(): return platform_utils.FuzzyMatchPath() def ShutDownHTTPServer(server_pid): return platform_utils.ShutDownHTTPServer(server_pid) def KillAllTestShells(): platform_utils.KillAllTestShells()
python
''' File name : stage.py Author : Jinwook Jung Created on : Thu 25 Jul 2019 11:57:16 PM EDT Last modified : 2020-01-06 13:27:13 Description : ''' import subprocess, os, sys, random, yaml, time from subprocess import Popen, PIPE, CalledProcessError from abc import ABC, abstractmethod def run_shell_cmd(cmd, f=None): p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) for line in iter(p.stdout.readline, b''): print(">>> {}".format(line.rstrip().decode("utf-8"))) # FIXME if f is not None: f.write("{}\n".format(str(line.rstrip()))) class Stage(ABC): def __init__(self, rdf, stage_dir, prev_out_dir, user_parms, write_run_scripts=False): ''' Initialize the instance and populate the necessary/useful variables. ''' self.rdf_path = rdf.config["rdf_path"] self.config = rdf.config self.design_dir, self.lib_dir = rdf.design_dir, rdf.lib_dir self.design_config, self.lib_config = rdf.design_config, rdf.lib_config self.stage_dir = stage_dir self.prev_out_dir = prev_out_dir self.design_name = rdf.design_config["name"] # Output of previous stage self.in_def, self.in_verilog, self.in_sdc = (None,)*3 if prev_out_dir is not None: self.in_def = "{}/{}.def".format(prev_out_dir, self.design_name) self.in_verilog = "{}/{}.v".format(prev_out_dir, self.design_name) self.in_sdc = "{}/{}.sdc".format(prev_out_dir, self.design_name) else: # If this is the first stage, just use the original design file self.in_verilog = None self.in_def = None self.in_sdc = "{}/{}.sdc".format(self.rdf_path, self.design_name) self.design_verilogs = ["{}/{}".format(self.design_dir, _) \ for _ in self.design_config["verilog"]] # Library/PDK self.lib_name = self.lib_config["LIBRARY_NAME"] self.liberty = "{}/{}".format(self.lib_dir, self.lib_config["LIBERTY"]) self.lef = "{}/{}".format(self.lib_dir, self.lib_config["LEF"]) self.tracks = "{}/{}".format(self.lib_dir, self.lib_config["TRACKS_INFO_FILE"]) # (TODO) User parameters self.user_parms = user_parms # List of parameters (key/value pairs) def create_run_script_template(self): with open("{}/run.sh".format(self.stage_dir), 'w') as f: f.write("#!/bin/bash\n\n") f.write("export RDF_PATH=\"{}\"\n".format(self.rdf_path)) f.write("export RDF_STAGE_DIR=\"{}\"\n".format(self.stage_dir)) f.write("export RDF_TOOL_BIN_PATH=\"${RDF_PATH}/bin\"\n") f.write("\n") @abstractmethod def write_run_scripts(self): pass @abstractmethod def run(self): pass
python
''' Given multiple fasta files (corresponding to different organisms), use mafft to create the multiple sequence alignment for the given target. Then parse the alignments to create a consensus sequence. ''' import pandas as pd import os import alignment_funcs from Bio import SeqIO def convert_indices(x, alignment = None, col = None): ''' Call column_from_residue_number to add the new index to the df ''' new_index = alignment_funcs.column_from_residue_number(alignment, x['ID'], x[col]) return new_index def main(arglist): fastas = snakemake.input['fastas'] outfile = snakemake.output['outfasta'] excluded2 = snakemake.output['excluded2'] excluded1_files = snakemake.input['excluded_regions_files'] name = snakemake.params['name'] #combine fastas to single file temp_fasta = 'temp_multi_%s.fa' % name record_list = [] with open(temp_fasta, "w") as g: for i in fastas: records = SeqIO.parse(i, "fasta") for j in records: record_list.append(j) SeqIO.write(record_list, temp_fasta, "fasta") alignment = alignment_funcs.write_alignment(temp_fasta, name, outfile) os.remove(temp_fasta) ex_df = pd.concat([pd.read_csv(i) for i in excluded1_files]) if not ex_df.empty: ex_df['new_start'] = ex_df.apply(convert_indices, alignment = alignment, col = 'start', axis = 1) ex_df['new_end'] = ex_df.apply(convert_indices, alignment = alignment, col = 'end', axis = 1) ex_df.drop(['start', 'end'], axis = 1, inplace = True) ex_df['ID'] = name ex_df.rename(columns = {'new_start':'start', 'new_end':'end'}, inplace = True) ex_df.to_csv(excluded2, index = False) if __name__ == '__main__': main(sys.argv[1:])
python
# Generated by rpcgen.py at Mon Mar 8 11:09:57 2004 from .mountconstants import * from .mountpacker import * import rpc __all__ = ['BadDiscriminant', 'fhstatus', 'mountres3_ok', 'mountres3', 'mountbody', 'groupnode', 'exportnode'] def init_type_class(klass, ncl): # Initilize type class klass.ncl = ncl klass.packer = ncl.packer klass.unpacker = ncl.unpacker def assert_not_none(klass, *args): for arg in args: if arg == None: raise TypeError(repr(klass) + " has uninitialized data") def pack_objarray(ncl, list): # FIXME: Support for length assertion. ncl.packer.pack_uint(len(list)) for item in list: item.pack() def unpack_objarray(ncl, klass): n = ncl.unpacker.unpack_uint() list = [] for i in range(n): obj = klass(ncl) obj.unpack() list.append(obj) return list class BadDiscriminant(rpc.RPCException): def __init__(self, value, klass): self.value = value self.klass = klass def __str__(self): return "Bad Discriminant %s in %s" % (self.value, self.klass) class fhstatus: # XDR definition: # union fhstatus switch (unsigned fhs_status) { # case 0: # fhandle2 fhs_fhandle; # default: # void; # }; def __init__(self, ncl, fhs_status=None, fhs_fhandle=None): init_type_class(self, ncl) self.fhs_status = fhs_status self.fhs_fhandle = fhs_fhandle # Shortcut to current arm self.arm = None def __repr__(self): s = " fhs_status=%s fhs_fhandle=%s" % (str(self.fhs_status), str(self.fhs_fhandle)) if len(s) > 70: s = s[:70] + "..." return "<fhstatus:%s>" % s def pack(self, dummy=None): assert_not_none(self, self.fhs_status) self.packer.pack_unsigned(self.fhs_status) if self.fhs_status == 0: assert_not_none(self, self.fhs_fhandle) self.packer.pack_fhandle2(self.fhs_fhandle) self.arm = self.fhs_fhandle else: pass def unpack(self): self.fhs_status = self.unpacker.unpack_unsigned() if self.fhs_status == 0: self.fhs_fhandle = self.unpacker.unpack_fhandle2() self.arm = self.fhs_fhandle else: pass class mountres3_ok: # XDR definition: # struct mountres3_ok { # fhandle3 fhandle; # int auth_flavors<>; # }; def __init__(self, ncl, fhandle=None, auth_flavors=None): init_type_class(self, ncl) self.fhandle = fhandle self.auth_flavors = auth_flavors def __repr__(self): s = " fhandle=%s auth_flavors=%s" % (str(self.fhandle), str(self.auth_flavors)) if len(s) > 70: s = s[:70] + "..." return "<mountres3_ok:%s>" % s def pack(self, dummy=None): assert_not_none(self, self.fhandle, self.auth_flavors) self.packer.pack_fhandle3(self.fhandle) self.packer.pack_int(self.auth_flavors) def unpack(self): self.fhandle = self.unpacker.unpack_fhandle3() self.auth_flavors = self.unpacker.unpack_array(self.unpacker.unpack_int) class mountres3: # XDR definition: # union mountres3 switch (mountstat3 fhs_status) { # case MNT3_OK: # mountres3_ok mountinfo; # default: # void; # }; def __init__(self, ncl, fhs_status=None, mountinfo=None): init_type_class(self, ncl) self.fhs_status = fhs_status self.mountinfo = mountinfo # Shortcut to current arm self.arm = None def __repr__(self): s = " fhs_status=%s mountinfo=%s" % (str(self.fhs_status), str(self.mountinfo)) if len(s) > 70: s = s[:70] + "..." return "<mountres3:%s>" % s def pack(self, dummy=None): assert_not_none(self, self.fhs_status) self.packer.pack_mountstat3(self.fhs_status) if self.fhs_status == MNT3_OK: assert_not_none(self, self.mountinfo) self.mountinfo.pack() self.arm = self.mountinfo else: pass def unpack(self): self.fhs_status = self.unpacker.unpack_mountstat3() if self.fhs_status == MNT3_OK: self.mountinfo = mountres3_ok(self) self.mountinfo.unpack() self.arm = self.mountinfo else: pass class mountbody: # XDR definition: # struct mountbody { # name ml_hostname; # dirpath ml_directory; # mountlist ml_next; # }; def __init__(self, ncl, ml_hostname=None, ml_directory=None, ml_next=None): init_type_class(self, ncl) self.ml_hostname = ml_hostname self.ml_directory = ml_directory self.ml_next = ml_next def __repr__(self): s = " ml_hostname=%s ml_directory=%s ml_next=%s" % (str(self.ml_hostname), str(self.ml_directory), str(self.ml_next)) if len(s) > 70: s = s[:70] + "..." return "<mountbody:%s>" % s def pack(self, dummy=None): assert_not_none(self, self.ml_hostname, self.ml_directory, self.ml_next) self.packer.pack_name(self.ml_hostname) self.packer.pack_dirpath(self.ml_directory) self.packer.pack_mountlist(self.ml_next) def unpack(self): self.ml_hostname = self.unpacker.unpack_name() self.ml_directory = self.unpacker.unpack_dirpath() self.ml_next = self.unpacker.unpack_mountlist() class groupnode: # XDR definition: # struct groupnode { # name gr_name; # groups gr_next; # }; def __init__(self, ncl, gr_name=None, gr_next=None): init_type_class(self, ncl) self.gr_name = gr_name self.gr_next = gr_next def __repr__(self): s = " gr_name=%s gr_next=%s" % (str(self.gr_name), str(self.gr_next)) if len(s) > 70: s = s[:70] + "..." return "<groupnode:%s>" % s def pack(self, dummy=None): assert_not_none(self, self.gr_name, self.gr_next) self.packer.pack_name(self.gr_name) self.packer.pack_groups(self.gr_next) def unpack(self): self.gr_name = self.unpacker.unpack_name() self.gr_next = self.unpacker.unpack_groups() class exportnode: # XDR definition: # struct exportnode { # dirpath ex_dir; # groups ex_groups; # exports ex_next; # }; def __init__(self, ncl, ex_dir=None, ex_groups=None, ex_next=None): init_type_class(self, ncl) self.ex_dir = ex_dir self.ex_groups = ex_groups self.ex_next = ex_next def __repr__(self): s = " ex_dir=%s ex_groups=%s ex_next=%s" % (str(self.ex_dir), str(self.ex_groups), str(self.ex_next)) if len(s) > 70: s = s[:70] + "..." return "<exportnode:%s>" % s def pack(self, dummy=None): assert_not_none(self, self.ex_dir, self.ex_groups, self.ex_next) self.packer.pack_dirpath(self.ex_dir) self.packer.pack_groups(self.ex_groups) self.packer.pack_exports(self.ex_next) def unpack(self): self.ex_dir = self.unpacker.unpack_dirpath() self.ex_groups = self.unpacker.unpack_groups() self.ex_next = self.unpacker.unpack_exports()
python
def get_layers(data, wide, tall): for i in range(0, len(data), wide * tall): yield data[i : i + wide * tall] def parse_infos(layer): infos = {} for data in layer: if data not in infos: infos[data] = 0 infos[data] += 1 return infos def merge_layers(layers): tmp_layers = list(layers) layer = ["0"] * len(tmp_layers[0]) tmp_layers.reverse() for current in tmp_layers: for i in range(len(layer)): layer[i] = current[i] if current[i] != "2" else layer[i] return "".join(layer)
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Maziar Raissi """ import autograd.numpy as np from autograd import value_and_grad from Utilities import fetch_minibatch_rnn, stochastic_update_Adam, activation class RecurrentNeuralNetworks: def __init__(self, X, Y, hidden_dim, max_iter = 2000, N_batch = 1, monitor_likelihood = 10, lrate = 1e-3): # X has the form lags x data x dim # Y has the form data x dim self.X = X self.Y = Y self.X_dim = X.shape[-1] self.Y_dim = Y.shape[-1] self.hidden_dim = hidden_dim self.lags = X.shape[0] self.max_iter = max_iter self.N_batch = N_batch self.monitor_likelihood = monitor_likelihood self.hyp = self.initialize_RNN() # Adam optimizer parameters self.mt_hyp = np.zeros(self.hyp.shape) self.vt_hyp = np.zeros(self.hyp.shape) self.lrate = lrate print("Total number of parameters: %d" % (self.hyp.shape[0])) def initialize_RNN(self): hyp = np.array([]) Q = self.hidden_dim U = -np.sqrt(6.0/(self.X_dim+Q)) + 2.0*np.sqrt(6.0/(self.X_dim+Q))*np.random.rand(self.X_dim,Q) b = np.zeros((1,Q)) W = np.eye(Q) hyp = np.concatenate([hyp, U.ravel(), b.ravel(), W.ravel()]) V = -np.sqrt(6.0/(Q+self.Y_dim)) + 2.0*np.sqrt(6.0/(Q+self.Y_dim))*np.random.rand(Q,self.Y_dim) c = np.zeros((1,self.Y_dim)) hyp = np.concatenate([hyp, V.ravel(), c.ravel()]) return hyp def forward_pass(self, X, hyp): Q = self.hidden_dim H = np.zeros((X.shape[1],Q)) idx_1 = 0 idx_2 = idx_1 + self.X_dim*Q idx_3 = idx_2 + Q idx_4 = idx_3 + Q*Q U = np.reshape(hyp[idx_1:idx_2], (self.X_dim,Q)) b = np.reshape(hyp[idx_2:idx_3], (1,Q)) W = np.reshape(hyp[idx_3:idx_4], (Q,Q)) for i in range(0, self.lags): H = activation(np.matmul(H,W) + np.matmul(X[i,:,:],U) + b) idx_1 = idx_4 idx_2 = idx_1 + Q*self.Y_dim idx_3 = idx_2 + self.Y_dim V = np.reshape(hyp[idx_1:idx_2], (Q,self.Y_dim)) c = np.reshape(hyp[idx_2:idx_3], (1,self.Y_dim)) Y = np.matmul(H,V) + c return Y def MSE(self, hyp): X = self.X_batch Y = self.Y_batch Y_star = self.forward_pass(X, hyp) return np.mean((Y-Y_star)**2) def train(self): # Gradients from autograd MSE = value_and_grad(self.MSE) for i in range(1,self.max_iter+1): # Fetch minibatch self.X_batch, self.Y_batch = fetch_minibatch_rnn(self.X, self.Y, self.N_batch) # Compute likelihood_UB and gradients MSE_value, D_MSE = MSE(self.hyp) # Update hyper-parameters self.hyp, self.mt_hyp, self.vt_hyp = stochastic_update_Adam(self.hyp, D_MSE, self.mt_hyp, self.vt_hyp, self.lrate, i) if i % self.monitor_likelihood == 0: print("Iteration: %d, MSE: %.5e" % (i, MSE_value))
python
from src.computation.computation_handler import ComputationHandler class NoComputation(ComputationHandler): def __init__(self): super().__init__() def compute(self): pass
python
from django.utils import timezone from rest_framework import serializers from ..reservation_api.models import Reservation from ..subscription_api.models import Subscription class StaffChoiseField(serializers.ChoiceField): class Meta: swagger_schema_fields = { 'type': 'integer' } class StaffReservationSerializer(serializers.ModelSerializer): member = serializers.CharField(source='subscription.member', read_only=True) status = StaffChoiseField(Reservation.STATUS, required=False) reservedStart = serializers.DateTimeField(source='reserved_start') reservedEnd = serializers.DateTimeField(source='reserved_end') class Meta: model = Reservation fields = ('id', 'member', 'subscription', 'trainer', 'status', 'reservedStart', 'reservedEnd', 'updated') extra_kwargs = {'subscription': {'read_only': True}} def validate(self, attrs): reserved_start = attrs['reserved_start'] reserved_end = attrs['reserved_end'] if reserved_start < self.instance.reserved_start: raise serializers.ValidationError({"reservedStart": "Must come after requested " "reservation start date-time"}) if reserved_end > self.instance.reserved_end: raise serializers.ValidationError({"reservedEnd": "Must come before requested " "reservation end date-time"}) if reserved_start > reserved_end: raise serializers.ValidationError({"reservedEnd": "Must come after reservation start date-time"}) delta = reserved_end - reserved_start if delta < timezone.timedelta(minutes=30): raise serializers.ValidationError({"reservedRange": "The date-time difference between reservations " "must be at least 30 minutes"}) return attrs def to_representation(self, instance): data = super().to_representation(instance) data['member'] = str(instance.subscription.member.get_full_name()) data['subscription'] = str(instance.subscription.card) data['trainer'] = instance.trainer.get_full_name() if data['trainer'] else 'Not assigned' data['status'] = str(instance.get_status_display()) return data class StaffSubscriptionSerializer(serializers.ModelSerializer): email = serializers.CharField(source="member.email", read_only=True) class Meta: model = Subscription fields = ('id', 'email', 'member', 'card', 'visits_count', 'purchased', 'expires') extra_kwargs = { 'member': {'read_only': True}, 'card': {'read_only': True}, 'visits_count': {'required': True}, 'purchased': {'read_only': True}, 'expires': {'read_only': True} } def to_representation(self, instance): data = super().to_representation(instance) data['member'] = instance.member.get_full_name() data['card'] = str(instance.card) return data
python
#!/usr/bin/env python import ray import numpy as np import time, sys, os sys.path.append("..") from util.printing import pd # A variation of the game of life code used in the Ray Crash Course. @ray.remote class RayGame: # TODO: Game memory grows unbounded; trim older states? def __init__(self, grid_size, rules_id): self.states = [RayGame.State(size = grid_size)] self.rules_id = rules_id def get_states(self): return self.states def step(self, num_steps = 1): """Take 1 or more steps, returning a list of new states.""" start_index = len(self.states) for _ in range(num_steps): new_state_id = self.rules_id.step.remote(self.states[-1]) self.states.append(ray.get(new_state_id)) return self.states[start_index:-1] # return the new states only! @ray.remote class RayConwaysRules: """ Apply the rules to a state and return a new state. """ def step(self, state): """ Determine the next values for all the cells, based on the current state. Creates a new State with the changes. """ new_grid = state.grid.copy() for i in range(state.size): for j in range(state.size): lns = self.live_neighbors(i, j, state) new_grid[i][j] = self.apply_rules(i, j, lns, state) new_state = RayGame.State(grid = new_grid) return new_state def apply_rules(self, i, j, live_neighbors, state): """ Determine next value for a cell, which could be the same. The rules for Conway's Game of Life: Any live cell with fewer than two live neighbours dies, as if by underpopulation. Any live cell with two or three live neighbours lives on to the next generation. Any live cell with more than three live neighbours dies, as if by overpopulation. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction. """ cell = state.grid[i][j] # default value is no change in state if cell == 1: if live_neighbors < 2 or live_neighbors > 3: cell = 0 elif live_neighbors == 3: cell = 1 return cell def live_neighbors(self, i, j, state): """ Wrap at boundaries (i.e., treat the grid as a 2-dim "toroid") To wrap at boundaries, when k-1=-1, that wraps itself; for k+1=state.size, we mod it (which works for -1, too) For simplicity, we count the cell itself, then subtact it """ s = state.size g = state.grid return sum([g[i2%s][j2%s] for i2 in [i-1,i,i+1] for j2 in [j-1,j,j+1]]) - g[i][j] class State: """ Represents a grid of game cells. For simplicity, require square grids. Each instance is considered immutable. """ def __init__(self, grid = None, size = 10): """ Create a State. Specify either a grid of cells or a size, for which an size x size grid will be computed with random values. (For simplicity, only use square grids.) """ if type(grid) != type(None): # avoid annoying AttributeError assert grid.shape[0] == grid.shape[1] self.size = grid.shape[0] self.grid = grid.copy() else: self.size = size # Seed: random initialization self.grid = np.random.randint(2, size = size*size).reshape((size, size)) def living_cells(self): """ Returns ([x1, x2, ...], [y1, y2, ...]) for all living cells. Simplifies graphing. """ cells = [(i,j) for i in range(self.size) for j in range(self.size) if self.grid[i][j] == 1] return zip(*cells) def __str__(self): s = ' |\n| '.join([' '.join(map(lambda x: '*' if x else ' ', self.grid[i])) for i in range(self.size)]) return '| ' + s + ' |' def time_ray_games(num_games = 1, max_steps = 100, batch_size = 1, grid_size = 100): rules_ids = [] game_ids = [] for i in range(num_games): rules_id = RayGame.RayConwaysRules.remote() game_id = RayGame.remote(grid_size, rules_id) game_ids.append(game_id) rules_ids.append(rules_id) print(f'rules_ids:\n{rules_ids}') # these will produce more interesting flame graphs! print(f'game_ids:\n{game_ids}') start = time.time() state_ids = [] for game_id in game_ids: for i in range(int(max_steps/batch_size)): # Do a total of max_steps game steps, which is max_steps/delta_steps state_ids.append(game_id.step.remote(batch_size)) ray.get(state_ids) # wait for everything to finish! We are ignoring what ray.get() returns, but what will it be?? pd(time.time() - start, prefix = f'Total time for {num_games} games (max_steps = {max_steps}, batch_size = {batch_size})') def main(): import argparse parser = argparse.ArgumentParser(description="Conway's Game of Life v2") parser.add_argument('--size', metavar='N', type=int, default=100, nargs='?', help='The size of the square grid for the game') parser.add_argument('--steps', metavar='N', type=int, default=500, nargs='?', help='The number of steps to run') parser.add_argument('-l', '--local', help="Run Ray locally. Default is to join a cluster", action='store_true') args = parser.parse_args() print(f""" Conway's Game of Life v2: Grid size: {args.size} Number steps: {args.steps} Run Ray locally? {args.local} """) if args.local: ray.init() else: ray.init(address='auto') time_ray_games(num_games = 1, max_steps = args.steps, batch_size = 1, grid_size = args.size) if __name__ == "__main__": main()
python
from setuptools import setup setup( name='listenmoe', packages=['listenmoe'], version='v1.0.1', description='Unofficial python3 API wrapper to get information about' 'the listen.moe live stream using aiohttp', author='Zenrac', author_email='[email protected]', url='https://github.com/Zenrac/listenmoe', download_url='https://github.com/Zenrac/listenmoe/archive/v1.0.1.tar.gz', keywords=['listenmoe'], include_package_data=True, install_requires=['aiohttp', 'asyncio'] )
python
# This work is licensed under the Creative Commons Attribution-NonCommercial # 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. import os import sys import glob import argparse import threading import six.moves.queue as Queue import traceback import numpy as np import tensorflow as tf import warnings warnings.filterwarnings('ignore',category=FutureWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) import PIL.Image import tfutil import dataset # ---------------------------------------------------------------------------- def error(msg): print('Error: ' + msg) exit(1) # ---------------------------------------------------------------------------- class TFRecordExporter: def __init__(self, tfrecord_dir, expected_images, print_progress=True, progress_interval=10): self.tfrecord_dir = tfrecord_dir self.tfr_prefix = os.path.join(self.tfrecord_dir, os.path.basename(self.tfrecord_dir)) self.expected_images = expected_images self.cur_images = 0 self.shape = None self.resolution_log2 = None self.tfr_writers = [] self.print_progress = print_progress self.progress_interval = progress_interval if self.print_progress: print('Creating dataset "%s"' % tfrecord_dir) if not os.path.isdir(self.tfrecord_dir): os.makedirs(self.tfrecord_dir) assert (os.path.isdir(self.tfrecord_dir)) def close(self): if self.print_progress: print('%-40s\r' % 'Flushing data...', end='', flush=True) for tfr_writer in self.tfr_writers: tfr_writer.close() self.tfr_writers = [] if self.print_progress: print('%-40s\r' % '', end='', flush=True) print('Added %d images.' % self.cur_images) def choose_shuffled_order(self): # Note: Images and labels must be added in shuffled order. order = np.arange(self.expected_images) np.random.RandomState(123).shuffle(order) return order def add_image(self, img): if self.print_progress and self.cur_images % self.progress_interval == 0: print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True) if self.shape is None: self.shape = img.shape self.resolution_log2 = int(np.log2(self.shape[1])) assert self.shape[0] in [1, 3] assert self.shape[1] == self.shape[2] assert self.shape[1] == 2 ** self.resolution_log2 tfr_opt = tf.io.TFRecordOptions(tf.compat.v1.python_io.TFRecordCompressionType.NONE) for lod in range(self.resolution_log2 - 1): tfr_file = self.tfr_prefix + '-r%02d.tfrecords' % (self.resolution_log2 - lod) self.tfr_writers.append(tf.io.TFRecordWriter(tfr_file, tfr_opt)) assert img.shape == self.shape for lod, tfr_writer in enumerate(self.tfr_writers): if lod: img = img.astype(np.float32) img = (img[:, 0::2, 0::2] + img[:, 0::2, 1::2] + img[:, 1::2, 0::2] + img[:, 1::2, 1::2]) * 0.25 # quant = np.rint(img).clip(0, 255).astype(np.uint8) quant = img.astype(np.uint8) # Converting the np array to a tensor ex = tf.train.Example(features=tf.train.Features(feature={ 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=quant.shape)), 'data': tf.train.Feature(bytes_list=tf.train.BytesList(value=[quant.tostring()]))})) tfr_writer.write(ex.SerializeToString()) self.cur_images += 1 def add_labels(self, labels): if self.print_progress: print('%-40s\r' % 'Saving labels...', end='', flush=True) print("cur", self.cur_images) print("shape", labels.shape) assert labels.shape[0] == self.cur_images with open(self.tfr_prefix + '-rxx.labels', 'wb') as f: np.save(f, labels.astype(np.float32)) def __enter__(self): return self def __exit__(self, *args): self.close() # ---------------------------------------------------------------------------- class ExceptionInfo(object): def __init__(self): self.value = sys.exc_info()[1] self.traceback = traceback.format_exc() # ---------------------------------------------------------------------------- class WorkerThread(threading.Thread): def __init__(self, task_queue): threading.Thread.__init__(self) self.task_queue = task_queue def run(self): while True: func, args, result_queue = self.task_queue.get() if func is None: break try: result = func(*args) except: result = ExceptionInfo() result_queue.put((result, args)) # ---------------------------------------------------------------------------- class ThreadPool(object): def __init__(self, num_threads): assert num_threads >= 1 self.task_queue = Queue.Queue() self.result_queues = dict() self.num_threads = num_threads for idx in range(self.num_threads): thread = WorkerThread(self.task_queue) thread.daemon = True thread.start() def add_task(self, func, args=()): assert hasattr(func, '__call__') # must be a function if func not in self.result_queues: self.result_queues[func] = Queue.Queue() self.task_queue.put((func, args, self.result_queues[func])) def get_result(self, func): # returns (result, args) result, args = self.result_queues[func].get() if isinstance(result, ExceptionInfo): print('\n\nWorker thread caught an exception:\n' + result.traceback) raise result.value return result, args def finish(self): for idx in range(self.num_threads): self.task_queue.put((None, (), None)) def __enter__(self): # for 'with' statement return self def __exit__(self, *excinfo): self.finish() def process_items_concurrently(self, item_iterator, process_func=lambda x: x, pre_func=lambda x: x, post_func=lambda x: x, max_items_in_flight=None): if max_items_in_flight is None: max_items_in_flight = self.num_threads * 4 assert max_items_in_flight >= 1 results = [] retire_idx = [0] def task_func(prepared, idx): return process_func(prepared) def retire_result(): processed, (prepared, idx) = self.get_result(task_func) results[idx] = processed while retire_idx[0] < len(results) and results[retire_idx[0]] is not None: yield post_func(results[retire_idx[0]]) results[retire_idx[0]] = None retire_idx[0] += 1 for idx, item in enumerate(item_iterator): prepared = pre_func(item) results.append(None) self.add_task(func=task_func, args=(prepared, idx)) while retire_idx[0] < idx - max_items_in_flight + 2: for res in retire_result(): yield res while retire_idx[0] < len(results): for res in retire_result(): yield res # ---------------------------------------------------------------------------- def display(tfrecord_dir): print('Loading dataset "%s"' % tfrecord_dir) tfutil.init_tf({'gpu_options.allow_growth': True}) dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle_mb=0) tfutil.init_uninited_vars() idx = 0 while True: try: images, labels = dset.get_minibatch_np(1) except tf.errors.OutOfRangeError: break if idx == 0: print('Displaying images') import cv2 # pip install opencv-python cv2.namedWindow('dataset_tool') print('Press SPACE or ENTER to advance, ESC to exit') print('\nidx = %-8d\nlabel = %s' % (idx, labels[0].tolist())) cv2.imshow('dataset_tool', images[0].transpose(1, 2, 0)[:, :, ::-1]) # CHW => HWC, RGB => BGR idx += 1 if cv2.waitKey() == 27: break print('\nDisplayed %d images.' % idx) # ---------------------------------------------------------------------------- def extract(tfrecord_dir, output_dir): print('Loading dataset "%s"' % tfrecord_dir) tfutil.init_tf({'gpu_options.allow_growth': True}) dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size=0, repeat=False, shuffle_mb=0) tfutil.init_uninited_vars() print('Extracting images to "%s"' % output_dir) if not os.path.isdir(output_dir): os.makedirs(output_dir) idx = 0 while True: if idx % 10 == 0: print('%d\r' % idx, end='', flush=True) try: images, labels = dset.get_minibatch_np(1) except tf.errors.OutOfRangeError: break if images.shape[1] == 1: img = PIL.Image.fromarray(images[0][0], 'L') else: img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB') img.save(os.path.join(output_dir, 'img%08d.png' % idx)) idx += 1 print('Extracted %d images.' % idx) # ---------------------------------------------------------------------------- def compare(tfrecord_dir_a, tfrecord_dir_b, ignore_labels): max_label_size = 0 if ignore_labels else 'full' print('Loading dataset "%s"' % tfrecord_dir_a) tfutil.init_tf({'gpu_options.allow_growth': True}) dset_a = dataset.TFRecordDataset(tfrecord_dir_a, max_label_size=max_label_size, repeat=False, shuffle_mb=0) print('Loading dataset "%s"' % tfrecord_dir_b) dset_b = dataset.TFRecordDataset(tfrecord_dir_b, max_label_size=max_label_size, repeat=False, shuffle_mb=0) tfutil.init_uninited_vars() print('Comparing datasets') idx = 0 identical_images = 0 identical_labels = 0 while True: if idx % 100 == 0: print('%d\r' % idx, end='', flush=True) try: images_a, labels_a = dset_a.get_minibatch_np(1) except tf.errors.OutOfRangeError: images_a, labels_a = None, None try: images_b, labels_b = dset_b.get_minibatch_np(1) except tf.errors.OutOfRangeError: images_b, labels_b = None, None if images_a is None or images_b is None: if images_a is not None or images_b is not None: print('Datasets contain different number of images') break if images_a.shape == images_b.shape and np.all(images_a == images_b): identical_images += 1 else: print('Image %d is different' % idx) if labels_a.shape == labels_b.shape and np.all(labels_a == labels_b): identical_labels += 1 else: print('Label %d is different' % idx) idx += 1 print('Identical images: %d / %d' % (identical_images, idx)) if not ignore_labels: print('Identical labels: %d / %d' % (identical_labels, idx)) def create_from_images(labeled_tfrecord_dir, unlabeled_tfrecord_dir, labeled_dir, unlabeled_dir, shuffle): # Checking to see if there is two slashes at the end instead of 1 if labeled_dir[-1] == "/" and labeled_dir[-2] == "/": labeled_dir = labeled_dir[:-1] if unlabeled_dir[-1] == "/" and unlabeled_dir[-2] == "/": unlabeled_dir = unlabeled_dir[:-1] # Checking to make sure the path exists if not os.path.isdir(labeled_dir): error("Path " + labeled_dir + " does not exist!") if not os.path.isdir(unlabeled_dir): error("Path " + unlabeled_dir + " does not exist!") # This lists all of the directories in the provided labeled directory. Each class should have its own folder # within this directory. It also prepends the full path before it and makes sure .git isn't included classes_dir = [labeled_dir + name for name in os.listdir(labeled_dir) if os.path.isdir(os.path.join(labeled_dir, name)) and name != '.git'] Num_classes = len(classes_dir) labeled_filenames = [] # Go through each class directory and list all the full paths to each file and store them in an array for each_class in classes_dir: print('Loading images from "%s"' % each_class) labeled_filenames.append(list(sorted(glob.glob(os.path.join(each_class, '*'))))) # Go through that array and assign Labels to each image labels = [] for i in range(Num_classes): print("Class " + str(i) + " is " + str(classes_dir[i].split("/")[-1])) labels += [i] * len(labeled_filenames[i]) print("Number of classes: " + str(Num_classes)) # Converting labels into np array and one hot encoding it labels = np.array(labels) onehot = np.zeros((labels.size, Num_classes), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 # Unlabeled dataset loading print('Loading images from "%s"' % unlabeled_dir) unlabeled_filenames = sorted(glob.glob(os.path.join(unlabeled_dir, '*'))) print() # Checks if len(labeled_filenames) == 0: error('No input images found in ' + labeled_dir) if len(unlabeled_filenames) == 0: error('No input images found in ' + unlabeled_dir) # Checking to make sure dimensions are all good img = np.asarray(PIL.Image.open(labeled_filenames[0][0])) resolution = img.shape[0] channels = img.shape[2] if img.ndim == 3 else 1 if img.shape[1] != resolution: error('Input images must have the same width and height') if resolution != 2 ** int(np.floor(np.log2(resolution))): error('Input image resolution must be a power-of-two') if channels not in [1, 3]: error('Input images must be stored as RGB or grayscale') # Adding labeled data with TFRecordExporter(labeled_tfrecord_dir, len(labels)) as tfr: order = tfr.choose_shuffled_order() if shuffle else np.arange(len(labels)) # Go over the number of images for idx in range(len(labels)): # Kind-of confusing but this is necessary due to the multi-class labeled data # labeled_filenames = [[cat1, cat2, cat3], [dog1, dog2, dog3]] since it is a double # array and the shuffling is a single array [4, 5, 2, 0, 1, 3] the code below finds which # index for the class (class_indx) and which index for the sample within the class (tmp_indx) # I did it this way so the amount of samples within each class can be arbitrary as well as the number # of classes overall. class_indx = 0 tmp_indx = order[idx] # lets say tmp_indx is 4 in our example # Checks to see if 4 > 2 while tmp_indx > len(labeled_filenames[class_indx])-1: # tmp_indx = 4 - 3 tmp_indx-=len(labeled_filenames[class_indx]) # we check the next class class_indx+=1 # class_indx = 0; tmp_indx = 1 which gives us the 4th index img = np.asarray(PIL.Image.open(labeled_filenames[class_indx][tmp_indx])) if channels == 1: img = img[np.newaxis, :, :] # HW => CHW else: img = img.transpose(2, 0, 1) # HWC => CHW tfr.add_image(img) # Dont need to do anything fancy here since onehot is a numpy array tfr.add_labels(onehot[order]) print() # Adding unlabeled data with TFRecordExporter(unlabeled_tfrecord_dir, len(unlabeled_filenames)) as tfr2: #fake_labels = [Num_classes - 1] * len(unlabeled_filenames) #fake_labels = np.array(fake_labels) #fake_onehot = np.zeros((fake_labels.size, np.max(fake_labels) + 1), dtype=np.float32) #fake_onehot[np.arange(fake_labels.size), fake_labels] = 1.0 order = tfr2.choose_shuffled_order() if shuffle else np.arange(len(unlabeled_filenames)) for idx in range(order.size): img = np.asarray(PIL.Image.open(unlabeled_filenames[order[idx]])) if channels == 1: img = img[np.newaxis, :, :] # HW => CHW else: img = img.transpose(2, 0, 1) # HWC => CHW tfr2.add_image(img) #tfr2.add_labels(fake_onehot[order]) # ---------------------------------------------------------------------------- if __name__ == "__main__": if len(sys.argv) != 3: error("Wrong amount of commands given!\nFormat: python3 dataset_tool.py <Labeled dir> <Unlabeled dir>\nEx) python3 dataset_tool.py /home/user/Desktop/SSL-PG-GAN/CatVDog/PetImages/Labeled/ /home/user/Desktop/SSL-PG-GAN/CatVDog/PetImages/Unlabeled/\n") if not os.path.isdir("Labeled"): os.mkdir("Labeled") if not os.path.isdir("Unlabeled"): os.mkdir("Unlabeled") Shuffle = True args = sys.argv[1:] create_from_images("Labeled", "Unlabeled", args[0] + "/", args[1] + "/", Shuffle) # ----------------------------------------------------------------------------
python
""" Implements the Graph object which is used by the ConstraintPropagator. It is here where Allen's constraint propagation algorithm is implemented. """ # TODO: I am not convinced that the history mechanism is very good, yet it seems # to be sufficient for our current purposes. from objects import Node, Edge, Constraint from utils import intersect_relations from utils import compare_id from utils import html_graph_prefix from mappings import invert_interval_relation from mappings import abbreviate_convex_relation from utilities import logger from library.main import LIBRARY DEBUG = True DEBUG = False TIMEX = LIBRARY.timeml.TIMEX TID = LIBRARY.timeml.TID EVENT = LIBRARY.timeml.EVENT EID = LIBRARY.timeml.EID EIID = LIBRARY.timeml.EIID EVENTID = LIBRARY.timeml.EVENTID FORM = LIBRARY.timeml.FORM VALUE = LIBRARY.timeml.VALUE class Graph: """Implements the graph object used in the constraint propagation algorithm. Instance variables: filename - the name of the source file cycle - an integer queue - a list of Constraints nodes - a hash of Nodes, indexed on node identifiers edges - a hash of hashes of Edges, indexed on node identifiers compositions - a CompositionTable """ def __init__(self, compositions): """Initialize an empty graph, with empty queue, nodes dictionary and edges dictionary.""" self.compositions = compositions self.cycle = 0 self.queue = [] self.nodes = {} self.edges = {} def add_nodes(self, events, timexes): """Adds the events/instances and timexes to the nodes table. Also initializes the edges table now that all nodes are known.""" for timex in timexes: node = Node(timex=timex) self.nodes[node.id] = node for event in events: node = Node(event=event) self.nodes[node.id] = node for n1 in self.nodes.keys(): self.edges[n1] = {} for n2 in self.nodes.keys(): self.edges[n1][n2] = Edge(n1, n2, self) def add_nodes(self, sources, source_type): """Creates Nodes for each source and add them to the nodes table. Also initializes the edges table now that all nodes are known. A source is either an event or timex tag or simply an identifier.""" for source in sources: if source_type == 'IDENTIFIER': identifier = source text = '' elif source_type == TIMEX: identifier = source.attrs[TID] text = source.attrs[VALUE] elif source_type == EVENT: identifier = source.attrs[EIID] text = source.attrs[FORM] node = Node(source, identifier, source_type, text) self.nodes[node.id] = node for n1 in self.nodes.keys(): self.edges[n1] = {} for n2 in self.nodes.keys(): self.edges[n1][n2] = Edge(n1, n2, self) def propagate(self, constraint): """Propagate the constraint through the graph, using Allen's constraint propagation algorithm.""" self.cycle += 1 if constraint.is_garbage(): # guard against garbage constraints in the pending queue by simply # skipping them return self.added = [] # to keep track of what is added this cycle self.queue.append(constraint) debug(str="\n%d %s\n" % (self.cycle, constraint)) while self.queue: constraint_i_j = self.queue.pop(0) constraint_i_j.cycle = self.cycle debug(1, "POP QUEUE: %s" % (constraint_i_j)) # compare new constraint to the one already on the edge edge_i_j = self.edges[constraint_i_j.node1][constraint_i_j.node2] (status, intersection) = self._intersect_constraints(edge_i_j, constraint_i_j) if status == 'INTERSECTION-IS-MORE-SPECIFIC': self.added.append(constraint_i_j) self._update_constraint(edge_i_j, constraint_i_j, intersection) def reduce(self): """Reduce the grap to one that does not contain any relations derived by closure. This does not get you a graph with the original annotations because some might have been removed due to inconsistencies.""" # TODO: we may consider removing inverse relations and relations that # could be derived from other relations self.cycle += 1 self.added = [] self._remove_derived_relations() def remove_node(self, node_id): """Remove a node from the graph. Involves removing the node from the nodes hash, removing the node's column and row in the edges array and removing the node from edges_in and edges_out attributes of other nodes. This is not being used right now.""" node = self.nodes[node_id] # remove from other nodes for node_in_id in node.edges_in.keys(): del self.nodes[node_in_id].edges_out[node_id] for node_out_id in node.edges_out.keys(): del self.nodes[node_out_id].edges_in[node_id] # remove from nodes hash del self.nodes[node_id] # remove from edges hash del self.edges[node_id] for other_node_id in self.edges.keys(): del self.edges[other_node_id][node_id] def _update_constraint(self, edge_i_j, constraint_i_j, intersection): """Update a constraint by setting its relation set to the intersection and then add it to the edge. Once you have done that you need to check whether this constraint then puts further constraints on incoming edges to node i and outgoing edges from node j.""" constraint_i_j.relset = intersection self._add_constraint_to_edge(constraint_i_j, edge_i_j) node_i = constraint_i_j.get_node1() node_j = constraint_i_j.get_node2() node_i.edges_out[constraint_i_j.node2] = edge_i_j node_j.edges_in[constraint_i_j.node1] = edge_i_j self._check_all_k_i_j(node_i, node_j, edge_i_j) self._check_all_i_j_k(node_i, node_j, edge_i_j) def _check_all_k_i_j(self, node_i, node_j, edge_i_j): """Check the constraints on [node_k --> node_i --> node_j].""" debug(1, "CHECKING: X --> %s --> %s" % (node_i.id, node_j.id)) for edge_k_i in node_i.edges_in.values(): debug(2, "%s * %s" % (edge_k_i, edge_i_j)) self._check_k_i_j(edge_k_i, edge_i_j, node_i, node_j) def _check_all_i_j_k(self, node_i, node_j, edge_i_j): """Check the constriants on [node_i --> node_j --> node_k].""" debug(1, "CHECKING: %s --> %s --> X" % (node_i.id, node_j.id)) for edge_j_k in node_j.edges_out.values(): debug(2, "%s * %s" % (edge_i_j, edge_j_k)) self._check_i_j_k(edge_i_j, edge_j_k, node_i, node_j) def _check_k_i_j(self, edge_k_i, edge_i_j, node_i, node_j): """Look at the k->i->j subgraph and check whether the new constraint in Edge(i,j) allows you to derive something new by composition. The nodes node_i and node_j could be derived from edge_i_j but are handed to this function because they were already available and it saves a bit of time this way.""" node_k = edge_k_i.get_node1() if node_k.id == node_j.id: return edge_k_j = self._get_edge(node_k, node_j) relset_k_j = self._compose(edge_k_i, edge_i_j.constraint) debug(3, "{%s} * {%s} --> {%s} || %s " % (edge_k_i.constraint.relset, edge_i_j.constraint.relset, relset_k_j, edge_k_j.constraint)) if relset_k_j is not None: self._combine(edge_k_j, relset_k_j, edge_k_i.constraint, edge_i_j.constraint) def _check_i_j_k(self, edge_i_j, edge_j_k, node_i, node_j): """Look at the i->j->k subgraph and check whether the new constraint in Edge(i,j) allows you to derive something new by composition. The nodes node_i and node_j could be derived from edge_i_j but are handed to this function because they were already available and it saves a bit of time this way.""" node_k = edge_j_k.get_node2() if node_k.id == node_i.id: return edge_i_k = self._get_edge(node_i, node_k) relset_i_k = self._compose(edge_i_j.constraint, edge_j_k) debug(3, "{%s} * {%s} --> {%s} || %s " % (edge_i_j.constraint.relset, edge_j_k.constraint.relset, relset_i_k, edge_i_k.constraint)) if relset_i_k is not None: self._combine(edge_i_k, relset_i_k, edge_i_j.constraint, edge_j_k.constraint) def _combine(self, edge, relset, c1, c2): """Compare the relation set on the edge to the relation set created by composition. Creates the intersection of the relation sets and checks the result: (i) inconsistency, (ii) more specific than relation set on edge, or (iii) something else. The alrgument c1 and c2 are the constraints that were composed to create relset and will be used to set the history on a new constraint if it is created.""" edge_relset = edge.relset intersection = intersect_relations(edge_relset, relset) if intersection == '': debug(4, "WARNING: found an inconsistency where it shouldn't be") pass elif intersection is None: debug(4, "WARNING: intersection is None, this should not happen") pass elif edge_relset is None: self._add_constraint_to_queue(edge, intersection, c1, c2) elif len(intersection) < len(edge_relset): self._add_constraint_to_queue(edge, intersection, c1, c2) def _add_constraint_to_queue(self, edge, relset, c1, c2): new_constraint = Constraint(edge.node1, relset, edge.node2, cycle=self.cycle, source='closure', history=(c1, c2)) self.queue.append(new_constraint) debug(3, "ADD QUEUE %s " % new_constraint) add_inverted = False # Adding the inverted constraint should not be needed, except perhaps as # a potential minor speed increase. As far I can see however, the method # is actually slower when adding the inverse (about 20%), which is # surprising. But the results are the same. if add_inverted: relset = invert_interval_relation(relset) new_constraint2 = Constraint(edge.node2, relset, edge.node1, cycle=self.cycle, source='closure-inverted', history=(c1, c2)) self.queue.append(new_constraint2) debug(3, "ADD QUEUE %s " % new_constraint2) def _intersect_constraints(self, edge, constraint): """Intersect the constraint that was just derived with the one already on the edge. There are three cases: (1) the new constraint, if it is the one originally handed to the propagate() function, introduces an inconsistency; (2) the new constraint is identical to the one already there and can be ignored; (3) the intersection of the new constraint with the old constraint is the same as the old constraint; and (4) the new constraint is more specific than the already existing constraint. The method returns False in the first two cases and the intersection in the last case.""" edge = self.edges[constraint.node1][constraint.node2] new_relset = constraint.relset existing_relset = edge.relset intersection = intersect_relations(new_relset, existing_relset) debug(2, "INTERSECT NEW {%s} WITH EXISTING {%s} --> {%s}" % (constraint.relset, edge.relset, intersection)) if intersection == '': status = 'INCONSISTENT' logger.warn("Inconsistent new contraint: %s" % constraint) logger.warn("Clashes with: [%s] (derived from %s)" % (edge.constraint, edge.constraint.history_string())) elif new_relset == existing_relset: status = 'NEW=EXISTING' elif intersection == existing_relset: status = 'INTERSECTION=EXISTING' else: status = 'INTERSECTION-IS-MORE-SPECIFIC' debug(2, "STATUS: %s" % status) return (status, intersection) def _compose(self, object1, object2): """Return the composition of the relation sets on the two objects. One object is an edge, the other a Constraint. Once the relations are retrieved from the objects all that's needed is a simple lookup in the compositions table.""" rels1 = object1.relset rels2 = object2.relset return self.compositions.compose_rels(rels1, rels2) def _add_constraint_to_edge(self, constraint, edge): """This method links a constraints to its edge by retrieving the edge from the graph, adding the constraint to this edge, and setting the edge attribute on the constraint.""" edge.add_constraint(constraint) constraint.edge = edge def _get_edge(self, node1, node2): """Return the edge from node1 to node2.""" return self.edges[node1.id][node2.id] def get_edges(self): """Return all edges that have a constraint on them.""" edges = [] for n1 in self.edges.keys(): for n2 in self.edges[n1].keys(): edge = self.edges[n1][n2] if n1 != n2 and edge.constraint: edges.append(edge) return edges def _remove_disjunctions(self): """Remove all disjunctions from the graph, not used now but may come in handy later.""" for edge in self.get_edges(): if edge.constraint: if edge.constraint.is_disjunction(): edge.remove_constraint() def _remove_derived_relations(self): """Remove all derived relations from the graph.""" for edge in self.get_edges(): if edge.is_derived(): edge.remove_constraint() def _normalize_relations(self): """Remove all relations that are not in the set of normalized relations, not used now but may come in handy later.""" for edge in self.get_edges(): if edge.constraint: if not edge.constraint.has_normalized_relation(): edge.remove_constraint() def pp_nodes(self): """Print all nodes with their edges_in and edges_out attributes to standard output.""" ids = self.nodes.keys() ids.sort(compare_id) for id in ids: self.nodes[id].pretty_print() def pp_html(self, filename=None, filehandle=None, standalone=False): """Print the graph to an HTML table in filename.""" fh = open(filename, 'w') if filename else filehandle if standalone: html_graph_prefix(fh) fh.write("<table cellpadding=0 cellspacing=0 border=0>\n") fh.write("<tr><td>\n") nodes = self.nodes.keys() nodes.sort(compare_id) self._html_nodes_table(fh, nodes) fh.write("</td>\n\n") fh.write("<td valign=top>\n") self._html_added_table(fh) fh.write("</td></tr>\n\n") fh.write("</table>\n\n") if standalone: fh.write("</body>\n</html>\n\n") def _html_nodes_table(self, fh, nodes): fh.write("<table cellpadding=5 cellspacing=0 border=1>\n") fh.write("\n<tr>\n\n") fh.write(" <td>&nbsp;\n\n") for identifier in nodes: fh.write(" <td>%s\n" % identifier) for id1 in nodes: fh.write("\n\n<tr align=center>\n\n") fh.write(" <td align=left>%s\n" % id1) for id2 in nodes: edge = self.edges[id1][id2] rel = edge.relset if rel is None: rel = '&nbsp;' rel = abbreviate_convex_relation(rel) rel = rel.replace('<', '&lt;').replace(' ', '&nbsp;') classes = [] if edge.constraint: classes.append(edge.constraint.source) if self.cycle == edge.constraint.cycle: classes.append("cycle") if id1 == id2: classes.append("nocell") # rel = '&nbsp;' classes = " class=\"%s\"" % ' '.join(classes) fh.write(" <td width=25pt%s>%s\n" % (classes, rel)) fh.write("</table>\n\n") def _html_added_table(self, fh): fh.write("<table cellpadding=5 cellspacing=0 border=1>\n") if self.added: fh.write("<tr><td>added<td colspan=2>derived from\n") for c in self.added: fh.write("<tr>\n <td>%s</td>\n" % c) if isinstance(c.history, tuple): fh.write(" <td>%s\n" % str(c.history[0])) fh.write(" <td>%s\n" % str(c.history[1])) elif c.history.__class__.__name__ == 'Tag': tlink = "TLINK(relType=%s)" % c.history.attrs.get('relType') fh.write(" <td colspan=2>%s\n" % tlink) elif c.history.__class__.__name__ == 'Constraint': fh.write(" <td colspan=2>%s\n" % c.history) else: fh.write(" <td colspan=2>&nbsp;\n") fh.write("</table>\n\n") def debug(indent=0, str=''): if DEBUG: print ' ' * indent, str
python
import pytest from reformat_gherkin.errors import DeserializeError, InvalidInput from reformat_gherkin.parser import parse def test_invalid_input(invalid_contents): for content in invalid_contents: with pytest.raises(InvalidInput): parse(content) def test_valid_input(valid_contents): for content in valid_contents(): parse(content) def test_parse_with_exception(mocker, valid_contents): exception_message = "exception message" mocker.patch( "reformat_gherkin.parser.converter.structure", side_effect=Exception(exception_message), ) for content in valid_contents(): with pytest.raises(DeserializeError) as exc_info: parse(content) assert exception_message in str(exc_info.value)
python
from multio import asynclib class API: HOST = 'https://paste.myst.rs' BETA_HOST = 'https://pmb.myst.rs' API_VERSION = '2' HTTP_ENDPOINT = f'{HOST}/api/v{API_VERSION}' BETA_HTTP_ENDPOINT = f'{BETA_HOST}/api/v{API_VERSION}' async def run_later(time, task): await asynclib.sleep(time) return await task def spacify_string(s): w = [] cur = '' for c in s: if c.isupper(): w.append(cur) cur = '' cur += c.lower() else: cur += c w.append(cur) return '_'.join(w)
python
#-*. coding: utf-8 -*- ## Copyright (c) 2008-2012, Noel O'Boyle; 2012, Adrià Cereto-Massagué ## All rights reserved. ## ## This file is part of Cinfony. ## The contents are covered by the terms of the GPL v2 license ## which is included in the file LICENSE_GPLv2.txt. """ pybel - A Cinfony module for accessing Open Babel Global variables: ob - the underlying SWIG bindings for Open Babel informats - a dictionary of supported input formats outformats - a dictionary of supported output formats descs - a list of supported descriptors fps - a list of supported fingerprint types forcefields - a list of supported forcefields """ import sys import math import os.path import tempfile if sys.platform[:4] == "java": import org.openbabel as ob import java.lang.System java.lang.System.loadLibrary("openbabel_java") _obfuncs = ob.openbabel_java _obconsts = ob.openbabel_javaConstants import javax elif sys.platform[:3] == "cli": import System import clr clr.AddReference('System.Windows.Forms') clr.AddReference('System.Drawing') from System.Windows.Forms import ( Application, DockStyle, Form, PictureBox, PictureBoxSizeMode ) from System.Drawing import Image, Size _obdotnet = os.environ["OBDOTNET"] if _obdotnet[0] == '"': # Remove trailing quotes _obdotnet = _obdotnet[1:-1] clr.AddReferenceToFileAndPath(os.path.join(_obdotnet, "OBDotNet.dll")) import OpenBabel as ob _obfuncs = ob.openbabel_csharp _obconsts = ob.openbabel_csharp else: import openbabel as ob _obfuncs = _obconsts = ob try: import Tkinter as tk import Image as PIL import ImageTk as piltk except ImportError: #pragma: no cover tk = None def _formatstodict(list): if sys.platform[:4] == "java": list = [list.get(i) for i in range(list.size())] broken = [x.replace("[Read-only]", "").replace("[Write-only]","").split(" -- ") for x in list] broken = [(x,y.strip()) for x,y in broken] return dict(broken) _obconv = ob.OBConversion() _builder = ob.OBBuilder() informats = _formatstodict(_obconv.GetSupportedInputFormat()) """A dictionary of supported input formats""" outformats = _formatstodict(_obconv.GetSupportedOutputFormat()) """A dictionary of supported output formats""" def _getplugins(findplugin, names): plugins = dict([(x, findplugin(x)) for x in names if findplugin(x)]) return plugins def _getpluginnames(ptype): if sys.platform[:4] == "cli": plugins = ob.VectorString() else: plugins = ob.vectorString() ob.OBPlugin.ListAsVector(ptype, None, plugins) if sys.platform[:4] == "java": plugins = [plugins.get(i) for i in range(plugins.size())] return [x.split()[0] for x in plugins] descs = _getpluginnames("descriptors") """A list of supported descriptors""" _descdict = _getplugins(ob.OBDescriptor.FindType, descs) fps = [_x.lower() for _x in _getpluginnames("fingerprints")] """A list of supported fingerprint types""" _fingerprinters = _getplugins(ob.OBFingerprint.FindFingerprint, fps) forcefields = [_x.lower() for _x in _getpluginnames("forcefields")] """A list of supported forcefields""" _forcefields = _getplugins(ob.OBForceField.FindType, forcefields) operations = _getpluginnames("ops") """A list of supported operations""" _operations = _getplugins(ob.OBOp.FindType, operations) def readfile(format, filename, opt=None): """Iterate over the molecules in a file. Required parameters: format - see the informats variable for a list of available input formats filename Optional parameters: opt - a dictionary of format-specific options For format options with no parameters, specify the value as None. You can access the first molecule in a file using the next() method of the iterator (or the next() keyword in Python 3): mol = readfile("smi", "myfile.smi").next() # Python 2 mol = next(readfile("smi", "myfile.smi")) # Python 3 You can make a list of the molecules in a file using: mols = list(readfile("smi", "myfile.smi")) You can iterate over the molecules in a file as shown in the following code snippet: >>> atomtotal = 0 >>> for mol in readfile("sdf", "head.sdf"): ... atomtotal += len(mol.atoms) ... >>> print(atomtotal) 43 """ if opt == None: opt = {} obconversion = ob.OBConversion() formatok = obconversion.SetInFormat(format) for k, v in opt.items(): if v == None: obconversion.AddOption(k, obconversion.INOPTIONS) else: obconversion.AddOption(k, obconversion.INOPTIONS, str(v)) if not formatok: raise ValueError("%s is not a recognised Open Babel format" % format) if not os.path.isfile(filename): raise IOError("No such file: '%s'" % filename) def filereader(): obmol = ob.OBMol() notatend = obconversion.ReadFile(obmol,filename) while notatend: yield Molecule(obmol) obmol = ob.OBMol() notatend = obconversion.Read(obmol) return filereader() def readstring(format, string, opt=None): """Read in a molecule from a string. Required parameters: format - see the informats variable for a list of available input formats string Optional parameters: opt - a dictionary of format-specific options For format options with no parameters, specify the value as None. Example: >>> input = "C1=CC=CS1" >>> mymol = readstring("smi", input) >>> len(mymol.atoms) 5 """ if opt == None: opt = {} obmol = ob.OBMol() obconversion = ob.OBConversion() formatok = obconversion.SetInFormat(format) if not formatok: raise ValueError("%s is not a recognised Open Babel format" % format) for k, v in opt.items(): if v == None: obconversion.AddOption(k, obconversion.INOPTIONS) else: obconversion.AddOption(k, obconversion.INOPTIONS, str(v)) success = obconversion.ReadString(obmol, string) if not success: raise IOError("Failed to convert '%s' to format '%s'" % ( string, format)) return Molecule(obmol) class Outputfile(object): """Represent a file to which *output* is to be sent. Although it's possible to write a single molecule to a file by calling the write() method of a molecule, if multiple molecules are to be written to the same file you should use the Outputfile class. Required parameters: format - see the outformats variable for a list of available output formats filename Optional parameters: overwrite -- if the output file already exists, should it be overwritten? (default is False) opt -- a dictionary of format-specific options For format options with no parameters, specify the value as None. Methods: write(molecule) close() """ def __init__(self, format, filename, overwrite=False, opt=None): if opt == None: opt = {} self.format = format self.filename = filename if not overwrite and os.path.isfile(self.filename): raise IOError("%s already exists. Use 'overwrite=True' to overwrite it." % self.filename) self.obConversion = ob.OBConversion() formatok = self.obConversion.SetOutFormat(self.format) if not formatok: raise ValueError("%s is not a recognised Open Babel format" % format) for k, v in opt.items(): if v == None: self.obConversion.AddOption(k, self.obConversion.OUTOPTIONS) else: self.obConversion.AddOption(k, self.obConversion.OUTOPTIONS, str(v)) self.total = 0 # The total number of molecules written to the file def write(self, molecule): """Write a molecule to the output file. Required parameters: molecule """ if not self.filename: raise IOError("Outputfile instance is closed.") if self.total==0: self.obConversion.WriteFile(molecule.OBMol, self.filename) else: self.obConversion.Write(molecule.OBMol) self.total += 1 def close(self): """Close the Outputfile to further writing.""" self.obConversion.CloseOutFile() self.filename = None class Molecule(object): """Represent a Pybel Molecule. Required parameter: OBMol -- an Open Babel OBMol or any type of cinfony Molecule Attributes: atoms, charge, conformers, data, dim, energy, exactmass, formula, molwt, spin, sssr, title, unitcell. (refer to the Open Babel library documentation for more info). Methods: addh(), calcfp(), calcdesc(), draw(), localopt(), make3D(), removeh(), write() The underlying Open Babel molecule can be accessed using the attribute: OBMol """ _cinfony = True def __init__(self, OBMol): if hasattr(OBMol, "_cinfony"): a, b = OBMol._exchange if a == 0: mol = readstring("smi", b) else: mol = readstring("mol", b) OBMol = mol.OBMol self.OBMol = OBMol @property def atoms(self): return [ Atom(self.OBMol.GetAtom(i+1)) for i in range(self.OBMol.NumAtoms()) ] @property def charge(self): return self.OBMol.GetTotalCharge() @property def conformers(self): return self.OBMol.GetConformers() @property def data(self): return MoleculeData(self.OBMol) @property def dim(self): return self.OBMol.GetDimension() @property def energy(self): return self.OBMol.GetEnergy() @property def exactmass(self): return self.OBMol.GetExactMass() @property def formula(self): return self.OBMol.GetFormula() @property def molwt(self): return self.OBMol.GetMolWt() @property def spin(self): return self.OBMol.GetTotalSpinMultiplicity() @property def sssr(self): return self.OBMol.GetSSSR() def _gettitle(self): return self.OBMol.GetTitle() def _settitle(self, val): self.OBMol.SetTitle(val) title = property(_gettitle, _settitle) @property def unitcell(self): unitcell_index = _obconsts.UnitCell if sys.platform[:3] == "cli": unitcell_index = System.UInt32(unitcell_index) unitcell = self.OBMol.GetData(unitcell_index) if unitcell: if sys.platform[:3] != "cli": return _obfuncs.toUnitCell(unitcell) else: return unitcell.Downcast[ob.OBUnitCell]() else: raise AttributeError("Molecule has no attribute 'unitcell'") @property def _exchange(self): if self.OBMol.HasNonZeroCoords(): return (1, self.write("mol")) else: return (0, self.write("can").split()[0]) def __iter__(self): """Iterate over the Atoms of the Molecule. This allows constructions such as the following: for atom in mymol: print(atom) """ return iter(self.atoms) def calcdesc(self, descnames=[]): """Calculate descriptor values. Optional parameter: descnames -- a list of names of descriptors If descnames is not specified, all available descriptors are calculated. See the descs variable for a list of available descriptors. """ if not descnames: descnames = descs ans = {} for descname in descnames: try: desc = _descdict[descname] except KeyError: raise ValueError("%s is not a recognised Open Babel descriptor type" % descname) ans[descname] = desc.Predict(self.OBMol) return ans def calcfp(self, fptype="FP2"): """Calculate a molecular fingerprint. Optional parameters: fptype -- the fingerprint type (default is "FP2"). See the fps variable for a list of of available fingerprint types. """ if sys.platform[:3] == "cli": fp = ob.VectorUInt() else: fp = ob.vectorUnsignedInt() fptype = fptype.lower() try: fingerprinter = _fingerprinters[fptype] except KeyError: raise ValueError("%s is not a recognised Open Babel Fingerprint type" % fptype) fingerprinter.GetFingerprint(self.OBMol, fp) return Fingerprint(fp) def write(self, format="smi", filename=None, overwrite=False, opt=None): """Write the molecule to a file or return a string. Optional parameters: format -- see the informats variable for a list of available output formats (default is "smi") filename -- default is None overwite -- if the output file already exists, should it be overwritten? (default is False) opt -- a dictionary of format specific options For format options with no parameters, specify the value as None. If a filename is specified, the result is written to a file. Otherwise, a string is returned containing the result. To write multiple molecules to the same file you should use the Outputfile class. """ if opt == None: opt = {} obconversion = ob.OBConversion() formatok = obconversion.SetOutFormat(format) if not formatok: raise ValueError("%s is not a recognised Open Babel format" % format) for k, v in opt.items(): if v == None: obconversion.AddOption(k, obconversion.OUTOPTIONS) else: obconversion.AddOption(k, obconversion.OUTOPTIONS, str(v)) if filename: if not overwrite and os.path.isfile(filename): raise IOError("%s already exists. Use 'overwrite=True' to overwrite it." % filename) obconversion.WriteFile(self.OBMol,filename) obconversion.CloseOutFile() else: return obconversion.WriteString(self.OBMol) def localopt(self, forcefield="mmff94", steps=500): """Locally optimize the coordinates. Optional parameters: forcefield -- default is "mmff94". See the forcefields variable for a list of available forcefields. steps -- default is 500 If the molecule does not have any coordinates, make3D() is called before the optimization. Note that the molecule needs to have explicit hydrogens. If not, call addh(). """ forcefield = forcefield.lower() if self.dim != 3: self.make3D(forcefield) ff = _forcefields[forcefield] success = ff.Setup(self.OBMol) if not success: return ff.SteepestDescent(steps) ff.GetCoordinates(self.OBMol) ## def globalopt(self, forcefield="MMFF94", steps=1000): ## if not (self.OBMol.Has2D() or self.OBMol.Has3D()): ## self.make3D() ## self.localopt(forcefield, 250) ## ff = _forcefields[forcefield] ## numrots = self.OBMol.NumRotors() ## if numrots > 0: ## ff.WeightedRotorSearch(numrots, int(math.log(numrots + 1) * steps)) ## ff.GetCoordinates(self.OBMol) def make3D(self, forcefield = "mmff94", steps = 50): """Generate 3D coordinates. Optional parameters: forcefield -- default is "mmff94". See the forcefields variable for a list of available forcefields. steps -- default is 50 Once coordinates are generated, hydrogens are added and a quick local optimization is carried out with 50 steps and the MMFF94 forcefield. Call localopt() if you want to improve the coordinates further. """ forcefield = forcefield.lower() _builder.Build(self.OBMol) self.addh() self.localopt(forcefield, steps) def addh(self): """Add hydrogens.""" self.OBMol.AddHydrogens() def removeh(self): """Remove hydrogens.""" self.OBMol.DeleteHydrogens() def __str__(self): return self.write() def draw(self, show=True, filename=None, update=False, usecoords=False): """Create a 2D depiction of the molecule. Optional parameters: show -- display on screen (default is True) filename -- write to file (default is None) update -- update the coordinates of the atoms to those determined by the structure diagram generator (default is False) usecoords -- don't calculate 2D coordinates, just use the current coordinates (default is False) Tkinter and Python Imaging Library are required for image display. """ obconversion = ob.OBConversion() formatok = obconversion.SetOutFormat("_png2") if not formatok: errormessage = ("PNG depiction support not found. You should compile " "Open Babel with support for Cairo. See installation " "instructions for more information.") raise ImportError(errormessage) # Need to copy to avoid removing hydrogens from self workingmol = Molecule(ob.OBMol(self.OBMol)) workingmol.removeh() if not usecoords: _operations['gen2D'].Do(workingmol.OBMol) if update == True: if workingmol.OBMol.NumAtoms() != self.OBMol.NumAtoms(): errormessage = ("It is not possible to update the original molecule " "with the calculated coordinates, as the original " "molecule contains explicit hydrogens for which no " "coordinates have been calculated.") raise RuntimeError(errormessage) else: for i in range(workingmol.OBMol.NumAtoms()): self.OBMol.GetAtom(i + 1).SetVector(workingmol.OBMol.GetAtom(i + 1).GetVector()) if filename: filedes = None else: if sys.platform[:3] == "cli" and show: errormessage = ("It is only possible to show the molecule if you " "provide a filename. The reason for this is that I kept " "having problems when using temporary files.") raise RuntimeError(errormessage) filedes, filename = tempfile.mkstemp() workingmol.write("_png2", filename=filename, overwrite=True) if show: if sys.platform[:4] == "java": image = javax.imageio.ImageIO.read(java.io.File(filename)) frame = javax.swing.JFrame(visible=1) frame.getContentPane().add(javax.swing.JLabel(javax.swing.ImageIcon(image))) frame.setSize(300,300) frame.setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE) frame.show() elif sys.platform[:3] == "cli": form = _MyForm() form.setup(filename, self.title) Application.Run(form) else: if not tk: errormessage = ("Tkinter or Python Imaging " "Library not found, but is required for image " "display. See installation instructions for " "more information.") raise ImportError(errormessage) root = tk.Tk() root.title((hasattr(self, "title") and self.title) or self.__str__().rstrip()) frame = tk.Frame(root, colormap="new", visual='truecolor').pack() image = PIL.open(filename) imagedata = piltk.PhotoImage(image) label = tk.Label(frame, image=imagedata).pack() quitbutton = tk.Button(root, text="Close", command=root.destroy).pack(fill=tk.X) root.mainloop() if filedes: os.close(filedes) os.remove(filename) class Atom(object): """Represent a Pybel atom. Required parameter: OBAtom -- an Open Babel OBAtom Attributes: atomicmass, atomicnum, cidx, coords, coordidx, exactmass, formalcharge, heavyvalence, heterovalence, hyb, idx, implicitvalence, isotope, partialcharge, spin, type, valence, vector. (refer to the Open Babel library documentation for more info). The original Open Babel atom can be accessed using the attribute: OBAtom """ def __init__(self, OBAtom): self.OBAtom = OBAtom @property def coords(self): return (self.OBAtom.GetX(), self.OBAtom.GetY(), self.OBAtom.GetZ()) @property def atomicmass(self): return self.OBAtom.GetAtomicMass() @property def atomicnum(self): return self.OBAtom.GetAtomicNum() @property def cidx(self): return self.OBAtom.GetCIdx() @property def coordidx(self): return self.OBAtom.GetCoordinateIdx() @property def exactmass(self): return self.OBAtom.GetExactMass() @property def formalcharge(self): return self.OBAtom.GetFormalCharge() @property def heavyvalence(self): return self.OBAtom.GetHvyValence() @property def heterovalence(self): return self.OBAtom.GetHeteroValence() @property def hyb(self): return self.OBAtom.GetHyb() @property def idx(self): return self.OBAtom.GetIdx() @property def implicitvalence(self): return self.OBAtom.GetImplicitValence() @property def isotope(self): return self.OBAtom.GetIsotope() @property def partialcharge(self): return self.OBAtom.GetPartialCharge() @property def spin(self): return self.OBAtom.GetSpinMultiplicity() @property def type(self): return self.OBAtom.GetType() @property def valence(self): return self.OBAtom.GetValence() @property def vector(self): return self.OBAtom.GetVector() def __str__(self): c = self.coords return "Atom: %d (%.2f %.2f %.2f)" % (self.atomicnum, c[0], c[1], c[2]) def _findbits(fp, bitsperint): """Find which bits are set in a list/vector. This function is used by the Fingerprint class. >>> _findbits([13, 71], 8) [1, 3, 4, 9, 10, 11, 15] """ ans = [] start = 1 if sys.platform[:4] == "java": fp = [fp.get(i) for i in range(fp.size())] for x in fp: i = start while x > 0: if x % 2: ans.append(i) x >>= 1 i += 1 start += bitsperint return ans class Fingerprint(object): """A Molecular Fingerprint. Required parameters: fingerprint -- a vector calculated by OBFingerprint.FindFingerprint() Attributes: fp -- the underlying fingerprint object bits -- a list of bits set in the Fingerprint Methods: The "|" operator can be used to calculate the Tanimoto coeff. For example, given two Fingerprints 'a', and 'b', the Tanimoto coefficient is given by: tanimoto = a | b """ def __init__(self, fingerprint): self.fp = fingerprint def __or__(self, other): return ob.OBFingerprint.Tanimoto(self.fp, other.fp) @property def bits(self): return _findbits(self.fp, ob.OBFingerprint.Getbitsperint()) def __str__(self): fp = self.fp if sys.platform[:4] == "java": fp = [self.fp.get(i) for i in range(self.fp.size())] return ", ".join([str(x) for x in fp]) class Smarts(object): """A Smarts Pattern Matcher Required parameters: smartspattern Methods: findall(molecule) Example: >>> mol = readstring("smi","CCN(CC)CC") # triethylamine >>> smarts = Smarts("[#6][#6]") # Matches an ethyl group >>> print(smarts.findall(mol)) [(1, 2), (4, 5), (6, 7)] The numbers returned are the indices (starting from 1) of the atoms that match the SMARTS pattern. In this case, there are three matches for each of the three ethyl groups in the molecule. """ def __init__(self,smartspattern): """Initialise with a SMARTS pattern.""" self.obsmarts = ob.OBSmartsPattern() success = self.obsmarts.Init(smartspattern) if not success: raise IOError("Invalid SMARTS pattern") def findall(self,molecule): """Find all matches of the SMARTS pattern to a particular molecule. Required parameters: molecule """ self.obsmarts.Match(molecule.OBMol) vector = self.obsmarts.GetUMapList() if sys.platform[:4] == "java": vector = [vector.get(i) for i in range(vector.size())] return list(vector) class MoleculeData(object): """Store molecule data in a dictionary-type object Required parameters: obmol -- an Open Babel OBMol Methods and accessor methods are like those of a dictionary except that the data is retrieved on-the-fly from the underlying OBMol. Example: >>> mol = readfile("sdf", 'head.sdf').next() # Python 2 >>> # mol = next(readfile("sdf", 'head.sdf')) # Python 3 >>> data = mol.data >>> print(data) {'Comment': 'CORINA 2.61 0041 25.10.2001', 'NSC': '1'} >>> print(len(data), data.keys(), data.has_key("NSC")) 2 ['Comment', 'NSC'] True >>> print(data['Comment']) CORINA 2.61 0041 25.10.2001 >>> data['Comment'] = 'This is a new comment' >>> for k,v in data.items(): ... print(k, "-->", v) Comment --> This is a new comment NSC --> 1 >>> del data['NSC'] >>> print(len(data), data.keys(), data.has_key("NSC")) 1 ['Comment'] False """ def __init__(self, obmol): self._mol = obmol def _data(self): data = self._mol.GetData() if sys.platform[:4] == "java": data = [data.get(i) for i in range(data.size())] answer = [x for x in data if x.GetDataType()==_obconsts.PairData or x.GetDataType()==_obconsts.CommentData] if sys.platform[:3] != "cli": answer = [_obfuncs.toPairData(x) for x in answer] return answer def _testforkey(self, key): if not key in self: raise KeyError("'%s'" % key) def keys(self): return [x.GetAttribute() for x in self._data()] def values(self): return [x.GetValue() for x in self._data()] def items(self): return iter(zip(self.keys(), self.values())) def __iter__(self): return iter(self.keys()) def iteritems(self): # Can remove for Python 3 return self.items() def __len__(self): return len(self._data()) def __contains__(self, key): return self._mol.HasData(key) def __delitem__(self, key): self._testforkey(key) self._mol.DeleteData(self._mol.GetData(key)) def clear(self): for key in self: del self[key] def has_key(self, key): return key in self def update(self, dictionary): for k, v in dictionary.items(): self[k] = v def __getitem__(self, key): self._testforkey(key) answer = self._mol.GetData(key) if sys.platform[:3] != "cli": answer = _obfuncs.toPairData(answer) return answer.GetValue() def __setitem__(self, key, value): if key in self: if sys.platform[:3] != "cli": pairdata = _obfuncs.toPairData(self._mol.GetData(key)) else: pairdata = self._mol.GetData(key).Downcast[ob.OBPairData]() pairdata.SetValue(str(value)) else: pairdata = ob.OBPairData() pairdata.SetAttribute(key) pairdata.SetValue(str(value)) self._mol.CloneData(pairdata) def __repr__(self): return dict(self.items()).__repr__() if sys.platform[:3] == "cli": class _MyForm(Form): def __init__(self): Form.__init__(self) def setup(self, filename, title): # adjust the form's client area size to the picture self.ClientSize = Size(300, 300) self.Text = title self.filename = filename self.image = Image.FromFile(self.filename) pictureBox = PictureBox() # this will fit the image to the form pictureBox.SizeMode = PictureBoxSizeMode.StretchImage pictureBox.Image = self.image # fit the picture box to the frame pictureBox.Dock = DockStyle.Fill self.Controls.Add(pictureBox) self.Show() if __name__=="__main__": #pragma: no cover import doctest doctest.testmod(verbose=True)
python
import argparse import os import sys import requests # Globals BASE_DIR = os.path.abspath(os.path.dirname(__file__)) APP_DIR = 'app' APP_FILES = ['__init__.py', 'config.py', 'run.py', 'create_db.py', 'shell.py'] STATIC_DIR = 'static' STATIC_SUBDIRS = ['css', 'fonts', 'img', 'js'] TEMPLATE_DIR = 'templates' TEMPLATE_FILES = ['base.html', 'macros.html'] VIEWS_DIR = 'views' parser = argparse.ArgumentParser() parser.add_argument("-i", "--init", help="Initialize a project", action="store_true") parser.add_argument("-n", "--name", help="Project Name", nargs='+') parser.add_argument("-u", "--ui", help="UI Library") parser.add_argument("-a", "--auth", help="Authentication System") parser.add_argument("-d", "--db", help="Database Backend") args = parser.parse_args() # Create a new project if args.init: if not args.name: sys.exit('You must have a project name') project_dir = '{}/{}'.format(BASE_DIR, '-'.join(args.name)) if os.path.exists(project_dir): sys.exit('Project Directory already exists') else: os.makedirs(project_dir) os.makedirs('/'.join([project_dir, APP_DIR])) os.makedirs('/'.join([project_dir, APP_DIR, TEMPLATE_DIR])) os.makedirs('/'.join([project_dir, APP_DIR, VIEWS_DIR])) os.makedirs('/'.join([project_dir, APP_DIR, STATIC_DIR])) for sub in STATIC_SUBDIRS: os.makedirs('/'.join([project_dir, APP_DIR, STATIC_DIR, sub]))
python
#!/usr/bin/python3 # -*- coding: UTF-8 -*- import sys _UINT8_TO_CHAR = [ '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', ' ', '!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', '\\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', '.', ] if __name__ == '__main__': print('%s does not provide main()' % __file__) sys.exit(1) def _hex_str(byte): return '%02X' % (int(byte) & 0xFF) def _hex_char(byte): byte = int(byte) & 0xFF if byte > 0x7F: return '.' else: return _UINT8_TO_CHAR[byte] def dump_bytes(data): 'dump data in a readable string table' if isinstance(data, bytes) is False: return '' lines = [] data_len = len(data) lines.append('data length %d' % data_len) lines.append( '------ 0 1 2 3 4 5 6 7 | 8 9 A B C D E F 01234567 89ABCDEF') for index in range(0, data_len, 16): remain_len = data_len - index if remain_len >= 16: string = '0x%04X %s %s %s %s %s %s %s %s | %s %s %s %s %s %s %s %s %s%s%s%s%s%s%s%s %s%s%s%s%s%s%s%s' % ( index, _hex_str(data[index + 0]), _hex_str(data[index + 1]), _hex_str(data[index + 2]), _hex_str(data[index + 3]), _hex_str(data[index + 4]), _hex_str(data[index + 5]), _hex_str(data[index + 6]), _hex_str(data[index + 7]), _hex_str(data[index + 8]), _hex_str(data[index + 9]), _hex_str(data[index + 10]), _hex_str(data[index + 11]), _hex_str(data[index + 12]), _hex_str(data[index + 13]), _hex_str(data[index + 14]), _hex_str(data[index + 15]), _hex_char(data[index + 0]), _hex_char(data[index + 1]), _hex_char(data[index + 2]), _hex_char(data[index + 3]), _hex_char(data[index + 4]), _hex_char(data[index + 5]), _hex_char(data[index + 6]), _hex_char(data[index + 7]), _hex_char(data[index + 8]), _hex_char(data[index + 9]), _hex_char(data[index + 10]), _hex_char(data[index + 11]), _hex_char(data[index + 12]), _hex_char(data[index + 13]), _hex_char(data[index + 14]), _hex_char(data[index + 15]), ) lines.append(string) else: this_line = [] this_line.append('0x%04X ' % index) for col in range(index, data_len): this_line.append('%s ' % _hex_str(data[col])) if remain_len > 8: this_line.insert(9, '| ') this_line.append(' ' * (16 - remain_len)) else: this_line.append(' ' * (16 - remain_len)) this_line.append(' ') print('remain_len = %d' % remain_len) # this_line.append(' ') this_line.append(' ') for col in range(index, data_len): this_line.append(_hex_char(data[col])) if col == index + 7: this_line.append(' ') lines.append(''.join(this_line)) return '\n'.join(lines)
python
def checkorders(orders: [str]) -> [bool]: results = [] for i in orders: flag = True stock = [] for j in i: if j in '([{': stock.append(j) else: if stock == []: flag = False break symbol = stock.pop() if not match(symbol, j): flag = False break if stock != []: flag = False results.append(flag) return results def match(opens,closers): return '([{'.index(opens) == ')]}'.index(closers) print(checkorders(['()','(','{}[]','[][][]','[{]{]']))
python
from unittest import TestCase import requests_mock import urllib.parse from .fixtures import TOKEN from typeform import Typeform from typeform.constants import API_BASE_URL class FormsTestCase(TestCase): def setUp(self): self.forms = Typeform(TOKEN).forms form = self.forms.create({ 'title': 'title' }) self.formID = form.get('id') def tearDown(self): list = self.forms.list() forms = list.get('items', []) for form in forms: self.forms.delete(form.get('id')) def test_forms_returns_method_and_path(self): """ get all forms has the correct method and path """ with requests_mock.mock() as m: m.get(API_BASE_URL+'/forms', json={}) self.forms.list() history = m.request_history self.assertEqual(history[0].url, API_BASE_URL+'/forms') self.assertEqual(history[0].method, 'GET') def test_forms_correct_params(self): """ paramters are sent correctly """ with requests_mock.mock() as m: m.get(API_BASE_URL+'/forms', json={}) self.forms.list(page=2, pageSize=10, search='hola', workspaceId='abc') history = m.request_history query = history[0].url.split('?')[1] params = dict(urllib.parse.parse_qs(query)) self.assertEqual(params.pop('page')[0], '2') self.assertEqual(params.pop('page_size')[0], '10') self.assertEqual(params.pop('search')[0], 'hola') self.assertEqual(params.pop('workspace_id')[0], 'abc') def test_forms_get_correct_id(self): """ get sends the correct UID """ with requests_mock.mock() as m: m.get(API_BASE_URL+'/forms/'+self.formID, json={}) self.forms.get(self.formID) history = m.request_history self.assertEqual(history[0].url, API_BASE_URL+'/forms/'+self.formID) def test_forms_get_sets_get_method(self): """ get sets get method """ with requests_mock.mock() as m: m.get(API_BASE_URL+'/forms/'+self.formID, json={}) self.forms.get(self.formID) history = m.request_history self.assertEqual(history[0].method, 'GET') def test_forms_update_updates_a_form(self): """ update updates a form """ title = 'hola' result = self.forms.update(self.formID, data={ 'title': title }) self.assertEqual(result.get('title'), title) def test_forms_update_as_patch_updates_a_form(self): """ update as patch updates a form """ result = self.forms.update(self.formID, patch=True, data=[{ 'op': 'replace', 'path': '/title', 'value': 'aloha' }]) self.assertEqual(result, 'OK') def test_forms_update_sets_put_method_in_request_by_default(self): """ update sets put method in request by default """ with requests_mock.mock() as m: m.put(API_BASE_URL+'/forms/'+self.formID, json={}) self.forms.update(self.formID, data={ 'title': 'title' }) history = m.request_history self.assertEqual(history[0].method, 'PUT') def test_forms_delete_removes_the_correct_uid_form(self): """ delete removes the correct uid form """ get1Result = self.forms.get(self.formID) self.assertEqual(get1Result.get('id'), self.formID) self.forms.delete(self.formID) try: self.forms.get(self.formID) except Exception as err: error = str(err) self.assertEqual(error, 'Non existing form with uid %s' % self.formID) def test_forms_create_has_the_correct_path_and_method(self): """ create has the correct path and method """ with requests_mock.mock() as m: m.post(API_BASE_URL+'/forms', json={}) self.forms.create({ 'title': 'hola' }) history = m.request_history self.assertEqual(history[0].method, 'POST') self.assertEqual(history[0].url, API_BASE_URL+'/forms') def test_forms_create_creates_a_new_form(self): """ create creates a new form """ createResult = self.forms.create({ 'title': 'hola' }) formID = createResult.get('id') getResult = self.forms.get(formID) self.assertIsNone(createResult.get('code', None)) self.assertEqual(getResult.get('id'), formID) def test_forms_get_messages_has_the_correct_path_and_method(self): """ get messages has the correct path and method """ with requests_mock.mock() as m: m.get(API_BASE_URL+'/forms/'+self.formID+'/messages', json={}) self.forms.messages.get(self.formID) history = m.request_history self.assertEqual(history[0].method, 'GET') self.assertEqual(history[0].url, API_BASE_URL+'/forms/'+self.formID+'/messages') def test_forms_update_messages_has_the_correct_path_and_method(self): """ update messages has the correct path and method """ with requests_mock.mock() as m: m.put(API_BASE_URL+'/forms/'+self.formID+'/messages') self.forms.messages.update(self.formID) history = m.request_history self.assertEqual(history[0].method, 'PUT') self.assertEqual(history[0].url, API_BASE_URL+'/forms/'+self.formID+'/messages')
python
# libraries import pandas as pd import yaml as yaml from google.cloud import storage from os.path import dirname, abspath # utils from utils import upload_local_file_to_gcp_storage_bucket, df_to_gcp_csv # set project directory project_directory = dirname(dirname(abspath("__file__"))) print("Processing : Loading configuration file") config = yaml.safe_load(open(project_directory + "/config/config.yaml")) print("Processing : Set Configuration parameters") storage_key = project_directory + config["parameters"]["storage_service_account_key"] data_file = project_directory + config["parameters"]["data_source"] bucket = config["parameters"]["bucket_source"] blob_name = config["parameters"]["blob_source"] print("Processing : Set storage client") storage_client = storage.Client.from_service_account_json(storage_key) print("Processing : upload file") upload_local_file_to_gcp_storage_bucket(storage_client, bucket, blob_name, data_file) print("Processing : upload from pandas dataframe") df = pd.read_csv(data_file) df_to_gcp_csv( storage_client, df, bucket=bucket, blob_name=blob_name, source_file_name=blob_name, )
python
# -*- coding: utf-8 -*- # Copyright (c) 2012 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Generates a sysroot tarball for building a specific package. Meant for use after setup_board and build_packages have been run. """ from __future__ import print_function import os from chromite.lib import constants from chromite.lib import cros_build_lib from chromite.lib import commandline from chromite.lib import osutils from chromite.lib import sudo from chromite.lib import sysroot_lib DEFAULT_NAME = 'sysroot_%(package)s.tar.xz' PACKAGE_SEPARATOR = '/' SYSROOT = 'sysroot' def ParseCommandLine(argv): """Parse args, and run environment-independent checks.""" parser = commandline.ArgumentParser(description=__doc__) parser.add_argument('--board', required=True, help=('The board to generate the sysroot for.')) parser.add_argument('--package', required=True, help=('The packages to generate the sysroot for.')) parser.add_argument('--deps-only', action='store_true', default=False, help='Build dependencies only.') parser.add_argument('--out-dir', type='path', required=True, help='Directory to place the generated tarball.') parser.add_argument('--out-file', default=DEFAULT_NAME, help='The name to give to the tarball. ' 'Defaults to %(default)s.') options = parser.parse_args(argv) options.out_file %= { 'package': options.package.split()[0].replace(PACKAGE_SEPARATOR, '_'), } return options class GenerateSysroot(object): """Wrapper for generation functionality.""" PARALLEL_EMERGE = os.path.join(constants.CHROMITE_BIN_DIR, 'parallel_emerge') def __init__(self, sysroot, options): """Initialize Args: sysroot: Path to sysroot. options: Parsed options. """ self.sysroot = sysroot self.options = options self.extra_env = {'ROOT': self.sysroot, 'USE': os.environ.get('USE', '')} def _Emerge(self, *args, **kwargs): """Emerge the given packages using parallel_emerge.""" cmd = [self.PARALLEL_EMERGE, '--board=%s' % self.options.board, '--usepkgonly', '--noreplace'] + list(args) kwargs.setdefault('extra_env', self.extra_env) cros_build_lib.SudoRunCommand(cmd, **kwargs) def _InstallToolchain(self): # Create the sysroot's config. sysroot = sysroot_lib.Sysroot(self.sysroot) sysroot.WriteConfig(sysroot.GenerateBoardConfig(self.options.board)) cros_build_lib.RunCommand( [os.path.join(constants.CROSUTILS_DIR, 'install_toolchain'), '--noconfigure', '--sysroot', self.sysroot]) def _InstallKernelHeaders(self): self._Emerge('sys-kernel/linux-headers') def _InstallBuildDependencies(self): # Calculate buildtime deps that are not runtime deps. raw_sysroot = cros_build_lib.GetSysroot(board=self.options.board) packages = [] if not self.options.deps_only: packages = self.options.package.split() else: for pkg in self.options.package.split(): cmd = ['qdepends', '-q', '-C', pkg] output = cros_build_lib.RunCommand( cmd, extra_env={'ROOT': raw_sysroot}, capture_output=True).output if output.count('\n') > 1: raise AssertionError('Too many packages matched for given pattern') # qdepend outputs "package: deps", so only grab the deps. deps = output.partition(':')[2].split() packages.extend(deps) # Install the required packages. if packages: self._Emerge(*packages) def _CreateTarball(self): target = os.path.join(self.options.out_dir, self.options.out_file) cros_build_lib.CreateTarball(target, self.sysroot, sudo=True) def Perform(self): """Generate the sysroot.""" self._InstallToolchain() self._InstallKernelHeaders() self._InstallBuildDependencies() self._CreateTarball() def FinishParsing(options): """Run environment dependent checks on parsed args.""" target = os.path.join(options.out_dir, options.out_file) if os.path.exists(target): cros_build_lib.Die('Output file %r already exists.' % target) if not os.path.isdir(options.out_dir): cros_build_lib.Die( 'Non-existent directory %r specified for --out-dir' % options.out_dir) def main(argv): options = ParseCommandLine(argv) FinishParsing(options) cros_build_lib.AssertInsideChroot() with sudo.SudoKeepAlive(ttyless_sudo=False): with osutils.TempDir(set_global=True, sudo_rm=True) as tempdir: sysroot = os.path.join(tempdir, SYSROOT) os.mkdir(sysroot) GenerateSysroot(sysroot, options).Perform()
python
valor_do_produto = float(input('Digite o valor do produto? R$ ')) desconto = int(input('Qual será o desconto? ')) desconto_aplicado = valor_do_produto - ((valor_do_produto * desconto)/100) print('O produto que custava R${:.2f}, na promoção de {}% custará: R$ {:.2f}'.format(valor_do_produto,desconto, desconto_aplicado))
python
import collections import statistics import time class Statistics: """Calculate mathematical statistics of numerical values. :ivar ~.sum: sum of all values :ivar ~.min: minimum of all values :ivar ~.max: maximum of all values :ivar ~.mean: mean of all values :ivar ~.median: median of all values :ivar ~.last_value: last added value :ivar ~.last_change: timestamp the last time a value was added """ def __init__(self, max_age=None, max_samples=None): """ :param max_age: Maximum age of values in seconds :param max_samples: Maximum amount of samples which will be kept """ if max_age is None and max_samples is None: raise ValueError('Please specify max age or max samples!') self._max_age = max_age self.timestamps = collections.deque(maxlen=max_samples) self.values = collections.deque(maxlen=max_samples) self.sum: float = None self.min: float = None self.max: float = None self.mean: float = None self.median: float = None self.last_value: float = None self.last_change: float = None def _remove_old(self): if self._max_age is None: return None # remove too old entries now = time.time() while self.timestamps and (now - self.timestamps[0]) > self._max_age: self.timestamps.popleft() self.values.popleft() def update(self): """update values without adding a new value""" self._remove_old() __len = len(self.values) if not __len: self.sum = None self.min = None self.max = None self.mean = None self.median = None else: self.sum = sum(self.values) self.min = min(self.values) self.max = max(self.values) self.mean = statistics.mean(self.values) self.median = statistics.median(self.values) if __len >= 2: self.last_change = self.values[-1] - self.values[-2] else: self.last_change = None def add_value(self, value): """Add a new value and recalculate statistical values :param value: new value """ assert isinstance(value, (int, float)), type(value) self.last_value = value self.timestamps.append(time.time()) self.values.append(value) self.update() def __repr__(self): return f'<Statistics sum: {self.sum:.1f}, min: {self.min:.2f}, max: {self.max:.2f}, ' \ f'mean: {self.mean:.2f}, median: {self.median:.2f}>'
python
import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin class MetaFeaturesExtractor(BaseEstimator, TransformerMixin): def __init__(self, user_meta=None, item_meta=None): self.user_meta = user_meta self.item_meta = item_meta self.user_meta.registration_init_time = pd.to_datetime(self.user_meta.registration_init_time, format='%Y%m%d') self.user_meta.expiration_date = pd.to_datetime(self.user_meta.expiration_date, format='%Y%m%d') self.X_with_meta = None def fit(self, X, y=None, **fit_params): return self def transform(self, X): self.X_with_meta = X.copy() self.X_with_meta = pd.merge(self.X_with_meta, self.user_meta, on='msno', how='left') self.X_with_meta = pd.merge(self.X_with_meta, self.item_meta, on='song_id', how='left') self.X_with_meta[ 'days_registered' ] = self.X_with_meta.expiration_date - self.X_with_meta.registration_init_time self.X_with_meta['days_registered'] = self.X_with_meta.days_registered.apply(lambda x: x.days) return self.X_with_meta
python
# coding=utf-8 from django.test import TestCase from django.db import IntegrityError from applications.trackers.models import Tracker class TrackerModelTest(TestCase): def test_create_tracker(self): Tracker.objects.create(ip='192.168.0.1') tracker = Tracker.objects.all() self.assertTrue(tracker) def test_multiple_create(self): Tracker.objects.bulk_create([ Tracker(ip='192.168.0.1'), Tracker(ip='192.168.0.2'), ]) tracker = Tracker.objects.all() self.assertEquals(tracker.count(), 2) def test_ordering(self): Tracker.objects.bulk_create([ Tracker(ip='192.168.0.1'), Tracker(ip='192.168.1.2'), Tracker(ip='192.168.0.2'), ]) self.assertEquals(Tracker.objects.first().ip, '192.168.0.2') def test_error_without_ip(self): with self.assertRaises(IntegrityError): Tracker.objects.create() def test_str(self): Tracker.objects.create(ip='192.168.0.1') tracker = Tracker.objects.first() self.assertEquals( tracker.__str__(), 'IP адрес {ip}, зафиксирован {date} в {time}'.format( ip=tracker.ip, date=tracker.time.strftime("%d.%m.%Y"), time=tracker.time.strftime("%H:%M:%S") ) )
python
from django.views.generic.detail import DetailView from django.views.generic.list import ListView from .models import Message, Person, Tag class MessageView(DetailView): """ Detail view of a Person object """ model = Message class MessagesView(ListView): """ A view to list all Person objects """ model = Message class PersonView(DetailView): """ Detail view of a Person object """ model = Person class PersonsView(ListView): """ A view to list all Person objects """ model = Person class TagView(DetailView): """ Detail view of a Tag object """ model = Tag class TagsView(ListView): """ A view to list all Tag objects """ model = Tag
python
# Nick Hansel # Web scraper to create a shopping list given recipes from random_recipe import * days = { "Monday": None, "Tuesday": None, "Wednesday": None, "Thursday": None, "Friday": None, "Saturday": None, "Sunday": None } while True: answer = input("Would you like to choose a random meal or would you like to schedule your meal plan? (" "schedule/random): ") answer = answer.lower() if answer == "random": randomRecipe() print("\n" + "Recipe chosen: " + '\n' + Globals.chosen_recipe[0] + "\n") print("Ingredients needed:") for x in Globals.final_dict.get(Globals.chosen_recipe[0]): print(x) elif answer == 'schedule': how_many_days = input("How many days would you like to schedule (up to 7 days, starting on Monday): " + '\n') how_many_days = int(how_many_days) shopping = input('Would you like a shopping list as well? (y/n): ' + '\n') if how_many_days <= 7: randomRecipe() new = (list(days.items())) new = ([list(x) for x in new]) for x in range(how_many_days): used = (choice(Globals.names)) new[x][1] = used Globals.names.remove(used) del new[how_many_days:] new = ([tuple(x) for x in new]) new = dict(new) file1 = open("lunch.txt", 'w') for k, v in new.items(): print(k + ':' + ' ', v + "\n") if shopping == 'y': file1 = open('Shopping List.txt', 'w') for x in new.values(): for j in Globals.final_dict.get(x): file1.write(j + '\n') file1.close() break
python
import logging LOG_FORMAT = "%(levelname)s %(asctime)s - %(message)s" logging.basicConfig( filename = "logging_demo.log", level = logging.DEBUG, format = LOG_FORMAT, filemode = "w") logger = logging.getLogger() logger.debug("Debug level message") logger.info("Info level message") logger.warning("Warning level message") logger.error("Error level message") logger.critical("Critical level message") print(logger.level)
python
this is not valid python source code, but still more beautiful than many non-pythonic languages.
python
import discord from discord.ext import commands import os import json client = commands.Bot(command_prefix = ".") # @client.command() # async def load(ctx , extensions): # client.load_extensions(f"cogs.{extensions}") # @client.command() # async def unload(ctx , extensions): # client.unload_extension(f"cogs.{extensions}") for filename in os.listdir("./cogs"): if filename.endswith(".py"): client.load_extension(f"cogs.{filename[:-3]}") @client.event async def on_command_error(ctx , error): if isinstance(error , commands.CommandNotFound): await ctx.send("Invalid Command") f = open(r".\tokens\token.json", ) s = json.load(f) client.run(s["Token"])
python
fibonacci = [0, 1] n = int(input()) if n == 1: print(str(fibonacci[0])) if n < 46 and n > 1: if n > 2: for x in range(n - 2): fibonacci.append(fibonacci[x] + fibonacci[x + 1]) myTable = str(fibonacci).maketrans("", "", "[,]") print(str(fibonacci).translate(myTable))
python
""" Test CCompiler. """ from pathlib import Path from types import SimpleNamespace from unittest import mock from fab.build_config import AddFlags from fab.dep_tree import AnalysedFile from fab.steps.compile_c import CompileC class Test_Compiler(object): def test_vanilla(self): # ensure the command is formed correctly config = SimpleNamespace( project_workspace=Path('foo'), source_root=Path('foo/src'), multiprocessing=False, reuse_artefacts=False) c_compiler = CompileC( compiler='gcc', common_flags=['-c'], path_flags=[ AddFlags(match='foo/src/*', flags=['-I', 'foo/include', '-Dhello'])]) analysed_files = {Path('foo/src/foo.c'): AnalysedFile(fpath=Path('foo/src/foo.c'), file_hash=None)} with mock.patch('fab.steps.compile_c.run_command') as mock_run: with mock.patch('fab.steps.compile_c.send_metric'): c_compiler.run(artefact_store={'build_tree': analysed_files}, config=config) mock_run.assert_called_with([ 'gcc', '-c', '-I', 'foo/include', '-Dhello', 'foo/src/foo.c', '-o', 'foo/src/foo.o'])
python
import markov from typing import Optional from fastapi import FastAPI app = FastAPI() @app.get("/") def read_item(length: Optional[str] = None, start: Optional[str] = None): if length is not None: length = int(length) text = markov.generate(length=length, start=start) return text
python