content
stringlengths
0
894k
type
stringclasses
2 values
ACTION_CLEAN = 'clean' ACTION_CREATE_USERDEF = 'createuserdef' ACTION_PREPARE = 'prepare' ACTION_BUILD = 'build' ACTION_BACKUP = 'backup' ACTION_CREATE_NUGET = 'createnuget' ACTION_PUBLISH_NUGET = 'publishnuget' ACTION_UPDATE_SAMPLE = 'updatesample' ACTION_RELEASE_NOTES = 'releasenotes' ACTION_UPLOAD_BACKUP = 'uploadbackup' ACTION_RUN_UNITTESTS = 'rununittests' MAX_SDK_ROOT_PATH_LENGTH = 64
python
# AI_Javaher # this is the first session of GDAL/OGR tutorial # install GDAL video : https://www.youtube.com/watch?v=YsdHWT-hA4k&list=PLFhf3UaNX_xc8ivjt773rAjGNoAfz_ELm&index=2 # check the video of this code in youtube :https://www.youtube.com/watch?v=F1jaX9vmhIk # you can find the list of videos about GDAL tutorial in link : https://www.youtube.com/playlist?list=PLFhf3UaNX_xc8ivjt773rAjGNoAfz_ELm # you can find more videos about artificial intelligence in : https://www.youtube.com/channel/UCxKMssgH5eai60XeIuvg-dg ########################## GDAL_Read vector ########################## from osgeo import ogr mnh_shp = ogr.Open('D:\\youtube\\GDAL\\GDAL_introduction\\data\\manhattan\\manhattan_zone.shp',0) mnh_lyr = mnh_shp.GetLayer(0) mnh_feature_num = mnh_lyr.GetFeatureCount() # print(mnh_feature_num) mnh_feature = mnh_lyr.GetFeature(0) # print(mnh_feature.zone) # print(mnh_feature.LocationID) mnh_feature_last = mnh_lyr.GetFeature(mnh_feature_num-1) # print(mnh_feature_last.LocationID,'last') for f in mnh_lyr: # print(f.zone) geo = f.geometry() print(geo)
python
# Builtin import os import unittest # Internal from nxt import stage, nxt_layer class TestReferences(unittest.TestCase): def test_reference_by_path(self): test_dir = os.path.dirname(__file__) empty_path = os.path.join(test_dir, 'empty.nxt') pre_test = stage.Stage.load_from_filepath(empty_path).build_stage() # assert that empty is empty self.assertEqual(0, len(pre_test.descendants())) # Test adding reference empty_spec_layer = nxt_layer.SpecLayer.load_from_filepath(empty_path) empty_spec_layer.add_reference('ref_test.nxt') temporary_graph_path = os.path.join(test_dir, 'IWILLBEDELTED.nxt') empty_spec_layer.save(temporary_graph_path) # Rebuild stage and verify stage_with_ref = stage.Stage.load_from_filepath(temporary_graph_path) comp_layer_with_ref = stage_with_ref.build_stage() # Remove before asserting, to clean up even on failure. os.remove(temporary_graph_path) self.assertIsNotNone(comp_layer_with_ref.lookup('/i_am_here')) def test_reference_by_obj(self): test_dir = os.path.dirname(__file__) empty_path = os.path.join(test_dir, 'empty.nxt') pre_test = stage.Stage.load_from_filepath(empty_path).build_stage() # assert that empty is empty self.assertEqual(0, len(pre_test.descendants())) # Test adding reference empty_spec_layer = nxt_layer.SpecLayer.load_from_filepath(empty_path) ref_path = os.path.join(test_dir, 'ref_test.nxt') ref_test_spec_layer = nxt_layer.SpecLayer.load_from_filepath(ref_path) empty_spec_layer.add_reference(layer=ref_test_spec_layer) temporary_graph_path = os.path.join(test_dir, 'IWILLBEDELTED.nxt') empty_spec_layer.save(temporary_graph_path) # Rebuild stage and verify stage_with_ref = stage.Stage.load_from_filepath(temporary_graph_path) comp_layer_with_ref = stage_with_ref.build_stage() # Remove before asserting, to clean up even on failure. os.remove(temporary_graph_path) self.assertIsNotNone(comp_layer_with_ref.lookup('/i_am_here'))
python
from Utilities import * def convert_type(in_type: str) -> str: if in_type == 'bit': return 'boolean' if in_type == 'datetime': return 'Date' if in_type == 'mediumtext': return 'String' if in_type == 'nonnegativeinteger': return 'int' if in_type == 'phone': return 'String' if in_type == 'shorttext': return 'String' if in_type == 'spatialpoint': return 'String' if in_type == 'varchar': return 'String' if in_type == 'year': return 'int' return in_type class WriteGosu: def write(self): print('Writing Gosu Classes') for structure in self.plant_structures: self.package_path = maybe_create_package(self.json_config['target_directory'], structure.package) self.create_class(structure) def create_class(self, in_structure: PlantContent): class_file_name = self.package_path class_file_name = class_file_name + '/' + in_structure.name + '.gs' file = open(class_file_name, 'w') file.write(f'package {in_structure.package}\n') file.write('\n') self.create_uses(file, in_structure) create_wording(file, '/**', '/*', ' * ') class_type = in_structure.type if class_type == 'abstract': file.write('abstract class ' + in_structure.name) elif class_type == 'interface': file.write('interface ' + in_structure.name) else: file.write('class ' + in_structure.name) if len(in_structure.extensions) > 0: file.write(' extends ') for idx, extends_name in enumerate(in_structure.extensions): file.write(extends_name) if idx + 1 < len(in_structure.extensions): file.write(', ') if len(in_structure.implements) > 0: file.write(' implements ') for idx, implements_name in enumerate(in_structure.implements): file.write(implements_name) if idx + 1 < len(in_structure.implements): file.write(', ') file.write(' { \n\n') if len(in_structure.variables) > 0: self.create_variables(file, in_structure) file.write('\n') if not class_type == "interface": file.write(' construct() {\n') file.write(' }\n') file.write('\n') if len(in_structure.methods) > 0: self.create_methods(file, in_structure) file.write('\n') file.write('}') file.close() def create_uses(self, file, in_structure: PlantContent): """ Create the uses statements, while there are some that have been created during the processing of the puml some additional ones are needed for some of the data types, these are added here. """ for var in in_structure.variables: if var.type == 'BigDecimal': in_structure.add_implement('java.math,BigDecimal') if var.type == 'Date': in_structure.add_implement('java.util.Date') if len(in_structure.imports) == 0: return for uses in in_structure.imports: file.write(f'uses {uses}\n') file.write('\n') return self def create_variables(self, file, in_structure: PlantContent): for variable in in_structure.variables: var_name = '_' + variable.name[0].lower() + variable.name[1:] var_as = variable.name[0].upper() + variable.name[1:] var_type = convert_type(variable.type) if variable.scope == 'protected': file.write(f' protected var {var_name} : {var_type} as {var_as}\n') if variable.scope == 'private': file.write(f' var {var_name} : {var_type}\n') if variable.scope == 'public': file.write(f' var {var_name} : {var_type} as {var_as}\n') return self def create_methods(self, file, in_structure: PlantContent): for method in in_structure.methods: method_name = method.name method_return_type = convert_type(method.return_type) method_scope = method.scope file.write(f' {method_scope} function ' + method_name + ' (') for idx, param in enumerate(method.parameters): param_type = method.parameters[param] file.write(f'{param} : {param_type}') if idx + 1 < len(method.parameters): file.write(', ') file.write(') ') if not method_return_type == '': file.write(': ' + method_return_type + ' ') file.write('{\n') if not method_return_type == '': file.write(' return null\n') file.write(' }\n\n') for composition in in_structure.compositions: method_name = 'addTo' + composition.alternate[0].upper() + composition.alternate[1:] file.write(' public function ' + method_name + ' (') file.write('inItem : ' + composition.type + ') {\n') file.write(' }\n') file.write('\n') method_name = 'removeFrom' + composition.alternate[0].upper() + composition.alternate[1:] file.write(' public function ' + method_name + ' (') file.write('inItem : ' + composition.type + ') {\n') file.write(' }\n') return self def create_composition(self, file, in_structure: PlantContent): pass def __init__(self, in_json_config, in_plant_structures: list[PlantContent]): self.json_config = in_json_config self.plant_structures = in_plant_structures self.package_path = ''
python
from django.conf.urls import url from . import views urlpatterns = [ url(r'^(?P<pk>[0-9]+)$', views.DocumentDetailView.as_view(), name='document_detail'), url(r'^create/$', views.DocumentCreate.as_view(), name='document_create'), url(r'^update/(?P<pk>[0-9]+)$', views.DocumentUpdate.as_view(), name='document_update'), url(r'^delete/(?P<pk>[0-9]+)$', views.DocumentDelete.as_view(), name='document_delete'), ]
python
from django.db import models class StatisticsMemory(models.Model): value = models.FloatField()
python
""" AUTHTAB.DIR file parser. """ from pybycus.file import File class AuthTab(File): """ The Author List (with the filename AUTHTAB.DIR) contains descriptive information for each text file on the disc. The purpose of the Author Table is to allow the user to ask for the author Plato, for example, without having to know that the actual file name is TLG0059. Each entry contains the author name, the corresponding file name, synonyms, remarks, and language. The entries are arranged by category. """ def __init__(self, path): super().__init__(path) while True: # An (optional) synonym for the author name is introduced by a # byte of hex 80 and is terminated by the first byte value above # hex 7f. Up to five synonyms are allowed for each author name. # pylint: disable=E0601 if self.peek_ubyte() == 0x80: _ = self.read_ubyte() synonym = self.read_string() entry["aliases"].append(synonym) assert len(entry["aliases"]) <= 5 # The (optional) remarks field is introduced by a byte of hex 81 # and is terminated by the first byte value above hex 7f. elif self.peek_ubyte() == 0x81: assert False # The optional file size field is introduced by a byte of hex 82 # and is terminated by the first byte value above hex 7f. elif self.peek_ubyte() == 0x82: assert False # The optional language code field is introduced by a byte of hex 83 # and is terminated by the first byte value above hex 7f. elif self.peek_ubyte() == 0x83: _ = self.read_ubyte() language_code = self.read_string() entry["language_code"] = language_code # The entry is terminated by at least one hex ff (decimal 255). A # second ff is used when needed to pad the entry to an even byte # boundary. elif self.peek_ubyte() == 0xff: _ = self.read_ubyte() # Each entry begins with a file name (without any file name # extension) on an even byte boundary. The name is padded with # blanks if necessary to reach the fixed length of 8 bytes. else: # If the file name starts with an asterisk, it is a library # name (four characters including the asterisk). In this case # the second four bytes are the binary length of the library # (including the 8 bytes for the asterisk, name and length). if chr(self.peek_ubyte()) == '*': name = self.read_nstring(4) # If the file name starts *END it marks the end of the # list. The second four bytes are binary zeroes. if name == "*END": padding = self.read_uint() assert len(name) == 4 and padding == 0x0000 break listlen = self.read_uint() title = self.read_string() library = {"name": name, "title": title, "entries": []} self._content.append(library) # The full author name (of any reasonable length) starts after # the filename and is terminated by the first byte value above # 7f (decimal 127). else: filename = self.read_string() entry = {"id": filename[:7], "name": filename[8:], "aliases": []} library["entries"].append(entry) def content(path): """ Return the content of an AUTHTAB.DIR file. """ return AuthTab(path).content() if __name__ == "__main__": import sys import pprint pprint.pprint(content(sys.argv[1]))
python
""" Get an admin token for KeyCloak. """ import logging from functools import partial import requests from rest_tools.server import from_environment from rest_tools.client import RestClient def get_token(url, client_id, client_secret, client_realm='master'): url = f'{url}/auth/realms/{client_realm}/protocol/openid-connect/token' args = { 'grant_type': 'client_credentials', 'client_id': client_id, 'client_secret': client_secret, } logging.debug(f'get_token() url: {url} client_id: {client_id}') r = requests.post(url, data=args) r.raise_for_status() req = r.json() return req['access_token'] def get_rest_client(retries=None, timeout=10): config = from_environment({ 'KEYCLOAK_REALM': None, 'KEYCLOAK_URL': None, 'KEYCLOAK_CLIENT_ID': 'rest-access', 'KEYCLOAK_CLIENT_SECRET': None, 'KEYCLOAK_CLIENT_REALM': 'master', }) token_func = partial(get_token, config["KEYCLOAK_URL"], client_id=config['KEYCLOAK_CLIENT_ID'], client_secret=config['KEYCLOAK_CLIENT_SECRET'], client_realm=config['KEYCLOAK_CLIENT_REALM'], ) kwargs = {'timeout': timeout} if retries: kwargs['retries'] = retries return RestClient( f'{config["KEYCLOAK_URL"]}/auth/admin/realms/{config["KEYCLOAK_REALM"]}', token=token_func, **kwargs ) def main(): import argparse from pprint import pprint parser = argparse.ArgumentParser(description='Keycloak tokens') subparsers = parser.add_subparsers() parser_get = subparsers.add_parser('get', help='get token') parser_get.add_argument('url', help='keycloak base url') parser_get.add_argument('client_id', help='keycloak client id') parser_get.add_argument('client_secret', help='keycloak client secret') parser_get.set_defaults(func=get_token) args = vars(parser.parse_args()) logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) func = args.pop('func') ret = func(**args) if ret is not None: pprint(ret) if __name__ == '__main__': main()
python
import scrapy import codecs import re import json from ..items import WebcrawlerItem def unmangle_utf8(match): escaped = match.group(0) # '\\u00e2\\u0082\\u00ac' hexstr = escaped.replace(r'\u00', '') # 'e282ac' buffer = codecs.decode(hexstr, "hex") # b'\xe2\x82\xac' try: return buffer.decode('utf8') # '€' except UnicodeDecodeError: print("Could not decode buffer: %s" % buffer) class Spider(scrapy.Spider): name = "alzaSpidey" start_urls = [ 'https://www.alza.cz/akcni-zbozi' ] def parse(self, response): items = WebcrawlerItem() all_boxes = response.css('div.browsingitem') for box in all_boxes: item = box.css('a.name::text').extract() price = box.css('span.c2::text').extract() priceBefore = box.css('span.np2::text').extract() discount = box.css('span.np::text').extract() items['item'] = item items['price'] = price items['priceBefore'] = priceBefore items['discount'] = discount yield items next_page = response.css('a.next::attr(href)').get() if next_page is not None: next_page = response.urljoin(next_page) yield scrapy.Request(next_page, callback=self.parse)
python
raise ValueError('character must be a single string') raise ValueError('width must be greater than 2') try .... except ValueError as err: print(str(err)) # if we want to log errors that are not crashers: import traceback now = datetime.datetime.now() now = now.strftime('%Y-%m-%d %H:%M:%S') except: errorFile = open('errorInfo.txt', 'a') errorFile.write(now) errorFile.write(traceback.format_exc()) errorFile.close() print("The traceback info was written to errorInfo.txt")
python
## predict iris dataset ## imports import numpy as np import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import neptune import os from dotenv import load_dotenv load_dotenv() ## setup neptune account NEPTUNE_API_KEY=os.getenv('NEPTUNE_API_TOKEN') neptune.init(project_qualified_name='rishushrivastava/sandbox', api_token=NEPTUNE_API_KEY) ## create an neptune experiment neptune.create_experiment() ## load the data set iris = datasets.load_iris() ## pre-processing and train/test split X = iris.data[:] y = iris.target[:] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) ## train and fit the model - KNN knn_clf = KNeighborsClassifier(n_neighbors=8) knn_clf.fit(X_train,y_train) neptune.log_metric('Training Score :',knn_clf.score(X_test,y_test)*100) ## stop the execution neptune.stop()
python
# Generated by Django 3.2.12 on 2022-04-13 19:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('crypto', '0004_alert_user'), ] operations = [ migrations.RenameField( model_name='asset', old_name='daily_diff', new_name='convertEUR', ), migrations.RemoveField( model_name='alert', name='asset_name', ), migrations.RemoveField( model_name='alert', name='percent', ), migrations.RemoveField( model_name='alert', name='user', ), migrations.AddField( model_name='alert', name='alert_value', field=models.FloatField(default=0), preserve_default=False, ), migrations.AddField( model_name='alert', name='currency', field=models.CharField(choices=[('EUR', 'EUR'), ('USD', 'USD'), ('PLN', 'PLN')], default='', max_length=30), preserve_default=False, ), migrations.AddField( model_name='alert', name='email', field=models.EmailField(default='', max_length=254), preserve_default=False, ), migrations.AddField( model_name='alert', name='idA', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='crypto.asset'), preserve_default=False, ), migrations.AddField( model_name='asset', name='convertPLN', field=models.FloatField(default=0), ), migrations.AddField( model_name='asset', name='convertUSD', field=models.FloatField(default=0), ), migrations.AddField( model_name='asset', name='guidA', field=models.CharField(default='', max_length=40), preserve_default=False, ), migrations.AlterUniqueTogether( name='asset', unique_together=set(), ), migrations.DeleteModel( name='User', ), migrations.RemoveField( model_name='asset', name='currency', ), ]
python
# coding: utf-8 """ ThingsBoard REST API For instructions how to authorize requests please visit <a href='http://thingsboard.io/docs/reference/rest-api/'>REST API documentation page</a>. # noqa: E501 OpenAPI spec version: 2.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DeviceProfileAlarm(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'alarm_type': 'str', 'clear_rule': 'AlarmRule', 'create_rules': 'dict(str, AlarmRule)', 'id': 'str', 'propagate': 'bool', 'propagate_relation_types': 'list[str]' } attribute_map = { 'alarm_type': 'alarmType', 'clear_rule': 'clearRule', 'create_rules': 'createRules', 'id': 'id', 'propagate': 'propagate', 'propagate_relation_types': 'propagateRelationTypes' } def __init__(self, alarm_type=None, clear_rule=None, create_rules=None, id=None, propagate=None, propagate_relation_types=None): # noqa: E501 """DeviceProfileAlarm - a model defined in Swagger""" # noqa: E501 self._alarm_type = None self._clear_rule = None self._create_rules = None self._id = None self._propagate = None self._propagate_relation_types = None self.discriminator = None if alarm_type is not None: self.alarm_type = alarm_type if clear_rule is not None: self.clear_rule = clear_rule if create_rules is not None: self.create_rules = create_rules if id is not None: self.id = id if propagate is not None: self.propagate = propagate if propagate_relation_types is not None: self.propagate_relation_types = propagate_relation_types @property def alarm_type(self): """Gets the alarm_type of this DeviceProfileAlarm. # noqa: E501 :return: The alarm_type of this DeviceProfileAlarm. # noqa: E501 :rtype: str """ return self._alarm_type @alarm_type.setter def alarm_type(self, alarm_type): """Sets the alarm_type of this DeviceProfileAlarm. :param alarm_type: The alarm_type of this DeviceProfileAlarm. # noqa: E501 :type: str """ self._alarm_type = alarm_type @property def clear_rule(self): """Gets the clear_rule of this DeviceProfileAlarm. # noqa: E501 :return: The clear_rule of this DeviceProfileAlarm. # noqa: E501 :rtype: AlarmRule """ return self._clear_rule @clear_rule.setter def clear_rule(self, clear_rule): """Sets the clear_rule of this DeviceProfileAlarm. :param clear_rule: The clear_rule of this DeviceProfileAlarm. # noqa: E501 :type: AlarmRule """ self._clear_rule = clear_rule @property def create_rules(self): """Gets the create_rules of this DeviceProfileAlarm. # noqa: E501 :return: The create_rules of this DeviceProfileAlarm. # noqa: E501 :rtype: dict(str, AlarmRule) """ return self._create_rules @create_rules.setter def create_rules(self, create_rules): """Sets the create_rules of this DeviceProfileAlarm. :param create_rules: The create_rules of this DeviceProfileAlarm. # noqa: E501 :type: dict(str, AlarmRule) """ self._create_rules = create_rules @property def id(self): """Gets the id of this DeviceProfileAlarm. # noqa: E501 :return: The id of this DeviceProfileAlarm. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this DeviceProfileAlarm. :param id: The id of this DeviceProfileAlarm. # noqa: E501 :type: str """ self._id = id @property def propagate(self): """Gets the propagate of this DeviceProfileAlarm. # noqa: E501 :return: The propagate of this DeviceProfileAlarm. # noqa: E501 :rtype: bool """ return self._propagate @propagate.setter def propagate(self, propagate): """Sets the propagate of this DeviceProfileAlarm. :param propagate: The propagate of this DeviceProfileAlarm. # noqa: E501 :type: bool """ self._propagate = propagate @property def propagate_relation_types(self): """Gets the propagate_relation_types of this DeviceProfileAlarm. # noqa: E501 :return: The propagate_relation_types of this DeviceProfileAlarm. # noqa: E501 :rtype: list[str] """ return self._propagate_relation_types @propagate_relation_types.setter def propagate_relation_types(self, propagate_relation_types): """Sets the propagate_relation_types of this DeviceProfileAlarm. :param propagate_relation_types: The propagate_relation_types of this DeviceProfileAlarm. # noqa: E501 :type: list[str] """ self._propagate_relation_types = propagate_relation_types def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DeviceProfileAlarm, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeviceProfileAlarm): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
python
import graphene import pytest from ....tests.utils import get_graphql_content QUERY_GIFT_CARDS = """ query giftCards($filter: GiftCardFilterInput){ giftCards(first: 10, filter: $filter) { edges { node { id displayCode } } totalCount } } """ def test_query_gift_cards( staff_api_client, gift_card, gift_card_created_by_staff, permission_manage_gift_card ): # given query = QUERY_GIFT_CARDS gift_card_id = graphene.Node.to_global_id("GiftCard", gift_card.pk) gift_card_created_by_staff_id = graphene.Node.to_global_id( "GiftCard", gift_card_created_by_staff.pk ) # when response = staff_api_client.post_graphql( query, permissions=[permission_manage_gift_card] ) # then content = get_graphql_content(response) data = content["data"]["giftCards"]["edges"] assert len(data) == 2 assert data[0]["node"]["id"] == gift_card_created_by_staff_id assert data[0]["node"]["displayCode"] == gift_card_created_by_staff.display_code assert data[1]["node"]["id"] == gift_card_id assert data[1]["node"]["displayCode"] == gift_card.display_code @pytest.mark.parametrize( "filter_value, expected_gift_card_indexes", [ ("test-tag", [0]), ("another-tag", [1, 2]), ("tag", [0, 1, 2, 3]), ("not existing", []), ], ) def test_query_filter_gift_cards( filter_value, expected_gift_card_indexes, staff_api_client, gift_card, gift_card_expiry_period, gift_card_expiry_date, gift_card_used, permission_manage_gift_card, ): # given query = QUERY_GIFT_CARDS gift_cards = [ gift_card, gift_card_expiry_period, gift_card_expiry_date, gift_card_used, ] variables = {"filter": {"tag": filter_value}} # when response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_gift_card] ) # then content = get_graphql_content(response) data = content["data"]["giftCards"]["edges"] assert len(data) == len(expected_gift_card_indexes) assert {card["node"]["id"] for card in data} == { graphene.Node.to_global_id("GiftCard", gift_cards[i].pk) for i in expected_gift_card_indexes } def test_query_own_gift_cards( user_api_client, gift_card_used, gift_card_created_by_staff ): query = """ query giftCards{ me { giftCards(first: 10) { edges { node { id displayCode code } } totalCount } } } """ gift_card_id = graphene.Node.to_global_id("GiftCard", gift_card_used.pk) response = user_api_client.post_graphql(query) content = get_graphql_content(response) data = content["data"]["me"]["giftCards"] assert data["edges"][0]["node"]["id"] == gift_card_id assert data["edges"][0]["node"]["displayCode"] == gift_card_used.display_code assert data["edges"][0]["node"]["code"] == gift_card_used.code assert data["totalCount"] == 1
python
import sqlalchemy as sa import aiopg.sa meta = sa.MetaData() question = sa.Table( 'question', meta, sa.Column('id', sa.Integer, nullable=False), sa.Column('question_text', sa.String(200), nullable=False), sa.Column('pub_date', sa.Date, nullable=False), # Indexes sa.PrimaryKeyConstraint('id', name='question_id_pkey') ) choice = sa.Table( 'choice', meta, sa.Column('id', sa.Integer, nullable=False), sa.Column('question_id', sa.Integer, nullable=False), sa.Column('choice_text', sa.Integer, nullable=False), sa.Column('votes', sa.Integer, server_default="0", nullable=False), # Indexes sa.PrimaryKeyConstraint('id', name='choice_id_pkey'), sa.ForeignKeyConstraint(['question_id'], [question.c.id], name='choice_question_id_fkey', ondelete='CASACADE') ) async def init_pg(app): conf = app['config']['postgres'] engine = await aiopg.sa.create_engine( database = conf['database'], user=conf['user'], password=conf['password'], host=conf['host'], port=conf['port'], minsize=conf['minsize'], maxsize=conf['maxsize'] ) app['db'] = engine async def close_pg(app): app['db'].close() await app['db'].wait_closed()
python
import json import argparse def main(): parser = argparse.ArgumentParser(description='Conversion IO') parser.add_argument("--input_file", dest="input_file", type=argparse.FileType('r', encoding='UTF-8'), required=True) parser.add_argument("--output_file", dest="output_file", type=argparse.FileType('w', encoding='UTF-8')) parser.add_argument("--output_type", dest="output_type", type=str, choices=["txt", "json"], default="json") args = parser.parse_args() dictionary = json.load(args.input_file) word_list = [] for entry in dictionary: word_list.append(entry["word"]) word_list = list(set(word_list)) word_list.sort() output_string = "" if args.output_type == "txt": output_string = "\n".join(word_list) else: output_string = json.dumps(word_list, indent = 4, ensure_ascii=False) output_to_file_successful = False if args.output_file: args.output_file.write(output_string) output_to_file_successful = True if output_to_file_successful: print("Operation done! Successfully retrieved {} words.".format(len(word_list))) else: print(output_string) main()
python
import xml.etree.ElementTree as ET import sys tree = ET.parse(sys.argv[1]) # the xml tree is of the form # <expr><list> {all options, each an attrs} </list></expr> options = list(tree.getroot().find('list')) def sortKey(opt): def order(s): if s.startswith("enable"): return 0 if s.startswith("package"): return 1 return 2 return [ (order(p.attrib['value']), p.attrib['value']) for p in opt.findall('attr[@name="loc"]/list/string') ] # always ensure that the sort order matches the order used in the nix expression! options.sort(key=sortKey) doc = ET.Element("expr") newOptions = ET.SubElement(doc, "list") newOptions.extend(options) ET.ElementTree(doc).write(sys.argv[2], encoding='utf-8')
python
from typing import Tuple, Union import torch def make_dense_volume( ind: torch.Tensor, voxel_res: Union[int, Tuple[int, int, int]] ) -> torch.Tensor: if isinstance(voxel_res, int): voxel_res = (voxel_res, voxel_res, voxel_res) grid = torch.zeros(voxel_res, dtype=torch.bool) grid[ind[:, 0], ind[:, 1], ind[:, 2]] = True return grid.unsqueeze(0)
python
import os from django.http import FileResponse from wsgiref.util import FileWrapper from settings.static import MEDIA_URL # from django.core.servers.basehttp import FileWrapper from django.views.generic import TemplateView from django.shortcuts import render_to_response, render, redirect, get_object_or_404 from django.core.mail import send_mail from django.http import HttpResponse from django.template import RequestContext from django.http import HttpResponseRedirect from pangolinfog.forms import * # from pangolinfog.recaptcha.forms import * from django.template.loader import get_template from django.core.mail import EmailMessage from django.template import Context from product.models import Category from product.models import Product, Accessory from content.models import Slide from django.core.urlresolvers import reverse_lazy from django.views.generic import FormView from nocaptcha_recaptcha.fields import NoReCaptchaField def contact(request): form_class = ContactForm success_url = reverse_lazy('success') args = {} background_image = get_object_or_404(Slide, header_about=1) args['menu'] = "contact" categories_main_menu = Category.objects.filter(published_in_menu=1).order_by('ordering') args['categories_main_menu'] = categories_main_menu args['form'] = form_class args['background_image'] = background_image def form_valid(self, form): return super(form_class, self).form_valid(form) if request.method == 'POST': form = ContactForm(request.POST) if form.is_valid(): contact_name = request.POST.get( 'contact_name' , '') contact_email = request.POST.get( 'contact_email' , '') contact_phone = request.POST.get( 'contact_phone' , '') form_content = request.POST.get('content', '') # Email the profile with the # contact information template = get_template('contact_template.txt') context = Context({ 'contact_name': contact_name, 'contact_email': contact_email, 'contact_phone': contact_phone, 'form_content': form_content, }) content = template.render(context) email = EmailMessage( "Pangolin Fog", content, "Pangolin Fog" +'', ['[email protected]'], headers = {'Reply-To': contact_email } ) email.send() return redirect(request.META.get('HTTP_REFERER', '/')) return render(request, 'contact.html', args) def jq_subsc(request): return render(request, 'jq_subsc.html') def download_file(request): _file = 'manualtourhazer2.pdf.zip' filename = os.path.basename(_file) # python 3 # response = FileResponse(FileWrapper(open(filename, 'rb')), content_type='application/x-zip-compressed') # python 2 response = FileResponse(FileWrapper(file(filename, 'rb')), content_type='application/x-zip-compressed') response['Content-Disposition'] = "attachment; filename=%s" % _file return response def download_mp3(request): _file = 'Last_Summer_in_Yalta.mp3.zip' filename = os.path.basename(_file) # python 3 # response = FileResponse(FileWrapper(open(filename, 'rb')), content_type='application/x-zip-compressed') # python 2 response = FileResponse(FileWrapper(file(filename, 'rb')), content_type='application/x-zip-compressed') response['Content-Disposition'] = "attachment; filename=%s" % _file return response def main(request): args = {} slides = Slide.objects.filter(published_main=1).order_by('ordering') categories_main_menu = Category.objects.filter(published_in_menu=1).order_by('ordering') products_main = Product.objects.filter(published_main=1) args['products_main'] = products_main args['categories_main_menu'] = categories_main_menu args['slides'] = slides return render_to_response("home.html", args) def news(request): args = {} slides = Slide.objects.filter(published_portfolio=1).order_by('ordering') news = Slide.objects.filter(published_news=1).order_by('ordering') background_image = get_object_or_404(Slide, header_about=1) args['news'] = news args['menu'] = "news" args['slides'] = slides args['background_image'] = background_image return render_to_response("news.html", args) def about(request): args = {} slides = Slide.objects.filter(published_portfolio=1).order_by('ordering') news = Slide.objects.filter(published_news=1).order_by('ordering') background_image = get_object_or_404(Slide, header_about=1) args['news'] = news args['menu'] = "about" args['slides'] = slides args['background_image'] = background_image return render_to_response("about.html", args)
python
from functools import cached_property from ..typing import TYPE_CHECKING, Any, Callable, Catchable if TYPE_CHECKING: from .fn import fn def as_method(method, name): method.__name__ = name method.__qualname__ = f"fn.{name}" method.__doc__ = "Auto generated, see :func:`sidekick.functions.{name}`" return method def curry_n(n, name, options=()): """ Curry if only one argument is given and execute if any additional arguments are passed. """ def method(self: "FnMixin", *args, **kwargs): api_func = getattr(self._mod, name) api_kwargs = {k: kwargs.pop(k) for k in kwargs if k in options} if len(args) == n and not kwargs: return api_func(*args, self, **api_kwargs) transformed_fn = api_func(*args[:n], self, **api_kwargs) return transformed_fn(*args[n:], **kwargs) return as_method(method, name) class FnMixin: """ Basic mixin class that exposes a _mod lazy attribute to access the sidekick.functions module and declare the _func attribute that is manipulated by methods. """ _func: Callable __call__: Callable __slots__ = () if TYPE_CHECKING: from .. import functions as _mod _mod = _mod else: @cached_property def _mod(self): from .. import functions return functions # # Expose functions in sidekick.functions.lib_arguments as methods. # def flip(self, x, y, /, *args, **kwargs): """ Executes flipping the first two arguments. Access as attribute to obtain a flipped version of function. """ return self._func(y, x, *args, **kwargs) def reverse_args(self, /, *args, **kwargs): """ Executes reversing the order of positional arguments. Access as attribute to obtain a reversed version of function. """ return self._func(*args[::-1], **kwargs) select_args = curry_n(1, "select_args") skip_args = curry_n(1, "skip_args") keep_args = curry_n(1, "keep_args") def variadic_args(self, /, *args, **kwargs): """ Pass variadic arguments as single tuple to function. """ return self._func(args, **kwargs) def splice_args(self, xs, /, *args, **kwargs): """ Splice first argument. """ return self._func(*xs, *args, **kwargs) def set_null(self, /, *defaults: Any, **kwargs: Any) -> "fn": """ Return a new function that replace all null arguments in the given positions by the provided default value. """ return self._mod.set_null(self._func, *defaults, **kwargs) # # Expose functions in sidekick.functions.lib_combinators as methods. # def do(self, /, *args, **kwargs): """ Execute function, but return the first argument. Function result is ignored, hence do is executed only for the function side-effects. """ if not args: raise TypeError("requires at least a single argument.") self(*args, **kwargs) return args[0] # # Expose functions in sidekick.functions.lib_composition as methods. # def compose(self, *funcs) -> "fn": """ Compose with other functions. Argument flow from right to left. Function is thus the last to execute. """ return self._mod.compose(self, *funcs) def pipeline(self, *funcs) -> "fn": """ Compose with other functions. Argument flow from left to right, starting in self. """ return self._mod.pipeline(self, *funcs) def juxt(self, *funcs, **kwargs) -> "fn": """ Return function that juxtaposes fn with all functions in the arguments. """ return self._mod.juxt(self, *funcs, **kwargs) # # Expose functions in sidekick.functions.lib_runtime as methods. # def once(self) -> "fn": """ Version of function that perform a single invocation. Repeated calls to the function return the value of the first invocation. """ return self._mod.once(self._func) def thunk(self, /, *args, **kwargs) -> Callable[[], Any]: """ Return as a thunk. """ return self._mod.thunk(self, *args, **kwargs) call_after = curry_n(1, "call_after", {"default"}) call_at_most = curry_n(1, "call_at_most") def throttle(self, dt: float, **kwargs) -> "fn": """ Limit the rate of execution of func to once at each ``dt`` seconds. Return a new function. """ return self._mod.throttle(dt, self, **kwargs) def background(self, /, *args, **kwargs) -> Any: """ Execute function in the background. Current implementation uses threads, but in the future it may use hooks to other runtimes such as asyncio, curio, etc. """ return self._mod.background(self, *args, **kwargs) def catch(self, error, /, *args, **kwargs): """ Handle exception in function. If the exception occurs, return None or the value mapped from the error mapping. """ return self._mod.catch(error, self, *args, **kwargs) def catching(self, error) -> "fn": """ Handle exception in function. If the exception occurs, it executes the given handler. Return a new function with the new error handling behavior. """ return self._mod.catching(error, self) def retry( self, n: int, /, *args, error: Catchable = Exception, sleep=None, **kwargs ) -> "fn": """ Try to call function n types before raising an error. This is useful for functions that may fail due to interaction with external resources (e.g., fetch data from the network). Args: n: Maximum number of times to execute function error: Exception or tuple with suppressed exceptions. sleep: Interval between attempts. This is a blocking function, hence use with care. Other positional and keyword arguments are forwarded to function. """ func = self._mod.retry(n, self, error=error, sleep=sleep) return func(*args, **kwargs)
python
import requests from typing import Dict, NamedTuple, NoReturn from bs4 import BeautifulSoup class WorkshopError(Exception): def __init__(self, error: str): self.error = error def __str__(self) -> str: return self.error class Script(NamedTuple): """Encapsulate a numworks workshop python script.""" name: str description: str content: str public: bool class Workshop: def __init__(self, email: str, password: str): self.session = requests.Session() self.base_url = "workshop.numworks.com" user = { "email": email, "password": password } self.login(user) def login(self, user: Dict[str, str]) -> NoReturn: login = self.session.get(self.get_url("/users/sign_in")) soup = BeautifulSoup(login.text, "html.parser") authenticity_token = soup.find("input").get("value") payload = { "authenticity_token": authenticity_token, "commit": "Se connecter", "user[email]": user["email"], "user[password]": user["password"], } r = self.session.post(self.get_url("/users/sign_in"), data=payload) soup = BeautifulSoup(r.text, "html.parser").find( ["ul", "li", "a"], class_="dropdown-menu animated-dropdown-sm") self.python = soup.find_all("a")[1].get("href") def create_script(self, script: Script) -> NoReturn: # @todo : error if script allready exist... r = self.session.get(self.get_url(f"{self.python}/new")) soup = BeautifulSoup(r.text, "html.parser") authenticity_token = soup.find("input").get("value") payload = { "authenticity_token": authenticity_token, "commit": "Sauvegarder", "script[description]": script.description, "script[name]": f"{script.name.lower()}.py", "script[public]": int(script.public), "script[text_area_content]": script.content, } r = self.session.post(self.get_url(f"{self.python}"), data=payload) soup = BeautifulSoup(r.text, "html.parser") self.raise_errors(soup.find(id="error_explanation")) def edit_script(self, script: Script, name=None) -> NoReturn: r = self.session.get(self.get_url(f"{self.python}/{script.name}/edit")) soup = BeautifulSoup(r.text, "html.parser") authenticity_token = soup.find_all("input")[1].get("value") payload = { "_method": "patch", "authenticity_token": authenticity_token, "commit": "Sauvegarder", "script[description]": script.description, "script[name]": (f"{name.lower()}.py" or f"{script.name.lower()}.py"), "script[public]": int(script.public), "script[text_area_content]": script.content, } r = self.session.post(self.get_url(f"{self.python}/{script.name}"), data=payload) soup = BeautifulSoup(r.text, "html.parser") self.raise_errors(soup.find(id="error_explanation")) script.name = name or script.name def delete_script(self, script: Script) -> NoReturn: r = self.session.get(self.get_url(f"{self.python}/{script.name}")) soup = BeautifulSoup(r.text, "html.parser") authenticity_token = soup.find("meta", attrs={"name": "csrf-token"}).get( "content") payload = { "_method": "delete", "authenticity_token": authenticity_token, } r = self.session.post(self.get_url(f"{self.python}/{script.name}"), data=payload) soup = BeautifulSoup(r.text, "html.parser") self.raise_errors(soup.find(id="error_explanation")) def get_script(self, url: str) -> Script: r = self.session.get(f"{url}") soup = BeautifulSoup(r.text, "html.parser") send_to_calculator = soup.find("send-to-calculator") script_name = send_to_calculator.get("script-name").split(".")[0] script_content = send_to_calculator.get("script-content") script_description = soup.find(class_="text-justify").text.strip("\n") if url[37:].split("/")[0] != self.python.split("/")[2]: script_public = True else: script_public = bool(soup.find(class_="text-success")) return Script(script_name, script_description, script_content, script_public) def get_url(self, url: str) -> str: return f"https://{self.base_url}{url}" def raise_errors(self, errors: Exception) -> NoReturn: if errors: errors = (error.text for error in errors.find_all("li")) for error in errors: raise WorkshopError(error)
python
import json import os import random import bottle from api import ping_response, start_response, move_response, end_response @bottle.route('/') def index(): return ''' Battlesnake documentation can be found at <a href="https://docs.battlesnake.io">https://docs.battlesnake.io</a>. ''' @bottle.route('/static/<path:path>') def static(path): """ Given a path, return the static file located relative to the static folder. This can be used to return the snake head URL in an API response. """ return bottle.static_file(path, root='static/') @bottle.post('/ping') def ping(): """ A keep-alive endpoint used to prevent cloud application platforms, such as Heroku, from sleeping the application instance. """ return ping_response() @bottle.post('/start') def start(): data = bottle.request.json """ TODO: If you intend to have a stateful snake AI, initialize your snake state here using the request's data if necessary. """ print(json.dumps(data)) color = "#FF0000" return start_response(color) @bottle.post('/move') def move(): data = bottle.request.json """ TODO: Using the data from the endpoint request object, your snake AI must choose a direction to move in. """ print(json.dumps(data)) myId = data['you']['id'] turn = data['turn'] body = data['you']['body'] snakes = data['board']['snakes'] foods = data['board']['food'] moveOption = [] riskyMove = [] x = body[0]['x'] y = body[0]['y'] xLimit = data['board']['width'] - 1 yLimit = data['board']['height'] - 1 longuestSnake = 1 food = 1 left = 1 right = 1 up = 1 down = 1 hungry = 0 if data['you']['health']<50: hungry = 1 for snake in snakes: if snake['id'] != myId: if len(snake['body']) >= len(body): longuestSnake = 0 head = snake['body'][0] if head['x'] == x: if head['y']+2 == y: up = 0 riskyMove += ['up'] elif head['y']-2 == y: down = 0 riskyMove += ['down'] if head['y'] == y: if head['x']+2 == x: left = 0 riskyMove += ['left'] if head['x']-2 == x: right = 0 riskyMove += ['right'] if head['x']+1 == x: if head['y']+1 == y: up = 0 riskyMove += ['up'] left = 0 riskyMove += ['left'] if head['y']-1 == y: down = 0 riskyMove += ['down'] left = 0 riskyMove += ['left'] if head['x']-1 == x: if head['y']+1 == y: up = 0 riskyMove += ['up'] right = 0 riskyMove += ['right'] if head['y']-1 == y: down = 0 riskyMove += ['down'] right = 0 riskyMove += ['right'] i=1 for b in snake['body']: if i != len(snake['body']): if x == b['x']: if b['y'] == y-1: up = 0 if 'up' in riskyMove: riskyMove.remove('up') elif b['y'] == y+1: down = 0 if 'down' in riskyMove: riskyMove.remove('down') elif y == b['y']: if b['x'] == x-1: left = 0 if 'left' in riskyMove: riskyMove.remove('left') elif b['x'] == x+1: right = 0 if 'right' in riskyMove: riskyMove.remove('right') i+=1 i=1 for b in body: if i != len(body): if x == b['x']: if b['y'] == y-1: up = 0 if 'up' in riskyMove: riskyMove.remove('up') elif b['y'] == y+1: down = 0 if 'down' in riskyMove: riskyMove.remove('down') elif y == b['y']: if b['x'] == x-1: left = 0 if 'left' in riskyMove: riskyMove.remove('left') elif b['x'] == x+1: right = 0 if 'right' in riskyMove: riskyMove.remove('right') i+=1 minDistance = 1000000000 if len(foods) != 0: for f in foods: xDistance = f['x']-x yDistance = f['y']-y distance = abs(xDistance)+abs(yDistance) if distance <= minDistance: minDistance = distance xFoodDistance = xDistance yFoodDistance = yDistance else: food = 0 if x and left: moveOption += ['left'] if x != xLimit and right: moveOption += ['right'] if y and up: moveOption += ['up'] if y != yLimit and down: moveOption += ['down'] if food and (not longuestSnake or hungry): if xFoodDistance == 0: if yFoodDistance < 0: if 'up' in moveOption: direction = 'up' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'down' in moveOption: direction = 'down' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) elif yFoodDistance == 0: if xFoodDistance < 0: if 'left' in moveOption: direction = 'left' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'right' in moveOption: direction = 'right' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) elif abs(xFoodDistance) < abs(yFoodDistance): if xFoodDistance < 0: if 'left' in moveOption: direction = 'left' else: if yFoodDistance < 0: if 'up' in moveOption: direction = 'up' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'down' in moveOption: direction = 'down' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'right' in moveOption: direction = 'right' else: if yFoodDistance < 0: if 'up' in moveOption: direction = 'up' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'down' in moveOption: direction = 'down' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) elif abs(yFoodDistance) < abs(xFoodDistance): if yFoodDistance < 0: if 'up' in moveOption: direction = 'up' else: if xFoodDistance < 0: if 'left' in moveOption: direction = 'left' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'right' in moveOption: direction = 'right' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'down' in moveOption: direction = 'down' else: if xFoodDistance < 0: if 'left' in moveOption: direction = 'left' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if 'right' in moveOption: direction = 'right' else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) else: if len(moveOption): direction = random.choice(moveOption) else: direction = random.choice(riskyMove) return move_response(direction) @bottle.post('/end') def end(): data = bottle.request.json """ TODO: If your snake AI was stateful, clean up any stateful objects here. """ print(json.dumps(data)) return end_response() # Expose WSGI app (so gunicorn can find it) application = bottle.default_app() if __name__ == '__main__': bottle.run( application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), debug=os.getenv('DEBUG', True) )
python
import json import itertools as it from collections import defaultdict import textwrap from itertools import chain COURSE_LIST_FILENAME = 'course_list.json' REVERSE_KDAM_FILENAME = 'reverse_kdam.json' REVERSE_ADJACENT_FILENAME = 'reverse_adjacent.json' def read_json_to_dict(filename=COURSE_LIST_FILENAME): with open(filename, encoding='utf8') as f: return json.load(f) def flatten(v, field): return sum(v.get(field, []), []) def to_jsonable(d): return {k:list(sorted(set(v))) for k, v in d.items()} def multidict(pairs): res = defaultdict(list) for k, v in it.chain.from_iterable(pairs): res[k].append(v) return to_jsonable(res) def merge_mutildicts(d1, d2): res = defaultdict(list, d1) for (k, v) in d2.items(): res[k] += v return to_jsonable(res) def multidict_to_pairs(d): return it.chain.from_iterable(it.product([k], v) for k, v in d.items()) def get_reverse_kdam_from_course_list(field='kdam', filename=COURSE_LIST_FILENAME): d = read_json_to_dict(filename) return multidict(it.product(flatten(v, field), [k]) for k, v in d.items()) def read_kdam_and_adjacent(): kdams = read_json_to_dict(REVERSE_KDAM_FILENAME) adjacents = read_json_to_dict(REVERSE_ADJACENT_FILENAME) return merge_mutildicts(kdams, adjacents) def dump_json_kdam(d): s = ',\n'.join('{}: {}'.format(repr(k), repr(v)) for k, v in sorted(d.items())) return ('{\n%s\n}' % s.replace("'", '"')) def print_to_file(filename, field): with open(filename, 'w') as f: f.write(dump_json_kdam(get_reverse_kdam_from_course_list(field))) def is_cs(cid): return 234000 <= int(cid) <= 236999 def nodes_to_visDataSet(fp): from functools import partial pr = partial(print, file=fp) pr('var nodes = new vis.DataSet([') edges = defaultdict(set) d = read_json_to_dict(filename=COURSE_LIST_FILENAME) for cid, details in sorted(d.items()): cid = int(cid) if not is_cs(cid): continue for k in details.get('kdam', []): if len(k) > 1: dummy = 1000000 + sum(map(int, k)) if dummy not in edges: pr('{', 'id:"{}", group: 9, hidden: true'.format(dummy), '},') edges[dummy].add(cid) for p in k: edges[p].add(dummy) else: edges[k[0]].add(cid) for cid in {int(x) for x in (set(chain.from_iterable(edges.values())) | set(edges))}: cid = int(cid) if cid < 1000000: details = d.get(str(cid).zfill(6)) if details is None: pr('{', 'id:"{0}", group: 10, label: {0}, title: "{0}", mass:1'.format(cid), '},') else: name = repr(textwrap.fill(details['name'], 25)) pr('{', 'id:"{}", group: {g}, label: {name}, title: "{number}"'.format( cid, g=str(cid)[-4], name=name, number=cid), '},') pr(']);') pr('var edges = new vis.DataSet([') for cid, v in multidict_to_pairs(edges): pr('{', 'from: {}, to: {}'.format(cid, v), '},') pr(']);') if __name__ == '__main__': with open(r'..\ug-data-vis\data.js', 'w', encoding='utf8') as fp: nodes_to_visDataSet(fp)
python
# -*- coding: utf-8 -*- # created: 2021-06-22 # creator: [email protected] import asyncio from gcommon.aio.gasync import maybe_async def sync_call(): print("sync") return "1" async def async_call(): await asyncio.sleep(1) print("async") return "2" async def test(): r = await maybe_async(sync_call) print(r) r = await maybe_async(async_call) print(r) if __name__ == '__main__': asyncio.run(test())
python
# -*- coding: utf-8 -*- from peewee import * from telegram import User as TelegramUser import util from model.user import User from model.basemodel import BaseModel class APIAccess(BaseModel): user = ForeignKeyField(User) token = CharField(32) webhook_url = CharField(null=True)
python
"""Module to test reset password""" from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from django.contrib.auth import get_user_model from django.contrib.auth.tokens import default_token_generator class ResetPassword(APITestCase): def setUp(self): """ Set the data for test """ self.email = {"email": "[email protected]"} self.valid_user = { "username": "michael", "email": "[email protected]", "password": "Bit22150"} self.client.defaults['HTTP_REFERER'] = '127.0.0.1' self.client.post(reverse('authentication:register'), self.valid_user, format='json') self.forget_password_url = reverse('authentication:forgot') def test_sending_successful_email(self): """ Test email is sent """ response = self.client.post( self.forget_password_url, self.email, format='json') self.assertIn( 'Please check your email for further instruction', str(response.data)) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_invalid_email(self): """ Test for invalid email """ email = {"email": "[email protected]"} response = self.client.post( self.forget_password_url, email, format='json') self.assertIn('The email you entered does not exist', str(response.data)) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_reset_password(self): """ Test user successfully reset password """ user = get_user_model().objects.create_user(username='leon', email='[email protected]', password='123456789') token = default_token_generator.make_token(user) reset_password_url = reverse( 'authentication:reset_password', kwargs={'token': token}) new_password = {"password": "abcdef", "confirm_password": "abcdef", "email": "[email protected]", "token": token} response = self.client.put( reset_password_url, data=new_password, format='json') self.assertIn('Your password has been successfully changed', str(response.data)) self.assertEqual(response.status_code, status.HTTP_200_OK)
python
#!/usr/bin/env python3 import argparse import logging from pathlib import Path import sys from typing import Iterable from typing import Union import numpy as np from espnet.utils.cli_utils import get_commandline_args def aggregate_stats_dirs( input_dir: Iterable[Union[str, Path]], output_dir: Union[str, Path], log_level: str, skip_sum_stats: bool, ): logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) (levelname)s: %(message)s", ) input_dirs = [Path(p) for p in input_dir] output_dir = Path(output_dir) for mode in ["train", "valid"]: with (input_dirs[0] / mode / "batch_keys").open("r", encoding="utf-8") as f: batch_keys = [line.strip() for line in f if line.strip() != ""] with (input_dirs[0] / mode / "stats_keys").open("r", encoding="utf-8") as f: stats_keys = [line.strip() for line in f if line.strip() != ""] (output_dir / mode).mkdir(parents=True, exist_ok=True) for key in batch_keys: with (output_dir / mode / f"{key}_shape").open( "w", encoding="utf-8" ) as fout: for idir in input_dirs: with (idir / mode / f"{key}_shape").open( "r", encoding="utf-8" ) as fin: # Read to the last in order to sort keys # because the order can be changed if num_workers>=1 lines = fin.readlines() lines = sorted(lines, key=lambda x: x.split()[0]) for line in lines: fout.write(line) for key in stats_keys: if not skip_sum_stats: sum_stats = None for idir in input_dirs: stats = np.load(idir / mode / f"{key}_stats.npz") if sum_stats is None: sum_stats = dict(**stats) else: for k in stats: sum_stats[k] += stats[k] np.savez(output_dir / mode / f"{key}_stats.npz", **sum_stats) # if --write_collected_feats=true p = Path(mode) / "collect_feats" / f"{key}.scp" scp = input_dirs[0] / p if scp.exists(): (output_dir / p).parent.mkdir(parents=True, exist_ok=True) with (output_dir / p).open("w", encoding="utf-8") as fout: for idir in input_dirs: with (idir / p).open("r", encoding="utf-8") as fin: for line in fin: fout.write(line) def get_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description="Aggregate statistics directories into one directory", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument( "--skip_sum_stats", default=False, action="store_true", help="Skip computing the sum of statistics.", ) parser.add_argument("--input_dir", action="append", help="Input directories") parser.add_argument("--output_dir", required=True, help="Output directory") return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) aggregate_stats_dirs(**kwargs) if __name__ == "__main__": main()
python
import argparse import parmed as pmd def merge_gro_files(prot_gro, lig_gro, cmplx_gro): prot = pmd.load_file(prot_gro) lig = pmd.load_file(lig_gro) cmplx = prot + lig cmplx.save(cmplx_gro) def merge_top_files(prot_top, lig_top, cmplx_top): with open(lig_top, 'r') as f: lig_top_sections = f.read().split('\n[') # open ligand topology for n in range(len(lig_top_sections)): if 'atomtypes' in lig_top_sections[n][:10]: lig_atomtypes = lig_top_sections[n] del lig_top_sections[n] break else: lig_atomtypes = None lig_top_updated = '\n['.join(lig_top_sections) # open protein topology with open(prot_top, 'r') as f: prot_top_combined = f.read() if lig_atomtypes: prot_top_sections = prot_top_combined.split('[ moleculetype ]\n') prot_top_combined = (prot_top_sections[0] + '; Include ligand atomtypes\n[' + lig_atomtypes + '\n[ moleculetype ]\n' + prot_top_sections[1]) prot_top_sections = prot_top_combined.split('; Include water topology') prot_top_combined = (prot_top_sections[0] + '; Include ligand topology\n' + lig_top_updated + '\n; Include water topology' + prot_top_sections[1]) prot_top_combined += 'base 1\n' # save complex topology with open(cmplx_top, 'w') as f: f.write(prot_top_combined) def main(): parser = argparse.ArgumentParser( description='Perform SMD runs for dynamic undocking') parser.add_argument('--lig-top', help='Ligand TOP file.') parser.add_argument('--prot-top', help='Protein TOP file.') parser.add_argument('--lig-gro', help='Ligand GRO file.') parser.add_argument('--prot-gro', help='Protein GRO file.') parser.add_argument('--complex-top', help='Complex TOP file.') parser.add_argument('--complex-gro', help='Complex GRO file.') args = parser.parse_args() merge_gro_files(args.prot_gro, args.lig_gro, args.complex_gro) merge_top_files(args.prot_top, args.lig_top, args.complex_top) if __name__ == "__main__": main()
python
dictionary = {"name": "Shahjalal", "ref": "Python", "sys": "Mac"} for key, value in dictionary.items(): print key, " = ", value
python
def get_sum_by_route(route_val, nums): sum_val = nums[0][0] j = 0 route=[sum_val] for i in range(1, len(nums)): if route_val % 2 > 0: j+=1 sum_val += nums[i][j] route.append(nums[i][j]) route_val >>= 1 return route, sum_val s = """75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23""" lines = s.splitlines() nums = [] for line in lines: line_list = [int(i) for i in line.split(' ')] nums.append(line_list) possible_route = 2 ** (len(nums) - 1) print("Possible routs: ", possible_route) max_sum = 0 for i in range(possible_route): route, sum_val = get_sum_by_route(i, nums) if sum_val > max_sum: print("Max route updated", i) print("Route: ", route) max_sum = sum_val print(max_sum)
python
import numpy as np from sort import algs def test_bubblesort(): # 1) Test odd-sized vector + duplicate values assert algs.bubblesort([1,2,4,0,1]) == [0,1,1,2,4] # 2) Test even+duplicate values assert algs.bubblesort([1,2,4,6,0,1]) == [0,1,1,2,4,6] # 3) Test empty vector assert algs.bubblesort([]) == [] # 4) Test single-element vectors assert algs.bubblesort([1]) == [1] # 5) Test single-value vectors assert algs.bubblesort([1,1,1,1,1,1,1,1]) == [1,1,1,1,1,1,1,1] # 6) Test vectors with negative values assert algs.bubblesort([-2,-6,8,9,-4]) == [-6,-4,-2,8,9] # 7) Test ordered and reverse-order lists of large size assert algs.bubblesort(range(1000)) == range(1000) assert algs.bubblesort(list(reversed(range(1000)))) == list(range(1000)) # 8) Test vector of strings assert algs.bubblesort(["will", "this", "work"]) == ["this", "will", "work"] def test_quicksort(): # 1) Test odd-sized vector + duplicate values assert algs.quicksort([1,2,4,0,1]) == [0,1,1,2,4] # 2) Test even+duplicate values assert algs.quicksort([1,2,4,6,0,1]) == [0,1,1,2,4,6] # 3) Test empty vector assert algs.quicksort([]) == [] # 4) Test single-element vectors assert algs.quicksort([1]) == [1] # 5) Test single-value vectors assert algs.quicksort([1,1,1,1,1,1,1,1]) == [1,1,1,1,1,1,1,1] # 6) Test vectors with negative values assert algs.quicksort([-2,-6,8,9,-4]) == [-6,-4,-2,8,9] # 7) Test ordered and reverse-order lists of large size assert algs.quicksort(range(1000)) == list(range(1000)) assert algs.quicksort(list(reversed(range(1000)))) == list(range(1000)) # 8) Test vector of strings assert algs.quicksort(["will", "this", "work"]) == ["this", "will", "work"]
python
from service.resolver_base import ResolverBase from service.rule_item_mutex import RuleItemMutex # 6宫无马数独 # DB 互斥规则已写入 class Resolver1623(ResolverBase): ANSWER_RANGE = ['1', '2', '3', '4', '5', '6'] def get_answer_range(self) -> []: return Resolver1623.ANSWER_RANGE def calculate_rules(self): super().calculate_rules() self.question_data.rules_list = [ RuleItemMutex(self.question_data, '0,0;0,1;0,2;0,3;0,4;0,5'), RuleItemMutex(self.question_data, '0,0;0,1;0,2;0,3;0,4;0,5'), RuleItemMutex(self.question_data, '1,0;1,1;1,2;1,3;1,4;1,5'), RuleItemMutex(self.question_data, '2,0;2,1;2,2;2,3;2,4;2,5'), RuleItemMutex(self.question_data, '3,0;3,1;3,2;3,3;3,4;3,5'), RuleItemMutex(self.question_data, '4,0;4,1;4,2;4,3;4,4;4,5'), RuleItemMutex(self.question_data, '5,0;5,1;5,2;5,3;5,4;5,5'), RuleItemMutex(self.question_data, '0,0;1,0;2,0;3,0;4,0;5,0'), RuleItemMutex(self.question_data, '0,1;1,1;2,1;3,1;4,1;5,1'), RuleItemMutex(self.question_data, '0,2;1,2;2,2;3,2;4,2;5,2'), RuleItemMutex(self.question_data, '0,3;1,3;2,3;3,3;4,3;5,3'), RuleItemMutex(self.question_data, '0,4;1,4;2,4;3,4;4,4;5,4'), RuleItemMutex(self.question_data, '0,5;1,5;2,5;3,5;4,5;5,5'), RuleItemMutex(self.question_data, '0,0;1,0;2,0;0,1;1,1;2,1'), RuleItemMutex(self.question_data, '3,0;4,0;5,0;3,1;4,1;5,1'), RuleItemMutex(self.question_data, '0,2;1,2;2,2;0,3;1,3;2,3'), RuleItemMutex(self.question_data, '3,2;4,2;5,2;3,3;4,3;5,3'), RuleItemMutex(self.question_data, '0,4;1,4;2,4;0,5;1,5;2,5'), RuleItemMutex(self.question_data, '3,4;4,4;5,4;3,5;4,5;5,5'), # 1 RuleItemMutex(self.question_data, '0,0;1,2'), RuleItemMutex(self.question_data, '0,1;1,3'), RuleItemMutex(self.question_data, '0,2;1,4'), RuleItemMutex(self.question_data, '0,3;1,5'), RuleItemMutex(self.question_data, '1,0;2,2'), RuleItemMutex(self.question_data, '1,1;2,3'), RuleItemMutex(self.question_data, '1,2;2,4'), RuleItemMutex(self.question_data, '1,3;2,5'), RuleItemMutex(self.question_data, '2,0;3,2'), RuleItemMutex(self.question_data, '2,1;3,3'), RuleItemMutex(self.question_data, '2,2;3,4'), RuleItemMutex(self.question_data, '2,3;3,5'), RuleItemMutex(self.question_data, '3,0;4,2'), RuleItemMutex(self.question_data, '3,1;4,3'), RuleItemMutex(self.question_data, '3,2;4,4'), RuleItemMutex(self.question_data, '3,3;4,5'), RuleItemMutex(self.question_data, '4,0;5,2'), RuleItemMutex(self.question_data, '4,1;5,3'), RuleItemMutex(self.question_data, '4,2;5,4'), RuleItemMutex(self.question_data, '4,3;5,5'), RuleItemMutex(self.question_data, '0,0;2,1'), RuleItemMutex(self.question_data, '1,0;3,1'), RuleItemMutex(self.question_data, '2,0;4,1'), RuleItemMutex(self.question_data, '3,0;5,1'), # 2 RuleItemMutex(self.question_data, '0,1;2,2'), RuleItemMutex(self.question_data, '1,1;3,2'), RuleItemMutex(self.question_data, '2,1;4,2'), RuleItemMutex(self.question_data, '3,1;5,2'), RuleItemMutex(self.question_data, '0,2;2,3'), RuleItemMutex(self.question_data, '1,2;3,3'), RuleItemMutex(self.question_data, '2,2;4,3'), RuleItemMutex(self.question_data, '3,2;5,3'), RuleItemMutex(self.question_data, '0,3;2,4'), RuleItemMutex(self.question_data, '1,3;3,4'), RuleItemMutex(self.question_data, '2,3;4,4'), RuleItemMutex(self.question_data, '3,3;5,4'), RuleItemMutex(self.question_data, '0,4;2,5'), RuleItemMutex(self.question_data, '1,4;3,5'), RuleItemMutex(self.question_data, '2,4;4,5'), RuleItemMutex(self.question_data, '3,4;5,5'), # 3 RuleItemMutex(self.question_data, '0,1;2,0'), RuleItemMutex(self.question_data, '1,1;3,0'), RuleItemMutex(self.question_data, '2,1;4,0'), RuleItemMutex(self.question_data, '3,1;5,0'), RuleItemMutex(self.question_data, '0,2;2,1'), RuleItemMutex(self.question_data, '1,2;3,1'), RuleItemMutex(self.question_data, '2,2;4,1'), RuleItemMutex(self.question_data, '3,2;5,1'), RuleItemMutex(self.question_data, '0,3;2,2'), RuleItemMutex(self.question_data, '1,3;3,2'), RuleItemMutex(self.question_data, '2,3;4,2'), RuleItemMutex(self.question_data, '3,3;5,2'), RuleItemMutex(self.question_data, '0,4;2,3'), RuleItemMutex(self.question_data, '1,4;3,3'), RuleItemMutex(self.question_data, '2,4;4,3'), RuleItemMutex(self.question_data, '3,4;5,3'), RuleItemMutex(self.question_data, '0,5;2,4'), RuleItemMutex(self.question_data, '1,5;3,4'), RuleItemMutex(self.question_data, '2,5;4,4'), RuleItemMutex(self.question_data, '3,5;5,4'), # 4 RuleItemMutex(self.question_data, '0,2;1,0'), RuleItemMutex(self.question_data, '1,2;2,0'), RuleItemMutex(self.question_data, '2,2;3,0'), RuleItemMutex(self.question_data, '3,2;4,0'), RuleItemMutex(self.question_data, '4,2;5,0'), RuleItemMutex(self.question_data, '0,3;1,1'), RuleItemMutex(self.question_data, '1,3;2,1'), RuleItemMutex(self.question_data, '2,3;3,1'), RuleItemMutex(self.question_data, '3,3;4,1'), RuleItemMutex(self.question_data, '4,3;5,1'), RuleItemMutex(self.question_data, '0,4;1,2'), RuleItemMutex(self.question_data, '1,4;2,2'), RuleItemMutex(self.question_data, '2,4;3,2'), RuleItemMutex(self.question_data, '3,4;4,2'), RuleItemMutex(self.question_data, '4,4;5,2'), RuleItemMutex(self.question_data, '0,5;1,3'), RuleItemMutex(self.question_data, '1,5;2,3'), RuleItemMutex(self.question_data, '2,5;3,3'), RuleItemMutex(self.question_data, '3,5;4,3'), RuleItemMutex(self.question_data, '4,5;5,3'), ] def calculate_editable_original_data(self): super().calculate_editable_original_data() for y_index in range(len(self.question_data.editable_original_data)): for x_index in range(len(self.question_data.editable_original_data[y_index])): if self.question_data.editable_original_data[y_index][x_index] == '': self.question_data.editable_original_data[y_index][x_index] = '#'
python
from specusticc.data_preprocessing.preprocessed_data import PreprocessedData from specusticc.model_testing.prediction_results import PredictionResults class Tester: def __init__(self, model, model_name: str, data: PreprocessedData): self._model = model self._data: PreprocessedData = data self._model_name = model_name self.prediction_results: PredictionResults = PredictionResults() def test(self): train_set = self._data.train_set input_data = train_set.get_input(self._model_name) output_data = train_set.get_output() self.prediction_results.train_output = self._model.predict(input_data) print("Evaluate on train data") self._model.evaluate(input_data, output_data, batch_size=128) test_sets = self._data.test_sets self.prediction_results.test_output = [] for test_set in test_sets: input_data = test_set.get_input(self._model_name) output_data = test_set.get_output() prediction = self._model.predict(input_data) self.prediction_results.test_output.append(prediction) print("Evaluate on test data") self._model.evaluate(input_data, output_data, batch_size=128) def get_test_results(self) -> PredictionResults: return self.prediction_results
python
from .encodeClass import encoderClass from .decodeClass import decoderClass
python
import os import uuid from typing import Generator from flask import current_app from unittest import TestCase from contextlib import contextmanager from alembic import command from sqlalchemy import create_engine from {{ cookiecutter.app_name }} import app from {{ cookiecutter.app_name }}.extensions import db DATABASE_URI_FORMATTER = 'postgresql://{username}:{password}@postgres:5432/{database}' @contextmanager def provision_database(config :dict) -> Generator[None, None, None]: database_name = str(uuid.uuid4()).replace('-', '_') postgres_database_uri = DATABASE_URI_FORMATTER.format(username='postgres', password=os.environ['PGPASSWORD'], database='postgres') app_database_uri = DATABASE_URI_FORMATTER.format(username='{{ cookiecutter.app_name }}', password=os.environ['APP_PASSWORD'], database=database_name) migrate_database_uri = DATABASE_URI_FORMATTER.format(username='migrator', password=os.environ['MIGRATOR_PASSWORD'], database=database_name) engine = create_engine(postgres_database_uri, isolation_level='AUTOCOMMIT') connection = engine.connect() connection.execute(f'create database "{database_name}" with owner migrator template template0 encoding "UTF-8"') config.update({ 'SQLALCHEMY_DATABASE_URI': app_database_uri, 'SQLALCHEMY_DATABASE_MIGRATION_URI': migrate_database_uri, }) context = app.create_app().test_request_context() context.push() config = current_app.extensions['migrate'].migrate.get_config(directory=None, x_arg=None) command.upgrade(config, revision='head', sql=False, tag=None) yield # make sure all held connections are destroyed before dropping the database db.session.remove() db.engine.dispose() context.pop() connection.execute(f'drop database "{database_name}"') connection.close() class IntegrationTestCase(TestCase): # override in test cases for custom test configuration custom_test_config = None def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.client = None def run(self, result=None): # initialize global test configuration here... global_test_config = {} global_test_config.update(self.custom_test_config or {}) with provision_database(global_test_config): self.client = current_app.test_client() super().run(result)
python
# #https://docs.pytest.org/en/reorganize-docs/new-docs/user/assert_statements.html # # Assertions are the condition or boolean expression which are always supposed to be true # import pytest # def vowels(): # return set('aeiou') # @pytest.mark.skip # def test_vowels(): # result = vowels() # expected = set('aeiou') # print ("this test has run") # assert result == expected
python
# # author: Jungtaek Kim ([email protected]) # last updated: December 29, 2020 # """It is utilities for Gaussian process regression and Student-:math:`t` process regression.""" import numpy as np from bayeso.utils import utils_common from bayeso import constants @utils_common.validate_types def get_prior_mu(prior_mu: constants.TYPING_UNION_CALLABLE_NONE, X: np.ndarray) -> np.ndarray: """ It computes the prior mean function values over inputs X. :param prior_mu: prior mean function or None. :type prior_mu: function or NoneType :param X: inputs for prior mean function. Shape: (n, d) or (n, m, d). :type X: numpy.ndarray :returns: zero array, or array of prior mean function values. Shape: (n, 1). :rtype: numpy.ndarray :raises: AssertionError """ assert isinstance(X, np.ndarray) assert callable(prior_mu) or prior_mu is None assert len(X.shape) == 2 or len(X.shape) == 3 if prior_mu is None: prior_mu_X = np.zeros((X.shape[0], 1)) else: prior_mu_X = prior_mu(X) assert len(prior_mu_X.shape) == 2 assert X.shape[0] == prior_mu_X.shape[0] return prior_mu_X @utils_common.validate_types def validate_common_args(X_train: np.ndarray, Y_train: np.ndarray, str_cov: str, prior_mu: constants.TYPING_UNION_CALLABLE_NONE, debug: bool, X_test: constants.TYPING_UNION_ARRAY_NONE=None, ) -> constants.TYPE_NONE: """ It validates the common arguments for various functions. :param X_train: inputs. Shape: (n, d) or (n, m, d). :type X_train: numpy.ndarray :param Y_train: outputs. Shape: (n, 1). :type Y_train: numpy.ndarray :param str_cov: the name of covariance function. :type str_cov: str. :param prior_mu: None, or prior mean function. :type prior_mu: NoneType, or function :param debug: flag for printing log messages. :type debug: bool. :param X_test: inputs or None. Shape: (l, d) or (l, m, d). :type X_test: numpy.ndarray, or NoneType, optional :returns: None. :rtype: NoneType :raises: AssertionError """ assert isinstance(X_train, np.ndarray) assert isinstance(Y_train, np.ndarray) assert isinstance(str_cov, str) assert callable(prior_mu) or prior_mu is None assert isinstance(debug, bool) assert len(X_train.shape) == 2 or len(X_train.shape) == 3 assert len(Y_train.shape) == 2 assert X_train.shape[0] == Y_train.shape[0] assert isinstance(X_test, (np.ndarray, type(None))) if X_test is not None: if len(X_train.shape) == 2: assert X_train.shape[1] == X_test.shape[1] else: assert X_train.shape[2] == X_test.shape[2]
python
import rclpy,numpy,psutil from rclpy.node import Node from std_msgs.msg import Float32 class RpiMon(Node): def __init__(self): super().__init__('rpi_mon') self.ramPublisher = self.create_publisher(Float32, 'freeram', 1) timer_period = 2.0 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) def timer_callback(self): msg = Float32() msg.data = 100.0-psutil.virtual_memory()[2] self.ramPublisher.publish(msg) def main(args=None): print('Hi from rpi_mon.') rclpy.init(args=args) rpi_mon = RpiMon() rclpy.spin(rpi_mon) rpi_mon.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
python
from libspn.inference.type import InferenceType from libspn.graph.op.base_sum import BaseSum import libspn.utils as utils @utils.register_serializable class Sum(BaseSum): """A node representing a single sum in an SPN. Args: *values (input_like): Inputs providing input values to this node. See :meth:`~libspn.Input.as_input` for possible values. weights (input_like): Input providing weights node to this sum node. See :meth:`~libspn.Input.as_input` for possible values. If set to ``None``, the input is disconnected. latent_indicators (input_like): Input providing IndicatorLeaf of an explicit latent variable associated with this sum node. See :meth:`~libspn.Input.as_input` for possible values. If set to ``None``, the input is disconnected. name (str): Name of the node. Attributes: inference_type(InferenceType): Flag indicating the preferred inference type for this node that will be used during value calculation and learning. Can be changed at any time and will be used during the next inference/learning op generation. """ def __init__(self, *values, weights=None, latent_indicators=None, inference_type=InferenceType.MARGINAL, sample_prob=None, name="Sum"): super().__init__( *values, num_sums=1, weights=weights, latent_indicators=latent_indicators, inference_type=inference_type, sample_prob=sample_prob, name=name)
python
############################################## ############################################## ###### Predict the Bear ###################### # Flask app that uses a model trained with the Fast.ai v2 library # following an example in the upcoming book "Deep Learning for Coders # with fastai and PyTorch: AI Applications Without a PhD" by # Jeremy Howard and Sylvain Gugger. ############################################## # Project put together by Javier Ideami # Email: [email protected] # Web: ideami.com ############################################## import numpy as np from flask import Flask, request, render_template import pickle from resources.utils import * from fastai2.vision.widgets import * from fastai2.imports import * import os cwd = os.getcwd() path = Path() Path().ls(file_exts='.pkl') application = Flask(__name__) model = load_learner(path/'model/export.pkl') #Defining the home page for the web service @application.route('/') def home(): return render_template('index.html') #Writing api for inference using the loaded model @application.route('/predict',methods=['POST']) #Predict method that uses the trained model to predict the kind of bear in the picture we uploaded def predict(): #labels = ['grizzly','black','teddy'] file = request.files['file'] #Store the uploaded images in a temporary folder if file: filename = file.filename file.save(os.path.join("resources/tmp", filename)) to_predict = "resources/tmp/"+filename #Getting the prediction from the model prediction=model.predict(to_predict) #Render the result in the html template return render_template('index.html', prediction_text='Your Prediction : {} '.format(prediction[0])) if __name__ == "__main__": #run the application application.run(host='0.0.0.0')
python
import numpy as np from nexpy.gui.datadialogs import NXDialog, GridParameters from nexpy.gui.utils import report_error from nexusformat.nexus import NXfield, NXdata, NeXusError from nexusformat.nexus.tree import centers def show_dialog(): try: dialog = ConvertDialog() dialog.show() except NeXusError as error: report_error("Converting to (Q,E)", error) class ConvertDialog(NXDialog): def __init__(self, parent=None): super(ConvertDialog, self).__init__(parent) self.select_entry() self.parameters = GridParameters() self.parameters.add('Ei', self.entry['instrument/monochromator/energy'], 'Incident Energy') self.parameters.add('dQ', self.round(np.sqrt(self.Ei/2)/50), 'Q Step') self.parameters.add('dE', self.round(self.Ei/50), 'Energy Step') self.set_layout(self.entry_layout, self.parameters.grid(), self.action_buttons(('Plot', self.plot_data), ('Save', self.save_data)), self.close_buttons()) self.setWindowTitle('Converting to (Q,E)') @property def Ei(self): return self.parameters['Ei'].value @property def dQ(self): return self.parameters['dQ'].value @property def dE(self): return self.parameters['dE'].value def read_parameters(self): self.L1 = - self.entry['sample/distance'] self.L2 = np.mean(self.entry['instrument/detector/distance']) self.m1 = self.entry['monitor1'] self.t_m1 = self.m1.moment() self.d_m1 = self.entry['monitor1/distance'] def convert_tof(self, tof): ki = np.sqrt(self.Ei / 2.0721) ts = self.t_m1 + 1588.254 * (self.L1 - self.d_m1) / ki kf = 1588.254 * self.L2 / (tof - ts) eps = self.Ei - 2.0721*kf**2 return eps def convert_QE(self): """Convert S(phi,eps) to S(Q,eps)""" self.read_parameters() Ei = self.Ei dQ = self.dQ dE = self.dE signal = self.entry['data'].nxsignal pol = centers(self.entry['data/polar_angle'], signal.shape[0]) tof = centers(self.entry['data/time_of_flight'], signal.shape[1]) en = self.convert_tof(tof) idx_max = min(np.where(np.abs(en-0.75*Ei)<0.1)[0]) en = en[:idx_max] data = signal.nxdata[:,:idx_max] if self.entry['data'].nxerrors: errors = self.entry['data'].nxerrors.nxdata[:] Q = np.zeros((len(pol), len(en))) E = np.zeros((len(pol), len(en))) for i in range(0,len(pol)): p = pol[i] Q[i,:] = np.array(np.sqrt((2*Ei - en - 2*np.sqrt(Ei*(Ei-en)) * np.cos(p*np.pi/180.0))/2.0721)) E[i,:] = np.array(en) s = Q.shape Qin = Q.reshape(s[0]*s[1]) Ein = E.reshape(s[0]*s[1]) datain = data.reshape(s[0]*s[1]) if self.entry['data'].nxerrors: errorsin = errors.reshape(s[0]*s[1]) qmin = Q.min() qmax = Q.max() emin = E.min() emax = E.max() NQ = int((qmax-qmin)/dQ) + 1 NE = int((emax-emin)/dE) + 1 Qb = np.linspace(qmin, qmax, NQ) Eb = np.linspace(emin, emax, NE) #histogram and normalize norm, nbin = np.histogramdd((Ein,Qin), bins=(Eb,Qb)) hist, hbin = np.histogramdd((Ein,Qin), bins=(Eb,Qb), weights=datain) if self.entry['data'].nxerrors: histe, hbin = np.histogramdd((Ein,Qin), bins=(Eb,Qb), weights=errorsin*errorsin) histe = histe**0.5 err = histe/norm I = NXfield(hist/norm, name='S(Q,E)') Qb = NXfield(Qb[:-1]+dQ/2., name='Q') Eb = NXfield(Eb[:-1]+dE/2., name='E') result = NXdata(I, (Eb, Qb)) if self.entry.data.nxerrors: result.errors = NXfield(err) return result def round(self, x, prec=2, base=.05): return round(base * round(float(x)/base), prec) def plot_data(self): self.convert_QE().plot() def save_data(self): self.entry['sqe'] = self.convert_QE()
python
from riemann.tx import tx_builder from riemann import simple, script from riemann import utils as rutils from riemann.encoding import addresses from workshop import crypto from workshop.transactions import spend_utxo from riemann import tx ''' This is a hash timelock contract. It locks BTC until a timeout, or until a specific secret is revealed. HTLCs are used in cross-chain swaps, and are the core primitive for updating lightning channels. Because of this, they can also be used to build cool things like submarine (lightning-to-mainnet) atomic swaps. Basically, an HTLC has 2 paths: execute and refund. The execute path checks a secret against a pre-committed digest, and validates the executor's signature. The refund path checks a timeout, and validates the funder's signature. This script must be parameterized with a 32 byte hash, a timeout, and both parties' pubkeyhashes. # WARNING: This is an example. Do not use it in production. ''' htlc_script = \ 'OP_IF ' \ 'OP_SHA256 {secret_hash} OP_EQUALVERIFY ' \ 'OP_DUP OP_HASH160 {pkh0} ' \ 'OP_ELSE ' \ '{timeout} OP_CHECKLOCKTIMEVERIFY OP_DROP ' \ 'OP_DUP OP_HASH160 {pkh1} ' \ 'OP_ENDIF ' \ 'OP_EQUALVERIFY ' \ 'OP_CHECKSIG' def build_htlc_script( secret_hash: bytes, redeemer_pkh: bytes, timeout: int, funder_pkh: bytes ) -> str: ''' Parameterizes the HTLC script with the arguments. ''' if len(secret_hash) != 32: raise ValueError('Expected a 32-byte digest. ' f'Got {len(secret_hash)} bytes') if len(redeemer_pkh) != 20: raise ValueError('Expected a 20-byte redeemer pubkeyhash. ' f'Got {len(redeemer_pkh)} bytes') if len(funder_pkh) != 20: raise ValueError('Expected a 20-byte funder pubkeyhash. ' f'Got {len(redeemer_pkh)} bytes') return htlc_script.format( secret_hash=secret_hash.hex(), pkh0=rutils.sha256(redeemer_pkh).hex(), timeout=rutils.i2le(timeout), pkh1=rutils.sha256(funder_pkh).hex()) def htlc_address( secret_hash: bytes, redeemer_pkh: bytes, timeout: int, funder_pkh: bytes ) -> str: '''Parameterizes the script, and returns the corresponding address''' s = build_htlc_script(secret_hash, redeemer_pkh, timeout, funder_pkh) return addresses.make_p2wsh_address(s) def p2htlc_output( value: int, secret_hash: bytes, redeemer_pkh: bytes, timeout: int, funder_pkh: bytes ) -> tx.TxOut: '''Parameterizes the script, and creates an output paying that address''' address = htlc_address(secret_hash, redeemer_pkh, timeout, funder_pkh) return simple.output(value, address) def htlc_refund_witness( htlc_script: str, signature: bytes, pubkey: bytes ) -> tx.InputWitness: ''' Given a signature, creates a witness for the refund path of the HTLC The b'\x00' corresponds to OP_FALSE ''' serialized = script.serialize(htlc_script) return tx_builder.make_witness([signature, pubkey, b'\x00', serialized]) def htlc_execute_witness( htlc_script: str, signature: bytes, pubkey: bytes, secret: bytes ) -> tx.InputWitness: ''' Given a signature and the secret, makes a witness for the execute path of the HTLC. The b'\x01' corresponds to OP_TRUE ''' serialized = script.serialize(htlc_script) return tx_builder.make_witness( [signature, pubkey, secret, b'\x01', serialized] ) def spend_htlc_transaction( tx_id: str, index: int, value: int, address: str, timeout: int = 0 ) -> tx.Tx: ''' Creates an unsigned txn that sends funds from an HTLC to a specified address. Not that this step requires knowledge only of the timeout. An exercise tx can safely leave this at 0. ''' tx_in = spend_utxo(tx_id, index) tx_out = simple.output(value, address) return simple.unsigned_witness_tx( # type: ignore tx_ins=[tx_in], tx_outs=[tx_out], locktime=timeout) def signed_refund_htlc_transaction( secret_hash: bytes, redeemer_pkh: bytes, timeout: int, funder_pkh: bytes, tx_id: str, index: int, prevout_value: int, address: str, privkey: bytes, fee: int = 0 ) -> tx.Tx: ''' Builds an entire Refund HTLC spend from scratch. ''' # build the unsigned version of the transaction t = spend_htlc_transaction( tx_id, index, prevout_value - fee, address, timeout) # Prep the witness program s = build_htlc_script(secret_hash, redeemer_pkh, timeout, funder_pkh) serialized_script = script.serialize(s) script_len = len(serialized_script) prepended_script = tx.VarInt(script_len).to_bytes() + serialized_script # calculate sighash using the witness program sighash = t.sighash_all( index=index, script=prepended_script, prevout_value=rutils.i2le_padded(prevout_value, 8)) # sign it and make the witness signature = crypto.sign_digest(sighash, privkey) witness = htlc_refund_witness(s, signature, crypto.priv_to_pub(privkey)) # insert the witness into the tx return t.copy(tx_witnesses=[witness])
python
#!/usr/bin/env python # Part of sniffMyPackets framework. # GeoIP Lookup modules to cut down on code changes. import pygeoip from canari.config import config def lookup_geo(ip): try: # homelat = config['geoip/homelat'].strip('\'') # homelng = config['geoip/homelng'].strip('\'') db = config['geoip/db'].strip('\'') try: gi = pygeoip.GeoIP(db) except Exception as e: return str(e) rec = gi.record_by_addr(ip) if rec is not None: return rec except Exception as e: return str(e)
python
#python3 code def count(i,s): ans=0 for j in range(i,len(s)): if(s[j]=="<"): ans+=1 return ans def higher(s): res=0 for i in range(len(s)): if(s[i]==">"): b=count(i,s) res=res+(b*2) return res def solution(s): # Your code here result=higher(s) return result
python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['FleetArgs', 'Fleet'] @pulumi.input_type class FleetArgs: def __init__(__self__, *, compute_capacity: pulumi.Input['FleetComputeCapacityArgs'], instance_type: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, display_name: Optional[pulumi.Input[str]] = None, domain_join_info: Optional[pulumi.Input['FleetDomainJoinInfoArgs']] = None, enable_default_internet_access: Optional[pulumi.Input[bool]] = None, fleet_type: Optional[pulumi.Input[str]] = None, iam_role_arn: Optional[pulumi.Input[str]] = None, idle_disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, image_arn: Optional[pulumi.Input[str]] = None, image_name: Optional[pulumi.Input[str]] = None, max_user_duration_in_seconds: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, stream_view: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc_config: Optional[pulumi.Input['FleetVpcConfigArgs']] = None): """ The set of arguments for constructing a Fleet resource. :param pulumi.Input['FleetComputeCapacityArgs'] compute_capacity: Configuration block for the desired capacity of the fleet. See below. :param pulumi.Input[str] instance_type: Instance type to use when launching fleet instances. :param pulumi.Input[str] description: Description to display. :param pulumi.Input[int] disconnect_timeout_in_seconds: Amount of time that a streaming session remains active after users disconnect. :param pulumi.Input[str] display_name: Human-readable friendly name for the AppStream fleet. :param pulumi.Input['FleetDomainJoinInfoArgs'] domain_join_info: Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. :param pulumi.Input[bool] enable_default_internet_access: Enables or disables default internet access for the fleet. :param pulumi.Input[str] fleet_type: Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` :param pulumi.Input[str] iam_role_arn: ARN of the IAM role to apply to the fleet. :param pulumi.Input[int] idle_disconnect_timeout_in_seconds: Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. :param pulumi.Input[str] image_arn: ARN of the public, private, or shared image to use. :param pulumi.Input[str] image_name: Name of the image used to create the fleet. :param pulumi.Input[int] max_user_duration_in_seconds: Maximum amount of time that a streaming session can remain active, in seconds. :param pulumi.Input[str] name: Unique name for the fleet. :param pulumi.Input[str] stream_view: AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Map of tags to attach to AppStream instances. :param pulumi.Input['FleetVpcConfigArgs'] vpc_config: Configuration block for the VPC configuration for the image builder. See below. """ pulumi.set(__self__, "compute_capacity", compute_capacity) pulumi.set(__self__, "instance_type", instance_type) if description is not None: pulumi.set(__self__, "description", description) if disconnect_timeout_in_seconds is not None: pulumi.set(__self__, "disconnect_timeout_in_seconds", disconnect_timeout_in_seconds) if display_name is not None: pulumi.set(__self__, "display_name", display_name) if domain_join_info is not None: pulumi.set(__self__, "domain_join_info", domain_join_info) if enable_default_internet_access is not None: pulumi.set(__self__, "enable_default_internet_access", enable_default_internet_access) if fleet_type is not None: pulumi.set(__self__, "fleet_type", fleet_type) if iam_role_arn is not None: pulumi.set(__self__, "iam_role_arn", iam_role_arn) if idle_disconnect_timeout_in_seconds is not None: pulumi.set(__self__, "idle_disconnect_timeout_in_seconds", idle_disconnect_timeout_in_seconds) if image_arn is not None: pulumi.set(__self__, "image_arn", image_arn) if image_name is not None: pulumi.set(__self__, "image_name", image_name) if max_user_duration_in_seconds is not None: pulumi.set(__self__, "max_user_duration_in_seconds", max_user_duration_in_seconds) if name is not None: pulumi.set(__self__, "name", name) if stream_view is not None: pulumi.set(__self__, "stream_view", stream_view) if tags is not None: pulumi.set(__self__, "tags", tags) if vpc_config is not None: pulumi.set(__self__, "vpc_config", vpc_config) @property @pulumi.getter(name="computeCapacity") def compute_capacity(self) -> pulumi.Input['FleetComputeCapacityArgs']: """ Configuration block for the desired capacity of the fleet. See below. """ return pulumi.get(self, "compute_capacity") @compute_capacity.setter def compute_capacity(self, value: pulumi.Input['FleetComputeCapacityArgs']): pulumi.set(self, "compute_capacity", value) @property @pulumi.getter(name="instanceType") def instance_type(self) -> pulumi.Input[str]: """ Instance type to use when launching fleet instances. """ return pulumi.get(self, "instance_type") @instance_type.setter def instance_type(self, value: pulumi.Input[str]): pulumi.set(self, "instance_type", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description to display. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="disconnectTimeoutInSeconds") def disconnect_timeout_in_seconds(self) -> Optional[pulumi.Input[int]]: """ Amount of time that a streaming session remains active after users disconnect. """ return pulumi.get(self, "disconnect_timeout_in_seconds") @disconnect_timeout_in_seconds.setter def disconnect_timeout_in_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "disconnect_timeout_in_seconds", value) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[pulumi.Input[str]]: """ Human-readable friendly name for the AppStream fleet. """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "display_name", value) @property @pulumi.getter(name="domainJoinInfo") def domain_join_info(self) -> Optional[pulumi.Input['FleetDomainJoinInfoArgs']]: """ Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. """ return pulumi.get(self, "domain_join_info") @domain_join_info.setter def domain_join_info(self, value: Optional[pulumi.Input['FleetDomainJoinInfoArgs']]): pulumi.set(self, "domain_join_info", value) @property @pulumi.getter(name="enableDefaultInternetAccess") def enable_default_internet_access(self) -> Optional[pulumi.Input[bool]]: """ Enables or disables default internet access for the fleet. """ return pulumi.get(self, "enable_default_internet_access") @enable_default_internet_access.setter def enable_default_internet_access(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_default_internet_access", value) @property @pulumi.getter(name="fleetType") def fleet_type(self) -> Optional[pulumi.Input[str]]: """ Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` """ return pulumi.get(self, "fleet_type") @fleet_type.setter def fleet_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "fleet_type", value) @property @pulumi.getter(name="iamRoleArn") def iam_role_arn(self) -> Optional[pulumi.Input[str]]: """ ARN of the IAM role to apply to the fleet. """ return pulumi.get(self, "iam_role_arn") @iam_role_arn.setter def iam_role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "iam_role_arn", value) @property @pulumi.getter(name="idleDisconnectTimeoutInSeconds") def idle_disconnect_timeout_in_seconds(self) -> Optional[pulumi.Input[int]]: """ Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. """ return pulumi.get(self, "idle_disconnect_timeout_in_seconds") @idle_disconnect_timeout_in_seconds.setter def idle_disconnect_timeout_in_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "idle_disconnect_timeout_in_seconds", value) @property @pulumi.getter(name="imageArn") def image_arn(self) -> Optional[pulumi.Input[str]]: """ ARN of the public, private, or shared image to use. """ return pulumi.get(self, "image_arn") @image_arn.setter def image_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "image_arn", value) @property @pulumi.getter(name="imageName") def image_name(self) -> Optional[pulumi.Input[str]]: """ Name of the image used to create the fleet. """ return pulumi.get(self, "image_name") @image_name.setter def image_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "image_name", value) @property @pulumi.getter(name="maxUserDurationInSeconds") def max_user_duration_in_seconds(self) -> Optional[pulumi.Input[int]]: """ Maximum amount of time that a streaming session can remain active, in seconds. """ return pulumi.get(self, "max_user_duration_in_seconds") @max_user_duration_in_seconds.setter def max_user_duration_in_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_user_duration_in_seconds", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Unique name for the fleet. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="streamView") def stream_view(self) -> Optional[pulumi.Input[str]]: """ AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. """ return pulumi.get(self, "stream_view") @stream_view.setter def stream_view(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "stream_view", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Map of tags to attach to AppStream instances. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="vpcConfig") def vpc_config(self) -> Optional[pulumi.Input['FleetVpcConfigArgs']]: """ Configuration block for the VPC configuration for the image builder. See below. """ return pulumi.get(self, "vpc_config") @vpc_config.setter def vpc_config(self, value: Optional[pulumi.Input['FleetVpcConfigArgs']]): pulumi.set(self, "vpc_config", value) @pulumi.input_type class _FleetState: def __init__(__self__, *, arn: Optional[pulumi.Input[str]] = None, compute_capacity: Optional[pulumi.Input['FleetComputeCapacityArgs']] = None, created_time: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, display_name: Optional[pulumi.Input[str]] = None, domain_join_info: Optional[pulumi.Input['FleetDomainJoinInfoArgs']] = None, enable_default_internet_access: Optional[pulumi.Input[bool]] = None, fleet_type: Optional[pulumi.Input[str]] = None, iam_role_arn: Optional[pulumi.Input[str]] = None, idle_disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, image_arn: Optional[pulumi.Input[str]] = None, image_name: Optional[pulumi.Input[str]] = None, instance_type: Optional[pulumi.Input[str]] = None, max_user_duration_in_seconds: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, state: Optional[pulumi.Input[str]] = None, stream_view: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc_config: Optional[pulumi.Input['FleetVpcConfigArgs']] = None): """ Input properties used for looking up and filtering Fleet resources. :param pulumi.Input[str] arn: ARN of the appstream fleet. :param pulumi.Input['FleetComputeCapacityArgs'] compute_capacity: Configuration block for the desired capacity of the fleet. See below. :param pulumi.Input[str] created_time: Date and time, in UTC and extended RFC 3339 format, when the fleet was created. :param pulumi.Input[str] description: Description to display. :param pulumi.Input[int] disconnect_timeout_in_seconds: Amount of time that a streaming session remains active after users disconnect. :param pulumi.Input[str] display_name: Human-readable friendly name for the AppStream fleet. :param pulumi.Input['FleetDomainJoinInfoArgs'] domain_join_info: Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. :param pulumi.Input[bool] enable_default_internet_access: Enables or disables default internet access for the fleet. :param pulumi.Input[str] fleet_type: Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` :param pulumi.Input[str] iam_role_arn: ARN of the IAM role to apply to the fleet. :param pulumi.Input[int] idle_disconnect_timeout_in_seconds: Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. :param pulumi.Input[str] image_arn: ARN of the public, private, or shared image to use. :param pulumi.Input[str] image_name: Name of the image used to create the fleet. :param pulumi.Input[str] instance_type: Instance type to use when launching fleet instances. :param pulumi.Input[int] max_user_duration_in_seconds: Maximum amount of time that a streaming session can remain active, in seconds. :param pulumi.Input[str] name: Unique name for the fleet. :param pulumi.Input[str] state: State of the fleet. Can be `STARTING`, `RUNNING`, `STOPPING` or `STOPPED` :param pulumi.Input[str] stream_view: AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Map of tags to attach to AppStream instances. :param pulumi.Input['FleetVpcConfigArgs'] vpc_config: Configuration block for the VPC configuration for the image builder. See below. """ if arn is not None: pulumi.set(__self__, "arn", arn) if compute_capacity is not None: pulumi.set(__self__, "compute_capacity", compute_capacity) if created_time is not None: pulumi.set(__self__, "created_time", created_time) if description is not None: pulumi.set(__self__, "description", description) if disconnect_timeout_in_seconds is not None: pulumi.set(__self__, "disconnect_timeout_in_seconds", disconnect_timeout_in_seconds) if display_name is not None: pulumi.set(__self__, "display_name", display_name) if domain_join_info is not None: pulumi.set(__self__, "domain_join_info", domain_join_info) if enable_default_internet_access is not None: pulumi.set(__self__, "enable_default_internet_access", enable_default_internet_access) if fleet_type is not None: pulumi.set(__self__, "fleet_type", fleet_type) if iam_role_arn is not None: pulumi.set(__self__, "iam_role_arn", iam_role_arn) if idle_disconnect_timeout_in_seconds is not None: pulumi.set(__self__, "idle_disconnect_timeout_in_seconds", idle_disconnect_timeout_in_seconds) if image_arn is not None: pulumi.set(__self__, "image_arn", image_arn) if image_name is not None: pulumi.set(__self__, "image_name", image_name) if instance_type is not None: pulumi.set(__self__, "instance_type", instance_type) if max_user_duration_in_seconds is not None: pulumi.set(__self__, "max_user_duration_in_seconds", max_user_duration_in_seconds) if name is not None: pulumi.set(__self__, "name", name) if state is not None: pulumi.set(__self__, "state", state) if stream_view is not None: pulumi.set(__self__, "stream_view", stream_view) if tags is not None: pulumi.set(__self__, "tags", tags) if tags_all is not None: pulumi.set(__self__, "tags_all", tags_all) if vpc_config is not None: pulumi.set(__self__, "vpc_config", vpc_config) @property @pulumi.getter def arn(self) -> Optional[pulumi.Input[str]]: """ ARN of the appstream fleet. """ return pulumi.get(self, "arn") @arn.setter def arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "arn", value) @property @pulumi.getter(name="computeCapacity") def compute_capacity(self) -> Optional[pulumi.Input['FleetComputeCapacityArgs']]: """ Configuration block for the desired capacity of the fleet. See below. """ return pulumi.get(self, "compute_capacity") @compute_capacity.setter def compute_capacity(self, value: Optional[pulumi.Input['FleetComputeCapacityArgs']]): pulumi.set(self, "compute_capacity", value) @property @pulumi.getter(name="createdTime") def created_time(self) -> Optional[pulumi.Input[str]]: """ Date and time, in UTC and extended RFC 3339 format, when the fleet was created. """ return pulumi.get(self, "created_time") @created_time.setter def created_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "created_time", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description to display. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="disconnectTimeoutInSeconds") def disconnect_timeout_in_seconds(self) -> Optional[pulumi.Input[int]]: """ Amount of time that a streaming session remains active after users disconnect. """ return pulumi.get(self, "disconnect_timeout_in_seconds") @disconnect_timeout_in_seconds.setter def disconnect_timeout_in_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "disconnect_timeout_in_seconds", value) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[pulumi.Input[str]]: """ Human-readable friendly name for the AppStream fleet. """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "display_name", value) @property @pulumi.getter(name="domainJoinInfo") def domain_join_info(self) -> Optional[pulumi.Input['FleetDomainJoinInfoArgs']]: """ Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. """ return pulumi.get(self, "domain_join_info") @domain_join_info.setter def domain_join_info(self, value: Optional[pulumi.Input['FleetDomainJoinInfoArgs']]): pulumi.set(self, "domain_join_info", value) @property @pulumi.getter(name="enableDefaultInternetAccess") def enable_default_internet_access(self) -> Optional[pulumi.Input[bool]]: """ Enables or disables default internet access for the fleet. """ return pulumi.get(self, "enable_default_internet_access") @enable_default_internet_access.setter def enable_default_internet_access(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_default_internet_access", value) @property @pulumi.getter(name="fleetType") def fleet_type(self) -> Optional[pulumi.Input[str]]: """ Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` """ return pulumi.get(self, "fleet_type") @fleet_type.setter def fleet_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "fleet_type", value) @property @pulumi.getter(name="iamRoleArn") def iam_role_arn(self) -> Optional[pulumi.Input[str]]: """ ARN of the IAM role to apply to the fleet. """ return pulumi.get(self, "iam_role_arn") @iam_role_arn.setter def iam_role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "iam_role_arn", value) @property @pulumi.getter(name="idleDisconnectTimeoutInSeconds") def idle_disconnect_timeout_in_seconds(self) -> Optional[pulumi.Input[int]]: """ Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. """ return pulumi.get(self, "idle_disconnect_timeout_in_seconds") @idle_disconnect_timeout_in_seconds.setter def idle_disconnect_timeout_in_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "idle_disconnect_timeout_in_seconds", value) @property @pulumi.getter(name="imageArn") def image_arn(self) -> Optional[pulumi.Input[str]]: """ ARN of the public, private, or shared image to use. """ return pulumi.get(self, "image_arn") @image_arn.setter def image_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "image_arn", value) @property @pulumi.getter(name="imageName") def image_name(self) -> Optional[pulumi.Input[str]]: """ Name of the image used to create the fleet. """ return pulumi.get(self, "image_name") @image_name.setter def image_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "image_name", value) @property @pulumi.getter(name="instanceType") def instance_type(self) -> Optional[pulumi.Input[str]]: """ Instance type to use when launching fleet instances. """ return pulumi.get(self, "instance_type") @instance_type.setter def instance_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance_type", value) @property @pulumi.getter(name="maxUserDurationInSeconds") def max_user_duration_in_seconds(self) -> Optional[pulumi.Input[int]]: """ Maximum amount of time that a streaming session can remain active, in seconds. """ return pulumi.get(self, "max_user_duration_in_seconds") @max_user_duration_in_seconds.setter def max_user_duration_in_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_user_duration_in_seconds", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Unique name for the fleet. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def state(self) -> Optional[pulumi.Input[str]]: """ State of the fleet. Can be `STARTING`, `RUNNING`, `STOPPING` or `STOPPED` """ return pulumi.get(self, "state") @state.setter def state(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "state", value) @property @pulumi.getter(name="streamView") def stream_view(self) -> Optional[pulumi.Input[str]]: """ AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. """ return pulumi.get(self, "stream_view") @stream_view.setter def stream_view(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "stream_view", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Map of tags to attach to AppStream instances. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tagsAll") def tags_all(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: return pulumi.get(self, "tags_all") @tags_all.setter def tags_all(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags_all", value) @property @pulumi.getter(name="vpcConfig") def vpc_config(self) -> Optional[pulumi.Input['FleetVpcConfigArgs']]: """ Configuration block for the VPC configuration for the image builder. See below. """ return pulumi.get(self, "vpc_config") @vpc_config.setter def vpc_config(self, value: Optional[pulumi.Input['FleetVpcConfigArgs']]): pulumi.set(self, "vpc_config", value) class Fleet(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, compute_capacity: Optional[pulumi.Input[pulumi.InputType['FleetComputeCapacityArgs']]] = None, description: Optional[pulumi.Input[str]] = None, disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, display_name: Optional[pulumi.Input[str]] = None, domain_join_info: Optional[pulumi.Input[pulumi.InputType['FleetDomainJoinInfoArgs']]] = None, enable_default_internet_access: Optional[pulumi.Input[bool]] = None, fleet_type: Optional[pulumi.Input[str]] = None, iam_role_arn: Optional[pulumi.Input[str]] = None, idle_disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, image_arn: Optional[pulumi.Input[str]] = None, image_name: Optional[pulumi.Input[str]] = None, instance_type: Optional[pulumi.Input[str]] = None, max_user_duration_in_seconds: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, stream_view: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc_config: Optional[pulumi.Input[pulumi.InputType['FleetVpcConfigArgs']]] = None, __props__=None): """ Provides an AppStream fleet. ## Example Usage ```python import pulumi import pulumi_aws as aws test_fleet = aws.appstream.Fleet("testFleet", compute_capacity=aws.appstream.FleetComputeCapacityArgs( desired_instances=1, ), description="test fleet", display_name="test-fleet", enable_default_internet_access=False, fleet_type="ON_DEMAND", idle_disconnect_timeout_in_seconds=60, image_name="Amazon-AppStream2-Sample-Image-02-04-2019", instance_type="stream.standard.large", max_user_duration_in_seconds=600, tags={ "TagName": "tag-value", }, vpc_config=aws.appstream.FleetVpcConfigArgs( subnet_ids=["subnet-06e9b13400c225127"], )) ``` ## Import `aws_appstream_fleet` can be imported using the id, e.g., ```sh $ pulumi import aws:appstream/fleet:Fleet example fleetNameExample ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['FleetComputeCapacityArgs']] compute_capacity: Configuration block for the desired capacity of the fleet. See below. :param pulumi.Input[str] description: Description to display. :param pulumi.Input[int] disconnect_timeout_in_seconds: Amount of time that a streaming session remains active after users disconnect. :param pulumi.Input[str] display_name: Human-readable friendly name for the AppStream fleet. :param pulumi.Input[pulumi.InputType['FleetDomainJoinInfoArgs']] domain_join_info: Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. :param pulumi.Input[bool] enable_default_internet_access: Enables or disables default internet access for the fleet. :param pulumi.Input[str] fleet_type: Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` :param pulumi.Input[str] iam_role_arn: ARN of the IAM role to apply to the fleet. :param pulumi.Input[int] idle_disconnect_timeout_in_seconds: Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. :param pulumi.Input[str] image_arn: ARN of the public, private, or shared image to use. :param pulumi.Input[str] image_name: Name of the image used to create the fleet. :param pulumi.Input[str] instance_type: Instance type to use when launching fleet instances. :param pulumi.Input[int] max_user_duration_in_seconds: Maximum amount of time that a streaming session can remain active, in seconds. :param pulumi.Input[str] name: Unique name for the fleet. :param pulumi.Input[str] stream_view: AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Map of tags to attach to AppStream instances. :param pulumi.Input[pulumi.InputType['FleetVpcConfigArgs']] vpc_config: Configuration block for the VPC configuration for the image builder. See below. """ ... @overload def __init__(__self__, resource_name: str, args: FleetArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides an AppStream fleet. ## Example Usage ```python import pulumi import pulumi_aws as aws test_fleet = aws.appstream.Fleet("testFleet", compute_capacity=aws.appstream.FleetComputeCapacityArgs( desired_instances=1, ), description="test fleet", display_name="test-fleet", enable_default_internet_access=False, fleet_type="ON_DEMAND", idle_disconnect_timeout_in_seconds=60, image_name="Amazon-AppStream2-Sample-Image-02-04-2019", instance_type="stream.standard.large", max_user_duration_in_seconds=600, tags={ "TagName": "tag-value", }, vpc_config=aws.appstream.FleetVpcConfigArgs( subnet_ids=["subnet-06e9b13400c225127"], )) ``` ## Import `aws_appstream_fleet` can be imported using the id, e.g., ```sh $ pulumi import aws:appstream/fleet:Fleet example fleetNameExample ``` :param str resource_name: The name of the resource. :param FleetArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(FleetArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, compute_capacity: Optional[pulumi.Input[pulumi.InputType['FleetComputeCapacityArgs']]] = None, description: Optional[pulumi.Input[str]] = None, disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, display_name: Optional[pulumi.Input[str]] = None, domain_join_info: Optional[pulumi.Input[pulumi.InputType['FleetDomainJoinInfoArgs']]] = None, enable_default_internet_access: Optional[pulumi.Input[bool]] = None, fleet_type: Optional[pulumi.Input[str]] = None, iam_role_arn: Optional[pulumi.Input[str]] = None, idle_disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, image_arn: Optional[pulumi.Input[str]] = None, image_name: Optional[pulumi.Input[str]] = None, instance_type: Optional[pulumi.Input[str]] = None, max_user_duration_in_seconds: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, stream_view: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc_config: Optional[pulumi.Input[pulumi.InputType['FleetVpcConfigArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = FleetArgs.__new__(FleetArgs) if compute_capacity is None and not opts.urn: raise TypeError("Missing required property 'compute_capacity'") __props__.__dict__["compute_capacity"] = compute_capacity __props__.__dict__["description"] = description __props__.__dict__["disconnect_timeout_in_seconds"] = disconnect_timeout_in_seconds __props__.__dict__["display_name"] = display_name __props__.__dict__["domain_join_info"] = domain_join_info __props__.__dict__["enable_default_internet_access"] = enable_default_internet_access __props__.__dict__["fleet_type"] = fleet_type __props__.__dict__["iam_role_arn"] = iam_role_arn __props__.__dict__["idle_disconnect_timeout_in_seconds"] = idle_disconnect_timeout_in_seconds __props__.__dict__["image_arn"] = image_arn __props__.__dict__["image_name"] = image_name if instance_type is None and not opts.urn: raise TypeError("Missing required property 'instance_type'") __props__.__dict__["instance_type"] = instance_type __props__.__dict__["max_user_duration_in_seconds"] = max_user_duration_in_seconds __props__.__dict__["name"] = name __props__.__dict__["stream_view"] = stream_view __props__.__dict__["tags"] = tags __props__.__dict__["vpc_config"] = vpc_config __props__.__dict__["arn"] = None __props__.__dict__["created_time"] = None __props__.__dict__["state"] = None __props__.__dict__["tags_all"] = None super(Fleet, __self__).__init__( 'aws:appstream/fleet:Fleet', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, compute_capacity: Optional[pulumi.Input[pulumi.InputType['FleetComputeCapacityArgs']]] = None, created_time: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, display_name: Optional[pulumi.Input[str]] = None, domain_join_info: Optional[pulumi.Input[pulumi.InputType['FleetDomainJoinInfoArgs']]] = None, enable_default_internet_access: Optional[pulumi.Input[bool]] = None, fleet_type: Optional[pulumi.Input[str]] = None, iam_role_arn: Optional[pulumi.Input[str]] = None, idle_disconnect_timeout_in_seconds: Optional[pulumi.Input[int]] = None, image_arn: Optional[pulumi.Input[str]] = None, image_name: Optional[pulumi.Input[str]] = None, instance_type: Optional[pulumi.Input[str]] = None, max_user_duration_in_seconds: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, state: Optional[pulumi.Input[str]] = None, stream_view: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc_config: Optional[pulumi.Input[pulumi.InputType['FleetVpcConfigArgs']]] = None) -> 'Fleet': """ Get an existing Fleet resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: ARN of the appstream fleet. :param pulumi.Input[pulumi.InputType['FleetComputeCapacityArgs']] compute_capacity: Configuration block for the desired capacity of the fleet. See below. :param pulumi.Input[str] created_time: Date and time, in UTC and extended RFC 3339 format, when the fleet was created. :param pulumi.Input[str] description: Description to display. :param pulumi.Input[int] disconnect_timeout_in_seconds: Amount of time that a streaming session remains active after users disconnect. :param pulumi.Input[str] display_name: Human-readable friendly name for the AppStream fleet. :param pulumi.Input[pulumi.InputType['FleetDomainJoinInfoArgs']] domain_join_info: Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. :param pulumi.Input[bool] enable_default_internet_access: Enables or disables default internet access for the fleet. :param pulumi.Input[str] fleet_type: Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` :param pulumi.Input[str] iam_role_arn: ARN of the IAM role to apply to the fleet. :param pulumi.Input[int] idle_disconnect_timeout_in_seconds: Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. :param pulumi.Input[str] image_arn: ARN of the public, private, or shared image to use. :param pulumi.Input[str] image_name: Name of the image used to create the fleet. :param pulumi.Input[str] instance_type: Instance type to use when launching fleet instances. :param pulumi.Input[int] max_user_duration_in_seconds: Maximum amount of time that a streaming session can remain active, in seconds. :param pulumi.Input[str] name: Unique name for the fleet. :param pulumi.Input[str] state: State of the fleet. Can be `STARTING`, `RUNNING`, `STOPPING` or `STOPPED` :param pulumi.Input[str] stream_view: AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Map of tags to attach to AppStream instances. :param pulumi.Input[pulumi.InputType['FleetVpcConfigArgs']] vpc_config: Configuration block for the VPC configuration for the image builder. See below. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _FleetState.__new__(_FleetState) __props__.__dict__["arn"] = arn __props__.__dict__["compute_capacity"] = compute_capacity __props__.__dict__["created_time"] = created_time __props__.__dict__["description"] = description __props__.__dict__["disconnect_timeout_in_seconds"] = disconnect_timeout_in_seconds __props__.__dict__["display_name"] = display_name __props__.__dict__["domain_join_info"] = domain_join_info __props__.__dict__["enable_default_internet_access"] = enable_default_internet_access __props__.__dict__["fleet_type"] = fleet_type __props__.__dict__["iam_role_arn"] = iam_role_arn __props__.__dict__["idle_disconnect_timeout_in_seconds"] = idle_disconnect_timeout_in_seconds __props__.__dict__["image_arn"] = image_arn __props__.__dict__["image_name"] = image_name __props__.__dict__["instance_type"] = instance_type __props__.__dict__["max_user_duration_in_seconds"] = max_user_duration_in_seconds __props__.__dict__["name"] = name __props__.__dict__["state"] = state __props__.__dict__["stream_view"] = stream_view __props__.__dict__["tags"] = tags __props__.__dict__["tags_all"] = tags_all __props__.__dict__["vpc_config"] = vpc_config return Fleet(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ ARN of the appstream fleet. """ return pulumi.get(self, "arn") @property @pulumi.getter(name="computeCapacity") def compute_capacity(self) -> pulumi.Output['outputs.FleetComputeCapacity']: """ Configuration block for the desired capacity of the fleet. See below. """ return pulumi.get(self, "compute_capacity") @property @pulumi.getter(name="createdTime") def created_time(self) -> pulumi.Output[str]: """ Date and time, in UTC and extended RFC 3339 format, when the fleet was created. """ return pulumi.get(self, "created_time") @property @pulumi.getter def description(self) -> pulumi.Output[str]: """ Description to display. """ return pulumi.get(self, "description") @property @pulumi.getter(name="disconnectTimeoutInSeconds") def disconnect_timeout_in_seconds(self) -> pulumi.Output[int]: """ Amount of time that a streaming session remains active after users disconnect. """ return pulumi.get(self, "disconnect_timeout_in_seconds") @property @pulumi.getter(name="displayName") def display_name(self) -> pulumi.Output[str]: """ Human-readable friendly name for the AppStream fleet. """ return pulumi.get(self, "display_name") @property @pulumi.getter(name="domainJoinInfo") def domain_join_info(self) -> pulumi.Output['outputs.FleetDomainJoinInfo']: """ Configuration block for the name of the directory and organizational unit (OU) to use to join the fleet to a Microsoft Active Directory domain. See below. """ return pulumi.get(self, "domain_join_info") @property @pulumi.getter(name="enableDefaultInternetAccess") def enable_default_internet_access(self) -> pulumi.Output[bool]: """ Enables or disables default internet access for the fleet. """ return pulumi.get(self, "enable_default_internet_access") @property @pulumi.getter(name="fleetType") def fleet_type(self) -> pulumi.Output[str]: """ Fleet type. Valid values are: `ON_DEMAND`, `ALWAYS_ON` """ return pulumi.get(self, "fleet_type") @property @pulumi.getter(name="iamRoleArn") def iam_role_arn(self) -> pulumi.Output[str]: """ ARN of the IAM role to apply to the fleet. """ return pulumi.get(self, "iam_role_arn") @property @pulumi.getter(name="idleDisconnectTimeoutInSeconds") def idle_disconnect_timeout_in_seconds(self) -> pulumi.Output[Optional[int]]: """ Amount of time that users can be idle (inactive) before they are disconnected from their streaming session and the `disconnect_timeout_in_seconds` time interval begins. """ return pulumi.get(self, "idle_disconnect_timeout_in_seconds") @property @pulumi.getter(name="imageArn") def image_arn(self) -> pulumi.Output[str]: """ ARN of the public, private, or shared image to use. """ return pulumi.get(self, "image_arn") @property @pulumi.getter(name="imageName") def image_name(self) -> pulumi.Output[str]: """ Name of the image used to create the fleet. """ return pulumi.get(self, "image_name") @property @pulumi.getter(name="instanceType") def instance_type(self) -> pulumi.Output[str]: """ Instance type to use when launching fleet instances. """ return pulumi.get(self, "instance_type") @property @pulumi.getter(name="maxUserDurationInSeconds") def max_user_duration_in_seconds(self) -> pulumi.Output[int]: """ Maximum amount of time that a streaming session can remain active, in seconds. """ return pulumi.get(self, "max_user_duration_in_seconds") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Unique name for the fleet. """ return pulumi.get(self, "name") @property @pulumi.getter def state(self) -> pulumi.Output[str]: """ State of the fleet. Can be `STARTING`, `RUNNING`, `STOPPING` or `STOPPED` """ return pulumi.get(self, "state") @property @pulumi.getter(name="streamView") def stream_view(self) -> pulumi.Output[str]: """ AppStream 2.0 view that is displayed to your users when they stream from the fleet. When `APP` is specified, only the windows of applications opened by users display. When `DESKTOP` is specified, the standard desktop that is provided by the operating system displays. """ return pulumi.get(self, "stream_view") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Map of tags to attach to AppStream instances. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tagsAll") def tags_all(self) -> pulumi.Output[Mapping[str, str]]: return pulumi.get(self, "tags_all") @property @pulumi.getter(name="vpcConfig") def vpc_config(self) -> pulumi.Output['outputs.FleetVpcConfig']: """ Configuration block for the VPC configuration for the image builder. See below. """ return pulumi.get(self, "vpc_config")
python
if x == 'none': if False: print('None') elif x == None: print('oh') elif x == 12: print('oh') else: print(123) if foo: foo() elif bar: bar() else: if baz: baz() elif garply: garply() else: qux()
python
#!/usr/bin/env python # -*- coding: UTF-8 -*- # 地址:http: //www.runoob.com/python/python-exercise-example70.html if __name__ == "__main__": # s = input("please input a string:\n") s = "Hello World" print("the string has %d characters." % len(s))
python
""" Orchestrator module """ import logging import os import re import shutil import traceback from functools import wraps from glob import glob from io import open import six from halo import Halo from tabulate import tabulate from toscaparser.common.exception import ValidationError from yaml.scanner import ScannerError from termcolor import colored from . import docker_interface, helper, protocol_helper from .graph.nodes import Container, Software, Volume from .graph.protocol import (CONTAINER_STATE_CREATED, CONTAINER_STATE_DELETED, CONTAINER_STATE_RUNNING, SOFTWARE_STATE_ZOTTED, STATE_RUNNING, VOLUME_STATE_CREATED, VOLUME_STATE_DELETED) from .helper import Logger from .managers.container_manager import ContainerManager from .managers.software_manager import SoftwareManager from .managers.volume_manager import VolumeManager from .storage import Memory from .tosca_parser import get_tosca_template try: from os import scandir except ImportError: from scandir import scandir class Orchestrator: def update_memory(f): """decorator that update memory before execute function""" @wraps(f) def decorated_function(*args, **kwargs): status, faulty = args[0]._update_state() Logger.println('(update memory: {})'.format( 'ok' if status else 'fixed {}'.format(', '.join(faulty)))) return f(*args, **kwargs) return decorated_function def __init__(self, log_handler=logging.NullHandler(), quiet=True, tmp_dir='/tmp/tosker', data_dir='/tmp/tosker'): # TODO: use /usr/lib/tokser instead Logger.set(log_handler, quiet) self._log = Logger.get(__name__) self._tmp_dir = tmp_dir # Setup Storage system (folder and class) self._data_dir = data_dir try: os.makedirs(data_dir) except os.error: pass Memory.set_db(data_dir) @update_memory def orchestrate(self, file_path, plan, inputs=None): """ Start the orchestration using the management protocols. plan must be a list of tuple (component, full_operation) """ # Parse TOSCA file tpl = self._parse_tosca(file_path, inputs) if tpl is None: return False # Check plan format if not self._check_plan_format(tpl, plan): self._log.debug(plan) Logger.print_error('Plan format not correct') return False # Create tmp directory for the template self._create_tmp_dir(tpl) # Load components state if not self._load_component_state(tpl): Logger.print_error('Cannot load components state,' 'try to use "tosker prune" to hard reset.') return False self._log.debug('State: %s', ' '.join( (c['name'] + '.' + c['state'] for c in Memory.get_comps(tpl.name)))) try: # Check plan self._print_loading_start('Check deployment plan... ') for component, full_operation in plan: try: protocol_helper.can_execute(full_operation, component) component.protocol.execute_operation(full_operation) except ValueError as e: self._print_cross('Error on {}.{}: {}' ''.format(component.name, full_operation, e)) return False self._load_component_state(tpl) self._print_tick() # Create Network # TODO: do not create network if already there self._print_loading_start('Create network... ') docker_interface.create_network(tpl.name) self._print_tick() # Execute plan for component, full_operation in plan: protocol = component.protocol self._log.debug('Component %s is in state %s', component.name, component.protocol.current_state) self._print_loading_start('Execute op "{}" on "{}"... ' ''.format(full_operation, component.name)) transition = protocol.next_transition(full_operation) self._log.debug('transition: i={} o={}'.format( transition.interface, transition.operation)) if isinstance(component, Container): ContainerManager.exec_operation( component, transition.operation) elif isinstance(component, Volume): VolumeManager.exec_operation( component, transition.operation) elif isinstance(component, Software): SoftwareManager.exec_operation(component, transition.interface, transition.operation) state = protocol.execute_operation(full_operation) # remove the component if it is in the initial state if state == protocol.initial_state: Memory.remove(component) else: Memory.update_state(component, state.name) self._print_tick() self._print_outputs(tpl) except Exception as e: self._log.debug('Exception type: %s', type(e)) self._log.debug(traceback.format_exc()) self._print_cross(e) return False return True @update_memory def ls_components(self, app=None, filters={}): comps = Memory.get_comps(app, filters) def get_state(state): return colored(state, ('green' if state == STATE_RUNNING else None)) def format_row(comp): return [comp['app_name'], comp['name'], comp['type'], get_state(comp['state']), '{}.{}'.format(comp['app_name'], comp['name'])] table = [format_row(c) for c in comps] table_str = tabulate(table, headers=['Application', 'Component', 'Type', 'State', 'Full name']) Logger.println(table_str) def log(self, component, operation): # TODO: add logs also for Docker container app, name = helper.split(component, '.') if app is None: Logger.print_error('First argument must be a component full name ' '(i.e my_app.my_component)') return if '.' not in operation: operation = 'Standard.{}'.format(operation) self._log.debug('app: %s, name: %s, operation: %s', app, name, operation) log_file_name = '{}/{}/*/{}/{}.log'.format(self._tmp_dir, app, name, operation) log_file = glob(log_file_name) if len(log_file) != 1: Logger.print_error('Component or operation log not found') return with open(log_file[0], 'r', encoding='utf-8', errors='ignore') as f: for line in f.readlines(): line = colored(line, 'green') if line.startswith( '+ ') else line Logger.print_(line) def prune(self): self._print_loading_start('Remove containers.. ') con = docker_interface.get_containers(all=True) for c in (c for c in con if c['Names'][0].startswith('/tosker')): self._log.debug(c['Names'][0]) docker_interface.delete_container(c['Id'], force=True) self._print_tick() self._print_loading_start('Remove volumes.. ') vol = docker_interface.get_volumes() for v in (v for v in vol if v['Name'].startswith('tosker')): self._log.debug(v['Name']) docker_interface.delete_volume(v['Name']) self._print_tick() # TODO: remove also networks self._print_loading_start('Remove tosker data.. ') shutil.rmtree(self._tmp_dir) self._print_tick() def parse_operations(self, operations): """ Transform a ["component:interface.operation"..] in [("component","interface.operation")..] """ return [helper.split(op.strip(), ':') for op in operations] def read_plan_file(self, file): """Parse the operation from a general plan file (.csv, .plan, other)""" with open(file, 'r') as fstream: _, ext = os.path.splitext(file) if '.csv' == ext: return self._read_csv(fstream) elif '.plan' == ext: return self._read_plan(fstream) else: Logger.print_error('Plan file format not supported.') pass def _read_csv(self, stream): """ Get a file stream of a .csv file and return a list of tuple (componet, interface.operation). """ return [(l[0], '{}.{}'.format(l[1], l[2])) for l in (l.strip().split(',') for l in stream.readlines())] def _read_plan(self, stream): """ Get a file streame of a .plan file and return a list of tuple (componet, interface.operation). """ return self.parse_operations( [l for l in (l.strip() for l in stream.readlines()) if l and not l.startswith('#')]) def _parse_tosca(self, file_path, inputs): ''' Parse TOSCA file ''' try: return get_tosca_template(file_path, inputs) except ScannerError as e: Logger.print_error('YAML parse error\n {}'.format(e)) return None except ValidationError as e: Logger.print_error('TOSCA validation error\n {}'.format(e)) return None except ValueError as e: Logger.print_error('TosKer validation error\n {}'.format(e)) self._log.debug(colored(traceback.format_exc(), 'red')) return None except Exception as e: Logger.print_error('Internal error\n {}'.format(e)) self._log.debug('Exception type: %s', type(e)) self._log.debug(colored(traceback.format_exc(), 'red')) return None def _create_tmp_dir(self, tpl): ''' Create temporany directory ''' tpl.tmp_dir = os.path.join(self._tmp_dir, tpl.name) try: os.makedirs(tpl.tmp_dir) except os.error as e: self._log.info(e) def _check_plan_format(self, tpl, operations): """ operation: [("component", "interface.operation")..] """ for i, op in enumerate(operations): if not (isinstance(op, tuple) and len(op) == 2): Logger.print_error('Plan is not in the right format') return False comp_name, full_operation = op # Check that the component existes in the template comp = tpl[comp_name] if comp is None: Logger.print_error( 'Component "{}" not found in template.'.format(comp_name)) return False # check that the component has interface.operation interface, operation = helper.split(full_operation, '.') if interface not in comp.interfaces and\ operation not in comp.interfaces[interface]: Logger.print_error('Component "{}" not has the "{}"' 'operation in the "{}" interface.' ''.format(comp_name, operation, interface)) return False operations[i] = comp, full_operation return True def _load_component_state(self, tpl): for comp in tpl.nodes: state = Memory.get_comp_state(comp) if state is not None: state = comp.protocol.find_state(state) if state is not None: comp.protocol.current_state = state else: return False else: comp.protocol.reset() return True def _print_outputs(self, tpl): if len(tpl.outputs) != 0: Logger.println('\nOUTPUTS:') for out in tpl.outputs: self._log.debug('value: %s', out.value) value = out.value if isinstance(out.value, six.string_types) \ else helper.get_attributes(out.value.args, tpl) Logger.println(' - ' + out.name + ":", value) def _update_state(self): errors = set() def manage_error(comp, state): errors.add(comp['full_name']) Memory.update_state(comp, state) def manage_error_container(comp, state): manage_error(comp, state) path = os.path.join(self._tmp_dir, comp['app_name'], comp['name']) try: software = [(f.name, f.path) for f in scandir(path) if f.is_dir()] except FileNotFoundError as e: software = [] self._log.debug('path %s found %s', path, software) for s, s_path in software: full_name = '{}.{}'.format(comp['app_name'], s) Memory.update_state('{}.{}'.format( comp['app_name'], s), SOFTWARE_STATE_ZOTTED) errors.add(full_name) for container in Memory.get_comps(filters={'type': 'Container'}): status = docker_interface.inspect_container(container['full_name']) deleted, created, running = status is None,\ status is not None and not status['State']['Running'],\ status is not None and status['State']['Running'] if deleted and container['state'] != CONTAINER_STATE_DELETED: manage_error_container(container, CONTAINER_STATE_DELETED) elif created and container['state'] != CONTAINER_STATE_CREATED: manage_error_container(container, CONTAINER_STATE_CREATED) elif running and container['state'] != CONTAINER_STATE_RUNNING: manage_error_container(container, CONTAINER_STATE_RUNNING) for volume in Memory.get_comps(filters={'type': 'Volume'}): status = docker_interface.inspect_volume(volume['full_name']) if status is None: manage_error(volume, VOLUME_STATE_DELETED) return len(errors) == 0, errors def _print_tick(self): self._loading_thread.succeed(self._loading_thread.text + 'Done') def _print_skip(self): self._loading_thread.info(self._loading_thread.text + 'Skipped') def _print_cross(self, error): self._loading_thread.fail(self._loading_thread.text + '\n' + colored(error, 'red')) def _print_loading_start(self, msg): self._loading_thread = Halo(text=msg, spinner='dots') self._loading_thread.start()
python
############################################################################# # # VFRAME # MIT License # Copyright (c) 2020 Adam Harvey and VFRAME # https://vframe.io # ############################################################################# import click from vframe.settings.app_cfg import VALID_PIPE_MEDIA_EXTS from vframe.utils.click_utils import generator @click.command('') @click.option('-i', '--input', 'opt_input', required=True, help='Path to image or directory') @click.option('-e', '--exts', 'opt_exts', default=VALID_PIPE_MEDIA_EXTS, multiple=True, help='Extensions to glob for') @click.option('-r', '--recursive', 'opt_recursive', is_flag=True, help='Recursive glob') @click.option('--slice', 'opt_slice', type=(int, int), default=(-1, -1), help="Slice list of inputs") @click.option('--skip-frames', 'opt_skip_frames', is_flag=True, help='Skip all frames, only iterate files') @click.option('--check-exist', 'opt_check_exist', is_flag=True, default=False, help='Check files existence before processing') @click.option('--randomize', 'opt_randomize', is_flag=True, help='Randomize file list before slicing') @click.option('--media-path', 'opt_new_filepath', type=str, default='', help='Override JSON filepath') @generator @click.pass_context def cli(ctx, sink, opt_input, opt_recursive, opt_exts, opt_slice, opt_skip_frames, opt_check_exist, opt_randomize, opt_new_filepath): """Open media for processing""" from tqdm import tqdm import dacite from vframe.settings.app_cfg import LOG, SKIP_FRAME, READER, SKIP_FILE from vframe.settings.app_cfg import USE_PREHASH, USE_DRAW_FRAME from vframe.settings.app_cfg import MEDIA_FILTERS, SKIP_MEDIA_FILTERS from vframe.models.media import MediaFileReader from vframe.utils.sys_utils import SignalInterrupt from vframe.utils.file_utils import get_ext # --------------------------------------------------------------------------- # init sigint = SignalInterrupt() init_obj = { 'filepath': opt_input, 'exts': tuple(opt_exts), 'slice_idxs': opt_slice, 'recursive': opt_recursive, 'use_prehash': ctx.obj.get(USE_PREHASH, False), 'use_draw_frame': ctx.obj.get(USE_DRAW_FRAME, False), 'media_filters': ctx.obj.get(MEDIA_FILTERS, []), 'skip_all_frames': opt_skip_frames, 'opt_check_exist': opt_check_exist, 'opt_randomize': opt_randomize, 'opt_new_filepath': opt_new_filepath, } # init media file reader r = dacite.from_dict(data_class=MediaFileReader, data=init_obj) ctx.obj[READER] = r ctx.obj[SKIP_MEDIA_FILTERS] = get_ext(opt_input) == 'json' # error checks if not r.n_files: LOG.info('No files to process.') return # process media for m in tqdm(r.iter_files(), total=r.n_files, desc='Files', leave=False): ctx.obj[SKIP_FILE] = False # reset m.skip_all_frames = opt_skip_frames if sigint.interrupted: m.unload() return for ok in tqdm(m.iter_frames(), total=m.n_frames, desc=m.fn, disable=m.n_frames <= 1, leave=False): ctx.obj[SKIP_FRAME] = (opt_skip_frames or m.skip_all_frames) # TODO: cleanup if ctx.obj.get(SKIP_FILE, False) or m._skip_file: ctx.obj[SKIP_FILE] = True m.set_skip_file() # check for ctl-c, exit gracefully if sigint.interrupted: m.unload() return sink.send(m) # print stats LOG.info(r.stats)
python
import os import torch import numpy as np import warnings try: from typing import Protocol except ImportError: # noqa # Python < 3.8 class Protocol: pass from .dsp.overlap_add import LambdaOverlapAdd from .utils import get_device class Separatable(Protocol): """Things that are separatable.""" def forward_wav(self, wav, **kwargs): """ Args: wav (torch.Tensor): waveform tensor. Shape: 1D, 2D or 3D tensor, time last. **kwargs: Keyword arguments from `separate`. Returns: torch.Tensor: the estimated sources. Shape: [batch, n_src, time] or [n_src, time] if the input `wav` did not have a batch dim. """ ... @property def sample_rate(self): """Operating sample rate of the model (float).""" ... def separate( model: Separatable, wav, output_dir=None, force_overwrite=False, resample=False, **kwargs ): """Infer separated sources from input waveforms. Also supports filenames. Args: model (Separatable, for example asteroid.models.BaseModel): Model to use. wav (Union[torch.Tensor, numpy.ndarray, str]): waveform array/tensor. Shape: 1D, 2D or 3D tensor, time last. output_dir (str): path to save all the wav files. If None, estimated sources will be saved next to the original ones. force_overwrite (bool): whether to overwrite existing files (when separating from file). resample (bool): Whether to resample input files with wrong sample rate (when separating from file). **kwargs: keyword arguments to be passed to `forward_wav`. Returns: Union[torch.Tensor, numpy.ndarray, None], the estimated sources. (batch, n_src, time) or (n_src, time) w/o batch dim. .. note:: `separate` calls `model.forward_wav` which calls `forward` by default. For models whose `forward` doesn't have waveform tensors as input/ouput, overwrite their `forward_wav` method to separate from waveform to waveform. """ if isinstance(wav, str): file_separate( model, wav, output_dir=output_dir, force_overwrite=force_overwrite, resample=resample, **kwargs, ) elif isinstance(wav, np.ndarray): return numpy_separate(model, wav, **kwargs) elif isinstance(wav, torch.Tensor): return torch_separate(model, wav, **kwargs) else: raise ValueError( f"Only support filenames, numpy arrays and torch tensors, received {type(wav)}" ) @torch.no_grad() def torch_separate(model: Separatable, wav: torch.Tensor, **kwargs) -> torch.Tensor: """Core logic of `separate`.""" # Handle device placement input_device = get_device(wav, default="cpu") model_device = get_device(model, default="cpu") wav = wav.to(model_device) # Forward separate_func = getattr(model, "forward_wav", model) out_wavs = separate_func(wav, **kwargs) # FIXME: for now this is the best we can do. out_wavs *= wav.abs().sum() / (out_wavs.abs().sum()) # Back to input device (and numpy if necessary) out_wavs = out_wavs.to(input_device) return out_wavs def numpy_separate(model: Separatable, wav: np.ndarray, **kwargs) -> np.ndarray: """Numpy interface to `separate`.""" wav = torch.from_numpy(wav) out_wavs = torch_separate(model, wav, **kwargs) out_wavs = out_wavs.data.numpy() return out_wavs def file_separate( model: Separatable, filename: str, output_dir=None, force_overwrite=False, resample=False, **kwargs, ) -> None: """Filename interface to `separate`.""" import soundfile as sf if not hasattr(model, "sample_rate"): if isinstance(model, LambdaOverlapAdd): model = model.nnet raise TypeError( f"This function requires your model ({type(model).__name__}) to have a " "'sample_rate' attribute. See `BaseModel.sample_rate` for details." ) # SoundFile wav shape: [time, n_chan] wav, fs = sf.read(filename, dtype="float32", always_2d=True) if wav.shape[-1] > 1: warnings.warn( f"Received multichannel signal with {wav.shape[-1]} signals, " f"using the first channel only." ) # FIXME: support only single-channel files for now. if fs != model.sample_rate: if resample: from librosa import resample wav = resample(wav[:, 0], orig_sr=fs, target_sr=model.sample_rate)[:, None] else: raise RuntimeError( f"Received a signal with a sampling rate of {fs}Hz for a model " f"of {model.sample_rate}Hz. You can pass `resample=True` to resample automatically." ) # Pass wav as [batch, n_chan, time]; here: [1, 1, time] wav = wav[:, 0][None, None] (to_save,) = numpy_separate(model, wav, **kwargs) # Save wav files to filename_est1.wav etc... for src_idx, est_src in enumerate(to_save): base = ".".join(filename.split(".")[:-1]) save_name = base + "_est{}.".format(src_idx + 1) + filename.split(".")[-1] if output_dir is not None: save_name = os.path.join(output_dir, save_name.split("/")[-1]) if os.path.isfile(save_name) and not force_overwrite: warnings.warn( f"File {save_name} already exists, pass `force_overwrite=True` to overwrite it", UserWarning, ) return if fs != model.sample_rate: from librosa import resample est_src = resample(est_src, orig_sr=model.sample_rate, target_sr=fs) sf.write(save_name, est_src, fs)
python
import pickle import brewer2mpl import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from absl import app, flags from utils import * FLAGS = flags.FLAGS flags.DEFINE_string('base_dir', '', 'Path to the base dir where the logs are') flags.DEFINE_bool('small_paper_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('stretched', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('paper_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('slide_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('poster_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_string('file_format', 'png', 'File type of the output plot.') flags.DEFINE_string('file_name', 'prediction-runtime-horizon', 'Name of the file to output to.') flags.DEFINE_list('horizons', '10,20,30,40,50', 'Comma separated list of horizons.') flags.DEFINE_integer('hz', '10', 'Frequency of predictions.') def main(argv): bmap = brewer2mpl.get_map('Set2', 'qualitative', 7) colors = bmap.mpl_colors[3:] hatches = ["////", "****"] if FLAGS.paper_mode: plt.figure(figsize=(3.33, 2.22)) set_paper_rcs() elif FLAGS.small_paper_mode: plt.figure(figsize=(2.4, 1.66)) set_paper_rcs() elif FLAGS.stretched: plt.figure(figsize=(3, 1.4)) set_paper_rcs() elif FLAGS.slide_mode: plt.figure(figsize=(8, 6)) set_slide_rcs() elif FLAGS.poster_mode: plt.figure(figsize=(12, 9)) set_poster_rcs() else: plt.figure() set_rcs() ax = plt.gca() models = ["mfp", "r2p2"] legend_elements = [] dfs = [] for i, model in enumerate(models): for h in FLAGS.horizons: file_name = '{}/{}_timely_horizon_{}.pkl'.format( FLAGS.base_dir, model, h) f = open(file_name, 'rb') num_secs = int(int(h) * 1.0 / FLAGS.hz) data = pickle.load(f) df = pd.DataFrame({ 'model': [model] * len(data), 'horizon': [num_secs] * len(data), 'runtime': data }) dfs.append(df) if model == 'mfp': label = 'MFP' elif model == 'r2p2': label = 'R2P2-MA' else: label = model legend_elements.append( Patch(facecolor=colors[i], alpha=0.6, hatch=hatches[i], label=label)) data = pd.concat(dfs) ax = sns.boxplot(x='horizon', y='runtime', hue='model', data=data, palette=colors, width=0.7, saturation=1, whis=(5, 95), showfliers=False) for i, box in enumerate(ax.artists): box.set_hatch(hatches[i % len(models)]) adjust_box_widths(plt.gcf(), 0.8) plt.legend(handles=legend_elements, framealpha=0, handlelength=1.5, handletextpad=0.1) plt.xlabel('Prediction horizon [s]') plt.ylabel('Runtime [ms]') plt.savefig("{}.{}".format(FLAGS.file_name, FLAGS.file_format), format=FLAGS.file_format, bbox_inches='tight') if __name__ == '__main__': app.run(main)
python
# coding: utf-8 # # Table of Contents # <p><div class="lev1 toc-item"><a href="#Blurring-a-part-of-an-image-in-Python" data-toc-modified-id="Blurring-a-part-of-an-image-in-Python-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Blurring a part of an image in Python</a></div><div class="lev2 toc-item"><a href="#Blur-all-the-image" data-toc-modified-id="Blur-all-the-image-11"><span class="toc-item-num">1.1&nbsp;&nbsp;</span>Blur all the image</a></div><div class="lev2 toc-item"><a href="#Blur-only-an-area-of-the-image" data-toc-modified-id="Blur-only-an-area-of-the-image-12"><span class="toc-item-num">1.2&nbsp;&nbsp;</span>Blur only an area of the image</a></div><div class="lev2 toc-item"><a href="#Conclusion" data-toc-modified-id="Conclusion-13"><span class="toc-item-num">1.3&nbsp;&nbsp;</span>Conclusion</a></div> # # Blurring a part of an image in Python # # This very short notebook shows how to open an image (eg a PNG image), and nicely blur a part of it. # In[1]: import numpy as np import skimage # In[2]: get_ipython().run_line_magic('load_ext', 'watermark') get_ipython().run_line_magic('watermark', '-v -m -a "Lilian Besson (Naereen)" -p numpy,skimage -g') # ## Blur all the image # Let's import one of the example image, and blur all of it using [`skimage.filters.gaussian`](http://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.gaussian). # In[9]: from skimage import data, io, filters image = data.astronaut() # In[10]: def imshow(image): io.imshow(image) io.show() # In[11]: imshow(image) # In[5]: from skimage.filters import gaussian # In[12]: filtered_img = gaussian(image, sigma=1, multichannel=True) imshow(filtered_img) # In[13]: filtered_img = gaussian(image, sigma=2, multichannel=True) imshow(filtered_img) # ## Blur only an area of the image # In[17]: image.shape # In[71]: def blur(image, x0, x1, y0, y1, sigma=1, imshowall=False): x0, x1 = min(x0, x1), max(x0, x1) y0, y1 = min(y0, y1), max(y0, y1) im = image.copy() sub_im = im[x0:x1,y0:y1].copy() if imshowall: imshow(sub_im) blur_sub_im = gaussian(sub_im, sigma=sigma) if imshowall: imshow(blur_sub_im) blur_sub_im = np.round(255 * blur_sub_im) im[x0:x1,y0:y1] = blur_sub_im return im # In[72]: filtered_img = blur(image, 80, 180, 170, 270, sigma=1) imshow(filtered_img) # In[76]: filtered_img = blur(image, 80, 180, 170, 270, sigma=5) imshow(filtered_img) # In[73]: filtered_img = blur(image, 80, 180, 170, 270, sigma=10) imshow(filtered_img) # In[74]: filtered_img = blur(image, 80, 180, 170, 270, sigma=20) imshow(filtered_img) # ## Conclusion # # That's it.
python
import json import logging import requests from django.conf import settings from django.contrib.auth.models import User from rest_framework import status class ExternalUmbrellaServiceAuthenticationBackend: logger = logging.getLogger(__name__) def get_user(self, user_id): """ Retrieve the user's entry in the User model if it exists :param user_id: :return: """ try: return User.objects.get(pk=user_id) except User.DoesNotExist: return None def authenticate(self, request, uid=None, eaa_hash=None): self.logger.debug('Attempting to authenticate via umbrella') try: if None in (uid, eaa_hash): self.logger.warning('Tried to authenticate user with missing fields, rejecting') return None post_data = {'eaa_hash': eaa_hash} headers = {'Content-type': 'application/json'} response = requests.post(settings.BACKEND_UO_HASH, data=json.dumps(post_data), headers=headers) if response.status_code == status.HTTP_200_OK: self.logger.info('Authenticated %s', uid) try: user = User.objects.get(username=uid) return user except User.DoesNotExist as udne: self.logger.info('Creating %s user in django database, as it is not yet present', uid) # User will have unusable password, it is authenticated externally user = User.objects.create_user(uid, '') user.save() return user return None except Exception as e: self.logger.debug(e)
python
# Copyright 2017,2018,2019,2020,2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import nnabla as nn import nnabla.functions as F from nbla_test_utils import list_context from nnabla.testing import assert_allclose ctxs = list_context('TopNError') def ref_top_n_error(x, l, axis, n): orig_x = x.copy() x = np.rollaxis(x, axis, x.ndim).reshape(-1, x.shape[axis]) ll = np.rollaxis(l, axis, x.ndim).flatten() y = [] for x_, ll_ in zip(x, ll): threshold = x_[ll_] count = 0 for x__ in x_: if x__ >= threshold: count += 1 y.append(1 if count > n else 0) return np.array(y).reshape(l.shape) @pytest.mark.parametrize("ctx, func_name", ctxs) @pytest.mark.parametrize("seed", [313]) @pytest.mark.parametrize("axis", [0, 1, 2, -1, -2, -3]) @pytest.mark.parametrize("n", [3, 5]) def test_top_n_error_forward(seed, axis, n, ctx, func_name): ishape = [5, 6, 7] rng = np.random.RandomState(seed) l_shape = list(ishape) l_shape[axis] = 1 n_class = ishape[axis] inputs = [ rng.rand(5, 6, 7).astype(np.float32) * 0.9 + 0.05, rng.randint(0, n_class, size=l_shape).astype(np.int)] ref = ref_top_n_error(inputs[0], inputs[1], axis, n) x = nn.Variable(ishape) l = nn.Variable(l_shape) y = F.top_n_error(x, l, axis, n) x.d = inputs[0] l.d = inputs[1] y.forward() res = y.d atol_f = 1e-6 assert_allclose(ref, res, atol=atol_f)
python
from tclCommands.TclCommand import TclCommandSignaled import collections class TclCommandMirror(TclCommandSignaled): """ Tcl shell command to mirror an object. """ # array of all command aliases, to be able use # old names for backward compatibility (add_poly, add_polygon) aliases = ['mirror'] description = '%s %s' % ("--", "Will mirror the geometry of a named object. Does not create a new object.") # Dictionary of types from Tcl command, needs to be ordered. # For positional arguments arg_names = collections.OrderedDict([ ('name', str) ]) # Dictionary of types from Tcl command, needs to be ordered. # For options like -optionname value option_types = collections.OrderedDict([ ('axis', str), ('box', str), ('origin', str) ]) # array of mandatory options for current Tcl command: required = {'name','outname'} required = ['name'] # structured help for current command, args needs to be ordered help = { 'main': "Will mirror the geometry of a named object. Does not create a new object.", 'args': collections.OrderedDict([ ('name', 'Name of the object (Gerber, Geometry or Excellon) to be mirrored. Required.'), ('axis', 'Mirror axis parallel to the X or Y axis.'), ('box', 'Name of object which act as box (cutout for example.)'), ('origin', 'Reference point . It is used only if the box is not used. Format (x,y).\n' 'Comma will separate the X and Y coordinates.\n' 'WARNING: no spaces are allowed. If uncertain enclose the two values inside parenthesis.\n' 'See the example.') ]), 'examples': ['mirror obj_name -box box_geo -axis X -origin 3.2,4.7'] } def execute(self, args, unnamed_args): """ Execute this TCL shell command :param args: array of known named arguments and options :param unnamed_args: array of other values which were passed into command without -somename and we do not have them in known arg_names :return: None or exception """ name = args['name'] # Get source object. try: obj = self.app.collection.get_by_name(str(name)) except Exception: return "Could not retrieve object: %s" % name if obj is None: return "Object not found: %s" % name if obj.kind != 'gerber' and obj.kind != 'geometry' and obj.kind != 'excellon': return "ERROR: Only Gerber, Excellon and Geometry objects can be mirrored." # Axis if 'axis' in args: try: axis = args['axis'].upper() except KeyError: axis = 'Y' else: axis = 'Y' # Box if 'box' in args: try: box = self.app.collection.get_by_name(args['box']) except Exception: return "Could not retrieve object: %s" % args['box'] if box is None: return "Object box not found: %s" % args['box'] try: xmin, ymin, xmax, ymax = box.bounds() px = 0.5 * (xmin + xmax) py = 0.5 * (ymin + ymax) obj.mirror(axis, [px, py]) obj.plot() return except Exception as e: return "Operation failed: %s" % str(e) # Origin if 'origin' in args: try: origin_val = eval(args['origin']) x = float(origin_val[0]) y = float(origin_val[1]) except KeyError: x, y = (0, 0) except ValueError: return "Invalid distance: %s" % str(args['origin']) try: obj.mirror(axis, [x, y]) except Exception as e: return "Operation failed: %s" % str(e)
python
import torch.nn as nn from qanet.encoder_block import EncoderBlock class ModelEncoder(nn.Module): def __init__(self, n_blocks=7, n_conv=2, kernel_size=7, padding=3, hidden_size=128, conv_type='depthwise_separable', n_heads=8, context_length=400): super(ModelEncoder, self).__init__() self.n_conv = n_conv self.n_blocks = n_blocks self.total_layers = (n_conv + 2) * n_blocks self.stacked_encoderBlocks = nn.ModuleList([EncoderBlock(n_conv=n_conv, kernel_size=kernel_size, padding=padding, n_filters=hidden_size, conv_type=conv_type, n_heads=n_heads) for i in range(n_blocks)]) def forward(self, x, mask): for i in range(self.n_blocks): x = self.stacked_encoderBlocks[i](x, mask, i*(self.n_conv+2)+1, self.total_layers) M0 = x for i in range(self.n_blocks): x = self.stacked_encoderBlocks[i](x, mask, i*(self.n_conv+2)+1, self.total_layers) M1 = x for i in range(self.n_blocks): x = self.stacked_encoderBlocks[i](x, mask, i*(self.n_conv+2)+1, self.total_layers) M2 = x return M0, M1, M2
python
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def helper(self,root): if not root: return (0,0) # get res from left left=self.helper(root.left) # get res from right right=self.helper(root.right) # two situation get the max # not rob root, we can do max_norob=max(left[0],left[1])+max(right[0],right[1]) # not rob left and right,rob root max_rob=root.val+left[0]+right[0] return (max_norob,max_rob) def rob(self, root): """ :type root: TreeNode :rtype: int """ """ 1. root stolen 2. root not stolen """ res=self.helper(root) return max(res[0],res[1])
python
#%load_ext autoreload #%autoreload 2 from pathlib import Path from pprint import pformat from hloc import extract_features, match_features, localize_inloc, visualization dataset = Path('datasets/inloc/') # change this if your dataset is somewhere else pairs = Path('pairs/inloc/') loc_pairs = pairs / 'pairs-query-netvlad40.txt' # top 40 retrieved by NetVLAD outputs = Path('outputs/inloc/') # where everything will be saved results = outputs / 'InLoc_hloc_superpoint+superglue_netvlad40.txt' # the result file # list the standard configurations available print(f'Configs for feature extractors:\n{pformat(extract_features.confs)}') print(f'Configs for feature matchers:\n{pformat(match_features.confs)}') # pick one of the configurations for extraction and matching # you can also simply write your own here! feature_conf = extract_features.confs['superpoint_inloc'] matcher_conf = match_features.confs['superglue'] feature_path = extract_features.main(feature_conf, dataset, outputs) match_path = match_features.main(matcher_conf, loc_pairs, feature_conf['output'], outputs) localize_inloc.main( dataset, loc_pairs, feature_path, match_path, results, skip_matches=20) # skip database images with too few matches save_path = "outputs/inloc/visualize.png" visualization.save_visualize_loc_images(save_path, results, dataset, n=1, top_k_db=1, seed=2) print("done")
python
from aws_cdk import ( aws_batch as _batch, aws_ec2 as _ec2, aws_iam as _iam, core, ) class BatchENV(core.Construct): def getComputeQueue(self,queue_name): return self.job_queue[queue_name] def __init__(self, scope: core.Construct, id: str,CurrentVPC="default",TargetS3="default",UserName="default",**kwargs): super().__init__(scope, id, **kwargs) self.job_queue = {} # batch service role self.batch_service_role = _iam.Role(self,'BatchServiceRole', assumed_by=_iam.ServicePrincipal('batch.amazonaws.com'), managed_policies=[ _iam.ManagedPolicy.from_aws_managed_policy_name('service-role/AWSBatchServiceRole') ] ) # ec2 role with policy that allow to get object from s3 bucket for batch computing self.batch_compute_role = _iam.Role(self, 'BatchComputeRole', assumed_by=_iam.CompositePrincipal( _iam.ServicePrincipal('ec2.amazonaws.com'), _iam.ServicePrincipal('ecs.amazonaws.com') ), managed_policies=[ _iam.ManagedPolicy.from_aws_managed_policy_name('service-role/AmazonEC2RoleforSSM'), _iam.ManagedPolicy.from_aws_managed_policy_name("service-role/AmazonEC2ContainerServiceforEC2Role"), _iam.ManagedPolicy.from_aws_managed_policy_name("CloudWatchLogsFullAccess") ] ) TargetS3.grant_read_write(self.batch_compute_role) self.batch_compute_instance_profile = _iam.CfnInstanceProfile( self, 'BatchInstanceProfile' + UserName, instance_profile_name='BatchInstanceProfile-' + UserName, roles=[self.batch_compute_role.role_name] ) self.ComputeENV = _batch.ComputeEnvironment(self, "ComputeENV", service_role=self.batch_service_role, compute_resources={ "vpc": CurrentVPC, "instance_types":[ _ec2.InstanceType("c5"), _ec2.InstanceType("m5") ], "maxv_cpus":128, "minv_cpus":0, "type":_batch.ComputeResourceType.SPOT, "allocation_strategy":_batch.AllocationStrategy.BEST_FIT_PROGRESSIVE, "instance_role":self.batch_compute_instance_profile.instance_profile_name } ) self.ComputeQueue = _batch.JobQueue(self,"ComputeQueue", priority=1, compute_environments=[ _batch.JobQueueComputeEnvironment( compute_environment=self.ComputeENV, order=1 ) ] ) self.job_queue["ComputeQueue"] = self.ComputeQueue
python
from vyper import basebot from vyper.web import interface import os class PluginBot(basebot.BaseBot): def __init__(self, token, debug=False, start_loop=False, loop_time=.05, ping=True, list_plugins=False, web_app=None, name=None): if not os.path.exists('plugins'): os.mkdir('plugins') with open('plugins/__init__.py', 'w') as ini: ini.write("""import pkgutil __path__ = pkgutil.extend_path(__path__, __name__) for importer, modname, ispkg in pkgutil.walk_packages(path=__path__, prefix=__name__+'.'): __import__(modname)""") import plugins Ping.enabled = ping self.functions = { 'message': self.message, 'edited_message': self.edited_message, 'channel_post': self.channel_post, 'edited_channel_post': self.edited_channel_post, 'inline_query': self.inline_query, 'chosen_inline_result': self.chosen_inline_result, 'callback_query': self.callback_query, 'shipping_query': self.shipping_query, 'pre_checkout_query': self.pre_checkout_query } self.configure(token, functions=self.functions, debug=debug) self.plugins = list(self._get_plugins()) if list_plugins: for plugin in self.plugins: print(plugin) self.web_app = web_app if start_loop: self.start_loop(loop_time) def _get_plugins(self): for plugin in Plugin.__subclasses__(): if plugin.enabled: plugin.bot = self yield plugin() def test_plugins(self, msg): if 'text' in msg: for plugin in list(self.plugins): plugin.message(msg) class Plugin: bot = None enabled = True def __repr__(self): return "Plugin: {0}".format(self.__class__.__name__) def message(self, msg): pass class Ping(Plugin): def message(self, msg): if msg['text'] == '/ping': self.bot.sendMessage(msg['chat']['id'], 'PONG!')
python
import timeit from copy import deepcopy import time import cProfile import pstats import numpy as np from sympy import sin, symbols, Matrix, Symbol, exp, solve, Eq, pi, Piecewise, Function, ones from CompartmentalSystems.moothmodel_run import SmoothModelRun from CompartmentalSystems.smooth_reservoir_model import SmoothReservoirModel def smr_1d(nc): #one-dimensional C = Symbol('C') state_vector = [C] time_symbol = Symbol('t') input_fluxes = {} output_fluxes = {0: C} internal_fluxes = {} srm = SmoothReservoirModel(state_vector, time_symbol, input_fluxes, output_fluxes, internal_fluxes) start_values = np.array([5]) times = np.linspace(0,1,6) smr = SmoothModelRun(srm, {}, start_values, times) smr.build_state_transition_operator_cache(nc) return deepcopy(smr) def smr_2d(nc): # two-dimensional C_0, C_1 = symbols('C_0 C_1') state_vector = [C_0, C_1] time_symbol = Symbol('t') input_fluxes = {} output_fluxes = {0: C_0, 1: C_1} internal_fluxes = {} srm = SmoothReservoirModel(state_vector, time_symbol, input_fluxes, output_fluxes, internal_fluxes) start_values = np.array([5, 3]) times = np.linspace(0,1,100) smr = SmoothModelRun(srm, {}, start_values, times) smr.build_state_transition_operator_cache(nc) return deepcopy(smr) def age_densities(smr):#_1D(smr): start_age_densities = lambda a: np.exp(-a)*smr.start_values p=smr.pool_age_densities_func(start_age_densities) p1_sv = smr._age_densities_1_single_value(start_age_densities) # negative ages will be cut off automatically ages = np.linspace(-1,1,3) res=p(ages) # main reps=10 def funcmaker(f,*args): def f_wihtout_args(): return f(*args) return f_wihtout_args for smr_func in [smr_1d,smr_2d]: print('#####################################') for nc in [10,100,1000]:#,10000]: smr=smr_func(nc) res=timeit.timeit( #funcmaker(age_densities_1_single_value_2D,smr) funcmaker(age_densities,smr) ,number=10 ) print('res',res) #with cProfile.Profile() as pr: # test_age_densities_1_single_value() # #st=pstats.Stats(pr) #st.sort_stats('time') #st.print_stats()
python
from django.contrib import admin from .models import User, Agent class UserAdmin(admin.ModelAdmin): list_display = ['username', 'is_agent', 'is_superuser'] admin.site.register(User, UserAdmin) admin.site.register(Agent)
python
''' ''' def main(): info('Pump Microbone After Jan diode analysis') close(description="Jan Inlet") close(description= 'Microbone to Minibone') open(description= 'Microbone to Turbo') open(description= 'Microbone to Getter NP-10H') open(description= 'Microbone to Getter NP-10C') open(description= 'Microbone to CO2 Laser') #open(description= 'CO2 Laser to Jan') open(description= 'Microbone to Inlet Pipette') sleep(1)
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # script by Ruchir Chawdhry # released under MIT License # github.com/RuchirChawdhry/Python # ruchirchawdhry.com # linkedin.com/in/RuchirChawdhry from subprocess import run from prettytable import PrettyTable # PS: This only works on macOS & Linux. It will not work on Windows # unless you install GNU coreutils: # http://gnuwin32.sourceforge.net/packages/coreutils.htm def folder_size(path): size = run(["du", "-sk", path], capture_output=True, encoding="utf-8") return size def megabytes(size): mb = int(size) / 1024 return round(mb, 2) def gigabytes(size): gb = (int(size) / 1024) / 1024 return round(gb, 2) def table_print(data): t = PrettyTable() mb = megabytes(data[0]) gb = gigabytes(data[0]) t.field_names = ["Folder/Directory", "KB", "MB", "GB"] t.add_row([data[1], data[0], mb, gb]) print(t) if __name__ == "__main__": try: s = folder_size(input("PATH TO FOLDER/DIR: ")) s = str(s.stdout).split("\t") table_print(s) except ValueError: print("Please enter a valid PATH without quotes or any other characters")
python
import os import logging from counterblock.lib import config def set_up(verbose): global MAX_LOG_SIZE MAX_LOG_SIZE = config.LOG_SIZE_KB * 1024 #max log size of 20 MB before rotation (make configurable later) global MAX_LOG_COUNT MAX_LOG_COUNT = config.LOG_NUM_FILES # Initialize logging (to file and console) logger = logging.getLogger() #get root logger logger.setLevel(logging.DEBUG if verbose else logging.INFO) #Color logging on console for warnings and errors logging.addLevelName(logging.WARNING, "\033[1;31m%s\033[1;0m" % logging.getLevelName(logging.WARNING)) logging.addLevelName(logging.ERROR, "\033[1;41m%s\033[1;0m" % logging.getLevelName(logging.ERROR)) #Console logging console = logging.StreamHandler() console.setLevel(logging.DEBUG if verbose else logging.INFO) formatter = logging.Formatter('%(levelname)s:%(module)s: %(message)s') console.setFormatter(formatter) logger.addHandler(console) #File logging (rotated) fileh = logging.handlers.RotatingFileHandler(config.LOG, maxBytes=MAX_LOG_SIZE, backupCount=MAX_LOG_COUNT) fileh.setLevel(logging.DEBUG if verbose else logging.INFO) formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(module)s:%(message)s', '%Y-%m-%d-T%H:%M:%S%z') fileh.setFormatter(formatter) logger.addHandler(fileh) #socketio logging (don't show on console in normal operation) socketio_log = logging.getLogger('socketio') socketio_log.setLevel(logging.DEBUG if verbose else logging.WARNING) socketio_log.propagate = False #Transaction log tx_logger = logging.getLogger("transaction_log") #get transaction logger tx_logger.setLevel(logging.DEBUG if verbose else logging.INFO) tx_fileh = logging.handlers.RotatingFileHandler(config.TX_LOG, maxBytes=MAX_LOG_SIZE, backupCount=MAX_LOG_COUNT) tx_fileh.setLevel(logging.DEBUG if verbose else logging.INFO) tx_formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(module)s:%(message)s', '%Y-%m-%d-T%H:%M:%S%z') tx_fileh.setFormatter(tx_formatter) tx_logger.addHandler(tx_fileh) tx_logger.propagate = False
python
from getpass import getpass from pprint import pprint from datetime import datetime from sqlalchemy import create_engine from pydango import state from pydango.switchlang import switch from pydango import ( primary_func, secondary_func ) from pydango.primary_func import chunks from pydango.primary_func import ( create_sqlite_session, random_number_generator, ) from pydango.tables import ( Account, Category, Movie, Payment, Ticket, Theater, theater_schedule, ) from sqlalchemy.sql import ( update, and_, ) # Unfortunate I could not find a way to get around creating a # second connection the sqlite DB here engine = create_engine('sqlite:///sqlite3.db') engine, session = create_sqlite_session(engine=engine) def run(): print('****************** Hello Cinephile ******************') print() show_commands() while True: action = primary_func.get_action() with switch(action) as s: s.case('c', create_account) s.case('l', log_into_account) s.case('o', logout) s.case('s', list_movies) s.case('n', browse_by_location) s.case('t', browse_by_category) s.case('r', purchase_ticket) s.case('v', view_ticket) s.case('m', lambda: 'change_mode') s.case(['x', 'bye', 'exit', 'exit()'], secondary_func.exit_app) s.default(secondary_func.unknown_command) if action: print() if s.result == 'change_mode': return def show_commands(): print('What action would you like to take: ') print('[C]reate an account') print('[L]ogin to your account') print('Log[O]ut of your account') print('[R]eserve a movie ticket') print('[V]iew your movie ticket') print('[S]ee list of available movies') print('Search for [N]earby theaters') print('Search by ca[T]egory') print('[M]ain menu') print('e[X]it app') print('[?] Help (this info)') print() def create_account(): print("****************** REGISTER ******************") print() print("Please provide the following information\n") email = input("Email (required): ").strip().lower() credit_card = input("Credit-card number (required, i.e. 4444333399993333): ").strip() credit_card = int(credit_card) password = getpass().strip() zip_code = input("Zip-code (required): ").strip() zip_code = int(zip_code) first_name = input("What is your first name? ").strip() last_name = input("What is your last name? ").strip() old_account = session.query(Account).filter_by(email=email).first() if old_account: secondary_func.error_msg(f"ERROR: Account with email {email} already exists.") return account = Account( email=email, credit_card=credit_card, password=password, zip_code=zip_code, first_name=first_name, last_name=last_name # exclude theater_owner attribute ) session.add(account) # Flush my_account = session.query(Account).filter_by(email=email).first() session.commit() state.active_account = account secondary_func.success_msg(f"\nCreated new account with id {state.active_account.id}") def log_into_account(): print("****************** LOGIN ******************") email = input("Email: ").strip() password = getpass().strip() account = session.query(Account).filter_by(email=email).first() if not account: secondary_func.error_msg(f"Could not find account with email ({email})") return elif account.password != password: secondary_func.error_msg(f"Password does not match") return state.active_account = account secondary_func.success_msg(f"\nYou are now logged in.") # To help with testing in the Python shell return state.active_account def logout(): if state.active_account is None: print("You are already logged-out.") return state.active_account = None print("You are logged-out.") def list_movies(): print("****************** BROWSE FOR MOVIES ******************") print() # Grab all Movie objects movies = session.query(Movie).filter_by(active=True).all() movies_list = [ i.__dict__.copy() for i in movies ] # movie __dict__ attribute contains _sa_instance_state which isn't useful # popped = [i.pop('_sa_instance_state') for i in movies_list] # create a movie_chunks generator out of movie_list # to generate 3 items at a time movie_chunks = chunks(movies_list, 5) while True: chunked = next(movie_chunks, None) if chunked == None: print("The End") break for i in chunked: print(f"""\nTitle: {i['title']} | Rating: {i['rating']} Description: {i['description']}""") more = input("\n--More--<ENTER>\n") if not more == "": break def browse_by_location(): print("****************** BROWSE FOR MOVIES BY LOCATION ******************") print() zip_code = input("Enter your zipcode: ").strip() zip_code = int(zip_code) theaters = session.query(Theater).filter_by(zip_code=zip_code).all() if not theaters: print("There are no theaters in that zip_code.") by_city = input("Would you like to search by city (Yes or <ENTER to quit>)? ").strip() if by_city == "": return city = input("Enter your city of residence: ").strip() theaters = session.query(Theater).filter_by(city=city).all() if not theaters: print("Sorry, but there are no open theaters in your city.") return for i, theater in enumerate(theaters, 1): movies = theater.movies print(f"""\n{i}. {theater.name} at {theater.address} {theater.zip_code} Open: {theater.open_time.strftime('%H:%M:%S')} | Close: {theater.close_time.strftime('%H:%M:%S')} Prices: {theater.ticket_price} """) print(f"\n{theater.name}'s Movies:\n") if movies: for movie in movies: movie = session.query(Movie).filter_by(id=movie.movie_id).first() print(f"Title: {movie.title} | Rating: {movie.rating}\n") else: print("No movies playing currently due to COVID.") print("Please check back when we get a government that cares about its people.") def browse_by_category(): print("****************** BROWSE FOR MOVIES BY CATEGORY ******************") print() categories = session.query(Category).all() categories_dict = { '1': 'Drama', '2': 'Action', '3': 'Horror', '4': 'Scifi', '5': 'Romance', '6': 'Comedy' } print("Movie categories: \n") for i, category in enumerate(categories, 1): print(f"{i}. {category.category_name}") print() category = input("Which category are you interested in (Enter a number): ").strip() category = session.query(Category).filter_by(category_name=categories_dict[category]).first() movies = category.movies print(f"Movies for category: {category.category_name}\n") for i, movie in enumerate(movies, 1): print(i, movie.title) def purchase_ticket(): print("****************** PURCHASE TICKETS ******************") print() if not state.active_account: print("You must be logged in to purchase a ticket.") return # Get account credentials that were created on registration account = state.active_account # Grab the theater_schedule objects schedules = session.query(theater_schedule).all() print("\nMOVIE THEATER SCHEDULES\n") # List all available movies and theaters and times # with index loop so they can input a number representing an object # that will later get mapped to elements of tuples appended to a list index = 0 for i in schedules: theater = session.query(Theater).filter_by(id=i.theater_id).first() movie = session.query(Movie).filter_by(id=i.movie_id).first() index += 1 print(f"""{index}: {theater.name} {theater.address}, Prices: {theater.ticket_price} {movie.title}, Schedules: {i.time}, Seats: {i.seats_available}\n""") ticket_number = input("\nEnter ticket number: ").strip() ticket_number = int(ticket_number) - 1 quantity = input("How many tickets would you like to purchase: ").strip() quantity = int(quantity) category = input("Which category of tickets (i.e. Adult/Child): ").strip() theaters_list = [] # Creat a tuple of the required information to purchase a ticket # along with an index so the user can select a tuple for i, x in enumerate(schedules, 1): theater = session.query(Theater).filter_by(id=x.theater_id).first() movie = session.query(Movie).filter_by(id=x.movie_id).first() payment_id = random_number_generator() payment_id = int(payment_id) tup = (i, theater.id, movie.id, x.time, payment_id, account.id) theaters_list.append(tup) my_ticket = theaters_list[ticket_number] # I need to figure out the price for the category chosen for # this particular theater outside of the loop because we don't want to do this for every theater my_theater = session.query(Theater).filter_by(id=my_ticket[1]).first() my_movie = session.query(Movie).filter_by(id=my_ticket[2]).first() ticket_price = float(my_theater.ticket_price[category]) total = ticket_price * quantity ticket = Ticket( theater_id=my_ticket[1], movie_id=my_ticket[2], time=my_ticket[3], payment_id=my_ticket[4], account_id=my_ticket[5], quantity=quantity, total=total ) payment = Payment( id=my_ticket[4], credit_card=account.credit_card, paid=True ) session.add(ticket) session.add(payment) session.commit() # I think there's gotta be a better way to do this, but what it's supposed to do # is update the value of seats_available in theater_schedule # everytime someone purchases a ticket my_theater_schedule = session.query(theater_schedule).filter_by( theater_id=my_ticket[1], movie_id=my_ticket[2], time=my_ticket[3] ).first() new_seats_available = my_theater_schedule.seats_available - quantity engine.execute(update(theater_schedule).where(and_(theater_schedule.c.theater_id==my_ticket[1], theater_schedule.c.movie_id==my_ticket[2], theater_schedule.c.time==my_ticket[3])).values(seats_available=new_seats_available)) ticket_receipt = session.query(Ticket).filter_by(id=ticket.id).first() print("\nYour receipt: \n") print(f"""Movie: {my_movie.title} | Location: {my_theater.name} at {my_theater.address} Time: {ticket_receipt.time} | Quantity: {ticket_receipt.quantity} tickets Total Price: ${total} \n Payment Id: {payment.id} | Date of Purchase: {ticket_receipt.created.date()}""") print("\nEnjoy your movie!\n") def view_ticket(): print("****************** VIEW MY CURRENT TICKETS ******************") print() if not state.active_account: print("You must be logged in to view a purchased ticket.") return # Grab account account = state.active_account # Get account-related tickets tickets = session.query(Ticket).filter_by(account_id=account.id).all() # If account has no tickets return if not tickets: return # Return only valid tickets - tickets that were purchased today today = datetime.today().date() print("\nMy Tickets: \n") for ticket in tickets: if ticket.created.date() == today: theater = session.query(Theater).filter_by(id=ticket.theater_id).first() movie = session.query(Movie).filter_by(id=ticket.movie_id).first() payment = session.query(Payment).filter_by(id=ticket.payment_id).first() if not payment.paid: status = 'Unpaid' status = 'Paid' print(f""" Movie: {movie.title} | Location: {theater.name} at {theater.address} Time: {ticket.time} | Quantity: {ticket.quantity} tickets Total Price: ${ticket.total} | Status: {status}\n Payment Id: {ticket.payment_id} | Date of Purchase: {ticket.created.date()}\n """)
python
def _foo(): return "private"
python
from collections import defaultdict from itertools import islice from typing import Dict, List, Optional, Sequence import torch from tango.common.dataset_dict import DatasetDictBase from tango.common.exceptions import ConfigurationError from tango.common.lazy import Lazy from tango.common.tqdm import Tqdm from tango.format import Format, JsonFormat from tango.step import Step from .data import DataLoader from .eval_callback import EvalCallback from .model import Model from .util import check_dataset, move_to_device, resolve_device, set_seed_all @Step.register("torch::eval") class TorchEvalStep(Step): """ A PyTorch evaluation loop that pairs well with :class:`TorchTrainStep`. .. tip:: Registered as a :class:`~tango.step.Step` under the name "torch::eval". .. important:: The evaluation loop will use a GPU automatically if one is available. You can control which GPU it uses with the environment variable ``CUDA_VISIBLE_DEVICES``. For example, set ``CUDA_VISIBLE_DEVICES=1`` to force ``TorchEvalStep`` to only use the GPU with ID 1. .. warning:: By default the metrics specified by the ``metric_names`` parameter are aggregated by simply averaging across batches. This behavior is usually correct for metrics like "loss" or "accuracy", for example, but may not be correct for other metrics like "F1". If this is not correct for your metric you will need to handle the aggregation internally in your model or with an :class:`EvalCallback` using the :meth:`EvalCallback.post_batch()` method. Then set the parameter ``auto_aggregate_metrics`` to ``False``. """ DETERMINISTIC = True CACHEABLE = True FORMAT: Format = JsonFormat() SKIP_ID_ARGUMENTS = {"log_every"} def run( # type: ignore[override] self, model: Model, dataset_dict: DatasetDictBase, dataloader: Lazy[DataLoader], test_split: str = "test", seed: int = 42, eval_steps: Optional[int] = None, log_every: int = 1, metric_names: Sequence[str] = ("loss",), auto_aggregate_metrics: bool = True, callbacks: Optional[List[Lazy[EvalCallback]]] = None, ) -> Dict[str, float]: """ Evaluate the ``model``. :param model: The model to evaluate. It should return a ``dict`` from its ``forward()`` method that includes all of the metrics in ``metric_names`` . :param dataset_dict: Should contain the test data. :param dataloader: The data loader that generates test batches. The batches should be :class:`dict` objects. :param test_split: The name of the data split used for evaluation in the ``dataset_dict``. Default is "test". :param seed: Used to set the RNG states at the beginning of the evaluation loop. :param eval_steps: The number of steps to evaluate for. If not specified evaluation will stop after a complete iteration through the ``dataloader``. :param log_every: Log every this many steps. Default is ``1``. :param metric_names: The names of the metrics to track and aggregate. Default is ``("loss",)``. :param auto_aggregate_metrics: If ``True`` (the default), the metrics will be averaged across batches. This may not be the correct behavior for some metrics (such as F1), in which you should set this to ``False`` and handle the aggregation internally in your model or with an :class:`EvalCallback` (using :meth:`EvalCallback.post_batch()`). :param callbacks: A list of :class:`EvalCallback`. """ set_seed_all(seed) check_dataset(dataset_dict, test_split) # Resolve device. device = resolve_device() # Prep model. model = model.eval().to(device) # Construct dataloader. dataloader: DataLoader = dataloader.construct(dataset=dataset_dict[test_split]) steps: int try: dataloader_len = len(dataloader) steps = dataloader_len if eval_steps is None else min(dataloader_len, eval_steps) except TypeError: if eval_steps is None: raise ConfigurationError( "You must set 'eval_steps' for streaming/iterable datasets" ) else: steps = eval_steps # Initialize callbacks. callbacks: List[EvalCallback] = [ callback.construct( step_id=self.unique_id, work_dir=self.work_dir, model=model, dataset_dict=dataset_dict, dataloader=dataloader, ) for callback in (callbacks or []) ] for callback in callbacks: callback.pre_eval_loop() eval_batches = enumerate(islice(dataloader, steps)) running_metrics: Dict[str, float] = defaultdict(float) aggregated_metrics: Dict[str, float] = {} with Tqdm.tqdm(eval_batches, desc="Evaluating", total=steps) as batch_iter: for step, batch in batch_iter: should_log_this_step = step % log_every == 0 or step == steps - 1 for callback in callbacks: callback.pre_batch(step, batch) batch = move_to_device(batch, device) with torch.inference_mode(): outputs = model(**batch) for callback in callbacks: callback.post_batch(step, outputs) # Gather metrics we want to track. batch_metrics = { k: outputs[k].item() if isinstance(outputs[k], torch.Tensor) else outputs[k] for k in metric_names } # Aggregate metrics. if auto_aggregate_metrics: for k in batch_metrics: running_metrics[k] += batch_metrics[k] aggregated_metrics[k] = running_metrics[k] / (step + 1) else: aggregated_metrics.update(batch_metrics) # Update progress bar. if should_log_this_step: batch_iter.set_postfix(**aggregated_metrics) # Clean up to help garbage collector. Hopefully this saves memory. del batch del outputs del batch_metrics for callback in callbacks: callback.post_eval_loop(aggregated_metrics) return aggregated_metrics
python
import sproxel from zipfile import ZipFile, ZIP_DEFLATED import json import os, sys import imp CUR_VERSION=1 def save_project(filename, proj): # gather layers layers=[] for spr in proj.sprites: for l in spr.layers: if l not in layers: layers.append(l) # prepare metadata meta={} meta['version']=CUR_VERSION meta['layers']=[ dict(name=l.name, offset=l.offset, visible=l.visible, palette = proj.palettes.index(l.palette) if l.palette!=None else -1) for l in layers] meta['sprites']=[ dict(name=s.name, layers=[layers.index(l) for l in s.layers], curLayer=s.curLayerIndex) for s in proj.sprites] meta['palettes']=[ dict(name=p.name, colors=p.colors) for p in proj.palettes] meta['mainPalette']=proj.palettes.index(proj.mainPalette) # write zip file with ZipFile(filename, 'w', ZIP_DEFLATED) as zf: zf.writestr('metadata.json', json.dumps(meta, sort_keys=True, indent=2)) for i, l in enumerate(layers): zf.writestr('%04d.png' % i, l.toPNG()) return True def load_project(filename): prj=sproxel.Project() with ZipFile(filename, 'r') as zf: meta=json.loads(zf.read('metadata.json')) # load palettes palettes=[] for mp in meta['palettes']: p=sproxel.Palette() p.name=mp['name'] p.colors=[tuple(c) for c in mp['colors']] palettes.append(p) prj.palettes=palettes try: prj.mainPalette=palettes[meta['mainPalette']] except IndexError: try: prj.mainPalette=palettes[0] except IndexError: prj.mainPalette=sproxel.Palette() # load layers layers=[] for i, ml in enumerate(meta['layers']): l=sproxel.layer_from_png(zf.read('%04d.png' % i), prj.palettes[ml['palette']] if ml['palette']>=0 else None) l.name =ml['name' ] l.offset =tuple(ml['offset']) l.visible=ml['visible'] print 'layer', i, 'type', l.dataType layers.append(l) # load sprites sprites=[] for ms in meta['sprites']: s=sproxel.Sprite() s.name=ms['name'] for i, li in enumerate(ms['layers']): l=layers[li] s.insertLayerAbove(i, l) s.curLayerIndex=ms['curLayer'] sprites.append(s) prj.sprites=sprites #print prj.sprites return prj def init_plugin_pathes(): sproxel.plugin_pathes=[os.path.abspath(p) for p in sproxel.plugin_pathes] sys.path=sproxel.plugin_pathes+sys.path def scan_plugin_module(name, fn): mod=imp.load_source(name, fn) try: info=mod.plugin_info except KeyError: return print ' plugin', name, fn info['module']=name info['path']=fn sproxel.plugins_info[name]=info sproxel.plugins[name]=mod def scan_plugins(): sproxel.plugins_info=dict() sproxel.plugins=dict() for path in sproxel.plugin_pathes: #print 'scanning', path for name in os.listdir(path): fn=os.path.join(path, name) if os.path.isdir(fn): fn=os.path.join(fn, '__init__.py') if os.path.isfile(fn): scan_plugin_module(name, fn) else: modname, ext = os.path.splitext(name) if ext.lower()=='.py': scan_plugin_module(modname, fn) def register_plugins(): for mod in sproxel.plugins.itervalues(): if hasattr(mod, 'register'): print 'registering plugin', mod.plugin_info['module'] try: mod.register() except: sys.excepthook(*sys.exc_info()) print 'error registering plugin', mod.plugin_info['name'] def unregister_plugins(): for mod in sproxel.plugins.itervalues(): if hasattr(mod, 'unregister'): print 'unregistering plugin', mod.plugin_info['module'] try: mod.unregister() except: sys.excepthook(*sys.exc_info()) print 'error unregistering plugin', mod.plugin_info['name']
python
import uuid from django.db import models class Dice(models.Model): sides = models.PositiveIntegerField() class Roll(models.Model): roll = models.PositiveIntegerField() class DiceSequence(models.Model): uuid = models.UUIDField(primary_key=False, default=uuid.uuid4, editable=True, unique=True) seq_name = models.CharField(max_length=256) created = models.DateTimeField(auto_now_add=True) owner = models.ForeignKey('auth.User', related_name='dice_sequence', on_delete=models.CASCADE) sequence = models.ManyToManyField(Dice) class RollSequence(models.Model): created = models.DateTimeField(auto_now_add=True) owner = models.ForeignKey('auth.User', related_name='roll_sequence', on_delete=models.CASCADE) roll_sequence = models.ManyToManyField(Roll) dice_sequence = models.ForeignKey(DiceSequence, related_name='+', on_delete=models.PROTECT) class Meta: ordering = ('created',)
python
class Solution(object): def XXX(self, n): """ :type n: int :rtype: str """ if not isinstance(n, int): return "" if n == 1: return "1" pre_value = self.XXX(n-1) # 递归 # 双指针解法 i = 0 res = "" for j in range(len(pre_value)): if pre_value[j] != pre_value[i]: res += str(j-i) + pre_value[i] i = j res += str(len(pre_value)-i) + pre_value[i] return res
python
# -*- coding: utf-8 -*- from django.conf import settings import requests from sendsms.backends.base import BaseSmsBackend TINIYO_API_URL = "https://api.tiniyo.com/v1/Account/SENDSMS_TINIYO_TOKEN_ID/Message" TINIYO_TOKEN_ID = getattr(settings, "SENDSMS_TINIYO_TOKEN_ID", "") TINIYO_TOKEN_SECRET = getattr(settings, "SENDSMS_TINIYO_TOKEN_SECRET", "") class SmsBackend(BaseSmsBackend): """ Tiniyo gateway backend. (https://tiniyo.com) Docs in https://tiniyo.com/docs/#/quickstart Settings:: SENDSMS_BACKEND = 'sendsms.backends.tiniyo.SmsBackend' SENDSMS_TINIYO_TOKEN_ID = 'xxx' SENDSMS_TINIYO_TOKEN_SECRET = 'xxx' Usage:: from sendsms import api api.send_sms( body='This is first sms to tiniyo', from_phone='TINIYO', to=['+13525051111'] ) """ def send_messages(self, messages): payload = [] for m in messages: entry = {"src": m.from_phone, "dst": m.to, "text": m.body} payload.append(entry) api_url = TINIYO_API_URL.replace("SENDSMS_TINIYO_TOKEN_ID", TINIYO_TOKEN_ID) response = requests.post( api_url, json=payload, auth=(TINIYO_TOKEN_ID, TINIYO_TOKEN_SECRET) ) if response.status_code != 200: if self.fail_silently: return False raise Exception( "Error: %d: %s" % (response.status_code, response.content.decode("utf-8")) ) return True
python
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn from fairseq.models.transformer import TransformerEncoder from .linformer_sentence_encoder_layer import LinformerTransformerEncoderLayer class LinformerTransformerEncoder(TransformerEncoder): """ Implementation for a Bi-directional Linformer based Sentence Encoder used in BERT/XLM style pre-trained models. This first computes the token embedding using the token embedding matrix, position embeddings (if specified) and segment embeddings (if specified). After applying the specified number of LinformerEncoderLayers, it outputs all the internal states of the encoder as well as the final representation associated with the first token (usually CLS token). Input: - tokens: B x T matrix representing sentences - segment_labels: B x T matrix representing segment label for tokens Output: - a tuple of the following: - a list of internal model states used to compute the predictions where each tensor has shape T x B x C - sentence representation associated with first input token in format B x C. """ def __init__(self, args, dictionary, embed_tokens): self.compress_layer = None super().__init__(args, dictionary, embed_tokens) def build_encoder_layer(self, args): if self.args.shared_layer_kv_compressed == 1 and self.compress_layer is None: compress_layer = nn.Linear( self.args.max_positions, self.args.max_positions // self.args.compressed, ) # intialize parameters for compressed layer nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2)) if self.args.freeze_compress == 1: compress_layer.weight.requires_grad = False self.compress_layer = compress_layer return LinformerTransformerEncoderLayer(args, self.compress_layer)
python
# file arrange, remove, rename import os import astropy.io.fits as fits def oswalkfunc(): f=open('oswalk.list','w') #workDIr = os.path.abspath(b'.') for root, dirs, files in os.walk('.'): # os.walk(".", topdown = False): # all files with path names for name in files: #print(os.path.join(root, name)) f.write(os.path.join(root, name)+'\n') f.close() with open('oswalk.list','r') as file_handle: lines = file_handle.read().splitlines() print(len(lines),'files') return lines # lines = [line.strip() for line in file_handle] def fnamechange(ii): #for CCA250 i=ii.split('/')[-1] head=fits.getheader(ii) objname=head['OBJECT'] dateobs=head['DATE-OBS'] datestr=dateobs[:4]+dateobs[5:7]+dateobs[8:10]+'-'+dateobs[11:13]+dateobs[14:16]+dateobs[17:20] filterstr=head['FILTER'] exptimestr=str(int(head['EXPTIME'])) newname='Calib-CCA250-'+objname+'-'+datestr+'-'+filterstr+'-'+exptimestr+'.fits' print('cp '+ii+' '+'/'.join(ii.split('/')[:-1])+'/'+newname) os.system('cp '+ii+' '+'/'.join(ii.split('/')[:-1])+'/'+newname) def LSGTfilechange(ii): # From Calib-LSGT-NGC3367-20180519-220208-g-BIN1-W-180-003.fits # To Calib-LSGT-NGC3367-20180519-220208-g-180.fits i=ii.split('/')[-1] frag=i.split('-') frag[0]=='Calib' # if frag[1]=='T52' : obs='LSGT' # else : obs=frag[1] finalname='Calib-LSGT'+'-'+frag[2]+'-'+frag[3]+'-'+frag[4]+'-'+frag[5]+'-'+frag[8]+'.fits' os.system('mv '+ii+' '+'/'.join(ii.split('/')[:-1])+'/'+finalname) def iTelfilechange(ii): # From Calib-T21-ceouobs.changsu-NGC3367-20161130-042831-R-BIN1-E-180-003.fits # To Calib-T21-NGC3367-20161130-042831-R-180.fits i=ii.split('/')[-1] frag=i.split('-') frag[0]=='Calib' # if frag[1]=='T52' : obs='LSGT' # else : obs=frag[1] #finalname='Calib-'+ frag[1] +'-'+frag[2]+'-'+frag[3]+'-'+frag[4]+'-'+frag[5]+'-'+frag[8]+'.fits' finalname='Calib-'+ frag[1] +'-'+frag[3]+'-'+frag[4]+'-'+frag[5]+'-'+frag[6]+'-'+frag[9]+'.fits' os.system('mv '+ii+' '+'/'.join(ii.split('/')[:-1])+'/'+finalname) def simplerename(ii,a,b): ''' simplerename(filename, from, to) ''' import os #i=ii.split('/')[-1] os.system('rename '+a+' '+b+' '+ii) def oswalknamesep(i): filename=i.split('/')[-1] head='/'.join(i.split('/')[:-1])+'/' return filename, head ########################################################################### lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] files=os.listdir('.') dirs=[i for i in files if os.path.isdir(i)] lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] for i in lines : if ('Cal' in i and 'psf' in i) or ('merge.cat' in i) or ('Cal' in i and '.xml' in i) or ('Cal' in i and '.png' in i) or ('Cal' in i and '.cat' in i) or ('Cal' in i and 'seg' in i) or ('hdre' in i ) or ('reCal' in i ) or ('recCal' in i) or ('wr' in i and '.fit' in i) or ('gregister' in i) : # if 'com.cat' in i : print('remove', i) os.remove(i) ## LSGT lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] for i in fitslist : if 'cCalib' in i : print('rename', i) os.system('rename cCalib Calib '+i) lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] for i in fitslist : if 'Calibrated' in i : print('rename', i) os.system('rename Calibrated Calib '+i) lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] for i in fitslist : if 'T52-ceouobs.changsu' in i : print('rename', i) os.system('rename T52-ceouobs.changsu LSGT '+i) if 'T52-ceouobs.joonho' in i : print('rename', i) os.system('rename T52-ceouobs.joonho LSGT '+i) lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] for i in fitslist : if ('LSGT' in i) and ('BIN' in i) : print('rename', i) LSGTfilechange(i) ## CCA250 lines= oswalkfunc() lines.sort() for i in lines: if 'CCA250' in i and '.new' in i : print('rename & remove', i) fnamechange(i) os.remove(i) lines= oswalkfunc() lines.sort() for i in lines : if 'CCA250' in i: os.system('rename NGC3367-18 NGC3367-2018 '+i) os.system('rename NGC3367-17 NGC3367-2017 '+i) os.system('rename Calibrated Calib '+i) os.system('rename 0.0.fits 0.fits '+i) os.system('rename 00.fits .fits '+i) os.system('rename ..fits .fits '+i) ## CCA250 directory and files os.chdir('CCA250') os.system('rename 100-c 100c Calib*.fits') os.system('mv *-m575-* m575/') os.system('mv *-m625-* m625/') os.system('mv *-m675-* m675/') os.system('mv *-m725-* m725/') os.system('mv *-m775-* m775/') os.system('mv *-V-* V/') os.system('mv *-R-* R/') os.chdir('c') os.system('rename 100-c 100c Calib*.fits') os.system('mv *-100c-* ../100c') os.chdir('..') os.rmdir('c') os.system('rename NGC3367-18 NGC3367-2018 Calib*.fits') os.system('rename NGC3367-17 NGC3367-2017 Calib*.fits') os.system('rename 0.0.fits 0.fits Calib*.fits') os.system('rename 00.fits .fits Calib*.fits') os.system('rename ..fits .fits Calib*.fits') ## itelescope T21 lines= oswalkfunc() lines.sort() for i in lines : if 'Calib-T21-ceou' in i: print('file name :',i) iTelfilechange(i) ## MAO SNUCAM lines= oswalkfunc() lines.sort() for i in lines : if 'SNUCAM' in i : if ('reaCal' in i) or ('reCal' in i) or ('aCalib' in i) or('Calib-MAIDANAK' in i): print('remove',i) os.remove(i) ## MCD30INCH lines= oswalkfunc() lines.sort() for i in lines: if 'MCD30INCH' in i : print(i) if not 'Calib-MCD30INCH' in i: print( 'rename ',i) simplerename(i,'Cal-30inch','Calib-MCD30INCH') ''' !rename Cal-30inch Calib-MCD30INCH Cal*.fits !rename Calib-30inch Calib-MCD30INCH Cal*.fits !rename Calib-MCD30inch Calib-MCD30INCH Cal*.fits ''' ## SOAO lines= oswalkfunc() lines.sort() for i in lines: if 'SOAO' in i and 'SOAO_FLI' in i: print ('rename',i) simplerename(i,'SOAO_FLI','SOAO') if 'SOAO' in i and 'SOAO_FLI4k' in i: print ('rename',i) simplerename(i,'SOAO_FLI4k','SOAO') if 'SOAO' in i and 'SOAO4k' in i: print ('rename',i) simplerename(i,'SOAO4k','SOAO') ## DOAO lines= oswalkfunc() lines.sort() fitslist= [s for s in lines if s.split('/')[-1][-5:]=='.fits'] print(len(fitslist)) for i in fitslist: if 'gregister' in i: os.remove(i) lines= oswalkfunc() lines.sort()
python
from django.db import models class TrackedModel(models.Model): """ a model which keeps track of creation and last updated time """ created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: abstract = True
python
# -*- coding: utf-8 -*- ''' Created by 15 cm on 11/22/15 3:20 PM Copyright © 2015 15cm. All rights reserved. ''' __author__ = '15cm' import json import urllib2 import multiprocessing import numpy as np from PIL import Image import io import os CURPATH = os.path.split(os.path.realpath(__file__))[0] DATAPATH = os.path.join(os.path.dirname(CURPATH),'dataset') def download_stuff(stuff): image_bytes = urllib2.urlopen(stuff.link).read() data_stream = io.BytesIO(image_bytes) pil_image = Image.open(data_stream) try: pil_image.load() except IOError: pass w,h = pil_image.size pil_image.thumbnail((w/3,h/3)) pil_image.save(os.path.join(DATAPATH,str(stuff.id)+'.jpg'),'jpeg') class DataHandler: class ImageData: def __init__(self,id,link,label): self.id = id self.link = link self.label = label def __init__(self): self.data = [] # [(link,label),...] self.label_dict = {} self.label_list = [] self.data_file = os.path.join(DATAPATH,'data.txt') self.label_list_file = os.path.join(DATAPATH,'label_list.json') def label_filter(self,s): # valid_word_list = ['衣','裙','裤','长','大','短','单','套','衫','毛'] valid_word_list = ['裙','衣','裤'] valid_word_set = set((map(lambda x: x.decode('utf-8'),valid_word_list))) res_str = '' if not isinstance(s,unicode): s = s.decode('utf-8') for word in s: if word in valid_word_set: res_str += word break if not res_str: res_str = '其他'.decode('utf-8') return res_str.encode('utf-8') def parse_data(self,json_file): file = os.path.join(DATAPATH,json_file) with open(file) as f: json_content = json.load(f) for item in json_content: id=int(item['id']) label = self.label_filter(item['sub_category']) link = item['picture'] if not self.label_dict.has_key(label): self.label_list.append(label) self.label_dict[label] = len(self.label_list) - 1 self.data.append(self.ImageData(id, link, self.label_dict[label])) def download(self,num = -1,id_geq = 0): if num > 0: data = [x for x in self.data if x.id < num and x.id > id_geq] else: data = [x for x in self.data if x.id > id_geq] pool = multiprocessing.Pool(processes=5) pool.map(download_stuff,data) def save(self): # data_matrix: # id label # ... ... data_matrix = np.empty((len(self.data),2)) for i in range(len(self.data)): data_matrix[i][0] = self.data[i].id data_matrix[i][1] = self.data[i].label np.savetxt(self.data_file,data_matrix) with open(self.label_list_file,'w') as f: json.dump(self.label_list,f) def load(self): self.data_matrix = np.loadtxt(self.data_file) with open(self.label_list_file) as f: self.label_list = json.load(f) def get_lables(self,id = -1): if id >= 0: return self.data_matrix[id][1] else: return self.data_matrix[:,1] def tell_label(self,label): return self.label_list[label]
python
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from __future__ import absolute_import from .pygame_component import Pygame from .pygame_surface import PygameSurface from .blit_surface import BlitSurface from .blocking_pygame_event_pump import BlockingPygameEventPump from .color_fill import ColorFill from .draw_on_resized import DrawOnResized from .resize_event_on_videoresize import ResizeEventOnVideoresize from .surface_draw_event import SurfaceDrawEvent
python
#!/usr/bin/python ''' (C) Copyright 2018-2019 Intel Corporation. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. GOVERNMENT LICENSE RIGHTS-OPEN SOURCE SOFTWARE The Government's rights to use, modify, reproduce, release, perform, display, or disclose this software are subject to the terms of the Apache License as provided in Contract No. B609815. Any reproduction of computer software, computer software documentation, or portions thereof marked with this legend must also reproduce the markings. ''' from __future__ import print_function import os import traceback from apricot import TestWithServers from daos_api import DaosPool, DaosServer, DaosApiError class PoolSvc(TestWithServers): """ Tests svc argument while pool create. :avocado: recursive """ def tearDown(self): try: if self.pool is not None and self.pool.attached: self.pool.destroy(1) finally: super(PoolSvc, self).tearDown() def test_poolsvc(self): """ Test svc arg during pool create. :avocado: tags=pool,svc """ # parameters used in pool create createmode = self.params.get("mode", '/run/createtests/createmode/*/') createuid = os.geteuid() creategid = os.getegid() createsetid = self.params.get("setname", '/run/createtests/createset/') createsize = self.params.get("size", '/run/createtests/createsize/') createsvc = self.params.get("svc", '/run/createtests/createsvc/*/') expected_result = createsvc[1] try: # initialize a python pool object then create the underlying # daos storage self.pool = DaosPool(self.context) self.pool.create(createmode, createuid, creategid, createsize, createsetid, None, None, createsvc[0]) self.pool.connect(1 << 1) # checking returned rank list for server more than 1 iterator = 0 while ( int(self.pool.svc.rl_ranks[iterator]) > 0 and int(self.pool.svc.rl_ranks[iterator]) <= createsvc[0] and int(self.pool.svc.rl_ranks[iterator]) != 999999 ): iterator += 1 if iterator != createsvc[0]: self.fail("Length of Returned Rank list is not equal to " "the number of Pool Service members.\n") rank_list = [] for iterator in range(createsvc[0]): rank_list.append(int(self.pool.svc.rl_ranks[iterator])) if len(rank_list) != len(set(rank_list)): self.fail("Duplicate values in returned rank list") self.pool.pool_query() leader = self.pool.pool_info.pi_leader if createsvc[0] == 3: # kill pool leader and exclude it self.pool.pool_svc_stop() self.pool.exclude([leader]) # perform pool disconnect, try connect again and disconnect self.pool.disconnect() self.pool.connect(1 << 1) self.pool.disconnect() # kill another server which is not a leader and exclude it server = DaosServer(self.context, self.server_group, leader - 1) server.kill(1) self.pool.exclude([leader - 1]) # perform pool connect self.pool.connect(1 << 1) if expected_result in ['FAIL']: self.fail("Test was expected to fail but it passed.\n") except DaosApiError as excep: print(excep) print(traceback.format_exc()) if expected_result == 'PASS': self.fail("Test was expected to pass but it failed.\n")
python
from UE4Parse.BinaryReader import BinaryStream class FPathHashIndexEntry: FileName: str Location: int def __init__(self, reader: BinaryStream): self.FileName = reader.readFString() self.Location = reader.readInt32()
python
from typing import List import cv2 from vision.domain.iCamera import ICamera from vision.domain.iCameraFactory import ICameraFactory from vision.infrastructure.cvCamera import CvCamera from vision.infrastructure.cvVisionException import CameraDoesNotExistError from vision.infrastructure.fileCamera import FileCamera class CvCameraFactory(ICameraFactory): def __init__(self, max_camera_count: int = 10) -> None: self._max_camera_count = max_camera_count self._cameras: List[int] = [1337] self._find_all_camera() def get_cameras(self) -> List[int]: return self._cameras def create_camera(self, index: int) -> ICamera: if index not in self._cameras: raise CameraDoesNotExistError(index) if index == 1337: return FileCamera('./vision/infrastructure/2.jpg') return CvCamera(index) def _find_all_camera(self) -> None: index = 0 while index < self._max_camera_count: cap = cv2.VideoCapture(index) if cap.isOpened(): cap.release() self._cameras.append(index) index += 1
python
import contextlib import logging import six import py.test _LOGGING_CONFIGURED_STREAM = None @py.test.fixture(scope="session") def streamconfig(): global _LOGGING_CONFIGURED_STREAM if not _LOGGING_CONFIGURED_STREAM: _LOGGING_CONFIGURED_STREAM = six.StringIO() logging.basicConfig( stream=_LOGGING_CONFIGURED_STREAM, level=logging.INFO ) @contextlib.contextmanager def manager(): _LOGGING_CONFIGURED_STREAM.truncate(0) # reset stream _LOGGING_CONFIGURED_STREAM.seek(0) # rewind stream yield _LOGGING_CONFIGURED_STREAM _LOGGING_CONFIGURED_STREAM.seek(0) # rewind stream return manager _MESSAGES = ( "Hello world", "My hovercraft is full of eels", "49.3", ) @py.test.fixture(scope="function", params=_MESSAGES) def message(request): return request.param _MODULE_NAMES = ( "tests.mountains", "tests.music.instruments.cymbal", "tests.music", "tests.discombobulate", "tests.music.instruments", "tests.mountains.ventoux", ) @py.test.fixture(scope="function", params=_MODULE_NAMES) def module_name(request): return request.param
python
import re # Solution def part1(data, multiplier = 1): pattern = r'\d+' (player_count, marble_count) = re.findall(pattern, data) (player_count, marble_count) = (int(player_count), int(marble_count) * multiplier) players = [0] * player_count marbles = DoubleLinkedList(0) k = 0 for i in range(1, marble_count + 1): if i % 23 == 0: players[k] += (i + marbles.remove_node()) else: marbles.add_node(i) k = (k + 1) % player_count return max(x for x in players) def part2(data, multiplier): return part1(data, 100) class DoubleLinkedList: def __init__(self, initial_value): initial_node = DoubleLinkedListNode(initial_value) initial_node.prev = initial_node initial_node.next = initial_node self.current = initial_node def add_node(self, node_value): left = self.current.next right = self.current.next.next new_node = DoubleLinkedListNode(node_value, left, right) left.next = new_node right.prev = new_node self.current = new_node def remove_node(self): for _ in range(7): self.current = self.current.prev val = self.current.value self.current.prev.next = self.current.next self.current.next.prev = self.current.prev self.current = self.current.next return val class DoubleLinkedListNode: def __init__(self, value, prev = None, next = None): self.value = value self.prev = prev self.next = next # Tests def test(expected, actual): assert expected == actual, 'Expected: %r, Actual: %r' % (expected, actual) test(32, part1('9 players; last marble is worth 25 points')) test(8317, part1('10 players; last marble is worth 1618 points')) test(146373, part1('13 players; last marble is worth 7999 points')) test(2764, part1('17 players; last marble is worth 1104 points')) test(54718, part1('21 players; last marble is worth 6111 points')) test(37305, part1('30 players; last marble is worth 5807 points')) test(8317, part1('10 players; last marble is worth 1618 points')) # Solve real puzzle filename = 'data/day09.txt' data = [line.rstrip('\n') for line in open(filename, 'r')][0] print('Day 09, part 1: %r' % (part1(data))) print('Day 09, part 2: %r' % (part2(data, 100)))
python
# -*- coding: utf-8 -*- import hexchat import re __module_name__ = "DeadKeyFix" __module_version__ = "2.2" __module_description__ = "Fixes the Us-International deadkey issue" prev = '' def keypress_cb(word, word_eol, userdata): global prev specialChars = { '65104': { 'a': u'à', 'o': u'ò', 'e': u'è', 'i': u'ì', 'u': u'ù', 'A': u'À', 'O': u'Ò', 'E': u'È', 'I': u'Ì', 'U': u'Ù' }, '65105': { 'a': u'á', 'o': u'ó', 'e': u'é', 'i': u'í', 'u': u'ú', 'y': u'ý', 'c': u'ç', 'A': u'Á', 'O': u'Ó', 'E': u'É', 'I': u'Í', 'U': u'Ú', 'Y': u'Ý', 'C': u'Ç' }, '65106': { 'a': u'â', 'o': u'ô', 'e': u'ê', 'i': u'î', 'u': u'û', 'A': u'Â', 'O': u'Ô', 'E': u'Ê', 'I': u'Î', 'U': u'Û' }, '65107': { 'a': u'ã', 'o': u'õ', 'n': u'ñ', 'A': u'Ã', 'O': u'Õ', 'N': u'Ñ' }, '65111': { 'a': u'ä', 'o': u'ö', 'e': u'ë', 'i': u'ï', 'u': u'ü', 'y': u'ÿ', 'A': u'Ä', 'O': u'Ö', 'E': u'Ë', 'I': u'Ï', 'U': u'Ü', 'Y': u'Ÿ' } } accents = { '65104': '`', '65105': "'", '65106': '^', '65107': '~', '65111': '"' } charset = hexchat.get_info('charset') #When there is no current charset derived from server or channel it is set to IRC #IRC is not a recognized encoding type so default to utf-8 in that case. if(charset == "IRC"): charset = "utf-8" text = hexchat.get_info('inputbox') loc = hexchat.get_prefs("state_cursor") if prev in accents and word[2] in specialChars[prev]: #insert an accented character text = insert(specialChars[prev][word[2]],text,loc) elif prev in accents and word[2] == ' ': #insert a clean accent ( input was accent followed by space ) text = insert(accents[prev],text,loc) elif prev in accents and word[0] in accents: #Insert two accents ( input was accent followed by accent ) text = insert(accents[prev] + accents[word[0]],text,loc) loc+=1 elif prev in accents and int(word[3]) != 0: #insert an accent and a character (character and accent do not combine) text = insert(accents[prev] + word[2],text,loc) loc+=1 elif word[0] in accents: #store an accent input prev = word[0] return else: #regular character input if int(word[3]) != 0: prev = '' return prev = '' settex = u"settext " + text hexchat.command( settex ) hexchat.command('setcursor {}'.format(loc+1)) return hexchat.EAT_HEXCHAT def unload_cb(userdata): print(__module_name__, 'version', __module_version__, 'unloaded.') def insert(char,text,loc): return u"{}{}{}".format(text[:loc] , char , text[loc:]) hexchat.hook_print('Key Press', keypress_cb) hexchat.hook_unload(unload_cb) print(__module_name__, 'version', __module_version__, 'loaded.')
python
import FWCore.ParameterSet.Config as cms process = cms.Process("TREESPLITTER") process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(0) ) process.TreeSplitterModule = cms.EDAnalyzer( "TreeSplitter", InputFileName = cms.string("/afs/cern.ch/user/d/demattia/scratch0/MuScleFit/CMSSW_3_11_0/src/MuonAnalysis/MomentumScaleCalibration/test/StatisticalErrors/Tree_MCFall2010_INNtk_CRAFTRealistic_wGEN.root"), OutputFileName = cms.string("SubSample.root"), MaxEvents = cms.int32(MAXEVENTS), SubSampleFirstEvent = cms.uint32(SUBSAMPLEFIRSTEVENT), SubSampleMaxEvents = cms.uint32(SUBSAMPLEMAXEVENTS) ) process.p1 = cms.Path(process.TreeSplitterModule)
python
# This is an automatically generated file. # DO NOT EDIT or your changes may be overwritten import base64 from xdrlib import Packer, Unpacker from .ledger_close_value_signature import LedgerCloseValueSignature from .stellar_value_type import StellarValueType from ..exceptions import ValueError __all__ = ["StellarValueExt"] class StellarValueExt: """ XDR Source Code ---------------------------------------------------------------- union switch (StellarValueType v) { case STELLAR_VALUE_BASIC: void; case STELLAR_VALUE_SIGNED: LedgerCloseValueSignature lcValueSignature; } ---------------------------------------------------------------- """ def __init__( self, v: StellarValueType, lc_value_signature: LedgerCloseValueSignature = None, ) -> None: self.v = v self.lc_value_signature = lc_value_signature def pack(self, packer: Packer) -> None: self.v.pack(packer) if self.v == StellarValueType.STELLAR_VALUE_BASIC: return if self.v == StellarValueType.STELLAR_VALUE_SIGNED: if self.lc_value_signature is None: raise ValueError("lc_value_signature should not be None.") self.lc_value_signature.pack(packer) return raise ValueError("Invalid v.") @classmethod def unpack(cls, unpacker: Unpacker) -> "StellarValueExt": v = StellarValueType.unpack(unpacker) if v == StellarValueType.STELLAR_VALUE_BASIC: return cls(v) if v == StellarValueType.STELLAR_VALUE_SIGNED: lc_value_signature = LedgerCloseValueSignature.unpack(unpacker) if lc_value_signature is None: raise ValueError("lc_value_signature should not be None.") return cls(v, lc_value_signature=lc_value_signature) raise ValueError("Invalid v.") def to_xdr_bytes(self) -> bytes: packer = Packer() self.pack(packer) return packer.get_buffer() @classmethod def from_xdr_bytes(cls, xdr: bytes) -> "StellarValueExt": unpacker = Unpacker(xdr) return cls.unpack(unpacker) def to_xdr(self) -> str: xdr_bytes = self.to_xdr_bytes() return base64.b64encode(xdr_bytes).decode() @classmethod def from_xdr(cls, xdr: str) -> "StellarValueExt": xdr_bytes = base64.b64decode(xdr.encode()) return cls.from_xdr_bytes(xdr_bytes) def __eq__(self, other: object): if not isinstance(other, self.__class__): return NotImplemented return self.v == other.v and self.lc_value_signature == other.lc_value_signature def __str__(self): out = [] out.append(f"v={self.v}") out.append( f"lc_value_signature={self.lc_value_signature}" ) if self.lc_value_signature is not None else None return f"<StellarValueExt {[', '.join(out)]}>"
python
import setuptools def get_requires(filename): requirements = [] with open(filename) as req_file: for line in req_file.read().splitlines(): if not line.strip().startswith("#"): requirements.append(line) return requirements with open("Readme.md", "r", encoding="utf8") as fh: long_description = fh.read() setuptools.setup( name="recap", version="1.0.0", author="Croydon", author_email="[email protected]", description="An example how a testing environment can look like in Python", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Croydon/pt-recap", packages=setuptools.find_packages(exclude=["tests"]), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], keywords=["testing", "requests", "calculations", "templates"], install_requires=get_requires("requirements.txt"), extras_require={ "test": get_requires("requirements_test.txt") }, package_data={ '': ['*.md'], '': ['data/*.tmpl'] }, entry_points={ 'console_scripts': [ 'recap=recap.main:run', ], }, )
python
REGISTRY = {} from .sc_agent import SCAgent from .rnn_agent import RNNAgent from .latent_ce_dis_rnn_agent import LatentCEDisRNNAgent REGISTRY["rnn"] = RNNAgent REGISTRY["latent_ce_dis_rnn"] = LatentCEDisRNNAgent REGISTRY["sc"] = SCAgent
python
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the Apache License Version 2.0. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License Version 2.0 for more details. # ============================================================================ import tensorflow as tf from tensorflow.python.keras import layers as keras_layers class FeedForwardNetwork(keras_layers.Layer): def __init__(self, hidden_size, filter_size, relu_dropout): super(FeedForwardNetwork, self).__init__() self.hidden_size = hidden_size self.filter_size = filter_size self.relu_dropout = relu_dropout self.filter_dense_layer = keras_layers.Dense( filter_size, use_bias=True, activation=tf.nn.relu, name="filter_layer") self.output_dense_layer = keras_layers.Dense( hidden_size, use_bias=True, name="output_layer") def call(self, x, training): """ Args: x: A tensor with shape [batch_size, length, hidden_size] training (boolean): whether in training mode or not. Returns: Output of the feedforward network. tensor with shape [batch_size, length, hidden_size] """ # input_shape = tf.shape(x) # batch_size, length = input_shape[0], input_shape[1] output = self.filter_dense_layer(x) if training: output = tf.nn.dropout(output, rate=self.relu_dropout) output = self.output_dense_layer(output) return output
python
# -*- coding: utf-8 -*- # # Copyright 2017 CPqD. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ @author: Akira Miasato Audio generation examples. Generators should always yield bytestrings. Our ASR interface only supports linear PCM with little-endian signed 16bit samples. Their length may be variable, as long as they are smaller than the predefined maximum payload size from the configured websocket connection, and the length of each bytestring is modulo 0 with the size of the sample (i.e. is even in length). """ import soundfile as sf import pyaudio import time class MicAudioSource: """ Simple microphone reader. chunk_size is in samples, so the size in bytes of the sent packet is sizeof(<sample_type>) * chunk_size. This value should be smaller than the predefined maximum payload from the configured websocket connection. :sample_rate: Sample rate for the captured audio :sample_type: Sample type provided by pyaudio :chunk_size: Size of the blocks of audio which will be sent (in samples) :yields: bytestrings of size <chunk_size> * sizeof(<sample_type>) Does not terminate. When used inside a SpeechRecognition instance, it is halted when the recognition instance is cancelled or closed. """ def __init__(self, sample_rate=8000, sample_type=pyaudio.paInt16, chunk_size=4096): self._audio = pyaudio.PyAudio() self._sample_rate = sample_rate self._sample_type = sample_type self._chunk_size = chunk_size def __enter__(self): self._stream = self._audio.open( format=self._sample_type, channels=1, rate=self._sample_rate, input=True, frames_per_buffer=self._chunk_size, ) return self def __exit__(self, etype, value, traceback): self._stream.stop_stream() self._stream.close() def __iter__(self): return self def __next__(self): if not self._stream.is_active: raise StopIteration return self._stream.read(self._chunk_size) def FileAudioSource(path, chunk_size=4096): """ Simple audio file reader. Should be compatible with all files supported by 'soundfile' package. chunk_size is in samples, so the size in bytes of the sent packet is 2*chunk_size, since we are sending 16-bit signed PCM samples. chunk_size*2 should be smaller than the predefined maximum payload from the configured websocket connection. :path: Path to the audio input (any format supported by soundfile package) :chunk_size: Size of the blocks of audio which will be sent (in samples) :yields: bytestrings of size <chunk_size> * 2 Terminates when the audio file provided has no more content """ f = open(path, "rb") bytestr = f.read(chunk_size) while bytestr: yield bytestr bytestr = f.read(chunk_size) class BufferAudioSource: """ Very simple buffer source. This generator has a "write" method which updates its internal buffer, which is periodically consumed by the ASR instance in which it is inserted. :buffer_size: Size of the internal buffer (in bytes) :yields: bytestrings of size <buffer_size> Terminates only if the "finish" method is called, in which case the remaining buffer is sent regardless of its size. """ def __init__(self, chunk_size=4096): self._buffer = b"" self._chunk_size = chunk_size self._finished = False def __iter__(self): return self def __next__(self): while True: if len(self._buffer) >= self._chunk_size: r = self._buffer[: self._chunk_size] self._buffer = self._buffer[self._chunk_size :] return r elif self._finished: if self._buffer: r = self._buffer self._buffer = b"" return r else: raise StopIteration time.sleep(0.05) def write(self, byte_str): """ Writes to the buffer. :byte_str: A byte string (char array). Currently only 16-bit signed little-endian linear PCM is accepted. """ self._finished = False self._buffer += byte_str def finish(self): """ Signals the ASR instance that one's finished writing and is now waiting for the recognition result. """ self._finished = True
python
# # @lc app=leetcode id=160 lang=python3 # # [160] Intersection of Two Linked Lists # # https://leetcode.com/problems/intersection-of-two-linked-lists/description/ # # algorithms # Easy (39.05%) # Likes: 3257 # Dislikes: 372 # Total Accepted: 438K # Total Submissions: 1.1M # Testcase Example: '8\n[4,1,8,4,5]\n[5,0,1,8,4,5]\n2\n3' # # Write a program to find the node at which the intersection of two singly # linked lists begins. # # For example, the following two linked lists: # # # begin to intersect at node c1. # # # # Example 1: # # # # Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = # 2, skipB = 3 # Output: Reference of the node with value = 8 # Input Explanation: The intersected node's value is 8 (note that this must not # be 0 if the two lists intersect). From the head of A, it reads as # [4,1,8,4,5]. From the head of B, it reads as [5,0,1,8,4,5]. There are 2 nodes # before the intersected node in A; There are 3 nodes before the intersected # node in B. # # # # Example 2: # # # # Input: intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, # skipB = 1 # Output: Reference of the node with value = 2 # Input Explanation: The intersected node's value is 2 (note that this must not # be 0 if the two lists intersect). From the head of A, it reads as # [0,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes # before the intersected node in A; There are 1 node before the intersected # node in B. # # # # # Example 3: # # # # Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2 # Output: null # Input Explanation: From the head of A, it reads as [2,6,4]. From the head of # B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must # be 0, while skipA and skipB can be arbitrary values. # Explanation: The two lists do not intersect, so return null. # # # # # Notes: # # # If the two linked lists have no intersection at all, return null. # The linked lists must retain their original structure after the function # returns. # You may assume there are no cycles anywhere in the entire linked # structure. # Your code should preferably run in O(n) time and use only O(1) memory. # # # # @lc code=start # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: if headA is None or headB is None: return None a = headA b = headB while a != b: a = a.next if a else headB b = b.next if b else headA return a # @lc code=end
python
def dividend(ticker_info): for ticker, value in ticker_info.items(): value_dividends = value["dividends"].to_frame().reset_index() dividend_groupped = value_dividends.groupby(value_dividends["Date"].dt.year)['Dividends'].agg(['sum']) dividend_groupped = dividend_groupped.rename(columns={'sum': ticker}) value["dividends_grouped"] = dividend_groupped
python
import markdown from flask import abort, flash, redirect, render_template, request from flask_babel import gettext as _ from flask_login import current_user, login_required from ..ext import db from ..forms.base import DeleteForm from ..models import Brew, TastingNote from ..utils.pagination import get_page from ..utils.views import next_redirect from . import tasting_bp from .forms import TastingNoteForm from .permissions import AccessManager from .utils import TastingUtils @tasting_bp.route('/all', endpoint='all') def all_tasting_notes(): page_size = 20 page = get_page(request) kw = {} if current_user.is_authenticated: kw['extra_user'] = current_user query = TastingUtils.notes(public_only=True, **kw) query = query.order_by(db.desc(TastingNote.date)) pagination = query.paginate(page, page_size) context = { 'public_only': True, 'pagination': pagination, } return render_template('tasting/list.html', **context) @tasting_bp.route('/<int:brew_id>/add', methods=['GET', 'POST'], endpoint='add') @login_required def brew_add_tasting_note(brew_id): brew = Brew.query.get_or_404(brew_id) AccessManager.check_create(brew) form = TastingNoteForm() if form.validate_on_submit(): form.save(brew) flash(_('tasting note for %(brew)s saved', brew=brew.name), category='success') next_ = next_redirect('brew.details', brew_id=brew.id) return redirect(next_) ctx = { 'brew': brew, 'form': form, } return render_template('tasting/tasting_note.html', **ctx) @tasting_bp.route('/<int:note_id>/delete', methods=['GET', 'POST'], endpoint='delete') @login_required def brew_delete_tasting_note(note_id): note = TastingNote.query.get_or_404(note_id) brew = note.brew AccessManager(note, None).check() form = DeleteForm() if form.validate_on_submit() and form.delete_it.data: db.session.delete(note) db.session.commit() flash( _('tasting note for brew %(brew)s has been deleted', brew=brew.name), category='success' ) next_ = next_redirect('brew.details', brew_id=brew.id) return redirect(next_) ctx = { 'brew': brew, 'note': note, 'delete_form': form, } return render_template('tasting/tasting_note_delete.html', **ctx) @tasting_bp.route('/ajaxtext', endpoint='loadtext') def brew_load_tasting_note_text(): provided_id = request.args.get('id') if not provided_id: abort(400) note_id = provided_id.rsplit('_', 1)[-1] note = TastingNote.query.get_or_404(note_id) return note.text @tasting_bp.route('/ajaxupdate', methods=['POST'], endpoint='update') @login_required def brew_update_tasting_note(): note_id = request.form.get('pk') if not note_id: abort(400) note = TastingNote.query.get_or_404(note_id) AccessManager(note, None).check() value = request.form.get('value', '').strip() if value: note.text = value db.session.add(note) db.session.commit() return markdown.markdown(value) return note.text_html
python
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 from collections import OrderedDict from teach.dataset.actions import ( Action_Audio, Action_Basic, Action_Keyboard, Action_MapGoal, Action_Motion, Action_ObjectInteraction, Action_ProgressCheck, ) class Interaction: def __init__(self, agent_id, action, is_object=False, status=None, time_start=None): self.agent_id = agent_id self.action = action self.is_object = is_object self.status = status self.time_start = time_start def to_dict(self): _dict = OrderedDict() if self.is_object: _dict["object_id"] = self.agent_id else: _dict["agent_id"] = self.agent_id _dict.update(self.action.to_dict()) if self.status is not None: _dict["status"] = self.status return _dict @classmethod def from_dict(cls, interaction_dict, action_type) -> "Interaction": if "object_id" in interaction_dict: is_object = True agent_id = interaction_dict["object_id"] else: is_object = False agent_id = interaction_dict["agent_id"] if action_type == "Motion": action = Action_Motion.from_dict(interaction_dict) elif action_type == "MapGoal": action = Action_MapGoal.from_dict(interaction_dict) elif action_type == "ObjectInteraction": action = Action_ObjectInteraction.from_dict(interaction_dict) elif action_type == "ProgressCheck": action = Action_ProgressCheck.from_dict(interaction_dict) elif action_type == "Keyboard": action = Action_Keyboard.from_dict(interaction_dict) elif action_type == "Audio": action = Action_Audio.from_dict(interaction_dict) else: action = Action_Basic.from_dict(interaction_dict) status = interaction_dict.get("status") time_start = interaction_dict.get("time_start") return cls(agent_id=agent_id, action=action, is_object=is_object, status=status, time_start=time_start)
python
import collections import pathlib import sys import os import json def as_dict(par): if not par: return None if isinstance(par, dict): return par else: return dict(par._asdict()) def from_dict(par_dict): if not par_dict: return None # par = collections.namedtuple('Params', par_dict.keys())(**par_dict) par = collections.namedtuple('Params', par_dict.keys()) class IBLParams(par): def set(self, field, value): d = as_dict(self) d[field] = value return from_dict(d) def as_dict(self): return as_dict(self) return IBLParams(**par_dict) def getfile(str_params): """ Returns full path of the param file per system convention: linux/mac: ~/.str_params, Windows: APPDATA folder :param str_params: string that identifies parm file :return: string of full path """ if sys.platform == 'win32' or sys.platform == 'cygwin': pfile = str(pathlib.PurePath(os.environ['APPDATA'], '.' + str_params)) else: pfile = str(pathlib.PurePath(pathlib.Path.home(), '.' + str_params)) return pfile def read(str_params, default=None): """ Reads in and parse Json parameter file into dictionary :param str_params: path to text json file :param default: default values for missing parameters :return: named tuple containing parameters """ pfile = getfile(str_params) if os.path.isfile(pfile): with open(pfile) as fil: par_dict = json.loads(fil.read()) else: par_dict = as_dict(default) # without default parameters default = as_dict(default) # TODO : behaviour for non existing file # tat = params.read('rijafa', default={'toto': 'titi', 'tata': 1}) if not default or default.keys() == par_dict.keys(): return from_dict(par_dict) # if default parameters bring in a new parameter new_keys = set(default.keys()).difference(set(par_dict.keys())) for nk in new_keys: par_dict[nk] = default[nk] # write the new parameter file with the extra param write(str_params, par_dict) return from_dict(par_dict) def write(str_params, par): """ Write a parameter file in Json format :param str_params: path to text json file :param par: dictionary containing parameters values :return: None """ pfile = getfile(str_params) with open(pfile, 'w') as fil: json.dump(as_dict(par), fil, sort_keys=False, indent=4)
python
import unittest import ServiceGame from model.Platform import platform from model.Publishers import publisher class TestServiceGame(unittest.TestCase): def test_games_Wii(self): wiigames = ServiceGame.platz(platform('Wii')) self.assertEqual(15, len(wiigames)) def test_games_PC(self): pc = ServiceGame.platz(platform('PC')) self.assertEqual(1, len(pc)) def test_games_SquareSoft(self): squaresoft = ServiceGame.plubz(publisher('SquareSoft')) self.assertNotEqual(0, len(squaresoft)) def test_games_ElectronicArts(self): electronicarts = ServiceGame.plubz(publisher('Electronic Arts')) self.assertEqual(5, len(electronicarts)) def test_csv_is_create_platform(self): ServiceGame.escolher('P1', platform('Wii')) with open('output.csv') as arquivo: conteudo = arquivo.readlines() self.assertEqual(15, len(conteudo)) def test_csv_is_create_publisher(self): ServiceGame.escolher('P2', publisher('Electronic Arts')) with open('output.csv') as arquivo: conteudo = arquivo.readlines() self.assertEqual(5, len(conteudo)) if __name__ == '__main__': unittest.main()
python
from robot_server.service.errors import RobotServerError, \ CommonErrorDef, ErrorDef class SystemException(RobotServerError): """Base of all system exceptions""" pass class SystemTimeAlreadySynchronized(SystemException): """ Cannot update system time because it is already being synchronized via NTP or local RTC. """ def __init__(self, msg: str): super().__init__(definition=CommonErrorDef.ACTION_FORBIDDEN, reason=msg) class SystemSetTimeException(SystemException): """Server process Failure""" def __init__(self, msg: str, definition: ErrorDef = None): if definition is None: definition = CommonErrorDef.INTERNAL_SERVER_ERROR super().__init__(definition=definition, error=msg)
python
from flask import Flask, redirect, render_template, url_for from flask_pymongo import PyMongo import scrape_mars app = Flask(__name__) mongo=PyMongo(app, uri="mongodb://localhost:27017/mars_app") @app.route("/") def index(): mars_info = mongo.db.mars_info.find_one() return render_template("index.html", mars_info=mars_info) #trigger scrape @app.route("/scrape") def scrape(): mars_info = mongo.db.mars_info mars_data = scrape_mars.mars_scrape_news() mars_data = scrape_mars.mars_scrape_image() mars_data = scrape_mars.mars_scrape_faq() mars_data = scrape_mars.mars_scrape_hemi() mars_info.update({}, mars_data, upsert=True) return "Scrape Complete!" if __name__ == "__main__": app.run()
python
import sys with open(sys.argv[1]) as f: data = f.read() stack = [] for i in range(len(data)): if i%1000000==0: print("%.2f %%"%(i/len(data)*100)) stack += [data[i]] if (len(stack)>=8 and stack[-8] in "<" and stack[-7] in "Ss" and stack[-6] in "Cc" and stack[-5] in "Rr" and stack[-4] in "Ii" and stack[-3] in "Pp" and stack[-2] in "Tt" and stack[-1] in ">"): for i in range(8): stack.pop() print("".join(stack)[:-1])
python
#!/usr/bin/env python import numpy as np import sys from readFiles import * thisfh = sys.argv[1] linkerfh = "part_Im.xyz" #Read the linker file lAtomList, lAtomCord = readxyz(linkerfh) sAtomList, sAtomCord = readxyz(thisfh) a,b,c,alpha,beta,gamma = readcifFile(thisfh[:-4] + ".cif") cell_params = [a, b, c, alpha, beta, gamma] #sAtomCord, sAtomList = reduceToUnitCell(sAtomCord,sAtomList,cell_params,-1,2) sAtomList = replaceSiwZn(sAtomList) #writexyzFile(sAtomCord,sAtomList,"testZn.xyz") minDist = calcMinZnZnDist(sAtomCord,sAtomList) sf = 6/minDist a = a*sf; b = b*sf; c = c*sf; sAtomCord = expandStructure(sAtomCord,sf) #writexyzFile(sAtomCord,sAtomList,"testZnExpanded.xyz") sAtomCord, sAtomList = putLinkerIn(sAtomList,lAtomList,sAtomCord,lAtomCord) cell_params = [a, b, c, alpha, beta, gamma] #writexyzFile(sAtomCord,sAtomList, thisfh[:-4] + "_ZIF.xyz",cell_params) reducedCord,reducedList = reduceToUnitCell(sAtomCord,sAtomList,cell_params,.5,1.5) writexyzFile(reducedCord,reducedList, thisfh[:-4] + "_ZIF_unitcell.xyz",cell_params)
python
import copy import os import random import kerastuner import kerastuner.engine.hypermodel as hm_module import tensorflow as tf from autokeras.hypermodel import base class AutoTuner(kerastuner.engine.multi_execution_tuner.MultiExecutionTuner): """A Tuner class based on KerasTuner for AutoKeras. Different from KerasTuner's Tuner class. AutoTuner's not only tunes the Hypermodel which can be directly built into a Keras model, but also the preprocessors. Therefore, a HyperGraph stores the overall search space containing both the Preprocessors and Hypermodel. For every trial, the HyperGraph build the PreprocessGraph and KerasGraph with the provided HyperParameters. # Arguments hyper_graph: HyperGraph. The HyperGraph to be tuned. fit_on_val_data: Boolean. Use the training set and validation set for the final fit of the best model. **kwargs: The other args supported by KerasTuner. """ def __init__(self, hyper_graph, hypermodel, fit_on_val_data=False, **kwargs): self.hyper_graph = hyper_graph super().__init__( hypermodel=hm_module.KerasHyperModel(hypermodel), # TODO: Support resume of a previous run. overwrite=True, **kwargs) self.preprocess_graph = None self.best_hp = None self.fit_on_val_data = fit_on_val_data def run_trial(self, trial, **fit_kwargs): """Preprocess the x and y before calling the base run_trial.""" # Initialize new fit kwargs for the current trial. new_fit_kwargs = copy.copy(fit_kwargs) # Preprocess the dataset and set the shapes of the HyperNodes. self.preprocess_graph, keras_graph = self.hyper_graph.build_graphs( trial.hyperparameters) self.hypermodel = hm_module.KerasHyperModel(keras_graph) self._prepare_run(self.preprocess_graph, new_fit_kwargs, True) super().run_trial(trial, **new_fit_kwargs) def _prepare_run(self, preprocess_graph, fit_kwargs, fit=False): dataset, validation_data = preprocess_graph.preprocess( dataset=fit_kwargs.get('x', None), validation_data=fit_kwargs.get('validation_data', None), fit=fit) # Batching batch_size = fit_kwargs.pop('batch_size', 32) dataset = dataset.batch(batch_size) validation_data = validation_data.batch(batch_size) # Update the new fit kwargs values fit_kwargs['x'] = dataset fit_kwargs['validation_data'] = validation_data fit_kwargs['y'] = None def _get_save_path(self, trial, name): filename = '{trial_id}-{name}'.format(trial_id=trial.trial_id, name=name) return os.path.join(self.get_trial_dir(trial.trial_id), filename) def on_trial_end(self, trial): """Save and clear the hypermodel and preprocess_graph.""" super().on_trial_end(trial) self.preprocess_graph.save(self._get_save_path(trial, 'preprocess_graph')) self.hypermodel.hypermodel.save(self._get_save_path(trial, 'keras_graph')) self.preprocess_graph = None self.hypermodel = None def load_model(self, trial): """Load the model in a history trial. # Arguments trial: Trial. The trial to be loaded. # Returns Tuple of (PreprocessGraph, KerasGraph, tf.keras.Model). """ preprocess_graph, keras_graph = self.hyper_graph.build_graphs( trial.hyperparameters) preprocess_graph.reload(self._get_save_path(trial, 'preprocess_graph')) keras_graph.reload(self._get_save_path(trial, 'keras_graph')) self.hypermodel = hm_module.KerasHyperModel(keras_graph) models = (preprocess_graph, keras_graph, super().load_model(trial)) self.hypermodel = None return models def get_best_model(self): """Load the best PreprocessGraph and Keras model. It is mainly used by the predict and evaluate function of AutoModel. # Returns Tuple of (PreprocessGraph, tf.keras.Model). """ preprocess_graph, keras_graph = self.hyper_graph.build_graphs( self.best_hp) preprocess_graph.reload(self.best_preprocess_graph_path) keras_graph.reload(self.best_keras_graph_path) model = keras_graph.build(self.best_hp) model.load_weights(self.best_model_path) return preprocess_graph, model def search(self, callbacks=None, **fit_kwargs): """Search for the best HyperParameters. If there is not early-stopping in the callbacks, the early-stopping callback is injected to accelerate the search process. At the end of the search, the best model will be fully trained with the specified number of epochs. """ # Insert early-stopping for acceleration. if not callbacks: callbacks = [] new_callbacks = self._deepcopy_callbacks(callbacks) if not any([isinstance(callback, tf.keras.callbacks.EarlyStopping) for callback in callbacks]): new_callbacks.append(tf.keras.callbacks.EarlyStopping(patience=10)) super().search(callbacks=new_callbacks, **fit_kwargs) best_trial = self.oracle.get_best_trials(1)[0] self.best_hp = best_trial.hyperparameters preprocess_graph, keras_graph, model = self.get_best_models()[0] preprocess_graph.save(self.best_preprocess_graph_path) keras_graph.save(self.best_keras_graph_path) # Fully train the best model with original callbacks. if not any([isinstance(callback, tf.keras.callbacks.EarlyStopping) for callback in callbacks]) or self.fit_on_val_data: fit_kwargs['callbacks'] = self._deepcopy_callbacks(callbacks) self._prepare_run(preprocess_graph, fit_kwargs) if self.fit_on_val_data: fit_kwargs['x'] = fit_kwargs['x'].concatenate( fit_kwargs['validation_data']) model = keras_graph.build(self.best_hp) model.fit(**fit_kwargs) model.save_weights(self.best_model_path) @property def best_preprocess_graph_path(self): return os.path.join(self.project_dir, 'best_preprocess_graph') @property def best_keras_graph_path(self): return os.path.join(self.project_dir, 'best_keras_graph') @property def best_model_path(self): return os.path.join(self.project_dir, 'best_model') class RandomSearch(AutoTuner, kerastuner.RandomSearch): """KerasTuner RandomSearch with preprocessing layer tuning.""" pass class Hyperband(AutoTuner, kerastuner.Hyperband): """KerasTuner Hyperband with preprocessing layer tuning.""" pass class BayesianOptimization(AutoTuner, kerastuner.BayesianOptimization): """KerasTuner BayesianOptimization with preprocessing layer tuning.""" pass class GreedyOracle(kerastuner.Oracle): """An oracle combining random search and greedy algorithm. It groups the HyperParameters into several categories, namely, HyperGraph, Preprocessor, Architecture, and Optimization. The oracle tunes each group separately using random search. In each trial, it use a greedy strategy to generate new values for one of the categories of HyperParameters and use the best trial so far for the rest of the HyperParameters values. # Arguments hyper_graph: HyperGraph. The hyper_graph model to be tuned. seed: Int. Random seed. """ HYPER = 'HYPER' PREPROCESS = 'PREPROCESS' OPT = 'OPT' ARCH = 'ARCH' STAGES = [HYPER, PREPROCESS, OPT, ARCH] @staticmethod def next_stage(stage): stages = GreedyOracle.STAGES return stages[(stages.index(stage) + 1) % len(stages)] def __init__(self, hyper_graph, seed=None, **kwargs): super().__init__(**kwargs) self.hyper_graph = hyper_graph # Start from tuning the hyper block hps. self._stage = GreedyOracle.HYPER # Sets of HyperParameter names. self._hp_names = { GreedyOracle.HYPER: set(), GreedyOracle.PREPROCESS: set(), GreedyOracle.OPT: set(), GreedyOracle.ARCH: set(), } # The quota used to tune each category of hps. self._capacity = { GreedyOracle.HYPER: 1, GreedyOracle.PREPROCESS: 1, GreedyOracle.OPT: 1, GreedyOracle.ARCH: 4, } self._stage_trial_count = 0 self.seed = seed or random.randint(1, 1e4) # Incremented at every call to `populate_space`. self._seed_state = self.seed self._tried_so_far = set() self._max_collisions = 5 def set_state(self, state): super().set_state(state) # TODO: self.hyper_graph.set_state(state['hyper_graph']) # currently the state is not json serializable. self._stage = state['stage'] self._capacity = state['capacity'] def get_state(self): state = super().get_state() state.update({ # TODO: 'hyper_graph': self.hyper_graph.get_state(), # currently the state is not json serializable. 'stage': self._stage, 'capacity': self._capacity, }) return state def update_space(self, hyperparameters): # Get the block names. preprocess_graph, keras_graph = self.hyper_graph.build_graphs( hyperparameters) # Add the new Hyperparameters to different categories. ref_names = {hp.name for hp in self.hyperparameters.space} for hp in hyperparameters.space: if hp.name not in ref_names: hp_type = None if any([hp.name.startswith(block.name) for block in self.hyper_graph.blocks if isinstance(block, base.HyperBlock)]): hp_type = GreedyOracle.HYPER elif any([hp.name.startswith(block.name) for block in preprocess_graph.blocks]): hp_type = GreedyOracle.PREPROCESS elif any([hp.name.startswith(block.name) for block in keras_graph.blocks]): hp_type = GreedyOracle.ARCH else: hp_type = GreedyOracle.OPT self._hp_names[hp_type].add(hp.name) super().update_space(hyperparameters) def _populate_space(self, trial_id): for _ in range(len(GreedyOracle.STAGES)): values = self._generate_stage_values() # Reached max collisions. if values is None: # Try next stage. self._stage = GreedyOracle.next_stage(self._stage) self._stage_trial_count = 0 continue # Values found. self._stage_trial_count += 1 if self._stage_trial_count == self._capacity[self._stage]: self._stage = GreedyOracle.next_stage(self._stage) self._stage_trial_count = 0 return {'status': kerastuner.engine.trial.TrialStatus.RUNNING, 'values': values} # All stages reached max collisions. return {'status': kerastuner.engine.trial.TrialStatus.STOPPED, 'values': None} def _generate_stage_values(self): best_trials = self.get_best_trials() if best_trials: best_values = best_trials[0].hyperparameters.values else: best_values = self.hyperparameters.values collisions = 0 while 1: # Generate new values for the current stage. values = {} for p in self.hyperparameters.space: if p.name in self._hp_names[self._stage]: values[p.name] = p.random_sample(self._seed_state) self._seed_state += 1 values = {**best_values, **values} # Keep trying until the set of values is unique, # or until we exit due to too many collisions. values_hash = self._compute_values_hash(values) if values_hash not in self._tried_so_far: self._tried_so_far.add(values_hash) break collisions += 1 if collisions > self._max_collisions: # Reached max collisions. No value to return. return None return values class Greedy(AutoTuner): def __init__(self, hyper_graph, hypermodel, objective, max_trials, fit_on_val_data=False, seed=None, hyperparameters=None, tune_new_entries=True, allow_new_entries=True, **kwargs): self.seed = seed oracle = GreedyOracle( hyper_graph=hyper_graph, objective=objective, max_trials=max_trials, seed=seed, hyperparameters=hyperparameters, tune_new_entries=tune_new_entries, allow_new_entries=allow_new_entries) hp = oracle.get_space() preprocess_graph, keras_graph = hyper_graph.build_graphs(hp) oracle.update_space(hp) super().__init__( hyper_graph=hyper_graph, fit_on_val_data=fit_on_val_data, oracle=oracle, hypermodel=hypermodel, **kwargs) TUNER_CLASSES = { 'bayesian': BayesianOptimization, 'random': RandomSearch, 'hyperband': Hyperband, 'greedy': Greedy, 'image_classifier': Greedy, 'image_regressor': Greedy, 'text_classifier': Greedy, 'text_regressor': Greedy, 'structured_data_classifier': Greedy, 'structured_data_regressor': Greedy, } def get_tuner_class(tuner): if isinstance(tuner, str) and tuner in TUNER_CLASSES: return TUNER_CLASSES.get(tuner) else: raise ValueError('The value {tuner} passed for argument tuner is invalid, ' 'expected one of "greedy", "random", "hyperband", ' '"bayesian".'.format(tuner=tuner))
python