content
stringlengths 0
894k
| type
stringclasses 2
values |
---|---|
"""Test app factory method."""
from pytest import MonkeyPatch
from app import create_app
def test_app_factory_method(monkeypatch: MonkeyPatch) -> None:
"""Test that application test settings are correct."""
app = create_app(testing=True)
assert app.testing
class Recorder:
dsn: str
environment: str
def fake_init(dsn: str, environment: str) -> None:
Recorder.dsn = dsn
Recorder.environment = environment
monkeypatch.setattr("app.SENTRY_DSN", "http://fake.org")
monkeypatch.setattr("sentry_sdk.init", fake_init)
app = create_app()
assert not app.testing
assert Recorder.dsn == "http://fake.org"
assert Recorder.environment == "dev"
| python |
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import PIL
from PIL import Image
def display_network(A, filename='weights.jpg', opt_normalize = True):
"""
This function visualizes filters in matrix A. Each column of A is a
filter. We will reshape each column into a square image and visualizes
on each cell of the visualization panel.
All other parameters are optional, usually you do not need to worry about it.
opt_normalize: whether we need to normalize the filter so that all of them can have similar contrast. Default value is true.
opt_graycolor: whether we use gray as the heat map. Default is true.
opt_colmajor: you can switch convention to row major for A. In thatcase, each row of A is a filter. Default value is false.
"""
# Rescale
A = A - np.average(A)
# Compute rows & cols
(row, col) = A.shape
sz = int(np.ceil(np.sqrt(row)))
buf = 1
n = int(np.ceil(np.sqrt(col)))
m = int(np.ceil(col / n))
image = np.ones(shape=(buf + m * (sz + buf), buf + n * (sz + buf)))
k = 0
for i in range(int(m)):
for j in range(int(n)):
clim = np.max(np.abs(A[:, k]))
# print("[DEBUG] {{i={}, j={}}} clim={}, np_max={}".format(i, j, np.max(np.abs(A[:, k])), np.max(np.abs(A))))
if opt_normalize:
image[buf + i * (sz + buf):buf + i * (sz + buf) + sz, buf + j * (sz + buf):buf + j * (sz + buf) + sz] = \
A[:, k].reshape(sz, sz) / clim
else:
image[buf + i * (sz + buf):buf + i * (sz + buf) + sz, buf + j * (sz + buf):buf + j * (sz + buf) + sz] = \
A[:, k].reshape(sz, sz) / np.max(np.abs(A))
k += 1
# image = (image + 1) / 2 * 255
# image = image.astype(np.uint8)
# Image.fromarray(image, 'L').show()
plt.imsave(filename, image, cmap=matplotlib.cm.gray)
def display_color_network(A, filename='weights.png'):
"""
# display receptive field(s) or basis vector(s) for image patches
#
# A the basis, with patches as column vectors
# In case the midpoint is not set at 0, we shift it dynamically
:param A:
:param file:
:return:
"""
if np.min(A) >= 0:
A = A - np.mean(A)
cols = np.round(np.sqrt(A.shape[1]))
channel_size = A.shape[0] / 3
dim = np.sqrt(channel_size)
dimp = dim + 1
rows = np.ceil(A.shape[1] / cols)
B = A[0:channel_size, :]
C = A[channel_size:2 * channel_size, :]
D = A[2 * channel_size:3 * channel_size, :]
B = B / np.max(np.abs(B))
C = C / np.max(np.abs(C))
D = D / np.max(np.abs(D))
# Initialization of the image
image = np.ones(shape=(dim * rows + rows - 1, dim * cols + cols - 1, 3))
for i in range(int(rows)):
for j in range(int(cols)):
# This sets the patch
image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 0] = B[:, i * cols + j].reshape(dim, dim)
image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 1] = C[:, i * cols + j].reshape(dim, dim)
image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 2] = D[:, i * cols + j].reshape(dim, dim)
image = (image + 1) / 2
# PIL.Image.fromarray(np.uint8(image * 255), 'RGB').save(filename)
PIL.Image.fromarray(np.uint8(image * 255), 'RGB').show()
| python |
# Copyright 2012 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
{
'variables': {
'chromium_code': 1,
'grit_out_dir': '<(SHARED_INTERMEDIATE_DIR)/ios/chrome',
'ui_string_overrider_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/strings/grit/components_locale_settings.h',
'<(SHARED_INTERMEDIATE_DIR)/components/strings/grit/components_strings.h',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/grit/ios_strings.h',
],
'ui_string_overrider_output_basename':
'ios/chrome/browser/variations/ios_ui_string_overrider_factory',
'ui_string_overrider_script_name':
'../../components/variations/service/generate_ui_string_overrider.py',
'conditions': [
['branding=="Chromium"', {
'ui_string_overrider_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/strings/grit/components_chromium_strings.h',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/grit/ios_chromium_strings.h',
],
}],
['branding=="Chrome"', {
'ui_string_overrider_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/strings/grit/components_google_chrome_strings.h',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/grit/ios_google_chrome_strings.h',
],
}],
],
},
'targets': [
{
'target_name': 'ios_chrome_resources',
'type': 'none',
'dependencies': [
'ios_resources_gen',
'ios_strings_gen',
'ios_theme_resources_gen',
],
},
{
# GN version: //ios/chrome/app/strings
'target_name': 'ios_strings_gen',
'type': 'none',
'hard_dependency': 1,
'actions': [
{
# GN version: //ios/chrome/app/strings:ios_strings
'action_name': 'generate_ios_strings',
'variables': {
'grit_grd_file': 'app/strings/ios_strings.grd',
},
'includes': [ '../../build/grit_action.gypi' ],
},
{
# GN version: //ios/chrome/app/strings:ios_chromium_strings
'action_name': 'generate_ios_chromium_strings',
'variables': {
'grit_grd_file': 'app/strings/ios_chromium_strings.grd',
},
'includes': [ '../../build/grit_action.gypi' ],
},
{
# GN version: //ios/chrome/app/strings:ios_google_chrome_strings
'action_name': 'generate_ios_google_chrome_strings',
'variables': {
'grit_grd_file': 'app/strings/ios_google_chrome_strings.grd',
},
'includes': [ '../../build/grit_action.gypi' ],
},
],
'direct_dependent_settings': {
'include_dirs': [
'<(SHARED_INTERMEDIATE_DIR)',
],
},
},
{
# GN version: //ios/chrome/app/resources
'target_name': 'ios_resources_gen',
'type': 'none',
'hard_dependency': 1,
'actions': [
{
'action_name': 'ios_resources',
'variables': {
'grit_grd_file': 'app/resources/ios_resources.grd',
},
'includes': [ '../../build/grit_action.gypi' ],
},
],
'direct_dependent_settings': {
'include_dirs': [
'<(SHARED_INTERMEDIATE_DIR)',
],
},
},
{
# GN version: //ios/chrome/app/theme
'target_name': 'ios_theme_resources_gen',
'type': 'none',
'hard_dependency': 1,
'actions': [
{
'action_name': 'ios_theme_resources',
'variables': {
'grit_grd_file': 'app/theme/ios_theme_resources.grd',
},
'includes': [ '../../build/grit_action.gypi' ],
},
],
'direct_dependent_settings': {
'include_dirs': [
'<(SHARED_INTERMEDIATE_DIR)',
],
},
},
{
'target_name': 'ios_packed_resources',
'type': 'none',
'dependencies': [
'../../components/components_strings.gyp:components_strings',
'../../net/net.gyp:net_resources',
'../../ui/resources/ui_resources.gyp:ui_resources',
'../../ui/strings/ui_strings.gyp:ui_strings',
'ios_chrome_resources',
],
'actions': [
{
'action_name': 'repack_ios_locales',
'variables': {
'repack_locales_path': 'tools/build/ios_repack_locales.py',
},
'inputs': [
'<(repack_locales_path)',
'<!@pymod_do_main(ios_repack_locales -i '
'-s <(SHARED_INTERMEDIATE_DIR) '
'-x <(SHARED_INTERMEDIATE_DIR)/repack_ios '
'-b <(branding_path_component) '
'<(locales))'
],
'outputs': [
'<!@pymod_do_main(ios_repack_locales -o '
'-s <(SHARED_INTERMEDIATE_DIR) '
'-x <(SHARED_INTERMEDIATE_DIR)/repack_ios '
'<(locales))'
],
'action': [
'python',
'<(repack_locales_path)',
'-x', '<(SHARED_INTERMEDIATE_DIR)/repack_ios',
'-s', '<(SHARED_INTERMEDIATE_DIR)',
'-b', '<(branding_path_component)',
'<@(locales)',
],
},
{
'action_name': 'repack_ios_resources_100_percent',
'variables': {
'pak_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/components_resources_100_percent.pak',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/ios_theme_resources_100_percent.pak',
'<(SHARED_INTERMEDIATE_DIR)/ui/resources/ui_resources_100_percent.pak',
],
'pak_output': '<(SHARED_INTERMEDIATE_DIR)/repack_ios/chrome_100_percent.pak',
},
'includes': [ '../../build/repack_action.gypi' ],
},
{
'action_name': 'repack_ios_resources_200_percent',
'variables': {
'pak_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/components_resources_200_percent.pak',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/ios_theme_resources_200_percent.pak',
'<(SHARED_INTERMEDIATE_DIR)/ui/resources/ui_resources_200_percent.pak',
],
'pak_output': '<(SHARED_INTERMEDIATE_DIR)/repack_ios/chrome_200_percent.pak',
},
'includes': [ '../../build/repack_action.gypi' ],
},
{
'action_name': 'repack_ios_resources_300_percent',
'variables': {
'pak_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/components_resources_300_percent.pak',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/ios_theme_resources_300_percent.pak',
'<(SHARED_INTERMEDIATE_DIR)/ui/resources/ui_resources_300_percent.pak',
],
'pak_output': '<(SHARED_INTERMEDIATE_DIR)/repack_ios/chrome_300_percent.pak',
},
'includes': [ '../../build/repack_action.gypi' ],
},
{
'action_name': 'repack_ios_resources',
'variables': {
'pak_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/components/components_resources.pak',
'<(SHARED_INTERMEDIATE_DIR)/ios/chrome/ios_resources.pak',
'<(SHARED_INTERMEDIATE_DIR)/net/net_resources.pak',
'<(SHARED_INTERMEDIATE_DIR)/ui/resources/webui_resources.pak',
],
'pak_output': '<(SHARED_INTERMEDIATE_DIR)/repack_ios/resources.pak',
},
'includes': [ '../../build/repack_action.gypi' ],
},
],
},
{
'target_name': 'ios_chrome_ui_string_overrider_factory_gen',
'type': 'none',
'hard_dependency': 1,
'direct_dependent_settings': {
'include_dirs': [
'<(SHARED_INTERMEDIATE_DIR)',
],
},
'dependencies': [
'../../components/components_strings.gyp:components_strings',
'ios_strings_gen',
],
'actions': [
{
'action_name': 'generate_ios_ui_string_overrider',
'inputs': [
'<(ui_string_overrider_script_name)',
'<@(ui_string_overrider_inputs)',
],
'outputs': [
'<(SHARED_INTERMEDIATE_DIR)/<(ui_string_overrider_output_basename).cc',
'<(SHARED_INTERMEDIATE_DIR)/<(ui_string_overrider_output_basename).h',
],
'action': [
'python',
'<(ui_string_overrider_script_name)',
'-o', '<(SHARED_INTERMEDIATE_DIR)',
'-S', '<(ui_string_overrider_output_basename).cc',
'-H', '<(ui_string_overrider_output_basename).h',
'<@(ui_string_overrider_inputs)',
],
},
],
},
{
'target_name': 'ios_chrome_ui_string_overrider_factory',
'type': 'static_library',
'dependencies': [
'../../components/components.gyp:variations_service',
'ios_chrome_ui_string_overrider_factory_gen',
],
'sources': [
'<(SHARED_INTERMEDIATE_DIR)/<(ui_string_overrider_output_basename).cc',
'<(SHARED_INTERMEDIATE_DIR)/<(ui_string_overrider_output_basename).h',
],
},
],
}
| python |
import json
from os import path
from subprocess import run, PIPE
from typing import Dict
def get_key_signer(key_name: str, keys_dir: str) -> Dict:
with open(path.join(keys_dir, key_name + ".json"), "r") as f:
return json.load(f)
def get_key_multisig_addr(key_name: str) -> str:
p = run(('secretcli', 'keys', 'list'), stdout=PIPE, stderr=PIPE)
res = ''
for key in filter(lambda x: x['name'] == key_name, json.loads(p.stdout)):
res = key['address']
if not res:
raise RuntimeError(f"No key account with required name: {key_name}")
return res
def get_viewing_key(a_address: str, secret_contract_address: str) -> str:
# get view key
json_q = '{"create_viewing_key": {"entropy": "random phrase"}}'
view_key_tx_hash = run(f"docker exec secretdev secretcli tx compute execute {secret_contract_address} "
f"'{json_q}' --from {a_address} --gas 3000000 -b block -y | jq '.txhash'",
shell=True, stdout=PIPE)
view_key_tx_hash = view_key_tx_hash.stdout.decode().strip()[1:-1]
view_key = run(f"docker exec secretdev secretcli q compute tx {view_key_tx_hash} | jq '.output_log' | "
f"jq '.[0].attributes[1].value'", shell=True, stdout=PIPE).stdout.decode().strip()[1:-1]
return view_key
| python |
class BitVector(object):
"""docstring for BitVector"""
"""infinite array of bits is present in bitvector"""
def __init__(self):
self.BitNum=0
self.length=0
def set(self,i):
self.BitNum=self.BitNum | 1 << i
self.length=self.BitNum.bit_length()
def reset(self,i):
resetValue=1<<i
self.BitNum=self.BitNum - resetValue
self.length=self.BitNum.bit_length()
def at(self,i):
if(i<0):
raise ValueError
if(i >=self.length):
return 0
return int(bin(self.BitNum)[-(i+1)])
def __repr__(self):
return bin(self.BitNum)[2:]
def __str__(self):
return bin(self.BitNum)[2:]
| python |
#!/usr/bin/env python
# coding=utf-8
from __future__ import unicode_literals, print_function, division
import sys
import binascii
from diameterparser.decode_diameter import decode_diameter
def convertMac(octet):
mac = [binascii.b2a_hex(x) for x in list(octet)]
return "".join(mac)
class DiameterConn:
def __init__(self):
self.diameter = decode_diameter()
def decode(self, input_hex):
headerinfo, tree = self.diameter.decode(convertMac(input_hex))
return headerinfo, tree
| python |
# Copyright (c) 2013, 2018 National Technology and Engineering Solutions of Sandia, LLC.
# Under the terms of Contract DE-NA0003525 with National Technology and Engineering Solutions
# of Sandia, LLC, the U.S. Government retains certain rights in this software.
# standard library
import os
import hashlib
import pickle
import time
import base64
import inspect
import queue
import threading
# 3rd party library
import cherrypy
# local imports
import slycat.web.server
# public exports from this module
__all__ = ["CacheError", "Cache"]
# error catching for the cache
class CacheError(Exception):
"""
generic cached object error
"""
pass
class TimeError(CacheError):
"""
time error used for when the time is in the wrong format
"""
pass
class LifetimeError(CacheError):
"""
extension of the cached error where the lifetime
of the cache object has expired
"""
pass
# a cached object consists of a value and an expiration
# as well as a thread lock
class CachedObjectWrapper(object):
"""
class used to wrap any object placed in the cache
"""
# lock on cached object
__lock = threading.Lock()
def __init__(self, value, expiration=None):
"""
creates a cached object with a cached items and an expiration
:param value: item being wrapped
:param expiration: time until the item is expire
:return: not used
"""
self._value = value
self._expiration = expiration
@property
def lock(self):
"""
threading.Lock() used to control crud operations to the cache.
:return:
"""
return self.__lock
@property
def value(self):
"""
returns the object that is being wrapped by the cache
:return: object
"""
return self._value
@property
def expiration(self):
"""
return the expiration time for the cached object, could return none
if there is no expiration
:return: expiration object
"""
return self._expiration
@expiration.setter
def expiration(self,expiration):
"""
set the expiration time for the cached object, could return none
if there is no expiration
:return: expiration object
"""
self._expiration = expiration
def expired(self):
"""
return true or false as to weather the object is expired or not
returns false if none
:return: boolean
"""
if self.expiration is None:
expired = False
else:
expired = (self.expiration < time.time())
return expired
class Cache(object):
"""
decorator class used to cache
"""
# lock on entire cache
_lock = threading.Lock()
def __init__(self, fs_cache_path=None, **kwargs):
"""
takes a filepath and and the following time stamps
- years (31,556,900 seconds per year)
- months (2,629,740 seconds per month)
- weeks (604,800 seconds per week)
- days (86,400 seconds per day)
- hours (3600 seconds per hour)
- minutes (60 seconds per minute)
- seconds
- None
:param path: path as a string to the
:param kwargs: time stamp
"""
if kwargs:
self._init_expire_time = self.to_seconds(**kwargs)
# we need a time greater than 0
if self._init_expire_time <= 0:
msg = "[CACHE] Lifetime (%s seconds) is 0 or less." % self._init_expire_time
cherrypy.log.error(msg)
raise LifetimeError(msg)
else:
# no expiration time
self._init_expire_time = None
# set up an in memory cache
self._loaded = {}
# set path for file system
if fs_cache_path:
self._fs_cache_path = os.path.abspath(fs_cache_path)
# make cache directory unless it already exists
if not os.path.exists(self._fs_cache_path):
os.makedirs(self._fs_cache_path)
else:
self._fs_cache_path = None
def check_fs_path(self):
"""
This function is used to set the file path as it does
not exist when the cache is created in the server/__init__.py
:return:
"""
# creates slycat web server cache, if it doesn't already exist
if not self._fs_cache_path:
cherrypy.log.error("[CACHE] %s is the cache location." %
(slycat.web.server.config["slycat-web-server"]["cache-store"]))
self._fs_cache_path = os.path.abspath(
slycat.web.server.config["slycat-web-server"]["cache-store"])
if not os.path.exists(self._fs_cache_path):
os.makedirs(self._fs_cache_path)
def __getitem__(self, key):
"""
get the item from the cache
:param key: hashed key for item in cache
:return: value associate with key or None if not found
"""
# check for slycat path
self.check_fs_path()
# is item in cache?
if key in self:
# get hash and value
digest = self.digest_hash(key)
value = self._loaded[digest].value
expired = self._loaded[digest].expired()
# if expired, erase and return None
if expired:
self.expire(digest)
return None
else:
return None
# cherrypy.log.error("[CACHE] Retrieving %s from cache." % str(digest))
return value
def __setitem__(self, key, value):
"""
set the key:value in the cache. if it is already in
the cache it gets replaced by new value
:param key: hashed representation of the function
:param value: stored result from the function
:return: not used
"""
# create slycat file path if it doesn't exist
self.check_fs_path()
# get hash and path
digest_hash = self.digest_hash(key)
path = os.path.join(self._fs_cache_path, digest_hash)
# if item exists, erase it
if (digest_hash in self._loaded) or os.path.exists(path):
self.expire(digest_hash)
# create new copy in cache
cached_contents = CachedObjectWrapper(value, expiration=self.cached_item_expire_time())
self.write(cached_contents, path)
self._loaded[digest_hash] = cached_contents
# cherrypy.log.error ("[CACHE] Added %s to cache." % str(digest_hash))
def __delitem__(self, digest_hash):
"""
Removes the hash keyed object from memory
but not from the filesystem.
see function expire to remove from both
:param key: item to be removed from memory
:return: not used
"""
# check slycat path
self.check_fs_path()
if digest_hash in self._loaded:
del self._loaded[digest_hash]
else:
msg = "[CACHE] Cannot delete object at %s -- not loaded in memory" % str(digest_hash)
raise CacheError(msg)
def __contains__(self, item):
"""
check if item is in the cache, true if in the cache
false otherwise
:param item: item to search for in cache
:return: boolean
"""
# check for slycat path
self.check_fs_path()
# create hash from item
digest = self.digest_hash(item)
# get the item from the cache
if digest in self._loaded:
value = self._loaded[digest]
# item was not in memory, check file system
else:
try:
value = self._load(digest, item)
except CacheError:
# item was not in the cache or the file system
return False
# check if it has expired
if value.expired():
# cherrypy.log.error("[CACHE] value is expired for %s." % str(item))
# contents were expired so we should delete them and return false
self.expire(digest)
return False
return True
def __call__(self, f):
"""
This is the decorator cache call
:param f: function to be wrapped
:return: results of the function either from
the cache or the function itself
"""
# retrieve function id?
function_meta_data = inspect.getmembers(f)
try:
fid = (function_meta_data.__name__, inspect.getargspec(f))
except (AttributeError, TypeError):
fid = (f.__name__, repr(type(f)))
def _f(*args, **kwargs):
key = (fid, args, kwargs)
# check if we have cached the result
if key in self:
result = self[key]
# adding a null guard
if result is None:
# cherrypy.log.error("[CACHE] Cache key error adding object to cache.")
result = f(*args, **kwargs)
self[key] = result
# we have not cached the result so lets get it
else:
# cherrypy.log.error("[CACHE] NOT found in cache")
result = f(*args, **kwargs)
self[key] = result
return result
return _f
def expire(self, digest_hash):
"""
Permanently removes the item, both in the memory and in the filesystem.
"""
# remove from filesystem
if digest_hash in self.fs_keys:
self._remove(digest_hash)
# remove from memoruy
if digest_hash in self.v_keys:
try:
del self[digest_hash]
except CacheError as e:
cherrypy.log.error("[CACHE] error deleting item %s" % str(e))
def _remove(self, digest):
"""
Removes the cache item keyed by `key` from the file system.
"""
path = os.path.join(self._fs_cache_path, digest)
if os.path.exists(path):
try:
os.remove(path)
except:
msg = "[CACHE] No object for key `%s` stored." % str(path)
cherrypy.log.error(msg)
else:
msg = "[CACHE] No object for key `%s` stored." % str(path)
cherrypy.log.error(msg)
def unload(self, k):
"""
Removes the object keyed by k
from virtual memory only.
:param k:
:return:
"""
digest = self.digest_hash(k)
if digest in self._loaded:
del(self._loaded[digest])
def load(self, key):
"""
Causes the object keyed by `k` to be loaded from the
file system and returned. It therefore causes this object
to reside in memory (if it exists in the cache).
"""
return self[key]
def _load(self, digest, k):
"""
Loads the :class:`CacheObject` keyed by `k` from the
file system (residing in a file named by `digest`)
and returns the object.
This method is part of the implementation of :class:`FSCache`,
so don't use it as part of the API.
"""
# load from file, if possible
path = os.path.join(self._fs_cache_path, digest)
if os.path.exists(path):
# cherrypy.log.error("[CACHE] %s fs path cache found" % (path))
contents = self.read(path)
else:
msg = "[CACHE] Object for key `%s` does not exist." % (k,)
raise CacheError(msg)
# store in cache
self._loaded[digest] = contents
return contents
def cached_item_expire_time(self):
"""
Returns an expiry for the cache in seconds as if the start
of the expiration period were the moment at which this
the method is called.
>>> import time
>>> c = Cache('cache/dir', seconds=60)
>>> round(c.cached_item_expire_time() - time.time(), 3)
60.0
"""
if self._init_expire_time is None:
x = None
else:
x = self._init_expire_time + time.time()
return x
@property
def v_keys(self):
"""
Returns a list of virtual memory keys.
:return: keys for virtual cache
"""
return list(self._loaded.keys())
@property
def fs_keys(self):
"""
Returns the names of the files
in the cache on the filesystem.
:return: list of names of cached files
"""
return os.listdir(self._fs_cache_path)
def clean(self):
"""
clean the in memory and fs cache
recommended to call this by some thread under a
certain time interval
:return: not used
"""
cherrypy.log.error("[CACHE] starting the cleaning session for the file system cache")
# check for slycat path
self.check_fs_path()
# remove expired files from cache
for f in os.listdir(self._fs_cache_path):
path = os.path.join(self._fs_cache_path, f)
try:
contents = self.read(path)
if contents.expired():
cherrypy.log.error("[CACHE] expired content found -- deleting %s." % f)
self.expire(f)
except CacheError as e:
cherrypy.log.error("[CACHE] error deleting item %s." % str(e))
# remove expired items from memory (should have been removed by above)
for key in self.v_keys:
if self._loaded[key].expired():
self.expire(key)
def clear(self):
"""
clear cache items from virtual memory.
:return: not used
"""
self._loaded.clear()
def purge(self):
"""
empties the cache from fs and v memory
:return: not used
"""
for f in os.listdir(self._fs_cache_path):
path = os.path.join(self._fs_cache_path, f)
os.remove(path)
self.clear()
@property
def lock(self):
"""
threading.Lock() used to control crud operations to the cache.
:return:
"""
return self._lock
@staticmethod
def digest_hash(key):
"""
Creates a digest hash
>>> adict = {'a' : {'b':1}, 'f': []}
>>> Cache.digest_hash(adict)
'a2VKynHgDrUIm17r6BQ5QcA5XVmqpNBmiKbZ9kTu0A'
:param key: key to hash
:return: digest hash of key
"""
digest_hash = hashlib.sha256(str(key).encode()).digest()
b64_digest_hash = str(base64.urlsafe_b64encode(digest_hash)[:-2])
return b64_digest_hash.replace('-', '=')
def read(self, filename):
"""
Helper function that simply pickle loads the first object
from the file named by `filename`.
"""
with self.lock:
# load file or raise exception
try:
with open(filename, 'rb') as loaded_file:
loaded_obj = pickle.load(loaded_file)
except Exception as e:
msg = "[CACHE] Cache read file error %s." % str(e)
raise CacheError(msg)
return loaded_obj
def write(self, obj, filename):
"""
writes an object to the selected file path
"""
with self.lock:
try:
with open(filename, 'wb') as cache_file:
pickle.dump(obj, cache_file, protocol=pickle.HIGHEST_PROTOCOL)
except Exception as e:
msg = "[CACHE] Write error failure %s." % str(e)
raise CacheError(msg)
# all the remaining methods deal with time stamp conversion
@staticmethod
def years_to_seconds(years):
"""
Converts years to seconds.
:return: float
"""
return 3.15569e7 * years
@staticmethod
def months_to_seconds(months):
"""
Converts months to seconds.
:return: float
"""
return 2.62974e6 * months
@staticmethod
def weeks_to_seconds(weeks):
"""
Converts weeks to seconds.
:return: float
"""
return 604800.0 * weeks
@staticmethod
def days_to_seconds(days):
"""
Converts days to seconds.
:return: float
"""
return 86400.0 * days
@staticmethod
def hours_to_seconds(hours):
"""
Converts hours to seconds.
:return: float
"""
return 3600.0 * hours
@staticmethod
def minutes_to_seconds(minutes):
"""
Converts minutes to seconds.
:return: float
"""
return 60.0 * minutes
@staticmethod
def seconds_to_seconds(seconds):
"""
Converts seconds to seconds as a float.
:return: float
"""
return float(seconds)
@staticmethod
def to_seconds(**kwargs):
"""
Converts keyword arguments to seconds.
>>> Cache.to_seconds(seconds=1, minutes=1, hours=1, days=1, weeks=1, months=1, years=1)
34881501.0
>>> Cache.to_seconds(seconds=1, minutes=1)
61
:param kwargs:
The the keyword arguments can have the following keys:
- years (31,556,900 seconds per year)
- months (2,629,740 seconds per month)
- weeks (604,800 seconds per week)
- days (86,400 seconds per day)
- hours (3600 seconds per hour)
- minutes (60 seconds per minute)
- seconds
:return: number of seconds as a float
"""
time_converter_map = {"years": Cache.years_to_seconds,
"months": Cache.months_to_seconds,
"weeks": Cache.weeks_to_seconds,
"days": Cache.days_to_seconds,
"hours": Cache.hours_to_seconds,
"minutes": Cache.minutes_to_seconds,
"seconds": Cache.seconds_to_seconds}
# converts keywords arguments to seconds
seconds = []
for key, value in list(kwargs.items()):
if key in time_converter_map:
seconds.append(time_converter_map[key](value))
else:
msg = "invalid time argument: %s" % key
raise TimeError(msg)
return sum(seconds)
# using main to test Cache code
if __name__ == "__main__":
# starting cache tests
print()
print("Testing cache.py")
print("================")
# remove cache
# cache = Cache("cache/dir")
# cache.purge()
# test time calculations
assert Cache.to_seconds(seconds=1, minutes=1) == 61, \
"time is not calculated correctly should be 61"
assert Cache.to_seconds(seconds=1, minutes=1, hours=1, days=1, \
weeks=1, months=1, years=1) == 34881501.0, \
"time is not calculated correctly should be 34881501.0"
try:
Cache.to_seconds(not_a_key=1, minutes=1)
except TimeError as e:
assert str(e) == 'invalid time argument: not_a_key', "did not catch bad key"
# create cache in cache/dir, expires in 20 seconds
cache = Cache("cache/dir", seconds=20)
# create cache function
@cache
def test(seed=1):
"""
test function
:param seed: some garbage number
:return: seed + test + random in a string
"""
import random
print("test(): not cached")
return str(seed) + " test " + str(random.random())
# cache should be empty
print("Retrieving non-existing value from cache: ")
print(cache["bark"])
print()
# test cache function
print("Calling cache function 'test()':")
print(test())
print()
# test cache function with different seeds
print("Calling cache function test(seed=2):")
print((test(seed=2)))
print()
print("Calling cache function test(seed=3):")
print((test(seed=3)))
print()
# add item to cache
print("Adding {'meow': 'xyz'} to cache.")
cache["meow"] = "xyz"
print("Retrieving 'meow': " + cache["meow"])
print()
# change item in cache
print("Adding {'meow': 'rgb'} to cache.")
cache["meow"] = "rgb"
print("Retrieving 'meow': " + cache["meow"])
print()
# adding empty value to cache
try:
empty_obj = cache.read('cache/dir/no-object.pkl')
except CacheError:
print("Failed to load non-existing cache file.\n")
# load from cache
meow = cache.load("meow")
print("Loading 'meow' from cache.")
print(meow)
print()
# print hash keys
print("Virtual hash keys:")
print(cache.v_keys)
print()
# print has keys fs
print("Filesystem hash keys:")
print(cache.fs_keys)
print()
# load expired from cache
cache.expire(cache.digest_hash("meow"))
meow = cache.load("meow")
print("Loading non-existent key from cache.")
print(meow)
print()
| python |
from materials_io.base import BaseParser, BaseSingleFileParser
from glob import glob
import pytest
import os
class FakeParser(BaseParser):
def parse(self, group, context=None):
return {'group': list(group)}
def implementors(self):
return ['Logan Ward']
def version(self):
return '0.0.0'
class FakeSingleParser(BaseSingleFileParser):
def _parse_file(self, path, context=None):
return {'dirname': os.path.dirname(path)}
def implementors(self):
return ['Logan Ward']
def version(self):
return '0.0.0'
@pytest.fixture
def directory():
return os.path.dirname(__file__)
@pytest.fixture
def parser():
return FakeParser()
@pytest.fixture
def my_files(directory):
return [p for p in glob(os.path.join(directory, '**', '*'), recursive=True)
if os.path.isfile(p)]
def test_group(parser, directory, my_files):
groups = set(parser.group(my_files))
assert groups == set(zip(my_files)) # Each file own group
def test_parse_dir(caplog, parser, directory, my_files):
assert len(list(parser.parse_directory(directory))) == len(my_files)
def test_citations(parser):
assert parser.citations() == []
def test_single_file(directory):
parser = FakeSingleParser()
assert parser.parse(__file__) == {'dirname': directory} # Handle sensibly incorrect inputs
assert parser.parse([__file__]) == {'dirname': directory}
with pytest.raises(ValueError):
parser.parse(['/fake/file.in', '/fake/file.out'])
| python |
"""Base class for all linear models.
Subclasses must implement their own _fit_regression, _fit_classifier, and
_iter_minibatches functions. Everything else (prediction, generating
model summaries, saving, loading, one-vs-rest training) is handled by this.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
from collections import namedtuple
import math
import os
import time
import numpy as np
from sklearn import linear_model
from tqdm import tqdm
import sys; sys.path.append('../..')
from src.models.abstract_model import Model
from src.models.abstract_model import Prediction
import src.msc.utils as utils
# Singleton class for packaging the results of an individual regression or
# classification model. For ordinal variables with multiple levels, the system
# trains a separate regression per level.
# See: https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest
ModelResult = namedtuple('ModelResult', ('model', 'response_type', 'weights'))
class Regression(Model):
"""Base class for all linear models."""
def __init__(self, config, params, intercept=True):
"""Initializes a Regression by unpacking the target and confound variables.
Args:
config: NamedTuple, a config.yaml file that's been parsed into an object.
params: dict, the part of the config which has to do with this model.
Note that this dict is a member of config.model_spec.
intercept: bool, whether or not we should fit an intercept.
"""
Model.__init__(self, config, params)
# This dict maps variable names to the model for that variable.
# If a variable is categorical, then instead of a model for a value,
# the value is a nested dictionary which maps categorical levels
# to the model for that level.
self.models = {}
self.use_intercept = intercept
# Get all of the variables which are prediction targets, as well
# as all of the variables which are confounders.
variables = [
v for v in self.config.data_spec[1:] if not v.get('skip', False)
]
self.targets = [
variable for variable in variables if not variable['control']
]
self.confounds = [variable for variable in variables if variable['control']]
self.confound_names = [variable['name'] for variable in self.confounds]
self.lmbda = self.params.get('lambda', 0)
self.regularizer = self.params['regularizer'] if self.lmbda > 0 else None
def save(self, model_dir):
"""Saves all of the models in self.models into `model_dir`.
The models are saved as serialized pickle objects.
See: https://docs.python.org/3/library/pickle.html
Args:
model_dir: string, the directory to save into.
"""
if not os.path.exists(model_dir):
os.makedirs(model_dir)
models_file = os.path.join(model_dir, 'models')
utils.pickle(self.models, models_file)
print('REGRESSION: models saved into %s' % models_file)
def load(self, dataset, model_dir):
"""Loads self.models from `model_dir`."""
start = time.time()
self.models = utils.depickle(os.path.join(model_dir, 'models'))
target_names = [x['name'] for x in self.targets]
assert set(target_names) == set(self.models.keys())
print('REGRESSION: loaded model parameters from %s, time %.2fs' % (
model_dir,
time.time() - start))
def _summarize_model_weights(self):
"""Gets a single "importance value" for each feature from self.models."""
out = {}
for variable_name, variable_result in self.models.items():
# This means that the current variable is categorical, since
# self.models[categorical variable] maps to a {level => ModelResult}
# dictionary.
if isinstance(variable_result, dict):
for level_name, level_result in variable_result.items():
if variable_name not in out:
out[variable_name] = {}
out[variable_name][level_name] = level_result.weights
else:
out[variable_name] = variable_result.weights
return out
def inference(self, dataset, model_dir):
"""Uses self.models to perform inference over a dataset.
Args:
dataset: src.data.dataset.Dataset, the dataset for performing inference.
model_dir: string, unused, but possibly used by subclasses.
Returns:
A src.models.abstract_model.Prediction object.
"""
print('REGRESSION: getting data for inference...')
x, _, features = next(self._iter_minibatches(dataset))
predictions = defaultdict(dict)
for response_name, model in self.models.iteritems():
if isinstance(model, dict):
# Convert {level: scores} to 2d matrix with columns:
# level1 score, level2 score, etc
# (where ordering is determined by the dataset).
response_levels = dataset.num_levels(response_name)
arr = np.array([
self._predict(x, features,
model[dataset.id_to_class_map[response_name][level]])
for level in range(response_levels)
])
# Squeeze out empty dimensions.
if len(arr.shape) > 2:
arr = np.squeeze(arr, axis=2)
predictions[response_name] = np.transpose(arr, [1, 0])
else:
predictions[response_name] = self._predict(x, features, model)
average_coefs = self._summarize_model_weights()
return Prediction(scores=predictions, feature_importance=average_coefs)
def _predict(self, x, feature_names, model):
"""Uses a model to create predictions for a bunch of covariates X.
We are not using sklearn's predict() function because feature_names
might be a subset of x's columns, which is a case that sklearn
does not support.
Args:
x: np array [n examples, n features], the covariates to be inputted to
the model.
feature_names: list(string), column names for X.
model: an instance of sklearn.linear_model, the model we are using
for inference.
Returns:
out: list(float) or list(list(float)), predictions for each `x`.
"""
def score(example):
s = 0
for xi, feature in zip(example, feature_names):
s += model.weights.get(feature, 0) * xi
s += (model.weights['intercept'] if self.use_intercept else 0)
return s
out = []
for row in tqdm(x):
s = score(np.squeeze(row))
if model.response_type == 'continuous':
out.append(s)
else:
try:
out.append(1.0 / (1 + math.exp(-s)))
except OverflowError:
out.append(1.0 if s > 0 else 0)
return out
def _fit_one_vs_rest(self, dataset, target, features=None):
"""Fits a classifier to each level of a categorical variable (`target`).
See: https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest
Args:
dataset: dataset.Dataset, the data we are fitting.
target: dict, a member of config.data_spec, the variable we are
predicting.
features: list(string), an optional subset of the features we should
restrict the model to.
Returns:
models: dict(string => regression_base.ModelResult): a trained model
per level of the target variable.
"""
models = {}
# class_to_id is a nested dict where
# each key (each categorical var) points to a dict mapping to ids.
# So we are looping through all the possible classes of this categorical
# variable.
for level in dataset.class_to_id_map[target['name']].keys():
models[level] = self._fit_classifier(
dataset, target, level=level, features=features)
return models
def train(self, dataset, model_dir, features=None):
"""Trains a model for each target."""
for target in self.targets:
if target['type'] == utils.CONTINUOUS:
self.models[target['name']] = self._fit_regression(
dataset=dataset, target=target, features=features)
else:
self.models[target['name']] = self._fit_one_vs_rest(
dataset=dataset, target=target, features=features)
def _iter_minibatches(self,
dataset,
target_name=None,
features=None,
level=None,
batch_size=None):
"""Continuously loops over the `dataset` and yields (covariate, Y) pairs.
If batch_size is None then we iterate once. Otherwise the generator
will continuously cycle over the data.
Args:
dataset: src.data.dataset.Dataset, the dataset we are iterative over.
target_name: string, the name of the variable that should be used
for the targets (Y).
features: list(string), a subset of the features that we should select
when pulling X from the data. If this isn't provided, then X will
include all features in the data.
level: string, the categorical level which is to be retrieved for Y.
If supplied, Y is assumed to be categorical.
batch_size: int, the batch size to use.
Yields:
x: np.array(int) [batch size, num features], word occurrence vectors
for a batch of examples. If example i has feature j then x[i, j] == 1.
y: np.array(int or float) [batch size], target labels for x.
If the target class is C, then y[i] == 1 if example i belongs to C.
x_features: list(string), column names for x, i.e. an ordered
list of feature names.
"""
i = 0
while True:
start = i
end = (i + batch_size if batch_size else None)
# If target_name is missing, we are doing inference so y can be None.
if target_name is not None:
y = dataset.y_batch(target_name, level, start, end)
else:
y = None
x, x_features = dataset.text_x_batch(features, start, end)
yield x, y, x_features
# If batch_size is missing, we are returning the whole dataset so
# no need to keep iterating.
if batch_size is None:
break
i += batch_size
if i + batch_size > dataset.split_sizes[dataset.current_split]:
i = 0
def _sklearn_weights(self, model, feature_names):
"""Gets a feature_name=>weight mapping for the model."""
weights = {}
for w, f in zip(np.squeeze(model.coef_), feature_names):
weights[f] = w
if self.use_intercept:
weights['intercept'] = model.intercept_
return weights
def _fit_regression(self, dataset, target, level=None, features=None):
"""Fits a regression -- to be implemented by subclasses.
This method updates self.model[target] with the trained model and does
not return anything.
Args:
dataset: src.data.dataset.Dataset, the data which is to be used
for fitting.
target: string, the name of the target variable.
level: string, the target's sub-class. If this isn't specified, the system
will assume that the target is monolithic.
features: list(string), a subset of dataset.vocab which is to be used
while fitting.
Returns:
regression_base.ModelResult, the fitted parameters.
"""
iterator = self._iter_minibatches(
dataset=dataset,
target_name=target['name'],
features=features,
batch_size=self.params['batch_size'],
level=level)
print('REGRESSION: fitting target %s', target['name'])
model = linear_model.SGDRegressor(
penalty=self.regularizer or 'none',
alpha=self.lmbda,
learning_rate='constant',
eta0=self.params.get('lr', 0.001))
for _ in tqdm(range(self.params['num_train_steps'])):
xi, yi, x_features = next(iterator)
model.partial_fit(xi, yi)
return ModelResult(
model=model,
weights=self._sklearn_weights(model, x_features),
response_type='continuous')
def _fit_classifier(self, dataset, target, level=None, features=None):
"""Fits a classifier -- to be implemented by subclasses.
Multiclass classification is done with OVR (one versus rest) classification.
This means that there is a separate regression for each class, and
each of these regressions is trained to pick this class out.
This method updates self.model[target] with the trained model and does
not return anything.
Args:
dataset: src.data.dataset.Dataset, the data to be used for fitting.
target: string, the name of the target variable.
level: string, the target's sub-class. If this isn't specified, the system
will assume that the target is monolithic.
features: list(string), a subset of dataset.vocab which is to be
used while fitting.
Returns:
regression_base.ModelResult, the fitted parameters.
"""
iterator = self._iter_minibatches(
dataset=dataset,
target_name=target['name'],
features=features,
level=level,
batch_size=self.params['batch_size'])
print('CLASSIFICATION: fitting target %s, level %s', target['name'],
level)
model = linear_model.SGDClassifier(
loss='log',
penalty=(self.regularizer or 'none'),
alpha=self.lmbda,
learning_rate='constant',
eta0=self.params.get('lr', 1.0))
for _ in tqdm(range(self.params['num_train_steps'])):
xi, yi, x_features = next(iterator)
model.partial_fit(xi, yi, classes=[0., 1.])
return ModelResult(
model=model,
weights=self._sklearn_weights(model, x_features),
response_type='categorical')
| python |
# Copyright 2020 kubeflow.org
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import kfp.dsl as dsl
from kubernetes.client import V1Volume, V1SecretVolumeSource, V1VolumeMount, V1EnvVar
@dsl.pipeline(
name='Volume',
description='A pipeline with volume.'
)
def volume_pipeline():
op1 = dsl.ContainerOp(name='download',
image='google/cloud-sdk',
command=['sh', '-c'],
arguments=['ls | tee /tmp/results.txt'],
file_outputs={'downloaded': '/tmp/results.txt'})
op1.add_volume(V1Volume(name='gcp-credentials',
secret=V1SecretVolumeSource(secret_name='user-gcp-sa')))
op1.container.add_volume_mount(V1VolumeMount(mount_path='/secret/gcp-credentials',
name='gcp-credentials'))
op1.container.add_env_variable(V1EnvVar(name='GOOGLE_APPLICATION_CREDENTIALS',
value='/secret/gcp-credentials/user-gcp-sa.json'))
op1.container.add_env_variable(V1EnvVar(name='Foo', value='bar'))
op2 = dsl.ContainerOp(name='echo',
image='library/bash',
command=['sh', '-c'],
arguments=['echo %s' % op1.output])
if __name__ == '__main__':
from kfp_tekton.compiler import TektonCompiler
TektonCompiler().compile(volume_pipeline, __file__.replace('.py', '.yaml'))
| python |
# import asyncio
# import requests
# import json
# import re
import os
import discord
from discord.ext import commands, tasks
from discord_slash import SlashCommand, SlashContext
from itertools import cycle
import keep_alive
# # grabbing the config file
# with open('config.json') as config_file:
# secrets = json.load(config_file)
# grabbing keys
token = os.getenv("bot_token")
key = os.getenv("api_key")
# intents so bot can see members from DMs
intents = discord.Intents(messages=True, reactions=True, members=True, guilds=True, presences=True)
# bot info
bot = commands.Bot(
command_prefix='!'
, description='Bot to help Exogen players make calculations, and for mods/admins to manage the server.'
, case_insensitive=True
, intents=intents
)
slash = SlashCommand(bot, sync_commands=True)
# background task to keep bot awake when web-hosted on Repl.it
status = cycle(['Exogen ░░░░░░░░',
'Exogen ░░░░░░░▒',
'Exogen ░░░░░░▒▓',
'Exogen ░░░░░▒▓▒',
'Exogen ░░░░▒▓▒░',
'Exogen ░░░▒▓▒░░',
'Exogen ░░▒▓▒░░░',
'Exogen ░▒▓▒░░░░',
'Exogen ▒▓▒░░░░░',
'Exogen ▓▒░░░░░░',
'Exogen ▒░░░░░░░',
'Exogen ░░░░░░░░',
'Exogen ▒░░░░░░░',
'Exogen ▓▒░░░░░░',
'Exogen ▒▓▒░░░░░',
'Exogen ░▒▓▒░░░░',
'Exogen ░░▒▓▒░░░',
'Exogen ░░░▒▓▒░░',
'Exogen ░░░░▒▓▒░',
'Exogen ░░░░░▒▓▒',
'Exogen ░░░░░░▒▓',
'Exogen ░░░░░░░▒'])
# @bot.event
# async def on_ready():
# change_status.start()
# print("Your bot is ready")
@tasks.loop(seconds=2)
async def change_status():
await bot.change_presence(activity=discord.Game(next(status)))
# gathering the commands
cogs = [
'cogs.mod'
, 'cogs.advisors'
, 'cogs.calcs'
]
# limiting the eval command to just the bot owner
@bot.command(name='eval', hidden=True)
@commands.is_owner()
async def _eval(ctx, *, code):
await ctx.send(eval(code))
@_eval.error
async def eval_error(error, ctx):
if isinstance(error, commands.MissingPermissions):
text = "Sorry {}, you do not have permissions to do that!".format(ctx.message.author)
await ctx.send(ctx.message.channel, text)
# command that DMs the sender
@bot.command(
pass_context=True,
name='direct_message',
description='Initiates a DM with the user.',
help='starts a DM with the user',
aliases=['dm'],
usage=''
)
async def dm(ctx):
await ctx.author.send("Hey, what do you need?")
# slash command that DMs the sender
@slash.slash(
name='direct_message',
description='Initiates a DM with the user.',
guild_ids=[637447316856373268]
)
async def _dm(ctx):
await ctx.author.send("Hey, what do you need?")
await ctx.send("Sliding into those DMs.")
@bot.event
async def on_member_join(member):
guild = member.guild
channel = bot.get_channel(813417162249207818)
await channel.edit(name=f'members {guild.member_count}')
rules = bot.get_channel(704733802223894648)
nav = bot.get_channel(771885969715626005)
role = discord.utils.get(member.guild.roles, id=906375433329725451)
await member.add_roles(role)
await member.send("Welcome, {}!".format(member.name))
await member.send("Please check out the {} before heading over to {} to see where things are located."
.format(rules.mention, nav.mention))
await member.send("If you are unfamiliar with Exogen, feel free to check out the manual:\n"
"https://discordapp.com/channels/637447316856373268/704724317279092756/705170179893624943\n"
"And for advice on getting your corporation up and running, check out this startup guide from "
"the Pale Blue Dot megacorp:\n"
"https://discord.com/channels/637447316856373268/704733458227789937/745698128627236965")
@bot.event
async def on_member_remove(member):
guild = member.guild
channel = bot.get_channel(813417162249207818)
await channel.edit(name=f'members {guild.member_count}')
@bot.event
async def on_raw_reaction_add(payload):
guild = bot.get_guild(payload.guild_id)
member = discord.utils.get(guild.members, id=payload.user_id)
# RP reaction role
if payload.channel_id == 774834872719507496 and payload.message_id == 774845668745019392:
role = discord.utils.get(payload.member.guild.roles, name="RP opt in")
if str(payload.emoji) == '<:BHC:749478461562683443>':
await payload.member.add_roles(role)
# wiki reaction role
elif payload.channel_id == 794598980973363210 and payload.message_id == 794600306532548618:
role = discord.utils.get(payload.member.guild.roles, name="Researcher")
if str(payload.emoji) == '<:ArchangelFoundation:749053627947286548>':
await payload.member.add_roles(role)
# rules reaction role
# elif payload.channel_id == 704733802223894648 and payload.message_id == 706999325556867163:
# role = discord.utils.get(payload.member.guild.roles, name="Accepted Rules")
# role_b = discord.utils.get(payload.member.guild.roles, name="Not Accepted Rules") #id=906375433329725451)
# if str(payload.emoji) == '<:Exogen:749051544745541744>': # or str(payload.emoji) == '👍':
# await payload.member.add_roles(role)
# # await payload.member.remove_roles(role_b)
@bot.event
async def on_raw_reaction_remove(payload):
guild = bot.get_guild(payload.guild_id)
member = discord.utils.get(guild.members, id=payload.user_id)
# RP reaction role
if payload.channel_id == 774834872719507496 and payload.message_id == 774845668745019392:
role = discord.utils.get(guild.roles, name="RP opt in")
if str(payload.emoji) == '<:BHC:749478461562683443>':
await member.remove_roles(role)
# wiki reaction role
elif payload.channel_id == 794598980973363210 and payload.message_id == 794600306532548618:
role = discord.utils.get(guild.roles, name="Researcher")
if str(payload.emoji) == '<:ArchangelFoundation:749053627947286548>':
await member.remove_roles(role)
# rules reaction role
# elif payload.channel_id == 704733802223894648 and payload.message_id == 706999325556867163:
# role = discord.utils.get(guild.roles, name="Accepted Rules")
# role_b = discord.utils.get(member.guild.roles, name="Not Accepted Rules") #id=906375433329725451)
# if str(payload.emoji) == '<:Exogen:749051544745541744>': # or str(payload.emoji) == '👍':
# await member.remove_roles(role)
# # await member.add_roles(role_b)
# bot start up event
@bot.event
async def on_ready():
print("The bot is ready!")
print(f'Logged in as: {bot.user.name} - {bot.user.id}')
print(f'Discord version is: {discord.__version__}')
print('------------------------------------------------------')
await bot.change_presence(activity=discord.Game(name="Exogen"))
change_status.start()
for cog in cogs:
bot.load_extension(cog)
print(f'{cog} is ready.')
print('------------------------------------------------------')
return
# run Flask script to keep bot online
keep_alive.keep_alive()
# run bot
# bot.run(secrets['token'])
bot.run(token)
| python |
from sys import exit
import json
from time import sleep
from confluent_kafka import Consumer, KafkaError
ERROR_CODE_ZERO = 0
ERROR_CODE_ONE = 1
EMPTY_ERROR_MESSAGE = ""
PAUSE = 3
class KafkaConsumer:
def __init__(self, settings, client_id, timeout, auto_commit):
self._settings = settings
self._timeout = timeout
self._auto_commit = auto_commit
self._client_id = client_id
self._consumer = self._build_consumer()
def subscribe(self, topic_name, timeout):
"""
Subscribe for topic and listen to new messages until the timeout of
Kafka consumer occurs which will end the session
:param topic_name: the topic name
:param timeout: Maximum time to block waiting for message, event or callback
:return: error_code, error, message
"""
self._consumer.subscribe([topic_name])
try:
while True:
msg = self._consumer.poll(timeout)
if msg is None:
continue
elif not msg.error():
yield ERROR_CODE_ZERO, EMPTY_ERROR_MESSAGE, json.loads(msg.value())
elif msg.error().code() == KafkaError._PARTITION_EOF:
yield ERROR_CODE_ONE, 'End of partition reached {0}/{1}'.format(msg.topic(), msg.partition()), None
else:
yield ERROR_CODE_ONE, 'Error occured: {0}'.format(msg.error().str()), None
sleep(PAUSE)
except KeyboardInterrupt:
exit(0)
finally:
self._consumer.close()
def _build_consumer(self):
"""
Creates kafka consumer object.
:return:
"""
settings = {
'bootstrap.servers': self._settings["fba_kafka_bootstrap_server"],
'group.id': self._settings["fba_kafka_consumer_group_name"],
'client.id': self._client_id,
'enable.auto.commit': self._auto_commit,
'session.timeout.ms': self._timeout,
'security.protocol': 'SSL',
'ssl.ca.location': self._settings["ssl_ca_location"],
'ssl.certificate.location': self._settings["ssl_certificate_location"],
'ssl.key.location': self._settings["ssl_key_location"],
'ssl.key.password': self._settings["key_store_pass"],
#'auto.offset.reset': 'smallest'
}
try:
cons = Consumer(settings)
return cons
except Exception as e:
print("Error in creating the Consumer: ", e)
#exit(1)
| python |
#!/usr/bin/env python3
"""
both web service and mosquitto are running locally.
MENSHNET_UNITTEST="yes" is defined
1. simulate the okta routine that creates the api key by calling
the same endpoint in the server to generate an apiKey.
"""
import os
os.environ["MENSHNET_UNITTEST"] = "yes"
import menshnet
| python |
from abc import ABCMeta, abstractmethod
class Animal(metaclass=ABCMeta):
def walk(self):
print('Walking...')
def eat(self):
print('Eating...')
@abstractmethod
def num_legs():
pass | python |
class Solution:
def solve(self, n):
count = 1
while n != 1:
if n % 2 == 0:
n //= 2
else:
n = 3 * n + 1
count += 1
return count
| python |
# -*- coding: utf-8 -*-
from flask import Flask, jsonify
from flask.ext.cors import CORS, cross_origin
from pymongo import MongoClient
import os
app = Flask(__name__)
CORS(app)
mongodb_host = '172.16.0.2'
mongodb_port = 27017
client = MongoClient(mongodb_host,mongodb_port)
collection = client.conflict_db.events
@app.route('/', methods=['GET'])
def hello_world():
output = 'Hi, give me some parameter, would you?'
return jsonify({'result' : output})
@app.route('/markers/dyad=<int:dyad_new_id>&min=<int:minimum>&max=<int:maximum>', methods=['GET'])
@app.route('/markers/dyad=<int:dyad_new_id>', defaults={'minimum':None, 'maximum':None}, methods=['GET'])
@app.route('/markers', defaults={'dyad_new_id':None, 'minimum':None,'maximum':None}, methods=['GET'])
def get_markers(dyad_new_id,minimum,maximum):
output = []
counter = 0
if dyad_new_id is not None and minimum is None and maximum is None:
print 'dyad is given'
for q in collection.find({'dyad_new_id': dyad_new_id},{'_id':False}).sort([('date_start',1)]):
output.append({'id' : q['id'], 'lat' : q['latitude'], 'lon' : q['longitude'],
'time' : q['date_start']})
counter = counter + 1
return jsonify({'result' : output, 'records': counter})
elif dyad_new_id is not None and minimum is not None and maximum is not None:
print 'dyad, death_range are given'
for q in collection.find({'dyad_new_id': dyad_new_id, 'best':{'$gte':minimum,'$lte':maximum}},{'_id':False}).sort([('date_start',1)]):
output.append({'id' : q['id'], 'lat' : q['latitude'], 'lon' : q['longitude'],
'time' : q['date_start']})
counter = counter + 1
return jsonify({'result' : output, 'records': counter})
if dyad_new_id is None and minimum is None and maximum is None:
print 'nothing given'
for q in collection.find({},{'_id':False}).sort([('date_start',1)]):
output.append({'id': q['id'], 'lat': q['latitude'], 'lon': q['longitude'],
'time': q['date_start']})
counter = counter + 1
return jsonify({'result' : output, 'records': counter})
@app.route('/details/<int:event_id>', methods=['GET'])
def get_details(event_id):
q = collection.find_one({'id': event_id,},{'_id':False})
if q:
output = {'source_article': q['source_article'], 'where_coordinates': q['where_coordinates'], 'side_a': q['side_a'],
'side_b': q['side_b'], 'deaths_a': q['deaths_a'], 'deaths_b': q['deaths_b'],
'deaths_civilians': q['deaths_civilians'], 'deaths_unknown': q['deaths_unknown']}
else:
print q
output = 'No results found'
return jsonify({'result' : output})
@app.route('/dyads', methods=['GET'])
def get_dyads():
output = {}
counter = 0
ids = collection.distinct('dyad_new_id')
names = collection.distinct('dyad_name')
try:
for q,w in enumerate(ids):
output[w] = names[q]
counter = counter + 1
except:
output = 'Things went terribly wrong'
return jsonify({'result' : output, 'records': counter})
@app.route('/death_range', methods=['GET'])
def get_minmax():
output = {}
divider = 8
try:
for q in collection.find({},{'best':True,'_id':False}).sort([('best',1)]).limit(1):
best_min = q['best']
for w in collection.find({},{'best':True,'_id':False}).sort([('best',-1)]).limit(1):
best_max = w['best']
except:
output = 'Things went terribly wrong'
avg = (best_max - best_min + 1)/divider
for x in range(0,divider):
i = (best_min+(x)*avg)
j = (best_min+(x+1)*avg-1)
output[x] = str(i) + '-' + str(j)
return jsonify({'result' : output})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001, debug=True, threaded=True )
| python |
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import proto # type: ignore
__protobuf__ = proto.module(
package='google.ads.googleads.v7.enums',
marshal='google.ads.googleads.v7',
manifest={
'RecommendationTypeEnum',
},
)
class RecommendationTypeEnum(proto.Message):
r"""Container for enum describing types of recommendations.
"""
class RecommendationType(proto.Enum):
r"""Types of recommendations."""
UNSPECIFIED = 0
UNKNOWN = 1
CAMPAIGN_BUDGET = 2
KEYWORD = 3
TEXT_AD = 4
TARGET_CPA_OPT_IN = 5
MAXIMIZE_CONVERSIONS_OPT_IN = 6
ENHANCED_CPC_OPT_IN = 7
SEARCH_PARTNERS_OPT_IN = 8
MAXIMIZE_CLICKS_OPT_IN = 9
OPTIMIZE_AD_ROTATION = 10
CALLOUT_EXTENSION = 11
SITELINK_EXTENSION = 12
CALL_EXTENSION = 13
KEYWORD_MATCH_TYPE = 14
MOVE_UNUSED_BUDGET = 15
FORECASTING_CAMPAIGN_BUDGET = 16
TARGET_ROAS_OPT_IN = 17
RESPONSIVE_SEARCH_AD = 18
MARGINAL_ROI_CAMPAIGN_BUDGET = 19
__all__ = tuple(sorted(__protobuf__.manifest))
| python |
import os
import subprocess
from setuptools import find_packages, setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
def get_git_commit_number():
if not os.path.exists('.git'):
return '0000000'
cmd_out = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE)
git_commit_number = cmd_out.stdout.decode('utf-8')[:7]
return git_commit_number
def make_cuda_ext(name, module, sources):
cuda_ext = CUDAExtension(
name='%s.%s' % (module, name),
sources=[os.path.join(*module.split('.'), src) for src in sources]
)
return cuda_ext
def write_version_to_file(version, target_file):
with open(target_file, 'w') as f:
print('__version__ = "%s"' % version, file=f)
if __name__ == '__main__':
version = '0.3.0+%s' % get_git_commit_number()
write_version_to_file(version, 'pcdet/version.py')
setup(
name='pcdet',
version=version,
description='OpenPCDet is a general codebase for 3D object detection from point cloud',
install_requires=[
'numpy',
'torch>=1.1',
'spconv',
'numba',
'tensorboardX',
'easydict',
'pyyaml'
],
author='Shaoshuai Shi',
author_email='[email protected]',
license='Apache License 2.0',
packages=find_packages(exclude=['tools', 'data', 'output']),
cmdclass={'build_ext': BuildExtension},
ext_modules=[
make_cuda_ext(
name='pointnet2_stack_cuda',
module='pcdet.ops.pointnet2.pointnet2_stack',
sources=[
'src/pointnet2_api.cpp',
'src/ball_query.cpp',
'src/ball_query_gpu.cu',
'src/group_points.cpp',
'src/group_points_gpu.cu',
'src/sampling.cpp',
'src/sampling_gpu.cu',
'src/interpolate.cpp',
'src/interpolate_gpu.cu',
],
),
make_cuda_ext(
name='pointnet2_batch_cuda',
module='pcdet.ops.pointnet2.pointnet2_batch',
sources=[
'src/pointnet2_api.cpp',
'src/ball_query.cpp',
'src/ball_query_gpu.cu',
'src/group_points.cpp',
'src/group_points_gpu.cu',
'src/interpolate.cpp',
'src/interpolate_gpu.cu',
'src/sampling.cpp',
'src/sampling_gpu.cu',
],
),
],
)
| python |
from django.test.testcases import TestCase
from corehq.messaging.smsbackends.sislog.util import convert_raw_string
class GSM0338Portuguese(TestCase):
def test_decode(self):
raw_to_clean = {
# basic character test
"associa\x09\x7bo": "associa\u00e7\u00e3o",
# extended character test
"a\x09\x1b\x75car": "a\u00e7\u00facar",
# no decode
"no decode needed": "no decode needed",
}
for raw, expected in raw_to_clean.items():
cleaned = convert_raw_string(raw)
self.assertEqual(cleaned, expected)
print("Cleaned text: %s" % cleaned)
| python |
from finbert.finbert import predict
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
import argparse
from pathlib import Path
import datetime
import os
import random
import string
import pandas as pd
import time
import pickle
import multiprocessing as mp
import gc
# globals
model = None
parser = argparse.ArgumentParser(description='Sentiment analyzer')
parser.add_argument('--model_path', type=str, help='Path to classifier model')
args = parser.parse_args()
def predict_batch(N, data_path="CC_data/", save_path="output/"):
model = BertForSequenceClassification.from_pretrained(args.model_path, num_labels=3, cache_dir=None)
sentence_pred_df = []
start_main = time.time()
data = pickle.load(open(data_path + "BERTnews_all.p", "rb"))
data = data.reset_index(drop=True)
# for i in range(len(data)):
for i in range(N):
pred = predict(data.loc[i]['text'], data.loc[i]['index'], model, write_to_csv=False)
sentence_pred_df.extend(pred)
sentence_pred_df = pd.DataFrame.from_dict(sentence_pred_df)
sentence_pred_df.to_csv(save_path + "BERTnews_preds.csv")
end_main = time.time()
print("TIME for batch_id: {}".format(round(end_main - start_main, 2)))
def init_bert(model_path=args.model_path):
global model
# global data
model = BertForSequenceClassification.from_pretrained(model_path, num_labels=3, cache_dir=None)
# data = pickle.load(open("CC_data/BERTnews_all.p", "rb"))
def predict_news(x):
pred = predict(x[1], x[0], model, write_to_csv=False)
return pred
if __name__ == "__main__":
# ========= single prediction =========
# start = time.time()
# predict_batch(30)
# end = time.time()
# print("TOTAL time: {}".format(round(end-start, 2)))
# ======== New multiprocessing ===========
N_start = 0
# N_end = 539317
# N_end = 5000
# N_end = 30
N_end = 100000
# we parse data to list of tuples to avoid reloading entire data for every subprocess
data = pickle.load(open("CC_data/BERTnews_all.p", "rb"))
data_batch = [tuple(x) for x in data.loc[N_start:N_end].itertuples(index=False)]
del data
gc.collect()
pool = mp.Pool(initializer=init_bert)
print("Number of cores: ", os.cpu_count())
start = time.time()
res = pool.map(predict_news, data_batch)
end = time.time()
print("TOTAL time: {}".format(round(end-start, 2)))
# save to pandas dataframe
flatten = lambda l: [item for sublist in l for item in sublist]
res = flatten(res)
res = pd.DataFrame.from_dict(res)
res.to_csv("output/BERTnews_preds_all.csv")
# ========= Naive multiprocessing =========
# pool = mp.Pool()
# print("Number of cores: ", os.cpu_count())
#
# start = time.time()
# pool.map(predict_batch, list(range(2)))
# end = time.time()
# print("TOTAL time: {}".format(round(end-start, 2)))
| python |
import pytest
from fastapi.testclient import TestClient
from firedantic import ModelNotFoundError
from _pytest.monkeypatch import MonkeyPatch
import saatja.request_dependencies as request_dependencies
from saatja.db.task import ScheduledTask, DeliveredTask, TaskError
from saatja.utils import now_utc
SCHEDULER_HEADERS = {"Authorization": "trustno1"}
class FakeResponse:
def __init__(self, status: int, text: str):
self.status = status
self._text = text
async def text(self):
return self._text
def get_request_mock():
requests = {
"https://example.com/1": [
FakeResponse(200, "Alles klar."),
],
"https://example.com/2": [
FakeResponse(500, "Oops."),
],
}
async def _mock_make_request(task: ScheduledTask):
resp = requests[task.url].pop(0)
return resp.status, await resp.text()
return requests, _mock_make_request
def mock_check_authorization(*args):
# Bypass authentication
pass
def test_task_delivery(client: TestClient, monkeypatch: MonkeyPatch):
requests, request_mock = get_request_mock()
monkeypatch.setattr(ScheduledTask, "_make_request", request_mock)
monkeypatch.setattr(
request_dependencies, "_check_scheduler_authorization", mock_check_authorization
)
task = ScheduledTask(url="https://example.com/1", when=now_utc())
task.save()
task2 = ScheduledTask(url="https://example.com/2", when=now_utc())
task2.save()
print("----- SCHEDULER TEST -----")
print(f"Task 1: {task.id}")
print(f"Task 2: {task2.id}")
print("")
response = client.post("/scheduler/run-tasks", headers=SCHEDULER_HEADERS)
assert response.status_code == 204
assert len(requests["https://example.com/1"]) == 0
assert len(requests["https://example.com/2"]) == 0
print("----- SCHEDULED TASKS -----")
for r in ScheduledTask.find({}):
print(f" - {r.id}: {r.when} -> {r.url}")
print("")
print("----- DELIVERED TASKS -----")
for r in DeliveredTask.find({}):
print(f" - {r.id}: {r.when} -> {r.url}")
print("")
print("----- TASK ERRORS -----")
for r in TaskError.find({}):
print(f" - {r.task_id}: {r.attempted_delivery} -> {r.status}")
print("")
# First task should've been delivered
delivered = DeliveredTask.get_by_id(task.id)
# These timestamps should be pretty close to each other
assert abs((delivered.delivered - delivered.when).total_seconds()) < 2
with pytest.raises(ModelNotFoundError):
ScheduledTask.get_by_id(task.id)
# Second task should've received an error
ScheduledTask.get_by_id(task2.id)
errors = TaskError.find({"task_id": task2.id})
assert len(errors) == 1
error: TaskError = errors[0]
assert error.task_id == task2.id
assert abs((error.attempted_delivery - task2.when).total_seconds()) < 2
assert error.status == 500
assert error.response == "Oops."
| python |
from typing import Union
from discordmovies.attributes import DiscordMoviesAttributes
from typing import List
from discordmovies.outputmodules.filehelper import FileHelper
from discordmovies.inputmodules.input import Input
class DiscordMovies:
"""
A class for going through a discord movie recommendations channel and
extracting all links. These links can then be uploaded to Google Sheets
or exported to a CSV.
"""
def __init__(self, discord_auth_token: Union[str, int], bot: bool = True,
doc_name: str = "discordmovies", attributes: List[str] = None,
exclude_attributes: List[str] = None):
self.auth_token = discord_auth_token
self.bot = bot
self.attributes = DiscordMoviesAttributes(
name=doc_name,
attributes=attributes,
exclude_attributes=exclude_attributes
)
def discord_to_file(self, filetype: str,
channel_id: Union[str, int],
watched_channel_id: Union[str, int] = None,
sheet_id: Union[str, int] = None,
max_messages: int = 100,
tmdb_api_key: str = None,
remove_watched: bool = False,
reformat_sheet: bool = False,
source: str = "discord"):
"""
Extract all movies from a Discord channel and save them to a Google
Sheet or CSV.
"""
file = FileHelper(filetype=filetype, attributes=self.attributes,
sheet_id=sheet_id, reformat_sheet=reformat_sheet)
current_content = file.get_values()
# These next few if statements are checking the formatting of the
# file. Basically if the header is not what's expected, the whole
# sheet is overwritten.
if current_content:
if current_content[0] != self.attributes.movie_list. \
get_categories():
print("File formatting does not match current formatting "
"settings. Sheet will be completely rewritten.")
current_content = []
overwrite = True
else:
overwrite = False
else:
overwrite = False
inputs = Input(
source_type=source,
current_content=current_content,
attributes=self.attributes,
auth=self.auth_token,
bot=self.bot,
tmdb_api_key=tmdb_api_key,
watched_channel_id=watched_channel_id,
remove_watched=remove_watched,
movie_channel_id=channel_id,
max_messages=max_messages
)
if file.exists():
if not self.attributes.movie_list:
inputs.setup_movie_list()
file.write_existing(overwrite=overwrite)
else:
if not self.attributes.movie_list:
inputs.setup_movie_list()
file.write_new()
| python |
import os
import shutil
import datetime
from ebooklib import epub
from toolbox.tools import Now
from compiler import epub_html
now = Now()
css = """body{padding:0;margin:0;line-height:1.2;text-align:justify}
p{text-indent:2em;display:block;line-height:1.3;margin-top:0.6em;margin-bottom:0.6em}
div{margin:0;padding:0;line-height:1.2;text-align:justify}
h1{font-size:1.4em;line-height:1.2;margin-top:1em;margin-bottom:1.2em;font-weight:bold;text-align:center !important}
.notetag{font-size:0.8em;vertical-align:super;font-weight:bold;color:#960014;text-decoration:none}
"""
def build_page(book: epub.EpubBook, file, filename):
tex = open(file, "rb").read()
title, content = epub_html.compile(tex)
page = epub.EpubHtml(title=title, file_name=filename + ".xhtml", content=content, lang='zh')
page.add_link(href='./style/style.css', rel='stylesheet', type='text/css')
link = epub.Link(filename + ".xhtml", title, "chap_" + filename)
book.add_item(page)
book.spine.append(page)
return link
def work(project, _vars):
book = epub.EpubBook()
book.set_identifier(_vars.nid)
book.set_title(_vars.title)
book.set_language('zh')
book.add_author(_vars.author)
book.add_item(epub.EpubNav())
book.add_item(epub.EpubNcx())
book.add_item(epub.EpubItem(uid="style_nav", file_name="style/style.css", media_type="text/css", content=css))
book.spine = ['nav']
book.add_metadata('DC', 'description', _vars.description)
book.toc = tuple((epub.Section(title),
tuple(build_page(book, f'./{project}/{file}', file.replace(".tex", "")) for file in files))
for title, files in _vars.menu.items())
epub.write_epub(f"./artifacts/{project}/epub/{project}_latest.epub", book, {'epub3_pages': False})
shutil.copy(f"./artifacts/{project}/epub/{project}_latest.epub",
f"./artifacts/{project}/epub/history/{project}_{datetime.datetime.now().strftime('%y%m%d')}.epub")
_abspath = os.path.abspath(f"./artifacts/{project}/epub/{project}_latest.epub")
print(f'[{now}] Epub file saved at {_abspath}.')
| python |
# loop3
userinput = input("Enter a letter in the range A - C : ")
while (userinput != "A") and (userinput != "a") and (userinput != "B") and (userinput != "b") and (userinput != "C") and (userinput != "c"):
userinput = input("Enter a letter in the range A-C : ")
| python |
import math
import numpy as np
year = input("Enter the year to be checked : ")
def check_leap(year):
print(type(year))
year = int(year)
if year%100==0:
print("Leap Year")
elif year%4 == 0:
print("Leap Year")
elif year % 400 == 0:
print("Leap Year")
else:
print("Not a Leap year")
print(year)
check_leap(year)
| python |
# -*- coding: utf-8 -*-
__author__ = 'mariosky'
import json
import os
import time
print os.environ['REDIS_HOST']
from redis_cola import Cola, Task
server = Cola("perl6")
code = """
sub add($a, $b) {
say "Hi";
return $a+$b;
}
"""
test = """
# .... tests
is add(6,1), 9, 'Suma dos enteros';
is add(6,-1), 2, 'Suma dos enteros error';
"""
def put():
task = {"id": None, "method": "exec", "params": {"code": code, "test": test}}
print task
task_id = server.enqueue(**task)
return task_id
def get(t_id):
t = Task(id=t_id)
t.get_result('perl6')
if t.result:
return t.result
#return json.loads( t.result[0])
else:
return "Snif"
tid = put()
print tid
time.sleep(2)
print get(tid) | python |
from .di import DI
from .standard_dependencies import StandardDependencies
from .additional_config import AdditionalConfig
| python |
from spyd.registry_manager import register
@register('client_message_handler')
class SayteamHandler(object):
message_type = 'N_SAYTEAM'
@staticmethod
def handle(client, room, message):
player = client.get_player()
room.handle_player_event('team_chat', player, message['text'])
| python |
# note:
from __future__ import absolute_import
from .click_models import *
from .data_utils import *
from .hparams import *
from .metric_utils import *
from .metrics import *
from .propensity_estimator import *
from .sys_tools import *
from .team_draft_interleave import *
from .RAdamOptimizer import *
| python |
import numpy as np
import joblib
from matplotlib import pyplot
import pandas as pd
import matplotlib.pyplot as plt
import math
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, f1_score, recall_score,precision_score, classification_report, confusion_matrix
import collections
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import precision_recall_curve, roc_curve
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import label_binarize
np.random.seed(1337) # for reproducibility
import xgboost as xgb
# import packages for hyperparameters tuning
from hyperopt import STATUS_OK, Trials, fmin, hp, tpe
X_train = np.load('../data/train/X_train.npy')
Y_train = np.load('../data/train/Y_train.npy')
X_test = np.load('../data/test/set1/X_test.npy')
Y_test = np.load('../data/test/set1/Y_test.npy')
X_test2 = np.load('../data/test/set2/X_test2.npy')
Y_test2 = np.load('../data/test/set2/Y_test2.npy')
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
X_test2 = scaler.fit_transform(X_test2)
print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
print(X_test2.shape)
print(Y_test2.shape)
xgb_clf = xgb.XGBClassifier(learning_rate=0.1,
n_estimators=1000,
max_depth=5,
min_child_weight=1, gamma=0,
reg_alpha=0.01, n_jobs=-1,
subsample=0.5, colsample_bytree=0.5,
objective='multi:softmax', num_class=8)
| python |
from random import choice
n = str(input('nome do 1° aluno: '))
n2 = str(input('nome do 2° aluno: '))
n3 = str(input('nome do 3° aluno: '))
n4 = str(input('nome do 4° aluno: '))
lista = (n,n2,n3,n4)
print(f'O aluno escolhido é: {choice(lista)}') | python |
# -*- coding: utf-8 -*-
# Generated by Django 1.10.8 on 2019-01-18 15:19
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='SCIMPlatformSettings',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('update', models.DateTimeField(auto_now=True)),
('bearer_token', models.CharField(max_length=32, verbose_name='Bearer Token')),
],
options={
'verbose_name': 'scim platform settings',
'verbose_name_plural': 'scim platform settings',
},
),
]
| python |
# -*- coding: utf-8 -*-
# Builtin Modules
import time
import traceback
import functools
# 3rd-party Modules
import redis
import six
# Project Modules
from worker.utils import toolkit, yaml_resources
from worker.utils.log_helper import LogHelper
CONFIG = yaml_resources.get('CONFIG')
def get_config(c):
config = {
'host' : c.get('host') or '127.0.0.1',
'port' : c.get('port') or 6379,
'db' : c.get('db') or c.get('database'),
'password': c.get('password') or None,
'ssl' : c.get('useSSL') or c.get('useTLS'),
}
if config['ssl'] is True:
config['ssl_cert_reqs'] = None
return config
LIMIT_ARGS_DUMP = 200
# LUA
LUA_UNLOCK_KEY_KEY_NUMBER = 1;
LUA_UNLOCK_KEY = 'if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end ';
CLIENT_CONFIG = None
CLIENT = None
class RedisHelper(object):
def __init__(self, logger, config=None, database=None, *args, **kwargs):
self.logger = logger
self.skip_log = False
self.checked_keys = set()
if config:
if database:
config['db'] = database
self.config = config
self.config['tsMaxAge'] = config.get('tsMaxAge') or 3600 * 24
self.config['tsMaxPeriod'] = config.get('tsMaxPeriod') or 3600 * 24 * 3
self.config['tsMinInterval'] = config.get('tsMinInterval') or 60
self.client = redis.Redis(**get_config(config))
else:
global CLIENT_CONFIG
global CLIENT
if not CLIENT:
CLIENT_CONFIG = {
'host' : CONFIG['REDIS_HOST'],
'port' : CONFIG['REDIS_PORT'],
'database': CONFIG['REDIS_DATABASE'],
'password': CONFIG['REDIS_PASSWORD'],
'useTLS' : CONFIG['REDIS_USE_TLS'],
}
CLIENT_CONFIG['tsMaxAge'] = CONFIG.get('REDIS_TS_MAX_AGE')
CLIENT_CONFIG['tsMaxPeriod'] = CONFIG.get('REDIS_TS_MAX_PERIOD')
CLIENT_CONFIG['tsMinInterval'] = CONFIG.get('REDIS_TS_MIN_INTERVAL')
CLIENT = redis.Redis(**get_config(CLIENT_CONFIG))
self.config = CLIENT_CONFIG
self.client = CLIENT
def __del__(self):
if self.client and self.client is not CLIENT:
self.client.close()
def check(self):
try:
self.client.info()
except Exception as e:
for line in traceback.format_exc().splitlines():
self.logger.error(line)
raise Exception(str(e))
def query(self, *args, **options):
command = args[0]
command_args = args[1:]
if not self.skip_log:
key = ''
if len(command_args) > 1:
key = command_args[0] + ' ...'
elif len(command_args) > 0:
key = command_args[0]
options_dump = ''
if options:
options_dump = 'options=' + toolkit.json_dumps(options)
self.logger.debug('[REDIS] Query `{} {}` {}'.format(command.upper(), key, options_dump))
return self.client.execute_command(*args, **options);
def run(self, *args, **kwargs):
command = args[0]
command_args = args[1:]
if not self.skip_log:
key = ''
if len(command_args) > 0:
key = command_args[0]
if isinstance(key, (list, tuple)):
key = ', '.join([str(k) for k in key])
elif isinstance(key, dict):
key = ', '.join(key.keys())
kwargs_dump = ''
if kwargs:
kwargs_dump = 'kwargs=' + toolkit.json_dumps(kwargs)
self.logger.debug('[REDIS] Run `{} {}` {}'.format(command.upper(), key, kwargs_dump))
return getattr(self.client, command)(*command_args, **kwargs)
def keys(self, pattern='*'):
found_keys = []
COUNT_LIMIT = 1000
next_cursor = 0
while True:
next_cursor, keys = self.run('scan', cursor=next_cursor, match=pattern, count=COUNT_LIMIT)
if isinstance(keys, list) and len(keys) > 0:
for k in keys:
found_keys.append(six.ensure_str(k))
if next_cursor == 0:
break
found_keys = list(set(found_keys))
return found_keys
def exists(self, key):
return self.run('exists', key)
def get(self, key):
return self.run('get', key)
def getset(self, key, value):
return self.run('getset', key, value)
def set(self, key, value):
return self.run('set', key, value)
def setnx(self, key, value):
return self.run('setnx', key, value)
def setex(self, key, max_age, value):
if max_age <= 0:
max_age = 1;
return self.run('setex', key, max_age, value)
def setexnx(self, key, max_age, value):
if max_age <= 0:
max_age = 1;
return self.run('set', key, value, ex=max_age, nx=True)
def mget(self, keys, *args):
return self.run('mget', keys, *args)
def mset(self, key_values, **kwargs):
return self.run('mset', key_values, **kwargs)
def incr(self, key):
return self.run('incr', key)
def incrby(self, key, increment):
return self.run('incrby', key, amount=increment)
def delete(self, keys):
if not isinstance(keys, list):
keys = [keys]
return self.run('delete', *keys)
def del_by_pattern(self, pattern):
if not self.skip_log:
self.logger.debug('[REDIS] DEL by pattern `{}`'.format(pattern))
keys = self.keys(pattern)
if len(keys) <= 0:
return None
else:
return self.delete(keys)
def expire(self, key, expires):
if expires <= 0:
expires = 1
return self.run('expire', key, expires)
def expireat(self, key, timestamp):
return self.run('expireat', key, timestamp)
def hkeys(self, key, pattern='*'):
found_keys = []
COUNT_LIMIT = 1000
next_cursor = 0
while True:
next_cursor, keys = self.run('hscan', key, cursor=next_cursor, match=pattern, count=COUNT_LIMIT)
if len(keys) > 0:
if isinstance(keys, dict):
keys = list(keys.keys())
if isinstance(keys, list):
for k in keys:
found_keys.append(six.ensure_str(k))
if next_cursor == 0:
break
found_keys = list(set(found_keys))
return found_keys
def hget(self, key, field):
return self.run('hget', key, field)
def hmget(self, key, fields):
return self.run('hmget', key, fields)
def hgetall(self, key):
result = self.run('hgetall', key)
result = dict([(six.ensure_str(k), v) for k, v in result.items()])
return result
def hset(self, key, field, value):
return self.run('hset', key, field, value)
def hsetnx(self, key, field, value):
return self.run('hsetnx', key, field, value)
def hmset(self, key, obj):
return self.run('hmset', key, obj)
def hincr(self, key, field):
return self.run('hincrby', key, field, amount=1)
def hincrby(self, key, field, increment):
return self.run('hincrby', key, field, amount=increment)
def hdel(self, key, fields):
return self.run('hdel', key, *fields)
def lpush(self, key, value):
return self.run('lpush', key, value)
def rpush(self, key, value):
return self.run('rpush', key, value)
def lpop(self, key):
return self.run('lpop', key)
def rpop(self, key):
return self.run('rpop', key)
def llen(self, key):
return self.run('llen', key)
def lrange(self, key, start, stop):
return self.run('lrange', key, start, stop);
def ltrim(self, key, start, stop):
return self.run('ltrim', key, start, stop);
def rpoplpush(self, key, dest_key=None, dest_scope=None):
if dest_key is None:
dest_key = key
if dest_scope is None:
dest_scope = scope
return self.run('rpoplpush', key, dest_key)
def ttl(self, key):
return self.run('ttl', key)
def type(self, key):
return self.run('type', key)
def dbsize(self):
return self.run('dbsize')
def info(self):
return self.run('info')
def lock(self, lock_key, lock_value, max_lock_time):
if max_lock_time <= 0:
max_lock_time = 1
return self.run('set', lock_key, lock_value, ex=max_lock_time, nx=True)
def extend_lock_time(self, lock_key, lock_value, max_lock_time):
if max_lock_time <= 0:
max_lock_time = 1
expected_lock_value = self.run('get', lock_key)
expected_lock_value = six.ensure_str(expected_lock_value)
if expected_lock_value != lock_value:
raise Error('Not lock owner')
self.run('expire', lock_key, max_lock_time)
def unlock(self, lock_key, lock_value):
return self.run('eval', LUA_UNLOCK_KEY, LUA_UNLOCK_KEY_KEY_NUMBER, lock_key, lock_value)
def ts_parse_point(self, point):
timestamp, value = six.ensure_str(point).split(',', 1)
timestamp = int(timestamp.split('.')[0])
value = toolkit.json_loads(value)
return [timestamp, value]
def ts_add(self, key, value, timestamp=None, mode=None):
mode = mode or 'update'
if not self.skip_log:
self.logger.debug('[REDIS] TS Add `{}`'.format(key))
if key not in self.checked_keys:
cache_res = self.client.type(key)
if six.ensure_str(cache_res) != 'zset':
self.client.delete(key)
self.checked_keys.add(key)
timestamp = timestamp or int(time.time())
# 时间戳自动根据最小间隔对齐
timestamp = int(timestamp / self.config['tsMinInterval']) * self.config['tsMinInterval']
if mode.lower() == 'addup':
prev_points = self.client.zrangebyscore(key, timestamp, timestamp)
if prev_points:
_, prev_value = self.ts_parse_point(prev_points[0])
value += float(prev_value)
self.client.zremrangebyscore(key, timestamp, timestamp)
value = toolkit.json_dumps(value)
data = ','.join([str(timestamp), value])
self.client.zadd(key, {data: timestamp})
self.client.expire(key, self.config['tsMaxAge'])
if self.config['tsMaxPeriod']:
min_timestamp = int(time.time()) - self.config['tsMaxPeriod']
self.client.zremrangebyscore(key, '-inf', min_timestamp)
def ts_get(self, key, start='-inf', stop='+inf', group_time=1, agg='avg', scale=1, ndigits=2, time_unit='s', dict_output=False, limit=None, fill_zero=False):
if not self.skip_log:
self.logger.debug('[REDIS] TS Get `{}`'.format(key))
if key not in self.checked_keys:
cache_res = self.client.type(key)
if six.ensure_str(cache_res) != 'zset':
self.client.delete(key)
self.checked_keys.add(key)
ts_data = self.client.zrangebyscore(key, start, stop)
ts_data = list(map(self.ts_parse_point, ts_data))
if ts_data and group_time and group_time >= 1:
temp = []
# latest_timestamp = ts_data[-1][0]
for d in ts_data:
grouped_timestamp = int(d[0] / group_time) * group_time
# grouped_timestamp = latest_timestamp - int((latest_timestamp - d[0]) / group_time) * group_time
if len(temp) <= 0 or temp[-1][0] != grouped_timestamp:
temp.append([grouped_timestamp, [d[1]]])
else:
temp[-1][1].append(d[1])
for d in temp:
if agg == 'count':
d[1] = len(d[1])
elif agg == 'avg':
count = len(d[1])
d[1] = functools.reduce(lambda acc, x: acc + x, d[1]) / count
elif agg == 'sum':
d[1] = functools.reduce(lambda acc, x: acc + x, d[1])
elif agg == 'min':
d[1] = min(d[1])
elif agg == 'max':
d[1] = max(d[1])
if fill_zero:
zero_fill_map = dict([(d[0], d[1]) for d in temp])
_next_temp = []
for ts in range(int(temp[0][0]), int(temp[-1][0]) + group_time, group_time):
_next_temp.append([ts, zero_fill_map.get(ts) or 0])
temp = _next_temp
ts_data = temp
if limit:
ts_data = ts_data[-1 * limit:]
for d in ts_data:
if isinstance(d[1], (int, float)):
if scale and scale != 1:
d[1] = d[1] / scale
if ndigits > 0:
d[1] = round(d[1], ndigits)
else:
d[1] = int(d[1])
if time_unit == 'ms':
d[0] = d[0] * 1000
if dict_output:
ts_data = list(map(lambda x: { 't': x[0], 'v': x[1] }, ts_data))
return ts_data
| python |
from typing import Dict, Generator, Optional
import numpy as np
from netqasm.lang import instr as ins
from netqasm.lang.instr import core, nv
from netqasm.lang.instr.flavour import Flavour
from netsquid.components import Instruction as NetSquidInstruction
from netsquid.components.instructions import (
INSTR_CXDIR,
INSTR_CYDIR,
INSTR_INIT,
INSTR_ROT_X,
INSTR_ROT_Y,
INSTR_ROT_Z,
)
from netsquid.nodes.node import Node as NetSquidNode
from pydynaa import EventExpression
from squidasm.nqasm.executor.base import NetSquidExecutor
T_InstrMap = Dict[ins.NetQASMInstruction, NetSquidInstruction]
NV_NS_INSTR_MAPPING: T_InstrMap = {
core.InitInstruction: INSTR_INIT,
nv.RotXInstruction: INSTR_ROT_X,
nv.RotYInstruction: INSTR_ROT_Y,
nv.RotZInstruction: INSTR_ROT_Z,
nv.ControlledRotXInstruction: INSTR_CXDIR,
nv.ControlledRotYInstruction: INSTR_CYDIR,
}
class NVNetSquidExecutor(NetSquidExecutor):
def __init__(
self,
node: NetSquidNode,
name: Optional[str] = None,
instr_log_dir: Optional[str] = None,
flavour: Optional[Flavour] = None,
instr_proc_time: int = 0,
host_latency: int = 0,
) -> None:
"""Represents a QNodeOS processor that communicates with a QDevice that supports NV instructions"""
super().__init__(
node,
name,
instr_log_dir,
instr_mapping=NV_NS_INSTR_MAPPING,
instr_proc_time=instr_proc_time,
host_latency=host_latency,
)
def _do_meas(
self, subroutine_id: int, q_address: int
) -> Generator[EventExpression, None, int]:
position = self._get_position(subroutine_id=subroutine_id, address=q_address)
if position != 0: # a carbon
# Move the state to the electron (position=0) first and then measure the electron.
# See https://gitlab.tudelft.nl/qinc-wehner/netqasm/netqasm-docs/-/blob/master/nv-gates-docs.md
# for the circuit.
self._logger.debug(
f"Moving qubit from carbon (position {position}) to electron before measuring"
)
yield from self._execute_qdevice_instruction(
ns_instr=INSTR_INIT, qubit_mapping=[0]
)
yield from self._execute_qdevice_instruction(
ns_instr=INSTR_ROT_Y, qubit_mapping=[0], angle=np.pi / 2
)
yield from self._execute_qdevice_instruction(
ns_instr=INSTR_CYDIR, qubit_mapping=[0, position], angle=-np.pi / 2
)
yield from self._execute_qdevice_instruction(
ns_instr=INSTR_ROT_X, qubit_mapping=[0], angle=-np.pi / 2
)
yield from self._execute_qdevice_instruction(
ns_instr=INSTR_CXDIR, qubit_mapping=[0, position], angle=np.pi / 2
)
yield from self._execute_qdevice_instruction(
ns_instr=INSTR_ROT_Y, qubit_mapping=[0], angle=-np.pi / 2
)
# Explicitly free physical qubit 0, since the Executor will
# only free the original qubit.
self._clear_phys_qubit_in_memory(0)
# Measure the electron.
outcome = yield from super()._meas_physical_qubit(0)
return outcome
| python |
import math
from hurry.filesize import size
def convert_web_speed_size(size_bytes):
"""
Convert byte to other Units of information and show in xbit vs xbyte
:param size_bytes:
:return:
"""
if size_bytes == 0:
return "0B"
size_name = ("B", "Kbit/s", "Mbit/s", "Gbit/s", "Tbit/s", "Pbit/s", "Ebit/s", " Zbit/s", "Ybit/s")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, 2)
return f"{s} {size_name[i]}"
def convert_byte_to(size_bytes):
"""
Convert byte to other Units of information
:param size_bytes:
:return:
"""
convert_size_bytes = size(size_bytes)
return convert_size_bytes
def convert_size_by_unit(size_bytes, to='GB'):
"""
Convert byte to other unit by select unit
:param size_bytes:
:param to:
:return:
"""
if size_bytes == 0:
return 0, ''
power = {'B': 0, 'KB': 1, 'MB': 2, 'GB': 3, 'TB': 4, 'EB': 5, 'ZB': 6, 'YB': 7}
i = power[to]
p = math.pow(1024, i)
float_size = round(size_bytes / p, 2)
return float_size
| python |
# Prime Number Sieve
# author: A1p5a
import math
def is_prime(num):
# Returns True if num is a prime number, otherwise False.
# Note: Generally, isPrime() is slower than primeSieve().
# all numbers less than 2 are not prime
if num < 2:
return False
# see if num is divisible by any number up to the square root of num
for i in range(2, int(math.sqrt(num)) + 1):
if num % i == 0:
return False
return True
def prime_sieve(sieve_size):
# Returns a list of prime numbers calculated using
# the Sieve of Eratosthenes algorithm.
sieve = [True] * sieve_size
sieve[0] = False # zero and one are not prime numbers
sieve[1] = False
# create the sieve
for i in range(2, int(math.sqrt(sieve_size)) + 1):
pointer = i * 2
while pointer < sieve_size:
sieve[pointer] = False
pointer += i
# compile the list of primes
primes = []
for i in range(sieve_size):
if sieve[i]:
primes.append(i)
return primes
| python |
from NewDouban import NewDouban
if __name__ == "__main__":
douban = NewDouban()
result = douban.search("知识考古学")
for book in result:
print(book)
| python |
#!/usr/bin/env python
import rospy
import actionlib
import tf
from math import radians, atan2, cos, sin
from fetch_manipulation_pipeline.msg import GrabBagAction, GrabBagGoal
import py_trees
import py_trees_ros
from geometry_msgs.msg import Pose
from copy import deepcopy
class GrabBagBehavior(py_trees_ros.actions.ActionClient):
def __init__(self, name, *argv, **kwargs):
super(GrabBagBehavior, self).__init__(
name=name,
action_spec=fetch_manipulation_pipeline.msg.GrabBagAction,
action_goal=fetch_manipulation_pipeline.msg.GrabBagGoal(),
action_namespace='grab_bag',
*argv,
**kwargs
)
def initialise(self):
super(GrabBagBehavior, self).initialise()
# Get two points from blackboard
blackboard = py_trees.blackboard.Blackboard()
front_point = blackboard.get('front_handle')
back_point = blackboard.get('back_handle')
if front_point is None:
rospy.logerr('handle points was not defined for grab bag behavior')
self.action_goal = fetch_manipulation_pipeline.msg.GrabBagGoal()
return
# x1, y1 is the back handle. (x2, y2) is the front handle
x1, y1, z1 = back_point
x2, y2, z2 = front_point
pose_ = Pose()
# Calculate angles from the two points of the handles.
x = 90
y = atan2(x1-x2, y1-y2)
z = 0
# Calculate quaternions from the angles.
quaternion = tf.transformations.quaternion_from_euler(radians(x), y, 0, 'rxyz')
pose_.orientation.x = quaternion[0]
pose_.orientation.y = quaternion[1]
pose_.orientation.z = quaternion[2]
pose_.orientation.w = quaternion[3]
# Set grasp pose
grasp_pose = deepcopy(pose_)
# Set pre-grasp pose
pre_grasp_pose = deepcopy(pose_);
# Offset
grasp_pose.position.x = x1 - 0.08 * cos(y)
grasp_pose.position.y = y1 - 0.08 * cos(y)
grasp_pose.position.z = (z1 + z2) / 2.0
# Offset
pre_grasp_pose.position.x = x2 - 0.25 * cos(y)
pre_grasp_pose.position.y = y2 - 0.25 * sin(y)
pre_grasp_pose.position.z = (z1 + z2) / 2.0
# Set the action goal
self.action_goal.grasp_pose = grasp_pose
self.action_goal.pre_grasp_pose = pre_grasp_pose
self.action_goal.cartesian_max_try = 3
rospy.loginfo('Pick Goal Constructed.')
| python |
import logging
from pyradios.utils import setup_log_file
LOG_FILENAME = "pyradios.log"
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
"[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s"
)
file_handler = logging.FileHandler(setup_log_file(LOG_FILENAME))
file_handler.setFormatter(formatter)
logger.setLevel(logging.INFO)
logger.addHandler(file_handler)
| python |
import os
import argparse
from terminaltables import AsciiTable
def _format(number):
return '{:.4f}'.format(float(number))
parser = argparse.ArgumentParser(description='Display kitti results')
parser.add_argument('--results', type=str, required=True, help='path to a kitti result folder')
parser.add_argument('--noc', action='store_true')
args = parser.parse_args()
results = ['stats_flow_occ.txt', 'stats_disp_occ_0.txt', 'stats_disp_occ_1.txt', 'stats_scene_flow_occ.txt']
metrics = ['background', 'foreground', 'all', 'density']
table_data = [['FILE','BACKGROUND', 'FOREGROUND', 'ALL', 'DENSITY']]
if args.noc:
results = [x.replace('occ','noc') for x in results]
for r in results:
with open(os.path.join(args.results, r),'r') as result_file:
lines = result_file.readlines()
background, _, foreground, _, all, _, density = lines[0].strip().split(' ')
values = [r, _format(background), _format(foreground), _format(all), _format(density)]
table_data.append(values)
table = AsciiTable(table_data)
print('\nEvaluation results of {}:'.format(args.results))
print(table.table)
with open(os.path.join(args.results,'report.txt'),'w') as f:
for data in table_data:
for i,value in enumerate(data):
if i > 0:
value = value.replace('.',',')
f.write('{};'.format(value))
f.write('\n')
print('report.txt has been written in {}'.format(args.results, 'KITTI'))
| python |
import asyncio
import rlp
import ethereum.transactions
from ethereum import utils
from ethereum.utils import normalize_key, ecsign
from ethereum.transactions import unsigned_tx_from_tx, UnsignedTransaction
# NOTE: this is to hotfix a bug in pyethereum's signing functions
# fixed in https://github.com/ethereum/pyethereum/commit/d962694be03686a8e5c1d7459ae272b70a5c9f77
# but not yet included in a release
class Transaction(ethereum.transactions.Transaction):
def sign(self, key, network_id=None):
"""Sign this transaction with a private key.
A potentially already existing signature would be overridden.
"""
if network_id is None:
rawhash = utils.sha3(rlp.encode(unsigned_tx_from_tx(self), UnsignedTransaction))
else:
assert 1 <= network_id < 2**63 - 18
rlpdata = rlp.encode(rlp.infer_sedes(self).serialize(self)[
:-3] + [network_id, b'', b''])
rawhash = utils.sha3(rlpdata)
key = normalize_key(key)
v, r, s = ecsign(rawhash, key)
if network_id is not None:
v += 8 + network_id * 2
ret = self.copy(
v=v, r=r, s=s
)
ret._sender = utils.privtoaddr(key)
return ret
class TransactionResponse:
def __init__(self, jsonrpc, hash, nonce=None):
self.jsonrpc = jsonrpc
self.hash = hash
self.nonce = nonce
self._receipt = None
async def status(self):
receipt = await self.receipt()
if receipt is None or receipt['blockNumber'] is None:
return 'unconfirmed'
return 'confirmed'
async def receipt(self):
if self._receipt:
return self._receipt
receipt = await self.jsonrpc.eth_getTransactionReceipt(self.hash)
# cache result if the transaction is included in a block
if receipt is not None and receipt['blockNumber'] is not None:
self._receipt = receipt
return receipt
async def wait_for_confirmation(self):
while (await self.status()) != 'confirmed':
await asyncio.sleep(1)
return await self.receipt()
def __await__(self):
return self.wait_for_confirmation().__await__()
| python |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : spider.py
@Time : 2020-8-1 22:00:44
@Author : Recluse Xu
@Version : 1.0
@Contact : [email protected]
@Desc : 用Selenium处理SliderCaptcha
'''
# here put the import lib
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
import cv2
from browsermobproxy import Server
import sys
sys.path.append(sys.path[0][:sys.path[0].find('example')-1])
from my_util.selenium.selenium_chrome import get_selenium_chrome_web_driver
class BrowsermobProxy(object):
def __init__(self, browsermob_proxy_bat_location: str):
self.server = Server(browsermob_proxy_bat_location, {'port': 9394})
def get_proxy(self):
return self.server.create_proxy()
def start_server(self):
self.server.start()
def stop_server(self):
self.server.stop()
def count_start_end_location(button_size, button_location, bar_size, bar_location):
'''
计算鼠标大致的起始坐标与终点坐标
'''
return [
{'x': button_location['x']+button_size['width']/2, 'y': button_location['y']+button_size['height']/2},
{'x': bar_location['x']+bar_size['width']-button_size['width']/2, 'y': bar_location['y']}
]
def get_track(start_locationn, end_location):
'''
计算偏移
这里使用最简单的方法来获取偏移数组
计算好距离以后,让鼠标每次移动2像素 匀速移动
'''
distance = int(end_location['x'] - start_locationn['x']) + 1
return range(0, distance, 2)
def move_mouse(chrome_driver, ver_button, track):
# 移动鼠标
try:
# 让鼠标点击并不放开滑块
ActionChains(chrome_driver).click_and_hold(ver_button).perform()
for x in track:
# 让鼠标根据偏移数组,一点一点的移动鼠标
ActionChains(chrome_driver).move_by_offset(xoffset=x, yoffset=0).perform()
ActionChains(chrome_driver).release().perform() # 释放鼠标
except Exception:
ActionChains(chrome_driver).release().perform()
def get_distance():
img = cv2.imread('img.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# ret, thresh = cv2.threshold(img, 230, 255, cv2.THRESH_BINARY_INV)
img = cv2.cornerHarris(img, 2, 3, 0.04)
cv2.imshow('img', img)
cv2.waitKey(100000)
def process():
bp = BrowsermobProxy(browsermob_proxy_bat_location)
_proxy = bp.get_proxy()
_proxy.new_har(".picsum.photos", options={'captureHeaders': True, 'captureContent': True})
chrome_driver = get_selenium_chrome_web_driver(proxy_server=str(_proxy.proxy))
chrome_driver.get('http://127.0.0.1:5000/LearningSpider#!')
wait = WebDriverWait(chrome_driver, 15)
try:
item_button = wait.until(
EC.element_to_be_clickable((By.ID, "the_slidewrcaptcha")))
item_button.click()
except TimeoutException as e:
print(e)
exit(1)
# 等待Ajax加载完毕
wait.until(
lambda x: EC.text_to_be_present_in_element((By.XPATH, "//*[@id=\"captcha\"]/div/span"), "滑动填充")(chrome_driver)
)
ver_button = wait.until(
EC.element_to_be_clickable((By.XPATH, "//*[@id=\"captcha\"]/div/div[2]/div")))
the_img = wait.until(
EC.presence_of_element_located((By.XPATH, "//*[@id=\"captcha\"]/canvas[1]")))
result = _proxy.har
for entry in result['log']['entries']:
_url = entry['request']['url']
# 根据URL找到数据接口
if "/api/v2/aweme/post" in _url:
_response = entry['response']
_content = _response['content']['text']
# 获取接口返回内容
print(_content)
bp.stop_server()
# the_img.screenshot("img.png")
# get_distance()
# start_location, end_location = count_start_end_location(ver_button.size, ver_button.location, slide_bar.size, slide_bar.location)
# track = get_track(start_location, end_location)
# move_mouse(chrome_driver, ver_button, track)
if __name__ == "__main__":
process()
| python |
from __future__ import absolute_import, print_function
import tensorflow as tf
from tensorflow.keras import regularizers
from niftynet.network.highres3dnet import HighResBlock
from tests.niftynet_testcase import NiftyNetTestCase
class HighResBlockTest(NiftyNetTestCase):
def test_3d_increase_shape(self):
input_shape = (2, 16, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(n_output_chns=16,
kernels=(3, 3),
with_res=True)
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16, 16), out.shape)
def test_3d_same_shape(self):
input_shape = (2, 16, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(n_output_chns=8,
kernels=(3, 3),
with_res=True)
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16, 8), out.shape)
def test_3d_reduce_shape(self):
input_shape = (2, 16, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(n_output_chns=4,
kernels=(3, 3),
with_res=True)
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16, 4), out.shape)
def test_3d_reg_increase_shape(self):
input_shape = (2, 16, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(
n_output_chns=16,
kernels=(3, 3),
with_res=True,
w_regularizer=regularizers.L2(0.3))
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16, 16), out.shape)
def test_3d_reg_same_shape(self):
input_shape = (2, 16, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(
n_output_chns=8,
kernels=(3, 3),
with_res=True,
w_regularizer=regularizers.L2(0.3))
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16, 8), out.shape)
def test_3d_reg_reduce_shape(self):
input_shape = (2, 16, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(
n_output_chns=4,
kernels=(3, 3),
with_res=True,
w_regularizer=regularizers.L2(0.3))
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16, 4), out.shape)
def test_2d_increase_shape(self):
input_shape = (2, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(n_output_chns=16,
kernels=(3, 3),
with_res=True)
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 16), out.shape)
def test_2d_same_shape(self):
input_shape = (2, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(n_output_chns=8,
kernels=(3, 3),
with_res=True)
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 8), out.shape)
def test_2d_reduce_shape(self):
input_shape = (2, 16, 16, 8)
x = tf.ones(input_shape)
highres_layer = HighResBlock(n_output_chns=4,
kernels=(3, 3),
with_res=True)
out = highres_layer(x, is_training=True)
print(highres_layer)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 16, 16, 4), out.shape)
if __name__ == "__main__":
tf.test.main()
| python |
# -*- coding: utf-8 -*-
"""
@created on: 4/19/20,
@author: Shreesha N,
@version: v0.0.1
@system name: badgod
Description:
..todo::
"""
from torch.utils.tensorboard import SummaryWriter
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from torch import tensor
import time
import json
import cv2
import random
import torchvision
import random
from alcoaudio.networks.oneclass_net import OneClassNN, ConvAutoEncoder
from alcoaudio.utils import file_utils
from alcoaudio.datagen.audio_feature_extractors import preprocess_data
from alcoaudio.utils.network_utils import accuracy_fn_ocnn, calc_average_class_score, log_summary_ocnn, normalize_image, \
custom_confusion_matrix, \
log_conf_matrix, write_to_npy
from alcoaudio.utils.data_utils import read_h5py, read_npy
from alcoaudio.datagen.augmentation_methods import librosaSpectro_to_torchTensor, time_mask, freq_mask, time_warp
class OCNNRunner:
def __init__(self, args):
self.run_name = args.run_name + '_' + str(time.time()).split('.')[0]
self.current_run_basepath = args.network_metrics_basepath + '/' + self.run_name + '/'
self.learning_rate = args.learning_rate
self.epochs = args.epochs
self.test_net = args.test_net
self.train_net = args.train_net
self.batch_size = args.batch_size
self.num_classes = args.num_classes
self.audio_basepath = args.audio_basepath
self.train_data_file = args.train_data_file
self.test_data_file = args.test_data_file
self.data_read_path = args.data_save_path
self.is_cuda_available = torch.cuda.is_available()
self.display_interval = args.display_interval
self.sampling_rate = args.sampling_rate
self.sample_size_in_seconds = args.sample_size_in_seconds
self.overlap = args.overlap
self.c = tensor(0.0)
self.r = tensor(0.0)
self.nu = None # Updated in data_reader()
self.eps = 0.1
self.network_metrics_basepath = args.network_metrics_basepath
self.tensorboard_summary_path = self.current_run_basepath + args.tensorboard_summary_path
self.network_save_path = self.current_run_basepath + args.network_save_path
self.network_restore_path = args.network_restore_path
self.device = torch.device("cuda" if self.is_cuda_available else "cpu")
self.network_save_interval = args.network_save_interval
self.normalise = args.normalise_while_training
self.dropout = args.dropout
self.threshold = args.threshold
self.debug_filename = self.current_run_basepath + '/' + args.debug_filename
paths = [self.network_save_path, self.tensorboard_summary_path]
file_utils.create_dirs(paths)
self.cae_network = ConvAutoEncoder()
self.cae_model_restore_path = args.cae_model_restore_path
self.cae_network.load_state_dict(torch.load(self.cae_model_restore_path, map_location=self.device))
self.cae_network.eval()
self.network = OneClassNN().to(self.device)
self.learning_rate_decay = args.learning_rate_decay
self.optimiser = optim.Adam(self.network.parameters(), lr=self.learning_rate)
self.scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimiser, gamma=self.learning_rate_decay)
self._min, self._max = float('inf'), -float('inf')
if self.train_net:
self.network.train()
self.log_file = open(self.network_save_path + '/' + self.run_name + '.log', 'w')
self.log_file.write(json.dumps(args))
if self.test_net:
print('Loading Network')
self.network.load_state_dict(torch.load(self.network_restore_path, map_location=self.device))
self.network.eval()
self.log_file = open(self.network_restore_path.replace('_40.pt', '.log'), 'a')
print('\n\n\n********************************************************', file=self.log_file)
print('Testing Model - ', self.network_restore_path)
print('Testing Model - ', self.network_restore_path, file=self.log_file)
print('********************************************************', file=self.log_file)
self.writer = SummaryWriter(self.tensorboard_summary_path)
print("Network config:\n", self.network)
print("Network config:\n", self.network, file=self.log_file)
self.batch_loss, self.batch_accuracy, self.uar = [], [], []
print('Configs used:\n', json.dumps(args, indent=4))
print('Configs used:\n', json.dumps(args, indent=4), file=self.log_file)
def data_reader(self, data_filepath, label_filepath, train, should_batch=True, shuffle=True):
input_data, labels = read_npy(data_filepath), read_npy(label_filepath)
if train:
# nu declared in init, initialized here based on the number of anomalies.
# Here intoxicated samples are considered anomalies
self.nu = sum(labels) / len(labels)
print('Calculated value of Nu ', self.nu)
print('Calculated value of Nu ', self.nu, file=self.log_file)
for x in input_data:
self._min = min(np.min(x), self._min)
self._max = max(np.max(x), self._max)
data = [(x, y) for x, y in zip(input_data, labels)]
random.shuffle(data)
input_data, labels = np.array([x[0] for x in data]), [x[1] for x in data]
print('Total data ', len(input_data))
print('Event rate', sum(labels) / len(labels))
print(np.array(input_data).shape, np.array(labels).shape)
print('Total data ', len(input_data), file=self.log_file)
print('Event rate', sum(labels) / len(labels), file=self.log_file)
print(np.array(input_data).shape, np.array(labels).shape, file=self.log_file)
print('Min max values used for normalisation ', self._min, self._max)
print('Min max values used for normalisation ', self._min, self._max, file=self.log_file)
# Normalizing `input data` on train dataset's min and max values
if self.normalise:
input_data = (input_data - self._min) / (self._max - self._min)
if should_batch:
batched_input = [input_data[pos:pos + self.batch_size] for pos in
range(0, len(input_data), self.batch_size)]
batched_labels = [labels[pos:pos + self.batch_size] for pos in range(0, len(labels), self.batch_size)]
return batched_input, batched_labels
else:
return input_data, labels
def run_for_epoch(self, epoch, x, y, type):
self.test_batch_loss, self.test_batch_accuracy, self.test_batch_uar, self.test_scores_list, audio_for_tensorboard_test = [], [], [], [], None
with torch.no_grad():
for i, (audio_data, label) in enumerate(zip(x, y)):
label = tensor(label).float()
audio_data = tensor(audio_data)
latent_vector = self.get_latent_vector(audio_data)
test_predictions, w, v = self.network(latent_vector)
test_loss = self.loss_function(test_predictions, w, v)
test_scores = self.calc_scores(test_predictions)
test_accuracy, test_uar = accuracy_fn_ocnn(test_scores, label)
self.test_scores_list.extend(test_scores)
self.test_batch_loss.append(test_loss.numpy())
self.test_batch_accuracy.append(test_accuracy.numpy())
self.test_batch_uar.append(test_uar)
print(f'***** {type} Metrics ***** ')
print(f'***** {type} Metrics ***** ', file=self.log_file)
print(
f"Loss: {np.mean(self.test_batch_loss)} | Accuracy: {np.mean(self.test_batch_accuracy)} | UAR: {np.mean(self.test_batch_uar)}")
print(
f"Loss: {np.mean(self.test_batch_loss)} | Accuracy: {np.mean(self.test_batch_accuracy)} | UAR: {np.mean(self.test_batch_uar)}",
file=self.log_file)
y = [item for sublist in y for item in sublist]
pos_score, neg_score = calc_average_class_score(tensor(self.test_scores_list), y)
log_summary_ocnn(self.writer, epoch, accuracy=np.mean(self.test_batch_accuracy),
loss=np.mean(self.test_batch_loss),
uar=np.mean(self.test_batch_uar), lr=self.optimiser.state_dict()['param_groups'][0]['lr'],
r=self.r, positive_class_score=pos_score, negative_class_score=neg_score,
type=type)
def get_latent_vector(self, audio_data):
latent_filter_maps, _, _ = self.cae_network.encoder(audio_data)
latent_vector = latent_filter_maps.view(-1, latent_filter_maps.size()[1:].numel())
return latent_vector.detach()
def loss_function(self, y_pred, w, v):
w = w.state_dict()['weight']
v = v.state_dict()['weight']
term1 = 0.5 * torch.sum(w ** 2)
term2 = 0.5 * torch.sum(v ** 2)
term3 = 1 / self.nu * torch.mean(torch.max(tensor(0.0), self.r - y_pred))
term4 = -1 * self.r
# term3 = self.r ** 2 + torch.sum(torch.max(tensor(0.0), (y_pred - self.c) ** 2 - self.r ** 2), axis=1)
# term3 = 1 / self.nu * torch.mean(term3)
return term1 + term2 + term3 + term4
def calc_scores(self, outputs):
scores = torch.sum((outputs - self.c) ** 2, axis=1)
return scores
def update_r_and_c(self, outputs):
centroids = torch.mean(outputs, axis=0)
centroids[(abs(centroids) < self.eps) & (centroids < 0)] = -self.eps
centroids[(abs(centroids) < self.eps) & (centroids > 0)] = self.eps
scores = torch.sum((outputs - centroids) ** 2, axis=1)
sorted_scores, _ = torch.sort(scores)
self.r = np.percentile(sorted_scores, self.nu * 100) # Updating the value of self.r
self.c = centroids
def initalize_c_and_r(self, train_x):
predictions_list = []
for batch in train_x:
batch = tensor(batch)
latent_vec = self.get_latent_vector(batch)
preds, _, _ = self.network(latent_vec)
predictions_list.extend(preds.detach().numpy())
self.update_r_and_c(tensor(predictions_list))
def train(self):
# For purposes of calculating normalized values, call this method with train data followed by test
train_data, train_labels = self.data_reader(self.data_read_path + 'train_challenge_with_d1_data.npy',
self.data_read_path + 'train_challenge_with_d1_labels.npy',
shuffle=True,
train=True)
dev_data, dev_labels = self.data_reader(self.data_read_path + 'dev_challenge_with_d1_data.npy',
self.data_read_path + 'dev_challenge_with_d1_labels.npy',
shuffle=False, train=False)
test_data, test_labels = self.data_reader(self.data_read_path + 'test_challenge_data.npy',
self.data_read_path + 'test_challenge_labels.npy',
shuffle=False, train=False)
total_step = len(train_data)
train_labels_flattened = [item for sublist in train_labels for item in sublist]
self.w, self.v = None, None
# Initialize c and r which is declared in init, on entire train data
self.initalize_c_and_r(train_data)
for epoch in range(1, self.epochs):
self.batch_loss, self.batch_accuracy, self.batch_uar, self.total_predictions, self.total_scores, audio_for_tensorboard_train = [], [], [], [], [], None
for i, (audio_data, label) in enumerate(zip(train_data, train_labels)):
self.optimiser.zero_grad()
label = tensor(label).float()
audio_data = tensor(audio_data)
latent_vector = self.get_latent_vector(audio_data)
# if i == 0 and epoch == 1:
# self.writer.add_graph(self.network, tensor(sample_data))
predictions, w, v = self.network(latent_vector)
loss = self.loss_function(predictions, w, v)
loss.backward()
self.optimiser.step()
self.total_predictions.extend(predictions.detach().numpy())
scores = self.calc_scores(predictions)
self.total_scores.extend(scores)
accuracy, uar = accuracy_fn_ocnn(scores, label)
self.batch_loss.append(loss.detach().numpy())
self.batch_accuracy.append(accuracy)
self.batch_uar.append(uar)
if i % self.display_interval == 0:
print(
f"Epoch: {epoch}/{self.epochs} | Step: {i}/{total_step} | Loss: {loss} | Accuracy: {accuracy} | UAR: {uar}")
print(
f"Epoch: {epoch}/{self.epochs} | Step: {i}/{total_step} | Loss: {loss} | Accuracy: {accuracy} | UAR: {uar}",
file=self.log_file)
pos_class_score, neg_class_score = calc_average_class_score(tensor(self.total_scores),
train_labels_flattened)
self.update_r_and_c(tensor(self.total_predictions)) # Update value of r and c after every epoch
# Decay learning rate
self.scheduler.step(epoch=epoch)
log_summary_ocnn(self.writer, epoch, accuracy=np.mean(self.batch_accuracy),
loss=np.mean(self.batch_loss),
uar=np.mean(self.batch_uar), lr=self.optimiser.state_dict()['param_groups'][0]['lr'],
r=self.r, positive_class_score=pos_class_score, negative_class_score=neg_class_score,
type='Train')
print('***** Overall Train Metrics ***** ')
print('***** Overall Train Metrics ***** ', file=self.log_file)
print(
f"Loss: {np.mean(self.batch_loss)} | Accuracy: {np.mean(self.batch_accuracy)} | UAR: {np.mean(self.batch_uar)} ")
print(
f"Loss: {np.mean(self.batch_loss)} | Accuracy: {np.mean(self.batch_accuracy)} | UAR: {np.mean(self.batch_uar)} ",
file=self.log_file)
print('Learning rate ', self.optimiser.state_dict()['param_groups'][0]['lr'])
print('Learning rate ', self.optimiser.state_dict()['param_groups'][0]['lr'], file=self.log_file)
# dev data
self.run_for_epoch(epoch, dev_data, dev_labels, type='Dev')
# test data
self.run_for_epoch(epoch, test_data, test_labels, type='Test')
if epoch % self.network_save_interval == 0:
save_path = self.network_save_path + '/' + self.run_name + '_' + str(epoch) + '.pt'
torch.save(self.network.state_dict(), save_path)
print('Network successfully saved: ' + save_path)
def test(self):
test_data, test_labels = self.data_reader(self.data_read_path + 'test_data.npy',
shuffle=False,
should_batch=False)
test_data, test_labels = test_data, test_labels
test_predictions = self.network(test_data).detach()
print(test_predictions)
test_predictions = nn.Sigmoid()(test_predictions).squeeze(1)
print(test_predictions)
test_accuracy = accuracy_fn_ocnn(test_predictions, test_labels, self.threshold)
print(f"Accuracy: {test_accuracy}")
print(f"Accuracy: {test_accuracy}", file=self.log_file)
| python |
from django.db import models
from .Newsletterapi import *
# Create your models here.
"""class Summary_Art(models.Model):
url = models.TextField()
summary = get_summary(url)
text = summary[0]
summary = summary[1]
#user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) #Option to add Users to Model
def get_summary():
return summary
def get_text():
return text"""
| python |
"""empty message
Revision ID: dc0c3839e0c4
Revises: 962314b7ff85
Create Date: 2021-12-07 08:58:26.839235
"""
# revision identifiers, used by Alembic.
revision = 'dc0c3839e0c4'
down_revision = '962314b7ff85'
from alembic import op
import sqlalchemy as sa
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
pass
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
pass
# ### end Alembic commands ###
| python |
import requests
from django.conf import settings
from django.test import TestCase, RequestFactory
from django.utils.six import text_type
from dps.transactions import make_payment
from dps.models import Transaction
from .models import Payment
class DpsTestCase(TestCase):
def setUp(self):
self.factory = RequestFactory()
def test_interactive(self):
if not settings.PXPAY_USERID:
# can't test the actual dps integration without test credentials
return
amount = 112.45
payment = Payment.objects.create(amount=amount)
request = self.factory.get('/', HTTP_HOST='localhost:8000')
response = make_payment(payment, request=request)
self.assertEqual(response.status_code, 302)
response2 = requests.get(response['Location'])
# check the dps page looks approximately correct
self.assertIn('Payment Checkout', response2.text)
self.assertIn(text_type(amount), response2.text)
def test_recurring(self):
pass
def test_status_update(self):
payment = Payment.objects.create(amount=1)
trans = Transaction.objects.create(content_object=payment,
status=Transaction.PROCESSING)
self.assertEqual(trans.complete_transaction(True), True)
self.assertEqual(trans.status, Transaction.SUCCESSFUL)
# complete_transaction should only return True once
self.assertEqual(trans.complete_transaction(True), False)
# and shouldn't change once done
self.assertEqual(trans.complete_transaction(False), False)
self.assertEqual(trans.status, Transaction.SUCCESSFUL)
| python |
import torch.nn as nn
from n3 import ExternNode
class Linear(ExternNode):
input_channels: int
output_channels: int
bias: bool
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._inner = nn.Linear(self.input_channels,
self.output_channels,
self.bias)
def forward(self, x):
return self._inner(x)
| python |
#! /usr/bin/env python3
from scripts.fileReadWriteOperations import *
import copy
import math
import os
import sys
import pandas as pd
def mergeTwoTranscripts( whole_annotations, transcript_id_i, transcript_id_j, chromosome ):
"""
"""
# print("Merging",transcript_id_i,transcript_id_j)
chromosome = transcript_id_i.split( "." )[0]
transcript_id_i_info = whole_annotations[transcript_id_i]
transcript_id_j_info = whole_annotations[transcript_id_j]
new_transcript_id = ".".join( transcript_id_i.split( "." )[:-1] ) + "_" + transcript_id_i.split( "." )[-1] + "_merged_" + "_".join( transcript_id_j.split( "." )[:-1] ) + "." + transcript_id_j.split( "." )[-1]
# print(transcript_id_i,transcript_id_j,new_transcript_id)
sys.stdout.flush()
whole_annotations[new_transcript_id] = {"exons":copy.deepcopy( whole_annotations[transcript_id_i]["exons"] ),
"introns":[],
"cov":whole_annotations[transcript_id_i]["cov"],
"TPM":whole_annotations[transcript_id_i]["TPM"],
"FPKM":whole_annotations[transcript_id_i]["FPKM"],
"direction":whole_annotations[transcript_id_i]["direction"],
"chromosome":chromosome,
"annotator":"FINDER"
}
whole_annotations[new_transcript_id]["exons"][-1] = [whole_annotations[transcript_id_i]["exons"][-1][0],
whole_annotations[transcript_id_j]["exons"][0][1]]
if len( whole_annotations[transcript_id_j]["exons"] ) > 1:
whole_annotations[new_transcript_id]["exons"].extend( whole_annotations[transcript_id_j]["exons"][1:] )
i = 1
while i < len( whole_annotations[new_transcript_id]["exons"] ):
whole_annotations[new_transcript_id]["introns"].append( [whole_annotations[new_transcript_id]["exons"][i - 1][1] + 1, whole_annotations[new_transcript_id]["exons"][i][0] - 1] )
i += 1
return whole_annotations
def mergeCloselySpacedTranscripts( options ):
"""
"""
input_gtf_filename = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/combined_cov_opp_split_redundancy_removed.gtf"
output_gtf_filename = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/combined_merged_transcripts.gtf"
if os.path.exists( output_gtf_filename ) == True:return
whole_annotations, useless1, useless2 = readAllTranscriptsFromGTFFileInParallel( [input_gtf_filename, "dummy", "dummy"] )
all_transcript_info = []
for transcript_id in whole_annotations:
chromosome = whole_annotations[transcript_id]["chromosome"]
transcript_start = whole_annotations[transcript_id]["transcript_start"]
transcript_end = whole_annotations[transcript_id]["transcript_end"]
cov = whole_annotations[transcript_id]["cov"]
fpkm = whole_annotations[transcript_id]["FPKM"]
tpm = whole_annotations[transcript_id]["TPM"]
direction = whole_annotations[transcript_id]["direction"]
all_transcript_info.append( [chromosome, transcript_id, transcript_start, transcript_end, cov, fpkm, tpm, direction] )
all_transcript_info_pd = pd.DataFrame( all_transcript_info, columns = ["chromosome", "transcript_id", "transcript_start", "transcript_end", "cov", "fpkm", "tpm", "direction"] )
all_transcript_info_pd = all_transcript_info_pd.sort_values( by = ["chromosome", "transcript_start"] )
remove_these_transcripts = []
for row_num, row in all_transcript_info_pd.iterrows():
chromosome, transcript_id, transcript_start, transcript_end, cov, fpkm, tpm, direction = row
if direction == ".":continue
potential_merger_transcript = all_transcript_info_pd[( all_transcript_info_pd["chromosome"] == chromosome ) &
( all_transcript_info_pd["transcript_id"] != transcript_id ) &
( all_transcript_info_pd["transcript_start"] >= transcript_end ) &
( all_transcript_info_pd["direction"] == direction ) &
( all_transcript_info_pd["transcript_start"] - transcript_end <= 5 )
]
if potential_merger_transcript.shape[0] > 0:
for row_num_i, row_i in potential_merger_transcript.iterrows():
chromosome_i, transcript_id_i, transcript_start_i, transcript_end_i, cov_i, fpkm_i, tpm_i, direction_i = row_i
if math.fabs( tpm - tpm_i ) < 2 and max( tpm, tpm_i ) < 5 and "cov" not in transcript_id and "cov" not in transcript_id_i:
# print(transcript_id,transcript_id_i,tpm,tpm_i)
remove_these_transcripts.append( transcript_id )
remove_these_transcripts.append( transcript_id_i )
whole_annotations = mergeTwoTranscripts( whole_annotations, transcript_id, transcript_id_i, chromosome_i )
sys.stdout.flush()
for transcript_id in list( set( remove_these_transcripts ) ):
chromosome = transcript_id.split( "." )[0]
del whole_annotations[transcript_id]
writeTranscriptsToFile( [whole_annotations, output_gtf_filename, 0] )
| python |
"""
85
maximal rectangle
hard
Given a rows x cols binary matrix filled with 0's and 1's,
find the largest rectangle containing only 1's and return its area.
"""
from typing import List
class Solution:
def maximalRectangle(self, matrix: List[List[str]]) -> int:
| python |
from src import chck_res
import pytest
@pytest.fixture(scope="module")
def base_chck():
data="sandwich"
return (chck_res(data))
| python |
import gym
import numpy as np
import threading
class FakeMultiThread(threading.Thread):
def __init__(self, func, args=()):
super().__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
try:
return self.result
except Exception:
return None
class gym_envs(object):
def __init__(self, gym_env_name, n, render_mode='first'):
'''
Input:
gym_env_name: gym training environment id, i.e. CartPole-v0
n: environment number
render_mode: mode of rendering, optional: first, last, all, random_[num] -> i.e. random_2, [list] -> i.e. [0, 2, 4]
'''
self.n = n # environments number
self.envs = [gym.make(gym_env_name) for _ in range(self.n)]
# process observation
self.obs_space = self.envs[0].observation_space
if isinstance(self.obs_space, gym.spaces.box.Box):
self.obs_high = self.obs_space.high
self.obs_low = self.obs_space.low
self.obs_type = 'visual' if len(self.obs_space.shape) == 3 else 'vector'
self.reward_threshold = self.envs[0].env.spec.reward_threshold # reward threshold refer to solved
# process action
self.action_space = self.envs[0].action_space
if isinstance(self.action_space, gym.spaces.box.Box):
self.action_type = 'continuous'
self.action_high = self.action_space.high
self.action_low = self.action_space.low
elif isinstance(self.action_space, gym.spaces.tuple.Tuple):
self.action_type = 'Tuple(Discrete)'
else:
self.action_type = 'discrete'
self.action_mu, self.action_sigma = self._get_action_normalize_factor()
self._get_render_index(render_mode)
def _get_render_index(self, render_mode):
'''
get render windows list, i.e. [0, 1] when there are 4 training enviornment.
'''
assert isinstance(render_mode, (list, str)), 'render_mode must have type of str or list.'
if isinstance(render_mode, list):
assert all([isinstance(i, int) for i in render_mode]), 'items in render list must have type of int'
assert min(index) >= 0, 'index must larger than zero'
assert max(index) <= self.n, 'render index cannot larger than environment number.'
self.render_index = render_mode
elif isinstance(render_mode, str):
if render_mode == 'first':
self.render_index = [0]
elif render_mode == 'last':
self.render_index = [-1]
elif render_mode == 'all':
self.render_index = [i for i in range(self.n)]
else:
a, b = render_mode.split('_')
if a == 'random' and 0 < int(b) <= self.n:
import random
self.render_index = random.sample([i for i in range(self.n)], int(b))
else:
raise Exception('render_mode must be first, last, all, [list] or random_[num]')
def render(self):
'''
render game windows.
'''
[self.envs[i].render() for i in self.render_index]
def close(self):
'''
close all environments.
'''
[env.close() for env in self.envs]
def sample_action(self):
'''
generate ramdom actions for all training environment.
'''
return np.array([env.action_space.sample() for env in self.envs])
def reset(self):
self.dones_index = []
threadpool = []
for i in range(self.n):
th = FakeMultiThread(self.envs[i].reset, args=())
threadpool.append(th)
for th in threadpool:
th.start()
for th in threadpool:
threading.Thread.join(th)
obs = np.array([threadpool[i].get_result() for i in range(self.n)])
obs = self._maybe_one_hot(obs)
return obs
# if self.obs_type == 'visual':
# return np.array([threadpool[i].get_result()[np.newaxis, :] for i in range(self.n)])
# else:
# return np.array([threadpool[i].get_result() for i in range(self.n)])
def step(self, actions, scale=True):
if scale == True:
actions = self.action_sigma * actions + self.action_mu
if self.action_type == 'discrete':
actions = actions.reshape(-1,)
elif self.action_type == 'Tuple(Discrete)':
actions = actions.reshape(self.n, -1).tolist()
threadpool = []
for i in range(self.n):
th = FakeMultiThread(self.envs[i].step, args=(actions[i], ))
threadpool.append(th)
for th in threadpool:
th.start()
for th in threadpool:
threading.Thread.join(th)
results = [threadpool[i].get_result() for i in range(self.n)]
# if self.obs_type == 'visual':
# results = [
# [threadpool[i].get_result()[0][np.newaxis, :], *threadpool[i].get_result()[1:]]
# for i in range(self.n)]
# else:
# results = [threadpool[i].get_result() for i in range(self.n)]
obs, reward, done, info = [np.array(e) for e in zip(*results)]
obs = self._maybe_one_hot(obs)
self.dones_index = np.where(done)[0]
return obs, reward, done, info
def partial_reset(self):
threadpool = []
for i in self.dones_index:
th = FakeMultiThread(self.envs[i].reset, args=())
threadpool.append(th)
for th in threadpool:
th.start()
for th in threadpool:
threading.Thread.join(th)
obs = np.array([threadpool[i].get_result() for i in range(self.dones_index.shape[0])])
obs = self._maybe_one_hot(obs, is_partial=True)
return obs
# if self.obs_type == 'visual':
# return np.array([threadpool[i].get_result()[np.newaxis, :] for i in range(self.dones_index.shape[0])])
# else:
# return np.array([threadpool[i].get_result() for i in range(self.dones_index.shape[0])])
def _get_action_normalize_factor(self):
'''
get action mu and sigma. mu: action bias. sigma: action scale
input:
self.action_low: [-2, -3],
self.action_high: [2, 6]
return:
mu: [0, 1.5],
sigma: [2, 4.5]
'''
if self.action_type == 'continuous':
return (self.action_high + self.action_low) / 2, (self.action_high - self.action_low) / 2
else:
return 0, 1
def _maybe_one_hot(self, obs, is_partial=False):
"""
Change discrete observation from list(int) to list(one_hot) format.
for example:
action: [[1, 0], [2, 1]]
observation space: [3, 4]
environment number: 2
then, output: [[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]]
"""
obs_number = len(self.dones_index) if is_partial else self.n
if hasattr(self.obs_space, 'n'):
obs = obs.reshape(obs_number, -1)
if isinstance(self.obs_space.n, (int, np.int32)):
dim = [int(self.obs_space.n)]
else:
dim = list(self.obs_space.n) # 在CliffWalking-v0环境其类型为numpy.int32
multiplication_factor = dim[1:] + [1]
n = np.array(dim).prod()
ints = obs.dot(multiplication_factor)
x = np.zeros([obs.shape[0], n])
for i, j in enumerate(ints):
x[i, j] = 1
return x
else:
return obs | python |
books = [
(1, "Learning Python", "", "Марк Лътз, Дейвид Асър", "O'Reily", 1999, 22.7),
(2, "Think Python", "An Introduction to Software Design", "Алън Б. Дауни", "O'Reily", 2002, 9.4),
(3, "Python Cookbook", "Recipes for Mastering Python 3", "Браян К. Джоунс и Дейвид М. Баазли", "O'Reily", 2011, 135.9)
]
def print_bond(items):
result = ""
sum = 0
for b in items:
# result += "| {:^3d} | {:<15.15s} | {:<15.15s} | {:<20.20s} | {:^12.12s} | {:<4d} | {:>7.2f} |\n"\
# .format(*b)
line = f"| {b[0]:^3d} | {b[1]:<15.15s} | {b[2]:<15.15s} | {b[3]:<20.20s} | {b[4]:^12.12s} | {b[5]:<4d} | {b[6]:>7.2f} |\n"
result += line
sum += b[-1]
l = len(line)
total_str = f"Total: {sum:8.2f} \n"
prefix = " " * (l - len(total_str))
result += prefix + total_str
result += prefix + f"VAT : {sum:8.2f} \n"
return result
if __name__ == '__main__':
print(print_bond(books)) | python |
import asyncio
import discord
from discord.ext import commands
from otherscipts.helpers import create_mute_role
class Moderator(commands.Cog):
def __init__(self, bot, theme_color):
self.bot = bot
self.theme_color = theme_color
self.warn_count = {}
@commands.command(name="warn")
@commands.has_guild_permissions(kick_members=True)
async def warn(self, ctx, user: discord.Member = None, *, reason=None):
if user is None or reason is None:
await ctx.send("Insufficient arguments.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot warn this user because their role is higher than or equal to yours.")
else:
print(f"Warning user {user.name} for {reason}...")
if str(user) not in self.warn_count:
self.warn_count[str(user)] = 1
else:
self.warn_count[str(user)] += 1
embed = discord.Embed(
title=f"{user.name} has been warned", color=self.theme_color)
embed.add_field(name="Reason", value=reason)
embed.add_field(name="This user has been warned",
value=f"{self.warn_count[str(user)]} time(s)")
await ctx.send(content=None, embed=embed)
@commands.command(name="clearwarn", aliases=['cw', 'removewarns', 'rw'])
@commands.has_guild_permissions(kick_members=True)
async def clearwarn(self, ctx, user: discord.Member = None):
if user is None:
self.warn_count = {}
await ctx.send("Clearing all warns.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot clear this user's warnings because their role is higher than or equal to yours.")
else:
self.warn_count[str(user)] = 0
await ctx.send(f"Clearing warns for {user.mention}.")
@commands.command(name="warncount")
async def warncount(self, ctx, user: discord.Member):
if str(user) not in self.warn_count:
self.warn_count[str(user)] = 0
count = self.warn_count[str(user)]
await ctx.send(f"{user.mention} has been warned {count} time(s)")
@commands.command(name="mute")
@commands.has_guild_permissions(kick_members=True)
async def mute(self, ctx, user: discord.Member = None, time: str = None):
if user is None:
await ctx.send("Insufficient arguments.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot mute this user because their role is higher than or equal to yours.")
else:
guild = ctx.guild
mute_role = None
for role in guild.roles:
if role.name.lower() == "muted":
mute_role = role
break
if mute_role in user.roles:
await ctx.send("This user is already muted.")
else:
if not mute_role:
await ctx.send("This server does not have a `Muted` Role. Creating one right now.")
await ctx.send("This may take some time.")
mute_role = await create_mute_role(guild)
if time is None:
await user.add_roles(mute_role)
await ctx.send(f"User {user.mention} has been muted! They cannot speak.")
else:
time_unit = None
parsed_time = None
if "s" in time:
time_unit = "seconds"
parsed_time = time[0:(len(time) - 1)]
elif "m" in time:
time_unit = "minutes"
parsed_time = time[0:(len(time) - 1)]
elif "h" in time:
time_unit = "hours"
parsed_time = time[0:(len(time) - 1)]
else:
time_unit = "minutes" # default to minutes if user doesn't provide a time unit
parsed_time = time[0:len(time)]
await user.add_roles(mute_role)
await ctx.send(f"User {user.mention} has been muted for {parsed_time} {time_unit}! They cannot speak.")
if time_unit == "seconds":
await asyncio.sleep(int(parsed_time))
elif time_unit == "minutes":
await asyncio.sleep(int(parsed_time) * 60)
elif time_unit == "hours":
await asyncio.sleep(int(parsed_time) * 3600)
await user.remove_roles(mute_role)
await ctx.send(f"User {user.mention} has been unmuted after {parsed_time} {time_unit}! They can speak now.")
@commands.command(name="unmute")
@commands.has_guild_permissions(kick_members=True)
async def unmute(self, ctx, user: discord.Member = None):
if user is None:
await ctx.send("Insufficient arguments.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot unmute this user because their role is higher than or equal to yours.")
else:
guild = ctx.guild
mute_role = None
for role in guild.roles:
if role.name.lower() == "muted":
mute_role = role
break
if mute_role in user.roles:
if not mute_role:
mute_role = await create_mute_role(guild)
await user.remove_roles(mute_role)
await ctx.send(f"User {user.mention} has been unmuted! They can now speak.")
else:
await ctx.send("This user was never muted.")
@commands.command(name="ban")
@commands.has_guild_permissions(ban_members=True)
async def ban(self, ctx, user: discord.Member = None, *, reason=None):
if user is None:
await ctx.send("Insufficient arguments.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot ban this user because their role is higher than or equal to yours.")
else:
await ctx.guild.ban(user, reason=reason)
if reason:
await ctx.send(f"User **{user}** has been banned for reason: **{reason}**.")
else:
await ctx.send(f"User **{user}** has been banned.")
await user.send(f"You have been **banned** from **{ctx.guild}** server due to the following reason:\n**{reason}**")
@commands.command(name="tempban")
@commands.has_guild_permissions(ban_members=True)
async def tempban(self, ctx, user: discord.Member = None, days: int = 1):
if user is None:
await ctx.send("Insufficient arguments.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot temporarily ban this user because their role is higher than or equal to yours.")
else:
await ctx.guild.ban(user)
await ctx.send(f"User **{user}** has been temporarily banned for **{days} day(s)**")
await user.send(f"You have been **temporarily banned** from **{ctx.guild}** server for **{days} day(s)**")
await asyncio.sleep(days * 86400) # convert days to seconds
await ctx.guild.unban(user)
await ctx.send(f"**{user}** has been unbanned after a {days} day Temp Ban.")
@commands.command(name="unban")
@commands.has_guild_permissions(ban_members=True)
async def unban(self, ctx, username: str = None, *, reason=None):
if username is None:
await ctx.send("Insufficient arguments.")
else:
banned_users = await ctx.guild.bans()
member_name, member_discriminator = username.split('#')
for ban_entry in banned_users:
user = ban_entry.user
if (user.name, user.discriminator) == (member_name, member_discriminator):
await ctx.guild.unban(user)
try:
if reason:
await ctx.send(f"User **{username}** has been unbanned for reason: **{reason}**.")
else:
await ctx.send(f"User **{username}** has been unbanned.")
await user.send(f"You have been **unbanned** from **{ctx.guild}** server due to the following reason:\n**{reason}**")
except NameError:
await ctx.send(f"{username} is has not been banned in this server.")
@commands.command(name="kick")
@commands.has_guild_permissions(kick_members=True)
async def kick(self, ctx, user: discord.Member = None, *, reason=None):
if user is None:
await ctx.send("Insufficient arguments.")
elif ctx.author.top_role.position <= user.top_role.position:
await ctx.send("You cannot kick this user because their role is higher than or equal to yours.")
else:
await ctx.guild.kick(user, reason=reason)
if reason:
await ctx.send(f"User **{user}** has been kicked for reason: **{reason}**.")
else:
await ctx.send(f"User **{user}** has been kicked.")
await user.send(f"You have been **kicked** from **{ctx.guild}** server due to the following reason:\n**{reason}**")
@commands.command(name="lockchannel", aliases=['lock'])
@commands.has_guild_permissions(manage_guild=True)
async def lockchannel(self, ctx, channel: discord.TextChannel = None):
if channel is None:
channel = ctx.channel
for role in ctx.guild.roles:
if role.permissions.administrator:
await channel.set_permissions(role, send_messages=True, read_messages=True)
elif role.name == "@everyone":
await channel.set_permissions(role, send_messages=False)
await ctx.send(f"🔒The channel {channel.mention} has been locked")
@commands.command(name="unlockchannel", aliases=['unlock'])
@commands.has_guild_permissions(manage_guild=True)
async def unlockchannel(self, ctx, channel: discord.TextChannel = None):
if channel is None:
channel = ctx.channel
await channel.set_permissions(ctx.guild.roles[0], send_messages=True)
await ctx.send(f"🔓The channel {channel.mention} has been unlocked")
@commands.command(name="slowmode", aliases=['sm'])
@commands.has_guild_permissions(manage_guild=True)
async def setdelay(self, ctx, seconds: int):
await ctx.channel.edit(slowmode_delay=seconds)
await ctx.send(f"Set the slowmode in this channel to **{seconds}** seconds!")
| python |
"""
Credit to espnet: https://github.com/espnet/espnet/blob/master/espnet2/iterators/multiple_iter_factory.py
"""
import logging
from typing import Callable
from typing import Collection
from typing import Iterator
import numpy as np
from typeguard import check_argument_types
from muskit.iterators.abs_iter_factory import AbsIterFactory
class MultipleIterFactory(AbsIterFactory):
def __init__(
self,
build_funcs: Collection[Callable[[], AbsIterFactory]],
seed: int = 0,
shuffle: bool = False,
):
assert check_argument_types()
self.build_funcs = list(build_funcs)
self.seed = seed
self.shuffle = shuffle
def build_iter(self, epoch: int, shuffle: bool = None) -> Iterator:
if shuffle is None:
shuffle = self.shuffle
build_funcs = list(self.build_funcs)
if shuffle:
np.random.RandomState(epoch + self.seed).shuffle(build_funcs)
for i, build_func in enumerate(build_funcs):
logging.info(f"Building {i}th iter-factory...")
iter_factory = build_func()
assert isinstance(iter_factory, AbsIterFactory), type(iter_factory)
yield from iter_factory.build_iter(epoch, shuffle)
| python |
import logging
import random
import time
from .exception import re_raisable
logger = logging.getLogger(__name__)
def retry(action, name, times=5):
try:
return action()
except Exception as e:
if times < 20:
throttle_seconds = min(pow(2, times * random.uniform(0.1, 0.2)), 30)
logger.warn('Retrying "{0}" in {1} seconds: {2}'.format(name, throttle_seconds, str(e)))
time.sleep(throttle_seconds)
return retry(action, times + 1)
re_raisable()
raise e
| python |
import os
import sys
import logging
from typing import List, Type
from intents.language_codes import LanguageCode, LANGUAGE_CODES, FALLBACK_LANGUAGE
logger = logging.getLogger(__name__)
def agent_language_folder(agent_cls: Type["intents.model.agent.Agent"]) -> str:
main_agent_package_name = agent_cls.__module__.split('.')[0]
main_agent_package = sys.modules[main_agent_package_name]
if '__path__' not in main_agent_package.__dict__:
# TODO: try workdir or something...
logger.warning("Agent %s doesn't seem to be defined within a package. Language data will not be loaded.", agent_cls)
return [], []
agent_folder = main_agent_package.__path__[0]
language_folder = os.path.join(agent_folder, 'language')
if not os.path.isdir(language_folder):
raise ValueError(f"No language folder found for agent {agent_cls} (expected: {language_folder})")
return language_folder
def agent_supported_languages(agent_cls: Type["intents.model.agent.Agent"]) -> List[LanguageCode]:
if agent_cls.languages:
return agent_cls.languages
result = []
language_folder = agent_language_folder(agent_cls)
for f in os.scandir(language_folder):
if f.is_dir() and not f.name.startswith('.') and not f.name.startswith('_'):
if f.name in LANGUAGE_CODES:
result.append(LanguageCode(f.name))
else:
logger.warning("Unrecognized language code: '%s' (must be one of %s). Skipping language data.", f.name, LANGUAGE_CODES)
return result
def match_agent_language(agent_cls: Type["intents.model.agent.Agent"], language: LanguageCode) -> LanguageCode:
"""
Return a Language Code among the ones supported by Agent that matches
`language`.
If Agent supports `language` directly, `language` is returned as it is.
Otherwise, look for a viable fallback language (e.g.
:class:`LanguageCode.ENGLISH` is a viable fallback for
:class:`LanguageCode.ENGLISH_US`).
Raise `KeyError` if there is no viable language in Agent that matches the
input one.
Args:
agent_cls: An Agent class
language: The Language code to match in Agent
Returns:
A language code that matches `language` and that is supported by Agent
Raises:
KeyError: If Agent doesn't support `language` or one of its fallbacks
"""
# TODO: update export procedures to use this
agent_languages = agent_supported_languages(agent_cls)
if language in agent_languages:
return language
for fallback in FALLBACK_LANGUAGE[language]:
if fallback in agent_languages:
return fallback
raise KeyError(f"Agent {agent_cls} does not support language {language}")
| python |
import io, os
# CHANGE THIS to the path to your TN file, it might be in your downloads directory
filename = "C:/Users/benja/Documents/uwgit/en_tn/en_tn_02-EXO.tsv"
os.rename(filename,filename.replace('.tsv','.old'))
filename = filename.replace('.tsv','.old')
with io.open(filename, encoding='utf8') as f:
with io.open(filename.replace('.old','.tsv'), 'w', encoding='utf8', newline='\n') as newFile:
for line in f:
ls = line.split('\t')
if "-" in ls[4] and "[[rc:" not in ls[8]:
newOcNo = ls[8].rstrip() + " (See: [[rc://en/ta/man/translate/" + ls[4].strip() + "]])\n"
ls[8] = newOcNo
newLine = "\t".join(ls)
newFile.write(newLine)
| python |
"""
Provides classes that take protocol requests, send that request to
the server, and write a particular genomics file type with the results.
"""
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import collections
import pysam
import ga4gh.datamodel.reads as reads
import ga4gh.protocol as protocol
class AbstractConverter(object):
"""
Abstract base class for converter classes
"""
def __init__(
self, container, objectIterator, outputFile, binaryOutput):
self._container = container
self._objectIterator = objectIterator
self._outputFile = outputFile
self._binaryOutput = binaryOutput
##############################################################################
# SAM
##############################################################################
class SamException(Exception):
"""
Something that went wrong during converting a SAM file
"""
class SamConverter(object):
"""
Converts a requested range from a GA4GH server into a SAM file.
"""
def __init__(
self, client, readGroupId=None, referenceId=None,
start=None, end=None, outputFileName=None, binaryOutput=False):
self._client = client
self._readGroup = self._client.get_read_group(readGroupId)
self._reference = self._client.get_reference(referenceId)
self._start = start
self._end = end
self._outputFileName = outputFileName
self._binaryOutput = binaryOutput
def convert(self):
header = self._getHeader()
targetIds = self._getTargetIds(header)
# pysam can't write to file streams (except for stdout)
# http://pysam.readthedocs.org/en/latest/usage.html#using-streams
if self._binaryOutput:
flags = "wb"
else:
flags = "wh" # h for header
fileString = "-"
if self._outputFileName is not None:
fileString = self._outputFileName
alignmentFile = pysam.AlignmentFile(fileString, flags, header=header)
iterator = self._client.search_reads(
[self._readGroup.id], self._reference.id, self._start, self._end)
for read in iterator:
alignedSegment = SamLine.toAlignedSegment(read, targetIds)
alignmentFile.write(alignedSegment)
alignmentFile.close()
def _getHeader(self):
# Create header information using self._reference
header = {
'HD': {'VN': '1.0'},
'SQ': [{
'LN': self._reference.length,
'SN': self._reference.name
}]
}
return header
def _getTargetIds(self, header):
# this seems to be how pysam sets the target ids
targetIds = collections.defaultdict(int)
targetId = 0
if 'SQ' in header:
headerLines = header['SQ']
for headerLine in headerLines:
refName = headerLine['SN']
targetIds[refName] = targetId
targetId += 1
return targetIds
class SamLine(object):
"""
Methods for processing a line in a SAM file
"""
_encoding = 'utf8'
# see tables in SAM spec, section 1.5
_tagReservedFieldPrefixes = set(["X", "Y", "Z", ])
_tagIntegerFields = set([
"AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2", "HI", "IH", "MQ",
"NH", "NM", "OP", "PQ", "SM", "TC", "UQ", ])
_tagStringFields = set([
"BC", "BQ", "CC", "CO", "CQ", "CS", "CT", "E2", "FS", "LB", "MC",
"MD", "OQ", "OC", "PG", "PT", "PU", "QT", "Q2", "R2", "RG", "RT",
"SA", "U2", ])
_tagIntegerArrayFields = set(["FZ", ])
def __init__(self):
raise SamException("SamLine can't be instantiated")
@classmethod
def toAlignedSegment(cls, read, targetIds):
ret = pysam.AlignedSegment()
# QNAME
ret.query_name = read.fragment_name.encode(cls._encoding)
# SEQ
ret.query_sequence = read.aligned_sequence.encode(cls._encoding)
# FLAG
ret.flag = cls.toSamFlag(read)
# RNAME
if read.alignment is not None:
refName = read.alignment.position.reference_name
ret.reference_id = targetIds[refName]
# POS
if read.alignment is None:
ret.reference_start = 0
else:
ret.reference_start = int(read.alignment.position.position)
# MAPQ
if read.alignment is not None:
ret.mapping_quality = read.alignment.mapping_quality
# CIGAR
ret.cigar = cls.toCigar(read)
# RNEXT
if read.next_mate_position is None:
ret.next_reference_id = -1
else:
nextRefName = read.next_mate_position.reference_name
ret.next_reference_id = targetIds[nextRefName]
# PNEXT
if read.next_mate_position is None:
ret.next_reference_start = -1
else:
ret.next_reference_start = int(read.next_mate_position.position)
# TLEN
ret.template_length = read.fragment_length
# QUAL
ret.query_qualities = read.aligned_quality
ret.tags = cls.toTags(read)
return ret
@classmethod
def toSamFlag(cls, read):
# based on algorithm here:
# https://github.com/googlegenomics/readthedocs/
# blob/master/docs/source/migrating_tips.rst
flag = 0
if read.number_reads == 2:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.READ_PAIRED)
if not read.improper_placement:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.READ_PROPER_PAIR)
if read.alignment is None:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.READ_UNMAPPED)
if read.next_mate_position.ByteSize() == 0: # cleared
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.MATE_UNMAPPED)
if (read.alignment is not None and
read.alignment.position.strand ==
protocol.NEG_STRAND):
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.READ_REVERSE_STRAND)
if (read.next_mate_position is not None and
read.next_mate_position.strand == protocol.NEG_STRAND):
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.MATE_REVERSE_STRAND)
if read.read_number == -1:
pass
elif read.read_number == 0:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.FIRST_IN_PAIR)
elif read.read_number == 1:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.SECOND_IN_PAIR)
else:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.FIRST_IN_PAIR)
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.SECOND_IN_PAIR)
if read.secondary_alignment:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.SECONDARY_ALIGNMENT)
if read.failed_vendor_quality_checks:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.FAILED_QUALITY_CHECK)
if read.duplicate_fragment:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.DUPLICATE_READ)
if read.supplementary_alignment:
flag = reads.SamFlags.setFlag(
flag, reads.SamFlags.SUPPLEMENTARY_ALIGNMENT)
return flag
@classmethod
def toCigar(cls, read):
cigarTuples = []
if read.alignment is not None:
for gaCigarUnit in read.alignment.cigar:
operation = reads.SamCigar.ga2int(gaCigarUnit.operation)
length = int(gaCigarUnit.operation_length)
cigarTuple = (operation, length)
cigarTuples.append(cigarTuple)
return tuple(cigarTuples)
@classmethod
def _parseTagValue(cls, tag, value):
if tag[0] in cls._tagReservedFieldPrefixes:
# user reserved fields... not really sure what to do here
return protocol.getValueFromValue(value.values[0]) \
.encode(cls._encoding)
elif tag in cls._tagIntegerFields:
return int(protocol.getValueFromValue(value.values[0]))
elif tag in cls._tagStringFields:
return protocol.getValueFromValue(value.values[0]) \
.encode(cls._encoding)
elif tag in cls._tagIntegerArrayFields:
return [int(integerString) for integerString in value]
else:
raise SamException("unrecognized tag '{}'".format(tag))
@classmethod
def toTags(cls, read):
tags = []
for tag, value in read.info.items():
val = cls._parseTagValue(tag, value)
tags.append((tag.encode(cls._encoding), val))
retval = tuple(tags)
return retval
##############################################################################
# VCF
##############################################################################
class VcfException(Exception):
pass
class VcfConverter(AbstractConverter):
"""
Converts the Variants represented by a SearchVariantsRequest into
VCF format using pysam.
"""
def _writeHeader(self):
variantSet = self._container
# TODO convert this into pysam types and write to the output file.
# For now, just print out some stuff to demonstrate how to get the
# attributes we have.
print("ID = ", variantSet.id)
print("Dataset ID = ", variantSet.datasetId)
print("Metadata = ")
for metadata in variantSet.metadata:
print("\t", metadata)
def _writeBody(self):
for variant in self._objectIterator:
# TODO convert each variant object into pysam objects and write to
# the output file. For now, just print the first variant and break.
print(variant)
break
def convert(self):
"""
Run the conversion process.
"""
# TODO allocate the pysam VCF object which can be used for the
# conversion process. See the convert method for ga2sam above.
self._writeHeader()
self._writeBody()
| python |
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 19:43:57 2020
@author: Alok
"""
class Info:
def __init__(self,id_no,name,mobile,marks):
self.id_no=id_no
self.name=name
self.mobile=mobile
self.marks=marks
def merge_sort(arr):#time comp nlogn
if(len(arr)>1):
m = len(arr)//2
L = arr[:m]
R = arr[m:]
print(L)
print(R)
merge_sort(L)
merge_sort(R)
i = j = k = 0
while(i<len(L) and j<len(R)):
if(L[i].marks < R[j].marks):
arr[k] = L[i]
i+=1
else:
arr[k] = R[j]
j+=1
k+=1
while(i<len(L)):
arr[k] = L[i]
i+=1
k+=1
while(j<len(R)):
arr[k] = R[j]
j+=1
k+=1
return arr
| python |
from flask import Flask, render_template, request
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def index():
name = None
if request.method == 'POST' and 'name' in request.form:
name = request.form['name']
return render_template('index.html', name=name)
if __name__ == '__main__':
app.run(debug=True)
| python |
import matplotlib.pyplot as plt
import numpy as np
# save_zangle_width_file = '/home/ljm/NiuChuang/AuroraObjectData/zangle_width/agw_tr1058_te38044_arc_line (copy 1).txt'
save_zangle_width_file = '/home/ljm/NiuChuang/AuroraObjectData/zangle_width/agw_tr1058_te38044_arc_cnd2_line.txt'
f = open(save_zangle_width_file, 'r')
lines = f.readlines()
num_arc = len(lines)
zenith_angles = []
arc_widths = []
for a in range(num_arc):
line = lines[a]
angle = float(line.split()[0])
width = float(line.split()[1][:-1])
zenith_angles.append(angle)
arc_widths.append(width)
plot_size_h = 6
plot_size_w = 8
fig_id = 1
plt.figure(fig_id, figsize=[plot_size_w, plot_size_h])
fig_id += 1
plt.scatter(zenith_angles, arc_widths, s=2)
plt.title("Zenith angle range: -90~90")
zenith_angles = np.array(zenith_angles)
arc_widths = np.array(arc_widths)
thresh_a = 45
thresh_w = 100
index_a = np.abs(zenith_angles) <= thresh_a
index_w = arc_widths <= thresh_w
index = index_a * index_w
zenith_angles_s = zenith_angles[index]
arc_widths_s = arc_widths[index]
plt.figure(fig_id, figsize=[plot_size_w, plot_size_h])
fig_id += 1
plt.scatter(zenith_angles_s, arc_widths_s, s=4, c='g')
# plt.title("Zenith angle range: -{}~{}".format(thresh_a, thresh_a))
plt.ylabel('Width (km)')
plt.xlabel('Zenith angle')
# mean curve.
angle_range = list(range(-thresh_a, thresh_a+1))
# zenith_angles_s_int = np.int(zenith_angles_s)
arc_widths_s_mean = np.zeros((len(angle_range)))
for a in range(len(angle_range)):
angle = angle_range[a]
index_l = zenith_angles_s >= angle
index_r = zenith_angles_s < angle+1
index = index_l * index_r
arc_widths_s_a = arc_widths_s[index]
arc_widths_s_mean[a] = arc_widths_s_a.mean()
# arc_widths_s_mean[a] = (arc_widths_s_a.max() + arc_widths_s_a.min()) / 2
plt.plot(angle_range, arc_widths_s_mean, c='b')
mean_point = -8.9
print("mean zenith angle:", mean_point)
plt.plot([mean_point, mean_point], [0, thresh_w], linestyle='--', linewidth=3, color='blue')
plt.savefig('width_distribution_cnd2.png', dpi=300, bbox_inches='tight', transparent=True)
# Compute the mean and standard deviation.
thresh_a = 15
index_ss_r = zenith_angles_s <= mean_point + thresh_a
index_ss_l = zenith_angles_s >= mean_point - thresh_a
index_ss = index_ss_l*index_ss_r
zenith_angles_ss = zenith_angles_s[index_ss]
arc_widths_ss = arc_widths_s[index_ss]
arc_ss_mean = arc_widths_ss.mean()
arc_ss_std = np.std(arc_widths_ss, ddof=1)
print("mean:", arc_ss_mean)
print("std::", arc_ss_std)
plt.show() | python |
import scrapy
class DmozSpider(scrapy.Spider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]
def parse(self, response):
for sel in response.xpath('//ul/li'):
item = DmozItem()
item['title'] = sel.xpath('a/text()').extract()
item['link'] = sel.xpath('a/@href').extract()
item['desc'] = sel.xpath('text()').extract()
yield item
def parse_items(self, response):
hxs = HtmlXPathSelector(response)
titles = hxs.select('//span[@class="pl"]')
items = []
for titles in titles:
item = CraigslistSampleItem()
item ["title"] = titles.select("a/text()").extract()
item ["link"] = titles.select("a/@href").extract()
items.append(item)
return(items)
| python |
import numpy as np
import cv2
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from PIL import Image
def to_pil(img):
''' Transforms a 3 dimentional matrix into a PIL image '''
return Image.fromarray(img.astype('uint8'), 'RGB')
def to_cv2(img):
open_cv_image = np.array(img)
# Convert RGB to BGR
return open_cv_image[:, :, ::-1].copy()
def binary_to_rgb(arr):
''' Transforms a binary image into a RGB image '''
arr *= 255
return np.repeat(arr[:, :, np.newaxis], 3, axis=2)
def store_images(original,clustered):
''' Converts and Stores the images locally '''
(to_pil(original)).save("Original.png")
(to_pil(clustered)).save("Cluster.png")
def run_clustering(file_name):
''' Run the clustering algorithm, requires the name of the image to be opened, returns the clustered image '''
img = cv2.imread(file_name)
labimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_grey = cv2.cvtColor(labimg, cv2.COLOR_GRAY2BGR)
labimg = cv2.cvtColor(img_grey, cv2.COLOR_BGR2LAB)
n = 0
while(n<0): # change to other values for less downscale
labimg = cv2.pyrDown(labimg)
n = n+1
rows, cols, chs = labimg.shape
# A higher eps means more changes are detected.
db = DBSCAN(eps=1, min_samples=4, metric = 'euclidean',algorithm ='auto')
indices = np.dstack(np.indices(labimg.shape[:2]))
xycolors = np.concatenate((labimg, indices), axis=-1)
feature_image = np.reshape(xycolors, [-1,5])
db.fit(feature_image)
labels = db.labels_
labels[labels < 0.5] = 0 # set pixels with value < threshold to 0
labels[labels >= 0.5] = 1 # set pixels with value >= threshold to 1
img_cluster = np.reshape(labels, [rows, cols])
img_cluster = binary_to_rgb(img_cluster)
#fig, ax = plt.subplots(1, 2, figsize=(20, 20))
#ax[0].imshow(img)
#ax[1].imshow(img_cluster)
#Store the images
#store_images(img,img_cluster)
return img_cluster
def run_clustering_image_cv2(cv2_image):
''' Run the clustering algorithm, requires a cv2 image, returns the clustered image '''
img = cv2_image
labimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_grey = cv2.cvtColor(labimg, cv2.COLOR_GRAY2BGR)
labimg = cv2.cvtColor(img_grey, cv2.COLOR_BGR2LAB)
n = 0
while(n<0): # change to other values for less downscale
labimg = cv2.pyrDown(labimg)
n = n+1
rows, cols, chs = labimg.shape
# A higher eps means more changes are detected.
db = DBSCAN(eps=1, min_samples=4, metric = 'euclidean',algorithm ='auto')
indices = np.dstack(np.indices(labimg.shape[:2]))
xycolors = np.concatenate((labimg, indices), axis=-1)
feature_image = np.reshape(xycolors, [-1,5])
db.fit(feature_image)
labels = db.labels_
labels[labels < 0.5] = 0 # set pixels with value < threshold to 0
labels[labels >= 0.5] = 1 # set pixels with value >= threshold to 1
img_cluster = np.reshape(labels, [rows, cols])
img_cluster = binary_to_rgb(img_cluster)
#fig, ax = plt.subplots(1, 2, figsize=(20, 20))
#ax[0].imshow(img)
#ax[1].imshow(img_cluster)
#Store the images
#store_images(img,img_cluster)
return img_cluster
def run_clustering_image_pil(pil_image):
''' Run the clustering algorithm, requires a PIL image, returns the clustered image '''
img = to_cv2(pil_image)
labimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_grey = cv2.cvtColor(labimg, cv2.COLOR_GRAY2BGR)
labimg = cv2.cvtColor(img_grey, cv2.COLOR_BGR2LAB)
n = 0
while(n<0): # change to other values for less downscale
labimg = cv2.pyrDown(labimg)
n = n+1
rows, cols, chs = labimg.shape
# A higher eps means more changes are detected.
db = DBSCAN(eps=1, min_samples=4, metric = 'euclidean',algorithm ='auto')
indices = np.dstack(np.indices(labimg.shape[:2]))
xycolors = np.concatenate((labimg, indices), axis=-1)
feature_image = np.reshape(xycolors, [-1,5])
db.fit(feature_image)
labels = db.labels_
labels[labels < 0.5] = 0 # set pixels with value < threshold to 0
labels[labels >= 0.5] = 1 # set pixels with value >= threshold to 1
img_cluster = np.reshape(labels, [rows, cols])
img_cluster = binary_to_rgb(img_cluster)
#fig, ax = plt.subplots(1, 2, figsize=(20, 20))
#ax[0].imshow(img)
#ax[1].imshow(img_cluster)
#Store the images
#store_images(img,img_cluster)
return img_cluster | python |
#!/usr/bin/env python3
from setuptools import setup
from setuptools import find_packages
from codecs import open
from os import path
import sys
import shutil
import os
from ly_bar_incr import __version__
here = path.abspath(path.dirname(__file__))
with open(path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name='ly-bar-incr',
version=__version__,
description=('Increment bar numbers in comments and bar number checks of a'
' lilypond file.'),
long_description=long_description,
url='https://github.com/rickh94/ly-bar-incr',
author='Rick Henry',
author_email='[email protected]',
license='MIT',
python_requires='>=3.4',
install_requires=['click'],
py_modules=['ly_bar_incr'],
entry_points={
'console_scripts': [
'ly-bar-incr=ly_bar_incr:cli',
],
},
)
#
# # install man pages
# if 'install' in sys.argv:
# man_path = '/usr/share/man/man1/'
# if os.path.exists(man_path):
# print("Installing man pages")
# man_page = "doc/ly-bar-incr.1.gz"
# shutil.copy2(man_page, man_path)
# os.chmod(man_path + 'ly-bar-incr.1.gz', int('444', 8))
| python |
#!/usr/bin/env python3
import pathfinder as pf
import math
if __name__ == "__main__":
points = [
pf.Waypoint(-4, -1, math.radians(-45.0)),
pf.Waypoint(-2, -2, 0),
pf.Waypoint(0, 0, 0),
]
info, trajectory = pf.generate(
points,
pf.FIT_HERMITE_CUBIC,
pf.SAMPLES_HIGH,
dt=0.05, # 50ms
max_velocity=1.7,
max_acceleration=2.0,
max_jerk=60.0,
)
# Do something with the new Trajectory...
| python |
import os
import subprocess
import yaml
def run_command(
command,
shell=True,
env=None,
execute="/bin/sh",
return_codes=None,
):
"""Run a shell command.
The options available:
* ``shell`` to be enabled or disabled, which provides the ability
to execute arbitrary stings or not. if disabled commands must be
in the format of a ``list``
* ``env`` is an environment override and or manipulation setting
which sets environment variables within the locally executed
shell.
* ``execute`` changes the interpreter which is executing the
command(s).
* ``return_codes`` defines the return code that the command must
have in order to ensure success. This can be a list of return
codes if multiple return codes are acceptable.
:param command: String
:param shell: Boolean
:param env: Dictionary
:param execute: String
:param return_codes: Integer
:returns: Truple
"""
if env is None:
env = os.environ
stdout = subprocess.PIPE
if return_codes is None:
return_codes = [0]
stderr = subprocess.PIPE
process = subprocess.Popen(
command,
stdout=stdout,
stderr=stderr,
executable=execute,
env=env,
shell=shell,
)
output, error = process.communicate()
if process.returncode not in return_codes:
return error, False
else:
return output, True
def dump_yaml(file_path, data):
"""Dump data to a file.
:param file_path: File path to dump data to
:type file_path: String
:param data: Dictionary|List data to dump
:type data: Dictionary|List
"""
with open(os.path.abspath(os.path.expanduser(file_path)), "w") as f:
yaml.safe_dump(data, f, default_flow_style=False)
return file_path
class ClientStatus(object):
"""Context manager for transmitting client status."""
def __init__(self, socket, job_id, ctx):
"""Initialize the UNIX socket connect context manager."""
self.ctx = ctx
self.job_id = job_id
self.job_state = ctx.nullbyte
self.info = ctx.nullbyte
self.socket = socket
def start_processing(self):
self.ctx.socket_multipart_send(
zsocket=self.socket,
msg_id=bytes(self.encode_string(item=self.job_id)),
control=self.ctx.job_processing,
)
@staticmethod
def encode_string(item):
"""Inspect a given item and if it is a string type, encode it.
:param item: Item to inspect, assumes item may be string type
:type item: <ANY>
:returns: String|<ANY>
"""
if isinstance(item, str):
return item.encode()
else:
return item
def __enter__(self):
"""Upon enter, return the context manager object for future updates.
:returns: Object
"""
return self
def __exit__(self, *args, **kwargs):
"""Upon exit, send a final status message."""
self.ctx.socket_multipart_send(
zsocket=self.socket,
msg_id=self.job_id,
control=self.job_state,
info=self.info,
)
| python |
from random import random, randrange
def ranksb ( N, K ) :
if N < K :
raise Exception, "N must be no less than K"
if K == 0 : return [ ]
L2 = K + 1
R = L2
A = K * [ 0 ]
while 1 :
M = 1 + int ( random ( ) * N )
I = 1 + ( M - 1 ) % K
breakthencontinue = 0
if A [ I - 1 ] != 0 :
while M != A [ I - 1 ] / L2 :
LINK = A [ I - 1 ] % L2
if LINK == 0 :
while 1 :
R -= 1
if R == 0 : return map ( lambda a : a / L2, A )
if A [ R - 1 ] <= 0 :
A [ I - 1 ] += R
I = R
A [ I - 1 ] = L2 * M
break
breakthencontinue = 1
break
I = LINK
else :
continue
if breakthencontinue :
continue
A [ I - 1 ] = L2 * M
if __name__ == "__main__" :
from fpformat import fix
from time import time
counts = { }
n , k = 105, 90
sampleSize = 1000
timeStart = time ( )
for s in xrange ( sampleSize ) :
a = ranksb ( n, k )
for i in a :
if i in counts :
counts [ i ] += 1
else :
counts [ i ] = 1
print "Time to generate %i %i-subsets from set of size %i: %s seconds" \
% ( sampleSize, k, n, fix ( time ( ) - timeStart, 3 ) )
keys = counts . keys ( )
keys . sort ( )
totalCount = 0
idealCount = sampleSize * k / n
ChiSquare = 0
print "Counts of occurrences of each sample element, "
print "and difference between 'ideal' count and actual"
for key in keys :
print key, counts [ key ], abs ( counts [ key ] - idealCount )
totalCount += counts [ key ]
ChiSquare +=float ( pow ( counts [ key ] - idealCount, 2 ) ) / idealCount
print "Chi-squared test of uniformity: %s on %i d.f." % ( fix ( ChiSquare, 3), n - 1 )
| python |
import machine
import utime
import ntptime
from . import config as cfg
rtc = machine.RTC()
def set_rtc_from_ntp(config):
try:
mytime = utime.localtime(ntptime.time() + int(config['tz_offset']))
except:
mytime = utime.localtime()
year, month, day, hour, minute, second, weekday, yearday = mytime
rtc.datetime((year, month, day, weekday, hour, minute, second, 0))
print("INFO: Set RTC to {}-{}-{} {:02}:{:02}:{:02}"
.format(year, month, day, hour, minute, second))
| python |
"""
Objetivo: Resolver questão 2 do segundo laboratorio.
"""
def fibonachi(n): #n é o ordem do elemento, por exemplo se n=1 retorna o primeiro termo da serie
if n == 1 or n == 0:
return 0 # primeiro elemento é 0
elif n == 2:
return 1 # segundo elemento é 1
else:
f_anterior = 0
f_atual = 1
f_aux = 0
for c in range(0, n - 2): # (n-2) para compensar o fato da serie iniciar com 0 e 1
f_aux = f_atual
f_atual = f_atual + f_anterior
f_anterior = f_aux
return f_atual # terceiro ou mais elemento é calculado
resultado = fibonachi(9)
print(resultado)
| python |
'''
CIS 122 Fall 2019 Assignment 7
Author: Zoe Turnbull
Partner:
Description: List manager program.
'''
# VARIABLES
list_var = []
list_cmd = ["Add", "Delete", "List", "Clear"]
list_cmd_desc = ["Add to list.", "Delete Information.", "List information.", "Clear list."]
left = True
right = False
# FUNCTIONS
def cmd_help():
print("*** Available Commands ***")
for item in list_cmd:
item_num = list_cmd.index(item)
print(pad_right(item, (10 - get_max_list_item_size(item))) + list_cmd_desc[item_num])
print("Empty to exit.")
def cmd_add(t):
while True:
add_data = input("Enter information (empty to stop): ").strip()
if add_data == '':
break
else:
list_var.append(add_data)
print("Added, item count = " + str(len(list_var)))
return list_var
def cmd_delete(t):
while True:
for item in list_var:
item_num = list_var.index(item)
print(pad_right(str(item_num), 2) + str(item))
print()
del_data = input("Enter number to delete (empty to stop): ").strip()
if del_data == '':
break
elif del_data.isdigit() == False:
print("Must be digit.")
print()
else:
del_data = int(del_data)
if (len(list_var) - 1) < del_data:
print("Invalid input")
print()
elif len(list_var) >= del_data:
if len(list_var) > 0:
del list_var[del_data]
elif len(list_var) == 0:
print("All items deleted.")
break
def cmd_list(t):
print("List contains " + str(len(list_var)) + " item(s).")
for item in list_var:
print(item)
def cmd_clear(t):
print(str(len(list_var)) + " item(s) removed, list empty.")
list_var.clear()
def get_max_list_item_size(t):
max_size = len(t)
return max_size
def pad_string(data, size, direction = left, character = " "):
data = str(data.strip())
if direction == left:
padded_string = str(character * size) + str(data)
return padded_string
elif direction == right:
padded_string = str(data) + str(character * size)
return padded_string
def pad_left(data, size, character = " "):
direction = left
padded_string = (pad_string(data, size, direction, character))
return padded_string
def pad_right(data, size, character = " "):
direction = right
padded_string = (pad_string(data, size, direction, character))
return padded_string
# CODE
while True:
cmd = str(input("Enter a command (? for help): ").strip().lower())
if cmd == '':
print("Goodbye!")
break
elif cmd == '?':
cmd_help()
print()
elif cmd == 'add':
cmd_add(list_var)
print()
elif cmd == 'delete' or cmd == 'del':
cmd_delete(list_var)
print()
elif cmd == 'list':
cmd_list(list_var)
print()
elif cmd == 'clear':
cmd_clear(list_var)
print()
else:
print("Unknown command.")
print()
| python |
from jellylib.error import Error
EOF = object()
Newlines = frozenset("\n\r")
LineEnd = frozenset(['\n', '\r', EOF])
Whitespaces = frozenset(" \t")
Spaces = frozenset("\n\r\t ")
LowerLetter = frozenset("abcdefghijklmnopqrstuvwxyz")
UpperLetter = frozenset("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
Digit = frozenset("0123456789")
Printables = frozenset(map(chr, range(32, 127)))
Graphicals = frozenset(map(chr, range(33, 127)))
Punctuation = Graphicals.difference(LowerLetter | UpperLetter | Digit)
class SourceOpts:
def __init__(self, tab_size):
self.tab_size = tab_size
class SourceFile:
def __init__(self, filename, opts):
self.filename = filename
self.data = []
self.lines = None
self.opts = opts
def feed(self, chr_seq):
self.data.extend(chr_seq)
def compare_pos(self, pos1, pos2):
return pos1 == pos2
def loc(self, pos):
return SourceLoc(self, pos, pos)
def advance_pos(self, pos):
return pos + 1
def at_pos(self, idx):
return self.data[idx]
def get_span(self):
return (self, 0, len(self.data))
def get_line_col_info(self, pos):
if not self.lines:
self._fill_line_info()
line = self._bin_search_line(pos)
p = self.lines[line]
col = 0
while p < pos:
ch = self.data[p]
if ch == '\t':
col = (col + self.opts.tab_size) // self.opts.tab_size * self.opts.tab_size
elif ch in '\n\r':
pass
else:
col += 1
p += 1
return line + 1, col + 1
def _bin_search_line(self, pos):
begin = 0
end = len(self.lines)
while end - begin > 1:
mid = (end + begin) // 2
if self.lines[mid] > pos:
end = mid
else:
begin = mid
return begin
def _fill_line_info(self):
self.lines = [0]
state = 0
for i, ch in enumerate(self.data):
if (state == 1) or (state == 2 and ch != '\n'):
self.lines.append(i)
state = 0
if ch == '\n':
state = 1
elif ch == '\r':
state = 2
class SourceLoc:
def __init__(self, file, begin:int, end:int):
self.file = file
self.begin = begin
self.end = end
def to(self, end):
return SourceLoc(self.file, self.begin, end.end)
def line(self):
line, col = self.file.get_line_col_info(self.begin)
return line
def filename(self):
return self.file.filename
def __str__(self):
cl_info = None
if self.begin == self.end:
line, col = self.file.get_line_col_info(self.begin)
cl_info = "line {line}, col {col}".format(line=line, col=col)
else:
line1, col1 = self.file.get_line_col_info(self.begin)
line2, col2 = self.file.get_line_col_info(self.end)
cl_info = "{line1},{col1}:{line2},{col2}".format(line1=line1, col1=col1, line2=line2, col2=col2)
if self.file.filename:
return "{file}({loc})".format(file=self.file.filename, loc=cl_info)
else:
return cl_info
class ArtificialSource:
def __init__(self, loc):
self.myloc = loc
self.data = []
def feed(self, chr_seq):
self.data.extend(chr_seq)
def compare_pos(self, pos1, pos2):
return pos1 == pos2
def loc(self, pos):
return self.myloc
def advance_pos(self, pos):
return pos + 1
def at_pos(self, idx):
return self.data[idx]
def get_span(self):
return (self, 0, len(self.data))
class SourceSpans:
def __init__(self):
self.spans = []
def add_span(self, provider, begin, end):
self.spans.append((provider, begin, end))
def add_seq(self, loc, seq):
src = ArtificialSource(loc)
src.feed(seq)
self.spans.append(src.get_span())
def loc(self, pos):
return self.spans[pos[0]][0].loc(pos[1])
def compare_pos(self, pos1, pos2):
pos1 = self.skip_empty(pos1)
pos2 = self.skip_empty(pos2)
return pos1 == pos2
def at_pos(self, pos):
pos = self.skip_empty(pos)
return self.spans[pos[0]][0].at_pos(pos[1])
def advance_pos(self, pos):
span = self.spans[pos[0]]
if span[0].compare_pos(pos[1], span[2]):
pos = (pos[0] + 1, self.spans[pos[0] + 1][1])
else:
pos = (pos[0], span[0].advance_pos(pos[1]))
return self.skip_empty(pos)
def skip_empty(self, pos):
while True:
span = self.spans[pos[0]]
if span[0].compare_pos(pos[1], span[2]) and pos[0] < len(self.spans) - 1:
pos = (pos[0] + 1, self.spans[pos[0] + 1][1])
else:
return pos
def begin_pos(self):
return (0, self.spans[0][1])
def end_pos(self):
return (len(self.spans) - 1, self.spans[-1][2])
def get_span(self):
return self, self.begin_pos(), self.end_pos()
class InputStream:
def __init__(self, provider, begin:int, end:int):
self.provider = provider
self.begin = begin
self.end = end
self.cur = begin
def get_span(self, begin, end):
return (self.provider, begin, end)
def tell(self):
return self.cur
def rewind(self, pos):
self.cur = pos
def reset(self):
self.cur = self.begin
def loc(self):
return self.provider.loc(self.cur)
def peek(self):
if self.provider.compare_pos(self.cur, self.end):
return EOF
return self.provider.at_pos(self.cur)
def advance(self):
if self.is_eof():
return
self.cur = self.provider.advance_pos(self.cur)
def is_eof(self):
return self.peek() is EOF
class ParseError(Error):
def __init__(self, *args):
super().__init__(*args)
class Parser:
def __init__(self):
self.stream = None
def set_source(self, source):
self.stream = InputStream(*source.get_span())
def set_stream(self, stream):
self.stream = stream
def peek(self):
return self.stream.peek()
def is_eof(self):
return self.stream.is_eof()
def loc(self):
return self.stream.loc()
def advance(self):
self.stream.advance()
def take(self):
ch = self.stream.peek()
if ch is EOF:
return EOF
self.stream.advance()
return ch
def tell(self):
return self.stream.tell()
def rewind(self, pos):
self.stream.rewind(pos)
def get_span(self, begin, end):
return self.stream.get_span(begin, end)
def expect(self, ch):
if self.peek() != ch:
if ch == EOF:
self.report("unexpected character")
else:
self.report("expected '{char}'".format(char=ch))
self.take()
def report(self, message, loc=None):
if not loc:
loc = self.loc()
raise ParseError(loc, message)
def parse_string(source):
p = Parser()
p.set_source(source)
s = []
while not p.is_eof():
s.append(p.take())
return ''.join(s) | python |
from typing import Callable
import pytest
from django.db import connection
from ..models import (
AuditLogEntry,
MyAuditLoggedModel,
MyConvertedToAuditLoggedModel,
MyManuallyAuditLoggedModel,
MyNoLongerAuditLoggedModel,
MyNoLongerManuallyAuditLoggedModel,
)
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_insert_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
model = MyAuditLoggedModel.objects.create(some_text="Some text")
assert model.audit_logs.count() == 1
log_entry = model.audit_logs.get()
assert log_entry.changes == {"id": model.id, "some_text": "Some text"}
assert log_entry.log_object == model
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_insert_is_audit_logged_on_converted_model() -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
model = MyConvertedToAuditLoggedModel.objects.create(some_text="Some text")
assert model.audit_logs.count() == 1
log_entry = model.audit_logs.get()
assert log_entry.changes == {"id": model.id, "some_text": "Some text"}
assert log_entry.log_object == model
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_insert_is_not_audit_logged_on_removed_model() -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
assert AuditLogEntry.objects.count() == 0
MyNoLongerAuditLoggedModel.objects.create(some_text="Some text")
assert AuditLogEntry.objects.count() == 0
@pytest.mark.usefixtures("db", "audit_logging_context", "require_migrations")
def test_insert_is_audit_logged_on_manual_model() -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
assert AuditLogEntry.objects.count() == 0
MyManuallyAuditLoggedModel.objects.create(some_text="Some text")
assert AuditLogEntry.objects.count() == 1
@pytest.mark.usefixtures("db", "audit_logging_context", "require_migrations")
def test_insert_is_not_audit_logged_on_removed_manual_model() -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
assert AuditLogEntry.objects.count() == 0
MyNoLongerManuallyAuditLoggedModel.objects.create(some_text="Some text")
assert AuditLogEntry.objects.count() == 0
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_single_model_update_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can update
data, and that the update is audit logged.
"""
model = MyAuditLoggedModel.objects.create(some_text="Some text")
model.some_text = "Updated text"
model.save(update_fields=["some_text"])
assert model.audit_logs.count() == 2
log_entry = model.audit_logs.latest("id")
assert log_entry.action == "UPDATE"
assert log_entry.changes == {"some_text": ["Some text", "Updated text"]}
assert log_entry.log_object == model
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_bulk_update_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can update
data, and that the update is audit logged.
"""
model = MyAuditLoggedModel.objects.create(some_text="Some text")
MyAuditLoggedModel.objects.filter(id=model.id).update(some_text="Updated text")
assert model.audit_logs.count() == 2
log_entry = model.audit_logs.latest("id")
assert log_entry.action == "UPDATE"
assert log_entry.changes == {"some_text": ["Some text", "Updated text"]}
assert log_entry.log_object == model
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_sql_update_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can update
data, and that the update is audit logged.
"""
model = MyAuditLoggedModel.objects.create(some_text="Some text")
with connection.cursor() as cursor:
cursor.execute(
f"UPDATE {MyAuditLoggedModel._meta.db_table} SET some_text=%s WHERE id=%s",
["Updated text", model.id],
)
assert model.audit_logs.count() == 2
log_entry = model.audit_logs.latest("id")
assert log_entry.action == "UPDATE"
assert log_entry.changes == {"some_text": ["Some text", "Updated text"]}
assert log_entry.log_object == model
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_delete_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can delete
data, and that the delete is audit logged.
"""
assert AuditLogEntry.objects.count() == 0
model = MyAuditLoggedModel.objects.create(some_text="Some text")
model_id = model.id
assert model.audit_logs.count() == 1
model.delete()
assert AuditLogEntry.objects.count() == 2
log_entry = AuditLogEntry.objects.latest("id")
assert log_entry.action == "DELETE"
assert log_entry.changes == {"id": model_id, "some_text": "Some text"}
assert log_entry.log_object is None
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_bulk_delete_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can delete
data, and that the delete is audit logged.
"""
model = MyAuditLoggedModel.objects.create(some_text="Some text")
model_id = model.id
MyAuditLoggedModel.objects.filter(id=model_id).delete()
assert model.audit_logs.count() == 2
log_entry = model.audit_logs.latest("id")
assert log_entry.action == "DELETE"
assert log_entry.changes == {"id": model_id, "some_text": "Some text"}
assert log_entry.log_object is None
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_sql_delete_is_audit_logged() -> None:
"""
Test that the audit logging context manager works and that we can delete
data, and that the delete is audit logged.
"""
model = MyAuditLoggedModel.objects.create(some_text="Some text")
model_id = model.id
with connection.cursor() as cursor:
cursor.execute(
f"DELETE FROM {MyAuditLoggedModel._meta.db_table} WHERE id=%s",
[model.id],
)
MyAuditLoggedModel.objects.filter(id=model_id).delete()
assert model.audit_logs.count() == 2
log_entry = model.audit_logs.latest("id")
assert log_entry.action == "DELETE"
assert log_entry.changes == {"id": model_id, "some_text": "Some text"}
assert log_entry.log_object is None
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_prefetch_audit_logged_object(django_assert_num_queries: Callable) -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
first_model = MyAuditLoggedModel.objects.create(some_text="Some text")
second_model = MyAuditLoggedModel.objects.create(some_text="Some other text")
audit_logs = AuditLogEntry.objects.order_by("id")
# Test without prefetch, should generate 3 queries
with django_assert_num_queries(3):
assert len(audit_logs) == 2
first, second = audit_logs
assert first.log_object == first_model
assert second.log_object == second_model
# Update queryset to include prefetch
audit_logs = audit_logs.prefetch_related("log_object")
with django_assert_num_queries(2):
assert len(audit_logs) == 2
first, second = audit_logs
assert first.log_object == first_model
assert second.log_object == second_model
@pytest.mark.usefixtures("db", "audit_logging_context")
def test_prefetch_log_entries(django_assert_num_queries: Callable) -> None:
"""
Test that the audit logging context manager works and that we can insert
data, and that the insert is audit logged.
"""
# Create two objects and then update both, generating 4 log entries
MyAuditLoggedModel.objects.create(some_text="Some text")
MyAuditLoggedModel.objects.create(some_text="Some text")
MyAuditLoggedModel.objects.update(some_text="Some other text")
assert AuditLogEntry.objects.count() == 4
models = MyAuditLoggedModel.objects.order_by("id")
# Test without prefetch, should generate 3 queries
with django_assert_num_queries(3):
for model in models:
audit_logs = model.audit_logs.all()
assert len(audit_logs) == 2
# Update queryset to include prefetch
audit_logs = models.prefetch_related("audit_logs")
with django_assert_num_queries(2):
for model in models:
audit_logs = model.audit_logs.all()
assert len(audit_logs) == 2
| python |
s = 0
for x in range(1000):
if x % 5 != 0 and x % 7 != 0:
s += 1
print(s)
| python |
# Entra na pasta onde está este arquivo, caso contrário ele faria tudo na pasta principal
import os
diretorio_geral = os.path.dirname(__file__)
diretorio_local = 'texto01.txt' # Local e nome do arquivo que eu quero criar
juntando_os_caminhos_do_diretorio_e_nome_do_arquivo_que_sera_criado = os.path.join(diretorio_geral, diretorio_local)
# Criar, ler, escrever e apagar arquivos
arquivo = open(juntando_os_caminhos_do_diretorio_e_nome_do_arquivo_que_sera_criado, 'w+') # Write (escreve) + Leitura
# Poderia enviar tudo com apenas um write
arquivo.write('Primeira Linha\n')
arquivo.write('Segunda Linha\n')
arquivo.write('Terceira Linha\n')
# Retorna o cursor para o topo do arquivo
arquivo.seek(0, 0)
print('#################\n')
print(arquivo.read()) # Lê o arquivo todo
print('#################\n')
# Retorna o cursor para o topo do arquivo novamente
arquivo.seek(0, 0)
print('*****************\n')
print(arquivo.readline()) # Lê linha por linha
print(arquivo.readline())
print(arquivo.readline())
print('*****************\n')
arquivo.seek(0, 0)
print('-----------------\n')
print(arquivo.readlines(), '\n') # Salva todas as linhas dentro de uma lista
print('-----------------\n')
arquivo.seek(0, 0)
# Também é possível usar o for nesta lista
print('=================\n')
lista_arquivo = arquivo.readlines()
for linha in lista_arquivo:
print(linha)
print('=================\n')
arquivo.close() # Fecha o arquivo
| python |
import pygame
import random
import sys
from pygame.locals import *
class TimedWordsTeamGame(object):
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
YELLOW = (230, 230, 0)
GREEN = (0, 128, 0)
BLUE = (0, 0, 255)
INV_PLAY_TIME = 0.5
NUM_TEAM_MEMBERS = 30
def __init__(self):
pygame.init()
pygame.mixer.init()
self.sound_right = pygame.mixer.Sound('audio\\beep.ogg')
self.sound_wrong = pygame.mixer.Sound('audio\\buzzer.ogg')
self.sound_win = pygame.mixer.Sound('audio\\win.ogg')
self.xRes = 1024
self.yRes = 768
self.DISPLAYSURF = pygame.display.set_mode((self.xRes, self.yRes), 0, 32)
pygame.display.set_caption('Timed Words Team Game')
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
self.font = pygame.font.SysFont(None, 72)
self.team_font = pygame.font.SysFont(None, 32)
self.team_1_name = "Team 1"
self.team_2_name = "Team 2"
self.active_team = random.sample([1, 2], 1)[0]
self.team_1_score = 0
self.team_2_score = 0
self.words = [[["q11","q"],["q12","q"],["q13","q"],["a14","a"]],# add desired content here
[["q21","q"],["q22","q"],["q23","q"],["a24","a"]],
[["q31","q"],["q32","q"],["q33","q"],["a34","a"]],
[["q41","q"],["q42","q"],["q43","q"],["a44","a"]]]
def refresh_display(self):
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
active_team_label = self.font.render("Team {0}".format(self.active_team), True, TimedWordsTeamGame.BLACK)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
active_team_label_rect = active_team_label.get_rect()
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
active_team_label_rect.center = (self.xRes / 2, self.yRes / 2)
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
self.DISPLAYSURF.blit(active_team_label, active_team_label_rect)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
if event.type == pygame.KEYUP and event.key == pygame.K_SPACE:
self.new_word()
def game_score(self, key):
self.end_ticks = pygame.time.get_ticks()
team_scores = [self.team_1_score, self.team_2_score]
points = 1000 / (self.end_ticks - self.start_ticks)
if key == 'a':
if self.word_list[0][1] == 'a':
team_scores[self.active_team - 1] += points
self.team_1_score, self.team_2_score = team_scores[0], team_scores[1]
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.GREEN)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.BLACK)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.BLACK)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLACK)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_right.play()
else:
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.RED)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.BLACK)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.BLACK)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLACK)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_wrong.play()
if key == 'b':
if self.word_list[1][1] == 'a':
team_scores[self.active_team - 1] += points
self.team_1_score, self.team_2_score = team_scores[0], team_scores[1]
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.BLACK)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.GREEN)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.BLACK)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLACK)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_right.play()
else:
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.BLACK)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.RED)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.BLACK)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLACK)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_wrong.play()
if key == 'c':
if self.word_list[2][1] == 'a':
team_scores[self.active_team - 1] += points
self.team_1_score, self.team_2_score = team_scores[0], team_scores[1]
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.BLACK)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.BLACK)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.GREEN)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLACK)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_right.play()
else:
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.BLACK)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.BLACK)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.RED)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLACK)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_wrong.play()
if key == 'd':
if self.word_list[3][1] == 'a':
team_scores[self.active_team - 1] += points
self.team_1_score, self.team_2_score = team_scores[0], team_scores[1]
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.BLACK)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.BLACK)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.BLACK)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.GREEN)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_right.play()
else:
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - ((self.team_1_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_1_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - ((self.team_2_score) * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS)))),
40,
(self.team_2_score * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.BLACK)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.BLACK)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.BLACK)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.RED)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.sound_wrong.play()
if (team_scores[self.active_team - 1] * ((self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME * TimedWordsTeamGame.NUM_TEAM_MEMBERS))) >= (self.yRes - 80):
self.game_over()
pygame.time.delay(3000)# modify according to needs
self.active_team = 1 if self.active_team == 2 else 2
self.refresh_display()
def game_over(self):
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
text = self.font.render("Team {0} wins!".format(self.active_team), True, TimedWordsTeamGame.GREEN)
textpos = text.get_rect()
textpos.center = (self.xRes / 2, self.yRes / 2)
self.DISPLAYSURF.blit(text,textpos)
self.team_1_score = 0
self.team_2_score = 0
pygame.display.update()
self.sound_win.play()
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
if event.type == pygame.KEYUP and event.key == pygame.K_SPACE:
self.run()
def new_word(self):
self.word_list = random.sample(self.words, 1)[0]
random.shuffle(self.word_list)
self.DISPLAYSURF.fill(TimedWordsTeamGame.WHITE)
team_1_label = self.team_font.render(self.team_1_name, True, TimedWordsTeamGame.BLACK)
team_2_label = self.team_font.render(self.team_2_name, True, TimedWordsTeamGame.BLACK)
team_1_label_rect = team_1_label.get_rect()
team_2_label_rect = team_2_label.get_rect()
team_1_label_rect.left = 10
team_2_label_rect.right = self.xRes - 10
team_1_label_rect.bottom = self.yRes - 10
team_2_label_rect.bottom = self.yRes - 10
team_1_rect = pygame.Rect(10,
((self.yRes - 40) - (self.team_1_score) *
(self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME *
TimedWordsTeamGame.NUM_TEAM_MEMBERS)),
40,
(self.team_1_score) *
(self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME *
TimedWordsTeamGame.NUM_TEAM_MEMBERS))
team_2_rect = pygame.Rect(self.xRes - 50,
((self.yRes - 40) - (self.team_2_score) *
(self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME *
TimedWordsTeamGame.NUM_TEAM_MEMBERS)),
40,
(self.team_2_score) *
(self.yRes - 80) / (TimedWordsTeamGame.INV_PLAY_TIME *
TimedWordsTeamGame.NUM_TEAM_MEMBERS))
frag_1_text = self.team_font.render(self.word_list[0][0], True, TimedWordsTeamGame.RED)
frag_2_text = self.team_font.render(self.word_list[1][0], True, TimedWordsTeamGame.YELLOW)
frag_3_text = self.team_font.render(self.word_list[2][0], True, TimedWordsTeamGame.GREEN)
frag_4_text = self.team_font.render(self.word_list[3][0], True, TimedWordsTeamGame.BLUE)
frag_1_text_rect = frag_1_text.get_rect()
frag_2_text_rect = frag_1_text.get_rect()
frag_3_text_rect = frag_1_text.get_rect()
frag_4_text_rect = frag_1_text.get_rect()
frag_1_text_rect.center = (self.xRes / 2, (1 / 5) * self.yRes)
frag_2_text_rect.center = (self.xRes / 2, (2 / 5) * self.yRes)
frag_3_text_rect.center = (self.xRes / 2, (3 / 5) * self.yRes)
frag_4_text_rect.center = (self.xRes / 2, (4 / 5) * self.yRes)
self.DISPLAYSURF.blit(team_1_label, team_1_label_rect)
self.DISPLAYSURF.blit(team_2_label, team_2_label_rect)
self.DISPLAYSURF.blit(frag_1_text, frag_1_text_rect)
self.DISPLAYSURF.blit(frag_2_text, frag_2_text_rect)
self.DISPLAYSURF.blit(frag_3_text, frag_3_text_rect)
self.DISPLAYSURF.blit(frag_4_text, frag_4_text_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.RED, team_1_rect)
pygame.draw.rect(self.DISPLAYSURF, TimedWordsTeamGame.BLUE, team_2_rect)
pygame.draw.line(self.DISPLAYSURF, TimedWordsTeamGame.BLACK, (0, 40), (self.xRes, 40), 4)
pygame.display.update()
self.start_ticks = pygame.time.get_ticks()
self.run()
def run(self):
while True:
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
if event.type == pygame.KEYUP:
if event.key == pygame.K_ESCAPE:
pygame.quit()
sys.exit()
if event.key == pygame.K_SPACE:
self.refresh_display()
if event.key == pygame.K_d:#these pygame keys (a, e, i, m) will depend on your hardware setup
self.game_score('a')
if event.key == pygame.K_h:
self.game_score('b')
if event.key == pygame.K_l:
self.game_score('c')
if event.key == pygame.K_p:
self.game_score('d')
pygame.display.update()
if __name__ == '__main__':
new_instance = TimedWordsTeamGame()
new_instance.run()
| python |
import numpy as np
# TODO: convert these to params files
# params used for the inverted pendulum system
m = 1.4 # mass of quadrotor (kg)
L = 0.3 # length from center of mass to point of thrust (meters)
gr = 9.81 # gravity (m/s^2)
I = m * L ** 2
b = 0.
max_torque = 1.0
max_speed = 8
states = 2 # theta and thetadot
num_controllers = 1
total_time = 1 # total time duration (s)
dt = 0.01 # discretization timestep
timesteps = int(total_time / dt) # total timesteps
# goal state
xf = np.zeros([states, 1])
xf[0, 0] = np.pi
xf[1, 0] = 0
# ddp parameters
num_iter = 50 # optimization iterations
# TODO: fix this so learned_pendulum doesn't have to use this I guess
Q_f_ddp = np.diag([100, 1])
Q_r_ddp = np.zeros([states, states])
R_ddp = 0.1 * np.eye(num_controllers)
gamma = 0.5 # how much we account for du in updating the control during optimization
| python |
import os
from RouterConfiguration.Cisco.cisco_config_features import *
from utils import *
from network_features import *
def route_map_deny(rm, seq):
rm.perm[seq] = 'deny'
return f'{rm} {rm.perm[seq]} {seq}'
def route_map_permit(rm, seq):
rm.perm[seq] = 'permit'
return f'{rm} {rm.perm[seq]} {seq}'
feature_config = {
RouterFeatures.STATIC_ROUTE: lambda network, interface: f'ip route {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)} {interface}',
OSPFFeatures.INTERFACE_OSPF_COST: lambda interface, cost: f' ip ospf cost {cost}',
OSPFFeatures.INTERFACE_OSPF_PRIORITY: lambda interface, priority: f' ip ospf priority {priority}',
OSPFFeatures.AUTO_COST: lambda bandwidth: f' auto-cost reference-bandwidth {bandwidth}',
OSPFFeatures.NO_COMPATIBLE_RFC1583: lambda: ' no compatible rfc1583',
OSPFFeatures.DEFAULT_INFORMATION_ORIGINATE: lambda always, metric, metric_type: f' default-information originate {always}{metric}{metric_type}',
OSPFFeatures.DEFAULT_METRIC: lambda metric: f' default-metric {metric}',
OSPFFeatures.DISTANCE: lambda dist: f' distance {dist}',
OSPFFeatures.REDISTRIBUTE_CONNECTED: lambda subnets: f' redistribute connected {subnets}',
OSPFFeatures.REDISTRIBUTE_STATIC: lambda subnets: f' redistribute static {subnets}',
OSPFFeatures.REDISTRIBUTE_BGP: lambda asn, subnets: f' redistribute bgp {asn}{subnets}',
OSPFFeatures.MAX_METRIC: lambda external, stub, summary: f' max-metric router-lsa {external}{stub}{summary}',
OSPFFeatures.AREA_FILTER_LIST: lambda area, filter_list, dir: f' area {area} filter-list prefix {filter_list}{dir}',
OSPFFeatures.AREA_RANGE: lambda area, network, advertise, cost: f' area {area} range {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)}{advertise}{cost}',
OSPFFeatures.NSSA_STUB_DEFAULT_COST: lambda area, cost: f' area {area} default-cost {cost}',
OSPFFeatures.NSSA_NO_REDISTRIBUTION: lambda area: f' area {area} nssa no-redistribution',
OSPFFeatures.NSSA_DEFAULT_INFORMATION_ORIGINATE: lambda area, metric, metric_type: f' area {area} nssa default-information-originate{metric}{metric_type}',
OSPFFeatures.NSSA_NO_SUMMARY: lambda area: f' area {area} nssa no-summary',
OSPFFeatures.NSSA_ONLY: lambda area: f' area {area} nssa nssa-only',
OSPFFeatures.STUB_NO_SUMMARY: lambda area: f' area {area} stub no-summary',
BGPFeatures.ALWAYS_COMPARE_MED: lambda: ' bgp always-compare-med',
BGPFeatures.BESTPATH_COMPARE_ROUTERID: lambda: ' bgp bestpath compare-routerid',
BGPFeatures.BESTPATH_MED_CONFED: lambda missing_as_worst: f' bgp bestpath med confed {missing_as_worst}',
BGPFeatures.BESTPATH_MED_MISSING: lambda: ' bgp bestpath med missing-as-worst',
BGPFeatures.NO_CLIENT_TO_CLIENT_REFLECTION: lambda: ' no bgp client-to-client reflection',
BGPFeatures.DEFAULT_LOCAL_PREFERENCE: lambda preference: f' bgp default local-preference {preference}',
BGPFeatures.DETERMINISTIC_MED: lambda: ' bgp deterministic-med',
BGPFeatures.MAXAS_LIMIT: lambda limit: f' bgp maxas-limit {limit}',
BGPFeatures.DEFAULT_INFORMATION_ORIGINATE: lambda: ' default-information originate',
BGPFeatures.ADDITIONAL_PATHS_INSTALL: lambda: ' bgp additional-paths install',
BGPFeatures.AUTO_SUMMARY: lambda: ' auto-summary',
BGPFeatures.BGP_DAMPENING: lambda route_map: f' bgp dampening {route_map or ""}',
BGPFeatures.DISTANCE_BGP: lambda external, internal, local: f' distance bgp {external} {internal} {local}',
BGPFeatures.REDISTRIBUTE_CONNECTED: lambda route_map: f' redistribute connected {route_map or ""}',
BGPFeatures.REDISTRIBUTE_STATIC: lambda route_map: f' redistribute static {route_map or ""}',
BGPFeatures.REDISTRIBUTE_OSPF: lambda route_map: f' redistribute ospf {route_map or ""}',
BGPFeatures.SYNCHRONIZATION: lambda: ' synchronization',
BGPFeatures.TABLE_MAP: lambda use_filter, route_map: f' table-map {route_map.name}{use_filter}',
BGPFeatures.AGGREGATE_ADDRESS: lambda network, as_set, summary: f' aggregate-address {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)}{as_set}{summary}',
BGPFeatures.ADDITIONAL_PATHS: lambda options: f' bgp additional-paths {options}',
BGPFeatures.NEIGHBOUR_MAXIMUM_PREFIX: lambda neighbour, max_prefix: f' neighbor {int_to_ip(neighbour)} maximum-prefix {max_prefix}',
BGPFeatures.NEIGHBOUR_ROUTE_MAP_IN: lambda neighbour, route_map: f' neighbor {int_to_ip(neighbour)}{route_map} in',
BGPFeatures.NEIGHBOUR_ROUTE_MAP_OUT: lambda neighbour, route_map: f' neighbor {int_to_ip(neighbour)}{route_map} out',
BGPFeatures.NEIGHBOUR_NEXT_HOP_SELF: lambda neighbour: f' neighbor {int_to_ip(neighbour)} next-hop-self',
BGPFeatures.NEIGHBOUR_CAPABILITY_ORF_PREFIX_LIST: lambda neighbour, options: f' neighbor {int_to_ip(neighbour)} capability orf prefix-list {options}',
BGPFeatures.NEIGHBOUR_DEFAULT_ORIGINATE: lambda neighbour, route_map: f' neighbor {int_to_ip(neighbour)} default-originate {route_map or ""}',
BGPFeatures.NEIGHBOUR_ROUTE_REFLECTOR_CLIENT: lambda neighbour: f' neighbor {int_to_ip(neighbour)} route-reflector-client',
BGPFeatures.NEIGHBOUR_WEIGHT: lambda neighbour, weight: f' neighbor {int_to_ip(neighbour)} weight {weight}',
RouteMapFeatures.MATCH_INTERFACE: lambda rm, seq, interface: f' match interface {interface}',
RouteMapFeatures.MATCH_IP_PREFIX_LIST: lambda rm, seq, prefix_list: f' match ip address prefix-list {prefix_list}',
RouteMapFeatures.MATCH_IP_NEXT_HOP: lambda rm, seq, access_list: f' match ip next-hop {access_list}',
RouteMapFeatures.SET_INTERFACE: lambda rm, seq, interface: f' set interface {interface}',
RouteMapFeatures.SET_IP_DEFAULT_NEXT_HOP: lambda rm, seq, ip: f' set ip default next-hop {int_to_ip(ip)}',
RouteMapFeatures.SET_IP_NEXT_HOP: lambda rm, seq, ip: f' set ip next-hop {int_to_ip(ip)}',
RouteMapFeatures.SET_METRIC: lambda rm, seq, metric: f' set metric {metric}',
RouteMapFeatures.CONTINUE: lambda rm, seq: f' continue',
RouteMapFeatures.MATCH_AS_PATH_ACCESS_LIST: lambda rm, seq, as_path: f' match as-path {as_path}',
RouteMapFeatures.MATCH_COMMUNITY_LIST: lambda rm, seq, community, exact: f' match community {community} {exact}',
RouteMapFeatures.SET_LOCAL_PREFERENCE: lambda rm, seq, preference: f' set local-preference {preference}',
RouteMapFeatures.SET_AS_PATH_PREPEND: lambda rm, seq, AS: f' set as-path prepend {AS}',
RouteMapFeatures.SET_COMM_LIST_DELETE: lambda rm, seq, community: f' set comm-list {community} delete',
RouteMapFeatures.SET_COMMUNITY: lambda rm, seq, community, additive: f' set community {community} {additive}',
RouteMapFeatures.SET_ORIGIN: lambda rm, seq, origin: f' set origin {origin}',
RouteMapFeatures.SET_WEIGHT: lambda rm, seq, weight: f' set weight {weight}',
RouteMapFeatures.SET_METRIC_TYPE_INTERNAL: lambda rm, seq: f' set metric-type internal',
RouteMapFeatures.MATCH_FEATURE_BGP_OUT: lambda rm, seq, feature, *args: feature_config[feature](rm, seq, *args),
RouteMapFeatures.MATCH_FEATURE_BGP_IN: lambda rm, seq, feature, *args: feature_config[feature](rm, seq, *args),
RouteMapFeatures.SET_FEATURE_BGP_OUT: lambda rm, seq, feature, *args: feature_config[feature](rm, seq, *args),
RouteMapFeatures.SET_FEATURE_BGP_IN: lambda rm, seq, feature, *args: feature_config[feature](rm, seq, *args),
RouteMapFeatures.ROUTE_MAP_DENY: lambda rm, seq: route_map_deny(rm, seq),
}
feature_disable = {
RouterFeatures.STATIC_ROUTE: lambda network, interface: f'no ip route {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)} {interface}',
OSPFFeatures.INTERFACE_OSPF_COST: lambda interface, cost: f'no ip ospf cost',
OSPFFeatures.INTERFACE_OSPF_PRIORITY: lambda interface, priority: f'no ip ospf priority',
OSPFFeatures.AUTO_COST: lambda bandwidth: f'no auto-cost reference-bandwidth {bandwidth}',
OSPFFeatures.NO_COMPATIBLE_RFC1583: lambda: 'compatible rfc1583',
OSPFFeatures.DEFAULT_INFORMATION_ORIGINATE: lambda always, metric, metric_type: f'no default-information originate',
OSPFFeatures.DEFAULT_METRIC: lambda metric: f'no default-metric {metric}',
OSPFFeatures.DISTANCE: lambda dist: f'no distance {dist}',
OSPFFeatures.REDISTRIBUTE_CONNECTED: lambda subnets: f'no redistribute connected',
OSPFFeatures.REDISTRIBUTE_STATIC: lambda subnets: f'no redistribute static',
OSPFFeatures.REDISTRIBUTE_BGP: lambda asn, subnets: f'no redistribute bgp {asn}',
OSPFFeatures.MAX_METRIC: lambda external, stub, summary: f'no max-metric router-lsa',
OSPFFeatures.AREA_FILTER_LIST: lambda area, filter_list, dir: f'no area {area} filter-list prefix {filter_list}{dir}',
OSPFFeatures.AREA_RANGE: lambda area, network, advertise, cost: f'no area {area} range {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)}',
OSPFFeatures.NSSA_STUB_DEFAULT_COST: lambda area, cost: f'no area {area} default-cost',
OSPFFeatures.NSSA_NO_REDISTRIBUTION: lambda area: f'no area {area} nssa no-redistribution',
OSPFFeatures.NSSA_DEFAULT_INFORMATION_ORIGINATE: lambda area, metric, metric_type: f'no area {area} nssa default-information-originate',
OSPFFeatures.NSSA_NO_SUMMARY: lambda area: f'no area {area} nssa no-summary',
OSPFFeatures.NSSA_ONLY: lambda area: f'no area {area} nssa nssa-only',
OSPFFeatures.STUB_NO_SUMMARY: lambda area: f'no area {area} stub no-summary',
BGPFeatures.ALWAYS_COMPARE_MED: lambda: 'no bgp always-compare-med',
BGPFeatures.BESTPATH_COMPARE_ROUTERID: lambda: 'no bgp bestpath compare-routerid',
BGPFeatures.BESTPATH_MED_CONFED: lambda missing_as_worst: f'no bgp bestpath med confed {missing_as_worst}\n',
BGPFeatures.BESTPATH_MED_MISSING: lambda: 'no bgp bestpath med missing-as-worst',
BGPFeatures.NO_CLIENT_TO_CLIENT_REFLECTION: lambda: ' bgp client-to-client reflection',
BGPFeatures.DEFAULT_LOCAL_PREFERENCE: lambda preference: f'no bgp default local-preference',
BGPFeatures.DETERMINISTIC_MED: lambda: 'no bgp deterministic-med',
BGPFeatures.MAXAS_LIMIT: lambda limit: f'no bgp maxas-limit',
BGPFeatures.DEFAULT_INFORMATION_ORIGINATE: lambda: 'no default-information originate',
BGPFeatures.ADDITIONAL_PATHS_INSTALL: lambda: 'no bgp additional-paths install',
BGPFeatures.AUTO_SUMMARY: lambda: 'no auto-summary',
BGPFeatures.BGP_DAMPENING: lambda route_map: f'no bgp dampening',
BGPFeatures.DISTANCE_BGP: lambda external, internal, local: f'no distance bgp',
BGPFeatures.REDISTRIBUTE_CONNECTED: lambda route_map: f'no redistribute connected',
BGPFeatures.REDISTRIBUTE_STATIC: lambda route_map: f'no redistribute static',
BGPFeatures.REDISTRIBUTE_OSPF: lambda route_map: f'no redistribute ospf',
BGPFeatures.SYNCHRONIZATION: lambda: 'no synchronization',
BGPFeatures.TABLE_MAP: lambda use_filter, route_map: f'no table-map',
BGPFeatures.AGGREGATE_ADDRESS: lambda network, as_set, summary: f'no aggregate-address {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)}',
BGPFeatures.ADDITIONAL_PATHS: lambda options: f'no bgp additional-paths',
BGPFeatures.NEIGHBOUR_MAXIMUM_PREFIX: lambda neighbour, max_prefix: f'no neighbor {int_to_ip(neighbour)} maximum-prefix {max_prefix}',
BGPFeatures.NEIGHBOUR_ROUTE_MAP_IN: lambda neighbour, route_map: f'no neighbor {int_to_ip(neighbour)}{route_map} in',
BGPFeatures.NEIGHBOUR_ROUTE_MAP_OUT: lambda neighbour, route_map: f'no neighbor {int_to_ip(neighbour)}{route_map} out',
BGPFeatures.NEIGHBOUR_NEXT_HOP_SELF: lambda neighbour: f'no neighbor {int_to_ip(neighbour)} next-hop-self',
BGPFeatures.NEIGHBOUR_CAPABILITY_ORF_PREFIX_LIST: lambda neighbour, options: f'no neighbor {int_to_ip(neighbour)} capability orf prefix-list {options}',
BGPFeatures.NEIGHBOUR_DEFAULT_ORIGINATE: lambda neighbour, route_map: f'no neighbor {int_to_ip(neighbour)} default-originate',
BGPFeatures.NEIGHBOUR_ROUTE_REFLECTOR_CLIENT: lambda neighbour: f'no neighbor {int_to_ip(neighbour)} route-reflector-client',
BGPFeatures.NEIGHBOUR_WEIGHT: lambda neighbour, weight: f'no neighbor {int_to_ip(neighbour)} weight',
RouteMapFeatures.MATCH_INTERFACE: lambda rm, seq, interface: f'no match interface {interface}',
RouteMapFeatures.MATCH_IP_PREFIX_LIST: lambda rm, seq, prefix_list: f'no match ip address prefix-list {prefix_list}',
RouteMapFeatures.MATCH_IP_NEXT_HOP: lambda rm, seq, access_list: f'no match ip next-hop {access_list}',
RouteMapFeatures.SET_INTERFACE: lambda rm, seq, interface: f'no set interface {interface}',
RouteMapFeatures.SET_IP_DEFAULT_NEXT_HOP: lambda rm, seq, ip: f'no set ip default next-hop {int_to_ip(ip)}',
RouteMapFeatures.SET_IP_NEXT_HOP: lambda rm, seq, ip: f'no set ip next-hop {int_to_ip(ip)}',
RouteMapFeatures.SET_METRIC: lambda rm, seq, metric: f'no set metric {metric}',
RouteMapFeatures.MATCH_AS_PATH_ACCESS_LIST: lambda rm, seq, as_path: f'no match as-path {as_path}',
RouteMapFeatures.MATCH_COMMUNITY_LIST: lambda rm, seq, community, exact: f'no match community {community}',
RouteMapFeatures.SET_LOCAL_PREFERENCE: lambda rm, seq, preference: f'no set local-preference {preference}',
RouteMapFeatures.SET_AS_PATH_PREPEND: lambda rm, seq, AS: f'no set as-path prepend {AS}',
RouteMapFeatures.SET_COMM_LIST_DELETE: lambda rm, seq, community: f'no set comm-list {community} delete',
RouteMapFeatures.SET_COMMUNITY: lambda rm, seq, community, additive: f'no set community {community}{additive}',
RouteMapFeatures.SET_ORIGIN: lambda rm, seq, origin: f'no set origin {origin}',
RouteMapFeatures.SET_WEIGHT: lambda rm, seq, weight: f'no set weight {weight}',
RouteMapFeatures.SET_METRIC_TYPE_INTERNAL: lambda rm, seq: f'no set metric-type internal',
RouteMapFeatures.MATCH_FEATURE_BGP_OUT: lambda rm, seq, feature, *args: feature_disable[feature](rm, seq, *args),
RouteMapFeatures.MATCH_FEATURE_BGP_IN: lambda rm, seq, feature, *args: feature_disable[feature](rm, seq, *args),
RouteMapFeatures.SET_FEATURE_BGP_OUT: lambda rm, seq, feature, *args: feature_disable[feature](rm, seq, *args),
RouteMapFeatures.SET_FEATURE_BGP_IN: lambda rm, seq, feature, *args: feature_disable[feature](rm, seq, *args),
RouteMapFeatures.ROUTE_MAP_DENY: lambda rm, seq: route_map_permit(rm, seq),
}
filter_config = [RouteMapFeatures.ROUTE_MAP_DENY]
bgp_af_features = [BGPFeatures.ADDITIONAL_PATHS]
def config_mode(router, feature, arg):
mode = {
RouterFeatures: lambda router: (),
OSPFFeatures: lambda router: (f'router ospf {router.ospf_proc}',),
BGPFeatures: lambda router: (f'router bgp {router.AS}',)
}
if feature in interface_features:
return f'interface {arg.name}',
elif feature in filter_config:
return ()
elif feature in bgp_af_features:
return f'router bgp {router.AS}', f'address-family ipv4'
elif type(feature) == RouteMapFeatures:
rm, seq = arg
return f'{rm} {rm.perm[seq]} {seq}',
else:
return mode[type(feature)](router)
def exit_config_mode(feature):
mode = {
RouterFeatures: [],
OSPFFeatures: [f'exit'],
BGPFeatures: [f'exit'],
RouteMapFeatures: [f'exit']
}
if feature in filter_config:
return []
elif feature in bgp_af_features:
return [f'exit-address-family', f'exit']
else:
return mode[type(feature)]
def generate_maps_lists_config(router):
config = []
for route_map in router.bgp_in_route_maps:
for seq in route_map.perm:
config.append(f'{route_map} {route_map.perm[seq]} {seq}')
if seq in route_map.match_features:
feature, *args = route_map.match_features[seq]
config.append(feature_config[feature](route_map, seq, *args))
if seq in route_map.set_features:
feature, *args = route_map.set_features[seq]
config.append(feature_config[feature](route_map, seq, *args))
for route_map in router.bgp_out_route_maps:
for seq in route_map.perm:
config.append(f'{route_map} {route_map.perm[seq]} {seq}')
if seq in route_map.match_features:
feature, *args = route_map.match_features[seq]
config.append(feature_config[feature](route_map, seq, *args))
if seq in route_map.set_features:
feature, *args = route_map.set_features[seq]
config.append(feature_config[feature](route_map, seq, *args))
for prefix_list in router.prefix_lists:
for seq in prefix_list.perm:
config.append(f'ip prefix-list {prefix_list} seq {seq} {prefix_list.perm[seq]} '
f'{int_to_ip(prefix_list.prefix[seq].address)}/'
f'{prefix_list.prefix[seq].prefix}{prefix_list.eq[seq]}')
for comm_list in router.comm_lists:
comms = ' '.join(comm_list.comms)
config.append(f'ip community-list {comm_list.name} {comm_list.perm} {comms}')
for as_path_list in router.as_path_lists:
config.append(f'ip as-path access-list {as_path_list.name} {as_path_list.perm} {as_path_list.regex}')
for access_list in router.access_lists:
config.append(f'access-list {access_list.num} {access_list.perm} {int_to_ip(access_list.net.address)} {int_to_lower_mask(access_list.net.prefix)}')
return config
def generate_ospf_config(router):
config = ['router ospf ' + str(router.ospf_proc), f' router-id {int_to_ip(router.router_id)}']
for area in router.ospf_areas:
for net in area.networks:
config.append(f' network {int_to_ip(net.address)} {int_to_lower_mask(net.prefix)} area {area}')
if area.type == OSPF_Area_Type.NSSA:
config.append(' area ' + str(area) + ' nssa')
elif area.type == OSPF_Area_Type.STUB:
config.append(' area ' + str(area) + ' stub')
return config
def generate_bgp_config(router):
config = [f'router bgp {router.AS.num}', f' bgp router-id {int_to_ip(router.router_id)}']
for neighbour in router.bgp_neighbours:
config.append(f' neighbor {int_to_ip(neighbour.address)} remote-as {neighbour.AS.num}')
config.append(f' neighbor {int_to_ip(neighbour.address)} update-source {neighbour.interface.name}')
config.append(f' neighbor {int_to_ip(neighbour.address)} advertisement-interval 0')
config.append(' address-family ipv4')
for net in router.AS.networks:
config.append(f' network {int_to_ip(net.address)} mask {int_to_upper_mask(net.prefix)}')
for neighbour in router.bgp_neighbours:
config.append(f' neighbor {int_to_ip(neighbour.address)} activate')
config.append(' exit-address-family')
return config
def get_base_config(router):
config = [f'hostname {router.name}', 'interface loopback 0',
f' ip address {int_to_ip(router.router_id)} {int_to_upper_mask(32)}']
for interface in router.interfaces:
if interface.address is not None:
config.append(f'interface {interface.name}')
config.append(' ip address ' + int_to_ip(interface.address) + ' ' + int_to_upper_mask(interface.prefix))
if interface.area is not None:
config.append(f' ip ospf {router.ospf_proc} area {interface.area}')
for network, interface in router.fixed_static_routes:
config.append(f'ip route {int_to_ip(network.address)} {int_to_upper_mask(network.prefix)} {interface.name}')
if Protocols.OSPF in router.enabled_protocols or Protocols.BGP in router.enabled_protocols:
config.extend(generate_ospf_config(router))
if Protocols.BGP in router.enabled_protocols:
config.extend(generate_bgp_config(router))
config.extend(generate_maps_lists_config(router))
return config
def write_config(router, path):
config = get_base_config(router)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(f'{path}{router.name}.cfg', 'w') as f:
f.write('\n'.join(config))
| python |
#################################################
# Implements a dynamical dense layer that allows
# both adding and removing both input and output
# features and a simple update step for both.
#
# Inspired by "Lifelong Learning with Dynamically
# Expandable Networks", ICLR, 2017 (arXiv:1708.01547)
#################################################
import tensorflow as tf
import numpy as np
class DynamicMatrix:
"""The dynamic matrix that allows adding and removing features"""
def __init__(self, shape, std=0.1):
self.gradient_step = tf.Variable(0.0, trainable=False)
if shape is not None:
self.mat = tf.Variable(tf.random.normal(shape, stddev=std), trainable=True)
self.mom = tf.Variable(np.zeros(shape).astype("float32"), trainable=False)
self.mom2 = tf.Variable(np.zeros(shape).astype("float32"), trainable=False)
self.dim = len(shape)
@classmethod
def from_state(cls, state):
obj = cls(None)
obj.mat = state[0]
obj.mom = state[1]
obj.mom2 = state[2]
return obj
def expand_out(self, n, std):
"""Add a random output feature"""
new_row = tf.random.normal(self.mat.shape[:-1] + (n,), stddev=std)
self.mat = tf.Variable(
tf.concat([self.mat, new_row], self.dim - 1), trainable=True
)
# Set momenta for the new row to zero
mom_row = tf.Variable(np.zeros((self.mom.shape[:-1] + (n,))).astype("float32"))
self.mom = tf.Variable(
tf.concat([self.mom, mom_row], self.dim - 1), trainable=False
)
mom2_row = tf.Variable(
np.zeros((self.mom2.shape[:-1] + (n,))).astype("float32")
)
self.mom2 = tf.Variable(
tf.concat([self.mom2, mom2_row], self.dim - 1), trainable=False
)
def contract_out(self, n, index):
"""Remove a random output feature"""
if self.shape[-1] > 1:
start = [0 for x in self.shape]
size = list(self.shape)
size[-1] = n * index
new_mat = tf.slice(self.mat, start, size)
new_mom = tf.slice(self.mom, start, size)
new_mom2 = tf.slice(self.mom2, start, size)
start[-1] = n * (index + 1)
size[-1] = self.shape[-1] - n * (index + 1)
new_mat = tf.concat(
[new_mat, tf.slice(self.mat, start, size)], self.dim - 1
)
new_mom = tf.concat(
[new_mom, tf.slice(self.mom, start, size)], self.dim - 1
)
new_mom2 = tf.concat(
[new_mom2, tf.slice(self.mom2, start, size)], self.dim - 1
)
self.mat = tf.Variable(new_mat, trainable=True)
self.mom = tf.Variable(new_mom, trainable=False)
self.mom2 = tf.Variable(new_mom2, trainable=False)
def expand_in(self, n, std):
"""Add a random input feature"""
new_column = tf.random.normal(
self.mat.shape[:-2] + (n, self.mat.shape[-1]), stddev=std
)
self.mat = tf.Variable(
tf.concat([self.mat, new_column], self.dim - 2), trainable=True
)
# Set momenta for the new row to zero
mom_column = tf.Variable(
np.zeros(self.mom.shape[:-2] + (n, self.mom.shape[-1])).astype("float32")
)
self.mom = tf.Variable(
tf.concat([self.mom, mom_column], self.dim - 2), trainable=False
)
mom2_column = tf.Variable(
np.zeros(self.mom2.shape[:-2] + (n, self.mom2.shape[-1])).astype("float32")
)
self.mom2 = tf.Variable(
tf.concat([self.mom2, mom2_column], self.dim - 2), trainable=False
)
def contract_in(self, n, index):
"""Remove a random input feature"""
if self.mat.shape[-2] > 1:
start = [0 for x in self.shape]
size = list(self.shape)
size[-2] = n * index
new_mat = tf.slice(self.mat, start, size)
new_mom = tf.slice(self.mom, start, size)
new_mom2 = tf.slice(self.mom2, start, size)
start[-2] = n * (index + 1)
size[-2] = self.shape[-2] - n * (index + 1)
new_mat = tf.concat(
[new_mat, tf.slice(self.mat, start, size)], self.dim - 2
)
new_mom = tf.concat(
[new_mom, tf.slice(self.mom, start, size)], self.dim - 2
)
new_mom2 = tf.concat(
[new_mom2, tf.slice(self.mom2, start, size)], self.dim - 2
)
self.mat = tf.Variable(new_mat, trainable=True)
self.mom = tf.Variable(new_mom, trainable=False)
self.mom2 = tf.Variable(new_mom2, trainable=False)
def get_state(self):
return (self.mat, self.mom, self.mom2)
def set_state(self, state):
assert not isinstance(state[0], tf.Tensor)
assert not isinstance(state[1], tf.Tensor)
assert not isinstance(state[2], tf.Tensor)
self.mat = state[0]
self.mom = state[1]
self.mom2 = state[2]
def apply_adam(self, gradient, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
"""The Adam gradient descent method"""
t = self.gradient_step.assign_add(1.0)
mom = self.mom.assign(beta1 * self.mom + (1 - beta1) * gradient)
mom2 = self.mom2.assign(beta2 * self.mom2 + (1 - beta2) * gradient * gradient)
mom_hat = mom / (1 - tf.pow(beta1, t))
mom2_hat = mom2 / (1 - tf.pow(beta2, t))
self.mat.assign_add(-alpha * mom_hat / (tf.sqrt(mom2_hat) + epsilon))
@property
def shape(self):
return self.mat.get_shape().as_list()
class DynamicDenseLayer:
"""A single dense layer with dynamic input and output size"""
def __init__(self, input_size, output_size, new_weight_std=0.1):
"""Create the layer with a given initial configuration"""
if input_size is not None:
self.w = DynamicMatrix((input_size, output_size), 0.1)
self.b = DynamicMatrix((1, output_size), 0.1)
self.dynamic = True
self.input_size = input_size
self.output_size = output_size
self.new_weight_std = new_weight_std
@classmethod
def from_state(cls, state, new_weight_std=0.1):
"""Initialize from state tuple (or list)"""
obj = cls(None, None)
obj.w = DynamicMatrix.from_state(state[0])
obj.b = DynamicMatrix.from_state(state[1])
obj.input_size = state[2]
obj.output_size = state[3]
obj.new_weight_std = 0.01
return obj
def expand_out(self):
"""Add a random output feature"""
self.w.expand_out(1, self.new_weight_std)
self.b.expand_out(1, self.new_weight_std)
self.output_size = self.output_size + 1
def contract_out(self, index):
"""Remove a random output feature"""
if self.output_size > 1:
self.w.contract_out(1, index)
self.b.contract_out(1, index)
self.output_size = self.output_size - 1
def expand_in(self):
"""Add a random input feature"""
self.w.expand_in(1, self.new_weight_std)
self.input_size = self.input_size + 1
def contract_in(self, index):
"""Remove a random input feature"""
if self.input_size > 1:
self.w.contract_in(1, index)
self.input_size = self.input_size - 1
@property
def trainable_variables(self):
"""Returns a list of trainable variables"""
return [self.w.mat, self.b.mat]
def get_state(self):
"""Returns the current state of the layer"""
return (
self.w.get_state(),
self.b.get_state(),
self.input_size,
self.output_size,
)
# the given state
def set_state(self, state):
"""Overwrite the current state of the layer with
with the given state
"""
assert not isinstance(state[0], tf.Tensor)
assert not isinstance(state[1], tf.Tensor)
self.w.set_state(state[0])
self.b.set_state(state[1])
self.input_size = state[2]
self.output_size = state[3]
def weight_count(self):
"""Return the number of weights in the layer"""
return self.input_size * self.output_size + self.output_size
def summary_string(self):
return "({}, {})".format(self.input_size, self.output_size)
def apply_adam(self, gradients, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
self.w.apply_adam(gradients[0], alpha, beta1, beta2, epsilon)
self.b.apply_adam(gradients[1], alpha, beta1, beta2, epsilon)
def __call__(self, inputs):
"""Apply the layer"""
assert self.w.shape == [self.input_size, self.output_size]
assert self.b.shape == [1, self.output_size]
return tf.matmul(inputs, self.w.mat) + self.b.mat
class DynamicConv2DLayer:
"""A convolution layer with dynamic filter size"""
def __init__(self, width, input_size, output_size, new_weight_std=0.1):
"""Create the layer with a given initial configuration"""
if input_size is not None:
self.w = DynamicMatrix((width, width, input_size, output_size), 0.1)
self.dynamic = True
self.width = width
self.input_size = input_size
self.output_size = output_size
self.new_weight_std = new_weight_std
@classmethod
def from_state(cls, state, new_weight_std=0.1):
"""Initialize from state tuple (or list)"""
obj = cls(None, None)
obj.w = DynamicMatrix.from_state(state[0])
obj.width = state[1]
obj.input_size = state[2]
obj.output_size = state[3]
obj.new_weight_std = 0.01
return obj
def expand_out(self):
"""Add a random output feature"""
self.w.expand_out(1, self.new_weight_std)
self.output_size = self.output_size + 1
def contract_out(self, n):
"""Remove a random output feature"""
if self.output_size > 1:
self.w.contract_out(1, n)
self.output_size = self.output_size - 1
def contract_in(self, n):
"""Remove a random input feature"""
if self.input_size > 1:
self.w.contract_in(1, n)
self.input_size = self.input_size - 1
def expand_in(self):
"""Add a random input feature"""
self.w.expand_in(1, self.new_weight_std)
self.input_size = self.input_size + 1
@property
def trainable_variables(self):
"""Returns a list of trainable variables"""
return [self.w.mat]
def get_state(self):
"""Returns the current state of the layer"""
return (self.w.get_state(), self.width, self.input_size, self.output_size)
# the given state
def set_state(self, state):
"""Overwrite the current state of the layer with
the given state
"""
assert not isinstance(state[0], tf.Tensor)
self.w.set_state(state[0])
self.width = state[1]
self.input_size = state[2]
self.output_size = state[3]
def weight_count(self):
"""Return the number of weights in the layer"""
return self.width * self.width * self.input_size * self.output_size
def summary_string(self):
return "({}, {}, {}, {})".format(
self.width, self.width, self.input_size, self.output_size
)
def apply_adam(self, gradients, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
self.w.apply_adam(gradients[0], alpha, beta1, beta2, epsilon)
def __call__(self, inputs):
"""Apply the layer"""
assert self.w.shape == [
self.width,
self.width,
self.input_size,
self.output_size,
]
return tf.nn.conv2d(inputs, self.w.mat, 2, "SAME")
class DynamicConv2DToDenseLayer:
"""Flattens the output of a conv2d layer and allows
adding and removing neurons correctly in between
"""
def __init__(self, pixels, features, output_size, new_weight_std=0.1):
"""Create the layer with a given initial configuration"""
if pixels is not None:
self.w = DynamicMatrix((pixels * features, output_size), 0.1)
self.b = DynamicMatrix((1, output_size), 0.1)
self.dynamic = True
self.pixels = pixels
self.features = features
self.output_size = output_size
self.new_weight_std = new_weight_std
@classmethod
def from_state(cls, state, new_weight_std=0.1):
"""Initialize from state tuple (or list)"""
obj = cls(None, None)
obj.w = DynamicMatrix.from_state(state[0])
obj.b = DynamicMatrix.from_state(state[1])
obj.features = state[2]
obj.output_size = state[3]
obj.new_weight_std = new_weight_std
return obj
def expand_out(self):
"""Add a random output feature"""
self.w.expand_out(1, self.new_weight_std)
self.b.expand_out(1, self.new_weight_std)
self.output_size = self.output_size + 1
def contract_out(self, n):
"""Remove a random output feature"""
if self.output_size > 1:
self.w.contract_out(1, n)
self.b.contract_out(1, n)
self.output_size = self.output_size - 1
def expand_in(self):
"""Add a random input feature"""
self.w.expand_in(self.pixels, self.new_weight_std)
self.features = self.features + 1
def contract_in(self, n):
"""Remove a random input feature"""
if self.features > 1:
self.w.contract_in(self.pixels, n)
self.features = self.features - 1
@property
def trainable_variables(self):
"""Returns a list of trainable variables"""
return [self.w.mat, self.b.mat]
def get_state(self):
"""Returns the current state of the layer"""
return (
self.w.get_state(),
self.b.get_state(),
self.pixels,
self.features,
self.output_size,
)
def set_state(self, state):
"""Overwrite the current state of the layer with the given state"""
assert not isinstance(state[0], tf.Tensor)
assert not isinstance(state[1], tf.Tensor)
self.w.set_state(state[0])
self.b.set_state(state[1])
self.pixels = state[2]
self.features = state[3]
self.output_size = state[4]
def weight_count(self):
"""Return the number of weights in the layer"""
return self.pixels * self.features * self.output_size + self.output_size
def summary_string(self):
return "({}, {}, {})".format(self.pixels, self.features, self.output_size)
def apply_adam(self, gradients, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
self.w.apply_adam(gradients[0], alpha, beta1, beta2, epsilon)
self.b.apply_adam(gradients[1], alpha, beta1, beta2, epsilon)
def __call__(self, inputs):
"""Apply the layer"""
assert self.w.shape == [self.pixels * self.features, self.output_size]
assert self.b.shape == [1, self.output_size]
# Move pixels to the last columns, so that it is easier to add and remove
x = tf.transpose(inputs, perm=[0, 3, 1, 2])
# Now flatten
x = tf.reshape(x, [x.shape[0], -1])
x = tf.matmul(x, self.w.mat) + self.b.mat
return x
class DynamicModel:
"""A model formed of a number of dynamical dense layers"""
def __init__(self, layers, new_weight_std=0.1, activation=tf.nn.relu):
"""Create the initial model configuration"""
# A list of layersr in this model
self.layers = layers
# Variables related to fully connected part
self.new_weight_std = new_weight_std
self.input_size = self.layers[0].input_size
self.output_size = self.layers[-1].output_size
self.activation = activation
def weight_count(self):
"""Returns the number of weights currently in the model"""
count = 0
for layer in self.layers:
if layer.dynamic:
count += layer.weight_count()
return count
def summary(self):
"""Print a summary of the layers in this model"""
num_weights = 0
for i, l in enumerate(self.layers):
if l.dynamic:
l_weights = l.weight_count()
num_weights += l_weights
print(
"Layer {}: {}, number of weights {}".format(
i, l.summary_string(), l_weights
)
)
print("Total: {} weights".format(num_weights))
def expand(self):
"""Add a feature"""
# Pick a layer
nl = (int)((len(self.layers) - 1) * np.random.rand())
l1 = self.layers[nl]
l2 = self.layers[nl + 1]
if not l1.dynamic or not l2.dynamic:
return
# Expand the number of outputs in the layer
# and the number of inputs in the next one
l1.expand_out()
l2.expand_in()
def contract(self):
"""Remove a random feature"""
# Pick a layer
nl = (int)((len(self.layers) - 1) * np.random.rand())
l1 = self.layers[nl]
l2 = self.layers[nl + 1]
if not l1.dynamic or not l2.dynamic:
return
# Choose a random feature
n = (int)(l1.output_size * np.random.rand())
# remove it from both the layer and the next one
l1.contract_out(n)
l2.contract_in(n)
def update_features(
self, data, loss_function, weight_penalty=1e-9, layer_change_rate=0.1
):
"""Stochastic update: add or remove a feature if it
decreases the loss function
"""
# Get the current loss, including the weight penalty
initial_loss = loss_function(data) + weight_penalty * self.weight_count()
# Make note of the current state
initial_state = self.get_state()
# Randomly choose wether to add or remove
if np.random.rand() > 0.5:
self.expand()
else:
self.contract()
# Calculate the loss in the new network
new_loss = loss_function(data) + weight_penalty * self.weight_count()
# and the change in the loss
dloss = new_loss - initial_loss
# If the loss increases, return to the original state
if dloss > 0:
self.set_state(initial_state)
accepted = False
else:
accepted = True
# self.summary()
return accepted
def trainable_variables(self):
"""Returns a list of trainable variables"""
return [var for layer in self.layers for var in layer.trainable_variables]
def get_state(self):
"""Returns the current state of the model"""
state = []
for layer in self.layers:
if layer.dynamic:
state.append(layer.get_state())
return state
def set_state(self, state):
"""Overwrite the current state"""
i = 0
for layer in self.layers:
if layer.dynamic:
layer.set_state(state[i])
i = i + 1
def apply_adam(self, gradients, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
"""Update the weights using the ADAM update method"""
var_index = 0
for layer in self.layers:
n_vars = len(layer.trainable_variables)
layer.apply_adam(
gradients[var_index : var_index + n_vars], alpha, beta1, beta2, epsilon
)
var_index += n_vars
def __call__(self, inputs):
"""Apply the model"""
x = inputs
for layer in self.layers[:-1]:
x = layer(x)
x = self.activation(x)
x = self.layers[-1](x)
return x
# -------------------------------
# Add or remove dense layers
# -------------------------------
def add_layer(self):
"""Add a dense layer.
The new layer starts close to an identity operation.
"""
# Pick a layer
nl = (int)((len(self.layers) - 1) * np.random.rand())
l1 = self.layers[nl]
# Build an intermediate layer. Start close to one
stdiv = self.new_weight_std / (l1.output_size)
new_w = tf.Variable(
tf.eye(l1.output_size)
+ tf.random.normal((l1.output_size, l1.output_size), stddev=stdiv),
trainable=True,
)
new_b = tf.Variable(
tf.random.normal((l1.output_size,), stddev=stdiv), trainable=True
)
new_layer = DynamicDenseLayer.from_state(
(new_w, new_b, l1.output_size, l1.output_size)
)
self.layers.insert(nl + 1, new_layer)
def remove_layer(self):
"""Remove a layer.
Remove the activation function between two layers and merge
the now linear operations.
"""
if len(self.layers) > 2:
# Pick a layer
nl = (int)((len(self.layers) - 1) * np.random.rand())
# Just drop the activation between the layer and the next,
# reducing them to a single linear operation
l1 = self.layers[nl]
l2 = self.layers[nl + 1]
# Pull the states of the two layers and construct new variables
st1 = l1.get_state()
st2 = l2.get_state()
new_w = tf.Variable(tf.matmul(st1[0], st2[0]), trainable=True)
new_b = tf.Variable(
tf.matmul(tf.expand_dims(st1[1], 0), st2[0])[0, :] + st2[1],
trainable=True,
)
assert new_w.shape == (l1.input_size, l2.output_size)
# Build the new layer
state = [new_w, new_b, l1.input_size, l2.output_size]
new_layer = DynamicDenseLayer.from_state(state)
del self.layers[nl]
del self.layers[nl]
self.layers.insert(nl, new_layer)
| python |
#Import Libraries
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import median_absolute_error
#----------------------------------------------------
#Applying Lasso Regression Model
'''
#sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=
# False, copy_X=True, max_iter=1000, tol=0.0001,
# warm_start=False, positive=False, random_state=None,selection='cyclic')
'''
LassoRegressionModel = Lasso(alpha=1.0,random_state=33,normalize=False)
LassoRegressionModel.fit(X_train, y_train)
#Calculating Details
print('Lasso Regression Train Score is : ' , LassoRegressionModel.score(X_train, y_train))
print('Lasso Regression Test Score is : ' , LassoRegressionModel.score(X_test, y_test))
print('Lasso Regression Coef is : ' , LassoRegressionModel.coef_)
print('Lasso Regression intercept is : ' , LassoRegressionModel.intercept_)
print('----------------------------------------------------')
#Calculating Prediction
y_pred = LassoRegressionModel.predict(X_test)
print('Predicted Value for Lasso Regression is : ' , y_pred[:10])
#----------------------------------------------------
#Calculating Mean Absolute Error
MAEValue = mean_absolute_error(y_test, y_pred, multioutput='uniform_average') # it can be raw_values
print('Mean Absolute Error Value is : ', MAEValue)
#----------------------------------------------------
#Calculating Mean Squared Error
MSEValue = mean_squared_error(y_test, y_pred, multioutput='uniform_average') # it can be raw_values
print('Mean Squared Error Value is : ', MSEValue)
#----------------------------------------------------
#Calculating Median Squared Error
MdSEValue = median_absolute_error(y_test, y_pred)
print('Median Squared Error Value is : ', MdSEValue ) | python |
from django.urls import path
from . import views
urlpatterns = [
path('', views.home, name='home'),
path('search', views.tweets_search, name='tweets_search'),
path('articles', views.articles, name='articles'),
path('portals', views.portals, name='portals'),
path('graphics', views.graphics, name='graphics'),
] | python |
import torch
from torch import Tensor
from torch import nn
from typing import Union, Tuple, List, Iterable, Dict
import os
import json
class LayerNorm(nn.Module):
def __init__(self, dimension: int):
super(LayerNorm, self).__init__()
self.dimension = dimension
self.norm = nn.LayerNorm(dimension)
def forward(self, features: Dict[str, Tensor]):
features['sentence_embedding'] = self.norm(features['sentence_embedding'])
return features
def get_sentence_embedding_dimension(self):
return self.dimension
def save(self, output_path):
with open(os.path.join(output_path, 'config.json'), 'w') as fOut:
json.dump({'dimension': self.dimension}, fOut, indent=2)
torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin'))
@staticmethod
def load(input_path):
with open(os.path.join(input_path, 'config.json')) as fIn:
config = json.load(fIn)
model = LayerNorm(**config)
model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu')))
return model | python |
hp = __import__('heap');
#place heap.py (max_heap.py - name changed) in same directory
class HeapSort(object):
def __init__(self, arr):
super(HeapSort, self).__init__()
self.arr = arr
def printH(self):
print(self.arr)
def heapSort(self):
heap = hp.Heap()
heap.createHeap(*self.arr)
i = 0
while(heap.size > 0):
self.arr[i] = heap.delete()
i += 1
arr = [4, 13, 6, 2, 87, 21, 65]
heapSort = HeapSort(arr)
heapSort.printH()
heapSort.heapSort()
heapSort.printH() | python |
from setuptools import setup
with open("README.md", "r") as fh:
long_description = fh.read()
requirements = [
'DAWG-Python==0.7.2',
'docopt==0.6.2',
'psycopg2==2.8.6',
'pymorphy2==0.9.1',
'pymorphy2-dicts-ru==2.4.417127.4579844'
]
setup(
name='search_engine_rishatsadykov',
version='1.1',
packages=['lemmatization'],
url='https://github.com/rishat11/information-retrieval',
classifiers=[
'Programming Language :: Python :: 3.8',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
],
author='Rishat Sadykov',
author_email='[email protected]',
description='Calculates TF-IDF for data set',
long_description=long_description,
long_description_content_type='text/markdown',
install_requires=requirements,
python_requires='>=3.6',
)
| python |
from collections import deque
from random import randint
import settings
from datatypes import Vector, Position, Draw
class Player:
HEAD_CHAR = "%"
BODY_CHAR = "@"
TAIL_CHAR = "*"
DEAD_HEAD_CHAR = "x"
DEAD_BODY_CHAR = "@"
DEAD_TAIL_CHAR = "+"
UP = Vector(0, -1)
DOWN = Vector(0, 1)
LEFT = Vector(-1, 0)
RIGHT = Vector(1, 0)
DIRECTIONS = [UP, DOWN, LEFT, RIGHT]
keymap = {37: LEFT,
38: UP,
39: RIGHT,
40: DOWN
}
def __init__(self, player_id, name, ws):
self._id = player_id
self.name = name
self.ws = ws
self.alive = False
self.direction = None
def new_snake(self, color):
self.color = color
self.grow = 0
self.score = 0
self.alive = True
self.snake = deque()
def render_new_snake(self):
# try to spawn snake at some distance from world's borders
distance = settings.INIT_LENGHT + 2
x = randint(distance, settings.FIELD_SIZE_X - distance)
y = randint(distance, settings.FIELD_SIZE_Y - distance)
self.direction = self.DIRECTIONS[randint(0, 3)]
# create snake from tail to head
render = []
pos = Position(x, y)
for i in range(0, settings.INIT_LENGHT):
self.snake.appendleft(pos)
if i == 0:
char = self.TAIL_CHAR
elif i == settings.INIT_LENGHT - 1:
char = self.HEAD_CHAR
else:
char = self.BODY_CHAR
render.append(Draw(pos.x, pos.y, char, self.color))
pos = self.next_position()
return render
def next_position(self):
# next position of the snake's head
return Position(self.snake[0].x + self.direction.xdir,
self.snake[0].y + self.direction.ydir)
def render_move(self):
# moving snake to the next position
render = []
new_head = self.next_position()
self.snake.appendleft(new_head)
# draw head in the next position
render.append(Draw(new_head.x, new_head.y,
self.HEAD_CHAR, self.color))
# draw body in the old place of head
render.append(Draw(self.snake[1].x, self.snake[1].y,
self.BODY_CHAR, self.color))
# if we grow this turn, the tail remains in place
if self.grow > 0:
self.grow -= 1
else:
# otherwise the tail moves
old_tail = self.snake.pop()
render.append(Draw(old_tail.x, old_tail.y, " ", 0))
new_tail = self.snake[-1]
render.append(Draw(new_tail.x, new_tail.y,
self.TAIL_CHAR, self.color))
return render
def render_game_over(self):
render = []
# dead snake
for i, pos in enumerate(self.snake):
if i == 0:
render.append(Draw(pos.x, pos.y, self.DEAD_HEAD_CHAR, 0))
elif i == len(self.snake) - 1:
render.append(Draw(pos.x, pos.y, self.DEAD_TAIL_CHAR, 0))
else:
render.append(Draw(pos.x, pos.y, self.DEAD_BODY_CHAR, 0))
return render
def keypress(self, code):
if not self.alive:
return
direction = self.keymap.get(code)
if direction:
# do not move in the opposite direction
if not (self.direction and
direction.xdir == -self.direction.xdir and
direction.ydir == -self.direction.ydir):
self.direction = direction
| python |
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
import pytest
from spack.main import SpackCommand, SpackCommandError
info = SpackCommand('env')
@pytest.mark.parametrize('pkg', [
('zlib',),
('zlib', '--')
])
@pytest.mark.usefixtures('config')
def test_it_just_runs(pkg):
info(*pkg)
@pytest.mark.parametrize('pkg,error_cls', [
('zlib libszip', SpackCommandError),
('', IndexError)
])
@pytest.mark.usefixtures('config')
def test_it_just_fails(pkg, error_cls):
with pytest.raises(error_cls):
info(pkg)
| python |
"""django_maps URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.10/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.conf.urls import url, include
2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))
"""
from django.conf.urls import url, include
from django.contrib import admin
from maps import views
from maps import api
urlpatterns = [
url(r'^admin/', admin.site.urls),
url(r'^$',views.landing),
url(r'^auth/register', views.registration),
url(r'^auth/', include("registration.backends.simple.urls")),
#This will be entry point to SPA
url(r'^users/(?P<userName>[\w\-]+)/adventures/$',views.profileViewer),
#Editor SPA
url(r'^editor/$', views.editorViewer),
#API URLs
url(r'^api/rest/userInfo/(?P<userId>\d+)$', api.userInfo), #get, post
url(r'^api/rest/adventures$', api.adventures), #post
url(r'^api/rest/advsOverview/(?P<userId>\d+)$', api.advsOverview), #get
url(r'^api/rest/adventures/(?P<advId>\d+)$', api.adventures), #get, delete
url(r'^api/rest/advMaps/(?P<advId>\d+)$', api.advMaps),
url(r'^api/rest/maps/(?P<mapId>\d+)$', api.maps),
url(r'^api/rest/mapSegment$', api.mapSegment), #post
url(r'^api/rest/profilePhoto$', api.profilePhoto), #post only
]
| python |
"""
Just a process to a centralized basic create user from password and username
"""
from flask import request, redirect, render_template, session, flash, abort, jsonify, Response, flash
import random
import json
from flask_babel import _
from datetime import datetime, timedelta
import uuid
from urllib.parse import urlencode
import didkit
from datetime import timedelta, datetime
import logging
logging.basicConfig(level=logging.INFO)
from factory import createidentity, createcompany
from components import sms, directory, ns, company, privatekey
from signaturesuite import vc_signature
from protocol import Document
#PRESENTATION_DELAY = timedelta(seconds= 10*60)
DID_WEB = 'did:web:talao.cp'
DID_ETHR = 'did:ethr:0xee09654eedaa79429f8d216fa51a129db0f72250'
DID_TZ = 'did:tz:tz2NQkPq3FFA3zGAyG8kLcWatGbeXpHMu7yk'
DID_KEY = 'did:key:zQ3shWBnQgxUBuQB2WGd8iD22eh7nWC4PTjjTjEgYyoC3tjHk'
DID = DID_TZ
did_selected = 'did:tz:tz2NQkPq3FFA3zGAyG8kLcWatGbeXpHMu7yk'
CREDENTIAL_TOPIC = ['experience', 'training', 'recommendation', 'work', 'salary', 'vacation', 'internship', 'relocation', 'end_of_work', 'hiring']
def init_app(app, red, mode) :
app.add_url_rule('/register/identity', view_func= register_identity, methods = ['GET', 'POST'], defaults={'mode': mode})
#app.add_url_rule('/register', view_func=register_user, methods = ['GET', 'POST'], defaults={'mode': mode}) # idem below
app.add_url_rule('/register', view_func=register_qrcode, methods = ['GET', 'POST'], defaults={'mode': mode}) # idem below
app.add_url_rule('/register/user', view_func=register_user, methods = ['GET', 'POST'], defaults={'mode': mode})
app.add_url_rule('/register/company', view_func=register_company, methods = ['GET', 'POST'], defaults={'mode': mode})
app.add_url_rule('/register/password', view_func=register_password, methods = [ 'GET', 'POST'], defaults={'mode': mode})
app.add_url_rule('/register/qrcode', view_func=register_qrcode, methods = [ 'GET', 'POST'], defaults={'mode': mode})
app.add_url_rule('/register/wallet/user', view_func=register_wallet_user, methods = [ 'GET', 'POST'], defaults={'mode': mode, 'red' : red})
app.add_url_rule('/register/code', view_func=register_code, methods = ['GET', 'POST'], defaults={'mode': mode})
app.add_url_rule('/register/post_code', view_func=register_post_code, methods = ['POST', 'GET'], defaults={'mode': mode})
app.add_url_rule('/register/wallet_endpoint/<id>', view_func=register_wallet_endpoint, methods = ['POST', 'GET'], defaults={'mode': mode, 'red' : red})
app.add_url_rule('/register/stream', view_func=register_stream, defaults={'red' : red})
app.add_url_rule('/register/error', view_func=register_error)
app.add_url_rule('/register/create_for_wallet', view_func=register_create_for_wallet, methods = ['POST', 'GET'], defaults={'mode': mode})
return
def register_company(mode) :
""" create company
# route /register/company
"""
if request.method == 'GET' :
return render_template('register/company_register.html')
if request.method == 'POST' :
credentials_supported = list()
for topic in CREDENTIAL_TOPIC :
if request.form.get(topic) :
credentials_supported.append(request.form[topic])
username = request.form['company_name'].lower()
siren = request.form['siren']
if ns.username_exist(username, mode) :
username = username + str(random.randint(1, 100))
if request.form['promo'] in ["TEST"] :
promo = 50
else :
promo = 10
workspace_contract = createcompany.create_company(request.form['contact_email'],username, None, mode, siren=request.form['siren'])[2]
if workspace_contract :
directory.add_user(mode, request.form['company_name'], username, siren)
filename = mode.db_path + 'company.json'
personal = json.load(open(filename, 'r'))
personal['contact_name']['claim_value'] = request.form['contact_name']
personal['name']['claim_value'] = request.form['company_name']
personal['contact_email']['claim_value'] = request.form['contact_email']
personal['contact_phone']['claim_value'] = request.form['contact_phone']
personal['website']['claim_value'] = request.form['website']
personal['siren']['claim_value'] = request.form['siren']
personal['postal_address']['claim_value'] = request.form['postal_address']
personal['credentials_supported'] = credentials_supported
personal['picture'] = 'QmXKeAgNZhLibNjYJFHCiXFvGhqsqNV2sJCggzGxnxyhJ5'
personal['signature'] = 'QmPZxzrmh29sNcgrT7hyrrP6BWyahLwYUvzbuf5vUFxw91'
personal['credential_counter'] = 0
personal['credential_acquired'] = promo
ns.update_personal(workspace_contract, json.dumps(personal, ensure_ascii=False), mode)
# init first campaign
new_campaign = company.Campaign(session['username'], mode)
data = {'description' : request.form['description'],
'nb_subject' : 0,
'startDate' : '',
'endDate' : '',
'credentials_supported' : credentials_supported}
campaign_code = "camp" + str(random.randint(100, 999))
new_campaign.add(campaign_code , json.dumps(data, ensure_ascii=False))
return render_template('register/company_end_of_registration.html', campaign_code=campaign_code)
else :
flash(_('Company registration failed'), 'danger')
return redirect(mode.server + 'register/company')
def register_user(mode) :
if request.method == 'GET' :
#session.clear()
if session.get('code_sent') :
del session['code_sent']
session['is_active'] = True
return render_template("/register/user_register.html")
if request.method == 'POST' :
session['email'] = request.form['email']
session['firstname'] = request.form['firstname']
session['lastname'] = request.form['lastname']
session['username'] = ns.build_username(session['firstname'], session['lastname'], mode)
session['phone'] = request.form['phone']
session['search_directory'] = request.form.get('CGU')
message = ""
if not request.form.get('CGU') :
message = _('Accept the service conditions to move next step.')
phone = session['phone']
if not sms.check_phone(session['phone'], mode) :
message = _('Incorrect phone number.')
phone = ''
if message :
flash(message, 'warning')
return render_template("/register/user_register.html",
firstname=session['firstname'],
lastname=session['lastname'],
email=session['email'],
phone=phone)
return redirect (mode.server + 'register/identity')
def register_identity(mode) :
session['did'] = 'tz'
return redirect (mode.server + 'register/password')
# route /register/password/
def register_password(mode):
if not session.get('is_active') :
flash(_('Session expired'), 'warning')
return redirect(mode.server + 'register')
if request.method == 'GET' :
return render_template("/register/register_password.html")
if request.method == 'POST' :
session['password'] = request.form['password']
if not session.get('code_sent') :
session['code'] = str(random.randint(100000, 999999))
session['code_sent'] = True
session['code_delay'] = datetime.now() + timedelta(seconds= 180)
session['try_number'] = 0
if sms.send_code(session['phone'], session['code'], mode) :
logging.info('secret code sent = %s', session['code'])
else :
logging.error('sms connexion probleme register_password')
flash(_('SMS failed.'), 'warning')
return render_template("user_register.html" )
return render_template("/register/register_code.html")
# route /register/code/
def register_code(mode) :
if not session.get('is_active') or 'try_number' not in session :
flash(_('Session expired'), 'warning')
return redirect(mode.server + 'register')
session['try_number'] +=1
logging.info('code received = %s', request.form.get('mycode'))
if request.form['mycode'] == session['code'] and datetime.now() < session['code_delay'] and session['try_number'] < 4 :
if not createidentity.create_user(session['username'],
session['email'],
mode,
did=session['did'],
firstname=session['firstname'],
lastname=session['lastname'],
phone=session['phone'],
password=session['password'])[2] :
logging.error('createidentity failed')
flash(_('Transaction failed.'), 'warning')
return render_template("/register/user_register.html" )
directory.add_user(mode, session['username'], session['firstname'] + ' ' + session['lastname'], None)
# success exit
return render_template("/register/end_of_registration.html", username=session['username'])
elif session['try_number'] == 3 :
session['is_active'] = False
flash(_("Code is incorrect. Too many trials."), 'warning')
message = _("Registration failed")
return render_template("/register/registration_error.html")
elif datetime.now() > session['code_delay'] :
session['is_active'] = False
flash(_('Code expired'), 'warning')
return render_template("/register/registration_error.html")
else :
if session['try_number'] == 1 :
message = _('Code is incorrect, 2 trials left.')
if session['try_number'] == 2 :
message = _('Code is incorrect, last trial.')
flash(message, 'warning')
return render_template("/register/register_code.html")
# route register/post_code
def register_post_code(mode) :
if session.get('wallet') == 'ok' :
return redirect (mode.server + 'login')
try :
username = session['username']
session.clear()
return redirect (mode.server + 'login?username=' + username)
except :
return redirect (mode.server + 'login')
#########################################Register with wallet #####################################
def register_qrcode(mode) :
if request.method == 'GET' :
id = str(uuid.uuid1())
url = mode.server + 'register/wallet_endpoint/' + id + '?' + urlencode({"issuer" : DID})
deeplink = mode.deeplink + 'app/download?' + urlencode({'uri' : url})
return render_template("/register/register_wallet_qrcode.html",
url=url,
deeplink=deeplink,
id=id)
def register_wallet_endpoint(id,red, mode):
if request.method == 'GET':
challenge = str(uuid.uuid1())
did_auth_request = {
"type": "VerifiablePresentationRequest",
"query": [
{
"type": "QueryByExample",
"credentialQuery": []
}
],
"challenge": challenge,
"domain" : mode.server}
return jsonify(did_auth_request)
if request.method == 'POST':
presentation = json.loads(request.form['presentation'])
logging.info('verify presentation = ' + didkit.verify_presentation(json.dumps(presentation), '{}'))
"""
if json.loads(didkit.verify_presentation(request.form['presentation'], '{}'))['errors'] :
logging.warning('signature failed')
data = json.dumps({"id" : id, "data" : "signature_failed."})
red.publish('register_wallet', data)
return jsonify("Signature verification failed"), 400
"""
try :
email = presentation['verifiableCredential']['credentialSubject']['email']
except :
data = json.dumps({ "id" : id, "data" : 'wrong_vc'})
red.publish('register_wallet', data)
return jsonify('wrong_vc'), 400
if ns.get_workspace_contract_from_did(presentation['holder'], mode) :
data = json.dumps({ "id" : id, "data" : 'already_registered'})
red.publish('register_wallet', data)
return jsonify('User already_registered'), 400
try :
givenName = presentation['verifiableCredential']['credentialSubject']['givenName']
familyName = presentation['verifiableCredential']['credentialSubject']['familyName']
session_data = json.dumps({
"id" : id,
"email" : email,
"did" : presentation['holder'],
"givenName" : givenName,
"familyName" : familyName}
)
except :
session_data = json.dumps({"id" : id, "email" : email , "did" : presentation['holder']})
red.set(id, session_data )
data = json.dumps({ "id" : id, "data" : 'ok'})
red.publish('register_wallet', data)
return jsonify('ok')
def register_wallet_user(red, mode) :
if request.method == 'GET' :
id = request.args['id']
session_data = json.loads(red.get(id).decode())
red.delete(id)
try :
session['firstname'] = session_data['givenName']
session['lastname'] = session_data['familyName']
session['display'] = False
except :
session['display'] = True
session['did'] = session_data['did']
session['email'] = session_data['email']
session['is_active'] = True
return render_template("/register/register_wallet_user.html")
if request.method == 'POST' :
if not session.get('firstname') or not session.get('lastname') :
session['firstname'] = request.form['firstname']
session['lastname'] = request.form['lastname']
session['username'] = ns.build_username(session['firstname'], session['lastname'], mode)
session['search_directory'] = request.form.get('CGU')
message = ""
if not request.form.get('CGU') :
message = _('Accept the service conditions to move next step.')
if message :
flash(message, 'warning')
return render_template("/register/register_wallet_user.html",
firstname=session['firstname'],
lastname=session['lastname'],
email=session['email'])
return redirect (mode.server + 'register/create_for_wallet')
# event push to browser
def register_stream(red):
def event_stream(red):
pubsub = red.pubsub()
pubsub.subscribe('register_wallet')
for message in pubsub.listen():
if message['type']=='message':
yield 'data: %s\n\n' % message['data'].decode()
headers = { "Content-Type" : "text/event-stream",
"Cache-Control" : "no-cache",
"X-Accel-Buffering" : "no"}
return Response(event_stream(red), headers=headers)
def register_create_for_wallet(mode) :
address, private_key, workspace_contract = createidentity.create_user(session['username'],
session['email'],
mode,
did=session['did'],
firstname=session['firstname'],
lastname=session['lastname'],
password='identity')
if not workspace_contract :
logging.error('createidentity failed')
flash(_('Transaction failed.'), 'warning')
return render_template("/register/user_register.html" )
directory.add_user(mode, session['username'], session['firstname'] + ' ' + session['lastname'], None)
# create an Identity Pass
create_identity_pass(session['did'], session['firstname'], session['lastname'], session['email'], workspace_contract, mode)
# success exit
session['wallet'] = "ok"
return render_template("/register/end_of_registration.html", username=session['username'], wallet="ok")
def register_error() :
if request.args['message'] == 'already_registered' :
message = _("This identity is already registered.")
elif request.args['message'] == 'signature_failed' :
message = _("This credential was not signed correctly.")
elif request.args['message'] == 'wrong_vc' :
message = _("This credential is not accepted.")
else :
message ='Unknown'
return render_template("/register/registration_error.html", message=message)
def create_identity_pass(did, firstname, lastname, email, workspace_contract, mode) :
# load JSON-LD model for registration_IdentityPass
unsigned_credential = json.load(open('./verifiable_credentials/registration_IdentityPass.jsonld', 'r'))
# update credential with form data
unsigned_credential["id"] = "urn:uuid:" + str(uuid.uuid1())
unsigned_credential["credentialSubject"]["id"] = did
unsigned_credential["credentialSubject"]['recipient']["email"] = email
unsigned_credential["credentialSubject"]['recipient']["familyName"] = firstname
unsigned_credential["credentialSubject"]['recipient']["givenName"] = lastname
unsigned_credential["issuanceDate"] = datetime.utcnow().replace(microsecond=0).isoformat() + "Z"
unsigned_credential['issuer'] = did_selected
PVK = privatekey.get_key(mode.owner_talao, 'private_key', mode)
signed_credential = vc_signature.sign(unsigned_credential, PVK, did_selected)
if not signed_credential :
flash(_('Operation failed.'), 'danger')
logging.error('credential signature failed')
return
# upload credential to repository with company key signature
my_certificate = Document('certificate')
if not my_certificate.relay_add(workspace_contract ,json.loads(signed_credential), mode, privacy='public')[0] :
logging.error('Identity pass to repository failed')
return False
return True
| python |
import numpy as np
import pandas as pd
import os
import sys
"""
Storey Q-Values - https://github.com/StoreyLab/qvalue
--------------------
Python Wrapper
Author: Francois Aguet
https://github.com/broadinstitute/tensorqtl/blob/master/tensorqtl/rfunc.py
"""
def qvalue(p, lambda_qvalue=None):
"""Wrapper for qvalue::qvalue"""
import rpy2
from rpy2.robjects.packages import importr
from collections import Iterable
qvalue = importr("qvalue")
rp = rpy2.robjects.vectors.FloatVector(p)
if lambda_qvalue is None:
q = qvalue.qvalue(rp)
else:
if not isinstance(lambda_qvalue, Iterable):
lambda_qvalue = [lambda_qvalue]
rlambda = rpy2.robjects.vectors.FloatVector(lambda_qvalue)
q = qvalue.qvalue(rp, **{'lambda':rlambda})
qval = np.array(q.rx2('qvalues'))
pi0 = np.array(q.rx2('pi0'))[0]
return qval, pi0
def t_test(mat: pd.DataFrame, group_s: pd.Series, equal_var: bool = False) -> pd.DataFrame:
"""
t-test
---------------------
Args:
* mat: pd.DataFrame (genes x samples)
* group_s: series of groupings
* equal_var: wald-ttest (False)
"""
from scipy import stats
from statsmodels.stats.multitest import multipletests
mat = mat[group_s.index]
def _collapser(x, index, columns, name):
_df = pd.DataFrame(x, index=index, columns=columns).reset_index()
_id = _df.columns[0]
return pd.melt(
pd.DataFrame(x, index=index, columns=columns).reset_index(),
id_vars=_id,
).set_index(_id).rename(columns={'variable':group_s.name,'value':name})
groups = np.array(group_s)
X = mat.values
n_groups = np.unique(groups).shape[0]
n_genes = X.shape[0]
# Init np.arrays
t_stat = np.zeros((n_genes, n_groups))
pval = np.zeros((n_genes, n_groups))
pval_adj = np.zeros((n_genes, n_groups))
qval = np.zeros((n_genes, n_groups))
x_in = np.zeros((n_genes, n_groups))
x_out = np.zeros((n_genes, n_groups))
for idx,group in enumerate(np.unique(groups)):
mask = groups==group
if sum(mask) > 1:
X_in = X[:,mask]
X_out = X[:,~mask]
t_stat[:,idx], pval[:,idx] = stats.ttest_ind(X_in, X_out, axis=1, equal_var=equal_var)
_,pval_adj[:,idx],_,_ = multipletests(
pval[:,idx],
alpha=0.05,
method='fdr_bh',
is_sorted=False,
returnsorted=False
)
qval[:,idx],_ = qvalue(pval[:,idx])
x_in[:,idx] = np.mean(X_in,1)
x_out[:,idx] = np.mean(X_out,1)
# Collapse to dataframe
de_df = pd.concat([
_collapser(x_in, mat.index, np.unique(groups), 'x_in'),
_collapser(x_out, mat.index, np.unique(groups), 'x_out')['x_out'],
_collapser(t_stat, mat.index, np.unique(groups), 't')['t'],
_collapser(pval, mat.index, np.unique(groups), 'pval')['pval'],
_collapser(pval_adj, mat.index, np.unique(groups), 'pval_adj')['pval_adj'],
_collapser(qval, mat.index, np.unique(groups), 'qval')['qval']
],1)
# Fold-change
de_df['diff'] = de_df['x_in'] - de_df['x_out']
# Signed FC * -log10(qval)
de_df['gsea_rank'] = de_df['diff'] * -np.log10(de_df['pval_adj'])
return de_df
def mannwhitneyu(mat: pd.DataFrame, group_s: pd.Series) -> pd.DataFrame:
"""
mannwhitneyu
---------------------
Args:
* mat: pd.DataFrame (genes x samples)
* group_s: series of groupings
"""
from tqdm import tqdm
from scipy import stats
from statsmodels.stats.multitest import multipletests
from sys import stdout
mat = mat[group_s.index]
def _collapser(x, index, columns, name):
_df = pd.DataFrame(x, index=index, columns=columns).reset_index()
_id = _df.columns[0]
return pd.melt(
pd.DataFrame(x, index=index, columns=columns).reset_index(),
id_vars=_id,
).set_index(_id).rename(columns={'variable':group_s.name,'value':name})
groups = np.array(group_s)
X = mat.values
n_groups = np.unique(groups).shape[0]
n_genes = X.shape[0]
# Init np.arrays
u_stat = np.zeros((n_genes, n_groups))
pval = np.zeros((n_genes, n_groups))
pval_adj = np.zeros((n_genes, n_groups))
qval = np.zeros((n_genes, n_groups))
x_in = np.zeros((n_genes, n_groups))
x_out = np.zeros((n_genes, n_groups))
for idx,group in enumerate(np.unique(groups)):
stdout.write("\r{} of {}".format(idx+1, n_groups))
mask = groups==group
if sum(mask) > 1:
X_in = X[:,mask]
X_out = X[:,~mask]
for gn in range(X_in.shape[0]):
#u_stat[gn,idx], pval[gn,idx] = stats.mannwhitneyu(X_in[gn], X_out[gn])
u_stat[gn,idx], pval[gn,idx] = stats.mannwhitneyu(X_in[gn], X_out[gn], alternative='two-sided')
_,pval_adj[:,idx],_,_ = multipletests(
pval[:,idx],
alpha=0.05,
method='fdr_bh',
is_sorted=False,
returnsorted=False
)
try:
qval[:,idx],_ = qvalue(fgsea_df['pval'].values)
except:
try:
qval[:,idx],_ = qvalue(fgsea_df['pval'].values, lambda_qvalue=0.5)
except:
qval[:,idx] = None
x_in[:,idx] = np.mean(X_in,1)
x_out[:,idx] = np.mean(X_out,1)
# Collapse to dataframe
de_df = pd.concat([
_collapser(x_in, mat.index, np.unique(groups), 'x_in'),
_collapser(x_out, mat.index, np.unique(groups), 'x_out')['x_out'],
_collapser(u_stat, mat.index, np.unique(groups), 'u')['u'],
_collapser(pval, mat.index, np.unique(groups), 'pval')['pval'],
_collapser(pval_adj, mat.index, np.unique(groups), 'pval_adj')['pval_adj'],
_collapser(qval, mat.index, np.unique(groups), 'qval')['qval']
],1)
# Fold-change
de_df['diff'] = de_df['x_in'] - de_df['x_out']
# Signed FC * -log10(qval)
de_df['gsea_rank'] = de_df['diff'] * -np.log10(de_df['pval_adj'])
return de_df
| python |
#-*- coding: utf-8 -*-
import json
import socket
import hashlib
import base64
import traceback
from threading import Thread, Event
from Queue import Queue, Empty
from defs import *
from protocol import parse_frame, make_frame
from utils import r_select
class _BaseWsSock(object):
def _handshake(self, environ, start_response):
connection = environ.get('HTTP_CONNECTION', '') or ''
connection = connection.lower().split(',')
connection = [c.strip() for c in connection if c.strip()]
upgrade = environ.get('HTTP_UPGRADE', '')
if 'upgrade' not in connection:
return False
elif upgrade.lower() != 'websocket':
return False
key = environ.get('HTTP_SEC_WEBSOCKET_KEY', '')
if not key:
return False
protocol = environ.get('HTTP_SEC_WEBSOCKET_PROTOCOL', '')
version = environ.get('HTTP_SEC_WEBSOCKET_VERSION', '')
# ---
key_hash = '%s%s' % (key, ws_uid)
key_hash = base64.b64encode(hashlib.sha1(key_hash).digest())
# ---
headers = [('upgrade', 'websocket'),
('connection', 'upgrade'),
('sec-websocket-accept', key_hash),
('x-handshake-by', '_BaseWsSock'),
# ('sec-websocket-protocol', 'chat'),
]
start_response('101 Switching protocols', headers)
return True
def html(self, environ, start_response):
start_response('400 this is a websocket server.', {})
yield 'BAD REQUEST: this is a websocket server.'
class WsSocket(_BaseWsSock):
def __init__(self, environ, handler, values):
self.environ = environ
self.handler = handler
self.values = values
# print '---------------------'
# for k in self.environ:
# print k, type(self.environ[k])
f = self.environ.get('wsgi.input', None)
# print dir(f)
# print type(f)
# print f.readable.__doc__
# print f.readable()
self.f = f
# self.evt_msg = Event()
self.q_frame = Queue()
self.q_recv = Queue()
self.evt_open = Event()
self.evt_close = Event()
def handshake(self, environ, start_response):
return super(WsSocket, self)._handshake(environ, start_response)
def _frame(self, fin, op, payload, mask=False):
return make_frame(fin, op, payload, mask=mask)
def _nextframe(self, interval=0.50):
while not self.evt_close.is_set():
try:
frame = self.q_frame.get(True, interval)
if frame:
yield frame
except Empty:
yield None
# def _sending_iter(self):
# for frame in self._nextframe():
# if frame:
# yield frame
def _recv(self, timeout=5.0):
if self.evt_close.is_set() or not self.f:
raise WsError(u'websocket closed.')
# print '----------- _recv ------------'
# print self.f
# print type(self.f)
# print dir(self.f)
t0, f = time.time(), None
while not self.evt_close.is_set():
if hasattr(self.f, 'readable'):
# r = [self.f] if self.f.readable() else []
# if not r:
# time.sleep(timeout)
r = [self.f]
else:
r = r_select([self.f], timeout=timeout)
if not r:
time.sleep(0.02)
if time.time() - timeout > t0:
raise WsTimeout()
else:
f = r[0]
break
try:
fin, op, payload = parse_frame(f)
if op == OP_CLOSE:
self.close()
elif op == OP_PING:
pong = self._frame(True, OP_PONG, '')
self.q_frame.put(pong)
return fin, op, payload
except (IOError, AttributeError, socket.error):
raise
except WsClosedByRemote:
raise
def _recv_to_q(self, timeout=0.02):
try:
fin, op, data = self._recv(timeout=timeout)
if data:
self.q_recv.put((fin, op, data))
except WsTimeout:
pass
except (WsIOError, WsClosedByRemote):
self.close()
def recv(self, timeout=5.0, allow_fragments=True):
'''public recv(timeout=5.0)'''
if self.evt_close.is_set():
raise WsError(u'websocket closed.')
t0 = time.time()
_op, _buff = None, None
while t0 + timeout >= time.time():
try:
frame = self.q_recv.get(True, 0.05)
if frame:
if allow_fragments:
return frame
else:
fin, op, msg = frame
if fin and not _buff:
return frame
elif not _buff:
_op = op
_buff = StringIO()
_buff.write(msg)
if fin:
_buff.write(msg)
return fin, _op, _buff.getvalue()
except Empty:
pass
def send_json(self, v, fin=True, op=OP_TEXT, mask=False):
if isinstance(v, unicode) or isinstance(v, str):
return self.send(v)
else:
return self.send(json.dumps(v))
def send(self, data, fin=True, op=OP_TEXT, mask=False):
'''public send(data)'''
if not self.evt_close.is_set():
size = len(data)
sub_f_size = MAX_FRAME_SIZE
if fin and (size > sub_f_size):
cur = 0
while True:
part = data[cur: cur + sub_f_size]
if not part:
break
_fin = 0
if cur + len(part) >= size:
_fin = 1
_op = op
if cur > 0:
_op = 0
frame = self._frame(_fin, _op, part, mask=mask)
self.q_frame.put(frame)
cur += len(part)
else:
frame = self._frame(1 if fin else 0, op, data, mask=mask)
self.q_frame.put(frame)
else:
raise WsError(u'websocket closed.')
def ping(self):
if not self.evt_close.is_set():
frame = self._frame(1, OP_PING, '')
self.q_frame.put(frame)
def close(self):
'''public close()'''
if not self.evt_close.is_set():
frame = self._frame(1, OP_CLOSE, '')
self.q_frame.put(frame)
time.sleep(0.05)
self.evt_close.set()
def _loop(self, only_downstream=False):
for frame in self._nextframe():
if frame:
yield frame
elif not only_downstream:
self._recv_to_q()
def __call__(self):
def invoke_handler(handler, sock):
try:
handler(sock, **sock.values)
finally:
sock.close()
th = Thread(target=invoke_handler, args=(self.handler, self,))
th.setDaemon(True)
th.start()
try:
yield self._frame(True, OP_PING, '')
for item in self._loop():
yield item
# for frame in self._nextframe():
# yield frame
# print 'sending channel closed.'
finally:
self.close()
th.join()
# print 'session ended.'
def server(self, server):
if not server:
raise ValueError('server instance required.')
def recv(server, sock):
while not sock.evt_open.is_set():
time.sleep(0.05)
if hasattr(server, 'on_open'):
server.on_open(self)
while not sock.evt_close.is_set():
frame = sock.recv(timeout=1.0)
if frame:
server.on_message(sock, frame)
def recv_to_q(sock):
while not sock.evt_open.is_set():
time.sleep(0.05)
while not sock.evt_close.is_set():
sock._recv_to_q()
th_list = []
if hasattr(server, 'on_message'):
th = Thread(target=recv, args=(server, self,))
th.setDaemon(True)
th.start()
th_list.append(th)
th = Thread(target=recv_to_q, args=(self,))
th.setDaemon(True)
th.start()
th_list.append(th)
yield self._frame(True, OP_PING, '')
self.evt_open.set()
try:
for item in self._loop(only_downstream=True):
yield item
finally:
self.close()
if hasattr(server, 'on_close'):
server.on_close(self)
if th_list:
for th in th_list:
th.join()
| python |
# -*- coding: utf-8 -*-
# Generated by Django 1.10.6 on 2017-09-21 18:55
from __future__ import unicode_literals
from django.conf import settings
import django.core.validators
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='Department',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(default='no name', max_length=100)),
('bio', models.TextField(blank=True, null=True)),
('location', models.TextField(blank=True, null=True)),
('rank', models.PositiveIntegerField(default=0)),
('entity_type', models.PositiveIntegerField(choices=[(1, 'عام'), (2, 'خاص'), (3, 'أهلي')], default=1)),
('study_type', models.PositiveIntegerField(choices=[(1, 'فصول دراسية'), (2, 'ساعات معتمدة'), (3, 'غير ذلك')], default=1)),
],
options={
'abstract': False,
},
),
migrations.CreateModel(
name='Faculty',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(default='no name', max_length=100)),
('bio', models.TextField(blank=True, null=True)),
('location', models.TextField(blank=True, null=True)),
('rank', models.PositiveIntegerField(default=0)),
('entity_type', models.PositiveIntegerField(choices=[(1, 'عام'), (2, 'خاص'), (3, 'أهلي')], default=1)),
('study_type', models.PositiveIntegerField(choices=[(1, 'فصول دراسية'), (2, 'ساعات معتمدة'), (3, 'غير ذلك')], default=1)),
],
options={
'abstract': False,
},
),
migrations.CreateModel(
name='SVProfile',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=200, validators=[django.core.validators.RegexValidator('^[\\u0621-\\u064Aa-zA-Z][\\u0621-\\u064Aa-zA-Z0-9]*([ ]?[\\u0621-\\u064Aa-zA-Z0-9]+)+$', 'Name cannot start with number, should consist of characters.')])),
('desc', models.TextField()),
('logo', models.ImageField(default='doctor.jpg', upload_to='')),
],
),
migrations.CreateModel(
name='University',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(default='no name', max_length=100)),
('bio', models.TextField(blank=True, null=True)),
('location', models.TextField(blank=True, null=True)),
('rank', models.PositiveIntegerField(default=0)),
('entity_type', models.PositiveIntegerField(choices=[(1, 'عام'), (2, 'خاص'), (3, 'أهلي')], default=1)),
('study_type', models.PositiveIntegerField(choices=[(1, 'فصول دراسية'), (2, 'ساعات معتمدة'), (3, 'غير ذلك')], default=1)),
],
options={
'abstract': False,
},
),
migrations.CreateModel(
name='UserProfile',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('level', models.IntegerField(default=1)),
('gender', models.PositiveIntegerField(choices=[(1, 'ذكر'), (2, 'أنثى'), (3, 'غير ذلك')], default=3)),
('count_of_posts', models.IntegerField(default=0)),
('count_of_replies', models.IntegerField(default=0)),
('academic_stats', models.PositiveIntegerField(choices=[(1, 'ناجح'), (2, 'راسب'), (3, 'ناجح بمواد'), (4, 'تحشسن مجموع')], default=1)),
('last_active_device', models.CharField(max_length=200)),
('department', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='depart_users', to='users.Department')),
('faculty', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='fac_users', to='users.Faculty')),
('university', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='uni_users', to='users.University')),
('user', models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)),
],
),
migrations.AddField(
model_name='faculty',
name='university',
field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='faculties', to='users.University'),
),
migrations.AddField(
model_name='department',
name='faculty',
field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='departments', to='users.Faculty'),
),
migrations.AddField(
model_name='department',
name='team',
field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='departments', to='users.SVProfile'),
),
]
| python |
__author__ = 'Will.Smith'
# -----------------------------------------------------------------------------
# Name: WeightMethod.py
# Purpose: Model for Weight Methods
#
# Author: Will Smith <[email protected]>
#
# Created: Jan 01, 2016
# License: MIT
# ------------------------------------------------------------------------------
from PyQt5.QtCore import QObject, pyqtProperty, QVariant, pyqtSignal
from py.common.FramListModel import FramListModel
class WeightMethodModel(FramListModel):
def __init__(self, parent=None):
super().__init__(parent)
self.add_role_name('text')
self.add_role_name('method_id')
class WeightMethod(QObject):
def __init__(self, db):
super().__init__()
self._db = db
self._model = WeightMethodModel()
self._init_model()
modelChanged = pyqtSignal()
@pyqtProperty(QVariant, notify=modelChanged)
def WeightMethodModel(self):
return self._model
def _init_model(self):
for m in self._db.weight_methods:
self._model.items.append({'text': m['text'], 'method_id': m['value']})
| python |
import random
import torch
from sl_cutscenes.constants import SCENARIO_DEFAULTS, PI
from sl_cutscenes.objects.mesh_loader import MeshLoader
from sl_cutscenes.objects.occupancy_matrix import OccupancyMatrix
from sl_cutscenes.utils import utils as utils
class DecoratorLoader:
"""
Class to add random decorative objects to the scene, which do not participate of the scene dynamics.
It is based on creating an occupancy matrix of the scene, finding empty locations and placing stuff there
"""
def __init__(self, scene):
""" Object initializer """
self.config = SCENARIO_DEFAULTS["decorator"]
decorations = self.config["decorations"]
bounds = self.config["bounds"]
self.bounds = bounds
self.pi = torch.acos(torch.zeros(1))
self.scene = scene
self.mesh_loader = MeshLoader()
self.mesh_loader.load_meshes(decorations),
self.meshes = self.mesh_loader.get_meshes()[0]
self.x_vect = torch.arange(bounds["min_x"], bounds["max_x"] + bounds["res"], bounds["res"])
self.y_vect = torch.arange(bounds["min_y"], bounds["max_y"] + bounds["res"], bounds["res"])
return
def add_object(self, object_loader, object_id):
""" Loading an object and adding to the loader """
obj_info, obj_mesh = self.meshes[object_id]
pose = torch.eye(4)
obj_mod = {"mod_pose": pose}
obj = object_loader.create_object(obj_info, obj_mesh, True, **obj_mod)
self.scene.add_object(obj)
# shifting object to a free position and adjusting z-coord to be aligned with the table
position = self.occ_matrix.find_free_spot(obj=obj)
pose[:2, -1] = position if position is not None else torch.ones(2)
pose[2, -1] += obj.mesh.bbox.max[-1]
# Rotating object in yaw direction
yaw_angle = random.choice([torch.tensor([i*PI / 2]) for i in range(4)])
angles = torch.cat([yaw_angle, torch.zeros(2)])
rot_matrix = utils.get_rot_matrix(angles=angles)
pose[:3, :3] = pose[:3, :3] @ rot_matrix
obj.set_pose(pose)
self.occ_matrix.update_occupancy_matrix(obj)
self.occ_matrix.add_object_margings()
return
def decorate_scene(self, object_loader):
""" Randomly adding some decoderation to a scene """
# initializing occupancy matrix
self.occ_matrix = OccupancyMatrix(bounds=self.bounds, objects=self.scene.objects)
# iteratively placing objects while avoiding collision
N = torch.randint(low=self.config["min_objs"], high=self.config["max_objs"], size=(1,))
for i in range(N):
id = torch.randint(low=0, high=len(self.meshes), size=(1,))
self.add_object(object_loader, object_id=id)
return | python |
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: proto/configuration.proto
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='proto/configuration.proto',
package='slog.internal',
syntax='proto3',
serialized_options=None,
serialized_pb=b'\n\x19proto/configuration.proto\x12\rslog.internal\"\x1c\n\x07Replica\x12\x11\n\taddresses\x18\x01 \x03(\x0c\"U\n\x1aReplicationDelayExperiment\x12\x1b\n\x13\x62\x61tch_delay_percent\x18\x01 \x01(\r\x12\x1a\n\x12\x62\x61tch_delay_amount\x18\x02 \x01(\r\"3\n\x10HashPartitioning\x12\x1f\n\x17partition_key_num_bytes\x18\x01 \x01(\r\"D\n\x12SimplePartitioning\x12\x13\n\x0bnum_records\x18\x01 \x01(\x04\x12\x19\n\x11record_size_bytes\x18\x02 \x01(\r\"\x90\x03\n\rConfiguration\x12\x10\n\x08protocol\x18\x01 \x01(\x0c\x12(\n\x08replicas\x18\x02 \x03(\x0b\x32\x16.slog.internal.Replica\x12\x13\n\x0b\x62roker_port\x18\x03 \x01(\r\x12\x13\n\x0bserver_port\x18\x04 \x01(\r\x12\x16\n\x0enum_partitions\x18\x05 \x01(\r\x12<\n\x11hash_partitioning\x18\x06 \x01(\x0b\x32\x1f.slog.internal.HashPartitioningH\x00\x12@\n\x13simple_partitioning\x18\x07 \x01(\x0b\x32!.slog.internal.SimplePartitioningH\x00\x12\x13\n\x0bnum_workers\x18\x08 \x01(\r\x12\x16\n\x0e\x62\x61tch_duration\x18\t \x01(\x04\x12\x44\n\x11replication_delay\x18\n \x01(\x0b\x32).slog.internal.ReplicationDelayExperimentB\x0e\n\x0cpartitioningb\x06proto3'
)
_REPLICA = _descriptor.Descriptor(
name='Replica',
full_name='slog.internal.Replica',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='addresses', full_name='slog.internal.Replica.addresses', index=0,
number=1, type=12, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=44,
serialized_end=72,
)
_REPLICATIONDELAYEXPERIMENT = _descriptor.Descriptor(
name='ReplicationDelayExperiment',
full_name='slog.internal.ReplicationDelayExperiment',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='batch_delay_percent', full_name='slog.internal.ReplicationDelayExperiment.batch_delay_percent', index=0,
number=1, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='batch_delay_amount', full_name='slog.internal.ReplicationDelayExperiment.batch_delay_amount', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=74,
serialized_end=159,
)
_HASHPARTITIONING = _descriptor.Descriptor(
name='HashPartitioning',
full_name='slog.internal.HashPartitioning',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='partition_key_num_bytes', full_name='slog.internal.HashPartitioning.partition_key_num_bytes', index=0,
number=1, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=161,
serialized_end=212,
)
_SIMPLEPARTITIONING = _descriptor.Descriptor(
name='SimplePartitioning',
full_name='slog.internal.SimplePartitioning',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='num_records', full_name='slog.internal.SimplePartitioning.num_records', index=0,
number=1, type=4, cpp_type=4, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='record_size_bytes', full_name='slog.internal.SimplePartitioning.record_size_bytes', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=214,
serialized_end=282,
)
_CONFIGURATION = _descriptor.Descriptor(
name='Configuration',
full_name='slog.internal.Configuration',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='protocol', full_name='slog.internal.Configuration.protocol', index=0,
number=1, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=b"",
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='replicas', full_name='slog.internal.Configuration.replicas', index=1,
number=2, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='broker_port', full_name='slog.internal.Configuration.broker_port', index=2,
number=3, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='server_port', full_name='slog.internal.Configuration.server_port', index=3,
number=4, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='num_partitions', full_name='slog.internal.Configuration.num_partitions', index=4,
number=5, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='hash_partitioning', full_name='slog.internal.Configuration.hash_partitioning', index=5,
number=6, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='simple_partitioning', full_name='slog.internal.Configuration.simple_partitioning', index=6,
number=7, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='num_workers', full_name='slog.internal.Configuration.num_workers', index=7,
number=8, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='batch_duration', full_name='slog.internal.Configuration.batch_duration', index=8,
number=9, type=4, cpp_type=4, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='replication_delay', full_name='slog.internal.Configuration.replication_delay', index=9,
number=10, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
_descriptor.OneofDescriptor(
name='partitioning', full_name='slog.internal.Configuration.partitioning',
index=0, containing_type=None, fields=[]),
],
serialized_start=285,
serialized_end=685,
)
_CONFIGURATION.fields_by_name['replicas'].message_type = _REPLICA
_CONFIGURATION.fields_by_name['hash_partitioning'].message_type = _HASHPARTITIONING
_CONFIGURATION.fields_by_name['simple_partitioning'].message_type = _SIMPLEPARTITIONING
_CONFIGURATION.fields_by_name['replication_delay'].message_type = _REPLICATIONDELAYEXPERIMENT
_CONFIGURATION.oneofs_by_name['partitioning'].fields.append(
_CONFIGURATION.fields_by_name['hash_partitioning'])
_CONFIGURATION.fields_by_name['hash_partitioning'].containing_oneof = _CONFIGURATION.oneofs_by_name['partitioning']
_CONFIGURATION.oneofs_by_name['partitioning'].fields.append(
_CONFIGURATION.fields_by_name['simple_partitioning'])
_CONFIGURATION.fields_by_name['simple_partitioning'].containing_oneof = _CONFIGURATION.oneofs_by_name['partitioning']
DESCRIPTOR.message_types_by_name['Replica'] = _REPLICA
DESCRIPTOR.message_types_by_name['ReplicationDelayExperiment'] = _REPLICATIONDELAYEXPERIMENT
DESCRIPTOR.message_types_by_name['HashPartitioning'] = _HASHPARTITIONING
DESCRIPTOR.message_types_by_name['SimplePartitioning'] = _SIMPLEPARTITIONING
DESCRIPTOR.message_types_by_name['Configuration'] = _CONFIGURATION
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
Replica = _reflection.GeneratedProtocolMessageType('Replica', (_message.Message,), {
'DESCRIPTOR' : _REPLICA,
'__module__' : 'proto.configuration_pb2'
# @@protoc_insertion_point(class_scope:slog.internal.Replica)
})
_sym_db.RegisterMessage(Replica)
ReplicationDelayExperiment = _reflection.GeneratedProtocolMessageType('ReplicationDelayExperiment', (_message.Message,), {
'DESCRIPTOR' : _REPLICATIONDELAYEXPERIMENT,
'__module__' : 'proto.configuration_pb2'
# @@protoc_insertion_point(class_scope:slog.internal.ReplicationDelayExperiment)
})
_sym_db.RegisterMessage(ReplicationDelayExperiment)
HashPartitioning = _reflection.GeneratedProtocolMessageType('HashPartitioning', (_message.Message,), {
'DESCRIPTOR' : _HASHPARTITIONING,
'__module__' : 'proto.configuration_pb2'
# @@protoc_insertion_point(class_scope:slog.internal.HashPartitioning)
})
_sym_db.RegisterMessage(HashPartitioning)
SimplePartitioning = _reflection.GeneratedProtocolMessageType('SimplePartitioning', (_message.Message,), {
'DESCRIPTOR' : _SIMPLEPARTITIONING,
'__module__' : 'proto.configuration_pb2'
# @@protoc_insertion_point(class_scope:slog.internal.SimplePartitioning)
})
_sym_db.RegisterMessage(SimplePartitioning)
Configuration = _reflection.GeneratedProtocolMessageType('Configuration', (_message.Message,), {
'DESCRIPTOR' : _CONFIGURATION,
'__module__' : 'proto.configuration_pb2'
# @@protoc_insertion_point(class_scope:slog.internal.Configuration)
})
_sym_db.RegisterMessage(Configuration)
# @@protoc_insertion_point(module_scope)
| python |
import pandas as pd
import numpy as np
from misc import data_io
DATA_DIR = 'data/ut-interaction/'
""" Folder structure
<'set1' or 'set2'>/keypoints
<video_name>/
<video_name>_<frame_num>_keypoints.json
...
Ex: DATA_DIR + 'set1/keypoints/0_1_4/0_1_4_000000000042_keypoints.json'
"""
VIDEOS = [
['0_1_4','1_1_2','2_1_1','3_1_3','4_1_0','5_1_5','6_2_4','7_2_5','8_2_0',
'9_2_2','10_2_1','11_2_3','12_3_4','13_3_2','14_3_1','15_3_3','16_3_5',
'17_3_0','18_4_4','19_4_1','20_4_2','21_4_0','22_4_3','23_4_5','24_5_0',
'25_5_4','26_5_2','27_5_1','28_5_3','29_5_5','30_6_2','31_6_5','32_6_1',
'33_6_3','34_6_0','35_7_0','36_7_5','37_7_4','38_7_2','39_7_3','40_7_1',
'41_8_0','42_8_2','43_8_4','44_8_4','45_8_5','46_8_3','47_8_1','48_9_3',
'49_9_5','50_9_2','51_9_4','52_9_0','53_9_1','54_10_0','55_10_4','56_10_5',
'57_10_3','58_10_1','59_10_2'], #set1
['0_11_4','1_11_2','2_11_5','3_11_0','4_11_3','5_11_1','6_12_0','7_12_3',
'8_12_5','9_12_1','10_12_4','11_12_2','12_13_4','13_13_2','14_13_1',
'15_13_3','16_13_5','17_13_0','18_14_0','19_14_1','20_14_5','21_14_3',
'22_14_4','23_14_2','24_15_1','25_15_0','26_15_4','27_15_2','28_15_3',
'29_15_5','30_16_3','31_16_0','32_16_1','33_16_4','34_16_2','35_16_5',
'36_17_1','37_17_0','38_17_3','39_17_5','40_17_4','41_17_2','42_18_2',
'43_18_4','44_18_1','45_18_3','46_18_5','47_18_0','48_19_0','49_19_1',
'50_19_4','51_19_3','52_19_5','53_19_2','54_20_1','55_20_0','56_20_5',
'57_20_3','58_20_4','59_20_2'] #set2
]
ACTIONS = ['Hand Shaking','Hugging','Kicking','Pointing','Punching','Pushing']
def get_ground_truth(data_dir=DATA_DIR):
video_lst, setid_lst, seq_lst, path_lst, action_lst = [], [], [], [], []
for set_id, set_videos in enumerate(VIDEOS):
video_lst = video_lst + set_videos
setid_lst = setid_lst + len(set_videos)*[set_id+1]
for video in set_videos:
num, seq, action = video.split('_')
seq_lst.append(int(seq))
action_lst.append(int(action))
path = '{}set{}/keypoints/{}/'.format(data_dir, set_id+1, video)
path_lst.append(path)
dataframe_dict = {'video_id': video_lst,
'setid': setid_lst,
'seq': seq_lst,
'path': path_lst,
'action': action_lst}
ground_truth = pd.DataFrame(dataframe_dict).set_index('video_id')
return ground_truth
def get_folds(setid):
if setid == 1:
folds = np.arange(10)
elif setid == 2:
folds = np.arange(10, 20)
else:
raise ValueError("setid must be 1 or 2, value entered: "+str(setid))
return folds
def get_train_gt(fold_num):
if fold_num < 0 or fold_num > 19:
raise ValueError("fold_num must be within 0 and 19, value entered: "+str(fold_num))
if fold_num < 10:
setid = 1
sequences = np.arange(10)
fold_sequences = sequences[sequences != fold_num] + 1
else:
setid = 2
sequences = np.arange(10, 20)
fold_sequences = sequences[sequences != fold_num] + 1
ground_truth = get_ground_truth()
gt_split = ground_truth[ground_truth.setid == setid]
gt_split = gt_split[gt_split.seq.isin(fold_sequences)]
return gt_split
def get_val_gt(fold_num):
if fold_num < 0 or fold_num > 19:
raise ValueError("fold_num must be within 0 and 19, value entered: "+str(fold_num))
if fold_num < 10:
setid = 1
sequences = np.arange(10)
fold_sequences = sequences[sequences == fold_num] + 1
else:
setid = 2
sequences = np.arange(10, 20)
fold_sequences = sequences[sequences == fold_num] + 1
ground_truth = get_ground_truth()
gt_split = ground_truth[ground_truth.setid == setid]
gt_split = gt_split[gt_split.seq.isin(fold_sequences)]
return gt_split
def get_train(fold_num, **kwargs):
if fold_num < 0 or fold_num > 19:
raise ValueError("fold_num must be within 0 and 19, value entered: "+str(fold_num))
if fold_num < 10:
setid = 1
sequences = np.arange(10)
fold_sequences = sequences[sequences != fold_num] + 1
else:
setid = 2
sequences = np.arange(10, 20)
fold_sequences = sequences[sequences != fold_num] + 1
return get_seqs(setid, fold_sequences, **kwargs)
def get_val(fold_num, **kwargs):
if fold_num < 0 or fold_num > 19:
raise ValueError("fold_num must be within 0 and 19, value entered: "+str(fold_num))
if fold_num < 10:
setid = 1
sequences = np.arange(10)
fold_sequences = sequences[sequences == fold_num] + 1
else:
setid = 2
sequences = np.arange(10, 20)
fold_sequences = sequences[sequences == fold_num] + 1
return get_seqs(setid, fold_sequences, **kwargs)
def get_seqs(setid, selected_sequences, **kwargs):
if setid < 1 or setid > 2:
raise ValueError("setid must be 1 or 2, value entered: "+str(setid))
ground_truth = get_ground_truth()
gt_split = ground_truth[ground_truth.setid == setid]
gt_split = gt_split[gt_split.seq.isin(selected_sequences)]
X, Y = data_io.get_data(gt_split, pose_style='OpenPose', **kwargs)
return X, Y
| python |
from flask import Flask, render_template
app = Flask(__name__)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/projects')
def projects():
return render_template('projects.html')
@app.route('/about')
def about():
return render_template('about.html')
app.run(debug=True) | python |
import sys
sys.path.append('/home/jwalker/dynamics/python/atmos-tools')
sys.path.append('/home/jwalker/dynamics/python/atmos-read')
import atmos as atm
import merra
from merra import calc_fluxes
scratchdir = '/net/eady/data1/jwalker/datastore/scratch/'
def filename(varname, datestr):
savedir = '/net/eady/data1/jwalker/datastore/merra/monthly/'
filen = savedir + varname + datestr
print('Saving to ' + filen)
return filen
year = 1979
month = 3
datestr = '_%d%02d.nc' % (year, month)
ds = calc_fluxes(year, month, scratchdir=scratchdir)
ds.to_netcdf(filename('fluxes', datestr))
| python |
#!/usr/bin/env python
# Copyright 2016 WebAssembly Community Group participants
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys, re
def read_yy():
with open('was_parser.yy', 'r') as f:
read_data = f.read()
grammar_content = re.compile(r"%%\n([\s\S]*)%%", re.M);
m = grammar_content.search(read_data)
remove_c_code = re.compile(r"\s+{\s[^}]*[^\n]*", re.M);
no_code = re.sub(remove_c_code, "", m.group(1))
return no_code
def read_l():
with open('was_lexer.l', 'r') as f:
read_data = f.read()
remove_c_code = re.compile(r"%\{((?!%\})[\s\S])*%\}", re.M);
remove_c_header = re.compile(r"/\*((?!\*/)[\s\S])*\*/\s*", re.M);
no_code = re.sub(remove_c_code, "", re.sub(remove_c_header, "", read_data));
remove_options = re.compile(r"^%\w[^\n]*\n", re.M);
no_options = re.sub(remove_options, "", no_code);
lexer_content = re.compile(r"\n*([\s\S]*)%%\n([\s\S]*)%%", re.M);
m = lexer_content.search(no_options)
sequences = m.group(1)
tokens = m.group(2)
simplify_tokens = re.compile(r"(\s+)\{.*?return\s+token::([^;]+);\s+\}", re.M)
simplified_tokens = re.sub(simplify_tokens, r"\1\2", tokens)
removed_trivial = re.sub(r"\n\x22([^\x22]+)\x22\s+\{.*?return\('\1'\)[^\n]+", "",simplified_tokens)
removed_stats = re.sub(r"(\s+)\{\s+BEGIN\(([^\)]+)\);\s+\}", r"\1STATE:\2", removed_trivial)
removed_code = re.sub(r"(\s+)\{[^\}]+\}[^\n]*", "", removed_stats);
return sequences + removed_code
print "# Grammar Rules"
print
print read_yy()
print
print "# Scanner/Lexer"
print
print read_l()
print | python |
'''
author: eleclike
date:
'''
| python |
# -*- coding: utf-8 -*-
# Part of the masterfile package: https://github.com/uwmadison-chm/masterfile
# Copyright (c) 2020 Board of Regents of the University of Wisconsin System
# Written by Nate Vack <[email protected]> at the Center for Healthy Minds
# at the University of Wisconsin-Madison.
# Released under MIT licence; see LICENSE at the package root.
"""
The masterfile annotator.
This class takes the a dictionary and a masterfile, and can "annotate"
dataframes' series with the metadata from the dictionary, so you can do things
like:
df = mf.dataframe
df.t1_ourMeasure.contact
{
'ourMeasure': 'Jordan Smith'
}
"""
from __future__ import absolute_import, unicode_literals
from collections import defaultdict
import attr
def annotate_masterfile(mf):
ann = Annotator.from_masterfile(mf)
ann.annotate_masterfile()
@attr.s
class Annotator(object):
masterfile = attr.ib()
dictionary = attr.ib()
error_list = attr.ib(default=attr.Factory(list))
@classmethod
def from_masterfile(klass, mf):
return klass(masterfile=mf, dictionary=mf.dictionary)
def annotate_masterfile(self):
self.annotate_dataframe(self.masterfile.dataframe)
def annotate_dataframe(self, df):
df._metadata = list(self.dictionary.columns)
for series_name, series in df.iteritems():
self.annotate_series(series)
def make_series_annotations(self, series_name):
"""
Create a dictionary of annotations for a series, of the format:
{
dictionaryColumn: {componentName_componentValue: dictionaryValue}
...
}
So if your dictionary has a timepoint t1 with the long_name "Time 1",
you'll get:
{
'long_name': {'timepoint_t1': 'Time 1'}
...
}
I'm not very happy with this code, it's ugly as hell, but I don't have
a clear way to clean it up.
"""
d = defaultdict(dict)
for comp, val in self.masterfile.column_components(series_name):
label = '{}_{}'.format(comp, val)
component_annotations = self.dictionary.annotations_for(comp, val)
for ann_label, ann_value in component_annotations.items():
d[ann_label][label] = ann_value
return d
def annotate_series(self, series):
annotations = self.make_series_annotations(series.name)
for attribute, values in annotations.items():
setattr(series, attribute, values)
| python |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.