content
stringlengths 0
894k
| type
stringclasses 2
values |
---|---|
from simple_rl.amdp.AMDPPolicyGeneratorClass import AMDPPolicyGenerator
#from simple_rl.amdp.abstr_domains.grid_world.AbstractGridWorldStateMapperClass import AbstractGridWorldL1StateMapper
from simple_rl.apmdp.AP_MDP.cleanup.CleanupQMDPClass import CleanupQMDP
from simple_rl.apmdp.AP_MDP.cleanup.CleanupQStateClass import CleanupQState
from simple_rl.apmdp.AP_MDP.cleanup.AbstractCleanupMDPClass import CleanupL1MDP, CleanupL2MDP
from simple_rl.apmdp.AP_MDP.cleanup.AbstractCleanupStateMapperClass import AbstractCleanupL1StateMapper, AbstractCleanupL2StateMapper
class CleanupL2PolicyGenerator(AMDPPolicyGenerator):
def __init__(self, l1MDP, state_mapper, verbose=False, env_file =[], constraints = {}, ap_maps = {}):
'''
Args:
l1MDP (CleanupMDP): lower domain
state_mapper (AbstractGridWorldL1StateMapper): to map l0 states to l1 domain
verbose (bool): debug mode
'''
self.domain = l1MDP
self.verbose = verbose
self.state_mapper = state_mapper
self.env_file = env_file
def generate_policy(self, l2_state, grounded_action):
'''
Args:
l1_state (CleanupL1State): generate policy in l1 domain starting from l1_state
grounded_action (CleanupRootGroundedAction): TaskNode above defining the subgoal for current MDP
'''
mdp = CleanupL2MDP(init_state=l2_state, env_file=self.env_file,
constraints=grounded_action.goal_constraints,
ap_maps=grounded_action.ap_maps)
return self.get_policy(mdp, verbose=self.verbose, max_iterations=50, horizon=50)
def generate_abstract_state(self, l1_state):
return self.state_mapper.map_state(l1_state)
class CleanupL1PolicyGenerator(AMDPPolicyGenerator):
def __init__(self, l0MDP, state_mapper, verbose=False, env_file = [], constraints = {}, ap_maps = {}):
'''
Args:
l0MDP (FourRoomMDP): lower domain
state_mapper (AbstractGridWorldL1StateMapper): to map l0 states to l1 domain
verbose (bool): debug mode
'''
self.domain = l0MDP
self.verbose = verbose
self.state_mapper = state_mapper
self.env_file = env_file
self.constraints = constraints
self.ap_maps = ap_maps
def generate_policy(self, l1_state, grounded_action):
'''
Args:
l1_state (FourRoomL1State): generate policy in l1 domain starting from l1_state
grounded_action (FourRoomRootGroundedAction): TaskNode above defining the subgoal for current MDP
'''
#destination_locations = self.grounded_action.l1_domain.
#.floor_to_rooms[grounded_action.goal_state.agent_on_floor_number]
mdp = CleanupL1MDP(l1_state, env_file=self.env_file,
constraints=grounded_action.goal_constraints,
ap_maps=grounded_action.ap_maps)
return self.get_policy(mdp, verbose=self.verbose, max_iterations=50, horizon=50)
def generate_abstract_state(self, l0_state):
return self.state_mapper.map_state(l0_state)
class CleanupL0PolicyGenerator(AMDPPolicyGenerator):
def __init__(self, l0_domain, verbose=False, env_file = []):
self.domain = l0_domain
self.verbose = verbose
self.env_file = env_file
def generate_policy(self, state, grounded_task):
'''
Args:
state (): plan in L0 starting from state
grounded_task (FourRoomL1GroundedAction): L1 TaskNode defining L0 subgoal
'''
# destination_locations = self.domain.room_to_locs[grounded_task.goal_state.agent_in_room_number]
#init_location = (state.x, state.y, state.obj_id)
#print("generate_policy-CleanupL0PolicyGenerator is called:{}",grounded_task)
mdp = CleanupQMDP(init_state=state, env_file=self.env_file,
constraints=grounded_task.goal_constraints, ap_maps=grounded_task.ap_maps)
return self.get_policy(mdp, verbose=self.verbose, max_iterations=50, horizon=100) # 500, 100
| python |
from osbot_aws.apis.shell.Lambda_Shell import lambda_shell
@lambda_shell
def run(event, context):
return 'testing lambda layer ... ' | python |
# -*- coding: utf-8 -*- #
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Common utilities for deleting resources."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from googlecloudsdk.api_lib.composer import operations_util as operations_api_util
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.composer import util as command_util
from googlecloudsdk.core import log
import six
class EnvironmentDeletionWaiter(object):
"""Class for waiting for synchronous deletion of one or more Environments."""
def __init__(self, release_track=base.ReleaseTrack.GA):
self.pending_deletes = []
self.release_track = release_track
def AddPendingDelete(self, environment_name, operation):
"""Adds an environment whose deletion to track.
Args:
environment_name: str, the relative resource name of the environment
being deleted
operation: Operation, the longrunning operation object returned by the
API when the deletion was initiated
"""
self.pending_deletes.append(
_PendingEnvironmentDelete(environment_name, operation))
def Wait(self):
"""Polls pending deletions and returns when they are complete."""
encountered_errors = False
for pending_delete in self.pending_deletes:
try:
operations_api_util.WaitForOperation(
pending_delete.operation,
'Waiting for [{}] to be deleted'.format(
pending_delete.environment_name),
release_track=self.release_track)
except command_util.OperationError as e:
encountered_errors = True
log.DeletedResource(
pending_delete.environment_name,
kind='environment',
is_async=False,
failed=six.text_type(e))
return encountered_errors
class _PendingEnvironmentDelete(object):
"""Data class holding information about a pending environment deletion."""
def __init__(self, environment_name, operation):
self.environment_name = environment_name
self.operation = operation
| python |
from imutils.video import VideoStream
from datetime import datetime
import imutils
import cv2
import numpy as np
import sys
import json
import os
import time
import inspect
# Configuration from MMM
CONFIG = json.loads(sys.argv[1])
# Computer vision lib files needed by OpenCV
path_to_file = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
facePath = path_to_file + '/haarcascade_frontalface_default.xml'
smilePath = path_to_file + '/haarcascade_smile.xml'
faceCascade = cv2.CascadeClassifier(facePath)
smileCascade = cv2.CascadeClassifier(smilePath)
log_path = path_to_file + '/../log/'
if not os.path.exists(log_path):
os.makedirs(log_path)
def to_node(type, message):
# Send message to MMM
# convert to json and print (node helper will read from stdout)
try:
print(json.dumps({type: message}))
except Exception:
pass
# stdout has to be flushed manually to prevent delays in the node helper
# communication
sys.stdout.flush()
# *************************************************************
# Main function
# *************************************************************
# Start video stream
vs = VideoStream(usePiCamera=CONFIG['usePiCam']).start()
# allow the camera sensor to warmup
time.sleep(2)
to_node('camera_ready', True)
# track smile time
smileTime = 0
endtime = time.time() + CONFIG['testRunTime']
while True:
# take a frame every second
time.sleep(1)
# use VS instead of cv2.VideoCapture
frame = vs.read()
try:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
except:
to_node('error', sys.exc_info()[0])
break
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=8,
minSize=(55, 55),
flags=cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 1)
roi_gray = gray[y:y + h, x:x + w]
roi_color = frame[y:y + h, x:x + w]
smile = smileCascade.detectMultiScale(
roi_gray,
scaleFactor=1.2,
minNeighbors=10,
minSize=(20, 20),
flags=cv2.CASCADE_SCALE_IMAGE
)
if(len(smile) > 0):
smileTime += 1
to_node('result', smileTime)
# log the smile test with a selfie
if smileTime == (CONFIG['smileLength'] / 2):
for (x, y, w, h) in smile:
cv2.rectangle(roi_color, (x, y), (x + w, y + h), (255, 0, 0), 1)
cv2.imwrite(log_path + datetime.now().isoformat("T") + '.jpg', frame)
# cv2.imshow('Smile Detector', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if smileTime >= CONFIG['smileLength']:
smileTime = 0
break
if time.time() >= endtime:
to_node('result', -1)
break
vs.stop()
cv2.destroyAllWindows()
| python |
# This code is a part of XMM: Generate and Analyse (XGA), a module designed for the XMM Cluster Survey (XCS).
# Last modified by David J Turner ([email protected]) 10/01/2021, 16:51. Copyright (c) David J Turner
import numpy as np
from astropy.units import Quantity
from ...models.misc import power_law
from ...products.relation import ScalingRelation
xcs_sdss_r500_52 = ScalingRelation(np.array([1.67, 0.96]), np.array([0.13, 0.08]), power_law, Quantity(60),
Quantity(0.8e+44, 'erg / s'), r"$\lambda$", r"E(z)$^{-1}$L$_{\rm{x},500,0.5-2.0}$",
relation_author='Giles et al.', relation_year='In Prep', relation_doi='',
relation_name='SDSSRM-XCS$_{T_{x},vol}$ 0.5-2.0keV',
x_lims=Quantity([20, 220]))
| python |
def insertion_sort(A):
for i in range(len(A)-1):
while i >= 0 and A[i+1] < A[i]:
A[i], A[i+1] = A[i+1], A[i]
i -= 1
return A
if __name__ == '__main__':
import random
arr = [random.randint(1, 10) for _ in range(10)]
assert insertion_sort(arr) == sorted(arr)
assert insertion_sort([3, 0, 4, -1]) == [-1, 0, 3, 4] | python |
#
# The MIT License (MIT)
#
# Copyright 2018 AT&T Intellectual Property. All other rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
# AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
"""
.. module: lycan.serializations
:platform: Unix
.. version:: $$VERSION$$
.. moduleauthor:: Michael Stair <[email protected]>
"""
import six, json
from lycan.message import *
class OpenC2MessageEncoder(json.JSONEncoder):
def _encode_message(self, obj, message):
if obj.header:
message["header"] = {}
header = obj.header
message["header"]["version"] = header.version
if header.id:
message["header"]["id"] = header.id
if header.created:
message["header"]["created"] = header.created
if header.sender:
message["header"]["sender"] = header.sender
message["header"]["content_type"] = header.content_type
if obj.body:
body = obj.body
if isinstance(body, OpenC2Command):
message["command"] = {}
self._encode_command(body, message["command"])
elif isinstance(body, OpenC2Response):
message["response"] = {}
self._encode_response(body, message["response"])
else:
raise ValueError("Invalid OpenC2 message")
else:
raise ValueError("Invalid OpenC2 message")
def _encode_command(self, obj, message):
message["action"] = obj.action
if isinstance(obj.target.specifiers, six.string_types):
message["target"] = {str(obj.target): str(obj.target.specifiers)}
else:
target = str(obj.target)
message["target"] = {target: {}}
if obj.target.specifiers:
for (k, v) in six.iteritems(obj.target.specifiers):
message["target"][target][k] = v
if obj.actuator:
actuator = str(obj.actuator)
message["actuator"] = {actuator: {}}
if obj.actuator.specifiers:
for (k, v) in six.iteritems(obj.actuator.specifiers):
message["actuator"][actuator][k] = v
if obj.id:
message["id"] = str(obj.id)
if obj.args:
message["args"] = obj.args
def _encode_response(self, obj, message):
message["id"] = str(obj.id)
message["id_ref"] = str(obj.id_ref)
message["status"] = obj.status
if obj.status_text:
message["status_text"] = obj.status_text
if obj.results:
message["results"] = obj.results
def default(self, obj):
message = {}
if isinstance(obj, OpenC2Message):
self._encode_message(obj, message)
if isinstance(obj, OpenC2Command):
self._encode_command(obj, message)
if isinstance(obj, OpenC2Response):
self._encode_response(obj, message)
return message
class OpenC2MessageDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
def _decode_message(self, obj):
header = self._decode_header(obj["header"])
if "command" in obj:
body = obj["command"]
elif "response" in obj:
body = obj["response"]
else:
raise ValueError("Invalid OpenC2 message")
return OpenC2Message(header, body)
def _decode_header(self, obj):
if "version" not in obj:
raise ValueError("Invalid OpenC2 header: version required")
if "content_type" not in obj:
raise ValueError("Invalid OpenC2 header: content_type required")
return OpenC2Header(obj["version"],
obj["command_id"] if "command_id" in obj else None,
obj["created"] if "created" in obj else None,
obj["sender"] if "sender" in obj else None,
obj["content_type"] if "content_type" in obj else None)
def _decode_command(self, obj):
if "target" not in obj:
raise ValueError("Invalid OpenC2 command: target required")
target_name = list(obj["target"].keys())[0]
target_specifiers = list(obj["target"].values())[0]
if isinstance(target_specifiers, dict):
target = OpenC2Target(target_name, **target_specifiers)
elif isinstance(target_specifiers, six.string_types):
target = OpenC2Target(target_name, target_specifiers)
else:
raise ValueError("Invalid OpenC2 command target")
actuator = None
if "actuator" in obj:
actuator_name = list(obj["actuator"].keys())[0]
actuator_specifiers = list(obj["actuator"].values())[0]
actuator = OpenC2Actuator(actuator_name, **actuator_specifiers)
return OpenC2Command(obj["action"], target,
obj["id"] if "id" in obj else None,
actuator, OpenC2Args(obj["args"]) if "args" in obj else None)
def _decode_response(self, obj):
if "id" not in obj:
raise ValueError("Invalid OpenC2 response: id required")
if "id_ref" not in obj:
raise ValueError("Invalid OpenC2 response: id_ref required")
if "status" not in obj:
raise ValueError("Invalid OpenC2 response: status required")
return OpenC2Response(obj["id"], obj["id_ref"], obj["status"],
obj["status_text"] if "status_text" in obj else None,
obj["results"] if "results" in obj else None)
def object_hook(self, obj):
if "header" in obj:
message = self._decode_message(obj)
elif "action" in obj:
message = self._decode_command(obj)
elif "id_ref" in obj:
message = self._decode_response(obj)
else:
message = obj
return message
| python |
#https://www.acmicpc.net/problem/2775
testCase = int(input())
for i in range(testCase):
list_base = [i for i in range(1, 15)]
list_new = []
k = int(input())
n = int(input())
for j in range(k):
for l in range(n):
if l-1 >= 0:
list_new.append(list_new[l-1] + list_base[l])
else:
list_new.append(1)
list_a = list_b
list_b = []
print(list_a[n-1]) | python |
import tornado.ioloop, tornado.web, tornado.websocket, tornado.template
import logging, uuid, subprocess, pykka
from datetime import datetime
from tornado.escape import json_encode, json_decode
logger = logging.getLogger(__name__)
# container for all current pusher connections
connections = {}
frontend = {}
##
# Send a message to an individual connection
#
# @param recipient_connection_ids = array
# @param type = string (type of event, ie connection_opened)
# @param action = string (action method of this message)
# @param message_id = string (used for callbacks)
# @param data = array (any data required to include in our message)
##
def send_message( recipient_connection_id, type, action, message_id, data ):
message = {
'type': type,
'action': action,
'message_id': message_id,
'data': data
}
connections[recipient_connection_id]['connection'].write_message( json_encode(message) )
##
# Broadcast a message to all recipients
#
# @param action = string
# @param data = array (the body of our message to send)
##
def broadcast( action, data ):
for connection in connections.itervalues():
message = {
'type': 'broadcast',
'action': action,
'data': data
}
connection['connection'].write_message( json_encode(message) )
# digest a protocol header into it's id/name parts
def digest_protocol( protocol ):
# if we're a string, split into list
# this handles the different ways we get this passed (select_subprotocols gives string, headers.get gives list)
if isinstance(protocol, basestring):
# make sure we strip any spaces (IE gives "element,element", proper browsers give "element, element")
protocol = [i.strip() for i in protocol.split(',')]
# if we've been given a valid array
try:
clientid = protocol[0]
connectionid = protocol[1]
username = protocol[2]
generated = False
# invalid, so just create a default connection, and auto-generate an ID
except:
clientid = str(uuid.uuid4().hex)
connectionid = str(uuid.uuid4().hex)
username = str(uuid.uuid4().hex)
generated = True
# construct our protocol object, and return
return {"clientid": clientid, "connectionid": connectionid, "username": username, "generated": generated}
##
# Websocket server
#
# This is the actual websocket thread that accepts, digests and emits messages.
# TODO: Figure out how to merge this into the main Mopidy websocket to avoid needing two websocket servers
##
class PusherWebsocketHandler(tornado.websocket.WebSocketHandler):
def initialize(self, frontend):
self.frontend = frontend
def check_origin(self, origin):
return True
# when a new connection is opened
def open(self):
# decode our connection protocol value (which is a payload of id/name from javascript)
protocolElements = digest_protocol(self.request.headers.get('Sec-Websocket-Protocol', []))
connectionid = protocolElements['connectionid']
clientid = protocolElements['clientid']
self.connectionid = connectionid
username = protocolElements['username']
created = datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S')
# construct our client object, and add to our list of connections
client = {
'clientid': clientid,
'connectionid': connectionid,
'username': username,
'ip': self.request.remote_ip,
'created': created
}
connections[connectionid] = {
'client': client,
'connection': self
}
logger.info( 'Pusher connection established: '+ connectionid +' ('+ clientid +'/'+ username +')' )
# broadcast to all connections that a new user has connected
broadcast( 'client_connected', client )
def select_subprotocol(self, subprotocols):
# select one of our subprotocol elements and return it. This confirms the connection has been accepted.
protocols = digest_protocol( subprotocols )
# if we've auto-generated some ids, the provided subprotocols was a string, so just return it right back
# this allows a connection to be completed
if protocols['generated']:
return subprotocols[0]
# otherwise, just return one of the supplied subprotocols
else:
return protocols['clientid']
# server received a message
def on_message(self, message):
messageJson = json_decode(message)
# construct the origin client info
messageJson['origin'] = {
'connectionid' : self.connectionid,
'clientid': connections[self.connectionid]['client']['clientid'],
'ip': self.request.remote_ip,
'username': connections[self.connectionid]['client']['username']
}
logger.debug('Pusher message received: '+message)
# query-based message that is expecting a response
if messageJson['type'] == 'query':
# fetch our pusher connections
if messageJson['action'] == 'get_connections':
connectionsDetailsList = []
for connection in connections.itervalues():
connectionsDetailsList.append(connection['client'])
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'connections': connectionsDetailsList }
)
# change connection's client username
elif messageJson['action'] == 'change_username':
# username is the only value we allow clients to change
connections[messageJson['origin']['connectionid']]['client']['username'] = messageJson['data']
# respond to request
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'connection': connections[messageJson['origin']['connectionid']]['client'] }
)
# notify all clients of this change
broadcast( 'connection_updated', { 'connections': connections[messageJson['origin']['connectionid']]['client'] })
# start radio
elif messageJson['action'] == 'start_radio':
# pull out just the radio data (we don't want all the message_id guff)
radio = {
'enabled': 1,
'seed_artists': messageJson['seed_artists'],
'seed_genres': messageJson['seed_genres'],
'seed_tracks': messageJson['seed_tracks']
}
radio = self.frontend.start_radio( radio )
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'radio': radio }
)
# stop radio
elif messageJson['action'] == 'stop_radio':
radio = self.frontend.stop_radio()
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'radio': self.frontend.radio }
)
# fetch our current radio state
elif messageJson['action'] == 'get_radio':
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'radio': self.frontend.radio }
)
# get our spotify authentication token
elif messageJson['action'] == 'get_spotify_token':
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'token': self.frontend.spotify_token }
)
# refresh our spotify authentication token
elif messageJson['action'] == 'refresh_spotify_token':
token = self.frontend.refresh_spotify_token()
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'token': token }
)
# get system version and check for upgrade
elif messageJson['action'] == 'get_version':
version = self.frontend.get_version()
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'version': version }
)
# get system version and check for upgrade
elif messageJson['action'] == 'perform_upgrade':
version = self.frontend.get_version()
version['upgrade_successful'] = self.frontend.perform_upgrade()
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'version': version }
)
# notify all clients of this change
broadcast( 'upgraded', { 'version': version })
# restart mopidy
elif messageJson['action'] == 'restart':
self.frontend.restart()
# not an action we recognise!
else:
send_message(
self.connectionid,
'response',
messageJson['action'],
messageJson['message_id'],
{ 'error': 'Unhandled action' }
)
# point-and-shoot one-way broadcast
elif messageJson['type'] == 'broadcast':
# recipients array has items, so only send to specific clients
if messageJson.has_key('recipients'):
for connectionid in messageJson['recipients']:
connectionid = connectionid.encode("utf-8")
# make sure we actually have a connection matching the provided connectionid
if connectionid in connections:
connections[connectionid]['connection'].write_message(messageJson)
else:
logger.warn('Pusher: Tried to broadcast to connectionid '+connectionid+' but it doesn\'t exist!');
# empty, so send to all clients
else:
for connection in connections.itervalues():
# if we've set ignore_self, then don't send message to originating connection
if messageJson.has_key('ignore_self'):
if connection['client']['connectionid'] != messageJson['origin']['connectionid']:
connection['connection'].write_message(messageJson)
# send it to everyone
else:
connection['connection'].write_message(messageJson)
logger.debug( 'Pusher: Message received from '+ self.connectionid )
# connection closed
def on_close(self):
if self.connectionid in connections:
clientRemoved = connections[self.connectionid]['client']
logger.debug( 'Spotmop Pusher connection to '+ self.connectionid +' closed' )
# now actually remove it
try:
del connections[self.connectionid]
except:
logger.info( 'Failed to close connection to '+ self.connectionid )
broadcast( 'client_disconnected', clientRemoved )
| python |
# -*- coding: utf-8 -*-
# Generated by Django 1.9.2 on 2016-02-03 13:32
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('democracy', '0004_lengthen_type_field'),
]
operations = [
migrations.AlterField(
model_name='hearingcomment',
name='author_name',
field=models.CharField(blank=True, editable=False, max_length=255, null=True, verbose_name='author name'),
),
migrations.AlterField(
model_name='hearingcomment',
name='title',
field=models.CharField(blank=True, max_length=255, verbose_name='title'),
),
migrations.AlterField(
model_name='sectioncomment',
name='author_name',
field=models.CharField(blank=True, editable=False, max_length=255, null=True, verbose_name='author name'),
),
migrations.AlterField(
model_name='sectioncomment',
name='title',
field=models.CharField(blank=True, max_length=255, verbose_name='title'),
),
]
| python |
#encoding=utf-8
# bankfile_psr2000.py
# This file is part of PSR Registration Shuffler
#
# Copyright (C) 2008 - Dennis Schulmeister <dennis -at- ncc-1701a.homelinux.net>
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# It is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this file. If not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor,
# Boston, MA 02110-1301 USA
'''
PURPOSE
=======
This module contains the BankFile sub-class for dealing with registration
bank files from the YAMAHA PSR-2000 keyboard.
'''
# Public export of module content
__all__ = [
"BankFile_PSR2000"
]
# Import global modules
import struct
# Import application modules
import bankfile
from .. import const
from .. import util
# Define class
class BankFile_PSR2000(bankfile.BankFile):
'''
This class provides support for YAMAHA PSR-2000 bank files.
'''
# Short names of supported keyboard models
keyboardNames = [const.YAMAHA_PSR2000]
# User-information shown on the keyboard information page
groupName = _("Yamaha PSR-2000 and alike")
information = _("Released in 2001 the Yamaha PSR-2000 marks the end of the highly successful PSR-9000 line. It shares many features of its big brothers the PSR-9000 and 9000pro, among them most sounds, styles and a very similar albeit updated operating system. Updates include a largely re-designed main screen, notation display as well as icons next to each object name (with the icon descriptor being a suffix to the name).")
# Maximum amount of registrations
maxReg = 8
# File extension
fileExt = "reg"
# Magic file header
fileHeader = "\x52\x45\x47\x2D\x31\x30\x30\x2D" \
+ "\x31\x30\x30\x2D\x31\x30\x30\x30" \
+ "\x50\x53\x52\x32\x30\x30\x30\x78" \
+ "\x00\x08\x00\x40"
# Special padding between header and data blocks
specialPadding = "\x24\xFF\xFF\xFF\xFF\xFF\xFF\xFF" \
+ "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" \
+ "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" \
+ "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" \
+ "\xFF\xFF\xFF\xFF\xFF\x00\x00\x00" \
+ "\x00\x00\x00\x00\x00\x00\x00\x00"
# Object initialization....................................................
def __init__(self, filename="", file=None, keyboardName=""):
'''
Constructor. If neither a filename nor a file object is given a new
bank file will be created in memory. If at least one is given the
existing file will be used. If both are given the file object will
be ignored.
'''
# Initialize object from super-constructor
bankfile.BankFile.__init__(self, filename=filename, file=file, keyboardName=keyboardName)
def initEmptyFile(self):
'''
This method gets called by the default constructor. It's meant to be
overwritten by sub-classes in order to initialize a new object as being
an empty bank file.
'''
# Nothing to do
pass
def initFromExistingFile(self, file):
'''
This method gets called by the default constructor. It's meant to be
overwritten by sub-classes in order to initialize a new object from an
existing bank file whise file object gets passed as argument.
The most important taske to be carried out here is to extract all
registrations from the given file, nicely pack them into Registration
objects and to line them up in a list called self.regList.
'''
# Slice out registrations into self.regList
# NOTE: 0xffffffff marks non-existing registration. Other values
# give absolute byte pointer within file.
for i in range(self.__class__.maxReg):
# Read location of registration
file.seek(32 + (4 * i))
startPos = file.read(4)
# Skip empty registrations
if startPos == "\xff\xff\xff\xff":
continue
# Read length of registration block
start = struct.unpack(">I", startPos)[0]
file.seek(start + 6) # RGST01..
blockLength = file.read(2)
length = struct.unpack(">H", blockLength)[0]
# Slice out binary data of registration
file.seek(start)
binary = file.read(length)
# Create Registration object and put it into the list
self.regList[i] = self.createRegistrationObject(binary)
# Static helper methods....................................................
def stripName(cls, name=""):
'''
This method needs to be reimplemented by subclasses. It's meant to
remove file extions and other non-name data (like icons) from name
strings.
'''
return util.stripNameYamaha(
fileExt = cls.fileExt,
name = name
)
stripName = classmethod(stripName)
# File access..............................................................
def storeBankFile(self, filename):
'''
This method stores the contents of self to a keyboard readable
bank file.
File format is as follows:
========= ======= =====================================================
Position Length Description
========= ======= =====================================================
0 28 File header
28 4 Amount of registrations
32 32 Access list with location of registration (8x)
64 48 Special padding
112 .. Registration blocks (up to 8x)
========= ======= =====================================================
All numbers are stored as BigEndian, 4-Byte, Unsigned Integer.
'''
# Prepare access list and large data block
nRegs = 0
startPosi = 112
accessList = ""
dataBlock = ""
for reg in self.regList:
# Skip empty registrations
if not reg:
accessList += "\xFF\xFF\xFF\xFF"
continue
# Determine effective amount of registrations
nRegs += 1
# Write access list and update location for next registration
posi = startPosi + len(dataBlock)
accessList += struct.pack(">I", posi) # BE, UInt, 4 Bytes
dataBlock += reg.getBinaryContent()
# Write file contents
file = open(filename, "wb+")
file.write(self.__class__.fileHeader) # File header
file.write(struct.pack("<I", nRegs)) # Amount of registrations (LE???)
file.write(accessList) # Location pointers
file.write(self.__class__.specialPadding) # Special padding
file.write(dataBlock) # Registration block
file.close()
def canUnderstandFile(cls, file=None):
'''
A class method which checks whether the class can be used for
accessing the given file's contents. A file object which can be
read from gets passed to the method. Method must return either
True or False.
'''
# Compare file header
headerSize = len(cls.fileHeader)
file.seek(0)
fileHeader = file.read(headerSize)
return fileHeader == cls.fileHeader
canUnderstandFile = classmethod(canUnderstandFile)
def getKeyboardNameFromFile(cls, file=None, filename=""):
'''
A class method which determines the keyboard model of a give file.
If the model can't be guessed an appexceptions.UnknownKeyboardModel
exception gets raised. The file can be given either by its filename
or by a file object. If both are given the file object will be ignored.
'''
# Make sure to have a file object at hand
file = util.getFileObject(filename, file)
if cls.canUnderstandFile(file=file):
return const.YAMAHA_PSR2000
else:
raise appexceptions.UnknownKeyboardModel(cls)
getKeyboardNameFromFile = classmethod(getKeyboardNameFromFile)
| python |
from rest_framework import serializers
from .models import EnrollmentSecret, MetaBusinessUnit, Tag
class MetaBusinessUnitSerializer(serializers.ModelSerializer):
api_enrollment_enabled = serializers.BooleanField(required=False)
class Meta:
model = MetaBusinessUnit
fields = ("id", "name", "api_enrollment_enabled")
read_only_fields = ("api_enrollment_enabled",)
def validate_api_enrollment_enabled(self, value):
if self.instance and self.instance.api_enrollment_enabled() and not value:
raise serializers.ValidationError("Cannot disable API enrollment")
return value
def create(self, validated_data):
api_enrollment_enabled = validated_data.pop("api_enrollment_enabled", False)
mbu = super().create(validated_data)
if api_enrollment_enabled:
mbu.create_enrollment_business_unit()
return mbu
def update(self, instance, validated_data):
api_enrollment_enabled = validated_data.pop("api_enrollment_enabled", False)
mbu = super().update(instance, validated_data)
if not mbu.api_enrollment_enabled() and api_enrollment_enabled:
mbu.create_enrollment_business_unit()
# TODO: switch off api_enrollment_enabled
return mbu
class TagSerializer(serializers.ModelSerializer):
class Meta:
model = Tag
fields = ("id", "meta_business_unit", "name", "slug", "color")
# TODO: Taxonomy
class EnrollmentSecretSerializer(serializers.ModelSerializer):
class Meta:
model = EnrollmentSecret
fields = ("id", "secret", "meta_business_unit", "tags", "serial_numbers", "udids", "quota", "request_count")
| python |
from discord.ext import commands
from discord.utils import get
import discord
from datetime import datetime
from bot import Shiro
from util import strfdelta
from apis.anilist_api import find_anime_by_id
import asyncio
class ModsCog(commands.Cog):
def __init__(self, bot: Shiro):
self.bot = bot
@commands.command()
async def uptime(self, ctx):
if self.bot.is_mod(ctx.author):
timedif = strfdelta(datetime.utcnow() - self.bot.start_time)
await ctx.send(content=f"I have been up for **{timedif}**!")
@commands.command()
async def purge(self, ctx, amount):
if self.bot.is_mod(ctx.author):
amount = int(amount)
purge_list = []
async for i in ctx.channel.history(limit=amount):
purge_list.append(i)
amount_deleted = purge_list.__len__()
cycles = (amount_deleted // 100) + 1
for i in range(cycles):
delete_from = i * 100
delete_to = (i + 1) * 100
await ctx.channel.delete_messages(purge_list[delete_from:delete_to])
embed = self.bot.basic_embed(True, "**{}** messages have been deleted!".format(amount_deleted))
message = await ctx.send(embed=embed)
self.bot.send_log(
"Msg Purge",
f"{ctx.message.author}: Purged {amount_deleted} messages in {ctx.message.channel} - "
f"See list of purged messages below:\n")
self.bot.send_log("Msg Purge", "====================================================================")
for message in purge_list:
user_name = f"{message.author}".ljust(18, " ")
print(f"[{message.created_at}] {user_name}: {message.content}")
self.bot.send_log("Msg Purge", "====================================================================")
await asyncio.sleep(10)
await message.delete()
@commands.command()
async def echo(self, ctx, destination, *args):
if self.bot.is_mod(ctx.author):
message = ""
for string in args:
message += (string + " ")
message = message.strip()
dest_channel_id = destination.replace("<", "").replace(">", "").replace("#", "")
try:
dest_channel_id = int(dest_channel_id)
dest_channel = get(ctx.guild.channels, id=int(dest_channel_id))
except ValueError:
dest_channel = get(ctx.guild.channels, name=dest_channel_id)
if not dest_channel:
dest_channel = get(ctx.guild.channels, name=destination)
if isinstance(dest_channel, discord.TextChannel):
self.bot.send_log("Mod Echo", "{} sent a message via echo to #{}".format(
ctx.message.author, dest_channel.name, message))
await dest_channel.send(content=message)
embed = self.bot.basic_embed(True, "Message **sent**!")
await ctx.send(embed=embed)
else:
self.bot.send_log("Mod Echo", "{} tried to send a message to {} (Failed)".format(
ctx.message.author, dest_channel, message))
embed = self.bot.basic_embed(False, "Channel **not found**!")
await ctx.send(embed=embed)
@commands.command()
async def mute(self, ctx, user_id):
if self.bot.is_mod(ctx.author):
user_id = self.bot.mention_cleanup(user_id)
muted_user = self.bot.senko_guild.get_member(int(user_id))
if muted_user:
self.bot.send_log("Mute", "{}: Mute pending user {}({}) found: Applying mute.".format(
ctx.message.author, user_id, muted_user))
await muted_user.add_roles(self.bot.roles.muted)
embed = self.bot.basic_embed(True, "User **Muted**!")
await ctx.send(embed=embed)
else:
self.bot.send_log("Mute", "{}: Mute pending user {}({}) not found.".format(
ctx.message.author, user_id, muted_user))
embed = self.bot.basic_embed(False, "User **not found**!")
await ctx.send(embed=embed)
@commands.command()
async def unmute(self, ctx, user_id):
if self.bot.is_mod(ctx.author):
user_id = self.bot.mention_cleanup(user_id)
try:
unmuted_user = self.bot.senko_guild.get_member(int(user_id))
ismuted = get(unmuted_user.roles, id=self.bot.roles.muted.id)
if unmuted_user:
if ismuted:
self.bot.send_log("Unmute", "{}: Unmute pending user {}({}) found: Removing mute.".format(
ctx.author, user_id, unmuted_user))
await unmuted_user.remove_roles(self.bot.roles.muted)
embed = self.bot.basic_embed(True, "User **Unmuted**!")
else:
self.bot.send_log("Unmute", "{}: Unmute pending user {}({}) found: ERROR! "
"User is not muted.".format(
ctx.message.author, user_id, unmuted_user))
embed = self.bot.basic_embed(False, "User is **not muted**!")
else:
self.bot.send_log("Unmute", "{}: Unmute pending user {}({}) not found.".format(
ctx.message.author, user_id, unmuted_user))
embed = self.bot.basic_embed(False, "User **not found**!")
except AttributeError:
self.bot.send_log("Unmute", "{}: Unmute pending user {} not found.".format(ctx.message.author, user_id))
embed = self.bot.basic_embed(False, "User **not found**!")
await ctx.send(embed=embed)
@commands.command()
async def ban(self, ctx, user_id):
if self.bot.is_mod(ctx.author):
user_id = self.bot.mention_cleanup(user_id)
try:
ban_user = self.bot.senko_guild.get_member(int(user_id))
if ban_user:
self.bot.send_log("Ban", "{}: Ban pending user {}({}) found: Banning.".format(
ctx.message.author, user_id, ban_user))
await self.bot.senko_guild.ban(ban_user)
else:
fake_member = discord.Object(id=int(user_id))
await self.bot.senko_guild.ban(fake_member)
self.bot.send_log("Ban", "{}: Ban pending user {}({}) not found in server: Fake Banning.".format(
ctx.message.author, user_id, ban_user))
embed = self.bot.basic_embed(True, "User **banned**!")
await ctx.send(embed=embed)
except (discord.NotFound, TypeError):
self.bot.send_log("Ban", "{}: Ban pending user {} not found.".format(ctx.message.author, user_id))
embed = self.bot.basic_embed(False, "User **not found**!")
await ctx.send(embed=embed)
@commands.command()
async def unban(self, ctx, user_id):
if self.bot.is_mod(ctx.author):
user_id = self.bot.mention_cleanup(user_id)
if get(self.bot.senko_guild.members, id=int(user_id)):
embed = self.bot.basic_embed(False, "User is **not banned**!")
await ctx.send(embed=embed)
else:
try:
fake_member = discord.Object(id=int(user_id))
await self.bot.senko_guild.unban(fake_member)
self.bot.send_log("Unban", "{}: Unban pending user {}({}) not found in server: Unbanning.".format(
ctx.message.author, user_id, fake_member))
embed = self.bot.basic_embed(True, "User **unbanned**!")
await ctx.send(embed=embed)
except discord.NotFound:
self.bot.send_log("Unban", "{}: Unban pending user {} not found.".format(
ctx.message.author, user_id))
embed = self.bot.basic_embed(False, "User **not found**!")
await ctx.send(embed=embed)
@commands.command()
async def pingrole(self, ctx, role):
if self.bot.is_mod(ctx.author):
role = role.lower()
if role == "server" or role == "s":
role = self.bot.roles.news_server
elif role == "anime" or role == "a":
role = self.bot.roles.news_anime
else:
embed = self.bot.basic_embed(False, "Role {} **not found**!".format(role))
await ctx.send(embed=embed)
return
await ctx.message.delete()
await role.edit(mentionable=True)
await ctx.send(content=role.mention)
await role.edit(mentionable=False)
await ctx.send("** **")
@commands.command()
async def mrf(self, ctx):
if self.bot.is_mod(ctx.author):
loading = discord.Embed(
title=":hourglass: **Refreshing** embeds for *#24h* channel...",
timestamp=ctx.message.created_at,
color=0xffa749
)
msg = await ctx.send(embed=loading)
await msg.edit(embed=loading)
await self.bot.refresh_24h()
embed = discord.Embed(
title=":white_check_mark: **Refreshed** embeds for *#24h* channel!",
timestamp=ctx.message.created_at,
color=0x89af5b
)
await msg.edit(embed=embed)
@commands.command()
async def track(self, ctx, aid):
if self.bot.is_mod(ctx.author):
if aid == "-l":
desc = "─────────────────"
for i in self.bot.tracking:
title_name = None
animeid = None
for key, value in i.items():
animeid = key
for k, v in value.items():
title_name = v
if len(title_name) >= 41:
title_name = title_name[:40].strip() + "..."
str_to_add = "\n`{}` - {}".format(str(animeid).rjust(6, "0"), title_name)
desc += str_to_add
embed = discord.Embed(
title=":notepad_spiral: **Currently tracking anime:**",
description=desc,
color=0xcdd4db,
timestamp=datetime.utcnow()
)
await ctx.send(embed=embed)
else:
data = await find_anime_by_id(aid)
if data:
duplicate = False
if self.bot.tracking:
for i in self.bot.tracking:
for key, value in i.items():
if str(key) == str(data["id"]):
duplicate = True
title = data["title"]["romaji"]
if not duplicate:
is_releasing = False
status = data["status"]
if status.lower() == "releasing":
is_releasing = True
else:
try:
x = data["airingSchedule"]["edges"][0]["node"]["episode"]
if x:
is_releasing = True
except (IndexError, KeyError):
embed = self.bot.basic_embed(
False, "__{}__ **not currently releasing**!".format(data["title"]["romaji"]))
await ctx.send(embed=embed)
return
if is_releasing:
to_append = {
str(data["id"]): {
"title": title
}
}
await self.bot.append_tracking(to_append)
self.bot.send_log("Tracking", "Started tracking {} ({}) by {}".format(
title, data["id"], ctx.author))
embed = self.bot.basic_embed(True, "Started tracking **{}**!".format(title))
else:
embed = self.bot.basic_embed(
False, "__{}__ **not currently releasing**!".format(data["title"]["romaji"]))
else:
embed = self.bot.basic_embed(False, "Already tracking **{}**!".format(title))
else:
embed = self.bot.basic_embed(False, "No anime with ID **{}** found!".format(aid))
embed.set_footer(text="Use !anime <name> -id to get the anilist ID.")
await ctx.send(embed=embed)
def setup(bot):
bot.add_cog(ModsCog(bot))
| python |
# Licensed to the .NET Foundation under one or more agreements.
# The .NET Foundation licenses this file to you under the Apache 2.0 License.
# See the LICENSE file in the project root for more information.
##
## Test weakref
##
## * Since the IronPython GC heavily differs from CPython GC (absence of reference counting),
## the CPython unit tests cannot fully be made pass on IronPython without modification
##
## * Comments below in double quotes are from the Python standard library documentation.
##
## * Issues of the current implementation of _weakref.cs:
##
## - weakref finalization callbacks are run in the CLR finalizer thread.
## This is likely to cause data races in user code.
## - WeakRefTracker.cs code and internal state handling most likely is not
## implemented in a thread-safe way.
##
import gc
import weakref
from iptest import IronPythonTestCase, run_test
class C(object):
def __init__(self, value=0):
self.value = value
def __hash__(self):
return hash(self.value)
def __eq__(self, other):
return isinstance(other, C) and self.value == other.value
def __ne__(self, other):
return not self.__eq__(other)
class WeakrefTest(IronPythonTestCase):
def _create_weakrefs(self, o, count, cb = None):
# force creation of different instances for the same target
if not cb and count > 1:
cb = lambda r: None
if count==1:
return weakref.ref(o, cb)
elif count==2:
r1, r2 = weakref.ref(o, cb), weakref.ref(o, cb)
self.assertTrue(r1 is not r2)
return r1, r2
else:
raise Exception("not implemented")
def test_ref_callable(self):
# "if the referent is no longer alive, calling the reference object will cause None to
# be returned"
o = C("a")
r = self._create_weakrefs(o, 1)
# for reasons stated in create_weakrefs(), we cannot test on instance equality
self.assertTrue(r().value == "a")
del o
gc.collect()
self.assertTrue(r() is None)
def test_ref_hashable(self):
# "Weak references are hashable if the object is hashable. They will maintain their hash value
# even after the object was deleted. If hash() is called the first time only after the object
# was deleted, the call will raise TypeError."
o = C("a")
r1, r2 = self._create_weakrefs(o, 2)
self.assertTrue(hash(r1) == hash("a"))
del o
gc.collect()
self.assertTrue(r1() is None)
self.assertTrue(r2() is None)
self.assertTrue(hash(r1) == hash("a"))
self.assertRaises(TypeError, lambda: hash(r2))
def test_ref_equality(self):
# "If the referents are still alive, two references have the same equality relationship as
# their referents (regardless of the callback). If either referent has been deleted, the
# references are equal only if the reference objects are the same object."
o, o2 = C("a"), C("a")
r1, r2 = self._create_weakrefs(o, 2)
r3 = self._create_weakrefs(o2, 1)
self.assertTrue(r1 == r2)
self.assertTrue(r1 == r3)
del o, o2
gc.collect()
self.assertTrue(r1() is None)
self.assertTrue(r3() is None)
self.assertTrue(r1 != r2)
self.assertTrue(r1 != r3)
run_test(__name__)
| python |
#Done by Lauro Ribeiro (12/02/2021)
# Tutorial 7 - Use the Where Clause
import sqlite3
#Connect to database
conn = sqlite3.connect('customer.db')
#Create a cursor
c = conn.cursor()
#Query the database
c.execute("SELECT * FROM customers WHERE email LIKE '%gmail.com'")
items = c.fetchall()
for item in items:
print(item)
#Commit our command
conn.commit()
#Close our connection
conn.close()
| python |
import os, sys
# Kiny passou aqui XD
def restart():
python=sys.executable;os.excl(python, python, *sys.argv)
try:
import colorama, requests
except:
os.system('pip install -r requirements.txt');restart()
try:
from data import ui, numero, cpf, nome, rg, email
except Exception as e:
print('ARQUIVO CORROMPIDO! '+str(e));exit()
C= "\033[97;1m"
G = "\033[92;1m"
P = "\033[1;35m"
Sair=False
while(Sair==False):
try:
op=int(ui.menu(ms0=f'\n{C}[{G}1{C}] Numero\n{C}[{G}2{C}] CPF\n{C}[{G}3{C}] Nome\n{C}[{G}4{C}] RG\n{C}[{G}5{C}] EMAIL\n{C}\n[{P}0{C}] Sair'))
if op==1:
numero.consultar()
elif op==2:
cpf.consultar()
elif op==3:
nome.consultar()
elif op==4:
rg.consultar()
elif op==5:
email.consultar()
elif op==0:
ui.clear();Sair=True
except:
ui.error()
| python |
# -*- coding: utf-8 -*-
import pytest
from wemake_python_styleguide.violations.best_practices import (
YieldInComprehensionViolation,
)
from wemake_python_styleguide.visitors.ast.loops import (
WrongComprehensionVisitor,
)
list_comprehension = """
def container():
nodes = [{0} for xy in "abc"]
"""
generator_expression = """
def container():
nodes = ({0} for xy in "abc")
"""
set_comprehension = """
def container():
nodes = {{{0} for xy in "abc"}}
"""
# We ignore `DeprecationWarning: 'yield' inside generator expression` here
@pytest.mark.filterwarnings('ignore:DeprecationWarning')
@pytest.mark.parametrize('code', [
list_comprehension,
generator_expression,
set_comprehension,
])
def test_yield_keyword_in_comprehension(
assert_errors,
parse_ast_tree,
code,
default_options,
mode,
):
"""Testing that using `yield` keyword is not allowed."""
tree = parse_ast_tree(mode(code.format('(yield xy)')))
visitor = WrongComprehensionVisitor(default_options, tree=tree)
visitor.run()
assert_errors(visitor, [YieldInComprehensionViolation])
@pytest.mark.parametrize('code', [
list_comprehension,
generator_expression,
set_comprehension,
])
def test_comprehension_without_yield(
assert_errors,
parse_ast_tree,
code,
default_options,
mode,
):
"""Testing that regular comprehensions are allowed."""
tree = parse_ast_tree(mode(code.format('xy')))
visitor = WrongComprehensionVisitor(default_options, tree=tree)
visitor.run()
assert_errors(visitor, [])
| python |
# ##################################################################
# SAMPLE USAGE
# ##################################################################
if __name__ == '__main__':
# ####################
# IMPORT
# ####################
import json
import cProfile
from .client import deltaClient # facade
# ####################
# SOME API KEYS
# ####################
with open("/etc/config/delta.json") as config_file:
config = json.load(config_file)
key = config["KEY"]
secret = config["SECRET"]
# ####################
# INSTANTIATE CLIENT
# ####################
delta = deltaClient(key=key, secret=secret)
# Test with low expectations
server_time = delta.send_request.server_time()
print(server_time)
account_summary = delta.send_request.account_summary()
print(account_summary)
pos_btc = delta.send_request.all_positions()
# ####################
# TEST : REQUESTS
# ####################
print("Requesting server_time.")
server_time = delta.send_request.server_time()
print(server_time)
print("Requesting index_level.")
index_level = delta.send_request.index_level("BTC")
print(index_level)
print("Requesting BTC index_level.")
BTC_index_level = delta.send_request.btc_index()
print(BTC_index_level)
print("Requesting ETH index_level.")
ETH_index_level = delta.send_request.eth_index()
print(ETH_index_level)
print("Requesting delta instruments.")
instruments = delta.send_request.instruments("BTC")
print(instruments)
print("Requesting delta trades (from the last, going back up to last - count).")
some_trades = delta.send_request.trades(["BTC-PERPETUAL", "ETH-PERPETUAL"])
print(some_trades)
print("Requesting all delta trades for given instruments.")
futures = ["ETH-PERPETUAL", "BTC-PERPETUAL"]
options = ["BTC-29NOV19-8000-C"]
books = delta.send_request.orderbooks(futures)
print(books)
| python |
from .currency import *
from .profile import *
from .account import *
from .base import *
from .transaction import *
from .budget import *
| python |
from kratos import *
import kratos as kts
def create_port_pkt(data_width,
consumer_ports):
return PackedStruct(f"port_pkt_{data_width}_{consumer_ports}",
[("data", data_width, False),
("port", consumer_ports, False),
("valid", 1, False)])
class RWArbiter(Generator):
'''
The read_write arbiter dynamically schedules reads and writes to
a single bank of SRAM
'''
def __init__(self,
fetch_width=16,
data_width=16,
memory_depth=32,
num_tiles=1,
int_in_ports=2,
int_out_ports=2,
strg_wr_ports=2,
strg_rd_ports=2,
read_delay=0,
rw_same_cycle=True,
separate_addresses=True):
assert not (memory_depth & (memory_depth - 1)), "Memory depth needs to be a power of 2"
super().__init__("rw_arbiter")
# Absorb inputs
self.fetch_width = fetch_width
self.data_width = data_width
self.fw_int = int(self.fetch_width / self.data_width)
self.int_in_ports = int_in_ports
self.int_out_ports = int_out_ports
self.strg_wr_ports = strg_wr_ports
self.strg_rd_ports = strg_rd_ports
self.memory_depth = memory_depth
self.num_tiles = num_tiles
self.mem_addr_width = clog2(self.num_tiles * self.memory_depth)
self.read_delay = read_delay
self.rw_same_cycle = rw_same_cycle
self.separate_addresses = separate_addresses
# Clock and Reset
self._clk = self.clock("clk")
self._rst_n = self.reset("rst_n")
# Generate the packed struct of the right size
port_pkt_struct = create_port_pkt(self.fetch_width, self.int_out_ports)
# Inputs
self._wen_in = self.input("wen_in", self.strg_wr_ports)
# self._wen_en = self.input("wen_en", self.strg_wr_ports)
self._w_data = self.input("w_data",
self.data_width,
size=(self.strg_wr_ports,
self.fw_int),
explicit_array=True,
packed=True)
self._w_addr = self.input("w_addr", self.mem_addr_width,
size=self.strg_wr_ports,
explicit_array=True,
packed=True)
self._data_from_mem = self.input("data_from_mem",
self.data_width,
size=(self.strg_rd_ports,
self.fw_int),
explicit_array=True,
packed=True)
self._mem_valid_data = self.input("mem_valid_data",
self.strg_rd_ports)
self._out_mem_valid_data = self.output("out_mem_valid_data",
self.strg_rd_ports)
self._ren_in = self.input("ren_in", self.int_out_ports)
self._ren_en = self.input("ren_en", self.int_out_ports)
self._rd_addr = self.input("rd_addr",
self.mem_addr_width,
size=self.int_out_ports,
explicit_array=True,
packed=True)
self._rd_addr_sel = self.var("rd_addr_sel",
self.mem_addr_width,
size=self.strg_rd_ports,
explicit_array=True,
packed=True)
# Outputs
self._out_data = self.output("out_data",
self.data_width,
size=(self.strg_rd_ports,
self.fw_int),
explicit_array=True,
packed=True)
self._out_port = self.output("out_port", self.int_out_ports,
size=self.strg_rd_ports,
explicit_array=True,
packed=True)
self._out_valid = self.output("out_valid", self.strg_rd_ports)
self._cen_mem = self.output("cen_mem", self.strg_rd_ports)
self._wen_mem = self.output("wen_mem", self.strg_wr_ports)
self._data_to_mem = self.output("data_to_mem",
self.data_width,
size=(self.strg_wr_ports,
self.fw_int),
explicit_array=True,
packed=True)
# In this case, need separate addresses
if self.separate_addresses:
self._wr_addr_to_mem = self.output("wr_addr_to_mem",
self.mem_addr_width,
size=self.strg_wr_ports,
explicit_array=True,
packed=True)
self._rd_addr_to_mem = self.output("rd_addr_to_mem",
self.mem_addr_width,
size=self.strg_rd_ports,
explicit_array=True,
packed=True)
# If the addresses are combined, we better have in==out
else:
assert self.strg_rd_ports == self.strg_wr_ports, \
"Cannot have coalesced address with mismatch port count"
assert not self.rw_same_cycle, \
"Cannot read and write with a shared address...set rw_same_cycle to false"
self._addr_to_mem = self.output("addr_to_mem", self.mem_addr_width,
size=self.strg_rd_ports,
explicit_array=True,
packed=True)
self._out_ack = self.output("out_ack", self.int_out_ports)
# Local
# self._rd_data = self.var("rd_data", self.fetch_width)
self._wen_int = self.var("wen_int", self.strg_wr_ports)
self._ren_int = self.var("ren_int", self.int_out_ports)
self.wire(self._ren_int, self._ren_in & self._ren_en)
self.wire(self._wen_int, self._wen_in) # & self._wen_en)
self._rd_valid = self.var("rd_valid", self.strg_rd_ports)
self._rd_port = self.var("rd_port", self.int_out_ports,
size=self.strg_rd_ports,
explicit_array=True,
packed=True)
self._next_rd_port = self.var("next_rd_port", self.int_out_ports,
size=self.strg_rd_ports,
explicit_array=True,
packed=True)
# For demuxing the read ports
self._done = self.var("done", self.strg_rd_ports)
self.add_code(self.set_next_read_port_lowest)
if(self.strg_rd_ports > 1):
self._idx_cnt = self.var("idx_cnt", 5,
size=self.strg_rd_ports - 1,
explicit_array=True,
packed=True)
for i in range(self.strg_rd_ports - 1):
self.add_code(self.set_next_read_port_alt, index=i + 1)
# If we have more than one read port, we need to use slightly different logic
# to set the other reads...
self._next_rd_port_red = self.var("next_rd_port_red", self.int_out_ports)
for i in range(self.int_out_ports):
temp_port = self._next_rd_port[0][i]
for j in range(self.strg_rd_ports - 1):
temp_port = kts.concat(temp_port, self._next_rd_port[j + 1][i])
self.wire(self._next_rd_port_red[i], temp_port.r_or())
# The next read port can be used to acknowledge reads
# We do not need to gate the ack if we can read and write in the same cycle
if self.rw_same_cycle:
self.wire(self._out_ack,
self._next_rd_port_red)
else:
self.wire(self._out_ack,
self._next_rd_port_red & kts.concat(*([~self._wen_int] * self._out_ack.width)))
# self.add_code(self.mem_controls)
if self.separate_addresses:
for i in range(self.strg_wr_ports):
self.add_code(self.mem_controls_wr, idx=i)
for i in range(self.strg_rd_ports):
self.add_code(self.mem_controls_rd, idx=i)
else:
for i in range(self.strg_rd_ports):
self.add_code(self.mem_controls_combined, idx=i)
if self.read_delay == 1:
for i in range(self.strg_rd_ports):
self.add_code(self.next_read_valid, idx=i)
else:
for i in range(self.strg_rd_ports):
self.add_code(self.zero_delay_read, idx=i)
self.add_code(self.output_stage)
@always_comb
def mem_controls_wr(self, idx):
self._wen_mem[idx] = self._wen_int[idx]
self._data_to_mem[idx] = self._w_data[idx]
self._wr_addr_to_mem[idx] = self._w_addr[idx]
@always_comb
def mem_controls_rd(self, idx):
# cen_mem acts as ren_mem when the ports are separated
self._cen_mem[idx] = self._next_rd_port[idx].r_or()
self._rd_addr_to_mem[idx] = self._rd_addr_sel[idx]
@always_comb
# Prioritizes writes over reads
def mem_controls_combined(self, idx):
self._wen_mem[idx] = self._wen_int[idx]
self._cen_mem[idx] = (self._wen_int[idx] | (self._next_rd_port[idx].r_or()))
self._data_to_mem[idx] = self._w_data[idx]
# Consume wr over read
if(self._wen_int[idx]):
self._addr_to_mem[idx] = self._w_addr[idx]
else:
self._addr_to_mem[idx] = self._rd_addr_sel[idx]
@always_comb
# Find lowest ready
def set_next_read_port_lowest(self):
self._next_rd_port[0] = 0
self._rd_addr_sel[0] = 0
self._done[0] = 0
for i in range(self.int_out_ports):
if ~self._done[0]:
if self._ren_int[i]:
self._rd_addr_sel[0] = self._rd_addr[i]
self._next_rd_port[0][i] = 1
self._done[0] = 1
# Find lowest ready
@always_comb
def set_next_read_port_alt(self, index):
self._next_rd_port[index] = 0
self._idx_cnt[index - 1] = 0
self._rd_addr_sel[index] = 0
self._done[index] = 0
for i in range(self.int_out_ports):
if ~self._done[index]:
if self._ren_int[i] & (self._idx_cnt[index - 1] == index):
self._done[index] = 1
self._rd_addr_sel[index] = self._rd_addr[i]
self._next_rd_port[index][i] = 1
self._idx_cnt[index - 1] = self._idx_cnt[index - 1] + 1
@always_ff((posedge, "clk"), (negedge, "rst_n"))
def next_read_valid(self, idx):
if ~self._rst_n:
self._rd_port[idx] = 0
self._rd_valid[idx] = 0
else:
self._rd_valid[idx] = ((~self._wen_int[idx] | (self.rw_same_cycle)) &
(self._next_rd_port[idx].r_or()))
self._rd_port[idx] = self._next_rd_port[idx]
@always_comb
def zero_delay_read(self, idx):
self._rd_valid[idx] = (~self._wen_int[idx] | (self.rw_same_cycle)) & (self._next_rd_port[idx].r_or())
self._rd_port[idx] = self._next_rd_port[idx]
@always_comb
def output_stage(self):
self._out_data = self._data_from_mem
self._out_port = self._rd_port
self._out_valid = self._rd_valid
self._out_mem_valid_data = self._mem_valid_data
if __name__ == "__main__":
db_dut = RWArbiter()
verilog(db_dut, filename="rw_arbiter.sv")
| python |
from __future__ import division
from __future__ import print_function
def elink_module(elink_intf, emesh_intf):
""" The Adapteva ELink off-chip communication channel.
Interfaces:
elink_intf: The external link signals
emesh_intf: The internal EMesh packet interface
"""
# keep track of all the myhdl generators
mod_inst = []
# clock and reset config
# g = ecfg_elink()
# mod_inst.append(g)
# receiver
# g = erx(elink, emesh_e)
# mod_inst.append(g)
# transmitter
# g = etx(elink, emesh_e)
# mod_inst.append(g)
# CDC FIFO
# g = ecfg_fifo(emesh, emesh_e)
# mod_inst.append(g)
# Vendor specific IO SERDES
# g = io_serdes()
# mod_inst.append(g)
return mod_inst
| python |
import os
import re
import sys
from functools import partial
from datetime import datetime
from jinja2 import Template
from traitlets.config.configurable import Configurable
from traitlets import Integer, CBool, Unicode, Float, Set, Dict, Unicode
from jupyterhub.traitlets import Callable
from wtforms import BooleanField, DecimalField, SelectField, StringField, Form, RadioField
from wtforms.form import BaseForm
from wtforms.validators import InputRequired, NumberRange, AnyOf
from wtforms.fields.html5 import IntegerField
from wtforms.widgets.html5 import NumberInput
from . traitlets import NumericRangeWidget, SelectWidget
class FakeMultiDict(dict):
getlist = dict.__getitem__
def resolve(value, *args, **kargs):
if callable(value):
return value(*args, **kargs)
else:
return value
class SbatchForm(Configurable):
runtime = NumericRangeWidget(
{
'min' : 0.25,
'def' : 1.0,
'step': 0.25,
'lock': False,
},
help="Define parameters of runtime numeric range widget"
).tag(config=True)
memory = NumericRangeWidget(
{
'min' : 1024,
'step': 1,
'lock': False,
'def': lambda api, user: int(max(api.get_mems()) / max(api.get_cpus())),
'max': lambda api, user: max(api.get_mems())
},
help="Define parameters of memory numeric range widget in MB"
).tag(config=True)
nprocs = NumericRangeWidget(
{
'min' : 1,
'step': 1,
'lock': False,
'def': 1,
'max' : lambda api, user: max(api.get_cpus())
},
help="Define parameters of core numeric range widget"
).tag(config=True)
oversubscribe = Dict({'def' : False, 'lock' : True}).tag(config=True)
gpus = SelectWidget(
{
'def' : 'gpu:0',
'choices' : lambda api, user: api.get_gres(),
'lock' : False
},
help="Define the list of available gpu configurations."
).tag(config=True)
account = SelectWidget(
{
'choices' : lambda api, user: api.get_accounts(user),
'lock' : False
},
help="Define the list of available accounts."
).tag(config=True)
reservation = SelectWidget(
{
'def' : '',
'choices' : lambda api, user: api.get_active_reservations(user, api.get_accounts(user)),
'lock' : False
},
help="Define the list of available reservations."
).tag(config=True)
ui = SelectWidget(
{
'lock' : False,
'def' : 'lab',
'choices' : ['notebook', 'lab', 'terminal']
},
help="Define the list of available user interface."
).tag(config=True)
form_template_path = Unicode(
os.path.join(sys.prefix, 'share', 'slurmformspawner', 'templates', 'form.html'),
help="Path to the Jinja2 template of the form"
).tag(config=True)
def __init__(self, username, slurm_api, ui_args, user_options = {}, config=None):
super().__init__(config=config)
fields = {
'account' : SelectField("Account", validators=[AnyOf([])]),
'runtime' : DecimalField('Time (hours)', validators=[InputRequired(), NumberRange()], widget=NumberInput()),
'ui' : SelectField('User interface', validators=[AnyOf([])]),
'nprocs' : IntegerField('Number of cores', validators=[InputRequired(), NumberRange()], widget=NumberInput()),
'memory' : IntegerField('Memory (MB)', validators=[InputRequired(), NumberRange()], widget=NumberInput()),
'gpus' : SelectField('GPU configuration', validators=[AnyOf([])]),
'oversubscribe' : BooleanField('Enable core oversubscription?'),
'reservation' : SelectField("Reservation", validators=[AnyOf([])])
}
self.form = BaseForm(fields)
self.form['runtime'].filters = [float]
self.resolve = partial(resolve, api=slurm_api, user=username)
self.ui_args = ui_args
with open(self.form_template_path, 'r') as template_file:
self.template = template_file.read()
for key in fields:
dict_ = getattr(self, key)
if dict_.get('lock') is True:
if dict_.get('def') is None:
raise Exception(f'You need to define a default value for {key} because it is locked.')
if key in user_options:
self.form[key].process(formdata=FakeMultiDict({key : [user_options[key]]}))
else:
self.form[key].process(formdata=FakeMultiDict({key : [self.resolve(getattr(self, key).get('def'))]}))
@property
def data(self):
return self.form.data
@property
def errors(self):
return self.form.errors
def process(self, formdata):
for key in self.form._fields.keys():
lock = self.resolve(getattr(self, key).get('lock'))
value = formdata.get(key)
if not lock and value is not None:
self.form[key].process(formdata=FakeMultiDict({key : value}))
def validate(self):
valid = True
for key in self.form._fields.keys():
lock = self.resolve(getattr(self, key).get('lock'))
if not lock:
valid = self.form[key].validate(self.form) and valid
return valid
def render(self):
self.config_runtime()
self.config_nprocs()
self.config_memory()
self.config_oversubscribe()
self.config_ui()
self.config_gpus()
self.config_reservations()
self.config_account()
return Template(self.template).render(form=self.form)
def config_runtime(self):
lock = self.resolve(self.runtime.get('lock'))
if lock:
def_ = self.resolve(self.runtime.get('def'))
self.form['runtime'].render_kw = {'disabled': 'disabled'}
self.form['runtime'].widget.min = def_
self.form['runtime'].widget.max = def_
self.form['runtime'].validators[-1].min = def_
self.form['runtime'].validators[-1].max = def_
self.form['runtime'].validators[-1].message = f'Runtime can only be {def_}'
else:
min_ = self.resolve(self.runtime.get('min'))
max_ = self.resolve(self.runtime.get('max'))
step = self.resolve(self.runtime.get('step'))
self.form['runtime'].widget.min = min_
self.form['runtime'].widget.max = max_
self.form['runtime'].widget.step = step
if min_ is not None:
self.form['runtime'].validators[-1].min = min_
if max_ is not None:
self.form['runtime'].validators[-1].max = max_
self.form['runtime'].validators[-1].message = f'Runtime outside of allowed range [{min_}, {max_}]'
def config_nprocs(self):
lock = self.resolve(self.nprocs.get('lock'))
if lock:
def_ = self.resolve(self.nprocs.get('def'))
self.form['nprocs'].render_kw = {'disabled': 'disabled'}
self.form['nprocs'].widget.min = def_
self.form['nprocs'].widget.max = def_
self.form['nprocs'].validators[-1].min = def_
self.form['nprocs'].validators[-1].max = def_
else:
min_ = self.resolve(self.nprocs.get('min'))
max_ = self.resolve(self.nprocs.get('max'))
step = self.resolve(self.nprocs.get('step'))
self.form['nprocs'].widget.min = min_
self.form['nprocs'].widget.max = max_
self.form['nprocs'].widget.step = step
self.form['nprocs'].validators[-1].min = min_
self.form['nprocs'].validators[-1].max = max_
def config_memory(self):
lock = self.resolve(self.memory.get('lock'))
if lock:
def_ = self.resolve(self.memory.get('def'))
self.form['memory'].render_kw = {'disabled': 'disabled'}
self.form['memory'].widget.min = def_
self.form['memory'].widget.max = def_
self.form['memory'].validators[-1].min = def_
self.form['memory'].validators[-1].max = def_
else:
min_ = self.resolve(self.memory.get('min'))
max_ = self.resolve(self.memory.get('max'))
step = self.resolve(self.memory.get('step'))
self.form['memory'].widget.min = min_
self.form['memory'].widget.max = max_
self.form['memory'].widget.step = step
self.form['memory'].validators[-1].min = min_
self.form['memory'].validators[-1].max = max_
def config_oversubscribe(self):
if self.oversubscribe['lock']:
self.form['oversubscribe'].render_kw = {'disabled': 'disabled'}
def config_account(self):
keys = self.resolve(self.account.get('choices'))
if keys:
choices = list(zip(keys, keys))
else:
keys = [""]
choices = [("", "None")]
self.form['account'].choices = choices
self.form['account'].validators[-1].values = keys
if self.resolve(self.account.get('lock')):
self.form['account'].render_kw = {'disabled': 'disabled'}
def config_gpus(self):
choices = self.resolve(self.gpus.get('choices'))
lock = self.resolve(self.gpus.get('lock'))
gpu_choice_map = {}
for gres in choices:
if gres == 'gpu:0':
gpu_choice_map['gpu:0'] = 'None'
continue
match = re.match(r"(gpu:[\w:]+)", gres)
if match:
gres = match.group(1).split(':')
number = int(gres[-1])
if len(gres) == 2:
strings = ('gpu:{}', '{} x GPU')
elif len(gres) > 2:
strings = ('gpu:{}:{{}}'.format(gres[1]), '{{}} x {}'.format(gres[1].upper()))
for i in range(1, number + 1):
gpu_choice_map[strings[0].format(i)] = strings[1].format(i)
self.form['gpus'].choices = list(gpu_choice_map.items())
if lock:
self.form['gpus'].render_kw = {'disabled': 'disabled'}
self.form['gpus'].validators[-1].values = [key for key, value in self.form['gpus'].choices]
def config_ui(self):
choices = self.resolve(self.ui.get('choices'))
lock = self.resolve(self.ui.get('lock'))
self.form['ui'].validators[-1].values = [key for key in choices]
self.form['ui'].choices = [(key, self.ui_args[key]['name']) for key in choices]
if lock:
self.form['ui'].render_kw = {'disabled': 'disabled'}
def config_reservations(self):
choices = self.resolve(self.reservation.get('choices'))
lock = self.resolve(self.reservation.get('lock'))
prev = self.form['reservation'].data
if choices is None:
choices = []
now = datetime.now()
prev_is_valid = False
self.form['reservation'].choices = [("", "None")]
for rsv in choices:
name = rsv['ReservationName']
duration = rsv['EndTime'] - now
string = '{} - time left: {}'.format(name, duration)
self.form['reservation'].choices.append((name, string))
if prev == name:
prev_is_valid = True
if lock:
self.form['reservation'].render_kw = {'disabled': 'disabled'}
self.form['reservation'].validators[-1].values = [key for key, value in self.form['reservation'].choices]
| python |
import yaml
from boardgamegeek import BGGClient
def main(user, member_data_file):
bgg = BGGClient()
with open(member_data_file, "r") as data_file:
member_data = yaml.load(data_file)
user_data = member_data[user]
del member_data[user]
user_collection_size = len(user_data)
member_scores = list()
for user, ratings in member_data.items():
score = 0
games_in_common = 0
for game, rating in user_data.items():
if game in ratings:
diff = (rating - ratings[game])**2
score += diff
games_in_common += 1
member_scores.append(
{"user": user, "score": score, "common": games_in_common})
member_scores = [x for x in member_scores if x[
"common"] >= 0.5 * user_collection_size]
member_scores.sort(key=lambda x: x["score"])
filename = user + "_followers.yml"
with open(filename, "w") as fo:
yaml.dump(member_scores, fo)
for i in range(5):
member = member_scores[i]
print(member["user"], member["score"], member["common"])
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--user")
parser.add_argument("--member-data")
args = parser.parse_args()
main(args.user, args.member_data)
| python |
# Generated by Django 2.2 on 2020-10-20 18:37
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('library', '0003_librarysubscription_nightshift'),
]
operations = [
migrations.AlterField(
model_name='librarybranch',
name='address',
field=models.TextField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='admission_fees',
field=models.PositiveSmallIntegerField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='ammenities',
field=models.ManyToManyField(blank=True, null=True, to='core.Ammenity'),
),
migrations.AlterField(
model_name='librarybranch',
name='beginning_of_summer_season',
field=models.PositiveSmallIntegerField(blank=True, choices=[(1, 'January'), (2, 'February'), (3, 'March'), (4, 'April'), (5, 'May'), (6, 'June'), (7, 'July'), (8, 'August'), (9, 'September'), (10, 'October'), (11, 'November'), (12, 'December')], null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='beginning_of_winter_season',
field=models.PositiveSmallIntegerField(blank=True, choices=[(1, 'January'), (2, 'February'), (3, 'March'), (4, 'April'), (5, 'May'), (6, 'June'), (7, 'July'), (8, 'August'), (9, 'September'), (10, 'October'), (11, 'November'), (12, 'December')], null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='closing_time',
field=models.TimeField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='description',
field=models.TextField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='gst',
field=models.FloatField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='locker_fees',
field=models.PositiveSmallIntegerField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='night_shift_from',
field=models.TimeField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='night_shift_to',
field=models.TimeField(blank=True, null=True),
),
migrations.AlterField(
model_name='librarybranch',
name='opening_days',
field=models.ManyToManyField(blank=True, null=True, to='core.OpeningDays'),
),
migrations.AlterField(
model_name='librarybranch',
name='opening_time',
field=models.TimeField(blank=True, null=True),
),
]
| python |
import mock
from util.factory import channel_factory
from util.factory import new_podcast_factory
from util.factory import requested_podcast_factory
from podcast.download import _download_from_url
from podcast.download import download_channel
from podcast.models import NewStatus
from podcast.models import RadioDirectory
def get_types(channel):
return [
type(podcast.status).__name__
for podcast in channel.known_podcasts
]
def test_download_channel_none_requested():
channel = channel_factory(known_podcasts=[
new_podcast_factory(),
new_podcast_factory(),
new_podcast_factory(),
])
with mock.patch(
'podcast.download.download_podcast') as mock_download_podcast:
new_channel = download_channel(
RadioDirectory('tmp'),
channel)
assert len(mock_download_podcast.mock_calls) == 0
assert channel == new_channel
assert get_types(channel) == get_types(new_channel)
def test_download_channel_success():
channel = channel_factory(known_podcasts=[requested_podcast_factory()])
with mock.patch(
'podcast.download._download_from_url',
return_value=True) as mock_download_podcast:
new_channel = download_channel(
RadioDirectory('tmp'),
channel)
assert len(mock_download_podcast.mock_calls) == 1
expected = channel._replace(
known_podcasts=[
channel.known_podcasts[0]._replace(status=NewStatus())
])
assert channel == expected
assert get_types(new_channel) == get_types(expected)
# Let's test the tests
assert get_types(new_channel) != get_types(channel)
def test_download_channel_fail():
channel = channel_factory(known_podcasts=[requested_podcast_factory()])
with mock.patch(
'podcast.download._download_from_url',
return_value=False) as mock_download_podcast:
new_channel = download_channel(
RadioDirectory('tmp'),
channel)
assert len(mock_download_podcast.mock_calls) == 1
assert channel == new_channel
assert get_types(channel) == get_types(new_channel)
def test_download_from_url_success():
with mock.patch('urllib.request.urlretrieve'):
assert _download_from_url(
'http://jessicastringham.com/something',
'nope')
def test_download_from_url_fail():
with mock.patch('urllib.request.urlretrieve', side_effect=IOError):
assert not _download_from_url(
'http://jessicastringham.com/something',
'nope')
| python |
import mne
import os
import numpy as np
import pandas as pd
#from .kcmodel import scoring_algorithm_kc
from ..features.spectral_features import compute_absol_pow_freq_bands
from .base import BaseMethods
import sys
from scipy.signal import find_peaks
import pywt
import joblib
try:
wd = sys._MEIPASS
except AttributeError:
wd = os.path.dirname(__file__)
try:
import torch
import torch.jit
#torch.jit.script_method = script_method
#torch.jit.script = script
except ImportError:
print(ImportError)
try:
import gpytorch
from gpytorch.variational import CholeskyVariationalDistribution
from gpytorch.variational import WhitenedVariationalStrategy
except ImportError:
print(ImportError)
class KC(BaseMethods):
"""
... one line comment
...
Parameters
----------
raw : mne.Base.io.raw object
hypnogram : hypnogram class
Methods
-------
"""
def __init__(self, include_stages = 'all', **kwargs):
super().__init__()
self._include_stages = include_stages
if include_stages =='all': self._include_stages = [-1,0,1,2,3,4,5,9]
self._epochs_data = {}
self._metadata = {}
self._scoring = {}
def fit(self, raw, hypnogram, picks=None, events=None,**kwargs):
"""
Parameters
----------
raw
hypnogram
path
picks
events
kwargs
Returns
-------
"""
self._check_raw(raw)
self._check_hypno(hypnogram)
if kwargs: self.set_params(parameters_dict=kwargs, check_has_key=True)
if picks is not None:
raw = raw.pick_channels(ch_names=picks)
self._raw = raw.filter(l_freq=0.3,h_freq=None, verbose = 'error')
self._hypno = hypnogram
def score(self):
""" Score K-complexes and calculate characteristics K-complexes parameters.
More informations about the scoring algorithm can be found in [1] and in :py:func:`~SHAI.EEG.KCscoring.model`.
Results (scoring + metrics) is stored in kc_scoring dict. Some metrics are scored according to [2].
Parameters
----------
Returns
-------
output : ndarray, shape (n_channels * n_edge,)
With: `n_edge = 1` if `edge` is None or `n_edge = len(edge)` otherwise.
Notes
-----
The following parameters are calculated for each K-complexes:
KC_onset : onset, in seconds from the beginning of the recordings, of the KC
KC_probas : probability of the K-complex
KC_stage : sleep stage of the K-complex
N550 : Amplitude of the N550 components, in uv
P900 : Amplitude of the P900 components, in uv
PTP : Peak to peak amplitude of the KC, in uv
Slope : K-complex slope, define as (P900-N550)/(tP900-tN550), in uv/sec
dt_P9_N5 : Time tP900-tN550, in seconds
baseline_delta: absoulte delta power in the 3 seconds preceeding the k-complex, in uv^2/Hz
baseline_alpha : absoulte alpha power in the 3 seconds preceeding the k-complex, in uv^2/Hz
after_delta : absoulte delta power in the 3 seconds after the k-complex, in uv^2/Hz
after_alpha : absoulte alpha power in the 3 seconds after the k-complex, in uv^2/Hz
ratio_delta : after_delta/baseline_delta,
ratio_alpha : after_alpha/baseline_alpha
[1] Lechat, B., et al. (2020). "Beyond K-complex binary scoring during sleep: Probabilistic
classification using deep learning." Sleep.
[2] Parekh A, et al. (2019) "Slow-wave activity surrounding stage N2 K-complexes and daytime
function measured by psychomotor vigilance test in obstructive sleep apnea." Sleep.
"""
self._scoring = {}
self._epochs_data = {}
hypno = self._hypno
raw = self._raw
include_stages = self._include_stages
Stages = hypno
sfreq = raw.info['sfreq']
for channel in raw.info['ch_names']:
###################################
###### Scoring of K-complexes #####
kc_onsets, kc_probas, kc_stages = scoring_algorithm_kc(raw, channel,
Stages,
score_on_stages=include_stages,
amplitude_threshold=20e-6,
distance=2,
reject_epoch=400e-6,
probability_threshold=0.5)
# print('Detected {} K-complexes on '.format(len(kc_onsets)) + channel)
###################################
#### Calulate features ####
# organize event matrix for mne
onsets_int = np.array(kc_onsets * raw.info['sfreq'], dtype='int')\
+ self._raw.first_samp
events = np.vstack((onsets_int, np.ones_like(onsets_int),
np.ones_like(onsets_int))).T
# get epochs data
epochs = mne.Epochs(raw, events, picks=channel, event_id=None,
tmin=-6, tmax=6,
baseline=(None, -0.5),
reject=None, reject_by_annotation=False,
verbose='critical', flat=None)
times = epochs.times
kc_matrix = epochs.get_data().squeeze() *-1 * 10 ** 6
###################################
###### Time-Feature calculations
t_P900_N550, P900_timing, KC_900, KC_550, ptp_amp, slope = _temporal_features_kcs(
kc_matrix, sfreq)
###################################
###### Frequency-Feature calculations
delta_before, alpha_before, delta_after, alpha_after = _kc_frequency_features(
kc_matrix, times, sfreq)
scg = {
'KC_onset': kc_onsets,
'KC_probas': kc_probas,
'KC_stage': kc_stages,
'N550': KC_550,
'P900': KC_900,
'PTP': ptp_amp,
'Slope': slope,
'dt_P9_N5': t_P900_N550,
'baseline_delta': delta_before,
'baseline_alpha': alpha_before,
'after_delta': delta_after,
'after_alpha': alpha_after,
'ratio_delta': (delta_after - delta_before) / delta_before,
'ratio_alpha': (alpha_after - alpha_before) / alpha_before
}
self._scoring[channel] = scg
self._epochs_data[channel] = (kc_matrix, times, kc_probas)
return self._scoring, self._epochs_data
def score_from_events(self, events):
event_onset = events.onset.values
scoring = self._scoring
for channel in list(scoring.keys()):
sc = []
d = pd.DataFrame.from_dict(scoring[channel])
kcs_onset = d['KC_onset'].values
for event_count, single_event_onset in enumerate(event_onset):
args = np.argwhere(kcs_onset>single_event_onset)
if len(args) !=0:
dkc = d.loc[args[0],:]
dkc['noise_count'] = event_count
dkc['delta_t'] = dkc['KC_onset'] - single_event_onset
sc.append(dkc)
dch = pd.concat(sc)
dch = dch.set_index('noise_count')
dch.columns = [col+'_'+channel for col in dch.columns]
events = events.merge(dch, how='left',left_index=True,
right_index=True)
return events
def overnight_metrics(self,probability_thresholds = 0.5):
""" Calculate summary k-complex metrics
Summary K-complexes metrics (see Notes for a detailed list) are calculated for each channels and individual
sleep stages.
Notes
-----
Parameters are calculated for each channels. Furthermore, parameters are calculated for stage 2, 3
and NREM. For example, K-complexes densities (dKC) are returned as follows:
dKC : KC density (#/min) in NREM sleep
dKC_N1 : KC density (#/min) in N2
dKC_N2 : KC density (#/min) in N2
dKC_N3 : KC density (#/min) in N3
Full list of parameters:
dKC : KC density (#/min) in NREM sleep
N550 : Amplitude of the N550 components, in uv
P900 : Amplitude of the P900 components, in uv
PTP : Peak to peak amplitude of the KC, in uv
Slope : K-complex slope, define as (P900-N550)/(tP900-tN550), in uv/sec
dt_P9_N5 : Time tP900-tN550, in seconds
baseline_delta: absoulte delta power in the 3 seconds preceeding the k-complex, in uv^2/Hz
baseline_alpha : absoulte alpha power in the 3 seconds preceeding the k-complex, in uv^2/Hz
after_delta : absoulte delta power in the 3 seconds after the k-complex, in uv^2/Hz
after_alpha : absoulte alpha power in the 3 seconds after the k-complex, in uv^2/Hz
ratio_delta : after_delta/baseline_delta,
ratio_alpha : after_alpha/baseline_alpha
density_function markers ?
[1] Lechat, B., et al. (2020). "Beyond K-complex binary scoring during sleep: Probabilistic
classification using deep learning." Sleep.
[2] Parekh A, et al. (2019) "Slow-wave activity surrounding stage N2 K-complexes and daytime
function measured by psychomotor vigilance test in obstructive sleep apnea." Sleep.
"""
if not self._scoring:
scoring, metadata = self.score()
else:
scoring, metadata = self._scoring, self._epochs_data
if any([probability_thresholds < 0, probability_thresholds > 1]):
raise ValueError('K-complex ``probability_thresholds`` must be a float between 0 and 1.')
""" Calculate KCs metrics"""
metrics = {}
for channel, kc_dict in scoring.items():
m = kc_metrics_by_sleep_stage(kc_dict,
hypnogram=self._hypno,
pth = probability_thresholds)
m = m.to_dict(orient='list')
for key, val in m.items():
metrics[channel + key] = float(val[0])
return metrics
def _plot_average(self):
pass
#if not self._scoring:
# raise RuntimeError('You need to score K-complex before plotting')
#from .plotting import KC_from_probas, KC_from_electrodes,
# KC_from_electrodes_all
#KC_from_probas(self._epochs_data, np.asarray(self._scoring[
# self._raw.info[
# 'ch_names'][
# 0]]['KC_probas']))
#KC_from_electrodes(self._epochs_data)
#KC_from_electrodes_all(self._epochs_data)
def kc_metrics_by_sleep_stage(kc_dict, hypnogram, pth):
df = pd.DataFrame.from_dict(kc_dict)
df = df.loc[df.KC_probas > pth, :]
## NREM
nrem = df.mean().to_frame().T
nrem.columns = [x + '_mean' for x in nrem.columns]
nrem = nrem.drop(['KC_onset_mean'], axis=1)
t = nrem
kc_stage = df['KC_stage'].values
if -1 in np.unique(hypnogram.label.values): # Hypnogram is unscored
t['n_KC'] = len(kc_stage)
t['dKC'] = float(
len(kc_stage) * 2 / len(hypnogram.label.values))
else:
t['n_KC'] = float(len(kc_stage))
t['dKC'] = float(
np.sum(np.isin(kc_stage, [1, 2, 3, 4])) * 2 / np.sum(
np.isin(hypnogram.label.values, [1, 2, 3, 4])))
t['dKC_N1'] = float(np.sum(np.isin(kc_stage, [1])) * 2 / np.sum(
np.isin(hypnogram.label.values, [1])))
t['dKC_N2'] = float(np.sum(np.isin(kc_stage, [2])) * 2 / np.sum(
np.isin(hypnogram.label.values, [2])))
t['dKC_N3'] = float(np.sum(np.isin(kc_stage, [3])) * 2 / np.sum(
np.isin(hypnogram.label.values, [3])))
return t
def _temporal_features_kcs(time_data,Fs):
""" Calculate characteristics time points of K-complexes
TODO: I'm sure it's possible to do a function that can handle 1d and 2d arrays
"""
if time_data.ndim == 1:
return _kc_temporal_features_1d(time_data, Fs)
else:
return _kc_temporal_features_2d(time_data,Fs)
def _kc_frequency_features(time_data, times, sfreq):
""" Calculate absolute power of delta and alpha band before (on a 3 seconds
windows) and after K-complexes"""
exp = [('before', -2.5, -0.5), ('after', 1, 3)]
res = {}
for m in exp:
kc_matrix_temp = time_data[:, np.bitwise_and(times > m[1], times < m[2])]
absol_power = compute_absol_pow_freq_bands(sfreq, kc_matrix_temp, psd_method='multitaper',
psd_params={'mt_adaptive': True, 'mt_bandwidth': 3,
'mt_low_bias': True},
freq_bands=[0.5, 4, 8, 12])
delta = absol_power[:, 0]
alpha = absol_power[:, 2]
res[m[0]] = (delta, alpha)
delta_before, alpha_before, delta_after, alpha_after = res['before'][0], res['before'][1],\
res['after'][0], res['after'][1]
return delta_before, alpha_before, delta_after, alpha_after
def _kc_temporal_features_1d(time_data, Fs):
"""Calculate kc features for 1d array"""
half_index = int(len(time_data) / 2)
#epochs are centered around N550 components
N550_index = np.argmax(time_data[half_index - int(0.2 * Fs):half_index + int(0.2 * Fs)]) + \
half_index - int(0.2 * Fs)
P900_index = np.argmax(-1 * time_data[half_index + int(0.2 * Fs):half_index + int(0.750 * Fs)]) + \
half_index + int(0.2 * Fs)
t_P900_N550 = (P900_index - N550_index) / Fs
P900_timing = (P900_index - half_index) / Fs
KC_900 = -1 * time_data[P900_index]
KC_550 = time_data[N550_index]
ptp_amp = abs(KC_900) + KC_550
slope = ptp_amp / t_P900_N550
return t_P900_N550, P900_timing, KC_900, KC_550, ptp_amp, slope
def _kc_temporal_features_2d(time_data, Fs):
"""Calculate kc features for 2d array"""
half_index = int(np.shape(time_data)[1] / 2)
N550_index = np.argmax(-1*
time_data[np.arange(np.shape(time_data)[0]), half_index - int(0.2 * Fs):half_index + int(0.2 * Fs)],
axis=1) + half_index - int(
0.2 * Fs)
P900_index = np.argmax(
time_data[np.arange(np.shape(time_data)[0]), half_index + int(0.2 * Fs):half_index + int(0.750 * Fs)],
axis=1) + half_index + int(
0.2 * Fs)
t_P900_N550 = (P900_index - N550_index) / Fs
P900_timing = (P900_index - half_index) / Fs
KC_900 = time_data[np.arange(np.shape(time_data)[0]), P900_index]
KC_550 = -1*time_data[np.arange(np.shape(time_data)[0]), N550_index]
ptp_amp = abs(KC_900) + KC_550
slope = ptp_amp / t_P900_N550
return t_P900_N550, P900_timing, KC_900, KC_550, ptp_amp, slope
##########################################################################
## K-complex scoring functions ##
##########################################################################
def scoring_algorithm_kc(raw, channel, stages, score_on_stages = [1,2,3], amplitude_threshold = 20e-6, distance = 2,
reject_epoch = 500e-6, probability_threshold = 0.5):
"""
Score K-complexes according to [1]. Briefly, peaks superior to
"amplitude_threshold" in the raw EEG are found, and then classified
using deep kernel learning. Deep kernel learning is a mix between neural
network and gaussian processes; and it attributes each waveform a
"probability" (probability threshold) of being a K-complex. The higher
the probability, the more "confident" is the algorithm; which is generally
seen in very large and well defined K-complexes.
Parameters
----------
raw : :py:class:`mne.io.BaseRaw`
Raw data
channel : str
Channel on which socre K-complexes
stages : pd.DataFrame
Dataframe containing the following keys: "onset" (sleep stage scoring onset), "dur" (duration of the scored
stage) and "label" (sleep stage label)
score_on_stages : list
Valid sleep stages to score K-complexes.
amplitude_threshold : float or int
Minimum amplitude for a peak to be considered as possible K-complexes
distance: float or int
Minimum between two consecutive peaks to be classified as K-complexes
reject_epoch: float or int
Reject candidate K-complexes if their maximum values (positive or negative) is superior to this value
probability_threshold: float
Reject waveform scored as K-complexes if their probability is inferior to this threshold.
Returns
-------
onsets: K-complexes onsets (in seconds)
probas: Probability of the K-complex
stage_peaks: sleep stage of the k-complex
Notes
-----
Lechat, B., et al. (2020). "Beyond K-complex binary scoring during sleep: Probabilistic
classification using deep learning." Sleep.
"""
C3 = np.asarray(
[raw[count, :][0] for count, k in enumerate(raw.info['ch_names']) if
k == channel]).ravel()
Fs = raw.info['sfreq']
st = stages.loc[stages['label'].isin(score_on_stages),:]
length_of_stages = int(st['duration'].values[0]*Fs)
onset_of_stages = np.round(st['onset'].values[1:-1]* Fs).astype('int')
stage_label = st['label'].values[1:-1]
###### preprocessing ###########
peaks,stage_peaks = _find_peaks_staged(C3, Fs, sonset=onset_of_stages,sdur=length_of_stages, slabel=stage_label,
min = amplitude_threshold, distance=distance)
d, args = Epochdata(C3, Fs, peaks, detrend=True, reject_max = reject_epoch)
peaks = peaks[args]
stage_peaks = stage_peaks[args]
d_pad = pad_nextpow2(d)
######## Wavelet decomposition #########
wavelet = pywt.Wavelet('sym3')
coefs = pywt.wavedec(d_pad, wavelet=wavelet, mode='periodization', level=pywt.dwt_max_level(d.shape[-1], wavelet.dec_len))
X = np.hstack(coefs[:5])
########### Model prediction #############
model, likelihood = get_model()
data_scaled = scale_input(X)
probas, _ = predict(model, likelihood, torch.from_numpy(data_scaled))
#######################################################################
stage_peaks = stage_peaks[probas > probability_threshold]
onsets = peaks[probas > probability_threshold] / Fs
probas = probas[probas > probability_threshold]
return onsets, probas, stage_peaks
##########################################################################
## pre-processing functions ##
##########################################################################
def scale_input(X, scaler = True):
scaler_filename = os.path.join(wd, 'model/scaler_final_A2.save')
scaler = joblib.load(scaler_filename)
X_scaled = scaler.transform(X)
return X_scaled
def pad_nextpow2(dat):
"""
return an array pad with zero to the next power of 2 of the input
"""
g = np.ceil(np.log2(np.shape(dat)[1]))
ze = np.zeros((np.shape(dat)[0],np.array(np.power(2, g) - np.shape(dat)[1], dtype='int')))
data = np.hstack([dat, ze])
return data
def _find_peaks_staged(data, Fs, sonset,sdur, slabel,
min, distance):
"""Find peaks of at least "min" amplitude the given sleep stages
"""
p = []
stages = []
for j,(low,up,sstage) in enumerate(zip(sonset, sonset+sdur,slabel)):
data_for_peak = data[low:up] - np.mean(data[low:up])
temp, _ = find_peaks(data_for_peak, height=min, distance=distance * Fs)
p.append(temp + low)
stages.append(np.ones(len(temp))*sstage)
return np.hstack(p), np.hstack(stages)
def Epochdata(data, Fs, peaks, post_peak=3, pre_peak=3, detrend=True, reject_max = None):
""" Epochs raw data for each peak in peaks.
"""
max_peaks_locs = len(data) - int(post_peak*Fs)
min_peaks_locs = int(pre_peak*Fs)
peaks = peaks[np.bitwise_and(peaks>min_peaks_locs,peaks<max_peaks_locs)]
epochs = np.vstack([data[up:low] for up,low in zip(peaks-int(pre_peak * Fs), peaks+int(post_peak * Fs))])
if detrend:
epochs = epochs - np.mean(epochs,axis=1, keepdims=True)
if reject_max is not None:
args = np.argwhere(~(np.max(np.abs(epochs),axis=1)>reject_max)).squeeze() #print(np.max(np.abs(epochs),axis=1))
epochs = epochs[args,:]
return epochs, args
else:
return epochs
##########################################################################
## Predictions models/functions ##
##########################################################################
class LargeFeatureExtractor(torch.nn.Sequential):
""" Neural network used for feature extraction"""
def __init__(self, input_dim, output_dim,drop_out =0.5):
super(LargeFeatureExtractor, self).__init__()
self.add_module('linear1', torch.nn.Linear(input_dim, 1000, bias=False))
self.add_module('bn1', torch.nn.BatchNorm1d(1000))
self.add_module('relu1', torch.nn.ReLU())
self.add_module('dropout1', torch.nn.Dropout(p=drop_out, inplace=False))
self.add_module('linear2', torch.nn.Linear(1000, 1000,bias=False))
self.add_module('bn2', torch.nn.BatchNorm1d(1000))
self.add_module('relu2', torch.nn.ReLU())
self.add_module('dropout2', torch.nn.Dropout(p=drop_out, inplace=False))
self.add_module('linear3', torch.nn.Linear(1000, 500,bias=False))
self.add_module('bn3', torch.nn.BatchNorm1d(500))
self.add_module('relu3', torch.nn.ReLU())
self.add_module('dropout3', torch.nn.Dropout(p=drop_out, inplace=False))
self.add_module('linear4', torch.nn.Linear(500, 256,bias=False))
self.add_module('bn4', torch.nn.BatchNorm1d(256))
self.add_module('relu4', torch.nn.ReLU())
self.add_module('dropout4', torch.nn.Dropout(p=drop_out, inplace=False))
self.add_module('linear6', torch.nn.Linear(256, output_dim,bias=False))
class GaussianProcessLayer(gpytorch.models.AbstractVariationalGP):
def __init__(self, inducing_points):
variational_distribution = CholeskyVariationalDistribution(inducing_points.size(0))
variational_strategy = WhitenedVariationalStrategy(self, inducing_points, variational_distribution,
learn_inducing_locations=True)
super(GaussianProcessLayer, self).__init__(variational_strategy)
self.mean_module = gpytorch.means.ConstantMean()
self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
class DKLModel(gpytorch.Module):
""" Deep kernel learning model as gaussian processes on top of neural network"""
def __init__(self, inducing_points, feature_extractor, num_features):
super(DKLModel, self).__init__()
self.feature_extractor = feature_extractor
self.gp_layer = GaussianProcessLayer(inducing_points)
self.num_features = num_features
def forward(self, x):
#print(x.type())
projected_x = self.feature_extractor(x.float())
res = self.gp_layer(projected_x)
return res
def predict(model, likelihood, X):
"""prediction """
model.eval()
likelihood.eval()
correct = 0
with torch.no_grad():
output = likelihood(model(X)) #
pred_labels = output.mean.ge(0.5).float().cpu().numpy()
probas = output.mean.cpu().numpy()
return probas, pred_labels
def get_model():
""" convenience function to load the model with its parameters """
inducing_filename = os.path.join(wd, 'model/inducing_points_A2.npy')
model_file = os.path.join(wd, 'model/finaldkl_final_model_epoch50.dat')
data_dim = 128
num_features = 16
drop_out_rate = 0.8
feature_extractor = LargeFeatureExtractor(input_dim=data_dim,
output_dim=num_features,
drop_out=drop_out_rate)
X_induced = torch.from_numpy(np.load(inducing_filename))
model = DKLModel(inducing_points=X_induced, feature_extractor=feature_extractor,
num_features=num_features)
# Bernouilli likelihood because only 2 classes
likelihood = gpytorch.likelihoods.BernoulliLikelihood()
model.load_state_dict(torch.load(model_file,map_location=torch.device('cpu'))['model'])
likelihood.load_state_dict(torch.load(model_file,map_location=torch.device('cpu'))['likelihood'])
return model, likelihood | python |
import abc
import logging
import os
import re
import shutil
import subprocess
from pathlib import Path
import git
from halo import Halo
from utils.ExecutionContext import TestRunInfo, get_context, get_timeout, has_bonus, is_strict, set_bonus, set_timeout
from utils.TerminalColors import TC
from utils.Utils import intersection, show_banner
logger = logging.getLogger("base")
norm_func_regex = re.compile(r"^([\w\\/]+\.(?:c|h)): Error!")
def run_command(command: str, spinner: Halo):
to_execute = command.split(" ")
process = subprocess.run(to_execute, capture_output=True, text=True)
logger.info(process)
if process.returncode != 0:
spinner.fail()
print(process.stderr)
raise Exception("Problem creating the library")
return process
class BaseTester:
name = "base"
testers = []
timeout = 10
def __init__(self, info: TestRunInfo) -> None:
self.info = info
self.temp_dir = info.base_dir / "temp" / self.name
self.tests_dir = info.base_dir / "tests" / self.name
self.source_dir = info.source_dir
set_timeout(self.timeout)
@staticmethod
@abc.abstractmethod
def is_project(current_path):
pass
def execute_testers(self):
show_banner(self.name)
testers = self.test_selector()
with Halo(TC.CYAN + "Preparing framework" + TC.NC) as spinner:
self.prepare_ex_files()
spinner.succeed()
norm_res = ""
if not self.info.args.ignore_norm:
norm_res = self.check_norminette()
srcs_path = Path(self.temp_dir, "__my_srcs")
logger.info(f"copying {self.source_dir} to {srcs_path}")
shutil.copytree(self.source_dir, srcs_path)
all_funcs = self.select_tests_to_execute()
present = self.get_functions_present()
to_execute = intersection(all_funcs, present)
if self.info.ex_to_execute:
to_execute = self.info.ex_to_execute
missing = [test for test in all_funcs if test not in to_execute]
logger.info(f"To execute: {to_execute}")
logger.info(f"Missing: {missing}")
self.compile_source()
funcs_error = []
for tester in testers:
funcs_error.append(self.test_using(to_execute, missing, tester))
if not self.info.ex_to_execute:
self.show_summary(norm_res, missing, funcs_error, to_execute)
def test_selector(self):
selected_testers = self.info.args.testers
if (selected_testers == None):
if is_strict() and self.my_tester:
return [self.my_tester]
return self.testers
# TODO: check valid tester
if (selected_testers == []):
print(f"Please select one or more of the available testers:")
for i, tester in enumerate(self.testers):
print(f"{TC.B_BLUE} {i + 1}) {TC.B_WHITE}{tester.name}{TC.NC} ({tester.git_url})")
print(f"You can pass the numbers as arguments to {TC.B_WHITE}--testers{TC.NC} to not see this prompt")
selected_testers = [char for char in input()]
selected_testers = [test for test in ''.join(selected_testers) if test != ' ']
result = [self.testers[int(i) - 1] for i in selected_testers]
if is_strict() and self.my_tester in result:
return [self.my_tester]
return result
def prepare_ex_files(self):
def check_and_delete(repo, file):
if os.path.isfile(file) and repo.ignored(file):
logger.info(f"removing ignored file: {file}")
os.remove(file)
if os.path.exists(self.temp_dir):
logger.info(f"Removing already present directory {self.temp_dir}")
shutil.rmtree(self.temp_dir)
logger.info(f"copying {self.source_dir} to {self.temp_dir}")
shutil.copytree(self.source_dir, self.temp_dir)
try:
repo = git.Repo(self.temp_dir)
for path in Path(self.temp_dir).glob("*"):
if not path.match(".git") and path.is_dir():
for file in path.rglob("*"):
check_and_delete(repo, file)
if path.is_file():
check_and_delete(repo, path)
logger.info(f"removing {self.temp_dir / '.git'}")
shutil.rmtree(self.temp_dir / ".git")
except Exception as ex:
logger.exception(ex)
def check_norminette(self):
os.chdir(os.path.join(self.temp_dir))
logger.info(f"On directory {os.getcwd()}")
norm_exec = ["norminette"]
text = f"{TC.CYAN}Executing: {TC.B_WHITE}{' '.join(norm_exec)}{TC.NC}"
with Halo(text=text) as spinner:
result = subprocess.run(norm_exec, capture_output=True, text=True)
logger.info(result)
if result.returncode != 0:
spinner.fail()
print(f"{TC.YELLOW}{result.stdout}{TC.NC}")
else:
spinner.succeed()
return result.stdout
def select_tests_to_execute(self):
if self.has_bonus():
set_bonus(True)
return []
def get_functions_present(self):
return []
def has_bonus(self):
makefile = Path(self.temp_dir, "Makefile")
if not makefile.exists():
return
with open(makefile, "r") as m_file:
bonus = [line for line in m_file.readlines() if re.match(r"^\s*bonus\s*:.*", line)]
logger.info(f"bonus investigation: {bonus}")
return len(bonus) != 0
def compile_source(self):
os.chdir(os.path.join(self.temp_dir))
makefile = Path(self.temp_dir, "Makefile")
if not makefile.exists():
return
command = "make fclean " + ("bonus" if has_bonus() else "all")
logger.info(f"Calling '{command}' on directory {os.getcwd()}")
text = f"{TC.CYAN}Executing: {TC.B_WHITE}{command}{TC.NC} " + ("" if has_bonus() else "(no bonus)")
with Halo(text=text) as spinner:
run_command(command, spinner)
spinner.succeed()
def test_using(self, to_execute, missing, tester):
try:
self.prepare_tests(tester)
tx = tester(self.tests_dir, self.temp_dir, to_execute, missing)
return (tester.name, tx.execute())
except Exception as ex:
print(ex)
if 'fraaaa' in str(get_context().base_dir):
raise ex
else:
logger.exception(ex)
return (tester.name, [tester.name])
def prepare_tests(self, tester):
# delete destination folder if already present
temp_dir = os.path.join(self.temp_dir, tester.folder)
if os.path.exists(temp_dir):
logger.info(f"Removing already present directory {temp_dir}")
shutil.rmtree(temp_dir)
# copy test framework
tester_dir = os.path.join(self.tests_dir, tester.folder)
logger.info(f"Copying from {tester_dir} to {temp_dir}")
shutil.copytree(tester_dir, temp_dir)
def show_summary(self, norm: str, missing, errors, to_execute):
def get_norm_errors():
def get_fname(line):
return norm_func_regex.match(line).group(1)
def is_file(line):
return norm_func_regex.match(line)
return [get_fname(line) for line in norm.splitlines() if is_file(line)]
norm_errors = get_norm_errors()
error_funcs = set()
for results in errors:
error_funcs = error_funcs.union(results[1])
has_errors = missing or norm_errors or error_funcs
if (not has_errors):
print()
print(f"{TC.CYAN}╔══════════════════════════════════════════════════════════════════════════════╗")
print(f"{TC.CYAN}║ 🎉🥳 {TC.B_GREEN}All tests passed! Congratulations!{TC.CYAN} 🥳🎉 ║")
print(f"{TC.CYAN}╚══════════════════════════════════════════════════════════════════════════════╝")
print(TC.NC)
logger.info("All tests ok!")
return True
print(f"\n{TC.B_CYAN}Summary{TC.NC}: {'' if has_bonus() else 'no bonus'}")
logger.warn(f"norminette errors: {norm_errors}")
if norm_errors:
print(f"\n{TC.B_YELLOW}Norminette Errors{TC.NC}:", ', '.join(norm_errors))
logger.warn(f"missing functions: {missing}")
if missing:
print(f"\n{TC.B_RED}Missing functions{TC.NC}: {', '.join(missing)}")
logger.warn(f"errors in functions: {errors}")
if error_funcs:
print(f"\n{TC.B_RED}Failed tests{TC.NC}: {', '.join(error_funcs)}")
tests_ok = [test for test in to_execute if test not in errors]
if tests_ok:
print(f"\n{TC.B_GREEN}Passed tests{TC.NC}: {', '.join(tests_ok)}")
exit(0)
| python |
# flake8: noqa
from .random_word import RandomWord, NoWordsToChoseFrom, Defaults
from .random_sentence import RandomSentence
__author__ = "Maxim R."
__copyright__ = "Copyright 2020, Wonderwords"
__credits__ = ["Maxim R."]
__license__ = "MIT"
__version__ = "2.2.0"
__maintainer__ = "Maxim R."
__email__ = "[email protected]"
__status__ = "Production"
| python |
# Wesley Dias (1º Semestre ADS-B), Lista XI
# Copyright 2010 Google Inc.
# Licensed under the Apache License, Version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
# Google's Python Class
# http://code.google.com/edu/languages/google-python-class/
# Exercícios extras
# G. verbing
# Dada uma string, caso seu comprimento seja pelo menos 3,
# adiciona 'ing' no final
# Caso a string já termine em 'ing', acrescentará 'ly'.
def verbing(s):
if len(s) >= 3:
if s[-3:] == 'ing':
s += 'ly'
else:
s += 'ing'
return s
# H. not_bad
# Dada uma string, procura a primeira ocorrência de 'not' e 'bad'
# Se 'bad' aparece depois de 'not' troca 'not' ... 'bad' por 'good'
# Assim 'This dinner is not that bad!' retorna 'This dinner is good!'
def not_bad(s):
if s.count('not') > 0 and s.count('bad') > 0:
if s.index('not') < s.index('bad'):
s = s.replace(s[s.index('not'):s.index('bad')+3], 'good')
return s
# I. inicio_final
# Divida cada string em dois pedaços.
# Se a string tiver um número ímpar de caracteres
# o primeiro pedaço terá um caracter a mais,
# Exemplo: 'abcde', divide-se em 'abc' e 'de'.
# Dadas 2 strings, a e b, retorna a string
# a-inicio + b-inicio + a-final + b-final
def inicio_final(a, b):
if len(a) % 2 == 0 and len(b) % 2 == 0:
final = a[:len(a) // 2] + b[:len(b) // 2] + a[len(a) // 2:] + b[len(b) // 2:]
elif len(a) % 2 != 0 and len(b) % 2 == 0:
final = a[:len(a) // 2 + 1] + b[:len(b) // 2] + a[len(a) // 2 + 1:] + b[len(b) // 2:]
elif len(a) % 2 == 0 and len(b) % 2 != 0:
final = a[:len(a) // 2] + b[:len(b) // 2 + 1] + a[len(a) // 2:] + b[len(b) // 2 + 1:]
else:
final = a[:len(a) // 2 + 1] + b[:len(b) // 2 + 1] + a[len(a) // 2 + 1:] + b[len(b) // 2 + 1:]
return final
# J. zeros finais
# Verifique quantos zeros há no final de um número inteiro positivo
# Exemplo: 10010 tem 1 zero no fim e 908007000 possui três
def zf(n):
cont = 0
for num in str(n)[::-1]:
if num == '0':
cont += 1
else:
break
return cont
# K. conta 2
# Verifique quantas vezes o dígito 2 aparece entre 0 e n-1
# Exemplo: para n = 20 o dígito 2 aparece duas vezes entre 0 e 19
def conta2(n):
cont = 0
for num in range(n):
cont += str(num).count(str(2))
return cont
# L. inicio em potencia de 2
# Dado um número inteiro positivo n retorne a primeira potência de 2
# que tenha o início igual a n
# Exemplo: para n = 65 retornará 16 pois 2**16 = 65536
def inip2(n):
cont = 0
while True:
cont += 1
if str(n) == str(2**cont)[:len(str(n))]:
break
return cont
def test(obtido, esperado):
if obtido == esperado:
prefixo = ' Parabéns!'
else:
prefixo = ' Ainda não'
print('%s obtido: %s esperado: %s' % (prefixo, repr(obtido), repr(esperado)))
def main():
print('verbing')
test(verbing('hail'), 'hailing')
test(verbing('swiming'), 'swimingly')
test(verbing('do'), 'do')
print()
print('not_bad')
test(not_bad('This movie is not so bad'), 'This movie is good')
test(not_bad('This dinner is not that bad!'), 'This dinner is good!')
test(not_bad('This tea is not hot'), 'This tea is not hot')
test(not_bad("It's bad yet not"), "It's bad yet not")
print()
print('inicio_final')
test(inicio_final('abcd', 'xy'), 'abxcdy')
test(inicio_final('abcde', 'xyz'), 'abcxydez')
test(inicio_final('Kitten', 'Donut'), 'KitDontenut')
print()
print('zeros finais')
test(zf(10100100010000), 4)
test(zf(90000000000000000010), 1)
print()
print('conta 2')
test(conta2(20), 2)
test(conta2(999), 300)
test(conta2(555), 216)
print()
print('inicio p2')
test(inip2(7), 46)
test(inip2(133), 316)
test(inip2(1024), 10)
if __name__ == '__main__':
main()
| python |
#!/usr/bin/env python
from setuptools import setup, find_packages
__VERSION__ = '5.0.1'
setup(
name='sanetime_py3',
version=__VERSION__,
author='prior',
author_email='[email protected]',
maintainer='finkernagel',
maintainer_email='[email protected]',
packages=find_packages(),
url='http://github.com/TyberiusPrime/sanetime',
download_url='https://github.com/TyberiusPrime/sanetime/tarball/v%s'%__VERSION__,
license="MIT License",
description='A sane date/time python interface: better epoch time, timezones, and deltas -- django support as well. Now with python3 support',
long_description=open('README.md').read(),
long_description_content_type="text/markdown",
install_requires=[
'pytz',
'python-dateutil',
],
classifiers=[
'Development Status :: 5 - Production/Stable',
'Environment :: Console',
'Environment :: Web Environment',
'Framework :: Django',
'Intended Audience :: Developers',
'Intended Audience :: System Administrators',
'License :: OSI Approved',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 3.5',
'Topic :: Database',
'Topic :: Internet',
'Topic :: Internet :: WWW/HTTP',
'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
'Topic :: Internet :: WWW/HTTP :: WSGI',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Scientific/Engineering :: Physics',
'Topic :: Software Development',
'Topic :: Software Development :: Internationalization',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
'Topic :: Software Development :: Localization',
'Topic :: Utilities',
],
include_package_data=True,
test_suite='sanetime.test',
platforms=['any']
)
| python |
"""
@Author: huuuuusy
@GitHub: https://github.com/huuuuusy
系统: Ubuntu 18.04
IDE: VS Code 1.36
工具: python == 3.7.3
"""
"""
思路:
换个消除长度差的方式:拼接两链表。
设长-短链表为 C ,短-长链表为 D ,则当 C 走到长短链表交接处时, D 走在长链表中,且与长链表头距离为 长度差;
链接:
https://leetcode-cn.com/problems/two-sum/solution/intersection-of-two-linked-lists-shuang-zhi-zhen-l/
结果:
执行用时 : 240 ms, 在所有 Python3 提交中击败了81.03%的用户
内存消耗 : 41.8 MB, 在所有 Python3 提交中击败了30.4%的用户
"""
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def getIntersectionNode(self, headA, headB):
"""
:type head1, head1: ListNode
:rtype: ListNode
"""
# 最开始ha,hb在两个链表的头节点
ha = headA
hb = headB
# 如果两个节点不同
while ha != hb:
# ha将继续向后进行,直到链表A被遍历完,然后ha开始遍历链表B
# hb同理
# 这一操作类似于进行拼接
ha = ha.next if ha else headB
hb = hb.next if hb else headA
# 最终返回ha(此时ha=hb,是相交点)
return ha
| python |
import asyncio
import aiopg
import psycopg2
from aiopg.transaction import Transaction, IsolationLevel
dsn = 'dbname=aiopg user=aiopg password=passwd host=127.0.0.1'
async def transaction(cur, isolation_level,
readonly=False, deferrable=False):
transaction = Transaction(cur, isolation_level, readonly, deferrable)
await transaction.begin()
try:
await cur.execute('insert into tbl values (1)')
await transaction.savepoint()
try:
await cur.execute('insert into tbl values (3)')
await transaction.release_savepoint()
except psycopg2.Error:
await transaction.rollback_savepoint()
await cur.execute('insert into tbl values (4)')
await transaction.commit()
except psycopg2.Error:
await transaction.rollback()
async def main():
pool = await aiopg.create_pool(dsn)
async with pool.cursor() as cur:
await transaction(cur, IsolationLevel.repeatable_read)
await transaction(cur, IsolationLevel.read_committed)
await transaction(cur, IsolationLevel.serializable)
cur.execute('select * from tbl')
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
| python |
for c in input():print(c,(min((abs(ord(c)-ord(v)),v)for v in'aeiou')[1]+((chr(ord(c)+1)if chr(ord(c)+1)not in'aeiou'else chr(ord(c)+2))if c!='z'else'z'))if c not in('aeiou')else'',sep='',end='') | python |
__all__ = (
"class_definition",
"class_prefixes",
"class_specifier",
"long_class_specifier",
"short_class_specifier",
"der_class_specifier",
"base_prefix",
"enum_list",
"enumeration_literal",
"composition",
"language_specification",
"external_function_call",
"element_list",
"element",
"import_clause",
"import_list",
)
from arpeggio import (
Optional,
ZeroOrMore,
OneOrMore,
)
from .. import syntax
def class_definition(): # type: ignore
"""
class_definition =
ENCAPSULATED? class_prefixes class_specifier
"""
return (
Optional(syntax.ENCAPSULATED),
class_prefixes,
class_specifier,
)
def class_prefixes(): # type: ignore
"""
class_prefixes =
PARTIAL?
(
CLASS / MODEL / OPERATOR? RECORD / BLOCK / EXPANDABLE? CONNECTOR
/ TYPE / PACKAGE / (PURE / IMPURE)? OPERATOR? FUNCTION / OPERATOR
)
"""
return (
Optional(syntax.PARTIAL),
[
syntax.CLASS,
syntax.MODEL,
(Optional(syntax.OPERATOR), syntax.RECORD),
syntax.BLOCK,
(Optional(syntax.EXPANDABLE), syntax.CONNECTOR),
syntax.TYPE,
syntax.PACKAGE,
(
Optional([syntax.PURE, syntax.IMPURE]),
Optional(syntax.OPERATOR),
syntax.FUNCTION,
),
syntax.OPERATOR,
],
)
def class_specifier(): # type: ignore
"""
class_specifier =
long_class_specifier / short_class_specifier / der_class_specifier
"""
return [
long_class_specifier,
short_class_specifier,
der_class_specifier,
]
def long_class_specifier(): # type: ignore
"""
long_class_specifier =
EXTENDS IDENT class_modification? string_comment composition END IDENT
/ IDENT string_comment composition END IDENT
"""
return [
(
syntax.EXTENDS,
syntax.IDENT,
Optional(syntax.class_modification),
syntax.string_comment,
syntax.composition,
syntax.END,
syntax.IDENT,
),
(
syntax.IDENT,
syntax.string_comment,
syntax.composition,
syntax.END,
syntax.IDENT,
),
]
def short_class_specifier(): # type: ignore
"""
short_class_specifier =
IDENT "=" ENUMERATION "(" (":" / enum_list?) ")" comment
/ IDENT "=" base_prefix type_specifier array_subscripts?
class_modification? comment
"""
return [
(
syntax.IDENT,
"=",
syntax.ENUMERATION,
"(",
[":", Optional(syntax.enum_list)],
")",
syntax.comment,
),
(
syntax.IDENT,
"=",
syntax.base_prefix,
syntax.type_specifier,
Optional(syntax.array_subscripts),
Optional(syntax.class_modification),
syntax.comment,
),
]
def der_class_specifier(): # type: ignore
"""
der_class_specifer =
IDENT "=" DER "(" type_specifier "," IDENT ("," IDENT)* ")" comment
"""
return (
syntax.IDENT,
"=",
syntax.DER,
"(",
syntax.type_specifier,
",",
OneOrMore(syntax.IDENT, sep=","),
")",
syntax.comment,
)
def base_prefix(): # type: ignore
"""
base_prefix =
(INPUT / OUTPUT)?
"""
return Optional([syntax.INPUT, syntax.OUTPUT])
def enum_list(): # type: ignore
"""
enum_list = enumeration_literal ("," enumeration_literal)*
"""
return OneOrMore(syntax.enumeration_literal, sep=",")
def enumeration_literal(): # type: ignore
"""
enumeration_literal = IDENT comment
"""
return syntax.IDENT, syntax.comment
def composition(): # type: ignore
"""
composition =
element_list
(
PUBLIC element_list
/ PROTECTED element_list
/ equation_section
/ algorithm_section
)*
(
EXTERNAL language_specification?
external_function_call? annotation? ";"
)?
(annotation ";")?
"""
return (
syntax.element_list,
ZeroOrMore(
[
(syntax.PUBLIC, syntax.element_list), # type: ignore
(syntax.PROTECTED, syntax.element_list), # type: ignore
syntax.equation_section,
syntax.algorithm_section,
]
),
Optional(
syntax.EXTERNAL,
Optional(syntax.language_specification),
Optional(syntax.external_function_call),
Optional(syntax.annotation),
";",
),
Optional(syntax.annotation, ";"),
)
def language_specification(): # type: ignore
"""
language_specification =
STRING
"""
return syntax.STRING
def external_function_call(): # type: ignore
"""
external_function_call =
(component_reference "=")? IDENT "(" expression_list? ")"
"""
return (
Optional(syntax.component_reference, "="),
syntax.IDENT,
"(",
Optional(syntax.expression_list),
")",
)
def element_list(): # type: ignore
"""
element_list =
(element ";")*
"""
return ZeroOrMore(syntax.element, ";")
def element(): # type: ignore
"""
element =
import_clause
extends_clause
/ REDECLARE? FINAL? INNER? OUTER?
(
REPLACEABLE (class_definition / component_clause)
(constraining_clause comment)?
/ (class_definition / component_clause)
)
"""
return [
syntax.import_clause,
syntax.extends_clause,
(
Optional(syntax.REDECLARE),
Optional(syntax.FINAL),
Optional(syntax.INNER),
Optional(syntax.OUTER),
[
(
syntax.REPLACEABLE,
[syntax.class_definition, syntax.component_clause],
Optional(syntax.constraining_clause, syntax.comment),
),
[syntax.class_definition, syntax.component_clause],
],
),
]
def import_clause(): # type: ignore
"""
import_clause =
import
(
IDENT "=" name
/ name ("." ("*" / "{" import_list "}") )?
)
comment
"""
return (
syntax.IMPORT,
[
(syntax.IDENT, "=", syntax.name),
(
syntax.name,
Optional(
".",
[
"*",
("{", syntax.import_list, "}"), # type: ignore
],
),
),
],
syntax.comment,
)
def import_list(): # type: ignore
"""
import_list =
IDENT ("," IDENT)*
"""
return OneOrMore(syntax.IDENT, sep=",")
| python |
import numpy as np
from pyyolo import BBox
from collections import OrderedDict
class TrackedObject:
def __init__(self, timestamp: int, bbox: BBox):
self.initial_timestamp = timestamp
self.max_timestamp = timestamp
self.nframes = 1
self.max_bbox = bbox
self.curr_bbox = bbox
self.centroid = self._find_centroid(bbox)
def update(self, timestamp:int, bbox: BBox) -> None:
self.centroid = self._find_centroid(bbox)
self.nframes += 1
self.curr_bbox = bbox
if self._area(bbox) > self._area(self.max_bbox):
self.max_bbox = bbox
self.max_timestamp = timestamp
def _find_centroid(self, bbox: BBox) -> np.array:
xmin, ymin, xmax, ymax = bbox.to_xyxy()
return np.array([np.mean([xmin, xmax]), np.mean([ymin, ymax])])
def _area(self, bbox: BBox):
return bbox.w * bbox.h
def __str__(self):
return 'intial_timestamp: ' + str(self.initial_timestamp) + '\nmax_timestamp: ' + str(self.max_timestamp) + '\nnframes: ' + str(self.nframes) + \
'\nmax_bbox: ' + str(self.max_bbox) + '\ncentroid: ' + str(self.centroid) + '\ncurr_bbox: ' + str(self.curr_bbox)
class CentroidTracker:
def __init__(self, max_disappeared=15, max_distance=5):
self.next_id = 0
self.output_log = OrderedDict()
self.registered = OrderedDict()
self.disappeared = OrderedDict()
self.max_disappeared = max_disappeared
self.max_distance = max_distance
def update(self, detected: list, timestamp: int) -> None:
# Take in a list of detected bounding boxes from our yolo detector
# update the registered centroids we're keeping track of
if len(self.registered) == 0:
# initial case, register all detected objects
for bbox in detected:
self.registered[self.next_id] = TrackedObject(timestamp, bbox)
self.next_id += 1
else:
# Try to match detected objects to what we have registered
unmatched = set(self.registered.keys())
new_objects = []
for i, bbox in enumerate(detected):
nn = self._find_neighbor(bbox)
if nn in unmatched:
unmatched.remove(nn)
self.disappeared[nn] = 0
self.registered[nn].update(timestamp, bbox)
elif nn == -1:
new_objects.append(i)
# register a new object
for i in new_objects:
self.registered[self.next_id] = TrackedObject(timestamp, detected[i])
self.next_id += 1
# deregister an old object which has been gone for too long
for id in unmatched:
if id not in self.disappeared.keys():
self.disappeared[id] = 0
self.disappeared[id] += 1
if self.disappeared[id] > self.max_disappeared:
self._deregister(id)
return
def signal_end(self) -> OrderedDict:
for id in list(self.registered.keys()):
self._deregister(id)
return self.output_log
def get_registered_objects(self) -> OrderedDict:
return self.registered
def _deregister(self, id: int):
self.output_log[id] = self.registered.pop(id)
def _find_neighbor(self, bbox: BBox) -> int:
min_idx = -1
min_dist = 100000
c = self._find_centroid(bbox)
for idx in self.registered.keys():
obj = self.registered[idx]
dist = np.linalg.norm(c - obj.centroid)
if dist < min_dist and dist < self.max_distance:
min_idx = idx
min_dist = dist
return min_idx
def _find_centroid(self, bbox: BBox) -> np.array:
xmin, ymin, xmax, ymax = bbox.to_xyxy()
return np.array([np.mean([xmin, xmax]), np.mean([ymin, ymax])]) | python |
import pytest, torch, fastai
from fastai.gen_doc.doctest import this_tests
from fastai.torch_core import *
from fastai.layers import *
from math import isclose
a=[1,2,3]
exp=torch.tensor(a)
b=[3,6,6]
def test_tensor_with_list():
this_tests(tensor)
r = tensor(a)
assert torch.all(r==exp)
def test_tensor_with_ndarray():
this_tests(tensor)
b=np.array(a, dtype=np.int64)
r = tensor(b)
assert np_address(r.numpy()) == np_address(b)
assert torch.all(r==exp)
def test_tensor_with_tensor():
this_tests(tensor)
c=torch.tensor(a)
r = tensor(c)
assert r.data_ptr()==c.data_ptr()
assert torch.all(r==exp)
def test_requires_grad():
this_tests(requires_grad)
m = simple_cnn(b)
assert requires_grad(m) == True
def test_requires_grad_set():
this_tests(requires_grad)
m = simple_cnn(b)
requires_grad(m,False)
allF = np.all([not p.requires_grad for p in m.parameters()])
assert allF, "requires_grad(m,False) did not set all parameters to False"
requires_grad(m,True)
allT = np.all([p.requires_grad for p in m.parameters()])
assert allT, "requires_grad(m,True) did not set all parameters to True"
def test_apply_init():
this_tests(apply_leaf, apply_init)
m = simple_cnn(b,bn=True)
all2 = lambda m: nn.init.constant_(m.weight,0.2) if hasattr(m, 'weight') else m
all7 = lambda m: nn.init.constant_(m,0.7)
apply_leaf(m,all2)
apply_init(m,all7)
conv1_w = torch.full([6,3,3,3],0.7)
bn1_w = torch.full([6],0.2)
assert conv1_w.equal(m[0][0].weight), "Expected first colvulition layer's weights to be %r" % conv1_w
assert bn1_w.equal(m[0][2].weight), "Expected first batch norm layers weights to be %r" % bn1_w
def test_in_channels():
this_tests(in_channels)
m = simple_cnn(b)
assert in_channels(m) == 3
def test_in_channels_no_weights():
this_tests(in_channels)
with pytest.raises(Exception) as e_info:
in_channels(nn.Sequential())
assert e_info.value.args[0] == 'No weight layer'
def test_range_children():
this_tests(range_children)
m = simple_cnn(b)
assert len(range_children(m)) == 3
def test_split_model():
this_tests(split_model)
m = simple_cnn(b)
pool = split_model(m,[m[2][0]])[1][0]
assert pool == m[2][0], "Did not properly split at adaptive pooling layer"
def test_split_no_wd_params():
this_tests(split_no_wd_params)
groups = split_no_wd_params(simple_cnn((1, 1, 1), bn=True))
assert len(groups[0]) == 1
assert len(groups[1]) == 2
def test_set_bn_eval():
this_tests(set_bn_eval)
m = simple_cnn(b,bn=True)
requires_grad(m,False)
set_bn_eval(m)
assert m[0][2].training == False, "Batch norm layer not properly set to eval mode"
def test_np2model_tensor():
this_tests(np2model_tensor)
a = np.ones([2,2])
t = np2model_tensor(a)
assert isinstance(t,torch.FloatTensor)
def test_calc_loss():
this_tests(calc_loss)
y_pred = torch.ones([3,8], requires_grad=True)
y_true = torch.zeros([3],dtype=torch.long)
loss = nn.CrossEntropyLoss()
loss = calc_loss(y_pred,y_true,loss)
assert isclose(loss.sum(),6.23,abs_tol=1e-2), "final loss does not seem to be correct"
loss = F.cross_entropy
loss = calc_loss(y_pred,y_true,loss)
assert isclose(loss.sum(),6.23,abs_tol=1e-2), "final loss without reduction does not seem to be correct"
def test_tensor_array_monkey_patch():
this_tests('na')
t = torch.ones(a)
t = np.array(t)
assert np.all(t == t), "Tensors did not properly convert to numpy arrays"
t = torch.ones(a)
t = np.array(t,dtype=float)
assert np.all(t == t), "Tensors did not properly convert to numpy arrays with a dtype set"
def test_keep_parameter():
sa = SelfAttention(128)
this_tests(SelfAttention)
flat = nn.Sequential(*flatten_model(sa))
for p in sa.parameters(): assert id(p) in [id(a) for a in flat.parameters()]
| python |
#!/usr/bin/env python2
##########################################################
#
# Script: txt2float.py
#
# Description: Convert GMT text grid files into float
#
##########################################################
# Basic modules
import os
import sys
import struct
from ParseHeader import *
class txt2float:
def __init__(self, hdr, infile, outfile):
self.valid = False
self.hdr = hdr
self.infile = infile
self.outfile = outfile
self.valid = True
def isValid(self):
return self.valid
def cleanup(self):
return
def _parseHdr(self):
fp = open(self.hdr, 'r')
data = fp.readlines()
fp.close()
p = ParseConfig(data)
p.showDict()
config = p.getDict()
self.ncols = int(config['ncols'])
self.nrows = int(config['nrows'])
return(0)
def main(self):
# Parse header
print "Parsing data header"
self._parseHdr()
ifp = open(self.infile, 'rb')
ofp = open(self.outfile, 'wb')
for j in xrange(0, self.nrows):
for i in xrange(0, self.ncols):
buf = ifp.readline()
val = float(buf.split()[2])
buf = struct.pack('f', val)
ofp.write(buf)
ifp.close()
ofp.close()
return 0
def usage():
print "usage: %s <hdr> <infile> <outfile>" % (sys.argv[0])
return
if __name__ == '__main__':
if (len(sys.argv) != 4):
usage()
sys.exit(1)
hdr = sys.argv[1]
infile = sys.argv[2]
outfile = sys.argv[3]
prog = txt2float(hdr, infile, outfile)
sys.exit(prog.main())
| python |
# HDM - Heading - Magnetic
# Vessel heading in degrees with respect to magnetic north produced by any device or system producing magnetic heading.
# $--HDM,x.x,M*hh<CR><LF>
# Heading Degrees, magnetic
# M = magnetic
# Checksum
class hdm():
# Constructor
def __init__(self):
# Switch this on for verbose processing
self.debug = 1
@staticmethod
def parse(sentence):
# Default, invalid fix
fix_quality = '0'
gps_time = ''
dd_longitude_degrees = 0
dd_latitude_degrees = 0
altitude3 = 0
@staticmethod
def create(sentence):
# Default, invalid fix
fix_quality = '0'
gps_time = ''
dd_longitude_degrees = 0
dd_latitude_degrees = 0
altitude3 = 0 | python |
import os
from conans import ConanFile, tools
class CppnanomsgConan(ConanFile):
name = "cppnanomsg"
version = "20181216"
_commit_id = "a36d44db1827a36bbd3868825c1b82d23f10e491"
description = "C++ binding for nanomsg"
topics = ("conan", "cppnanomsg", "nanomsg", "binding")
url = "https://github.com/bincrafters/conan-cppnanomsg"
homepage = "https://github.com/nanomsg/cppnanomsg"
license = "MIT"
requires = ("nanomsg/1.1.2@bincrafters/stable")
_source_subfolder = "source_subfolder"
def source(self):
tools.get("{0}/archive/{1}.zip".format(self.homepage, self._commit_id),
sha256="a857c0d4698cb68128071711fc9c3e7aaa7751f4d6f20d9ba2e86d94ce6695d7")
extracted_dir = self.name + "-" + self._commit_id
os.rename(extracted_dir, self._source_subfolder)
def package(self):
self.copy(pattern="COPYING", dst="licenses", src=self._source_subfolder)
self.copy("nn.hpp", dst="include/cppnanomsg", src=self._source_subfolder)
def package_id(self):
self.info.header_only()
| python |
# Definition for binary tree with next pointer.
# class TreeLinkNode:
# def __init__(self, x):
# self.val = x
# self.left = None`
# self.right = None
# self.next = None
from collections import deque
class Solution: # O(n) space
# @param root, a tree link node
# @return nothing
def connect(self, root):
if not root: return
q = deque([root])
levelsize = 1
while q:
lastnode = None
for i in xrange(levelsize):
node = q.popleft()
if lastnode is not None:
lastnode.next = node
lastnode = node
if node.left:
q.append(node.left)
q.append(node.right)
levelsize <<= 1
class Solution: # O(1) space
# @param root, a tree link node
# @return nothing
def connect(self, root):
while root and root.left:
p = root
while p:
p.left.next = p.right
p.right.next = p.next and p.next.left
p = p.next
root = root.left
| python |
# -*- coding: utf-8 -*-
# _mod1.py
# Module providing the mod1 function
# Copyright 2013 Giuseppe Venturini
# This file is part of python-deltasigma.
#
# python-deltasigma is a 1:1 Python replacement of Richard Schreier's
# MATLAB delta sigma toolbox (aka "delsigma"), upon which it is heavily based.
# The delta sigma toolbox is (c) 2009, Richard Schreier.
#
# python-deltasigma is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# LICENSE file for the licensing terms.
"""Module providing the mod1() utility function
"""
import numpy as np
from ._calculateTF import calculateTF
def mod1():
"""A description of the first-order modulator.
**Returns:**
ABCD, NTF, STF : a tuple of (ndarray, lti, lti)
The elements are the ABCD matrix (ndarray), the NTF (LTI object), the
STF (LTI object).
.. note::
If a version of the ``scipy`` library equal to 0.16.x or greater is in
use, the NTF and STF objects will be ``ZeroPolesGain`` objects, a
subclass of the scipy LTI object (``scipy.signal.lti``).
"""
A = np.array([[1.]])
B = np.array([[1., -1.]])
C = np.array([[1.]])
D = np.array([[0., 0.]])
ABCD = np.vstack((np.hstack((A, B)), np.hstack((C, D))))
H, G = calculateTF(ABCD)
return ABCD, H, G
| python |
from wordsearch.trie import TrieNode
import unittest, re
def recursive_equal(first, second):
"""
Return True if the tree rooted by "first" is identical to the tree rooted by
"second", i.e. all the nodes and edges are identical.
"""
first_queue = [first]
second_queue = [second]
while first_queue and second_queue:
first_item = first_queue.pop()
second_item = second_queue.pop()
if first_item != second_item:
return False
first_queue.extend(sorted(first_item.children.values(), key=lambda x: x.letter))
second_queue.extend(sorted(second_item.children.values(), key=lambda x: x.letter))
if len(first_queue) != len(second_queue):
return False
return True
class TestRecursiveEqual(unittest.TestCase):
def test_equal(self):
self.assertTrue(recursive_equal(
TrieNode(words=['amp', 'ack', 'bus']), TrieNode(words=['amp', 'ack', 'bus'])
))
def test_not_equal(self):
self.assertFalse(recursive_equal(
TrieNode(words=['amp', 'ack', 'bus']), TrieNode(words=['amm', 'ack', 'bus'])
))
self.assertFalse(recursive_equal(
TrieNode(words=['am', 'ac', 'bus']), TrieNode(words=['amm', 'ack', 'bus'])
))
self.assertFalse(recursive_equal(
TrieNode(words=['am', 'ac', 'bus']), TrieNode(words=['am', 'ack', 'bus', 'bar'])
))
class TestTrie(unittest.TestCase):
def setUp(self):
self.reference_root = TrieNode(children=[
TrieNode('a', children=[
TrieNode('m', children=[
TrieNode('p', word_end=True)
]),
TrieNode('c', children=[
TrieNode('k', word_end=True)
])
]),
TrieNode('b', children=[
TrieNode('u', children=[
TrieNode('s', word_end=True)
])
])
])
def test_root(self):
root = TrieNode()
self.assertEqual(root.children, {})
self.assertEqual(root.letter, None)
def test_equals(self):
self.assertEqual(TrieNode(), TrieNode())
self.assertEqual(TrieNode('a'), TrieNode('a'))
self.assertEqual(TrieNode(children=[TrieNode('a')]), TrieNode(children=[TrieNode('a')]))
self.assertEqual(TrieNode('a', children=[TrieNode('b')]), TrieNode('a', children=[TrieNode('b')]))
self.assertEqual(TrieNode('a', word_end=True), TrieNode('a', word_end=True))
def test_not_equals(self):
self.assertNotEqual(TrieNode(), TrieNode('a'))
self.assertNotEqual(TrieNode(), TrieNode(children=[TrieNode('a')]))
self.assertNotEqual(TrieNode('a'), TrieNode('b'))
self.assertNotEqual(TrieNode(children=[TrieNode('a')]), TrieNode(children=[TrieNode('b')]))
self.assertNotEqual(TrieNode('c', children=[TrieNode('a')]), TrieNode('d', children=[TrieNode('a')]))
self.assertNotEqual(TrieNode('c', children=[TrieNode('a')]), TrieNode('c', children=[TrieNode('b')]))
self.assertNotEqual(TrieNode('a'), TrieNode('a', word_end=True))
def test_construct_with_children(self):
root = TrieNode(children=[TrieNode('a'), TrieNode('b')])
self.assertEqual(root.letter, None)
self.assertTrue('a' in root.children)
self.assertEqual(root.children['a'], TrieNode('a'))
def test_construct_with_children_other_iterator(self):
root = TrieNode(children=(TrieNode('a'), TrieNode('b')))
self.assertEqual(root.letter, None)
self.assertTrue('a' in root.children)
self.assertEqual(root.children['a'], TrieNode('a'))
def test_none_in_children(self):
self.assertRaises(ValueError, lambda: TrieNode(children=[TrieNode()]))
def test_lowers_letter(self):
self.assertEqual(TrieNode('A'), TrieNode('a'))
def test_only_one_letter(self):
self.assertRaises(ValueError, lambda: TrieNode('ab'))
def test_init_children_or_words(self):
self.assertRaises(ValueError, lambda: TrieNode(children=[TrieNode('a')], words=['b']))
try:
TrieNode(children=[TrieNode('a')])
except ValueError:
self.fail("Should not get a ValueError when building TrieNode with only children.")
try:
TrieNode(words=['foo'])
except ValueError:
self.fail("Should not get a ValueError when building TrieNode with only words")
try:
TrieNode()
except ValueError:
self.fail("Should not get a ValueError when building TrieNode with no children or words")
def test_index(self):
root = TrieNode()
root.index('amp', 'ack', 'bus')
self.assertTrue(recursive_equal(root, self.reference_root))
def test_index_on_child(self):
self.assertRaises(ValueError, lambda: self.reference_root.children['a'].index('foo'))
def test_construct_with_words(self):
root = TrieNode(words=['amp', 'ack', 'bus'])
self.assertEqual(root, self.reference_root)
def test_construct_with_words_other_iterator(self):
root = TrieNode(words={'amp', 'ack', 'bus'})
self.assertEqual(root, self.reference_root)
def test_construct_empty_wordlist(self):
self.assertEqual(TrieNode(words=[]), TrieNode())
def test_full_does_contain(self):
self.assertTrue(self.reference_root.contains('amp'))
self.assertTrue(self.reference_root.contains('ack'))
self.assertTrue(self.reference_root.contains('bus'))
def test_partial_does_contain(self):
self.assertFalse(self.reference_root.contains('a'))
self.assertFalse(self.reference_root.contains('ac'))
self.assertFalse(self.reference_root.contains('bu'))
def test_partial_does_contain_prefix(self):
self.assertTrue(self.reference_root.contains('a', prefix=True))
self.assertTrue(self.reference_root.contains('ac', prefix=True))
self.assertTrue(self.reference_root.contains('bu', prefix=True))
def test_does_not_contain(self):
self.assertFalse(self.reference_root.contains('car'))
self.assertFalse(self.reference_root.contains('candy'))
self.assertFalse(self.reference_root.contains('amd'))
self.assertFalse(self.reference_root.contains('adc'))
self.assertFalse(self.reference_root.contains('bur'))
self.assertFalse(self.reference_root.contains('apple'))
def test_dunder_contains(self):
self.assertTrue('amp' in self.reference_root)
self.assertFalse('a' in self.reference_root)
self.assertFalse('car' in self.reference_root)
def test_repr(self):
node = TrieNode('a', children=[TrieNode('b'), TrieNode('c')])
regex = re.match(
r"^TrieNode\(letter=a, children=\{([bc], [bc])\}, word_end=False\)$",
repr(node)
)
self.assertFalse(regex == None)
# Compare a set of the children so order doesn't matter
self.assertEqual({w.strip() for w in regex.group(1).split(',')}, set(node.children))
def test_add_chilren(self):
root = TrieNode()
root._add_children(TrieNode('a'))
self.assertTrue('a' in root.children)
self.assertEqual(root.children['a'], TrieNode('a'))
| python |
#!/usr/bin/env python
import sys
import random
import importlib
def baseline(a):
a.sort()
return a
def test(a):
print SORTFUNCSTR, ": ",
print a,
a = SORTFUNC(a)
# check invariant
for i in range(1, len(a)):
assert a[i] >= a[i-1]
print " --> ",
print a
SORTFUNC = baseline
SORTFUNCSTR = "baseline"
if len(sys.argv) > 1:
SORTFUNCSTR = sys.argv[1]
SORTMODULE = importlib.import_module(SORTFUNCSTR)
SORTFUNC = SORTMODULE.sort
test([0,1,2,3,4,5,6,7,8,9])
test([9,8,7,6,5,4,3,2,1,0])
test([1,1,1,1,1,1,1,1,1,1])
test([1,2,3,4,3,2,1,4,3,2])
test([int(10*random.random()) for i in xrange(10)])
try:
test(SORTMODULE.testlist)
except:
pass
| python |
import folium
my_map = folium.Map(location=[40.4059954,49.8661496,],zoom_start=15)
folium.TileLayer('mapquestopen',attr='dasd').add_to(my_map)
folium.LayerControl().add_to(my_map)
my_map.save('templates/map.html')
| python |
"""
--------------------------------------------------------------
Copyright (c) 2017, AIT Austrian Institute of Technology GmbH.
All rights reserved. See file PESTO _LICENSE for details.
--------------------------------------------------------------
PESTO-client\createClients\createClients.py
for 1 user:
enables communication on ports
creates working directory if needed
executes PESTO-client\Instance\Instance.py as Administrator or as a specified user
deletes working directory
closes ports
for more users:
creates working directory with subdirectory for all users
enables communication on ports
creates windows users
executes PESTO-client\Instance\Instance.py as the created users
deletes windows users
deletes workingdirectory
closes ports
"""
import subprocess
import sys
import os
import shutil
import time
def createWorkingDirectory(workingdir):
"""
creates working directory if it doesnt exist.
"""
print('Creating: ' + workingdir, flush=True)
if not os.path.isdir(workingdir):
try:
os.makedirs(workingdir)
except Exception as e:
print('Error creating the working directory\n', flush=True)
print(e, flush=True)
return 1
return 0
def createWorkingDirectories(workingdir, number_of_users):
"""
creates working directories for all users
"""
for i in range(number_of_users):
newpath = workingdir+'\\MyUser'+str(i)
print('Creating: ' + newpath, flush=True)
if not os.path.isdir(newpath):
try:
os.makedirs(newpath)
except Exception as e:
print('Error creating the directory\n', flush=True)
print(e, flush=True)
return 1
return 0
def deleteWorkingDirectory(workingdir):
"""
deletes working directory
"""
if os.path.isdir(workingdir):
print('Deleting: ' + workingdir, flush=True)
try:
shutil.rmtree(workingdir, ignore_errors=False)
except Exception as e:
print(workingdir + ' couldnt be deleted.\n', flush=True)
print(e, flush=True)
return 1
def executeOneInstance(PESTO_client, workingdir, resourcesdir, resultsdir, startingport, numberoftheVM, shareddrive, adminpassword, loglevel, username, userpassword):
"""
executes an Instance
waits till it terminates and returns
"""
port = startingport + numberoftheVM
INSTANCE = os.path.join(PESTO_client, 'PESTO-client\\Instance\\Instance.py')
try:
if username == "None":
print('Executing Instance', flush=True)
p = subprocess.Popen(['python', INSTANCE, workingdir, workingdir, resultsdir, resourcesdir, str(port), shareddrive, adminpassword, PESTO_client, loglevel])
else:
print('Executing Instance as '+ username + ' with password: '+ userpassword, flush=True)
p = subprocess.Popen(['psexec.exe', '-n', '60', '-h', '/accepteula', '-u', username, '-p', userpassword, 'python', INSTANCE, workingdir, workingdir, resultsdir, resourcesdir, str(port), shareddrive, adminpassword, PESTO_client, loglevel],stdout=subprocess.PIPE, stderr=subprocess.PIPE )
except Exception as e:
print('Error while executing instance. /returned/', flush=True)
print(e, flush=True)
return 1
# wait process to terminate
p.wait()
print('Process returned: ', p.returncode, flush=True)
return p.returncode
def executeInstances(PESTO_client, number_of_users,workingdir, resourcesdir, resultsdir, startingport, numberoftheVM, shareddrive, password, loglevel):
"""
executes Instances
wait till all terminates
wihout h doesnt work from remote VM
gives the connection 60 sec timeout.
"""
Process = []
for i in range(number_of_users):
userworkingdir = workingdir + '\\MyUser'+str(i)
port = startingport + (number_of_users*numberoftheVM) + i
moreINSTANCEs = os.path.join(PESTO_client, 'PESTO-client\\Instance\\Instance.py')
print('Executing instance as MyUser' + str(i), flush=True)
try:
P = subprocess.Popen(['psexec.exe','-n','60','-h','/accepteula','-u', "MyUser"+str(i) , '-p', 'redhat', 'python', moreINSTANCEs, workingdir, userworkingdir, resultsdir, resourcesdir, str(port),shareddrive,password, PESTO_client, loglevel], stdout=subprocess.PIPE, stderr= subprocess.PIPE)
time.sleep(1)
except Exception as e:
print('Error while executing instance. /returned/',flush=True)
print(e,flush=True)
return 1
Process.append(P)
#wait processes to terminate
for p in Process:
p.wait()
flag = 0
for p in Process:
print('Process on MyUser' + str(Process.index(p)) +' returned: ', p.returncode, flush=True)
if p.returncode != 0:
flag = 1
print('All terminated\n',flush=True)
return flag
def Create_User_Accounts(number_of_users):
"""
creates windows users and adds them administrator rights
"""
print('\n', flush=True)
for i in range(number_of_users):
print('Creating MyUser'+str(i)+' and giving it administrator rights.', flush=True)
try:
p = subprocess.Popen(['net', 'user', 'MyUser' + str(i), 'redhat', '/add'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
if stdout != b'':
print(stdout.decode('utf-8'), flush=True)
if stderr != b'':
print(stderr.decode('utf-8'), flush=True)
except Exception as e:
print('Error creating user.\n', flush=True)
print(e, flush=True)
return 1
try:
p = subprocess.Popen(['net', 'localgroup','administrators', 'MyUser' + str(i), '/add'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
if stdout != b'':
print(stdout.decode('utf-8'), flush=True)
if stderr != b'':
print(stderr.decode('utf-8'), flush=True)
except Exception as e:
print('Error giving administrator rights.\n', flush=True)
print(e, flush=True)
return 1
return 0
def Delete_User_Accounts(number_of_users):
"""
deletes the created users
"""
for i in range(number_of_users):
print('Deleting MyUser' + str(i) + '.', flush=True)
try:
p = subprocess.Popen(['net', 'user', 'MyUser' + str(i),'/delete'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
if stdout != b'':
print(stdout.decode('utf-8') + '\n', flush=True)
if stderr != b'':
print(stderr.decode('utf-8') + '\n', flush=True)
except Exception as e:
print('Error occured while deleting the user /process continued/.\n', flush=True)
print(e, flush=True)
return 1
return
def allowPorts(startingPort, numberofUsers, numberoftheVM):
"""
creates new rules on the firewall for all ports
"""
firstport = startingPort + (numberoftheVM * numberofUsers)
lastport = firstport + numberofUsers - 1
if numberofUsers == 1:
ports = str(firstport)
else:
ports = str(firstport) + '-' + str(lastport)
print('Enabling ports: ' + ports, flush=True)
command = 'netsh advfirewall firewall add rule name="PESTO" dir=in action=allow protocol=TCP localport=' + ports
try:
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
if stdout != b'':
print(stdout.decode('utf-8') + '\n', flush=True)
if stderr != b'':
print(stderr.decode('utf-8') + '\n', flush=True)
except Exception as e:
print('Error occured while enabling ports.\n', flush=True)
print(e, flush=True)
return 1
return 0
def deletePorts(startingPort, numberofUsers, numberoftheVM):
"""
deletes ports
"""
firstport = startingPort + (numberoftheVM * numberofUsers)
lastport = firstport + numberofUsers - 1
if numberofUsers == 1:
ports = str(firstport)
else:
ports = str(firstport) + '-' + str(lastport)
print('Deleting ports: ' + ports, flush=True)
command = 'netsh advfirewall firewall delete rule name="PESTO" protocol=tcp localport=' + ports
try:
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
if stdout != b'':
print(stdout.decode('utf-8') + '\n', flush=True)
if stderr != b'':
print(stderr.decode('utf-8') + '\n', flush=True)
except Exception as e:
print(e, flush=True)
return 0
def runCreateClients(PESTO_client, number_of_users, sharedDrive, resultsdir, workingdir, resourcesdir, numberoftheVM, startingport, password, loglevel, username, userpassword):
if number_of_users == 1:
#enabling ports
retval = allowPorts(startingport, number_of_users, numberoftheVM)
if retval == 1:
input('Press Enter to continue..')
return 1
#creates working directory
retval = createWorkingDirectory(workingdir)
if retval != 0:
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
#executing the instance
retval = executeOneInstance(PESTO_client, workingdir, resourcesdir, resultsdir, startingport, numberoftheVM, sharedDrive, password, loglevel, username, userpassword)
if retval != 0:
deleteWorkingDirectory(workingdir)
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
#deletes working directory
retval = deleteWorkingDirectory(workingdir)
if retval == 1:
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
#deletes ports
deletePorts(startingport, number_of_users, numberoftheVM)
input('ENTER')
return 0
else:
#creates working directories for all users (workingdir\MyUserX)
retval = createWorkingDirectories(workingdir, number_of_users)
if retval == 1:
input('Press Enter to continue..')
return 1
#enabling ports
retval = allowPorts(startingport, number_of_users, numberoftheVM)
if retval == 1:
deleteWorkingDirectory(workingdir)
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
#creates windows users with admin rights
retval = Create_User_Accounts(number_of_users)
if retval != 0:
deleteWorkingDirectory(workingdir)
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
retval = executeInstances(PESTO_client, number_of_users, workingdir, resourcesdir, resultsdir, startingPort, numberoftheVM, sharedDrive, password, loglevel)
if retval != 0:
Delete_User_Accounts(number_of_users)
deleteWorkingDirectory(workingdir)
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
#deletes the created users
retval = Delete_User_Accounts(number_of_users)
if retval == 1:
deleteWorkingDirectory(workingdir)
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
#deletes working directory
retval = deleteWorkingDirectory(workingdir)
if retval == 1:
deletePorts(startingport, number_of_users, numberoftheVM)
input('Press Enter to continue..')
return 1
# deletes ports
deletePorts(startingport, number_of_users, numberoftheVM)
input('ENTER')
return 0
if __name__ == '__main__':
number_of_users = int(sys.argv[1])
ResultsDir = sys.argv[2]
ResourcesDir = sys.argv[3]
WorkingDir = sys.argv[4]
numberoftheVM = int(sys.argv[5])
sharedDrive = sys.argv[6]
startingPort = int(sys.argv[7])
password = sys.argv[8]
loglevel = sys.argv[9]
username = sys.argv[10]
userpassword = sys.argv[11]
PESTO_client = str.replace(sys.argv[0], r'PESTO-client\createClients\createClients.py', '')
runCreateClients(PESTO_client, number_of_users, sharedDrive, ResultsDir, WorkingDir, ResourcesDir, numberoftheVM, startingPort, password, loglevel, username, userpassword) | python |
# At : Thu Apr 30 21:04:44 WIB 2020
import os, sys, time
print '\x1b[36m ____ _ _ '
print '\x1b[36m | \\ ___ ___ | |_ ___ ___ | |_ '
print '\x1b[36m | | || -_|| _|| . || . ||_ -|| |'
print '\x1b[37m |____/ |___||___||___||__,||___||_|_|\x1b[33m v2.0\n \x1b[34m\xe2\x95\x94\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x97\n \x1b[34m\xe2\x95\x91\x1b[31m[\x1b[37m-\x1b[31m]\x1b[37mAuthor : Zen Ezz \x1b[34m\xe2\x95\x91\n \x1b[34m\xe2\x95\x91\x1b[31m[\x1b[37m-\x1b[31m]\x1b[37mYoutube : Zen s \x1b[34m\xe2\x95\x91\n \x1b[34m\xe2\x95\x91\x1b[31m[\x1b[37m-\x1b[31m]\x1b[37mTools : Deobfuscated Bash Shell \x1b[34m\xe2\x95\x91\n \x1b[34m\xe2\x95\x9a\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x9d'
def main():
try:
bx = raw_input(' \x1b[31m[\x1b[37m!\x1b[31m] \x1b[36mInput File Address :\x1b[37m ')
ob_ = open(bx).read().replace('eval', 'echo')
_res = open('un.sh', 'w')
_res.write(ob_)
_res.close()
reb_ = bx.replace('.sh', '_dec.sh')
os.system('sh un.sh > ' + reb_)
_vew = open(reb_).read()
_edAu = open(reb_, 'w')
_edAu.write('#Decrypt By Zen clay\n#https://github.com/zen-clay\n' + _vew)
_edAu.close()
os.system('rm un.sh')
print ' \x1b[31m[\x1b[37m!\x1b[31m] \x1b[36mDone ...! \x1b[37mFile Saved > ' + reb_
main()
except IOError:
print ' \x1b[31m[\x1b[37m!\x1b[31m] \x1b[36mFile Not Found '
main()
except:
print ' \x1b[31m[\x1b[37m!\x1b[31m] \x1b[36mExit...... '
if __name__ == '__main__':
main() | python |
#!/usr/bin/env python3
"""
Copyright 2018 Brocade Communications Systems LLC. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may also obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import getpass
import getopt
import sys
import os
import atexit
import inspect
from pyfos import pyfos_auth
from pyfos import pyfos_util
from pyfos.utils import brcd_cli
from pyfos.pyfos_auth_token import auth_token_manager
from pyfos import pyfos_rest_util
# pylint: disable=W0603
session = None
full_usage_infra_short_1 = "<-i IPADDR> <-L LOGIN> <-P PASSWORD>"
full_usage_infra_short_2 = "[-f VFID] [-v]"
def full_usage(usage, valid_options, sessionless=True):
o_str = ""
for v_op in valid_options:
o_str = o_str + " <--" + v_op + "=" + v_op.upper() + ">"
print(os.path.basename(sys.argv[0]) +
" " + full_usage_infra_short_1 +
o_str +
" " + full_usage_infra_short_2)
print("")
print("Usage:")
print("")
print(" Infrastructure options:")
print("")
print(" -i, --ipaddr=IPADDR IP address of FOS switch")
print(" -L, --login=LOGIN login name")
print(" -P, --password=PASSWORD password")
print(
" -f, --vfid=VFID VFID to which"
" the request is directed to. [OPTIONAL]")
print(
" -s, --secured=MODE HTTPS mode \"self\" or"
" \"CA\". [OPTIONAL]")
print(" -v, --verbose verbose mode. [OPTIONAL]")
if sessionless:
print(" -a, --authtoken AuthToken value string" +
" or AuthTokenManager config file. [OPTIONAL]")
print(" -z, --nosession Session less Authentication.",
" [OPTIONAL]")
print(" --nocredential No credential ",
"Authentication. [OPTIONAL]")
print("")
usage()
def exit_handler():
global session
if session is not None:
pyfos_auth.logout(session)
def exit_register(local_session):
global session
session = local_session
atexit.register(exit_handler)
def base_generic_input(argv, usage, valid_options, sessionless):
ret_dict = dict()
# default value that should be added here
ret_dict["secured"] = None
ret_dict["verbose"] = 0
ret_dict['utilusage'] = ""
try:
opts, args = getopt.getopt(
argv, "hi:f:s:L:P:avz",
[
"activate",
"allaccess=",
"authtoken=",
"acceptEULA",
"compare=",
"device=",
"disable",
"displayEULA",
"enable",
"filename=",
"help",
"hbaid=",
"hostname=",
"banner=",
"hostport=",
"ipaddr=",
"login=",
"members=",
"name=",
"password=",
"pmembers=",
"portid=",
"protocol=",
"messageid=",
"reffcport=",
"secured=",
"speed=",
"stage",
"template=",
"targetname=",
"targetport=",
"type=",
"usepeer=",
"username=",
"userpassword=",
"verbose",
"vfid=",
"xlsapply=",
"xlscheck=",
"json",
"nosession",
"nocredential",
]
)
except getopt.GetoptError as err:
print("getopt error", str(err))
full_usage(usage, valid_options, sessionless)
sys.exit(2)
if len(args) > 0:
print("*** Contains invalid options:", args[0])
full_usage(usage, valid_options, sessionless)
sys.exit(3)
for opt, arg in opts:
if opt in ("-h", "--help"):
full_usage(usage, valid_options, sessionless)
sys.exit()
elif opt == "--activate":
ret_dict["activate"] = True
elif opt == "--allaccess":
if not pyfos_util.isInt(arg):
print("*** Invalid allacess:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["allaccess"] = int(arg)
elif opt == "--acceptEULA":
ret_dict["acceptEULA"] = "accept-eula"
elif opt in "--compare":
ret_dict["compare"] = arg
elif opt in "--disable":
ret_dict["disable"] = True
elif opt in "--displayEULA":
ret_dict["displayEULA"] = "display-eula"
elif opt in "--device":
if not pyfos_util.isWWN(arg):
print("*** Invalid device:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["device"] = arg
elif opt in "--enable":
ret_dict["enable"] = True
elif opt in ("-f", "--vfid"):
if not pyfos_util.isInt(arg):
print("*** Invalid vfid:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["vfid"] = int(arg)
elif opt in "--filename":
ret_dict["filename"] = arg
elif opt in "--hbaid":
ret_dict["hbaid"] = arg
elif opt in "--hostname":
ret_dict["hostname"] = arg
elif opt in "--banner":
ret_dict["banner"] = arg
elif opt in "--hostport":
if not pyfos_util.isWWN(arg):
print("*** Invalid hostport:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["hostport"] = arg
elif opt in ("-i", "--ipaddr"):
if not pyfos_util.isIPAddr(arg):
print("*** Invalid ipaddr:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["ipaddr"] = arg
elif opt in "--json":
ret_dict["json"] = True
elif opt in ("-L", "--login"):
ret_dict["login"] = arg
elif opt in "--members":
ret_dict["members"] = arg.split(";")
elif opt in "--name":
ret_dict["name"] = arg
elif opt in "--pmembers":
ret_dict["pmembers"] = arg.split(";")
elif opt in ("-P", "--password"):
ret_dict["password"] = arg
elif opt in "--portid":
ret_dict["portid"] = arg
elif opt in "--protocol":
ret_dict["protocol"] = arg
elif opt in "--messageid":
ret_dict["messageid"] = arg
elif opt in "--reffcport":
if not pyfos_util.isSlotPort(arg):
print("*** Invalid reffcport:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["reffcport"] = arg
elif opt in ("-s", "--secured"):
if arg == "self":
ret_dict["secured"] = "self"
elif arg == "CA":
ret_dict["secured"] = "CA"
else:
print("defaults to CA")
ret_dict["secured"] = "CA"
elif opt in "--show":
ret_dict["show"] = 1
elif opt in "--speed":
if not pyfos_util.isInt(arg):
print("*** Invalid speed:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["speed"] = int(arg)
elif opt in "--stage":
ret_dict["stage"] = True
elif opt in "--template":
ret_dict["template"] = arg
elif opt in "--targetname":
ret_dict["targetname"] = arg
elif opt in "--targetport":
if not pyfos_util.isWWN(arg):
print("*** Invalid targetport:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["targetport"] = arg
elif opt in "--type":
ret_dict["type"] = arg
elif opt in "--username":
ret_dict["username"] = arg
elif opt in "--userpassword":
ret_dict["userpassword"] = arg
elif opt in "--usepeer":
if arg not in ('WWN', ''):
print("*** Invalid userpeer:", arg)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
ret_dict["usepeer"] = arg
elif opt in ("-v", "--verbose"):
ret_dict["verbose"] = 1
elif opt in ("-z", "--nosession"):
ret_dict["sessionless"] = True
elif opt in "--nocredential":
ret_dict["nocredential"] = True
elif opt in ("-a", "--authtoken"):
if len(arg) == 0:
ret_dict['authtoken'] = None
else:
ret_dict['authtoken'] = arg
elif opt in "--xlscheck":
ret_dict["xlscheck"] = arg
elif opt in "--xlsapply":
ret_dict["xlsapply"] = arg
else:
print("unknown", opt)
full_usage(usage, valid_options, sessionless)
sys.exit(5)
if "ipaddr" not in ret_dict:
print("Missing IP address input")
print("")
full_usage(usage, valid_options, sessionless)
sys.exit(6)
if "login" not in ret_dict.keys():
login = input("Login:")
ret_dict["login"] = login
if "password" not in ret_dict.keys():
if 'authtoken' not in ret_dict.keys() and\
'nocredential' not in ret_dict.keys():
password = getpass.getpass()
ret_dict["password"] = password
if valid_options is not None:
# pylint: disable=W0612
for k, v in ret_dict.items():
if k not in ('login', 'password', 'ipaddr',
'secured', 'vfid', 'verbose',
'authtoken', 'sessionless', 'utilusage',
'nocredential'):
found = False
for valid_option in valid_options:
if valid_option == k:
found = True
break
if not found:
print("*** Invalid option given:", k)
full_usage(usage, valid_options, sessionless)
sys.exit(4)
return ret_dict
def generic_input(argv, cls_usage, filters=None, validate=None,
sessionless=True):
inputs = dict()
if isinstance(cls_usage, str):
mydict = brcd_cli.pseudorestcli(cls_usage)
if inspect.isclass(cls_usage):
custom_cli = brcd_cli.getcustomcli(cls_usage().container)
restobject = cls_usage.parse(argv, inputs, filters,
custom_cli, validate)
if restobject is None:
sys.exit(4)
else:
inputs.update({'utilobject': restobject})
inputs.update({'utilclass': cls_usage})
inputs.update({'utilfilters': filters})
inputs.update({'utilusage': restobject.showusage(filters)})
return inputs
elif isinstance(cls_usage, str) and mydict is not None:
restobject = pyfos_rest_util.rest_object.pseudodictrestobject(mydict)
restobject = restobject.parse_commandline(argv, inputs,
filters, None, validate)
if restobject is None:
sys.exit(4)
else:
inputs.update({'utilobject': restobject})
inputs.update({'utilclass': "runtime"})
inputs.update({'utilfilters': filters})
inputs.update({'utilusage': restobject.showusage(filters)})
return inputs
else:
# Check filters can be none as well based on the utils.
inputs = base_generic_input(argv, cls_usage, filters, sessionless)
return inputs
def parse(argv, cls_usage, filters=None, validate=None):
return generic_input(argv, cls_usage, filters, validate)
def getsession(inputs):
global session
tokenManager = None
ishttps = None
if 'authtoken' in inputs.keys():
# Always need to use the Default Token Manager config
# if user wants to use a different configuration then user
# config store should be set as default store using the set
# default store option.
if inputs['authtoken'] is None or \
auth_token_manager.isvalidconfig(inputs['authtoken']):
tokenManager = auth_token_manager(inputs['authtoken'])
else:
tokenManager = inputs['authtoken']
# tokenManager.show()
# Get the password or else None
ip = inputs.get("ipaddr", None)
user = inputs.get("login", None)
password = inputs.get("password", None)
sessionless = inputs.get('sessionless', False)
nocred = inputs.get('nocredential', False)
if 'secured' in inputs.keys():
ishttps = inputs['secured']
# Default DEFAULT_THROTTLE_DELAY 1.1
session = pyfos_auth.login(user, password,
ip, ishttps,
1.1, 0,
tokenManager,
sessionless,
nocred)
if pyfos_auth.is_failed_login(session):
print("login failed because",
session.get(pyfos_auth.CREDENTIAL_KEY)
[pyfos_auth.LOGIN_ERROR_KEY])
print(inputs['utilusage'])
sys.exit(3)
exit_register(session)
if 'vfid' in inputs:
pyfos_auth.vfid_set(session, inputs['vfid'])
if 'verbose' in inputs and inputs['verbose'] != 0:
pyfos_auth.debug_set(session, 1)
inputs['session'] = session
return session
def clean(inputs):
restobject = None
filters = None
if 'utilobject' in inputs.keys():
restobject = inputs['utilobject']
if 'utilfilters' in inputs.keys():
filters = inputs['utilfilters']
if restobject is not None:
restobject.clean(filters)
inputs['utilobject'] = restobject
def pseudodictrestobject(mydictkey):
mydict = brcd_cli.pseudorestcli(mydictkey)
if mydict is not None and isinstance(mydict, dict):
restobject = pyfos_rest_util.rest_object.pseudodictrestobject(mydict)
return restobject
return None
def defaultclioptions(cls):
retdict = dict()
if inspect.isclass(cls):
retdict.update(cls().displaycustomcli())
elif isinstance(cls, list):
for i in range(len(cls)):
retdict.update(cls[i]().displaycustomcli())
return retdict
| python |
global register_count
register_count = 0
global register_refs
register_refs = {}
global register_dims
register_dims = {}
# a data structure such that:
# identity unique upon initialization
# can be merged with other registers
# can can be an array or not: can specify dimension and slots
# TODO: should the Register perhaps know its user-given name, to make the final qaasm more readable?
# how does that gel with register merging? It'll make sense for a symmetrized merge, but not a block-algebra merge.
def Register():
def __init__(self, dim, slots=None):
assert int(dim) == dim
assert dim > 1
register_count += 1
self.id = register_count
register_refs[self.id] = None
register_dims[self.id] = (dim,slots)
def trace(self):
out = self.id
while register_refs[out] != None:
out = register_refs[out]
return out
@property
def dim(self):
return register_dims[self.trace()][0]
@property
def slots(self):
return register_dims[self.trace()][1]
def __eq__(self,other):
if not isinstance(other,Register): return False
return self.trace() == other.trace()
def substitute(self,other):
assert isinstance(other,Register)
assert self.dim == other.dim
assert self.slots == other.slots
target = other.trace()
if target == self.trace(): return
key = self.id
while register_refs[key] != None:
key = register_refs[key]
register_refs[key] = target
###################################
# Where do the responsibilities of this class end and those of the runtime begin?
# Runtime should do:
# parsing the ast.
# pre-evaluation of expns
# distinguish between block expns and value expns
# QAASM should do:
# circuit synthesis
# managing the scope
# scope ops:
# key is removed because it was consumed
# value is swapped out because of a relabeling
# block is symmetrized: inputs must equal outputs (need to know scope before and after)
# two blocks are matched: inputs=inputs, outputs=outputs (need to know scope before and after)
# The whole {"x":1,...},["x"] system worked pretty well for that.
# QAASM data structure keeps track of both reg objects and their names in the scope.
# Blq objects just keep track of the reg objects.
class QAASM():
def __init__(self,parent=None):
self.scale = 1
self.instrs = []
# Key idea: I can lazily swap/relabel registers by manipulating the self.outputs dictionary.
# Only when I need to symmetrize or align do I need to actually implement a permutation using qaasm.
self.inputs = {}
self.outputs = {}
# Both None if unshaped. Both are lists if shaped. Check via self.shaped.
# Needs to be unshaped in order to add instructions.
# Needs to be shaped in order to do algebra.
self.lshape = None # an ordered subset of self.inputs.keys(), those not in ordering are the consumed registers
self.rshape = None # an ordering on self.outputs.keys()
# There seems to be a difference in the needs of the methods:
# if, repeat, increment, scalar, init, assign
# all only really care about IF a variable is in scope, not about scope order of target block
# add, multiply, adjoint, tensorproduct
# do care about scope order
# When is scope order determined?
# types of blocks
# blocks in if and repeat statements: dont care about scope order at all
# ket() expn, consume expn, block cast, Blq's: can just make scope order correct upon init
assert isinstance(parent,QAASM)
self.parent = parent
# Expressions can refer to keys in parent scope. Only if a register is declared/discarded/zero'd
# or permuted in scope must ot be an output.
# Can make something an explicit output by promoting it.
# Should promotion make it a consume or an input?
@property
def shaped(self):
if self.lshape is None:
assert self.rshape is None
return False
assert isinstance(self.lshape,list)
assert isinstance(self.rshape,list)
return True
# get key from parent scope
def parentGet(self,key):
if self.parent is None:
raise KeyError()
if key in self.parent.outputs:
return self.parent.outputs[key]
return self.parent[key]
# check if parent has key
def parentHas(self,key):
if self.parent is None: return False
if key in self.parent.outputs: return True
return key in self.parent
def promote(self, name):
assert self.lshape is None and self.rshape is None
assert self.parentHas(name)
# check that 'name' was never in scope
assert name not in self.inputs
for instr in self.instrs:
if instr["kind"] == "nqaasm_declare":
assert instr["name"] != name
assert name not in self.outputs
prvreg = self.parentGet(name)
reg = Register(prvreg.dim, slots=prvreg.slots)
self.inputs[name] = reg
self.outputs[name] = reg
# named-qaasm aka nqaasm
# its unclear to me that this is really that different
# uses string register names rather than reg objects
# except for declare which includes both. Regobj can be an array.
# {"kind":"nqaasm_declare", "reg":<regobj>, "name":<name>}
# {"kind":"nqaasm_discard", "name":<name>}
# {"kind":"nqaasm_zero", "name":<name>}
# {"kind":"nqaasm_increment", "name":<name>, "expn":<expn>}
# {"kind":"nqaasm_unitary", "name":<name>, "mat":<matrix>}
# {"kind":"nqaasm_phase", "value":<complexnr>}
# {"kind":"nqaasm_swap", "name1":<name>, "name2":<name>}
# {"kind":"nqaasm_if", "name":<register>, "instructions":[<instrs>] }
def declare(self, name, dim, slots=None):
assert self.lshape is None and self.rshape is None
assert name not in self.outputs
reg = Register(dim,slots=slots)
self.instrs.append({"kind":"nqaasm_declare", "name":name, "reg":reg})
def discard(self, name):
assert self.lshape is None and self.rshape is None
if name not in self.outputs: self.promote(name)
assert name in self.outputs
self.instrs.append({"kind":"qaasm_discard", "name":name})
del self.outputs[name]
# zero
# Boring:
# unitary
# phase
def increment(self, reg, expn):
# if reg is not in scope, it has to be in parent scope, and needs to be promoted.
# assert expn's regs are either in parent scope or in current scope and have the right shape
# perhaps all the array decompiling does is make all indexes integers rather than variables
def process_expn(expn):
if expn["kind"] == "register_expn":
if expn["key"] is None:
pass
if isinstance(expn["key"],int):
pass
if isinstance(expn["key"],str):
pass
# recurse
pass
process_expn(expn)
pass
def symmetrize(self):
# assert qaasm.input and qaasm.scope need to have the same set of keys
for key in qaasm.input.keys():
if qaasm.input[key] == qaasm.scope[key]:
continue
# check if there is any point in time when both qaasm.input[key] and qaasm.output[key]
# are in scope. If yes, need to do a swap.
pass
def if(self, reg, qaasm):
# reg is either in scope or in parent scope.
# assert qaasm.lshape == qaasm.rshape == []
assert qaasm.parent = self
# qaasm.inputs need to be in self.scope. Promote if needed.
qaasm.symmetrize()
for key in qaasm.input.keys():
if key not in self.scope: self.promote(key)
self.scope[key].substitute(qaasm.input[key])
def repeat(self, qaasm, count):
# same as if, basically.
pass
###################
def scalar_instr(self, qaasm):
# how to tell the runtime how the scope changed?
# qaasm.rshape == qaasm.lshape == []
assert qaasm.parent = self
# promote any qaasm.inputs if needed, and wire them up
for key in qaasm.input.keys():
if key not in self.scope: self.promote(key)
self.scope[key].substitute(qaasm.input[key])
# delete any consumed variables
for key in self.scope.keys():
if key in qaasm.input and key not in qaasm.scope:
del qaasm.scope[key]
assert len(qaasm.scope.keys()) == 0
self.scale *= qaasm.scale
for instr in qaasm.instrs:
self.instrs.append(instr)
def init_instr(self, targets, qaasm):
assert qaasm.parent = self
assert len(qaasm.rshape) == 0
for key in qaasm.scope: assert key in qaasm.lshape # is this always true anyway?
# for key in qaasm.lshape: assert key in qaasm.scope # this should be true anyway
assert len(targets) = len(qaasm.lshape)
# promote any qaasm.inputs if needed, and wire them up
for key in qaasm.input.keys():
if key not in self.scope: self.promote(key)
self.scope[key].substitute(qaasm.input[key])
# delete any consumed variables
for key in self.scope.keys():
if key in qaasm.input and key not in qaasm.scope:
del qaasm.scope[key]
for i in range(len(targets)):
target = targets[i]
key = qaasm.lshape[i]
reg = qaasm.scope[key]
assert
pass
def assign_instr(self, reg, expn):
pass
def assign_undo_instr(self, reg, expn, undo):
pass
def assign_array_instr(self, key, regs, expn):
pass
def assign_array_undo_instr(self, key, regs, expn, undo):
pass
############################
# The difference between nqaasm and regular qaasm:
# - nqaasm knows what names the user has given to the variables.
# - nqaasm can implement user-level permutations and relabelings without actually generating instructions
# - nqaasm can't really be obtained from matrix literals or create expressions. (this is a problem!)
# - If nqaasm is serialized all the labeling information is lost. It can't be deserialized.
# - Need support for temporary names in nqaasm, which is the very problem registers are supposed to solve.
# "nqaasm_unnamed_declare"?
# have register objects hold on to their user-level names? That merges nqaasm with qaasm, but gets rid of permutation facility.
# if swap is a qaasm instruction, then can't the swap overhead be reduced in post?
# Idea: instructions are inherently named. algebra is inherently unnamed
# consume, create, cast are sort-of the boundary between named and unnamed.
# three types: referenced / scoped / unnamed
# blocks as inputs to if statements can't have any unnamed registers.
# algebraic blocks can't have any scoped registers as output.
# user-level blocks can't have any scoped registers and referenced registers
# what registers are what is determined by their presence in the bookkeeping dictionaries
# not by qaasm. Qaasm only knows about registers.
# should qaasm support arrays, just with fixed indices?
###################
# Proposal
# QAASM blocks are unshaped, and instructions can be appended to them
# Blq blocks are shaped and instruction immutable - can only be manipulated via block algebra
# problems with this proposal:
# Blq objects still need to be able to refer to things in scope, and are thus still nqaasm. Different from userspace blqs.
#
# Three types blocks:
# Unshaped QAASM. Basically a bag of instructions. Can add instructions, can't do algebra.
# Shaped QAASM. Knows how to refer to parent scope. Only mutable through algebra.
# Userspace Blocks. Doesn't know anything about scope.
# Question: why do userspace blocks and shaped qaasm need to be different?
# It still seems userspace blocks are just a restricted version of shaped qaasm.
# Especially if I need to convert back and forth between the two in order to do anything.
# Similarities and differences:
# They both use reg objects.
# Named qaasm vs regular qaasm. Named qaasm is optimized for a named scope.
# The whole register/scope system is still somewhat unprincipled.
# Userspace blocks don't know about parent scope, or scope at all.
# Open: can userspace blocks permute through relabeling?
# should userspace blocks use reg objects? Yes.
# if no: need to interconvert a lot
# if yes: lots of spare reg objects floating around.
# Motivation for yes: blocks exist to be manipulated. are usually not static.
# no such things as arrays in userspace blocks
# userspace blocks can't refer to things in scope, shaped QAASM can
# userspace blocks can't consume, shaped QAASM can
# Choice:
# userspace rshape,lshape are [<reg>,<reg>]
# userspace block shape should match declaration order.
# declare x: 2
# declare y: 3
# -> should have lshape [2,3]
# Userspace block:
# rshape = [<reg>,<reg>], lshape is by declaration order.
# I believe this prevents swapping by relabeling. Is that what I want?
# If userspace blocks have swapping by relabeling, then permutations automatically cancel.
# example:
# rshape = [<reg1>,<reg2>] # lshape = [<reg1>,<reg2>]
# declare <reg3> # lshape = [<reg1>,<reg2>,<reg3>]
# <reg3> += <reg1>
# <reg1> -= <reg3>
# zero <reg1> # lshape = [<reg2>,<reg3>]
# Question: make swapping a primitive?
# yes, can do this via algebra, but is more inefficient.
# Helps give hints to any future qaasm compilers.
# these should all return shaped QAASM blocks
def block_create(parent, expn, dim):
pass
def block_consume(parent, name):
pass
def block_cast(parent, name):
pass
def block_userspace(parent, blq):
pass
###############################
def block_add(*blocks):
scales = [b.scale for b in blocks]
out = QAASM()
out.scale = sum(scales)
col1 = [(s/out.scale)**(1/2) for s in scales]
mat = [] # make matrix with col1 as the first column
# substitution business
def block_mul(b1,b2):
pass
def block_tensor(b1,b2):
pass
def block_adjoint(b1,b2):
pass
| python |
import numpy as np
from scipy import integrate, interpolate
import healpy as hp
import subprocess
import TheoryCL
from .. import utils
from .. import bessel
class SphericalBesselISW(TheoryCL.CosmoLinearGrowth):
"""Class for computing the ISW using spherical Bessel Transforms from maps
of the density contrast given in redshift slices.
"""
def __init__(self):
"""Initialises the class.
Parameters
----------
CosmoLinearGrowth : class
Parent class for calculating Cosmological linear growth functions.
"""
TheoryCL.CosmoLinearGrowth.__init__(self)
self.Tcmb = 2.7255
self.C = 3e8
self.temp_path = None
self.sbt_zmin = None
self.sbt_zmax = None
self.sbt_zedge_min = None
self.sbt_zedge_max = None
self.slice_in_range = None
self.sbt_rmin = None
self.sbt_rmax = None
self.sbt_kmin = None
self.sbt_kmax = None
self.sbt_lmax = None
self.sbt_nmax = None
self.sbt_redge_min = None
self.sbt_redge_max = None
self.uselightcone = None
self.temp_path = None
self.boundary_conditions = None
self.sim_dens = None
def setup(self, zmin, zmax, zedge_min, zedge_max, kmin=None, kmax=0.1,
lmax=None, nmax=None, uselightcone=True, temp_path='temp/',
boundary_conditions='derivative'):
"""Finds the slices that are required to compute the SBT coefficients from.
Parameters
----------
zmin : float
Minimum redshift for spherical Bessel transform.
zmax : float
Maximum redshift for spherical Bessel transform.
zedge_min : array
Minimum redshift edge for each slice.
zedge_max : array
Maximum redshift edge for each slice.
kmin : float
Minium Fourier mode to consider.
kmax : float
Maximum Fourier mode to consider.
lmax : int
Maximum l mode to compute to, if None will be computed based on kmax.
nmax : int
Maximum n mode to comput to, if None will be computed based on kmax.
uselightcone : bool
True if density contrast maps are given as a lightcone and not all at
redshift 0.
boundary_conditions : str
- normal : boundaries where spherical bessel function is zero.
- derivative : boundaries where the derivative of the spherical Bessel
function is zero.
"""
if zedge_min.min() > zmin:
print('zmin given,', zmin, 'is smaller than the zmin of the redshift slices. Converting zmin to zmin_edges.zmin().')
self.sbt_zmin = zedge_min.min()
else:
self.sbt_zmin = zmin
if zedge_max.max() < zmax:
print('zmax given,', zmax, 'is larger than the zmax of the redshift slices. Converting zmax to zmax_edges.zmax().')
self.sbt_zmax = zedge_max.max()
else:
self.sbt_zmax = zmax
self.sbt_zedge_min = zedge_min
self.sbt_zedge_max = zedge_max
self.slice_in_range = np.where((self.sbt_zedge_min <= self.sbt_zmax))[0]
self.sbt_rmin = TheoryCL.growth.get_r(self.sbt_zmin, self.omega_m, self.omega_l, self.omega_r)
self.sbt_rmax = TheoryCL.growth.get_r(self.sbt_zmax, self.omega_m, self.omega_l, self.omega_r)
self.sbt_kmin = kmin
self.sbt_kmax = kmax
if lmax is None:
self.sbt_lmax = int(self.sbt_rmax*self.sbt_kmax) + 1
else:
self.sbt_lmax = lmax
if nmax is None:
self.sbt_nmax = int(self.sbt_rmax*self.sbt_kmax/np.pi) + 1
else:
self.sbt_nmax = nmax
self.sbt_redge_min = TheoryCL.growth.get_r(self.sbt_zedge_min, self.omega_m, self.omega_l, self.omega_r)
self.sbt_redge_max = TheoryCL.growth.get_r(self.sbt_zedge_max, self.omega_m, self.omega_l, self.omega_r)
self.uselightcone = uselightcone
self.temp_path = temp_path
utils.create_folder(self.temp_path)
if boundary_conditions == 'normal' or boundary_conditions == 'derivative':
self.boundary_conditions = boundary_conditions
else:
print("boundary_conditions can only be 'normal' or 'derivative', not", boundary_conditions)
def slice2alm(self, map_slice, index):
"""Given a density contrast map and its corresponding index (for its
zedges minimum and maximum) slice2alm will convert the map to its
spherical harmonics and save the files.
Parameters
----------
map_slice : array
Healpix density contrast map.
index : int
Index of the slice for its zedges.
"""
if index in self.slice_in_range:
map_ = map_slice
wl = hp.sphtfunc.pixwin(hp.get_nside(map_), lmax=self.sbt_lmax)
alm = hp.map2alm(map_, lmax=self.sbt_lmax, verbose=False)
alm = hp.almxfl(alm, 1./wl)
condition = np.where(self.slice_in_range == index)[0]
np.savetxt(self.temp_path+'map_alm_'+str(condition[0])+'.txt', np.dstack((alm.real, alm.imag))[0])
else:
print('Slice not in zmin and zmax range.')
def alm2sbt(self):
"""Converts spherical harmonic coefficients in redshift slices to spherical
Bessel coefficients. Stored as delta_lmn in units of (Mpc/h)^(1.5).
"""
l = np.arange(self.sbt_lmax+1)[2:]
n = np.arange(self.sbt_nmax+1)[1:]
l_grid, n_grid = np.meshgrid(l, n, indexing='ij')
self.l_grid = l_grid
self.n_grid = n_grid
qln_grid = np.zeros(np.shape(self.l_grid))
print('Finding zeros for Bessel function up to n = '+str(self.sbt_nmax))
for i in range(0, len(self.l_grid)):
l_val = self.l_grid[i][0]
if i < 10:
if self.boundary_conditions == 'normal':
qln_grid[i] = bessel.get_qln(l_val, self.sbt_nmax, nstop=100)
elif self.boundary_conditions == 'derivative':
qln_grid[i] = bessel.get_der_qln(l_val, self.sbt_nmax, nstop=100)
else:
if self.boundary_conditions == 'normal':
qln_grid[i] = bessel.get_qln(l_val, self.sbt_nmax, nstop=100,
zerolminus1=qln_grid[i-1],
zerolminus2=qln_grid[i-2])
elif self.boundary_conditions == 'derivative':
qln_grid[i] = bessel.get_der_qln(l_val, self.sbt_nmax, nstop=100,
zerolminus1=qln_grid[i-1],
zerolminus2=qln_grid[i-2])
TheoryCL.utils.progress_bar(i, len(self.l_grid))
self.kln_grid = qln_grid/self.sbt_rmax
print('Constructing l and n value grid')
if self.boundary_conditions == 'normal':
self.Nln_grid = ((self.sbt_rmax**3.)/2.)*bessel.get_jl(self.kln_grid*self.sbt_rmax, self.l_grid+1)**2.
elif self.boundary_conditions == 'derivative':
self.Nln_grid = ((self.sbt_rmax**3.)/2.)*(1. - self.l_grid*(self.l_grid+1.)/((self.kln_grid*self.sbt_rmax)**2.))
self.Nln_grid *= bessel.get_jl(self.kln_grid*self.sbt_rmax, self.l_grid)**2.
if self.sbt_kmin is None and self.sbt_kmax is None:
l_grid_masked = self.l_grid
n_grid_masked = self.n_grid
kln_grid_masked = self.kln_grid
Nln_grid_masked = self.Nln_grid
else:
l_grid_masked = []
n_grid_masked = []
kln_grid_masked = []
Nln_grid_masked = []
for i in range(0, len(self.l_grid)):
if self.sbt_kmin is None and self.sbt_kmax is None:
condition = np.arange(len(self.kln_grid[i]))
elif self.sbt_kmin is None:
condition = np.where(self.kln_grid[i] <= self.sbt_kmax)[0]
elif self.sbt_kmax is None:
condition = np.where(self.kln_grid[i] >= self.sbt_kmin)[0]
else:
condition = np.where((self.kln_grid[i] >= self.sbt_kmin) & (self.kln_grid[i] <= self.sbt_kmax))[0]
if len(condition) != 0:
l_grid_masked.append(self.l_grid[i, condition])
n_grid_masked.append(self.n_grid[i, condition])
kln_grid_masked.append(self.kln_grid[i, condition])
Nln_grid_masked.append(self.Nln_grid[i, condition])
l_grid_masked = np.array(l_grid_masked, dtype=object)
n_grid_masked = np.array(n_grid_masked, dtype=object)
kln_grid_masked = np.array(kln_grid_masked, dtype=object)
Nln_grid_masked = np.array(Nln_grid_masked, dtype=object)
self.l_grid_masked = l_grid_masked
self.n_grid_masked = n_grid_masked
self.kln_grid_masked = kln_grid_masked
self.Nln_grid_masked = Nln_grid_masked
# New part
print('Pre-compute spherical Bessel integrals')
_interpolate_jl_int = []
for i in range(0, len(self.l_grid_masked)):
_xmin = 0.
_xmax = (self.kln_grid_masked[i]*self.sbt_rmax).max() + 1.
_x = np.linspace(_xmin, _xmax, 10000)
_jl_int = np.zeros(len(_x))
_jl_int[1:] = integrate.cumtrapz((_x**2.)*bessel.get_jl(_x, l_grid[i][0]), _x)
_interpolate_jl_int.append(interpolate.interp1d(_x, _jl_int, kind='cubic', bounds_error=False, fill_value=0.))
TheoryCL.utils.progress_bar(i, len(self.l_grid_masked))
print('Computing spherical Bessel Transform from spherical harmonics')
for which_slice in range(0, len(self.slice_in_range)):
index = self.slice_in_range[which_slice]
r_eff = (3./4.)*(self.sbt_redge_max[index]**4. - self.sbt_redge_min[index]**4.)/(self.sbt_redge_max[index]**3. - self.sbt_redge_min[index]**3.)
Dz_eff = self.get_Dr(r_eff)
Sln = np.zeros(np.shape(self.kln_grid))
for i in range(0, len(l_grid)):
if self.sbt_kmin is None and self.sbt_kmax is None:
condition = np.arange(len(self.kln_grid[i]))
elif self.sbt_kmin is None:
condition = np.where(self.kln_grid[i] <= self.sbt_kmax)[0]
elif self.sbt_kmax is None:
condition = np.where(self.kln_grid[i] >= self.sbt_kmin)[0]
else:
condition = np.where((self.kln_grid[i] >= self.sbt_kmin) & (self.kln_grid[i] <= self.sbt_kmax))[0]
if len(condition) != 0:
Sln[i, condition] += np.array([(1./(np.sqrt(self.Nln_grid_masked[i][j])*self.kln_grid_masked[i][j]**3.))*(_interpolate_jl_int[i](self.kln_grid_masked[i][j]*self.sbt_redge_max[index]) - _interpolate_jl_int[i](self.kln_grid_masked[i][j]*self.sbt_redge_min[index])) for j in range(0, len(self.l_grid_masked[i]))])
data = np.loadtxt(self.temp_path + 'map_alm_'+str(which_slice)+'.txt', unpack=True)
delta_lm_real = data[0]
delta_lm_imag = data[1]
delta_lm = delta_lm_real + 1j*delta_lm_imag
if self.uselightcone == True:
delta_lm /= Dz_eff
if which_slice == 0:
l_map, m_map = hp.Alm.getlm(hp.Alm.getlmax(len(delta_lm)))
delta_lmn = np.zeros((self.sbt_nmax, len(delta_lm)), dtype='complex')
conditions1 = []
conditions2 = []
for i in range(0, len(Sln[0])):
if self.sbt_kmin is None and self.sbt_kmax is None:
condition = np.arange(len(self.kln_grid[:, i]))
elif self.sbt_kmin is None:
condition = np.where(self.kln_grid[:, i] <= self.sbt_kmax)[0]
elif self.sbt_kmax is None:
condition = np.where(self.kln_grid[:, i] >= self.sbt_kmin)[0]
else:
condition = np.where((self.kln_grid[:, i] >= self.sbt_kmin) & (self.kln_grid[:, i] <= self.sbt_kmax))[0]
if len(condition) == 0:
lmax = 0
else:
lmax = self.l_grid[condition, i].max()
condition1 = np.where(self.l_grid[:, i] <= lmax)[0]
condition2 = np.where(l_map <= lmax)[0]
conditions1.append(condition1)
conditions2.append(condition2)
conditions1 = np.array(conditions1, dtype=object)
conditions2 = np.array(conditions2, dtype=object)
for i in range(0, len(Sln[0])):
_delta_lmn = np.zeros(len(delta_lm), dtype='complex')
_delta_lmn[conditions2[i].astype('int')] = hp.almxfl(delta_lm[conditions2[i].astype('int')], np.concatenate([np.zeros(2), Sln[conditions1[i].astype('int'), i]]))
delta_lmn[i] += _delta_lmn
TheoryCL.utils.progress_bar(which_slice, len(self.slice_in_range), indexing=True, num_refresh=len(self.slice_in_range))
self.delta_lmn = delta_lmn
def save_sbt(self, prefix=None):
"""Saves spherical Bessel transform coefficients.
Parameters
----------
prefix : str
Prefix for file containing spherical Bessel transform.
"""
if prefix is None:
fname = 'sbt_zmin_'+str(self.sbt_zmin)+'_zmax_'+str(self.sbt_zmax)+'_lmax_'+str(self.sbt_lmax)+'_nmax_'+str(self.sbt_nmax)
else:
fname = prefix + '_sbt_zmin_'+str(self.sbt_zmin)+'_zmax_'+str(self.sbt_zmax)+'_lmax_'+str(self.sbt_lmax)+'_nmax_'+str(self.sbt_nmax)
if self.boundary_conditions == 'normal':
fname += '_normal.npz'
elif self.boundary_conditions == 'derivative':
fname += '_derivative.npz'
np.savez(fname, kln_grid=self.kln_grid, kln_grid_masked=self.kln_grid_masked, l_grid_masked=self.l_grid_masked,
Nln_grid_masked=self.Nln_grid_masked, delta_lmn=self.delta_lmn)
def sbt2isw_alm(self, zmin=None, zmax=None):
"""Returns the ISW spherical harmonics between zmin and zmax from the computed
spherical Bessel Transform.
Parameters
----------
zmin : float
Minimum redshift for ISW computation.
zmax : float
Maximum redshift for ISW computation.
"""
if zmin is None:
zmin = self.sbt_zmin
if zmax is None:
zmax = self.sbt_zmax
r = np.linspace(self.get_rz(zmin), self.get_rz(zmax), 1000)
Dz = self.get_Dr(r)
Hz = self.get_Hr(r)
fz = self.get_fr(r)
DHF = Dz*Hz*(1.-fz)
Iln = np.zeros(np.shape(self.kln_grid))
for i in range(0, len(self.kln_grid)):
if self.sbt_kmin is None and self.sbt_kmax is None:
condition = np.arange(len(self.kln_grid[i]))
elif self.sbt_kmin is None:
condition = np.where(self.kln_grid[i] <= self.sbt_kmax)[0]
elif self.sbt_kmax is None:
condition = np.where(self.kln_grid[i] >= self.sbt_kmin)[0]
else:
condition = np.where((self.kln_grid[i] >= self.sbt_kmin) & (self.kln_grid[i] <= self.sbt_kmax))[0]
if len(condition) != 0:
Iln[i, condition] += np.array([(1./np.sqrt(self.Nln_grid_masked[i][j]))*integrate.simps(DHF*bessel.get_jl(self.kln_grid_masked[i][j]*r, self.l_grid_masked[i][j]), r) for j in range(0, len(self.l_grid_masked[i]))])
TheoryCL.utils.progress_bar(i, len(self.kln_grid))
alm_isw = np.zeros(len(self.delta_lmn[0]), dtype='complex')
for i in range(0, len(self.delta_lmn)):
alm_isw += hp.almxfl(self.delta_lmn[i], np.concatenate([np.zeros(2), Iln[:, i]/(self.kln_grid[:, i]**2.)]))
alm_isw *= 3.*self.omega_m*((100.*self.h0)**2.)/(self.C**3.)
alm_isw *= 1e9/(self.h0**3.)
return alm_isw
def sbt2isw_map(self, zmin, zmax, nside=256):
"""Returns a healpix map of the ISW between zmin and zmax computed from
the spherical Bessel Transform.
Parameters
----------
zmin : float
Minimum redshift for ISW computation.
zmax : float
Maximum redshift for ISW computation.
nside : int
Nside for healpix map.
"""
alm_isw = self.sbt2isw_alm(zmin, zmax)
map_isw = hp.alm2map(alm_isw, nside)*self.Tcmb
return map_isw
def clean_temp(self):
"""Removes temporary spherical harmonic files."""
if self.slice_in_range is not None:
for i in range(0, len(self.slice_in_range)):
subprocess.call('rm -r ' + self.temp_path, shell=True)
| python |
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: geoip.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='geoip.proto',
package='',
syntax='proto3',
serialized_options=None,
create_key=_descriptor._internal_create_key,
serialized_pb=b'\n\x0bgeoip.proto\"\x1a\n\x0cGeoIpRequest\x12\n\n\x02ip\x18\x01 \x01(\t\",\n\rGeoIpResponse\x12\n\n\x02ip\x18\x01 \x01(\t\x12\x0f\n\x07\x63ountry\x18\x02 \x01(\t2=\n\x0cGeoIpService\x12-\n\ngetCountry\x12\r.GeoIpRequest\x1a\x0e.GeoIpResponse\"\x00\x62\x06proto3'
)
_GEOIPREQUEST = _descriptor.Descriptor(
name='GeoIpRequest',
full_name='GeoIpRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name='ip', full_name='GeoIpRequest.ip', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=15,
serialized_end=41,
)
_GEOIPRESPONSE = _descriptor.Descriptor(
name='GeoIpResponse',
full_name='GeoIpResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name='ip', full_name='GeoIpResponse.ip', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
_descriptor.FieldDescriptor(
name='country', full_name='GeoIpResponse.country', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=43,
serialized_end=87,
)
DESCRIPTOR.message_types_by_name['GeoIpRequest'] = _GEOIPREQUEST
DESCRIPTOR.message_types_by_name['GeoIpResponse'] = _GEOIPRESPONSE
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
GeoIpRequest = _reflection.GeneratedProtocolMessageType('GeoIpRequest', (_message.Message,), {
'DESCRIPTOR' : _GEOIPREQUEST,
'__module__' : 'geoip_pb2'
# @@protoc_insertion_point(class_scope:GeoIpRequest)
})
_sym_db.RegisterMessage(GeoIpRequest)
GeoIpResponse = _reflection.GeneratedProtocolMessageType('GeoIpResponse', (_message.Message,), {
'DESCRIPTOR' : _GEOIPRESPONSE,
'__module__' : 'geoip_pb2'
# @@protoc_insertion_point(class_scope:GeoIpResponse)
})
_sym_db.RegisterMessage(GeoIpResponse)
_GEOIPSERVICE = _descriptor.ServiceDescriptor(
name='GeoIpService',
full_name='GeoIpService',
file=DESCRIPTOR,
index=0,
serialized_options=None,
create_key=_descriptor._internal_create_key,
serialized_start=89,
serialized_end=150,
methods=[
_descriptor.MethodDescriptor(
name='getCountry',
full_name='GeoIpService.getCountry',
index=0,
containing_service=None,
input_type=_GEOIPREQUEST,
output_type=_GEOIPRESPONSE,
serialized_options=None,
create_key=_descriptor._internal_create_key,
),
])
_sym_db.RegisterServiceDescriptor(_GEOIPSERVICE)
DESCRIPTOR.services_by_name['GeoIpService'] = _GEOIPSERVICE
# @@protoc_insertion_point(module_scope)
| python |
import requests
import json
import clipboard
import time
def main():
temp = None
try:
import tkinter
temp = 1
except:
temp = 0
if temp == 0:
print("No Valid Tkinter installation found. Either tkinter is not installed or tkinter is not supported on this platform.")
if temp == 1:
try:
from tkinter import Tk
from tkinter.filedialog import askopenfilename
Tk().withdraw()
filename = askopenfilename()
myfiles = {'file': open(filename ,'rb')}
url = "https://file.io"
postrequest = requests.post(url, files = myfiles)
jsonloadedresponse = json.loads(postrequest.text)
downloadlink = jsonloadedresponse["link"]
print(downloadlink)
clipboard.copy(downloadlink)
time.sleep(1)
except:
print("Error")
if __name__ == "__main__":
main() | python |
from typing import *
import numpy as np
from terminaltables import AsciiTable
__all__ = ['format_labels_grid']
def format_labels_grid(labels: Sequence[str],
n_cols: Optional[int] = None) -> str:
labels = list(labels)
if not labels:
raise ValueError(f'`labels` must not be empty.')
if n_cols is None:
n_cols = int(np.ceil(np.sqrt(len(labels))))
n_rows = (len(labels) + n_cols - 1) // n_cols
tbl = []
for i in range(n_rows):
row = []
for j in range(n_cols):
idx = i * n_cols + j
if idx < len(labels):
row.append(labels[idx])
else:
row.append('')
tbl.append(row)
tbl = AsciiTable(tbl)
tbl.inner_heading_row_border = 0
return tbl.table
| python |
from .driver import Driver
from .mindriver import MinDriver
from .timedriver import TimeDriver
from .hysteresisdriver import HysteresisDriver
| python |
#Biblioteca para gerar itens aleatórios
import random
#Função para achar o menos valor de um vetor desconsiderando o primeiro item que é o nome do produto
def menor_valor(v):
menor = v[1]
loja_indice = 0
for i in range(len(v)-1):
if menor > v[i+1]:
menor = v[i+1]
loja_indice = i
menor_loja = [loja_indice, menor]
return menor_loja
l = int(input())
p = int(input())
#Lista de lojas
lojas = []
#Lista de Produtos
produtos = []
#Ínicio e final do intervalo para gerar um número aleatório
produtos_limites = []
#Lista com o produtos e os preçcs das lojas [[nome prod 1, preço loja 1, preço loja 2, ...], [nome prod 2, preço loja 1, preço loja 2, ...]]
produtos_precos = []
#Matriz geral com loja e os preços [[loja 1, preço prod 1, preço prod 2, ...],[loja 1, preço prod 1, preço prod 2,...]]
lojas_geral = []
#Variável usada para calculo do valor total gasto
total = 0
#Gera a lista de lojas
for k in range(l):
lojas.append(input())
#Gera a lista de produtos e a de produtos com os preços
for i in range(p):
produto_precos = []
texto = input().split()
produto_precos.append(texto[0])
produtos.append(texto[0])
x = round(random.uniform(int(texto[1]),int(texto[2])),2)
y = round(random.uniform(int(texto[1]),int(texto[2])),2)
produto_precos.append(x)
produto_precos.append(y)
produtos_precos.append(produto_precos)
#Gera a lista com a loja e os preços
for n in range(len(lojas)):
loja_produtos_precos = [lojas[n]]
for m in range(p):
loja_produtos_precos.append(produtos_precos[m][n+1])
lojas_geral.append(loja_produtos_precos)
print("--------------------------")
print("Resultado da pesquisa:")
#O :15s fixa o tamanho usado como 15 caracteres independente de quantos a palavra tenha, isso faz com que a matriz seja impressa com os mesmos espaços
#O end=" " faz com que o próximo item printado seja colocado ao lado do item anterios ao invés de quebrar a linha
print('{:15s}'.format(""), end=" ")
for produto in produtos:
print('{:15s}'.format(produto), end=" ")
#Quebra de linha
print()
for loja in lojas_geral:
for i in range(len(loja)):
print('{:15s}'.format(str(loja[i])), end=" ")
print()
print()
print("Menores preços: ")
for g in produtos_precos:
x = menor_valor(g)
total = total + x[1]
print(g[0], " ", lojas[x[0]])
print()
print("Valor total: ")
print("R$ ",round(total, 2))
print("--------------------------") | python |
import cv2
import numpy as np
def resize(filename,width,height):
image = cv2.imread(filename)
cv2.imshow('Original image',image)
cv2.waitKey(0)
org_height , org_width = image.shape[0:2]
print("width: ",org_width)
print("height: ",org_height)
if org_width >= org_height:
new_image = cv2.resize(image,(width,height))
else:
new_image = cv2.resize(image,(height,width))
return filename,new_image
filename,new_image = resize('bird.jpg',600,400)
def sharpen(image):
kernel = np.array([[0,-1,0],[-1,5,-1],[0,-1,0]])
new_img = cv2.filter2D(image,-1,kernel)
cv2.imshow('sharpened_img',new_img)
cv2.waitKey()
return new_img
final_img = sharpen(new_image)
| python |
try:
import simplejson as json
except ImportError:
import json
from .base_file import BaseFilePlugin
from ..xnodes import create_xnode, XNode, XDict, XFileError
class PluginJson(BaseFilePlugin):
def def_extensions(self) -> set:
return {'json'}
def load(self, content) -> XNode:
#elf.full_name)
if content.strip() == '':
result = XDict(_file=self.file)
else:
try:
result = create_xnode(None, json.loads(content), _file=self.file)
except json.JSONDecodeError as ex:
result = XFileError(name=ex, _file=self.file)
return result
| python |
import datetime
from django.views.generic import TemplateView
from django.views.decorators.cache import never_cache
from rest_framework import viewsets, generics, status
from rest_framework.response import Response
from . import models
from . import serializers
from rest_framework.permissions import BasePermission, IsAuthenticated
# Serve Vue Application
index_view = never_cache(TemplateView.as_view(template_name='index.html'))
class ResendConfirmView(generics.GenericAPIView):
serializer_class = serializers.ResendConfirmSerializer
def post(self, request, *args, **kwargs):
serializer = self.get_serializer(data=request.data)
serializer.is_valid(raise_exception=True)
serializer.save()
return Response({'detail': "Email confirmation sent"})
class ReviewViewSet(viewsets.ModelViewSet):
queryset = models.Review.objects.all()
serializer_class = serializers.ReviewSerializer
class ProfileViewSet(viewsets.ModelViewSet):
class HisOwnProfile(BasePermission):
def has_object_permission(self, request, view, obj):
return obj.is_owner(request.user)
permission_classes = (IsAuthenticated, HisOwnProfile)
queryset = models.Profile.objects.all()
serializer_class = serializers.ProfileSerializer
def update(self, request, pk):
profile = self.get_queryset().get(pk=pk)
serializer = serializers.ProfileSerializer(reservation, data=request.data, partial=True)
serializer.is_valid()
serializer.save()
return Response(serializer.data)
class HitupViewSet(viewsets.ModelViewSet):
permission_classes = (IsAuthenticated, )
queryset = models.Hitup.objects.all()
def get_serializer_class(self):
if self.action == 'list':
return serializers.HitupSerializer
elif self.action == 'create':
return serializers.NewHitupSerializer
def get_queryset(self):
#return models.Hitup.objects.all()
return models.Hitup.objects.filter(hangee__user_id=self.request.user,
expiration__gt=datetime.datetime.now()).all()
def create(self, request, *args, **kwargs):
serializer = serializers.NewHitupSerializer(data=request.data, context={'request': request})
serializer.is_valid()
result = serializer.save()
response = Response(status=status.HTTP_201_CREATED)
return response
| python |
import os
import pathlib
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import sys
import time
import random
from tensorflow.keras.preprocessing.image import load_img,img_to_array
from tensorflow.keras import layers
from multiprocessing.dummy import Pool as ThreadPool
print('Python version: %s' % sys.version)
print('TensorFlow version: %s' % tf.__version__)
print('Keras version: %s' % tf.keras.__version__)
####################
### LOADING DATA ###
####################
print("Loading and preprocessing data...")
inps = os.listdir("./training_data_inputs")
labels = os.listdir("./training_data_labels")
data = set(inps) & set(labels)
xdim = 180
ydim = 90
padding = 9
dd = 1 + padding * 2
koppens = np.array([
[255, 255, 255],
[0, 0, 255],
[0, 120, 255],
[70, 170, 250],
[255, 0, 0],
[255, 150, 150],
[245, 165, 0],
[255, 220, 100],
[255, 255, 0],
[200, 200, 0],
[150, 150, 0],
[150, 255, 150],
[100, 200, 100],
[50, 150, 50],
[200, 255, 80],
[100, 255, 80],
[50, 200, 0],
[255, 0, 255],
[200, 0, 200],
[150, 50, 150],
[170, 175, 255],
[89, 120, 220],
[75, 80, 179],
[0, 255, 255],
[55, 200, 255],
[0, 125, 125],
[178, 178, 178],
[102, 102, 102]
])
koppens_weights = {
0: 1., # water
1: 1., # jungle
2: 1., # monsoon
3: 1., # savannah
4: 1.,
5: 1.,
6: 1.,
7: 1.,
8: 1.,
9: 1.,
10: 1.,
11: 1.,
12: 1.,
13: 1.,
14: 1.,
15: 1.,
16: 1.,
17: 1.,
18: 1.,
19: 1.,
20: 1.,
21: 1.,
22: 1.,
23: 1.,
24: 1.,
25: 1.,
26: 1.,
27: 1.,
}
x_train = []
y_train = []
for a in data:
start_time = time.time()
img_input = img_to_array(load_img("./training_data_inputs/" + a, color_mode='rgb'))
img_label = img_to_array(load_img("./training_data_labels/" + a, color_mode='rgb'))
input_data = np.zeros((img_input.shape[0], img_input.shape[1], 6))
label_data = np.zeros((img_input.shape[0], img_input.shape[1], 28))
for y in range(img_input.shape[0]):
for x in range(img_input.shape[1]):
# Process input
p = img_input[y, x]
if all(p == [0, 0, 255]):
input_data[y, x, 0] = 1 # sea
elif all(p == [177, 216, 230]):
input_data[y, x, 1] = 1 # shelf
elif all(p == [0, 0, 139]):
input_data[y, x, 2] # trench
elif all(p == [0, 255, 0]):
input_data[y, x, 3] # plains
elif all(p == [150, 75, 0]):
input_data[y, x, 4] # mountains
elif all(p == [112, 128, 144]):
input_data[y, x, 5] # tall mountains
else:
raise Exception("UNKNOWN INPUT COLOR IN : " + a) # unknown
# Process label
l = img_label[y, x]
min_dist = 255 * 4
index = 0
for n in range(len(koppens)):
h = koppens[n]
dist = abs(h[0] - l[0]) + abs(h[1] - l[1]) + abs(h[2] - l[2])
if dist < min_dist:
min_dist = dist
index = n
if dist < 5:
break
if min_dist > 5:
raise Exception("NO PIXEL SEEMS TO BE A CLOSE FIT FOR PIXEL: " + str(x) + ", " + str(y) + " IN: " + str(a) + " WITH COLOR: " + str(l))
label_data[y, x, index] = 1
input_data = np.pad(input_data, ((padding, padding), (0, 0), (0, 0)), 'constant', constant_values=(0, 0))
input_data=np.pad(input_data, ((0, 0), (padding, padding), (0, 0)), 'wrap')
x_train.append(input_data)
y_train.append(label_data)
end_time = time.time()
print(str(a) + ": " + str(end_time - start_time) + "s")
"""
# Calculate weights
total = 28.0
for i in y_train[0]:
for j in i:
koppens_weights[np.argmax(j)] = koppens_weights[np.argmax(j)] + 1
total = total + 1.0
for i in range(28):
koppens_weights[i] = total / koppens_weights[i]
"""
print("Image loaded!")
x_train = np.array(x_train)
y_train = np.array(y_train)
print(x_train[0].shape)
print(y_train[0].shape)
print(y_train)
def get_sub_array(ni, xin, yin, slices_of_data):
return slices_of_data[ni, yin:yin+2*padding+1, xin:xin+2*padding+1, :]
# For training
class DataGenerator(tf.keras.utils.Sequence):
def __init__(self, batch_size, x_s, y_s, *args, **kwargs):
self.batch_size = batch_size
self.x_data = x_s
self.y_data = y_s
def __len__(self):
return 5000
def __getitem__(self, index):
x = np.array([np.zeros((dd, dd, 6)) for o in range(self.batch_size)])
y = np.array([np.zeros((len(koppens))) for o in range(self.batch_size)])
for o in range(self.batch_size):
ni = random.randint(0, self.x_data.shape[0] - 1) # index of the image from which we're copying data
xin = random.randint(0, xdim - 1) # x of the pixel we're looking at, -1 is here because of inclusivity of randint
yin = random.randint(0, ydim - 1) # y of the pixel we're looking at, -1 is here because of inclusivity of randint
# Reroll water tiles
while self.y_data[ni, yin, xin, 0] == 1 or self.x_data[ni, padding + yin, padding + xin, 0] == 1 or self.x_data[ni, padding + yin, padding + xin, 1] == 1 or self.x_data[ni, padding + yin, padding + xin, 2] == 1:
ni = random.randint(0, self.x_data.shape[0] - 1) # index of the image from which we're copying data
xin = random.randint(0, xdim - 1) # x of the pixel we're looking at, -1 is here because of inclusivity of randint
yin = random.randint(0, ydim - 1) # y of the pixel we're looking at, -1 is here because of inclusivity of randint
ooo = get_sub_array(ni, xin, yin, self.x_data)
x[o] = ooo
for i in range(len(koppens)):
y[o, i] = self.y_data[ni, yin, xin, i]
return x, y
# For predicting
class DataProvider(tf.keras.utils.Sequence):
def __init__(self, x_s, ni, batch_size, *args, **kwargs):
self.x_data = x_s
self.ni = ni
self.batch_size = batch_size
def __len__(self):
return xdim * ydim
def __getitem__(self, index):
index_int = int(index)
xin = index_int % xdim
yin = index_int // xdim
x = np.array([np.zeros((dd, dd, 6)) for o in range(self.batch_size)])
for o in range(self.batch_size):
x[o] = get_sub_array(self.ni, xin, yin, self.x_data)
return x
def on_epoch_end(self):
pass
model = tf.keras.models.Sequential()
model.add(tf.keras.Input(shape=(dd, dd, 6)))
model.add(layers.Flatten())
model.add(layers.Dense(30, activation="relu"))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(30, activation="relu"))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(len(koppens), activation='softmax'))
print("--- compiling the model ---")
model.compile(
optimizer='adam',#tf.keras.optimizers.SGD(learning_rate=0.0001),
loss='categorical_crossentropy',
metrics=["mean_squared_error", "categorical_accuracy", "accuracy"]
)
model.summary()
print("--- model fit ---")
gen = DataGenerator(50, x_train, y_train)
history = model.fit(
gen,
epochs=25,
workers=10,
class_weight=koppens_weights
)
print("--- model predict ---")
# ID of the image in x_train that we want to export. 0 stands for Earth
image_id = 0
img_to_save = np.zeros((ydim, xdim, 3))
gen = DataProvider(x_train, image_id, 80)
results = model.predict(gen, workers=10, verbose=1)
ii = 0
for x in range(xdim):
for y in range(ydim):
# Skip water tiles, assing water to them by default
if x_train[image_id, padding + y, padding + x, 0] == 1 or x_train[image_id, padding + y, padding + x, 1] == 1 or x_train[image_id, padding + y, padding + x, 2] == 1:
img_to_save[y, x] = koppens[0] / 255.0
else:
img_to_save[y, x] = koppens[np.argmax(results[ii])] / 255.0
ii = ii + 1
plt.imsave("export.png", img_to_save)
print("--- all done ---")
| python |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2019/9/28 12:39
# @Author : Meta_Chen
# @File : sendip.py
# @Software: PyCharm
# @Target: 以邮件形式发送ip
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.header import Header
from utils.getip import GetIP
from apscheduler.schedulers.blocking import BlockingScheduler
import os
import logging
import configparser
logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s %(name)s %(levelname)s %(message)s",
datefmt = '%Y-%m-%d %H:%M:%S %a') #注意月份和天数不要搞乱了,这里的格式化符与time模块相同
class SendEmail:
# 设置smtplib所需的参数
# 下面的发件人,收件人是用于邮件传输的。
smtpserver = 'smtp.163.com'
username = '[email protected]'
sender = '[email protected]'
# receiver='[email protected]'
# 收件人为多个收件人
receiver = ['[email protected]']
# subject = 'Python email test'
# 通过Header对象编码的文本,包含utf-8编码信息和Base64编码信息。以下中文名测试ok
subject = 'IP地址变更'
subject=Header(subject, 'utf-8').encode()
# 构造邮件对象MIMEMultipart对象
# 下面的主题,发件人,收件人,日期是显示在邮件页面上的。
msg = MIMEMultipart('mixed')
msg['Subject'] = subject
msg['From'] = 'meta_chen <{}>'.format(sender)
# msg['To'] = '[email protected]'
# 收件人为多个收件人,通过join将列表转换为以;为间隔的字符串
msg['To'] = ";".join(receiver)
# msg['Date']='2012-3-16'
config = configparser.ConfigParser()
config.read("./conf.ini", encoding="utf-8")
def __init__(self,password):
self.password = password
def mailsender(self):
'''
构造文字内容,2小时检测一次
:return:
'''
logging.info("Start Check IP")
checkip = GetIP()
myip = checkip.getip()
oldip = self.config.get('ip','oldip')
if myip != oldip:
logging.info('IP has Changed to : {} from {}'.format(myip,oldip))
self.config.set('ip','oldip',str(myip))
self.config.write(open("./conf.ini", "w"))
else:
logging.info("Nothing changed")
return False
text = 'Host Ip has Changed :{}'.format(myip)
text_plain = MIMEText(text, 'plain', 'utf-8')
self.msg.attach(text_plain)
# 发送邮件
smtp = smtplib.SMTP()
smtp.connect('smtp.163.com')
# 我们用set_debuglevel(1)就可以打印出和SMTP服务器交互的所有信息。
smtp.set_debuglevel(1)
smtp.login(self.username, self.password)
smtp.sendmail(self.sender, self.receiver, self.msg.as_string())
smtp.quit()
return True
def timeJob(self):
'''
定时检查ip
:return:
'''
scheduler = BlockingScheduler()
# 每2小时触发
scheduler.add_job(self.mailsender, 'interval', days=1)
scheduler.start()
def main():
emailPassword = os.getenv('163AUTHCODE')
sender = SendEmail(emailPassword)
sender.timeJob()
if __name__ == '__main__':
main() | python |
from types import SimpleNamespace
import re
options_render = {
"START_FROM": 0,
"PATH_MODEL": 'models/hotdog.blend',
"DATASET_NAME": 'hotdog_random_exr',
"DATAMODEL_NAME": '', # dataset used for training; == %DATASET_NAME% if empty
"RESOLUTION": 512, # resolution of resulting renders
"ARCH": 'mlnrf_base', # nsvf_base/mlnrf_base/mlnrfiva_base/mlnrfex_base/mlnrfnrf_base/mlnrfexbf_base/mlnrfexva_base
"RENDERING_NAME": 'random3',
# "POOLS": '',
"POOLS": '../pool/u4109/checkpoint/',
"COLOR_DEPTH": 16,
"FORMAT": 'OPEN_EXR',
"CYCLES_SAMPLES": 500,#7000,
"CYCLES_MAX_BOUNCES": 20,#20,
"OUTPUT_DIR": '%DATASET_NAME%_random3true',
"PRESET_VIEWS_FOLDER": 'checkpoints/%POOLS%%DATASET_NAME%/%ARCH%/%RENDERING_NAME%',
# "PRESET_VIEWS_FOLDER": 'checkpoints/%POOLS%lego_coloc_exr/%ARCH%/%RENDERING_NAME%',
"VIEWS_PATH": '%PRESET_VIEWS_FOLDER%/pose',
"LIGHTS_PATH": '%PRESET_VIEWS_FOLDER%/pose_pl',
"VOXEL_NUMS": 64, # 512, # can still be later overridden using argument 'VOXEL_NUM'
# "CAM_DISTANCE": 1.0,
"CAM_HEMISPHERE_ANGLES": [-10, 80], # in degrees
"RANDOM_VIEWS": False, # VIEWS_PATH & LIGHTS_PATH must be specified if RANDOM_VIEWS == False
"DEBUG": False,
"DEPTH_SCALE": 1.4,
"RESULTS_PATH": 'target',
"PERCENTILE_MIN": 0.5,
"PERCENTILE_MAX": 99.5,
}
if options_render['DATAMODEL_NAME']:
options_render['PRESET_VIEWS_FOLDER'] = options_render['PRESET_VIEWS_FOLDER'].replace('%DATASET_NAME%', options_render['DATAMODEL_NAME'])
options = options_render; print('\n'.join([''.join(['=']*10)]*3), '>>>>> RENDER <<<<<');
# Substitute vars
for key in options:
if not isinstance(options[key], str): continue
for match in re.finditer('%[A-Z_]+%', options[key]):
matchKey = match.group()[1:-1]
if matchKey in options:
# options[key] = options[key][:match.start()] + options[matchKey] + options[key][match.end():]
options[key] = options[key].replace(match.group(), options[matchKey])
opts = SimpleNamespace(**options)
| python |
# -*- coding: utf-8 -*-
from django.conf import settings
from django import forms
from django.contrib import admin
from photologue.models import Photo, Gallery, PhotoEffect, PhotoSize, Watermark
from photologue.admin import PhotoAdmin as PhotoAdminDefault
from photologue.admin import GalleryAdmin as GalleryAdminDefault
from models import PhotoExtended, Agency, Photographer
class AgencyAdmin(admin.ModelAdmin):
pass
class PhotoExtendedModelForm(forms.ModelForm):
date_taken = forms.DateField(label=u'Tomada el', widget=admin.widgets.AdminDateWidget(), required=False)
def __init__(self, *args, **kwargs):
super(PhotoExtendedModelForm, self).__init__(*args, **kwargs)
if self.instance.id:
self.initial['date_taken'] = self.instance.image.date_taken
def save(self, commit=True):
instance = super(PhotoExtendedModelForm, self).save(commit=commit)
instance.image.date_taken = self.cleaned_data['date_taken']
if not instance.image._old_image:
# this is a new image, we need to "fake" the old image to avoid photologue.Photo attemp to rm a "None" file
instance.image._old_image = instance.image.image
instance.image.save()
return instance
class Meta:
model = PhotoExtended
fields = ('date_taken', )
class PhotoExtendedInline(admin.StackedInline):
model = PhotoExtended
form = PhotoExtendedModelForm
can_delete = False
fieldsets = (
('Metadatos', {'fields': ('date_taken', 'type', 'photographer', 'agency')}),
(u'Recorte para versión cuadrada', {
'fields': ('focuspoint_x', 'focuspoint_y', 'radius_length'), 'classes': ('collapse', )}))
class Media:
# jquery loaded again (admin uses custom js namespaces)
js = ('admin/js/jquery%s.js' % ('' if settings.DEBUG else '.min'), 'js/jquery.cropbox.js')
class PhotoGalleryInline(admin.TabularInline):
model = Gallery.photos.through
raw_id_fields = ('photo', )
extra = 0
verbose_name = u'foto'
verbose_name_plural = u'fotos'
readonly_fields = ['photo_admin_thumbnail', 'photo_date_taken', 'photo_date_added']
def photo_admin_thumbnail(self, instance):
return instance.photo.admin_thumbnail()
photo_admin_thumbnail.short_description = u'thumbnail'
photo_admin_thumbnail.allow_tags = True
def photo_date_taken(self, instance):
return instance.photo.date_taken
photo_date_taken.short_description = u'tomada el'
def photo_date_added(self, instance):
return instance.photo.date_added
photo_date_added.short_description = u'fecha de creación'
class GalleryAdmin(GalleryAdminDefault):
list_display = ('title', 'date_added', 'photo_count', 'is_public')
list_filter = ['date_added', 'is_public']
date_hierarchy = 'date_added'
prepopulated_fields = {'slug': ('title',)}
filter_horizontal = ('photos',)
inlines = [PhotoGalleryInline]
exclude = ('photos', )
class PhotographerAdmin(admin.ModelAdmin):
search_fields = ('name', )
class PhotoEffectAdmin(admin.ModelAdmin):
list_display = (
'name', 'description', 'color', 'brightness', 'contrast', 'sharpness',
'filters', 'admin_sample')
fieldsets = (
(None, {
'fields': ('name', 'description')
}),
('Adjustments', {
'fields': ('color', 'brightness', 'contrast', 'sharpness')
}),
('Filters', {
'fields': ('filters',)
}),
('Reflection', {
'fields': (
'reflection_size', 'reflection_strength', 'background_color')
}),
('Transpose', {
'fields': ('transpose_method',)
}),
)
class PhotoSizeAdmin(admin.ModelAdmin):
list_display = (
'name', 'width', 'height', 'crop', 'pre_cache', 'effect',
'increment_count')
fieldsets = (
(None, {
'fields': ('name', 'width', 'height', 'quality')
}),
('Options', {
'fields': ('upscale', 'crop', 'pre_cache', 'increment_count')
}),
('Enhancements', {
'fields': ('effect', 'watermark',)
}),
)
class WatermarkAdmin(admin.ModelAdmin):
list_display = ('name', 'opacity', 'style')
class AgencyFilter(admin.SimpleListFilter):
title = 'agency'
parameter_name = 'agency'
def lookups(self, request, model_admin):
return [(a.id, a.name) for a in Agency.objects.all() if a.photos.exists()]
def queryset(self, request, queryset):
agency = self.value()
return queryset.filter(
id__in=PhotoExtended.objects.filter(agency=agency).values_list('image', flat=True)
) if agency else queryset
class PhotographerFilter(admin.SimpleListFilter):
title = 'photographer'
parameter_name = 'photographer'
def lookups(self, request, model_admin):
return [(p.id, p.name) for p in Photographer.objects.all() if p.photos.exists()]
def queryset(self, request, queryset):
photographer = self.value()
return queryset.filter(
id__in=PhotoExtended.objects.filter(photographer=photographer).values_list('image', flat=True)
) if photographer else queryset
class PhotoAdmin(PhotoAdminDefault):
list_display = ('title', 'admin_thumbnail', 'date_taken', 'date_added', 'is_public', 'view_count')
list_filter = tuple(PhotoAdminDefault.list_filter) + (AgencyFilter, PhotographerFilter)
fieldsets = (
(None, {'fields': ('title', 'image', 'caption')}),
('Avanzado', {'fields': ('slug', 'crop_from', 'is_public'), 'classes': ('collapse', )}))
inlines = [PhotoExtendedInline]
admin.site.unregister(Photo)
admin.site.register(Photo, PhotoAdmin)
admin.site.unregister(Gallery)
admin.site.register(Gallery, GalleryAdmin)
admin.site.register(Agency, AgencyAdmin)
admin.site.register(Photographer, PhotographerAdmin)
admin.site.unregister(PhotoEffect)
admin.site.register(PhotoEffect, PhotoEffectAdmin)
admin.site.unregister(PhotoSize)
admin.site.register(PhotoSize, PhotoSizeAdmin)
admin.site.unregister(Watermark)
admin.site.register(Watermark, WatermarkAdmin)
| python |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import requests
import numpy as np
from bs4 import BeautifulSoup
import itertools
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import re
from lxml import html
import math
import time
import sys
# In[50]:
def inside_get_year(url_):
#url = "https://www.ptt.cc/bbs/Beauty/M.1568553917.A.175.html"
time.sleep(0.1)
payload = {
"from": "/bbs/Gossiping/index.html",
"yes": "yes"
}
rs = requests.session()
res = rs.post("https://www.ptt.cc/ask/over18", verify = False, data = payload)
res = rs.get(url_, verify = False, headers={'Connection':'close'})
tree = html.fromstring(res.content)
a = tree.xpath("//*[@id=\"main-content\"]/div[4]/span[2]")[0]
return( a.text[-4:] )
# In[3]:
def url_get_date(int_):
head = "https://www.ptt.cc/bbs/Beauty/index"
end = ".html"
url_ = head + str(int_) + end
payload = {
"from": "/bbs/Gossiping/index.html",
"yes": "yes"
}
rs = requests.session()
res = rs.post("https://www.ptt.cc/ask/over18", verify = False, data = payload)
res = rs.get(url_, verify = False, headers={'Connection':'close'})
soup = BeautifulSoup(res.text)
block_l = soup.select(".r-ent")
for i in block_l:
try:
date = i.select(".date")[0].text[1:]
date = date.replace("/", "")
#print(date)
URL = i.select(".title")[0].select("a")[0]["href"]
head2 = "https://www.ptt.cc"
year = inside_get_year(head2 + URL)
#print(year)
if( len(year + date)==7 ):
return( int( year + "0" + date) )
else:
return( int( year + date) )
break
except:
pass
# In[4]:
#start_time_glo = time.time()
def binary_search(date_, start_, end_ , time_):
pivot = int((start_ + end_ )/2)
date = url_get_date( pivot )
#print(date)
#print(date_)
if( time.time() - time_ > 15):
return(pivot)
if( date_ < date):
#print("date_ < date\n")
return( binary_search(date_, start_, pivot, time_) )
if( date_ > date):
#print("date_ > date\n")
return( binary_search(date_, pivot, end_, time_) )
if(date_ == date):
return(pivot)
# In[5]:
def find_start_end():
start_time_glo = time.time()
start = binary_search(20171231, 0, 3000, time.time())
start_time_glo = time.time()
end = binary_search(20190101, 0, 3000, time.time())
return( (start, end))
# In[6]:
def num_make_URL(int_):
head = "https://www.ptt.cc/bbs/Beauty/index"
end = ".html"
return(head + str(int_) + end)
# In[7]:
def url_find_block(url_):
#url = "https://www.ptt.cc/bbs/Beauty/index3057.html"
try:
time.sleep(0.1)
while(True):
payload = {
"from": "/bbs/Gossiping/index.html",
"yes": "yes"
}
print(url_)
rs = requests.session()
res = rs.post("https://www.ptt.cc/ask/over18", verify = False, data = payload)
res = rs.get(url_, verify = False, headers={'Connection':'close'})
soup = BeautifulSoup(res.text)
block_l = soup.select(".r-ent")
print(url_)
return(block_l)
break
except:
print("url_find_block: error")
print(url_)
print("\n")
# In[8]:
def block_find_data(block_):
date, title, URL, bao, except_, annoucement = None, None, None, None, False, False
try:
date = block_.select(".date")[0].text
title = block_.select(".title")[0].text
annoucement = title.startswith('\n[公告]')
URL = block_.select(".title")[0].select("a")[0]["href"]
bao = block_.select(".nrec")[0].text
except:
except_ = True
return( (date, title, URL, bao, except_, annoucement))
# In[9]:
def data_to_df(block_l_):
df = pd.DataFrame(list(map(block_find_data, block_l_)))
df.columns = ["date","title", "URL", "bao", "except", "annoucement"]
return(df)
# In[10]:
def date_adj(str_):
return(str_.replace("/", ""))
# In[11]:
def title_adj(str_):
try:
str_ = re.match(u"^\\n(.*)\\n$", str_).groups()[0]
except:
print("title_adj: error")
return( str_)
# In[12]:
def df_adjust(df):
df = df[df["except"] == False]
df = df[df["annoucement"] == False]
df["URL"] = "https://www.ptt.cc" + df["URL"]
df["date"] = list(map(date_adj, df["date"].tolist()))
while( df["date"].tolist()[0] == "1231" ):
df = df.drop(df.index[0])
while( df["date"].tolist()[-1] == " 101" ):
df = df.drop(df.index[-1])
df["title"] = list(map(title_adj, df["title"].tolist()))
return(df)
# In[1]:
def remove_blank(str_):
return(str_.replace(" ", ""))
# In[13]:
def all_articles(df):
buf = df[["date", "title", "URL"]].astype(str)
buf.date = list(map(remove_blank, buf.date.tolist()))
try:
buf.to_csv('all_articles.txt', sep=',',
index = False, header = False)
print("all_articles: success")
except:
print("all_articles: fail")
# In[14]:
def all_popular(df):
df = df[df["bao"]=="爆"]
buf = df[["date", "title", "URL"]].astype(str)
buf.date = list(map(remove_blank, buf.date.tolist()))
try:
buf.to_csv('all_popular.txt', sep=',',
index = False, header = False)
print("all_popular: success")
except:
print("all_popular: fail")
# In[52]:
def crawl():
print("crawl start")
page_tuple = find_start_end()
print(page_tuple)
URL_list = list(map(num_make_URL, np.arange(page_tuple[0], page_tuple[1])))
block_list = list(map(url_find_block, URL_list))
block_list = list(itertools.chain(*block_list))
df = data_to_df(block_list)
df = df_adjust(df)
all_articles(df)
all_popular(df)
df.to_csv("HW1-1_3.0.csv")
return("problem 1 down")
# In[16]:
if( sys.argv[1] == "crawl"):
crawl()
# In[20]:
def url_find_soup(url_):
#url = "https://www.ptt.cc/bbs/Beauty/index3057.html"
time.sleep(0.1)
try:
while(True):
payload = {
"from": "/bbs/Gossiping/index.html",
"yes": "yes"
}
rs = requests.session()
res = rs.post("https://www.ptt.cc/ask/over18", verify = False, data = payload)
res = rs.get(url_, verify = False, headers={'Connection':'close'})
soup = BeautifulSoup(res.text)
#block_l = soup.select(".push")
return(soup)
break
except:
print("url_find_block: error")
print(url_)
print("\n")
# In[21]:
def push_find_pushtag(push_):
try:
return( push_.select(".hl.push-tag")[0].text)
except:
print("push_find_pushtag: error:", push_)
return(None)
def push_find_pushID(push_):
try:
return( push_.select(".f3.hl.push-userid")[0].text)
except:
print("push_find_pushID: error", push_)
return(None)
# In[22]:
def tag_to_text(tag_):
return(tag_.text)
def find_all_href(soup_):
compare = "(.PNG|.JPEG|.GIF|.JPG|.png|.jpeg|.gif|.jpg)$"
try:
all_hreftag = soup_.find_all(href=re.compile(compare))
return( list(map(tag_to_text , all_hreftag)) )
except:
print("find_all_href: error")
return(None)
def find_article_href(soup_):
try:
compare = "(.PNG|.JPEG|.GIF|.JPG|.png|.jpeg|.gif|.jpg)$"
buf = soup_.select("#main-content")[0]
article_hreftag = buf.find_all(href=re.compile(compare), recursive=False)
return( list(map(tag_to_text ,article_hreftag)) )
except:
print("find_article_href: error")
return(None)
# In[23]:
def soup_find_article(soup):
soup.select("#main-content")[0].text
article = soup.select("#main-content")[0].text
article = article.replace("\n", "")
compare = r"(.*)--※ 發信站"
buf = re.search( compare, article).groups()[0]
return(buf)
# In[24]:
def url_find_data(url_):
print(url_)
push_tag_l, push_userid_l, all_hreftag = None, None, None
article_hreftag, article = None, None
try:
soup = url_find_soup(url_)
push = soup.select(".push")
push_tag_l = list(map(push_find_pushtag, push))
push_userid_l = list(map(push_find_pushID, push))
all_hreftag = find_all_href(soup)
article_hreftag = find_article_href(soup)
article = soup_find_article(soup)
except:
print("url_find_data: error", url_)
return( (push_tag_l, push_userid_l, all_hreftag, article_hreftag, article))
# In[25]:
def get_data():
print("get_data start")
df = pd.read_csv("HW1-1_3.0.csv")
df = df.drop(df.columns[[0]], axis=1)
#testdf = df.head(100)
start_time = time.time()
buf_np = list(map(url_find_data, df["URL"].tolist()))
print(time.time() - start_time)
np.save('url_data', buf_np)
# In[ ]:
#if( sys.argv[1] == "push"):
# get_data()
# # hw 2.5
# In[26]:
def make_push_table(np_):
df_push = pd.DataFrame()
for i in np_:
try:
buf = pd.DataFrame({'push': i[0], 'ID': i[1]})
df_push = df_push.append(buf)
except:
print(i)
return(df_push)
# In[27]:
def find_push_boo(df_):
buf = df_.groupby(['push']).count()
buf2 = buf.loc[ ['推 ' , '噓 '] ,:]["ID"].tolist()
return(buf2)
# In[28]:
def create_like_str(int_):
return("like #" + str(int_))
def create_boo_str(int_):
return("boo #" + str(int_))
# In[51]:
def push(start_date, end_date):
#start_date = 101
#end_date = 202
print("push start")
start_date = int(start_date)
end_date = int(end_date)
read_np = np.load('url_data.npy',allow_pickle = True )
df = pd.read_csv("HW1-1_3.0.csv")
df = df.drop(df.columns[[0]], axis=1)
buf1 = np.array(df.date) >= start_date
buf2 = np.array(df.date) <= end_date
legel_index = buf1 * buf2
legal_np = read_np[legel_index]
df_push = make_push_table(legal_np)
buf = df_push[df_push["push"] != "→ "]
cross_df = pd.crosstab(buf.ID, buf.push, margins=True)
cross_df["pushID"] = cross_df.index
push_df = cross_df.sort_values(by = ["推 ", "pushID"], ascending= [False, True])[1:11]
boo_df = cross_df.sort_values(by = ["噓 ", "pushID"], ascending = [False, True])[1:11]
buf1 = list(map(create_like_str, np.arange(11)[1:]))
buf2 = list(map(create_boo_str, np.arange(11)[1:]))
col1 = ["all like", "all boo"] + buf1 + buf2
col2 = find_push_boo(df_push) + list(push_df.index) + list(boo_df.index)
col3 = [" ", " "] + push_df["推 "].tolist() + boo_df["噓 "].tolist()
col4 = []
for i in np.arange(len(col2)):
col4 = col4 + [ " " + str(col2[i]) + " " + str(col3[i]) ]
#col3 = list(map(str, col3))
output_df = pd.DataFrame({'name':col1, 'number': col4})
output_name = "push[%s-%s].txt" % (start_date, end_date)
output_df.to_csv(output_name, sep = ":", index = False, header = False)
# In[31]:
if( sys.argv[1] == "push"):
try:
push(sys.argv[2], sys.argv[3])
except:
get_data()
push(sys.argv[2], sys.argv[3])
# In[32]:
# HW3
# In[33]:
def one_to_allhref(tuple_):
return( tuple_[2])
# In[39]:
def popular(start_date, end_date):
start_date = int(start_date)
end_date = int(end_date)
print("popular excute")
read_np = np.load('url_data.npy',allow_pickle = True )
df = pd.read_csv("HW1-1_3.0.csv")
df = df.drop(df.columns[[0]], axis=1)
bao_list = np.array(df["bao"])== ["爆"]
buf1 = np.array(df.date) >= start_date
buf2 = np.array(df.date) <= end_date
legel_index = buf1 * buf2 * bao_list
legal_np = read_np[legel_index]
href_list = list(map(one_to_allhref, read_np))
buf = list(itertools.compress(href_list, legel_index))
merge_href = list(itertools.chain(*buf))
buf = "number of popular articles: %d" % sum(legel_index)
output_df = pd.DataFrame({'col1': [buf] + merge_href })
output_name = "popular[%s-%s].txt" % (start_date, end_date)
output_df.to_csv(output_name, sep = ",", index = False, header = False)
# In[40]:
if( sys.argv[1] == "popular"):
popular(sys.argv[2], sys.argv[3])
# In[41]:
# HW4
# In[45]:
def one_to_article(tuple_):
return( tuple_[4])
# In[42]:
def article_if_keyword(str_):
if( str_ == None ):
return( False)
else:
return( keyword_glo in str_)
# In[44]:
def one_to_article_href(tuple_):
return( tuple_[3])
# In[48]:
def keyword_search(keyword, start_date, end_date):
print("keyword_search" + " start")
start_date = int(start_date)
end_date = int(end_date)
keyword_glo = str(keyword)
read_np = np.load('url_data.npy',allow_pickle = True )
df = pd.read_csv("HW1-1_3.0.csv")
df = df.drop(df.columns[[0]], axis=1)
buf1 = np.array(df.date) >= start_date
buf2 = np.array(df.date) <= end_date
article_list = list(map(one_to_article, read_np))
keyword_list = list(map(article_if_keyword, article_list))
legel_index = buf1 * buf2 * keyword_list
a_href_list = list(map(one_to_article_href, read_np))
buf = list(itertools.compress(a_href_list, legel_index))
merge_href = list(itertools.chain(*buf))
print("number of keyword articles: %d" % sum(legel_index))
output_df = pd.DataFrame({'col1': merge_href })
output_name = "keyword(%s)[%s-%s].txt" % (keyword_glo, start_date, end_date)
output_df.to_csv(output_name, sep = ":", index = False, header = False)
# In[49]:
if( sys.argv[1] == "keyword"):
keyword_glo = str(sys.argv[2])
keyword_search(sys.argv[2], sys.argv[3], sys.argv[4])
# In[ ]:
| python |
from urllib import quote_plus
from celery.schedules import crontab
class HardCoded(object):
"""Constants used throughout the application.
All hard coded settings/data that are not actual/official configuration options for Flask, Celery, or their
extensions goes here.
"""
ADMINS = ['[email protected]']
DB_MODELS_IMPORTS = ('pypi',) # Like CELERY_IMPORTS in CeleryConfig.
ENVIRONMENT = property(lambda self: self.__class__.__name__)
MAIL_EXCEPTION_THROTTLE = 24 * 60 * 60
_SQLALCHEMY_DATABASE_DATABASE = 'pypi_portal'
_SQLALCHEMY_DATABASE_HOSTNAME = 'localhost'
_SQLALCHEMY_DATABASE_PASSWORD = 'pypi_p@ssword'
_SQLALCHEMY_DATABASE_USERNAME = 'pypi_service'
class CeleryConfig(HardCoded):
"""Configurations used by Celery only."""
CELERYD_PREFETCH_MULTIPLIER = 1
CELERYD_TASK_SOFT_TIME_LIMIT = 20 * 60 # Raise exception if task takes too long.
CELERYD_TASK_TIME_LIMIT = 30 * 60 # Kill worker if task takes way too long.
CELERY_ACCEPT_CONTENT = ['json']
CELERY_ACKS_LATE = True
CELERY_DISABLE_RATE_LIMITS = True
CELERY_IMPORTS = ('pypi',)
CELERY_RESULT_SERIALIZER = 'json'
CELERY_TASK_RESULT_EXPIRES = 10 * 60 # Dispose of Celery Beat results after 10 minutes.
CELERY_TASK_SERIALIZER = 'json'
CELERY_TRACK_STARTED = True
CELERYBEAT_SCHEDULE = {
'pypy-every-day': dict(task='pypi.update_package_list', schedule=crontab(hour='0')),
}
class Config(CeleryConfig):
"""Default Flask configuration inherited by all environments. Use this for development environments."""
DEBUG = True
TESTING = False
SECRET_KEY = "i_don't_want_my_cookies_expiring_while_developing"
MAIL_SERVER = 'smtp.localhost.test'
MAIL_DEFAULT_SENDER = '[email protected]'
MAIL_SUPPRESS_SEND = True
REDIS_URL = 'redis://localhost/0'
SQLALCHEMY_DATABASE_URI = property(lambda self: 'mysql://{u}:{p}@{h}/{d}'.format(
d=quote_plus(self._SQLALCHEMY_DATABASE_DATABASE), h=quote_plus(self._SQLALCHEMY_DATABASE_HOSTNAME),
p=quote_plus(self._SQLALCHEMY_DATABASE_PASSWORD), u=quote_plus(self._SQLALCHEMY_DATABASE_USERNAME)
))
class Testing(Config):
TESTING = True
CELERY_ALWAYS_EAGER = True
REDIS_URL = 'redis://localhost/1'
_SQLALCHEMY_DATABASE_DATABASE = 'pypi_portal_testing'
class Production(Config):
DEBUG = False
SECRET_KEY = None # To be overwritten by a YAML file.
ADMINS = ['[email protected]']
MAIL_SUPPRESS_SEND = False
STATICS_MINIFY = True
| python |
import codecs
import csv
from django.contrib import admin
from django.shortcuts import HttpResponse
from django.utils.translation import gettext_lazy as _
from .models import Subscriber
@admin.register(Subscriber)
class SubscriberAdmin(admin.ModelAdmin):
list_display = ('id', 'first_name', 'last_name', 'email', 'language', 'country', 'uploaded', 'created')
list_filter = ('language', 'country', 'uploaded')
search_fields = ('first_name', 'last_name', 'email')
actions = ('export_selected', )
def export_selected(self, request, queryset):
opts = self.model._meta
response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment;filename={}.csv'.format(
opts.verbose_name_plural.replace(' ', '_')
)
response.write(codecs.BOM_UTF8)
writer = csv.writer(response, delimiter=';')
fields = [
_('id'), _('first name'), _('last name'), _('email'), _('language'), _('country'), _('date/time')
]
# Write a first row with header information
writer.writerow(fields)
# Write data rows
for obj in queryset:
data_row = list()
data_row.append(obj.id)
data_row.append(obj.first_name)
data_row.append(obj.last_name)
data_row.append(obj.email)
data_row.append(obj.language)
data_row.append(obj.country.code)
data_row.append(obj.created.strftime('%d/%m/%Y %H:%M:%S'))
writer.writerow(data_row)
return response
export_selected.short_description = _('Export selected subscribers')
| python |
# -*- coding: utf-8 -*-
# @Date : 2016-01-23 21:40
# @Author : leiyue ([email protected])
# @Link : https://leiyue.wordpress.com/
def async(func):
from threading import Thread
from functools import wraps
@wraps(func)
def wrapper(*args, **kwargs):
thr = Thread(target=func, args=args, kwargs=kwargs)
thr.start()
return thr
return wrapper
| python |
import os
from .utils import safe_makedirs
from config import DATA_ROOT
RAW = 'raw'
PRODUCTS = 'products'
CORRECTED = 'corrected'
ALL = 'all'
FILENAME = 'filename'
class Resolver(object):
def __init__(self, data_root=None):
if data_root is None:
data_root = DATA_ROOT
self.data_root = data_root
def raw_directory(self, data_type, cruise=ALL, check_exists=True):
raw_dir = os.path.join(self.data_root, RAW, cruise, data_type)
if check_exists and not os.path.exists(raw_dir):
raise KeyError('{} directory not found for {}'.format(data_type, cruise))
return raw_dir
def raw_file(self, data_type, name=None, check_exists=True, **kw):
if name is None: # using None so name can be used as a keyword
raise ValueError('file name must be provided')
raw_dir = self.raw_directory(data_type, **kw)
raw_path = os.path.join(raw_dir, name)
if check_exists and not os.path.exists(raw_path):
raise KeyError('file {} not found'.format(raw_path))
return raw_path
def product_directory(self, data_type, cruise=ALL, makedirs=False):
proc_dir = os.path.join(self.data_root, PRODUCTS, cruise, data_type)
if makedirs:
safe_makedirs(proc_dir)
return proc_dir
def product_file(self, data_type, cruise, name=None, extension='json', makedirs=False):
proc_dir = self.product_directory(data_type, cruise, makedirs=makedirs)
name_ext = '{}.{}'.format(name, extension)
return os.path.join(proc_dir, name_ext)
def corrected_directory(self, data_type, cruise=ALL, makedirs=False):
corr_dir = os.path.join(self.data_root, CORRECTED, cruise, data_type)
if makedirs:
safe_makedirs(corr_dir)
return corr_dir
def directories(self, data_type, cruise, skip_raw=False):
dirs = []
if not skip_raw:
dirs.append(self.raw_directory(data_type, cruise))
dirs.append(self.corrected_directory(data_type, cruise))
dirs.append(self.product_directory(data_type, cruise))
return dirs
def cruises(self):
c = []
raw = os.path.join(self.data_root, RAW)
for fn in sorted(os.listdir(raw)):
if not os.path.isdir(os.path.join(raw, fn)):
continue
if fn != ALL:
c.append(fn)
return c
def find_file(directories, filename, extension=None):
for directory in directories:
path = os.path.join(directory, filename)
if extension is not None:
path = '{}.{}'.format(path, extension)
if os.path.exists(path):
return path
return None
ENDEAVOR = 'Endeavor'
ARMSTRONG = 'Armstrong'
def cruise_to_vessel(cruise):
lower = cruise.lower()
if lower.startswith('en'):
return ENDEAVOR
elif lower.startswith('ar'):
return ARMSTRONG
else:
raise KeyError('cannot determine vessel for {}'.format(cruise))
| python |
import dataclasses
import itertools
import time
import typing
import ratelimit
import requests
from loguru import logger
GameID = typing.NewType("GameID", int)
PatchVersion = typing.NewType("PatchVersion", tuple[str, str])
CALLS_PER_SECOND = 1
DEFAULT_RETRY_ATTEMPTS = (0, 1, 2, 5, 10, 30)
@dataclasses.dataclass(frozen=True)
class DownloadResult:
game_id: GameID
@dataclasses.dataclass(frozen=True)
class DownloadedGame(DownloadResult):
data: dict[str, typing.Any]
response: requests.Response
@dataclasses.dataclass(frozen=True)
class FailedDownloadAttempt(DownloadResult):
attempt_number: int
response: requests.Response
@dataclasses.dataclass(frozen=True)
class SkippedDownloadAttempt(DownloadResult):
pass
@dataclasses.dataclass(frozen=True)
class MismatchedPatchDownloadAttempt(DownloadResult):
game_patch: typing.Optional[PatchVersion]
expected_patch: PatchVersion
response: requests.Response
Downloader = typing.Callable[..., requests.Response]
def get_patch(game_data: dict[str, typing.Any]) -> typing.Optional[PatchVersion]:
first_player = game_data.get("userGames", [{}])[0]
patch_version = first_player.get("versionMajor")
hotfix_version = first_player.get("versionMinor")
if patch_version is not None and hotfix_version is not None:
return PatchVersion((patch_version, hotfix_version))
return None
@ratelimit.sleep_and_retry
@ratelimit.limits(calls=CALLS_PER_SECOND, period=1)
def download_game(
game_id: GameID,
api_token: typing.Optional[str] = None,
url: str = "https://open-api.bser.io/v1/games",
) -> requests.Response:
"""
Downloads the data of a given match, bounded by the API call request limit.
"""
return _download_game_unlimited(game_id, api_token, url)
def _download_game_unlimited(
game_id: GameID,
api_token: typing.Optional[str] = None,
url: str = "https://open-api.bser.io/v1/games",
) -> requests.Response:
"""
Downloads the data of a given match, IGNORING API call request limit.
Only use in the test suite!
"""
if api_token is None:
with open("key.secret", "r") as f:
api_token = f.read()
headers = {"x-api-key": api_token, "accept": "application/json"}
complete_url = f"{url}/{game_id}"
logger.debug(f"Requesting game_id=<{game_id}>")
response = requests.get(complete_url, headers=headers)
return response
class PatchDownloader:
def __init__(
self,
*,
retry_time_in_seconds: tuple[float, ...] = DEFAULT_RETRY_ATTEMPTS,
game_filter_predicate: typing.Callable[[GameID], bool] = (lambda _: True),
downloader: Downloader = download_game,
):
self.retry_time_in_seconds = retry_time_in_seconds
self.game_filter_predicate = game_filter_predicate
self.downloader = downloader
def download_patch(
self, starting_game_id: GameID
) -> typing.Iterable[DownloadResult]:
# force download of starting game to get patch
starting_game = self._attempt_download(starting_game_id, ignore_skip=True)
if not isinstance(starting_game, DownloadedGame):
raise ValueError()
expected_patch = get_patch(starting_game.data)
if expected_patch is None:
raise ValueError()
yield starting_game
def yield_seq(
game_ids: typing.Iterator[GameID],
) -> typing.Iterable[DownloadResult]:
for gid in game_ids:
result = self._attempt_download(gid, expected_patch)
yield result
if isinstance(result, MismatchedPatchDownloadAttempt):
break
backwards_ids = map(
GameID, itertools.count(start=starting_game_id - 1, step=-1)
)
forward_ids = map(GameID, itertools.count(start=starting_game_id + 1))
yield from yield_seq(backwards_ids)
yield from yield_seq(forward_ids)
def _attempt_download(
self,
game_id: GameID,
expected_patch: typing.Optional[PatchVersion] = None,
*,
ignore_skip: bool = False,
) -> DownloadResult:
if not ignore_skip and not self.game_filter_predicate(game_id):
logger.info(
f"Skipping download of game_id=<{game_id}>"
", reason=<Predicate filtered>"
)
return SkippedDownloadAttempt(game_id)
max_attempts = len(self.retry_time_in_seconds)
attempt = 0
successful = False
while not successful and attempt < max_attempts:
game_resp = self.downloader(game_id)
successful = (
game_resp.status_code == 200 and game_resp.json()["code"] == 200
)
if not successful:
time.sleep(self.retry_time_in_seconds[attempt])
attempt += 1
if not successful:
logger.info(
f"Reached maximum attempts=<{attempt}>"
f" for downloading game_id=<{game_id}>"
)
return FailedDownloadAttempt(game_id, attempt, game_resp)
game_data = game_resp.json()
game_patch = get_patch(game_data)
if game_patch is None:
logger.warning(f"Unable to retrieve patch for game_id=<{game_id}>")
if expected_patch is not None and expected_patch != game_patch:
return MismatchedPatchDownloadAttempt(
game_id, game_patch, expected_patch, game_resp
)
return DownloadedGame(game_id, game_data, game_resp)
| python |
from django.core.management.base import BaseCommand
import requests
from datetime import date
from dateutil.relativedelta import relativedelta
from dateutil.rrule import rrule, DAILY
from decimal import Decimal
from currency import model_choices as mch
from currency.models import Rate
class Command(BaseCommand):
help = 'privat_archive'
def handle(self, *args, **options):
b = date.today()
a = date.today() - relativedelta(years=4)
for dt in rrule(DAILY, dtstart=a, until=b):
url = f'https://api.privatbank.ua/p24api/exchange_rates?json&date=' \
f'{dt.strftime("%d-%m-%Y").replace("-", ".")}'
response = requests.get(url)
r_json = response.json()
for rate in r_json['exchangeRate']:
if 'currency' in rate:
if rate['currency'] in {'USD', 'EUR'}:
if 'purchaseRate' in rate and 'saleRate' in rate:
currency = mch.CURR_USD if rate['currency'] == 'USD' else mch.CURR_EUR
rate_kwargs = {
'created': dt,
'currency': currency,
'buy': Decimal(rate['purchaseRate']).__round__(2),
'sale': Decimal(rate['saleRate']).__round__(2),
'source': mch.SR_PRIVAT,
}
new_rate = Rate(**rate_kwargs)
last_rate = Rate.objects.filter(currency=currency, source=mch.SR_PRIVAT).last()
if last_rate is None or (new_rate.buy != last_rate.buy or new_rate.sale != last_rate.sale):
new_rate.save()
| python |
from django.db import models
from django.utils.translation import ugettext_lazy as _
class CustomerServiceReminderRel(models.Model):
# Customer
customer = models.ForeignKey('customers.Customer', verbose_name=_("Customer"))
# Service
service = models.ForeignKey('services.Service', verbose_name=_("Service"))
# Reminder Fields
upcoming_reminder_date = models.DateField(_("Upcoming Service Due Reminder Date"))
past_reminder_date = models.DateField(_("Past Service Due Reminder Date"))
class Meta:
unique_together = ('customer', 'service')
ordering = ('upcoming_reminder_date',)
verbose_name = _("Customer Service Reminder Rel")
verbose_name_plural = _("Customer Service Reminder Rels")
def __str__(self):
return _("{0} - {1} Reminder Rel").format(self.customer, self.service)
class CustomerProductReminderRel(models.Model):
# Customer
customer = models.ForeignKey('customers.Customer', verbose_name=_("Customer"))
# Product
service = models.ForeignKey('products.Product', verbose_name=_("Product"))
# Reminder Fields
upcoming_reminder_date = models.DateField(_("Upcoming Product Due Reminder Date"))
past_reminder_date = models.DateField(_("Past Product Due Reminder Date"))
class Meta:
unique_together = ('customer', 'service')
ordering = ('upcoming_reminder_date',)
verbose_name = _("Customer Product Reminder Rel")
verbose_name_plural = _("Customer Product Reminder Rels")
def __str__(self):
return _("{0} - {1} Reminder Rel").format(self.customer, self.product) | python |
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
params = {
'grid.color': 'k',
'grid.linestyle': 'dashdot',
'grid.linewidth': 0.6,
'font.family': 'Linux Biolinum O',
'font.size': 15,
'axes.facecolor': 'white'
}
rcParams.update(params)
def PlotSummary(alexnet_workload,
alexnet_accuracy,
halfnet_workload,
halfnet_accuracy,
alexnet_s1,
halfnet_s1,
resnet):
plt.figure()
#plt.scatter(alexnet_workload[0], alexnet_accuracy[0], color='g', marker='x', linewidth='2')
plt.plot(alexnet_workload, alexnet_accuracy, 'go-')
plt.plot(halfnet_workload, halfnet_accuracy, 'b^-')
plt.scatter(resnet[0], resnet[1], color='c', marker='x', linewidth='2')
plt.scatter(alexnet_s1[0], alexnet_s1[1],
color='m', marker='o', linewidth='1.5')
plt.scatter(halfnet_s1[0], halfnet_s1[1],
color='r', marker='^', linewidth='1.5')
plt.legend(['MV-AlexNet', 'MVA-AlexNet-Half', 'ResNet', 'MV-AlexNet3-pool1', 'MV-AlexNet3-Half-pool1'])
# plt.legend(['AlexNet', 'MV-AlexNet', 'MVA-AlexNet-Half', 'ResNet', 'MV-AlexNet3-pool1', 'MV-AlexNet3-Half-pool1'])
plt.grid()
plt.xlabel('Computational Workload (GMAC)')
plt.ylabel('Top1 Accuracy (%)')
plt.show()
#plt.savefig("MVCNN-Perf.pdf", bbox_inches ='tight')
def PlotAcc(nb_views, alexnet_accuracy, halfnet_accuracy,
alexnet_workload, halfnet_workload):
width=0.4
fig1, ax1 = plt.subplots(figsize=(12, 5))
plt.grid()
plt.xlabel('Number of views')
plt.xticks(nb_views, ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12'])
plt.axis([0, 13, 81, 89])
ax1.bar(nb_views-0.5*width, alexnet_accuracy, width, alpha= 0.6, edgecolor='black', color='b')
ax1.bar(nb_views-0.5*width, halfnet_accuracy, width, alpha= 0.6, edgecolor='black', color='g')
ax1.set_ylabel('Top1 Accuracy (%)')
ax2 = ax1.twinx()
ax2.bar(nb_views+0.5*width, alexnet_workload, width, alpha= 0.6, hatch="//", edgecolor='black', color='b')
ax2.bar(nb_views+0.5*width, halfnet_workload, width, alpha= 0.6, hatch="//", edgecolor='black', color='g')
ax2.set_ylabel('Workload (GMAC)')
ax1.legend(['MVA', 'MVA-Half'])
# ax2.legend(['MVA-Half', 'MVA'], loc='lower right', bbox_to_anchor=(0, 0.5))
#plt.show()
plt.savefig("NBView.pdf", bbox_inches ='tight')
if __name__ == '__main__':
nb_views = np.array([1, 2, 3, 4, 11, 12])
nb_views_all = np.linspace(1,12,12,endpoint=True)
alexnet_accuracy = np.array([85.3, 87.4, 87.9, 88, 88.5, 88.6])
alexnet_workload = np.array([0.67, 1.33, 2, 2.66, 7.32, 7.99])
halfnet_accuracy = np.array([81.8, 84.55, 85.2, 85.55, 86.65, 86.65])
halfnet_workload = np.array([0.14, 0.39, 0.58, 0.77, 2.12, 2.31])
halfnet_s1 = np.array([0.30, 84.95])
alexnet_s1 = np.array([0.87, 87.3])
resnet = np.array([3.86, 87.1])
alexnet_accd = np.interp(nb_views_all, nb_views, alexnet_accuracy)
halfnet_accd = np.interp(nb_views_all, nb_views, halfnet_accuracy)
alexnet_word = 0.67 * nb_views_all
halfnet_word = 0.14 * nb_views_all
PlotAcc(nb_views_all, alexnet_accd, halfnet_accd, alexnet_word, halfnet_word)
# PlotSummary(alexnet_workload = alexnet_workload,
# halfnet_workload = halfnet_workload,
# alexnet_accuracy = alexnet_accuracy,
# halfnet_accuracy = halfnet_accuracy,
# alexnet_s1 = alexnet_s1,
# halfnet_s1 = halfnet_s1,
# resnet = resnet)
| python |
def climbingLeaderboard(ranked, player):
ranked = list(set(ranked))
ranked.sort(reverse=True)
result = list()
rank= len(ranked) - 1
for score in player:
while score > ranked[rank] and rank > 0:
rank -= 1
if score < ranked[rank]:
result.insert(0, rank+2)
else:
result.insert(0, rank+1)
for rank in result[::-1]:
print(rank)
ranked_count = int(input().strip())
ranked = list(map(int, input().rstrip().split()))
player_count = int(input().strip())
player = list(map(int, input().rstrip().split()))
climbingLeaderboard(ranked, player) | python |
# this file must exist for couchdbkit to sync our design doc
# and it's a good place to import signals
from . import signals | python |
from unittest import TestCase
from unittest.case import expectedFailure
from gerrit_coverage.condense import condense
class TestMissingLinesToComments(TestCase):
def test_empty_list(self):
self.assertEqual([], condense([]))
def test_single_line(self):
lines = [('file', 1)]
self.assertEqual([('file', (1,1))], condense(lines))
def test_two_seperated_lines(self):
lines = [
('file', 9),
('file', 1),
]
expected = [
('file', (1,1)),
('file', (9,9)),
]
self.assertEqual(expected, condense(lines))
def test_multiple_following_lines(self):
lines = [
('file', 3),
('file', 2),
('file', 4),
]
expected = [
('file', (2,4)),
]
self.assertEqual(expected, condense(lines))
def test_one_line_one_group(self):
lines = [
('file', 3),
('file', 5),
('file', 4),
('file', 1)
]
expected = [
('file', (1,1)),
('file', (3,5)),
]
self.assertEqual(expected, condense(lines))
def test_multiple_groups(self):
lines = [
('file', 8),
('file', 9),
('file', 2),
('file', 1)
]
expected = [
('file', (1,2)),
('file', (8,9)),
]
self.assertEqual(expected, condense(lines))
def test_multiple_files(self):
lines = [
('file1', 2),
('file2', 4),
('file2', 3),
('file1', 1)
]
expected = [
('file1', (1,2)),
('file2', (3,4)),
]
self.assertEqual(expected, condense(lines))
| python |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""Application of easylearn
"""
def run():
from eslearn.GUI.easylearn_main_run import main
main()# Build
| python |
import cv2
Complete = cv2.imread("Velocity2RGB.png")
cv2.cvtColor(Complete, cv2.COLOR_BGR2RGB)
b, g, r = cv2.split(Complete)
i = 0
v = 0
c = 0
f = open('VelRGBLog.txt','w')
while(True):
while i <= 7:
h = 0
while h <= 15:
if h >= 8:
x = 82 + 45*h
else:
x = 20 + 45*h
y = 20 + 45*i
f.write(str(v)+' ('+str(r[y,x])+', '+str(g[y,x])+', '+str(b[y,x])+')\n')
h += 1
v += 1
i += 1
cv2.imshow("Final", Complete)
k = cv2.waitKey(32)
if k == 32:
break
cv2.destroyAllWindows()
f.close()
| python |
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import sys
import glob
import math
import types
import datetime
import pickle
import numpy as np
from collections import OrderedDict
import PIL.Image
#----------------------------------------------------------------------------
# Convenience wrappers for pickle.
def load_pkl(filename):
with open(filename, 'rb') as file:
return pickle.load(file)
def save_pkl(obj, filename):
with open(filename, 'wb') as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
#----------------------------------------------------------------------------
# Image save utils.
def adjust_dynamic_range(data, drange_in, drange_out):
if drange_in != drange_out:
scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (np.float32(drange_in[1]) - np.float32(drange_in[0]))
bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale)
data = data * scale + bias
return data
def create_image_grid(images, grid_size=None):
assert images.ndim == 3 or images.ndim == 4
num, img_w, img_h = images.shape[0], images.shape[-2], images.shape[-3]
if grid_size is not None:
grid_w, grid_h = tuple(grid_size)
else:
grid_w = max(int(np.ceil(np.sqrt(num))), 1)
grid_h = max((num - 1) / grid_w + 1, 1)
#print("images.shape[1:-2]:",(images.shape[-1],))
grid = np.zeros( [grid_h * img_h, grid_w * img_w]+list((images.shape[-1],)), dtype=images.dtype)
for idx in range(num):
x = (idx % grid_w) * img_w
y = (idx // grid_w) * img_h
#print("x:",x)
#print("y:",y)
#print("grid.shape:",grid.shape)
grid[y : y + img_h, x : x + img_w,...] = images[idx]
return grid
def convert_to_pil_image(image, drange=[0,1]):
assert image.ndim == 2 or image.ndim == 3
if image.ndim == 3:
if image.shape[0] == 1:
image = image[0] # grayscale CHW => HW
else:
pass
#image = image.transpose(1, 2, 0) # CHW -> HWC
image = adjust_dynamic_range(image, drange, [0,255])
image = np.round(image).clip(0, 255).astype(np.uint8)
format = 'RGB' if image.ndim == 3 else 'L'
return PIL.Image.fromarray(image, format)
def save_image(image, filename, drange=[0,1]):
convert_to_pil_image(image, drange).save(filename)
def save_image_grid(images, filename, drange=[0,1], grid_size=None):
convert_to_pil_image(create_image_grid(images, grid_size), drange).save(filename)
#----------------------------------------------------------------------------
# Training utils.
def rampup(epoch, rampup_length):
if epoch < rampup_length:
p = max(0.0, float(epoch)) / float(rampup_length)
p = 1.0 - p
return math.exp(-p*p*5.0)
else:
return 1.0
def rampdown_linear(epoch, num_epochs, rampdown_length):
if epoch >= num_epochs - rampdown_length:
return float(num_epochs - epoch) / rampdown_length
else:
return 1.0
def format_time(seconds):
s = int(np.round(seconds))
if s < 60: return '%ds' % (s)
elif s < 60*60: return '%dm %02ds' % (s / 60, s % 60)
elif s < 24*60*60: return '%dh %02dm %02ds' % (s / (60*60), (s / 60) % 60, s % 60)
else: return '%dd %dh %02dm' % (s / (24*60*60), (s / (60*60)) % 24, (s / 60) % 60)
#----------------------------------------------------------------------------
# Logging of stdout and stderr to a file.
class OutputLogger(object):
def __init__(self):
self.file = None
self.buffer = ''
def set_log_file(self, filename):
assert self.file is None
self.file = open(filename, 'wt')
if self.buffer is not None:
self.file.write(self.buffer)
self.buffer = None
def write(self, data):
if self.file is not None:
self.file.write(data)
if self.buffer is not None:
self.buffer += data
def flush(self):
if self.file is not None:
self.file.flush()
class TeeOutputStream(object):
def __init__(self, child_streams, autoflush=False):
self.child_streams = child_streams
self.autoflush = autoflush
def write(self, data):
for stream in self.child_streams:
stream.write(data)
if self.autoflush:
self.flush()
def flush(self):
for stream in self.child_streams:
stream.flush()
output_logger = None
def init_output_logging():
global output_logger
if output_logger is None:
output_logger = OutputLogger()
sys.stdout = TeeOutputStream([sys.stdout, output_logger], autoflush=True)
sys.stderr = TeeOutputStream([sys.stderr, output_logger], autoflush=True)
def set_output_log_file(filename):
if output_logger is not None:
output_logger.set_log_file(filename)
#----------------------------------------------------------------------------
# Reporting of results.
def create_result_subdir(result_dir, run_desc):
# Select run ID and create subdir.
while True:
run_id = 0
for fname in glob.glob(os.path.join(result_dir, '*')):
try:
fbase = os.path.basename(fname)
ford = int(fbase[:fbase.find('-')])
run_id = max(run_id, ford + 1)
except ValueError:
pass
result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, run_desc))
try:
os.makedirs(result_subdir)
break
except OSError:
if os.path.isdir(result_subdir):
continue
raise
print("Saving results to", result_subdir)
set_output_log_file(os.path.join(result_subdir, 'log.txt'))
# Export run details.
try:
import config
with open(os.path.join(result_subdir, 'run.txt'), 'wt') as f:
f.write('%-16s%s\n' % ('Date', datetime.datetime.today()))
f.write('%-16s%s\n' % ('Device', config.theano_flags['device']))
f.write('%-16s%s\n' % ('Working dir', os.getcwd()))
f.write('%-16s%s\n' % ('Executable', sys.argv[0]))
f.write('%-16s%s\n' % ('Arguments', ' '.join(sys.argv[1:])))
except:
pass
# Export config.
try:
import config
with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout:
for k, v in sorted(config.__dict__.items()):
if not k.startswith('_'):
fout.write("%s = %s\n" % (k, str(v)))
except:
pass
return result_subdir
#----------------------------------------------------------------------------
# Network topology info.
#def print_network_topology_info(layers):
# import lasagne
# print()
# print("%-16s%-28s%-10s%-20s%-20s%s" % ('LayerName', 'LayerType', 'Params', 'OutputShape', 'WeightShape', 'Activation'))
# print("%-16s%-28s%-10s%-20s%-20s%s" % (('---',) * 6))
# total_params = 0
# for l in lasagne.layers.get_all_layers(layers):
# type_str = type(l).__name__
# nparams = sum(np.prod(p.get_value().shape) for p in l.get_params(trainable=True))
# total_params += nparams
# outshape = lasagne.layers.get_output_shape(l)
# try:
# weights = l.W.get_value()
# except AttributeError:
# try:
# weights = l.W_param.get_value()
# except AttributeError:
# weights = np.zeros(())
# weight_str = shape_to_str(weights.shape)
# act_str = '' if not hasattr(l, 'nonlinearity') else l.nonlinearity.__name__ if isinstance(l.nonlinearity, types.FunctionType) else type(l.nonlinearity).__name__
# print("%-16s%-28s%-10d%-20s%-20s%s" % (l.name, type_str, nparams, shape_to_str(outshape), weight_str, act_str))
# print("%-16s%-28s%-10s%-20s%-20s%s" % (('---',) * 6))
# print("%-16s%-28s%-10d%-20s%-20s%s" % ('Total', '', total_params, '', '', ''))
# print()
def shape_to_str(shape):
str = ['%d' % v if v else '?' for v in shape]
return ', '.join(str) if len(str) else ''
#----------------------------------------------------------------------------
# Locating results.
def locate_result_subdir(run_id):
if isinstance(run_id, str) and os.path.isdir(run_id):
return run_id
searchdirs = []
searchdirs += ['.']
searchdirs += ['results']
searchdirs += ['networks']
import config
for searchdir in searchdirs:
dir = os.path.join(config.result_dir, searchdir, str(run_id))
if os.path.isdir(dir):
return dir
dirs = glob.glob(os.path.join(config.result_dir, searchdir, '%s-*' % str(run_id)))
if len(dirs) == 1 and os.path.isdir(dirs[0]):
return dirs[0]
raise IOError('Cannot locate result subdir for run', run_id)
def list_network_pkls(result_subdir):
pkls = sorted(glob.glob(os.path.join(result_subdir, 'network-*.pkl')))
if len(pkls) >= 1 and os.path.basename(pkls[0]) == 'network-final.pkl':
pkls.append(pkls[0])
del pkls[0]
return pkls
def locate_network_pkl(result_subdir, snapshot=None):
if isinstance(snapshot, str) and os.path.isfile(snapshot):
return snapshot
pkls = list_network_pkls(result_subdir)
if len(pkls) >= 1 and snapshot is None:
return pkls[-1]
for pkl in pkls:
try:
name = os.path.splitext(os.path.basename(pkl))[0]
number = int(name.split('-')[-1])
if number == snapshot:
return pkl
except ValueError: pass
except IndexError: pass
raise IOError('Cannot locate network pkl for snapshot', snapshot)
#----------------------------------------------------------------------------
| python |
# credits to @NotThatMF on telegram for chiaki fast api
# well i also borrowed the base code from him
from pyrogram import Client, filters
from pyrogram.types import CallbackQuery, InlineKeyboardButton, InlineKeyboardMarkup, Message
from .. import BOT_NAME, HELP_DICT, TRIGGERS as trg
from ..utils.data_parser import get_wo, get_wols
from ..utils.helper import check_user
@Client.on_message(filters.command(["watch", f"watch{BOT_NAME}"], prefixes=trg))
async def get_watch_order(client, message: Message):
"""Get List of Scheduled Anime"""
x = message.text.split(" ", 1)[1]
user = message.from_user.id
data = get_wols(x)
msg = f"Found related animes for the query {x}"
buttons = []
for i in data:
buttons.append([InlineKeyboardButton(str(i[1]), callback_data=f"watch_{i[0]}_{x}_{user}")])
await message.reply_text(msg, reply_markup=InlineKeyboardMarkup(buttons))
@Client.on_callback_query(filters.regex(pattern=r"watch_(.*)"))
@check_user
async def watch_(client, cq: CallbackQuery):
kek, id_, qry, user = cq.data.split("_")
msg = get_wo(int(id_))
buttons = [[InlineKeyboardButton("Back", callback_data=f"wol_{qry}_{user}")]]
await cq.edit_message_text(msg, reply_markup=InlineKeyboardMarkup(buttons))
@Client.on_callback_query(filters.regex(pattern=r"wol_(.*)"))
@check_user
async def wls(client, cq: CallbackQuery):
kek, qry, user = cq.data.split("_")
data = get_wols(qry)
msg = f"Found related animes for the query {qry}"
buttons = []
for i in data:
buttons.append([InlineKeyboardButton(str(i[1]), callback_data=f"watch_{i[0]}_{qry}_{user}")])
await cq.edit_message_text(msg, reply_markup=InlineKeyboardMarkup(buttons))
HELP_DICT["watch"] = """Use /watch cmd to get watch order of searched anime
**Usage:**
`/watch Detective Conan`
`!watch Naruto`""" | python |
#!/usr/bin/env python
#-*- coding: utf-8 -*-
#This software is distributed under the Creative Commons license (CC0) version 1.0. A copy of this license should have been distributed with this software.
#The license can also be read online: <https://creativecommons.org/publicdomain/zero/1.0/>. If this online license differs from the license provided with this software, the license provided with this software should be applied.
"""
Defines a class of exceptions used to denote a false state of being for
configuration.
"""
class ConfigurationError(Exception):
"""
This exception denotes that something went wrong in the configuration.
It is mostly a marker class, but also provides the type of configuration in
which something went wrong.
"""
def __init__(self, message, configuration_type):
"""
Creates a new ConfigurationError.
:param message: The message describing the error that occurred.
:param configuration_type: The configuration type with which the error
occurred.
"""
#Prepend the configuration type before the error message.
super(ConfigurationError, self).__init__("{configuration_type}: {message}".format(configuration_type=configuration_type, message=message))
self.configuration_type = configuration_type #Also store it here for debugging purposes. | python |
class Solution(object):
def solveNQueens(self, n):
"""
:type n: int
:rtype: List[List[str]]
"""
if n<1: return []
self.result=[]
self.cols=set()
self.pie=set()
self.na=set()
self.DFS(n,0,[])
return self._generate_result(n)
def DFS(self,n,row,cur_state):
# recursion terminator
if row>=n:
self.result.append(cur_state)
return
for col in range(n):
if col in self.cols or row+col in self.pie or row-col in self.na:
# not existential
continue
# update the flags
self.cols.add(col)
self.pie.add(row+col)
self.na.add(row-col)
self.DFS(n,row+1,cur_state+[col])
self.cols.remove(col)
self.pie.remove(row+col)
self.na.remove(row-col)
def _generate_result(self,n):
board=[]
for res in self.result:
for i in res:
board.append("."*i+'Q'+'.'*(n-i-1))
return [board[i:i+n] for i in range(0,len(board),n)] | python |
# Enter your code for "Degree Distribution" here.
import csv
degrees = []
students = []
for l in csv.DictReader(open("degrees.csv")):
degrees.append(l)
for l in csv.DictReader(open("students.csv")):
students.append(l)
students = sorted(students, key=lambda x: float(x["score"]))
students.reverse()
print(students)
| python |
'''
Copyright 2022 Airbus SAS
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
# coding: utf-8
from setuptools import setup, find_packages
from datetime import date
import os
def __path(filename):
''''Build a full absolute path using the given filename
:params filename : filename to ass to the path of this module
:returns: full builded path
'''
return os.path.join(os.path.dirname(__file__), filename)
with open('README.md') as f:
readme = f.read()
with open('LICENSE') as f:
license = f.read()
# Manage module version using date
today = date.today()
# formating the date as yy.mm.dd
version = today.strftime('%y.%m.%d')
# check if the version.info file is existing (add a suffix to the version
# in case of multiple release in a day)
# it is intended that the version.info file contain only one line with the
# suffix information
suffix = ''
if os.path.exists(__path('version.info')):
suffix = open(__path('version.info')).read().strip()
if len(suffix) > 0:
version = f'{version}.{suffix}'
setup(
name='sostrades_authapi',
version=version,
description='Repository of SoS Trades authentication api',
long_description=readme,
author='Airbus SAS',
url='https://idas661.eu.airbus.corp/sostrades/sostrades_authapi.git',
license=license,
packages=find_packages(exclude=('tests', 'docs')),
include_package_data=True,
python_requires='==3.7',
install_requires=[
'python-dotenv==0.12.0',
'Flask==1.1.1',
'Flask-Cors==3.0.8',
'itsdangerous==1.1.0',
'passlib==1.7.2',
'requests-toolbelt==0.9.1',
'python3-saml==1.9.0'
]
)
| python |
import pytest
from my_lib import add_elements
def test_wrong_type():
with pytest.raises(TypeError):
add_elements([1, 2], 6)
| python |
import FWCore.ParameterSet.Config as cms
# Make one TrackCand for each seeder
import FastSimulation.Tracking.TrackCandidateProducer_cfi
hltL3TrackCandidateFromL2OIState = FastSimulation.Tracking.TrackCandidateProducer_cfi.trackCandidateProducer.clone(
src = cms.InputTag("hltL3TrajSeedOIState"),
SplitHits = cms.bool(False),
maxSeedMatchEstimator = cms.untracked.double(200)
)
hltL3TrackCandidateFromL2OIHit = hltL3TrackCandidateFromL2OIState.clone()
hltL3TrackCandidateFromL2OIHit.src = "hltL3TrajSeedOIHit"
hltL3TrackCandidateFromL2IOHit = hltL3TrackCandidateFromL2OIState.clone()
hltL3TrackCandidateFromL2IOHit.src = "hltL3TrajSeedIOHit"
# CKFTrackCandidateMaker
hltMuCkfTrackCandidates = FastSimulation.Tracking.TrackCandidateProducer_cfi.trackCandidateProducer.clone()
hltMuCkfTrackCandidates.src = cms.InputTag("hltMuTrackSeeds")
hltMuCkfTrackCandidates.SplitHits = False
# CTF track fit with material
import RecoTracker.TrackProducer.CTFFinalFitWithMaterial_cfi
hltMuCtfTracks = RecoTracker.TrackProducer.CTFFinalFitWithMaterial_cfi.ctfWithMaterialTracks.clone()
hltMuCtfTracks.src = 'hltMuCkfTrackCandidates'
hltMuCtfTracks.TTRHBuilder = 'WithoutRefit'
| python |
from y2015.day02 import *
def test_part1():
assert part1("2x3x4") == 58
assert part1("1x1x10") == 43
def test_part2():
assert part2("2x3x4") == 34
assert part2("1x1x10") == 14
| python |
#namedtuple提供了几个有用的属性和方法来处理子类和实例。
# 所有这些内置属性都有一个前缀为下划线(_)的名称,
# 在大多数Python程序中按照惯例表示私有属性。对于 namedtuple,
# 然而,前缀是为了保护名称从用户提供的属性名称冲突
import collections
Person = collections.namedtuple('Person', 'name age')
bob = Person(name='Bob', age=30)
print('Representation:', bob)
print('Fields:', bob._fields)
"""
output:
Representation: Person(name='Bob', age=30)
Fields: ('name', 'age')
""" | python |
#!/usr/bin/python
import numpy as np
from math import atan2, sin, cos, pi
class DiffDriveController():
"""
Class used for controlling the robot linear and angular velocity
"""
def __init__(self, max_speed, max_omega):
# TODO for Student: Specify these parameters
self.kp= 0.5 #0.3
self.ka= 2.0 #4
self.kb= 0.001 #0.01
self.MAX_SPEED = max_speed
self.MAX_OMEGA = max_omega
self.target_rho = 1.0
def update_target_rho(self, new_rho):
self.target_rho = new_rho
def compute_vel(self, state, goal):
"""
Function that computes the desired outputs given the state and goal
Inputs:
state - a numpy vector of size 3 by 1 with components (x,y,theta)
goal - a numpy vector of size 2 by 1 specifying the location of the goal
Outputs: a tuple with 3 elements
v - a number specifying the forward speed (in m/s) of the robot (should
be no more than max_speed)
omega - a number specifying the angular velocity (in rad/s) of the robot
(should be no more than max_omega)
done - a boolean value specifying if the robot has reached its goal (or
is close enough
"""
# YOUR CODE HERE
#print "goal: ", goal
#print "state: ", state
dx = goal[0] - state[0]
dy = goal[1] - state[1]
theta = state[2]
rho = np.sqrt(dx**2 + dy**2)
pos_beta = atan2(dy,dx) #NOTE, I CHANGED THE DEFINITION BETA TO BE +ATAN2, SO NOW kb > 0
alpha = pos_beta - theta
if(alpha >= pi):
alpha -= 2*pi
elif(alpha < -pi):
alpha += 2*pi
v = self.kp * rho
if(v < -self.MAX_SPEED):
v = -self.MAX_SPEED
elif(v > self.MAX_SPEED):
v = self.MAX_SPEED
w = self.ka*alpha + self.kb*pos_beta
if(w < -self.MAX_OMEGA):
w = -self.MAX_OMEGA
elif(w > self.MAX_OMEGA):
w = self.MAX_OMEGA
#~ if(v < 0.15):
#~ v = 0.15
#~ if(abs(w) < 0.5):
#~ v = 0.15
#~ else:
#~ v = 0.0
#~ if(w < 0):
#~ w = -1.0
#~ else:
#~ w = 1.0
done = False
if(rho < self.target_rho):
v = 0.0
w = 0.0
done = True
return v,w,done, alpha, pos_beta
| python |
import os
import pathlib
from glob import glob
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
from tensorflow.keras import Sequential
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import *
from tensorflow_hub import KerasLayer
SEED = 999
def build_network(base_model, classes):
return Sequential([
base_model,
Dense(classes),
Softmax()
])
def load_images_and_labels(image_paths,
target_size=(256, 256)):
images = []
labels = []
for image_path in image_paths:
image = load_img(image_path, target_size=target_size)
image = img_to_array(image)
label = image_path.split(os.path.sep)[-2]
images.append(image)
labels.append(label)
return np.array(images), np.array(labels)
dataset_path = (pathlib.Path.home() / '.keras' / 'datasets' /
'flowers17')
files_pattern = (dataset_path / 'images' / '*' / '*.jpg')
image_paths = [*glob(str(files_pattern))]
CLASSES = {p.split(os.path.sep)[-2] for p in image_paths}
X, y = load_images_and_labels(image_paths)
X = X.astype('float') / 255.0
y = LabelBinarizer().fit_transform(y)
(X_train, X_test,
y_train, y_test) = train_test_split(X, y,
test_size=0.2,
random_state=SEED)
model_url = ('https://tfhub.dev/google/imagenet/'
'resnet_v1_152/feature_vector/4')
base_model = KerasLayer(model_url, input_shape=(256, 256, 3))
base_model.trainable = False
model = build_network(base_model, len(CLASSES))
BATCH_SIZE = 32
augmenter = ImageDataGenerator(horizontal_flip=True,
rotation_range=30,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.2,
fill_mode='nearest')
train_generator = augmenter.flow(X_train, y_train, BATCH_SIZE)
EPOCHS = 20
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(lr=1e-3),
metrics=['accuracy'])
history = model.fit(train_generator,
steps_per_epoch=len(X_train) // BATCH_SIZE,
validation_data=(X_test, y_test),
epochs=EPOCHS)
result = model.evaluate(X_test, y_test)
print(f'Test accuracy: {result[1]}')
| python |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
# setting up libraries used in the program
from __future__ import print_function
from dronekit import connect
import exceptions
import socket
import time
import sys
import os
# clear screen
os.system("clear")
try:
# print out the instruction
print ("Take RC car's controller raw reading.")
# connect to pixhawk
print ("\nWith baudrate = %d." % 57600)
print ("Connect to serial port = %s." % "/dev/ttyS0")
vehicle = connect("/dev/ttyS0", heartbeat_timeout = 30, baud = 57600)
# print out instruction
print ("\nTo end the program press [CTRL] + [c].\n")
# take 3 [s] break
time.sleep(3)
# infinity loop
while True:
# reading rc input from channel 1 to channel 12
a = vehicle.channels['1']
b = vehicle.channels['2']
c = vehicle.channels['3']
d = vehicle.channels['4']
e = vehicle.channels['5']
f = vehicle.channels['6']
g = vehicle.channels['7']
h = vehicle.channels['8']
# print out the input
print ("CH1 %s, CH2 %s, CH3 %s, CH4 %s, CH5 %s, CH6 %s, CH7 %s, CH8 %s."
% (a, b, c, d, e, f, g, h))
# sleep for 3 second
time.sleep(3)
except KeyboardInterrupt:
print ("\n\n[CTRL] + [c] detected.")
finally:
print ("Program is terminated.")
vehicle.close()
quit()
| python |
"""Turn objects from the hyperbolic module into matplotlib figures.
"""
import copy
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Arc, PathPatch, Rectangle
from matplotlib.collections import LineCollection, PolyCollection, EllipseCollection
from matplotlib.transforms import Affine2D
from matplotlib.path import Path
from geometry_tools import hyperbolic, utils, projective
from geometry_tools.hyperbolic import Model
#I played around with this a bit, but it's an eyeball test
#TBH. Determines the radius at which we start approximating circular
#arcs with straight lines.
RADIUS_THRESHOLD = 80
#how far apart points can be before we decide that we ordered the
#polygon wrong
DISTANCE_THRESHOLD = 1e-4
#the default amount of "room" we leave outside the boundary of our model
DRAW_NEIGHBORHOOD = 0.1
#when drawing objects "to infinity", how far offscreen we draw them
#(as a % of the width/height)
OFFSCREEN_FACTOR = 0.1
#this is a bit unpythonic since these are meant to be constants
def default_model_limits(model):
if model == Model.POINCARE or model == Model.KLEIN:
return ((-1 - DRAW_NEIGHBORHOOD, 1 + DRAW_NEIGHBORHOOD),
(-1 - DRAW_NEIGHBORHOOD, 1 + DRAW_NEIGHBORHOOD))
if model == Model.HALFSPACE:
return ((-6., 6.),
(-1 * DRAW_NEIGHBORHOOD, 8.))
class DrawingError(Exception):
"""Thrown if we try and draw an object in a model which we haven't
implemented yet.
"""
pass
class ProjectiveDrawing:
def __init__(self, figsize=8,
ax=None,
fig=None,
xlim=(-5., 5.),
ylim=(-5., 5.),
transform=None):
if ax is None or fig is None:
fig, ax = plt.subplots(figsize=(figsize, figsize))
self.xlim, self.ylim = xlim, ylim
self.width = self.xlim[1] - self.xlim[0]
self.height = self.ylim[1] - self.ylim[0]
self.ax, self.fig = ax, fig
plt.tight_layout()
self.ax.axis("off")
self.ax.set_aspect("equal")
self.ax.set_xlim(self.xlim)
self.ax.set_ylim(self.ylim)
self.transform = projective.identity(2)
if transform is not None:
self.transform = transform
def draw_point(self, point, **kwargs):
pointlist = self.transform @ point.flatten_to_unit()
default_kwargs = {
"color" : "black",
"marker": "o",
"linestyle":"none"
}
for key, value in kwargs.items():
default_kwargs[key] = value
x, y = pointlist.affine_coords().T
plt.plot(x, y, **default_kwargs)
def draw_proj_segment(self, segment, **kwargs):
seglist = self.transform @ segment.flatten_to_unit()
default_kwargs = {
"color":"black",
"linewidth":1
}
for key, value in kwargs.items():
default_kwargs[key] = value
lines = LineCollection(seglist.endpoint_affine_coords(),
**default_kwargs)
self.ax.add_collection(lines)
def draw_polygon(self, polygon, **kwargs):
default_kwargs = {
"facecolor": "none",
"edgecolor": "black"
}
for key, value in kwargs.items():
default_kwargs[key] = value
polylist = self.transform @ polygon.flatten_to_unit()
polys = PolyCollection(polylist.affine_coords(), **default_kwargs)
self.ax.add_collection(polys)
def set_transform(self, transform):
self.transform = transform
def add_transform(self, transform):
self.transform = transform @ self.transform
def precompose_transform(self, transform):
self.transform = self.transform @ transform
class HyperbolicDrawing(ProjectiveDrawing):
def __init__(self, figsize=8,
ax=None,
fig=None,
facecolor="aliceblue",
edgecolor="lightgray",
linewidth=1,
model=Model.POINCARE,
xlim=None,
ylim=None,
transform=None):
if ax is None or fig is None:
fig, ax = plt.subplots(figsize=(figsize, figsize))
default_x, default_y = default_model_limits(model)
self.xlim, self.ylim = xlim, ylim
if xlim is None:
self.xlim = default_x
if ylim is None:
self.ylim = default_y
self.width = self.xlim[1] - self.xlim[0]
self.height = self.ylim[1] - self.ylim[0]
self.left_infinity = self.xlim[0] - OFFSCREEN_FACTOR * self.width
self.right_infinity = self.xlim[1] + OFFSCREEN_FACTOR * self.width
self.up_infinity = self.ylim[1] + OFFSCREEN_FACTOR * self.height
self.down_infinity = self.ylim[0] - OFFSCREEN_FACTOR * self.height
self.h_infinity = self.right_infinity - self.left_infinity
self.v_infinity = self.up_infinity - self.down_infinity
self.ax, self.fig = ax, fig
plt.tight_layout()
self.ax.axis("off")
self.ax.set_aspect("equal")
self.ax.set_xlim(self.xlim)
self.ax.set_ylim(self.ylim)
self.facecolor = facecolor
self.edgecolor = edgecolor
self.linewidth = linewidth
self.model = model
self.transform = hyperbolic.identity(2)
if transform is not None:
self.transform = transform
def draw_plane(self, **kwargs):
default_kwargs = {
"facecolor": self.facecolor,
"edgecolor": self.edgecolor,
"linewidth": self.linewidth,
"zorder": 0
}
for key, value in kwargs.items():
default_kwargs[key] = value
if self.model == Model.POINCARE or self.model == Model.KLEIN:
plane = Circle((0., 0.), 1.0, **default_kwargs)
self.ax.add_patch(plane)
elif self.model == Model.HALFSPACE:
xmin, xmax = self.xlim
ymin, ymax = self.ylim
plane = Rectangle((self.left_infinity, 0.),
self.h_infinity, self.up_infinity,
facecolor=self.facecolor,
edgecolor=self.edgecolor,
zorder=0,
**kwargs)
self.ax.add_patch(plane)
else:
raise DrawingError(
"Drawing in model '{}' is not implemented".format(self.model)
)
def get_vertical_segment(self, endpts):
ordered_endpts = endpts[:]
if (np.isnan(endpts[0,0]) or
endpts[0, 0] < self.left_infinity or
endpts[0, 0] > self.right_infinity):
ordered_endpts = np.flip(endpts, axis=0)
if (np.isnan(ordered_endpts[1, 0]) or
ordered_endpts[1, 0] < self.left_infinity or
ordered_endpts[1, 0] > self.right_infinity):
ordered_endpts[1, 1] = self.up_infinity
ordered_endpts[1, 0] = ordered_endpts[0, 0]
return ordered_endpts
def draw_geodesic(self, segment,
radius_threshold=RADIUS_THRESHOLD, **kwargs):
seglist = self.transform @ segment.flatten_to_unit()
default_kwargs = {
"color":"black",
"linewidth":1
}
for key, value in kwargs.items():
default_kwargs[key] = value
if self.model not in [Model.KLEIN, Model.POINCARE, Model.HALFSPACE]:
raise DrawingError(
"Drawing geodesics in model '{}' is not implemented".format(
self.model)
)
if self.model == Model.KLEIN:
lines = LineCollection(seglist.endpoint_coords(self.model),
**default_kwargs)
self.ax.add_collection(lines)
return
centers, radii, thetas = seglist.circle_parameters(model=self.model,
degrees=True)
for center, radius, theta, segment in zip(centers, radii,
thetas, seglist):
if np.isnan(radius) or radius > radius_threshold:
arcpath = self.get_straight_arcpath(segment)
arc = PathPatch(arcpath, **default_kwargs)
self.ax.add_patch(arc)
continue
arc = Arc(center, radius * 2, radius * 2,
theta1=theta[0], theta2=theta[1],
**kwargs)
self.ax.add_patch(arc)
def draw_point(self, point, **kwargs):
pointlist = self.transform @ point.flatten_to_unit()
default_kwargs = {
"color" : "black",
"marker": "o",
"linestyle":"none"
}
for key, value in kwargs.items():
default_kwargs[key] = value
x, y = pointlist.coords(self.model).T
plt.plot(x, y, **default_kwargs)
def get_circle_arcpath(self, center, radius, theta):
"""Get a matplotlib path object for the circular arc representing this
geometric object.
"""
cx, cy = center
transform = Affine2D()
transform.scale(radius)
transform.translate(cx, cy)
return transform.transform_path(Path.arc(theta[0], theta[1]))
def get_straight_arcpath(self, segment):
endpts = segment.endpoint_coords(self.model)
if self.model == Model.POINCARE:
return Path(endpts, [Path.MOVETO, Path.LINETO])
if self.model == Model.HALFSPACE:
v_endpts = self.get_vertical_segment(endpts)
return Path(v_endpts, [Path.MOVETO, Path.LINETO])
def get_polygon_arcpath(self, polygon,
radius_threshold=RADIUS_THRESHOLD,
distance_threshold=DISTANCE_THRESHOLD):
vertices = np.zeros((0, 2))
codes = np.zeros((0,))
first_segment = True
polysegs = polygon.get_edges()
centers, radii, thetas = polysegs.circle_parameters(model=self.model)
for center, radius, theta, segment in zip(centers, radii, thetas, polysegs):
if not np.isnan(radius) and radius < radius_threshold:
g_path = self.get_circle_arcpath(center, radius, theta)
else:
g_path = self.get_straight_arcpath(segment)
g_verts = g_path.vertices
p1, p2 = segment.get_end_pair(as_points=True)
p1_opp_dist = np.linalg.norm(p1.coords(self.model) - g_verts[-1])
p2_opp_dist = np.linalg.norm(p2.coords(self.model) - g_verts[0])
if (p1_opp_dist < distance_threshold or
p2_opp_dist < distance_threshold):
g_verts = g_verts[::-1]
g_codes = copy.deepcopy(g_path.codes)
if not first_segment:
g_codes[0] = Path.LINETO
vertices = np.concatenate((vertices, g_verts), axis=-2)
codes = np.concatenate((codes, g_codes))
first_segment = False
return Path(vertices, codes)
def draw_polygon(self, polygon, **kwargs):
default_kwargs = {
"facecolor": "none",
"edgecolor": "black"
}
for key, value in kwargs.items():
default_kwargs[key] = value
polylist = self.transform @ polygon.flatten_to_unit()
if self.model == Model.KLEIN:
polys = PolyCollection(polylist.coords("klein"), **default_kwargs)
self.ax.add_collection(polys)
elif self.model == Model.POINCARE or self.model == Model.HALFSPACE:
for poly in polylist:
path = self.get_polygon_arcpath(poly)
self.ax.add_patch(PathPatch(path, **default_kwargs))
else:
raise DrawingError(
"Drawing polygons in model '{}' is not implemented".format(
self.model)
)
def draw_horosphere(self, horoball, **kwargs):
default_kwargs = {
"facecolor": "none",
"edgecolor": "black"
}
for key, value in kwargs.items():
default_kwargs[key] = value
horolist = self.transform @ horoball.flatten_to_unit()
if self.model == Model.POINCARE or self.model == Model.HALFSPACE:
center, radius = horolist.sphere_parameters(model=self.model)
good_indices = ((radius < RADIUS_THRESHOLD) &
~np.isnan(radius) &
~(np.isnan(center).any(axis=-1)))
circle_ctrs = center[good_indices]
circle_radii = radius[good_indices]
if len(circle_ctrs) > 0:
self.ax.add_collection(
EllipseCollection(circle_radii * 2, circle_radii * 2,
0, units="xy", offsets=circle_ctrs,
transOffset=self.ax.transData,
**default_kwargs)
)
if self.model == Model.HALFSPACE:
for horoball in horolist[~good_indices]:
height = horoball.ref_coords(self.model)[1]
h_rect = Rectangle((self.left_infinity, height),
self.h_infinity,
self.up_infinity - height,
**default_kwargs)
self.ax.add_patch(h_rect)
else:
raise DrawingError(
"Drawing horospheres in model '{}' is not implemented.".format(
self.model)
)
def draw_horoarc(self, horoarc, **kwargs):
default_kwargs = {
"facecolor": "none",
"edgecolor": "black"
}
for key, value in kwargs.items():
default_kwargs[key] = value
if self.model != Model.POINCARE and self.model != Model.HALFSPACE:
raise DrawingError(
"Drawing horoarcs in model '{}' is not implemented.".format(
self.model)
)
horolist = self.transform @ horoarc.flatten_to_unit()
endpts = horolist.endpoint_coords(model=self.model)
centers, radii, thetas = horolist.circle_parameters(model=self.model)
for center, radius, theta, endpt in zip(centers, radii, thetas, endpts):
if np.isnan(radius) or radius > RADIUS_THRESHOLD:
path = Path(endpt, [Path.MOVETO, Path.LINETO])
pathpatch = PathPatch(path, **default_kwargs)
self.ax.add_patch(pathpatch)
else:
arc = Arc(center, radius * 2, radius * 2,
theta1=theta[0], theta2=theta[1],
**default_kwargs)
self.ax.add_patch(arc)
def draw_boundary_arc(self, boundary_arc, **kwargs):
default_kwargs = {
"edgecolor": "black",
"linewidth": 3
}
for key, value in kwargs.items():
default_kwargs[key] = value
arclist = self.transform @ boundary_arc.flatten_to_unit()
if self.model == Model.POINCARE or self.model == Model.KLEIN:
centers, radii, thetas = arclist.circle_parameters(model=self.model)
for center, radius, theta in zip(centers, radii, thetas):
arc = Arc(center, radius * 2, radius * 2,
theta1=theta[0], theta2=theta[1],
**default_kwargs)
self.ax.add_patch(arc)
elif self.model == Model.HALFSPACE:
endpoints = arclist.endpoint_coords(self.model, ordered=True)
endpoints[..., 1] = 0.
endpoints[np.isnan(endpoints)[..., 0], 0] = np.inf
# first, draw all the lines where we go left to right
leftright = (endpoints[..., 0, 0] < endpoints[..., 1, 0])
leftright_endpts = endpoints[leftright]
leftright_arcs = LineCollection(leftright_endpts, **default_kwargs)
self.ax.add_collection(leftright_arcs)
# then, draw all the lines that wrap around infinity
infty_right = np.array([self.right_infinity, 0.])
infty_left = np.array([self.left_infinity, 0.])
to_right = np.broadcast_to(infty_right, endpoints[~leftright, 0].shape)
left_to = np.broadcast_to(infty_left, endpoints[~leftright, 1].shape)
coords1 = np.stack([endpoints[~leftright, 0], to_right], axis=-2)
coords2 = np.stack([endpoints[~leftright, 1], left_to], axis=-2)
right_arcs = LineCollection(coords1, **default_kwargs)
left_arcs = LineCollection(coords2, **default_kwargs)
self.ax.add_collection(right_arcs)
self.ax.add_collection(left_arcs)
else:
raise DrawingError(
"Drawing boundary arcs in model '{}' is not implemented.".format(
self.model)
)
def show(self):
plt.show()
| python |
"""
Contains all function related to the genetic algorithm itself.
E.g. selection, crossover, and mutation.
This is called by the main.py module
"""
import copy
import numpy as np
import random
from neural_network import apply_neuron_constraints
def crossover(parents, gen_size):
# If anything goes wrong, this function is complicated enough to warrant inspection
new_gen = []
for i in range(gen_size):
parent_1 = parents[np.random.randint(0,len(parents))]
parent_2 = parents[np.random.randint(0,len(parents))]
selected_parents = [parent_1, parent_2]
template = copy.deepcopy(parent_1) # it's crucial that we copy parent 1 for this function to work
for l in range(len(template["thetas"])):
for n in range(len(template["thetas"][l].transpose())):
choice = random.choice([0,1])
if choice:
# Swap in parent 2 genes
template["thetas"][l].transpose()[n] = selected_parents[choice]["thetas"][l].transpose()[n]
template["thresholds"][l][n] = selected_parents[choice]["thresholds"][l][n]
new_gen.append(template)
return new_gen
def mutate(networks, p_m):
for i in range(len(networks)):
for l in range(len(networks[i]["thetas"])):
for n in range(len(networks[i]["thetas"][l].transpose())):
for w in range(len(networks[i]["thetas"][l].transpose()[n])):
if random.uniform(0,1) < p_m:
new_value = random.randint(-2, 2) # todo verify this makes sense
networks[i]["thetas"][l].transpose()[n][w] = new_value
if random.uniform(0, 1) < p_m:
if l < 3: networks[i]["thresholds"][l][n] = random.randint(-4, 3)
else: networks[i]["thresholds"][l][n] = random.randint(-2, 1)
apply_neuron_constraints(networks[i])
return networks
def select_best(population, scores, num_parents):
sort = sorted(range(len(scores)), key=lambda k: scores[k])
selected = [population[i] for i in sort[0:num_parents]]
return selected
| python |
import argparse
from spiderpy import SpiderApi
def main():
"""Main function."""
parser = argparse.ArgumentParser(description="Run some live tests against the API")
parser.add_argument(
'username', type=str,
help="Your email address")
parser.add_argument(
'password', type=str,
help="Your password")
args = parser.parse_args()
username = args.username
password = args.password
api = SpiderApi(username, password, 5)
unique_id = None
# Get thermostats
print("Get thermostats")
thermostats = api.get_thermostats()
print("Number of thermostats: ", len(thermostats))
print("Listing thermostats:")
for thermostat in thermostats:
print(thermostat)
temp_target_curr = thermostat.target_temperature
temp_list = [(temp_target_curr - 1), temp_target_curr]
for temp in temp_list:
print("Set temperature to " + str(temp) + " degrees")
thermostat.set_temperature(temp)
assert (temp == thermostat.target_temperature), "Failed to set target temperature"
if thermostat.has_operation_mode:
operation_mode_list = thermostat.operation_values
if operation_mode_list[-1] != thermostat.operation_mode:
operation_mode_list.reverse()
for operation_mode in operation_mode_list:
print("Set to " + operation_mode)
thermostat.set_operation_mode(operation_mode)
assert thermostat.operation_mode == operation_mode, "Failed to set operation mode"
if thermostat.has_fan_mode:
fan_speed_curr = thermostat.current_fan_speed
print("Current fan speed: " + str(fan_speed_curr))
speed_list = thermostat.fan_speed_values
speed_list.reverse()
for speed in speed_list:
print("Set fan speed to " + speed)
speed_set = thermostat.set_fan_speed(speed)
assert speed_set & (thermostat.current_fan_speed == speed), "Failed to set fan speed"
if fan_speed_curr is not None:
print("Set fan speed back to " + str(fan_speed_curr))
thermostat.set_fan_speed(fan_speed_curr)
if unique_id is not None:
print("Retrieve by id")
thermostat = api.get_thermostat(unique_id)
print(thermostat)
# Get power plugs
unique_id = None
print("Get power plugs")
power_plugs = api.get_power_plugs()
print("Number of power plugs: ", len(power_plugs))
print("Listing power plugs:")
for power_plug in power_plugs:
print(power_plug)
print("Turn on the power plug")
#power_plug.turn_on()
if unique_id is not None:
print("Retrieve by id")
power_plug = api.get_power_plug(unique_id)
print(power_plug)
if __name__ == '__main__':
main()
| python |
from django import forms
from django.utils.translation import ugettext as _
from django.core.exceptions import ValidationError
from django.contrib.auth.models import User
from datetimewidget.widgets import DateTimeWidget
from .models import Event, Proposal, Activity
class CustomDateTimeWidget(DateTimeWidget):
def format_output(self, *args, **kwargs):
return super(CustomDateTimeWidget, self)\
.format_output(*args, **kwargs).replace(
'<i class="icon-th"></i>', '<i class="icon-th hide"></i>')
class CustomTimeInputWidget(forms.TimeInput):
input_type = 'time'
class EventForm(forms.ModelForm):
class Meta:
model = Event
exclude = ['author', 'jury']
widgets = {
'title': forms.TextInput(attrs={'class': 'inline-input'}),
'closing_date': CustomDateTimeWidget(attrs={
'id': 'id_closing_date',
'class': 'inline-input',
'placeholder': 'Closing Date'
}),
}
class InviteForm(forms.ModelForm):
email = forms.EmailField(label=_('User email'))
class Meta:
model = Event
fields = []
def add_to_jury(self):
email = self.cleaned_data.get('email')
try:
user = User.objects.get(email=email)
except User.DoesNotExist:
raise ValidationError(
_(u'The "%s" are not a Speakerfight user. '
u'For now, we just allow already joined users.') % email)
if self.instance.jury.users.filter(pk=user.pk).exists():
raise ValidationError(
_(u'The "@%s" already is being part of this jury.') % user)
self.instance.jury.users.add(user)
class ProposalForm(forms.ModelForm):
description = forms.CharField(required=True, widget=forms.Textarea())
class Meta:
model = Proposal
exclude = [
'event', 'author', 'track', 'rate',
'is_approved', 'track_order',
'activity_type', 'start_timetable', 'end_timetable',
]
widgets = {
'title': forms.TextInput(attrs={'class': 'inline-input'}),
'slides_url': forms.TextInput(
attrs={
'class': 'form-control',
'placeholder': 'jane_doe/talk',
}),
}
class ActivityForm(forms.ModelForm):
# Removing the Proposal type from the available options
activity_type = forms.ChoiceField(
choices=[actitvity_type for actitvity_type in Activity.ACTIVITY_TYPES
if actitvity_type[0] != Activity.PROPOSAL])
class Meta:
model = Activity
fields = [
'title', 'description', 'activity_type',
'start_timetable', 'end_timetable',
]
widgets = {
'title': forms.TextInput(attrs={'class': 'inline-input'}),
'start_timetable': CustomTimeInputWidget(format='%H:%M'),
'end_timetable': CustomTimeInputWidget(format='%H:%M'),
}
class ActivityTimetableForm(forms.ModelForm):
class Meta:
model = Activity
fields = [
'start_timetable', 'end_timetable',
]
widgets = {
'start_timetable': CustomTimeInputWidget(format='%H:%M'),
'end_timetable': CustomTimeInputWidget(format='%H:%M'),
}
| python |
# -*- coding: utf-8 -*-
""" usage: python3 plot_features.py --segment size 10 """
import sys
import os
sys.path.insert(0, os.path.join(os.path.dirname(
os.path.realpath(__file__)), "../"))
from Functions import plot_functions as pf
from Functions import utils as ut
if __name__ == '__main__':
segment_size = ut.parse_CLI()
pf.plot_features(segment_size) | python |
"""Spotbugs java tool class to detect bugs inside the project"""
import re
import shlex
import xmltodict
from eze.core.enums import VulnerabilityType, ToolType, SourceType, Vulnerability
from eze.core.tool import ToolMeta, ScanResult
from eze.utils.cli import extract_version_from_maven, run_async_cli_command
from eze.utils.io import create_tempfile_path, write_json
from eze.utils.language.java import ignore_groovy_errors
class JavaSpotbugsTool(ToolMeta):
"""Spotbugs SAST tool class"""
TOOL_NAME: str = "java-spotbugs"
TOOL_TYPE: ToolType = ToolType.SAST
SOURCE_SUPPORT: list = [SourceType.JAVA]
SHORT_DESCRIPTION: str = "opensource java SAST tool class"
INSTALL_HELP: str = """In most cases all that is required is java and mvn installed
https://maven.apache.org/download.cgi
test if installed with
mvn --version
"""
MORE_INFO: str = """
https://spotbugs.github.io/
https://github.com/spotbugs/spotbugs
https://spotbugs.readthedocs.io/en/latest/maven.html
Tips and Tricks
===========================
You can add files to include or exclude to customise your output
https://spotbugs.readthedocs.io/en/latest/filter.html
"""
# https://github.com/spotbugs/spotbugs/blob/master/LICENSE
LICENSE: str = """LGPL"""
EZE_CONFIG: dict = {
"INCLUDE_FULL_REASON": {
"type": bool,
"default": True,
"help_text": """Optional include the full reason in report
Warning: on production might want to set this to False to prevent found Secrets appearing in reports""",
},
"REPORT_FILE": {
"type": str,
"default": create_tempfile_path("tmp-java-spotbugs.json"),
"default_help_value": "<tempdir>/.eze-temp/tmp-java-spotbugs.json",
"help_text": "output report location (will default to tmp file otherwise)",
},
"MVN_REPORT_FILE": {
"type": str,
"default": "target/spotbugsXml.xml",
"help_text": "maven output spotbugsXml.xml location, will be loaded, parsed and copied to <REPORT_FILE>",
},
}
TOOL_LANGUAGE = "java"
TOOL_CLI_CONFIG = {
"CMD_CONFIG": {
# tool command prefix
# https://spotbugs.github.io/spotbugs-maven-plugin/check-mojo.html
"BASE_COMMAND": shlex.split(
"mvn -B -Dmaven.javadoc.skip=true -Dmaven.test.skip=true install com.github.spotbugs:spotbugs-maven-plugin:check"
)
}
}
@staticmethod
def check_installed() -> str:
"""Method for detecting if tool installed and ready to run scan, returns version installed"""
version = extract_version_from_maven("com.github.spotbugs:spotbugs-maven-plugin")
return version
async def run_scan(self) -> ScanResult:
"""
Method for running a synchronous scan using tool
:raises EzeError
"""
completed_process = await run_async_cli_command(self.TOOL_CLI_CONFIG["CMD_CONFIG"], self.config, self.TOOL_NAME)
with open(self.config["MVN_REPORT_FILE"]) as xml_file:
spotbugs_report = xmltodict.parse(xml_file.read(), force_list={"BugInstance", "BugPattern"})
write_json(self.config["REPORT_FILE"], spotbugs_report)
report = self.parse_report(spotbugs_report)
if completed_process.stderr:
warnings = ignore_groovy_errors(completed_process.stderr)
for warning in warnings:
report.warnings.append(warning)
return report
def parse_report(self, parsed_json: dict) -> ScanResult:
"""convert report json into ScanResult"""
report_results = parsed_json["BugCollection"]
vulnerabilities_list = []
if "BugInstance" in report_results:
bug_patterns = {}
for bug_pattern in report_results["BugPattern"]:
if bug_pattern["@type"] in bug_patterns:
continue
bug_patterns[bug_pattern["@type"]] = bug_pattern["Details"]
for bug_instance in report_results["BugInstance"]:
bug_sourceline = bug_instance["Class"]["SourceLine"]
path = bug_sourceline["@sourcepath"]
reason = bug_instance["ShortMessage"]
line = bug_sourceline["@start"] + "-" + bug_sourceline["@end"]
raw_code = bug_instance["LongMessage"]
name = reason
summary = f"'{reason}', in {path}"
details = re.sub("<[^>]*>", "", bug_patterns[bug_instance["@type"]])
recommendation = f"Investigate '{path}' Lines {line} for '{reason}' \n {details}"
bug_category = bug_instance["@category"]
priority = {"1": "high", "2": "medium", "3": "low"}[bug_instance["@priority"]]
# only include full reason if include_full_reason true
if self.config["INCLUDE_FULL_REASON"]:
recommendation += " Full Match: " + raw_code
vulnerabilities_list.append(
Vulnerability(
{
"vulnerability_type": VulnerabilityType.code.name,
"name": name,
"version": None,
"overview": summary,
"recommendation": recommendation,
"language": "java",
"severity": priority,
"identifiers": {
"spotbugs-code": f"{bug_instance['@type']}:{bug_instance['ShortMessage']} ({bug_category})"
},
"metadata": None,
"file_location": {"path": path, "lines": bug_sourceline["@start"]},
}
)
)
report = ScanResult(
{
"tool": self.TOOL_NAME,
"vulnerabilities": vulnerabilities_list,
}
)
return report
| python |
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import argparse
import keras
import numpy as np
import pandas as pd
from ashrae.utils import (
MODEL_PATH, timer, make_dir, rmsle,
load_data, get_validation_months,
)
parser = argparse.ArgumentParser(description="")
parser.add_argument("--overwrite", action="store_true",
help="If True then overwrite existing files")
parser.add_argument("--normalize_target", action="store_true",
help="If True then normalize the meter_reading by dividing by log1p(square_feet).")
FEATURES = [
# building meta features
"square_feet", "year_built", "floor_count",
# cat cols
"building_id", "site_id", "primary_use",
"hour", "weekday", "weekday_hour",
"building_weekday_hour", "building_weekday",
"building_hour",
# raw weather features
"air_temperature", "cloud_coverage", "dew_temperature",
"precip_depth_1_hr", "sea_level_pressure", "wind_direction", "wind_speed",
# derivative weather features
"air_temperature_mean_lag7", "air_temperature_max_lag7",
"air_temperature_min_lag7", "air_temperature_std_lag7",
"air_temperature_mean_lag73", "air_temperature_max_lag73",
"air_temperature_min_lag73", "air_temperature_std_lag73",
# time features
"hour_x", "hour_y", "weekday_x", "weekday_y", "is_holiday",
# target encoding features
"gte_meter_building_id_hour", "gte_meter_building_id_weekday",
]
CAT_COLS = [
"building_id", "site_id", "primary_use",
"hour", "weekday", "weekday_hour",
"building_weekday_hour", "building_weekday",
"building_hour",
]
NUM_COLS = [x for x in FEATURES if x not in CAT_COLS]
def get_inputs(df):
inputs = {col: np.array(df[col]) for col in CAT_COLS}
inputs["numerical_inputs"] = df[NUM_COLS].values
return inputs, df.target.values
def train_mlp(
train,
valid,
cat_counts,
save_name,
lr=1e-3,
lr_decay=1e-4,
batch_size=512,
epochs=25,
emb_l2_reg=1e-3,
emb_dim=1,
n_dense_max=256,
n_dense_min=32,
n_layers=3,
dropout=0.5):
#-------------------------
with timer("Create model"):
# inputs
num_inputs = keras.layers.Input(shape=(len(NUM_COLS),), name="numerical_inputs")
cat_inputs = [keras.layers.Input(shape=(1,), name=x) for x in CAT_COLS]
# embedding
emb_inputs = []
for x,i in zip(cat_counts, cat_inputs):
emb = keras.layers.Embedding(
input_dim=cat_counts[x],
output_dim=emb_dim,
embeddings_regularizer=keras.regularizers.l2(emb_l2_reg))
emb = keras.layers.Flatten()(emb(i))
emb_inputs.append(emb)
# mlp
inputs = keras.layers.Concatenate(name="general_features")([num_inputs, *emb_inputs])
for i in range(n_layers):
n_dense = int(max((0.5**i)*n_dense_max, n_dense_min))
inputs = keras.layers.Dense(n_dense, activation="relu")(inputs)
inputs = keras.layers.Dropout(dropout)(inputs)
inputs = keras.layers.BatchNormalization()(inputs)
# output
outputs = keras.layers.Dense(1, activation=None, name="outputs")(inputs)
model = keras.models.Model(
inputs = [num_inputs, *cat_inputs],
outputs = outputs
)
# compile
model.compile(
loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adam(lr=lr, decay=lr_decay)
)
model.summary()
#-------------------------
msg = f'Training {save_name} - train# {train.shape} val# {valid.shape}'
with timer(msg):
model.fit(
*get_inputs(train),
batch_size=batch_size,
epochs=epochs,
validation_data=get_inputs(valid),
callbacks=[
keras.callbacks.EarlyStopping(
patience=2,
verbose=1
),
keras.callbacks.ModelCheckpoint(
save_name, # f"{MODEL_PATH}/model_oof.hdf5"
save_best_only=True,
verbose=1,
monitor='val_loss',
mode='min'
)
]
)
return
if __name__ == "__main__":
"""
python scripts/03_train_mlp_meter.py --normalize_target
python scripts/03_train_mlp_meter.py
"""
args = parser.parse_args()
with timer("Loading data"):
train = load_data("train_nn_meter")
train = train.loc[train.is_bad_meter_reading==0].reset_index(drop=True)
with timer("Preprocesing"):
meter_cat_counts = train.groupby(["meter"])[CAT_COLS].agg(lambda x: len(np.unique(x)))
# get base file name
model_name = f"mlp-split_meter"
make_dir(f"{MODEL_PATH}/{model_name}")
with timer("Training"):
for seed in [0]:
#for n_months in [1,2,3,4,5,6]:
for n_months in [3]: #@Matt, n_months=3 brings optimal tradeoff between single model performance and diversity for the ensemble
# validation_months_list = get_validation_months(n_months) #@Matt, fixed the bug -> hard-coded n_months
validation_months_list = get_validation_months(n_months)
for fold_, validation_months in enumerate(validation_months_list):
for m in range(4):
# create sub model path
if args.normalize_target:
sub_model_path = f"{MODEL_PATH}/{model_name}/target_normalization/meter_{m}"
make_dir(sub_model_path)
else:
sub_model_path = f"{MODEL_PATH}/{model_name}/no_normalization/meter_{m}"
make_dir(sub_model_path)
# create model version
model_version = "_".join([
str(seed), str(n_months), str(fold_),
])
# check if we can skip this model
full_sub_model_name = f"{sub_model_path}/{model_version}.h5"
if os.path.exists(full_sub_model_name):
if not args.overwrite:
break
# get this months indices
trn_idx = np.where(np.isin(train.month, validation_months, invert=True))[0]
val_idx = np.where(np.isin(train.month, validation_months, invert=False))[0]
#rint(f"split meter: train size {len(trn_idx)} val size {len(val_idx)}")
# remove indices not in this meter
trn_idx = np.intersect1d(trn_idx, np.where(train.meter == m)[0])
val_idx = np.intersect1d(val_idx, np.where(train.meter == m)[0])
#rint(f"split meter: train size {len(trn_idx)} val size {len(val_idx)}")
# fit model
train_mlp(
train = train.loc[trn_idx, FEATURES+["target"]],
valid = train.loc[val_idx, FEATURES+["target"]],
cat_counts = dict(meter_cat_counts.loc[m]),
save_name = full_sub_model_name
) | python |
"""介绍numpy的基本知识"""
import numpy as np
"""[[1, 2, 3],[2, 3, 4]]只是列表形式"""
# 将列表转换为数组
array = np.array([[1, 2, 3], [2, 3, 4]])
print(array)
print('number of dim', array.ndim) # 数组维数
print('shape', array.shape) # 数组的形式
print('size', array.size) # 数组的大小
"""
number of dim 2
shape (2, 3)
size 6
""" | python |
# Copyright 2013 Cloudbase Solutions Srl
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import mock
from nova.openstack.common import units
from nova import test
from nova.virt.hyperv import constants
from nova.virt.hyperv import vhdutilsv2
class VHDUtilsV2TestCase(test.NoDBTestCase):
"""Unit tests for the Hyper-V VHDUtilsV2 class."""
_FAKE_VHD_PATH = "C:\\fake_path.vhdx"
_FAKE_PARENT_VHD_PATH = "C:\\fake_parent_path.vhdx"
_FAKE_FORMAT = 3
_FAKE_MAK_INTERNAL_SIZE = units.Gi
_FAKE_TYPE = 3
_FAKE_JOB_PATH = 'fake_job_path'
_FAKE_RET_VAL = 0
_FAKE_VHD_FORMAT = 'vhdx'
_FAKE_BLOCK_SIZE = 33554432
_FAKE_LOG_SIZE = 1048576
_FAKE_LOGICAL_SECTOR_SIZE = 4096
_FAKE_METADATA_SIZE = 1048576
_FAKE_VHD_INFO = {'ParentPath': _FAKE_PARENT_VHD_PATH,
'Format': _FAKE_FORMAT,
'BlockSize': _FAKE_BLOCK_SIZE,
'LogicalSectorSize': _FAKE_LOGICAL_SECTOR_SIZE,
'Type': _FAKE_TYPE}
def setUp(self):
self._vhdutils = vhdutilsv2.VHDUtilsV2()
self._vhdutils._conn = mock.MagicMock()
self._vhdutils._vmutils = mock.MagicMock()
self._vhdutils.get_vhd_format = mock.MagicMock(
return_value=self._FAKE_VHD_FORMAT)
self._fake_file_handle = mock.MagicMock()
self._fake_vhd_info_xml = (
'<INSTANCE CLASSNAME="Msvm_VirtualHardDiskSettingData">'
'<PROPERTY NAME="BlockSize" TYPE="uint32">'
'<VALUE>33554432</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="Caption" TYPE="string">'
'<VALUE>Virtual Hard Disk Setting Data</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="Description" TYPE="string">'
'<VALUE>Setting Data for a Virtual Hard Disk.</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="ElementName" TYPE="string">'
'<VALUE>fake_path.vhdx</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="Format" TYPE="uint16">'
'<VALUE>%(format)s</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="InstanceID" TYPE="string">'
'<VALUE>52794B89-AC06-4349-AC57-486CAAD52F69</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="LogicalSectorSize" TYPE="uint32">'
'<VALUE>512</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="MaxInternalSize" TYPE="uint64">'
'<VALUE>%(max_internal_size)s</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="ParentPath" TYPE="string">'
'<VALUE>%(parent_path)s</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="Path" TYPE="string">'
'<VALUE>%(path)s</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="PhysicalSectorSize" TYPE="uint32">'
'<VALUE>4096</VALUE>'
'</PROPERTY>'
'<PROPERTY NAME="Type" TYPE="uint16">'
'<VALUE>%(type)s</VALUE>'
'</PROPERTY>'
'</INSTANCE>' %
{'path': self._FAKE_VHD_PATH,
'parent_path': self._FAKE_PARENT_VHD_PATH,
'format': self._FAKE_FORMAT,
'max_internal_size': self._FAKE_MAK_INTERNAL_SIZE,
'type': self._FAKE_TYPE})
super(VHDUtilsV2TestCase, self).setUp()
def test_get_vhd_info(self):
mock_img_svc = self._vhdutils._conn.Msvm_ImageManagementService()[0]
mock_img_svc.GetVirtualHardDiskSettingData.return_value = (
self._FAKE_JOB_PATH, self._FAKE_RET_VAL, self._fake_vhd_info_xml)
vhd_info = self._vhdutils.get_vhd_info(self._FAKE_VHD_PATH)
self.assertEqual(self._FAKE_VHD_PATH, vhd_info['Path'])
self.assertEqual(self._FAKE_PARENT_VHD_PATH, vhd_info['ParentPath'])
self.assertEqual(self._FAKE_FORMAT, vhd_info['Format'])
self.assertEqual(self._FAKE_MAK_INTERNAL_SIZE,
vhd_info['MaxInternalSize'])
self.assertEqual(self._FAKE_TYPE, vhd_info['Type'])
def test_create_dynamic_vhd(self):
self._vhdutils.get_vhd_info = mock.MagicMock(
return_value={'Format': self._FAKE_FORMAT})
mock_img_svc = self._vhdutils._conn.Msvm_ImageManagementService()[0]
mock_img_svc.CreateVirtualHardDisk.return_value = (self._FAKE_JOB_PATH,
self._FAKE_RET_VAL)
self._vhdutils.create_dynamic_vhd(self._FAKE_VHD_PATH,
self._FAKE_MAK_INTERNAL_SIZE,
constants.DISK_FORMAT_VHDX)
self.assertTrue(mock_img_svc.CreateVirtualHardDisk.called)
def test_create_differencing_vhd(self):
self._vhdutils.get_vhd_info = mock.MagicMock(
return_value={'ParentPath': self._FAKE_PARENT_VHD_PATH,
'Format': self._FAKE_FORMAT})
mock_img_svc = self._vhdutils._conn.Msvm_ImageManagementService()[0]
mock_img_svc.CreateVirtualHardDisk.return_value = (self._FAKE_JOB_PATH,
self._FAKE_RET_VAL)
self._vhdutils.create_differencing_vhd(self._FAKE_VHD_PATH,
self._FAKE_PARENT_VHD_PATH)
self.assertTrue(mock_img_svc.CreateVirtualHardDisk.called)
def test_reconnect_parent_vhd(self):
mock_img_svc = self._vhdutils._conn.Msvm_ImageManagementService()[0]
self._vhdutils._get_vhd_info_xml = mock.MagicMock(
return_value=self._fake_vhd_info_xml)
mock_img_svc.SetVirtualHardDiskSettingData.return_value = (
self._FAKE_JOB_PATH, self._FAKE_RET_VAL)
self._vhdutils.reconnect_parent_vhd(self._FAKE_VHD_PATH,
self._FAKE_PARENT_VHD_PATH)
mock_img_svc.SetVirtualHardDiskSettingData.assert_called_once_with(
VirtualDiskSettingData=self._fake_vhd_info_xml)
def test_resize_vhd(self):
mock_img_svc = self._vhdutils._conn.Msvm_ImageManagementService()[0]
mock_img_svc.ResizeVirtualHardDisk.return_value = (self._FAKE_JOB_PATH,
self._FAKE_RET_VAL)
self._vhdutils.get_internal_vhd_size_by_file_size = mock.MagicMock(
return_value=self._FAKE_MAK_INTERNAL_SIZE)
self._vhdutils.resize_vhd(self._FAKE_VHD_PATH,
self._FAKE_MAK_INTERNAL_SIZE)
mock_img_svc.ResizeVirtualHardDisk.assert_called_once_with(
Path=self._FAKE_VHD_PATH,
MaxInternalSize=self._FAKE_MAK_INTERNAL_SIZE)
self.mock_get = self._vhdutils.get_internal_vhd_size_by_file_size
self.mock_get.assert_called_once_with(self._FAKE_VHD_PATH,
self._FAKE_MAK_INTERNAL_SIZE)
def _test_get_vhdx_internal_size(self, vhd_type):
self._vhdutils.get_vhd_info = mock.MagicMock()
self._vhdutils.get_vhd_parent_path = mock.Mock(
return_value=self._FAKE_PARENT_VHD_PATH)
if vhd_type == 4:
self._vhdutils.get_vhd_info.side_effect = [
{'Type': vhd_type}, self._FAKE_VHD_INFO]
else:
self._vhdutils.get_vhd_info.return_value = self._FAKE_VHD_INFO
self._vhdutils._get_vhdx_log_size = mock.MagicMock(
return_value=self._FAKE_LOG_SIZE)
self._vhdutils._get_vhdx_metadata_size_and_offset = mock.MagicMock(
return_value=(self._FAKE_METADATA_SIZE, 1024))
self._vhdutils._get_vhdx_block_size = mock.MagicMock(
return_value=self._FAKE_BLOCK_SIZE)
file_mock = mock.MagicMock()
with mock.patch('__builtin__.open', file_mock):
internal_size = (
self._vhdutils.get_internal_vhd_size_by_file_size(
self._FAKE_VHD_PATH, self._FAKE_MAK_INTERNAL_SIZE))
self.assertEqual(self._FAKE_MAK_INTERNAL_SIZE - self._FAKE_BLOCK_SIZE,
internal_size)
def test_get_vhdx_internal_size_dynamic(self):
self._test_get_vhdx_internal_size(3)
def test_get_vhdx_internal_size_differencing(self):
self._test_get_vhdx_internal_size(4)
def test_get_vhdx_current_header(self):
VHDX_HEADER_OFFSETS = [64 * 1024, 128 * 1024]
fake_sequence_numbers = ['\x01\x00\x00\x00\x00\x00\x00\x00',
'\x02\x00\x00\x00\x00\x00\x00\x00']
self._fake_file_handle.read = mock.MagicMock(
side_effect=fake_sequence_numbers)
offset = self._vhdutils._get_vhdx_current_header_offset(
self._fake_file_handle)
self.assertEqual(offset, VHDX_HEADER_OFFSETS[1])
def test_get_vhdx_metadata_size(self):
fake_metadata_offset = '\x01\x00\x00\x00\x00\x00\x00\x00'
fake_metadata_size = '\x01\x00\x00\x00'
self._fake_file_handle.read = mock.MagicMock(
side_effect=[fake_metadata_offset, fake_metadata_size])
metadata_size, metadata_offset = (
self._vhdutils._get_vhdx_metadata_size_and_offset(
self._fake_file_handle))
self.assertEqual(metadata_size, 1)
self.assertEqual(metadata_offset, 1)
def test_get_block_size(self):
self._vhdutils._get_vhdx_metadata_size_and_offset = mock.MagicMock(
return_value=(self._FAKE_METADATA_SIZE, 1024))
fake_block_size = '\x01\x00\x00\x00'
self._fake_file_handle.read = mock.MagicMock(
return_value=fake_block_size)
block_size = self._vhdutils._get_vhdx_block_size(
self._fake_file_handle)
self.assertEqual(block_size, 1)
def test_get_log_size(self):
fake_current_header_offset = 64 * 1024
self._vhdutils._get_vhdx_current_header_offset = mock.MagicMock(
return_value=fake_current_header_offset)
fake_log_size = '\x01\x00\x00\x00'
self._fake_file_handle.read = mock.MagicMock(
return_value=fake_log_size)
log_size = self._vhdutils._get_vhdx_log_size(self._fake_file_handle)
self.assertEqual(log_size, 1)
| python |
# Generated by Django 2.2.1 on 2019-06-26 11:23
import django.db.models.deletion
from django.conf import settings
from django.db import migrations, models
import libs.django.db.models.base_model
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='GpxPoint',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('create_time', models.DateTimeField(auto_now_add=True, verbose_name='등록일')),
('update_time', models.DateTimeField(auto_now=True, verbose_name='수정일')),
('record_time', models.DateTimeField(verbose_name='기록 시간')),
('latitude', models.FloatField(verbose_name='latitude')),
('longitude', models.FloatField(verbose_name='longitude')),
('elevation', models.FloatField(verbose_name='elevation')),
('user', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL, verbose_name='user')),
],
options={
'verbose_name': 'GPX Point',
'verbose_name_plural': 'GPX Point 리스트',
'db_table': 'gpx_point',
'unique_together': {('user', 'record_time')},
},
bases=(libs.django.db.models.base_model.EqualizeMixin, models.Model),
),
]
| python |
# coding: utf-8
import os
import sys
from importlib import import_module
# import local modules
from .utils import load_config, build_vocab, Tokenizer
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
BASE_MODULE = "classifier"
class Classifier():
def __init__(self, args):
self.args = args
self.nn_models = ['TextCNN','TextRNN','TextRCNN','TextRNN_Att']
if args['model_name'] in self.nn_models:
module = import_module(BASE_MODULE+'.'+"nn_classifier")
else:
module = import_module(BASE_MODULE+'.'+args['model_name'])
self.model = module.Model(self.args)
def train(self, X_train, y_train, X_dev=None, y_dev=None, evaluate_test=False):
if self.args['model_name'] == 'FastText': # FastText不需要dev dataset
if evaluate_test:
test_report, test_acc = self.model.train(X_train, y_train, evaluate_test=True)
return test_report, test_acc
else:
self.model.train(X_train, y_train, evaluate_test=False)
return None, None
else:
if evaluate_test:
test_report, test_acc = self.model.train(X_train, y_train, X_dev, y_dev, evaluate_test=True)
return test_report, test_acc
else:
self.model.train(X_train, y_train, X_dev, y_dev, evaluate_test=False)
return None, None
def predict(self, X, model_path='', model=None, tokenizer=None):
if self.args['model_name'] in ['Bert','XLNet']:
predclass = self.model.predict(X, model_path=model_path, model=model, tokenizer=tokenizer, show_process=True)
else:
predclass = self.model.predict(X, model_path=model_path, model=model)
return predclass
def load_model(self, model_path):
model = self.model.load_model(model_path)
if self.args['model_name'] in ['Bert','XLNet']:
tokenizer = self.model.load_tokenizer(model_path)
return model, tokenizer
else:
return model, None
if __name__ == '__main__':
# load data
import pandas as pd
data = pd.read_csv('data/2_categories_data.csv')
X_train = data['text'].tolist()
y_train = data['label'].tolist()
# load config
config_path = "./config.ini"
model_name = "Bert"
args = load_config(config_path, model_name)
args['model_name'] = model_name
args['save_path'] = "output/%s"%model_name
# build vocab if vocab file does not exists
# load tokenizer
#tokenizer = Tokenizer(args['word_level'], args['preprocess'], args['lang'])
#vocab = build_vocab(X_train, tokenizer, args['vocab_path'], max_vocab_size=args['max_vocab_size'], min_freq=1)
print(args)
# train
clf = Classifier(args)
clf.train(X_train, y_train, evaluate_test=True)
predclass = clf.predict(X_train)
| python |
import numpy as np
import pycircstat
import BirdSongToolbox.free_epoch_tools as fet
from BirdSongToolbox.import_data import ImportData
from BirdSongToolbox.context_hand_labeling import label_focus_context, first_context_func, last_context_func
from src.analysis.ml_pipeline_utilities import all_label_instructions
import src.analysis.hilbert_based_pipeline as hbp
import src.analysis.ml_pipeline_utilities as mlpu
from src.analysis.context_utility import birds_context_obj, all_last_syllable
def selected_motifs_to_remove(bird_id='z007', session='day-2016-09-11'):
"""For visualization motifs were removed to illustrate more stereotyped behavior, this is to compensate for not
dynamically time warping. The reports created to first show this phenomena doesn't remove these motifs"""
if bird_id == 'z020':
exemplar_chan = 11
if session == 'day-2016-06-03': # Day 1
# Cherry Pick Motifs for the Visualization:
first_rm = [0, 1, 3, 4, 5, 8, 11, 16, 17, 19, 20, 23, 26, 32, 35, 36, 39] # Last 3 are from code glitch
last_rm = [0, 1, 2, 3, 15, 16, 17, 19, 21, 25, 26, 27, 28, 31, 34, 36, 37, 39, 42, 44]
elif session == 'day-2016-06-05': # Day 2
# Cherry Pick Motifs for the Visualization:
# 4
first_rm = [2, 3, 7, 9, 10, 15, 17, 18, 27, 29] # Last 3 are from code glitch
last_rm = [0, 2, 4, 10, 11, 12, 19, 25, 27, 29, 31]
elif bird_id == 'z007':
exemplar_chan = 17
if session == 'day-2016-09-10': # Day 1
# Cherry Pick Motifs for the Visualization:
first_rm = [11, 12, 13] # Last 3 are from code glitch
last_rm = [1, 5]
elif session == 'day-2016-09-11': # Day 2
# Cherry Pick Motifs for the Visualization:
first_rm = [6, 13, 14, 15, 16, 20, 31, 7, 8, 36] # Last 3 are from code glitch
last_rm = [6, 11, 13, 17, 19, 20, 21, 33]
elif bird_id == 'z017':
exemplar_chan = 14
if session == 'day-2016-06-19': # Day 1
# Cherry Pick Motifs for the Visualization:
first_rm = [0, 1, 6, 7, 21, 30, 33] # Last 3 are from code glitch
last_rm = [6, 16, 17, 22, 27, 28, 34]
elif session == 'day-2016-06-21': # Day 2
# Cherry Pick Motifs for the Visualization:
first_rm = [1, 4, 13, 19, 20, 24, 29, 31, 32] # Last 3 are from code glitch
last_rm = [1, 2, 8, 11, 12, 20, 26, 30, ]
# 10?
else:
raise NameError # Somehow Used a Subject and Day that wasn't shown in the paper
return first_rm, last_rm, exemplar_chan
# This should be moved to a visualization specific module
from src.analysis.chunk_spectral_perturbation_report import plot_behavior_test
from src.analysis.context_utility import birds_context_obj
def get_itpc_statistical_significance(bird_id='z007', session='day-2016-09-11'):
zdata = ImportData(bird_id=bird_id, session=session)
# Get Handlabels
chunk_labels_list, chunk_onsets_list = fet.get_chunk_handlabels(handlabels_list=zdata.song_handlabels)
# Switch to the Log Spaced Bins
freq_bins = 100
fc_lo = np.logspace(np.log10(2), np.log10(220), freq_bins)
fc_hi = np.logspace(np.log10(3), np.log10(250), freq_bins)
proc_data = hbp.itc_phase_chunk(neural_chunks=zdata.song_neural,
fs=1000,
l_freqs=fc_lo,
h_freqs=fc_hi,
verbose=True)
# Helper Function to create the properly initialized context class
testclass = birds_context_obj(bird_id=bird_id)
# Get the Context Array for the Day's Data
test_context = testclass.get_all_context_index_arrays(chunk_labels_list)
# Select Labels Using Flexible Context Selection
first_syll = label_focus_context(focus=1,
labels=chunk_labels_list,
starts=chunk_onsets_list[0],
contexts=test_context,
context_func=first_context_func)
last_syll = label_focus_context(focus=all_last_syllable[bird_id],
labels=chunk_labels_list,
starts=chunk_onsets_list[1],
contexts=test_context,
context_func=last_context_func)
# Set the Context Windows
first_window = (-500, 800)
last_window = (-800, 300)
first_rm, last_rm, exemplar_chan = selected_motifs_to_remove(bird_id=bird_id, session=session)
# Clip around Events of Interest
all_firsts = fet.get_event_related_nd_chunk(chunk_data=proc_data, chunk_indices=first_syll,
fs=1000, window=first_window)
all_lasts = fet.get_event_related_nd_chunk(chunk_data=proc_data, chunk_indices=last_syll,
fs=1000, window=last_window)
# Correct The Shape of the Data
all_firsts = fet.event_shape_correction(all_firsts, original_dim=3)
all_lasts = fet.event_shape_correction(all_lasts, original_dim=3)
# Remove the selected motifs
all_firsts = np.delete(all_firsts, first_rm, axis=0)
all_lasts = np.delete(all_lasts, last_rm, axis=0)
# First Motif ITPC
first_itc = pycircstat.resultant_vector_length(np.asarray(all_firsts), axis=0)
first_itc_p, first_itc_z = pycircstat.rayleigh(np.asarray(all_firsts), axis=0)
# Last Motif ITPC
last_itc = pycircstat.resultant_vector_length(np.asarray(all_lasts), axis=0)
last_itc_p, last_itc_z = pycircstat.rayleigh(np.asarray(all_lasts), axis=0)
# Steps to Getting the Values that I want:
# Print the Maximum P-value for First
print("Print the Maximum P-value for First:")
print(np.max(first_itc_p[:, exemplar_chan, :][first_itc_z[:, exemplar_chan, :] > 5]))
print("")
# Print the P-values for Z>5 for First
print("Print the P-values for Z>5 for First:")
print(np.max(first_itc_p[:, exemplar_chan, :][first_itc_z[:, exemplar_chan, :] > 5]))
print("")
# Print the Maximum P-value for last
print("Print the Maximum P-value for last:")
print(np.max(last_itc_p[:, exemplar_chan, :][last_itc_z[:, exemplar_chan, :] > 5]))
print("")
# Print the P-values for Z>5 for last
print("Print the P-values for Z>5 for last:")
print(np.max(last_itc_p[:, exemplar_chan, :][last_itc_z[:, exemplar_chan, :] > 5]))
print("")
def get_itpc_single_statistical_significance(bird_id='z007', session='day-2016-09-11'):
zdata = ImportData(bird_id=bird_id, session=session)
# Get Handlabels
chunk_labels_list, chunk_onsets_list = fet.get_chunk_handlabels(handlabels_list=zdata.song_handlabels)
# Switch to the Log Spaced Bins
freq_bins = 100
fc_lo = np.logspace(np.log10(2), np.log10(220), freq_bins)
fc_hi = np.logspace(np.log10(3), np.log10(250), freq_bins)
proc_data = hbp.itc_phase_chunk(neural_chunks=zdata.song_neural,
fs=1000,
l_freqs=fc_lo,
h_freqs=fc_hi,
verbose=True)
# Helper Function to create the properly initialized context class
testclass = birds_context_obj(bird_id=bird_id)
# Get the Context Array for the Day's Data
test_context = testclass.get_all_context_index_arrays(chunk_labels_list)
label_instructions = all_label_instructions[bird_id] # Removing the Silence due to its special needs
times_of_interest = fet.label_extractor(all_labels=chunk_labels_list,
starts=chunk_onsets_list[0],
label_instructions=label_instructions)
# Grab the Neural Activity Centered on Each event
set_window = (-500, 500)
chunk_events = fet.event_clipper_nd(data=proc_data, label_events=times_of_interest,
fs=1000, window=set_window)
chunk_events = mlpu.balance_classes(chunk_events)
def run_itc_analysis(chunk_events_data):
# Run the ITC over each Label Type
# test_itc = pycircstat.resultant_vector_length(np.asarray(label_focus), axis=0)
# test_itc_p, test_itc_z = pycircstat.rayleigh(np.asarray(label_focus), axis=0)
itc_results_vector = []
itc_results_p = []
itc_results_z = []
for label_type in chunk_events_data:
itc_vector = pycircstat.resultant_vector_length(np.asarray(label_type), axis=0)
itc_p, itc_z = pycircstat.rayleigh(np.asarray(label_type), axis=0)
itc_results_vector.append(itc_vector)
itc_results_p.append(itc_p)
itc_results_z.append(itc_z)
return np.asarray(itc_results_vector), np.asarray(itc_results_p), np.asarray(itc_results_z)
_, _, exemplar_chan = selected_motifs_to_remove(bird_id=bird_id, session=session)
itc_results_vector, itc_results_p, itc_results_z = run_itc_analysis(chunk_events_data=chunk_events)
# Steps to Getting the Values that I want:
# Print the Maximum P-value Accross all Syllables
print("Print the Maximum P-value for First:")
print(np.max(itc_results_p[:, :, exemplar_chan, :][itc_results_z[:, :, exemplar_chan, :] > 5]))
print("")
# Print the P-values for Z>5 Accross all Syllables
print("Print the P-values for Z>5 for First:")
print(np.max(itc_results_p[:, :, exemplar_chan, :][itc_results_z[:, :, exemplar_chan, :] > 5]))
print("")
| python |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.